]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - kernel/events/core.c
locking/barriers: Convert users of lockless_dereference() to READ_ONCE()
[mirror_ubuntu-jammy-kernel.git] / kernel / events / core.c
1 /*
2 * Performance events core code:
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53
54 #include "internal.h"
55
56 #include <asm/irq_regs.h>
57
58 typedef int (*remote_function_f)(void *);
59
60 struct remote_function_call {
61 struct task_struct *p;
62 remote_function_f func;
63 void *info;
64 int ret;
65 };
66
67 static void remote_function(void *data)
68 {
69 struct remote_function_call *tfc = data;
70 struct task_struct *p = tfc->p;
71
72 if (p) {
73 /* -EAGAIN */
74 if (task_cpu(p) != smp_processor_id())
75 return;
76
77 /*
78 * Now that we're on right CPU with IRQs disabled, we can test
79 * if we hit the right task without races.
80 */
81
82 tfc->ret = -ESRCH; /* No such (running) process */
83 if (p != current)
84 return;
85 }
86
87 tfc->ret = tfc->func(tfc->info);
88 }
89
90 /**
91 * task_function_call - call a function on the cpu on which a task runs
92 * @p: the task to evaluate
93 * @func: the function to be called
94 * @info: the function call argument
95 *
96 * Calls the function @func when the task is currently running. This might
97 * be on the current CPU, which just calls the function directly
98 *
99 * returns: @func return value, or
100 * -ESRCH - when the process isn't running
101 * -EAGAIN - when the process moved away
102 */
103 static int
104 task_function_call(struct task_struct *p, remote_function_f func, void *info)
105 {
106 struct remote_function_call data = {
107 .p = p,
108 .func = func,
109 .info = info,
110 .ret = -EAGAIN,
111 };
112 int ret;
113
114 do {
115 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
116 if (!ret)
117 ret = data.ret;
118 } while (ret == -EAGAIN);
119
120 return ret;
121 }
122
123 /**
124 * cpu_function_call - call a function on the cpu
125 * @func: the function to be called
126 * @info: the function call argument
127 *
128 * Calls the function @func on the remote cpu.
129 *
130 * returns: @func return value or -ENXIO when the cpu is offline
131 */
132 static int cpu_function_call(int cpu, remote_function_f func, void *info)
133 {
134 struct remote_function_call data = {
135 .p = NULL,
136 .func = func,
137 .info = info,
138 .ret = -ENXIO, /* No such CPU */
139 };
140
141 smp_call_function_single(cpu, remote_function, &data, 1);
142
143 return data.ret;
144 }
145
146 static inline struct perf_cpu_context *
147 __get_cpu_context(struct perf_event_context *ctx)
148 {
149 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
150 }
151
152 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
153 struct perf_event_context *ctx)
154 {
155 raw_spin_lock(&cpuctx->ctx.lock);
156 if (ctx)
157 raw_spin_lock(&ctx->lock);
158 }
159
160 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
161 struct perf_event_context *ctx)
162 {
163 if (ctx)
164 raw_spin_unlock(&ctx->lock);
165 raw_spin_unlock(&cpuctx->ctx.lock);
166 }
167
168 #define TASK_TOMBSTONE ((void *)-1L)
169
170 static bool is_kernel_event(struct perf_event *event)
171 {
172 return READ_ONCE(event->owner) == TASK_TOMBSTONE;
173 }
174
175 /*
176 * On task ctx scheduling...
177 *
178 * When !ctx->nr_events a task context will not be scheduled. This means
179 * we can disable the scheduler hooks (for performance) without leaving
180 * pending task ctx state.
181 *
182 * This however results in two special cases:
183 *
184 * - removing the last event from a task ctx; this is relatively straight
185 * forward and is done in __perf_remove_from_context.
186 *
187 * - adding the first event to a task ctx; this is tricky because we cannot
188 * rely on ctx->is_active and therefore cannot use event_function_call().
189 * See perf_install_in_context().
190 *
191 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
192 */
193
194 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
195 struct perf_event_context *, void *);
196
197 struct event_function_struct {
198 struct perf_event *event;
199 event_f func;
200 void *data;
201 };
202
203 static int event_function(void *info)
204 {
205 struct event_function_struct *efs = info;
206 struct perf_event *event = efs->event;
207 struct perf_event_context *ctx = event->ctx;
208 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
209 struct perf_event_context *task_ctx = cpuctx->task_ctx;
210 int ret = 0;
211
212 WARN_ON_ONCE(!irqs_disabled());
213
214 perf_ctx_lock(cpuctx, task_ctx);
215 /*
216 * Since we do the IPI call without holding ctx->lock things can have
217 * changed, double check we hit the task we set out to hit.
218 */
219 if (ctx->task) {
220 if (ctx->task != current) {
221 ret = -ESRCH;
222 goto unlock;
223 }
224
225 /*
226 * We only use event_function_call() on established contexts,
227 * and event_function() is only ever called when active (or
228 * rather, we'll have bailed in task_function_call() or the
229 * above ctx->task != current test), therefore we must have
230 * ctx->is_active here.
231 */
232 WARN_ON_ONCE(!ctx->is_active);
233 /*
234 * And since we have ctx->is_active, cpuctx->task_ctx must
235 * match.
236 */
237 WARN_ON_ONCE(task_ctx != ctx);
238 } else {
239 WARN_ON_ONCE(&cpuctx->ctx != ctx);
240 }
241
242 efs->func(event, cpuctx, ctx, efs->data);
243 unlock:
244 perf_ctx_unlock(cpuctx, task_ctx);
245
246 return ret;
247 }
248
249 static void event_function_call(struct perf_event *event, event_f func, void *data)
250 {
251 struct perf_event_context *ctx = event->ctx;
252 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
253 struct event_function_struct efs = {
254 .event = event,
255 .func = func,
256 .data = data,
257 };
258
259 if (!event->parent) {
260 /*
261 * If this is a !child event, we must hold ctx::mutex to
262 * stabilize the the event->ctx relation. See
263 * perf_event_ctx_lock().
264 */
265 lockdep_assert_held(&ctx->mutex);
266 }
267
268 if (!task) {
269 cpu_function_call(event->cpu, event_function, &efs);
270 return;
271 }
272
273 if (task == TASK_TOMBSTONE)
274 return;
275
276 again:
277 if (!task_function_call(task, event_function, &efs))
278 return;
279
280 raw_spin_lock_irq(&ctx->lock);
281 /*
282 * Reload the task pointer, it might have been changed by
283 * a concurrent perf_event_context_sched_out().
284 */
285 task = ctx->task;
286 if (task == TASK_TOMBSTONE) {
287 raw_spin_unlock_irq(&ctx->lock);
288 return;
289 }
290 if (ctx->is_active) {
291 raw_spin_unlock_irq(&ctx->lock);
292 goto again;
293 }
294 func(event, NULL, ctx, data);
295 raw_spin_unlock_irq(&ctx->lock);
296 }
297
298 /*
299 * Similar to event_function_call() + event_function(), but hard assumes IRQs
300 * are already disabled and we're on the right CPU.
301 */
302 static void event_function_local(struct perf_event *event, event_f func, void *data)
303 {
304 struct perf_event_context *ctx = event->ctx;
305 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
306 struct task_struct *task = READ_ONCE(ctx->task);
307 struct perf_event_context *task_ctx = NULL;
308
309 WARN_ON_ONCE(!irqs_disabled());
310
311 if (task) {
312 if (task == TASK_TOMBSTONE)
313 return;
314
315 task_ctx = ctx;
316 }
317
318 perf_ctx_lock(cpuctx, task_ctx);
319
320 task = ctx->task;
321 if (task == TASK_TOMBSTONE)
322 goto unlock;
323
324 if (task) {
325 /*
326 * We must be either inactive or active and the right task,
327 * otherwise we're screwed, since we cannot IPI to somewhere
328 * else.
329 */
330 if (ctx->is_active) {
331 if (WARN_ON_ONCE(task != current))
332 goto unlock;
333
334 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
335 goto unlock;
336 }
337 } else {
338 WARN_ON_ONCE(&cpuctx->ctx != ctx);
339 }
340
341 func(event, cpuctx, ctx, data);
342 unlock:
343 perf_ctx_unlock(cpuctx, task_ctx);
344 }
345
346 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
347 PERF_FLAG_FD_OUTPUT |\
348 PERF_FLAG_PID_CGROUP |\
349 PERF_FLAG_FD_CLOEXEC)
350
351 /*
352 * branch priv levels that need permission checks
353 */
354 #define PERF_SAMPLE_BRANCH_PERM_PLM \
355 (PERF_SAMPLE_BRANCH_KERNEL |\
356 PERF_SAMPLE_BRANCH_HV)
357
358 enum event_type_t {
359 EVENT_FLEXIBLE = 0x1,
360 EVENT_PINNED = 0x2,
361 EVENT_TIME = 0x4,
362 /* see ctx_resched() for details */
363 EVENT_CPU = 0x8,
364 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
365 };
366
367 /*
368 * perf_sched_events : >0 events exist
369 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
370 */
371
372 static void perf_sched_delayed(struct work_struct *work);
373 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
374 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
375 static DEFINE_MUTEX(perf_sched_mutex);
376 static atomic_t perf_sched_count;
377
378 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
379 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
380 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
381
382 static atomic_t nr_mmap_events __read_mostly;
383 static atomic_t nr_comm_events __read_mostly;
384 static atomic_t nr_namespaces_events __read_mostly;
385 static atomic_t nr_task_events __read_mostly;
386 static atomic_t nr_freq_events __read_mostly;
387 static atomic_t nr_switch_events __read_mostly;
388
389 static LIST_HEAD(pmus);
390 static DEFINE_MUTEX(pmus_lock);
391 static struct srcu_struct pmus_srcu;
392 static cpumask_var_t perf_online_mask;
393
394 /*
395 * perf event paranoia level:
396 * -1 - not paranoid at all
397 * 0 - disallow raw tracepoint access for unpriv
398 * 1 - disallow cpu events for unpriv
399 * 2 - disallow kernel profiling for unpriv
400 */
401 int sysctl_perf_event_paranoid __read_mostly = 2;
402
403 /* Minimum for 512 kiB + 1 user control page */
404 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
405
406 /*
407 * max perf event sample rate
408 */
409 #define DEFAULT_MAX_SAMPLE_RATE 100000
410 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
411 #define DEFAULT_CPU_TIME_MAX_PERCENT 25
412
413 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
414
415 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
416 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
417
418 static int perf_sample_allowed_ns __read_mostly =
419 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
420
421 static void update_perf_cpu_limits(void)
422 {
423 u64 tmp = perf_sample_period_ns;
424
425 tmp *= sysctl_perf_cpu_time_max_percent;
426 tmp = div_u64(tmp, 100);
427 if (!tmp)
428 tmp = 1;
429
430 WRITE_ONCE(perf_sample_allowed_ns, tmp);
431 }
432
433 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
434
435 int perf_proc_update_handler(struct ctl_table *table, int write,
436 void __user *buffer, size_t *lenp,
437 loff_t *ppos)
438 {
439 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
440
441 if (ret || !write)
442 return ret;
443
444 /*
445 * If throttling is disabled don't allow the write:
446 */
447 if (sysctl_perf_cpu_time_max_percent == 100 ||
448 sysctl_perf_cpu_time_max_percent == 0)
449 return -EINVAL;
450
451 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
452 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
453 update_perf_cpu_limits();
454
455 return 0;
456 }
457
458 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
459
460 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
461 void __user *buffer, size_t *lenp,
462 loff_t *ppos)
463 {
464 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
465
466 if (ret || !write)
467 return ret;
468
469 if (sysctl_perf_cpu_time_max_percent == 100 ||
470 sysctl_perf_cpu_time_max_percent == 0) {
471 printk(KERN_WARNING
472 "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
473 WRITE_ONCE(perf_sample_allowed_ns, 0);
474 } else {
475 update_perf_cpu_limits();
476 }
477
478 return 0;
479 }
480
481 /*
482 * perf samples are done in some very critical code paths (NMIs).
483 * If they take too much CPU time, the system can lock up and not
484 * get any real work done. This will drop the sample rate when
485 * we detect that events are taking too long.
486 */
487 #define NR_ACCUMULATED_SAMPLES 128
488 static DEFINE_PER_CPU(u64, running_sample_length);
489
490 static u64 __report_avg;
491 static u64 __report_allowed;
492
493 static void perf_duration_warn(struct irq_work *w)
494 {
495 printk_ratelimited(KERN_INFO
496 "perf: interrupt took too long (%lld > %lld), lowering "
497 "kernel.perf_event_max_sample_rate to %d\n",
498 __report_avg, __report_allowed,
499 sysctl_perf_event_sample_rate);
500 }
501
502 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
503
504 void perf_sample_event_took(u64 sample_len_ns)
505 {
506 u64 max_len = READ_ONCE(perf_sample_allowed_ns);
507 u64 running_len;
508 u64 avg_len;
509 u32 max;
510
511 if (max_len == 0)
512 return;
513
514 /* Decay the counter by 1 average sample. */
515 running_len = __this_cpu_read(running_sample_length);
516 running_len -= running_len/NR_ACCUMULATED_SAMPLES;
517 running_len += sample_len_ns;
518 __this_cpu_write(running_sample_length, running_len);
519
520 /*
521 * Note: this will be biased artifically low until we have
522 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
523 * from having to maintain a count.
524 */
525 avg_len = running_len/NR_ACCUMULATED_SAMPLES;
526 if (avg_len <= max_len)
527 return;
528
529 __report_avg = avg_len;
530 __report_allowed = max_len;
531
532 /*
533 * Compute a throttle threshold 25% below the current duration.
