]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - kernel/events/core.c
Merge branch 'perf-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-eoan-kernel.git] / kernel / events / core.c
1 /*
2 * Performance events core code:
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/perf_event.h>
38 #include <linux/ftrace_event.h>
39 #include <linux/hw_breakpoint.h>
40 #include <linux/mm_types.h>
41 #include <linux/cgroup.h>
42 #include <linux/module.h>
43
44 #include "internal.h"
45
46 #include <asm/irq_regs.h>
47
48 struct remote_function_call {
49 struct task_struct *p;
50 int (*func)(void *info);
51 void *info;
52 int ret;
53 };
54
55 static void remote_function(void *data)
56 {
57 struct remote_function_call *tfc = data;
58 struct task_struct *p = tfc->p;
59
60 if (p) {
61 tfc->ret = -EAGAIN;
62 if (task_cpu(p) != smp_processor_id() || !task_curr(p))
63 return;
64 }
65
66 tfc->ret = tfc->func(tfc->info);
67 }
68
69 /**
70 * task_function_call - call a function on the cpu on which a task runs
71 * @p: the task to evaluate
72 * @func: the function to be called
73 * @info: the function call argument
74 *
75 * Calls the function @func when the task is currently running. This might
76 * be on the current CPU, which just calls the function directly
77 *
78 * returns: @func return value, or
79 * -ESRCH - when the process isn't running
80 * -EAGAIN - when the process moved away
81 */
82 static int
83 task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
84 {
85 struct remote_function_call data = {
86 .p = p,
87 .func = func,
88 .info = info,
89 .ret = -ESRCH, /* No such (running) process */
90 };
91
92 if (task_curr(p))
93 smp_call_function_single(task_cpu(p), remote_function, &data, 1);
94
95 return data.ret;
96 }
97
98 /**
99 * cpu_function_call - call a function on the cpu
100 * @func: the function to be called
101 * @info: the function call argument
102 *
103 * Calls the function @func on the remote cpu.
104 *
105 * returns: @func return value or -ENXIO when the cpu is offline
106 */
107 static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
108 {
109 struct remote_function_call data = {
110 .p = NULL,
111 .func = func,
112 .info = info,
113 .ret = -ENXIO, /* No such CPU */
114 };
115
116 smp_call_function_single(cpu, remote_function, &data, 1);
117
118 return data.ret;
119 }
120
121 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
122 PERF_FLAG_FD_OUTPUT |\
123 PERF_FLAG_PID_CGROUP |\
124 PERF_FLAG_FD_CLOEXEC)
125
126 /*
127 * branch priv levels that need permission checks
128 */
129 #define PERF_SAMPLE_BRANCH_PERM_PLM \
130 (PERF_SAMPLE_BRANCH_KERNEL |\
131 PERF_SAMPLE_BRANCH_HV)
132
133 enum event_type_t {
134 EVENT_FLEXIBLE = 0x1,
135 EVENT_PINNED = 0x2,
136 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
137 };
138
139 /*
140 * perf_sched_events : >0 events exist
141 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
142 */
143 struct static_key_deferred perf_sched_events __read_mostly;
144 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
145 static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events);
146
147 static atomic_t nr_mmap_events __read_mostly;
148 static atomic_t nr_comm_events __read_mostly;
149 static atomic_t nr_task_events __read_mostly;
150 static atomic_t nr_freq_events __read_mostly;
151
152 static LIST_HEAD(pmus);
153 static DEFINE_MUTEX(pmus_lock);
154 static struct srcu_struct pmus_srcu;
155
156 /*
157 * perf event paranoia level:
158 * -1 - not paranoid at all
159 * 0 - disallow raw tracepoint access for unpriv
160 * 1 - disallow cpu events for unpriv
161 * 2 - disallow kernel profiling for unpriv
162 */
163 int sysctl_perf_event_paranoid __read_mostly = 1;
164
165 /* Minimum for 512 kiB + 1 user control page */
166 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
167
168 /*
169 * max perf event sample rate
170 */
171 #define DEFAULT_MAX_SAMPLE_RATE 100000
172 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
173 #define DEFAULT_CPU_TIME_MAX_PERCENT 25
174
175 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
176
177 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
178 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
179
180 static int perf_sample_allowed_ns __read_mostly =
181 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
182
183 void update_perf_cpu_limits(void)
184 {
185 u64 tmp = perf_sample_period_ns;
186
187 tmp *= sysctl_perf_cpu_time_max_percent;
188 do_div(tmp, 100);
189 ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
190 }
191
192 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
193
194 int perf_proc_update_handler(struct ctl_table *table, int write,
195 void __user *buffer, size_t *lenp,
196 loff_t *ppos)
197 {
198 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
199
200 if (ret || !write)
201 return ret;
202
203 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
204 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
205 update_perf_cpu_limits();
206
207 return 0;
208 }
209
210 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
211
212 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
213 void __user *buffer, size_t *lenp,
214 loff_t *ppos)
215 {
216 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
217
218 if (ret || !write)
219 return ret;
220
221 update_perf_cpu_limits();
222
223 return 0;
224 }
225
226 /*
227 * perf samples are done in some very critical code paths (NMIs).
228 * If they take too much CPU time, the system can lock up and not
229 * get any real work done. This will drop the sample rate when
230 * we detect that events are taking too long.
231 */
232 #define NR_ACCUMULATED_SAMPLES 128
233 static DEFINE_PER_CPU(u64, running_sample_length);
234
235 static void perf_duration_warn(struct irq_work *w)
236 {
237 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
238 u64 avg_local_sample_len;
239 u64 local_samples_len;
240
241 local_samples_len = __get_cpu_var(running_sample_length);
242 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
243
244 printk_ratelimited(KERN_WARNING
245 "perf interrupt took too long (%lld > %lld), lowering "
246 "kernel.perf_event_max_sample_rate to %d\n",
247 avg_local_sample_len, allowed_ns >> 1,
248 sysctl_perf_event_sample_rate);
249 }
250
251 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
252
253 void perf_sample_event_took(u64 sample_len_ns)
254 {
255 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
256 u64 avg_local_sample_len;
257 u64 local_samples_len;
258
259 if (allowed_ns == 0)
260 return;
261
262 /* decay the counter by 1 average sample */
263 local_samples_len = __get_cpu_var(running_sample_length);
264 local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
265 local_samples_len += sample_len_ns;
266 __get_cpu_var(running_sample_length) = local_samples_len;
267
268 /*
269 * note: this will be biased artifically low until we have
270 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
271 * from having to maintain a count.
272 */
273 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
274
275 if (avg_local_sample_len <= allowed_ns)
276 return;
277
278 if (max_samples_per_tick <= 1)
279 return;
280
281 max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
282 sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
283 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
284
285 update_perf_cpu_limits();
286
287 if (!irq_work_queue(&perf_duration_work)) {
288 early_printk("perf interrupt took too long (%lld > %lld), lowering "
289 "kernel.perf_event_max_sample_rate to %d\n",
290 avg_local_sample_len, allowed_ns >> 1,
291 sysctl_perf_event_sample_rate);
292 }
293 }
294
295 static atomic64_t perf_event_id;
296
297 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
298 enum event_type_t event_type);
299
300 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
301 enum event_type_t event_type,
302 struct task_struct *task);
303
304 static void update_context_time(struct perf_event_context *ctx);
305 static u64 perf_event_time(struct perf_event *event);
306
307 void __weak perf_event_print_debug(void) { }
308
309 extern __weak const char *perf_pmu_name(void)
310 {
311 return "pmu";
312 }
313
314 static inline u64 perf_clock(void)
315 {
316 return local_clock();
317 }
318
319 static inline struct perf_cpu_context *
320 __get_cpu_context(struct perf_event_context *ctx)
321 {
322 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
323 }
324
325 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
326 struct perf_event_context *ctx)
327 {
328 raw_spin_lock(&cpuctx->ctx.lock);
329 if (ctx)
330 raw_spin_lock(&ctx->lock);
331 }
332
333 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
334 struct perf_event_context *ctx)
335 {
336 if (ctx)
337 raw_spin_unlock(&ctx->lock);
338 raw_spin_unlock(&cpuctx->ctx.lock);
339 }
340
341 #ifdef CONFIG_CGROUP_PERF
342
343 /*
344 * perf_cgroup_info keeps track of time_enabled for a cgroup.
345 * This is a per-cpu dynamically allocated data structure.
346 */
347 struct perf_cgroup_info {
348 u64 time;
349 u64 timestamp;
350 };
351
352 struct perf_cgroup {
353 struct cgroup_subsys_state css;
354 struct perf_cgroup_info __percpu *info;
355 };
356
357 /*
358 * Must ensure cgroup is pinned (css_get) before calling
359 * this function. In other words, we cannot call this function
360 * if there is no cgroup event for the current CPU context.
361 */
362 static inline struct perf_cgroup *
363 perf_cgroup_from_task(struct task_struct *task)
364 {
365 return container_of(task_css(task, perf_event_cgrp_id),
366 struct perf_cgroup, css);
367 }
368
369 static inline bool
370 perf_cgroup_match(struct perf_event *event)
371 {
372 struct perf_event_context *ctx = event->ctx;
373 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
374
375 /* @event doesn't care about cgroup */
376 if (!event->cgrp)
377 return true;
378
379 /* wants specific cgroup scope but @cpuctx isn't associated with any */
380 if (!cpuctx->cgrp)
381 return false;
382
383 /*
384 * Cgroup scoping is recursive. An event enabled for a cgroup is
385 * also enabled for all its descendant cgroups. If @cpuctx's
386 * cgroup is a descendant of @event's (the test covers identity
387 * case), it's a match.
388 */
389 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
390 event->cgrp->css.cgroup);
391 }
392
393 static inline void perf_put_cgroup(struct perf_event *event)
394 {
395 css_put(&event->cgrp->css);
396 }
397
398 static inline void perf_detach_cgroup(struct perf_event *event)
399 {
400 perf_put_cgroup(event);
401 event->cgrp = NULL;
402 }
403
404 static inline int is_cgroup_event(struct perf_event *event)
405 {
406 return event->cgrp != NULL;
407 }
408
409 static inline u64 perf_cgroup_event_time(struct perf_event *event)
410 {
411 struct perf_cgroup_info *t;
412
413 t = per_cpu_ptr(event->cgrp->info, event->cpu);
414 return t->time;
415 }
416
417 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
418 {
419 struct perf_cgroup_info *info;
420 u64 now;
421
422 now = perf_clock();
423
424 info = this_cpu_ptr(cgrp->info);
425
426 info->time += now - info->timestamp;
427 info->timestamp = now;
428 }
429
430 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
431 {
432 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
433 if (cgrp_out)
434 __update_cgrp_time(cgrp_out);
435 }
436
437 static inline void update_cgrp_time_from_event(struct perf_event *event)
438 {
439 struct perf_cgroup *cgrp;
440
441 /*
442 * ensure we access cgroup data only when needed and
443 * when we know the cgroup is pinned (css_get)
444 */
445 if (!is_cgroup_event(event))
446 return;
447
448 cgrp = perf_cgroup_from_task(current);
449 /*
450 * Do not update time when cgroup is not active
451 */
452 if (cgrp == event->cgrp)
453 __update_cgrp_time(event->cgrp);
454 }
455
456 static inline void
457 perf_cgroup_set_timestamp(struct task_struct *task,
458 struct perf_event_context *ctx)
459 {
460 struct perf_cgroup *cgrp;
461 struct perf_cgroup_info *info;
462
463 /*
464 * ctx->lock held by caller
465 * ensure we do not access cgroup data
466 * unless we have the cgroup pinned (css_get)
467 */
468 if (!task || !ctx->nr_cgroups)
469 return;
470
471 cgrp = perf_cgroup_from_task(task);
472 info = this_cpu_ptr(cgrp->info);
473 info->timestamp = ctx->timestamp;
474 }
475
476 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
477 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
478
479 /*
480 * reschedule events based on the cgroup constraint of task.
481 *
482 * mode SWOUT : schedule out everything
483 * mode SWIN : schedule in based on cgroup for next
484 */
485 void perf_cgroup_switch(struct task_struct *task, int mode)
486 {
487 struct perf_cpu_context *cpuctx;
488 struct pmu *pmu;
489 unsigned long flags;
490
491 /*
492 * disable interrupts to avoid geting nr_cgroup
493 * changes via __perf_event_disable(). Also
494 * avoids preemption.
495 */
496 local_irq_save(flags);
497
498 /*
499 * we reschedule only in the presence of cgroup
500 * constrained events.
501 */
502 rcu_read_lock();
503
504 list_for_each_entry_rcu(pmu, &pmus, entry) {
505 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
506 if (cpuctx->unique_pmu != pmu)
507 continue; /* ensure we process each cpuctx once */
508
509 /*
510 * perf_cgroup_events says at least one
511 * context on this CPU has cgroup events.
512 *
513 * ctx->nr_cgroups reports the number of cgroup
514 * events for a context.
515 */
516 if (cpuctx->ctx.nr_cgroups > 0) {
517 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
518 perf_pmu_disable(cpuctx->ctx.pmu);
519
520 if (mode & PERF_CGROUP_SWOUT) {
521 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
522 /*
523 * must not be done before ctxswout due
524 * to event_filter_match() in event_sched_out()
525 */
526 cpuctx->cgrp = NULL;
527 }
528
529 if (mode & PERF_CGROUP_SWIN) {
530 WARN_ON_ONCE(cpuctx->cgrp);
531 /*
532 * set cgrp before ctxsw in to allow
533 * event_filter_match() to not have to pass
534 * task around
535 */
536 cpuctx->cgrp = perf_cgroup_from_task(task);
537 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
538 }
539 perf_pmu_enable(cpuctx->ctx.pmu);
540 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
541 }
542 }
543
544 rcu_read_unlock();
545
546 local_irq_restore(flags);
547 }
548
549 static inline void perf_cgroup_sched_out(struct task_struct *task,
550 struct task_struct *next)
551 {
552 struct perf_cgroup *cgrp1;
553 struct perf_cgroup *cgrp2 = NULL;
554
555 /*
556 * we come here when we know perf_cgroup_events > 0
557 */
558 cgrp1 = perf_cgroup_from_task(task);
559
560 /*
561 * next is NULL when called from perf_event_enable_on_exec()
562 * that will systematically cause a cgroup_switch()
563 */
564 if (next)
565 cgrp2 = perf_cgroup_from_task(next);
566
567 /*
568 * only schedule out current cgroup events if we know
569 * that we are switching to a different cgroup. Otherwise,
570 * do no touch the cgroup events.
571 */
572 if (cgrp1 != cgrp2)
573 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
574 }
575
576 static inline void perf_cgroup_sched_in(struct task_struct *prev,
577 struct task_struct *task)
578 {
579 struct perf_cgroup *cgrp1;
580 struct perf_cgroup *cgrp2 = NULL;
581
582 /*
583 * we come here when we know perf_cgroup_events > 0
584 */
585 cgrp1 = perf_cgroup_from_task(task);
586
587 /* prev can never be NULL */
588 cgrp2 = perf_cgroup_from_task(prev);
589
590 /*
591 * only need to schedule in cgroup events if we are changing
592 * cgroup during ctxsw. Cgroup events were not scheduled
593 * out of ctxsw out if that was not the case.
594 */
595 if (cgrp1 != cgrp2)
596 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
597 }
598
599 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
600 struct perf_event_attr *attr,
601 struct perf_event *group_leader)
602 {
603 struct perf_cgroup *cgrp;
604 struct cgroup_subsys_state *css;
605 struct fd f = fdget(fd);
606 int ret = 0;
607
608 if (!f.file)
609 return -EBADF;
610
611 css = css_tryget_online_from_dir(f.file->f_dentry,
612 &perf_event_cgrp_subsys);
613 if (IS_ERR(css)) {
614 ret = PTR_ERR(css);
615 goto out;
616 }
617
618 cgrp = container_of(css, struct perf_cgroup, css);
619 event->cgrp = cgrp;
620
621 /*
622 * all events in a group must monitor
623 * the same cgroup because a task belongs
624 * to only one perf cgroup at a time
625 */
626 if (group_leader && group_leader->cgrp != cgrp) {
627 perf_detach_cgroup(event);
628 ret = -EINVAL;
629 }
630 out:
631 fdput(f);
632 return ret;
633 }
634
635 static inline void
636 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
637 {
638 struct perf_cgroup_info *t;
639 t = per_cpu_ptr(event->cgrp->info, event->cpu);
640 event->shadow_ctx_time = now - t->timestamp;
641 }
642
643 static inline void
644 perf_cgroup_defer_enabled(struct perf_event *event)
645 {
646 /*
647 * when the current task's perf cgroup does not match
648 * the event's, we need to remember to call the
649 * perf_mark_enable() function the first time a task with
650 * a matching perf cgroup is scheduled in.
651 */
652 if (is_cgroup_event(event) && !perf_cgroup_match(event))
653 event->cgrp_defer_enabled = 1;
654 }
655
656 static inline void
657 perf_cgroup_mark_enabled(struct perf_event *event,
658 struct perf_event_context *ctx)
659 {
660 struct perf_event *sub;
661 u64 tstamp = perf_event_time(event);
662
663 if (!event->cgrp_defer_enabled)
664 return;
665
666 event->cgrp_defer_enabled = 0;
667
668 event->tstamp_enabled = tstamp - event->total_time_enabled;
669 list_for_each_entry(sub, &event->sibling_list, group_entry) {
670 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
671 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
672 sub->cgrp_defer_enabled = 0;
673 }
674 }
675 }
676 #else /* !CONFIG_CGROUP_PERF */
677
678 static inline bool
679 perf_cgroup_match(struct perf_event *event)
680 {
681 return true;
682 }
683
684 static inline void perf_detach_cgroup(struct perf_event *event)
685 {}
686
687 static inline int is_cgroup_event(struct perf_event *event)
688 {
689 return 0;
690 }
691
692 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
693 {
694 return 0;
695 }
696
697 static inline void update_cgrp_time_from_event(struct perf_event *event)
698 {
699 }
700
701 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
702 {
703 }
704
705 static inline void perf_cgroup_sched_out(struct task_struct *task,
706 struct task_struct *next)
707 {
708 }
709
710 static inline void perf_cgroup_sched_in(struct task_struct *prev,
711 struct task_struct *task)
712 {
713 }
714
715 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
716 struct perf_event_attr *attr,
717 struct perf_event *group_leader)
718 {
719 return -EINVAL;
720 }
721
722 static inline void
723 perf_cgroup_set_timestamp(struct task_struct *task,
724 struct perf_event_context *ctx)
725 {
726 }
727
728 void
729 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
730 {
731 }
732
733 static inline void
734 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
735 {
736 }
737
738 static inline u64 perf_cgroup_event_time(struct perf_event *event)
739 {
740 return 0;
741 }
742
743 static inline void
744 perf_cgroup_defer_enabled(struct perf_event *event)
745 {
746 }
747
748 static inline void
749 perf_cgroup_mark_enabled(struct perf_event *event,
750 struct perf_event_context *ctx)
751 {
752 }
753 #endif
754
755 /*
756 * set default to be dependent on timer tick just
757 * like original code
758 */
759 #define PERF_CPU_HRTIMER (1000 / HZ)
760 /*
761 * function must be called with interrupts disbled
762 */
763 static enum hrtimer_restart perf_cpu_hrtimer_handler(struct hrtimer *hr)
764 {
765 struct perf_cpu_context *cpuctx;
766 enum hrtimer_restart ret = HRTIMER_NORESTART;
767 int rotations = 0;
768
769 WARN_ON(!irqs_disabled());
770
771 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
772
773 rotations = perf_rotate_context(cpuctx);
774
775 /*
776 * arm timer if needed
777 */
778 if (rotations) {
779 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
780 ret = HRTIMER_RESTART;
781 }
782
783 return ret;
784 }
785
786 /* CPU is going down */
787 void perf_cpu_hrtimer_cancel(int cpu)
788 {
789 struct perf_cpu_context *cpuctx;
790 struct pmu *pmu;
791 unsigned long flags;
792
793 if (WARN_ON(cpu != smp_processor_id()))
794 return;
795
796 local_irq_save(flags);
797
798 rcu_read_lock();
799
800 list_for_each_entry_rcu(pmu, &pmus, entry) {
801 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
802
803 if (pmu->task_ctx_nr == perf_sw_context)
804 continue;
805
806 hrtimer_cancel(&cpuctx->hrtimer);
807 }
808
809 rcu_read_unlock();
810
811 local_irq_restore(flags);
812 }
813
814 static void __perf_cpu_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
815 {
816 struct hrtimer *hr = &cpuctx->hrtimer;
817 struct pmu *pmu = cpuctx->ctx.pmu;
818 int timer;
819
820 /* no multiplexing needed for SW PMU */
821 if (pmu->task_ctx_nr == perf_sw_context)
822 return;
823
824 /*
825 * check default is sane, if not set then force to
826 * default interval (1/tick)
827 */
828 timer = pmu->hrtimer_interval_ms;
829 if (timer < 1)
830 timer = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
831
832 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
833
834 hrtimer_init(hr, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
835 hr->function = perf_cpu_hrtimer_handler;
836 }
837
838 static void perf_cpu_hrtimer_restart(struct perf_cpu_context *cpuctx)
839 {
840 struct hrtimer *hr = &cpuctx->hrtimer;
841 struct pmu *pmu = cpuctx->ctx.pmu;
842
843 /* not for SW PMU */
844 if (pmu->task_ctx_nr == perf_sw_context)
845 return;
846
847 if (hrtimer_active(hr))
848 return;
849
850 if (!hrtimer_callback_running(hr))
851 __hrtimer_start_range_ns(hr, cpuctx->hrtimer_interval,
852 0, HRTIMER_MODE_REL_PINNED, 0);
853 }
854
855 void perf_pmu_disable(struct pmu *pmu)
856 {
857 int *count = this_cpu_ptr(pmu->pmu_disable_count);
858 if (!(*count)++)
859 pmu->pmu_disable(pmu);
860 }
861
862 void perf_pmu_enable(struct pmu *pmu)
863 {
864 int *count = this_cpu_ptr(pmu->pmu_disable_count);
865 if (!--(*count))
866 pmu->pmu_enable(pmu);
867 }
868
869 static DEFINE_PER_CPU(struct list_head, rotation_list);
870
871 /*
872 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
873 * because they're strictly cpu affine and rotate_start is called with IRQs
874 * disabled, while rotate_context is called from IRQ context.
875 */
876 static void perf_pmu_rotate_start(struct pmu *pmu)
877 {
878 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
879 struct list_head *head = &__get_cpu_var(rotation_list);
880
881 WARN_ON(!irqs_disabled());
882
883 if (list_empty(&cpuctx->rotation_list))
884 list_add(&cpuctx->rotation_list, head);
885 }
886
887 static void get_ctx(struct perf_event_context *ctx)
888 {
889 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
890 }
891
892 static void put_ctx(struct perf_event_context *ctx)
893 {
894 if (atomic_dec_and_test(&ctx->refcount)) {
895 if (ctx->parent_ctx)
896 put_ctx(ctx->parent_ctx);
897 if (ctx->task)
898 put_task_struct(ctx->task);
899 kfree_rcu(ctx, rcu_head);
900 }
901 }
902
903 static void unclone_ctx(struct perf_event_context *ctx)
904 {
905 if (ctx->parent_ctx) {
906 put_ctx(ctx->parent_ctx);
907 ctx->parent_ctx = NULL;
908 }
909 ctx->generation++;
910 }
911
912 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
913 {
914 /*
915 * only top level events have the pid namespace they were created in
916 */
917 if (event->parent)
918 event = event->parent;
919
920 return task_tgid_nr_ns(p, event->ns);
921 }
922
923 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
924 {
925 /*
926 * only top level events have the pid namespace they were created in
927 */
928 if (event->parent)
929 event = event->parent;
930
931 return task_pid_nr_ns(p, event->ns);
932 }
933
934 /*
935 * If we inherit events we want to return the parent event id
936 * to userspace.
937 */
938 static u64 primary_event_id(struct perf_event *event)
939 {
940 u64 id = event->id;
941
942 if (event->parent)
943 id = event->parent->id;
944
945 return id;
946 }
947
948 /*
949 * Get the perf_event_context for a task and lock it.
950 * This has to cope with with the fact that until it is locked,
951 * the context could get moved to another task.
952 */
953 static struct perf_event_context *
954 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
955 {
956 struct perf_event_context *ctx;
957
958 retry:
959 /*
960 * One of the few rules of preemptible RCU is that one cannot do
961 * rcu_read_unlock() while holding a scheduler (or nested) lock when
962 * part of the read side critical section was preemptible -- see
963 * rcu_read_unlock_special().
964 *
965 * Since ctx->lock nests under rq->lock we must ensure the entire read
966 * side critical section is non-preemptible.
967 */
968 preempt_disable();
969 rcu_read_lock();
970 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
971 if (ctx) {
972 /*
973 * If this context is a clone of another, it might
974 * get swapped for another underneath us by
975 * perf_event_task_sched_out, though the
976 * rcu_read_lock() protects us from any context
977 * getting freed. Lock the context and check if it
978 * got swapped before we could get the lock, and retry
979 * if so. If we locked the right context, then it
980 * can't get swapped on us any more.
981 */
982 raw_spin_lock_irqsave(&ctx->lock, *flags);
983 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
984 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
985 rcu_read_unlock();
986 preempt_enable();
987 goto retry;
988 }
989
990 if (!atomic_inc_not_zero(&ctx->refcount)) {
991 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
992 ctx = NULL;
993 }
994 }
995 rcu_read_unlock();
996 preempt_enable();
997 return ctx;
998 }
999
1000 /*
1001 * Get the context for a task and increment its pin_count so it
1002 * can't get swapped to another task. This also increments its
1003 * reference count so that the context can't get freed.
1004 */
1005 static struct perf_event_context *
1006 perf_pin_task_context(struct task_struct *task, int ctxn)
1007 {
1008 struct perf_event_context *ctx;
1009 unsigned long flags;
1010
1011 ctx = perf_lock_task_context(task, ctxn, &flags);
1012 if (ctx) {
1013 ++ctx->pin_count;
1014 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1015 }
1016 return ctx;
1017 }
1018
1019 static void perf_unpin_context(struct perf_event_context *ctx)
1020 {
1021 unsigned long flags;
1022
1023 raw_spin_lock_irqsave(&ctx->lock, flags);
1024 --ctx->pin_count;
1025 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1026 }
1027
1028 /*
1029 * Update the record of the current time in a context.
1030 */
1031 static void update_context_time(struct perf_event_context *ctx)
1032 {
1033 u64 now = perf_clock();
1034
1035 ctx->time += now - ctx->timestamp;
1036 ctx->timestamp = now;
1037 }
1038
1039 static u64 perf_event_time(struct perf_event *event)
1040 {
1041 struct perf_event_context *ctx = event->ctx;
1042
1043 if (is_cgroup_event(event))
1044 return perf_cgroup_event_time(event);
1045
1046 return ctx ? ctx->time : 0;
1047 }
1048
1049 /*
1050 * Update the total_time_enabled and total_time_running fields for a event.
1051 * The caller of this function needs to hold the ctx->lock.
1052 */
1053 static void update_event_times(struct perf_event *event)
1054 {
1055 struct perf_event_context *ctx = event->ctx;
1056 u64 run_end;
1057
1058 if (event->state < PERF_EVENT_STATE_INACTIVE ||
1059 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1060 return;
1061 /*
1062 * in cgroup mode, time_enabled represents
1063 * the time the event was enabled AND active
1064 * tasks were in the monitored cgroup. This is
1065 * independent of the activity of the context as
1066 * there may be a mix of cgroup and non-cgroup events.
1067 *
1068 * That is why we treat cgroup events differently
1069 * here.
1070 */
1071 if (is_cgroup_event(event))
1072 run_end = perf_cgroup_event_time(event);
1073 else if (ctx->is_active)
1074 run_end = ctx->time;
1075 else
1076 run_end = event->tstamp_stopped;
1077
1078 event->total_time_enabled = run_end - event->tstamp_enabled;
1079
1080 if (event->state == PERF_EVENT_STATE_INACTIVE)
1081 run_end = event->tstamp_stopped;
1082 else
1083 run_end = perf_event_time(event);
1084
1085 event->total_time_running = run_end - event->tstamp_running;
1086
1087 }
1088
1089 /*
1090 * Update total_time_enabled and total_time_running for all events in a group.
1091 */
1092 static void update_group_times(struct perf_event *leader)
1093 {
1094 struct perf_event *event;
1095
1096 update_event_times(leader);
1097 list_for_each_entry(event, &leader->sibling_list, group_entry)
1098 update_event_times(event);
1099 }
1100
1101 static struct list_head *
1102 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1103 {
1104 if (event->attr.pinned)
1105 return &ctx->pinned_groups;
1106 else
1107 return &ctx->flexible_groups;
1108 }
1109
1110 /*
1111 * Add a event from the lists for its context.
1112 * Must be called with ctx->mutex and ctx->lock held.
1113 */
1114 static void
1115 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1116 {
1117 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1118 event->attach_state |= PERF_ATTACH_CONTEXT;
1119
1120 /*
1121 * If we're a stand alone event or group leader, we go to the context
1122 * list, group events are kept attached to the group so that
1123 * perf_group_detach can, at all times, locate all siblings.
1124 */
1125 if (event->group_leader == event) {
1126 struct list_head *list;
1127
1128 if (is_software_event(event))
1129 event->group_flags |= PERF_GROUP_SOFTWARE;
1130
1131 list = ctx_group_list(event, ctx);
1132 list_add_tail(&event->group_entry, list);
1133 }
1134
1135 if (is_cgroup_event(event))
1136 ctx->nr_cgroups++;
1137
1138 if (has_branch_stack(event))
1139 ctx->nr_branch_stack++;
1140
1141 list_add_rcu(&event->event_entry, &ctx->event_list);
1142 if (!ctx->nr_events)
1143 perf_pmu_rotate_start(ctx->pmu);
1144 ctx->nr_events++;
1145 if (event->attr.inherit_stat)
1146 ctx->nr_stat++;
1147
1148 ctx->generation++;
1149 }
1150
1151 /*
1152 * Initialize event state based on the perf_event_attr::disabled.
