]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/events/core.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[mirror_ubuntu-bionic-kernel.git] / kernel / events / core.c
1 /*
2 * Performance events core code:
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53
54 #include "internal.h"
55
56 #include <asm/irq_regs.h>
57
58 typedef int (*remote_function_f)(void *);
59
60 struct remote_function_call {
61 struct task_struct *p;
62 remote_function_f func;
63 void *info;
64 int ret;
65 };
66
67 static void remote_function(void *data)
68 {
69 struct remote_function_call *tfc = data;
70 struct task_struct *p = tfc->p;
71
72 if (p) {
73 /* -EAGAIN */
74 if (task_cpu(p) != smp_processor_id())
75 return;
76
77 /*
78 * Now that we're on right CPU with IRQs disabled, we can test
79 * if we hit the right task without races.
80 */
81
82 tfc->ret = -ESRCH; /* No such (running) process */
83 if (p != current)
84 return;
85 }
86
87 tfc->ret = tfc->func(tfc->info);
88 }
89
90 /**
91 * task_function_call - call a function on the cpu on which a task runs
92 * @p: the task to evaluate
93 * @func: the function to be called
94 * @info: the function call argument
95 *
96 * Calls the function @func when the task is currently running. This might
97 * be on the current CPU, which just calls the function directly
98 *
99 * returns: @func return value, or
100 * -ESRCH - when the process isn't running
101 * -EAGAIN - when the process moved away
102 */
103 static int
104 task_function_call(struct task_struct *p, remote_function_f func, void *info)
105 {
106 struct remote_function_call data = {
107 .p = p,
108 .func = func,
109 .info = info,
110 .ret = -EAGAIN,
111 };
112 int ret;
113
114 do {
115 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
116 if (!ret)
117 ret = data.ret;
118 } while (ret == -EAGAIN);
119
120 return ret;
121 }
122
123 /**
124 * cpu_function_call - call a function on the cpu
125 * @func: the function to be called
126 * @info: the function call argument
127 *
128 * Calls the function @func on the remote cpu.
129 *
130 * returns: @func return value or -ENXIO when the cpu is offline
131 */
132 static int cpu_function_call(int cpu, remote_function_f func, void *info)
133 {
134 struct remote_function_call data = {
135 .p = NULL,
136 .func = func,
137 .info = info,
138 .ret = -ENXIO, /* No such CPU */
139 };
140
141 smp_call_function_single(cpu, remote_function, &data, 1);
142
143 return data.ret;
144 }
145
146 static inline struct perf_cpu_context *
147 __get_cpu_context(struct perf_event_context *ctx)
148 {
149 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
150 }
151
152 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
153 struct perf_event_context *ctx)
154 {
155 raw_spin_lock(&cpuctx->ctx.lock);
156 if (ctx)
157 raw_spin_lock(&ctx->lock);
158 }
159
160 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
161 struct perf_event_context *ctx)
162 {
163 if (ctx)
164 raw_spin_unlock(&ctx->lock);
165 raw_spin_unlock(&cpuctx->ctx.lock);
166 }
167
168 #define TASK_TOMBSTONE ((void *)-1L)
169
170 static bool is_kernel_event(struct perf_event *event)
171 {
172 return READ_ONCE(event->owner) == TASK_TOMBSTONE;
173 }
174
175 /*
176 * On task ctx scheduling...
177 *
178 * When !ctx->nr_events a task context will not be scheduled. This means
179 * we can disable the scheduler hooks (for performance) without leaving
180 * pending task ctx state.
181 *
182 * This however results in two special cases:
183 *
184 * - removing the last event from a task ctx; this is relatively straight
185 * forward and is done in __perf_remove_from_context.
186 *
187 * - adding the first event to a task ctx; this is tricky because we cannot
188 * rely on ctx->is_active and therefore cannot use event_function_call().
189 * See perf_install_in_context().
190 *
191 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
192 */
193
194 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
195 struct perf_event_context *, void *);
196
197 struct event_function_struct {
198 struct perf_event *event;
199 event_f func;
200 void *data;
201 };
202
203 static int event_function(void *info)
204 {
205 struct event_function_struct *efs = info;
206 struct perf_event *event = efs->event;
207 struct perf_event_context *ctx = event->ctx;
208 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
209 struct perf_event_context *task_ctx = cpuctx->task_ctx;
210 int ret = 0;
211
212 lockdep_assert_irqs_disabled();
213
214 perf_ctx_lock(cpuctx, task_ctx);
215 /*
216 * Since we do the IPI call without holding ctx->lock things can have
217 * changed, double check we hit the task we set out to hit.
218 */
219 if (ctx->task) {
220 if (ctx->task != current) {
221 ret = -ESRCH;
222 goto unlock;
223 }
224
225 /*
226 * We only use event_function_call() on established contexts,
227 * and event_function() is only ever called when active (or
228 * rather, we'll have bailed in task_function_call() or the
229 * above ctx->task != current test), therefore we must have
230 * ctx->is_active here.
231 */
232 WARN_ON_ONCE(!ctx->is_active);
233 /*
234 * And since we have ctx->is_active, cpuctx->task_ctx must
235 * match.
236 */
237 WARN_ON_ONCE(task_ctx != ctx);
238 } else {
239 WARN_ON_ONCE(&cpuctx->ctx != ctx);
240 }
241
242 efs->func(event, cpuctx, ctx, efs->data);
243 unlock:
244 perf_ctx_unlock(cpuctx, task_ctx);
245
246 return ret;
247 }
248
249 static void event_function_call(struct perf_event *event, event_f func, void *data)
250 {
251 struct perf_event_context *ctx = event->ctx;
252 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
253 struct event_function_struct efs = {
254 .event = event,
255 .func = func,
256 .data = data,
257 };
258
259 if (!event->parent) {
260 /*
261 * If this is a !child event, we must hold ctx::mutex to
262 * stabilize the the event->ctx relation. See
263 * perf_event_ctx_lock().
264 */
265 lockdep_assert_held(&ctx->mutex);
266 }
267
268 if (!task) {
269 cpu_function_call(event->cpu, event_function, &efs);
270 return;
271 }
272
273 if (task == TASK_TOMBSTONE)
274 return;
275
276 again:
277 if (!task_function_call(task, event_function, &efs))
278 return;
279
280 raw_spin_lock_irq(&ctx->lock);
281 /*
282 * Reload the task pointer, it might have been changed by
283 * a concurrent perf_event_context_sched_out().
284 */
285 task = ctx->task;
286 if (task == TASK_TOMBSTONE) {
287 raw_spin_unlock_irq(&ctx->lock);
288 return;
289 }
290 if (ctx->is_active) {
291 raw_spin_unlock_irq(&ctx->lock);
292 goto again;
293 }
294 func(event, NULL, ctx, data);
295 raw_spin_unlock_irq(&ctx->lock);
296 }
297
298 /*
299 * Similar to event_function_call() + event_function(), but hard assumes IRQs
300 * are already disabled and we're on the right CPU.
301 */
302 static void event_function_local(struct perf_event *event, event_f func, void *data)
303 {
304 struct perf_event_context *ctx = event->ctx;
305 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
306 struct task_struct *task = READ_ONCE(ctx->task);
307 struct perf_event_context *task_ctx = NULL;
308
309 lockdep_assert_irqs_disabled();
310
311 if (task) {
312 if (task == TASK_TOMBSTONE)
313 return;
314
315 task_ctx = ctx;
316 }
317
318 perf_ctx_lock(cpuctx, task_ctx);
319
320 task = ctx->task;
321 if (task == TASK_TOMBSTONE)
322 goto unlock;
323
324 if (task) {
325 /*
326 * We must be either inactive or active and the right task,
327 * otherwise we're screwed, since we cannot IPI to somewhere
328 * else.
329 */
330 if (ctx->is_active) {
331 if (WARN_ON_ONCE(task != current))
332 goto unlock;
333
334 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
335 goto unlock;
336 }
337 } else {
338 WARN_ON_ONCE(&cpuctx->ctx != ctx);
339 }
340
341 func(event, cpuctx, ctx, data);
342 unlock:
343 perf_ctx_unlock(cpuctx, task_ctx);
344 }
345
346 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
347 PERF_FLAG_FD_OUTPUT |\
348 PERF_FLAG_PID_CGROUP |\
349 PERF_FLAG_FD_CLOEXEC)
350
351 /*
352 * branch priv levels that need permission checks
353 */
354 #define PERF_SAMPLE_BRANCH_PERM_PLM \
355 (PERF_SAMPLE_BRANCH_KERNEL |\
356 PERF_SAMPLE_BRANCH_HV)
357
358 enum event_type_t {
359 EVENT_FLEXIBLE = 0x1,
360 EVENT_PINNED = 0x2,
361 EVENT_TIME = 0x4,
362 /* see ctx_resched() for details */
363 EVENT_CPU = 0x8,
364 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
365 };
366
367 /*
368 * perf_sched_events : >0 events exist
369 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
370 */
371
372 static void perf_sched_delayed(struct work_struct *work);
373 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
374 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
375 static DEFINE_MUTEX(perf_sched_mutex);
376 static atomic_t perf_sched_count;
377
378 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
379 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
380 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
381
382 static atomic_t nr_mmap_events __read_mostly;
383 static atomic_t nr_comm_events __read_mostly;
384 static atomic_t nr_namespaces_events __read_mostly;
385 static atomic_t nr_task_events __read_mostly;
386 static atomic_t nr_freq_events __read_mostly;
387 static atomic_t nr_switch_events __read_mostly;
388
389 static LIST_HEAD(pmus);
390 static DEFINE_MUTEX(pmus_lock);
391 static struct srcu_struct pmus_srcu;
392 static cpumask_var_t perf_online_mask;
393
394 /*
395 * perf event paranoia level:
396 * -1 - not paranoid at all
397 * 0 - disallow raw tracepoint access for unpriv
398 * 1 - disallow cpu events for unpriv
399 * 2 - disallow kernel profiling for unpriv
400 */
401 int sysctl_perf_event_paranoid __read_mostly = 2;
402
403 /* Minimum for 512 kiB + 1 user control page */
404 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
405
406 /*
407 * max perf event sample rate
408 */
409 #define DEFAULT_MAX_SAMPLE_RATE 100000
410 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
411 #define DEFAULT_CPU_TIME_MAX_PERCENT 25
412
413 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
414
415 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
416 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
417
418 static int perf_sample_allowed_ns __read_mostly =
419 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
420
421 static void update_perf_cpu_limits(void)
422 {
423 u64 tmp = perf_sample_period_ns;
424
425 tmp *= sysctl_perf_cpu_time_max_percent;
426 tmp = div_u64(tmp, 100);
427 if (!tmp)
428 tmp = 1;
429
430 WRITE_ONCE(perf_sample_allowed_ns, tmp);
431 }
432
433 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
434
435 int perf_proc_update_handler(struct ctl_table *table, int write,
436 void __user *buffer, size_t *lenp,
437 loff_t *ppos)
438 {
439 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
440
441 if (ret || !write)
442 return ret;
443
444 /*
445 * If throttling is disabled don't allow the write:
446 */
447 if (sysctl_perf_cpu_time_max_percent == 100 ||
448 sysctl_perf_cpu_time_max_percent == 0)
449 return -EINVAL;
450
451 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
452 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
453 update_perf_cpu_limits();
454
455 return 0;
456 }
457
458 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
459
460 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
461 void __user *buffer, size_t *lenp,
462 loff_t *ppos)
463 {
464 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
465
466 if (ret || !write)
467 return ret;
468
469 if (sysctl_perf_cpu_time_max_percent == 100 ||
470 sysctl_perf_cpu_time_max_percent == 0) {
471 printk(KERN_WARNING
472 "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
473 WRITE_ONCE(perf_sample_allowed_ns, 0);
474 } else {
475 update_perf_cpu_limits();
476 }
477
478 return 0;
479 }
480
481 /*
482 * perf samples are done in some very critical code paths (NMIs).
483 * If they take too much CPU time, the system can lock up and not
484 * get any real work done. This will drop the sample rate when
485 * we detect that events are taking too long.
486 */
487 #define NR_ACCUMULATED_SAMPLES 128
488 static DEFINE_PER_CPU(u64, running_sample_length);
489
490 static u64 __report_avg;
491 static u64 __report_allowed;
492
493 static void perf_duration_warn(struct irq_work *w)
494 {
495 printk_ratelimited(KERN_INFO
496 "perf: interrupt took too long (%lld > %lld), lowering "
497 "kernel.perf_event_max_sample_rate to %d\n",
498 __report_avg, __report_allowed,
499 sysctl_perf_event_sample_rate);
500 }
501
502 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
503
504 void perf_sample_event_took(u64 sample_len_ns)
505 {
506 u64 max_len = READ_ONCE(perf_sample_allowed_ns);
507 u64 running_len;
508 u64 avg_len;
509 u32 max;
510
511 if (max_len == 0)
512 return;
513
514 /* Decay the counter by 1 average sample. */
515 running_len = __this_cpu_read(running_sample_length);
516 running_len -= running_len/NR_ACCUMULATED_SAMPLES;
517 running_len += sample_len_ns;
518 __this_cpu_write(running_sample_length, running_len);
519
520 /*
521 * Note: this will be biased artifically low until we have
522 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
523 * from having to maintain a count.
524 */
525 avg_len = running_len/NR_ACCUMULATED_SAMPLES;
526 if (avg_len <= max_len)
527 return;
528
529 __report_avg = avg_len;
530 __report_allowed = max_len;
531
532 /*
533 * Compute a throttle threshold 25% below the current duration.
534 */
535 avg_len += avg_len / 4;
536 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
537 if (avg_len < max)
538 max /= (u32)avg_len;
539 else
540 max = 1;
541
542 WRITE_ONCE(perf_sample_allowed_ns, avg_len);
543 WRITE_ONCE(max_samples_per_tick, max);
544
545 sysctl_perf_event_sample_rate = max * HZ;
546 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
547
548 if (!irq_work_queue(&perf_duration_work)) {
549 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
550 "kernel.perf_event_max_sample_rate to %d\n",
551 __report_avg, __report_allowed,
552 sysctl_perf_event_sample_rate);
553 }
554 }
555
556 static atomic64_t perf_event_id;
557
558 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
559 enum event_type_t event_type);
560
561 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
562 enum event_type_t event_type,
563 struct task_struct *task);
564
565 static void update_context_time(struct perf_event_context *ctx);
566 static u64 perf_event_time(struct perf_event *event);
567
568 void __weak perf_event_print_debug(void) { }
569
570 extern __weak const char *perf_pmu_name(void)
571 {
572 return "pmu";
573 }
574
575 static inline u64 perf_clock(void)
576 {
577 return local_clock();
578 }
579
580 static inline u64 perf_event_clock(struct perf_event *event)
581 {
582 return event->clock();
583 }
584
585 /*
586 * State based event timekeeping...
587 *
588 * The basic idea is to use event->state to determine which (if any) time
589 * fields to increment with the current delta. This means we only need to
590 * update timestamps when we change state or when they are explicitly requested
591 * (read).
592 *
593 * Event groups make things a little more complicated, but not terribly so. The
594 * rules for a group are that if the group leader is OFF the entire group is
595 * OFF, irrespecive of what the group member states are. This results in
596 * __perf_effective_state().
597 *
598 * A futher ramification is that when a group leader flips between OFF and
599 * !OFF, we need to update all group member times.
600 *
601 *
602 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
603 * need to make sure the relevant context time is updated before we try and
604 * update our timestamps.
605 */
606
607 static __always_inline enum perf_event_state
608 __perf_effective_state(struct perf_event *event)
609 {
610 struct perf_event *leader = event->group_leader;
611
612 if (leader->state <= PERF_EVENT_STATE_OFF)
613 return leader->state;
614
615 return event->state;
616 }
617
618 static __always_inline void
619 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
620 {
621 enum perf_event_state state = __perf_effective_state(event);
622 u64 delta = now - event->tstamp;
623
624 *enabled = event->total_time_enabled;
625 if (state >= PERF_EVENT_STATE_INACTIVE)
626 *enabled += delta;
627
628 *running = event->total_time_running;
629 if (state >= PERF_EVENT_STATE_ACTIVE)
630 *running += delta;
631 }
632
633 static void perf_event_update_time(struct perf_event *event)
634 {
635 u64 now = perf_event_time(event);
636
637 __perf_update_times(event, now, &event->total_time_enabled,
638 &event->total_time_running);
639 event->tstamp = now;
640 }
641
642 static void perf_event_update_sibling_time(struct perf_event *leader)
643 {
644 struct perf_event *sibling;
645
646 list_for_each_entry(sibling, &leader->sibling_list, group_entry)
647 perf_event_update_time(sibling);
648 }
649
650 static void
651 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
652 {
653 if (event->state == state)
654 return;
655
656 perf_event_update_time(event);
657 /*
658 * If a group leader gets enabled/disabled all its siblings
659 * are affected too.
660 */
661 if ((event->state < 0) ^ (state < 0))
662 perf_event_update_sibling_time(event);
663
664 WRITE_ONCE(event->state, state);
665 }
666
667 #ifdef CONFIG_CGROUP_PERF
668
669 static inline bool
670 perf_cgroup_match(struct perf_event *event)
671 {
672 struct perf_event_context *ctx = event->ctx;
673 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
674
675 /* @event doesn't care about cgroup */
676 if (!event->cgrp)
677 return true;
678
679 /* wants specific cgroup scope but @cpuctx isn't associated with any */
680 if (!cpuctx->cgrp)
681 return false;
682
683 /*
684 * Cgroup scoping is recursive. An event enabled for a cgroup is
685 * also enabled for all its descendant cgroups. If @cpuctx's
686 * cgroup is a descendant of @event's (the test covers identity
687 * case), it's a match.
688 */
689 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
690 event->cgrp->css.cgroup);
691 }
692
693 static inline void perf_detach_cgroup(struct perf_event *event)
694 {
695 css_put(&event->cgrp->css);
696 event->cgrp = NULL;
697 }
698
699 static inline int is_cgroup_event(struct perf_event *event)
700 {
701 return event->cgrp != NULL;
702 }
703
704 static inline u64 perf_cgroup_event_time(struct perf_event *event)
705 {
706 struct perf_cgroup_info *t;
707
708 t = per_cpu_ptr(event->cgrp->info, event->cpu);
709 return t->time;
710 }
711
712 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
713 {
714 struct perf_cgroup_info *info;
715 u64 now;
716
717 now = perf_clock();
718
719 info = this_cpu_ptr(cgrp->info);
720
721 info->time += now - info->timestamp;
722 info->timestamp = now;
723 }
724
725 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
726 {
727 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
728 if (cgrp_out)
729 __update_cgrp_time(cgrp_out);
730 }
731
732 static inline void update_cgrp_time_from_event(struct perf_event *event)
733 {
734 struct perf_cgroup *cgrp;
735
736 /*
737 * ensure we access cgroup data only when needed and
738 * when we know the cgroup is pinned (css_get)
739 */
740 if (!is_cgroup_event(event))
741 return;
742
743 cgrp = perf_cgroup_from_task(current, event->ctx);
744 /*
745 * Do not update time when cgroup is not active
746 */
747 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
748 __update_cgrp_time(event->cgrp);
749 }
750
751 static inline void
752 perf_cgroup_set_timestamp(struct task_struct *task,
753 struct perf_event_context *ctx)
754 {
755 struct perf_cgroup *cgrp;
756 struct perf_cgroup_info *info;
757
758 /*
759 * ctx->lock held by caller
760 * ensure we do not access cgroup data
761 * unless we have the cgroup pinned (css_get)
762 */
763 if (!task || !ctx->nr_cgroups)
764 return;
765
766 cgrp = perf_cgroup_from_task(task, ctx);
767 info = this_cpu_ptr(cgrp->info);
768 info->timestamp = ctx->timestamp;
769 }
770
771 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
772
773 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
774 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
775
776 /*
777 * reschedule events based on the cgroup constraint of task.
778 *
779 * mode SWOUT : schedule out everything
780 * mode SWIN : schedule in based on cgroup for next
781 */
782 static void perf_cgroup_switch(struct task_struct *task, int mode)
783 {
784 struct perf_cpu_context *cpuctx;
785 struct list_head *list;
786 unsigned long flags;
787
788 /*
789 * Disable interrupts and preemption to avoid this CPU's
790 * cgrp_cpuctx_entry to change under us.
791 */
792 local_irq_save(flags);
793
794 list = this_cpu_ptr(&cgrp_cpuctx_list);
795 list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
796 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
797
798 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
799 perf_pmu_disable(cpuctx->ctx.pmu);
800
801 if (mode & PERF_CGROUP_SWOUT) {
802 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
803 /*
804 * must not be done before ctxswout due
805 * to event_filter_match() in event_sched_out()
806 */
807 cpuctx->cgrp = NULL;
808 }
809
810 if (mode & PERF_CGROUP_SWIN) {
811 WARN_ON_ONCE(cpuctx->cgrp);
812 /*
813 * set cgrp before ctxsw in to allow
814 * event_filter_match() to not have to pass
815 * task around
816 * we pass the cpuctx->ctx to perf_cgroup_from_task()
817 * because cgorup events are only per-cpu
818 */
819 cpuctx->cgrp = perf_cgroup_from_task(task,
820 &cpuctx->ctx);
821 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
822 }
823 perf_pmu_enable(cpuctx->ctx.pmu);
824 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
825 }
826
827 local_irq_restore(flags);
828 }
829
830 static inline void perf_cgroup_sched_out(struct task_struct *task,
831 struct task_struct *next)
832 {
833 struct perf_cgroup *cgrp1;
834 struct perf_cgroup *cgrp2 = NULL;
835
836 rcu_read_lock();
837 /*
838 * we come here when we know perf_cgroup_events > 0
839 * we do not need to pass the ctx here because we know
840 * we are holding the rcu lock
841 */
842 cgrp1 = perf_cgroup_from_task(task, NULL);
843 cgrp2 = perf_cgroup_from_task(next, NULL);
844
845 /*
846 * only schedule out current cgroup events if we know
847 * that we are switching to a different cgroup. Otherwise,
848 * do no touch the cgroup events.
849 */
850 if (cgrp1 != cgrp2)
851 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
852
853 rcu_read_unlock();
854 }
855
856 static inline void perf_cgroup_sched_in(struct task_struct *prev,
857 struct task_struct *task)
858 {
859 struct perf_cgroup *cgrp1;
860 struct perf_cgroup *cgrp2 = NULL;
861
862 rcu_read_lock();
863 /*
864 * we come here when we know perf_cgroup_events > 0
865 * we do not need to pass the ctx here because we know
866 * we are holding the rcu lock
867 */
868 cgrp1 = perf_cgroup_from_task(task, NULL);
869 cgrp2 = perf_cgroup_from_task(prev, NULL);
870
871 /*
872 * only need to schedule in cgroup events if we are changing
873 * cgroup during ctxsw. Cgroup events were not scheduled
874 * out of ctxsw out if that was not the case.
875 */
876 if (cgrp1 != cgrp2)
877 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
878
879 rcu_read_unlock();
880 }
881
882 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
883 struct perf_event_attr *attr,
884 struct perf_event *group_leader)
885 {
886 struct perf_cgroup *cgrp;
887 struct cgroup_subsys_state *css;
888 struct fd f = fdget(fd);
889 int ret = 0;
890
891 if (!f.file)
892 return -EBADF;
893
894 css = css_tryget_online_from_dir(f.file->f_path.dentry,
895 &perf_event_cgrp_subsys);
896 if (IS_ERR(css)) {
897 ret = PTR_ERR(css);
898 goto out;
899 }
900
901 cgrp = container_of(css, struct perf_cgroup, css);
902 event->cgrp = cgrp;
903
904 /*
905 * all events in a group must monitor
906 * the same cgroup because a task belongs
907 * to only one perf cgroup at a time
908 */
909 if (group_leader && group_leader->cgrp != cgrp) {
910 perf_detach_cgroup(event);
911 ret = -EINVAL;
912 }
913 out:
914 fdput(f);
915 return ret;
916 }
917
918 static inline void
919 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
920 {
921 struct perf_cgroup_info *t;
922 t = per_cpu_ptr(event->cgrp->info, event->cpu);
923 event->shadow_ctx_time = now - t->timestamp;
924 }
925
926 /*
927 * Update cpuctx->cgrp so that it is set when first cgroup event is added and
928 * cleared when last cgroup event is removed.
929 */
930 static inline void
931 list_update_cgroup_event(struct perf_event *event,
932 struct perf_event_context *ctx, bool add)
933 {
934 struct perf_cpu_context *cpuctx;
935 struct list_head *cpuctx_entry;
936
937 if (!is_cgroup_event(event))
938 return;
939
940 if (add && ctx->nr_cgroups++)
941 return;
942 else if (!add && --ctx->nr_cgroups)
943 return;
944 /*
945 * Because cgroup events are always per-cpu events,
946 * this will always be called from the right CPU.
947 */
948 cpuctx = __get_cpu_context(ctx);
949 cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
950 /* cpuctx->cgrp is NULL unless a cgroup event is active in this CPU .*/
951 if (add) {
952 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
953
954 list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list));
955 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
956 cpuctx->cgrp = cgrp;
957 } else {
958 list_del(cpuctx_entry);
959 cpuctx->cgrp = NULL;
960 }
961 }
962
963 #else /* !CONFIG_CGROUP_PERF */
964
965 static inline bool
966 perf_cgroup_match(struct perf_event *event)
967 {
968 return true;
969 }
970
971 static inline void perf_detach_cgroup(struct perf_event *event)
972 {}
973
974 static inline int is_cgroup_event(struct perf_event *event)
975 {
976 return 0;
977 }
978
979 static inline void update_cgrp_time_from_event(struct perf_event *event)
980 {
981 }
982
983 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
984 {
985 }
986
987 static inline void perf_cgroup_sched_out(struct task_struct *task,
988 struct task_struct *next)
989 {
990 }
991
992 static inline void perf_cgroup_sched_in(struct task_struct *prev,
993 struct task_struct *task)
994 {
995 }
996
997 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
998 struct perf_event_attr *attr,
999 struct perf_event *group_leader)
1000 {
1001 return -EINVAL;
1002 }
1003
1004 static inline void
1005 perf_cgroup_set_timestamp(struct task_struct *task,
1006 struct perf_event_context *ctx)
1007 {
1008 }
1009
1010 void
1011 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
1012 {
1013 }
1014
1015 static inline void
1016 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
1017 {
1018 }
1019
1020 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1021 {
1022 return 0;
1023 }
1024
1025 static inline void
1026 list_update_cgroup_event(struct perf_event *event,
1027 struct perf_event_context *ctx, bool add)
1028 {
1029 }
1030
1031 #endif
1032
1033 /*
1034 * set default to be dependent on timer tick just
1035 * like original code
1036 */
1037 #define PERF_CPU_HRTIMER (1000 / HZ)
1038 /*
1039 * function must be called with interrupts disabled
1040 */
1041 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1042 {
1043 struct perf_cpu_context *cpuctx;
1044 int rotations = 0;
1045
1046 lockdep_assert_irqs_disabled();
1047
1048 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1049 rotations = perf_rotate_context(cpuctx);
1050
1051 raw_spin_lock(&cpuctx->hrtimer_lock);
1052 if (rotations)
1053 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1054 else
1055 cpuctx->hrtimer_active = 0;
1056 raw_spin_unlock(&cpuctx->hrtimer_lock);
1057
1058 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1059 }
1060
1061 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1062 {
1063 struct hrtimer *timer = &cpuctx->hrtimer;
1064 struct pmu *pmu = cpuctx->ctx.pmu;
1065 u64 interval;
1066
1067 /* no multiplexing needed for SW PMU */
1068 if (pmu->task_ctx_nr == perf_sw_context)
1069 return;
1070
1071 /*
1072 * check default is sane, if not set then force to
1073 * default interval (1/tick)
1074 */
1075 interval = pmu->hrtimer_interval_ms;
1076 if (interval < 1)
1077 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1078
1079 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1080
1081 raw_spin_lock_init(&cpuctx->hrtimer_lock);
1082 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
1083 timer->function = perf_mux_hrtimer_handler;
1084 }
1085
1086 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1087 {
1088 struct hrtimer *timer = &cpuctx->hrtimer;
1089 struct pmu *pmu = cpuctx->ctx.pmu;
1090 unsigned long flags;
1091
1092 /* not for SW PMU */
1093 if (pmu->task_ctx_nr == perf_sw_context)
1094 return 0;
1095
1096 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1097 if (!cpuctx->hrtimer_active) {
1098 cpuctx->hrtimer_active = 1;
1099 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1100 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1101 }
1102 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1103
1104 return 0;
1105 }
1106
1107 void perf_pmu_disable(struct pmu *pmu)
1108 {
1109 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1110 if (!(*count)++)
1111 pmu->pmu_disable(pmu);
1112 }
1113
1114 void perf_pmu_enable(struct pmu *pmu)
1115 {
1116 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1117 if (!--(*count))
1118 pmu->pmu_enable(pmu);
1119 }
1120
1121 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1122
1123 /*
1124 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1125 * perf_event_task_tick() are fully serialized because they're strictly cpu
1126 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1127 * disabled, while perf_event_task_tick is called from IRQ context.
1128 */
1129 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1130 {
1131 struct list_head *head = this_cpu_ptr(&active_ctx_list);
1132
1133 lockdep_assert_irqs_disabled();
1134
1135 WARN_ON(!list_empty(&ctx->active_ctx_list));
1136
1137 list_add(&ctx->active_ctx_list, head);
1138 }
1139
1140 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1141 {
1142 lockdep_assert_irqs_disabled();
1143
1144 WARN_ON(list_empty(&ctx->active_ctx_list));
1145
1146 list_del_init(&ctx->active_ctx_list);
1147 }
1148
1149 static void get_ctx(struct perf_event_context *ctx)
1150 {
1151 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1152 }
1153
1154 static void free_ctx(struct rcu_head *head)
1155 {
1156 struct perf_event_context *ctx;
1157
1158 ctx = container_of(head, struct perf_event_context, rcu_head);
1159 kfree(ctx->task_ctx_data);
1160 kfree(ctx);
1161 }
1162
1163 static void put_ctx(struct perf_event_context *ctx)
1164 {
1165 if (atomic_dec_and_test(&ctx->refcount)) {
1166 if (ctx->parent_ctx)
1167 put_ctx(ctx->parent_ctx);
1168 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1169 put_task_struct(ctx->task);
1170 call_rcu(&ctx->rcu_head, free_ctx);
1171 }
1172 }
1173
1174 /*
1175 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1176 * perf_pmu_migrate_context() we need some magic.
1177 *
1178 * Those places that change perf_event::ctx will hold both
1179 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1180 *
1181 * Lock ordering is by mutex address. There are two other sites where
1182 * perf_event_context::mutex nests and those are:
1183 *
1184 * - perf_event_exit_task_context() [ child , 0 ]
1185 * perf_event_exit_event()
1186 * put_event() [ parent, 1 ]
1187 *
1188 * - perf_event_init_context() [ parent, 0 ]
1189 * inherit_task_group()
1190 * inherit_group()
1191 * inherit_event()
1192 * perf_event_alloc()
1193 * perf_init_event()
1194 * perf_try_init_event() [ child , 1 ]
1195 *
1196 * While it appears there is an obvious deadlock here -- the parent and child
1197 * nesting levels are inverted between the two. This is in fact safe because
1198 * life-time rules separate them. That is an exiting task cannot fork, and a
1199 * spawning task cannot (yet) exit.
1200 *
1201 * But remember that that these are parent<->child context relations, and
1202 * migration does not affect children, therefore these two orderings should not
1203 * interact.
1204 *
1205 * The change in perf_event::ctx does not affect children (as claimed above)
1206 * because the sys_perf_event_open() case will install a new event and break
1207 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1208 * concerned with cpuctx and that doesn't have children.
1209 *
1210 * The places that change perf_event::ctx will issue:
1211 *
1212 * perf_remove_from_context();
1213 * synchronize_rcu();
1214 * perf_install_in_context();
1215 *
1216 * to affect the change. The remove_from_context() + synchronize_rcu() should
1217 * quiesce the event, after which we can install it in the new location. This
1218 * means that only external vectors (perf_fops, prctl) can perturb the event
1219 * while in transit. Therefore all such accessors should also acquire
1220 * perf_event_context::mutex to serialize against this.
1221 *
1222 * However; because event->ctx can change while we're waiting to acquire
1223 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1224 * function.
1225 *
1226 * Lock order:
1227 * cred_guard_mutex
1228 * task_struct::perf_event_mutex
1229 * perf_event_context::mutex
1230 * perf_event::child_mutex;
1231 * perf_event_context::lock
1232 * perf_event::mmap_mutex
1233 * mmap_sem
1234 */
1235 static struct perf_event_context *
1236 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1237 {
1238 struct perf_event_context *ctx;
1239
1240 again:
1241 rcu_read_lock();
1242 ctx = READ_ONCE(event->ctx);
1243 if (!atomic_inc_not_zero(&ctx->refcount)) {
1244 rcu_read_unlock();
1245 goto again;
1246 }
1247 rcu_read_unlock();
1248
1249 mutex_lock_nested(&ctx->mutex, nesting);
1250 if (event->ctx != ctx) {
1251 mutex_unlock(&ctx->mutex);
1252 put_ctx(ctx);
1253 goto again;
1254 }
1255
1256 return ctx;
1257 }
1258
1259 static inline struct perf_event_context *
1260 perf_event_ctx_lock(struct perf_event *event)
1261 {
1262 return perf_event_ctx_lock_nested(event, 0);
1263 }
1264
1265 static void perf_event_ctx_unlock(struct perf_event *event,
1266 struct perf_event_context *ctx)
1267 {
1268 mutex_unlock(&ctx->mutex);
1269 put_ctx(ctx);
1270 }
1271
1272 /*
1273 * This must be done under the ctx->lock, such as to serialize against
1274 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1275 * calling scheduler related locks and ctx->lock nests inside those.
1276 */
1277 static __must_check struct perf_event_context *
1278 unclone_ctx(struct perf_event_context *ctx)
1279 {
1280 struct perf_event_context *parent_ctx = ctx->parent_ctx;
1281
1282 lockdep_assert_held(&ctx->lock);
1283
1284 if (parent_ctx)
1285 ctx->parent_ctx = NULL;
1286 ctx->generation++;
1287
1288 return parent_ctx;
1289 }
1290
1291 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1292 enum pid_type type)
1293 {
1294 u32 nr;
1295 /*
1296 * only top level events have the pid namespace they were created in
1297 */
1298 if (event->parent)
1299 event = event->parent;
1300
1301 nr = __task_pid_nr_ns(p, type, event->ns);
1302 /* avoid -1 if it is idle thread or runs in another ns */
1303 if (!nr && !pid_alive(p))
1304 nr = -1;
1305 return nr;
1306 }
1307
1308 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1309 {
1310 return perf_event_pid_type(event, p, __PIDTYPE_TGID);
1311 }
1312
1313 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1314 {
1315 return perf_event_pid_type(event, p, PIDTYPE_PID);
1316 }
1317
1318 /*
1319 * If we inherit events we want to return the parent event id
1320 * to userspace.
1321 */
1322 static u64 primary_event_id(struct perf_event *event)
1323 {
1324 u64 id = event->id;
1325
1326 if (event->parent)
1327 id = event->parent->id;
1328
1329 return id;
1330 }
1331
1332 /*
1333 * Get the perf_event_context for a task and lock it.
1334 *
1335 * This has to cope with with the fact that until it is locked,
1336 * the context could get moved to another task.
1337 */
1338 static struct perf_event_context *
1339 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1340 {
1341 struct perf_event_context *ctx;
1342
1343 retry:
1344 /*
1345 * One of the few rules of preemptible RCU is that one cannot do
1346 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1347 * part of the read side critical section was irqs-enabled -- see
1348 * rcu_read_unlock_special().
1349 *
1350 * Since ctx->lock nests under rq->lock we must ensure the entire read
1351 * side critical section has interrupts disabled.
1352 */
1353 local_irq_save(*flags);
1354 rcu_read_lock();
1355 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1356 if (ctx) {
1357 /*
1358 * If this context is a clone of another, it might
1359 * get swapped for another underneath us by
1360 * perf_event_task_sched_out, though the
1361 * rcu_read_lock() protects us from any context
1362 * getting freed. Lock the context and check if it
1363 * got swapped before we could get the lock, and retry
1364 * if so. If we locked the right context, then it
1365 * can't get swapped on us any more.
1366 */
1367 raw_spin_lock(&ctx->lock);
1368 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1369 raw_spin_unlock(&ctx->lock);
1370 rcu_read_unlock();
1371 local_irq_restore(*flags);
1372 goto retry;
1373 }
1374
1375 if (ctx->task == TASK_TOMBSTONE ||
1376 !atomic_inc_not_zero(&ctx->refcount)) {
1377 raw_spin_unlock(&ctx->lock);
1378 ctx = NULL;
1379 } else {
1380 WARN_ON_ONCE(ctx->task != task);
1381 }
1382 }
1383 rcu_read_unlock();
1384 if (!ctx)
1385 local_irq_restore(*flags);
1386 return ctx;
1387 }
1388
1389 /*
1390 * Get the context for a task and increment its pin_count so it
1391 * can't get swapped to another task. This also increments its
1392 * reference count so that the context can't get freed.
1393 */
1394 static struct perf_event_context *
1395 perf_pin_task_context(struct task_struct *task, int ctxn)
1396 {
1397 struct perf_event_context *ctx;
1398 unsigned long flags;
1399
1400 ctx = perf_lock_task_context(task, ctxn, &flags);
1401 if (ctx) {
1402 ++ctx->pin_count;
1403 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1404 }
1405 return ctx;
1406 }
1407
1408 static void perf_unpin_context(struct perf_event_context *ctx)
1409 {
1410 unsigned long flags;
1411
1412 raw_spin_lock_irqsave(&ctx->lock, flags);
1413 --ctx->pin_count;
1414 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1415 }
1416
1417 /*
1418 * Update the record of the current time in a context.
1419 */
1420 static void update_context_time(struct perf_event_context *ctx)
1421 {
1422 u64 now = perf_clock();
1423
1424 ctx->time += now - ctx->timestamp;
1425 ctx->timestamp = now;
1426 }
1427
1428 static u64 perf_event_time(struct perf_event *event)
1429 {
1430 struct perf_event_context *ctx = event->ctx;
1431
1432 if (is_cgroup_event(event))
1433 return perf_cgroup_event_time(event);
1434
1435 return ctx ? ctx->time : 0;
1436 }
1437
1438 static enum event_type_t get_event_type(struct perf_event *event)
1439 {
1440 struct perf_event_context *ctx = event->ctx;
1441 enum event_type_t event_type;
1442
1443 lockdep_assert_held(&ctx->lock);
1444
1445 /*
1446 * It's 'group type', really, because if our group leader is
1447 * pinned, so are we.
1448 */
1449 if (event->group_leader != event)
1450 event = event->group_leader;
1451
1452 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1453 if (!ctx->task)
1454 event_type |= EVENT_CPU;
1455
1456 return event_type;
1457 }
1458
1459 static struct list_head *
1460 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1461 {
1462 if (event->attr.pinned)
1463 return &ctx->pinned_groups;
1464 else
1465 return &ctx->flexible_groups;
1466 }
1467
1468 /*
1469 * Add a event from the lists for its context.
1470 * Must be called with ctx->mutex and ctx->lock held.
1471 */
1472 static void
1473 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1474 {
1475 lockdep_assert_held(&ctx->lock);
1476
1477 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1478 event->attach_state |= PERF_ATTACH_CONTEXT;
1479
1480 event->tstamp = perf_event_time(event);
1481
1482 /*
1483 * If we're a stand alone event or group leader, we go to the context
1484 * list, group events are kept attached to the group so that
1485 * perf_group_detach can, at all times, locate all siblings.
1486 */
1487 if (event->group_leader == event) {
1488 struct list_head *list;
1489
1490 event->group_caps = event->event_caps;
1491
1492 list = ctx_group_list(event, ctx);
1493 list_add_tail(&event->group_entry, list);
1494 }
1495
1496 list_update_cgroup_event(event, ctx, true);
1497
1498 list_add_rcu(&event->event_entry, &ctx->event_list);
1499 ctx->nr_events++;
1500 if (event->attr.inherit_stat)
1501 ctx->nr_stat++;
1502
1503 ctx->generation++;
1504 }
1505
1506 /*
1507 * Initialize event state based on the perf_event_attr::disabled.