534 */
535 avg_len += avg_len / 4;
536 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
537 if (avg_len < max)
538 max /= (u32)avg_len;
539 else
540 max = 1;
541
542 WRITE_ONCE(perf_sample_allowed_ns, avg_len);
543 WRITE_ONCE(max_samples_per_tick, max);
544
545 sysctl_perf_event_sample_rate = max * HZ;
546 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
547
548 if (!irq_work_queue(&perf_duration_work)) {
549 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
550 "kernel.perf_event_max_sample_rate to %d\n",
551 __report_avg, __report_allowed,
552 sysctl_perf_event_sample_rate);
553 }
554 }
555
556 static atomic64_t perf_event_id;
557
558 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
559 enum event_type_t event_type);
560
561 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
562 enum event_type_t event_type,
563 struct task_struct *task);
564
565 static void update_context_time(struct perf_event_context *ctx);
566 static u64 perf_event_time(struct perf_event *event);
567
568 void __weak perf_event_print_debug(void) { }
569
570 extern __weak const char *perf_pmu_name(void)
571 {
572 return "pmu";
573 }
574
575 static inline u64 perf_clock(void)
576 {
577 return local_clock();
578 }
579
580 static inline u64 perf_event_clock(struct perf_event *event)
581 {
582 return event->clock();
583 }
584
585 #ifdef CONFIG_CGROUP_PERF
586
587 static inline bool
588 perf_cgroup_match(struct perf_event *event)
589 {
590 struct perf_event_context *ctx = event->ctx;
591 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
592
593 /* @event doesn't care about cgroup */
594 if (!event->cgrp)
595 return true;
596
597 /* wants specific cgroup scope but @cpuctx isn't associated with any */
598 if (!cpuctx->cgrp)
599 return false;
600
601 /*
602 * Cgroup scoping is recursive. An event enabled for a cgroup is
603 * also enabled for all its descendant cgroups. If @cpuctx's
604 * cgroup is a descendant of @event's (the test covers identity
605 * case), it's a match.
606 */
607 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
608 event->cgrp->css.cgroup);
609 }
610
611 static inline void perf_detach_cgroup(struct perf_event *event)
612 {
613 css_put(&event->cgrp->css);
614 event->cgrp = NULL;
615 }
616
617 static inline int is_cgroup_event(struct perf_event *event)
618 {
619 return event->cgrp != NULL;
620 }
621
622 static inline u64 perf_cgroup_event_time(struct perf_event *event)
623 {
624 struct perf_cgroup_info *t;
625
626 t = per_cpu_ptr(event->cgrp->info, event->cpu);
627 return t->time;
628 }
629
630 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
631 {
632 struct perf_cgroup_info *info;
633 u64 now;
634
635 now = perf_clock();
636
637 info = this_cpu_ptr(cgrp->info);
638
639 info->time += now - info->timestamp;
640 info->timestamp = now;
641 }
642
643 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
644 {
645 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
646 if (cgrp_out)
647 __update_cgrp_time(cgrp_out);
648 }
649
650 static inline void update_cgrp_time_from_event(struct perf_event *event)
651 {
652 struct perf_cgroup *cgrp;
653
654 /*
655 * ensure we access cgroup data only when needed and
656 * when we know the cgroup is pinned (css_get)
657 */
658 if (!is_cgroup_event(event))
659 return;
660
661 cgrp = perf_cgroup_from_task(current, event->ctx);
662 /*
663 * Do not update time when cgroup is not active
664 */
665 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
666 __update_cgrp_time(event->cgrp);
667 }
668
669 static inline void
670 perf_cgroup_set_timestamp(struct task_struct *task,
671 struct perf_event_context *ctx)
672 {
673 struct perf_cgroup *cgrp;
674 struct perf_cgroup_info *info;
675
676 /*
677 * ctx->lock held by caller
678 * ensure we do not access cgroup data
679 * unless we have the cgroup pinned (css_get)
680 */
681 if (!task || !ctx->nr_cgroups)
682 return;
683
684 cgrp = perf_cgroup_from_task(task, ctx);
685 info = this_cpu_ptr(cgrp->info);
686 info->timestamp = ctx->timestamp;
687 }
688
689 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
690
691 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
692 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
693
694 /*
695 * reschedule events based on the cgroup constraint of task.
696 *
697 * mode SWOUT : schedule out everything
698 * mode SWIN : schedule in based on cgroup for next
699 */
700 static void perf_cgroup_switch(struct task_struct *task, int mode)
701 {
702 struct perf_cpu_context *cpuctx;
703 struct list_head *list;
704 unsigned long flags;
705
706 /*
707 * Disable interrupts and preemption to avoid this CPU's
708 * cgrp_cpuctx_entry to change under us.
709 */
710 local_irq_save(flags);
711
712 list = this_cpu_ptr(&cgrp_cpuctx_list);
713 list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
714 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
715
716 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
717 perf_pmu_disable(cpuctx->ctx.pmu);
718
719 if (mode & PERF_CGROUP_SWOUT) {
720 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
721 /*
722 * must not be done before ctxswout due
723 * to event_filter_match() in event_sched_out()
724 */
725 cpuctx->cgrp = NULL;
726 }
727
728 if (mode & PERF_CGROUP_SWIN) {
729 WARN_ON_ONCE(cpuctx->cgrp);
730 /*
731 * set cgrp before ctxsw in to allow
732 * event_filter_match() to not have to pass
733 * task around
734 * we pass the cpuctx->ctx to perf_cgroup_from_task()
735 * because cgorup events are only per-cpu
736 */
737 cpuctx->cgrp = perf_cgroup_from_task(task,
738 &cpuctx->ctx);
739 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
740 }
741 perf_pmu_enable(cpuctx->ctx.pmu);
742 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
743 }
744
745 local_irq_restore(flags);
746 }
747
748 static inline void perf_cgroup_sched_out(struct task_struct *task,
749 struct task_struct *next)
750 {
751 struct perf_cgroup *cgrp1;
752 struct perf_cgroup *cgrp2 = NULL;
753
754 rcu_read_lock();
755 /*
756 * we come here when we know perf_cgroup_events > 0
757 * we do not need to pass the ctx here because we know
758 * we are holding the rcu lock
759 */
760 cgrp1 = perf_cgroup_from_task(task, NULL);
761 cgrp2 = perf_cgroup_from_task(next, NULL);
762
763 /*
764 * only schedule out current cgroup events if we know
765 * that we are switching to a different cgroup. Otherwise,
766 * do no touch the cgroup events.
767 */
768 if (cgrp1 != cgrp2)
769 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
770
771 rcu_read_unlock();
772 }
773
774 static inline void perf_cgroup_sched_in(struct task_struct *prev,
775 struct task_struct *task)
776 {
777 struct perf_cgroup *cgrp1;
778 struct perf_cgroup *cgrp2 = NULL;
779
780 rcu_read_lock();
781 /*
782 * we come here when we know perf_cgroup_events > 0
783 * we do not need to pass the ctx here because we know
784 * we are holding the rcu lock
785 */
786 cgrp1 = perf_cgroup_from_task(task, NULL);
787 cgrp2 = perf_cgroup_from_task(prev, NULL);
788
789 /*
790 * only need to schedule in cgroup events if we are changing
791 * cgroup during ctxsw. Cgroup events were not scheduled
792 * out of ctxsw out if that was not the case.
793 */
794 if (cgrp1 != cgrp2)
795 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
796
797 rcu_read_unlock();
798 }
799
800 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
801 struct perf_event_attr *attr,
802 struct perf_event *group_leader)
803 {
804 struct perf_cgroup *cgrp;
805 struct cgroup_subsys_state *css;
806 struct fd f = fdget(fd);
807 int ret = 0;
808
809 if (!f.file)
810 return -EBADF;
811
812 css = css_tryget_online_from_dir(f.file->f_path.dentry,
813 &perf_event_cgrp_subsys);
814 if (IS_ERR(css)) {
815 ret = PTR_ERR(css);
816 goto out;
817 }
818
819 cgrp = container_of(css, struct perf_cgroup, css);
820 event->cgrp = cgrp;
821
822 /*
823 * all events in a group must monitor
824 * the same cgroup because a task belongs
825 * to only one perf cgroup at a time
826 */
827 if (group_leader && group_leader->cgrp != cgrp) {
828 perf_detach_cgroup(event);
829 ret = -EINVAL;
830 }
831 out:
832 fdput(f);
833 return ret;
834 }
835
836 static inline void
837 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
838 {
839 struct perf_cgroup_info *t;
840 t = per_cpu_ptr(event->cgrp->info, event->cpu);
841 event->shadow_ctx_time = now - t->timestamp;
842 }
843
844 static inline void
845 perf_cgroup_defer_enabled(struct perf_event *event)
846 {
847 /*
848 * when the current task's perf cgroup does not match
849 * the event's, we need to remember to call the
850 * perf_mark_enable() function the first time a task with
851 * a matching perf cgroup is scheduled in.
852 */
853 if (is_cgroup_event(event) && !perf_cgroup_match(event))
854 event->cgrp_defer_enabled = 1;
855 }
856
857 static inline void
858 perf_cgroup_mark_enabled(struct perf_event *event,
859 struct perf_event_context *ctx)
860 {
861 struct perf_event *sub;
862 u64 tstamp = perf_event_time(event);
863
864 if (!event->cgrp_defer_enabled)
865 return;
866
867 event->cgrp_defer_enabled = 0;
868
869 event->tstamp_enabled = tstamp - event->total_time_enabled;
870 list_for_each_entry(sub, &event->sibling_list, group_entry) {
871 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
872 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
873 sub->cgrp_defer_enabled = 0;
874 }
875 }
876 }
877
878 /*
879 * Update cpuctx->cgrp so that it is set when first cgroup event is added and
880 * cleared when last cgroup event is removed.
881 */
882 static inline void
883 list_update_cgroup_event(struct perf_event *event,
884 struct perf_event_context *ctx, bool add)
885 {
886 struct perf_cpu_context *cpuctx;
887 struct list_head *cpuctx_entry;
888
889 if (!is_cgroup_event(event))
890 return;
891
892 if (add && ctx->nr_cgroups++)
893 return;
894 else if (!add && --ctx->nr_cgroups)
895 return;
896 /*
897 * Because cgroup events are always per-cpu events,
898 * this will always be called from the right CPU.
899 */
900 cpuctx = __get_cpu_context(ctx);
901 cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
902 /* cpuctx->cgrp is NULL unless a cgroup event is active in this CPU .*/
903 if (add) {
904 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
905
906 list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list));
907 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
908 cpuctx->cgrp = cgrp;
909 } else {
910 list_del(cpuctx_entry);
911 cpuctx->cgrp = NULL;
912 }
913 }
914
915 #else /* !CONFIG_CGROUP_PERF */
916
917 static inline bool
918 perf_cgroup_match(struct perf_event *event)
919 {
920 return true;
921 }
922
923 static inline void perf_detach_cgroup(struct perf_event *event)
924 {}
925
926 static inline int is_cgroup_event(struct perf_event *event)
927 {
928 return 0;
929 }
930
931 static inline void update_cgrp_time_from_event(struct perf_event *event)
932 {
933 }
934
935 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
936 {
937 }
938
939 static inline void perf_cgroup_sched_out(struct task_struct *task,
940 struct task_struct *next)
941 {
942 }
943
944 static inline void perf_cgroup_sched_in(struct task_struct *prev,
945 struct task_struct *task)
946 {
947 }
948
949 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
950 struct perf_event_attr *attr,
951 struct perf_event *group_leader)
952 {
953 return -EINVAL;
954 }
955
956 static inline void
957 perf_cgroup_set_timestamp(struct task_struct *task,
958 struct perf_event_context *ctx)
959 {
960 }
961
962 void
963 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
964 {
965 }
966
967 static inline void
968 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
969 {
970 }
971
972 static inline u64 perf_cgroup_event_time(struct perf_event *event)
973 {
974 return 0;
975 }
976
977 static inline void
978 perf_cgroup_defer_enabled(struct perf_event *event)
979 {
980 }
981
982 static inline void
983 perf_cgroup_mark_enabled(struct perf_event *event,
984 struct perf_event_context *ctx)
985 {
986 }
987
988 static inline void
989 list_update_cgroup_event(struct perf_event *event,
990 struct perf_event_context *ctx, bool add)
991 {
992 }
993
994 #endif
995
996 /*
997 * set default to be dependent on timer tick just
998 * like original code
999 */
1000 #define PERF_CPU_HRTIMER (1000 / HZ)
1001 /*
1002 * function must be called with interrupts disabled
1003 */
1004 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1005 {
1006 struct perf_cpu_context *cpuctx;
1007 int rotations = 0;
1008
1009 WARN_ON(!irqs_disabled());
1010
1011 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1012 rotations = perf_rotate_context(cpuctx);
1013
1014 raw_spin_lock(&cpuctx->hrtimer_lock);
1015 if (rotations)
1016 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1017 else
1018 cpuctx->hrtimer_active = 0;
1019 raw_spin_unlock(&cpuctx->hrtimer_lock);
1020
1021 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1022 }
1023
1024 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1025 {
1026 struct hrtimer *timer = &cpuctx->hrtimer;
1027 struct pmu *pmu = cpuctx->ctx.pmu;
1028 u64 interval;
1029
1030 /* no multiplexing needed for SW PMU */
1031 if (pmu->task_ctx_nr == perf_sw_context)
1032 return;
1033
1034 /*
1035 * check default is sane, if not set then force to
1036 * default interval (1/tick)
1037 */
1038 interval = pmu->hrtimer_interval_ms;
1039 if (interval < 1)
1040 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1041
1042 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1043
1044 raw_spin_lock_init(&cpuctx->hrtimer_lock);
1045 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
1046 timer->function = perf_mux_hrtimer_handler;
1047 }
1048
1049 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1050 {
1051 struct hrtimer *timer = &cpuctx->hrtimer;
1052 struct pmu *pmu = cpuctx->ctx.pmu;
1053 unsigned long flags;
1054
1055 /* not for SW PMU */
1056 if (pmu->task_ctx_nr == perf_sw_context)
1057 return 0;
1058
1059 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1060 if (!cpuctx->hrtimer_active) {
1061 cpuctx->hrtimer_active = 1;
1062 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1063 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1064 }
1065 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1066
1067 return 0;
1068 }
1069
1070 void perf_pmu_disable(struct pmu *pmu)
1071 {
1072 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1073 if (!(*count)++)
1074 pmu->pmu_disable(pmu);
1075 }
1076
1077 void perf_pmu_enable(struct pmu *pmu)
1078 {
1079 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1080 if (!--(*count))
1081 pmu->pmu_enable(pmu);
1082 }
1083
1084 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1085
1086 /*
1087 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1088 * perf_event_task_tick() are fully serialized because they're strictly cpu
1089 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1090 * disabled, while perf_event_task_tick is called from IRQ context.