1153 */
1154 static inline void perf_event__state_init(struct perf_event *event)
1155 {
1156 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1157 PERF_EVENT_STATE_INACTIVE;
1158 }
1159
1160 /*
1161 * Called at perf_event creation and when events are attached/detached from a
1162 * group.
1163 */
1164 static void perf_event__read_size(struct perf_event *event)
1165 {
1166 int entry = sizeof(u64); /* value */
1167 int size = 0;
1168 int nr = 1;
1169
1170 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1171 size += sizeof(u64);
1172
1173 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1174 size += sizeof(u64);
1175
1176 if (event->attr.read_format & PERF_FORMAT_ID)
1177 entry += sizeof(u64);
1178
1179 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1180 nr += event->group_leader->nr_siblings;
1181 size += sizeof(u64);
1182 }
1183
1184 size += entry * nr;
1185 event->read_size = size;
1186 }
1187
1188 static void perf_event__header_size(struct perf_event *event)
1189 {
1190 struct perf_sample_data *data;
1191 u64 sample_type = event->attr.sample_type;
1192 u16 size = 0;
1193
1194 perf_event__read_size(event);
1195
1196 if (sample_type & PERF_SAMPLE_IP)
1197 size += sizeof(data->ip);
1198
1199 if (sample_type & PERF_SAMPLE_ADDR)
1200 size += sizeof(data->addr);
1201
1202 if (sample_type & PERF_SAMPLE_PERIOD)
1203 size += sizeof(data->period);
1204
1205 if (sample_type & PERF_SAMPLE_WEIGHT)
1206 size += sizeof(data->weight);
1207
1208 if (sample_type & PERF_SAMPLE_READ)
1209 size += event->read_size;
1210
1211 if (sample_type & PERF_SAMPLE_DATA_SRC)
1212 size += sizeof(data->data_src.val);
1213
1214 if (sample_type & PERF_SAMPLE_TRANSACTION)
1215 size += sizeof(data->txn);
1216
1217 event->header_size = size;
1218 }
1219
1220 static void perf_event__id_header_size(struct perf_event *event)
1221 {
1222 struct perf_sample_data *data;
1223 u64 sample_type = event->attr.sample_type;
1224 u16 size = 0;
1225
1226 if (sample_type & PERF_SAMPLE_TID)
1227 size += sizeof(data->tid_entry);
1228
1229 if (sample_type & PERF_SAMPLE_TIME)
1230 size += sizeof(data->time);
1231
1232 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1233 size += sizeof(data->id);
1234
1235 if (sample_type & PERF_SAMPLE_ID)
1236 size += sizeof(data->id);
1237
1238 if (sample_type & PERF_SAMPLE_STREAM_ID)
1239 size += sizeof(data->stream_id);
1240
1241 if (sample_type & PERF_SAMPLE_CPU)
1242 size += sizeof(data->cpu_entry);
1243
1244 event->id_header_size = size;
1245 }
1246
1247 static void perf_group_attach(struct perf_event *event)
1248 {
1249 struct perf_event *group_leader = event->group_leader, *pos;
1250
1251 /*
1252 * We can have double attach due to group movement in perf_event_open.
1253 */
1254 if (event->attach_state & PERF_ATTACH_GROUP)
1255 return;
1256
1257 event->attach_state |= PERF_ATTACH_GROUP;
1258
1259 if (group_leader == event)
1260 return;
1261
1262 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1263 !is_software_event(event))
1264 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1265
1266 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1267 group_leader->nr_siblings++;
1268
1269 perf_event__header_size(group_leader);
1270
1271 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1272 perf_event__header_size(pos);
1273 }
1274
1275 /*
1276 * Remove a event from the lists for its context.
1277 * Must be called with ctx->mutex and ctx->lock held.
1278 */
1279 static void
1280 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1281 {
1282 struct perf_cpu_context *cpuctx;
1283 /*
1284 * We can have double detach due to exit/hot-unplug + close.
1285 */
1286 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1287 return;
1288
1289 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1290
1291 if (is_cgroup_event(event)) {
1292 ctx->nr_cgroups--;
1293 cpuctx = __get_cpu_context(ctx);
1294 /*
1295 * if there are no more cgroup events
1296 * then cler cgrp to avoid stale pointer
1297 * in update_cgrp_time_from_cpuctx()
1298 */
1299 if (!ctx->nr_cgroups)
1300 cpuctx->cgrp = NULL;
1301 }
1302
1303 if (has_branch_stack(event))
1304 ctx->nr_branch_stack--;
1305
1306 ctx->nr_events--;
1307 if (event->attr.inherit_stat)
1308 ctx->nr_stat--;
1309
1310 list_del_rcu(&event->event_entry);
1311
1312 if (event->group_leader == event)
1313 list_del_init(&event->group_entry);
1314
1315 update_group_times(event);
1316
1317 /*
1318 * If event was in error state, then keep it
1319 * that way, otherwise bogus counts will be
1320 * returned on read(). The only way to get out
1321 * of error state is by explicit re-enabling
1322 * of the event
1323 */
1324 if (event->state > PERF_EVENT_STATE_OFF)
1325 event->state = PERF_EVENT_STATE_OFF;
1326
1327 ctx->generation++;
1328 }
1329
1330 static void perf_group_detach(struct perf_event *event)
1331 {
1332 struct perf_event *sibling, *tmp;
1333 struct list_head *list = NULL;
1334
1335 /*
1336 * We can have double detach due to exit/hot-unplug + close.
1337 */
1338 if (!(event->attach_state & PERF_ATTACH_GROUP))
1339 return;
1340
1341 event->attach_state &= ~PERF_ATTACH_GROUP;
1342
1343 /*
1344 * If this is a sibling, remove it from its group.
1345 */
1346 if (event->group_leader != event) {
1347 list_del_init(&event->group_entry);
1348 event->group_leader->nr_siblings--;
1349 goto out;
1350 }
1351
1352 if (!list_empty(&event->group_entry))
1353 list = &event->group_entry;
1354
1355 /*
1356 * If this was a group event with sibling events then
1357 * upgrade the siblings to singleton events by adding them
1358 * to whatever list we are on.
1359 */
1360 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1361 if (list)
1362 list_move_tail(&sibling->group_entry, list);
1363 sibling->group_leader = sibling;
1364
1365 /* Inherit group flags from the previous leader */
1366 sibling->group_flags = event->group_flags;
1367 }
1368
1369 out:
1370 perf_event__header_size(event->group_leader);
1371
1372 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1373 perf_event__header_size(tmp);
1374 }
1375
1376 static inline int
1377 event_filter_match(struct perf_event *event)
1378 {
1379 return (event->cpu == -1 || event->cpu == smp_processor_id())
1380 && perf_cgroup_match(event);
1381 }
1382
1383 static void
1384 event_sched_out(struct perf_event *event,
1385 struct perf_cpu_context *cpuctx,
1386 struct perf_event_context *ctx)
1387 {
1388 u64 tstamp = perf_event_time(event);
1389 u64 delta;
1390 /*
1391 * An event which could not be activated because of
1392 * filter mismatch still needs to have its timings
1393 * maintained, otherwise bogus information is return
1394 * via read() for time_enabled, time_running:
1395 */
1396 if (event->state == PERF_EVENT_STATE_INACTIVE
1397 && !event_filter_match(event)) {
1398 delta = tstamp - event->tstamp_stopped;
1399 event->tstamp_running += delta;
1400 event->tstamp_stopped = tstamp;
1401 }
1402
1403 if (event->state != PERF_EVENT_STATE_ACTIVE)
1404 return;
1405
1406 perf_pmu_disable(event->pmu);
1407
1408 event->state = PERF_EVENT_STATE_INACTIVE;
1409 if (event->pending_disable) {
1410 event->pending_disable = 0;
1411 event->state = PERF_EVENT_STATE_OFF;
1412 }
1413 event->tstamp_stopped = tstamp;
1414 event->pmu->del(event, 0);
1415 event->oncpu = -1;
1416
1417 if (!is_software_event(event))
1418 cpuctx->active_oncpu--;
1419 ctx->nr_active--;
1420 if (event->attr.freq && event->attr.sample_freq)
1421 ctx->nr_freq--;
1422 if (event->attr.exclusive || !cpuctx->active_oncpu)
1423 cpuctx->exclusive = 0;
1424
1425 perf_pmu_enable(event->pmu);
1426 }
1427
1428 static void
1429 group_sched_out(struct perf_event *group_event,
1430 struct perf_cpu_context *cpuctx,
1431 struct perf_event_context *ctx)
1432 {
1433 struct perf_event *event;
1434 int state = group_event->state;
1435
1436 event_sched_out(group_event, cpuctx, ctx);
1437
1438 /*
1439 * Schedule out siblings (if any):
1440 */
1441 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1442 event_sched_out(event, cpuctx, ctx);
1443
1444 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1445 cpuctx->exclusive = 0;
1446 }
1447
1448 struct remove_event {
1449 struct perf_event *event;
1450 bool detach_group;
1451 };
1452
1453 /*
1454 * Cross CPU call to remove a performance event
1455 *
1456 * We disable the event on the hardware level first. After that we
1457 * remove it from the context list.
1458 */
1459 static int __perf_remove_from_context(void *info)
1460 {
1461 struct remove_event *re = info;
1462 struct perf_event *event = re->event;
1463 struct perf_event_context *ctx = event->ctx;
1464 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1465
1466 raw_spin_lock(&ctx->lock);
1467 event_sched_out(event, cpuctx, ctx);
1468 if (re->detach_group)
1469 perf_group_detach(event);
1470 list_del_event(event, ctx);
1471 if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1472 ctx->is_active = 0;
1473 cpuctx->task_ctx = NULL;
1474 }
1475 raw_spin_unlock(&ctx->lock);
1476
1477 return 0;
1478 }
1479
1480
1481 /*
1482 * Remove the event from a task's (or a CPU's) list of events.
1483 *
1484 * CPU events are removed with a smp call. For task events we only
1485 * call when the task is on a CPU.
1486 *
1487 * If event->ctx is a cloned context, callers must make sure that
1488 * every task struct that event->ctx->task could possibly point to
1489 * remains valid. This is OK when called from perf_release since
1490 * that only calls us on the top-level context, which can't be a clone.
1491 * When called from perf_event_exit_task, it's OK because the
1492 * context has been detached from its task.
1493 */
1494 static void perf_remove_from_context(struct perf_event *event, bool detach_group)
1495 {
1496 struct perf_event_context *ctx = event->ctx;
1497 struct task_struct *task = ctx->task;
1498 struct remove_event re = {
1499 .event = event,
1500 .detach_group = detach_group,
1501 };
1502
1503 lockdep_assert_held(&ctx->mutex);
1504
1505 if (!task) {
1506 /*
1507 * Per cpu events are removed via an smp call and
1508 * the removal is always successful.
1509 */
1510 cpu_function_call(event->cpu, __perf_remove_from_context, &re);
1511 return;
1512 }
1513
1514 retry:
1515 if (!task_function_call(task, __perf_remove_from_context, &re))
1516 return;
1517
1518 raw_spin_lock_irq(&ctx->lock);
1519 /*
1520 * If we failed to find a running task, but find the context active now
1521 * that we've acquired the ctx->lock, retry.
1522 */
1523 if (ctx->is_active) {
1524 raw_spin_unlock_irq(&ctx->lock);
1525 goto retry;
1526 }
1527
1528 /*
1529 * Since the task isn't running, its safe to remove the event, us
1530 * holding the ctx->lock ensures the task won't get scheduled in.
1531 */
1532 if (detach_group)
1533 perf_group_detach(event);
1534 list_del_event(event, ctx);
1535 raw_spin_unlock_irq(&ctx->lock);
1536 }
1537
1538 /*
1539 * Cross CPU call to disable a performance event
1540 */
1541 int __perf_event_disable(void *info)
1542 {
1543 struct perf_event *event = info;
1544 struct perf_event_context *ctx = event->ctx;
1545 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1546
1547 /*
1548 * If this is a per-task event, need to check whether this
1549 * event's task is the current task on this cpu.
1550 *
1551 * Can trigger due to concurrent perf_event_context_sched_out()
1552 * flipping contexts around.
1553 */
1554 if (ctx->task && cpuctx->task_ctx != ctx)
1555 return -EINVAL;
1556
1557 raw_spin_lock(&ctx->lock);
1558
1559 /*
1560 * If the event is on, turn it off.
1561 * If it is in error state, leave it in error state.
1562 */
1563 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1564 update_context_time(ctx);
1565 update_cgrp_time_from_event(event);
1566 update_group_times(event);
1567 if (event == event->group_leader)
1568 group_sched_out(event, cpuctx, ctx);
1569 else
1570 event_sched_out(event, cpuctx, ctx);
1571 event->state = PERF_EVENT_STATE_OFF;
1572 }
1573
1574 raw_spin_unlock(&ctx->lock);
1575
1576 return 0;
1577 }
1578
1579 /*
1580 * Disable a event.
1581 *
1582 * If event->ctx is a cloned context, callers must make sure that
1583 * every task struct that event->ctx->task could possibly point to
1584 * remains valid. This condition is satisifed when called through
1585 * perf_event_for_each_child or perf_event_for_each because they
1586 * hold the top-level event's child_mutex, so any descendant that
1587 * goes to exit will block in sync_child_event.
1588 * When called from perf_pending_event it's OK because event->ctx
1589 * is the current context on this CPU and preemption is disabled,
1590 * hence we can't get into perf_event_task_sched_out for this context.
1591 */
1592 void perf_event_disable(struct perf_event *event)
1593 {
1594 struct perf_event_context *ctx = event->ctx;
1595 struct task_struct *task = ctx->task;
1596
1597 if (!task) {
1598 /*
1599 * Disable the event on the cpu that it's on
1600 */
1601 cpu_function_call(event->cpu, __perf_event_disable, event);
1602 return;
1603 }
1604
1605 retry:
1606 if (!task_function_call(task, __perf_event_disable, event))
1607 return;
1608
1609 raw_spin_lock_irq(&ctx->lock);
1610 /*
1611 * If the event is still active, we need to retry the cross-call.
1612 */
1613 if (event->state == PERF_EVENT_STATE_ACTIVE) {
1614 raw_spin_unlock_irq(&ctx->lock);
1615 /*
1616 * Reload the task pointer, it might have been changed by
1617 * a concurrent perf_event_context_sched_out().
1618 */
1619 task = ctx->task;
1620 goto retry;
1621 }
1622
1623 /*
1624 * Since we have the lock this context can't be scheduled
1625 * in, so we can change the state safely.
1626 */
1627 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1628 update_group_times(event);
1629 event->state = PERF_EVENT_STATE_OFF;
1630 }
1631 raw_spin_unlock_irq(&ctx->lock);
1632 }
1633 EXPORT_SYMBOL_GPL(perf_event_disable);
1634
1635 static void perf_set_shadow_time(struct perf_event *event,
1636 struct perf_event_context *ctx,
1637 u64 tstamp)
1638 {
1639 /*
1640 * use the correct time source for the time snapshot
1641 *
1642 * We could get by without this by leveraging the
1643 * fact that to get to this function, the caller
1644 * has most likely already called update_context_time()
1645 * and update_cgrp_time_xx() and thus both timestamp
1646 * are identical (or very close). Given that tstamp is,
1647 * already adjusted for cgroup, we could say that:
1648 * tstamp - ctx->timestamp
1649 * is equivalent to
1650 * tstamp - cgrp->timestamp.
1651 *
1652 * Then, in perf_output_read(), the calculation would
1653 * work with no changes because:
1654 * - event is guaranteed scheduled in
1655 * - no scheduled out in between
1656 * - thus the timestamp would be the same
1657 *
1658 * But this is a bit hairy.
1659 *
1660 * So instead, we have an explicit cgroup call to remain
1661 * within the time time source all along. We believe it
1662 * is cleaner and simpler to understand.
1663 */
1664 if (is_cgroup_event(event))
1665 perf_cgroup_set_shadow_time(event, tstamp);
1666 else
1667 event->shadow_ctx_time = tstamp - ctx->timestamp;
1668 }
1669
1670 #define MAX_INTERRUPTS (~0ULL)
1671
1672 static void perf_log_throttle(struct perf_event *event, int enable);
1673
1674 static int
1675 event_sched_in(struct perf_event *event,
1676 struct perf_cpu_context *cpuctx,
1677 struct perf_event_context *ctx)
1678 {
1679 u64 tstamp = perf_event_time(event);
1680 int ret = 0;
1681
1682 lockdep_assert_held(&ctx->lock);
1683
1684 if (event->state <= PERF_EVENT_STATE_OFF)
1685 return 0;
1686
1687 event->state = PERF_EVENT_STATE_ACTIVE;
1688 event->oncpu = smp_processor_id();
1689
1690 /*
1691 * Unthrottle events, since we scheduled we might have missed several
1692 * ticks already, also for a heavily scheduling task there is little
1693 * guarantee it'll get a tick in a timely manner.
1694 */
1695 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1696 perf_log_throttle(event, 1);
1697 event->hw.interrupts = 0;
1698 }
1699
1700 /*
1701 * The new state must be visible before we turn it on in the hardware:
1702 */
1703 smp_wmb();
1704
1705 perf_pmu_disable(event->pmu);
1706
1707 if (event->pmu->add(event, PERF_EF_START)) {
1708 event->state = PERF_EVENT_STATE_INACTIVE;
1709 event->oncpu = -1;
1710 ret = -EAGAIN;
1711 goto out;
1712 }
1713
1714 event->tstamp_running += tstamp - event->tstamp_stopped;
1715
1716 perf_set_shadow_time(event, ctx, tstamp);
1717
1718 if (!is_software_event(event))
1719 cpuctx->active_oncpu++;
1720 ctx->nr_active++;
1721 if (event->attr.freq && event->attr.sample_freq)
1722 ctx->nr_freq++;
1723
1724 if (event->attr.exclusive)
1725 cpuctx->exclusive = 1;
1726
1727 out:
1728 perf_pmu_enable(event->pmu);
1729
1730 return ret;
1731 }
1732
1733 static int
1734 group_sched_in(struct perf_event *group_event,
1735 struct perf_cpu_context *cpuctx,
1736 struct perf_event_context *ctx)
1737 {
1738 struct perf_event *event, *partial_group = NULL;
1739 struct pmu *pmu = ctx->pmu;
1740 u64 now = ctx->time;
1741 bool simulate = false;
1742
1743 if (group_event->state == PERF_EVENT_STATE_OFF)
1744 return 0;
1745
1746 pmu->start_txn(pmu);
1747
1748 if (event_sched_in(group_event, cpuctx, ctx)) {
1749 pmu->cancel_txn(pmu);
1750 perf_cpu_hrtimer_restart(cpuctx);
1751 return -EAGAIN;
1752 }
1753
1754 /*
1755 * Schedule in siblings as one group (if any):
1756 */
1757 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1758 if (event_sched_in(event, cpuctx, ctx)) {
1759 partial_group = event;
1760 goto group_error;
1761 }
1762 }
1763
1764 if (!pmu->commit_txn(pmu))
1765 return 0;
1766
1767 group_error:
1768 /*
1769 * Groups can be scheduled in as one unit only, so undo any
1770 * partial group before returning:
1771 * The events up to the failed event are scheduled out normally,
1772 * tstamp_stopped will be updated.
1773 *
1774 * The failed events and the remaining siblings need to have
1775 * their timings updated as if they had gone thru event_sched_in()
1776 * and event_sched_out(). This is required to get consistent timings
1777 * across the group. This also takes care of the case where the group
1778 * could never be scheduled by ensuring tstamp_stopped is set to mark
1779 * the time the event was actually stopped, such that time delta
1780 * calculation in update_event_times() is correct.
1781 */
1782 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1783 if (event == partial_group)
1784 simulate = true;
1785
1786 if (simulate) {
1787 event->tstamp_running += now - event->tstamp_stopped;
1788 event->tstamp_stopped = now;
1789 } else {
1790 event_sched_out(event, cpuctx, ctx);
1791 }
1792 }
1793 event_sched_out(group_event, cpuctx, ctx);
1794
1795 pmu->cancel_txn(pmu);
1796
1797 perf_cpu_hrtimer_restart(cpuctx);
1798
1799 return -EAGAIN;
1800 }
1801
1802 /*
1803 * Work out whether we can put this event group on the CPU now.
1804 */
1805 static int group_can_go_on(struct perf_event *event,
1806 struct perf_cpu_context *cpuctx,
1807 int can_add_hw)
1808 {
1809 /*
1810 * Groups consisting entirely of software events can always go on.
1811 */
1812 if (event->group_flags & PERF_GROUP_SOFTWARE)
1813 return 1;
1814 /*
1815 * If an exclusive group is already on, no other hardware
1816 * events can go on.
1817 */
1818 if (cpuctx->exclusive)
1819 return 0;
1820 /*
1821 * If this group is exclusive and there are already
1822 * events on the CPU, it can't go on.
1823 */
1824 if (event->attr.exclusive && cpuctx->active_oncpu)
1825 return 0;
1826 /*
1827 * Otherwise, try to add it if all previous groups were able
1828 * to go on.
1829 */
1830 return can_add_hw;
1831 }
1832
1833 static void add_event_to_ctx(struct perf_event *event,
1834 struct perf_event_context *ctx)
1835 {
1836 u64 tstamp = perf_event_time(event);
1837
1838 list_add_event(event, ctx);
1839 perf_group_attach(event);
1840 event->tstamp_enabled = tstamp;
1841 event->tstamp_running = tstamp;
1842 event->tstamp_stopped = tstamp;
1843 }
1844
1845 static void task_ctx_sched_out(struct perf_event_context *ctx);
1846 static void
1847 ctx_sched_in(struct perf_event_context *ctx,
1848 struct perf_cpu_context *cpuctx,
1849 enum event_type_t event_type,
1850 struct task_struct *task);
1851
1852 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
1853 struct perf_event_context *ctx,
1854 struct task_struct *task)
1855 {
1856 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
1857 if (ctx)
1858 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
1859 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
1860 if (ctx)
1861 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
1862 }
1863
1864 /*
1865 * Cross CPU call to install and enable a performance event
1866 *
1867 * Must be called with ctx->mutex held
1868 */
1869 static int __perf_install_in_context(void *info)
1870 {
1871 struct perf_event *event = info;
1872 struct perf_event_context *ctx = event->ctx;
1873 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1874 struct perf_event_context *task_ctx = cpuctx->task_ctx;
1875 struct task_struct *task = current;
1876
1877 perf_ctx_lock(cpuctx, task_ctx);
1878 perf_pmu_disable(cpuctx->ctx.pmu);
1879
1880 /*
1881 * If there was an active task_ctx schedule it out.
1882 */
1883 if (task_ctx)
1884 task_ctx_sched_out(task_ctx);
1885
1886 /*
1887 * If the context we're installing events in is not the
1888 * active task_ctx, flip them.
1889 */
1890 if (ctx->task && task_ctx != ctx) {
1891 if (task_ctx)
1892 raw_spin_unlock(&task_ctx->lock);
1893 raw_spin_lock(&ctx->lock);
1894 task_ctx = ctx;
1895 }
1896
1897 if (task_ctx) {
1898 cpuctx->task_ctx = task_ctx;
1899 task = task_ctx->task;
1900 }
1901
1902 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
1903
1904 update_context_time(ctx);
1905 /*
1906 * update cgrp time only if current cgrp
1907 * matches event->cgrp. Must be done before
1908 * calling add_event_to_ctx()
1909 */
1910 update_cgrp_time_from_event(event);
1911
1912 add_event_to_ctx(event, ctx);
1913
1914 /*
1915 * Schedule everything back in
1916 */
1917 perf_event_sched_in(cpuctx, task_ctx, task);
1918
1919 perf_pmu_enable(cpuctx->ctx.pmu);
1920 perf_ctx_unlock(cpuctx, task_ctx);
1921
1922 return 0;
1923 }
1924
1925 /*
1926 * Attach a performance event to a context
1927 *
1928 * First we add the event to the list with the hardware enable bit
1929 * in event->hw_config cleared.
1930 *
1931 * If the event is attached to a task which is on a CPU we use a smp
1932 * call to enable it in the task context. The task might have been
1933 * scheduled away, but we check this in the smp call again.
1934 */
1935 static void
1936 perf_install_in_context(struct perf_event_context *ctx,
1937 struct perf_event *event,
1938 int cpu)
1939 {
1940 struct task_struct *task = ctx->task;
1941
1942 lockdep_assert_held(&ctx->mutex);
1943
1944 event->ctx = ctx;
1945 if (event->cpu != -1)
1946 event->cpu = cpu;
1947
1948 if (!task) {
1949 /*
1950 * Per cpu events are installed via an smp call and
1951 * the install is always successful.
1952 */
1953 cpu_function_call(cpu, __perf_install_in_context, event);
1954 return;
1955 }
1956
1957 retry:
1958 if (!task_function_call(task, __perf_install_in_context, event))
1959 return;
1960
1961 raw_spin_lock_irq(&ctx->lock);
1962 /*
1963 * If we failed to find a running task, but find the context active now
1964 * that we've acquired the ctx->lock, retry.
1965 */
1966 if (ctx->is_active) {
1967 raw_spin_unlock_irq(&ctx->lock);
1968 goto retry;
1969 }
1970
1971 /*
1972 * Since the task isn't running, its safe to add the event, us holding
1973 * the ctx->lock ensures the task won't get scheduled in.
1974 */
1975 add_event_to_ctx(event, ctx);
1976 raw_spin_unlock_irq(&ctx->lock);
1977 }
1978
1979 /*
1980 * Put a event into inactive state and update time fields.
1981 * Enabling the leader of a group effectively enables all
1982 * the group members that aren't explicitly disabled, so we
1983 * have to update their ->tstamp_enabled also.
1984 * Note: this works for group members as well as group leaders
1985 * since the non-leader members' sibling_lists will be empty.
1986 */
1987 static void __perf_event_mark_enabled(struct perf_event *event)
1988 {
1989 struct perf_event *sub;
1990 u64 tstamp = perf_event_time(event);
1991
1992 event->state = PERF_EVENT_STATE_INACTIVE;
1993 event->tstamp_enabled = tstamp - event->total_time_enabled;
1994 list_for_each_entry(sub, &event->sibling_list, group_entry) {
1995 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
1996 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
1997 }
1998 }
1999
2000 /*
2001 * Cross CPU call to enable a performance event
2002 */
2003 static int __perf_event_enable(void *info)
2004 {
2005 struct perf_event *event = info;
2006 struct perf_event_context *ctx = event->ctx;
2007 struct perf_event *leader = event->group_leader;
2008 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2009 int err;
2010
2011 /*
2012 * There's a time window between 'ctx->is_active' check
2013 * in perf_event_enable function and this place having:
2014 * - IRQs on
2015 * - ctx->lock unlocked
2016 *
2017 * where the task could be killed and 'ctx' deactivated
2018 * by perf_event_exit_task.
2019 */
2020 if (!ctx->is_active)
2021 return -EINVAL;
2022
2023 raw_spin_lock(&ctx->lock);
2024 update_context_time(ctx);
2025
2026 if (event->state >= PERF_EVENT_STATE_INACTIVE)
2027 goto unlock;
2028
2029 /*
2030 * set current task's cgroup time reference point
2031 */
2032 perf_cgroup_set_timestamp(current, ctx);
2033
2034 __perf_event_mark_enabled(event);
2035
2036 if (!event_filter_match(event)) {
2037 if (is_cgroup_event(event))
2038 perf_cgroup_defer_enabled(event);
2039 goto unlock;
2040 }
2041
2042 /*
2043 * If the event is in a group and isn't the group leader,
2044 * then don't put it on unless the group is on.
2045 */
2046 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
2047 goto unlock;
2048
2049 if (!group_can_go_on(event, cpuctx, 1)) {
2050 err = -EEXIST;
2051 } else {
2052 if (event == leader)
2053 err = group_sched_in(event, cpuctx, ctx);
2054 else
2055 err = event_sched_in(event, cpuctx, ctx);
2056 }
2057
2058 if (err) {
2059 /*
2060 * If this event can't go on and it's part of a
2061 * group, then the whole group has to come off.
2062 */
2063 if (leader != event) {
2064 group_sched_out(leader, cpuctx, ctx);
2065 perf_cpu_hrtimer_restart(cpuctx);
2066 }
2067 if (leader->attr.pinned) {
2068 update_group_times(leader);
2069 leader->state = PERF_EVENT_STATE_ERROR;
2070 }
2071 }
2072
2073 unlock:
2074 raw_spin_unlock(&ctx->lock);
2075
2076 return 0;
2077 }
2078
2079 /*
2080 * Enable a event.
2081 *
2082 * If event->ctx is a cloned context, callers must make sure that
2083 * every task struct that event->ctx->task could possibly point to
2084 * remains valid. This condition is satisfied when called through
2085 * perf_event_for_each_child or perf_event_for_each as described
2086 * for perf_event_disable.
2087 */
2088 void perf_event_enable(struct perf_event *event)
2089 {
2090 struct perf_event_context *ctx = event->ctx;
2091 struct task_struct *task = ctx->task;
2092
2093 if (!task) {
2094 /*
2095 * Enable the event on the cpu that it's on
2096 */
2097 cpu_function_call(event->cpu, __perf_event_enable, event);
2098 return;
2099 }
2100
2101 raw_spin_lock_irq(&ctx->lock);
2102 if (event->state >= PERF_EVENT_STATE_INACTIVE)
2103 goto out;
2104
2105 /*
2106 * If the event is in error state, clear that first.