1508 */
1509 static inline void perf_event__state_init(struct perf_event *event)
1510 {
1511 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1512 PERF_EVENT_STATE_INACTIVE;
1513 }
1514
1515 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1516 {
1517 int entry = sizeof(u64); /* value */
1518 int size = 0;
1519 int nr = 1;
1520
1521 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1522 size += sizeof(u64);
1523
1524 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1525 size += sizeof(u64);
1526
1527 if (event->attr.read_format & PERF_FORMAT_ID)
1528 entry += sizeof(u64);
1529
1530 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1531 nr += nr_siblings;
1532 size += sizeof(u64);
1533 }
1534
1535 size += entry * nr;
1536 event->read_size = size;
1537 }
1538
1539 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1540 {
1541 struct perf_sample_data *data;
1542 u16 size = 0;
1543
1544 if (sample_type & PERF_SAMPLE_IP)
1545 size += sizeof(data->ip);
1546
1547 if (sample_type & PERF_SAMPLE_ADDR)
1548 size += sizeof(data->addr);
1549
1550 if (sample_type & PERF_SAMPLE_PERIOD)
1551 size += sizeof(data->period);
1552
1553 if (sample_type & PERF_SAMPLE_WEIGHT)
1554 size += sizeof(data->weight);
1555
1556 if (sample_type & PERF_SAMPLE_READ)
1557 size += event->read_size;
1558
1559 if (sample_type & PERF_SAMPLE_DATA_SRC)
1560 size += sizeof(data->data_src.val);
1561
1562 if (sample_type & PERF_SAMPLE_TRANSACTION)
1563 size += sizeof(data->txn);
1564
1565 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1566 size += sizeof(data->phys_addr);
1567
1568 event->header_size = size;
1569 }
1570
1571 /*
1572 * Called at perf_event creation and when events are attached/detached from a
1573 * group.
1574 */
1575 static void perf_event__header_size(struct perf_event *event)
1576 {
1577 __perf_event_read_size(event,
1578 event->group_leader->nr_siblings);
1579 __perf_event_header_size(event, event->attr.sample_type);
1580 }
1581
1582 static void perf_event__id_header_size(struct perf_event *event)
1583 {
1584 struct perf_sample_data *data;
1585 u64 sample_type = event->attr.sample_type;
1586 u16 size = 0;
1587
1588 if (sample_type & PERF_SAMPLE_TID)
1589 size += sizeof(data->tid_entry);
1590
1591 if (sample_type & PERF_SAMPLE_TIME)
1592 size += sizeof(data->time);
1593
1594 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1595 size += sizeof(data->id);
1596
1597 if (sample_type & PERF_SAMPLE_ID)
1598 size += sizeof(data->id);
1599
1600 if (sample_type & PERF_SAMPLE_STREAM_ID)
1601 size += sizeof(data->stream_id);
1602
1603 if (sample_type & PERF_SAMPLE_CPU)
1604 size += sizeof(data->cpu_entry);
1605
1606 event->id_header_size = size;
1607 }
1608
1609 static bool perf_event_validate_size(struct perf_event *event)
1610 {
1611 /*
1612 * The values computed here will be over-written when we actually
1613 * attach the event.
1614 */
1615 __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1616 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1617 perf_event__id_header_size(event);
1618
1619 /*
1620 * Sum the lot; should not exceed the 64k limit we have on records.
1621 * Conservative limit to allow for callchains and other variable fields.
1622 */
1623 if (event->read_size + event->header_size +
1624 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1625 return false;
1626
1627 return true;
1628 }
1629
1630 static void perf_group_attach(struct perf_event *event)
1631 {
1632 struct perf_event *group_leader = event->group_leader, *pos;
1633
1634 lockdep_assert_held(&event->ctx->lock);
1635
1636 /*
1637 * We can have double attach due to group movement in perf_event_open.
1638 */
1639 if (event->attach_state & PERF_ATTACH_GROUP)
1640 return;
1641
1642 event->attach_state |= PERF_ATTACH_GROUP;
1643
1644 if (group_leader == event)
1645 return;
1646
1647 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1648
1649 group_leader->group_caps &= event->event_caps;
1650
1651 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1652 group_leader->nr_siblings++;
1653
1654 perf_event__header_size(group_leader);
1655
1656 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1657 perf_event__header_size(pos);
1658 }
1659
1660 /*
1661 * Remove a event from the lists for its context.
1662 * Must be called with ctx->mutex and ctx->lock held.
1663 */
1664 static void
1665 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1666 {
1667 WARN_ON_ONCE(event->ctx != ctx);
1668 lockdep_assert_held(&ctx->lock);
1669
1670 /*
1671 * We can have double detach due to exit/hot-unplug + close.
1672 */
1673 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1674 return;
1675
1676 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1677
1678 list_update_cgroup_event(event, ctx, false);
1679
1680 ctx->nr_events--;
1681 if (event->attr.inherit_stat)
1682 ctx->nr_stat--;
1683
1684 list_del_rcu(&event->event_entry);
1685
1686 if (event->group_leader == event)
1687 list_del_init(&event->group_entry);
1688
1689 /*
1690 * If event was in error state, then keep it
1691 * that way, otherwise bogus counts will be
1692 * returned on read(). The only way to get out
1693 * of error state is by explicit re-enabling
1694 * of the event
1695 */
1696 if (event->state > PERF_EVENT_STATE_OFF)
1697 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
1698
1699 ctx->generation++;
1700 }
1701
1702 static void perf_group_detach(struct perf_event *event)
1703 {
1704 struct perf_event *sibling, *tmp;
1705 struct list_head *list = NULL;
1706
1707 lockdep_assert_held(&event->ctx->lock);
1708
1709 /*
1710 * We can have double detach due to exit/hot-unplug + close.
1711 */
1712 if (!(event->attach_state & PERF_ATTACH_GROUP))
1713 return;
1714
1715 event->attach_state &= ~PERF_ATTACH_GROUP;
1716
1717 /*
1718 * If this is a sibling, remove it from its group.
1719 */
1720 if (event->group_leader != event) {
1721 list_del_init(&event->group_entry);
1722 event->group_leader->nr_siblings--;
1723 goto out;
1724 }
1725
1726 if (!list_empty(&event->group_entry))
1727 list = &event->group_entry;
1728
1729 /*
1730 * If this was a group event with sibling events then
1731 * upgrade the siblings to singleton events by adding them
1732 * to whatever list we are on.
1733 */
1734 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1735 if (list)
1736 list_move_tail(&sibling->group_entry, list);
1737 sibling->group_leader = sibling;
1738
1739 /* Inherit group flags from the previous leader */
1740 sibling->group_caps = event->group_caps;
1741
1742 WARN_ON_ONCE(sibling->ctx != event->ctx);
1743 }
1744
1745 out:
1746 perf_event__header_size(event->group_leader);
1747
1748 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1749 perf_event__header_size(tmp);
1750 }
1751
1752 static bool is_orphaned_event(struct perf_event *event)
1753 {
1754 return event->state == PERF_EVENT_STATE_DEAD;
1755 }
1756
1757 static inline int __pmu_filter_match(struct perf_event *event)
1758 {
1759 struct pmu *pmu = event->pmu;
1760 return pmu->filter_match ? pmu->filter_match(event) : 1;
1761 }
1762
1763 /*
1764 * Check whether we should attempt to schedule an event group based on
1765 * PMU-specific filtering. An event group can consist of HW and SW events,
1766 * potentially with a SW leader, so we must check all the filters, to
1767 * determine whether a group is schedulable:
1768 */
1769 static inline int pmu_filter_match(struct perf_event *event)
1770 {
1771 struct perf_event *child;
1772
1773 if (!__pmu_filter_match(event))
1774 return 0;
1775
1776 list_for_each_entry(child, &event->sibling_list, group_entry) {
1777 if (!__pmu_filter_match(child))
1778 return 0;
1779 }
1780
1781 return 1;
1782 }
1783
1784 static inline int
1785 event_filter_match(struct perf_event *event)
1786 {
1787 return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1788 perf_cgroup_match(event) && pmu_filter_match(event);
1789 }
1790
1791 static void
1792 event_sched_out(struct perf_event *event,
1793 struct perf_cpu_context *cpuctx,
1794 struct perf_event_context *ctx)
1795 {
1796 enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
1797
1798 WARN_ON_ONCE(event->ctx != ctx);
1799 lockdep_assert_held(&ctx->lock);
1800
1801 if (event->state != PERF_EVENT_STATE_ACTIVE)
1802 return;
1803
1804 perf_pmu_disable(event->pmu);
1805
1806 event->pmu->del(event, 0);
1807 event->oncpu = -1;
1808
1809 if (event->pending_disable) {
1810 event->pending_disable = 0;
1811 state = PERF_EVENT_STATE_OFF;
1812 }
1813 perf_event_set_state(event, state);
1814
1815 if (!is_software_event(event))
1816 cpuctx->active_oncpu--;
1817 if (!--ctx->nr_active)
1818 perf_event_ctx_deactivate(ctx);
1819 if (event->attr.freq && event->attr.sample_freq)
1820 ctx->nr_freq--;
1821 if (event->attr.exclusive || !cpuctx->active_oncpu)
1822 cpuctx->exclusive = 0;
1823
1824 perf_pmu_enable(event->pmu);
1825 }
1826
1827 static void
1828 group_sched_out(struct perf_event *group_event,
1829 struct perf_cpu_context *cpuctx,
1830 struct perf_event_context *ctx)
1831 {
1832 struct perf_event *event;
1833
1834 if (group_event->state != PERF_EVENT_STATE_ACTIVE)
1835 return;
1836
1837 perf_pmu_disable(ctx->pmu);
1838
1839 event_sched_out(group_event, cpuctx, ctx);
1840
1841 /*
1842 * Schedule out siblings (if any):
1843 */
1844 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1845 event_sched_out(event, cpuctx, ctx);
1846
1847 perf_pmu_enable(ctx->pmu);
1848
1849 if (group_event->attr.exclusive)
1850 cpuctx->exclusive = 0;
1851 }
1852
1853 #define DETACH_GROUP 0x01UL
1854
1855 /*
1856 * Cross CPU call to remove a performance event
1857 *
1858 * We disable the event on the hardware level first. After that we
1859 * remove it from the context list.
1860 */
1861 static void
1862 __perf_remove_from_context(struct perf_event *event,
1863 struct perf_cpu_context *cpuctx,
1864 struct perf_event_context *ctx,
1865 void *info)
1866 {
1867 unsigned long flags = (unsigned long)info;
1868
1869 if (ctx->is_active & EVENT_TIME) {
1870 update_context_time(ctx);
1871 update_cgrp_time_from_cpuctx(cpuctx);
1872 }
1873
1874 event_sched_out(event, cpuctx, ctx);
1875 if (flags & DETACH_GROUP)
1876 perf_group_detach(event);
1877 list_del_event(event, ctx);
1878
1879 if (!ctx->nr_events && ctx->is_active) {
1880 ctx->is_active = 0;
1881 if (ctx->task) {
1882 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1883 cpuctx->task_ctx = NULL;
1884 }
1885 }
1886 }
1887
1888 /*
1889 * Remove the event from a task's (or a CPU's) list of events.
1890 *
1891 * If event->ctx is a cloned context, callers must make sure that
1892 * every task struct that event->ctx->task could possibly point to
1893 * remains valid. This is OK when called from perf_release since
1894 * that only calls us on the top-level context, which can't be a clone.
1895 * When called from perf_event_exit_task, it's OK because the
1896 * context has been detached from its task.
1897 */
1898 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
1899 {
1900 struct perf_event_context *ctx = event->ctx;
1901
1902 lockdep_assert_held(&ctx->mutex);
1903
1904 event_function_call(event, __perf_remove_from_context, (void *)flags);
1905
1906 /*
1907 * The above event_function_call() can NO-OP when it hits
1908 * TASK_TOMBSTONE. In that case we must already have been detached
1909 * from the context (by perf_event_exit_event()) but the grouping
1910 * might still be in-tact.
1911 */
1912 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1913 if ((flags & DETACH_GROUP) &&
1914 (event->attach_state & PERF_ATTACH_GROUP)) {
1915 /*
1916 * Since in that case we cannot possibly be scheduled, simply
1917 * detach now.
1918 */
1919 raw_spin_lock_irq(&ctx->lock);
1920 perf_group_detach(event);
1921 raw_spin_unlock_irq(&ctx->lock);
1922 }
1923 }
1924
1925 /*
1926 * Cross CPU call to disable a performance event
1927 */
1928 static void __perf_event_disable(struct perf_event *event,
1929 struct perf_cpu_context *cpuctx,
1930 struct perf_event_context *ctx,
1931 void *info)
1932 {
1933 if (event->state < PERF_EVENT_STATE_INACTIVE)
1934 return;
1935
1936 if (ctx->is_active & EVENT_TIME) {
1937 update_context_time(ctx);
1938 update_cgrp_time_from_event(event);
1939 }
1940
1941 if (event == event->group_leader)
1942 group_sched_out(event, cpuctx, ctx);
1943 else
1944 event_sched_out(event, cpuctx, ctx);
1945
1946 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
1947 }
1948
1949 /*
1950 * Disable a event.
1951 *
1952 * If event->ctx is a cloned context, callers must make sure that
1953 * every task struct that event->ctx->task could possibly point to
1954 * remains valid. This condition is satisifed when called through
1955 * perf_event_for_each_child or perf_event_for_each because they
1956 * hold the top-level event's child_mutex, so any descendant that
1957 * goes to exit will block in perf_event_exit_event().
1958 *
1959 * When called from perf_pending_event it's OK because event->ctx
1960 * is the current context on this CPU and preemption is disabled,
1961 * hence we can't get into perf_event_task_sched_out for this context.
1962 */
1963 static void _perf_event_disable(struct perf_event *event)
1964 {
1965 struct perf_event_context *ctx = event->ctx;
1966
1967 raw_spin_lock_irq(&ctx->lock);
1968 if (event->state <= PERF_EVENT_STATE_OFF) {
1969 raw_spin_unlock_irq(&ctx->lock);
1970 return;
1971 }
1972 raw_spin_unlock_irq(&ctx->lock);
1973
1974 event_function_call(event, __perf_event_disable, NULL);
1975 }
1976
1977 void perf_event_disable_local(struct perf_event *event)
1978 {
1979 event_function_local(event, __perf_event_disable, NULL);
1980 }
1981
1982 /*
1983 * Strictly speaking kernel users cannot create groups and therefore this
1984 * interface does not need the perf_event_ctx_lock() magic.
1985 */
1986 void perf_event_disable(struct perf_event *event)
1987 {
1988 struct perf_event_context *ctx;
1989
1990 ctx = perf_event_ctx_lock(event);
1991 _perf_event_disable(event);
1992 perf_event_ctx_unlock(event, ctx);
1993 }
1994 EXPORT_SYMBOL_GPL(perf_event_disable);
1995
1996 void perf_event_disable_inatomic(struct perf_event *event)
1997 {
1998 event->pending_disable = 1;
1999 irq_work_queue(&event->pending);
2000 }
2001
2002 static void perf_set_shadow_time(struct perf_event *event,
2003 struct perf_event_context *ctx)
2004 {
2005 /*
2006 * use the correct time source for the time snapshot
2007 *
2008 * We could get by without this by leveraging the
2009 * fact that to get to this function, the caller
2010 * has most likely already called update_context_time()
2011 * and update_cgrp_time_xx() and thus both timestamp
2012 * are identical (or very close). Given that tstamp is,
2013 * already adjusted for cgroup, we could say that:
2014 * tstamp - ctx->timestamp
2015 * is equivalent to
2016 * tstamp - cgrp->timestamp.
2017 *
2018 * Then, in perf_output_read(), the calculation would
2019 * work with no changes because:
2020 * - event is guaranteed scheduled in
2021 * - no scheduled out in between
2022 * - thus the timestamp would be the same
2023 *
2024 * But this is a bit hairy.
2025 *
2026 * So instead, we have an explicit cgroup call to remain
2027 * within the time time source all along. We believe it
2028 * is cleaner and simpler to understand.
2029 */
2030 if (is_cgroup_event(event))
2031 perf_cgroup_set_shadow_time(event, event->tstamp);
2032 else
2033 event->shadow_ctx_time = event->tstamp - ctx->timestamp;
2034 }
2035
2036 #define MAX_INTERRUPTS (~0ULL)
2037
2038 static void perf_log_throttle(struct perf_event *event, int enable);
2039 static void perf_log_itrace_start(struct perf_event *event);
2040
2041 static int
2042 event_sched_in(struct perf_event *event,
2043 struct perf_cpu_context *cpuctx,
2044 struct perf_event_context *ctx)
2045 {
2046 int ret = 0;
2047
2048 lockdep_assert_held(&ctx->lock);
2049
2050 if (event->state <= PERF_EVENT_STATE_OFF)
2051 return 0;
2052
2053 WRITE_ONCE(event->oncpu, smp_processor_id());
2054 /*
2055 * Order event::oncpu write to happen before the ACTIVE state is
2056 * visible. This allows perf_event_{stop,read}() to observe the correct
2057 * ->oncpu if it sees ACTIVE.
2058 */
2059 smp_wmb();
2060 perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2061
2062 /*
2063 * Unthrottle events, since we scheduled we might have missed several
2064 * ticks already, also for a heavily scheduling task there is little
2065 * guarantee it'll get a tick in a timely manner.
2066 */
2067 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2068 perf_log_throttle(event, 1);
2069 event->hw.interrupts = 0;
2070 }
2071
2072 perf_pmu_disable(event->pmu);
2073
2074 perf_set_shadow_time(event, ctx);
2075
2076 perf_log_itrace_start(event);
2077
2078 if (event->pmu->add(event, PERF_EF_START)) {
2079 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2080 event->oncpu = -1;
2081 ret = -EAGAIN;
2082 goto out;
2083 }
2084
2085 if (!is_software_event(event))
2086 cpuctx->active_oncpu++;
2087 if (!ctx->nr_active++)
2088 perf_event_ctx_activate(ctx);
2089 if (event->attr.freq && event->attr.sample_freq)
2090 ctx->nr_freq++;
2091
2092 if (event->attr.exclusive)
2093 cpuctx->exclusive = 1;
2094
2095 out:
2096 perf_pmu_enable(event->pmu);
2097
2098 return ret;
2099 }
2100
2101 static int
2102 group_sched_in(struct perf_event *group_event,
2103 struct perf_cpu_context *cpuctx,
2104 struct perf_event_context *ctx)
2105 {
2106 struct perf_event *event, *partial_group = NULL;
2107 struct pmu *pmu = ctx->pmu;
2108
2109 if (group_event->state == PERF_EVENT_STATE_OFF)
2110 return 0;
2111
2112 pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2113
2114 if (event_sched_in(group_event, cpuctx, ctx)) {
2115 pmu->cancel_txn(pmu);
2116 perf_mux_hrtimer_restart(cpuctx);
2117 return -EAGAIN;
2118 }
2119
2120 /*
2121 * Schedule in siblings as one group (if any):
2122 */
2123 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2124 if (event_sched_in(event, cpuctx, ctx)) {
2125 partial_group = event;
2126 goto group_error;
2127 }
2128 }
2129
2130 if (!pmu->commit_txn(pmu))
2131 return 0;
2132
2133 group_error:
2134 /*
2135 * Groups can be scheduled in as one unit only, so undo any
2136 * partial group before returning:
2137 * The events up to the failed event are scheduled out normally.
2138 */
2139 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2140 if (event == partial_group)
2141 break;
2142
2143 event_sched_out(event, cpuctx, ctx);
2144 }
2145 event_sched_out(group_event, cpuctx, ctx);
2146
2147 pmu->cancel_txn(pmu);
2148
2149 perf_mux_hrtimer_restart(cpuctx);
2150
2151 return -EAGAIN;
2152 }
2153
2154 /*
2155 * Work out whether we can put this event group on the CPU now.
2156 */
2157 static int group_can_go_on(struct perf_event *event,
2158 struct perf_cpu_context *cpuctx,
2159 int can_add_hw)
2160 {
2161 /*
2162 * Groups consisting entirely of software events can always go on.
2163 */
2164 if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2165 return 1;
2166 /*
2167 * If an exclusive group is already on, no other hardware
2168 * events can go on.
2169 */
2170 if (cpuctx->exclusive)
2171 return 0;
2172 /*
2173 * If this group is exclusive and there are already
2174 * events on the CPU, it can't go on.
2175 */
2176 if (event->attr.exclusive && cpuctx->active_oncpu)
2177 return 0;
2178 /*
2179 * Otherwise, try to add it if all previous groups were able
2180 * to go on.
2181 */
2182 return can_add_hw;
2183 }
2184
2185 static void add_event_to_ctx(struct perf_event *event,
2186 struct perf_event_context *ctx)
2187 {
2188 list_add_event(event, ctx);
2189 perf_group_attach(event);
2190 }
2191
2192 static void ctx_sched_out(struct perf_event_context *ctx,
2193 struct perf_cpu_context *cpuctx,
2194 enum event_type_t event_type);
2195 static void
2196 ctx_sched_in(struct perf_event_context *ctx,
2197 struct perf_cpu_context *cpuctx,
2198 enum event_type_t event_type,
2199 struct task_struct *task);
2200
2201 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2202 struct perf_event_context *ctx,
2203 enum event_type_t event_type)
2204 {
2205 if (!cpuctx->task_ctx)
2206 return;
2207
2208 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2209 return;
2210
2211 ctx_sched_out(ctx, cpuctx, event_type);
2212 }
2213
2214 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2215 struct perf_event_context *ctx,
2216 struct task_struct *task)
2217 {
2218 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2219 if (ctx)
2220 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2221 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2222 if (ctx)
2223 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2224 }
2225
2226 /*
2227 * We want to maintain the following priority of scheduling:
2228 * - CPU pinned (EVENT_CPU | EVENT_PINNED)
2229 * - task pinned (EVENT_PINNED)
2230 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2231 * - task flexible (EVENT_FLEXIBLE).
2232 *
2233 * In order to avoid unscheduling and scheduling back in everything every
2234 * time an event is added, only do it for the groups of equal priority and
2235 * below.
2236 *
2237 * This can be called after a batch operation on task events, in which case
2238 * event_type is a bit mask of the types of events involved. For CPU events,
2239 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2240 */
2241 static void ctx_resched(struct perf_cpu_context *cpuctx,
2242 struct perf_event_context *task_ctx,
2243 enum event_type_t event_type)
2244 {
2245 enum event_type_t ctx_event_type = event_type & EVENT_ALL;
2246 bool cpu_event = !!(event_type & EVENT_CPU);
2247
2248 /*
2249 * If pinned groups are involved, flexible groups also need to be
2250 * scheduled out.
2251 */
2252 if (event_type & EVENT_PINNED)
2253 event_type |= EVENT_FLEXIBLE;
2254
2255 perf_pmu_disable(cpuctx->ctx.pmu);
2256 if (task_ctx)
2257 task_ctx_sched_out(cpuctx, task_ctx, event_type);
2258
2259 /*
2260 * Decide which cpu ctx groups to schedule out based on the types
2261 * of events that caused rescheduling:
2262 * - EVENT_CPU: schedule out corresponding groups;
2263 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2264 * - otherwise, do nothing more.
2265 */
2266 if (cpu_event)
2267 cpu_ctx_sched_out(cpuctx, ctx_event_type);
2268 else if (ctx_event_type & EVENT_PINNED)
2269 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2270
2271 perf_event_sched_in(cpuctx, task_ctx, current);
2272 perf_pmu_enable(cpuctx->ctx.pmu);
2273 }
2274
2275 /*
2276 * Cross CPU call to install and enable a performance event
2277 *
2278 * Very similar to remote_function() + event_function() but cannot assume that
2279 * things like ctx->is_active and cpuctx->task_ctx are set.
2280 */
2281 static int __perf_install_in_context(void *info)
2282 {
2283 struct perf_event *event = info;
2284 struct perf_event_context *ctx = event->ctx;
2285 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2286 struct perf_event_context *task_ctx = cpuctx->task_ctx;
2287 bool reprogram = true;
2288 int ret = 0;
2289
2290 raw_spin_lock(&cpuctx->ctx.lock);
2291 if (ctx->task) {
2292 raw_spin_lock(&ctx->lock);
2293 task_ctx = ctx;
2294
2295 reprogram = (ctx->task == current);
2296
2297 /*
2298 * If the task is running, it must be running on this CPU,
2299 * otherwise we cannot reprogram things.
2300 *
2301 * If its not running, we don't care, ctx->lock will
2302 * serialize against it becoming runnable.
2303 */
2304 if (task_curr(ctx->task) && !reprogram) {
2305 ret = -ESRCH;
2306 goto unlock;
2307 }
2308
2309 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2310 } else if (task_ctx) {
2311 raw_spin_lock(&task_ctx->lock);
2312 }
2313
2314 if (reprogram) {
2315 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2316 add_event_to_ctx(event, ctx);
2317 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2318 } else {
2319 add_event_to_ctx(event, ctx);
2320 }
2321
2322 unlock:
2323 perf_ctx_unlock(cpuctx, task_ctx);
2324
2325 return ret;
2326 }
2327
2328 /*
2329 * Attach a performance event to a context.
2330 *
2331 * Very similar to event_function_call, see comment there.
2332 */
2333 static void
2334 perf_install_in_context(struct perf_event_context *ctx,
2335 struct perf_event *event,
2336 int cpu)
2337 {
2338 struct task_struct *task = READ_ONCE(ctx->task);
2339
2340 lockdep_assert_held(&ctx->mutex);
2341
2342 if (event->cpu != -1)
2343 event->cpu = cpu;
2344
2345 /*
2346 * Ensures that if we can observe event->ctx, both the event and ctx
2347 * will be 'complete'. See perf_iterate_sb_cpu().
2348 */
2349 smp_store_release(&event->ctx, ctx);
2350
2351 if (!task) {
2352 cpu_function_call(cpu, __perf_install_in_context, event);
2353 return;
2354 }
2355
2356 /*
2357 * Should not happen, we validate the ctx is still alive before calling.
2358 */
2359 if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2360 return;
2361
2362 /*
2363 * Installing events is tricky because we cannot rely on ctx->is_active
2364 * to be set in case this is the nr_events 0 -> 1 transition.
2365 *
2366 * Instead we use task_curr(), which tells us if the task is running.
2367 * However, since we use task_curr() outside of rq::lock, we can race
2368 * against the actual state. This means the result can be wrong.
2369 *
2370 * If we get a false positive, we retry, this is harmless.
2371 *
2372 * If we get a false negative, things are complicated. If we are after
2373 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2374 * value must be correct. If we're before, it doesn't matter since
2375 * perf_event_context_sched_in() will program the counter.
2376 *
2377 * However, this hinges on the remote context switch having observed
2378 * our task->perf_event_ctxp[] store, such that it will in fact take
2379 * ctx::lock in perf_event_context_sched_in().
2380 *
2381 * We do this by task_function_call(), if the IPI fails to hit the task
2382 * we know any future context switch of task must see the
2383 * perf_event_ctpx[] store.
2384 */
2385
2386 /*
2387 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2388 * task_cpu() load, such that if the IPI then does not find the task
2389 * running, a future context switch of that task must observe the
2390 * store.
2391 */
2392 smp_mb();
2393 again:
2394 if (!task_function_call(task, __perf_install_in_context, event))
2395 return;
2396
2397 raw_spin_lock_irq(&ctx->lock);
2398 task = ctx->task;
2399 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2400 /*
2401 * Cannot happen because we already checked above (which also
2402 * cannot happen), and we hold ctx->mutex, which serializes us
2403 * against perf_event_exit_task_context().
2404 */
2405 raw_spin_unlock_irq(&ctx->lock);
2406 return;
2407 }
2408 /*
2409 * If the task is not running, ctx->lock will avoid it becoming so,
2410 * thus we can safely install the event.
2411 */
2412 if (task_curr(task)) {
2413 raw_spin_unlock_irq(&ctx->lock);
2414 goto again;
2415 }
2416 add_event_to_ctx(event, ctx);
2417 raw_spin_unlock_irq(&ctx->lock);
2418 }
2419
2420 /*
2421 * Cross CPU call to enable a performance event
2422 */
2423 static void __perf_event_enable(struct perf_event *event,
2424 struct perf_cpu_context *cpuctx,
2425 struct perf_event_context *ctx,
2426 void *info)
2427 {
2428 struct perf_event *leader = event->group_leader;
2429 struct perf_event_context *task_ctx;
2430
2431 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2432 event->state <= PERF_EVENT_STATE_ERROR)
2433 return;
2434
2435 if (ctx->is_active)
2436 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2437
2438 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2439
2440 if (!ctx->is_active)
2441 return;
2442
2443 if (!event_filter_match(event)) {
2444 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2445 return;
2446 }
2447
2448 /*
2449 * If the event is in a group and isn't the group leader,
2450 * then don't put it on unless the group is on.
2451 */
2452 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2453 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2454 return;
2455 }
2456
2457 task_ctx = cpuctx->task_ctx;
2458 if (ctx->task)
2459 WARN_ON_ONCE(task_ctx != ctx);
2460
2461 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2462 }
2463
2464 /*
2465 * Enable a event.
2466 *
2467 * If event->ctx is a cloned context, callers must make sure that
2468 * every task struct that event->ctx->task could possibly point to
2469 * remains valid. This condition is satisfied when called through
2470 * perf_event_for_each_child or perf_event_for_each as described
2471 * for perf_event_disable.
2472 */
2473 static void _perf_event_enable(struct perf_event *event)
2474 {
2475 struct perf_event_context *ctx = event->ctx;
2476
2477 raw_spin_lock_irq(&ctx->lock);
2478 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2479 event->state < PERF_EVENT_STATE_ERROR) {
2480 raw_spin_unlock_irq(&ctx->lock);
2481 return;
2482 }
2483
2484 /*
2485 * If the event is in error state, clear that first.
2486 *
2487 * That way, if we see the event in error state below, we know that it
2488 * has gone back into error state, as distinct from the task having
2489 * been scheduled away before the cross-call arrived.
2490 */
2491 if (event->state == PERF_EVENT_STATE_ERROR)
2492 event->state = PERF_EVENT_STATE_OFF;
2493 raw_spin_unlock_irq(&ctx->lock);
2494
2495 event_function_call(event, __perf_event_enable, NULL);
2496 }
2497
2498 /*
2499 * See perf_event_disable();
2500 */
2501 void perf_event_enable(struct perf_event *event)
2502 {
2503 struct perf_event_context *ctx;
2504
2505 ctx = perf_event_ctx_lock(event);
2506 _perf_event_enable(event);
2507 perf_event_ctx_unlock(event, ctx);
2508 }
2509 EXPORT_SYMBOL_GPL(perf_event_enable);
2510
2511 struct stop_event_data {
2512 struct perf_event *event;
2513 unsigned int restart;
2514 };
2515
2516 static int __perf_event_stop(void *info)
2517 {
2518 struct stop_event_data *sd = info;
2519 struct perf_event *event = sd->event;
2520
2521 /* if it's already INACTIVE, do nothing */
2522 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2523 return 0;
2524
2525 /* matches smp_wmb() in event_sched_in() */
2526 smp_rmb();
2527
2528 /*
2529 * There is a window with interrupts enabled before we get here,
2530 * so we need to check again lest we try to stop another CPU's event.
2531 */
2532 if (READ_ONCE(event->oncpu) != smp_processor_id())
2533 return -EAGAIN;
2534
2535 event->pmu->stop(event, PERF_EF_UPDATE);
2536
2537 /*
2538 * May race with the actual stop (through perf_pmu_output_stop()),
2539 * but it is only used for events with AUX ring buffer, and such
2540 * events will refuse to restart because of rb::aux_mmap_count==0,
2541 * see comments in perf_aux_output_begin().
2542 *
2543 * Since this is happening on a event-local CPU, no trace is lost
2544 * while restarting.
2545 */
2546 if (sd->restart)
2547 event->pmu->start(event, 0);
2548
2549 return 0;
2550 }
2551
2552 static int perf_event_stop(struct perf_event *event, int restart)
2553 {
2554 struct stop_event_data sd = {
2555 .event = event,
2556 .restart = restart,
2557 };
2558 int ret = 0;
2559
2560 do {
2561 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2562 return 0;
2563
2564 /* matches smp_wmb() in event_sched_in() */
2565 smp_rmb();
2566
2567 /*
2568 * We only want to restart ACTIVE events, so if the event goes
2569 * inactive here (event->oncpu==-1), there's nothing more to do;
2570 * fall through with ret==-ENXIO.
2571 */
2572 ret = cpu_function_call(READ_ONCE(event->oncpu),
2573 __perf_event_stop, &sd);
2574 } while (ret == -EAGAIN);
2575
2576 return ret;
2577 }
2578
2579 /*
2580 * In order to contain the amount of racy and tricky in the address filter
2581 * configuration management, it is a two part process:
2582 *
2583 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2584 * we update the addresses of corresponding vmas in
2585 * event::addr_filters_offs array and bump the event::addr_filters_gen;
2586 * (p2) when an event is scheduled in (pmu::add), it calls
2587 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2588 * if the generation has changed since the previous call.
2589 *
2590 * If (p1) happens while the event is active, we restart it to force (p2).
2591 *
2592 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2593 * pre-existing mappings, called once when new filters arrive via SET_FILTER
2594 * ioctl;
2595 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2596 * registered mapping, called for every new mmap(), with mm::mmap_sem down
2597 * for reading;
2598 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2599 * of exec.
2600 */
2601 void perf_event_addr_filters_sync(struct perf_event *event)
2602 {
2603 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2604
2605 if (!has_addr_filter(event))
2606 return;
2607
2608 raw_spin_lock(&ifh->lock);
2609 if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2610 event->pmu->addr_filters_sync(event);
2611 event->hw.addr_filters_gen = event->addr_filters_gen;
2612 }
2613 raw_spin_unlock(&ifh->lock);
2614 }
2615 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2616
2617 static int _perf_event_refresh(struct perf_event *event, int refresh)
2618 {
2619 /*
2620 * not supported on inherited events
2621 */
2622 if (event->attr.inherit || !is_sampling_event(event))
2623 return -EINVAL;
2624
2625 atomic_add(refresh, &event->event_limit);
2626 _perf_event_enable(event);
2627
2628 return 0;
2629 }
2630
2631 /*
2632 * See perf_event_disable()
2633 */
2634 int perf_event_refresh(struct perf_event *event, int refresh)
2635 {
2636 struct perf_event_context *ctx;
2637 int ret;
2638
2639 ctx = perf_event_ctx_lock(event);
2640 ret = _perf_event_refresh(event, refresh);
2641 perf_event_ctx_unlock(event, ctx);
2642
2643 return ret;
2644 }
2645 EXPORT_SYMBOL_GPL(perf_event_refresh);
2646
2647 static void ctx_sched_out(struct perf_event_context *ctx,
2648 struct perf_cpu_context *cpuctx,
2649 enum event_type_t event_type)
2650 {
2651 int is_active = ctx->is_active;
2652 struct perf_event *event;
2653
2654 lockdep_assert_held(&ctx->lock);
2655
2656 if (likely(!ctx->nr_events)) {
2657 /*
2658 * See __perf_remove_from_context().
2659 */
2660 WARN_ON_ONCE(ctx->is_active);
2661 if (ctx->task)
2662 WARN_ON_ONCE(cpuctx->task_ctx);
2663 return;
2664 }
2665
2666 ctx->is_active &= ~event_type;
2667 if (!(ctx->is_active & EVENT_ALL))
2668 ctx->is_active = 0;
2669
2670 if (ctx->task) {
2671 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2672 if (!ctx->is_active)
2673 cpuctx->task_ctx = NULL;
2674 }
2675
2676 /*
2677 * Always update time if it was set; not only when it changes.
2678 * Otherwise we can 'forget' to update time for any but the last
2679 * context we sched out. For example:
2680 *
2681 * ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2682 * ctx_sched_out(.event_type = EVENT_PINNED)
2683 *
2684 * would only update time for the pinned events.
2685 */
2686 if (is_active & EVENT_TIME) {
2687 /* update (and stop) ctx time */
2688 update_context_time(ctx);
2689 update_cgrp_time_from_cpuctx(cpuctx);
2690 }
2691
2692 is_active ^= ctx->is_active; /* changed bits */
2693
2694 if (!ctx->nr_active || !(is_active & EVENT_ALL))
2695 return;
2696
2697 perf_pmu_disable(ctx->pmu);
2698 if (is_active & EVENT_PINNED) {
2699 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2700 group_sched_out(event, cpuctx, ctx);
2701 }
2702
2703 if (is_active & EVENT_FLEXIBLE) {
2704 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2705 group_sched_out(event, cpuctx, ctx);
2706 }
2707 perf_pmu_enable(ctx->pmu);
2708 }
2709
2710 /*
2711 * Test whether two contexts are equivalent, i.e. whether they have both been
2712 * cloned from the same version of the same context.
2713 *
2714 * Equivalence is measured using a generation number in the context that is
2715 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2716 * and list_del_event().
2717 */
2718 static int context_equiv(struct perf_event_context *ctx1,
2719 struct perf_event_context *ctx2)
2720 {
2721 lockdep_assert_held(&ctx1->lock);
2722 lockdep_assert_held(&ctx2->lock);
2723
2724 /* Pinning disables the swap optimization */
2725 if (ctx1->pin_count || ctx2->pin_count)
2726 return 0;
2727
2728 /* If ctx1 is the parent of ctx2 */
2729 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2730 return 1;
2731
2732 /* If ctx2 is the parent of ctx1 */
2733 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2734 return 1;
2735
2736 /*
2737 * If ctx1 and ctx2 have the same parent; we flatten the parent
2738 * hierarchy, see perf_event_init_context().
2739 */
2740 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2741 ctx1->parent_gen == ctx2->parent_gen)
2742 return 1;
2743
2744 /* Unmatched */
2745 return 0;
2746 }
2747
2748 static void __perf_event_sync_stat(struct perf_event *event,
2749 struct perf_event *next_event)
2750 {
2751 u64 value;
2752
2753 if (!event->attr.inherit_stat)
2754 return;
2755
2756 /*
2757 * Update the event value, we cannot use perf_event_read()
2758 * because we're in the middle of a context switch and have IRQs
2759 * disabled, which upsets smp_call_function_single(), however
2760 * we know the event must be on the current CPU, therefore we
2761 * don't need to use it.
2762 */
2763 if (event->state == PERF_EVENT_STATE_ACTIVE)
2764 event->pmu->read(event);
2765
2766 perf_event_update_time(event);
2767
2768 /*
2769 * In order to keep per-task stats reliable we need to flip the event
2770 * values when we flip the contexts.
2771 */
2772 value = local64_read(&next_event->count);
2773 value = local64_xchg(&event->count, value);
2774 local64_set(&next_event->count, value);
2775
2776 swap(event->total_time_enabled, next_event->total_time_enabled);
2777 swap(event->total_time_running, next_event->total_time_running);
2778
2779 /*
2780 * Since we swizzled the values, update the user visible data too.
2781 */
2782 perf_event_update_userpage(event);
2783 perf_event_update_userpage(next_event);
2784 }
2785
2786 static void perf_event_sync_stat(struct perf_event_context *ctx,
2787 struct perf_event_context *next_ctx)
2788 {
2789 struct perf_event *event, *next_event;
2790
2791 if (!ctx->nr_stat)
2792 return;
2793
2794 update_context_time(ctx);
2795
2796 event = list_first_entry(&ctx->event_list,
2797 struct perf_event, event_entry);
2798
2799 next_event = list_first_entry(&next_ctx->event_list,
2800 struct perf_event, event_entry);
2801
2802 while (&event->event_entry != &ctx->event_list &&
2803 &next_event->event_entry != &next_ctx->event_list) {
2804
2805 __perf_event_sync_stat(event, next_event);
2806
2807 event = list_next_entry(event, event_entry);
2808 next_event = list_next_entry(next_event, event_entry);
2809 }
2810 }
2811
2812 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2813 struct task_struct *next)
2814 {
2815 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2816 struct perf_event_context *next_ctx;
2817 struct perf_event_context *parent, *next_parent;
2818 struct perf_cpu_context *cpuctx;
2819 int do_switch = 1;
2820
2821 if (likely(!ctx))
2822 return;
2823
2824 cpuctx = __get_cpu_context(ctx);
2825 if (!cpuctx->task_ctx)
2826 return;
2827
2828 rcu_read_lock();
2829 next_ctx = next->perf_event_ctxp[ctxn];
2830 if (!next_ctx)
2831 goto unlock;
2832
2833 parent = rcu_dereference(ctx->parent_ctx);
2834 next_parent = rcu_dereference(next_ctx->parent_ctx);
2835
2836 /* If neither context have a parent context; they cannot be clones. */
2837 if (!parent && !next_parent)
2838 goto unlock;
2839
2840 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2841 /*
2842 * Looks like the two contexts are clones, so we might be
2843 * able to optimize the context switch. We lock both
2844 * contexts and check that they are clones under the
2845 * lock (including re-checking that neither has been
2846 * uncloned in the meantime). It doesn't matter which
2847 * order we take the locks because no other cpu could
2848 * be trying to lock both of these tasks.
2849 */
2850 raw_spin_lock(&ctx->lock);
2851 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2852 if (context_equiv(ctx, next_ctx)) {
2853 WRITE_ONCE(ctx->task, next);
2854 WRITE_ONCE(next_ctx->task, task);
2855
2856 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2857
2858 /*
2859 * RCU_INIT_POINTER here is safe because we've not
2860 * modified the ctx and the above modification of
2861 * ctx->task and ctx->task_ctx_data are immaterial
2862 * since those values are always verified under
2863 * ctx->lock which we're now holding.