1091 */
1092 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1093 {
1094 struct list_head *head = this_cpu_ptr(&active_ctx_list);
1095
1096 WARN_ON(!irqs_disabled());
1097
1098 WARN_ON(!list_empty(&ctx->active_ctx_list));
1099
1100 list_add(&ctx->active_ctx_list, head);
1101 }
1102
1103 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1104 {
1105 WARN_ON(!irqs_disabled());
1106
1107 WARN_ON(list_empty(&ctx->active_ctx_list));
1108
1109 list_del_init(&ctx->active_ctx_list);
1110 }
1111
1112 static void get_ctx(struct perf_event_context *ctx)
1113 {
1114 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1115 }
1116
1117 static void free_ctx(struct rcu_head *head)
1118 {
1119 struct perf_event_context *ctx;
1120
1121 ctx = container_of(head, struct perf_event_context, rcu_head);
1122 kfree(ctx->task_ctx_data);
1123 kfree(ctx);
1124 }
1125
1126 static void put_ctx(struct perf_event_context *ctx)
1127 {
1128 if (atomic_dec_and_test(&ctx->refcount)) {
1129 if (ctx->parent_ctx)
1130 put_ctx(ctx->parent_ctx);
1131 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1132 put_task_struct(ctx->task);
1133 call_rcu(&ctx->rcu_head, free_ctx);
1134 }
1135 }
1136
1137 /*
1138 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1139 * perf_pmu_migrate_context() we need some magic.
1140 *
1141 * Those places that change perf_event::ctx will hold both
1142 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1143 *
1144 * Lock ordering is by mutex address. There are two other sites where
1145 * perf_event_context::mutex nests and those are:
1146 *
1147 * - perf_event_exit_task_context() [ child , 0 ]
1148 * perf_event_exit_event()
1149 * put_event() [ parent, 1 ]
1150 *
1151 * - perf_event_init_context() [ parent, 0 ]
1152 * inherit_task_group()
1153 * inherit_group()
1154 * inherit_event()
1155 * perf_event_alloc()
1156 * perf_init_event()
1157 * perf_try_init_event() [ child , 1 ]
1158 *
1159 * While it appears there is an obvious deadlock here -- the parent and child
1160 * nesting levels are inverted between the two. This is in fact safe because
1161 * life-time rules separate them. That is an exiting task cannot fork, and a
1162 * spawning task cannot (yet) exit.
1163 *
1164 * But remember that that these are parent<->child context relations, and
1165 * migration does not affect children, therefore these two orderings should not
1166 * interact.
1167 *
1168 * The change in perf_event::ctx does not affect children (as claimed above)
1169 * because the sys_perf_event_open() case will install a new event and break
1170 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1171 * concerned with cpuctx and that doesn't have children.
1172 *
1173 * The places that change perf_event::ctx will issue:
1174 *
1175 * perf_remove_from_context();
1176 * synchronize_rcu();
1177 * perf_install_in_context();
1178 *
1179 * to affect the change. The remove_from_context() + synchronize_rcu() should
1180 * quiesce the event, after which we can install it in the new location. This
1181 * means that only external vectors (perf_fops, prctl) can perturb the event
1182 * while in transit. Therefore all such accessors should also acquire
1183 * perf_event_context::mutex to serialize against this.
1184 *
1185 * However; because event->ctx can change while we're waiting to acquire
1186 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1187 * function.
1188 *
1189 * Lock order:
1190 * cred_guard_mutex
1191 * task_struct::perf_event_mutex
1192 * perf_event_context::mutex
1193 * perf_event::child_mutex;
1194 * perf_event_context::lock
1195 * perf_event::mmap_mutex
1196 * mmap_sem
1197 */
1198 static struct perf_event_context *
1199 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1200 {
1201 struct perf_event_context *ctx;
1202
1203 again:
1204 rcu_read_lock();
1205 ctx = ACCESS_ONCE(event->ctx);
1206 if (!atomic_inc_not_zero(&ctx->refcount)) {
1207 rcu_read_unlock();
1208 goto again;
1209 }
1210 rcu_read_unlock();
1211
1212 mutex_lock_nested(&ctx->mutex, nesting);
1213 if (event->ctx != ctx) {
1214 mutex_unlock(&ctx->mutex);
1215 put_ctx(ctx);
1216 goto again;
1217 }
1218
1219 return ctx;
1220 }
1221
1222 static inline struct perf_event_context *
1223 perf_event_ctx_lock(struct perf_event *event)
1224 {
1225 return perf_event_ctx_lock_nested(event, 0);
1226 }
1227
1228 static void perf_event_ctx_unlock(struct perf_event *event,
1229 struct perf_event_context *ctx)
1230 {
1231 mutex_unlock(&ctx->mutex);
1232 put_ctx(ctx);
1233 }
1234
1235 /*
1236 * This must be done under the ctx->lock, such as to serialize against
1237 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1238 * calling scheduler related locks and ctx->lock nests inside those.
1239 */
1240 static __must_check struct perf_event_context *
1241 unclone_ctx(struct perf_event_context *ctx)
1242 {
1243 struct perf_event_context *parent_ctx = ctx->parent_ctx;
1244
1245 lockdep_assert_held(&ctx->lock);
1246
1247 if (parent_ctx)
1248 ctx->parent_ctx = NULL;
1249 ctx->generation++;
1250
1251 return parent_ctx;
1252 }
1253
1254 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1255 enum pid_type type)
1256 {
1257 u32 nr;
1258 /*
1259 * only top level events have the pid namespace they were created in
1260 */
1261 if (event->parent)
1262 event = event->parent;
1263
1264 nr = __task_pid_nr_ns(p, type, event->ns);
1265 /* avoid -1 if it is idle thread or runs in another ns */
1266 if (!nr && !pid_alive(p))
1267 nr = -1;
1268 return nr;
1269 }
1270
1271 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1272 {
1273 return perf_event_pid_type(event, p, __PIDTYPE_TGID);
1274 }
1275
1276 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1277 {
1278 return perf_event_pid_type(event, p, PIDTYPE_PID);
1279 }
1280
1281 /*
1282 * If we inherit events we want to return the parent event id
1283 * to userspace.
1284 */
1285 static u64 primary_event_id(struct perf_event *event)
1286 {
1287 u64 id = event->id;
1288
1289 if (event->parent)
1290 id = event->parent->id;
1291
1292 return id;
1293 }
1294
1295 /*
1296 * Get the perf_event_context for a task and lock it.
1297 *
1298 * This has to cope with with the fact that until it is locked,
1299 * the context could get moved to another task.
1300 */
1301 static struct perf_event_context *
1302 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1303 {
1304 struct perf_event_context *ctx;
1305
1306 retry:
1307 /*
1308 * One of the few rules of preemptible RCU is that one cannot do
1309 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1310 * part of the read side critical section was irqs-enabled -- see
1311 * rcu_read_unlock_special().
1312 *
1313 * Since ctx->lock nests under rq->lock we must ensure the entire read
1314 * side critical section has interrupts disabled.
1315 */
1316 local_irq_save(*flags);
1317 rcu_read_lock();
1318 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1319 if (ctx) {
1320 /*
1321 * If this context is a clone of another, it might
1322 * get swapped for another underneath us by
1323 * perf_event_task_sched_out, though the
1324 * rcu_read_lock() protects us from any context
1325 * getting freed. Lock the context and check if it
1326 * got swapped before we could get the lock, and retry
1327 * if so. If we locked the right context, then it
1328 * can't get swapped on us any more.
1329 */
1330 raw_spin_lock(&ctx->lock);
1331 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1332 raw_spin_unlock(&ctx->lock);
1333 rcu_read_unlock();
1334 local_irq_restore(*flags);
1335 goto retry;
1336 }
1337
1338 if (ctx->task == TASK_TOMBSTONE ||
1339 !atomic_inc_not_zero(&ctx->refcount)) {
1340 raw_spin_unlock(&ctx->lock);
1341 ctx = NULL;
1342 } else {
1343 WARN_ON_ONCE(ctx->task != task);
1344 }
1345 }
1346 rcu_read_unlock();
1347 if (!ctx)
1348 local_irq_restore(*flags);
1349 return ctx;
1350 }
1351
1352 /*
1353 * Get the context for a task and increment its pin_count so it
1354 * can't get swapped to another task. This also increments its
1355 * reference count so that the context can't get freed.
1356 */
1357 static struct perf_event_context *
1358 perf_pin_task_context(struct task_struct *task, int ctxn)
1359 {
1360 struct perf_event_context *ctx;
1361 unsigned long flags;
1362
1363 ctx = perf_lock_task_context(task, ctxn, &flags);
1364 if (ctx) {
1365 ++ctx->pin_count;
1366 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1367 }
1368 return ctx;
1369 }
1370
1371 static void perf_unpin_context(struct perf_event_context *ctx)
1372 {
1373 unsigned long flags;
1374
1375 raw_spin_lock_irqsave(&ctx->lock, flags);
1376 --ctx->pin_count;
1377 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1378 }
1379
1380 /*
1381 * Update the record of the current time in a context.
1382 */
1383 static void update_context_time(struct perf_event_context *ctx)
1384 {
1385 u64 now = perf_clock();
1386
1387 ctx->time += now - ctx->timestamp;
1388 ctx->timestamp = now;
1389 }
1390
1391 static u64 perf_event_time(struct perf_event *event)
1392 {
1393 struct perf_event_context *ctx = event->ctx;
1394
1395 if (is_cgroup_event(event))
1396 return perf_cgroup_event_time(event);
1397
1398 return ctx ? ctx->time : 0;
1399 }
1400
1401 /*
1402 * Update the total_time_enabled and total_time_running fields for a event.
1403 */
1404 static void update_event_times(struct perf_event *event)
1405 {
1406 struct perf_event_context *ctx = event->ctx;
1407 u64 run_end;
1408
1409 lockdep_assert_held(&ctx->lock);
1410
1411 if (event->state < PERF_EVENT_STATE_INACTIVE ||
1412 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1413 return;
1414
1415 /*
1416 * in cgroup mode, time_enabled represents
1417 * the time the event was enabled AND active
1418 * tasks were in the monitored cgroup. This is
1419 * independent of the activity of the context as
1420 * there may be a mix of cgroup and non-cgroup events.
1421 *
1422 * That is why we treat cgroup events differently
1423 * here.
1424 */
1425 if (is_cgroup_event(event))
1426 run_end = perf_cgroup_event_time(event);
1427 else if (ctx->is_active)
1428 run_end = ctx->time;
1429 else
1430 run_end = event->tstamp_stopped;
1431
1432 event->total_time_enabled = run_end - event->tstamp_enabled;
1433
1434 if (event->state == PERF_EVENT_STATE_INACTIVE)
1435 run_end = event->tstamp_stopped;
1436 else
1437 run_end = perf_event_time(event);
1438
1439 event->total_time_running = run_end - event->tstamp_running;
1440
1441 }
1442
1443 /*
1444 * Update total_time_enabled and total_time_running for all events in a group.
1445 */
1446 static void update_group_times(struct perf_event *leader)
1447 {
1448 struct perf_event *event;
1449
1450 update_event_times(leader);
1451 list_for_each_entry(event, &leader->sibling_list, group_entry)
1452 update_event_times(event);
1453 }
1454
1455 static enum event_type_t get_event_type(struct perf_event *event)
1456 {
1457 struct perf_event_context *ctx = event->ctx;
1458 enum event_type_t event_type;
1459
1460 lockdep_assert_held(&ctx->lock);
1461
1462 /*
1463 * It's 'group type', really, because if our group leader is
1464 * pinned, so are we.
1465 */
1466 if (event->group_leader != event)
1467 event = event->group_leader;
1468
1469 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1470 if (!ctx->task)
1471 event_type |= EVENT_CPU;
1472
1473 return event_type;
1474 }
1475
1476 static struct list_head *
1477 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1478 {
1479 if (event->attr.pinned)
1480 return &ctx->pinned_groups;
1481 else
1482 return &ctx->flexible_groups;
1483 }
1484
1485 /*
1486 * Add a event from the lists for its context.
1487 * Must be called with ctx->mutex and ctx->lock held.
1488 */
1489 static void
1490 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1491 {
1492 lockdep_assert_held(&ctx->lock);
1493
1494 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1495 event->attach_state |= PERF_ATTACH_CONTEXT;
1496
1497 /*
1498 * If we're a stand alone event or group leader, we go to the context
1499 * list, group events are kept attached to the group so that
1500 * perf_group_detach can, at all times, locate all siblings.
1501 */
1502 if (event->group_leader == event) {
1503 struct list_head *list;
1504
1505 event->group_caps = event->event_caps;
1506
1507 list = ctx_group_list(event, ctx);
1508 list_add_tail(&event->group_entry, list);
1509 }
1510
1511 list_update_cgroup_event(event, ctx, true);
1512
1513 list_add_rcu(&event->event_entry, &ctx->event_list);
1514 ctx->nr_events++;
1515 if (event->attr.inherit_stat)
1516 ctx->nr_stat++;
1517
1518 ctx->generation++;
1519 }
1520
1521 /*
1522 * Initialize event state based on the perf_event_attr::disabled.
1523 */
1524 static inline void perf_event__state_init(struct perf_event *event)
1525 {
1526 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1527 PERF_EVENT_STATE_INACTIVE;
1528 }
1529
1530 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1531 {
1532 int entry = sizeof(u64); /* value */
1533 int size = 0;
1534 int nr = 1;
1535
1536 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1537 size += sizeof(u64);
1538
1539 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1540 size += sizeof(u64);
1541
1542 if (event->attr.read_format & PERF_FORMAT_ID)
1543 entry += sizeof(u64);
1544
1545 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1546 nr += nr_siblings;
1547 size += sizeof(u64);
1548 }
1549
1550 size += entry * nr;
1551 event->read_size = size;
1552 }
1553
1554 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1555 {
1556 struct perf_sample_data *data;
1557 u16 size = 0;
1558
1559 if (sample_type & PERF_SAMPLE_IP)
1560 size += sizeof(data->ip);
1561
1562 if (sample_type & PERF_SAMPLE_ADDR)
1563 size += sizeof(data->addr);
1564
1565 if (sample_type & PERF_SAMPLE_PERIOD)
1566 size += sizeof(data->period);
1567
1568 if (sample_type & PERF_SAMPLE_WEIGHT)
1569 size += sizeof(data->weight);
1570
1571 if (sample_type & PERF_SAMPLE_READ)
1572 size += event->read_size;
1573
1574 if (sample_type & PERF_SAMPLE_DATA_SRC)
1575 size += sizeof(data->data_src.val);
1576
1577 if (sample_type & PERF_SAMPLE_TRANSACTION)
1578 size += sizeof(data->txn);
1579
1580 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1581 size += sizeof(data->phys_addr);
1582
1583 event->header_size = size;
1584 }
1585
1586 /*
1587 * Called at perf_event creation and when events are attached/detached from a
1588 * group.