2107 * That way, if we see the event in error state below, we
2108 * know that it has gone back into error state, as distinct
2109 * from the task having been scheduled away before the
2110 * cross-call arrived.
2111 */
2112 if (event->state == PERF_EVENT_STATE_ERROR)
2113 event->state = PERF_EVENT_STATE_OFF;
2114
2115 retry:
2116 if (!ctx->is_active) {
2117 __perf_event_mark_enabled(event);
2118 goto out;
2119 }
2120
2121 raw_spin_unlock_irq(&ctx->lock);
2122
2123 if (!task_function_call(task, __perf_event_enable, event))
2124 return;
2125
2126 raw_spin_lock_irq(&ctx->lock);
2127
2128 /*
2129 * If the context is active and the event is still off,
2130 * we need to retry the cross-call.
2131 */
2132 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
2133 /*
2134 * task could have been flipped by a concurrent
2135 * perf_event_context_sched_out()
2136 */
2137 task = ctx->task;
2138 goto retry;
2139 }
2140
2141 out:
2142 raw_spin_unlock_irq(&ctx->lock);
2143 }
2144 EXPORT_SYMBOL_GPL(perf_event_enable);
2145
2146 int perf_event_refresh(struct perf_event *event, int refresh)
2147 {
2148 /*
2149 * not supported on inherited events
2150 */
2151 if (event->attr.inherit || !is_sampling_event(event))
2152 return -EINVAL;
2153
2154 atomic_add(refresh, &event->event_limit);
2155 perf_event_enable(event);
2156
2157 return 0;
2158 }
2159 EXPORT_SYMBOL_GPL(perf_event_refresh);
2160
2161 static void ctx_sched_out(struct perf_event_context *ctx,
2162 struct perf_cpu_context *cpuctx,
2163 enum event_type_t event_type)
2164 {
2165 struct perf_event *event;
2166 int is_active = ctx->is_active;
2167
2168 ctx->is_active &= ~event_type;
2169 if (likely(!ctx->nr_events))
2170 return;
2171
2172 update_context_time(ctx);
2173 update_cgrp_time_from_cpuctx(cpuctx);
2174 if (!ctx->nr_active)
2175 return;
2176
2177 perf_pmu_disable(ctx->pmu);
2178 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
2179 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2180 group_sched_out(event, cpuctx, ctx);
2181 }
2182
2183 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
2184 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2185 group_sched_out(event, cpuctx, ctx);
2186 }
2187 perf_pmu_enable(ctx->pmu);
2188 }
2189
2190 /*
2191 * Test whether two contexts are equivalent, i.e. whether they have both been
2192 * cloned from the same version of the same context.
2193 *
2194 * Equivalence is measured using a generation number in the context that is
2195 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2196 * and list_del_event().
2197 */
2198 static int context_equiv(struct perf_event_context *ctx1,
2199 struct perf_event_context *ctx2)
2200 {
2201 /* Pinning disables the swap optimization */
2202 if (ctx1->pin_count || ctx2->pin_count)
2203 return 0;
2204
2205 /* If ctx1 is the parent of ctx2 */
2206 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2207 return 1;
2208
2209 /* If ctx2 is the parent of ctx1 */
2210 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2211 return 1;
2212
2213 /*
2214 * If ctx1 and ctx2 have the same parent; we flatten the parent
2215 * hierarchy, see perf_event_init_context().
2216 */
2217 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2218 ctx1->parent_gen == ctx2->parent_gen)
2219 return 1;
2220
2221 /* Unmatched */
2222 return 0;
2223 }
2224
2225 static void __perf_event_sync_stat(struct perf_event *event,
2226 struct perf_event *next_event)
2227 {
2228 u64 value;
2229
2230 if (!event->attr.inherit_stat)
2231 return;
2232
2233 /*
2234 * Update the event value, we cannot use perf_event_read()
2235 * because we're in the middle of a context switch and have IRQs
2236 * disabled, which upsets smp_call_function_single(), however
2237 * we know the event must be on the current CPU, therefore we
2238 * don't need to use it.
2239 */
2240 switch (event->state) {
2241 case PERF_EVENT_STATE_ACTIVE:
2242 event->pmu->read(event);
2243 /* fall-through */
2244
2245 case PERF_EVENT_STATE_INACTIVE:
2246 update_event_times(event);
2247 break;
2248
2249 default:
2250 break;
2251 }
2252
2253 /*
2254 * In order to keep per-task stats reliable we need to flip the event
2255 * values when we flip the contexts.
2256 */
2257 value = local64_read(&next_event->count);
2258 value = local64_xchg(&event->count, value);
2259 local64_set(&next_event->count, value);
2260
2261 swap(event->total_time_enabled, next_event->total_time_enabled);
2262 swap(event->total_time_running, next_event->total_time_running);
2263
2264 /*
2265 * Since we swizzled the values, update the user visible data too.
2266 */
2267 perf_event_update_userpage(event);
2268 perf_event_update_userpage(next_event);
2269 }
2270
2271 static void perf_event_sync_stat(struct perf_event_context *ctx,
2272 struct perf_event_context *next_ctx)
2273 {
2274 struct perf_event *event, *next_event;
2275
2276 if (!ctx->nr_stat)
2277 return;
2278
2279 update_context_time(ctx);
2280
2281 event = list_first_entry(&ctx->event_list,
2282 struct perf_event, event_entry);
2283
2284 next_event = list_first_entry(&next_ctx->event_list,
2285 struct perf_event, event_entry);
2286
2287 while (&event->event_entry != &ctx->event_list &&
2288 &next_event->event_entry != &next_ctx->event_list) {
2289
2290 __perf_event_sync_stat(event, next_event);
2291
2292 event = list_next_entry(event, event_entry);
2293 next_event = list_next_entry(next_event, event_entry);
2294 }
2295 }
2296
2297 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2298 struct task_struct *next)
2299 {
2300 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2301 struct perf_event_context *next_ctx;
2302 struct perf_event_context *parent, *next_parent;
2303 struct perf_cpu_context *cpuctx;
2304 int do_switch = 1;
2305
2306 if (likely(!ctx))
2307 return;
2308
2309 cpuctx = __get_cpu_context(ctx);
2310 if (!cpuctx->task_ctx)
2311 return;
2312
2313 rcu_read_lock();
2314 next_ctx = next->perf_event_ctxp[ctxn];
2315 if (!next_ctx)
2316 goto unlock;
2317
2318 parent = rcu_dereference(ctx->parent_ctx);
2319 next_parent = rcu_dereference(next_ctx->parent_ctx);
2320
2321 /* If neither context have a parent context; they cannot be clones. */
2322 if (!parent && !next_parent)
2323 goto unlock;
2324
2325 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2326 /*
2327 * Looks like the two contexts are clones, so we might be
2328 * able to optimize the context switch. We lock both
2329 * contexts and check that they are clones under the
2330 * lock (including re-checking that neither has been
2331 * uncloned in the meantime). It doesn't matter which
2332 * order we take the locks because no other cpu could
2333 * be trying to lock both of these tasks.
2334 */
2335 raw_spin_lock(&ctx->lock);
2336 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2337 if (context_equiv(ctx, next_ctx)) {
2338 /*
2339 * XXX do we need a memory barrier of sorts
2340 * wrt to rcu_dereference() of perf_event_ctxp
2341 */
2342 task->perf_event_ctxp[ctxn] = next_ctx;
2343 next->perf_event_ctxp[ctxn] = ctx;
2344 ctx->task = next;
2345 next_ctx->task = task;
2346 do_switch = 0;
2347
2348 perf_event_sync_stat(ctx, next_ctx);
2349 }
2350 raw_spin_unlock(&next_ctx->lock);
2351 raw_spin_unlock(&ctx->lock);
2352 }
2353 unlock:
2354 rcu_read_unlock();
2355
2356 if (do_switch) {
2357 raw_spin_lock(&ctx->lock);
2358 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2359 cpuctx->task_ctx = NULL;
2360 raw_spin_unlock(&ctx->lock);
2361 }
2362 }
2363
2364 #define for_each_task_context_nr(ctxn) \
2365 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2366
2367 /*
2368 * Called from scheduler to remove the events of the current task,
2369 * with interrupts disabled.
2370 *
2371 * We stop each event and update the event value in event->count.
2372 *
2373 * This does not protect us against NMI, but disable()
2374 * sets the disabled bit in the control field of event _before_
2375 * accessing the event control register. If a NMI hits, then it will
2376 * not restart the event.
2377 */
2378 void __perf_event_task_sched_out(struct task_struct *task,
2379 struct task_struct *next)
2380 {
2381 int ctxn;
2382
2383 for_each_task_context_nr(ctxn)
2384 perf_event_context_sched_out(task, ctxn, next);
2385
2386 /*
2387 * if cgroup events exist on this CPU, then we need
2388 * to check if we have to switch out PMU state.
2389 * cgroup event are system-wide mode only
2390 */
2391 if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2392 perf_cgroup_sched_out(task, next);
2393 }
2394
2395 static void task_ctx_sched_out(struct perf_event_context *ctx)
2396 {
2397 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2398
2399 if (!cpuctx->task_ctx)
2400 return;
2401
2402 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2403 return;
2404
2405 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2406 cpuctx->task_ctx = NULL;
2407 }
2408
2409 /*
2410 * Called with IRQs disabled
2411 */
2412 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2413 enum event_type_t event_type)
2414 {
2415 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2416 }
2417
2418 static void
2419 ctx_pinned_sched_in(struct perf_event_context *ctx,
2420 struct perf_cpu_context *cpuctx)
2421 {
2422 struct perf_event *event;
2423
2424 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2425 if (event->state <= PERF_EVENT_STATE_OFF)
2426 continue;
2427 if (!event_filter_match(event))
2428 continue;
2429
2430 /* may need to reset tstamp_enabled */
2431 if (is_cgroup_event(event))
2432 perf_cgroup_mark_enabled(event, ctx);
2433
2434 if (group_can_go_on(event, cpuctx, 1))
2435 group_sched_in(event, cpuctx, ctx);
2436
2437 /*
2438 * If this pinned group hasn't been scheduled,
2439 * put it in error state.
2440 */
2441 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2442 update_group_times(event);
2443 event->state = PERF_EVENT_STATE_ERROR;
2444 }
2445 }
2446 }
2447
2448 static void
2449 ctx_flexible_sched_in(struct perf_event_context *ctx,
2450 struct perf_cpu_context *cpuctx)
2451 {
2452 struct perf_event *event;
2453 int can_add_hw = 1;
2454
2455 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2456 /* Ignore events in OFF or ERROR state */
2457 if (event->state <= PERF_EVENT_STATE_OFF)
2458 continue;
2459 /*
2460 * Listen to the 'cpu' scheduling filter constraint
2461 * of events:
2462 */
2463 if (!event_filter_match(event))
2464 continue;
2465
2466 /* may need to reset tstamp_enabled */
2467 if (is_cgroup_event(event))
2468 perf_cgroup_mark_enabled(event, ctx);
2469
2470 if (group_can_go_on(event, cpuctx, can_add_hw)) {
2471 if (group_sched_in(event, cpuctx, ctx))
2472 can_add_hw = 0;
2473 }
2474 }
2475 }
2476
2477 static void
2478 ctx_sched_in(struct perf_event_context *ctx,
2479 struct perf_cpu_context *cpuctx,
2480 enum event_type_t event_type,
2481 struct task_struct *task)
2482 {
2483 u64 now;
2484 int is_active = ctx->is_active;
2485
2486 ctx->is_active |= event_type;
2487 if (likely(!ctx->nr_events))
2488 return;
2489
2490 now = perf_clock();
2491 ctx->timestamp = now;
2492 perf_cgroup_set_timestamp(task, ctx);
2493 /*
2494 * First go through the list and put on any pinned groups
2495 * in order to give them the best chance of going on.
2496 */
2497 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2498 ctx_pinned_sched_in(ctx, cpuctx);
2499
2500 /* Then walk through the lower prio flexible groups */
2501 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2502 ctx_flexible_sched_in(ctx, cpuctx);
2503 }
2504
2505 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
2506 enum event_type_t event_type,
2507 struct task_struct *task)
2508 {
2509 struct perf_event_context *ctx = &cpuctx->ctx;
2510
2511 ctx_sched_in(ctx, cpuctx, event_type, task);
2512 }
2513
2514 static void perf_event_context_sched_in(struct perf_event_context *ctx,
2515 struct task_struct *task)
2516 {
2517 struct perf_cpu_context *cpuctx;
2518
2519 cpuctx = __get_cpu_context(ctx);
2520 if (cpuctx->task_ctx == ctx)
2521 return;
2522
2523 perf_ctx_lock(cpuctx, ctx);
2524 perf_pmu_disable(ctx->pmu);
2525 /*
2526 * We want to keep the following priority order:
2527 * cpu pinned (that don't need to move), task pinned,
2528 * cpu flexible, task flexible.
2529 */
2530 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2531
2532 if (ctx->nr_events)
2533 cpuctx->task_ctx = ctx;
2534
2535 perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2536
2537 perf_pmu_enable(ctx->pmu);
2538 perf_ctx_unlock(cpuctx, ctx);
2539
2540 /*
2541 * Since these rotations are per-cpu, we need to ensure the
2542 * cpu-context we got scheduled on is actually rotating.
2543 */
2544 perf_pmu_rotate_start(ctx->pmu);
2545 }
2546
2547 /*
2548 * When sampling the branck stack in system-wide, it may be necessary
2549 * to flush the stack on context switch. This happens when the branch
2550 * stack does not tag its entries with the pid of the current task.
2551 * Otherwise it becomes impossible to associate a branch entry with a
2552 * task. This ambiguity is more likely to appear when the branch stack
2553 * supports priv level filtering and the user sets it to monitor only
2554 * at the user level (which could be a useful measurement in system-wide
2555 * mode). In that case, the risk is high of having a branch stack with
2556 * branch from multiple tasks. Flushing may mean dropping the existing
2557 * entries or stashing them somewhere in the PMU specific code layer.
2558 *
2559 * This function provides the context switch callback to the lower code
2560 * layer. It is invoked ONLY when there is at least one system-wide context
2561 * with at least one active event using taken branch sampling.
2562 */
2563 static void perf_branch_stack_sched_in(struct task_struct *prev,
2564 struct task_struct *task)
2565 {
2566 struct perf_cpu_context *cpuctx;
2567 struct pmu *pmu;
2568 unsigned long flags;
2569
2570 /* no need to flush branch stack if not changing task */
2571 if (prev == task)
2572 return;
2573
2574 local_irq_save(flags);
2575
2576 rcu_read_lock();
2577
2578 list_for_each_entry_rcu(pmu, &pmus, entry) {
2579 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2580
2581 /*
2582 * check if the context has at least one
2583 * event using PERF_SAMPLE_BRANCH_STACK
2584 */
2585 if (cpuctx->ctx.nr_branch_stack > 0
2586 && pmu->flush_branch_stack) {
2587
2588 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2589
2590 perf_pmu_disable(pmu);
2591
2592 pmu->flush_branch_stack();
2593
2594 perf_pmu_enable(pmu);
2595
2596 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2597 }
2598 }
2599
2600 rcu_read_unlock();
2601
2602 local_irq_restore(flags);
2603 }
2604
2605 /*
2606 * Called from scheduler to add the events of the current task
2607 * with interrupts disabled.
2608 *
2609 * We restore the event value and then enable it.
2610 *
2611 * This does not protect us against NMI, but enable()
2612 * sets the enabled bit in the control field of event _before_
2613 * accessing the event control register. If a NMI hits, then it will
2614 * keep the event running.
2615 */
2616 void __perf_event_task_sched_in(struct task_struct *prev,
2617 struct task_struct *task)
2618 {
2619 struct perf_event_context *ctx;
2620 int ctxn;
2621
2622 for_each_task_context_nr(ctxn) {
2623 ctx = task->perf_event_ctxp[ctxn];
2624 if (likely(!ctx))
2625 continue;
2626
2627 perf_event_context_sched_in(ctx, task);
2628 }
2629 /*
2630 * if cgroup events exist on this CPU, then we need
2631 * to check if we have to switch in PMU state.
2632 * cgroup event are system-wide mode only
2633 */
2634 if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2635 perf_cgroup_sched_in(prev, task);
2636
2637 /* check for system-wide branch_stack events */
2638 if (atomic_read(&__get_cpu_var(perf_branch_stack_events)))
2639 perf_branch_stack_sched_in(prev, task);
2640 }
2641
2642 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2643 {
2644 u64 frequency = event->attr.sample_freq;
2645 u64 sec = NSEC_PER_SEC;
2646 u64 divisor, dividend;
2647
2648 int count_fls, nsec_fls, frequency_fls, sec_fls;
2649
2650 count_fls = fls64(count);
2651 nsec_fls = fls64(nsec);
2652 frequency_fls = fls64(frequency);
2653 sec_fls = 30;
2654
2655 /*
2656 * We got @count in @nsec, with a target of sample_freq HZ
2657 * the target period becomes:
2658 *
2659 * @count * 10^9
2660 * period = -------------------
2661 * @nsec * sample_freq
2662 *
2663 */
2664
2665 /*
2666 * Reduce accuracy by one bit such that @a and @b converge
2667 * to a similar magnitude.
2668 */
2669 #define REDUCE_FLS(a, b) \
2670 do { \
2671 if (a##_fls > b##_fls) { \
2672 a >>= 1; \
2673 a##_fls--; \
2674 } else { \
2675 b >>= 1; \
2676 b##_fls--; \
2677 } \
2678 } while (0)
2679
2680 /*
2681 * Reduce accuracy until either term fits in a u64, then proceed with
2682 * the other, so that finally we can do a u64/u64 division.
2683 */
2684 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2685 REDUCE_FLS(nsec, frequency);
2686 REDUCE_FLS(sec, count);
2687 }
2688
2689 if (count_fls + sec_fls > 64) {
2690 divisor = nsec * frequency;
2691
2692 while (count_fls + sec_fls > 64) {
2693 REDUCE_FLS(count, sec);
2694 divisor >>= 1;
2695 }
2696
2697 dividend = count * sec;
2698 } else {
2699 dividend = count * sec;
2700
2701 while (nsec_fls + frequency_fls > 64) {
2702 REDUCE_FLS(nsec, frequency);
2703 dividend >>= 1;
2704 }
2705
2706 divisor = nsec * frequency;
2707 }
2708
2709 if (!divisor)
2710 return dividend;
2711
2712 return div64_u64(dividend, divisor);
2713 }
2714
2715 static DEFINE_PER_CPU(int, perf_throttled_count);
2716 static DEFINE_PER_CPU(u64, perf_throttled_seq);
2717
2718 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2719 {
2720 struct hw_perf_event *hwc = &event->hw;
2721 s64 period, sample_period;
2722 s64 delta;
2723
2724 period = perf_calculate_period(event, nsec, count);
2725
2726 delta = (s64)(period - hwc->sample_period);
2727 delta = (delta + 7) / 8; /* low pass filter */
2728
2729 sample_period = hwc->sample_period + delta;
2730
2731 if (!sample_period)
2732 sample_period = 1;
2733
2734 hwc->sample_period = sample_period;
2735
2736 if (local64_read(&hwc->period_left) > 8*sample_period) {
2737 if (disable)
2738 event->pmu->stop(event, PERF_EF_UPDATE);
2739
2740 local64_set(&hwc->period_left, 0);
2741
2742 if (disable)
2743 event->pmu->start(event, PERF_EF_RELOAD);
2744 }
2745 }
2746
2747 /*
2748 * combine freq adjustment with unthrottling to avoid two passes over the
2749 * events. At the same time, make sure, having freq events does not change
2750 * the rate of unthrottling as that would introduce bias.
2751 */
2752 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2753 int needs_unthr)
2754 {
2755 struct perf_event *event;
2756 struct hw_perf_event *hwc;
2757 u64 now, period = TICK_NSEC;
2758 s64 delta;
2759
2760 /*
2761 * only need to iterate over all events iff:
2762 * - context have events in frequency mode (needs freq adjust)
2763 * - there are events to unthrottle on this cpu
2764 */
2765 if (!(ctx->nr_freq || needs_unthr))
2766 return;
2767
2768 raw_spin_lock(&ctx->lock);
2769 perf_pmu_disable(ctx->pmu);
2770
2771 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2772 if (event->state != PERF_EVENT_STATE_ACTIVE)
2773 continue;
2774
2775 if (!event_filter_match(event))
2776 continue;
2777
2778 perf_pmu_disable(event->pmu);
2779
2780 hwc = &event->hw;
2781
2782 if (hwc->interrupts == MAX_INTERRUPTS) {
2783 hwc->interrupts = 0;
2784 perf_log_throttle(event, 1);
2785 event->pmu->start(event, 0);
2786 }
2787
2788 if (!event->attr.freq || !event->attr.sample_freq)
2789 goto next;
2790
2791 /*
2792 * stop the event and update event->count
2793 */
2794 event->pmu->stop(event, PERF_EF_UPDATE);
2795
2796 now = local64_read(&event->count);
2797 delta = now - hwc->freq_count_stamp;
2798 hwc->freq_count_stamp = now;
2799
2800 /*
2801 * restart the event
2802 * reload only if value has changed
2803 * we have stopped the event so tell that
2804 * to perf_adjust_period() to avoid stopping it
2805 * twice.
2806 */
2807 if (delta > 0)
2808 perf_adjust_period(event, period, delta, false);
2809
2810 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
2811 next:
2812 perf_pmu_enable(event->pmu);
2813 }
2814
2815 perf_pmu_enable(ctx->pmu);
2816 raw_spin_unlock(&ctx->lock);
2817 }
2818
2819 /*
2820 * Round-robin a context's events:
2821 */
2822 static void rotate_ctx(struct perf_event_context *ctx)
2823 {
2824 /*
2825 * Rotate the first entry last of non-pinned groups. Rotation might be
2826 * disabled by the inheritance code.
2827 */
2828 if (!ctx->rotate_disable)
2829 list_rotate_left(&ctx->flexible_groups);
2830 }
2831
2832 /*
2833 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
2834 * because they're strictly cpu affine and rotate_start is called with IRQs
2835 * disabled, while rotate_context is called from IRQ context.
2836 */
2837 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
2838 {
2839 struct perf_event_context *ctx = NULL;
2840 int rotate = 0, remove = 1;
2841
2842 if (cpuctx->ctx.nr_events) {
2843 remove = 0;
2844 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
2845 rotate = 1;
2846 }
2847
2848 ctx = cpuctx->task_ctx;
2849 if (ctx && ctx->nr_events) {
2850 remove = 0;
2851 if (ctx->nr_events != ctx->nr_active)
2852 rotate = 1;
2853 }
2854
2855 if (!rotate)
2856 goto done;
2857
2858 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2859 perf_pmu_disable(cpuctx->ctx.pmu);
2860
2861 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2862 if (ctx)
2863 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
2864
2865 rotate_ctx(&cpuctx->ctx);
2866 if (ctx)
2867 rotate_ctx(ctx);
2868
2869 perf_event_sched_in(cpuctx, ctx, current);
2870
2871 perf_pmu_enable(cpuctx->ctx.pmu);
2872 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2873 done:
2874 if (remove)
2875 list_del_init(&cpuctx->rotation_list);
2876
2877 return rotate;
2878 }
2879
2880 #ifdef CONFIG_NO_HZ_FULL
2881 bool perf_event_can_stop_tick(void)
2882 {
2883 if (atomic_read(&nr_freq_events) ||
2884 __this_cpu_read(perf_throttled_count))
2885 return false;
2886 else
2887 return true;
2888 }
2889 #endif
2890
2891 void perf_event_task_tick(void)
2892 {
2893 struct list_head *head = &__get_cpu_var(rotation_list);
2894 struct perf_cpu_context *cpuctx, *tmp;
2895 struct perf_event_context *ctx;
2896 int throttled;
2897
2898 WARN_ON(!irqs_disabled());
2899
2900 __this_cpu_inc(perf_throttled_seq);
2901 throttled = __this_cpu_xchg(perf_throttled_count, 0);
2902
2903 list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
2904 ctx = &cpuctx->ctx;
2905 perf_adjust_freq_unthr_context(ctx, throttled);
2906
2907 ctx = cpuctx->task_ctx;
2908 if (ctx)
2909 perf_adjust_freq_unthr_context(ctx, throttled);
2910 }
2911 }
2912
2913 static int event_enable_on_exec(struct perf_event *event,
2914 struct perf_event_context *ctx)
2915 {
2916 if (!event->attr.enable_on_exec)
2917 return 0;
2918
2919 event->attr.enable_on_exec = 0;
2920 if (event->state >= PERF_EVENT_STATE_INACTIVE)
2921 return 0;
2922
2923 __perf_event_mark_enabled(event);
2924
2925 return 1;
2926 }
2927
2928 /*
2929 * Enable all of a task's events that have been marked enable-on-exec.
2930 * This expects task == current.
2931 */
2932 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
2933 {
2934 struct perf_event *event;
2935 unsigned long flags;
2936 int enabled = 0;
2937 int ret;
2938
2939 local_irq_save(flags);
2940 if (!ctx || !ctx->nr_events)
2941 goto out;
2942
2943 /*
2944 * We must ctxsw out cgroup events to avoid conflict
2945 * when invoking perf_task_event_sched_in() later on
2946 * in this function. Otherwise we end up trying to
2947 * ctxswin cgroup events which are already scheduled
2948 * in.
2949 */
2950 perf_cgroup_sched_out(current, NULL);
2951
2952 raw_spin_lock(&ctx->lock);
2953 task_ctx_sched_out(ctx);
2954
2955 list_for_each_entry(event, &ctx->event_list, event_entry) {
2956 ret = event_enable_on_exec(event, ctx);
2957 if (ret)
2958 enabled = 1;
2959 }
2960
2961 /*
2962 * Unclone this context if we enabled any event.
2963 */
2964 if (enabled)
2965 unclone_ctx(ctx);
2966
2967 raw_spin_unlock(&ctx->lock);
2968
2969 /*
2970 * Also calls ctxswin for cgroup events, if any:
2971 */
2972 perf_event_context_sched_in(ctx, ctx->task);
2973 out:
2974 local_irq_restore(flags);
2975 }
2976
2977 void perf_event_exec(void)
2978 {
2979 struct perf_event_context *ctx;
2980 int ctxn;
2981
2982 rcu_read_lock();
2983 for_each_task_context_nr(ctxn) {
2984 ctx = current->perf_event_ctxp[ctxn];
2985 if (!ctx)
2986 continue;
2987
2988 perf_event_enable_on_exec(ctx);
2989 }
2990 rcu_read_unlock();
2991 }
2992
2993 /*
2994 * Cross CPU call to read the hardware event
2995 */
2996 static void __perf_event_read(void *info)
2997 {
2998 struct perf_event *event = info;
2999 struct perf_event_context *ctx = event->ctx;
3000 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3001
3002 /*
3003 * If this is a task context, we need to check whether it is
3004 * the current task context of this cpu. If not it has been
3005 * scheduled out before the smp call arrived. In that case
3006 * event->count would have been updated to a recent sample
3007 * when the event was scheduled out.
3008 */
3009 if (ctx->task && cpuctx->task_ctx != ctx)
3010 return;
3011
3012 raw_spin_lock(&ctx->lock);
3013 if (ctx->is_active) {
3014 update_context_time(ctx);
3015 update_cgrp_time_from_event(event);
3016 }
3017 update_event_times(event);
3018 if (event->state == PERF_EVENT_STATE_ACTIVE)
3019 event->pmu->read(event);
3020 raw_spin_unlock(&ctx->lock);
3021 }
3022
3023 static inline u64 perf_event_count(struct perf_event *event)
3024 {
3025 return local64_read(&event->count) + atomic64_read(&event->child_count);
3026 }
3027
3028 static u64 perf_event_read(struct perf_event *event)
3029 {
3030 /*
3031 * If event is enabled and currently active on a CPU, update the
3032 * value in the event structure:
3033 */
3034 if (event->state == PERF_EVENT_STATE_ACTIVE) {
3035 smp_call_function_single(event->oncpu,
3036 __perf_event_read, event, 1);
3037 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
3038 struct perf_event_context *ctx = event->ctx;
3039 unsigned long flags;
3040
3041 raw_spin_lock_irqsave(&ctx->lock, flags);
3042 /*
3043 * may read while context is not active
3044 * (e.g., thread is blocked), in that case
3045 * we cannot update context time
3046 */
3047 if (ctx->is_active) {
3048 update_context_time(ctx);
3049 update_cgrp_time_from_event(event);
3050 }
3051 update_event_times(event);
3052 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3053 }
3054
3055 return perf_event_count(event);
3056 }
3057
3058 /*
3059 * Initialize the perf_event context in a task_struct:
3060 */
3061 static void __perf_event_init_context(struct perf_event_context *ctx)
3062 {
3063 raw_spin_lock_init(&ctx->lock);
3064 mutex_init(&ctx->mutex);
3065 INIT_LIST_HEAD(&ctx->pinned_groups);
3066 INIT_LIST_HEAD(&ctx->flexible_groups);
3067 INIT_LIST_HEAD(&ctx->event_list);
3068 atomic_set(&ctx->refcount, 1);
3069 }
3070
3071 static struct perf_event_context *
3072 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3073 {
3074 struct perf_event_context *ctx;
3075
3076 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3077 if (!ctx)
3078 return NULL;
3079
3080 __perf_event_init_context(ctx);
3081 if (task) {
3082 ctx->task = task;
3083 get_task_struct(task);
3084 }
3085 ctx->pmu = pmu;
3086
3087 return ctx;
3088 }
3089
3090 static struct task_struct *
3091 find_lively_task_by_vpid(pid_t vpid)
3092 {
3093 struct task_struct *task;
3094 int err;
3095
3096 rcu_read_lock();
3097 if (!vpid)
3098 task = current;
3099 else
3100 task = find_task_by_vpid(vpid);
3101 if (task)
3102 get_task_struct(task);
3103 rcu_read_unlock();
3104
3105 if (!task)
3106 return ERR_PTR(-ESRCH);
3107
3108 /* Reuse ptrace permission checks for now. */
3109 err = -EACCES;
3110 if (!ptrace_may_access(task, PTRACE_MODE_READ))
3111 goto errout;
3112
3113 return task;
3114 errout:
3115 put_task_struct(task);
3116 return ERR_PTR(err);
3117
3118 }
3119
3120 /*
3121 * Returns a matching context with refcount and pincount.