2864 */
2865 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
2866 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
2867
2868 do_switch = 0;
2869
2870 perf_event_sync_stat(ctx, next_ctx);
2871 }
2872 raw_spin_unlock(&next_ctx->lock);
2873 raw_spin_unlock(&ctx->lock);
2874 }
2875 unlock:
2876 rcu_read_unlock();
2877
2878 if (do_switch) {
2879 raw_spin_lock(&ctx->lock);
2880 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
2881 raw_spin_unlock(&ctx->lock);
2882 }
2883 }
2884
2885 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
2886
2887 void perf_sched_cb_dec(struct pmu *pmu)
2888 {
2889 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2890
2891 this_cpu_dec(perf_sched_cb_usages);
2892
2893 if (!--cpuctx->sched_cb_usage)
2894 list_del(&cpuctx->sched_cb_entry);
2895 }
2896
2897
2898 void perf_sched_cb_inc(struct pmu *pmu)
2899 {
2900 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2901
2902 if (!cpuctx->sched_cb_usage++)
2903 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
2904
2905 this_cpu_inc(perf_sched_cb_usages);
2906 }
2907
2908 /*
2909 * This function provides the context switch callback to the lower code
2910 * layer. It is invoked ONLY when the context switch callback is enabled.
2911 *
2912 * This callback is relevant even to per-cpu events; for example multi event
2913 * PEBS requires this to provide PID/TID information. This requires we flush
2914 * all queued PEBS records before we context switch to a new task.
2915 */
2916 static void perf_pmu_sched_task(struct task_struct *prev,
2917 struct task_struct *next,
2918 bool sched_in)
2919 {
2920 struct perf_cpu_context *cpuctx;
2921 struct pmu *pmu;
2922
2923 if (prev == next)
2924 return;
2925
2926 list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
2927 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
2928
2929 if (WARN_ON_ONCE(!pmu->sched_task))
2930 continue;
2931
2932 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2933 perf_pmu_disable(pmu);
2934
2935 pmu->sched_task(cpuctx->task_ctx, sched_in);
2936
2937 perf_pmu_enable(pmu);
2938 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2939 }
2940 }
2941
2942 static void perf_event_switch(struct task_struct *task,
2943 struct task_struct *next_prev, bool sched_in);
2944
2945 #define for_each_task_context_nr(ctxn) \
2946 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2947
2948 /*
2949 * Called from scheduler to remove the events of the current task,
2950 * with interrupts disabled.
2951 *
2952 * We stop each event and update the event value in event->count.
2953 *
2954 * This does not protect us against NMI, but disable()
2955 * sets the disabled bit in the control field of event _before_
2956 * accessing the event control register. If a NMI hits, then it will
2957 * not restart the event.
2958 */
2959 void __perf_event_task_sched_out(struct task_struct *task,
2960 struct task_struct *next)
2961 {
2962 int ctxn;
2963
2964 if (__this_cpu_read(perf_sched_cb_usages))
2965 perf_pmu_sched_task(task, next, false);
2966
2967 if (atomic_read(&nr_switch_events))
2968 perf_event_switch(task, next, false);
2969
2970 for_each_task_context_nr(ctxn)
2971 perf_event_context_sched_out(task, ctxn, next);
2972
2973 /*
2974 * if cgroup events exist on this CPU, then we need
2975 * to check if we have to switch out PMU state.
2976 * cgroup event are system-wide mode only
2977 */
2978 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2979 perf_cgroup_sched_out(task, next);
2980 }
2981
2982 /*
2983 * Called with IRQs disabled
2984 */
2985 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2986 enum event_type_t event_type)
2987 {
2988 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2989 }
2990
2991 static void
2992 ctx_pinned_sched_in(struct perf_event_context *ctx,
2993 struct perf_cpu_context *cpuctx)
2994 {
2995 struct perf_event *event;
2996
2997 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2998 if (event->state <= PERF_EVENT_STATE_OFF)
2999 continue;
3000 if (!event_filter_match(event))
3001 continue;
3002
3003 if (group_can_go_on(event, cpuctx, 1))
3004 group_sched_in(event, cpuctx, ctx);
3005
3006 /*
3007 * If this pinned group hasn't been scheduled,
3008 * put it in error state.
3009 */
3010 if (event->state == PERF_EVENT_STATE_INACTIVE)
3011 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3012 }
3013 }
3014
3015 static void
3016 ctx_flexible_sched_in(struct perf_event_context *ctx,
3017 struct perf_cpu_context *cpuctx)
3018 {
3019 struct perf_event *event;
3020 int can_add_hw = 1;
3021
3022 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
3023 /* Ignore events in OFF or ERROR state */
3024 if (event->state <= PERF_EVENT_STATE_OFF)
3025 continue;
3026 /*
3027 * Listen to the 'cpu' scheduling filter constraint
3028 * of events:
3029 */
3030 if (!event_filter_match(event))
3031 continue;
3032
3033 if (group_can_go_on(event, cpuctx, can_add_hw)) {
3034 if (group_sched_in(event, cpuctx, ctx))
3035 can_add_hw = 0;
3036 }
3037 }
3038 }
3039
3040 static void
3041 ctx_sched_in(struct perf_event_context *ctx,
3042 struct perf_cpu_context *cpuctx,
3043 enum event_type_t event_type,
3044 struct task_struct *task)
3045 {
3046 int is_active = ctx->is_active;
3047 u64 now;
3048
3049 lockdep_assert_held(&ctx->lock);
3050
3051 if (likely(!ctx->nr_events))
3052 return;
3053
3054 ctx->is_active |= (event_type | EVENT_TIME);
3055 if (ctx->task) {
3056 if (!is_active)
3057 cpuctx->task_ctx = ctx;
3058 else
3059 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3060 }
3061
3062 is_active ^= ctx->is_active; /* changed bits */
3063
3064 if (is_active & EVENT_TIME) {
3065 /* start ctx time */
3066 now = perf_clock();
3067 ctx->timestamp = now;
3068 perf_cgroup_set_timestamp(task, ctx);
3069 }
3070
3071 /*
3072 * First go through the list and put on any pinned groups
3073 * in order to give them the best chance of going on.
3074 */
3075 if (is_active & EVENT_PINNED)
3076 ctx_pinned_sched_in(ctx, cpuctx);
3077
3078 /* Then walk through the lower prio flexible groups */
3079 if (is_active & EVENT_FLEXIBLE)
3080 ctx_flexible_sched_in(ctx, cpuctx);
3081 }
3082
3083 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3084 enum event_type_t event_type,
3085 struct task_struct *task)
3086 {
3087 struct perf_event_context *ctx = &cpuctx->ctx;
3088
3089 ctx_sched_in(ctx, cpuctx, event_type, task);
3090 }
3091
3092 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3093 struct task_struct *task)
3094 {
3095 struct perf_cpu_context *cpuctx;
3096
3097 cpuctx = __get_cpu_context(ctx);
3098 if (cpuctx->task_ctx == ctx)
3099 return;
3100
3101 perf_ctx_lock(cpuctx, ctx);
3102 /*
3103 * We must check ctx->nr_events while holding ctx->lock, such
3104 * that we serialize against perf_install_in_context().
3105 */
3106 if (!ctx->nr_events)
3107 goto unlock;
3108
3109 perf_pmu_disable(ctx->pmu);
3110 /*
3111 * We want to keep the following priority order:
3112 * cpu pinned (that don't need to move), task pinned,
3113 * cpu flexible, task flexible.
3114 *
3115 * However, if task's ctx is not carrying any pinned
3116 * events, no need to flip the cpuctx's events around.
3117 */
3118 if (!list_empty(&ctx->pinned_groups))
3119 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3120 perf_event_sched_in(cpuctx, ctx, task);
3121 perf_pmu_enable(ctx->pmu);
3122
3123 unlock:
3124 perf_ctx_unlock(cpuctx, ctx);
3125 }
3126
3127 /*
3128 * Called from scheduler to add the events of the current task
3129 * with interrupts disabled.
3130 *
3131 * We restore the event value and then enable it.
3132 *
3133 * This does not protect us against NMI, but enable()
3134 * sets the enabled bit in the control field of event _before_
3135 * accessing the event control register. If a NMI hits, then it will
3136 * keep the event running.
3137 */
3138 void __perf_event_task_sched_in(struct task_struct *prev,
3139 struct task_struct *task)
3140 {
3141 struct perf_event_context *ctx;
3142 int ctxn;
3143
3144 /*
3145 * If cgroup events exist on this CPU, then we need to check if we have
3146 * to switch in PMU state; cgroup event are system-wide mode only.
3147 *
3148 * Since cgroup events are CPU events, we must schedule these in before
3149 * we schedule in the task events.
3150 */
3151 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3152 perf_cgroup_sched_in(prev, task);
3153
3154 for_each_task_context_nr(ctxn) {
3155 ctx = task->perf_event_ctxp[ctxn];
3156 if (likely(!ctx))
3157 continue;
3158
3159 perf_event_context_sched_in(ctx, task);
3160 }
3161
3162 if (atomic_read(&nr_switch_events))
3163 perf_event_switch(task, prev, true);
3164
3165 if (__this_cpu_read(perf_sched_cb_usages))
3166 perf_pmu_sched_task(prev, task, true);
3167 }
3168
3169 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3170 {
3171 u64 frequency = event->attr.sample_freq;
3172 u64 sec = NSEC_PER_SEC;
3173 u64 divisor, dividend;
3174
3175 int count_fls, nsec_fls, frequency_fls, sec_fls;
3176
3177 count_fls = fls64(count);
3178 nsec_fls = fls64(nsec);
3179 frequency_fls = fls64(frequency);
3180 sec_fls = 30;
3181
3182 /*
3183 * We got @count in @nsec, with a target of sample_freq HZ
3184 * the target period becomes:
3185 *
3186 * @count * 10^9
3187 * period = -------------------
3188 * @nsec * sample_freq
3189 *
3190 */
3191
3192 /*
3193 * Reduce accuracy by one bit such that @a and @b converge
3194 * to a similar magnitude.
3195 */
3196 #define REDUCE_FLS(a, b) \
3197 do { \
3198 if (a##_fls > b##_fls) { \
3199 a >>= 1; \
3200 a##_fls--; \
3201 } else { \
3202 b >>= 1; \
3203 b##_fls--; \
3204 } \
3205 } while (0)
3206
3207 /*
3208 * Reduce accuracy until either term fits in a u64, then proceed with
3209 * the other, so that finally we can do a u64/u64 division.
3210 */
3211 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3212 REDUCE_FLS(nsec, frequency);
3213 REDUCE_FLS(sec, count);
3214 }
3215
3216 if (count_fls + sec_fls > 64) {
3217 divisor = nsec * frequency;
3218
3219 while (count_fls + sec_fls > 64) {
3220 REDUCE_FLS(count, sec);
3221 divisor >>= 1;
3222 }
3223
3224 dividend = count * sec;
3225 } else {
3226 dividend = count * sec;
3227
3228 while (nsec_fls + frequency_fls > 64) {
3229 REDUCE_FLS(nsec, frequency);
3230 dividend >>= 1;
3231 }
3232
3233 divisor = nsec * frequency;
3234 }
3235
3236 if (!divisor)
3237 return dividend;
3238
3239 return div64_u64(dividend, divisor);
3240 }
3241
3242 static DEFINE_PER_CPU(int, perf_throttled_count);
3243 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3244
3245 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3246 {
3247 struct hw_perf_event *hwc = &event->hw;
3248 s64 period, sample_period;
3249 s64 delta;
3250
3251 period = perf_calculate_period(event, nsec, count);
3252
3253 delta = (s64)(period - hwc->sample_period);
3254 delta = (delta + 7) / 8; /* low pass filter */
3255
3256 sample_period = hwc->sample_period + delta;
3257
3258 if (!sample_period)
3259 sample_period = 1;
3260
3261 hwc->sample_period = sample_period;
3262
3263 if (local64_read(&hwc->period_left) > 8*sample_period) {
3264 if (disable)
3265 event->pmu->stop(event, PERF_EF_UPDATE);
3266
3267 local64_set(&hwc->period_left, 0);
3268
3269 if (disable)
3270 event->pmu->start(event, PERF_EF_RELOAD);
3271 }
3272 }
3273
3274 /*
3275 * combine freq adjustment with unthrottling to avoid two passes over the
3276 * events. At the same time, make sure, having freq events does not change
3277 * the rate of unthrottling as that would introduce bias.
3278 */
3279 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3280 int needs_unthr)
3281 {
3282 struct perf_event *event;
3283 struct hw_perf_event *hwc;
3284 u64 now, period = TICK_NSEC;
3285 s64 delta;
3286
3287 /*
3288 * only need to iterate over all events iff:
3289 * - context have events in frequency mode (needs freq adjust)
3290 * - there are events to unthrottle on this cpu
3291 */
3292 if (!(ctx->nr_freq || needs_unthr))
3293 return;
3294
3295 raw_spin_lock(&ctx->lock);
3296 perf_pmu_disable(ctx->pmu);
3297
3298 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3299 if (event->state != PERF_EVENT_STATE_ACTIVE)
3300 continue;
3301
3302 if (!event_filter_match(event))
3303 continue;
3304
3305 perf_pmu_disable(event->pmu);
3306
3307 hwc = &event->hw;
3308
3309 if (hwc->interrupts == MAX_INTERRUPTS) {
3310 hwc->interrupts = 0;
3311 perf_log_throttle(event, 1);
3312 event->pmu->start(event, 0);
3313 }
3314
3315 if (!event->attr.freq || !event->attr.sample_freq)
3316 goto next;
3317
3318 /*
3319 * stop the event and update event->count
3320 */
3321 event->pmu->stop(event, PERF_EF_UPDATE);
3322
3323 now = local64_read(&event->count);
3324 delta = now - hwc->freq_count_stamp;
3325 hwc->freq_count_stamp = now;
3326
3327 /*
3328 * restart the event
3329 * reload only if value has changed
3330 * we have stopped the event so tell that
3331 * to perf_adjust_period() to avoid stopping it
3332 * twice.
3333 */
3334 if (delta > 0)
3335 perf_adjust_period(event, period, delta, false);
3336
3337 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3338 next:
3339 perf_pmu_enable(event->pmu);
3340 }
3341
3342 perf_pmu_enable(ctx->pmu);
3343 raw_spin_unlock(&ctx->lock);
3344 }
3345
3346 /*
3347 * Round-robin a context's events:
3348 */
3349 static void rotate_ctx(struct perf_event_context *ctx)
3350 {
3351 /*
3352 * Rotate the first entry last of non-pinned groups. Rotation might be
3353 * disabled by the inheritance code.
3354 */
3355 if (!ctx->rotate_disable)
3356 list_rotate_left(&ctx->flexible_groups);
3357 }
3358
3359 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3360 {
3361 struct perf_event_context *ctx = NULL;
3362 int rotate = 0;
3363
3364 if (cpuctx->ctx.nr_events) {
3365 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3366 rotate = 1;
3367 }
3368
3369 ctx = cpuctx->task_ctx;
3370 if (ctx && ctx->nr_events) {
3371 if (ctx->nr_events != ctx->nr_active)
3372 rotate = 1;
3373 }
3374
3375 if (!rotate)
3376 goto done;
3377
3378 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3379 perf_pmu_disable(cpuctx->ctx.pmu);
3380
3381 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3382 if (ctx)
3383 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3384
3385 rotate_ctx(&cpuctx->ctx);
3386 if (ctx)
3387 rotate_ctx(ctx);
3388
3389 perf_event_sched_in(cpuctx, ctx, current);
3390
3391 perf_pmu_enable(cpuctx->ctx.pmu);
3392 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3393 done:
3394
3395 return rotate;
3396 }
3397
3398 void perf_event_task_tick(void)
3399 {
3400 struct list_head *head = this_cpu_ptr(&active_ctx_list);
3401 struct perf_event_context *ctx, *tmp;
3402 int throttled;
3403
3404 lockdep_assert_irqs_disabled();
3405
3406 __this_cpu_inc(perf_throttled_seq);
3407 throttled = __this_cpu_xchg(perf_throttled_count, 0);
3408 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3409
3410 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3411 perf_adjust_freq_unthr_context(ctx, throttled);
3412 }
3413
3414 static int event_enable_on_exec(struct perf_event *event,
3415 struct perf_event_context *ctx)
3416 {
3417 if (!event->attr.enable_on_exec)
3418 return 0;
3419
3420 event->attr.enable_on_exec = 0;
3421 if (event->state >= PERF_EVENT_STATE_INACTIVE)
3422 return 0;
3423
3424 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
3425
3426 return 1;
3427 }
3428
3429 /*
3430 * Enable all of a task's events that have been marked enable-on-exec.
3431 * This expects task == current.
3432 */
3433 static void perf_event_enable_on_exec(int ctxn)
3434 {
3435 struct perf_event_context *ctx, *clone_ctx = NULL;
3436 enum event_type_t event_type = 0;
3437 struct perf_cpu_context *cpuctx;
3438 struct perf_event *event;
3439 unsigned long flags;
3440 int enabled = 0;
3441
3442 local_irq_save(flags);
3443 ctx = current->perf_event_ctxp[ctxn];
3444 if (!ctx || !ctx->nr_events)
3445 goto out;
3446
3447 cpuctx = __get_cpu_context(ctx);
3448 perf_ctx_lock(cpuctx, ctx);
3449 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3450 list_for_each_entry(event, &ctx->event_list, event_entry) {
3451 enabled |= event_enable_on_exec(event, ctx);
3452 event_type |= get_event_type(event);
3453 }
3454
3455 /*
3456 * Unclone and reschedule this context if we enabled any event.
3457 */
3458 if (enabled) {
3459 clone_ctx = unclone_ctx(ctx);
3460 ctx_resched(cpuctx, ctx, event_type);
3461 } else {
3462 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3463 }
3464 perf_ctx_unlock(cpuctx, ctx);
3465
3466 out:
3467 local_irq_restore(flags);
3468
3469 if (clone_ctx)
3470 put_ctx(clone_ctx);
3471 }
3472
3473 struct perf_read_data {
3474 struct perf_event *event;
3475 bool group;
3476 int ret;
3477 };
3478
3479 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
3480 {
3481 u16 local_pkg, event_pkg;
3482
3483 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
3484 int local_cpu = smp_processor_id();
3485
3486 event_pkg = topology_physical_package_id(event_cpu);
3487 local_pkg = topology_physical_package_id(local_cpu);
3488
3489 if (event_pkg == local_pkg)
3490 return local_cpu;
3491 }
3492
3493 return event_cpu;
3494 }
3495
3496 /*
3497 * Cross CPU call to read the hardware event
3498 */
3499 static void __perf_event_read(void *info)
3500 {
3501 struct perf_read_data *data = info;
3502 struct perf_event *sub, *event = data->event;
3503 struct perf_event_context *ctx = event->ctx;
3504 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3505 struct pmu *pmu = event->pmu;
3506
3507 /*
3508 * If this is a task context, we need to check whether it is
3509 * the current task context of this cpu. If not it has been
3510 * scheduled out before the smp call arrived. In that case
3511 * event->count would have been updated to a recent sample
3512 * when the event was scheduled out.
3513 */
3514 if (ctx->task && cpuctx->task_ctx != ctx)
3515 return;
3516
3517 raw_spin_lock(&ctx->lock);
3518 if (ctx->is_active & EVENT_TIME) {
3519 update_context_time(ctx);
3520 update_cgrp_time_from_event(event);
3521 }
3522
3523 perf_event_update_time(event);
3524 if (data->group)
3525 perf_event_update_sibling_time(event);
3526
3527 if (event->state != PERF_EVENT_STATE_ACTIVE)
3528 goto unlock;
3529
3530 if (!data->group) {
3531 pmu->read(event);
3532 data->ret = 0;
3533 goto unlock;
3534 }
3535
3536 pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3537
3538 pmu->read(event);
3539
3540 list_for_each_entry(sub, &event->sibling_list, group_entry) {
3541 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3542 /*
3543 * Use sibling's PMU rather than @event's since
3544 * sibling could be on different (eg: software) PMU.
3545 */
3546 sub->pmu->read(sub);
3547 }
3548 }
3549
3550 data->ret = pmu->commit_txn(pmu);
3551
3552 unlock:
3553 raw_spin_unlock(&ctx->lock);
3554 }
3555
3556 static inline u64 perf_event_count(struct perf_event *event)
3557 {
3558 return local64_read(&event->count) + atomic64_read(&event->child_count);
3559 }
3560
3561 /*
3562 * NMI-safe method to read a local event, that is an event that
3563 * is:
3564 * - either for the current task, or for this CPU
3565 * - does not have inherit set, for inherited task events
3566 * will not be local and we cannot read them atomically
3567 * - must not have a pmu::count method
3568 */
3569 int perf_event_read_local(struct perf_event *event, u64 *value,
3570 u64 *enabled, u64 *running)
3571 {
3572 unsigned long flags;
3573 int ret = 0;
3574
3575 /*
3576 * Disabling interrupts avoids all counter scheduling (context
3577 * switches, timer based rotation and IPIs).
3578 */
3579 local_irq_save(flags);
3580
3581 /*
3582 * It must not be an event with inherit set, we cannot read
3583 * all child counters from atomic context.
3584 */
3585 if (event->attr.inherit) {
3586 ret = -EOPNOTSUPP;
3587 goto out;
3588 }
3589
3590 /* If this is a per-task event, it must be for current */
3591 if ((event->attach_state & PERF_ATTACH_TASK) &&
3592 event->hw.target != current) {
3593 ret = -EINVAL;
3594 goto out;
3595 }
3596
3597 /* If this is a per-CPU event, it must be for this CPU */
3598 if (!(event->attach_state & PERF_ATTACH_TASK) &&
3599 event->cpu != smp_processor_id()) {
3600 ret = -EINVAL;
3601 goto out;
3602 }
3603
3604 /*
3605 * If the event is currently on this CPU, its either a per-task event,
3606 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3607 * oncpu == -1).
3608 */
3609 if (event->oncpu == smp_processor_id())
3610 event->pmu->read(event);
3611
3612 *value = local64_read(&event->count);
3613 if (enabled || running) {
3614 u64 now = event->shadow_ctx_time + perf_clock();
3615 u64 __enabled, __running;
3616
3617 __perf_update_times(event, now, &__enabled, &__running);
3618 if (enabled)
3619 *enabled = __enabled;
3620 if (running)
3621 *running = __running;
3622 }
3623 out:
3624 local_irq_restore(flags);
3625
3626 return ret;
3627 }
3628
3629 static int perf_event_read(struct perf_event *event, bool group)
3630 {
3631 enum perf_event_state state = READ_ONCE(event->state);
3632 int event_cpu, ret = 0;
3633
3634 /*
3635 * If event is enabled and currently active on a CPU, update the
3636 * value in the event structure:
3637 */
3638 again:
3639 if (state == PERF_EVENT_STATE_ACTIVE) {
3640 struct perf_read_data data;
3641
3642 /*
3643 * Orders the ->state and ->oncpu loads such that if we see
3644 * ACTIVE we must also see the right ->oncpu.
3645 *
3646 * Matches the smp_wmb() from event_sched_in().
3647 */
3648 smp_rmb();
3649
3650 event_cpu = READ_ONCE(event->oncpu);
3651 if ((unsigned)event_cpu >= nr_cpu_ids)
3652 return 0;
3653
3654 data = (struct perf_read_data){
3655 .event = event,
3656 .group = group,
3657 .ret = 0,
3658 };
3659
3660 preempt_disable();
3661 event_cpu = __perf_event_read_cpu(event, event_cpu);
3662
3663 /*
3664 * Purposely ignore the smp_call_function_single() return
3665 * value.
3666 *
3667 * If event_cpu isn't a valid CPU it means the event got
3668 * scheduled out and that will have updated the event count.
3669 *
3670 * Therefore, either way, we'll have an up-to-date event count
3671 * after this.
3672 */
3673 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
3674 preempt_enable();
3675 ret = data.ret;
3676
3677 } else if (state == PERF_EVENT_STATE_INACTIVE) {
3678 struct perf_event_context *ctx = event->ctx;
3679 unsigned long flags;
3680
3681 raw_spin_lock_irqsave(&ctx->lock, flags);
3682 state = event->state;
3683 if (state != PERF_EVENT_STATE_INACTIVE) {
3684 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3685 goto again;
3686 }
3687
3688 /*
3689 * May read while context is not active (e.g., thread is
3690 * blocked), in that case we cannot update context time
3691 */
3692 if (ctx->is_active & EVENT_TIME) {
3693 update_context_time(ctx);
3694 update_cgrp_time_from_event(event);
3695 }
3696
3697 perf_event_update_time(event);
3698 if (group)
3699 perf_event_update_sibling_time(event);
3700 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3701 }
3702
3703 return ret;
3704 }
3705
3706 /*
3707 * Initialize the perf_event context in a task_struct:
3708 */
3709 static void __perf_event_init_context(struct perf_event_context *ctx)
3710 {
3711 raw_spin_lock_init(&ctx->lock);
3712 mutex_init(&ctx->mutex);
3713 INIT_LIST_HEAD(&ctx->active_ctx_list);
3714 INIT_LIST_HEAD(&ctx->pinned_groups);
3715 INIT_LIST_HEAD(&ctx->flexible_groups);
3716 INIT_LIST_HEAD(&ctx->event_list);
3717 atomic_set(&ctx->refcount, 1);
3718 }
3719
3720 static struct perf_event_context *
3721 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3722 {
3723 struct perf_event_context *ctx;
3724
3725 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3726 if (!ctx)
3727 return NULL;
3728
3729 __perf_event_init_context(ctx);
3730 if (task) {
3731 ctx->task = task;
3732 get_task_struct(task);
3733 }
3734 ctx->pmu = pmu;
3735
3736 return ctx;
3737 }
3738
3739 static struct task_struct *
3740 find_lively_task_by_vpid(pid_t vpid)
3741 {
3742 struct task_struct *task;
3743
3744 rcu_read_lock();
3745 if (!vpid)
3746 task = current;
3747 else
3748 task = find_task_by_vpid(vpid);
3749 if (task)
3750 get_task_struct(task);
3751 rcu_read_unlock();
3752
3753 if (!task)
3754 return ERR_PTR(-ESRCH);
3755
3756 return task;
3757 }
3758
3759 /*
3760 * Returns a matching context with refcount and pincount.
3761 */
3762 static struct perf_event_context *
3763 find_get_context(struct pmu *pmu, struct task_struct *task,
3764 struct perf_event *event)
3765 {
3766 struct perf_event_context *ctx, *clone_ctx = NULL;
3767 struct perf_cpu_context *cpuctx;
3768 void *task_ctx_data = NULL;
3769 unsigned long flags;
3770 int ctxn, err;
3771 int cpu = event->cpu;
3772
3773 if (!task) {
3774 /* Must be root to operate on a CPU event: */
3775 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3776 return ERR_PTR(-EACCES);
3777
3778 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3779 ctx = &cpuctx->ctx;
3780 get_ctx(ctx);
3781 ++ctx->pin_count;
3782
3783 return ctx;
3784 }
3785
3786 err = -EINVAL;
3787 ctxn = pmu->task_ctx_nr;
3788 if (ctxn < 0)
3789 goto errout;
3790
3791 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3792 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3793 if (!task_ctx_data) {
3794 err = -ENOMEM;
3795 goto errout;
3796 }
3797 }
3798
3799 retry:
3800 ctx = perf_lock_task_context(task, ctxn, &flags);
3801 if (ctx) {
3802 clone_ctx = unclone_ctx(ctx);
3803 ++ctx->pin_count;
3804
3805 if (task_ctx_data && !ctx->task_ctx_data) {
3806 ctx->task_ctx_data = task_ctx_data;
3807 task_ctx_data = NULL;
3808 }
3809 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3810
3811 if (clone_ctx)
3812 put_ctx(clone_ctx);
3813 } else {
3814 ctx = alloc_perf_context(pmu, task);
3815 err = -ENOMEM;
3816 if (!ctx)
3817 goto errout;
3818
3819 if (task_ctx_data) {
3820 ctx->task_ctx_data = task_ctx_data;
3821 task_ctx_data = NULL;
3822 }
3823
3824 err = 0;
3825 mutex_lock(&task->perf_event_mutex);
3826 /*
3827 * If it has already passed perf_event_exit_task().
3828 * we must see PF_EXITING, it takes this mutex too.
3829 */
3830 if (task->flags & PF_EXITING)
3831 err = -ESRCH;
3832 else if (task->perf_event_ctxp[ctxn])
3833 err = -EAGAIN;
3834 else {
3835 get_ctx(ctx);
3836 ++ctx->pin_count;
3837 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3838 }
3839 mutex_unlock(&task->perf_event_mutex);
3840
3841 if (unlikely(err)) {
3842 put_ctx(ctx);
3843
3844 if (err == -EAGAIN)
3845 goto retry;
3846 goto errout;
3847 }
3848 }
3849
3850 kfree(task_ctx_data);
3851 return ctx;
3852
3853 errout:
3854 kfree(task_ctx_data);
3855 return ERR_PTR(err);
3856 }
3857
3858 static void perf_event_free_filter(struct perf_event *event);
3859 static void perf_event_free_bpf_prog(struct perf_event *event);
3860
3861 static void free_event_rcu(struct rcu_head *head)
3862 {
3863 struct perf_event *event;
3864
3865 event = container_of(head, struct perf_event, rcu_head);
3866 if (event->ns)
3867 put_pid_ns(event->ns);
3868 perf_event_free_filter(event);
3869 kfree(event);
3870 }
3871
3872 static void ring_buffer_attach(struct perf_event *event,
3873 struct ring_buffer *rb);
3874
3875 static void detach_sb_event(struct perf_event *event)
3876 {
3877 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
3878
3879 raw_spin_lock(&pel->lock);
3880 list_del_rcu(&event->sb_list);
3881 raw_spin_unlock(&pel->lock);
3882 }
3883
3884 static bool is_sb_event(struct perf_event *event)
3885 {
3886 struct perf_event_attr *attr = &event->attr;
3887
3888 if (event->parent)
3889 return false;
3890
3891 if (event->attach_state & PERF_ATTACH_TASK)
3892 return false;
3893
3894 if (attr->mmap || attr->mmap_data || attr->mmap2 ||
3895 attr->comm || attr->comm_exec ||
3896 attr->task ||
3897 attr->context_switch)
3898 return true;
3899 return false;
3900 }
3901
3902 static void unaccount_pmu_sb_event(struct perf_event *event)
3903 {
3904 if (is_sb_event(event))
3905 detach_sb_event(event);
3906 }
3907
3908 static void unaccount_event_cpu(struct perf_event *event, int cpu)
3909 {
3910 if (event->parent)
3911 return;
3912
3913 if (is_cgroup_event(event))
3914 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3915 }
3916
3917 #ifdef CONFIG_NO_HZ_FULL
3918 static DEFINE_SPINLOCK(nr_freq_lock);
3919 #endif
3920
3921 static void unaccount_freq_event_nohz(void)
3922 {
3923 #ifdef CONFIG_NO_HZ_FULL
3924 spin_lock(&nr_freq_lock);
3925 if (atomic_dec_and_test(&nr_freq_events))
3926 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
3927 spin_unlock(&nr_freq_lock);
3928 #endif
3929 }
3930
3931 static void unaccount_freq_event(void)
3932 {
3933 if (tick_nohz_full_enabled())
3934 unaccount_freq_event_nohz();
3935 else
3936 atomic_dec(&nr_freq_events);
3937 }
3938
3939 static void unaccount_event(struct perf_event *event)
3940 {
3941 bool dec = false;
3942
3943 if (event->parent)
3944 return;
3945
3946 if (event->attach_state & PERF_ATTACH_TASK)
3947 dec = true;
3948 if (event->attr.mmap || event->attr.mmap_data)
3949 atomic_dec(&nr_mmap_events);
3950 if (event->attr.comm)
3951 atomic_dec(&nr_comm_events);
3952 if (event->attr.namespaces)
3953 atomic_dec(&nr_namespaces_events);
3954 if (event->attr.task)
3955 atomic_dec(&nr_task_events);
3956 if (event->attr.freq)
3957 unaccount_freq_event();
3958 if (event->attr.context_switch) {
3959 dec = true;
3960 atomic_dec(&nr_switch_events);
3961 }
3962 if (is_cgroup_event(event))
3963 dec = true;
3964 if (has_branch_stack(event))
3965 dec = true;
3966
3967 if (dec) {
3968 if (!atomic_add_unless(&perf_sched_count, -1, 1))
3969 schedule_delayed_work(&perf_sched_work, HZ);
3970 }
3971
3972 unaccount_event_cpu(event, event->cpu);
3973
3974 unaccount_pmu_sb_event(event);
3975 }
3976
3977 static void perf_sched_delayed(struct work_struct *work)
3978 {
3979 mutex_lock(&perf_sched_mutex);
3980 if (atomic_dec_and_test(&perf_sched_count))
3981 static_branch_disable(&perf_sched_events);
3982 mutex_unlock(&perf_sched_mutex);
3983 }
3984
3985 /*
3986 * The following implement mutual exclusion of events on "exclusive" pmus
3987 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3988 * at a time, so we disallow creating events that might conflict, namely:
3989 *
3990 * 1) cpu-wide events in the presence of per-task events,
3991 * 2) per-task events in the presence of cpu-wide events,
3992 * 3) two matching events on the same context.
3993 *
3994 * The former two cases are handled in the allocation path (perf_event_alloc(),
3995 * _free_event()), the latter -- before the first perf_install_in_context().
3996 */
3997 static int exclusive_event_init(struct perf_event *event)
3998 {
3999 struct pmu *pmu = event->pmu;
4000
4001 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4002 return 0;
4003
4004 /*
4005 * Prevent co-existence of per-task and cpu-wide events on the
4006 * same exclusive pmu.
4007 *
4008 * Negative pmu::exclusive_cnt means there are cpu-wide
4009 * events on this "exclusive" pmu, positive means there are
4010 * per-task events.
4011 *
4012 * Since this is called in perf_event_alloc() path, event::ctx
4013 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4014 * to mean "per-task event", because unlike other attach states it
4015 * never gets cleared.
4016 */
4017 if (event->attach_state & PERF_ATTACH_TASK) {
4018 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4019 return -EBUSY;
4020 } else {
4021 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4022 return -EBUSY;
4023 }
4024
4025 return 0;
4026 }
4027
4028 static void exclusive_event_destroy(struct perf_event *event)
4029 {
4030 struct pmu *pmu = event->pmu;
4031
4032 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4033 return;
4034
4035 /* see comment in exclusive_event_init() */
4036 if (event->attach_state & PERF_ATTACH_TASK)
4037 atomic_dec(&pmu->exclusive_cnt);
4038 else
4039 atomic_inc(&pmu->exclusive_cnt);
4040 }
4041
4042 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4043 {
4044 if ((e1->pmu == e2->pmu) &&
4045 (e1->cpu == e2->cpu ||
4046 e1->cpu == -1 ||
4047 e2->cpu == -1))
4048 return true;
4049 return false;
4050 }
4051
4052 /* Called under the same ctx::mutex as perf_install_in_context() */
4053 static bool exclusive_event_installable(struct perf_event *event,
4054 struct perf_event_context *ctx)
4055 {
4056 struct perf_event *iter_event;
4057 struct pmu *pmu = event->pmu;
4058
4059 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4060 return true;
4061
4062 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4063 if (exclusive_event_match(iter_event, event))
4064 return false;
4065 }
4066
4067 return true;
4068 }
4069
4070 static void perf_addr_filters_splice(struct perf_event *event,
4071 struct list_head *head);
4072
4073 static void _free_event(struct perf_event *event)
4074 {
4075 irq_work_sync(&event->pending);
4076
4077 unaccount_event(event);
4078
4079 if (event->rb) {
4080 /*
4081 * Can happen when we close an event with re-directed output.
4082 *
4083 * Since we have a 0 refcount, perf_mmap_close() will skip
4084 * over us; possibly making our ring_buffer_put() the last.
4085 */
4086 mutex_lock(&event->mmap_mutex);
4087 ring_buffer_attach(event, NULL);
4088 mutex_unlock(&event->mmap_mutex);
4089 }
4090
4091 if (is_cgroup_event(event))
4092 perf_detach_cgroup(event);
4093
4094 if (!event->parent) {
4095 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4096 put_callchain_buffers();
4097 }
4098
4099 perf_event_free_bpf_prog(event);
4100 perf_addr_filters_splice(event, NULL);
4101 kfree(event->addr_filters_offs);
4102
4103 if (event->destroy)
4104 event->destroy(event);
4105
4106 if (event->ctx)
4107 put_ctx(event->ctx);
4108
4109 exclusive_event_destroy(event);
4110 module_put(event->pmu->module);
4111
4112 call_rcu(&event->rcu_head, free_event_rcu);
4113 }
4114
4115 /*
4116 * Used to free events which have a known refcount of 1, such as in error paths
4117 * where the event isn't exposed yet and inherited events.
4118 */
4119 static void free_event(struct perf_event *event)
4120 {
4121 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4122 "unexpected event refcount: %ld; ptr=%p\n",
4123 atomic_long_read(&event->refcount), event)) {
4124 /* leak to avoid use-after-free */
4125 return;
4126 }
4127
4128 _free_event(event);
4129 }
4130
4131 /*
4132 * Remove user event from the owner task.
4133 */
4134 static void perf_remove_from_owner(struct perf_event *event)
4135 {
4136 struct task_struct *owner;
4137
4138 rcu_read_lock();
4139 /*
4140 * Matches the smp_store_release() in perf_event_exit_task(). If we
4141 * observe !owner it means the list deletion is complete and we can
4142 * indeed free this event, otherwise we need to serialize on
4143 * owner->perf_event_mutex.
4144 */
4145 owner = READ_ONCE(event->owner);
4146 if (owner) {
4147 /*
4148 * Since delayed_put_task_struct() also drops the last
4149 * task reference we can safely take a new reference
4150 * while holding the rcu_read_lock().
4151 */
4152 get_task_struct(owner);
4153 }
4154 rcu_read_unlock();
4155
4156 if (owner) {
4157 /*
4158 * If we're here through perf_event_exit_task() we're already
4159 * holding ctx->mutex which would be an inversion wrt. the
4160 * normal lock order.
4161 *
4162 * However we can safely take this lock because its the child
4163 * ctx->mutex.
4164 */
4165 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4166
4167 /*
4168 * We have to re-check the event->owner field, if it is cleared
4169 * we raced with perf_event_exit_task(), acquiring the mutex
4170 * ensured they're done, and we can proceed with freeing the
4171 * event.
4172 */
4173 if (event->owner) {
4174 list_del_init(&event->owner_entry);
4175 smp_store_release(&event->owner, NULL);
4176 }
4177 mutex_unlock(&owner->perf_event_mutex);
4178 put_task_struct(owner);
4179 }
4180 }
4181
4182 static void put_event(struct perf_event *event)
4183 {
4184 if (!atomic_long_dec_and_test(&event->refcount))
4185 return;
4186
4187 _free_event(event);
4188 }
4189
4190 /*
4191 * Kill an event dead; while event:refcount will preserve the event
4192 * object, it will not preserve its functionality. Once the last 'user'
4193 * gives up the object, we'll destroy the thing.
4194 */
4195 int perf_event_release_kernel(struct perf_event *event)
4196 {
4197 struct perf_event_context *ctx = event->ctx;
4198 struct perf_event *child, *tmp;
4199
4200 /*
4201 * If we got here through err_file: fput(event_file); we will not have
4202 * attached to a context yet.
4203 */
4204 if (!ctx) {
4205 WARN_ON_ONCE(event->attach_state &
4206 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4207 goto no_ctx;
4208 }
4209
4210 if (!is_kernel_event(event))
4211 perf_remove_from_owner(event);
4212
4213 ctx = perf_event_ctx_lock(event);
4214 WARN_ON_ONCE(ctx->parent_ctx);
4215 perf_remove_from_context(event, DETACH_GROUP);
4216
4217 raw_spin_lock_irq(&ctx->lock);
4218 /*
4219 * Mark this event as STATE_DEAD, there is no external reference to it
4220 * anymore.
4221 *
4222 * Anybody acquiring event->child_mutex after the below loop _must_
4223 * also see this, most importantly inherit_event() which will avoid
4224 * placing more children on the list.
4225 *
4226 * Thus this guarantees that we will in fact observe and kill _ALL_
4227 * child events.
4228 */
4229 event->state = PERF_EVENT_STATE_DEAD;
4230 raw_spin_unlock_irq(&ctx->lock);
4231
4232 perf_event_ctx_unlock(event, ctx);
4233
4234 again:
4235 mutex_lock(&event->child_mutex);
4236 list_for_each_entry(child, &event->child_list, child_list) {
4237
4238 /*
4239 * Cannot change, child events are not migrated, see the
4240 * comment with perf_event_ctx_lock_nested().
4241 */
4242 ctx = READ_ONCE(child->ctx);
4243 /*
4244 * Since child_mutex nests inside ctx::mutex, we must jump
4245 * through hoops. We start by grabbing a reference on the ctx.
4246 *
4247 * Since the event cannot get freed while we hold the
4248 * child_mutex, the context must also exist and have a !0
4249 * reference count.