1589 */
1590 static void perf_event__header_size(struct perf_event *event)
1591 {
1592 __perf_event_read_size(event,
1593 event->group_leader->nr_siblings);
1594 __perf_event_header_size(event, event->attr.sample_type);
1595 }
1596
1597 static void perf_event__id_header_size(struct perf_event *event)
1598 {
1599 struct perf_sample_data *data;
1600 u64 sample_type = event->attr.sample_type;
1601 u16 size = 0;
1602
1603 if (sample_type & PERF_SAMPLE_TID)
1604 size += sizeof(data->tid_entry);
1605
1606 if (sample_type & PERF_SAMPLE_TIME)
1607 size += sizeof(data->time);
1608
1609 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1610 size += sizeof(data->id);
1611
1612 if (sample_type & PERF_SAMPLE_ID)
1613 size += sizeof(data->id);
1614
1615 if (sample_type & PERF_SAMPLE_STREAM_ID)
1616 size += sizeof(data->stream_id);
1617
1618 if (sample_type & PERF_SAMPLE_CPU)
1619 size += sizeof(data->cpu_entry);
1620
1621 event->id_header_size = size;
1622 }
1623
1624 static bool perf_event_validate_size(struct perf_event *event)
1625 {
1626 /*
1627 * The values computed here will be over-written when we actually
1628 * attach the event.
1629 */
1630 __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1631 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1632 perf_event__id_header_size(event);
1633
1634 /*
1635 * Sum the lot; should not exceed the 64k limit we have on records.
1636 * Conservative limit to allow for callchains and other variable fields.
1637 */
1638 if (event->read_size + event->header_size +
1639 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1640 return false;
1641
1642 return true;
1643 }
1644
1645 static void perf_group_attach(struct perf_event *event)
1646 {
1647 struct perf_event *group_leader = event->group_leader, *pos;
1648
1649 lockdep_assert_held(&event->ctx->lock);
1650
1651 /*
1652 * We can have double attach due to group movement in perf_event_open.
1653 */
1654 if (event->attach_state & PERF_ATTACH_GROUP)
1655 return;
1656
1657 event->attach_state |= PERF_ATTACH_GROUP;
1658
1659 if (group_leader == event)
1660 return;
1661
1662 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1663
1664 group_leader->group_caps &= event->event_caps;
1665
1666 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1667 group_leader->nr_siblings++;
1668
1669 perf_event__header_size(group_leader);
1670
1671 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1672 perf_event__header_size(pos);
1673 }
1674
1675 /*
1676 * Remove a event from the lists for its context.
1677 * Must be called with ctx->mutex and ctx->lock held.
1678 */
1679 static void
1680 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1681 {
1682 WARN_ON_ONCE(event->ctx != ctx);
1683 lockdep_assert_held(&ctx->lock);
1684
1685 /*
1686 * We can have double detach due to exit/hot-unplug + close.
1687 */
1688 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1689 return;
1690
1691 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1692
1693 list_update_cgroup_event(event, ctx, false);
1694
1695 ctx->nr_events--;
1696 if (event->attr.inherit_stat)
1697 ctx->nr_stat--;
1698
1699 list_del_rcu(&event->event_entry);
1700
1701 if (event->group_leader == event)
1702 list_del_init(&event->group_entry);
1703
1704 update_group_times(event);
1705
1706 /*
1707 * If event was in error state, then keep it
1708 * that way, otherwise bogus counts will be
1709 * returned on read(). The only way to get out
1710 * of error state is by explicit re-enabling
1711 * of the event
1712 */
1713 if (event->state > PERF_EVENT_STATE_OFF)
1714 event->state = PERF_EVENT_STATE_OFF;
1715
1716 ctx->generation++;
1717 }
1718
1719 static void perf_group_detach(struct perf_event *event)
1720 {
1721 struct perf_event *sibling, *tmp;
1722 struct list_head *list = NULL;
1723
1724 lockdep_assert_held(&event->ctx->lock);
1725
1726 /*
1727 * We can have double detach due to exit/hot-unplug + close.
1728 */
1729 if (!(event->attach_state & PERF_ATTACH_GROUP))
1730 return;
1731
1732 event->attach_state &= ~PERF_ATTACH_GROUP;
1733
1734 /*
1735 * If this is a sibling, remove it from its group.
1736 */
1737 if (event->group_leader != event) {
1738 list_del_init(&event->group_entry);
1739 event->group_leader->nr_siblings--;
1740 goto out;
1741 }
1742
1743 if (!list_empty(&event->group_entry))
1744 list = &event->group_entry;
1745
1746 /*
1747 * If this was a group event with sibling events then
1748 * upgrade the siblings to singleton events by adding them
1749 * to whatever list we are on.
1750 */
1751 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1752 if (list)
1753 list_move_tail(&sibling->group_entry, list);
1754 sibling->group_leader = sibling;
1755
1756 /* Inherit group flags from the previous leader */
1757 sibling->group_caps = event->group_caps;
1758
1759 WARN_ON_ONCE(sibling->ctx != event->ctx);
1760 }
1761
1762 out:
1763 perf_event__header_size(event->group_leader);
1764
1765 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1766 perf_event__header_size(tmp);
1767 }
1768
1769 static bool is_orphaned_event(struct perf_event *event)
1770 {
1771 return event->state == PERF_EVENT_STATE_DEAD;
1772 }
1773
1774 static inline int __pmu_filter_match(struct perf_event *event)
1775 {
1776 struct pmu *pmu = event->pmu;
1777 return pmu->filter_match ? pmu->filter_match(event) : 1;
1778 }
1779
1780 /*
1781 * Check whether we should attempt to schedule an event group based on
1782 * PMU-specific filtering. An event group can consist of HW and SW events,
1783 * potentially with a SW leader, so we must check all the filters, to
1784 * determine whether a group is schedulable:
1785 */
1786 static inline int pmu_filter_match(struct perf_event *event)
1787 {
1788 struct perf_event *child;
1789
1790 if (!__pmu_filter_match(event))
1791 return 0;
1792
1793 list_for_each_entry(child, &event->sibling_list, group_entry) {
1794 if (!__pmu_filter_match(child))
1795 return 0;
1796 }
1797
1798 return 1;
1799 }
1800
1801 static inline int
1802 event_filter_match(struct perf_event *event)
1803 {
1804 return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1805 perf_cgroup_match(event) && pmu_filter_match(event);
1806 }
1807
1808 static void
1809 event_sched_out(struct perf_event *event,
1810 struct perf_cpu_context *cpuctx,
1811 struct perf_event_context *ctx)
1812 {
1813 u64 tstamp = perf_event_time(event);
1814 u64 delta;
1815
1816 WARN_ON_ONCE(event->ctx != ctx);
1817 lockdep_assert_held(&ctx->lock);
1818
1819 /*
1820 * An event which could not be activated because of
1821 * filter mismatch still needs to have its timings
1822 * maintained, otherwise bogus information is return
1823 * via read() for time_enabled, time_running:
1824 */
1825 if (event->state == PERF_EVENT_STATE_INACTIVE &&
1826 !event_filter_match(event)) {
1827 delta = tstamp - event->tstamp_stopped;
1828 event->tstamp_running += delta;
1829 event->tstamp_stopped = tstamp;
1830 }
1831
1832 if (event->state != PERF_EVENT_STATE_ACTIVE)
1833 return;
1834
1835 perf_pmu_disable(event->pmu);
1836
1837 event->tstamp_stopped = tstamp;
1838 event->pmu->del(event, 0);
1839 event->oncpu = -1;
1840 event->state = PERF_EVENT_STATE_INACTIVE;
1841 if (event->pending_disable) {
1842 event->pending_disable = 0;
1843 event->state = PERF_EVENT_STATE_OFF;
1844 }
1845
1846 if (!is_software_event(event))
1847 cpuctx->active_oncpu--;
1848 if (!--ctx->nr_active)
1849 perf_event_ctx_deactivate(ctx);
1850 if (event->attr.freq && event->attr.sample_freq)
1851 ctx->nr_freq--;
1852 if (event->attr.exclusive || !cpuctx->active_oncpu)
1853 cpuctx->exclusive = 0;
1854
1855 perf_pmu_enable(event->pmu);
1856 }
1857
1858 static void
1859 group_sched_out(struct perf_event *group_event,
1860 struct perf_cpu_context *cpuctx,
1861 struct perf_event_context *ctx)
1862 {
1863 struct perf_event *event;
1864 int state = group_event->state;
1865
1866 perf_pmu_disable(ctx->pmu);
1867
1868 event_sched_out(group_event, cpuctx, ctx);
1869
1870 /*
1871 * Schedule out siblings (if any):
1872 */
1873 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1874 event_sched_out(event, cpuctx, ctx);
1875
1876 perf_pmu_enable(ctx->pmu);
1877
1878 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1879 cpuctx->exclusive = 0;
1880 }
1881
1882 #define DETACH_GROUP 0x01UL
1883
1884 /*
1885 * Cross CPU call to remove a performance event
1886 *
1887 * We disable the event on the hardware level first. After that we
1888 * remove it from the context list.
1889 */
1890 static void
1891 __perf_remove_from_context(struct perf_event *event,
1892 struct perf_cpu_context *cpuctx,
1893 struct perf_event_context *ctx,
1894 void *info)
1895 {
1896 unsigned long flags = (unsigned long)info;
1897
1898 event_sched_out(event, cpuctx, ctx);
1899 if (flags & DETACH_GROUP)
1900 perf_group_detach(event);
1901 list_del_event(event, ctx);
1902
1903 if (!ctx->nr_events && ctx->is_active) {
1904 ctx->is_active = 0;
1905 if (ctx->task) {
1906 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1907 cpuctx->task_ctx = NULL;
1908 }
1909 }
1910 }
1911
1912 /*
1913 * Remove the event from a task's (or a CPU's) list of events.
1914 *
1915 * If event->ctx is a cloned context, callers must make sure that
1916 * every task struct that event->ctx->task could possibly point to
1917 * remains valid. This is OK when called from perf_release since
1918 * that only calls us on the top-level context, which can't be a clone.
1919 * When called from perf_event_exit_task, it's OK because the
1920 * context has been detached from its task.
1921 */
1922 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
1923 {
1924 struct perf_event_context *ctx = event->ctx;
1925
1926 lockdep_assert_held(&ctx->mutex);
1927
1928 event_function_call(event, __perf_remove_from_context, (void *)flags);
1929
1930 /*
1931 * The above event_function_call() can NO-OP when it hits
1932 * TASK_TOMBSTONE. In that case we must already have been detached
1933 * from the context (by perf_event_exit_event()) but the grouping
1934 * might still be in-tact.
1935 */
1936 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1937 if ((flags & DETACH_GROUP) &&
1938 (event->attach_state & PERF_ATTACH_GROUP)) {
1939 /*
1940 * Since in that case we cannot possibly be scheduled, simply
1941 * detach now.
1942 */
1943 raw_spin_lock_irq(&ctx->lock);
1944 perf_group_detach(event);
1945 raw_spin_unlock_irq(&ctx->lock);
1946 }
1947 }
1948
1949 /*
1950 * Cross CPU call to disable a performance event
1951 */
1952 static void __perf_event_disable(struct perf_event *event,
1953 struct perf_cpu_context *cpuctx,
1954 struct perf_event_context *ctx,
1955 void *info)
1956 {
1957 if (event->state < PERF_EVENT_STATE_INACTIVE)
1958 return;
1959
1960 update_context_time(ctx);
1961 update_cgrp_time_from_event(event);
1962 update_group_times(event);
1963 if (event == event->group_leader)
1964 group_sched_out(event, cpuctx, ctx);
1965 else
1966 event_sched_out(event, cpuctx, ctx);
1967 event->state = PERF_EVENT_STATE_OFF;
1968 }
1969
1970 /*
1971 * Disable a event.
1972 *
1973 * If event->ctx is a cloned context, callers must make sure that
1974 * every task struct that event->ctx->task could possibly point to
1975 * remains valid. This condition is satisifed when called through
1976 * perf_event_for_each_child or perf_event_for_each because they
1977 * hold the top-level event's child_mutex, so any descendant that
1978 * goes to exit will block in perf_event_exit_event().
1979 *
1980 * When called from perf_pending_event it's OK because event->ctx
1981 * is the current context on this CPU and preemption is disabled,
1982 * hence we can't get into perf_event_task_sched_out for this context.
1983 */
1984 static void _perf_event_disable(struct perf_event *event)
1985 {
1986 struct perf_event_context *ctx = event->ctx;
1987
1988 raw_spin_lock_irq(&ctx->lock);
1989 if (event->state <= PERF_EVENT_STATE_OFF) {
1990 raw_spin_unlock_irq(&ctx->lock);
1991 return;
1992 }
1993 raw_spin_unlock_irq(&ctx->lock);
1994
1995 event_function_call(event, __perf_event_disable, NULL);
1996 }
1997
1998 void perf_event_disable_local(struct perf_event *event)
1999 {
2000 event_function_local(event, __perf_event_disable, NULL);
2001 }
2002
2003 /*
2004 * Strictly speaking kernel users cannot create groups and therefore this
2005 * interface does not need the perf_event_ctx_lock() magic.