3122 */
3123 static struct perf_event_context *
3124 find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
3125 {
3126 struct perf_event_context *ctx;
3127 struct perf_cpu_context *cpuctx;
3128 unsigned long flags;
3129 int ctxn, err;
3130
3131 if (!task) {
3132 /* Must be root to operate on a CPU event: */
3133 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3134 return ERR_PTR(-EACCES);
3135
3136 /*
3137 * We could be clever and allow to attach a event to an
3138 * offline CPU and activate it when the CPU comes up, but
3139 * that's for later.
3140 */
3141 if (!cpu_online(cpu))
3142 return ERR_PTR(-ENODEV);
3143
3144 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3145 ctx = &cpuctx->ctx;
3146 get_ctx(ctx);
3147 ++ctx->pin_count;
3148
3149 return ctx;
3150 }
3151
3152 err = -EINVAL;
3153 ctxn = pmu->task_ctx_nr;
3154 if (ctxn < 0)
3155 goto errout;
3156
3157 retry:
3158 ctx = perf_lock_task_context(task, ctxn, &flags);
3159 if (ctx) {
3160 unclone_ctx(ctx);
3161 ++ctx->pin_count;
3162 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3163 } else {
3164 ctx = alloc_perf_context(pmu, task);
3165 err = -ENOMEM;
3166 if (!ctx)
3167 goto errout;
3168
3169 err = 0;
3170 mutex_lock(&task->perf_event_mutex);
3171 /*
3172 * If it has already passed perf_event_exit_task().
3173 * we must see PF_EXITING, it takes this mutex too.
3174 */
3175 if (task->flags & PF_EXITING)
3176 err = -ESRCH;
3177 else if (task->perf_event_ctxp[ctxn])
3178 err = -EAGAIN;
3179 else {
3180 get_ctx(ctx);
3181 ++ctx->pin_count;
3182 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3183 }
3184 mutex_unlock(&task->perf_event_mutex);
3185
3186 if (unlikely(err)) {
3187 put_ctx(ctx);
3188
3189 if (err == -EAGAIN)
3190 goto retry;
3191 goto errout;
3192 }
3193 }
3194
3195 return ctx;
3196
3197 errout:
3198 return ERR_PTR(err);
3199 }
3200
3201 static void perf_event_free_filter(struct perf_event *event);
3202
3203 static void free_event_rcu(struct rcu_head *head)
3204 {
3205 struct perf_event *event;
3206
3207 event = container_of(head, struct perf_event, rcu_head);
3208 if (event->ns)
3209 put_pid_ns(event->ns);
3210 perf_event_free_filter(event);
3211 kfree(event);
3212 }
3213
3214 static void ring_buffer_put(struct ring_buffer *rb);
3215 static void ring_buffer_attach(struct perf_event *event,
3216 struct ring_buffer *rb);
3217
3218 static void unaccount_event_cpu(struct perf_event *event, int cpu)
3219 {
3220 if (event->parent)
3221 return;
3222
3223 if (has_branch_stack(event)) {
3224 if (!(event->attach_state & PERF_ATTACH_TASK))
3225 atomic_dec(&per_cpu(perf_branch_stack_events, cpu));
3226 }
3227 if (is_cgroup_event(event))
3228 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3229 }
3230
3231 static void unaccount_event(struct perf_event *event)
3232 {
3233 if (event->parent)
3234 return;
3235
3236 if (event->attach_state & PERF_ATTACH_TASK)
3237 static_key_slow_dec_deferred(&perf_sched_events);
3238 if (event->attr.mmap || event->attr.mmap_data)
3239 atomic_dec(&nr_mmap_events);
3240 if (event->attr.comm)
3241 atomic_dec(&nr_comm_events);
3242 if (event->attr.task)
3243 atomic_dec(&nr_task_events);
3244 if (event->attr.freq)
3245 atomic_dec(&nr_freq_events);
3246 if (is_cgroup_event(event))
3247 static_key_slow_dec_deferred(&perf_sched_events);
3248 if (has_branch_stack(event))
3249 static_key_slow_dec_deferred(&perf_sched_events);
3250
3251 unaccount_event_cpu(event, event->cpu);
3252 }
3253
3254 static void __free_event(struct perf_event *event)
3255 {
3256 if (!event->parent) {
3257 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3258 put_callchain_buffers();
3259 }
3260
3261 if (event->destroy)
3262 event->destroy(event);
3263
3264 if (event->ctx)
3265 put_ctx(event->ctx);
3266
3267 if (event->pmu)
3268 module_put(event->pmu->module);
3269
3270 call_rcu(&event->rcu_head, free_event_rcu);
3271 }
3272
3273 static void _free_event(struct perf_event *event)
3274 {
3275 irq_work_sync(&event->pending);
3276
3277 unaccount_event(event);
3278
3279 if (event->rb) {
3280 /*
3281 * Can happen when we close an event with re-directed output.
3282 *
3283 * Since we have a 0 refcount, perf_mmap_close() will skip
3284 * over us; possibly making our ring_buffer_put() the last.
3285 */
3286 mutex_lock(&event->mmap_mutex);
3287 ring_buffer_attach(event, NULL);
3288 mutex_unlock(&event->mmap_mutex);
3289 }
3290
3291 if (is_cgroup_event(event))
3292 perf_detach_cgroup(event);
3293
3294 __free_event(event);
3295 }
3296
3297 /*
3298 * Used to free events which have a known refcount of 1, such as in error paths
3299 * where the event isn't exposed yet and inherited events.
3300 */
3301 static void free_event(struct perf_event *event)
3302 {
3303 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
3304 "unexpected event refcount: %ld; ptr=%p\n",
3305 atomic_long_read(&event->refcount), event)) {
3306 /* leak to avoid use-after-free */
3307 return;
3308 }
3309
3310 _free_event(event);
3311 }
3312
3313 /*
3314 * Called when the last reference to the file is gone.
3315 */
3316 static void put_event(struct perf_event *event)
3317 {
3318 struct perf_event_context *ctx = event->ctx;
3319 struct task_struct *owner;
3320
3321 if (!atomic_long_dec_and_test(&event->refcount))
3322 return;
3323
3324 rcu_read_lock();
3325 owner = ACCESS_ONCE(event->owner);
3326 /*
3327 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
3328 * !owner it means the list deletion is complete and we can indeed
3329 * free this event, otherwise we need to serialize on
3330 * owner->perf_event_mutex.
3331 */
3332 smp_read_barrier_depends();
3333 if (owner) {
3334 /*
3335 * Since delayed_put_task_struct() also drops the last
3336 * task reference we can safely take a new reference
3337 * while holding the rcu_read_lock().
3338 */
3339 get_task_struct(owner);
3340 }
3341 rcu_read_unlock();
3342
3343 if (owner) {
3344 mutex_lock(&owner->perf_event_mutex);
3345 /*
3346 * We have to re-check the event->owner field, if it is cleared
3347 * we raced with perf_event_exit_task(), acquiring the mutex
3348 * ensured they're done, and we can proceed with freeing the
3349 * event.
3350 */
3351 if (event->owner)
3352 list_del_init(&event->owner_entry);
3353 mutex_unlock(&owner->perf_event_mutex);
3354 put_task_struct(owner);
3355 }
3356
3357 WARN_ON_ONCE(ctx->parent_ctx);
3358 /*
3359 * There are two ways this annotation is useful:
3360 *
3361 * 1) there is a lock recursion from perf_event_exit_task
3362 * see the comment there.
3363 *
3364 * 2) there is a lock-inversion with mmap_sem through
3365 * perf_event_read_group(), which takes faults while
3366 * holding ctx->mutex, however this is called after
3367 * the last filedesc died, so there is no possibility
3368 * to trigger the AB-BA case.
3369 */
3370 mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
3371 perf_remove_from_context(event, true);
3372 mutex_unlock(&ctx->mutex);
3373
3374 _free_event(event);
3375 }
3376
3377 int perf_event_release_kernel(struct perf_event *event)
3378 {
3379 put_event(event);
3380 return 0;
3381 }
3382 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
3383
3384 static int perf_release(struct inode *inode, struct file *file)
3385 {
3386 put_event(file->private_data);
3387 return 0;
3388 }
3389
3390 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3391 {
3392 struct perf_event *child;
3393 u64 total = 0;
3394
3395 *enabled = 0;
3396 *running = 0;
3397
3398 mutex_lock(&event->child_mutex);
3399 total += perf_event_read(event);
3400 *enabled += event->total_time_enabled +
3401 atomic64_read(&event->child_total_time_enabled);
3402 *running += event->total_time_running +
3403 atomic64_read(&event->child_total_time_running);
3404
3405 list_for_each_entry(child, &event->child_list, child_list) {
3406 total += perf_event_read(child);
3407 *enabled += child->total_time_enabled;
3408 *running += child->total_time_running;
3409 }
3410 mutex_unlock(&event->child_mutex);
3411
3412 return total;
3413 }
3414 EXPORT_SYMBOL_GPL(perf_event_read_value);
3415
3416 static int perf_event_read_group(struct perf_event *event,
3417 u64 read_format, char __user *buf)
3418 {
3419 struct perf_event *leader = event->group_leader, *sub;
3420 int n = 0, size = 0, ret = -EFAULT;
3421 struct perf_event_context *ctx = leader->ctx;
3422 u64 values[5];
3423 u64 count, enabled, running;
3424
3425 mutex_lock(&ctx->mutex);
3426 count = perf_event_read_value(leader, &enabled, &running);
3427
3428 values[n++] = 1 + leader->nr_siblings;
3429 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3430 values[n++] = enabled;
3431 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3432 values[n++] = running;
3433 values[n++] = count;
3434 if (read_format & PERF_FORMAT_ID)
3435 values[n++] = primary_event_id(leader);
3436
3437 size = n * sizeof(u64);
3438
3439 if (copy_to_user(buf, values, size))
3440 goto unlock;
3441
3442 ret = size;
3443
3444 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3445 n = 0;
3446
3447 values[n++] = perf_event_read_value(sub, &enabled, &running);
3448 if (read_format & PERF_FORMAT_ID)
3449 values[n++] = primary_event_id(sub);
3450
3451 size = n * sizeof(u64);
3452
3453 if (copy_to_user(buf + ret, values, size)) {
3454 ret = -EFAULT;
3455 goto unlock;
3456 }
3457
3458 ret += size;
3459 }
3460 unlock:
3461 mutex_unlock(&ctx->mutex);
3462
3463 return ret;
3464 }
3465
3466 static int perf_event_read_one(struct perf_event *event,
3467 u64 read_format, char __user *buf)
3468 {
3469 u64 enabled, running;
3470 u64 values[4];
3471 int n = 0;
3472
3473 values[n++] = perf_event_read_value(event, &enabled, &running);
3474 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3475 values[n++] = enabled;
3476 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3477 values[n++] = running;
3478 if (read_format & PERF_FORMAT_ID)
3479 values[n++] = primary_event_id(event);
3480
3481 if (copy_to_user(buf, values, n * sizeof(u64)))
3482 return -EFAULT;
3483
3484 return n * sizeof(u64);
3485 }
3486
3487 /*
3488 * Read the performance event - simple non blocking version for now
3489 */
3490 static ssize_t
3491 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
3492 {
3493 u64 read_format = event->attr.read_format;
3494 int ret;
3495
3496 /*
3497 * Return end-of-file for a read on a event that is in
3498 * error state (i.e. because it was pinned but it couldn't be
3499 * scheduled on to the CPU at some point).
3500 */
3501 if (event->state == PERF_EVENT_STATE_ERROR)
3502 return 0;
3503
3504 if (count < event->read_size)
3505 return -ENOSPC;
3506
3507 WARN_ON_ONCE(event->ctx->parent_ctx);
3508 if (read_format & PERF_FORMAT_GROUP)
3509 ret = perf_event_read_group(event, read_format, buf);
3510 else
3511 ret = perf_event_read_one(event, read_format, buf);
3512
3513 return ret;
3514 }
3515
3516 static ssize_t
3517 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
3518 {
3519 struct perf_event *event = file->private_data;
3520
3521 return perf_read_hw(event, buf, count);
3522 }
3523
3524 static unsigned int perf_poll(struct file *file, poll_table *wait)
3525 {
3526 struct perf_event *event = file->private_data;
3527 struct ring_buffer *rb;
3528 unsigned int events = POLL_HUP;
3529
3530 /*
3531 * Pin the event->rb by taking event->mmap_mutex; otherwise
3532 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
3533 */
3534 mutex_lock(&event->mmap_mutex);
3535 rb = event->rb;
3536 if (rb)
3537 events = atomic_xchg(&rb->poll, 0);
3538 mutex_unlock(&event->mmap_mutex);
3539
3540 poll_wait(file, &event->waitq, wait);
3541
3542 return events;
3543 }
3544
3545 static void perf_event_reset(struct perf_event *event)
3546 {
3547 (void)perf_event_read(event);
3548 local64_set(&event->count, 0);
3549 perf_event_update_userpage(event);
3550 }
3551
3552 /*
3553 * Holding the top-level event's child_mutex means that any
3554 * descendant process that has inherited this event will block
3555 * in sync_child_event if it goes to exit, thus satisfying the
3556 * task existence requirements of perf_event_enable/disable.
3557 */
3558 static void perf_event_for_each_child(struct perf_event *event,
3559 void (*func)(struct perf_event *))
3560 {
3561 struct perf_event *child;
3562
3563 WARN_ON_ONCE(event->ctx->parent_ctx);
3564 mutex_lock(&event->child_mutex);
3565 func(event);
3566 list_for_each_entry(child, &event->child_list, child_list)
3567 func(child);
3568 mutex_unlock(&event->child_mutex);
3569 }
3570
3571 static void perf_event_for_each(struct perf_event *event,
3572 void (*func)(struct perf_event *))
3573 {
3574 struct perf_event_context *ctx = event->ctx;
3575 struct perf_event *sibling;
3576
3577 WARN_ON_ONCE(ctx->parent_ctx);
3578 mutex_lock(&ctx->mutex);
3579 event = event->group_leader;
3580
3581 perf_event_for_each_child(event, func);
3582 list_for_each_entry(sibling, &event->sibling_list, group_entry)
3583 perf_event_for_each_child(sibling, func);
3584 mutex_unlock(&ctx->mutex);
3585 }
3586
3587 static int perf_event_period(struct perf_event *event, u64 __user *arg)
3588 {
3589 struct perf_event_context *ctx = event->ctx;
3590 int ret = 0, active;
3591 u64 value;
3592
3593 if (!is_sampling_event(event))
3594 return -EINVAL;
3595
3596 if (copy_from_user(&value, arg, sizeof(value)))
3597 return -EFAULT;
3598
3599 if (!value)
3600 return -EINVAL;
3601
3602 raw_spin_lock_irq(&ctx->lock);
3603 if (event->attr.freq) {
3604 if (value > sysctl_perf_event_sample_rate) {
3605 ret = -EINVAL;
3606 goto unlock;
3607 }
3608
3609 event->attr.sample_freq = value;
3610 } else {
3611 event->attr.sample_period = value;
3612 event->hw.sample_period = value;
3613 }
3614
3615 active = (event->state == PERF_EVENT_STATE_ACTIVE);
3616 if (active) {
3617 perf_pmu_disable(ctx->pmu);
3618 event->pmu->stop(event, PERF_EF_UPDATE);
3619 }
3620
3621 local64_set(&event->hw.period_left, 0);
3622
3623 if (active) {
3624 event->pmu->start(event, PERF_EF_RELOAD);
3625 perf_pmu_enable(ctx->pmu);
3626 }
3627
3628 unlock:
3629 raw_spin_unlock_irq(&ctx->lock);
3630
3631 return ret;
3632 }
3633
3634 static const struct file_operations perf_fops;
3635
3636 static inline int perf_fget_light(int fd, struct fd *p)
3637 {
3638 struct fd f = fdget(fd);
3639 if (!f.file)
3640 return -EBADF;
3641
3642 if (f.file->f_op != &perf_fops) {
3643 fdput(f);
3644 return -EBADF;
3645 }
3646 *p = f;
3647 return 0;
3648 }
3649
3650 static int perf_event_set_output(struct perf_event *event,
3651 struct perf_event *output_event);
3652 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3653
3654 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3655 {
3656 struct perf_event *event = file->private_data;
3657 void (*func)(struct perf_event *);
3658 u32 flags = arg;
3659
3660 switch (cmd) {
3661 case PERF_EVENT_IOC_ENABLE:
3662 func = perf_event_enable;
3663 break;
3664 case PERF_EVENT_IOC_DISABLE:
3665 func = perf_event_disable;
3666 break;
3667 case PERF_EVENT_IOC_RESET:
3668 func = perf_event_reset;
3669 break;
3670
3671 case PERF_EVENT_IOC_REFRESH:
3672 return perf_event_refresh(event, arg);
3673
3674 case PERF_EVENT_IOC_PERIOD:
3675 return perf_event_period(event, (u64 __user *)arg);
3676
3677 case PERF_EVENT_IOC_ID:
3678 {
3679 u64 id = primary_event_id(event);
3680
3681 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
3682 return -EFAULT;
3683 return 0;
3684 }
3685
3686 case PERF_EVENT_IOC_SET_OUTPUT:
3687 {
3688 int ret;
3689 if (arg != -1) {
3690 struct perf_event *output_event;
3691 struct fd output;
3692 ret = perf_fget_light(arg, &output);
3693 if (ret)
3694 return ret;
3695 output_event = output.file->private_data;
3696 ret = perf_event_set_output(event, output_event);
3697 fdput(output);
3698 } else {
3699 ret = perf_event_set_output(event, NULL);
3700 }
3701 return ret;
3702 }
3703
3704 case PERF_EVENT_IOC_SET_FILTER:
3705 return perf_event_set_filter(event, (void __user *)arg);
3706
3707 default:
3708 return -ENOTTY;
3709 }
3710
3711 if (flags & PERF_IOC_FLAG_GROUP)
3712 perf_event_for_each(event, func);
3713 else
3714 perf_event_for_each_child(event, func);
3715
3716 return 0;
3717 }
3718
3719 int perf_event_task_enable(void)
3720 {
3721 struct perf_event *event;
3722
3723 mutex_lock(&current->perf_event_mutex);
3724 list_for_each_entry(event, &current->perf_event_list, owner_entry)
3725 perf_event_for_each_child(event, perf_event_enable);
3726 mutex_unlock(&current->perf_event_mutex);
3727
3728 return 0;
3729 }
3730
3731 int perf_event_task_disable(void)
3732 {
3733 struct perf_event *event;
3734
3735 mutex_lock(&current->perf_event_mutex);
3736 list_for_each_entry(event, &current->perf_event_list, owner_entry)
3737 perf_event_for_each_child(event, perf_event_disable);
3738 mutex_unlock(&current->perf_event_mutex);
3739
3740 return 0;
3741 }
3742
3743 static int perf_event_index(struct perf_event *event)
3744 {
3745 if (event->hw.state & PERF_HES_STOPPED)
3746 return 0;
3747
3748 if (event->state != PERF_EVENT_STATE_ACTIVE)
3749 return 0;
3750
3751 return event->pmu->event_idx(event);
3752 }
3753
3754 static void calc_timer_values(struct perf_event *event,
3755 u64 *now,
3756 u64 *enabled,
3757 u64 *running)
3758 {
3759 u64 ctx_time;
3760
3761 *now = perf_clock();
3762 ctx_time = event->shadow_ctx_time + *now;
3763 *enabled = ctx_time - event->tstamp_enabled;
3764 *running = ctx_time - event->tstamp_running;
3765 }
3766
3767 static void perf_event_init_userpage(struct perf_event *event)
3768 {
3769 struct perf_event_mmap_page *userpg;
3770 struct ring_buffer *rb;
3771
3772 rcu_read_lock();
3773 rb = rcu_dereference(event->rb);
3774 if (!rb)
3775 goto unlock;
3776
3777 userpg = rb->user_page;
3778
3779 /* Allow new userspace to detect that bit 0 is deprecated */
3780 userpg->cap_bit0_is_deprecated = 1;
3781 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
3782
3783 unlock:
3784 rcu_read_unlock();
3785 }
3786
3787 void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
3788 {
3789 }
3790
3791 /*
3792 * Callers need to ensure there can be no nesting of this function, otherwise
3793 * the seqlock logic goes bad. We can not serialize this because the arch
3794 * code calls this from NMI context.
3795 */
3796 void perf_event_update_userpage(struct perf_event *event)
3797 {
3798 struct perf_event_mmap_page *userpg;
3799 struct ring_buffer *rb;
3800 u64 enabled, running, now;
3801
3802 rcu_read_lock();
3803 rb = rcu_dereference(event->rb);
3804 if (!rb)
3805 goto unlock;
3806
3807 /*
3808 * compute total_time_enabled, total_time_running
3809 * based on snapshot values taken when the event
3810 * was last scheduled in.
3811 *
3812 * we cannot simply called update_context_time()
3813 * because of locking issue as we can be called in
3814 * NMI context
3815 */
3816 calc_timer_values(event, &now, &enabled, &running);
3817
3818 userpg = rb->user_page;
3819 /*
3820 * Disable preemption so as to not let the corresponding user-space
3821 * spin too long if we get preempted.
3822 */
3823 preempt_disable();
3824 ++userpg->lock;
3825 barrier();
3826 userpg->index = perf_event_index(event);
3827 userpg->offset = perf_event_count(event);
3828 if (userpg->index)
3829 userpg->offset -= local64_read(&event->hw.prev_count);
3830
3831 userpg->time_enabled = enabled +
3832 atomic64_read(&event->child_total_time_enabled);
3833
3834 userpg->time_running = running +
3835 atomic64_read(&event->child_total_time_running);
3836
3837 arch_perf_update_userpage(userpg, now);
3838
3839 barrier();
3840 ++userpg->lock;
3841 preempt_enable();
3842 unlock:
3843 rcu_read_unlock();
3844 }
3845
3846 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
3847 {
3848 struct perf_event *event = vma->vm_file->private_data;
3849 struct ring_buffer *rb;
3850 int ret = VM_FAULT_SIGBUS;
3851
3852 if (vmf->flags & FAULT_FLAG_MKWRITE) {
3853 if (vmf->pgoff == 0)
3854 ret = 0;
3855 return ret;
3856 }
3857
3858 rcu_read_lock();
3859 rb = rcu_dereference(event->rb);
3860 if (!rb)
3861 goto unlock;
3862
3863 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
3864 goto unlock;
3865
3866 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
3867 if (!vmf->page)
3868 goto unlock;
3869
3870 get_page(vmf->page);
3871 vmf->page->mapping = vma->vm_file->f_mapping;
3872 vmf->page->index = vmf->pgoff;
3873
3874 ret = 0;
3875 unlock:
3876 rcu_read_unlock();
3877
3878 return ret;
3879 }
3880
3881 static void ring_buffer_attach(struct perf_event *event,
3882 struct ring_buffer *rb)
3883 {
3884 struct ring_buffer *old_rb = NULL;
3885 unsigned long flags;
3886
3887 if (event->rb) {
3888 /*
3889 * Should be impossible, we set this when removing
3890 * event->rb_entry and wait/clear when adding event->rb_entry.
3891 */
3892 WARN_ON_ONCE(event->rcu_pending);
3893
3894 old_rb = event->rb;
3895 event->rcu_batches = get_state_synchronize_rcu();
3896 event->rcu_pending = 1;
3897
3898 spin_lock_irqsave(&old_rb->event_lock, flags);
3899 list_del_rcu(&event->rb_entry);
3900 spin_unlock_irqrestore(&old_rb->event_lock, flags);
3901 }
3902
3903 if (event->rcu_pending && rb) {
3904 cond_synchronize_rcu(event->rcu_batches);
3905 event->rcu_pending = 0;
3906 }
3907
3908 if (rb) {
3909 spin_lock_irqsave(&rb->event_lock, flags);
3910 list_add_rcu(&event->rb_entry, &rb->event_list);
3911 spin_unlock_irqrestore(&rb->event_lock, flags);
3912 }
3913
3914 rcu_assign_pointer(event->rb, rb);
3915
3916 if (old_rb) {
3917 ring_buffer_put(old_rb);
3918 /*
3919 * Since we detached before setting the new rb, so that we
3920 * could attach the new rb, we could have missed a wakeup.
3921 * Provide it now.
3922 */
3923 wake_up_all(&event->waitq);
3924 }
3925 }
3926
3927 static void ring_buffer_wakeup(struct perf_event *event)
3928 {
3929 struct ring_buffer *rb;
3930
3931 rcu_read_lock();
3932 rb = rcu_dereference(event->rb);
3933 if (rb) {
3934 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
3935 wake_up_all(&event->waitq);
3936 }
3937 rcu_read_unlock();
3938 }
3939
3940 static void rb_free_rcu(struct rcu_head *rcu_head)
3941 {
3942 struct ring_buffer *rb;
3943
3944 rb = container_of(rcu_head, struct ring_buffer, rcu_head);
3945 rb_free(rb);
3946 }
3947
3948 static struct ring_buffer *ring_buffer_get(struct perf_event *event)
3949 {
3950 struct ring_buffer *rb;
3951
3952 rcu_read_lock();
3953 rb = rcu_dereference(event->rb);
3954 if (rb) {
3955 if (!atomic_inc_not_zero(&rb->refcount))
3956 rb = NULL;
3957 }
3958 rcu_read_unlock();
3959
3960 return rb;
3961 }
3962
3963 static void ring_buffer_put(struct ring_buffer *rb)
3964 {
3965 if (!atomic_dec_and_test(&rb->refcount))
3966 return;
3967
3968 WARN_ON_ONCE(!list_empty(&rb->event_list));
3969
3970 call_rcu(&rb->rcu_head, rb_free_rcu);
3971 }
3972
3973 static void perf_mmap_open(struct vm_area_struct *vma)
3974 {
3975 struct perf_event *event = vma->vm_file->private_data;
3976
3977 atomic_inc(&event->mmap_count);
3978 atomic_inc(&event->rb->mmap_count);
3979 }
3980
3981 /*
3982 * A buffer can be mmap()ed multiple times; either directly through the same
3983 * event, or through other events by use of perf_event_set_output().
3984 *
3985 * In order to undo the VM accounting done by perf_mmap() we need to destroy
3986 * the buffer here, where we still have a VM context. This means we need
3987 * to detach all events redirecting to us.
3988 */
3989 static void perf_mmap_close(struct vm_area_struct *vma)
3990 {
3991 struct perf_event *event = vma->vm_file->private_data;
3992
3993 struct ring_buffer *rb = ring_buffer_get(event);
3994 struct user_struct *mmap_user = rb->mmap_user;
3995 int mmap_locked = rb->mmap_locked;
3996 unsigned long size = perf_data_size(rb);
3997
3998 atomic_dec(&rb->mmap_count);
3999
4000 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
4001 goto out_put;
4002
4003 ring_buffer_attach(event, NULL);
4004 mutex_unlock(&event->mmap_mutex);
4005
4006 /* If there's still other mmap()s of this buffer, we're done. */
4007 if (atomic_read(&rb->mmap_count))
4008 goto out_put;
4009
4010 /*
4011 * No other mmap()s, detach from all other events that might redirect
4012 * into the now unreachable buffer. Somewhat complicated by the
4013 * fact that rb::event_lock otherwise nests inside mmap_mutex.
4014 */
4015 again:
4016 rcu_read_lock();
4017 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
4018 if (!atomic_long_inc_not_zero(&event->refcount)) {
4019 /*
4020 * This event is en-route to free_event() which will
4021 * detach it and remove it from the list.
4022 */
4023 continue;
4024 }
4025 rcu_read_unlock();
4026
4027 mutex_lock(&event->mmap_mutex);
4028 /*
4029 * Check we didn't race with perf_event_set_output() which can
4030 * swizzle the rb from under us while we were waiting to
4031 * acquire mmap_mutex.
4032 *
4033 * If we find a different rb; ignore this event, a next
4034 * iteration will no longer find it on the list. We have to
4035 * still restart the iteration to make sure we're not now
4036 * iterating the wrong list.
4037 */
4038 if (event->rb == rb)
4039 ring_buffer_attach(event, NULL);
4040
4041 mutex_unlock(&event->mmap_mutex);
4042 put_event(event);
4043
4044 /*
4045 * Restart the iteration; either we're on the wrong list or
4046 * destroyed its integrity by doing a deletion.
4047 */
4048 goto again;
4049 }
4050 rcu_read_unlock();
4051
4052 /*
4053 * It could be there's still a few 0-ref events on the list; they'll
4054 * get cleaned up by free_event() -- they'll also still have their
4055 * ref on the rb and will free it whenever they are done with it.
4056 *
4057 * Aside from that, this buffer is 'fully' detached and unmapped,
4058 * undo the VM accounting.