4250 */
4251 get_ctx(ctx);
4252
4253 /*
4254 * Now that we have a ctx ref, we can drop child_mutex, and
4255 * acquire ctx::mutex without fear of it going away. Then we
4256 * can re-acquire child_mutex.
4257 */
4258 mutex_unlock(&event->child_mutex);
4259 mutex_lock(&ctx->mutex);
4260 mutex_lock(&event->child_mutex);
4261
4262 /*
4263 * Now that we hold ctx::mutex and child_mutex, revalidate our
4264 * state, if child is still the first entry, it didn't get freed
4265 * and we can continue doing so.
4266 */
4267 tmp = list_first_entry_or_null(&event->child_list,
4268 struct perf_event, child_list);
4269 if (tmp == child) {
4270 perf_remove_from_context(child, DETACH_GROUP);
4271 list_del(&child->child_list);
4272 free_event(child);
4273 /*
4274 * This matches the refcount bump in inherit_event();
4275 * this can't be the last reference.
4276 */
4277 put_event(event);
4278 }
4279
4280 mutex_unlock(&event->child_mutex);
4281 mutex_unlock(&ctx->mutex);
4282 put_ctx(ctx);
4283 goto again;
4284 }
4285 mutex_unlock(&event->child_mutex);
4286
4287 no_ctx:
4288 put_event(event); /* Must be the 'last' reference */
4289 return 0;
4290 }
4291 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4292
4293 /*
4294 * Called when the last reference to the file is gone.
4295 */
4296 static int perf_release(struct inode *inode, struct file *file)
4297 {
4298 perf_event_release_kernel(file->private_data);
4299 return 0;
4300 }
4301
4302 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4303 {
4304 struct perf_event *child;
4305 u64 total = 0;
4306
4307 *enabled = 0;
4308 *running = 0;
4309
4310 mutex_lock(&event->child_mutex);
4311
4312 (void)perf_event_read(event, false);
4313 total += perf_event_count(event);
4314
4315 *enabled += event->total_time_enabled +
4316 atomic64_read(&event->child_total_time_enabled);
4317 *running += event->total_time_running +
4318 atomic64_read(&event->child_total_time_running);
4319
4320 list_for_each_entry(child, &event->child_list, child_list) {
4321 (void)perf_event_read(child, false);
4322 total += perf_event_count(child);
4323 *enabled += child->total_time_enabled;
4324 *running += child->total_time_running;
4325 }
4326 mutex_unlock(&event->child_mutex);
4327
4328 return total;
4329 }
4330
4331 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4332 {
4333 struct perf_event_context *ctx;
4334 u64 count;
4335
4336 ctx = perf_event_ctx_lock(event);
4337 count = __perf_event_read_value(event, enabled, running);
4338 perf_event_ctx_unlock(event, ctx);
4339
4340 return count;
4341 }
4342 EXPORT_SYMBOL_GPL(perf_event_read_value);
4343
4344 static int __perf_read_group_add(struct perf_event *leader,
4345 u64 read_format, u64 *values)
4346 {
4347 struct perf_event_context *ctx = leader->ctx;
4348 struct perf_event *sub;
4349 unsigned long flags;
4350 int n = 1; /* skip @nr */
4351 int ret;
4352
4353 ret = perf_event_read(leader, true);
4354 if (ret)
4355 return ret;
4356
4357 raw_spin_lock_irqsave(&ctx->lock, flags);
4358
4359 /*
4360 * Since we co-schedule groups, {enabled,running} times of siblings
4361 * will be identical to those of the leader, so we only publish one
4362 * set.
4363 */
4364 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4365 values[n++] += leader->total_time_enabled +
4366 atomic64_read(&leader->child_total_time_enabled);
4367 }
4368
4369 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4370 values[n++] += leader->total_time_running +
4371 atomic64_read(&leader->child_total_time_running);
4372 }
4373
4374 /*
4375 * Write {count,id} tuples for every sibling.
4376 */
4377 values[n++] += perf_event_count(leader);
4378 if (read_format & PERF_FORMAT_ID)
4379 values[n++] = primary_event_id(leader);
4380
4381 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4382 values[n++] += perf_event_count(sub);
4383 if (read_format & PERF_FORMAT_ID)
4384 values[n++] = primary_event_id(sub);
4385 }
4386
4387 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4388 return 0;
4389 }
4390
4391 static int perf_read_group(struct perf_event *event,
4392 u64 read_format, char __user *buf)
4393 {
4394 struct perf_event *leader = event->group_leader, *child;
4395 struct perf_event_context *ctx = leader->ctx;
4396 int ret;
4397 u64 *values;
4398
4399 lockdep_assert_held(&ctx->mutex);
4400
4401 values = kzalloc(event->read_size, GFP_KERNEL);
4402 if (!values)
4403 return -ENOMEM;
4404
4405 values[0] = 1 + leader->nr_siblings;
4406
4407 /*
4408 * By locking the child_mutex of the leader we effectively
4409 * lock the child list of all siblings.. XXX explain how.
4410 */
4411 mutex_lock(&leader->child_mutex);
4412
4413 ret = __perf_read_group_add(leader, read_format, values);
4414 if (ret)
4415 goto unlock;
4416
4417 list_for_each_entry(child, &leader->child_list, child_list) {
4418 ret = __perf_read_group_add(child, read_format, values);
4419 if (ret)
4420 goto unlock;
4421 }
4422
4423 mutex_unlock(&leader->child_mutex);
4424
4425 ret = event->read_size;
4426 if (copy_to_user(buf, values, event->read_size))
4427 ret = -EFAULT;
4428 goto out;
4429
4430 unlock:
4431 mutex_unlock(&leader->child_mutex);
4432 out:
4433 kfree(values);
4434 return ret;
4435 }
4436
4437 static int perf_read_one(struct perf_event *event,
4438 u64 read_format, char __user *buf)
4439 {
4440 u64 enabled, running;
4441 u64 values[4];
4442 int n = 0;
4443
4444 values[n++] = __perf_event_read_value(event, &enabled, &running);
4445 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4446 values[n++] = enabled;
4447 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4448 values[n++] = running;
4449 if (read_format & PERF_FORMAT_ID)
4450 values[n++] = primary_event_id(event);
4451
4452 if (copy_to_user(buf, values, n * sizeof(u64)))
4453 return -EFAULT;
4454
4455 return n * sizeof(u64);
4456 }
4457
4458 static bool is_event_hup(struct perf_event *event)
4459 {
4460 bool no_children;
4461
4462 if (event->state > PERF_EVENT_STATE_EXIT)
4463 return false;
4464
4465 mutex_lock(&event->child_mutex);
4466 no_children = list_empty(&event->child_list);
4467 mutex_unlock(&event->child_mutex);
4468 return no_children;
4469 }
4470
4471 /*
4472 * Read the performance event - simple non blocking version for now
4473 */
4474 static ssize_t
4475 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4476 {
4477 u64 read_format = event->attr.read_format;
4478 int ret;
4479
4480 /*
4481 * Return end-of-file for a read on a event that is in
4482 * error state (i.e. because it was pinned but it couldn't be
4483 * scheduled on to the CPU at some point).
4484 */
4485 if (event->state == PERF_EVENT_STATE_ERROR)
4486 return 0;
4487
4488 if (count < event->read_size)
4489 return -ENOSPC;
4490
4491 WARN_ON_ONCE(event->ctx->parent_ctx);
4492 if (read_format & PERF_FORMAT_GROUP)
4493 ret = perf_read_group(event, read_format, buf);
4494 else
4495 ret = perf_read_one(event, read_format, buf);
4496
4497 return ret;
4498 }
4499
4500 static ssize_t
4501 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4502 {
4503 struct perf_event *event = file->private_data;
4504 struct perf_event_context *ctx;
4505 int ret;
4506
4507 ctx = perf_event_ctx_lock(event);
4508 ret = __perf_read(event, buf, count);
4509 perf_event_ctx_unlock(event, ctx);
4510
4511 return ret;
4512 }
4513
4514 static unsigned int perf_poll(struct file *file, poll_table *wait)
4515 {
4516 struct perf_event *event = file->private_data;
4517 struct ring_buffer *rb;
4518 unsigned int events = POLLHUP;
4519
4520 poll_wait(file, &event->waitq, wait);
4521
4522 if (is_event_hup(event))
4523 return events;
4524
4525 /*
4526 * Pin the event->rb by taking event->mmap_mutex; otherwise
4527 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4528 */
4529 mutex_lock(&event->mmap_mutex);
4530 rb = event->rb;
4531 if (rb)
4532 events = atomic_xchg(&rb->poll, 0);
4533 mutex_unlock(&event->mmap_mutex);
4534 return events;
4535 }
4536
4537 static void _perf_event_reset(struct perf_event *event)
4538 {
4539 (void)perf_event_read(event, false);
4540 local64_set(&event->count, 0);
4541 perf_event_update_userpage(event);
4542 }
4543
4544 /*
4545 * Holding the top-level event's child_mutex means that any
4546 * descendant process that has inherited this event will block
4547 * in perf_event_exit_event() if it goes to exit, thus satisfying the
4548 * task existence requirements of perf_event_enable/disable.
4549 */
4550 static void perf_event_for_each_child(struct perf_event *event,
4551 void (*func)(struct perf_event *))
4552 {
4553 struct perf_event *child;
4554
4555 WARN_ON_ONCE(event->ctx->parent_ctx);
4556
4557 mutex_lock(&event->child_mutex);
4558 func(event);
4559 list_for_each_entry(child, &event->child_list, child_list)
4560 func(child);
4561 mutex_unlock(&event->child_mutex);
4562 }
4563
4564 static void perf_event_for_each(struct perf_event *event,
4565 void (*func)(struct perf_event *))
4566 {
4567 struct perf_event_context *ctx = event->ctx;
4568 struct perf_event *sibling;
4569
4570 lockdep_assert_held(&ctx->mutex);
4571
4572 event = event->group_leader;
4573
4574 perf_event_for_each_child(event, func);
4575 list_for_each_entry(sibling, &event->sibling_list, group_entry)
4576 perf_event_for_each_child(sibling, func);
4577 }
4578
4579 static void __perf_event_period(struct perf_event *event,
4580 struct perf_cpu_context *cpuctx,
4581 struct perf_event_context *ctx,
4582 void *info)
4583 {
4584 u64 value = *((u64 *)info);
4585 bool active;
4586
4587 if (event->attr.freq) {
4588 event->attr.sample_freq = value;
4589 } else {
4590 event->attr.sample_period = value;
4591 event->hw.sample_period = value;
4592 }
4593
4594 active = (event->state == PERF_EVENT_STATE_ACTIVE);
4595 if (active) {
4596 perf_pmu_disable(ctx->pmu);
4597 /*
4598 * We could be throttled; unthrottle now to avoid the tick
4599 * trying to unthrottle while we already re-started the event.
4600 */
4601 if (event->hw.interrupts == MAX_INTERRUPTS) {
4602 event->hw.interrupts = 0;
4603 perf_log_throttle(event, 1);
4604 }
4605 event->pmu->stop(event, PERF_EF_UPDATE);
4606 }
4607
4608 local64_set(&event->hw.period_left, 0);
4609
4610 if (active) {
4611 event->pmu->start(event, PERF_EF_RELOAD);
4612 perf_pmu_enable(ctx->pmu);
4613 }
4614 }
4615
4616 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4617 {
4618 u64 value;
4619
4620 if (!is_sampling_event(event))
4621 return -EINVAL;
4622
4623 if (copy_from_user(&value, arg, sizeof(value)))
4624 return -EFAULT;
4625
4626 if (!value)
4627 return -EINVAL;
4628
4629 if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4630 return -EINVAL;
4631
4632 event_function_call(event, __perf_event_period, &value);
4633
4634 return 0;
4635 }
4636
4637 static const struct file_operations perf_fops;
4638
4639 static inline int perf_fget_light(int fd, struct fd *p)
4640 {
4641 struct fd f = fdget(fd);
4642 if (!f.file)
4643 return -EBADF;
4644
4645 if (f.file->f_op != &perf_fops) {
4646 fdput(f);
4647 return -EBADF;
4648 }
4649 *p = f;
4650 return 0;
4651 }
4652
4653 static int perf_event_set_output(struct perf_event *event,
4654 struct perf_event *output_event);
4655 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4656 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4657
4658 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4659 {
4660 void (*func)(struct perf_event *);
4661 u32 flags = arg;
4662
4663 switch (cmd) {
4664 case PERF_EVENT_IOC_ENABLE:
4665 func = _perf_event_enable;
4666 break;
4667 case PERF_EVENT_IOC_DISABLE:
4668 func = _perf_event_disable;
4669 break;
4670 case PERF_EVENT_IOC_RESET:
4671 func = _perf_event_reset;
4672 break;
4673
4674 case PERF_EVENT_IOC_REFRESH:
4675 return _perf_event_refresh(event, arg);
4676
4677 case PERF_EVENT_IOC_PERIOD:
4678 return perf_event_period(event, (u64 __user *)arg);
4679
4680 case PERF_EVENT_IOC_ID:
4681 {
4682 u64 id = primary_event_id(event);
4683
4684 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4685 return -EFAULT;
4686 return 0;
4687 }
4688
4689 case PERF_EVENT_IOC_SET_OUTPUT:
4690 {
4691 int ret;
4692 if (arg != -1) {
4693 struct perf_event *output_event;
4694 struct fd output;
4695 ret = perf_fget_light(arg, &output);
4696 if (ret)
4697 return ret;
4698 output_event = output.file->private_data;
4699 ret = perf_event_set_output(event, output_event);
4700 fdput(output);
4701 } else {
4702 ret = perf_event_set_output(event, NULL);
4703 }
4704 return ret;
4705 }
4706
4707 case PERF_EVENT_IOC_SET_FILTER:
4708 return perf_event_set_filter(event, (void __user *)arg);
4709
4710 case PERF_EVENT_IOC_SET_BPF:
4711 return perf_event_set_bpf_prog(event, arg);
4712
4713 case PERF_EVENT_IOC_PAUSE_OUTPUT: {
4714 struct ring_buffer *rb;
4715
4716 rcu_read_lock();
4717 rb = rcu_dereference(event->rb);
4718 if (!rb || !rb->nr_pages) {
4719 rcu_read_unlock();
4720 return -EINVAL;
4721 }
4722 rb_toggle_paused(rb, !!arg);
4723 rcu_read_unlock();
4724 return 0;
4725 }
4726 default:
4727 return -ENOTTY;
4728 }
4729
4730 if (flags & PERF_IOC_FLAG_GROUP)
4731 perf_event_for_each(event, func);
4732 else
4733 perf_event_for_each_child(event, func);
4734
4735 return 0;
4736 }
4737
4738 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4739 {
4740 struct perf_event *event = file->private_data;
4741 struct perf_event_context *ctx;
4742 long ret;
4743
4744 ctx = perf_event_ctx_lock(event);
4745 ret = _perf_ioctl(event, cmd, arg);
4746 perf_event_ctx_unlock(event, ctx);
4747
4748 return ret;
4749 }
4750
4751 #ifdef CONFIG_COMPAT
4752 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4753 unsigned long arg)
4754 {
4755 switch (_IOC_NR(cmd)) {
4756 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4757 case _IOC_NR(PERF_EVENT_IOC_ID):
4758 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4759 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4760 cmd &= ~IOCSIZE_MASK;
4761 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4762 }
4763 break;
4764 }
4765 return perf_ioctl(file, cmd, arg);
4766 }
4767 #else
4768 # define perf_compat_ioctl NULL
4769 #endif
4770
4771 int perf_event_task_enable(void)
4772 {
4773 struct perf_event_context *ctx;
4774 struct perf_event *event;
4775
4776 mutex_lock(&current->perf_event_mutex);
4777 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4778 ctx = perf_event_ctx_lock(event);
4779 perf_event_for_each_child(event, _perf_event_enable);
4780 perf_event_ctx_unlock(event, ctx);
4781 }
4782 mutex_unlock(&current->perf_event_mutex);
4783
4784 return 0;
4785 }
4786
4787 int perf_event_task_disable(void)
4788 {
4789 struct perf_event_context *ctx;
4790 struct perf_event *event;
4791
4792 mutex_lock(&current->perf_event_mutex);
4793 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4794 ctx = perf_event_ctx_lock(event);
4795 perf_event_for_each_child(event, _perf_event_disable);
4796 perf_event_ctx_unlock(event, ctx);
4797 }
4798 mutex_unlock(&current->perf_event_mutex);
4799
4800 return 0;
4801 }
4802
4803 static int perf_event_index(struct perf_event *event)
4804 {
4805 if (event->hw.state & PERF_HES_STOPPED)
4806 return 0;
4807
4808 if (event->state != PERF_EVENT_STATE_ACTIVE)
4809 return 0;
4810
4811 return event->pmu->event_idx(event);
4812 }
4813
4814 static void calc_timer_values(struct perf_event *event,
4815 u64 *now,
4816 u64 *enabled,
4817 u64 *running)
4818 {
4819 u64 ctx_time;
4820
4821 *now = perf_clock();
4822 ctx_time = event->shadow_ctx_time + *now;
4823 __perf_update_times(event, ctx_time, enabled, running);
4824 }
4825
4826 static void perf_event_init_userpage(struct perf_event *event)
4827 {
4828 struct perf_event_mmap_page *userpg;
4829 struct ring_buffer *rb;
4830
4831 rcu_read_lock();
4832 rb = rcu_dereference(event->rb);
4833 if (!rb)
4834 goto unlock;
4835
4836 userpg = rb->user_page;
4837
4838 /* Allow new userspace to detect that bit 0 is deprecated */
4839 userpg->cap_bit0_is_deprecated = 1;
4840 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4841 userpg->data_offset = PAGE_SIZE;
4842 userpg->data_size = perf_data_size(rb);
4843
4844 unlock:
4845 rcu_read_unlock();
4846 }
4847
4848 void __weak arch_perf_update_userpage(
4849 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4850 {
4851 }
4852
4853 /*
4854 * Callers need to ensure there can be no nesting of this function, otherwise
4855 * the seqlock logic goes bad. We can not serialize this because the arch
4856 * code calls this from NMI context.
4857 */
4858 void perf_event_update_userpage(struct perf_event *event)
4859 {
4860 struct perf_event_mmap_page *userpg;
4861 struct ring_buffer *rb;
4862 u64 enabled, running, now;
4863
4864 rcu_read_lock();
4865 rb = rcu_dereference(event->rb);
4866 if (!rb)
4867 goto unlock;
4868
4869 /*
4870 * compute total_time_enabled, total_time_running
4871 * based on snapshot values taken when the event
4872 * was last scheduled in.
4873 *
4874 * we cannot simply called update_context_time()
4875 * because of locking issue as we can be called in
4876 * NMI context
4877 */
4878 calc_timer_values(event, &now, &enabled, &running);
4879
4880 userpg = rb->user_page;
4881 /*
4882 * Disable preemption so as to not let the corresponding user-space
4883 * spin too long if we get preempted.
4884 */
4885 preempt_disable();
4886 ++userpg->lock;
4887 barrier();
4888 userpg->index = perf_event_index(event);
4889 userpg->offset = perf_event_count(event);
4890 if (userpg->index)
4891 userpg->offset -= local64_read(&event->hw.prev_count);
4892
4893 userpg->time_enabled = enabled +
4894 atomic64_read(&event->child_total_time_enabled);
4895
4896 userpg->time_running = running +
4897 atomic64_read(&event->child_total_time_running);
4898
4899 arch_perf_update_userpage(event, userpg, now);
4900
4901 barrier();
4902 ++userpg->lock;
4903 preempt_enable();
4904 unlock:
4905 rcu_read_unlock();
4906 }
4907
4908 static int perf_mmap_fault(struct vm_fault *vmf)
4909 {
4910 struct perf_event *event = vmf->vma->vm_file->private_data;
4911 struct ring_buffer *rb;
4912 int ret = VM_FAULT_SIGBUS;
4913
4914 if (vmf->flags & FAULT_FLAG_MKWRITE) {
4915 if (vmf->pgoff == 0)
4916 ret = 0;
4917 return ret;
4918 }
4919
4920 rcu_read_lock();
4921 rb = rcu_dereference(event->rb);
4922 if (!rb)
4923 goto unlock;
4924
4925 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4926 goto unlock;
4927
4928 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4929 if (!vmf->page)
4930 goto unlock;
4931
4932 get_page(vmf->page);
4933 vmf->page->mapping = vmf->vma->vm_file->f_mapping;
4934 vmf->page->index = vmf->pgoff;
4935
4936 ret = 0;
4937 unlock:
4938 rcu_read_unlock();
4939
4940 return ret;
4941 }
4942
4943 static void ring_buffer_attach(struct perf_event *event,
4944 struct ring_buffer *rb)
4945 {
4946 struct ring_buffer *old_rb = NULL;
4947 unsigned long flags;
4948
4949 if (event->rb) {
4950 /*
4951 * Should be impossible, we set this when removing
4952 * event->rb_entry and wait/clear when adding event->rb_entry.
4953 */
4954 WARN_ON_ONCE(event->rcu_pending);
4955
4956 old_rb = event->rb;
4957 spin_lock_irqsave(&old_rb->event_lock, flags);
4958 list_del_rcu(&event->rb_entry);
4959 spin_unlock_irqrestore(&old_rb->event_lock, flags);
4960
4961 event->rcu_batches = get_state_synchronize_rcu();
4962 event->rcu_pending = 1;
4963 }
4964
4965 if (rb) {
4966 if (event->rcu_pending) {
4967 cond_synchronize_rcu(event->rcu_batches);
4968 event->rcu_pending = 0;
4969 }
4970
4971 spin_lock_irqsave(&rb->event_lock, flags);
4972 list_add_rcu(&event->rb_entry, &rb->event_list);
4973 spin_unlock_irqrestore(&rb->event_lock, flags);
4974 }
4975
4976 /*
4977 * Avoid racing with perf_mmap_close(AUX): stop the event
4978 * before swizzling the event::rb pointer; if it's getting
4979 * unmapped, its aux_mmap_count will be 0 and it won't
4980 * restart. See the comment in __perf_pmu_output_stop().
4981 *
4982 * Data will inevitably be lost when set_output is done in
4983 * mid-air, but then again, whoever does it like this is
4984 * not in for the data anyway.
4985 */
4986 if (has_aux(event))
4987 perf_event_stop(event, 0);
4988
4989 rcu_assign_pointer(event->rb, rb);
4990
4991 if (old_rb) {
4992 ring_buffer_put(old_rb);
4993 /*
4994 * Since we detached before setting the new rb, so that we
4995 * could attach the new rb, we could have missed a wakeup.
4996 * Provide it now.
4997 */
4998 wake_up_all(&event->waitq);
4999 }
5000 }
5001
5002 static void ring_buffer_wakeup(struct perf_event *event)
5003 {
5004 struct ring_buffer *rb;
5005
5006 rcu_read_lock();
5007 rb = rcu_dereference(event->rb);
5008 if (rb) {
5009 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5010 wake_up_all(&event->waitq);
5011 }
5012 rcu_read_unlock();
5013 }
5014
5015 struct ring_buffer *ring_buffer_get(struct perf_event *event)
5016 {
5017 struct ring_buffer *rb;
5018
5019 rcu_read_lock();
5020 rb = rcu_dereference(event->rb);
5021 if (rb) {
5022 if (!atomic_inc_not_zero(&rb->refcount))
5023 rb = NULL;
5024 }
5025 rcu_read_unlock();
5026
5027 return rb;
5028 }
5029
5030 void ring_buffer_put(struct ring_buffer *rb)
5031 {
5032 if (!atomic_dec_and_test(&rb->refcount))
5033 return;
5034
5035 WARN_ON_ONCE(!list_empty(&rb->event_list));
5036
5037 call_rcu(&rb->rcu_head, rb_free_rcu);
5038 }
5039
5040 static void perf_mmap_open(struct vm_area_struct *vma)
5041 {
5042 struct perf_event *event = vma->vm_file->private_data;
5043
5044 atomic_inc(&event->mmap_count);
5045 atomic_inc(&event->rb->mmap_count);
5046
5047 if (vma->vm_pgoff)
5048 atomic_inc(&event->rb->aux_mmap_count);
5049
5050 if (event->pmu->event_mapped)
5051 event->pmu->event_mapped(event, vma->vm_mm);
5052 }
5053
5054 static void perf_pmu_output_stop(struct perf_event *event);
5055
5056 /*
5057 * A buffer can be mmap()ed multiple times; either directly through the same
5058 * event, or through other events by use of perf_event_set_output().
5059 *
5060 * In order to undo the VM accounting done by perf_mmap() we need to destroy
5061 * the buffer here, where we still have a VM context. This means we need
5062 * to detach all events redirecting to us.
5063 */
5064 static void perf_mmap_close(struct vm_area_struct *vma)
5065 {
5066 struct perf_event *event = vma->vm_file->private_data;
5067
5068 struct ring_buffer *rb = ring_buffer_get(event);
5069 struct user_struct *mmap_user = rb->mmap_user;
5070 int mmap_locked = rb->mmap_locked;
5071 unsigned long size = perf_data_size(rb);
5072
5073 if (event->pmu->event_unmapped)
5074 event->pmu->event_unmapped(event, vma->vm_mm);
5075
5076 /*
5077 * rb->aux_mmap_count will always drop before rb->mmap_count and
5078 * event->mmap_count, so it is ok to use event->mmap_mutex to
5079 * serialize with perf_mmap here.
5080 */
5081 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5082 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
5083 /*
5084 * Stop all AUX events that are writing to this buffer,
5085 * so that we can free its AUX pages and corresponding PMU
5086 * data. Note that after rb::aux_mmap_count dropped to zero,
5087 * they won't start any more (see perf_aux_output_begin()).
5088 */
5089 perf_pmu_output_stop(event);
5090
5091 /* now it's safe to free the pages */
5092 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
5093 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
5094
5095 /* this has to be the last one */
5096 rb_free_aux(rb);
5097 WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
5098
5099 mutex_unlock(&event->mmap_mutex);
5100 }
5101
5102 atomic_dec(&rb->mmap_count);
5103
5104 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5105 goto out_put;
5106
5107 ring_buffer_attach(event, NULL);
5108 mutex_unlock(&event->mmap_mutex);
5109
5110 /* If there's still other mmap()s of this buffer, we're done. */
5111 if (atomic_read(&rb->mmap_count))
5112 goto out_put;
5113
5114 /*
5115 * No other mmap()s, detach from all other events that might redirect
5116 * into the now unreachable buffer. Somewhat complicated by the
5117 * fact that rb::event_lock otherwise nests inside mmap_mutex.
5118 */
5119 again:
5120 rcu_read_lock();
5121 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5122 if (!atomic_long_inc_not_zero(&event->refcount)) {
5123 /*
5124 * This event is en-route to free_event() which will
5125 * detach it and remove it from the list.
5126 */
5127 continue;
5128 }
5129 rcu_read_unlock();
5130
5131 mutex_lock(&event->mmap_mutex);
5132 /*
5133 * Check we didn't race with perf_event_set_output() which can
5134 * swizzle the rb from under us while we were waiting to
5135 * acquire mmap_mutex.
5136 *
5137 * If we find a different rb; ignore this event, a next
5138 * iteration will no longer find it on the list. We have to
5139 * still restart the iteration to make sure we're not now
5140 * iterating the wrong list.
5141 */
5142 if (event->rb == rb)
5143 ring_buffer_attach(event, NULL);
5144
5145 mutex_unlock(&event->mmap_mutex);
5146 put_event(event);
5147
5148 /*
5149 * Restart the iteration; either we're on the wrong list or
5150 * destroyed its integrity by doing a deletion.
5151 */
5152 goto again;
5153 }
5154 rcu_read_unlock();
5155
5156 /*
5157 * It could be there's still a few 0-ref events on the list; they'll
5158 * get cleaned up by free_event() -- they'll also still have their
5159 * ref on the rb and will free it whenever they are done with it.
5160 *
5161 * Aside from that, this buffer is 'fully' detached and unmapped,
5162 * undo the VM accounting.
5163 */
5164
5165 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
5166 vma->vm_mm->pinned_vm -= mmap_locked;
5167 free_uid(mmap_user);
5168
5169 out_put:
5170 ring_buffer_put(rb); /* could be last */
5171 }
5172
5173 static const struct vm_operations_struct perf_mmap_vmops = {
5174 .open = perf_mmap_open,
5175 .close = perf_mmap_close, /* non mergable */
5176 .fault = perf_mmap_fault,
5177 .page_mkwrite = perf_mmap_fault,
5178 };
5179
5180 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5181 {
5182 struct perf_event *event = file->private_data;
5183 unsigned long user_locked, user_lock_limit;
5184 struct user_struct *user = current_user();
5185 unsigned long locked, lock_limit;
5186 struct ring_buffer *rb = NULL;
5187 unsigned long vma_size;
5188 unsigned long nr_pages;
5189 long user_extra = 0, extra = 0;
5190 int ret = 0, flags = 0;
5191
5192 /*
5193 * Don't allow mmap() of inherited per-task counters. This would
5194 * create a performance issue due to all children writing to the
5195 * same rb.
5196 */
5197 if (event->cpu == -1 && event->attr.inherit)
5198 return -EINVAL;
5199
5200 if (!(vma->vm_flags & VM_SHARED))
5201 return -EINVAL;
5202
5203 vma_size = vma->vm_end - vma->vm_start;
5204
5205 if (vma->vm_pgoff == 0) {
5206 nr_pages = (vma_size / PAGE_SIZE) - 1;
5207 } else {
5208 /*
5209 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5210 * mapped, all subsequent mappings should have the same size
5211 * and offset. Must be above the normal perf buffer.
5212 */
5213 u64 aux_offset, aux_size;
5214
5215 if (!event->rb)
5216 return -EINVAL;
5217
5218 nr_pages = vma_size / PAGE_SIZE;
5219
5220 mutex_lock(&event->mmap_mutex);
5221 ret = -EINVAL;
5222
5223 rb = event->rb;
5224 if (!rb)
5225 goto aux_unlock;
5226
5227 aux_offset = READ_ONCE(rb->user_page->aux_offset);
5228 aux_size = READ_ONCE(rb->user_page->aux_size);
5229
5230 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5231 goto aux_unlock;
5232
5233 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5234 goto aux_unlock;
5235
5236 /* already mapped with a different offset */
5237 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5238 goto aux_unlock;
5239
5240 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5241 goto aux_unlock;
5242
5243 /* already mapped with a different size */
5244 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5245 goto aux_unlock;
5246
5247 if (!is_power_of_2(nr_pages))
5248 goto aux_unlock;
5249
5250 if (!atomic_inc_not_zero(&rb->mmap_count))
5251 goto aux_unlock;
5252
5253 if (rb_has_aux(rb)) {
5254 atomic_inc(&rb->aux_mmap_count);
5255 ret = 0;
5256 goto unlock;
5257 }
5258
5259 atomic_set(&rb->aux_mmap_count, 1);
5260 user_extra = nr_pages;
5261
5262 goto accounting;
5263 }
5264
5265 /*
5266 * If we have rb pages ensure they're a power-of-two number, so we
5267 * can do bitmasks instead of modulo.
5268 */
5269 if (nr_pages != 0 && !is_power_of_2(nr_pages))
5270 return -EINVAL;
5271
5272 if (vma_size != PAGE_SIZE * (1 + nr_pages))
5273 return -EINVAL;
5274
5275 WARN_ON_ONCE(event->ctx->parent_ctx);
5276 again:
5277 mutex_lock(&event->mmap_mutex);
5278 if (event->rb) {
5279 if (event->rb->nr_pages != nr_pages) {
5280 ret = -EINVAL;
5281 goto unlock;
5282 }
5283
5284 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5285 /*
5286 * Raced against perf_mmap_close() through
5287 * perf_event_set_output(). Try again, hope for better
5288 * luck.
5289 */
5290 mutex_unlock(&event->mmap_mutex);
5291 goto again;
5292 }
5293
5294 goto unlock;
5295 }
5296
5297 user_extra = nr_pages + 1;
5298
5299 accounting:
5300 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
5301
5302 /*
5303 * Increase the limit linearly with more CPUs:
5304 */
5305 user_lock_limit *= num_online_cpus();
5306
5307 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
5308
5309 if (user_locked > user_lock_limit)
5310 extra = user_locked - user_lock_limit;
5311
5312 lock_limit = rlimit(RLIMIT_MEMLOCK);
5313 lock_limit >>= PAGE_SHIFT;
5314 locked = vma->vm_mm->pinned_vm + extra;
5315
5316 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5317 !capable(CAP_IPC_LOCK)) {
5318 ret = -EPERM;
5319 goto unlock;
5320 }
5321
5322 WARN_ON(!rb && event->rb);
5323
5324 if (vma->vm_flags & VM_WRITE)
5325 flags |= RING_BUFFER_WRITABLE;
5326
5327 if (!rb) {
5328 rb = rb_alloc(nr_pages,
5329 event->attr.watermark ? event->attr.wakeup_watermark : 0,
5330 event->cpu, flags);
5331
5332 if (!rb) {
5333 ret = -ENOMEM;
5334 goto unlock;
5335 }
5336
5337 atomic_set(&rb->mmap_count, 1);
5338 rb->mmap_user = get_current_user();
5339 rb->mmap_locked = extra;
5340
5341 ring_buffer_attach(event, rb);
5342
5343 perf_event_init_userpage(event);
5344 perf_event_update_userpage(event);
5345 } else {
5346 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5347 event->attr.aux_watermark, flags);
5348 if (!ret)
5349 rb->aux_mmap_locked = extra;
5350 }
5351
5352 unlock:
5353 if (!ret) {
5354 atomic_long_add(user_extra, &user->locked_vm);
5355 vma->vm_mm->pinned_vm += extra;
5356
5357 atomic_inc(&event->mmap_count);
5358 } else if (rb) {
5359 atomic_dec(&rb->mmap_count);
5360 }
5361 aux_unlock:
5362 mutex_unlock(&event->mmap_mutex);
5363
5364 /*
5365 * Since pinned accounting is per vm we cannot allow fork() to copy our
5366 * vma.
5367 */
5368 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5369 vma->vm_ops = &perf_mmap_vmops;
5370
5371 if (event->pmu->event_mapped)
5372 event->pmu->event_mapped(event, vma->vm_mm);
5373
5374 return ret;
5375 }
5376
5377 static int perf_fasync(int fd, struct file *filp, int on)
5378 {
5379 struct inode *inode = file_inode(filp);
5380 struct perf_event *event = filp->private_data;
5381 int retval;
5382
5383 inode_lock(inode);
5384 retval = fasync_helper(fd, filp, on, &event->fasync);
5385 inode_unlock(inode);
5386
5387 if (retval < 0)
5388 return retval;
5389
5390 return 0;
5391 }
5392
5393 static const struct file_operations perf_fops = {
5394 .llseek = no_llseek,
5395 .release = perf_release,
5396 .read = perf_read,
5397 .poll = perf_poll,
5398 .unlocked_ioctl = perf_ioctl,
5399 .compat_ioctl = perf_compat_ioctl,
5400 .mmap = perf_mmap,
5401 .fasync = perf_fasync,
5402 };
5403
5404 /*
5405 * Perf event wakeup
5406 *
5407 * If there's data, ensure we set the poll() state and publish everything
5408 * to user-space before waking everybody up.
5409 */
5410
5411 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5412 {
5413 /* only the parent has fasync state */
5414 if (event->parent)
5415 event = event->parent;
5416 return &event->fasync;
5417 }
5418
5419 void perf_event_wakeup(struct perf_event *event)
5420 {
5421 ring_buffer_wakeup(event);
5422
5423 if (event->pending_kill) {
5424 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5425 event->pending_kill = 0;
5426 }
5427 }
5428
5429 static void perf_pending_event(struct irq_work *entry)
5430 {
5431 struct perf_event *event = container_of(entry,
5432 struct perf_event, pending);
5433 int rctx;
5434
5435 rctx = perf_swevent_get_recursion_context();
5436 /*
5437 * If we 'fail' here, that's OK, it means recursion is already disabled
5438 * and we won't recurse 'further'.
5439 */
5440
5441 if (event->pending_disable) {
5442 event->pending_disable = 0;
5443 perf_event_disable_local(event);
5444 }
5445
5446 if (event->pending_wakeup) {
5447 event->pending_wakeup = 0;
5448 perf_event_wakeup(event);
5449 }
5450
5451 if (rctx >= 0)
5452 perf_swevent_put_recursion_context(rctx);
5453 }
5454
5455 /*
5456 * We assume there is only KVM supporting the callbacks.
5457 * Later on, we might change it to a list if there is
5458 * another virtualization implementation supporting the callbacks.
5459 */
5460 struct perf_guest_info_callbacks *perf_guest_cbs;
5461
5462 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5463 {
5464 perf_guest_cbs = cbs;
5465 return 0;
5466 }
5467 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5468
5469 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5470 {
5471 perf_guest_cbs = NULL;
5472 return 0;
5473 }
5474 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5475
5476 static void
5477 perf_output_sample_regs(struct perf_output_handle *handle,
5478 struct pt_regs *regs, u64 mask)
5479 {
5480 int bit;
5481 DECLARE_BITMAP(_mask, 64);
5482
5483 bitmap_from_u64(_mask, mask);
5484 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
5485 u64 val;
5486
5487 val = perf_reg_value(regs, bit);
5488 perf_output_put(handle, val);
5489 }
5490 }
5491
5492 static void perf_sample_regs_user(struct perf_regs *regs_user,
5493 struct pt_regs *regs,
5494 struct pt_regs *regs_user_copy)
5495 {
5496 if (user_mode(regs)) {
5497 regs_user->abi = perf_reg_abi(current);
5498 regs_user->regs = regs;
5499 } else if (current->mm) {
5500 perf_get_regs_user(regs_user, regs, regs_user_copy);
5501 } else {
5502 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5503 regs_user->regs = NULL;
5504 }
5505 }
5506
5507 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5508 struct pt_regs *regs)
5509 {
5510 regs_intr->regs = regs;
5511 regs_intr->abi = perf_reg_abi(current);
5512 }
5513
5514
5515 /*
5516 * Get remaining task size from user stack pointer.
5517 *
5518 * It'd be better to take stack vma map and limit this more
5519 * precisly, but there's no way to get it safely under interrupt,
5520 * so using TASK_SIZE as limit.
5521 */
5522 static u64 perf_ustack_task_size(struct pt_regs *regs)
5523 {
5524 unsigned long addr = perf_user_stack_pointer(regs);
5525
5526 if (!addr || addr >= TASK_SIZE)
5527 return 0;
5528
5529 return TASK_SIZE - addr;
5530 }
5531
5532 static u16
5533 perf_sample_ustack_size(u16 stack_size, u16 header_size,
5534 struct pt_regs *regs)
5535 {
5536 u64 task_size;
5537
5538 /* No regs, no stack pointer, no dump. */
5539 if (!regs)
5540 return 0;
5541
5542 /*
5543 * Check if we fit in with the requested stack size into the:
5544 * - TASK_SIZE
5545 * If we don't, we limit the size to the TASK_SIZE.
5546 *
5547 * - remaining sample size
5548 * If we don't, we customize the stack size to
5549 * fit in to the remaining sample size.
5550 */
5551
5552 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5553 stack_size = min(stack_size, (u16) task_size);
5554
5555 /* Current header size plus static size and dynamic size. */
5556 header_size += 2 * sizeof(u64);
5557
5558 /* Do we fit in with the current stack dump size? */
5559 if ((u16) (header_size + stack_size) < header_size) {
5560 /*
5561 * If we overflow the maximum size for the sample,
5562 * we customize the stack dump size to fit in.