2006 */
2007 void perf_event_disable(struct perf_event *event)
2008 {
2009 struct perf_event_context *ctx;
2010
2011 ctx = perf_event_ctx_lock(event);
2012 _perf_event_disable(event);
2013 perf_event_ctx_unlock(event, ctx);
2014 }
2015 EXPORT_SYMBOL_GPL(perf_event_disable);
2016
2017 void perf_event_disable_inatomic(struct perf_event *event)
2018 {
2019 event->pending_disable = 1;
2020 irq_work_queue(&event->pending);
2021 }
2022
2023 static void perf_set_shadow_time(struct perf_event *event,
2024 struct perf_event_context *ctx,
2025 u64 tstamp)
2026 {
2027 /*
2028 * use the correct time source for the time snapshot
2029 *
2030 * We could get by without this by leveraging the
2031 * fact that to get to this function, the caller
2032 * has most likely already called update_context_time()
2033 * and update_cgrp_time_xx() and thus both timestamp
2034 * are identical (or very close). Given that tstamp is,
2035 * already adjusted for cgroup, we could say that:
2036 * tstamp - ctx->timestamp
2037 * is equivalent to
2038 * tstamp - cgrp->timestamp.
2039 *
2040 * Then, in perf_output_read(), the calculation would
2041 * work with no changes because:
2042 * - event is guaranteed scheduled in
2043 * - no scheduled out in between
2044 * - thus the timestamp would be the same
2045 *
2046 * But this is a bit hairy.
2047 *
2048 * So instead, we have an explicit cgroup call to remain
2049 * within the time time source all along. We believe it
2050 * is cleaner and simpler to understand.
2051 */
2052 if (is_cgroup_event(event))
2053 perf_cgroup_set_shadow_time(event, tstamp);
2054 else
2055 event->shadow_ctx_time = tstamp - ctx->timestamp;
2056 }
2057
2058 #define MAX_INTERRUPTS (~0ULL)
2059
2060 static void perf_log_throttle(struct perf_event *event, int enable);
2061 static void perf_log_itrace_start(struct perf_event *event);
2062
2063 static int
2064 event_sched_in(struct perf_event *event,
2065 struct perf_cpu_context *cpuctx,
2066 struct perf_event_context *ctx)
2067 {
2068 u64 tstamp = perf_event_time(event);
2069 int ret = 0;
2070
2071 lockdep_assert_held(&ctx->lock);
2072
2073 if (event->state <= PERF_EVENT_STATE_OFF)
2074 return 0;
2075
2076 WRITE_ONCE(event->oncpu, smp_processor_id());
2077 /*
2078 * Order event::oncpu write to happen before the ACTIVE state
2079 * is visible.
2080 */
2081 smp_wmb();
2082 WRITE_ONCE(event->state, PERF_EVENT_STATE_ACTIVE);
2083
2084 /*
2085 * Unthrottle events, since we scheduled we might have missed several
2086 * ticks already, also for a heavily scheduling task there is little
2087 * guarantee it'll get a tick in a timely manner.
2088 */
2089 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2090 perf_log_throttle(event, 1);
2091 event->hw.interrupts = 0;
2092 }
2093
2094 /*
2095 * The new state must be visible before we turn it on in the hardware:
2096 */
2097 smp_wmb();
2098
2099 perf_pmu_disable(event->pmu);
2100
2101 perf_set_shadow_time(event, ctx, tstamp);
2102
2103 perf_log_itrace_start(event);
2104
2105 if (event->pmu->add(event, PERF_EF_START)) {
2106 event->state = PERF_EVENT_STATE_INACTIVE;
2107 event->oncpu = -1;
2108 ret = -EAGAIN;
2109 goto out;
2110 }
2111
2112 event->tstamp_running += tstamp - event->tstamp_stopped;
2113
2114 if (!is_software_event(event))
2115 cpuctx->active_oncpu++;
2116 if (!ctx->nr_active++)
2117 perf_event_ctx_activate(ctx);
2118 if (event->attr.freq && event->attr.sample_freq)
2119 ctx->nr_freq++;
2120
2121 if (event->attr.exclusive)
2122 cpuctx->exclusive = 1;
2123
2124 out:
2125 perf_pmu_enable(event->pmu);
2126
2127 return ret;
2128 }
2129
2130 static int
2131 group_sched_in(struct perf_event *group_event,
2132 struct perf_cpu_context *cpuctx,
2133 struct perf_event_context *ctx)
2134 {
2135 struct perf_event *event, *partial_group = NULL;
2136 struct pmu *pmu = ctx->pmu;
2137 u64 now = ctx->time;
2138 bool simulate = false;
2139
2140 if (group_event->state == PERF_EVENT_STATE_OFF)
2141 return 0;
2142
2143 pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2144
2145 if (event_sched_in(group_event, cpuctx, ctx)) {
2146 pmu->cancel_txn(pmu);
2147 perf_mux_hrtimer_restart(cpuctx);
2148 return -EAGAIN;
2149 }
2150
2151 /*
2152 * Schedule in siblings as one group (if any):
2153 */
2154 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2155 if (event_sched_in(event, cpuctx, ctx)) {
2156 partial_group = event;
2157 goto group_error;
2158 }
2159 }
2160
2161 if (!pmu->commit_txn(pmu))
2162 return 0;
2163
2164 group_error:
2165 /*
2166 * Groups can be scheduled in as one unit only, so undo any
2167 * partial group before returning:
2168 * The events up to the failed event are scheduled out normally,
2169 * tstamp_stopped will be updated.
2170 *
2171 * The failed events and the remaining siblings need to have
2172 * their timings updated as if they had gone thru event_sched_in()
2173 * and event_sched_out(). This is required to get consistent timings
2174 * across the group. This also takes care of the case where the group
2175 * could never be scheduled by ensuring tstamp_stopped is set to mark
2176 * the time the event was actually stopped, such that time delta
2177 * calculation in update_event_times() is correct.
2178 */
2179 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2180 if (event == partial_group)
2181 simulate = true;
2182
2183 if (simulate) {
2184 event->tstamp_running += now - event->tstamp_stopped;
2185 event->tstamp_stopped = now;
2186 } else {
2187 event_sched_out(event, cpuctx, ctx);
2188 }
2189 }
2190 event_sched_out(group_event, cpuctx, ctx);
2191
2192 pmu->cancel_txn(pmu);
2193
2194 perf_mux_hrtimer_restart(cpuctx);
2195
2196 return -EAGAIN;
2197 }
2198
2199 /*
2200 * Work out whether we can put this event group on the CPU now.
2201 */
2202 static int group_can_go_on(struct perf_event *event,
2203 struct perf_cpu_context *cpuctx,
2204 int can_add_hw)
2205 {
2206 /*
2207 * Groups consisting entirely of software events can always go on.
2208 */
2209 if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2210 return 1;
2211 /*
2212 * If an exclusive group is already on, no other hardware
2213 * events can go on.
2214 */
2215 if (cpuctx->exclusive)
2216 return 0;
2217 /*
2218 * If this group is exclusive and there are already
2219 * events on the CPU, it can't go on.
2220 */
2221 if (event->attr.exclusive && cpuctx->active_oncpu)
2222 return 0;
2223 /*
2224 * Otherwise, try to add it if all previous groups were able
2225 * to go on.
2226 */
2227 return can_add_hw;
2228 }
2229
2230 /*
2231 * Complement to update_event_times(). This computes the tstamp_* values to
2232 * continue 'enabled' state from @now, and effectively discards the time
2233 * between the prior tstamp_stopped and now (as we were in the OFF state, or
2234 * just switched (context) time base).
2235 *
2236 * This further assumes '@event->state == INACTIVE' (we just came from OFF) and
2237 * cannot have been scheduled in yet. And going into INACTIVE state means
2238 * '@event->tstamp_stopped = @now'.
2239 *
2240 * Thus given the rules of update_event_times():
2241 *
2242 * total_time_enabled = tstamp_stopped - tstamp_enabled
2243 * total_time_running = tstamp_stopped - tstamp_running
2244 *
2245 * We can insert 'tstamp_stopped == now' and reverse them to compute new
2246 * tstamp_* values.
2247 */
2248 static void __perf_event_enable_time(struct perf_event *event, u64 now)
2249 {
2250 WARN_ON_ONCE(event->state != PERF_EVENT_STATE_INACTIVE);
2251
2252 event->tstamp_stopped = now;
2253 event->tstamp_enabled = now - event->total_time_enabled;
2254 event->tstamp_running = now - event->total_time_running;
2255 }
2256
2257 static void add_event_to_ctx(struct perf_event *event,
2258 struct perf_event_context *ctx)
2259 {
2260 u64 tstamp = perf_event_time(event);
2261
2262 list_add_event(event, ctx);
2263 perf_group_attach(event);
2264 /*
2265 * We can be called with event->state == STATE_OFF when we create with
2266 * .disabled = 1. In that case the IOC_ENABLE will call this function.
2267 */
2268 if (event->state == PERF_EVENT_STATE_INACTIVE)
2269 __perf_event_enable_time(event, tstamp);
2270 }
2271
2272 static void ctx_sched_out(struct perf_event_context *ctx,
2273 struct perf_cpu_context *cpuctx,
2274 enum event_type_t event_type);
2275 static void
2276 ctx_sched_in(struct perf_event_context *ctx,
2277 struct perf_cpu_context *cpuctx,
2278 enum event_type_t event_type,
2279 struct task_struct *task);
2280
2281 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2282 struct perf_event_context *ctx,
2283 enum event_type_t event_type)
2284 {
2285 if (!cpuctx->task_ctx)
2286 return;
2287
2288 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2289 return;
2290
2291 ctx_sched_out(ctx, cpuctx, event_type);
2292 }
2293
2294 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2295 struct perf_event_context *ctx,
2296 struct task_struct *task)
2297 {
2298 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2299 if (ctx)
2300 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2301 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2302 if (ctx)
2303 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2304 }
2305
2306 /*
2307 * We want to maintain the following priority of scheduling:
2308 * - CPU pinned (EVENT_CPU | EVENT_PINNED)
2309 * - task pinned (EVENT_PINNED)
2310 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2311 * - task flexible (EVENT_FLEXIBLE).
2312 *
2313 * In order to avoid unscheduling and scheduling back in everything every
2314 * time an event is added, only do it for the groups of equal priority and
2315 * below.
2316 *
2317 * This can be called after a batch operation on task events, in which case
2318 * event_type is a bit mask of the types of events involved. For CPU events,
2319 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2320 */
2321 static void ctx_resched(struct perf_cpu_context *cpuctx,
2322 struct perf_event_context *task_ctx,
2323 enum event_type_t event_type)
2324 {
2325 enum event_type_t ctx_event_type = event_type & EVENT_ALL;
2326 bool cpu_event = !!(event_type & EVENT_CPU);
2327
2328 /*
2329 * If pinned groups are involved, flexible groups also need to be
2330 * scheduled out.
2331 */
2332 if (event_type & EVENT_PINNED)
2333 event_type |= EVENT_FLEXIBLE;
2334
2335 perf_pmu_disable(cpuctx->ctx.pmu);
2336 if (task_ctx)
2337 task_ctx_sched_out(cpuctx, task_ctx, event_type);
2338
2339 /*
2340 * Decide which cpu ctx groups to schedule out based on the types
2341 * of events that caused rescheduling:
2342 * - EVENT_CPU: schedule out corresponding groups;
2343 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2344 * - otherwise, do nothing more.
2345 */
2346 if (cpu_event)
2347 cpu_ctx_sched_out(cpuctx, ctx_event_type);
2348 else if (ctx_event_type & EVENT_PINNED)
2349 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2350
2351 perf_event_sched_in(cpuctx, task_ctx, current);
2352 perf_pmu_enable(cpuctx->ctx.pmu);
2353 }
2354
2355 /*
2356 * Cross CPU call to install and enable a performance event
2357 *
2358 * Very similar to remote_function() + event_function() but cannot assume that
2359 * things like ctx->is_active and cpuctx->task_ctx are set.
2360 */
2361 static int __perf_install_in_context(void *info)
2362 {
2363 struct perf_event *event = info;
2364 struct perf_event_context *ctx = event->ctx;
2365 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2366 struct perf_event_context *task_ctx = cpuctx->task_ctx;
2367 bool reprogram = true;
2368 int ret = 0;
2369
2370 raw_spin_lock(&cpuctx->ctx.lock);
2371 if (ctx->task) {
2372 raw_spin_lock(&ctx->lock);
2373 task_ctx = ctx;
2374
2375 reprogram = (ctx->task == current);
2376
2377 /*
2378 * If the task is running, it must be running on this CPU,
2379 * otherwise we cannot reprogram things.
2380 *
2381 * If its not running, we don't care, ctx->lock will
2382 * serialize against it becoming runnable.
2383 */
2384 if (task_curr(ctx->task) && !reprogram) {
2385 ret = -ESRCH;
2386 goto unlock;
2387 }
2388
2389 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2390 } else if (task_ctx) {
2391 raw_spin_lock(&task_ctx->lock);
2392 }
2393
2394 if (reprogram) {
2395 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2396 add_event_to_ctx(event, ctx);
2397 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2398 } else {
2399 add_event_to_ctx(event, ctx);
2400 }
2401
2402 unlock:
2403 perf_ctx_unlock(cpuctx, task_ctx);
2404
2405 return ret;
2406 }
2407
2408 /*
2409 * Attach a performance event to a context.
2410 *
2411 * Very similar to event_function_call, see comment there.
2412 */
2413 static void
2414 perf_install_in_context(struct perf_event_context *ctx,
2415 struct perf_event *event,
2416 int cpu)
2417 {
2418 struct task_struct *task = READ_ONCE(ctx->task);
2419
2420 lockdep_assert_held(&ctx->mutex);
2421
2422 if (event->cpu != -1)
2423 event->cpu = cpu;
2424
2425 /*
2426 * Ensures that if we can observe event->ctx, both the event and ctx
2427 * will be 'complete'. See perf_iterate_sb_cpu().
2428 */
2429 smp_store_release(&event->ctx, ctx);
2430
2431 if (!task) {
2432 cpu_function_call(cpu, __perf_install_in_context, event);
2433 return;
2434 }
2435
2436 /*
2437 * Should not happen, we validate the ctx is still alive before calling.
2438 */
2439 if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2440 return;
2441
2442 /*
2443 * Installing events is tricky because we cannot rely on ctx->is_active
2444 * to be set in case this is the nr_events 0 -> 1 transition.
2445 *
2446 * Instead we use task_curr(), which tells us if the task is running.
2447 * However, since we use task_curr() outside of rq::lock, we can race
2448 * against the actual state. This means the result can be wrong.
2449 *
2450 * If we get a false positive, we retry, this is harmless.