4059 */
4060
4061 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
4062 vma->vm_mm->pinned_vm -= mmap_locked;
4063 free_uid(mmap_user);
4064
4065 out_put:
4066 ring_buffer_put(rb); /* could be last */
4067 }
4068
4069 static const struct vm_operations_struct perf_mmap_vmops = {
4070 .open = perf_mmap_open,
4071 .close = perf_mmap_close,
4072 .fault = perf_mmap_fault,
4073 .page_mkwrite = perf_mmap_fault,
4074 };
4075
4076 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
4077 {
4078 struct perf_event *event = file->private_data;
4079 unsigned long user_locked, user_lock_limit;
4080 struct user_struct *user = current_user();
4081 unsigned long locked, lock_limit;
4082 struct ring_buffer *rb;
4083 unsigned long vma_size;
4084 unsigned long nr_pages;
4085 long user_extra, extra;
4086 int ret = 0, flags = 0;
4087
4088 /*
4089 * Don't allow mmap() of inherited per-task counters. This would
4090 * create a performance issue due to all children writing to the
4091 * same rb.
4092 */
4093 if (event->cpu == -1 && event->attr.inherit)
4094 return -EINVAL;
4095
4096 if (!(vma->vm_flags & VM_SHARED))
4097 return -EINVAL;
4098
4099 vma_size = vma->vm_end - vma->vm_start;
4100 nr_pages = (vma_size / PAGE_SIZE) - 1;
4101
4102 /*
4103 * If we have rb pages ensure they're a power-of-two number, so we
4104 * can do bitmasks instead of modulo.
4105 */
4106 if (nr_pages != 0 && !is_power_of_2(nr_pages))
4107 return -EINVAL;
4108
4109 if (vma_size != PAGE_SIZE * (1 + nr_pages))
4110 return -EINVAL;
4111
4112 if (vma->vm_pgoff != 0)
4113 return -EINVAL;
4114
4115 WARN_ON_ONCE(event->ctx->parent_ctx);
4116 again:
4117 mutex_lock(&event->mmap_mutex);
4118 if (event->rb) {
4119 if (event->rb->nr_pages != nr_pages) {
4120 ret = -EINVAL;
4121 goto unlock;
4122 }
4123
4124 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
4125 /*
4126 * Raced against perf_mmap_close() through
4127 * perf_event_set_output(). Try again, hope for better
4128 * luck.
4129 */
4130 mutex_unlock(&event->mmap_mutex);
4131 goto again;
4132 }
4133
4134 goto unlock;
4135 }
4136
4137 user_extra = nr_pages + 1;
4138 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
4139
4140 /*
4141 * Increase the limit linearly with more CPUs:
4142 */
4143 user_lock_limit *= num_online_cpus();
4144
4145 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
4146
4147 extra = 0;
4148 if (user_locked > user_lock_limit)
4149 extra = user_locked - user_lock_limit;
4150
4151 lock_limit = rlimit(RLIMIT_MEMLOCK);
4152 lock_limit >>= PAGE_SHIFT;
4153 locked = vma->vm_mm->pinned_vm + extra;
4154
4155 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
4156 !capable(CAP_IPC_LOCK)) {
4157 ret = -EPERM;
4158 goto unlock;
4159 }
4160
4161 WARN_ON(event->rb);
4162
4163 if (vma->vm_flags & VM_WRITE)
4164 flags |= RING_BUFFER_WRITABLE;
4165
4166 rb = rb_alloc(nr_pages,
4167 event->attr.watermark ? event->attr.wakeup_watermark : 0,
4168 event->cpu, flags);
4169
4170 if (!rb) {
4171 ret = -ENOMEM;
4172 goto unlock;
4173 }
4174
4175 atomic_set(&rb->mmap_count, 1);
4176 rb->mmap_locked = extra;
4177 rb->mmap_user = get_current_user();
4178
4179 atomic_long_add(user_extra, &user->locked_vm);
4180 vma->vm_mm->pinned_vm += extra;
4181
4182 ring_buffer_attach(event, rb);
4183
4184 perf_event_init_userpage(event);
4185 perf_event_update_userpage(event);
4186
4187 unlock:
4188 if (!ret)
4189 atomic_inc(&event->mmap_count);
4190 mutex_unlock(&event->mmap_mutex);
4191
4192 /*
4193 * Since pinned accounting is per vm we cannot allow fork() to copy our
4194 * vma.
4195 */
4196 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
4197 vma->vm_ops = &perf_mmap_vmops;
4198
4199 return ret;
4200 }
4201
4202 static int perf_fasync(int fd, struct file *filp, int on)
4203 {
4204 struct inode *inode = file_inode(filp);
4205 struct perf_event *event = filp->private_data;
4206 int retval;
4207
4208 mutex_lock(&inode->i_mutex);
4209 retval = fasync_helper(fd, filp, on, &event->fasync);
4210 mutex_unlock(&inode->i_mutex);
4211
4212 if (retval < 0)
4213 return retval;
4214
4215 return 0;
4216 }
4217
4218 static const struct file_operations perf_fops = {
4219 .llseek = no_llseek,
4220 .release = perf_release,
4221 .read = perf_read,
4222 .poll = perf_poll,
4223 .unlocked_ioctl = perf_ioctl,
4224 .compat_ioctl = perf_ioctl,
4225 .mmap = perf_mmap,
4226 .fasync = perf_fasync,
4227 };
4228
4229 /*
4230 * Perf event wakeup
4231 *
4232 * If there's data, ensure we set the poll() state and publish everything
4233 * to user-space before waking everybody up.
4234 */
4235
4236 void perf_event_wakeup(struct perf_event *event)
4237 {
4238 ring_buffer_wakeup(event);
4239
4240 if (event->pending_kill) {
4241 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
4242 event->pending_kill = 0;
4243 }
4244 }
4245
4246 static void perf_pending_event(struct irq_work *entry)
4247 {
4248 struct perf_event *event = container_of(entry,
4249 struct perf_event, pending);
4250
4251 if (event->pending_disable) {
4252 event->pending_disable = 0;
4253 __perf_event_disable(event);
4254 }
4255
4256 if (event->pending_wakeup) {
4257 event->pending_wakeup = 0;
4258 perf_event_wakeup(event);
4259 }
4260 }
4261
4262 /*
4263 * We assume there is only KVM supporting the callbacks.
4264 * Later on, we might change it to a list if there is
4265 * another virtualization implementation supporting the callbacks.
4266 */
4267 struct perf_guest_info_callbacks *perf_guest_cbs;
4268
4269 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4270 {
4271 perf_guest_cbs = cbs;
4272 return 0;
4273 }
4274 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
4275
4276 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4277 {
4278 perf_guest_cbs = NULL;
4279 return 0;
4280 }
4281 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
4282
4283 static void
4284 perf_output_sample_regs(struct perf_output_handle *handle,
4285 struct pt_regs *regs, u64 mask)
4286 {
4287 int bit;
4288
4289 for_each_set_bit(bit, (const unsigned long *) &mask,
4290 sizeof(mask) * BITS_PER_BYTE) {
4291 u64 val;
4292
4293 val = perf_reg_value(regs, bit);
4294 perf_output_put(handle, val);
4295 }
4296 }
4297
4298 static void perf_sample_regs_user(struct perf_regs_user *regs_user,
4299 struct pt_regs *regs)
4300 {
4301 if (!user_mode(regs)) {
4302 if (current->mm)
4303 regs = task_pt_regs(current);
4304 else
4305 regs = NULL;
4306 }
4307
4308 if (regs) {
4309 regs_user->regs = regs;
4310 regs_user->abi = perf_reg_abi(current);
4311 }
4312 }
4313
4314 /*
4315 * Get remaining task size from user stack pointer.
4316 *
4317 * It'd be better to take stack vma map and limit this more
4318 * precisly, but there's no way to get it safely under interrupt,
4319 * so using TASK_SIZE as limit.
4320 */
4321 static u64 perf_ustack_task_size(struct pt_regs *regs)
4322 {
4323 unsigned long addr = perf_user_stack_pointer(regs);
4324
4325 if (!addr || addr >= TASK_SIZE)
4326 return 0;
4327
4328 return TASK_SIZE - addr;
4329 }
4330
4331 static u16
4332 perf_sample_ustack_size(u16 stack_size, u16 header_size,
4333 struct pt_regs *regs)
4334 {
4335 u64 task_size;
4336
4337 /* No regs, no stack pointer, no dump. */
4338 if (!regs)
4339 return 0;
4340
4341 /*
4342 * Check if we fit in with the requested stack size into the:
4343 * - TASK_SIZE
4344 * If we don't, we limit the size to the TASK_SIZE.
4345 *
4346 * - remaining sample size
4347 * If we don't, we customize the stack size to
4348 * fit in to the remaining sample size.
4349 */
4350
4351 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
4352 stack_size = min(stack_size, (u16) task_size);
4353
4354 /* Current header size plus static size and dynamic size. */
4355 header_size += 2 * sizeof(u64);
4356
4357 /* Do we fit in with the current stack dump size? */
4358 if ((u16) (header_size + stack_size) < header_size) {
4359 /*
4360 * If we overflow the maximum size for the sample,
4361 * we customize the stack dump size to fit in.
4362 */
4363 stack_size = USHRT_MAX - header_size - sizeof(u64);
4364 stack_size = round_up(stack_size, sizeof(u64));
4365 }
4366
4367 return stack_size;
4368 }
4369
4370 static void
4371 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
4372 struct pt_regs *regs)
4373 {
4374 /* Case of a kernel thread, nothing to dump */
4375 if (!regs) {
4376 u64 size = 0;
4377 perf_output_put(handle, size);
4378 } else {
4379 unsigned long sp;
4380 unsigned int rem;
4381 u64 dyn_size;
4382
4383 /*
4384 * We dump:
4385 * static size
4386 * - the size requested by user or the best one we can fit
4387 * in to the sample max size
4388 * data
4389 * - user stack dump data
4390 * dynamic size
4391 * - the actual dumped size
4392 */
4393
4394 /* Static size. */
4395 perf_output_put(handle, dump_size);
4396
4397 /* Data. */
4398 sp = perf_user_stack_pointer(regs);
4399 rem = __output_copy_user(handle, (void *) sp, dump_size);
4400 dyn_size = dump_size - rem;
4401
4402 perf_output_skip(handle, rem);
4403
4404 /* Dynamic size. */
4405 perf_output_put(handle, dyn_size);
4406 }
4407 }
4408
4409 static void __perf_event_header__init_id(struct perf_event_header *header,
4410 struct perf_sample_data *data,
4411 struct perf_event *event)
4412 {
4413 u64 sample_type = event->attr.sample_type;
4414
4415 data->type = sample_type;
4416 header->size += event->id_header_size;
4417
4418 if (sample_type & PERF_SAMPLE_TID) {
4419 /* namespace issues */
4420 data->tid_entry.pid = perf_event_pid(event, current);
4421 data->tid_entry.tid = perf_event_tid(event, current);
4422 }
4423
4424 if (sample_type & PERF_SAMPLE_TIME)
4425 data->time = perf_clock();
4426
4427 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
4428 data->id = primary_event_id(event);
4429
4430 if (sample_type & PERF_SAMPLE_STREAM_ID)
4431 data->stream_id = event->id;
4432
4433 if (sample_type & PERF_SAMPLE_CPU) {
4434 data->cpu_entry.cpu = raw_smp_processor_id();
4435 data->cpu_entry.reserved = 0;
4436 }
4437 }
4438
4439 void perf_event_header__init_id(struct perf_event_header *header,
4440 struct perf_sample_data *data,
4441 struct perf_event *event)
4442 {
4443 if (event->attr.sample_id_all)
4444 __perf_event_header__init_id(header, data, event);
4445 }
4446
4447 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
4448 struct perf_sample_data *data)
4449 {
4450 u64 sample_type = data->type;
4451
4452 if (sample_type & PERF_SAMPLE_TID)
4453 perf_output_put(handle, data->tid_entry);
4454
4455 if (sample_type & PERF_SAMPLE_TIME)
4456 perf_output_put(handle, data->time);
4457
4458 if (sample_type & PERF_SAMPLE_ID)
4459 perf_output_put(handle, data->id);
4460
4461 if (sample_type & PERF_SAMPLE_STREAM_ID)
4462 perf_output_put(handle, data->stream_id);
4463
4464 if (sample_type & PERF_SAMPLE_CPU)
4465 perf_output_put(handle, data->cpu_entry);
4466
4467 if (sample_type & PERF_SAMPLE_IDENTIFIER)
4468 perf_output_put(handle, data->id);
4469 }
4470
4471 void perf_event__output_id_sample(struct perf_event *event,
4472 struct perf_output_handle *handle,
4473 struct perf_sample_data *sample)
4474 {
4475 if (event->attr.sample_id_all)
4476 __perf_event__output_id_sample(handle, sample);
4477 }
4478
4479 static void perf_output_read_one(struct perf_output_handle *handle,
4480 struct perf_event *event,
4481 u64 enabled, u64 running)
4482 {
4483 u64 read_format = event->attr.read_format;
4484 u64 values[4];
4485 int n = 0;
4486
4487 values[n++] = perf_event_count(event);
4488 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4489 values[n++] = enabled +
4490 atomic64_read(&event->child_total_time_enabled);
4491 }
4492 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4493 values[n++] = running +
4494 atomic64_read(&event->child_total_time_running);
4495 }
4496 if (read_format & PERF_FORMAT_ID)
4497 values[n++] = primary_event_id(event);
4498
4499 __output_copy(handle, values, n * sizeof(u64));
4500 }
4501
4502 /*
4503 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
4504 */
4505 static void perf_output_read_group(struct perf_output_handle *handle,
4506 struct perf_event *event,
4507 u64 enabled, u64 running)
4508 {
4509 struct perf_event *leader = event->group_leader, *sub;
4510 u64 read_format = event->attr.read_format;
4511 u64 values[5];
4512 int n = 0;
4513
4514 values[n++] = 1 + leader->nr_siblings;
4515
4516 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4517 values[n++] = enabled;
4518
4519 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4520 values[n++] = running;
4521
4522 if (leader != event)
4523 leader->pmu->read(leader);
4524
4525 values[n++] = perf_event_count(leader);
4526 if (read_format & PERF_FORMAT_ID)
4527 values[n++] = primary_event_id(leader);
4528
4529 __output_copy(handle, values, n * sizeof(u64));
4530
4531 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4532 n = 0;
4533
4534 if ((sub != event) &&
4535 (sub->state == PERF_EVENT_STATE_ACTIVE))
4536 sub->pmu->read(sub);
4537
4538 values[n++] = perf_event_count(sub);
4539 if (read_format & PERF_FORMAT_ID)
4540 values[n++] = primary_event_id(sub);
4541
4542 __output_copy(handle, values, n * sizeof(u64));
4543 }
4544 }
4545
4546 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
4547 PERF_FORMAT_TOTAL_TIME_RUNNING)
4548
4549 static void perf_output_read(struct perf_output_handle *handle,
4550 struct perf_event *event)
4551 {
4552 u64 enabled = 0, running = 0, now;
4553 u64 read_format = event->attr.read_format;
4554
4555 /*
4556 * compute total_time_enabled, total_time_running
4557 * based on snapshot values taken when the event
4558 * was last scheduled in.
4559 *
4560 * we cannot simply called update_context_time()
4561 * because of locking issue as we are called in
4562 * NMI context
4563 */
4564 if (read_format & PERF_FORMAT_TOTAL_TIMES)
4565 calc_timer_values(event, &now, &enabled, &running);
4566
4567 if (event->attr.read_format & PERF_FORMAT_GROUP)
4568 perf_output_read_group(handle, event, enabled, running);
4569 else
4570 perf_output_read_one(handle, event, enabled, running);
4571 }
4572
4573 void perf_output_sample(struct perf_output_handle *handle,
4574 struct perf_event_header *header,
4575 struct perf_sample_data *data,
4576 struct perf_event *event)
4577 {
4578 u64 sample_type = data->type;
4579
4580 perf_output_put(handle, *header);
4581
4582 if (sample_type & PERF_SAMPLE_IDENTIFIER)
4583 perf_output_put(handle, data->id);
4584
4585 if (sample_type & PERF_SAMPLE_IP)
4586 perf_output_put(handle, data->ip);
4587
4588 if (sample_type & PERF_SAMPLE_TID)
4589 perf_output_put(handle, data->tid_entry);
4590
4591 if (sample_type & PERF_SAMPLE_TIME)
4592 perf_output_put(handle, data->time);
4593
4594 if (sample_type & PERF_SAMPLE_ADDR)
4595 perf_output_put(handle, data->addr);
4596
4597 if (sample_type & PERF_SAMPLE_ID)
4598 perf_output_put(handle, data->id);
4599
4600 if (sample_type & PERF_SAMPLE_STREAM_ID)
4601 perf_output_put(handle, data->stream_id);
4602
4603 if (sample_type & PERF_SAMPLE_CPU)
4604 perf_output_put(handle, data->cpu_entry);
4605
4606 if (sample_type & PERF_SAMPLE_PERIOD)
4607 perf_output_put(handle, data->period);
4608
4609 if (sample_type & PERF_SAMPLE_READ)
4610 perf_output_read(handle, event);
4611
4612 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4613 if (data->callchain) {
4614 int size = 1;
4615
4616 if (data->callchain)
4617 size += data->callchain->nr;
4618
4619 size *= sizeof(u64);
4620
4621 __output_copy(handle, data->callchain, size);
4622 } else {
4623 u64 nr = 0;
4624 perf_output_put(handle, nr);
4625 }
4626 }
4627
4628 if (sample_type & PERF_SAMPLE_RAW) {
4629 if (data->raw) {
4630 perf_output_put(handle, data->raw->size);
4631 __output_copy(handle, data->raw->data,
4632 data->raw->size);
4633 } else {
4634 struct {
4635 u32 size;
4636 u32 data;
4637 } raw = {
4638 .size = sizeof(u32),
4639 .data = 0,
4640 };
4641 perf_output_put(handle, raw);
4642 }
4643 }
4644
4645 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4646 if (data->br_stack) {
4647 size_t size;
4648
4649 size = data->br_stack->nr
4650 * sizeof(struct perf_branch_entry);
4651
4652 perf_output_put(handle, data->br_stack->nr);
4653 perf_output_copy(handle, data->br_stack->entries, size);
4654 } else {
4655 /*
4656 * we always store at least the value of nr
4657 */
4658 u64 nr = 0;
4659 perf_output_put(handle, nr);
4660 }
4661 }
4662
4663 if (sample_type & PERF_SAMPLE_REGS_USER) {
4664 u64 abi = data->regs_user.abi;
4665
4666 /*
4667 * If there are no regs to dump, notice it through
4668 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
4669 */
4670 perf_output_put(handle, abi);
4671
4672 if (abi) {
4673 u64 mask = event->attr.sample_regs_user;
4674 perf_output_sample_regs(handle,
4675 data->regs_user.regs,
4676 mask);
4677 }
4678 }
4679
4680 if (sample_type & PERF_SAMPLE_STACK_USER) {
4681 perf_output_sample_ustack(handle,
4682 data->stack_user_size,
4683 data->regs_user.regs);
4684 }
4685
4686 if (sample_type & PERF_SAMPLE_WEIGHT)
4687 perf_output_put(handle, data->weight);
4688
4689 if (sample_type & PERF_SAMPLE_DATA_SRC)
4690 perf_output_put(handle, data->data_src.val);
4691
4692 if (sample_type & PERF_SAMPLE_TRANSACTION)
4693 perf_output_put(handle, data->txn);
4694
4695 if (!event->attr.watermark) {
4696 int wakeup_events = event->attr.wakeup_events;
4697
4698 if (wakeup_events) {
4699 struct ring_buffer *rb = handle->rb;
4700 int events = local_inc_return(&rb->events);
4701
4702 if (events >= wakeup_events) {
4703 local_sub(wakeup_events, &rb->events);
4704 local_inc(&rb->wakeup);
4705 }
4706 }
4707 }
4708 }
4709
4710 void perf_prepare_sample(struct perf_event_header *header,
4711 struct perf_sample_data *data,
4712 struct perf_event *event,
4713 struct pt_regs *regs)
4714 {
4715 u64 sample_type = event->attr.sample_type;
4716
4717 header->type = PERF_RECORD_SAMPLE;
4718 header->size = sizeof(*header) + event->header_size;
4719
4720 header->misc = 0;
4721 header->misc |= perf_misc_flags(regs);
4722
4723 __perf_event_header__init_id(header, data, event);
4724
4725 if (sample_type & PERF_SAMPLE_IP)
4726 data->ip = perf_instruction_pointer(regs);
4727
4728 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4729 int size = 1;
4730
4731 data->callchain = perf_callchain(event, regs);
4732
4733 if (data->callchain)
4734 size += data->callchain->nr;
4735
4736 header->size += size * sizeof(u64);
4737 }
4738
4739 if (sample_type & PERF_SAMPLE_RAW) {
4740 int size = sizeof(u32);
4741
4742 if (data->raw)
4743 size += data->raw->size;
4744 else
4745 size += sizeof(u32);
4746
4747 WARN_ON_ONCE(size & (sizeof(u64)-1));
4748 header->size += size;
4749 }
4750
4751 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4752 int size = sizeof(u64); /* nr */
4753 if (data->br_stack) {
4754 size += data->br_stack->nr
4755 * sizeof(struct perf_branch_entry);
4756 }
4757 header->size += size;
4758 }
4759
4760 if (sample_type & PERF_SAMPLE_REGS_USER) {
4761 /* regs dump ABI info */
4762 int size = sizeof(u64);
4763
4764 perf_sample_regs_user(&data->regs_user, regs);
4765
4766 if (data->regs_user.regs) {
4767 u64 mask = event->attr.sample_regs_user;
4768 size += hweight64(mask) * sizeof(u64);
4769 }
4770
4771 header->size += size;
4772 }
4773
4774 if (sample_type & PERF_SAMPLE_STACK_USER) {
4775 /*
4776 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
4777 * processed as the last one or have additional check added
4778 * in case new sample type is added, because we could eat
4779 * up the rest of the sample size.
4780 */
4781 struct perf_regs_user *uregs = &data->regs_user;
4782 u16 stack_size = event->attr.sample_stack_user;
4783 u16 size = sizeof(u64);
4784
4785 if (!uregs->abi)
4786 perf_sample_regs_user(uregs, regs);
4787
4788 stack_size = perf_sample_ustack_size(stack_size, header->size,
4789 uregs->regs);
4790
4791 /*
4792 * If there is something to dump, add space for the dump
4793 * itself and for the field that tells the dynamic size,
4794 * which is how many have been actually dumped.
4795 */
4796 if (stack_size)
4797 size += sizeof(u64) + stack_size;
4798
4799 data->stack_user_size = stack_size;
4800 header->size += size;
4801 }
4802 }
4803
4804 static void perf_event_output(struct perf_event *event,
4805 struct perf_sample_data *data,
4806 struct pt_regs *regs)
4807 {
4808 struct perf_output_handle handle;
4809 struct perf_event_header header;
4810
4811 /* protect the callchain buffers */
4812 rcu_read_lock();
4813
4814 perf_prepare_sample(&header, data, event, regs);
4815
4816 if (perf_output_begin(&handle, event, header.size))
4817 goto exit;
4818
4819 perf_output_sample(&handle, &header, data, event);
4820
4821 perf_output_end(&handle);
4822
4823 exit:
4824 rcu_read_unlock();
4825 }
4826
4827 /*
4828 * read event_id
4829 */
4830
4831 struct perf_read_event {
4832 struct perf_event_header header;
4833
4834 u32 pid;
4835 u32 tid;
4836 };
4837
4838 static void
4839 perf_event_read_event(struct perf_event *event,
4840 struct task_struct *task)
4841 {
4842 struct perf_output_handle handle;
4843 struct perf_sample_data sample;
4844 struct perf_read_event read_event = {
4845 .header = {
4846 .type = PERF_RECORD_READ,
4847 .misc = 0,
4848 .size = sizeof(read_event) + event->read_size,
4849 },
4850 .pid = perf_event_pid(event, task),
4851 .tid = perf_event_tid(event, task),
4852 };
4853 int ret;
4854
4855 perf_event_header__init_id(&read_event.header, &sample, event);
4856 ret = perf_output_begin(&handle, event, read_event.header.size);
4857 if (ret)
4858 return;
4859
4860 perf_output_put(&handle, read_event);
4861 perf_output_read(&handle, event);
4862 perf_event__output_id_sample(event, &handle, &sample);
4863
4864 perf_output_end(&handle);
4865 }
4866
4867 typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
4868
4869 static void
4870 perf_event_aux_ctx(struct perf_event_context *ctx,
4871 perf_event_aux_output_cb output,
4872 void *data)
4873 {
4874 struct perf_event *event;
4875
4876 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4877 if (event->state < PERF_EVENT_STATE_INACTIVE)
4878 continue;
4879 if (!event_filter_match(event))
4880 continue;
4881 output(event, data);
4882 }
4883 }
4884
4885 static void
4886 perf_event_aux(perf_event_aux_output_cb output, void *data,
4887 struct perf_event_context *task_ctx)
4888 {
4889 struct perf_cpu_context *cpuctx;
4890 struct perf_event_context *ctx;
4891 struct pmu *pmu;
4892 int ctxn;
4893
4894 rcu_read_lock();
4895 list_for_each_entry_rcu(pmu, &pmus, entry) {
4896 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4897 if (cpuctx->unique_pmu != pmu)
4898 goto next;
4899 perf_event_aux_ctx(&cpuctx->ctx, output, data);
4900 if (task_ctx)
4901 goto next;
4902 ctxn = pmu->task_ctx_nr;
4903 if (ctxn < 0)
4904 goto next;
4905 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4906 if (ctx)
4907 perf_event_aux_ctx(ctx, output, data);
4908 next:
4909 put_cpu_ptr(pmu->pmu_cpu_context);
4910 }
4911
4912 if (task_ctx) {
4913 preempt_disable();
4914 perf_event_aux_ctx(task_ctx, output, data);
4915 preempt_enable();
4916 }
4917 rcu_read_unlock();
4918 }
4919
4920 /*
4921 * task tracking -- fork/exit
4922 *
4923 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
4924 */
4925
4926 struct perf_task_event {
4927 struct task_struct *task;
4928 struct perf_event_context *task_ctx;
4929
4930 struct {
4931 struct perf_event_header header;
4932
4933 u32 pid;
4934 u32 ppid;
4935 u32 tid;
4936 u32 ptid;
4937 u64 time;
4938 } event_id;
4939 };
4940
4941 static int perf_event_task_match(struct perf_event *event)
4942 {
4943 return event->attr.comm || event->attr.mmap ||
4944 event->attr.mmap2 || event->attr.mmap_data ||
4945 event->attr.task;
4946 }
4947
4948 static void perf_event_task_output(struct perf_event *event,
4949 void *data)
4950 {
4951 struct perf_task_event *task_event = data;
4952 struct perf_output_handle handle;
4953 struct perf_sample_data sample;
4954 struct task_struct *task = task_event->task;
4955 int ret, size = task_event->event_id.header.size;
4956
4957 if (!perf_event_task_match(event))
4958 return;
4959
4960 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
4961
4962 ret = perf_output_begin(&handle, event,
4963 task_event->event_id.header.size);
4964 if (ret)
4965 goto out;
4966
4967 task_event->event_id.pid = perf_event_pid(event, task);
4968 task_event->event_id.ppid = perf_event_pid(event, current);
4969
4970 task_event->event_id.tid = perf_event_tid(event, task);
4971 task_event->event_id.ptid = perf_event_tid(event, current);
4972
4973 perf_output_put(&handle, task_event->event_id);
4974
4975 perf_event__output_id_sample(event, &handle, &sample);
4976
4977 perf_output_end(&handle);
4978 out:
4979 task_event->event_id.header.size = size;
4980 }
4981
4982 static void perf_event_task(struct task_struct *task,
4983 struct perf_event_context *task_ctx,
4984 int new)
4985 {
4986 struct perf_task_event task_event;
4987
4988 if (!atomic_read(&nr_comm_events) &&
4989 !atomic_read(&nr_mmap_events) &&
4990 !atomic_read(&nr_task_events))
4991 return;
4992
4993 task_event = (struct perf_task_event){
4994 .task = task,
4995 .task_ctx = task_ctx,
4996 .event_id = {
4997 .header = {
4998 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
4999 .misc = 0,
5000 .size = sizeof(task_event.event_id),
5001 },
5002 /* .pid */
5003 /* .ppid */
5004 /* .tid */
5005 /* .ptid */
5006 .time = perf_clock(),
5007 },
5008 };
5009
5010 perf_event_aux(perf_event_task_output,
5011 &task_event,
5012 task_ctx);
5013 }
5014
5015 void perf_event_fork(struct task_struct *task)
5016 {
5017 perf_event_task(task, NULL, 1);
5018 }
5019
5020 /*
5021 * comm tracking
5022 */
5023
5024 struct perf_comm_event {
5025 struct task_struct *task;
5026 char *comm;
5027 int comm_size;
5028
5029 struct {
5030 struct perf_event_header header;
5031
5032 u32 pid;
5033 u32 tid;
5034 } event_id;
5035 };
5036
5037 static int perf_event_comm_match(struct perf_event *event)
5038 {
5039 return event->attr.comm;
5040 }
5041
5042 static void perf_event_comm_output(struct perf_event *event,
5043 void *data)
5044 {
5045 struct perf_comm_event *comm_event = data;
5046 struct perf_output_handle handle;
5047 struct perf_sample_data sample;
5048 int size = comm_event->event_id.header.size;
5049 int ret;
5050
5051 if (!perf_event_comm_match(event))
5052 return;
5053
5054 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
5055 ret = perf_output_begin(&handle, event,
5056 comm_event->event_id.header.size);
5057
5058 if (ret)
5059 goto out;
5060
5061 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
5062 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
5063
5064 perf_output_put(&handle, comm_event->event_id);
5065 __output_copy(&handle, comm_event->comm,
5066 comm_event->comm_size);
5067
5068 perf_event__output_id_sample(event, &handle, &sample);
5069
5070 perf_output_end(&handle);
5071 out:
5072 comm_event->event_id.header.size = size;
5073 }
5074
5075 static void perf_event_comm_event(struct perf_comm_event *comm_event)
5076 {
5077 char comm[TASK_COMM_LEN];
5078 unsigned int size;
5079
5080 memset(comm, 0, sizeof(comm));
5081 strlcpy(comm, comm_event->task->comm, sizeof(comm));
5082 size = ALIGN(strlen(comm)+1, sizeof(u64));
5083
5084 comm_event->comm = comm;
5085 comm_event->comm_size = size;
5086
5087 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
5088
5089 perf_event_aux(perf_event_comm_output,
5090 comm_event,
5091 NULL);
5092 }
5093
5094 void perf_event_comm(struct task_struct *task, bool exec)
5095 {
5096 struct perf_comm_event comm_event;
5097
5098 if (!atomic_read(&nr_comm_events))
5099 return;
5100
5101 comm_event = (struct perf_comm_event){
5102 .task = task,
5103 /* .comm */
5104 /* .comm_size */
5105 .event_id = {
5106 .header = {
5107 .type = PERF_RECORD_COMM,
5108 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
5109 /* .size */
5110 },
5111 /* .pid */
5112 /* .tid */
5113 },
5114 };
5115
5116 perf_event_comm_event(&comm_event);
5117 }
5118
5119 /*
5120 * mmap tracking
5121 */
5122
5123 struct perf_mmap_event {
5124 struct vm_area_struct *vma;
5125
5126 const char *file_name;
5127 int file_size;
5128 int maj, min;
5129 u64 ino;
5130 u64 ino_generation;
5131
5132 struct {
5133 struct perf_event_header header;
5134
5135 u32 pid;
5136 u32 tid;
5137 u64 start;
5138 u64 len;
5139 u64 pgoff;
5140 } event_id;
5141 };
5142
5143 static int perf_event_mmap_match(struct perf_event *event,
5144 void *data)
5145 {
5146 struct perf_mmap_event *mmap_event = data;
5147 struct vm_area_struct *vma = mmap_event->vma;
5148 int executable = vma->vm_flags & VM_EXEC;
5149
5150 return (!executable && event->attr.mmap_data) ||
5151 (executable && (event->attr.mmap || event->attr.mmap2));
5152 }
5153
5154 static void perf_event_mmap_output(struct perf_event *event,
5155 void *data)
5156 {
5157 struct perf_mmap_event *mmap_event = data;
5158 struct perf_output_handle handle;
5159 struct perf_sample_data sample;
5160 int size = mmap_event->event_id.header.size;
5161 int ret;
5162
5163 if (!perf_event_mmap_match(event, data))
5164 return;
5165
5166 if (event->attr.mmap2) {
5167 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
5168 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
5169 mmap_event->event_id.header.size += sizeof(mmap_event->min);
5170 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
5171 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
5172 }
5173
5174 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
5175 ret = perf_output_begin(&handle, event,
5176 mmap_event->event_id.header.size);
5177 if (ret)
5178 goto out;
5179
5180 mmap_event->event_id.pid = perf_event_pid(event, current);
5181 mmap_event->event_id.tid = perf_event_tid(event, current);
5182
5183 perf_output_put(&handle, mmap_event->event_id);
5184
5185 if (event->attr.mmap2) {
5186 perf_output_put(&handle, mmap_event->maj);
5187 perf_output_put(&handle, mmap_event->min);
5188 perf_output_put(&handle, mmap_event->ino);
5189 perf_output_put(&handle, mmap_event->ino_generation);
5190 }
5191
5192 __output_copy(&handle, mmap_event->file_name,
5193 mmap_event->file_size);
5194
5195 perf_event__output_id_sample(event, &handle, &sample);
5196
5197 perf_output_end(&handle);
5198 out:
5199 mmap_event->event_id.header.size = size;
5200 }
5201
5202 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
5203 {
5204 struct vm_area_struct *vma = mmap_event->vma;
5205 struct file *file = vma->vm_file;
5206 int maj = 0, min = 0;
5207 u64 ino = 0, gen = 0;
5208 unsigned int size;
5209 char tmp[16];
5210 char *buf = NULL;
5211 char *name;
5212
5213 if (file) {
5214 struct inode *inode;
5215 dev_t dev;
5216
5217 buf = kmalloc(PATH_MAX, GFP_KERNEL);
5218 if (!buf) {
5219 name = "//enomem";
5220 goto cpy_name;
5221 }
5222 /*
5223 * d_path() works from the end of the rb backwards, so we
5224 * need to add enough zero bytes after the string to handle
5225 * the 64bit alignment we do later.