5563 */
5564 stack_size = USHRT_MAX - header_size - sizeof(u64);
5565 stack_size = round_up(stack_size, sizeof(u64));
5566 }
5567
5568 return stack_size;
5569 }
5570
5571 static void
5572 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5573 struct pt_regs *regs)
5574 {
5575 /* Case of a kernel thread, nothing to dump */
5576 if (!regs) {
5577 u64 size = 0;
5578 perf_output_put(handle, size);
5579 } else {
5580 unsigned long sp;
5581 unsigned int rem;
5582 u64 dyn_size;
5583
5584 /*
5585 * We dump:
5586 * static size
5587 * - the size requested by user or the best one we can fit
5588 * in to the sample max size
5589 * data
5590 * - user stack dump data
5591 * dynamic size
5592 * - the actual dumped size
5593 */
5594
5595 /* Static size. */
5596 perf_output_put(handle, dump_size);
5597
5598 /* Data. */
5599 sp = perf_user_stack_pointer(regs);
5600 rem = __output_copy_user(handle, (void *) sp, dump_size);
5601 dyn_size = dump_size - rem;
5602
5603 perf_output_skip(handle, rem);
5604
5605 /* Dynamic size. */
5606 perf_output_put(handle, dyn_size);
5607 }
5608 }
5609
5610 static void __perf_event_header__init_id(struct perf_event_header *header,
5611 struct perf_sample_data *data,
5612 struct perf_event *event)
5613 {
5614 u64 sample_type = event->attr.sample_type;
5615
5616 data->type = sample_type;
5617 header->size += event->id_header_size;
5618
5619 if (sample_type & PERF_SAMPLE_TID) {
5620 /* namespace issues */
5621 data->tid_entry.pid = perf_event_pid(event, current);
5622 data->tid_entry.tid = perf_event_tid(event, current);
5623 }
5624
5625 if (sample_type & PERF_SAMPLE_TIME)
5626 data->time = perf_event_clock(event);
5627
5628 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5629 data->id = primary_event_id(event);
5630
5631 if (sample_type & PERF_SAMPLE_STREAM_ID)
5632 data->stream_id = event->id;
5633
5634 if (sample_type & PERF_SAMPLE_CPU) {
5635 data->cpu_entry.cpu = raw_smp_processor_id();
5636 data->cpu_entry.reserved = 0;
5637 }
5638 }
5639
5640 void perf_event_header__init_id(struct perf_event_header *header,
5641 struct perf_sample_data *data,
5642 struct perf_event *event)
5643 {
5644 if (event->attr.sample_id_all)
5645 __perf_event_header__init_id(header, data, event);
5646 }
5647
5648 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5649 struct perf_sample_data *data)
5650 {
5651 u64 sample_type = data->type;
5652
5653 if (sample_type & PERF_SAMPLE_TID)
5654 perf_output_put(handle, data->tid_entry);
5655
5656 if (sample_type & PERF_SAMPLE_TIME)
5657 perf_output_put(handle, data->time);
5658
5659 if (sample_type & PERF_SAMPLE_ID)
5660 perf_output_put(handle, data->id);
5661
5662 if (sample_type & PERF_SAMPLE_STREAM_ID)
5663 perf_output_put(handle, data->stream_id);
5664
5665 if (sample_type & PERF_SAMPLE_CPU)
5666 perf_output_put(handle, data->cpu_entry);
5667
5668 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5669 perf_output_put(handle, data->id);
5670 }
5671
5672 void perf_event__output_id_sample(struct perf_event *event,
5673 struct perf_output_handle *handle,
5674 struct perf_sample_data *sample)
5675 {
5676 if (event->attr.sample_id_all)
5677 __perf_event__output_id_sample(handle, sample);
5678 }
5679
5680 static void perf_output_read_one(struct perf_output_handle *handle,
5681 struct perf_event *event,
5682 u64 enabled, u64 running)
5683 {
5684 u64 read_format = event->attr.read_format;
5685 u64 values[4];
5686 int n = 0;
5687
5688 values[n++] = perf_event_count(event);
5689 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5690 values[n++] = enabled +
5691 atomic64_read(&event->child_total_time_enabled);
5692 }
5693 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5694 values[n++] = running +
5695 atomic64_read(&event->child_total_time_running);
5696 }
5697 if (read_format & PERF_FORMAT_ID)
5698 values[n++] = primary_event_id(event);
5699
5700 __output_copy(handle, values, n * sizeof(u64));
5701 }
5702
5703 static void perf_output_read_group(struct perf_output_handle *handle,
5704 struct perf_event *event,
5705 u64 enabled, u64 running)
5706 {
5707 struct perf_event *leader = event->group_leader, *sub;
5708 u64 read_format = event->attr.read_format;
5709 u64 values[5];
5710 int n = 0;
5711
5712 values[n++] = 1 + leader->nr_siblings;
5713
5714 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5715 values[n++] = enabled;
5716
5717 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5718 values[n++] = running;
5719
5720 if (leader != event)
5721 leader->pmu->read(leader);
5722
5723 values[n++] = perf_event_count(leader);
5724 if (read_format & PERF_FORMAT_ID)
5725 values[n++] = primary_event_id(leader);
5726
5727 __output_copy(handle, values, n * sizeof(u64));
5728
5729 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5730 n = 0;
5731
5732 if ((sub != event) &&
5733 (sub->state == PERF_EVENT_STATE_ACTIVE))
5734 sub->pmu->read(sub);
5735
5736 values[n++] = perf_event_count(sub);
5737 if (read_format & PERF_FORMAT_ID)
5738 values[n++] = primary_event_id(sub);
5739
5740 __output_copy(handle, values, n * sizeof(u64));
5741 }
5742 }
5743
5744 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5745 PERF_FORMAT_TOTAL_TIME_RUNNING)
5746
5747 /*
5748 * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
5749 *
5750 * The problem is that its both hard and excessively expensive to iterate the
5751 * child list, not to mention that its impossible to IPI the children running
5752 * on another CPU, from interrupt/NMI context.
5753 */
5754 static void perf_output_read(struct perf_output_handle *handle,
5755 struct perf_event *event)
5756 {
5757 u64 enabled = 0, running = 0, now;
5758 u64 read_format = event->attr.read_format;
5759
5760 /*
5761 * compute total_time_enabled, total_time_running
5762 * based on snapshot values taken when the event
5763 * was last scheduled in.
5764 *
5765 * we cannot simply called update_context_time()
5766 * because of locking issue as we are called in
5767 * NMI context
5768 */
5769 if (read_format & PERF_FORMAT_TOTAL_TIMES)
5770 calc_timer_values(event, &now, &enabled, &running);
5771
5772 if (event->attr.read_format & PERF_FORMAT_GROUP)
5773 perf_output_read_group(handle, event, enabled, running);
5774 else
5775 perf_output_read_one(handle, event, enabled, running);
5776 }
5777
5778 void perf_output_sample(struct perf_output_handle *handle,
5779 struct perf_event_header *header,
5780 struct perf_sample_data *data,
5781 struct perf_event *event)
5782 {
5783 u64 sample_type = data->type;
5784
5785 perf_output_put(handle, *header);
5786
5787 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5788 perf_output_put(handle, data->id);
5789
5790 if (sample_type & PERF_SAMPLE_IP)
5791 perf_output_put(handle, data->ip);
5792
5793 if (sample_type & PERF_SAMPLE_TID)
5794 perf_output_put(handle, data->tid_entry);
5795
5796 if (sample_type & PERF_SAMPLE_TIME)
5797 perf_output_put(handle, data->time);
5798
5799 if (sample_type & PERF_SAMPLE_ADDR)
5800 perf_output_put(handle, data->addr);
5801
5802 if (sample_type & PERF_SAMPLE_ID)
5803 perf_output_put(handle, data->id);
5804
5805 if (sample_type & PERF_SAMPLE_STREAM_ID)
5806 perf_output_put(handle, data->stream_id);
5807
5808 if (sample_type & PERF_SAMPLE_CPU)
5809 perf_output_put(handle, data->cpu_entry);
5810
5811 if (sample_type & PERF_SAMPLE_PERIOD)
5812 perf_output_put(handle, data->period);
5813
5814 if (sample_type & PERF_SAMPLE_READ)
5815 perf_output_read(handle, event);
5816
5817 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5818 if (data->callchain) {
5819 int size = 1;
5820
5821 if (data->callchain)
5822 size += data->callchain->nr;
5823
5824 size *= sizeof(u64);
5825
5826 __output_copy(handle, data->callchain, size);
5827 } else {
5828 u64 nr = 0;
5829 perf_output_put(handle, nr);
5830 }
5831 }
5832
5833 if (sample_type & PERF_SAMPLE_RAW) {
5834 struct perf_raw_record *raw = data->raw;
5835
5836 if (raw) {
5837 struct perf_raw_frag *frag = &raw->frag;
5838
5839 perf_output_put(handle, raw->size);
5840 do {
5841 if (frag->copy) {
5842 __output_custom(handle, frag->copy,
5843 frag->data, frag->size);
5844 } else {
5845 __output_copy(handle, frag->data,
5846 frag->size);
5847 }
5848 if (perf_raw_frag_last(frag))
5849 break;
5850 frag = frag->next;
5851 } while (1);
5852 if (frag->pad)
5853 __output_skip(handle, NULL, frag->pad);
5854 } else {
5855 struct {
5856 u32 size;
5857 u32 data;
5858 } raw = {
5859 .size = sizeof(u32),
5860 .data = 0,
5861 };
5862 perf_output_put(handle, raw);
5863 }
5864 }
5865
5866 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5867 if (data->br_stack) {
5868 size_t size;
5869
5870 size = data->br_stack->nr
5871 * sizeof(struct perf_branch_entry);
5872
5873 perf_output_put(handle, data->br_stack->nr);
5874 perf_output_copy(handle, data->br_stack->entries, size);
5875 } else {
5876 /*
5877 * we always store at least the value of nr
5878 */
5879 u64 nr = 0;
5880 perf_output_put(handle, nr);
5881 }
5882 }
5883
5884 if (sample_type & PERF_SAMPLE_REGS_USER) {
5885 u64 abi = data->regs_user.abi;
5886
5887 /*
5888 * If there are no regs to dump, notice it through
5889 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5890 */
5891 perf_output_put(handle, abi);
5892
5893 if (abi) {
5894 u64 mask = event->attr.sample_regs_user;
5895 perf_output_sample_regs(handle,
5896 data->regs_user.regs,
5897 mask);
5898 }
5899 }
5900
5901 if (sample_type & PERF_SAMPLE_STACK_USER) {
5902 perf_output_sample_ustack(handle,
5903 data->stack_user_size,
5904 data->regs_user.regs);
5905 }
5906
5907 if (sample_type & PERF_SAMPLE_WEIGHT)
5908 perf_output_put(handle, data->weight);
5909
5910 if (sample_type & PERF_SAMPLE_DATA_SRC)
5911 perf_output_put(handle, data->data_src.val);
5912
5913 if (sample_type & PERF_SAMPLE_TRANSACTION)
5914 perf_output_put(handle, data->txn);
5915
5916 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5917 u64 abi = data->regs_intr.abi;
5918 /*
5919 * If there are no regs to dump, notice it through
5920 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5921 */
5922 perf_output_put(handle, abi);
5923
5924 if (abi) {
5925 u64 mask = event->attr.sample_regs_intr;
5926
5927 perf_output_sample_regs(handle,
5928 data->regs_intr.regs,
5929 mask);
5930 }
5931 }
5932
5933 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
5934 perf_output_put(handle, data->phys_addr);
5935
5936 if (!event->attr.watermark) {
5937 int wakeup_events = event->attr.wakeup_events;
5938
5939 if (wakeup_events) {
5940 struct ring_buffer *rb = handle->rb;
5941 int events = local_inc_return(&rb->events);
5942
5943 if (events >= wakeup_events) {
5944 local_sub(wakeup_events, &rb->events);
5945 local_inc(&rb->wakeup);
5946 }
5947 }
5948 }
5949 }
5950
5951 static u64 perf_virt_to_phys(u64 virt)
5952 {
5953 u64 phys_addr = 0;
5954 struct page *p = NULL;
5955
5956 if (!virt)
5957 return 0;
5958
5959 if (virt >= TASK_SIZE) {
5960 /* If it's vmalloc()d memory, leave phys_addr as 0 */
5961 if (virt_addr_valid((void *)(uintptr_t)virt) &&
5962 !(virt >= VMALLOC_START && virt < VMALLOC_END))
5963 phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
5964 } else {
5965 /*
5966 * Walking the pages tables for user address.
5967 * Interrupts are disabled, so it prevents any tear down
5968 * of the page tables.
5969 * Try IRQ-safe __get_user_pages_fast first.
5970 * If failed, leave phys_addr as 0.
5971 */
5972 if ((current->mm != NULL) &&
5973 (__get_user_pages_fast(virt, 1, 0, &p) == 1))
5974 phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
5975
5976 if (p)
5977 put_page(p);
5978 }
5979
5980 return phys_addr;
5981 }
5982
5983 void perf_prepare_sample(struct perf_event_header *header,
5984 struct perf_sample_data *data,
5985 struct perf_event *event,
5986 struct pt_regs *regs)
5987 {
5988 u64 sample_type = event->attr.sample_type;
5989
5990 header->type = PERF_RECORD_SAMPLE;
5991 header->size = sizeof(*header) + event->header_size;
5992
5993 header->misc = 0;
5994 header->misc |= perf_misc_flags(regs);
5995
5996 __perf_event_header__init_id(header, data, event);
5997
5998 if (sample_type & PERF_SAMPLE_IP)
5999 data->ip = perf_instruction_pointer(regs);
6000
6001 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6002 int size = 1;
6003
6004 data->callchain = perf_callchain(event, regs);
6005
6006 if (data->callchain)
6007 size += data->callchain->nr;
6008
6009 header->size += size * sizeof(u64);
6010 }
6011
6012 if (sample_type & PERF_SAMPLE_RAW) {
6013 struct perf_raw_record *raw = data->raw;
6014 int size;
6015
6016 if (raw) {
6017 struct perf_raw_frag *frag = &raw->frag;
6018 u32 sum = 0;
6019
6020 do {
6021 sum += frag->size;
6022 if (perf_raw_frag_last(frag))
6023 break;
6024 frag = frag->next;
6025 } while (1);
6026
6027 size = round_up(sum + sizeof(u32), sizeof(u64));
6028 raw->size = size - sizeof(u32);
6029 frag->pad = raw->size - sum;
6030 } else {
6031 size = sizeof(u64);
6032 }
6033
6034 header->size += size;
6035 }
6036
6037 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6038 int size = sizeof(u64); /* nr */
6039 if (data->br_stack) {
6040 size += data->br_stack->nr
6041 * sizeof(struct perf_branch_entry);
6042 }
6043 header->size += size;
6044 }
6045
6046 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
6047 perf_sample_regs_user(&data->regs_user, regs,
6048 &data->regs_user_copy);
6049
6050 if (sample_type & PERF_SAMPLE_REGS_USER) {
6051 /* regs dump ABI info */
6052 int size = sizeof(u64);
6053
6054 if (data->regs_user.regs) {
6055 u64 mask = event->attr.sample_regs_user;
6056 size += hweight64(mask) * sizeof(u64);
6057 }
6058
6059 header->size += size;
6060 }
6061
6062 if (sample_type & PERF_SAMPLE_STACK_USER) {
6063 /*
6064 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
6065 * processed as the last one or have additional check added
6066 * in case new sample type is added, because we could eat
6067 * up the rest of the sample size.
6068 */
6069 u16 stack_size = event->attr.sample_stack_user;
6070 u16 size = sizeof(u64);
6071
6072 stack_size = perf_sample_ustack_size(stack_size, header->size,
6073 data->regs_user.regs);
6074
6075 /*
6076 * If there is something to dump, add space for the dump
6077 * itself and for the field that tells the dynamic size,
6078 * which is how many have been actually dumped.
6079 */
6080 if (stack_size)
6081 size += sizeof(u64) + stack_size;
6082
6083 data->stack_user_size = stack_size;
6084 header->size += size;
6085 }
6086
6087 if (sample_type & PERF_SAMPLE_REGS_INTR) {
6088 /* regs dump ABI info */
6089 int size = sizeof(u64);
6090
6091 perf_sample_regs_intr(&data->regs_intr, regs);
6092
6093 if (data->regs_intr.regs) {
6094 u64 mask = event->attr.sample_regs_intr;
6095
6096 size += hweight64(mask) * sizeof(u64);
6097 }
6098
6099 header->size += size;
6100 }
6101
6102 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6103 data->phys_addr = perf_virt_to_phys(data->addr);
6104 }
6105
6106 static void __always_inline
6107 __perf_event_output(struct perf_event *event,
6108 struct perf_sample_data *data,
6109 struct pt_regs *regs,
6110 int (*output_begin)(struct perf_output_handle *,
6111 struct perf_event *,
6112 unsigned int))
6113 {
6114 struct perf_output_handle handle;
6115 struct perf_event_header header;
6116
6117 /* protect the callchain buffers */
6118 rcu_read_lock();
6119
6120 perf_prepare_sample(&header, data, event, regs);
6121
6122 if (output_begin(&handle, event, header.size))
6123 goto exit;
6124
6125 perf_output_sample(&handle, &header, data, event);
6126
6127 perf_output_end(&handle);
6128
6129 exit:
6130 rcu_read_unlock();
6131 }
6132
6133 void
6134 perf_event_output_forward(struct perf_event *event,
6135 struct perf_sample_data *data,
6136 struct pt_regs *regs)
6137 {
6138 __perf_event_output(event, data, regs, perf_output_begin_forward);
6139 }
6140
6141 void
6142 perf_event_output_backward(struct perf_event *event,
6143 struct perf_sample_data *data,
6144 struct pt_regs *regs)
6145 {
6146 __perf_event_output(event, data, regs, perf_output_begin_backward);
6147 }
6148
6149 void
6150 perf_event_output(struct perf_event *event,
6151 struct perf_sample_data *data,
6152 struct pt_regs *regs)
6153 {
6154 __perf_event_output(event, data, regs, perf_output_begin);
6155 }
6156
6157 /*
6158 * read event_id
6159 */
6160
6161 struct perf_read_event {
6162 struct perf_event_header header;
6163
6164 u32 pid;
6165 u32 tid;
6166 };
6167
6168 static void
6169 perf_event_read_event(struct perf_event *event,
6170 struct task_struct *task)
6171 {
6172 struct perf_output_handle handle;
6173 struct perf_sample_data sample;
6174 struct perf_read_event read_event = {
6175 .header = {
6176 .type = PERF_RECORD_READ,
6177 .misc = 0,
6178 .size = sizeof(read_event) + event->read_size,
6179 },
6180 .pid = perf_event_pid(event, task),
6181 .tid = perf_event_tid(event, task),
6182 };
6183 int ret;
6184
6185 perf_event_header__init_id(&read_event.header, &sample, event);
6186 ret = perf_output_begin(&handle, event, read_event.header.size);
6187 if (ret)
6188 return;
6189
6190 perf_output_put(&handle, read_event);
6191 perf_output_read(&handle, event);
6192 perf_event__output_id_sample(event, &handle, &sample);
6193
6194 perf_output_end(&handle);
6195 }
6196
6197 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
6198
6199 static void
6200 perf_iterate_ctx(struct perf_event_context *ctx,
6201 perf_iterate_f output,
6202 void *data, bool all)
6203 {
6204 struct perf_event *event;
6205
6206 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6207 if (!all) {
6208 if (event->state < PERF_EVENT_STATE_INACTIVE)
6209 continue;
6210 if (!event_filter_match(event))
6211 continue;
6212 }
6213
6214 output(event, data);
6215 }
6216 }
6217
6218 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
6219 {
6220 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6221 struct perf_event *event;
6222
6223 list_for_each_entry_rcu(event, &pel->list, sb_list) {
6224 /*
6225 * Skip events that are not fully formed yet; ensure that
6226 * if we observe event->ctx, both event and ctx will be
6227 * complete enough. See perf_install_in_context().
6228 */
6229 if (!smp_load_acquire(&event->ctx))
6230 continue;
6231
6232 if (event->state < PERF_EVENT_STATE_INACTIVE)
6233 continue;
6234 if (!event_filter_match(event))
6235 continue;
6236 output(event, data);
6237 }
6238 }
6239
6240 /*
6241 * Iterate all events that need to receive side-band events.
6242 *
6243 * For new callers; ensure that account_pmu_sb_event() includes
6244 * your event, otherwise it might not get delivered.
6245 */
6246 static void
6247 perf_iterate_sb(perf_iterate_f output, void *data,
6248 struct perf_event_context *task_ctx)
6249 {
6250 struct perf_event_context *ctx;
6251 int ctxn;
6252
6253 rcu_read_lock();
6254 preempt_disable();
6255
6256 /*
6257 * If we have task_ctx != NULL we only notify the task context itself.
6258 * The task_ctx is set only for EXIT events before releasing task
6259 * context.
6260 */
6261 if (task_ctx) {
6262 perf_iterate_ctx(task_ctx, output, data, false);
6263 goto done;
6264 }
6265
6266 perf_iterate_sb_cpu(output, data);
6267
6268 for_each_task_context_nr(ctxn) {
6269 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6270 if (ctx)
6271 perf_iterate_ctx(ctx, output, data, false);
6272 }
6273 done:
6274 preempt_enable();
6275 rcu_read_unlock();
6276 }
6277
6278 /*
6279 * Clear all file-based filters at exec, they'll have to be
6280 * re-instated when/if these objects are mmapped again.
6281 */
6282 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6283 {
6284 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6285 struct perf_addr_filter *filter;
6286 unsigned int restart = 0, count = 0;
6287 unsigned long flags;
6288
6289 if (!has_addr_filter(event))
6290 return;
6291
6292 raw_spin_lock_irqsave(&ifh->lock, flags);
6293 list_for_each_entry(filter, &ifh->list, entry) {
6294 if (filter->inode) {
6295 event->addr_filters_offs[count] = 0;
6296 restart++;
6297 }
6298
6299 count++;
6300 }
6301
6302 if (restart)
6303 event->addr_filters_gen++;
6304 raw_spin_unlock_irqrestore(&ifh->lock, flags);
6305
6306 if (restart)
6307 perf_event_stop(event, 1);
6308 }
6309
6310 void perf_event_exec(void)
6311 {
6312 struct perf_event_context *ctx;
6313 int ctxn;
6314
6315 rcu_read_lock();
6316 for_each_task_context_nr(ctxn) {
6317 ctx = current->perf_event_ctxp[ctxn];
6318 if (!ctx)
6319 continue;
6320
6321 perf_event_enable_on_exec(ctxn);
6322
6323 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
6324 true);
6325 }
6326 rcu_read_unlock();
6327 }
6328
6329 struct remote_output {
6330 struct ring_buffer *rb;
6331 int err;
6332 };
6333
6334 static void __perf_event_output_stop(struct perf_event *event, void *data)
6335 {
6336 struct perf_event *parent = event->parent;
6337 struct remote_output *ro = data;
6338 struct ring_buffer *rb = ro->rb;
6339 struct stop_event_data sd = {
6340 .event = event,
6341 };
6342
6343 if (!has_aux(event))
6344 return;
6345
6346 if (!parent)
6347 parent = event;
6348
6349 /*
6350 * In case of inheritance, it will be the parent that links to the
6351 * ring-buffer, but it will be the child that's actually using it.
6352 *
6353 * We are using event::rb to determine if the event should be stopped,
6354 * however this may race with ring_buffer_attach() (through set_output),
6355 * which will make us skip the event that actually needs to be stopped.
6356 * So ring_buffer_attach() has to stop an aux event before re-assigning
6357 * its rb pointer.
6358 */
6359 if (rcu_dereference(parent->rb) == rb)
6360 ro->err = __perf_event_stop(&sd);
6361 }
6362
6363 static int __perf_pmu_output_stop(void *info)
6364 {
6365 struct perf_event *event = info;
6366 struct pmu *pmu = event->pmu;
6367 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6368 struct remote_output ro = {
6369 .rb = event->rb,
6370 };
6371
6372 rcu_read_lock();
6373 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6374 if (cpuctx->task_ctx)
6375 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6376 &ro, false);
6377 rcu_read_unlock();
6378
6379 return ro.err;
6380 }
6381
6382 static void perf_pmu_output_stop(struct perf_event *event)
6383 {
6384 struct perf_event *iter;
6385 int err, cpu;
6386
6387 restart:
6388 rcu_read_lock();
6389 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6390 /*
6391 * For per-CPU events, we need to make sure that neither they
6392 * nor their children are running; for cpu==-1 events it's
6393 * sufficient to stop the event itself if it's active, since
6394 * it can't have children.
6395 */
6396 cpu = iter->cpu;
6397 if (cpu == -1)
6398 cpu = READ_ONCE(iter->oncpu);
6399
6400 if (cpu == -1)
6401 continue;
6402
6403 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6404 if (err == -EAGAIN) {
6405 rcu_read_unlock();
6406 goto restart;
6407 }
6408 }
6409 rcu_read_unlock();
6410 }
6411
6412 /*
6413 * task tracking -- fork/exit
6414 *
6415 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
6416 */
6417
6418 struct perf_task_event {
6419 struct task_struct *task;
6420 struct perf_event_context *task_ctx;
6421
6422 struct {
6423 struct perf_event_header header;
6424
6425 u32 pid;
6426 u32 ppid;
6427 u32 tid;
6428 u32 ptid;
6429 u64 time;
6430 } event_id;
6431 };
6432
6433 static int perf_event_task_match(struct perf_event *event)
6434 {
6435 return event->attr.comm || event->attr.mmap ||
6436 event->attr.mmap2 || event->attr.mmap_data ||
6437 event->attr.task;
6438 }
6439
6440 static void perf_event_task_output(struct perf_event *event,
6441 void *data)
6442 {
6443 struct perf_task_event *task_event = data;
6444 struct perf_output_handle handle;
6445 struct perf_sample_data sample;
6446 struct task_struct *task = task_event->task;
6447 int ret, size = task_event->event_id.header.size;
6448
6449 if (!perf_event_task_match(event))
6450 return;
6451
6452 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
6453
6454 ret = perf_output_begin(&handle, event,
6455 task_event->event_id.header.size);
6456 if (ret)
6457 goto out;
6458
6459 task_event->event_id.pid = perf_event_pid(event, task);
6460 task_event->event_id.ppid = perf_event_pid(event, current);
6461
6462 task_event->event_id.tid = perf_event_tid(event, task);
6463 task_event->event_id.ptid = perf_event_tid(event, current);
6464
6465 task_event->event_id.time = perf_event_clock(event);
6466
6467 perf_output_put(&handle, task_event->event_id);
6468
6469 perf_event__output_id_sample(event, &handle, &sample);
6470
6471 perf_output_end(&handle);
6472 out:
6473 task_event->event_id.header.size = size;
6474 }
6475
6476 static void perf_event_task(struct task_struct *task,
6477 struct perf_event_context *task_ctx,
6478 int new)
6479 {
6480 struct perf_task_event task_event;
6481
6482 if (!atomic_read(&nr_comm_events) &&
6483 !atomic_read(&nr_mmap_events) &&
6484 !atomic_read(&nr_task_events))
6485 return;
6486
6487 task_event = (struct perf_task_event){
6488 .task = task,
6489 .task_ctx = task_ctx,
6490 .event_id = {
6491 .header = {
6492 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
6493 .misc = 0,
6494 .size = sizeof(task_event.event_id),
6495 },
6496 /* .pid */
6497 /* .ppid */
6498 /* .tid */
6499 /* .ptid */
6500 /* .time */
6501 },
6502 };
6503
6504 perf_iterate_sb(perf_event_task_output,
6505 &task_event,
6506 task_ctx);
6507 }
6508
6509 void perf_event_fork(struct task_struct *task)
6510 {
6511 perf_event_task(task, NULL, 1);
6512 perf_event_namespaces(task);
6513 }
6514
6515 /*
6516 * comm tracking
6517 */
6518
6519 struct perf_comm_event {
6520 struct task_struct *task;
6521 char *comm;
6522 int comm_size;
6523
6524 struct {
6525 struct perf_event_header header;
6526
6527 u32 pid;
6528 u32 tid;
6529 } event_id;
6530 };
6531
6532 static int perf_event_comm_match(struct perf_event *event)
6533 {
6534 return event->attr.comm;
6535 }
6536
6537 static void perf_event_comm_output(struct perf_event *event,
6538 void *data)
6539 {
6540 struct perf_comm_event *comm_event = data;
6541 struct perf_output_handle handle;
6542 struct perf_sample_data sample;
6543 int size = comm_event->event_id.header.size;
6544 int ret;
6545
6546 if (!perf_event_comm_match(event))
6547 return;
6548
6549 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6550 ret = perf_output_begin(&handle, event,
6551 comm_event->event_id.header.size);
6552
6553 if (ret)
6554 goto out;
6555
6556 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6557 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
6558
6559 perf_output_put(&handle, comm_event->event_id);
6560 __output_copy(&handle, comm_event->comm,
6561 comm_event->comm_size);
6562
6563 perf_event__output_id_sample(event, &handle, &sample);
6564
6565 perf_output_end(&handle);
6566 out:
6567 comm_event->event_id.header.size = size;
6568 }
6569
6570 static void perf_event_comm_event(struct perf_comm_event *comm_event)
6571 {
6572 char comm[TASK_COMM_LEN];
6573 unsigned int size;
6574
6575 memset(comm, 0, sizeof(comm));
6576 strlcpy(comm, comm_event->task->comm, sizeof(comm));
6577 size = ALIGN(strlen(comm)+1, sizeof(u64));
6578
6579 comm_event->comm = comm;
6580 comm_event->comm_size = size;
6581
6582 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
6583
6584 perf_iterate_sb(perf_event_comm_output,
6585 comm_event,
6586 NULL);
6587 }
6588
6589 void perf_event_comm(struct task_struct *task, bool exec)
6590 {
6591 struct perf_comm_event comm_event;
6592
6593 if (!atomic_read(&nr_comm_events))
6594 return;
6595
6596 comm_event = (struct perf_comm_event){
6597 .task = task,
6598 /* .comm */
6599 /* .comm_size */
6600 .event_id = {
6601 .header = {
6602 .type = PERF_RECORD_COMM,
6603 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
6604 /* .size */
6605 },
6606 /* .pid */
6607 /* .tid */
6608 },
6609 };
6610
6611 perf_event_comm_event(&comm_event);
6612 }
6613
6614 /*
6615 * namespaces tracking
6616 */
6617
6618 struct perf_namespaces_event {
6619 struct task_struct *task;
6620
6621 struct {
6622 struct perf_event_header header;
6623
6624 u32 pid;
6625 u32 tid;
6626 u64 nr_namespaces;
6627 struct perf_ns_link_info link_info[NR_NAMESPACES];
6628 } event_id;
6629 };
6630
6631 static int perf_event_namespaces_match(struct perf_event *event)
6632 {
6633 return event->attr.namespaces;
6634 }
6635
6636 static void perf_event_namespaces_output(struct perf_event *event,
6637 void *data)
6638 {
6639 struct perf_namespaces_event *namespaces_event = data;
6640 struct perf_output_handle handle;
6641 struct perf_sample_data sample;
6642 u16 header_size = namespaces_event->event_id.header.size;
6643 int ret;
6644
6645 if (!perf_event_namespaces_match(event))
6646 return;
6647
6648 perf_event_header__init_id(&namespaces_event->event_id.header,
6649 &sample, event);
6650 ret = perf_output_begin(&handle, event,
6651 namespaces_event->event_id.header.size);
6652 if (ret)
6653 goto out;
6654
6655 namespaces_event->event_id.pid = perf_event_pid(event,
6656 namespaces_event->task);
6657 namespaces_event->event_id.tid = perf_event_tid(event,
6658 namespaces_event->task);
6659
6660 perf_output_put(&handle, namespaces_event->event_id);
6661
6662 perf_event__output_id_sample(event, &handle, &sample);
6663
6664 perf_output_end(&handle);
6665 out:
6666 namespaces_event->event_id.header.size = header_size;
6667 }
6668
6669 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
6670 struct task_struct *task,
6671 const struct proc_ns_operations *ns_ops)
6672 {
6673 struct path ns_path;
6674 struct inode *ns_inode;
6675 void *error;
6676
6677 error = ns_get_path(&ns_path, task, ns_ops);
6678 if (!error) {
6679 ns_inode = ns_path.dentry->d_inode;
6680 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
6681 ns_link_info->ino = ns_inode->i_ino;
6682 path_put(&ns_path);
6683 }
6684 }
6685
6686 void perf_event_namespaces(struct task_struct *task)
6687 {
6688 struct perf_namespaces_event namespaces_event;
6689 struct perf_ns_link_info *ns_link_info;
6690
6691 if (!atomic_read(&nr_namespaces_events))
6692 return;
6693
6694 namespaces_event = (struct perf_namespaces_event){
6695 .task = task,
6696 .event_id = {
6697 .header = {
6698 .type = PERF_RECORD_NAMESPACES,
6699 .misc = 0,
6700 .size = sizeof(namespaces_event.event_id),
6701 },
6702 /* .pid */
6703 /* .tid */
6704 .nr_namespaces = NR_NAMESPACES,
6705 /* .link_info[NR_NAMESPACES] */
6706 },
6707 };
6708
6709 ns_link_info = namespaces_event.event_id.link_info;
6710
6711 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
6712 task, &mntns_operations);
6713
6714 #ifdef CONFIG_USER_NS
6715 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
6716 task, &userns_operations);
6717 #endif
6718 #ifdef CONFIG_NET_NS
6719 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
6720 task, &netns_operations);
6721 #endif
6722 #ifdef CONFIG_UTS_NS
6723 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
6724 task, &utsns_operations);
6725 #endif
6726 #ifdef CONFIG_IPC_NS
6727 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
6728 task, &ipcns_operations);
6729 #endif
6730 #ifdef CONFIG_PID_NS
6731 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
6732 task, &pidns_operations);
6733 #endif
6734 #ifdef CONFIG_CGROUPS
6735 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
6736 task, &cgroupns_operations);
6737 #endif
6738
6739 perf_iterate_sb(perf_event_namespaces_output,
6740 &namespaces_event,
6741 NULL);
6742 }
6743
6744 /*
6745 * mmap tracking
6746 */
6747
6748 struct perf_mmap_event {
6749 struct vm_area_struct *vma;
6750
6751 const char *file_name;
6752 int file_size;
6753 int maj, min;
6754 u64 ino;
6755 u64 ino_generation;
6756 u32 prot, flags;
6757
6758 struct {
6759 struct perf_event_header header;
6760
6761 u32 pid;
6762 u32 tid;
6763 u64 start;
6764 u64 len;
6765 u64 pgoff;
6766 } event_id;
6767 };
6768
6769 static int perf_event_mmap_match(struct perf_event *event,
6770 void *data)
6771 {
6772 struct perf_mmap_event *mmap_event = data;
6773 struct vm_area_struct *vma = mmap_event->vma;
6774 int executable = vma->vm_flags & VM_EXEC;
6775
6776 return (!executable && event->attr.mmap_data) ||
6777 (executable && (event->attr.mmap || event->attr.mmap2));
6778 }
6779
6780 static void perf_event_mmap_output(struct perf_event *event,
6781 void *data)
6782 {
6783 struct perf_mmap_event *mmap_event = data;
6784 struct perf_output_handle handle;
6785 struct perf_sample_data sample;
6786 int size = mmap_event->event_id.header.size;
6787 int ret;
6788
6789 if (!perf_event_mmap_match(event, data))
6790 return;
6791
6792 if (event->attr.mmap2) {
6793 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
6794 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
6795 mmap_event->event_id.header.size += sizeof(mmap_event->min);
6796 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
6797 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
6798 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
6799 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
6800 }
6801
6802 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
6803 ret = perf_output_begin(&handle, event,
6804 mmap_event->event_id.header.size);
6805 if (ret)
6806 goto out;
6807
6808 mmap_event->event_id.pid = perf_event_pid(event, current);
6809 mmap_event->event_id.tid = perf_event_tid(event, current);
6810
6811 perf_output_put(&handle, mmap_event->event_id);
6812
6813 if (event->attr.mmap2) {
6814 perf_output_put(&handle, mmap_event->maj);
6815 perf_output_put(&handle, mmap_event->min);
6816 perf_output_put(&handle, mmap_event->ino);
6817 perf_output_put(&handle, mmap_event->ino_generation);
6818 perf_output_put(&handle, mmap_event->prot);
6819 perf_output_put(&handle, mmap_event->flags);
6820 }
6821
6822 __output_copy(&handle, mmap_event->file_name,
6823 mmap_event->file_size);
6824
6825 perf_event__output_id_sample(event, &handle, &sample);
6826
6827 perf_output_end(&handle);
6828 out:
6829 mmap_event->event_id.header.size = size;
6830 }
6831
6832 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
6833 {
6834 struct vm_area_struct *vma = mmap_event->vma;
6835 struct file *file = vma->vm_file;
6836 int maj = 0, min = 0;
6837 u64 ino = 0, gen = 0;
6838 u32 prot = 0, flags = 0;
6839 unsigned int size;
6840 char tmp[16];
6841 char *buf = NULL;
6842 char *name;
6843
6844 if (vma->vm_flags & VM_READ)
6845 prot |= PROT_READ;
6846 if (vma->vm_flags & VM_WRITE)
6847 prot |= PROT_WRITE;
6848 if (vma->vm_flags & VM_EXEC)
6849 prot |= PROT_EXEC;
6850
6851 if (vma->vm_flags & VM_MAYSHARE)
6852 flags = MAP_SHARED;
6853 else
6854 flags = MAP_PRIVATE;
6855
6856 if (vma->vm_flags & VM_DENYWRITE)
6857 flags |= MAP_DENYWRITE;
6858 if (vma->vm_flags & VM_MAYEXEC)
6859 flags |= MAP_EXECUTABLE;
6860 if (vma->vm_flags & VM_LOCKED)
6861 flags |= MAP_LOCKED;
6862 if (vma->vm_flags & VM_HUGETLB)
6863 flags |= MAP_HUGETLB;
6864
6865 if (file) {
6866 struct inode *inode;
6867 dev_t dev;
6868
6869 buf = kmalloc(PATH_MAX, GFP_KERNEL);
6870 if (!buf) {
6871 name = "//enomem";
6872 goto cpy_name;
6873 }
6874 /*
6875 * d_path() works from the end of the rb backwards, so we
6876 * need to add enough zero bytes after the string to handle
6877 * the 64bit alignment we do later.
6878 */
6879 name = file_path(file, buf, PATH_MAX - sizeof(u64));
6880 if (IS_ERR(name)) {
6881 name = "//toolong";
6882 goto cpy_name;
6883 }
6884 inode = file_inode(vma->vm_file);
6885 dev = inode->i_sb->s_dev;
6886 ino = inode->i_ino;
6887 gen = inode->i_generation;
6888 maj = MAJOR(dev);
6889 min = MINOR(dev);
6890
6891 goto got_name;
6892 } else {
6893 if (vma->vm_ops && vma->vm_ops->name) {
6894 name = (char *) vma->vm_ops->name(vma);
6895 if (name)
6896 goto cpy_name;
6897 }
6898
6899 name = (char *)arch_vma_name(vma);
6900 if (name)
6901 goto cpy_name;
6902
6903 if (vma->vm_start <= vma->vm_mm->start_brk &&
6904 vma->vm_end >= vma->vm_mm->brk) {
6905 name = "[heap]";
6906 goto cpy_name;
6907 }
6908 if (vma->vm_start <= vma->vm_mm->start_stack &&
6909 vma->vm_end >= vma->vm_mm->start_stack) {
6910 name = "[stack]";
6911 goto cpy_name;
6912 }
6913
6914 name = "//anon";
6915 goto cpy_name;
6916 }
6917
6918 cpy_name:
6919 strlcpy(tmp, name, sizeof(tmp));
6920 name = tmp;
6921 got_name:
6922 /*
6923 * Since our buffer works in 8 byte units we need to align our string
6924 * size to a multiple of 8. However, we must guarantee the tail end is
6925 * zero'd out to avoid leaking random bits to userspace.
6926 */
6927 size = strlen(name)+1;
6928 while (!IS_ALIGNED(size, sizeof(u64)))
6929 name[size++] = '\0';
6930
6931 mmap_event->file_name = name;
6932 mmap_event->file_size = size;
6933 mmap_event->maj = maj;
6934 mmap_event->min = min;
6935 mmap_event->ino = ino;
6936 mmap_event->ino_generation = gen;
6937 mmap_event->prot = prot;
6938 mmap_event->flags = flags;
6939
6940 if (!(vma->vm_flags & VM_EXEC))
6941 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6942
6943 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
6944
6945 perf_iterate_sb(perf_event_mmap_output,
6946 mmap_event,
6947 NULL);
6948
6949 kfree(buf);
6950 }
6951
6952 /*
6953 * Check whether inode and address range match filter criteria.