2451 *
2452 * If we get a false negative, things are complicated. If we are after
2453 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2454 * value must be correct. If we're before, it doesn't matter since
2455 * perf_event_context_sched_in() will program the counter.
2456 *
2457 * However, this hinges on the remote context switch having observed
2458 * our task->perf_event_ctxp[] store, such that it will in fact take
2459 * ctx::lock in perf_event_context_sched_in().
2460 *
2461 * We do this by task_function_call(), if the IPI fails to hit the task
2462 * we know any future context switch of task must see the
2463 * perf_event_ctpx[] store.
2464 */
2465
2466 /*
2467 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2468 * task_cpu() load, such that if the IPI then does not find the task
2469 * running, a future context switch of that task must observe the
2470 * store.
2471 */
2472 smp_mb();
2473 again:
2474 if (!task_function_call(task, __perf_install_in_context, event))
2475 return;
2476
2477 raw_spin_lock_irq(&ctx->lock);
2478 task = ctx->task;
2479 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2480 /*
2481 * Cannot happen because we already checked above (which also
2482 * cannot happen), and we hold ctx->mutex, which serializes us
2483 * against perf_event_exit_task_context().
2484 */
2485 raw_spin_unlock_irq(&ctx->lock);
2486 return;
2487 }
2488 /*
2489 * If the task is not running, ctx->lock will avoid it becoming so,
2490 * thus we can safely install the event.
2491 */
2492 if (task_curr(task)) {
2493 raw_spin_unlock_irq(&ctx->lock);
2494 goto again;
2495 }
2496 add_event_to_ctx(event, ctx);
2497 raw_spin_unlock_irq(&ctx->lock);
2498 }
2499
2500 /*
2501 * Put a event into inactive state and update time fields.
2502 * Enabling the leader of a group effectively enables all
2503 * the group members that aren't explicitly disabled, so we
2504 * have to update their ->tstamp_enabled also.
2505 * Note: this works for group members as well as group leaders
2506 * since the non-leader members' sibling_lists will be empty.
2507 */
2508 static void __perf_event_mark_enabled(struct perf_event *event)
2509 {
2510 struct perf_event *sub;
2511 u64 tstamp = perf_event_time(event);
2512
2513 event->state = PERF_EVENT_STATE_INACTIVE;
2514 __perf_event_enable_time(event, tstamp);
2515 list_for_each_entry(sub, &event->sibling_list, group_entry) {
2516 /* XXX should not be > INACTIVE if event isn't */
2517 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2518 __perf_event_enable_time(sub, tstamp);
2519 }
2520 }
2521
2522 /*
2523 * Cross CPU call to enable a performance event
2524 */
2525 static void __perf_event_enable(struct perf_event *event,
2526 struct perf_cpu_context *cpuctx,
2527 struct perf_event_context *ctx,
2528 void *info)
2529 {
2530 struct perf_event *leader = event->group_leader;
2531 struct perf_event_context *task_ctx;
2532
2533 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2534 event->state <= PERF_EVENT_STATE_ERROR)
2535 return;
2536
2537 if (ctx->is_active)
2538 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2539
2540 __perf_event_mark_enabled(event);
2541
2542 if (!ctx->is_active)
2543 return;
2544
2545 if (!event_filter_match(event)) {
2546 if (is_cgroup_event(event))
2547 perf_cgroup_defer_enabled(event);
2548 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2549 return;
2550 }
2551
2552 /*
2553 * If the event is in a group and isn't the group leader,
2554 * then don't put it on unless the group is on.
2555 */
2556 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2557 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2558 return;
2559 }
2560
2561 task_ctx = cpuctx->task_ctx;
2562 if (ctx->task)
2563 WARN_ON_ONCE(task_ctx != ctx);
2564
2565 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2566 }
2567
2568 /*
2569 * Enable a event.
2570 *
2571 * If event->ctx is a cloned context, callers must make sure that
2572 * every task struct that event->ctx->task could possibly point to
2573 * remains valid. This condition is satisfied when called through
2574 * perf_event_for_each_child or perf_event_for_each as described
2575 * for perf_event_disable.
2576 */
2577 static void _perf_event_enable(struct perf_event *event)
2578 {
2579 struct perf_event_context *ctx = event->ctx;
2580
2581 raw_spin_lock_irq(&ctx->lock);
2582 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2583 event->state < PERF_EVENT_STATE_ERROR) {
2584 raw_spin_unlock_irq(&ctx->lock);
2585 return;
2586 }
2587
2588 /*
2589 * If the event is in error state, clear that first.
2590 *
2591 * That way, if we see the event in error state below, we know that it
2592 * has gone back into error state, as distinct from the task having
2593 * been scheduled away before the cross-call arrived.
2594 */
2595 if (event->state == PERF_EVENT_STATE_ERROR)
2596 event->state = PERF_EVENT_STATE_OFF;
2597 raw_spin_unlock_irq(&ctx->lock);
2598
2599 event_function_call(event, __perf_event_enable, NULL);
2600 }
2601
2602 /*
2603 * See perf_event_disable();
2604 */
2605 void perf_event_enable(struct perf_event *event)
2606 {
2607 struct perf_event_context *ctx;
2608
2609 ctx = perf_event_ctx_lock(event);
2610 _perf_event_enable(event);
2611 perf_event_ctx_unlock(event, ctx);
2612 }
2613 EXPORT_SYMBOL_GPL(perf_event_enable);
2614
2615 struct stop_event_data {
2616 struct perf_event *event;
2617 unsigned int restart;
2618 };
2619
2620 static int __perf_event_stop(void *info)
2621 {
2622 struct stop_event_data *sd = info;
2623 struct perf_event *event = sd->event;
2624
2625 /* if it's already INACTIVE, do nothing */
2626 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2627 return 0;
2628
2629 /* matches smp_wmb() in event_sched_in() */
2630 smp_rmb();
2631
2632 /*
2633 * There is a window with interrupts enabled before we get here,
2634 * so we need to check again lest we try to stop another CPU's event.
2635 */
2636 if (READ_ONCE(event->oncpu) != smp_processor_id())
2637 return -EAGAIN;
2638
2639 event->pmu->stop(event, PERF_EF_UPDATE);
2640
2641 /*
2642 * May race with the actual stop (through perf_pmu_output_stop()),
2643 * but it is only used for events with AUX ring buffer, and such
2644 * events will refuse to restart because of rb::aux_mmap_count==0,
2645 * see comments in perf_aux_output_begin().
2646 *
2647 * Since this is happening on a event-local CPU, no trace is lost
2648 * while restarting.
2649 */
2650 if (sd->restart)
2651 event->pmu->start(event, 0);
2652
2653 return 0;
2654 }
2655
2656 static int perf_event_stop(struct perf_event *event, int restart)
2657 {
2658 struct stop_event_data sd = {
2659 .event = event,
2660 .restart = restart,
2661 };
2662 int ret = 0;
2663
2664 do {
2665 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2666 return 0;
2667
2668 /* matches smp_wmb() in event_sched_in() */
2669 smp_rmb();
2670
2671 /*
2672 * We only want to restart ACTIVE events, so if the event goes
2673 * inactive here (event->oncpu==-1), there's nothing more to do;
2674 * fall through with ret==-ENXIO.
2675 */
2676 ret = cpu_function_call(READ_ONCE(event->oncpu),
2677 __perf_event_stop, &sd);
2678 } while (ret == -EAGAIN);
2679
2680 return ret;
2681 }
2682
2683 /*
2684 * In order to contain the amount of racy and tricky in the address filter
2685 * configuration management, it is a two part process:
2686 *
2687 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2688 * we update the addresses of corresponding vmas in
2689 * event::addr_filters_offs array and bump the event::addr_filters_gen;
2690 * (p2) when an event is scheduled in (pmu::add), it calls
2691 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2692 * if the generation has changed since the previous call.
2693 *
2694 * If (p1) happens while the event is active, we restart it to force (p2).
2695 *
2696 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2697 * pre-existing mappings, called once when new filters arrive via SET_FILTER
2698 * ioctl;
2699 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2700 * registered mapping, called for every new mmap(), with mm::mmap_sem down
2701 * for reading;
2702 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2703 * of exec.
2704 */
2705 void perf_event_addr_filters_sync(struct perf_event *event)
2706 {
2707 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2708
2709 if (!has_addr_filter(event))
2710 return;
2711
2712 raw_spin_lock(&ifh->lock);
2713 if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2714 event->pmu->addr_filters_sync(event);
2715 event->hw.addr_filters_gen = event->addr_filters_gen;
2716 }
2717 raw_spin_unlock(&ifh->lock);
2718 }
2719 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2720
2721 static int _perf_event_refresh(struct perf_event *event, int refresh)
2722 {
2723 /*
2724 * not supported on inherited events
2725 */
2726 if (event->attr.inherit || !is_sampling_event(event))
2727 return -EINVAL;
2728
2729 atomic_add(refresh, &event->event_limit);
2730 _perf_event_enable(event);
2731
2732 return 0;
2733 }
2734
2735 /*
2736 * See perf_event_disable()
2737 */
2738 int perf_event_refresh(struct perf_event *event, int refresh)
2739 {
2740 struct perf_event_context *ctx;
2741 int ret;
2742
2743 ctx = perf_event_ctx_lock(event);
2744 ret = _perf_event_refresh(event, refresh);
2745 perf_event_ctx_unlock(event, ctx);
2746
2747 return ret;
2748 }
2749 EXPORT_SYMBOL_GPL(perf_event_refresh);
2750
2751 static void ctx_sched_out(struct perf_event_context *ctx,
2752 struct perf_cpu_context *cpuctx,
2753 enum event_type_t event_type)
2754 {
2755 int is_active = ctx->is_active;
2756 struct perf_event *event;
2757
2758 lockdep_assert_held(&ctx->lock);
2759
2760 if (likely(!ctx->nr_events)) {
2761 /*
2762 * See __perf_remove_from_context().
2763 */
2764 WARN_ON_ONCE(ctx->is_active);
2765 if (ctx->task)
2766 WARN_ON_ONCE(cpuctx->task_ctx);
2767 return;
2768 }
2769
2770 ctx->is_active &= ~event_type;
2771 if (!(ctx->is_active & EVENT_ALL))
2772 ctx->is_active = 0;
2773
2774 if (ctx->task) {
2775 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2776 if (!ctx->is_active)
2777 cpuctx->task_ctx = NULL;
2778 }
2779
2780 /*
2781 * Always update time if it was set; not only when it changes.
2782 * Otherwise we can 'forget' to update time for any but the last
2783 * context we sched out. For example:
2784 *
2785 * ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2786 * ctx_sched_out(.event_type = EVENT_PINNED)
2787 *
2788 * would only update time for the pinned events.
2789 */
2790 if (is_active & EVENT_TIME) {
2791 /* update (and stop) ctx time */
2792 update_context_time(ctx);
2793 update_cgrp_time_from_cpuctx(cpuctx);
2794 }
2795
2796 is_active ^= ctx->is_active; /* changed bits */
2797
2798 if (!ctx->nr_active || !(is_active & EVENT_ALL))
2799 return;
2800
2801 perf_pmu_disable(ctx->pmu);
2802 if (is_active & EVENT_PINNED) {
2803 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2804 group_sched_out(event, cpuctx, ctx);
2805 }
2806
2807 if (is_active & EVENT_FLEXIBLE) {
2808 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2809 group_sched_out(event, cpuctx, ctx);
2810 }
2811 perf_pmu_enable(ctx->pmu);
2812 }
2813
2814 /*
2815 * Test whether two contexts are equivalent, i.e. whether they have both been
2816 * cloned from the same version of the same context.
2817 *
2818 * Equivalence is measured using a generation number in the context that is
2819 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2820 * and list_del_event().
2821 */
2822 static int context_equiv(struct perf_event_context *ctx1,
2823 struct perf_event_context *ctx2)
2824 {
2825 lockdep_assert_held(&ctx1->lock);
2826 lockdep_assert_held(&ctx2->lock);
2827
2828 /* Pinning disables the swap optimization */
2829 if (ctx1->pin_count || ctx2->pin_count)
2830 return 0;
2831
2832 /* If ctx1 is the parent of ctx2 */
2833 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2834 return 1;
2835
2836 /* If ctx2 is the parent of ctx1 */
2837 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2838 return 1;
2839
2840 /*
2841 * If ctx1 and ctx2 have the same parent; we flatten the parent
2842 * hierarchy, see perf_event_init_context().
2843 */
2844 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2845 ctx1->parent_gen == ctx2->parent_gen)
2846 return 1;
2847
2848 /* Unmatched */
2849 return 0;
2850 }
2851
2852 static void __perf_event_sync_stat(struct perf_event *event,
2853 struct perf_event *next_event)
2854 {
2855 u64 value;
2856
2857 if (!event->attr.inherit_stat)
2858 return;
2859
2860 /*
2861 * Update the event value, we cannot use perf_event_read()
2862 * because we're in the middle of a context switch and have IRQs
2863 * disabled, which upsets smp_call_function_single(), however
2864 * we know the event must be on the current CPU, therefore we
2865 * don't need to use it.
2866 */
2867 switch (event->state) {
2868 case PERF_EVENT_STATE_ACTIVE:
2869 event->pmu->read(event);
2870 /* fall-through */
2871
2872 case PERF_EVENT_STATE_INACTIVE:
2873 update_event_times(event);
2874 break;
2875
2876 default:
2877 break;
2878 }
2879
2880 /*
2881 * In order to keep per-task stats reliable we need to flip the event
2882 * values when we flip the contexts.
2883 */
2884 value = local64_read(&next_event->count);
2885 value = local64_xchg(&event->count, value);
2886 local64_set(&next_event->count, value);
2887
2888 swap(event->total_time_enabled, next_event->total_time_enabled);
2889 swap(event->total_time_running, next_event->total_time_running);
2890
2891 /*
2892 * Since we swizzled the values, update the user visible data too.