5226 */
5227 name = d_path(&file->f_path, buf, PATH_MAX - sizeof(u64));
5228 if (IS_ERR(name)) {
5229 name = "//toolong";
5230 goto cpy_name;
5231 }
5232 inode = file_inode(vma->vm_file);
5233 dev = inode->i_sb->s_dev;
5234 ino = inode->i_ino;
5235 gen = inode->i_generation;
5236 maj = MAJOR(dev);
5237 min = MINOR(dev);
5238 goto got_name;
5239 } else {
5240 name = (char *)arch_vma_name(vma);
5241 if (name)
5242 goto cpy_name;
5243
5244 if (vma->vm_start <= vma->vm_mm->start_brk &&
5245 vma->vm_end >= vma->vm_mm->brk) {
5246 name = "[heap]";
5247 goto cpy_name;
5248 }
5249 if (vma->vm_start <= vma->vm_mm->start_stack &&
5250 vma->vm_end >= vma->vm_mm->start_stack) {
5251 name = "[stack]";
5252 goto cpy_name;
5253 }
5254
5255 name = "//anon";
5256 goto cpy_name;
5257 }
5258
5259 cpy_name:
5260 strlcpy(tmp, name, sizeof(tmp));
5261 name = tmp;
5262 got_name:
5263 /*
5264 * Since our buffer works in 8 byte units we need to align our string
5265 * size to a multiple of 8. However, we must guarantee the tail end is
5266 * zero'd out to avoid leaking random bits to userspace.
5267 */
5268 size = strlen(name)+1;
5269 while (!IS_ALIGNED(size, sizeof(u64)))
5270 name[size++] = '\0';
5271
5272 mmap_event->file_name = name;
5273 mmap_event->file_size = size;
5274 mmap_event->maj = maj;
5275 mmap_event->min = min;
5276 mmap_event->ino = ino;
5277 mmap_event->ino_generation = gen;
5278
5279 if (!(vma->vm_flags & VM_EXEC))
5280 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
5281
5282 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
5283
5284 perf_event_aux(perf_event_mmap_output,
5285 mmap_event,
5286 NULL);
5287
5288 kfree(buf);
5289 }
5290
5291 void perf_event_mmap(struct vm_area_struct *vma)
5292 {
5293 struct perf_mmap_event mmap_event;
5294
5295 if (!atomic_read(&nr_mmap_events))
5296 return;
5297
5298 mmap_event = (struct perf_mmap_event){
5299 .vma = vma,
5300 /* .file_name */
5301 /* .file_size */
5302 .event_id = {
5303 .header = {
5304 .type = PERF_RECORD_MMAP,
5305 .misc = PERF_RECORD_MISC_USER,
5306 /* .size */
5307 },
5308 /* .pid */
5309 /* .tid */
5310 .start = vma->vm_start,
5311 .len = vma->vm_end - vma->vm_start,
5312 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
5313 },
5314 /* .maj (attr_mmap2 only) */
5315 /* .min (attr_mmap2 only) */
5316 /* .ino (attr_mmap2 only) */
5317 /* .ino_generation (attr_mmap2 only) */
5318 };
5319
5320 perf_event_mmap_event(&mmap_event);
5321 }
5322
5323 /*
5324 * IRQ throttle logging
5325 */
5326
5327 static void perf_log_throttle(struct perf_event *event, int enable)
5328 {
5329 struct perf_output_handle handle;
5330 struct perf_sample_data sample;
5331 int ret;
5332
5333 struct {
5334 struct perf_event_header header;
5335 u64 time;
5336 u64 id;
5337 u64 stream_id;
5338 } throttle_event = {
5339 .header = {
5340 .type = PERF_RECORD_THROTTLE,
5341 .misc = 0,
5342 .size = sizeof(throttle_event),
5343 },
5344 .time = perf_clock(),
5345 .id = primary_event_id(event),
5346 .stream_id = event->id,
5347 };
5348
5349 if (enable)
5350 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
5351
5352 perf_event_header__init_id(&throttle_event.header, &sample, event);
5353
5354 ret = perf_output_begin(&handle, event,
5355 throttle_event.header.size);
5356 if (ret)
5357 return;
5358
5359 perf_output_put(&handle, throttle_event);
5360 perf_event__output_id_sample(event, &handle, &sample);
5361 perf_output_end(&handle);
5362 }
5363
5364 /*
5365 * Generic event overflow handling, sampling.
5366 */
5367
5368 static int __perf_event_overflow(struct perf_event *event,
5369 int throttle, struct perf_sample_data *data,
5370 struct pt_regs *regs)
5371 {
5372 int events = atomic_read(&event->event_limit);
5373 struct hw_perf_event *hwc = &event->hw;
5374 u64 seq;
5375 int ret = 0;
5376
5377 /*
5378 * Non-sampling counters might still use the PMI to fold short
5379 * hardware counters, ignore those.
5380 */
5381 if (unlikely(!is_sampling_event(event)))
5382 return 0;
5383
5384 seq = __this_cpu_read(perf_throttled_seq);
5385 if (seq != hwc->interrupts_seq) {
5386 hwc->interrupts_seq = seq;
5387 hwc->interrupts = 1;
5388 } else {
5389 hwc->interrupts++;
5390 if (unlikely(throttle
5391 && hwc->interrupts >= max_samples_per_tick)) {
5392 __this_cpu_inc(perf_throttled_count);
5393 hwc->interrupts = MAX_INTERRUPTS;
5394 perf_log_throttle(event, 0);
5395 tick_nohz_full_kick();
5396 ret = 1;
5397 }
5398 }
5399
5400 if (event->attr.freq) {
5401 u64 now = perf_clock();
5402 s64 delta = now - hwc->freq_time_stamp;
5403
5404 hwc->freq_time_stamp = now;
5405
5406 if (delta > 0 && delta < 2*TICK_NSEC)
5407 perf_adjust_period(event, delta, hwc->last_period, true);
5408 }
5409
5410 /*
5411 * XXX event_limit might not quite work as expected on inherited
5412 * events
5413 */
5414
5415 event->pending_kill = POLL_IN;
5416 if (events && atomic_dec_and_test(&event->event_limit)) {
5417 ret = 1;
5418 event->pending_kill = POLL_HUP;
5419 event->pending_disable = 1;
5420 irq_work_queue(&event->pending);
5421 }
5422
5423 if (event->overflow_handler)
5424 event->overflow_handler(event, data, regs);
5425 else
5426 perf_event_output(event, data, regs);
5427
5428 if (event->fasync && event->pending_kill) {
5429 event->pending_wakeup = 1;
5430 irq_work_queue(&event->pending);
5431 }
5432
5433 return ret;
5434 }
5435
5436 int perf_event_overflow(struct perf_event *event,
5437 struct perf_sample_data *data,
5438 struct pt_regs *regs)
5439 {
5440 return __perf_event_overflow(event, 1, data, regs);
5441 }
5442
5443 /*
5444 * Generic software event infrastructure
5445 */
5446
5447 struct swevent_htable {
5448 struct swevent_hlist *swevent_hlist;
5449 struct mutex hlist_mutex;
5450 int hlist_refcount;
5451
5452 /* Recursion avoidance in each contexts */
5453 int recursion[PERF_NR_CONTEXTS];
5454
5455 /* Keeps track of cpu being initialized/exited */
5456 bool online;
5457 };
5458
5459 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
5460
5461 /*
5462 * We directly increment event->count and keep a second value in
5463 * event->hw.period_left to count intervals. This period event
5464 * is kept in the range [-sample_period, 0] so that we can use the
5465 * sign as trigger.
5466 */
5467
5468 u64 perf_swevent_set_period(struct perf_event *event)
5469 {
5470 struct hw_perf_event *hwc = &event->hw;
5471 u64 period = hwc->last_period;
5472 u64 nr, offset;
5473 s64 old, val;
5474
5475 hwc->last_period = hwc->sample_period;
5476
5477 again:
5478 old = val = local64_read(&hwc->period_left);
5479 if (val < 0)
5480 return 0;
5481
5482 nr = div64_u64(period + val, period);
5483 offset = nr * period;
5484 val -= offset;
5485 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
5486 goto again;
5487
5488 return nr;
5489 }
5490
5491 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
5492 struct perf_sample_data *data,
5493 struct pt_regs *regs)
5494 {
5495 struct hw_perf_event *hwc = &event->hw;
5496 int throttle = 0;
5497
5498 if (!overflow)
5499 overflow = perf_swevent_set_period(event);
5500
5501 if (hwc->interrupts == MAX_INTERRUPTS)
5502 return;
5503
5504 for (; overflow; overflow--) {
5505 if (__perf_event_overflow(event, throttle,
5506 data, regs)) {
5507 /*
5508 * We inhibit the overflow from happening when
5509 * hwc->interrupts == MAX_INTERRUPTS.
5510 */
5511 break;
5512 }
5513 throttle = 1;
5514 }
5515 }
5516
5517 static void perf_swevent_event(struct perf_event *event, u64 nr,
5518 struct perf_sample_data *data,
5519 struct pt_regs *regs)
5520 {
5521 struct hw_perf_event *hwc = &event->hw;
5522
5523 local64_add(nr, &event->count);
5524
5525 if (!regs)
5526 return;
5527
5528 if (!is_sampling_event(event))
5529 return;
5530
5531 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
5532 data->period = nr;
5533 return perf_swevent_overflow(event, 1, data, regs);
5534 } else
5535 data->period = event->hw.last_period;
5536
5537 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
5538 return perf_swevent_overflow(event, 1, data, regs);
5539
5540 if (local64_add_negative(nr, &hwc->period_left))
5541 return;
5542
5543 perf_swevent_overflow(event, 0, data, regs);
5544 }
5545
5546 static int perf_exclude_event(struct perf_event *event,
5547 struct pt_regs *regs)
5548 {
5549 if (event->hw.state & PERF_HES_STOPPED)
5550 return 1;
5551
5552 if (regs) {
5553 if (event->attr.exclude_user && user_mode(regs))
5554 return 1;
5555
5556 if (event->attr.exclude_kernel && !user_mode(regs))
5557 return 1;
5558 }
5559
5560 return 0;
5561 }
5562
5563 static int perf_swevent_match(struct perf_event *event,
5564 enum perf_type_id type,
5565 u32 event_id,
5566 struct perf_sample_data *data,
5567 struct pt_regs *regs)
5568 {
5569 if (event->attr.type != type)
5570 return 0;
5571
5572 if (event->attr.config != event_id)
5573 return 0;
5574
5575 if (perf_exclude_event(event, regs))
5576 return 0;
5577
5578 return 1;
5579 }
5580
5581 static inline u64 swevent_hash(u64 type, u32 event_id)
5582 {
5583 u64 val = event_id | (type << 32);
5584
5585 return hash_64(val, SWEVENT_HLIST_BITS);
5586 }
5587
5588 static inline struct hlist_head *
5589 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
5590 {
5591 u64 hash = swevent_hash(type, event_id);
5592
5593 return &hlist->heads[hash];
5594 }
5595
5596 /* For the read side: events when they trigger */
5597 static inline struct hlist_head *
5598 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
5599 {
5600 struct swevent_hlist *hlist;
5601
5602 hlist = rcu_dereference(swhash->swevent_hlist);
5603 if (!hlist)
5604 return NULL;
5605
5606 return __find_swevent_head(hlist, type, event_id);
5607 }
5608
5609 /* For the event head insertion and removal in the hlist */
5610 static inline struct hlist_head *
5611 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
5612 {
5613 struct swevent_hlist *hlist;
5614 u32 event_id = event->attr.config;
5615 u64 type = event->attr.type;
5616
5617 /*
5618 * Event scheduling is always serialized against hlist allocation
5619 * and release. Which makes the protected version suitable here.
5620 * The context lock guarantees that.
5621 */
5622 hlist = rcu_dereference_protected(swhash->swevent_hlist,
5623 lockdep_is_held(&event->ctx->lock));
5624 if (!hlist)
5625 return NULL;
5626
5627 return __find_swevent_head(hlist, type, event_id);
5628 }
5629
5630 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
5631 u64 nr,
5632 struct perf_sample_data *data,
5633 struct pt_regs *regs)
5634 {
5635 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5636 struct perf_event *event;
5637 struct hlist_head *head;
5638
5639 rcu_read_lock();
5640 head = find_swevent_head_rcu(swhash, type, event_id);
5641 if (!head)
5642 goto end;
5643
5644 hlist_for_each_entry_rcu(event, head, hlist_entry) {
5645 if (perf_swevent_match(event, type, event_id, data, regs))
5646 perf_swevent_event(event, nr, data, regs);
5647 }
5648 end:
5649 rcu_read_unlock();
5650 }
5651
5652 int perf_swevent_get_recursion_context(void)
5653 {
5654 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5655
5656 return get_recursion_context(swhash->recursion);
5657 }
5658 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
5659
5660 inline void perf_swevent_put_recursion_context(int rctx)
5661 {
5662 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5663
5664 put_recursion_context(swhash->recursion, rctx);
5665 }
5666
5667 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
5668 {
5669 struct perf_sample_data data;
5670 int rctx;
5671
5672 preempt_disable_notrace();
5673 rctx = perf_swevent_get_recursion_context();
5674 if (rctx < 0)
5675 return;
5676
5677 perf_sample_data_init(&data, addr, 0);
5678
5679 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
5680
5681 perf_swevent_put_recursion_context(rctx);
5682 preempt_enable_notrace();
5683 }
5684
5685 static void perf_swevent_read(struct perf_event *event)
5686 {
5687 }
5688
5689 static int perf_swevent_add(struct perf_event *event, int flags)
5690 {
5691 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5692 struct hw_perf_event *hwc = &event->hw;
5693 struct hlist_head *head;
5694
5695 if (is_sampling_event(event)) {
5696 hwc->last_period = hwc->sample_period;
5697 perf_swevent_set_period(event);
5698 }
5699
5700 hwc->state = !(flags & PERF_EF_START);
5701
5702 head = find_swevent_head(swhash, event);
5703 if (!head) {
5704 /*
5705 * We can race with cpu hotplug code. Do not
5706 * WARN if the cpu just got unplugged.
5707 */
5708 WARN_ON_ONCE(swhash->online);
5709 return -EINVAL;
5710 }
5711
5712 hlist_add_head_rcu(&event->hlist_entry, head);
5713
5714 return 0;
5715 }
5716
5717 static void perf_swevent_del(struct perf_event *event, int flags)
5718 {
5719 hlist_del_rcu(&event->hlist_entry);
5720 }
5721
5722 static void perf_swevent_start(struct perf_event *event, int flags)
5723 {
5724 event->hw.state = 0;
5725 }
5726
5727 static void perf_swevent_stop(struct perf_event *event, int flags)
5728 {
5729 event->hw.state = PERF_HES_STOPPED;
5730 }
5731
5732 /* Deref the hlist from the update side */
5733 static inline struct swevent_hlist *
5734 swevent_hlist_deref(struct swevent_htable *swhash)
5735 {
5736 return rcu_dereference_protected(swhash->swevent_hlist,
5737 lockdep_is_held(&swhash->hlist_mutex));
5738 }
5739
5740 static void swevent_hlist_release(struct swevent_htable *swhash)
5741 {
5742 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
5743
5744 if (!hlist)
5745 return;
5746
5747 rcu_assign_pointer(swhash->swevent_hlist, NULL);
5748 kfree_rcu(hlist, rcu_head);
5749 }
5750
5751 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
5752 {
5753 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5754
5755 mutex_lock(&swhash->hlist_mutex);
5756
5757 if (!--swhash->hlist_refcount)
5758 swevent_hlist_release(swhash);
5759
5760 mutex_unlock(&swhash->hlist_mutex);
5761 }
5762
5763 static void swevent_hlist_put(struct perf_event *event)
5764 {
5765 int cpu;
5766
5767 for_each_possible_cpu(cpu)
5768 swevent_hlist_put_cpu(event, cpu);
5769 }
5770
5771 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
5772 {
5773 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5774 int err = 0;
5775
5776 mutex_lock(&swhash->hlist_mutex);
5777
5778 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
5779 struct swevent_hlist *hlist;
5780
5781 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
5782 if (!hlist) {
5783 err = -ENOMEM;
5784 goto exit;
5785 }
5786 rcu_assign_pointer(swhash->swevent_hlist, hlist);
5787 }
5788 swhash->hlist_refcount++;
5789 exit:
5790 mutex_unlock(&swhash->hlist_mutex);
5791
5792 return err;
5793 }
5794
5795 static int swevent_hlist_get(struct perf_event *event)
5796 {
5797 int err;
5798 int cpu, failed_cpu;
5799
5800 get_online_cpus();
5801 for_each_possible_cpu(cpu) {
5802 err = swevent_hlist_get_cpu(event, cpu);
5803 if (err) {
5804 failed_cpu = cpu;
5805 goto fail;
5806 }
5807 }
5808 put_online_cpus();
5809
5810 return 0;
5811 fail:
5812 for_each_possible_cpu(cpu) {
5813 if (cpu == failed_cpu)
5814 break;
5815 swevent_hlist_put_cpu(event, cpu);
5816 }
5817
5818 put_online_cpus();
5819 return err;
5820 }
5821
5822 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
5823
5824 static void sw_perf_event_destroy(struct perf_event *event)
5825 {
5826 u64 event_id = event->attr.config;
5827
5828 WARN_ON(event->parent);
5829
5830 static_key_slow_dec(&perf_swevent_enabled[event_id]);
5831 swevent_hlist_put(event);
5832 }
5833
5834 static int perf_swevent_init(struct perf_event *event)
5835 {
5836 u64 event_id = event->attr.config;
5837
5838 if (event->attr.type != PERF_TYPE_SOFTWARE)
5839 return -ENOENT;
5840
5841 /*
5842 * no branch sampling for software events
5843 */
5844 if (has_branch_stack(event))
5845 return -EOPNOTSUPP;
5846
5847 switch (event_id) {
5848 case PERF_COUNT_SW_CPU_CLOCK:
5849 case PERF_COUNT_SW_TASK_CLOCK:
5850 return -ENOENT;
5851
5852 default:
5853 break;
5854 }
5855
5856 if (event_id >= PERF_COUNT_SW_MAX)
5857 return -ENOENT;
5858
5859 if (!event->parent) {
5860 int err;
5861
5862 err = swevent_hlist_get(event);
5863 if (err)
5864 return err;
5865
5866 static_key_slow_inc(&perf_swevent_enabled[event_id]);
5867 event->destroy = sw_perf_event_destroy;
5868 }
5869
5870 return 0;
5871 }
5872
5873 static int perf_swevent_event_idx(struct perf_event *event)
5874 {
5875 return 0;
5876 }
5877
5878 static struct pmu perf_swevent = {
5879 .task_ctx_nr = perf_sw_context,
5880
5881 .event_init = perf_swevent_init,
5882 .add = perf_swevent_add,
5883 .del = perf_swevent_del,
5884 .start = perf_swevent_start,
5885 .stop = perf_swevent_stop,
5886 .read = perf_swevent_read,
5887
5888 .event_idx = perf_swevent_event_idx,
5889 };
5890
5891 #ifdef CONFIG_EVENT_TRACING
5892
5893 static int perf_tp_filter_match(struct perf_event *event,
5894 struct perf_sample_data *data)
5895 {
5896 void *record = data->raw->data;
5897
5898 if (likely(!event->filter) || filter_match_preds(event->filter, record))
5899 return 1;
5900 return 0;
5901 }
5902
5903 static int perf_tp_event_match(struct perf_event *event,
5904 struct perf_sample_data *data,
5905 struct pt_regs *regs)
5906 {
5907 if (event->hw.state & PERF_HES_STOPPED)
5908 return 0;
5909 /*
5910 * All tracepoints are from kernel-space.
5911 */
5912 if (event->attr.exclude_kernel)
5913 return 0;
5914
5915 if (!perf_tp_filter_match(event, data))
5916 return 0;
5917
5918 return 1;
5919 }
5920
5921 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
5922 struct pt_regs *regs, struct hlist_head *head, int rctx,
5923 struct task_struct *task)
5924 {
5925 struct perf_sample_data data;
5926 struct perf_event *event;
5927
5928 struct perf_raw_record raw = {
5929 .size = entry_size,
5930 .data = record,
5931 };
5932
5933 perf_sample_data_init(&data, addr, 0);
5934 data.raw = &raw;
5935
5936 hlist_for_each_entry_rcu(event, head, hlist_entry) {
5937 if (perf_tp_event_match(event, &data, regs))
5938 perf_swevent_event(event, count, &data, regs);
5939 }
5940
5941 /*
5942 * If we got specified a target task, also iterate its context and
5943 * deliver this event there too.
5944 */
5945 if (task && task != current) {
5946 struct perf_event_context *ctx;
5947 struct trace_entry *entry = record;
5948
5949 rcu_read_lock();
5950 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
5951 if (!ctx)
5952 goto unlock;
5953
5954 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5955 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5956 continue;
5957 if (event->attr.config != entry->type)
5958 continue;
5959 if (perf_tp_event_match(event, &data, regs))
5960 perf_swevent_event(event, count, &data, regs);
5961 }
5962 unlock:
5963 rcu_read_unlock();
5964 }
5965
5966 perf_swevent_put_recursion_context(rctx);
5967 }
5968 EXPORT_SYMBOL_GPL(perf_tp_event);
5969
5970 static void tp_perf_event_destroy(struct perf_event *event)
5971 {
5972 perf_trace_destroy(event);
5973 }
5974
5975 static int perf_tp_event_init(struct perf_event *event)
5976 {
5977 int err;
5978
5979 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5980 return -ENOENT;
5981
5982 /*
5983 * no branch sampling for tracepoint events
5984 */
5985 if (has_branch_stack(event))
5986 return -EOPNOTSUPP;
5987
5988 err = perf_trace_init(event);
5989 if (err)
5990 return err;
5991
5992 event->destroy = tp_perf_event_destroy;
5993
5994 return 0;
5995 }
5996
5997 static struct pmu perf_tracepoint = {
5998 .task_ctx_nr = perf_sw_context,
5999
6000 .event_init = perf_tp_event_init,
6001 .add = perf_trace_add,
6002 .del = perf_trace_del,
6003 .start = perf_swevent_start,
6004 .stop = perf_swevent_stop,
6005 .read = perf_swevent_read,
6006
6007 .event_idx = perf_swevent_event_idx,
6008 };
6009
6010 static inline void perf_tp_register(void)
6011 {
6012 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
6013 }
6014
6015 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
6016 {
6017 char *filter_str;
6018 int ret;
6019
6020 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6021 return -EINVAL;
6022
6023 filter_str = strndup_user(arg, PAGE_SIZE);
6024 if (IS_ERR(filter_str))
6025 return PTR_ERR(filter_str);
6026
6027 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
6028
6029 kfree(filter_str);
6030 return ret;
6031 }
6032
6033 static void perf_event_free_filter(struct perf_event *event)
6034 {
6035 ftrace_profile_free_filter(event);
6036 }
6037
6038 #else
6039
6040 static inline void perf_tp_register(void)
6041 {
6042 }
6043
6044 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
6045 {
6046 return -ENOENT;
6047 }
6048
6049 static void perf_event_free_filter(struct perf_event *event)
6050 {
6051 }
6052
6053 #endif /* CONFIG_EVENT_TRACING */
6054
6055 #ifdef CONFIG_HAVE_HW_BREAKPOINT
6056 void perf_bp_event(struct perf_event *bp, void *data)
6057 {
6058 struct perf_sample_data sample;
6059 struct pt_regs *regs = data;
6060
6061 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
6062
6063 if (!bp->hw.state && !perf_exclude_event(bp, regs))
6064 perf_swevent_event(bp, 1, &sample, regs);
6065 }
6066 #endif
6067
6068 /*
6069 * hrtimer based swevent callback
6070 */
6071
6072 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
6073 {
6074 enum hrtimer_restart ret = HRTIMER_RESTART;
6075 struct perf_sample_data data;
6076 struct pt_regs *regs;
6077 struct perf_event *event;
6078 u64 period;
6079
6080 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
6081
6082 if (event->state != PERF_EVENT_STATE_ACTIVE)
6083 return HRTIMER_NORESTART;
6084
6085 event->pmu->read(event);
6086
6087 perf_sample_data_init(&data, 0, event->hw.last_period);
6088 regs = get_irq_regs();
6089
6090 if (regs && !perf_exclude_event(event, regs)) {
6091 if (!(event->attr.exclude_idle && is_idle_task(current)))
6092 if (__perf_event_overflow(event, 1, &data, regs))
6093 ret = HRTIMER_NORESTART;
6094 }
6095
6096 period = max_t(u64, 10000, event->hw.sample_period);
6097 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
6098
6099 return ret;
6100 }
6101
6102 static void perf_swevent_start_hrtimer(struct perf_event *event)
6103 {
6104 struct hw_perf_event *hwc = &event->hw;
6105 s64 period;
6106
6107 if (!is_sampling_event(event))
6108 return;
6109
6110 period = local64_read(&hwc->period_left);
6111 if (period) {
6112 if (period < 0)
6113 period = 10000;
6114
6115 local64_set(&hwc->period_left, 0);
6116 } else {
6117 period = max_t(u64, 10000, hwc->sample_period);
6118 }
6119 __hrtimer_start_range_ns(&hwc->hrtimer,
6120 ns_to_ktime(period), 0,
6121 HRTIMER_MODE_REL_PINNED, 0);
6122 }
6123
6124 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
6125 {
6126 struct hw_perf_event *hwc = &event->hw;
6127
6128 if (is_sampling_event(event)) {
6129 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
6130 local64_set(&hwc->period_left, ktime_to_ns(remaining));
6131
6132 hrtimer_cancel(&hwc->hrtimer);
6133 }
6134 }
6135
6136 static void perf_swevent_init_hrtimer(struct perf_event *event)
6137 {
6138 struct hw_perf_event *hwc = &event->hw;
6139
6140 if (!is_sampling_event(event))
6141 return;
6142
6143 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
6144 hwc->hrtimer.function = perf_swevent_hrtimer;
6145
6146 /*
6147 * Since hrtimers have a fixed rate, we can do a static freq->period
6148 * mapping and avoid the whole period adjust feedback stuff.