6954 */
6955 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
6956 struct file *file, unsigned long offset,
6957 unsigned long size)
6958 {
6959 if (filter->inode != file_inode(file))
6960 return false;
6961
6962 if (filter->offset > offset + size)
6963 return false;
6964
6965 if (filter->offset + filter->size < offset)
6966 return false;
6967
6968 return true;
6969 }
6970
6971 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
6972 {
6973 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6974 struct vm_area_struct *vma = data;
6975 unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
6976 struct file *file = vma->vm_file;
6977 struct perf_addr_filter *filter;
6978 unsigned int restart = 0, count = 0;
6979
6980 if (!has_addr_filter(event))
6981 return;
6982
6983 if (!file)
6984 return;
6985
6986 raw_spin_lock_irqsave(&ifh->lock, flags);
6987 list_for_each_entry(filter, &ifh->list, entry) {
6988 if (perf_addr_filter_match(filter, file, off,
6989 vma->vm_end - vma->vm_start)) {
6990 event->addr_filters_offs[count] = vma->vm_start;
6991 restart++;
6992 }
6993
6994 count++;
6995 }
6996
6997 if (restart)
6998 event->addr_filters_gen++;
6999 raw_spin_unlock_irqrestore(&ifh->lock, flags);
7000
7001 if (restart)
7002 perf_event_stop(event, 1);
7003 }
7004
7005 /*
7006 * Adjust all task's events' filters to the new vma
7007 */
7008 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
7009 {
7010 struct perf_event_context *ctx;
7011 int ctxn;
7012
7013 /*
7014 * Data tracing isn't supported yet and as such there is no need
7015 * to keep track of anything that isn't related to executable code:
7016 */
7017 if (!(vma->vm_flags & VM_EXEC))
7018 return;
7019
7020 rcu_read_lock();
7021 for_each_task_context_nr(ctxn) {
7022 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7023 if (!ctx)
7024 continue;
7025
7026 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
7027 }
7028 rcu_read_unlock();
7029 }
7030
7031 void perf_event_mmap(struct vm_area_struct *vma)
7032 {
7033 struct perf_mmap_event mmap_event;
7034
7035 if (!atomic_read(&nr_mmap_events))
7036 return;
7037
7038 mmap_event = (struct perf_mmap_event){
7039 .vma = vma,
7040 /* .file_name */
7041 /* .file_size */
7042 .event_id = {
7043 .header = {
7044 .type = PERF_RECORD_MMAP,
7045 .misc = PERF_RECORD_MISC_USER,
7046 /* .size */
7047 },
7048 /* .pid */
7049 /* .tid */
7050 .start = vma->vm_start,
7051 .len = vma->vm_end - vma->vm_start,
7052 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
7053 },
7054 /* .maj (attr_mmap2 only) */
7055 /* .min (attr_mmap2 only) */
7056 /* .ino (attr_mmap2 only) */
7057 /* .ino_generation (attr_mmap2 only) */
7058 /* .prot (attr_mmap2 only) */
7059 /* .flags (attr_mmap2 only) */
7060 };
7061
7062 perf_addr_filters_adjust(vma);
7063 perf_event_mmap_event(&mmap_event);
7064 }
7065
7066 void perf_event_aux_event(struct perf_event *event, unsigned long head,
7067 unsigned long size, u64 flags)
7068 {
7069 struct perf_output_handle handle;
7070 struct perf_sample_data sample;
7071 struct perf_aux_event {
7072 struct perf_event_header header;
7073 u64 offset;
7074 u64 size;
7075 u64 flags;
7076 } rec = {
7077 .header = {
7078 .type = PERF_RECORD_AUX,
7079 .misc = 0,
7080 .size = sizeof(rec),
7081 },
7082 .offset = head,
7083 .size = size,
7084 .flags = flags,
7085 };
7086 int ret;
7087
7088 perf_event_header__init_id(&rec.header, &sample, event);
7089 ret = perf_output_begin(&handle, event, rec.header.size);
7090
7091 if (ret)
7092 return;
7093
7094 perf_output_put(&handle, rec);
7095 perf_event__output_id_sample(event, &handle, &sample);
7096
7097 perf_output_end(&handle);
7098 }
7099
7100 /*
7101 * Lost/dropped samples logging
7102 */
7103 void perf_log_lost_samples(struct perf_event *event, u64 lost)
7104 {
7105 struct perf_output_handle handle;
7106 struct perf_sample_data sample;
7107 int ret;
7108
7109 struct {
7110 struct perf_event_header header;
7111 u64 lost;
7112 } lost_samples_event = {
7113 .header = {
7114 .type = PERF_RECORD_LOST_SAMPLES,
7115 .misc = 0,
7116 .size = sizeof(lost_samples_event),
7117 },
7118 .lost = lost,
7119 };
7120
7121 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
7122
7123 ret = perf_output_begin(&handle, event,
7124 lost_samples_event.header.size);
7125 if (ret)
7126 return;
7127
7128 perf_output_put(&handle, lost_samples_event);
7129 perf_event__output_id_sample(event, &handle, &sample);
7130 perf_output_end(&handle);
7131 }
7132
7133 /*
7134 * context_switch tracking
7135 */
7136
7137 struct perf_switch_event {
7138 struct task_struct *task;
7139 struct task_struct *next_prev;
7140
7141 struct {
7142 struct perf_event_header header;
7143 u32 next_prev_pid;
7144 u32 next_prev_tid;
7145 } event_id;
7146 };
7147
7148 static int perf_event_switch_match(struct perf_event *event)
7149 {
7150 return event->attr.context_switch;
7151 }
7152
7153 static void perf_event_switch_output(struct perf_event *event, void *data)
7154 {
7155 struct perf_switch_event *se = data;
7156 struct perf_output_handle handle;
7157 struct perf_sample_data sample;
7158 int ret;
7159
7160 if (!perf_event_switch_match(event))
7161 return;
7162
7163 /* Only CPU-wide events are allowed to see next/prev pid/tid */
7164 if (event->ctx->task) {
7165 se->event_id.header.type = PERF_RECORD_SWITCH;
7166 se->event_id.header.size = sizeof(se->event_id.header);
7167 } else {
7168 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
7169 se->event_id.header.size = sizeof(se->event_id);
7170 se->event_id.next_prev_pid =
7171 perf_event_pid(event, se->next_prev);
7172 se->event_id.next_prev_tid =
7173 perf_event_tid(event, se->next_prev);
7174 }
7175
7176 perf_event_header__init_id(&se->event_id.header, &sample, event);
7177
7178 ret = perf_output_begin(&handle, event, se->event_id.header.size);
7179 if (ret)
7180 return;
7181
7182 if (event->ctx->task)
7183 perf_output_put(&handle, se->event_id.header);
7184 else
7185 perf_output_put(&handle, se->event_id);
7186
7187 perf_event__output_id_sample(event, &handle, &sample);
7188
7189 perf_output_end(&handle);
7190 }
7191
7192 static void perf_event_switch(struct task_struct *task,
7193 struct task_struct *next_prev, bool sched_in)
7194 {
7195 struct perf_switch_event switch_event;
7196
7197 /* N.B. caller checks nr_switch_events != 0 */
7198
7199 switch_event = (struct perf_switch_event){
7200 .task = task,
7201 .next_prev = next_prev,
7202 .event_id = {
7203 .header = {
7204 /* .type */
7205 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
7206 /* .size */
7207 },
7208 /* .next_prev_pid */
7209 /* .next_prev_tid */
7210 },
7211 };
7212
7213 perf_iterate_sb(perf_event_switch_output,
7214 &switch_event,
7215 NULL);
7216 }
7217
7218 /*
7219 * IRQ throttle logging
7220 */
7221
7222 static void perf_log_throttle(struct perf_event *event, int enable)
7223 {
7224 struct perf_output_handle handle;
7225 struct perf_sample_data sample;
7226 int ret;
7227
7228 struct {
7229 struct perf_event_header header;
7230 u64 time;
7231 u64 id;
7232 u64 stream_id;
7233 } throttle_event = {
7234 .header = {
7235 .type = PERF_RECORD_THROTTLE,
7236 .misc = 0,
7237 .size = sizeof(throttle_event),
7238 },
7239 .time = perf_event_clock(event),
7240 .id = primary_event_id(event),
7241 .stream_id = event->id,
7242 };
7243
7244 if (enable)
7245 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
7246
7247 perf_event_header__init_id(&throttle_event.header, &sample, event);
7248
7249 ret = perf_output_begin(&handle, event,
7250 throttle_event.header.size);
7251 if (ret)
7252 return;
7253
7254 perf_output_put(&handle, throttle_event);
7255 perf_event__output_id_sample(event, &handle, &sample);
7256 perf_output_end(&handle);
7257 }
7258
7259 void perf_event_itrace_started(struct perf_event *event)
7260 {
7261 event->attach_state |= PERF_ATTACH_ITRACE;
7262 }
7263
7264 static void perf_log_itrace_start(struct perf_event *event)
7265 {
7266 struct perf_output_handle handle;
7267 struct perf_sample_data sample;
7268 struct perf_aux_event {
7269 struct perf_event_header header;
7270 u32 pid;
7271 u32 tid;
7272 } rec;
7273 int ret;
7274
7275 if (event->parent)
7276 event = event->parent;
7277
7278 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
7279 event->attach_state & PERF_ATTACH_ITRACE)
7280 return;
7281
7282 rec.header.type = PERF_RECORD_ITRACE_START;
7283 rec.header.misc = 0;
7284 rec.header.size = sizeof(rec);
7285 rec.pid = perf_event_pid(event, current);
7286 rec.tid = perf_event_tid(event, current);
7287
7288 perf_event_header__init_id(&rec.header, &sample, event);
7289 ret = perf_output_begin(&handle, event, rec.header.size);
7290
7291 if (ret)
7292 return;
7293
7294 perf_output_put(&handle, rec);
7295 perf_event__output_id_sample(event, &handle, &sample);
7296
7297 perf_output_end(&handle);
7298 }
7299
7300 static int
7301 __perf_event_account_interrupt(struct perf_event *event, int throttle)
7302 {
7303 struct hw_perf_event *hwc = &event->hw;
7304 int ret = 0;
7305 u64 seq;
7306
7307 seq = __this_cpu_read(perf_throttled_seq);
7308 if (seq != hwc->interrupts_seq) {
7309 hwc->interrupts_seq = seq;
7310 hwc->interrupts = 1;
7311 } else {
7312 hwc->interrupts++;
7313 if (unlikely(throttle
7314 && hwc->interrupts >= max_samples_per_tick)) {
7315 __this_cpu_inc(perf_throttled_count);
7316 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
7317 hwc->interrupts = MAX_INTERRUPTS;
7318 perf_log_throttle(event, 0);
7319 ret = 1;
7320 }
7321 }
7322
7323 if (event->attr.freq) {
7324 u64 now = perf_clock();
7325 s64 delta = now - hwc->freq_time_stamp;
7326
7327 hwc->freq_time_stamp = now;
7328
7329 if (delta > 0 && delta < 2*TICK_NSEC)
7330 perf_adjust_period(event, delta, hwc->last_period, true);
7331 }
7332
7333 return ret;
7334 }
7335
7336 int perf_event_account_interrupt(struct perf_event *event)
7337 {
7338 return __perf_event_account_interrupt(event, 1);
7339 }
7340
7341 /*
7342 * Generic event overflow handling, sampling.
7343 */
7344
7345 static int __perf_event_overflow(struct perf_event *event,
7346 int throttle, struct perf_sample_data *data,
7347 struct pt_regs *regs)
7348 {
7349 int events = atomic_read(&event->event_limit);
7350 int ret = 0;
7351
7352 /*
7353 * Non-sampling counters might still use the PMI to fold short
7354 * hardware counters, ignore those.
7355 */
7356 if (unlikely(!is_sampling_event(event)))
7357 return 0;
7358
7359 ret = __perf_event_account_interrupt(event, throttle);
7360
7361 /*
7362 * XXX event_limit might not quite work as expected on inherited
7363 * events
7364 */
7365
7366 event->pending_kill = POLL_IN;
7367 if (events && atomic_dec_and_test(&event->event_limit)) {
7368 ret = 1;
7369 event->pending_kill = POLL_HUP;
7370
7371 perf_event_disable_inatomic(event);
7372 }
7373
7374 READ_ONCE(event->overflow_handler)(event, data, regs);
7375
7376 if (*perf_event_fasync(event) && event->pending_kill) {
7377 event->pending_wakeup = 1;
7378 irq_work_queue(&event->pending);
7379 }
7380
7381 return ret;
7382 }
7383
7384 int perf_event_overflow(struct perf_event *event,
7385 struct perf_sample_data *data,
7386 struct pt_regs *regs)
7387 {
7388 return __perf_event_overflow(event, 1, data, regs);
7389 }
7390
7391 /*
7392 * Generic software event infrastructure
7393 */
7394
7395 struct swevent_htable {
7396 struct swevent_hlist *swevent_hlist;
7397 struct mutex hlist_mutex;
7398 int hlist_refcount;
7399
7400 /* Recursion avoidance in each contexts */
7401 int recursion[PERF_NR_CONTEXTS];
7402 };
7403
7404 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
7405
7406 /*
7407 * We directly increment event->count and keep a second value in
7408 * event->hw.period_left to count intervals. This period event
7409 * is kept in the range [-sample_period, 0] so that we can use the
7410 * sign as trigger.
7411 */
7412
7413 u64 perf_swevent_set_period(struct perf_event *event)
7414 {
7415 struct hw_perf_event *hwc = &event->hw;
7416 u64 period = hwc->last_period;
7417 u64 nr, offset;
7418 s64 old, val;
7419
7420 hwc->last_period = hwc->sample_period;
7421
7422 again:
7423 old = val = local64_read(&hwc->period_left);
7424 if (val < 0)
7425 return 0;
7426
7427 nr = div64_u64(period + val, period);
7428 offset = nr * period;
7429 val -= offset;
7430 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7431 goto again;
7432
7433 return nr;
7434 }
7435
7436 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
7437 struct perf_sample_data *data,
7438 struct pt_regs *regs)
7439 {
7440 struct hw_perf_event *hwc = &event->hw;
7441 int throttle = 0;
7442
7443 if (!overflow)
7444 overflow = perf_swevent_set_period(event);
7445
7446 if (hwc->interrupts == MAX_INTERRUPTS)
7447 return;
7448
7449 for (; overflow; overflow--) {
7450 if (__perf_event_overflow(event, throttle,
7451 data, regs)) {
7452 /*
7453 * We inhibit the overflow from happening when
7454 * hwc->interrupts == MAX_INTERRUPTS.
7455 */
7456 break;
7457 }
7458 throttle = 1;
7459 }
7460 }
7461
7462 static void perf_swevent_event(struct perf_event *event, u64 nr,
7463 struct perf_sample_data *data,
7464 struct pt_regs *regs)
7465 {
7466 struct hw_perf_event *hwc = &event->hw;
7467
7468 local64_add(nr, &event->count);
7469
7470 if (!regs)
7471 return;
7472
7473 if (!is_sampling_event(event))
7474 return;
7475
7476 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
7477 data->period = nr;
7478 return perf_swevent_overflow(event, 1, data, regs);
7479 } else
7480 data->period = event->hw.last_period;
7481
7482 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
7483 return perf_swevent_overflow(event, 1, data, regs);
7484
7485 if (local64_add_negative(nr, &hwc->period_left))
7486 return;
7487
7488 perf_swevent_overflow(event, 0, data, regs);
7489 }
7490
7491 static int perf_exclude_event(struct perf_event *event,
7492 struct pt_regs *regs)
7493 {
7494 if (event->hw.state & PERF_HES_STOPPED)
7495 return 1;
7496
7497 if (regs) {
7498 if (event->attr.exclude_user && user_mode(regs))
7499 return 1;
7500
7501 if (event->attr.exclude_kernel && !user_mode(regs))
7502 return 1;
7503 }
7504
7505 return 0;
7506 }
7507
7508 static int perf_swevent_match(struct perf_event *event,
7509 enum perf_type_id type,
7510 u32 event_id,
7511 struct perf_sample_data *data,
7512 struct pt_regs *regs)
7513 {
7514 if (event->attr.type != type)
7515 return 0;
7516
7517 if (event->attr.config != event_id)
7518 return 0;
7519
7520 if (perf_exclude_event(event, regs))
7521 return 0;
7522
7523 return 1;
7524 }
7525
7526 static inline u64 swevent_hash(u64 type, u32 event_id)
7527 {
7528 u64 val = event_id | (type << 32);
7529
7530 return hash_64(val, SWEVENT_HLIST_BITS);
7531 }
7532
7533 static inline struct hlist_head *
7534 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
7535 {
7536 u64 hash = swevent_hash(type, event_id);
7537
7538 return &hlist->heads[hash];
7539 }
7540
7541 /* For the read side: events when they trigger */
7542 static inline struct hlist_head *
7543 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
7544 {
7545 struct swevent_hlist *hlist;
7546
7547 hlist = rcu_dereference(swhash->swevent_hlist);
7548 if (!hlist)
7549 return NULL;
7550
7551 return __find_swevent_head(hlist, type, event_id);
7552 }
7553
7554 /* For the event head insertion and removal in the hlist */
7555 static inline struct hlist_head *
7556 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
7557 {
7558 struct swevent_hlist *hlist;
7559 u32 event_id = event->attr.config;
7560 u64 type = event->attr.type;
7561
7562 /*
7563 * Event scheduling is always serialized against hlist allocation
7564 * and release. Which makes the protected version suitable here.
7565 * The context lock guarantees that.
7566 */
7567 hlist = rcu_dereference_protected(swhash->swevent_hlist,
7568 lockdep_is_held(&event->ctx->lock));
7569 if (!hlist)
7570 return NULL;
7571
7572 return __find_swevent_head(hlist, type, event_id);
7573 }
7574
7575 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
7576 u64 nr,
7577 struct perf_sample_data *data,
7578 struct pt_regs *regs)
7579 {
7580 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7581 struct perf_event *event;
7582 struct hlist_head *head;
7583
7584 rcu_read_lock();
7585 head = find_swevent_head_rcu(swhash, type, event_id);
7586 if (!head)
7587 goto end;
7588
7589 hlist_for_each_entry_rcu(event, head, hlist_entry) {
7590 if (perf_swevent_match(event, type, event_id, data, regs))
7591 perf_swevent_event(event, nr, data, regs);
7592 }
7593 end:
7594 rcu_read_unlock();
7595 }
7596
7597 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
7598
7599 int perf_swevent_get_recursion_context(void)
7600 {
7601 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7602
7603 return get_recursion_context(swhash->recursion);
7604 }
7605 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
7606
7607 void perf_swevent_put_recursion_context(int rctx)
7608 {
7609 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7610
7611 put_recursion_context(swhash->recursion, rctx);
7612 }
7613
7614 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7615 {
7616 struct perf_sample_data data;
7617
7618 if (WARN_ON_ONCE(!regs))
7619 return;
7620
7621 perf_sample_data_init(&data, addr, 0);
7622 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
7623 }
7624
7625 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7626 {
7627 int rctx;
7628
7629 preempt_disable_notrace();
7630 rctx = perf_swevent_get_recursion_context();
7631 if (unlikely(rctx < 0))
7632 goto fail;
7633
7634 ___perf_sw_event(event_id, nr, regs, addr);
7635
7636 perf_swevent_put_recursion_context(rctx);
7637 fail:
7638 preempt_enable_notrace();
7639 }
7640
7641 static void perf_swevent_read(struct perf_event *event)
7642 {
7643 }
7644
7645 static int perf_swevent_add(struct perf_event *event, int flags)
7646 {
7647 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7648 struct hw_perf_event *hwc = &event->hw;
7649 struct hlist_head *head;
7650
7651 if (is_sampling_event(event)) {
7652 hwc->last_period = hwc->sample_period;
7653 perf_swevent_set_period(event);
7654 }
7655
7656 hwc->state = !(flags & PERF_EF_START);
7657
7658 head = find_swevent_head(swhash, event);
7659 if (WARN_ON_ONCE(!head))
7660 return -EINVAL;
7661
7662 hlist_add_head_rcu(&event->hlist_entry, head);
7663 perf_event_update_userpage(event);
7664
7665 return 0;
7666 }
7667
7668 static void perf_swevent_del(struct perf_event *event, int flags)
7669 {
7670 hlist_del_rcu(&event->hlist_entry);
7671 }
7672
7673 static void perf_swevent_start(struct perf_event *event, int flags)
7674 {
7675 event->hw.state = 0;
7676 }
7677
7678 static void perf_swevent_stop(struct perf_event *event, int flags)
7679 {
7680 event->hw.state = PERF_HES_STOPPED;
7681 }
7682
7683 /* Deref the hlist from the update side */
7684 static inline struct swevent_hlist *
7685 swevent_hlist_deref(struct swevent_htable *swhash)
7686 {
7687 return rcu_dereference_protected(swhash->swevent_hlist,
7688 lockdep_is_held(&swhash->hlist_mutex));
7689 }
7690
7691 static void swevent_hlist_release(struct swevent_htable *swhash)
7692 {
7693 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
7694
7695 if (!hlist)
7696 return;
7697
7698 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
7699 kfree_rcu(hlist, rcu_head);
7700 }
7701
7702 static void swevent_hlist_put_cpu(int cpu)
7703 {
7704 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7705
7706 mutex_lock(&swhash->hlist_mutex);
7707
7708 if (!--swhash->hlist_refcount)
7709 swevent_hlist_release(swhash);
7710
7711 mutex_unlock(&swhash->hlist_mutex);
7712 }
7713
7714 static void swevent_hlist_put(void)
7715 {
7716 int cpu;
7717
7718 for_each_possible_cpu(cpu)
7719 swevent_hlist_put_cpu(cpu);
7720 }
7721
7722 static int swevent_hlist_get_cpu(int cpu)
7723 {
7724 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7725 int err = 0;
7726
7727 mutex_lock(&swhash->hlist_mutex);
7728 if (!swevent_hlist_deref(swhash) &&
7729 cpumask_test_cpu(cpu, perf_online_mask)) {
7730 struct swevent_hlist *hlist;
7731
7732 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
7733 if (!hlist) {
7734 err = -ENOMEM;
7735 goto exit;
7736 }
7737 rcu_assign_pointer(swhash->swevent_hlist, hlist);
7738 }
7739 swhash->hlist_refcount++;
7740 exit:
7741 mutex_unlock(&swhash->hlist_mutex);
7742
7743 return err;
7744 }
7745
7746 static int swevent_hlist_get(void)
7747 {
7748 int err, cpu, failed_cpu;
7749
7750 mutex_lock(&pmus_lock);
7751 for_each_possible_cpu(cpu) {
7752 err = swevent_hlist_get_cpu(cpu);
7753 if (err) {
7754 failed_cpu = cpu;
7755 goto fail;
7756 }
7757 }
7758 mutex_unlock(&pmus_lock);
7759 return 0;
7760 fail:
7761 for_each_possible_cpu(cpu) {
7762 if (cpu == failed_cpu)
7763 break;
7764 swevent_hlist_put_cpu(cpu);
7765 }
7766 mutex_unlock(&pmus_lock);
7767 return err;
7768 }
7769
7770 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
7771
7772 static void sw_perf_event_destroy(struct perf_event *event)
7773 {
7774 u64 event_id = event->attr.config;
7775
7776 WARN_ON(event->parent);
7777
7778 static_key_slow_dec(&perf_swevent_enabled[event_id]);
7779 swevent_hlist_put();
7780 }
7781
7782 static int perf_swevent_init(struct perf_event *event)
7783 {
7784 u64 event_id = event->attr.config;
7785
7786 if (event->attr.type != PERF_TYPE_SOFTWARE)
7787 return -ENOENT;
7788
7789 /*
7790 * no branch sampling for software events
7791 */
7792 if (has_branch_stack(event))
7793 return -EOPNOTSUPP;
7794
7795 switch (event_id) {
7796 case PERF_COUNT_SW_CPU_CLOCK:
7797 case PERF_COUNT_SW_TASK_CLOCK:
7798 return -ENOENT;
7799
7800 default:
7801 break;
7802 }
7803
7804 if (event_id >= PERF_COUNT_SW_MAX)
7805 return -ENOENT;
7806
7807 if (!event->parent) {
7808 int err;
7809
7810 err = swevent_hlist_get();
7811 if (err)
7812 return err;
7813
7814 static_key_slow_inc(&perf_swevent_enabled[event_id]);
7815 event->destroy = sw_perf_event_destroy;
7816 }
7817
7818 return 0;
7819 }
7820
7821 static struct pmu perf_swevent = {
7822 .task_ctx_nr = perf_sw_context,
7823
7824 .capabilities = PERF_PMU_CAP_NO_NMI,
7825
7826 .event_init = perf_swevent_init,
7827 .add = perf_swevent_add,
7828 .del = perf_swevent_del,
7829 .start = perf_swevent_start,
7830 .stop = perf_swevent_stop,
7831 .read = perf_swevent_read,
7832 };
7833
7834 #ifdef CONFIG_EVENT_TRACING
7835
7836 static int perf_tp_filter_match(struct perf_event *event,
7837 struct perf_sample_data *data)
7838 {
7839 void *record = data->raw->frag.data;
7840
7841 /* only top level events have filters set */
7842 if (event->parent)
7843 event = event->parent;
7844
7845 if (likely(!event->filter) || filter_match_preds(event->filter, record))
7846 return 1;
7847 return 0;
7848 }
7849
7850 static int perf_tp_event_match(struct perf_event *event,
7851 struct perf_sample_data *data,
7852 struct pt_regs *regs)
7853 {
7854 if (event->hw.state & PERF_HES_STOPPED)
7855 return 0;
7856 /*
7857 * All tracepoints are from kernel-space.
7858 */
7859 if (event->attr.exclude_kernel)
7860 return 0;
7861
7862 if (!perf_tp_filter_match(event, data))
7863 return 0;
7864
7865 return 1;
7866 }
7867
7868 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
7869 struct trace_event_call *call, u64 count,
7870 struct pt_regs *regs, struct hlist_head *head,
7871 struct task_struct *task)
7872 {
7873 if (bpf_prog_array_valid(call)) {
7874 *(struct pt_regs **)raw_data = regs;
7875 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
7876 perf_swevent_put_recursion_context(rctx);
7877 return;
7878 }
7879 }
7880 perf_tp_event(call->event.type, count, raw_data, size, regs, head,
7881 rctx, task);
7882 }
7883 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
7884
7885 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
7886 struct pt_regs *regs, struct hlist_head *head, int rctx,
7887 struct task_struct *task)
7888 {
7889 struct perf_sample_data data;
7890 struct perf_event *event;
7891
7892 struct perf_raw_record raw = {
7893 .frag = {
7894 .size = entry_size,
7895 .data = record,
7896 },
7897 };
7898
7899 perf_sample_data_init(&data, 0, 0);
7900 data.raw = &raw;
7901
7902 perf_trace_buf_update(record, event_type);
7903
7904 hlist_for_each_entry_rcu(event, head, hlist_entry) {
7905 if (perf_tp_event_match(event, &data, regs))
7906 perf_swevent_event(event, count, &data, regs);
7907 }
7908
7909 /*
7910 * If we got specified a target task, also iterate its context and
7911 * deliver this event there too.
7912 */
7913 if (task && task != current) {
7914 struct perf_event_context *ctx;
7915 struct trace_entry *entry = record;
7916
7917 rcu_read_lock();
7918 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
7919 if (!ctx)
7920 goto unlock;
7921
7922 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7923 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7924 continue;
7925 if (event->attr.config != entry->type)
7926 continue;
7927 if (perf_tp_event_match(event, &data, regs))
7928 perf_swevent_event(event, count, &data, regs);
7929 }
7930 unlock:
7931 rcu_read_unlock();
7932 }
7933
7934 perf_swevent_put_recursion_context(rctx);
7935 }
7936 EXPORT_SYMBOL_GPL(perf_tp_event);
7937
7938 static void tp_perf_event_destroy(struct perf_event *event)
7939 {
7940 perf_trace_destroy(event);
7941 }
7942
7943 static int perf_tp_event_init(struct perf_event *event)
7944 {
7945 int err;
7946
7947 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7948 return -ENOENT;
7949
7950 /*
7951 * no branch sampling for tracepoint events
7952 */
7953 if (has_branch_stack(event))
7954 return -EOPNOTSUPP;
7955
7956 err = perf_trace_init(event);
7957 if (err)
7958 return err;
7959
7960 event->destroy = tp_perf_event_destroy;
7961
7962 return 0;
7963 }
7964
7965 static struct pmu perf_tracepoint = {
7966 .task_ctx_nr = perf_sw_context,
7967
7968 .event_init = perf_tp_event_init,
7969 .add = perf_trace_add,
7970 .del = perf_trace_del,
7971 .start = perf_swevent_start,
7972 .stop = perf_swevent_stop,
7973 .read = perf_swevent_read,
7974 };
7975
7976 static inline void perf_tp_register(void)
7977 {
7978 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
7979 }
7980
7981 static void perf_event_free_filter(struct perf_event *event)
7982 {
7983 ftrace_profile_free_filter(event);
7984 }
7985
7986 #ifdef CONFIG_BPF_SYSCALL
7987 static void bpf_overflow_handler(struct perf_event *event,
7988 struct perf_sample_data *data,
7989 struct pt_regs *regs)
7990 {
7991 struct bpf_perf_event_data_kern ctx = {
7992 .data = data,
7993 .event = event,
7994 };
7995 int ret = 0;
7996
7997 ctx.regs = perf_arch_bpf_user_pt_regs(regs);
7998 preempt_disable();
7999 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
8000 goto out;
8001 rcu_read_lock();
8002 ret = BPF_PROG_RUN(event->prog, &ctx);
8003 rcu_read_unlock();
8004 out:
8005 __this_cpu_dec(bpf_prog_active);
8006 preempt_enable();
8007 if (!ret)
8008 return;
8009
8010 event->orig_overflow_handler(event, data, regs);
8011 }
8012
8013 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8014 {
8015 struct bpf_prog *prog;
8016
8017 if (event->overflow_handler_context)
8018 /* hw breakpoint or kernel counter */
8019 return -EINVAL;
8020
8021 if (event->prog)
8022 return -EEXIST;
8023
8024 prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
8025 if (IS_ERR(prog))
8026 return PTR_ERR(prog);
8027
8028 event->prog = prog;
8029 event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
8030 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
8031 return 0;
8032 }
8033
8034 static void perf_event_free_bpf_handler(struct perf_event *event)
8035 {
8036 struct bpf_prog *prog = event->prog;
8037
8038 if (!prog)
8039 return;
8040
8041 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
8042 event->prog = NULL;
8043 bpf_prog_put(prog);
8044 }
8045 #else
8046 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8047 {
8048 return -EOPNOTSUPP;
8049 }
8050 static void perf_event_free_bpf_handler(struct perf_event *event)
8051 {
8052 }
8053 #endif
8054
8055 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8056 {
8057 bool is_kprobe, is_tracepoint, is_syscall_tp;
8058 struct bpf_prog *prog;
8059 int ret;
8060
8061 if (event->attr.type != PERF_TYPE_TRACEPOINT)
8062 return perf_event_set_bpf_handler(event, prog_fd);
8063
8064 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
8065 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
8066 is_syscall_tp = is_syscall_trace_event(event->tp_event);
8067 if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
8068 /* bpf programs can only be attached to u/kprobe or tracepoint */
8069 return -EINVAL;
8070
8071 prog = bpf_prog_get(prog_fd);
8072 if (IS_ERR(prog))
8073 return PTR_ERR(prog);
8074
8075 if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
8076 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
8077 (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
8078 /* valid fd, but invalid bpf program type */
8079 bpf_prog_put(prog);
8080 return -EINVAL;
8081 }
8082
8083 if (is_tracepoint || is_syscall_tp) {
8084 int off = trace_event_get_offsets(event->tp_event);
8085
8086 if (prog->aux->max_ctx_offset > off) {
8087 bpf_prog_put(prog);
8088 return -EACCES;
8089 }
8090 }
8091
8092 ret = perf_event_attach_bpf_prog(event, prog);
8093 if (ret)
8094 bpf_prog_put(prog);
8095 return ret;
8096 }
8097
8098 static void perf_event_free_bpf_prog(struct perf_event *event)
8099 {
8100 if (event->attr.type != PERF_TYPE_TRACEPOINT) {
8101 perf_event_free_bpf_handler(event);
8102 return;
8103 }
8104 perf_event_detach_bpf_prog(event);
8105 }
8106
8107 #else
8108
8109 static inline void perf_tp_register(void)
8110 {
8111 }
8112
8113 static void perf_event_free_filter(struct perf_event *event)
8114 {
8115 }
8116
8117 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8118 {
8119 return -ENOENT;
8120 }
8121
8122 static void perf_event_free_bpf_prog(struct perf_event *event)
8123 {
8124 }
8125 #endif /* CONFIG_EVENT_TRACING */
8126
8127 #ifdef CONFIG_HAVE_HW_BREAKPOINT
8128 void perf_bp_event(struct perf_event *bp, void *data)
8129 {
8130 struct perf_sample_data sample;
8131 struct pt_regs *regs = data;
8132
8133 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
8134
8135 if (!bp->hw.state && !perf_exclude_event(bp, regs))
8136 perf_swevent_event(bp, 1, &sample, regs);
8137 }
8138 #endif
8139
8140 /*
8141 * Allocate a new address filter
8142 */
8143 static struct perf_addr_filter *
8144 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
8145 {
8146 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
8147 struct perf_addr_filter *filter;
8148
8149 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
8150 if (!filter)
8151 return NULL;
8152
8153 INIT_LIST_HEAD(&filter->entry);
8154 list_add_tail(&filter->entry, filters);
8155
8156 return filter;
8157 }
8158
8159 static void free_filters_list(struct list_head *filters)
8160 {
8161 struct perf_addr_filter *filter, *iter;
8162
8163 list_for_each_entry_safe(filter, iter, filters, entry) {
8164 if (filter->inode)
8165 iput(filter->inode);
8166 list_del(&filter->entry);
8167 kfree(filter);
8168 }
8169 }
8170
8171 /*
8172 * Free existing address filters and optionally install new ones
8173 */
8174 static void perf_addr_filters_splice(struct perf_event *event,
8175 struct list_head *head)
8176 {
8177 unsigned long flags;
8178 LIST_HEAD(list);
8179
8180 if (!has_addr_filter(event))
8181 return;
8182
8183 /* don't bother with children, they don't have their own filters */
8184 if (event->parent)
8185 return;
8186
8187 raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
8188
8189 list_splice_init(&event->addr_filters.list, &list);
8190 if (head)
8191 list_splice(head, &event->addr_filters.list);
8192
8193 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
8194
8195 free_filters_list(&list);
8196 }
8197
8198 /*
8199 * Scan through mm's vmas and see if one of them matches the
8200 * @filter; if so, adjust filter's address range.
8201 * Called with mm::mmap_sem down for reading.
8202 */
8203 static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
8204 struct mm_struct *mm)
8205 {
8206 struct vm_area_struct *vma;
8207
8208 for (vma = mm->mmap; vma; vma = vma->vm_next) {
8209 struct file *file = vma->vm_file;
8210 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8211 unsigned long vma_size = vma->vm_end - vma->vm_start;
8212
8213 if (!file)
8214 continue;
8215
8216 if (!perf_addr_filter_match(filter, file, off, vma_size))
8217 continue;
8218
8219 return vma->vm_start;
8220 }
8221
8222 return 0;
8223 }
8224
8225 /*
8226 * Update event's address range filters based on the
8227 * task's existing mappings, if any.
8228 */
8229 static void perf_event_addr_filters_apply(struct perf_event *event)
8230 {
8231 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8232 struct task_struct *task = READ_ONCE(event->ctx->task);
8233 struct perf_addr_filter *filter;
8234 struct mm_struct *mm = NULL;
8235 unsigned int count = 0;
8236 unsigned long flags;
8237
8238 /*
8239 * We may observe TASK_TOMBSTONE, which means that the event tear-down
8240 * will stop on the parent's child_mutex that our caller is also holding
8241 */
8242 if (task == TASK_TOMBSTONE)
8243 return;
8244
8245 if (!ifh->nr_file_filters)
8246 return;
8247
8248 mm = get_task_mm(event->ctx->task);
8249 if (!mm)
8250 goto restart;
8251
8252 down_read(&mm->mmap_sem);
8253
8254 raw_spin_lock_irqsave(&ifh->lock, flags);
8255 list_for_each_entry(filter, &ifh->list, entry) {
8256 event->addr_filters_offs[count] = 0;
8257
8258 /*
8259 * Adjust base offset if the filter is associated to a binary
8260 * that needs to be mapped:
8261 */
8262 if (filter->inode)
8263 event->addr_filters_offs[count] =
8264 perf_addr_filter_apply(filter, mm);
8265
8266 count++;
8267 }
8268
8269 event->addr_filters_gen++;
8270 raw_spin_unlock_irqrestore(&ifh->lock, flags);
8271
8272 up_read(&mm->mmap_sem);
8273
8274 mmput(mm);
8275
8276 restart:
8277 perf_event_stop(event, 1);
8278 }
8279
8280 /*
8281 * Address range filtering: limiting the data to certain
8282 * instruction address ranges. Filters are ioctl()ed to us from
8283 * userspace as ascii strings.
8284 *
8285 * Filter string format:
8286 *
8287 * ACTION RANGE_SPEC
8288 * where ACTION is one of the
8289 * * "filter": limit the trace to this region
8290 * * "start": start tracing from this address
8291 * * "stop": stop tracing at this address/region;
8292 * RANGE_SPEC is
8293 * * for kernel addresses: <start address>[/<size>]
8294 * * for object files: <start address>[/<size>]@</path/to/object/file>
8295 *
8296 * if <size> is not specified, the range is treated as a single address.
8297 */
8298 enum {
8299 IF_ACT_NONE = -1,
8300 IF_ACT_FILTER,
8301 IF_ACT_START,
8302 IF_ACT_STOP,
8303 IF_SRC_FILE,
8304 IF_SRC_KERNEL,
8305 IF_SRC_FILEADDR,
8306 IF_SRC_KERNELADDR,
8307 };
8308
8309 enum {
8310 IF_STATE_ACTION = 0,
8311 IF_STATE_SOURCE,
8312 IF_STATE_END,
8313 };
8314
8315 static const match_table_t if_tokens = {
8316 { IF_ACT_FILTER, "filter" },
8317 { IF_ACT_START, "start" },
8318 { IF_ACT_STOP, "stop" },
8319 { IF_SRC_FILE, "%u/%u@%s" },
8320 { IF_SRC_KERNEL, "%u/%u" },
8321 { IF_SRC_FILEADDR, "%u@%s" },
8322 { IF_SRC_KERNELADDR, "%u" },
8323 { IF_ACT_NONE, NULL },
8324 };
8325
8326 /*
8327 * Address filter string parser
8328 */
8329 static int
8330 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
8331 struct list_head *filters)
8332 {
8333 struct perf_addr_filter *filter = NULL;
8334 char *start, *orig, *filename = NULL;
8335 struct path path;
8336 substring_t args[MAX_OPT_ARGS];
8337 int state = IF_STATE_ACTION, token;
8338 unsigned int kernel = 0;
8339 int ret = -EINVAL;
8340
8341 orig = fstr = kstrdup(fstr, GFP_KERNEL);
8342 if (!fstr)
8343 return -ENOMEM;
8344
8345 while ((start = strsep(&fstr, " ,\n")) != NULL) {
8346 ret = -EINVAL;
8347
8348 if (!*start)
8349 continue;
8350
8351 /* filter definition begins */
8352 if (state == IF_STATE_ACTION) {
8353 filter = perf_addr_filter_new(event, filters);
8354 if (!filter)
8355 goto fail;
8356 }
8357
8358 token = match_token(start, if_tokens, args);
8359 switch (token) {
8360 case IF_ACT_FILTER:
8361 case IF_ACT_START:
8362 filter->filter = 1;
8363
8364 case IF_ACT_STOP:
8365 if (state != IF_STATE_ACTION)
8366 goto fail;
8367
8368 state = IF_STATE_SOURCE;
8369 break;
8370
8371 case IF_SRC_KERNELADDR:
8372 case IF_SRC_KERNEL:
8373 kernel = 1;
8374
8375 case IF_SRC_FILEADDR:
8376 case IF_SRC_FILE:
8377 if (state != IF_STATE_SOURCE)
8378 goto fail;
8379
8380 if (token == IF_SRC_FILE || token == IF_SRC_KERNEL)
8381 filter->range = 1;
8382
8383 *args[0].to = 0;
8384 ret = kstrtoul(args[0].from, 0, &filter->offset);
8385 if (ret)
8386 goto fail;
8387
8388 if (filter->range) {
8389 *args[1].to = 0;
8390 ret = kstrtoul(args[1].from, 0, &filter->size);
8391 if (ret)
8392 goto fail;
8393 }
8394
8395 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
8396 int fpos = filter->range ? 2 : 1;
8397
8398 filename = match_strdup(&args[fpos]);
8399 if (!filename) {
8400 ret = -ENOMEM;
8401 goto fail;
8402 }
8403 }
8404
8405 state = IF_STATE_END;
8406 break;
8407
8408 default:
8409 goto fail;
8410 }
8411
8412 /*
8413 * Filter definition is fully parsed, validate and install it.
8414 * Make sure that it doesn't contradict itself or the event's
8415 * attribute.
8416 */
8417 if (state == IF_STATE_END) {
8418 ret = -EINVAL;
8419 if (kernel && event->attr.exclude_kernel)
8420 goto fail;
8421
8422 if (!kernel) {
8423 if (!filename)
8424 goto fail;
8425
8426 /*
8427 * For now, we only support file-based filters
8428 * in per-task events; doing so for CPU-wide
8429 * events requires additional context switching
8430 * trickery, since same object code will be
8431 * mapped at different virtual addresses in
8432 * different processes.
8433 */
8434 ret = -EOPNOTSUPP;
8435 if (!event->ctx->task)
8436 goto fail_free_name;
8437
8438 /* look up the path and grab its inode */
8439 ret = kern_path(filename, LOOKUP_FOLLOW, &path);
8440 if (ret)
8441 goto fail_free_name;
8442
8443 filter->inode = igrab(d_inode(path.dentry));
8444 path_put(&path);
8445 kfree(filename);
8446 filename = NULL;
8447
8448 ret = -EINVAL;
8449 if (!filter->inode ||
8450 !S_ISREG(filter->inode->i_mode))
8451 /* free_filters_list() will iput() */
8452 goto fail;
8453
8454 event->addr_filters.nr_file_filters++;
8455 }
8456
8457 /* ready to consume more filters */
8458 state = IF_STATE_ACTION;
8459 filter = NULL;
8460 }
8461 }
8462
8463 if (state != IF_STATE_ACTION)
8464 goto fail;
8465
8466 kfree(orig);
8467
8468 return 0;
8469
8470 fail_free_name:
8471 kfree(filename);
8472 fail:
8473 free_filters_list(filters);
8474 kfree(orig);
8475
8476 return ret;
8477 }
8478
8479 static int
8480 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
8481 {
8482 LIST_HEAD(filters);
8483 int ret;
8484
8485 /*
8486 * Since this is called in perf_ioctl() path, we're already holding
8487 * ctx::mutex.