2893 */
2894 perf_event_update_userpage(event);
2895 perf_event_update_userpage(next_event);
2896 }
2897
2898 static void perf_event_sync_stat(struct perf_event_context *ctx,
2899 struct perf_event_context *next_ctx)
2900 {
2901 struct perf_event *event, *next_event;
2902
2903 if (!ctx->nr_stat)
2904 return;
2905
2906 update_context_time(ctx);
2907
2908 event = list_first_entry(&ctx->event_list,
2909 struct perf_event, event_entry);
2910
2911 next_event = list_first_entry(&next_ctx->event_list,
2912 struct perf_event, event_entry);
2913
2914 while (&event->event_entry != &ctx->event_list &&
2915 &next_event->event_entry != &next_ctx->event_list) {
2916
2917 __perf_event_sync_stat(event, next_event);
2918
2919 event = list_next_entry(event, event_entry);
2920 next_event = list_next_entry(next_event, event_entry);
2921 }
2922 }
2923
2924 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2925 struct task_struct *next)
2926 {
2927 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2928 struct perf_event_context *next_ctx;
2929 struct perf_event_context *parent, *next_parent;
2930 struct perf_cpu_context *cpuctx;
2931 int do_switch = 1;
2932
2933 if (likely(!ctx))
2934 return;
2935
2936 cpuctx = __get_cpu_context(ctx);
2937 if (!cpuctx->task_ctx)
2938 return;
2939
2940 rcu_read_lock();
2941 next_ctx = next->perf_event_ctxp[ctxn];
2942 if (!next_ctx)
2943 goto unlock;
2944
2945 parent = rcu_dereference(ctx->parent_ctx);
2946 next_parent = rcu_dereference(next_ctx->parent_ctx);
2947
2948 /* If neither context have a parent context; they cannot be clones. */
2949 if (!parent && !next_parent)
2950 goto unlock;
2951
2952 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2953 /*
2954 * Looks like the two contexts are clones, so we might be
2955 * able to optimize the context switch. We lock both
2956 * contexts and check that they are clones under the
2957 * lock (including re-checking that neither has been
2958 * uncloned in the meantime). It doesn't matter which
2959 * order we take the locks because no other cpu could
2960 * be trying to lock both of these tasks.
2961 */
2962 raw_spin_lock(&ctx->lock);
2963 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2964 if (context_equiv(ctx, next_ctx)) {
2965 WRITE_ONCE(ctx->task, next);
2966 WRITE_ONCE(next_ctx->task, task);
2967
2968 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2969
2970 /*
2971 * RCU_INIT_POINTER here is safe because we've not
2972 * modified the ctx and the above modification of
2973 * ctx->task and ctx->task_ctx_data are immaterial
2974 * since those values are always verified under
2975 * ctx->lock which we're now holding.
2976 */
2977 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
2978 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
2979
2980 do_switch = 0;
2981
2982 perf_event_sync_stat(ctx, next_ctx);
2983 }
2984 raw_spin_unlock(&next_ctx->lock);
2985 raw_spin_unlock(&ctx->lock);
2986 }
2987 unlock:
2988 rcu_read_unlock();
2989
2990 if (do_switch) {
2991 raw_spin_lock(&ctx->lock);
2992 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
2993 raw_spin_unlock(&ctx->lock);
2994 }
2995 }
2996
2997 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
2998
2999 void perf_sched_cb_dec(struct pmu *pmu)
3000 {
3001 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3002
3003 this_cpu_dec(perf_sched_cb_usages);
3004
3005 if (!--cpuctx->sched_cb_usage)
3006 list_del(&cpuctx->sched_cb_entry);
3007 }
3008
3009
3010 void perf_sched_cb_inc(struct pmu *pmu)
3011 {
3012 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3013
3014 if (!cpuctx->sched_cb_usage++)
3015 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3016
3017 this_cpu_inc(perf_sched_cb_usages);
3018 }
3019
3020 /*
3021 * This function provides the context switch callback to the lower code
3022 * layer. It is invoked ONLY when the context switch callback is enabled.
3023 *
3024 * This callback is relevant even to per-cpu events; for example multi event
3025 * PEBS requires this to provide PID/TID information. This requires we flush
3026 * all queued PEBS records before we context switch to a new task.
3027 */
3028 static void perf_pmu_sched_task(struct task_struct *prev,
3029 struct task_struct *next,
3030 bool sched_in)
3031 {
3032 struct perf_cpu_context *cpuctx;
3033 struct pmu *pmu;
3034
3035 if (prev == next)
3036 return;
3037
3038 list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
3039 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
3040
3041 if (WARN_ON_ONCE(!pmu->sched_task))
3042 continue;
3043
3044 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3045 perf_pmu_disable(pmu);
3046
3047 pmu->sched_task(cpuctx->task_ctx, sched_in);
3048
3049 perf_pmu_enable(pmu);
3050 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3051 }
3052 }
3053
3054 static void perf_event_switch(struct task_struct *task,
3055 struct task_struct *next_prev, bool sched_in);
3056
3057 #define for_each_task_context_nr(ctxn) \
3058 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3059
3060 /*
3061 * Called from scheduler to remove the events of the current task,
3062 * with interrupts disabled.
3063 *
3064 * We stop each event and update the event value in event->count.
3065 *
3066 * This does not protect us against NMI, but disable()
3067 * sets the disabled bit in the control field of event _before_
3068 * accessing the event control register. If a NMI hits, then it will
3069 * not restart the event.
3070 */
3071 void __perf_event_task_sched_out(struct task_struct *task,
3072 struct task_struct *next)
3073 {
3074 int ctxn;
3075
3076 if (__this_cpu_read(perf_sched_cb_usages))
3077 perf_pmu_sched_task(task, next, false);
3078
3079 if (atomic_read(&nr_switch_events))
3080 perf_event_switch(task, next, false);
3081
3082 for_each_task_context_nr(ctxn)
3083 perf_event_context_sched_out(task, ctxn, next);
3084
3085 /*
3086 * if cgroup events exist on this CPU, then we need
3087 * to check if we have to switch out PMU state.
3088 * cgroup event are system-wide mode only
3089 */
3090 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3091 perf_cgroup_sched_out(task, next);
3092 }
3093
3094 /*
3095 * Called with IRQs disabled
3096 */
3097 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3098 enum event_type_t event_type)
3099 {
3100 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3101 }
3102
3103 static void
3104 ctx_pinned_sched_in(struct perf_event_context *ctx,
3105 struct perf_cpu_context *cpuctx)
3106 {
3107 struct perf_event *event;
3108
3109 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
3110 if (event->state <= PERF_EVENT_STATE_OFF)
3111 continue;
3112 if (!event_filter_match(event))
3113 continue;
3114
3115 /* may need to reset tstamp_enabled */
3116 if (is_cgroup_event(event))
3117 perf_cgroup_mark_enabled(event, ctx);
3118
3119 if (group_can_go_on(event, cpuctx, 1))
3120 group_sched_in(event, cpuctx, ctx);
3121
3122 /*
3123 * If this pinned group hasn't been scheduled,
3124 * put it in error state.
3125 */
3126 if (event->state == PERF_EVENT_STATE_INACTIVE) {
3127 update_group_times(event);
3128 event->state = PERF_EVENT_STATE_ERROR;
3129 }
3130 }
3131 }
3132
3133 static void
3134 ctx_flexible_sched_in(struct perf_event_context *ctx,
3135 struct perf_cpu_context *cpuctx)
3136 {
3137 struct perf_event *event;
3138 int can_add_hw = 1;
3139
3140 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
3141 /* Ignore events in OFF or ERROR state */
3142 if (event->state <= PERF_EVENT_STATE_OFF)
3143 continue;
3144 /*
3145 * Listen to the 'cpu' scheduling filter constraint
3146 * of events:
3147 */
3148 if (!event_filter_match(event))
3149 continue;
3150
3151 /* may need to reset tstamp_enabled */
3152 if (is_cgroup_event(event))
3153 perf_cgroup_mark_enabled(event, ctx);
3154
3155 if (group_can_go_on(event, cpuctx, can_add_hw)) {
3156 if (group_sched_in(event, cpuctx, ctx))
3157 can_add_hw = 0;
3158 }
3159 }
3160 }
3161
3162 static void
3163 ctx_sched_in(struct perf_event_context *ctx,
3164 struct perf_cpu_context *cpuctx,
3165 enum event_type_t event_type,
3166 struct task_struct *task)
3167 {
3168 int is_active = ctx->is_active;
3169 u64 now;
3170
3171 lockdep_assert_held(&ctx->lock);
3172
3173 if (likely(!ctx->nr_events))
3174 return;
3175
3176 ctx->is_active |= (event_type | EVENT_TIME);
3177 if (ctx->task) {
3178 if (!is_active)
3179 cpuctx->task_ctx = ctx;
3180 else
3181 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3182 }
3183
3184 is_active ^= ctx->is_active; /* changed bits */
3185
3186 if (is_active & EVENT_TIME) {
3187 /* start ctx time */
3188 now = perf_clock();
3189 ctx->timestamp = now;
3190 perf_cgroup_set_timestamp(task, ctx);
3191 }
3192
3193 /*
3194 * First go through the list and put on any pinned groups
3195 * in order to give them the best chance of going on.
3196 */
3197 if (is_active & EVENT_PINNED)
3198 ctx_pinned_sched_in(ctx, cpuctx);
3199
3200 /* Then walk through the lower prio flexible groups */
3201 if (is_active & EVENT_FLEXIBLE)
3202 ctx_flexible_sched_in(ctx, cpuctx);
3203 }
3204
3205 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3206 enum event_type_t event_type,
3207 struct task_struct *task)
3208 {
3209 struct perf_event_context *ctx = &cpuctx->ctx;
3210
3211 ctx_sched_in(ctx, cpuctx, event_type, task);
3212 }
3213
3214 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3215 struct task_struct *task)
3216 {
3217 struct perf_cpu_context *cpuctx;
3218
3219 cpuctx = __get_cpu_context(ctx);
3220 if (cpuctx->task_ctx == ctx)
3221 return;
3222
3223 perf_ctx_lock(cpuctx, ctx);
3224 /*
3225 * We must check ctx->nr_events while holding ctx->lock, such
3226 * that we serialize against perf_install_in_context().
3227 */
3228 if (!ctx->nr_events)
3229 goto unlock;
3230
3231 perf_pmu_disable(ctx->pmu);
3232 /*
3233 * We want to keep the following priority order:
3234 * cpu pinned (that don't need to move), task pinned,
3235 * cpu flexible, task flexible.
3236 *
3237 * However, if task's ctx is not carrying any pinned
3238 * events, no need to flip the cpuctx's events around.
3239 */
3240 if (!list_empty(&ctx->pinned_groups))
3241 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3242 perf_event_sched_in(cpuctx, ctx, task);
3243 perf_pmu_enable(ctx->pmu);
3244
3245 unlock:
3246 perf_ctx_unlock(cpuctx, ctx);
3247 }
3248
3249 /*
3250 * Called from scheduler to add the events of the current task
3251 * with interrupts disabled.
3252 *
3253 * We restore the event value and then enable it.
3254 *
3255 * This does not protect us against NMI, but enable()
3256 * sets the enabled bit in the control field of event _before_
3257 * accessing the event control register. If a NMI hits, then it will
3258 * keep the event running.
3259 */
3260 void __perf_event_task_sched_in(struct task_struct *prev,
3261 struct task_struct *task)
3262 {
3263 struct perf_event_context *ctx;
3264 int ctxn;
3265
3266 /*
3267 * If cgroup events exist on this CPU, then we need to check if we have
3268 * to switch in PMU state; cgroup event are system-wide mode only.
3269 *
3270 * Since cgroup events are CPU events, we must schedule these in before
3271 * we schedule in the task events.
3272 */
3273 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3274 perf_cgroup_sched_in(prev, task);
3275
3276 for_each_task_context_nr(ctxn) {
3277 ctx = task->perf_event_ctxp[ctxn];
3278 if (likely(!ctx))
3279 continue;
3280
3281 perf_event_context_sched_in(ctx, task);
3282 }
3283
3284 if (atomic_read(&nr_switch_events))
3285 perf_event_switch(task, prev, true);
3286
3287 if (__this_cpu_read(perf_sched_cb_usages))
3288 perf_pmu_sched_task(prev, task, true);
3289 }
3290
3291 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3292 {
3293 u64 frequency = event->attr.sample_freq;
3294 u64 sec = NSEC_PER_SEC;
3295 u64 divisor, dividend;
3296
3297 int count_fls, nsec_fls, frequency_fls, sec_fls;
3298
3299 count_fls = fls64(count);
3300 nsec_fls = fls64(nsec);
3301 frequency_fls = fls64(frequency);
3302 sec_fls = 30;
3303
3304 /*
3305 * We got @count in @nsec, with a target of sample_freq HZ
3306 * the target period becomes:
3307 *
3308 * @count * 10^9
3309 * period = -------------------
3310 * @nsec * sample_freq
3311 *
3312 */
3313
3314 /*
3315 * Reduce accuracy by one bit such that @a and @b converge
3316 * to a similar magnitude.
3317 */
3318 #define REDUCE_FLS(a, b) \
3319 do { \
3320 if (a##_fls > b##_fls) { \
3321 a >>= 1; \
3322 a##_fls--; \
3323 } else { \
3324 b >>= 1; \
3325 b##_fls--; \
3326 } \
3327 } while (0)
3328
3329 /*
3330 * Reduce accuracy until either term fits in a u64, then proceed with
3331 * the other, so that finally we can do a u64/u64 division.
3332 */
3333 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3334 REDUCE_FLS(nsec, frequency);
3335 REDUCE_FLS(sec, count);
3336 }
3337
3338 if (count_fls + sec_fls > 64) {
3339 divisor = nsec * frequency;
3340
3341 while (count_fls + sec_fls > 64) {
3342 REDUCE_FLS(count, sec);
3343 divisor >>= 1;
3344 }
3345
3346 dividend = count * sec;
3347 } else {
3348 dividend = count * sec;
3349
3350 while (nsec_fls + frequency_fls > 64) {
3351 REDUCE_FLS(nsec, frequency);
3352 dividend >>= 1;
3353 }
3354
3355 divisor = nsec * frequency;
3356 }
3357
3358 if (!divisor)
3359 return dividend;
3360
3361 return div64_u64(dividend, divisor);
3362 }
3363
3364 static DEFINE_PER_CPU(int, perf_throttled_count);
3365 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3366
3367 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3368 {
3369 struct hw_perf_event *hwc = &event->hw;
3370 s64 period, sample_period;
3371 s64 delta;
3372
3373 period = perf_calculate_period(event, nsec, count);
3374
3375 delta = (s64)(period - hwc->sample_period);
3376 delta = (delta + 7) / 8; /* low pass filter */
3377
3378 sample_period = hwc->sample_period + delta;
3379
3380 if (!sample_period)
3381 sample_period = 1;
3382
3383 hwc->sample_period = sample_period;
3384
3385 if (local64_read(&hwc->period_left) > 8*sample_period) {
3386 if (disable)
3387 event->pmu->stop(event, PERF_EF_UPDATE);
3388
3389 local64_set(&hwc->period_left, 0);
3390
3391 if (disable)
3392 event->pmu->start(event, PERF_EF_RELOAD);
3393 }
3394 }
3395
3396 /*
3397 * combine freq adjustment with unthrottling to avoid two passes over the
3398 * events. At the same time, make sure, having freq events does not change
3399 * the rate of unthrottling as that would introduce bias.