6149 */
6150 if (event->attr.freq) {
6151 long freq = event->attr.sample_freq;
6152
6153 event->attr.sample_period = NSEC_PER_SEC / freq;
6154 hwc->sample_period = event->attr.sample_period;
6155 local64_set(&hwc->period_left, hwc->sample_period);
6156 hwc->last_period = hwc->sample_period;
6157 event->attr.freq = 0;
6158 }
6159 }
6160
6161 /*
6162 * Software event: cpu wall time clock
6163 */
6164
6165 static void cpu_clock_event_update(struct perf_event *event)
6166 {
6167 s64 prev;
6168 u64 now;
6169
6170 now = local_clock();
6171 prev = local64_xchg(&event->hw.prev_count, now);
6172 local64_add(now - prev, &event->count);
6173 }
6174
6175 static void cpu_clock_event_start(struct perf_event *event, int flags)
6176 {
6177 local64_set(&event->hw.prev_count, local_clock());
6178 perf_swevent_start_hrtimer(event);
6179 }
6180
6181 static void cpu_clock_event_stop(struct perf_event *event, int flags)
6182 {
6183 perf_swevent_cancel_hrtimer(event);
6184 cpu_clock_event_update(event);
6185 }
6186
6187 static int cpu_clock_event_add(struct perf_event *event, int flags)
6188 {
6189 if (flags & PERF_EF_START)
6190 cpu_clock_event_start(event, flags);
6191
6192 return 0;
6193 }
6194
6195 static void cpu_clock_event_del(struct perf_event *event, int flags)
6196 {
6197 cpu_clock_event_stop(event, flags);
6198 }
6199
6200 static void cpu_clock_event_read(struct perf_event *event)
6201 {
6202 cpu_clock_event_update(event);
6203 }
6204
6205 static int cpu_clock_event_init(struct perf_event *event)
6206 {
6207 if (event->attr.type != PERF_TYPE_SOFTWARE)
6208 return -ENOENT;
6209
6210 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
6211 return -ENOENT;
6212
6213 /*
6214 * no branch sampling for software events
6215 */
6216 if (has_branch_stack(event))
6217 return -EOPNOTSUPP;
6218
6219 perf_swevent_init_hrtimer(event);
6220
6221 return 0;
6222 }
6223
6224 static struct pmu perf_cpu_clock = {
6225 .task_ctx_nr = perf_sw_context,
6226
6227 .event_init = cpu_clock_event_init,
6228 .add = cpu_clock_event_add,
6229 .del = cpu_clock_event_del,
6230 .start = cpu_clock_event_start,
6231 .stop = cpu_clock_event_stop,
6232 .read = cpu_clock_event_read,
6233
6234 .event_idx = perf_swevent_event_idx,
6235 };
6236
6237 /*
6238 * Software event: task time clock
6239 */
6240
6241 static void task_clock_event_update(struct perf_event *event, u64 now)
6242 {
6243 u64 prev;
6244 s64 delta;
6245
6246 prev = local64_xchg(&event->hw.prev_count, now);
6247 delta = now - prev;
6248 local64_add(delta, &event->count);
6249 }
6250
6251 static void task_clock_event_start(struct perf_event *event, int flags)
6252 {
6253 local64_set(&event->hw.prev_count, event->ctx->time);
6254 perf_swevent_start_hrtimer(event);
6255 }
6256
6257 static void task_clock_event_stop(struct perf_event *event, int flags)
6258 {
6259 perf_swevent_cancel_hrtimer(event);
6260 task_clock_event_update(event, event->ctx->time);
6261 }
6262
6263 static int task_clock_event_add(struct perf_event *event, int flags)
6264 {
6265 if (flags & PERF_EF_START)
6266 task_clock_event_start(event, flags);
6267
6268 return 0;
6269 }
6270
6271 static void task_clock_event_del(struct perf_event *event, int flags)
6272 {
6273 task_clock_event_stop(event, PERF_EF_UPDATE);
6274 }
6275
6276 static void task_clock_event_read(struct perf_event *event)
6277 {
6278 u64 now = perf_clock();
6279 u64 delta = now - event->ctx->timestamp;
6280 u64 time = event->ctx->time + delta;
6281
6282 task_clock_event_update(event, time);
6283 }
6284
6285 static int task_clock_event_init(struct perf_event *event)
6286 {
6287 if (event->attr.type != PERF_TYPE_SOFTWARE)
6288 return -ENOENT;
6289
6290 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
6291 return -ENOENT;
6292
6293 /*
6294 * no branch sampling for software events
6295 */
6296 if (has_branch_stack(event))
6297 return -EOPNOTSUPP;
6298
6299 perf_swevent_init_hrtimer(event);
6300
6301 return 0;
6302 }
6303
6304 static struct pmu perf_task_clock = {
6305 .task_ctx_nr = perf_sw_context,
6306
6307 .event_init = task_clock_event_init,
6308 .add = task_clock_event_add,
6309 .del = task_clock_event_del,
6310 .start = task_clock_event_start,
6311 .stop = task_clock_event_stop,
6312 .read = task_clock_event_read,
6313
6314 .event_idx = perf_swevent_event_idx,
6315 };
6316
6317 static void perf_pmu_nop_void(struct pmu *pmu)
6318 {
6319 }
6320
6321 static int perf_pmu_nop_int(struct pmu *pmu)
6322 {
6323 return 0;
6324 }
6325
6326 static void perf_pmu_start_txn(struct pmu *pmu)
6327 {
6328 perf_pmu_disable(pmu);
6329 }
6330
6331 static int perf_pmu_commit_txn(struct pmu *pmu)
6332 {
6333 perf_pmu_enable(pmu);
6334 return 0;
6335 }
6336
6337 static void perf_pmu_cancel_txn(struct pmu *pmu)
6338 {
6339 perf_pmu_enable(pmu);
6340 }
6341
6342 static int perf_event_idx_default(struct perf_event *event)
6343 {
6344 return event->hw.idx + 1;
6345 }
6346
6347 /*
6348 * Ensures all contexts with the same task_ctx_nr have the same
6349 * pmu_cpu_context too.
6350 */
6351 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
6352 {
6353 struct pmu *pmu;
6354
6355 if (ctxn < 0)
6356 return NULL;
6357
6358 list_for_each_entry(pmu, &pmus, entry) {
6359 if (pmu->task_ctx_nr == ctxn)
6360 return pmu->pmu_cpu_context;
6361 }
6362
6363 return NULL;
6364 }
6365
6366 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
6367 {
6368 int cpu;
6369
6370 for_each_possible_cpu(cpu) {
6371 struct perf_cpu_context *cpuctx;
6372
6373 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6374
6375 if (cpuctx->unique_pmu == old_pmu)
6376 cpuctx->unique_pmu = pmu;
6377 }
6378 }
6379
6380 static void free_pmu_context(struct pmu *pmu)
6381 {
6382 struct pmu *i;
6383
6384 mutex_lock(&pmus_lock);
6385 /*
6386 * Like a real lame refcount.
6387 */
6388 list_for_each_entry(i, &pmus, entry) {
6389 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
6390 update_pmu_context(i, pmu);
6391 goto out;
6392 }
6393 }
6394
6395 free_percpu(pmu->pmu_cpu_context);
6396 out:
6397 mutex_unlock(&pmus_lock);
6398 }
6399 static struct idr pmu_idr;
6400
6401 static ssize_t
6402 type_show(struct device *dev, struct device_attribute *attr, char *page)
6403 {
6404 struct pmu *pmu = dev_get_drvdata(dev);
6405
6406 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
6407 }
6408 static DEVICE_ATTR_RO(type);
6409
6410 static ssize_t
6411 perf_event_mux_interval_ms_show(struct device *dev,
6412 struct device_attribute *attr,
6413 char *page)
6414 {
6415 struct pmu *pmu = dev_get_drvdata(dev);
6416
6417 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
6418 }
6419
6420 static ssize_t
6421 perf_event_mux_interval_ms_store(struct device *dev,
6422 struct device_attribute *attr,
6423 const char *buf, size_t count)
6424 {
6425 struct pmu *pmu = dev_get_drvdata(dev);
6426 int timer, cpu, ret;
6427
6428 ret = kstrtoint(buf, 0, &timer);
6429 if (ret)
6430 return ret;
6431
6432 if (timer < 1)
6433 return -EINVAL;
6434
6435 /* same value, noting to do */
6436 if (timer == pmu->hrtimer_interval_ms)
6437 return count;
6438
6439 pmu->hrtimer_interval_ms = timer;
6440
6441 /* update all cpuctx for this PMU */
6442 for_each_possible_cpu(cpu) {
6443 struct perf_cpu_context *cpuctx;
6444 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6445 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
6446
6447 if (hrtimer_active(&cpuctx->hrtimer))
6448 hrtimer_forward_now(&cpuctx->hrtimer, cpuctx->hrtimer_interval);
6449 }
6450
6451 return count;
6452 }
6453 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
6454
6455 static struct attribute *pmu_dev_attrs[] = {
6456 &dev_attr_type.attr,
6457 &dev_attr_perf_event_mux_interval_ms.attr,
6458 NULL,
6459 };
6460 ATTRIBUTE_GROUPS(pmu_dev);
6461
6462 static int pmu_bus_running;
6463 static struct bus_type pmu_bus = {
6464 .name = "event_source",
6465 .dev_groups = pmu_dev_groups,
6466 };
6467
6468 static void pmu_dev_release(struct device *dev)
6469 {
6470 kfree(dev);
6471 }
6472
6473 static int pmu_dev_alloc(struct pmu *pmu)
6474 {
6475 int ret = -ENOMEM;
6476
6477 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
6478 if (!pmu->dev)
6479 goto out;
6480
6481 pmu->dev->groups = pmu->attr_groups;
6482 device_initialize(pmu->dev);
6483 ret = dev_set_name(pmu->dev, "%s", pmu->name);
6484 if (ret)
6485 goto free_dev;
6486
6487 dev_set_drvdata(pmu->dev, pmu);
6488 pmu->dev->bus = &pmu_bus;
6489 pmu->dev->release = pmu_dev_release;
6490 ret = device_add(pmu->dev);
6491 if (ret)
6492 goto free_dev;
6493
6494 out:
6495 return ret;
6496
6497 free_dev:
6498 put_device(pmu->dev);
6499 goto out;
6500 }
6501
6502 static struct lock_class_key cpuctx_mutex;
6503 static struct lock_class_key cpuctx_lock;
6504
6505 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
6506 {
6507 int cpu, ret;
6508
6509 mutex_lock(&pmus_lock);
6510 ret = -ENOMEM;
6511 pmu->pmu_disable_count = alloc_percpu(int);
6512 if (!pmu->pmu_disable_count)
6513 goto unlock;
6514
6515 pmu->type = -1;
6516 if (!name)
6517 goto skip_type;
6518 pmu->name = name;
6519
6520 if (type < 0) {
6521 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
6522 if (type < 0) {
6523 ret = type;
6524 goto free_pdc;
6525 }
6526 }
6527 pmu->type = type;
6528
6529 if (pmu_bus_running) {
6530 ret = pmu_dev_alloc(pmu);
6531 if (ret)
6532 goto free_idr;
6533 }
6534
6535 skip_type:
6536 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
6537 if (pmu->pmu_cpu_context)
6538 goto got_cpu_context;
6539
6540 ret = -ENOMEM;
6541 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
6542 if (!pmu->pmu_cpu_context)
6543 goto free_dev;
6544
6545 for_each_possible_cpu(cpu) {
6546 struct perf_cpu_context *cpuctx;
6547
6548 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6549 __perf_event_init_context(&cpuctx->ctx);
6550 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
6551 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
6552 cpuctx->ctx.type = cpu_context;
6553 cpuctx->ctx.pmu = pmu;
6554
6555 __perf_cpu_hrtimer_init(cpuctx, cpu);
6556
6557 INIT_LIST_HEAD(&cpuctx->rotation_list);
6558 cpuctx->unique_pmu = pmu;
6559 }
6560
6561 got_cpu_context:
6562 if (!pmu->start_txn) {
6563 if (pmu->pmu_enable) {
6564 /*
6565 * If we have pmu_enable/pmu_disable calls, install
6566 * transaction stubs that use that to try and batch
6567 * hardware accesses.
6568 */
6569 pmu->start_txn = perf_pmu_start_txn;
6570 pmu->commit_txn = perf_pmu_commit_txn;
6571 pmu->cancel_txn = perf_pmu_cancel_txn;
6572 } else {
6573 pmu->start_txn = perf_pmu_nop_void;
6574 pmu->commit_txn = perf_pmu_nop_int;
6575 pmu->cancel_txn = perf_pmu_nop_void;
6576 }
6577 }
6578
6579 if (!pmu->pmu_enable) {
6580 pmu->pmu_enable = perf_pmu_nop_void;
6581 pmu->pmu_disable = perf_pmu_nop_void;
6582 }
6583
6584 if (!pmu->event_idx)
6585 pmu->event_idx = perf_event_idx_default;
6586
6587 list_add_rcu(&pmu->entry, &pmus);
6588 ret = 0;
6589 unlock:
6590 mutex_unlock(&pmus_lock);
6591
6592 return ret;
6593
6594 free_dev:
6595 device_del(pmu->dev);
6596 put_device(pmu->dev);
6597
6598 free_idr:
6599 if (pmu->type >= PERF_TYPE_MAX)
6600 idr_remove(&pmu_idr, pmu->type);
6601
6602 free_pdc:
6603 free_percpu(pmu->pmu_disable_count);
6604 goto unlock;
6605 }
6606 EXPORT_SYMBOL_GPL(perf_pmu_register);
6607
6608 void perf_pmu_unregister(struct pmu *pmu)
6609 {
6610 mutex_lock(&pmus_lock);
6611 list_del_rcu(&pmu->entry);
6612 mutex_unlock(&pmus_lock);
6613
6614 /*
6615 * We dereference the pmu list under both SRCU and regular RCU, so
6616 * synchronize against both of those.
6617 */
6618 synchronize_srcu(&pmus_srcu);
6619 synchronize_rcu();
6620
6621 free_percpu(pmu->pmu_disable_count);
6622 if (pmu->type >= PERF_TYPE_MAX)
6623 idr_remove(&pmu_idr, pmu->type);
6624 device_del(pmu->dev);
6625 put_device(pmu->dev);
6626 free_pmu_context(pmu);
6627 }
6628 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
6629
6630 struct pmu *perf_init_event(struct perf_event *event)
6631 {
6632 struct pmu *pmu = NULL;
6633 int idx;
6634 int ret;
6635
6636 idx = srcu_read_lock(&pmus_srcu);
6637
6638 rcu_read_lock();
6639 pmu = idr_find(&pmu_idr, event->attr.type);
6640 rcu_read_unlock();
6641 if (pmu) {
6642 if (!try_module_get(pmu->module)) {
6643 pmu = ERR_PTR(-ENODEV);
6644 goto unlock;
6645 }
6646 event->pmu = pmu;
6647 ret = pmu->event_init(event);
6648 if (ret)
6649 pmu = ERR_PTR(ret);
6650 goto unlock;
6651 }
6652
6653 list_for_each_entry_rcu(pmu, &pmus, entry) {
6654 if (!try_module_get(pmu->module)) {
6655 pmu = ERR_PTR(-ENODEV);
6656 goto unlock;
6657 }
6658 event->pmu = pmu;
6659 ret = pmu->event_init(event);
6660 if (!ret)
6661 goto unlock;
6662
6663 if (ret != -ENOENT) {
6664 pmu = ERR_PTR(ret);
6665 goto unlock;
6666 }
6667 }
6668 pmu = ERR_PTR(-ENOENT);
6669 unlock:
6670 srcu_read_unlock(&pmus_srcu, idx);
6671
6672 return pmu;
6673 }
6674
6675 static void account_event_cpu(struct perf_event *event, int cpu)
6676 {
6677 if (event->parent)
6678 return;
6679
6680 if (has_branch_stack(event)) {
6681 if (!(event->attach_state & PERF_ATTACH_TASK))
6682 atomic_inc(&per_cpu(perf_branch_stack_events, cpu));
6683 }
6684 if (is_cgroup_event(event))
6685 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
6686 }
6687
6688 static void account_event(struct perf_event *event)
6689 {
6690 if (event->parent)
6691 return;
6692
6693 if (event->attach_state & PERF_ATTACH_TASK)
6694 static_key_slow_inc(&perf_sched_events.key);
6695 if (event->attr.mmap || event->attr.mmap_data)
6696 atomic_inc(&nr_mmap_events);
6697 if (event->attr.comm)
6698 atomic_inc(&nr_comm_events);
6699 if (event->attr.task)
6700 atomic_inc(&nr_task_events);
6701 if (event->attr.freq) {
6702 if (atomic_inc_return(&nr_freq_events) == 1)
6703 tick_nohz_full_kick_all();
6704 }
6705 if (has_branch_stack(event))
6706 static_key_slow_inc(&perf_sched_events.key);
6707 if (is_cgroup_event(event))
6708 static_key_slow_inc(&perf_sched_events.key);
6709
6710 account_event_cpu(event, event->cpu);
6711 }
6712
6713 /*
6714 * Allocate and initialize a event structure
6715 */
6716 static struct perf_event *
6717 perf_event_alloc(struct perf_event_attr *attr, int cpu,
6718 struct task_struct *task,
6719 struct perf_event *group_leader,
6720 struct perf_event *parent_event,
6721 perf_overflow_handler_t overflow_handler,
6722 void *context)
6723 {
6724 struct pmu *pmu;
6725 struct perf_event *event;
6726 struct hw_perf_event *hwc;
6727 long err = -EINVAL;
6728
6729 if ((unsigned)cpu >= nr_cpu_ids) {
6730 if (!task || cpu != -1)
6731 return ERR_PTR(-EINVAL);
6732 }
6733
6734 event = kzalloc(sizeof(*event), GFP_KERNEL);
6735 if (!event)
6736 return ERR_PTR(-ENOMEM);
6737
6738 /*
6739 * Single events are their own group leaders, with an
6740 * empty sibling list:
6741 */
6742 if (!group_leader)
6743 group_leader = event;
6744
6745 mutex_init(&event->child_mutex);
6746 INIT_LIST_HEAD(&event->child_list);
6747
6748 INIT_LIST_HEAD(&event->group_entry);
6749 INIT_LIST_HEAD(&event->event_entry);
6750 INIT_LIST_HEAD(&event->sibling_list);
6751 INIT_LIST_HEAD(&event->rb_entry);
6752 INIT_LIST_HEAD(&event->active_entry);
6753 INIT_HLIST_NODE(&event->hlist_entry);
6754
6755
6756 init_waitqueue_head(&event->waitq);
6757 init_irq_work(&event->pending, perf_pending_event);
6758
6759 mutex_init(&event->mmap_mutex);
6760
6761 atomic_long_set(&event->refcount, 1);
6762 event->cpu = cpu;
6763 event->attr = *attr;
6764 event->group_leader = group_leader;
6765 event->pmu = NULL;
6766 event->oncpu = -1;
6767
6768 event->parent = parent_event;
6769
6770 event->ns = get_pid_ns(task_active_pid_ns(current));
6771 event->id = atomic64_inc_return(&perf_event_id);
6772
6773 event->state = PERF_EVENT_STATE_INACTIVE;
6774
6775 if (task) {
6776 event->attach_state = PERF_ATTACH_TASK;
6777
6778 if (attr->type == PERF_TYPE_TRACEPOINT)
6779 event->hw.tp_target = task;
6780 #ifdef CONFIG_HAVE_HW_BREAKPOINT
6781 /*
6782 * hw_breakpoint is a bit difficult here..
6783 */
6784 else if (attr->type == PERF_TYPE_BREAKPOINT)
6785 event->hw.bp_target = task;
6786 #endif
6787 }
6788
6789 if (!overflow_handler && parent_event) {
6790 overflow_handler = parent_event->overflow_handler;
6791 context = parent_event->overflow_handler_context;
6792 }
6793
6794 event->overflow_handler = overflow_handler;
6795 event->overflow_handler_context = context;
6796
6797 perf_event__state_init(event);
6798
6799 pmu = NULL;
6800
6801 hwc = &event->hw;
6802 hwc->sample_period = attr->sample_period;
6803 if (attr->freq && attr->sample_freq)
6804 hwc->sample_period = 1;
6805 hwc->last_period = hwc->sample_period;
6806
6807 local64_set(&hwc->period_left, hwc->sample_period);
6808
6809 /*
6810 * we currently do not support PERF_FORMAT_GROUP on inherited events
6811 */
6812 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
6813 goto err_ns;
6814
6815 pmu = perf_init_event(event);
6816 if (!pmu)
6817 goto err_ns;
6818 else if (IS_ERR(pmu)) {
6819 err = PTR_ERR(pmu);
6820 goto err_ns;
6821 }
6822
6823 if (!event->parent) {
6824 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
6825 err = get_callchain_buffers();
6826 if (err)
6827 goto err_pmu;
6828 }
6829 }
6830
6831 return event;
6832
6833 err_pmu:
6834 if (event->destroy)
6835 event->destroy(event);
6836 module_put(pmu->module);
6837 err_ns:
6838 if (event->ns)
6839 put_pid_ns(event->ns);
6840 kfree(event);
6841
6842 return ERR_PTR(err);
6843 }
6844
6845 static int perf_copy_attr(struct perf_event_attr __user *uattr,
6846 struct perf_event_attr *attr)
6847 {
6848 u32 size;
6849 int ret;
6850
6851 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
6852 return -EFAULT;
6853
6854 /*
6855 * zero the full structure, so that a short copy will be nice.
6856 */
6857 memset(attr, 0, sizeof(*attr));
6858
6859 ret = get_user(size, &uattr->size);
6860 if (ret)
6861 return ret;
6862
6863 if (size > PAGE_SIZE) /* silly large */
6864 goto err_size;
6865
6866 if (!size) /* abi compat */
6867 size = PERF_ATTR_SIZE_VER0;
6868
6869 if (size < PERF_ATTR_SIZE_VER0)
6870 goto err_size;
6871
6872 /*
6873 * If we're handed a bigger struct than we know of,
6874 * ensure all the unknown bits are 0 - i.e. new
6875 * user-space does not rely on any kernel feature
6876 * extensions we dont know about yet.
6877 */
6878 if (size > sizeof(*attr)) {
6879 unsigned char __user *addr;
6880 unsigned char __user *end;
6881 unsigned char val;
6882
6883 addr = (void __user *)uattr + sizeof(*attr);
6884 end = (void __user *)uattr + size;
6885
6886 for (; addr < end; addr++) {
6887 ret = get_user(val, addr);
6888 if (ret)
6889 return ret;
6890 if (val)
6891 goto err_size;
6892 }
6893 size = sizeof(*attr);
6894 }
6895
6896 ret = copy_from_user(attr, uattr, size);
6897 if (ret)
6898 return -EFAULT;
6899
6900 /* disabled for now */
6901 if (attr->mmap2)
6902 return -EINVAL;
6903
6904 if (attr->__reserved_1)
6905 return -EINVAL;
6906
6907 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
6908 return -EINVAL;
6909
6910 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
6911 return -EINVAL;
6912
6913 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
6914 u64 mask = attr->branch_sample_type;
6915
6916 /* only using defined bits */
6917 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
6918 return -EINVAL;
6919
6920 /* at least one branch bit must be set */
6921 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
6922 return -EINVAL;
6923
6924 /* propagate priv level, when not set for branch */
6925 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
6926
6927 /* exclude_kernel checked on syscall entry */
6928 if (!attr->exclude_kernel)
6929 mask |= PERF_SAMPLE_BRANCH_KERNEL;
6930
6931 if (!attr->exclude_user)
6932 mask |= PERF_SAMPLE_BRANCH_USER;
6933
6934 if (!attr->exclude_hv)
6935 mask |= PERF_SAMPLE_BRANCH_HV;
6936 /*
6937 * adjust user setting (for HW filter setup)
6938 */
6939 attr->branch_sample_type = mask;
6940 }
6941 /* privileged levels capture (kernel, hv): check permissions */
6942 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
6943 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6944 return -EACCES;
6945 }
6946
6947 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
6948 ret = perf_reg_validate(attr->sample_regs_user);
6949 if (ret)
6950 return ret;
6951 }
6952
6953 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
6954 if (!arch_perf_have_user_stack_dump())
6955 return -ENOSYS;
6956
6957 /*
6958 * We have __u32 type for the size, but so far
6959 * we can only use __u16 as maximum due to the
6960 * __u16 sample size limit.
6961 */
6962 if (attr->sample_stack_user >= USHRT_MAX)
6963 ret = -EINVAL;
6964 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
6965 ret = -EINVAL;
6966 }
6967
6968 out:
6969 return ret;
6970
6971 err_size:
6972 put_user(sizeof(*attr), &uattr->size);
6973 ret = -E2BIG;
6974 goto out;
6975 }
6976
6977 static int
6978 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
6979 {
6980 struct ring_buffer *rb = NULL;
6981 int ret = -EINVAL;
6982
6983 if (!output_event)
6984 goto set;
6985
6986 /* don't allow circular references */
6987 if (event == output_event)
6988 goto out;
6989
6990 /*
6991 * Don't allow cross-cpu buffers
6992 */
6993 if (output_event->cpu != event->cpu)
6994 goto out;
6995
6996 /*
6997 * If its not a per-cpu rb, it must be the same task.
6998 */
6999 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
7000 goto out;
7001
7002 set:
7003 mutex_lock(&event->mmap_mutex);
7004 /* Can't redirect output if we've got an active mmap() */
7005 if (atomic_read(&event->mmap_count))
7006 goto unlock;
7007
7008 if (output_event) {
7009 /* get the rb we want to redirect to */
7010 rb = ring_buffer_get(output_event);
7011 if (!rb)
7012 goto unlock;
7013 }
7014
7015 ring_buffer_attach(event, rb);
7016
7017 ret = 0;
7018 unlock:
7019 mutex_unlock(&event->mmap_mutex);
7020
7021 out:
7022 return ret;
7023 }
7024
7025 /**
7026 * sys_perf_event_open - open a performance event, associate it to a task/cpu
7027 *
7028 * @attr_uptr: event_id type attributes for monitoring/sampling
7029 * @pid: target pid
7030 * @cpu: target cpu
7031 * @group_fd: group leader event fd
7032 */
7033 SYSCALL_DEFINE5(perf_event_open,
7034 struct perf_event_attr __user *, attr_uptr,
7035 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
7036 {
7037 struct perf_event *group_leader = NULL, *output_event = NULL;
7038 struct perf_event *event, *sibling;
7039 struct perf_event_attr attr;
7040 struct perf_event_context *ctx;
7041 struct file *event_file = NULL;
7042 struct fd group = {NULL, 0};
7043 struct task_struct *task = NULL;
7044 struct pmu *pmu;
7045 int event_fd;
7046 int move_group = 0;
7047 int err;
7048 int f_flags = O_RDWR;
7049
7050 /* for future expandability... */
7051 if (flags & ~PERF_FLAG_ALL)
7052 return -EINVAL;
7053
7054 err = perf_copy_attr(attr_uptr, &attr);
7055 if (err)
7056 return err;
7057
7058 if (!attr.exclude_kernel) {
7059 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
7060 return -EACCES;
7061 }
7062
7063 if (attr.freq) {
7064 if (attr.sample_freq > sysctl_perf_event_sample_rate)
7065 return -EINVAL;
7066 } else {
7067 if (attr.sample_period & (1ULL << 63))
7068 return -EINVAL;
7069 }
7070
7071 /*
7072 * In cgroup mode, the pid argument is used to pass the fd
7073 * opened to the cgroup directory in cgroupfs. The cpu argument
7074 * designates the cpu on which to monitor threads from that
7075 * cgroup.
7076 */
7077 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
7078 return -EINVAL;
7079
7080 if (flags & PERF_FLAG_FD_CLOEXEC)
7081 f_flags |= O_CLOEXEC;
7082
7083 event_fd = get_unused_fd_flags(f_flags);
7084 if (event_fd < 0)
7085 return event_fd;
7086
7087 if (group_fd != -1) {
7088 err = perf_fget_light(group_fd, &group);
7089 if (err)
7090 goto err_fd;
7091 group_leader = group.file->private_data;
7092 if (flags & PERF_FLAG_FD_OUTPUT)
7093 output_event = group_leader;
7094 if (flags & PERF_FLAG_FD_NO_GROUP)
7095 group_leader = NULL;
7096 }
7097
7098 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
7099 task = find_lively_task_by_vpid(pid);
7100 if (IS_ERR(task)) {
7101 err = PTR_ERR(task);
7102 goto err_group_fd;
7103 }
7104 }
7105
7106 if (task && group_leader &&
7107 group_leader->attr.inherit != attr.inherit) {
7108 err = -EINVAL;
7109 goto err_task;
7110 }
7111
7112 get_online_cpus();
7113
7114 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
7115 NULL, NULL);
7116 if (IS_ERR(event)) {
7117 err = PTR_ERR(event);
7118 goto err_cpus;
7119 }
7120
7121 if (flags & PERF_FLAG_PID_CGROUP) {
7122 err = perf_cgroup_connect(pid, event, &attr, group_leader);
7123 if (err) {
7124 __free_event(event);
7125 goto err_cpus;
7126 }
7127 }
7128
7129 if (is_sampling_event(event)) {
7130 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
7131 err = -ENOTSUPP;
7132 goto err_alloc;
7133 }
7134 }
7135
7136 account_event(event);
7137
7138 /*
7139 * Special case software events and allow them to be part of
7140 * any hardware group.