8488 */
8489 lockdep_assert_held(&event->ctx->mutex);
8490
8491 if (WARN_ON_ONCE(event->parent))
8492 return -EINVAL;
8493
8494 ret = perf_event_parse_addr_filter(event, filter_str, &filters);
8495 if (ret)
8496 goto fail_clear_files;
8497
8498 ret = event->pmu->addr_filters_validate(&filters);
8499 if (ret)
8500 goto fail_free_filters;
8501
8502 /* remove existing filters, if any */
8503 perf_addr_filters_splice(event, &filters);
8504
8505 /* install new filters */
8506 perf_event_for_each_child(event, perf_event_addr_filters_apply);
8507
8508 return ret;
8509
8510 fail_free_filters:
8511 free_filters_list(&filters);
8512
8513 fail_clear_files:
8514 event->addr_filters.nr_file_filters = 0;
8515
8516 return ret;
8517 }
8518
8519 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
8520 {
8521 char *filter_str;
8522 int ret = -EINVAL;
8523
8524 if ((event->attr.type != PERF_TYPE_TRACEPOINT ||
8525 !IS_ENABLED(CONFIG_EVENT_TRACING)) &&
8526 !has_addr_filter(event))
8527 return -EINVAL;
8528
8529 filter_str = strndup_user(arg, PAGE_SIZE);
8530 if (IS_ERR(filter_str))
8531 return PTR_ERR(filter_str);
8532
8533 if (IS_ENABLED(CONFIG_EVENT_TRACING) &&
8534 event->attr.type == PERF_TYPE_TRACEPOINT)
8535 ret = ftrace_profile_set_filter(event, event->attr.config,
8536 filter_str);
8537 else if (has_addr_filter(event))
8538 ret = perf_event_set_addr_filter(event, filter_str);
8539
8540 kfree(filter_str);
8541 return ret;
8542 }
8543
8544 /*
8545 * hrtimer based swevent callback
8546 */
8547
8548 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
8549 {
8550 enum hrtimer_restart ret = HRTIMER_RESTART;
8551 struct perf_sample_data data;
8552 struct pt_regs *regs;
8553 struct perf_event *event;
8554 u64 period;
8555
8556 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
8557
8558 if (event->state != PERF_EVENT_STATE_ACTIVE)
8559 return HRTIMER_NORESTART;
8560
8561 event->pmu->read(event);
8562
8563 perf_sample_data_init(&data, 0, event->hw.last_period);
8564 regs = get_irq_regs();
8565
8566 if (regs && !perf_exclude_event(event, regs)) {
8567 if (!(event->attr.exclude_idle && is_idle_task(current)))
8568 if (__perf_event_overflow(event, 1, &data, regs))
8569 ret = HRTIMER_NORESTART;
8570 }
8571
8572 period = max_t(u64, 10000, event->hw.sample_period);
8573 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
8574
8575 return ret;
8576 }
8577
8578 static void perf_swevent_start_hrtimer(struct perf_event *event)
8579 {
8580 struct hw_perf_event *hwc = &event->hw;
8581 s64 period;
8582
8583 if (!is_sampling_event(event))
8584 return;
8585
8586 period = local64_read(&hwc->period_left);
8587 if (period) {
8588 if (period < 0)
8589 period = 10000;
8590
8591 local64_set(&hwc->period_left, 0);
8592 } else {
8593 period = max_t(u64, 10000, hwc->sample_period);
8594 }
8595 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
8596 HRTIMER_MODE_REL_PINNED);
8597 }
8598
8599 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
8600 {
8601 struct hw_perf_event *hwc = &event->hw;
8602
8603 if (is_sampling_event(event)) {
8604 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
8605 local64_set(&hwc->period_left, ktime_to_ns(remaining));
8606
8607 hrtimer_cancel(&hwc->hrtimer);
8608 }
8609 }
8610
8611 static void perf_swevent_init_hrtimer(struct perf_event *event)
8612 {
8613 struct hw_perf_event *hwc = &event->hw;
8614
8615 if (!is_sampling_event(event))
8616 return;
8617
8618 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
8619 hwc->hrtimer.function = perf_swevent_hrtimer;
8620
8621 /*
8622 * Since hrtimers have a fixed rate, we can do a static freq->period
8623 * mapping and avoid the whole period adjust feedback stuff.
8624 */
8625 if (event->attr.freq) {
8626 long freq = event->attr.sample_freq;
8627
8628 event->attr.sample_period = NSEC_PER_SEC / freq;
8629 hwc->sample_period = event->attr.sample_period;
8630 local64_set(&hwc->period_left, hwc->sample_period);
8631 hwc->last_period = hwc->sample_period;
8632 event->attr.freq = 0;
8633 }
8634 }
8635
8636 /*
8637 * Software event: cpu wall time clock
8638 */
8639
8640 static void cpu_clock_event_update(struct perf_event *event)
8641 {
8642 s64 prev;
8643 u64 now;
8644
8645 now = local_clock();
8646 prev = local64_xchg(&event->hw.prev_count, now);
8647 local64_add(now - prev, &event->count);
8648 }
8649
8650 static void cpu_clock_event_start(struct perf_event *event, int flags)
8651 {
8652 local64_set(&event->hw.prev_count, local_clock());
8653 perf_swevent_start_hrtimer(event);
8654 }
8655
8656 static void cpu_clock_event_stop(struct perf_event *event, int flags)
8657 {
8658 perf_swevent_cancel_hrtimer(event);
8659 cpu_clock_event_update(event);
8660 }
8661
8662 static int cpu_clock_event_add(struct perf_event *event, int flags)
8663 {
8664 if (flags & PERF_EF_START)
8665 cpu_clock_event_start(event, flags);
8666 perf_event_update_userpage(event);
8667
8668 return 0;
8669 }
8670
8671 static void cpu_clock_event_del(struct perf_event *event, int flags)
8672 {
8673 cpu_clock_event_stop(event, flags);
8674 }
8675
8676 static void cpu_clock_event_read(struct perf_event *event)
8677 {
8678 cpu_clock_event_update(event);
8679 }
8680
8681 static int cpu_clock_event_init(struct perf_event *event)
8682 {
8683 if (event->attr.type != PERF_TYPE_SOFTWARE)
8684 return -ENOENT;
8685
8686 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
8687 return -ENOENT;
8688
8689 /*
8690 * no branch sampling for software events
8691 */
8692 if (has_branch_stack(event))
8693 return -EOPNOTSUPP;
8694
8695 perf_swevent_init_hrtimer(event);
8696
8697 return 0;
8698 }
8699
8700 static struct pmu perf_cpu_clock = {
8701 .task_ctx_nr = perf_sw_context,
8702
8703 .capabilities = PERF_PMU_CAP_NO_NMI,
8704
8705 .event_init = cpu_clock_event_init,
8706 .add = cpu_clock_event_add,
8707 .del = cpu_clock_event_del,
8708 .start = cpu_clock_event_start,
8709 .stop = cpu_clock_event_stop,
8710 .read = cpu_clock_event_read,
8711 };
8712
8713 /*
8714 * Software event: task time clock
8715 */
8716
8717 static void task_clock_event_update(struct perf_event *event, u64 now)
8718 {
8719 u64 prev;
8720 s64 delta;
8721
8722 prev = local64_xchg(&event->hw.prev_count, now);
8723 delta = now - prev;
8724 local64_add(delta, &event->count);
8725 }
8726
8727 static void task_clock_event_start(struct perf_event *event, int flags)
8728 {
8729 local64_set(&event->hw.prev_count, event->ctx->time);
8730 perf_swevent_start_hrtimer(event);
8731 }
8732
8733 static void task_clock_event_stop(struct perf_event *event, int flags)
8734 {
8735 perf_swevent_cancel_hrtimer(event);
8736 task_clock_event_update(event, event->ctx->time);
8737 }
8738
8739 static int task_clock_event_add(struct perf_event *event, int flags)
8740 {
8741 if (flags & PERF_EF_START)
8742 task_clock_event_start(event, flags);
8743 perf_event_update_userpage(event);
8744
8745 return 0;
8746 }
8747
8748 static void task_clock_event_del(struct perf_event *event, int flags)
8749 {
8750 task_clock_event_stop(event, PERF_EF_UPDATE);
8751 }
8752
8753 static void task_clock_event_read(struct perf_event *event)
8754 {
8755 u64 now = perf_clock();
8756 u64 delta = now - event->ctx->timestamp;
8757 u64 time = event->ctx->time + delta;
8758
8759 task_clock_event_update(event, time);
8760 }
8761
8762 static int task_clock_event_init(struct perf_event *event)
8763 {
8764 if (event->attr.type != PERF_TYPE_SOFTWARE)
8765 return -ENOENT;
8766
8767 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
8768 return -ENOENT;
8769
8770 /*
8771 * no branch sampling for software events
8772 */
8773 if (has_branch_stack(event))
8774 return -EOPNOTSUPP;
8775
8776 perf_swevent_init_hrtimer(event);
8777
8778 return 0;
8779 }
8780
8781 static struct pmu perf_task_clock = {
8782 .task_ctx_nr = perf_sw_context,
8783
8784 .capabilities = PERF_PMU_CAP_NO_NMI,
8785
8786 .event_init = task_clock_event_init,
8787 .add = task_clock_event_add,
8788 .del = task_clock_event_del,
8789 .start = task_clock_event_start,
8790 .stop = task_clock_event_stop,
8791 .read = task_clock_event_read,
8792 };
8793
8794 static void perf_pmu_nop_void(struct pmu *pmu)
8795 {
8796 }
8797
8798 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
8799 {
8800 }
8801
8802 static int perf_pmu_nop_int(struct pmu *pmu)
8803 {
8804 return 0;
8805 }
8806
8807 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
8808
8809 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
8810 {
8811 __this_cpu_write(nop_txn_flags, flags);
8812
8813 if (flags & ~PERF_PMU_TXN_ADD)
8814 return;
8815
8816 perf_pmu_disable(pmu);
8817 }
8818
8819 static int perf_pmu_commit_txn(struct pmu *pmu)
8820 {
8821 unsigned int flags = __this_cpu_read(nop_txn_flags);
8822
8823 __this_cpu_write(nop_txn_flags, 0);
8824
8825 if (flags & ~PERF_PMU_TXN_ADD)
8826 return 0;
8827
8828 perf_pmu_enable(pmu);
8829 return 0;
8830 }
8831
8832 static void perf_pmu_cancel_txn(struct pmu *pmu)
8833 {
8834 unsigned int flags = __this_cpu_read(nop_txn_flags);
8835
8836 __this_cpu_write(nop_txn_flags, 0);
8837
8838 if (flags & ~PERF_PMU_TXN_ADD)
8839 return;
8840
8841 perf_pmu_enable(pmu);
8842 }
8843
8844 static int perf_event_idx_default(struct perf_event *event)
8845 {
8846 return 0;
8847 }
8848
8849 /*
8850 * Ensures all contexts with the same task_ctx_nr have the same
8851 * pmu_cpu_context too.
8852 */
8853 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
8854 {
8855 struct pmu *pmu;
8856
8857 if (ctxn < 0)
8858 return NULL;
8859
8860 list_for_each_entry(pmu, &pmus, entry) {
8861 if (pmu->task_ctx_nr == ctxn)
8862 return pmu->pmu_cpu_context;
8863 }
8864
8865 return NULL;
8866 }
8867
8868 static void free_pmu_context(struct pmu *pmu)
8869 {
8870 /*
8871 * Static contexts such as perf_sw_context have a global lifetime
8872 * and may be shared between different PMUs. Avoid freeing them
8873 * when a single PMU is going away.
8874 */
8875 if (pmu->task_ctx_nr > perf_invalid_context)
8876 return;
8877
8878 mutex_lock(&pmus_lock);
8879 free_percpu(pmu->pmu_cpu_context);
8880 mutex_unlock(&pmus_lock);
8881 }
8882
8883 /*
8884 * Let userspace know that this PMU supports address range filtering:
8885 */
8886 static ssize_t nr_addr_filters_show(struct device *dev,
8887 struct device_attribute *attr,
8888 char *page)
8889 {
8890 struct pmu *pmu = dev_get_drvdata(dev);
8891
8892 return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
8893 }
8894 DEVICE_ATTR_RO(nr_addr_filters);
8895
8896 static struct idr pmu_idr;
8897
8898 static ssize_t
8899 type_show(struct device *dev, struct device_attribute *attr, char *page)
8900 {
8901 struct pmu *pmu = dev_get_drvdata(dev);
8902
8903 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
8904 }
8905 static DEVICE_ATTR_RO(type);
8906
8907 static ssize_t
8908 perf_event_mux_interval_ms_show(struct device *dev,
8909 struct device_attribute *attr,
8910 char *page)
8911 {
8912 struct pmu *pmu = dev_get_drvdata(dev);
8913
8914 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
8915 }
8916
8917 static DEFINE_MUTEX(mux_interval_mutex);
8918
8919 static ssize_t
8920 perf_event_mux_interval_ms_store(struct device *dev,
8921 struct device_attribute *attr,
8922 const char *buf, size_t count)
8923 {
8924 struct pmu *pmu = dev_get_drvdata(dev);
8925 int timer, cpu, ret;
8926
8927 ret = kstrtoint(buf, 0, &timer);
8928 if (ret)
8929 return ret;
8930
8931 if (timer < 1)
8932 return -EINVAL;
8933
8934 /* same value, noting to do */
8935 if (timer == pmu->hrtimer_interval_ms)
8936 return count;
8937
8938 mutex_lock(&mux_interval_mutex);
8939 pmu->hrtimer_interval_ms = timer;
8940
8941 /* update all cpuctx for this PMU */
8942 cpus_read_lock();
8943 for_each_online_cpu(cpu) {
8944 struct perf_cpu_context *cpuctx;
8945 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8946 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
8947
8948 cpu_function_call(cpu,
8949 (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
8950 }
8951 cpus_read_unlock();
8952 mutex_unlock(&mux_interval_mutex);
8953
8954 return count;
8955 }
8956 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
8957
8958 static struct attribute *pmu_dev_attrs[] = {
8959 &dev_attr_type.attr,
8960 &dev_attr_perf_event_mux_interval_ms.attr,
8961 NULL,
8962 };
8963 ATTRIBUTE_GROUPS(pmu_dev);
8964
8965 static int pmu_bus_running;
8966 static struct bus_type pmu_bus = {
8967 .name = "event_source",
8968 .dev_groups = pmu_dev_groups,
8969 };
8970
8971 static void pmu_dev_release(struct device *dev)
8972 {
8973 kfree(dev);
8974 }
8975
8976 static int pmu_dev_alloc(struct pmu *pmu)
8977 {
8978 int ret = -ENOMEM;
8979
8980 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
8981 if (!pmu->dev)
8982 goto out;
8983
8984 pmu->dev->groups = pmu->attr_groups;
8985 device_initialize(pmu->dev);
8986 ret = dev_set_name(pmu->dev, "%s", pmu->name);
8987 if (ret)
8988 goto free_dev;
8989
8990 dev_set_drvdata(pmu->dev, pmu);
8991 pmu->dev->bus = &pmu_bus;
8992 pmu->dev->release = pmu_dev_release;
8993 ret = device_add(pmu->dev);
8994 if (ret)
8995 goto free_dev;
8996
8997 /* For PMUs with address filters, throw in an extra attribute: */
8998 if (pmu->nr_addr_filters)
8999 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
9000
9001 if (ret)
9002 goto del_dev;
9003
9004 out:
9005 return ret;
9006
9007 del_dev:
9008 device_del(pmu->dev);
9009
9010 free_dev:
9011 put_device(pmu->dev);
9012 goto out;
9013 }
9014
9015 static struct lock_class_key cpuctx_mutex;
9016 static struct lock_class_key cpuctx_lock;
9017
9018 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
9019 {
9020 int cpu, ret;
9021
9022 mutex_lock(&pmus_lock);
9023 ret = -ENOMEM;
9024 pmu->pmu_disable_count = alloc_percpu(int);
9025 if (!pmu->pmu_disable_count)
9026 goto unlock;
9027
9028 pmu->type = -1;
9029 if (!name)
9030 goto skip_type;
9031 pmu->name = name;
9032
9033 if (type < 0) {
9034 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
9035 if (type < 0) {
9036 ret = type;
9037 goto free_pdc;
9038 }
9039 }
9040 pmu->type = type;
9041
9042 if (pmu_bus_running) {
9043 ret = pmu_dev_alloc(pmu);
9044 if (ret)
9045 goto free_idr;
9046 }
9047
9048 skip_type:
9049 if (pmu->task_ctx_nr == perf_hw_context) {
9050 static int hw_context_taken = 0;
9051
9052 /*
9053 * Other than systems with heterogeneous CPUs, it never makes
9054 * sense for two PMUs to share perf_hw_context. PMUs which are
9055 * uncore must use perf_invalid_context.
9056 */
9057 if (WARN_ON_ONCE(hw_context_taken &&
9058 !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
9059 pmu->task_ctx_nr = perf_invalid_context;
9060
9061 hw_context_taken = 1;
9062 }
9063
9064 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
9065 if (pmu->pmu_cpu_context)
9066 goto got_cpu_context;
9067
9068 ret = -ENOMEM;
9069 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
9070 if (!pmu->pmu_cpu_context)
9071 goto free_dev;
9072
9073 for_each_possible_cpu(cpu) {
9074 struct perf_cpu_context *cpuctx;
9075
9076 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9077 __perf_event_init_context(&cpuctx->ctx);
9078 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
9079 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
9080 cpuctx->ctx.pmu = pmu;
9081 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
9082
9083 __perf_mux_hrtimer_init(cpuctx, cpu);
9084 }
9085
9086 got_cpu_context:
9087 if (!pmu->start_txn) {
9088 if (pmu->pmu_enable) {
9089 /*
9090 * If we have pmu_enable/pmu_disable calls, install
9091 * transaction stubs that use that to try and batch
9092 * hardware accesses.
9093 */
9094 pmu->start_txn = perf_pmu_start_txn;
9095 pmu->commit_txn = perf_pmu_commit_txn;
9096 pmu->cancel_txn = perf_pmu_cancel_txn;
9097 } else {
9098 pmu->start_txn = perf_pmu_nop_txn;
9099 pmu->commit_txn = perf_pmu_nop_int;
9100 pmu->cancel_txn = perf_pmu_nop_void;
9101 }
9102 }
9103
9104 if (!pmu->pmu_enable) {
9105 pmu->pmu_enable = perf_pmu_nop_void;
9106 pmu->pmu_disable = perf_pmu_nop_void;
9107 }
9108
9109 if (!pmu->event_idx)
9110 pmu->event_idx = perf_event_idx_default;
9111
9112 list_add_rcu(&pmu->entry, &pmus);
9113 atomic_set(&pmu->exclusive_cnt, 0);
9114 ret = 0;
9115 unlock:
9116 mutex_unlock(&pmus_lock);
9117
9118 return ret;
9119
9120 free_dev:
9121 device_del(pmu->dev);
9122 put_device(pmu->dev);
9123
9124 free_idr:
9125 if (pmu->type >= PERF_TYPE_MAX)
9126 idr_remove(&pmu_idr, pmu->type);
9127
9128 free_pdc:
9129 free_percpu(pmu->pmu_disable_count);
9130 goto unlock;
9131 }
9132 EXPORT_SYMBOL_GPL(perf_pmu_register);
9133
9134 void perf_pmu_unregister(struct pmu *pmu)
9135 {
9136 int remove_device;
9137
9138 mutex_lock(&pmus_lock);
9139 remove_device = pmu_bus_running;
9140 list_del_rcu(&pmu->entry);
9141 mutex_unlock(&pmus_lock);
9142
9143 /*
9144 * We dereference the pmu list under both SRCU and regular RCU, so
9145 * synchronize against both of those.
9146 */
9147 synchronize_srcu(&pmus_srcu);
9148 synchronize_rcu();
9149
9150 free_percpu(pmu->pmu_disable_count);
9151 if (pmu->type >= PERF_TYPE_MAX)
9152 idr_remove(&pmu_idr, pmu->type);
9153 if (remove_device) {
9154 if (pmu->nr_addr_filters)
9155 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
9156 device_del(pmu->dev);
9157 put_device(pmu->dev);
9158 }
9159 free_pmu_context(pmu);
9160 }
9161 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
9162
9163 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
9164 {
9165 struct perf_event_context *ctx = NULL;
9166 int ret;
9167
9168 if (!try_module_get(pmu->module))
9169 return -ENODEV;
9170
9171 if (event->group_leader != event) {
9172 /*
9173 * This ctx->mutex can nest when we're called through
9174 * inheritance. See the perf_event_ctx_lock_nested() comment.
9175 */
9176 ctx = perf_event_ctx_lock_nested(event->group_leader,
9177 SINGLE_DEPTH_NESTING);
9178 BUG_ON(!ctx);
9179 }
9180
9181 event->pmu = pmu;
9182 ret = pmu->event_init(event);
9183
9184 if (ctx)
9185 perf_event_ctx_unlock(event->group_leader, ctx);
9186
9187 if (ret)
9188 module_put(pmu->module);
9189
9190 return ret;
9191 }
9192
9193 static struct pmu *perf_init_event(struct perf_event *event)
9194 {
9195 struct pmu *pmu;
9196 int idx;
9197 int ret;
9198
9199 idx = srcu_read_lock(&pmus_srcu);
9200
9201 /* Try parent's PMU first: */
9202 if (event->parent && event->parent->pmu) {
9203 pmu = event->parent->pmu;
9204 ret = perf_try_init_event(pmu, event);
9205 if (!ret)
9206 goto unlock;
9207 }
9208
9209 rcu_read_lock();
9210 pmu = idr_find(&pmu_idr, event->attr.type);
9211 rcu_read_unlock();
9212 if (pmu) {
9213 ret = perf_try_init_event(pmu, event);
9214 if (ret)
9215 pmu = ERR_PTR(ret);
9216 goto unlock;
9217 }
9218
9219 list_for_each_entry_rcu(pmu, &pmus, entry) {
9220 ret = perf_try_init_event(pmu, event);
9221 if (!ret)
9222 goto unlock;
9223
9224 if (ret != -ENOENT) {
9225 pmu = ERR_PTR(ret);
9226 goto unlock;
9227 }
9228 }
9229 pmu = ERR_PTR(-ENOENT);
9230 unlock:
9231 srcu_read_unlock(&pmus_srcu, idx);
9232
9233 return pmu;
9234 }
9235
9236 static void attach_sb_event(struct perf_event *event)
9237 {
9238 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
9239
9240 raw_spin_lock(&pel->lock);
9241 list_add_rcu(&event->sb_list, &pel->list);
9242 raw_spin_unlock(&pel->lock);
9243 }
9244
9245 /*
9246 * We keep a list of all !task (and therefore per-cpu) events
9247 * that need to receive side-band records.
9248 *
9249 * This avoids having to scan all the various PMU per-cpu contexts
9250 * looking for them.
9251 */
9252 static void account_pmu_sb_event(struct perf_event *event)
9253 {
9254 if (is_sb_event(event))
9255 attach_sb_event(event);
9256 }
9257
9258 static void account_event_cpu(struct perf_event *event, int cpu)
9259 {
9260 if (event->parent)
9261 return;
9262
9263 if (is_cgroup_event(event))
9264 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
9265 }
9266
9267 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
9268 static void account_freq_event_nohz(void)
9269 {
9270 #ifdef CONFIG_NO_HZ_FULL
9271 /* Lock so we don't race with concurrent unaccount */
9272 spin_lock(&nr_freq_lock);
9273 if (atomic_inc_return(&nr_freq_events) == 1)
9274 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
9275 spin_unlock(&nr_freq_lock);
9276 #endif
9277 }
9278
9279 static void account_freq_event(void)
9280 {
9281 if (tick_nohz_full_enabled())
9282 account_freq_event_nohz();
9283 else
9284 atomic_inc(&nr_freq_events);
9285 }
9286
9287
9288 static void account_event(struct perf_event *event)
9289 {
9290 bool inc = false;
9291
9292 if (event->parent)
9293 return;
9294
9295 if (event->attach_state & PERF_ATTACH_TASK)
9296 inc = true;
9297 if (event->attr.mmap || event->attr.mmap_data)
9298 atomic_inc(&nr_mmap_events);
9299 if (event->attr.comm)
9300 atomic_inc(&nr_comm_events);
9301 if (event->attr.namespaces)
9302 atomic_inc(&nr_namespaces_events);
9303 if (event->attr.task)
9304 atomic_inc(&nr_task_events);
9305 if (event->attr.freq)
9306 account_freq_event();
9307 if (event->attr.context_switch) {
9308 atomic_inc(&nr_switch_events);
9309 inc = true;
9310 }
9311 if (has_branch_stack(event))
9312 inc = true;
9313 if (is_cgroup_event(event))
9314 inc = true;
9315
9316 if (inc) {
9317 /*
9318 * We need the mutex here because static_branch_enable()
9319 * must complete *before* the perf_sched_count increment
9320 * becomes visible.
9321 */
9322 if (atomic_inc_not_zero(&perf_sched_count))
9323 goto enabled;
9324
9325 mutex_lock(&perf_sched_mutex);
9326 if (!atomic_read(&perf_sched_count)) {
9327 static_branch_enable(&perf_sched_events);
9328 /*
9329 * Guarantee that all CPUs observe they key change and
9330 * call the perf scheduling hooks before proceeding to
9331 * install events that need them.
9332 */
9333 synchronize_sched();
9334 }
9335 /*
9336 * Now that we have waited for the sync_sched(), allow further
9337 * increments to by-pass the mutex.
9338 */
9339 atomic_inc(&perf_sched_count);
9340 mutex_unlock(&perf_sched_mutex);
9341 }
9342 enabled:
9343
9344 account_event_cpu(event, event->cpu);
9345
9346 account_pmu_sb_event(event);
9347 }
9348
9349 /*
9350 * Allocate and initialize a event structure
9351 */
9352 static struct perf_event *
9353 perf_event_alloc(struct perf_event_attr *attr, int cpu,
9354 struct task_struct *task,
9355 struct perf_event *group_leader,
9356 struct perf_event *parent_event,
9357 perf_overflow_handler_t overflow_handler,
9358 void *context, int cgroup_fd)
9359 {
9360 struct pmu *pmu;
9361 struct perf_event *event;
9362 struct hw_perf_event *hwc;
9363 long err = -EINVAL;
9364
9365 if ((unsigned)cpu >= nr_cpu_ids) {
9366 if (!task || cpu != -1)
9367 return ERR_PTR(-EINVAL);
9368 }
9369
9370 event = kzalloc(sizeof(*event), GFP_KERNEL);
9371 if (!event)
9372 return ERR_PTR(-ENOMEM);
9373
9374 /*
9375 * Single events are their own group leaders, with an
9376 * empty sibling list:
9377 */
9378 if (!group_leader)
9379 group_leader = event;
9380
9381 mutex_init(&event->child_mutex);
9382 INIT_LIST_HEAD(&event->child_list);
9383
9384 INIT_LIST_HEAD(&event->group_entry);
9385 INIT_LIST_HEAD(&event->event_entry);
9386 INIT_LIST_HEAD(&event->sibling_list);
9387 INIT_LIST_HEAD(&event->rb_entry);
9388 INIT_LIST_HEAD(&event->active_entry);
9389 INIT_LIST_HEAD(&event->addr_filters.list);
9390 INIT_HLIST_NODE(&event->hlist_entry);
9391
9392
9393 init_waitqueue_head(&event->waitq);
9394 init_irq_work(&event->pending, perf_pending_event);
9395
9396 mutex_init(&event->mmap_mutex);
9397 raw_spin_lock_init(&event->addr_filters.lock);
9398
9399 atomic_long_set(&event->refcount, 1);
9400 event->cpu = cpu;
9401 event->attr = *attr;
9402 event->group_leader = group_leader;
9403 event->pmu = NULL;
9404 event->oncpu = -1;
9405
9406 event->parent = parent_event;
9407
9408 event->ns = get_pid_ns(task_active_pid_ns(current));
9409 event->id = atomic64_inc_return(&perf_event_id);
9410
9411 event->state = PERF_EVENT_STATE_INACTIVE;
9412
9413 if (task) {
9414 event->attach_state = PERF_ATTACH_TASK;
9415 /*
9416 * XXX pmu::event_init needs to know what task to account to
9417 * and we cannot use the ctx information because we need the
9418 * pmu before we get a ctx.
9419 */
9420 event->hw.target = task;
9421 }
9422
9423 event->clock = &local_clock;
9424 if (parent_event)
9425 event->clock = parent_event->clock;
9426
9427 if (!overflow_handler && parent_event) {
9428 overflow_handler = parent_event->overflow_handler;
9429 context = parent_event->overflow_handler_context;
9430 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
9431 if (overflow_handler == bpf_overflow_handler) {
9432 struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
9433
9434 if (IS_ERR(prog)) {
9435 err = PTR_ERR(prog);
9436 goto err_ns;
9437 }
9438 event->prog = prog;
9439 event->orig_overflow_handler =
9440 parent_event->orig_overflow_handler;
9441 }
9442 #endif
9443 }
9444
9445 if (overflow_handler) {
9446 event->overflow_handler = overflow_handler;
9447 event->overflow_handler_context = context;
9448 } else if (is_write_backward(event)){
9449 event->overflow_handler = perf_event_output_backward;
9450 event->overflow_handler_context = NULL;
9451 } else {
9452 event->overflow_handler = perf_event_output_forward;
9453 event->overflow_handler_context = NULL;
9454 }
9455
9456 perf_event__state_init(event);
9457
9458 pmu = NULL;
9459
9460 hwc = &event->hw;
9461 hwc->sample_period = attr->sample_period;
9462 if (attr->freq && attr->sample_freq)
9463 hwc->sample_period = 1;
9464 hwc->last_period = hwc->sample_period;
9465
9466 local64_set(&hwc->period_left, hwc->sample_period);
9467
9468 /*
9469 * We currently do not support PERF_SAMPLE_READ on inherited events.
9470 * See perf_output_read().
9471 */
9472 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
9473 goto err_ns;
9474
9475 if (!has_branch_stack(event))
9476 event->attr.branch_sample_type = 0;
9477
9478 if (cgroup_fd != -1) {
9479 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
9480 if (err)
9481 goto err_ns;
9482 }
9483
9484 pmu = perf_init_event(event);
9485 if (IS_ERR(pmu)) {
9486 err = PTR_ERR(pmu);
9487 goto err_ns;
9488 }
9489
9490 err = exclusive_event_init(event);
9491 if (err)
9492 goto err_pmu;
9493
9494 if (has_addr_filter(event)) {
9495 event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
9496 sizeof(unsigned long),
9497 GFP_KERNEL);
9498 if (!event->addr_filters_offs) {
9499 err = -ENOMEM;
9500 goto err_per_task;
9501 }
9502
9503 /* force hw sync on the address filters */
9504 event->addr_filters_gen = 1;
9505 }
9506
9507 if (!event->parent) {
9508 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
9509 err = get_callchain_buffers(attr->sample_max_stack);
9510 if (err)
9511 goto err_addr_filters;
9512 }
9513 }
9514
9515 /* symmetric to unaccount_event() in _free_event() */
9516 account_event(event);
9517
9518 return event;
9519
9520 err_addr_filters:
9521 kfree(event->addr_filters_offs);
9522
9523 err_per_task:
9524 exclusive_event_destroy(event);
9525
9526 err_pmu:
9527 if (event->destroy)
9528 event->destroy(event);
9529 module_put(pmu->module);
9530 err_ns:
9531 if (is_cgroup_event(event))
9532 perf_detach_cgroup(event);
9533 if (event->ns)
9534 put_pid_ns(event->ns);
9535 kfree(event);
9536
9537 return ERR_PTR(err);
9538 }
9539
9540 static int perf_copy_attr(struct perf_event_attr __user *uattr,
9541 struct perf_event_attr *attr)
9542 {
9543 u32 size;
9544 int ret;
9545
9546 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
9547 return -EFAULT;
9548
9549 /*
9550 * zero the full structure, so that a short copy will be nice.
9551 */
9552 memset(attr, 0, sizeof(*attr));
9553
9554 ret = get_user(size, &uattr->size);
9555 if (ret)
9556 return ret;
9557
9558 if (size > PAGE_SIZE) /* silly large */
9559 goto err_size;
9560
9561 if (!size) /* abi compat */
9562 size = PERF_ATTR_SIZE_VER0;
9563
9564 if (size < PERF_ATTR_SIZE_VER0)
9565 goto err_size;
9566
9567 /*
9568 * If we're handed a bigger struct than we know of,
9569 * ensure all the unknown bits are 0 - i.e. new
9570 * user-space does not rely on any kernel feature
9571 * extensions we dont know about yet.
9572 */
9573 if (size > sizeof(*attr)) {
9574 unsigned char __user *addr;
9575 unsigned char __user *end;
9576 unsigned char val;
9577
9578 addr = (void __user *)uattr + sizeof(*attr);
9579 end = (void __user *)uattr + size;
9580
9581 for (; addr < end; addr++) {
9582 ret = get_user(val, addr);
9583 if (ret)
9584 return ret;
9585 if (val)
9586 goto err_size;
9587 }
9588 size = sizeof(*attr);
9589 }
9590
9591 ret = copy_from_user(attr, uattr, size);
9592 if (ret)
9593 return -EFAULT;
9594
9595 attr->size = size;
9596
9597 if (attr->__reserved_1)
9598 return -EINVAL;
9599
9600 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
9601 return -EINVAL;
9602
9603 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
9604 return -EINVAL;
9605
9606 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
9607 u64 mask = attr->branch_sample_type;
9608
9609 /* only using defined bits */
9610 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
9611 return -EINVAL;
9612
9613 /* at least one branch bit must be set */
9614 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
9615 return -EINVAL;
9616
9617 /* propagate priv level, when not set for branch */
9618 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
9619
9620 /* exclude_kernel checked on syscall entry */
9621 if (!attr->exclude_kernel)
9622 mask |= PERF_SAMPLE_BRANCH_KERNEL;
9623
9624 if (!attr->exclude_user)
9625 mask |= PERF_SAMPLE_BRANCH_USER;
9626
9627 if (!attr->exclude_hv)
9628 mask |= PERF_SAMPLE_BRANCH_HV;
9629 /*
9630 * adjust user setting (for HW filter setup)
9631 */
9632 attr->branch_sample_type = mask;
9633 }
9634 /* privileged levels capture (kernel, hv): check permissions */
9635 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
9636 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9637 return -EACCES;
9638 }
9639
9640 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
9641 ret = perf_reg_validate(attr->sample_regs_user);
9642 if (ret)
9643 return ret;
9644 }
9645
9646 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
9647 if (!arch_perf_have_user_stack_dump())
9648 return -ENOSYS;
9649
9650 /*
9651 * We have __u32 type for the size, but so far
9652 * we can only use __u16 as maximum due to the
9653 * __u16 sample size limit.
9654 */
9655 if (attr->sample_stack_user >= USHRT_MAX)
9656 ret = -EINVAL;
9657 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
9658 ret = -EINVAL;
9659 }
9660
9661 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
9662 ret = perf_reg_validate(attr->sample_regs_intr);
9663 out:
9664 return ret;
9665
9666 err_size:
9667 put_user(sizeof(*attr), &uattr->size);
9668 ret = -E2BIG;
9669 goto out;
9670 }
9671
9672 static int
9673 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
9674 {
9675 struct ring_buffer *rb = NULL;
9676 int ret = -EINVAL;
9677
9678 if (!output_event)
9679 goto set;
9680
9681 /* don't allow circular references */
9682 if (event == output_event)
9683 goto out;
9684
9685 /*
9686 * Don't allow cross-cpu buffers
9687 */
9688 if (output_event->cpu != event->cpu)
9689 goto out;
9690
9691 /*
9692 * If its not a per-cpu rb, it must be the same task.
9693 */
9694 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
9695 goto out;
9696
9697 /*
9698 * Mixing clocks in the same buffer is trouble you don't need.
9699 */
9700 if (output_event->clock != event->clock)
9701 goto out;
9702
9703 /*
9704 * Either writing ring buffer from beginning or from end.
9705 * Mixing is not allowed.
9706 */
9707 if (is_write_backward(output_event) != is_write_backward(event))
9708 goto out;
9709
9710 /*
9711 * If both events generate aux data, they must be on the same PMU
9712 */
9713 if (has_aux(event) && has_aux(output_event) &&
9714 event->pmu != output_event->pmu)
9715 goto out;
9716
9717 set:
9718 mutex_lock(&event->mmap_mutex);
9719 /* Can't redirect output if we've got an active mmap() */
9720 if (atomic_read(&event->mmap_count))
9721 goto unlock;
9722
9723 if (output_event) {
9724 /* get the rb we want to redirect to */
9725 rb = ring_buffer_get(output_event);
9726 if (!rb)
9727 goto unlock;
9728 }
9729
9730 ring_buffer_attach(event, rb);
9731
9732 ret = 0;
9733 unlock:
9734 mutex_unlock(&event->mmap_mutex);
9735
9736 out:
9737 return ret;
9738 }
9739
9740 static void mutex_lock_double(struct mutex *a, struct mutex *b)
9741 {
9742 if (b < a)
9743 swap(a, b);
9744
9745 mutex_lock(a);
9746 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
9747 }
9748
9749 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
9750 {
9751 bool nmi_safe = false;
9752
9753 switch (clk_id) {
9754 case CLOCK_MONOTONIC:
9755 event->clock = &ktime_get_mono_fast_ns;
9756 nmi_safe = true;
9757 break;
9758
9759 case CLOCK_MONOTONIC_RAW:
9760 event->clock = &ktime_get_raw_fast_ns;
9761 nmi_safe = true;
9762 break;
9763
9764 case CLOCK_REALTIME:
9765 event->clock = &ktime_get_real_ns;
9766 break;
9767
9768 case CLOCK_BOOTTIME:
9769 event->clock = &ktime_get_boot_ns;
9770 break;
9771
9772 case CLOCK_TAI:
9773 event->clock = &ktime_get_tai_ns;
9774 break;
9775
9776 default:
9777 return -EINVAL;
9778 }
9779
9780 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
9781 return -EINVAL;
9782
9783 return 0;
9784 }
9785
9786 /*
9787 * Variation on perf_event_ctx_lock_nested(), except we take two context
9788 * mutexes.
9789 */
9790 static struct perf_event_context *
9791 __perf_event_ctx_lock_double(struct perf_event *group_leader,
9792 struct perf_event_context *ctx)
9793 {
9794 struct perf_event_context *gctx;
9795
9796 again:
9797 rcu_read_lock();
9798 gctx = READ_ONCE(group_leader->ctx);
9799 if (!atomic_inc_not_zero(&gctx->refcount)) {
9800 rcu_read_unlock();
9801 goto again;
9802 }
9803 rcu_read_unlock();
9804
9805 mutex_lock_double(&gctx->mutex, &ctx->mutex);
9806
9807 if (group_leader->ctx != gctx) {
9808 mutex_unlock(&ctx->mutex);
9809 mutex_unlock(&gctx->mutex);
9810 put_ctx(gctx);
9811 goto again;
9812 }
9813
9814 return gctx;
9815 }
9816
9817 /**
9818 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9819 *
9820 * @attr_uptr: event_id type attributes for monitoring/sampling
9821 * @pid: target pid
9822 * @cpu: target cpu
9823 * @group_fd: group leader event fd
9824 */
9825 SYSCALL_DEFINE5(perf_event_open,
9826 struct perf_event_attr __user *, attr_uptr,
9827 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
9828 {
9829 struct perf_event *group_leader = NULL, *output_event = NULL;
9830 struct perf_event *event, *sibling;
9831 struct perf_event_attr attr;
9832 struct perf_event_context *ctx, *uninitialized_var(gctx);
9833 struct file *event_file = NULL;
9834 struct fd group = {NULL, 0};
9835 struct task_struct *task = NULL;
9836 struct pmu *pmu;
9837 int event_fd;
9838 int move_group = 0;
9839 int err;
9840 int f_flags = O_RDWR;
9841 int cgroup_fd = -1;
9842
9843 /* for future expandability... */
9844 if (flags & ~PERF_FLAG_ALL)
9845 return -EINVAL;
9846
9847 err = perf_copy_attr(attr_uptr, &attr);
9848 if (err)
9849 return err;
9850
9851 if (!attr.exclude_kernel) {
9852 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9853 return -EACCES;
9854 }
9855
9856 if (attr.namespaces) {
9857 if (!capable(CAP_SYS_ADMIN))
9858 return -EACCES;
9859 }
9860
9861 if (attr.freq) {
9862 if (attr.sample_freq > sysctl_perf_event_sample_rate)
9863 return -EINVAL;
9864 } else {
9865 if (attr.sample_period & (1ULL << 63))
9866 return -EINVAL;
9867 }
9868
9869 /* Only privileged users can get physical addresses */
9870 if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR) &&
9871 perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9872 return -EACCES;
9873
9874 if (!attr.sample_max_stack)
9875 attr.sample_max_stack = sysctl_perf_event_max_stack;
9876
9877 /*
9878 * In cgroup mode, the pid argument is used to pass the fd
9879 * opened to the cgroup directory in cgroupfs. The cpu argument
9880 * designates the cpu on which to monitor threads from that
9881 * cgroup.
9882 */
9883 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
9884 return -EINVAL;
9885
9886 if (flags & PERF_FLAG_FD_CLOEXEC)
9887 f_flags |= O_CLOEXEC;
9888
9889 event_fd = get_unused_fd_flags(f_flags);
9890 if (event_fd < 0)
9891 return event_fd;
9892
9893 if (group_fd != -1) {
9894 err = perf_fget_light(group_fd, &group);
9895 if (err)
9896 goto err_fd;
9897 group_leader = group.file->private_data;
9898 if (flags & PERF_FLAG_FD_OUTPUT)
9899 output_event = group_leader;
9900 if (flags & PERF_FLAG_FD_NO_GROUP)
9901 group_leader = NULL;
9902 }
9903
9904 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
9905 task = find_lively_task_by_vpid(pid);
9906 if (IS_ERR(task)) {
9907 err = PTR_ERR(task);
9908 goto err_group_fd;
9909 }
9910 }
9911
9912 if (task && group_leader &&
9913 group_leader->attr.inherit != attr.inherit) {
9914 err = -EINVAL;
9915 goto err_task;
9916 }
9917
9918 if (task) {
9919 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
9920 if (err)
9921 goto err_task;
9922
9923 /*
9924 * Reuse ptrace permission checks for now.
9925 *
9926 * We must hold cred_guard_mutex across this and any potential
9927 * perf_install_in_context() call for this new event to
9928 * serialize against exec() altering our credentials (and the
9929 * perf_event_exit_task() that could imply).
9930 */
9931 err = -EACCES;
9932 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
9933 goto err_cred;
9934 }
9935
9936 if (flags & PERF_FLAG_PID_CGROUP)
9937 cgroup_fd = pid;
9938
9939 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
9940 NULL, NULL, cgroup_fd);
9941 if (IS_ERR(event)) {
9942 err = PTR_ERR(event);
9943 goto err_cred;
9944 }
9945
9946 if (is_sampling_event(event)) {
9947 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
9948 err = -EOPNOTSUPP;
9949 goto err_alloc;
9950 }
9951 }
9952
9953 /*
9954 * Special case software events and allow them to be part of
9955 * any hardware group.
9956 */
9957 pmu = event->pmu;
9958
9959 if (attr.use_clockid) {
9960 err = perf_event_set_clock(event, attr.clockid);
9961 if (err)
9962 goto err_alloc;
9963 }
9964
9965 if (pmu->task_ctx_nr == perf_sw_context)
9966 event->event_caps |= PERF_EV_CAP_SOFTWARE;
9967
9968 if (group_leader &&
9969 (is_software_event(event) != is_software_event(group_leader))) {
9970 if (is_software_event(event)) {
9971 /*
9972 * If event and group_leader are not both a software
9973 * event, and event is, then group leader is not.
9974 *
9975 * Allow the addition of software events to !software
9976 * groups, this is safe because software events never
9977 * fail to schedule.
9978 */
9979 pmu = group_leader->pmu;
9980 } else if (is_software_event(group_leader) &&
9981 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
9982 /*
9983 * In case the group is a pure software group, and we
9984 * try to add a hardware event, move the whole group to
9985 * the hardware context.
9986 */
9987 move_group = 1;
9988 }
9989 }
9990
9991 /*
9992 * Get the target context (task or percpu):
9993 */
9994 ctx = find_get_context(pmu, task, event);
9995 if (IS_ERR(ctx)) {
9996 err = PTR_ERR(ctx);
9997 goto err_alloc;
9998 }
9999
10000 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
10001 err = -EBUSY;
10002 goto err_context;
10003 }
10004
10005 /*
10006 * Look up the group leader (we will attach this event to it):
10007 */
10008 if (group_leader) {
10009 err = -EINVAL;
10010
10011 /*
10012 * Do not allow a recursive hierarchy (this new sibling
10013 * becoming part of another group-sibling):
10014 */
10015 if (group_leader->group_leader != group_leader)
10016 goto err_context;
10017
10018 /* All events in a group should have the same clock */
10019 if (group_leader->clock != event->clock)
10020 goto err_context;
10021
10022 /*
10023 * Make sure we're both events for the same CPU;
10024 * grouping events for different CPUs is broken; since
10025 * you can never concurrently schedule them anyhow.
10026 */
10027 if (group_leader->cpu != event->cpu)
10028 goto err_context;
10029
10030 /*
10031 * Make sure we're both on the same task, or both
10032 * per-CPU events.
10033 */
10034 if (group_leader->ctx->task != ctx->task)
10035 goto err_context;
10036
10037 /*
10038 * Do not allow to attach to a group in a different task
10039 * or CPU context. If we're moving SW events, we'll fix
10040 * this up later, so allow that.
10041 */
10042 if (!move_group && group_leader->ctx != ctx)
10043 goto err_context;
10044
10045 /*
10046 * Only a group leader can be exclusive or pinned
10047 */
10048 if (attr.exclusive || attr.pinned)
10049 goto err_context;
10050 }
10051
10052 if (output_event) {
10053 err = perf_event_set_output(event, output_event);
10054 if (err)
10055 goto err_context;
10056 }
10057
10058 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
10059 f_flags);
10060 if (IS_ERR(event_file)) {
10061 err = PTR_ERR(event_file);
10062 event_file = NULL;
10063 goto err_context;
10064 }
10065
10066 if (move_group) {
10067 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
10068
10069 if (gctx->task == TASK_TOMBSTONE) {
10070 err = -ESRCH;
10071 goto err_locked;
10072 }
10073
10074 /*
10075 * Check if we raced against another sys_perf_event_open() call
10076 * moving the software group underneath us.
10077 */
10078 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10079 /*
10080 * If someone moved the group out from under us, check
10081 * if this new event wound up on the same ctx, if so
10082 * its the regular !move_group case, otherwise fail.
10083 */
10084 if (gctx != ctx) {
10085 err = -EINVAL;
10086 goto err_locked;
10087 } else {
10088 perf_event_ctx_unlock(group_leader, gctx);
10089 move_group = 0;
10090 }
10091 }
10092 } else {
10093 mutex_lock(&ctx->mutex);
10094 }
10095
10096 if (ctx->task == TASK_TOMBSTONE) {
10097 err = -ESRCH;
10098 goto err_locked;
10099 }
10100
10101 if (!perf_event_validate_size(event)) {
10102 err = -E2BIG;
10103 goto err_locked;
10104 }
10105
10106 if (!task) {
10107 /*
10108 * Check if the @cpu we're creating an event for is online.
10109 *
10110 * We use the perf_cpu_context::ctx::mutex to serialize against
10111 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10112 */
10113 struct perf_cpu_context *cpuctx =
10114 container_of(ctx, struct perf_cpu_context, ctx);
10115
10116 if (!cpuctx->online) {
10117 err = -ENODEV;
10118 goto err_locked;
10119 }
10120 }
10121
10122
10123 /*
10124 * Must be under the same ctx::mutex as perf_install_in_context(),
10125 * because we need to serialize with concurrent event creation.
10126 */
10127 if (!exclusive_event_installable(event, ctx)) {
10128 /* exclusive and group stuff are assumed mutually exclusive */
10129 WARN_ON_ONCE(move_group);
10130
10131 err = -EBUSY;
10132 goto err_locked;
10133 }
10134
10135 WARN_ON_ONCE(ctx->parent_ctx);
10136
10137 /*
10138 * This is the point on no return; we cannot fail hereafter. This is
10139 * where we start modifying current state.
10140 */
10141
10142 if (move_group) {
10143 /*
10144 * See perf_event_ctx_lock() for comments on the details
10145 * of swizzling perf_event::ctx.
10146 */
10147 perf_remove_from_context(group_leader, 0);
10148 put_ctx(gctx);
10149
10150 list_for_each_entry(sibling, &group_leader->sibling_list,
10151 group_entry) {
10152 perf_remove_from_context(sibling, 0);
10153 put_ctx(gctx);
10154 }
10155
10156 /*
10157 * Wait for everybody to stop referencing the events through
10158 * the old lists, before installing it on new lists.
10159 */
10160 synchronize_rcu();
10161
10162 /*
10163 * Install the group siblings before the group leader.
10164 *
10165 * Because a group leader will try and install the entire group
10166 * (through the sibling list, which is still in-tact), we can
10167 * end up with siblings installed in the wrong context.
10168 *
10169 * By installing siblings first we NO-OP because they're not
10170 * reachable through the group lists.
10171 */
10172 list_for_each_entry(sibling, &group_leader->sibling_list,
10173 group_entry) {
10174 perf_event__state_init(sibling);
10175 perf_install_in_context(ctx, sibling, sibling->cpu);
10176 get_ctx(ctx);
10177 }
10178
10179 /*
10180 * Removing from the context ends up with disabled
10181 * event. What we want here is event in the initial
10182 * startup state, ready to be add into new context.
10183 */
10184 perf_event__state_init(group_leader);
10185 perf_install_in_context(ctx, group_leader, group_leader->cpu);
10186 get_ctx(ctx);
10187 }
10188
10189 /*
10190 * Precalculate sample_data sizes; do while holding ctx::mutex such
10191 * that we're serialized against further additions and before
10192 * perf_install_in_context() which is the point the event is active and
10193 * can use these values.
10194 */
10195 perf_event__header_size(event);
10196 perf_event__id_header_size(event);
10197
10198 event->owner = current;
10199
10200 perf_install_in_context(ctx, event, event->cpu);
10201 perf_unpin_context(ctx);
10202
10203 if (move_group)
10204 perf_event_ctx_unlock(group_leader, gctx);
10205 mutex_unlock(&ctx->mutex);
10206
10207 if (task) {
10208 mutex_unlock(&task->signal->cred_guard_mutex);
10209 put_task_struct(task);
10210 }
10211
10212 mutex_lock(&current->perf_event_mutex);
10213 list_add_tail(&event->owner_entry, &current->perf_event_list);
10214 mutex_unlock(&current->perf_event_mutex);
10215
10216 /*
10217 * Drop the reference on the group_event after placing the
10218 * new event on the sibling_list. This ensures destruction
10219 * of the group leader will find the pointer to itself in
10220 * perf_group_detach().
10221 */
10222 fdput(group);
10223 fd_install(event_fd, event_file);
10224 return event_fd;
10225
10226 err_locked:
10227 if (move_group)
10228 perf_event_ctx_unlock(group_leader, gctx);
10229 mutex_unlock(&ctx->mutex);
10230 /* err_file: */
10231 fput(event_file);
10232 err_context:
10233 perf_unpin_context(ctx);
10234 put_ctx(ctx);
10235 err_alloc:
10236 /*
10237 * If event_file is set, the fput() above will have called ->release()
10238 * and that will take care of freeing the event.
10239 */
10240 if (!event_file)
10241 free_event(event);
10242 err_cred:
10243 if (task)
10244 mutex_unlock(&task->signal->cred_guard_mutex);
10245 err_task:
10246 if (task)
10247 put_task_struct(task);
10248 err_group_fd:
10249 fdput(group);
10250 err_fd:
10251 put_unused_fd(event_fd);
10252 return err;
10253 }
10254
10255 /**
10256 * perf_event_create_kernel_counter
10257 *
10258 * @attr: attributes of the counter to create
10259 * @cpu: cpu in which the counter is bound
10260 * @task: task to profile (NULL for percpu)
10261 */
10262 struct perf_event *
10263 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
10264 struct task_struct *task,
10265 perf_overflow_handler_t overflow_handler,
10266 void *context)
10267 {
10268 struct perf_event_context *ctx;
10269 struct perf_event *event;
10270 int err;
10271
10272 /*
10273 * Get the target context (task or percpu):
10274 */
10275
10276 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
10277 overflow_handler, context, -1);
10278 if (IS_ERR(event)) {
10279 err = PTR_ERR(event);
10280 goto err;
10281 }
10282
10283 /* Mark owner so we could distinguish it from user events. */
10284 event->owner = TASK_TOMBSTONE;
10285
10286 ctx = find_get_context(event->pmu, task, event);
10287 if (IS_ERR(ctx)) {
10288 err = PTR_ERR(ctx);
10289 goto err_free;
10290 }
10291
10292 WARN_ON_ONCE(ctx->parent_ctx);
10293 mutex_lock(&ctx->mutex);
10294 if (ctx->task == TASK_TOMBSTONE) {
10295 err = -ESRCH;
10296 goto err_unlock;
10297 }
10298
10299 if (!task) {
10300 /*
10301 * Check if the @cpu we're creating an event for is online.
10302 *
10303 * We use the perf_cpu_context::ctx::mutex to serialize against
10304 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10305 */
10306 struct perf_cpu_context *cpuctx =
10307 container_of(ctx, struct perf_cpu_context, ctx);
10308 if (!cpuctx->online) {
10309 err = -ENODEV;
10310 goto err_unlock;
10311 }
10312 }
10313
10314 if (!exclusive_event_installable(event, ctx)) {
10315 err = -EBUSY;
10316 goto err_unlock;
10317 }
10318
10319 perf_install_in_context(ctx, event, cpu);
10320 perf_unpin_context(ctx);
10321 mutex_unlock(&ctx->mutex);
10322
10323 return event;
10324
10325 err_unlock:
10326 mutex_unlock(&ctx->mutex);
10327 perf_unpin_context(ctx);
10328 put_ctx(ctx);
10329 err_free:
10330 free_event(event);
10331 err:
10332 return ERR_PTR(err);
10333 }
10334 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
10335
10336 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
10337 {
10338 struct perf_event_context *src_ctx;
10339 struct perf_event_context *dst_ctx;
10340 struct perf_event *event, *tmp;
10341 LIST_HEAD(events);
10342
10343 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
10344 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
10345
10346 /*
10347 * See perf_event_ctx_lock() for comments on the details
10348 * of swizzling perf_event::ctx.
10349 */
10350 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
10351 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
10352 event_entry) {
10353 perf_remove_from_context(event, 0);
10354 unaccount_event_cpu(event, src_cpu);
10355 put_ctx(src_ctx);
10356 list_add(&event->migrate_entry, &events);
10357 }
10358
10359 /*
10360 * Wait for the events to quiesce before re-instating them.
10361 */
10362 synchronize_rcu();
10363
10364 /*
10365 * Re-instate events in 2 passes.
10366 *
10367 * Skip over group leaders and only install siblings on this first
10368 * pass, siblings will not get enabled without a leader, however a
10369 * leader will enable its siblings, even if those are still on the old
10370 * context.
10371 */
10372 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10373 if (event->group_leader == event)
10374 continue;
10375
10376 list_del(&event->migrate_entry);
10377 if (event->state >= PERF_EVENT_STATE_OFF)
10378 event->state = PERF_EVENT_STATE_INACTIVE;
10379 account_event_cpu(event, dst_cpu);
10380 perf_install_in_context(dst_ctx, event, dst_cpu);
10381 get_ctx(dst_ctx);
10382 }
10383
10384 /*
10385 * Once all the siblings are setup properly, install the group leaders
10386 * to make it go.
10387 */
10388 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10389 list_del(&event->migrate_entry);
10390 if (event->state >= PERF_EVENT_STATE_OFF)
10391 event->state = PERF_EVENT_STATE_INACTIVE;
10392 account_event_cpu(event, dst_cpu);
10393 perf_install_in_context(dst_ctx, event, dst_cpu);
10394 get_ctx(dst_ctx);
10395 }
10396 mutex_unlock(&dst_ctx->mutex);
10397 mutex_unlock(&src_ctx->mutex);
10398 }
10399 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
10400
10401 static void sync_child_event(struct perf_event *child_event,
10402 struct task_struct *child)
10403 {
10404 struct perf_event *parent_event = child_event->parent;
10405 u64 child_val;
10406
10407 if (child_event->attr.inherit_stat)
10408 perf_event_read_event(child_event, child);
10409
10410 child_val = perf_event_count(child_event);
10411
10412 /*
10413 * Add back the child's count to the parent's count:
10414 */
10415 atomic64_add(child_val, &parent_event->child_count);
10416 atomic64_add(child_event->total_time_enabled,
10417 &parent_event->child_total_time_enabled);
10418 atomic64_add(child_event->total_time_running,
10419 &parent_event->child_total_time_running);
10420 }
10421
10422 static void
10423 perf_event_exit_event(struct perf_event *child_event,
10424 struct perf_event_context *child_ctx,
10425 struct task_struct *child)
10426 {
10427 struct perf_event *parent_event = child_event->parent;
10428
10429 /*
10430 * Do not destroy the 'original' grouping; because of the context
10431 * switch optimization the original events could've ended up in a
10432 * random child task.
10433 *
10434 * If we were to destroy the original group, all group related
10435 * operations would cease to function properly after this random
10436 * child dies.
10437 *
10438 * Do destroy all inherited groups, we don't care about those
10439 * and being thorough is better.
10440 */
10441 raw_spin_lock_irq(&child_ctx->lock);
10442 WARN_ON_ONCE(child_ctx->is_active);
10443
10444 if (parent_event)
10445 perf_group_detach(child_event);
10446 list_del_event(child_event, child_ctx);
10447 perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */
10448 raw_spin_unlock_irq(&child_ctx->lock);
10449
10450 /*
10451 * Parent events are governed by their filedesc, retain them.
10452 */
10453 if (!parent_event) {
10454 perf_event_wakeup(child_event);
10455 return;
10456 }
10457 /*
10458 * Child events can be cleaned up.
10459 */
10460
10461 sync_child_event(child_event, child);
10462
10463 /*
10464 * Remove this event from the parent's list
10465 */
10466 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
10467 mutex_lock(&parent_event->child_mutex);
10468 list_del_init(&child_event->child_list);
10469 mutex_unlock(&parent_event->child_mutex);
10470
10471 /*
10472 * Kick perf_poll() for is_event_hup().
10473 */
10474 perf_event_wakeup(parent_event);
10475 free_event(child_event);
10476 put_event(parent_event);
10477 }
10478
10479 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
10480 {
10481 struct perf_event_context *child_ctx, *clone_ctx = NULL;
10482 struct perf_event *child_event, *next;
10483
10484 WARN_ON_ONCE(child != current);
10485
10486 child_ctx = perf_pin_task_context(child, ctxn);
10487 if (!child_ctx)
10488 return;
10489
10490 /*
10491 * In order to reduce the amount of tricky in ctx tear-down, we hold
10492 * ctx::mutex over the entire thing. This serializes against almost
10493 * everything that wants to access the ctx.
10494 *
10495 * The exception is sys_perf_event_open() /
10496 * perf_event_create_kernel_count() which does find_get_context()
10497 * without ctx::mutex (it cannot because of the move_group double mutex
10498 * lock thing). See the comments in perf_install_in_context().
10499 */
10500 mutex_lock(&child_ctx->mutex);
10501
10502 /*
10503 * In a single ctx::lock section, de-schedule the events and detach the
10504 * context from the task such that we cannot ever get it scheduled back
10505 * in.
10506 */
10507 raw_spin_lock_irq(&child_ctx->lock);
10508 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
10509
10510 /*
10511 * Now that the context is inactive, destroy the task <-> ctx relation
10512 * and mark the context dead.
10513 */
10514 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
10515 put_ctx(child_ctx); /* cannot be last */
10516 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
10517 put_task_struct(current); /* cannot be last */
10518
10519 clone_ctx = unclone_ctx(child_ctx);
10520 raw_spin_unlock_irq(&child_ctx->lock);
10521
10522 if (clone_ctx)
10523 put_ctx(clone_ctx);
10524
10525 /*
10526 * Report the task dead after unscheduling the events so that we
10527 * won't get any samples after PERF_RECORD_EXIT. We can however still
10528 * get a few PERF_RECORD_READ events.
10529 */
10530 perf_event_task(child, child_ctx, 0);
10531
10532 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
10533 perf_event_exit_event(child_event, child_ctx, child);
10534
10535 mutex_unlock(&child_ctx->mutex);
10536
10537 put_ctx(child_ctx);
10538 }
10539
10540 /*
10541 * When a child task exits, feed back event values to parent events.
10542 *
10543 * Can be called with cred_guard_mutex held when called from
10544 * install_exec_creds().
10545 */
10546 void perf_event_exit_task(struct task_struct *child)
10547 {
10548 struct perf_event *event, *tmp;
10549 int ctxn;
10550
10551 mutex_lock(&child->perf_event_mutex);
10552 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
10553 owner_entry) {
10554 list_del_init(&event->owner_entry);
10555
10556 /*
10557 * Ensure the list deletion is visible before we clear
10558 * the owner, closes a race against perf_release() where
10559 * we need to serialize on the owner->perf_event_mutex.
10560 */
10561 smp_store_release(&event->owner, NULL);
10562 }
10563 mutex_unlock(&child->perf_event_mutex);
10564
10565 for_each_task_context_nr(ctxn)
10566 perf_event_exit_task_context(child, ctxn);
10567
10568 /*
10569 * The perf_event_exit_task_context calls perf_event_task
10570 * with child's task_ctx, which generates EXIT events for
10571 * child contexts and sets child->perf_event_ctxp[] to NULL.
10572 * At this point we need to send EXIT events to cpu contexts.
10573 */
10574 perf_event_task(child, NULL, 0);
10575 }
10576
10577 static void perf_free_event(struct perf_event *event,
10578 struct perf_event_context *ctx)
10579 {
10580 struct perf_event *parent = event->parent;
10581
10582 if (WARN_ON_ONCE(!parent))
10583 return;
10584
10585 mutex_lock(&parent->child_mutex);
10586 list_del_init(&event->child_list);
10587 mutex_unlock(&parent->child_mutex);
10588
10589 put_event(parent);
10590
10591 raw_spin_lock_irq(&ctx->lock);
10592 perf_group_detach(event);
10593 list_del_event(event, ctx);
10594 raw_spin_unlock_irq(&ctx->lock);
10595 free_event(event);
10596 }
10597
10598 /*
10599 * Free an unexposed, unused context as created by inheritance by
10600 * perf_event_init_task below, used by fork() in case of fail.
10601 *
10602 * Not all locks are strictly required, but take them anyway to be nice and
10603 * help out with the lockdep assertions.
10604 */
10605 void perf_event_free_task(struct task_struct *task)
10606 {
10607 struct perf_event_context *ctx;
10608 struct perf_event *event, *tmp;
10609 int ctxn;
10610
10611 for_each_task_context_nr(ctxn) {
10612 ctx = task->perf_event_ctxp[ctxn];
10613 if (!ctx)
10614 continue;
10615
10616 mutex_lock(&ctx->mutex);
10617 raw_spin_lock_irq(&ctx->lock);
10618 /*
10619 * Destroy the task <-> ctx relation and mark the context dead.
10620 *
10621 * This is important because even though the task hasn't been
10622 * exposed yet the context has been (through child_list).
10623 */
10624 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
10625 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
10626 put_task_struct(task); /* cannot be last */
10627 raw_spin_unlock_irq(&ctx->lock);
10628
10629 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
10630 perf_free_event(event, ctx);
10631
10632 mutex_unlock(&ctx->mutex);
10633 put_ctx(ctx);
10634 }
10635 }
10636
10637 void perf_event_delayed_put(struct task_struct *task)
10638 {
10639 int ctxn;
10640
10641 for_each_task_context_nr(ctxn)
10642 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
10643 }
10644
10645 struct file *perf_event_get(unsigned int fd)
10646 {
10647 struct file *file;
10648
10649 file = fget_raw(fd);
10650 if (!file)
10651 return ERR_PTR(-EBADF);
10652
10653 if (file->f_op != &perf_fops) {
10654 fput(file);
10655 return ERR_PTR(-EBADF);
10656 }
10657
10658 return file;
10659 }
10660
10661 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
10662 {
10663 if (!event)
10664 return ERR_PTR(-EINVAL);
10665
10666 return &event->attr;
10667 }
10668
10669 /*
10670 * Inherit a event from parent task to child task.
10671 *
10672 * Returns:
10673 * - valid pointer on success
10674 * - NULL for orphaned events
10675 * - IS_ERR() on error
10676 */
10677 static struct perf_event *
10678 inherit_event(struct perf_event *parent_event,
10679 struct task_struct *parent,
10680 struct perf_event_context *parent_ctx,
10681 struct task_struct *child,
10682 struct perf_event *group_leader,
10683 struct perf_event_context *child_ctx)
10684 {
10685 enum perf_event_state parent_state = parent_event->state;
10686 struct perf_event *child_event;
10687 unsigned long flags;
10688
10689 /*
10690 * Instead of creating recursive hierarchies of events,
10691 * we link inherited events back to the original parent,
10692 * which has a filp for sure, which we use as the reference
10693 * count:
10694 */
10695 if (parent_event->parent)
10696 parent_event = parent_event->parent;
10697
10698 child_event = perf_event_alloc(&parent_event->attr,
10699 parent_event->cpu,
10700 child,
10701 group_leader, parent_event,
10702 NULL, NULL, -1);
10703 if (IS_ERR(child_event))
10704 return child_event;
10705
10706 /*
10707 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
10708 * must be under the same lock in order to serialize against
10709 * perf_event_release_kernel(), such that either we must observe
10710 * is_orphaned_event() or they will observe us on the child_list.
10711 */
10712 mutex_lock(&parent_event->child_mutex);
10713 if (is_orphaned_event(parent_event) ||
10714 !atomic_long_inc_not_zero(&parent_event->refcount)) {
10715 mutex_unlock(&parent_event->child_mutex);
10716 free_event(child_event);
10717 return NULL;
10718 }
10719
10720 get_ctx(child_ctx);
10721
10722 /*
10723 * Make the child state follow the state of the parent event,
10724 * not its attr.disabled bit. We hold the parent's mutex,
10725 * so we won't race with perf_event_{en, dis}able_family.
10726 */
10727 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
10728 child_event->state = PERF_EVENT_STATE_INACTIVE;
10729 else
10730 child_event->state = PERF_EVENT_STATE_OFF;
10731
10732 if (parent_event->attr.freq) {
10733 u64 sample_period = parent_event->hw.sample_period;
10734 struct hw_perf_event *hwc = &child_event->hw;
10735
10736 hwc->sample_period = sample_period;
10737 hwc->last_period = sample_period;
10738
10739 local64_set(&hwc->period_left, sample_period);
10740 }
10741
10742 child_event->ctx = child_ctx;
10743 child_event->overflow_handler = parent_event->overflow_handler;
10744 child_event->overflow_handler_context
10745 = parent_event->overflow_handler_context;
10746
10747 /*
10748 * Precalculate sample_data sizes
10749 */
10750 perf_event__header_size(child_event);
10751 perf_event__id_header_size(child_event);
10752
10753 /*
10754 * Link it up in the child's context:
10755 */
10756 raw_spin_lock_irqsave(&child_ctx->lock, flags);
10757 add_event_to_ctx(child_event, child_ctx);
10758 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
10759
10760 /*
10761 * Link this into the parent event's child list
10762 */
10763 list_add_tail(&child_event->child_list, &parent_event->child_list);
10764 mutex_unlock(&parent_event->child_mutex);
10765
10766 return child_event;
10767 }
10768
10769 /*
10770 * Inherits an event group.
10771 *
10772 * This will quietly suppress orphaned events; !inherit_event() is not an error.
10773 * This matches with perf_event_release_kernel() removing all child events.
10774 *
10775 * Returns:
10776 * - 0 on success
10777 * - <0 on error
10778 */
10779 static int inherit_group(struct perf_event *parent_event,
10780 struct task_struct *parent,
10781 struct perf_event_context *parent_ctx,
10782 struct task_struct *child,
10783 struct perf_event_context *child_ctx)
10784 {
10785 struct perf_event *leader;
10786 struct perf_event *sub;
10787 struct perf_event *child_ctr;
10788
10789 leader = inherit_event(parent_event, parent, parent_ctx,
10790 child, NULL, child_ctx);
10791 if (IS_ERR(leader))
10792 return PTR_ERR(leader);
10793 /*
10794 * @leader can be NULL here because of is_orphaned_event(). In this
10795 * case inherit_event() will create individual events, similar to what
10796 * perf_group_detach() would do anyway.
10797 */
10798 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
10799 child_ctr = inherit_event(sub, parent, parent_ctx,
10800 child, leader, child_ctx);
10801 if (IS_ERR(child_ctr))
10802 return PTR_ERR(child_ctr);
10803 }
10804 return 0;
10805 }
10806
10807 /*
10808 * Creates the child task context and tries to inherit the event-group.
10809 *
10810 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
10811 * inherited_all set when we 'fail' to inherit an orphaned event; this is
10812 * consistent with perf_event_release_kernel() removing all child events.
10813 *
10814 * Returns:
10815 * - 0 on success
10816 * - <0 on error
10817 */
10818 static int
10819 inherit_task_group(struct perf_event *event, struct task_struct *parent,
10820 struct perf_event_context *parent_ctx,
10821 struct task_struct *child, int ctxn,
10822 int *inherited_all)
10823 {
10824 int ret;
10825 struct perf_event_context *child_ctx;
10826
10827 if (!event->attr.inherit) {
10828 *inherited_all = 0;
10829 return 0;
10830 }
10831
10832 child_ctx = child->perf_event_ctxp[ctxn];
10833 if (!child_ctx) {
10834 /*
10835 * This is executed from the parent task context, so
10836 * inherit events that have been marked for cloning.
10837 * First allocate and initialize a context for the
10838 * child.
10839 */
10840 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
10841 if (!child_ctx)
10842 return -ENOMEM;
10843
10844 child->perf_event_ctxp[ctxn] = child_ctx;
10845 }
10846
10847 ret = inherit_group(event, parent, parent_ctx,
10848 child, child_ctx);
10849
10850 if (ret)
10851 *inherited_all = 0;
10852
10853 return ret;
10854 }
10855
10856 /*
10857 * Initialize the perf_event context in task_struct
10858 */
10859 static int perf_event_init_context(struct task_struct *child, int ctxn)
10860 {
10861 struct perf_event_context *child_ctx, *parent_ctx;
10862 struct perf_event_context *cloned_ctx;
10863 struct perf_event *event;
10864 struct task_struct *parent = current;
10865 int inherited_all = 1;
10866 unsigned long flags;
10867 int ret = 0;
10868
10869 if (likely(!parent->perf_event_ctxp[ctxn]))
10870 return 0;
10871
10872 /*
10873 * If the parent's context is a clone, pin it so it won't get
10874 * swapped under us.
10875 */
10876 parent_ctx = perf_pin_task_context(parent, ctxn);
10877 if (!parent_ctx)
10878 return 0;
10879
10880 /*
10881 * No need to check if parent_ctx != NULL here; since we saw
10882 * it non-NULL earlier, the only reason for it to become NULL
10883 * is if we exit, and since we're currently in the middle of
10884 * a fork we can't be exiting at the same time.
10885 */
10886
10887 /*
10888 * Lock the parent list. No need to lock the child - not PID
10889 * hashed yet and not running, so nobody can access it.
10890 */
10891 mutex_lock(&parent_ctx->mutex);
10892
10893 /*
10894 * We dont have to disable NMIs - we are only looking at
10895 * the list, not manipulating it:
10896 */
10897 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
10898 ret = inherit_task_group(event, parent, parent_ctx,
10899 child, ctxn, &inherited_all);
10900 if (ret)
10901 goto out_unlock;
10902 }
10903
10904 /*
10905 * We can't hold ctx->lock when iterating the ->flexible_group list due
10906 * to allocations, but we need to prevent rotation because
10907 * rotate_ctx() will change the list from interrupt context.
10908 */
10909 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10910 parent_ctx->rotate_disable = 1;
10911 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10912
10913 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
10914 ret = inherit_task_group(event, parent, parent_ctx,
10915 child, ctxn, &inherited_all);
10916 if (ret)
10917 goto out_unlock;
10918 }
10919
10920 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10921 parent_ctx->rotate_disable = 0;
10922
10923 child_ctx = child->perf_event_ctxp[ctxn];
10924
10925 if (child_ctx && inherited_all) {
10926 /*
10927 * Mark the child context as a clone of the parent
10928 * context, or of whatever the parent is a clone of.
10929 *
10930 * Note that if the parent is a clone, the holding of
10931 * parent_ctx->lock avoids it from being uncloned.
10932 */
10933 cloned_ctx = parent_ctx->parent_ctx;
10934 if (cloned_ctx) {
10935 child_ctx->parent_ctx = cloned_ctx;
10936 child_ctx->parent_gen = parent_ctx->parent_gen;
10937 } else {
10938 child_ctx->parent_ctx = parent_ctx;
10939 child_ctx->parent_gen = parent_ctx->generation;
10940 }
10941 get_ctx(child_ctx->parent_ctx);
10942 }
10943
10944 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10945 out_unlock:
10946 mutex_unlock(&parent_ctx->mutex);
10947
10948 perf_unpin_context(parent_ctx);
10949 put_ctx(parent_ctx);
10950
10951 return ret;
10952 }
10953
10954 /*
10955 * Initialize the perf_event context in task_struct
10956 */
10957 int perf_event_init_task(struct task_struct *child)
10958 {
10959 int ctxn, ret;
10960
10961 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
10962 mutex_init(&child->perf_event_mutex);
10963 INIT_LIST_HEAD(&child->perf_event_list);
10964
10965 for_each_task_context_nr(ctxn) {
10966 ret = perf_event_init_context(child, ctxn);
10967 if (ret) {
10968 perf_event_free_task(child);
10969 return ret;
10970 }
10971 }
10972
10973 return 0;
10974 }
10975
10976 static void __init perf_event_init_all_cpus(void)
10977 {
10978 struct swevent_htable *swhash;
10979 int cpu;
10980
10981 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
10982
10983 for_each_possible_cpu(cpu) {
10984 swhash = &per_cpu(swevent_htable, cpu);
10985 mutex_init(&swhash->hlist_mutex);
10986 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
10987
10988 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
10989 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
10990
10991 #ifdef CONFIG_CGROUP_PERF
10992 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
10993 #endif
10994 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
10995 }
10996 }
10997
10998 void perf_swevent_init_cpu(unsigned int cpu)
10999 {
11000 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
11001
11002 mutex_lock(&swhash->hlist_mutex);
11003 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
11004 struct swevent_hlist *hlist;
11005
11006 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
11007 WARN_ON(!hlist);
11008 rcu_assign_pointer(swhash->swevent_hlist, hlist);
11009 }
11010 mutex_unlock(&swhash->hlist_mutex);
11011 }
11012
11013 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
11014 static void __perf_event_exit_context(void *__info)
11015 {
11016 struct perf_event_context *ctx = __info;
11017 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
11018 struct perf_event *event;
11019
11020 raw_spin_lock(&ctx->lock);
11021 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
11022 list_for_each_entry(event, &ctx->event_list, event_entry)
11023 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
11024 raw_spin_unlock(&ctx->lock);
11025 }
11026
11027 static void perf_event_exit_cpu_context(int cpu)
11028 {
11029 struct perf_cpu_context *cpuctx;
11030 struct perf_event_context *ctx;
11031 struct pmu *pmu;
11032
11033 mutex_lock(&pmus_lock);
11034 list_for_each_entry(pmu, &pmus, entry) {
11035 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11036 ctx = &cpuctx->ctx;
11037
11038 mutex_lock(&ctx->mutex);
11039 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
11040 cpuctx->online = 0;
11041 mutex_unlock(&ctx->mutex);
11042 }
11043 cpumask_clear_cpu(cpu, perf_online_mask);
11044 mutex_unlock(&pmus_lock);
11045 }
11046 #else
11047
11048 static void perf_event_exit_cpu_context(int cpu) { }
11049
11050 #endif
11051
11052 int perf_event_init_cpu(unsigned int cpu)
11053 {
11054 struct perf_cpu_context *cpuctx;
11055 struct perf_event_context *ctx;
11056 struct pmu *pmu;
11057
11058 perf_swevent_init_cpu(cpu);
11059
11060 mutex_lock(&pmus_lock);
11061 cpumask_set_cpu(cpu, perf_online_mask);
11062 list_for_each_entry(pmu, &pmus, entry) {
11063 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11064 ctx = &cpuctx->ctx;
11065
11066 mutex_lock(&ctx->mutex);
11067 cpuctx->online = 1;
11068 mutex_unlock(&ctx->mutex);
11069 }
11070 mutex_unlock(&pmus_lock);
11071
11072 return 0;
11073 }
11074
11075 int perf_event_exit_cpu(unsigned int cpu)
11076 {
11077 perf_event_exit_cpu_context(cpu);
11078 return 0;
11079 }
11080
11081 static int
11082 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
11083 {
11084 int cpu;
11085
11086 for_each_online_cpu(cpu)
11087 perf_event_exit_cpu(cpu);
11088
11089 return NOTIFY_OK;
11090 }
11091
11092 /*
11093 * Run the perf reboot notifier at the very last possible moment so that
11094 * the generic watchdog code runs as long as possible.
11095 */
11096 static struct notifier_block perf_reboot_notifier = {
11097 .notifier_call = perf_reboot,
11098 .priority = INT_MIN,
11099 };
11100
11101 void __init perf_event_init(void)
11102 {
11103 int ret;
11104
11105 idr_init(&pmu_idr);
11106
11107 perf_event_init_all_cpus();
11108 init_srcu_struct(&pmus_srcu);
11109 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
11110 perf_pmu_register(&perf_cpu_clock, NULL, -1);
11111 perf_pmu_register(&perf_task_clock, NULL, -1);
11112 perf_tp_register();
11113 perf_event_init_cpu(smp_processor_id());
11114 register_reboot_notifier(&perf_reboot_notifier);
11115
11116 ret = init_hw_breakpoint();
11117 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
11118
11119 /*
11120 * Build time assertion that we keep the data_head at the intended
11121 * location. IOW, validation we got the __reserved[] size right.
11122 */
11123 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
11124 != 1024);
11125 }
11126
11127 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
11128 char *page)
11129 {
11130 struct perf_pmu_events_attr *pmu_attr =
11131 container_of(attr, struct perf_pmu_events_attr, attr);
11132
11133 if (pmu_attr->event_str)
11134 return sprintf(page, "%s\n", pmu_attr->event_str);
11135
11136 return 0;
11137 }
11138 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
11139
11140 static int __init perf_event_sysfs_init(void)
11141 {
11142 struct pmu *pmu;
11143 int ret;
11144
11145 mutex_lock(&pmus_lock);
11146
11147 ret = bus_register(&pmu_bus);
11148 if (ret)
11149 goto unlock;
11150
11151 list_for_each_entry(pmu, &pmus, entry) {
11152 if (!pmu->name || pmu->type < 0)
11153 continue;
11154
11155 ret = pmu_dev_alloc(pmu);
11156 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
11157 }
11158 pmu_bus_running = 1;
11159 ret = 0;
11160
11161 unlock:
11162 mutex_unlock(&pmus_lock);
11163
11164 return ret;
11165 }
11166 device_initcall(perf_event_sysfs_init);
11167
11168 #ifdef CONFIG_CGROUP_PERF
11169 static struct cgroup_subsys_state *
11170 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
11171 {
11172 struct perf_cgroup *jc;
11173
11174 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
11175 if (!jc)
11176 return ERR_PTR(-ENOMEM);
11177
11178 jc->info = alloc_percpu(struct perf_cgroup_info);
11179 if (!jc->info) {
11180 kfree(jc);
11181 return ERR_PTR(-ENOMEM);
11182 }
11183
11184 return &jc->css;
11185 }
11186
11187 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
11188 {
11189 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
11190
11191 free_percpu(jc->info);
11192 kfree(jc);
11193 }
11194
11195 static int __perf_cgroup_move(void *info)
11196 {
11197 struct task_struct *task = info;
11198 rcu_read_lock();
11199 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
11200 rcu_read_unlock();
11201 return 0;
11202 }
11203
11204 static void perf_cgroup_attach(struct cgroup_taskset *tset)
11205 {
11206 struct task_struct *task;
11207 struct cgroup_subsys_state *css;
11208
11209 cgroup_taskset_for_each(task, css, tset)
11210 task_function_call(task, __perf_cgroup_move, task);
11211 }
11212
11213 struct cgroup_subsys perf_event_cgrp_subsys = {
11214 .css_alloc = perf_cgroup_css_alloc,
11215 .css_free = perf_cgroup_css_free,
11216 .attach = perf_cgroup_attach,
11217 /*
11218 * Implicitly enable on dfl hierarchy so that perf events can
11219 * always be filtered by cgroup2 path as long as perf_event
11220 * controller is not mounted on a legacy hierarchy.
11221 */
11222 .implicit_on_dfl = true,
11223 .threaded = true,
11224 };
11225 #endif /* CONFIG_CGROUP_PERF */