7141 */
7142 pmu = event->pmu;
7143
7144 if (group_leader &&
7145 (is_software_event(event) != is_software_event(group_leader))) {
7146 if (is_software_event(event)) {
7147 /*
7148 * If event and group_leader are not both a software
7149 * event, and event is, then group leader is not.
7150 *
7151 * Allow the addition of software events to !software
7152 * groups, this is safe because software events never
7153 * fail to schedule.
7154 */
7155 pmu = group_leader->pmu;
7156 } else if (is_software_event(group_leader) &&
7157 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
7158 /*
7159 * In case the group is a pure software group, and we
7160 * try to add a hardware event, move the whole group to
7161 * the hardware context.
7162 */
7163 move_group = 1;
7164 }
7165 }
7166
7167 /*
7168 * Get the target context (task or percpu):
7169 */
7170 ctx = find_get_context(pmu, task, event->cpu);
7171 if (IS_ERR(ctx)) {
7172 err = PTR_ERR(ctx);
7173 goto err_alloc;
7174 }
7175
7176 if (task) {
7177 put_task_struct(task);
7178 task = NULL;
7179 }
7180
7181 /*
7182 * Look up the group leader (we will attach this event to it):
7183 */
7184 if (group_leader) {
7185 err = -EINVAL;
7186
7187 /*
7188 * Do not allow a recursive hierarchy (this new sibling
7189 * becoming part of another group-sibling):
7190 */
7191 if (group_leader->group_leader != group_leader)
7192 goto err_context;
7193 /*
7194 * Do not allow to attach to a group in a different
7195 * task or CPU context:
7196 */
7197 if (move_group) {
7198 if (group_leader->ctx->type != ctx->type)
7199 goto err_context;
7200 } else {
7201 if (group_leader->ctx != ctx)
7202 goto err_context;
7203 }
7204
7205 /*
7206 * Only a group leader can be exclusive or pinned
7207 */
7208 if (attr.exclusive || attr.pinned)
7209 goto err_context;
7210 }
7211
7212 if (output_event) {
7213 err = perf_event_set_output(event, output_event);
7214 if (err)
7215 goto err_context;
7216 }
7217
7218 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
7219 f_flags);
7220 if (IS_ERR(event_file)) {
7221 err = PTR_ERR(event_file);
7222 goto err_context;
7223 }
7224
7225 if (move_group) {
7226 struct perf_event_context *gctx = group_leader->ctx;
7227
7228 mutex_lock(&gctx->mutex);
7229 perf_remove_from_context(group_leader, false);
7230
7231 /*
7232 * Removing from the context ends up with disabled
7233 * event. What we want here is event in the initial
7234 * startup state, ready to be add into new context.
7235 */
7236 perf_event__state_init(group_leader);
7237 list_for_each_entry(sibling, &group_leader->sibling_list,
7238 group_entry) {
7239 perf_remove_from_context(sibling, false);
7240 perf_event__state_init(sibling);
7241 put_ctx(gctx);
7242 }
7243 mutex_unlock(&gctx->mutex);
7244 put_ctx(gctx);
7245 }
7246
7247 WARN_ON_ONCE(ctx->parent_ctx);
7248 mutex_lock(&ctx->mutex);
7249
7250 if (move_group) {
7251 synchronize_rcu();
7252 perf_install_in_context(ctx, group_leader, event->cpu);
7253 get_ctx(ctx);
7254 list_for_each_entry(sibling, &group_leader->sibling_list,
7255 group_entry) {
7256 perf_install_in_context(ctx, sibling, event->cpu);
7257 get_ctx(ctx);
7258 }
7259 }
7260
7261 perf_install_in_context(ctx, event, event->cpu);
7262 perf_unpin_context(ctx);
7263 mutex_unlock(&ctx->mutex);
7264
7265 put_online_cpus();
7266
7267 event->owner = current;
7268
7269 mutex_lock(&current->perf_event_mutex);
7270 list_add_tail(&event->owner_entry, &current->perf_event_list);
7271 mutex_unlock(&current->perf_event_mutex);
7272
7273 /*
7274 * Precalculate sample_data sizes
7275 */
7276 perf_event__header_size(event);
7277 perf_event__id_header_size(event);
7278
7279 /*
7280 * Drop the reference on the group_event after placing the
7281 * new event on the sibling_list. This ensures destruction
7282 * of the group leader will find the pointer to itself in
7283 * perf_group_detach().
7284 */
7285 fdput(group);
7286 fd_install(event_fd, event_file);
7287 return event_fd;
7288
7289 err_context:
7290 perf_unpin_context(ctx);
7291 put_ctx(ctx);
7292 err_alloc:
7293 free_event(event);
7294 err_cpus:
7295 put_online_cpus();
7296 err_task:
7297 if (task)
7298 put_task_struct(task);
7299 err_group_fd:
7300 fdput(group);
7301 err_fd:
7302 put_unused_fd(event_fd);
7303 return err;
7304 }
7305
7306 /**
7307 * perf_event_create_kernel_counter
7308 *
7309 * @attr: attributes of the counter to create
7310 * @cpu: cpu in which the counter is bound
7311 * @task: task to profile (NULL for percpu)
7312 */
7313 struct perf_event *
7314 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
7315 struct task_struct *task,
7316 perf_overflow_handler_t overflow_handler,
7317 void *context)
7318 {
7319 struct perf_event_context *ctx;
7320 struct perf_event *event;
7321 int err;
7322
7323 /*
7324 * Get the target context (task or percpu):
7325 */
7326
7327 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
7328 overflow_handler, context);
7329 if (IS_ERR(event)) {
7330 err = PTR_ERR(event);
7331 goto err;
7332 }
7333
7334 account_event(event);
7335
7336 ctx = find_get_context(event->pmu, task, cpu);
7337 if (IS_ERR(ctx)) {
7338 err = PTR_ERR(ctx);
7339 goto err_free;
7340 }
7341
7342 WARN_ON_ONCE(ctx->parent_ctx);
7343 mutex_lock(&ctx->mutex);
7344 perf_install_in_context(ctx, event, cpu);
7345 perf_unpin_context(ctx);
7346 mutex_unlock(&ctx->mutex);
7347
7348 return event;
7349
7350 err_free:
7351 free_event(event);
7352 err:
7353 return ERR_PTR(err);
7354 }
7355 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
7356
7357 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
7358 {
7359 struct perf_event_context *src_ctx;
7360 struct perf_event_context *dst_ctx;
7361 struct perf_event *event, *tmp;
7362 LIST_HEAD(events);
7363
7364 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
7365 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
7366
7367 mutex_lock(&src_ctx->mutex);
7368 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
7369 event_entry) {
7370 perf_remove_from_context(event, false);
7371 unaccount_event_cpu(event, src_cpu);
7372 put_ctx(src_ctx);
7373 list_add(&event->migrate_entry, &events);
7374 }
7375 mutex_unlock(&src_ctx->mutex);
7376
7377 synchronize_rcu();
7378
7379 mutex_lock(&dst_ctx->mutex);
7380 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
7381 list_del(&event->migrate_entry);
7382 if (event->state >= PERF_EVENT_STATE_OFF)
7383 event->state = PERF_EVENT_STATE_INACTIVE;
7384 account_event_cpu(event, dst_cpu);
7385 perf_install_in_context(dst_ctx, event, dst_cpu);
7386 get_ctx(dst_ctx);
7387 }
7388 mutex_unlock(&dst_ctx->mutex);
7389 }
7390 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
7391
7392 static void sync_child_event(struct perf_event *child_event,
7393 struct task_struct *child)
7394 {
7395 struct perf_event *parent_event = child_event->parent;
7396 u64 child_val;
7397
7398 if (child_event->attr.inherit_stat)
7399 perf_event_read_event(child_event, child);
7400
7401 child_val = perf_event_count(child_event);
7402
7403 /*
7404 * Add back the child's count to the parent's count:
7405 */
7406 atomic64_add(child_val, &parent_event->child_count);
7407 atomic64_add(child_event->total_time_enabled,
7408 &parent_event->child_total_time_enabled);
7409 atomic64_add(child_event->total_time_running,
7410 &parent_event->child_total_time_running);
7411
7412 /*
7413 * Remove this event from the parent's list
7414 */
7415 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
7416 mutex_lock(&parent_event->child_mutex);
7417 list_del_init(&child_event->child_list);
7418 mutex_unlock(&parent_event->child_mutex);
7419
7420 /*
7421 * Release the parent event, if this was the last
7422 * reference to it.
7423 */
7424 put_event(parent_event);
7425 }
7426
7427 static void
7428 __perf_event_exit_task(struct perf_event *child_event,
7429 struct perf_event_context *child_ctx,
7430 struct task_struct *child)
7431 {
7432 perf_remove_from_context(child_event, true);
7433
7434 /*
7435 * It can happen that the parent exits first, and has events
7436 * that are still around due to the child reference. These
7437 * events need to be zapped.
7438 */
7439 if (child_event->parent) {
7440 sync_child_event(child_event, child);
7441 free_event(child_event);
7442 }
7443 }
7444
7445 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
7446 {
7447 struct perf_event *child_event, *next;
7448 struct perf_event_context *child_ctx;
7449 unsigned long flags;
7450
7451 if (likely(!child->perf_event_ctxp[ctxn])) {
7452 perf_event_task(child, NULL, 0);
7453 return;
7454 }
7455
7456 local_irq_save(flags);
7457 /*
7458 * We can't reschedule here because interrupts are disabled,
7459 * and either child is current or it is a task that can't be
7460 * scheduled, so we are now safe from rescheduling changing
7461 * our context.
7462 */
7463 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
7464
7465 /*
7466 * Take the context lock here so that if find_get_context is
7467 * reading child->perf_event_ctxp, we wait until it has
7468 * incremented the context's refcount before we do put_ctx below.
7469 */
7470 raw_spin_lock(&child_ctx->lock);
7471 task_ctx_sched_out(child_ctx);
7472 child->perf_event_ctxp[ctxn] = NULL;
7473 /*
7474 * If this context is a clone; unclone it so it can't get
7475 * swapped to another process while we're removing all
7476 * the events from it.
7477 */
7478 unclone_ctx(child_ctx);
7479 update_context_time(child_ctx);
7480 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
7481
7482 /*
7483 * Report the task dead after unscheduling the events so that we
7484 * won't get any samples after PERF_RECORD_EXIT. We can however still
7485 * get a few PERF_RECORD_READ events.
7486 */
7487 perf_event_task(child, child_ctx, 0);
7488
7489 /*
7490 * We can recurse on the same lock type through:
7491 *
7492 * __perf_event_exit_task()
7493 * sync_child_event()
7494 * put_event()
7495 * mutex_lock(&ctx->mutex)
7496 *
7497 * But since its the parent context it won't be the same instance.
7498 */
7499 mutex_lock(&child_ctx->mutex);
7500
7501 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
7502 __perf_event_exit_task(child_event, child_ctx, child);
7503
7504 mutex_unlock(&child_ctx->mutex);
7505
7506 put_ctx(child_ctx);
7507 }
7508
7509 /*
7510 * When a child task exits, feed back event values to parent events.
7511 */
7512 void perf_event_exit_task(struct task_struct *child)
7513 {
7514 struct perf_event *event, *tmp;
7515 int ctxn;
7516
7517 mutex_lock(&child->perf_event_mutex);
7518 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
7519 owner_entry) {
7520 list_del_init(&event->owner_entry);
7521
7522 /*
7523 * Ensure the list deletion is visible before we clear
7524 * the owner, closes a race against perf_release() where
7525 * we need to serialize on the owner->perf_event_mutex.
7526 */
7527 smp_wmb();
7528 event->owner = NULL;
7529 }
7530 mutex_unlock(&child->perf_event_mutex);
7531
7532 for_each_task_context_nr(ctxn)
7533 perf_event_exit_task_context(child, ctxn);
7534 }
7535
7536 static void perf_free_event(struct perf_event *event,
7537 struct perf_event_context *ctx)
7538 {
7539 struct perf_event *parent = event->parent;
7540
7541 if (WARN_ON_ONCE(!parent))
7542 return;
7543
7544 mutex_lock(&parent->child_mutex);
7545 list_del_init(&event->child_list);
7546 mutex_unlock(&parent->child_mutex);
7547
7548 put_event(parent);
7549
7550 perf_group_detach(event);
7551 list_del_event(event, ctx);
7552 free_event(event);
7553 }
7554
7555 /*
7556 * free an unexposed, unused context as created by inheritance by
7557 * perf_event_init_task below, used by fork() in case of fail.
7558 */
7559 void perf_event_free_task(struct task_struct *task)
7560 {
7561 struct perf_event_context *ctx;
7562 struct perf_event *event, *tmp;
7563 int ctxn;
7564
7565 for_each_task_context_nr(ctxn) {
7566 ctx = task->perf_event_ctxp[ctxn];
7567 if (!ctx)
7568 continue;
7569
7570 mutex_lock(&ctx->mutex);
7571 again:
7572 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
7573 group_entry)
7574 perf_free_event(event, ctx);
7575
7576 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
7577 group_entry)
7578 perf_free_event(event, ctx);
7579
7580 if (!list_empty(&ctx->pinned_groups) ||
7581 !list_empty(&ctx->flexible_groups))
7582 goto again;
7583
7584 mutex_unlock(&ctx->mutex);
7585
7586 put_ctx(ctx);
7587 }
7588 }
7589
7590 void perf_event_delayed_put(struct task_struct *task)
7591 {
7592 int ctxn;
7593
7594 for_each_task_context_nr(ctxn)
7595 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
7596 }
7597
7598 /*
7599 * inherit a event from parent task to child task:
7600 */
7601 static struct perf_event *
7602 inherit_event(struct perf_event *parent_event,
7603 struct task_struct *parent,
7604 struct perf_event_context *parent_ctx,
7605 struct task_struct *child,
7606 struct perf_event *group_leader,
7607 struct perf_event_context *child_ctx)
7608 {
7609 struct perf_event *child_event;
7610 unsigned long flags;
7611
7612 /*
7613 * Instead of creating recursive hierarchies of events,
7614 * we link inherited events back to the original parent,
7615 * which has a filp for sure, which we use as the reference
7616 * count:
7617 */
7618 if (parent_event->parent)
7619 parent_event = parent_event->parent;
7620
7621 child_event = perf_event_alloc(&parent_event->attr,
7622 parent_event->cpu,
7623 child,
7624 group_leader, parent_event,
7625 NULL, NULL);
7626 if (IS_ERR(child_event))
7627 return child_event;
7628
7629 if (!atomic_long_inc_not_zero(&parent_event->refcount)) {
7630 free_event(child_event);
7631 return NULL;
7632 }
7633
7634 get_ctx(child_ctx);
7635
7636 /*
7637 * Make the child state follow the state of the parent event,
7638 * not its attr.disabled bit. We hold the parent's mutex,
7639 * so we won't race with perf_event_{en, dis}able_family.
7640 */
7641 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
7642 child_event->state = PERF_EVENT_STATE_INACTIVE;
7643 else
7644 child_event->state = PERF_EVENT_STATE_OFF;
7645
7646 if (parent_event->attr.freq) {
7647 u64 sample_period = parent_event->hw.sample_period;
7648 struct hw_perf_event *hwc = &child_event->hw;
7649
7650 hwc->sample_period = sample_period;
7651 hwc->last_period = sample_period;
7652
7653 local64_set(&hwc->period_left, sample_period);
7654 }
7655
7656 child_event->ctx = child_ctx;
7657 child_event->overflow_handler = parent_event->overflow_handler;
7658 child_event->overflow_handler_context
7659 = parent_event->overflow_handler_context;
7660
7661 /*
7662 * Precalculate sample_data sizes
7663 */
7664 perf_event__header_size(child_event);
7665 perf_event__id_header_size(child_event);
7666
7667 /*
7668 * Link it up in the child's context:
7669 */
7670 raw_spin_lock_irqsave(&child_ctx->lock, flags);
7671 add_event_to_ctx(child_event, child_ctx);
7672 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
7673
7674 /*
7675 * Link this into the parent event's child list
7676 */
7677 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
7678 mutex_lock(&parent_event->child_mutex);
7679 list_add_tail(&child_event->child_list, &parent_event->child_list);
7680 mutex_unlock(&parent_event->child_mutex);
7681
7682 return child_event;
7683 }
7684
7685 static int inherit_group(struct perf_event *parent_event,
7686 struct task_struct *parent,
7687 struct perf_event_context *parent_ctx,
7688 struct task_struct *child,
7689 struct perf_event_context *child_ctx)
7690 {
7691 struct perf_event *leader;
7692 struct perf_event *sub;
7693 struct perf_event *child_ctr;
7694
7695 leader = inherit_event(parent_event, parent, parent_ctx,
7696 child, NULL, child_ctx);
7697 if (IS_ERR(leader))
7698 return PTR_ERR(leader);
7699 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
7700 child_ctr = inherit_event(sub, parent, parent_ctx,
7701 child, leader, child_ctx);
7702 if (IS_ERR(child_ctr))
7703 return PTR_ERR(child_ctr);
7704 }
7705 return 0;
7706 }
7707
7708 static int
7709 inherit_task_group(struct perf_event *event, struct task_struct *parent,
7710 struct perf_event_context *parent_ctx,
7711 struct task_struct *child, int ctxn,
7712 int *inherited_all)
7713 {
7714 int ret;
7715 struct perf_event_context *child_ctx;
7716
7717 if (!event->attr.inherit) {
7718 *inherited_all = 0;
7719 return 0;
7720 }
7721
7722 child_ctx = child->perf_event_ctxp[ctxn];
7723 if (!child_ctx) {
7724 /*
7725 * This is executed from the parent task context, so
7726 * inherit events that have been marked for cloning.
7727 * First allocate and initialize a context for the
7728 * child.
7729 */
7730
7731 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
7732 if (!child_ctx)
7733 return -ENOMEM;
7734
7735 child->perf_event_ctxp[ctxn] = child_ctx;
7736 }
7737
7738 ret = inherit_group(event, parent, parent_ctx,
7739 child, child_ctx);
7740
7741 if (ret)
7742 *inherited_all = 0;
7743
7744 return ret;
7745 }
7746
7747 /*
7748 * Initialize the perf_event context in task_struct
7749 */
7750 int perf_event_init_context(struct task_struct *child, int ctxn)
7751 {
7752 struct perf_event_context *child_ctx, *parent_ctx;
7753 struct perf_event_context *cloned_ctx;
7754 struct perf_event *event;
7755 struct task_struct *parent = current;
7756 int inherited_all = 1;
7757 unsigned long flags;
7758 int ret = 0;
7759
7760 if (likely(!parent->perf_event_ctxp[ctxn]))
7761 return 0;
7762
7763 /*
7764 * If the parent's context is a clone, pin it so it won't get
7765 * swapped under us.
7766 */
7767 parent_ctx = perf_pin_task_context(parent, ctxn);
7768 if (!parent_ctx)
7769 return 0;
7770
7771 /*
7772 * No need to check if parent_ctx != NULL here; since we saw
7773 * it non-NULL earlier, the only reason for it to become NULL
7774 * is if we exit, and since we're currently in the middle of
7775 * a fork we can't be exiting at the same time.
7776 */
7777
7778 /*
7779 * Lock the parent list. No need to lock the child - not PID
7780 * hashed yet and not running, so nobody can access it.
7781 */
7782 mutex_lock(&parent_ctx->mutex);
7783
7784 /*
7785 * We dont have to disable NMIs - we are only looking at
7786 * the list, not manipulating it:
7787 */
7788 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
7789 ret = inherit_task_group(event, parent, parent_ctx,
7790 child, ctxn, &inherited_all);
7791 if (ret)
7792 break;
7793 }
7794
7795 /*
7796 * We can't hold ctx->lock when iterating the ->flexible_group list due
7797 * to allocations, but we need to prevent rotation because
7798 * rotate_ctx() will change the list from interrupt context.
7799 */
7800 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
7801 parent_ctx->rotate_disable = 1;
7802 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7803
7804 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
7805 ret = inherit_task_group(event, parent, parent_ctx,
7806 child, ctxn, &inherited_all);
7807 if (ret)
7808 break;
7809 }
7810
7811 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
7812 parent_ctx->rotate_disable = 0;
7813
7814 child_ctx = child->perf_event_ctxp[ctxn];
7815
7816 if (child_ctx && inherited_all) {
7817 /*
7818 * Mark the child context as a clone of the parent
7819 * context, or of whatever the parent is a clone of.
7820 *
7821 * Note that if the parent is a clone, the holding of
7822 * parent_ctx->lock avoids it from being uncloned.
7823 */
7824 cloned_ctx = parent_ctx->parent_ctx;
7825 if (cloned_ctx) {
7826 child_ctx->parent_ctx = cloned_ctx;
7827 child_ctx->parent_gen = parent_ctx->parent_gen;
7828 } else {
7829 child_ctx->parent_ctx = parent_ctx;
7830 child_ctx->parent_gen = parent_ctx->generation;
7831 }
7832 get_ctx(child_ctx->parent_ctx);
7833 }
7834
7835 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7836 mutex_unlock(&parent_ctx->mutex);
7837
7838 perf_unpin_context(parent_ctx);
7839 put_ctx(parent_ctx);
7840
7841 return ret;
7842 }
7843
7844 /*
7845 * Initialize the perf_event context in task_struct
7846 */
7847 int perf_event_init_task(struct task_struct *child)
7848 {
7849 int ctxn, ret;
7850
7851 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
7852 mutex_init(&child->perf_event_mutex);
7853 INIT_LIST_HEAD(&child->perf_event_list);
7854
7855 for_each_task_context_nr(ctxn) {
7856 ret = perf_event_init_context(child, ctxn);
7857 if (ret)
7858 return ret;
7859 }
7860
7861 return 0;
7862 }
7863
7864 static void __init perf_event_init_all_cpus(void)
7865 {
7866 struct swevent_htable *swhash;
7867 int cpu;
7868
7869 for_each_possible_cpu(cpu) {
7870 swhash = &per_cpu(swevent_htable, cpu);
7871 mutex_init(&swhash->hlist_mutex);
7872 INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
7873 }
7874 }
7875
7876 static void perf_event_init_cpu(int cpu)
7877 {
7878 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7879
7880 mutex_lock(&swhash->hlist_mutex);
7881 swhash->online = true;
7882 if (swhash->hlist_refcount > 0) {
7883 struct swevent_hlist *hlist;
7884
7885 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
7886 WARN_ON(!hlist);
7887 rcu_assign_pointer(swhash->swevent_hlist, hlist);
7888 }
7889 mutex_unlock(&swhash->hlist_mutex);
7890 }
7891
7892 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
7893 static void perf_pmu_rotate_stop(struct pmu *pmu)
7894 {
7895 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7896
7897 WARN_ON(!irqs_disabled());
7898
7899 list_del_init(&cpuctx->rotation_list);
7900 }
7901
7902 static void __perf_event_exit_context(void *__info)
7903 {
7904 struct remove_event re = { .detach_group = false };
7905 struct perf_event_context *ctx = __info;
7906
7907 perf_pmu_rotate_stop(ctx->pmu);
7908
7909 rcu_read_lock();
7910 list_for_each_entry_rcu(re.event, &ctx->event_list, event_entry)
7911 __perf_remove_from_context(&re);
7912 rcu_read_unlock();
7913 }
7914
7915 static void perf_event_exit_cpu_context(int cpu)
7916 {
7917 struct perf_event_context *ctx;
7918 struct pmu *pmu;
7919 int idx;
7920
7921 idx = srcu_read_lock(&pmus_srcu);
7922 list_for_each_entry_rcu(pmu, &pmus, entry) {
7923 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
7924
7925 mutex_lock(&ctx->mutex);
7926 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
7927 mutex_unlock(&ctx->mutex);
7928 }
7929 srcu_read_unlock(&pmus_srcu, idx);
7930 }
7931
7932 static void perf_event_exit_cpu(int cpu)
7933 {
7934 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7935
7936 perf_event_exit_cpu_context(cpu);
7937
7938 mutex_lock(&swhash->hlist_mutex);
7939 swhash->online = false;
7940 swevent_hlist_release(swhash);
7941 mutex_unlock(&swhash->hlist_mutex);
7942 }
7943 #else
7944 static inline void perf_event_exit_cpu(int cpu) { }
7945 #endif
7946
7947 static int
7948 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
7949 {
7950 int cpu;
7951
7952 for_each_online_cpu(cpu)
7953 perf_event_exit_cpu(cpu);
7954
7955 return NOTIFY_OK;
7956 }
7957
7958 /*
7959 * Run the perf reboot notifier at the very last possible moment so that
7960 * the generic watchdog code runs as long as possible.
7961 */
7962 static struct notifier_block perf_reboot_notifier = {
7963 .notifier_call = perf_reboot,
7964 .priority = INT_MIN,
7965 };
7966
7967 static int
7968 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
7969 {
7970 unsigned int cpu = (long)hcpu;
7971
7972 switch (action & ~CPU_TASKS_FROZEN) {
7973
7974 case CPU_UP_PREPARE:
7975 case CPU_DOWN_FAILED:
7976 perf_event_init_cpu(cpu);
7977 break;
7978
7979 case CPU_UP_CANCELED:
7980 case CPU_DOWN_PREPARE:
7981 perf_event_exit_cpu(cpu);
7982 break;
7983 default:
7984 break;
7985 }
7986
7987 return NOTIFY_OK;
7988 }
7989
7990 void __init perf_event_init(void)
7991 {
7992 int ret;
7993
7994 idr_init(&pmu_idr);
7995
7996 perf_event_init_all_cpus();
7997 init_srcu_struct(&pmus_srcu);
7998 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
7999 perf_pmu_register(&perf_cpu_clock, NULL, -1);
8000 perf_pmu_register(&perf_task_clock, NULL, -1);
8001 perf_tp_register();
8002 perf_cpu_notifier(perf_cpu_notify);
8003 register_reboot_notifier(&perf_reboot_notifier);
8004
8005 ret = init_hw_breakpoint();
8006 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
8007
8008 /* do not patch jump label more than once per second */
8009 jump_label_rate_limit(&perf_sched_events, HZ);
8010
8011 /*
8012 * Build time assertion that we keep the data_head at the intended
8013 * location. IOW, validation we got the __reserved[] size right.
8014 */
8015 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
8016 != 1024);
8017 }
8018
8019 static int __init perf_event_sysfs_init(void)
8020 {
8021 struct pmu *pmu;
8022 int ret;
8023
8024 mutex_lock(&pmus_lock);
8025
8026 ret = bus_register(&pmu_bus);
8027 if (ret)
8028 goto unlock;
8029
8030 list_for_each_entry(pmu, &pmus, entry) {
8031 if (!pmu->name || pmu->type < 0)
8032 continue;
8033
8034 ret = pmu_dev_alloc(pmu);
8035 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
8036 }
8037 pmu_bus_running = 1;
8038 ret = 0;
8039
8040 unlock:
8041 mutex_unlock(&pmus_lock);
8042
8043 return ret;
8044 }
8045 device_initcall(perf_event_sysfs_init);
8046
8047 #ifdef CONFIG_CGROUP_PERF
8048 static struct cgroup_subsys_state *
8049 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8050 {
8051 struct perf_cgroup *jc;
8052
8053 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
8054 if (!jc)
8055 return ERR_PTR(-ENOMEM);
8056
8057 jc->info = alloc_percpu(struct perf_cgroup_info);
8058 if (!jc->info) {
8059 kfree(jc);
8060 return ERR_PTR(-ENOMEM);
8061 }
8062
8063 return &jc->css;
8064 }
8065
8066 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
8067 {
8068 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
8069
8070 free_percpu(jc->info);
8071 kfree(jc);
8072 }
8073
8074 static int __perf_cgroup_move(void *info)
8075 {
8076 struct task_struct *task = info;
8077 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
8078 return 0;
8079 }
8080
8081 static void perf_cgroup_attach(struct cgroup_subsys_state *css,
8082 struct cgroup_taskset *tset)
8083 {
8084 struct task_struct *task;
8085
8086 cgroup_taskset_for_each(task, tset)
8087 task_function_call(task, __perf_cgroup_move, task);
8088 }
8089
8090 static void perf_cgroup_exit(struct cgroup_subsys_state *css,
8091 struct cgroup_subsys_state *old_css,
8092 struct task_struct *task)
8093 {
8094 /*
8095 * cgroup_exit() is called in the copy_process() failure path.
8096 * Ignore this case since the task hasn't ran yet, this avoids
8097 * trying to poke a half freed task state from generic code.
8098 */
8099 if (!(task->flags & PF_EXITING))
8100 return;
8101
8102 task_function_call(task, __perf_cgroup_move, task);
8103 }
8104
8105 struct cgroup_subsys perf_event_cgrp_subsys = {
8106 .css_alloc = perf_cgroup_css_alloc,
8107 .css_free = perf_cgroup_css_free,
8108 .exit = perf_cgroup_exit,
8109 .attach = perf_cgroup_attach,
8110 };
8111 #endif /* CONFIG_CGROUP_PERF */