3400 */
3401 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3402 int needs_unthr)
3403 {
3404 struct perf_event *event;
3405 struct hw_perf_event *hwc;
3406 u64 now, period = TICK_NSEC;
3407 s64 delta;
3408
3409 /*
3410 * only need to iterate over all events iff:
3411 * - context have events in frequency mode (needs freq adjust)
3412 * - there are events to unthrottle on this cpu
3413 */
3414 if (!(ctx->nr_freq || needs_unthr))
3415 return;
3416
3417 raw_spin_lock(&ctx->lock);
3418 perf_pmu_disable(ctx->pmu);
3419
3420 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3421 if (event->state != PERF_EVENT_STATE_ACTIVE)
3422 continue;
3423
3424 if (!event_filter_match(event))
3425 continue;
3426
3427 perf_pmu_disable(event->pmu);
3428
3429 hwc = &event->hw;
3430
3431 if (hwc->interrupts == MAX_INTERRUPTS) {
3432 hwc->interrupts = 0;
3433 perf_log_throttle(event, 1);
3434 event->pmu->start(event, 0);
3435 }
3436
3437 if (!event->attr.freq || !event->attr.sample_freq)
3438 goto next;
3439
3440 /*
3441 * stop the event and update event->count
3442 */
3443 event->pmu->stop(event, PERF_EF_UPDATE);
3444
3445 now = local64_read(&event->count);
3446 delta = now - hwc->freq_count_stamp;
3447 hwc->freq_count_stamp = now;
3448
3449 /*
3450 * restart the event
3451 * reload only if value has changed
3452 * we have stopped the event so tell that
3453 * to perf_adjust_period() to avoid stopping it
3454 * twice.
3455 */
3456 if (delta > 0)
3457 perf_adjust_period(event, period, delta, false);
3458
3459 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3460 next:
3461 perf_pmu_enable(event->pmu);
3462 }
3463
3464 perf_pmu_enable(ctx->pmu);
3465 raw_spin_unlock(&ctx->lock);
3466 }
3467
3468 /*
3469 * Round-robin a context's events:
3470 */
3471 static void rotate_ctx(struct perf_event_context *ctx)
3472 {
3473 /*
3474 * Rotate the first entry last of non-pinned groups. Rotation might be
3475 * disabled by the inheritance code.
3476 */
3477 if (!ctx->rotate_disable)
3478 list_rotate_left(&ctx->flexible_groups);
3479 }
3480
3481 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3482 {
3483 struct perf_event_context *ctx = NULL;
3484 int rotate = 0;
3485
3486 if (cpuctx->ctx.nr_events) {
3487 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3488 rotate = 1;
3489 }
3490
3491 ctx = cpuctx->task_ctx;
3492 if (ctx && ctx->nr_events) {
3493 if (ctx->nr_events != ctx->nr_active)
3494 rotate = 1;
3495 }
3496
3497 if (!rotate)
3498 goto done;
3499
3500 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3501 perf_pmu_disable(cpuctx->ctx.pmu);
3502
3503 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3504 if (ctx)
3505 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3506
3507 rotate_ctx(&cpuctx->ctx);
3508 if (ctx)
3509 rotate_ctx(ctx);
3510
3511 perf_event_sched_in(cpuctx, ctx, current);
3512
3513 perf_pmu_enable(cpuctx->ctx.pmu);
3514 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3515 done:
3516
3517 return rotate;
3518 }
3519
3520 void perf_event_task_tick(void)
3521 {
3522 struct list_head *head = this_cpu_ptr(&active_ctx_list);
3523 struct perf_event_context *ctx, *tmp;
3524 int throttled;
3525
3526 WARN_ON(!irqs_disabled());
3527
3528 __this_cpu_inc(perf_throttled_seq);
3529 throttled = __this_cpu_xchg(perf_throttled_count, 0);
3530 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3531
3532 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3533 perf_adjust_freq_unthr_context(ctx, throttled);
3534 }
3535
3536 static int event_enable_on_exec(struct perf_event *event,
3537 struct perf_event_context *ctx)
3538 {
3539 if (!event->attr.enable_on_exec)
3540 return 0;
3541
3542 event->attr.enable_on_exec = 0;
3543 if (event->state >= PERF_EVENT_STATE_INACTIVE)
3544 return 0;
3545
3546 __perf_event_mark_enabled(event);
3547
3548 return 1;
3549 }
3550
3551 /*
3552 * Enable all of a task's events that have been marked enable-on-exec.
3553 * This expects task == current.
3554 */
3555 static void perf_event_enable_on_exec(int ctxn)
3556 {
3557 struct perf_event_context *ctx, *clone_ctx = NULL;
3558 enum event_type_t event_type = 0;
3559 struct perf_cpu_context *cpuctx;
3560 struct perf_event *event;
3561 unsigned long flags;
3562 int enabled = 0;
3563
3564 local_irq_save(flags);
3565 ctx = current->perf_event_ctxp[ctxn];
3566 if (!ctx || !ctx->nr_events)
3567 goto out;
3568
3569 cpuctx = __get_cpu_context(ctx);
3570 perf_ctx_lock(cpuctx, ctx);
3571 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3572 list_for_each_entry(event, &ctx->event_list, event_entry) {
3573 enabled |= event_enable_on_exec(event, ctx);
3574 event_type |= get_event_type(event);
3575 }
3576
3577 /*
3578 * Unclone and reschedule this context if we enabled any event.
3579 */
3580 if (enabled) {
3581 clone_ctx = unclone_ctx(ctx);
3582 ctx_resched(cpuctx, ctx, event_type);
3583 } else {
3584 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3585 }
3586 perf_ctx_unlock(cpuctx, ctx);
3587
3588 out:
3589 local_irq_restore(flags);
3590
3591 if (clone_ctx)
3592 put_ctx(clone_ctx);
3593 }
3594
3595 struct perf_read_data {
3596 struct perf_event *event;
3597 bool group;
3598 int ret;
3599 };
3600
3601 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
3602 {
3603 u16 local_pkg, event_pkg;
3604
3605 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
3606 int local_cpu = smp_processor_id();
3607
3608 event_pkg = topology_physical_package_id(event_cpu);
3609 local_pkg = topology_physical_package_id(local_cpu);
3610
3611 if (event_pkg == local_pkg)
3612 return local_cpu;
3613 }
3614
3615 return event_cpu;
3616 }
3617
3618 /*
3619 * Cross CPU call to read the hardware event
3620 */
3621 static void __perf_event_read(void *info)
3622 {
3623 struct perf_read_data *data = info;
3624 struct perf_event *sub, *event = data->event;
3625 struct perf_event_context *ctx = event->ctx;
3626 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3627 struct pmu *pmu = event->pmu;
3628
3629 /*
3630 * If this is a task context, we need to check whether it is
3631 * the current task context of this cpu. If not it has been
3632 * scheduled out before the smp call arrived. In that case
3633 * event->count would have been updated to a recent sample
3634 * when the event was scheduled out.
3635 */
3636 if (ctx->task && cpuctx->task_ctx != ctx)
3637 return;
3638
3639 raw_spin_lock(&ctx->lock);
3640 if (ctx->is_active) {
3641 update_context_time(ctx);
3642 update_cgrp_time_from_event(event);
3643 }
3644
3645 update_event_times(event);
3646 if (event->state != PERF_EVENT_STATE_ACTIVE)
3647 goto unlock;
3648
3649 if (!data->group) {
3650 pmu->read(event);
3651 data->ret = 0;
3652 goto unlock;
3653 }
3654
3655 pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3656
3657 pmu->read(event);
3658
3659 list_for_each_entry(sub, &event->sibling_list, group_entry) {
3660 update_event_times(sub);
3661 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3662 /*
3663 * Use sibling's PMU rather than @event's since
3664 * sibling could be on different (eg: software) PMU.
3665 */
3666 sub->pmu->read(sub);
3667 }
3668 }
3669
3670 data->ret = pmu->commit_txn(pmu);
3671
3672 unlock:
3673 raw_spin_unlock(&ctx->lock);
3674 }
3675
3676 static inline u64 perf_event_count(struct perf_event *event)
3677 {
3678 return local64_read(&event->count) + atomic64_read(&event->child_count);
3679 }
3680
3681 /*
3682 * NMI-safe method to read a local event, that is an event that
3683 * is:
3684 * - either for the current task, or for this CPU
3685 * - does not have inherit set, for inherited task events
3686 * will not be local and we cannot read them atomically
3687 * - must not have a pmu::count method
3688 */
3689 int perf_event_read_local(struct perf_event *event, u64 *value)
3690 {
3691 unsigned long flags;
3692 int ret = 0;
3693
3694 /*
3695 * Disabling interrupts avoids all counter scheduling (context
3696 * switches, timer based rotation and IPIs).
3697 */
3698 local_irq_save(flags);
3699
3700 /*
3701 * It must not be an event with inherit set, we cannot read
3702 * all child counters from atomic context.
3703 */
3704 if (event->attr.inherit) {
3705 ret = -EOPNOTSUPP;
3706 goto out;
3707 }
3708
3709 /* If this is a per-task event, it must be for current */
3710 if ((event->attach_state & PERF_ATTACH_TASK) &&
3711 event->hw.target != current) {
3712 ret = -EINVAL;
3713 goto out;
3714 }
3715
3716 /* If this is a per-CPU event, it must be for this CPU */
3717 if (!(event->attach_state & PERF_ATTACH_TASK) &&
3718 event->cpu != smp_processor_id()) {
3719 ret = -EINVAL;
3720 goto out;
3721 }
3722
3723 /*
3724 * If the event is currently on this CPU, its either a per-task event,
3725 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3726 * oncpu == -1).
3727 */
3728 if (event->oncpu == smp_processor_id())
3729 event->pmu->read(event);
3730
3731 *value = local64_read(&event->count);
3732 out:
3733 local_irq_restore(flags);
3734
3735 return ret;
3736 }
3737
3738 static int perf_event_read(struct perf_event *event, bool group)
3739 {
3740 int event_cpu, ret = 0;
3741
3742 /*
3743 * If event is enabled and currently active on a CPU, update the
3744 * value in the event structure:
3745 */
3746 if (event->state == PERF_EVENT_STATE_ACTIVE) {
3747 struct perf_read_data data = {
3748 .event = event,
3749 .group = group,
3750 .ret = 0,
3751 };
3752
3753 event_cpu = READ_ONCE(event->oncpu);
3754 if ((unsigned)event_cpu >= nr_cpu_ids)
3755 return 0;
3756
3757 preempt_disable();
3758 event_cpu = __perf_event_read_cpu(event, event_cpu);
3759
3760 /*
3761 * Purposely ignore the smp_call_function_single() return
3762 * value.
3763 *
3764 * If event_cpu isn't a valid CPU it means the event got
3765 * scheduled out and that will have updated the event count.
3766 *
3767 * Therefore, either way, we'll have an up-to-date event count
3768 * after this.
3769 */
3770 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
3771 preempt_enable();
3772 ret = data.ret;
3773 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
3774 struct perf_event_context *ctx = event->ctx;
3775 unsigned long flags;
3776
3777 raw_spin_lock_irqsave(&ctx->lock, flags);
3778 /*
3779 * may read while context is not active
3780 * (e.g., thread is blocked), in that case
3781 * we cannot update context time
3782 */
3783 if (ctx->is_active) {
3784 update_context_time(ctx);
3785 update_cgrp_time_from_event(event);
3786 }
3787 if (group)
3788 update_group_times(event);
3789 else
3790 update_event_times(event);
3791 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3792 }
3793
3794 return ret;
3795 }
3796
3797 /*
3798 * Initialize the perf_event context in a task_struct:
3799 */
3800 static void __perf_event_init_context(struct perf_event_context *ctx)
3801 {
3802 raw_spin_lock_init(&ctx->lock);
3803 mutex_init(&ctx->mutex);
3804 INIT_LIST_HEAD(&ctx->active_ctx_list);
3805 INIT_LIST_HEAD(&ctx->pinned_groups);
3806 INIT_LIST_HEAD(&ctx->flexible_groups);
3807 INIT_LIST_HEAD(&ctx->event_list);
3808 atomic_set(&ctx->refcount, 1);
3809 }
3810
3811 static struct perf_event_context *
3812 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3813 {
3814 struct perf_event_context *ctx;
3815
3816 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3817 if (!ctx)
3818 return NULL;
3819
3820 __perf_event_init_context(ctx);
3821 if (task) {
3822 ctx->task = task;
3823 get_task_struct(task);
3824 }
3825 ctx->pmu = pmu;
3826
3827 return ctx;
3828 }
3829
3830 static struct task_struct *
3831 find_lively_task_by_vpid(pid_t vpid)
3832 {
3833 struct task_struct *task;
3834
3835 rcu_read_lock();
3836 if (!vpid)
3837 task = current;
3838 else
3839 task = find_task_by_vpid(vpid);
3840 if (task)
3841 get_task_struct(task);
3842 rcu_read_unlock();
3843
3844 if (!task)
3845 return ERR_PTR(-ESRCH);
3846
3847 return task;
3848 }
3849
3850 /*
3851 * Returns a matching context with refcount and pincount.
3852 */
3853 static struct perf_event_context *
3854 find_get_context(struct pmu *pmu, struct task_struct *task,
3855 struct perf_event *event)
3856 {
3857 struct perf_event_context *ctx, *clone_ctx = NULL;
3858 struct perf_cpu_context *cpuctx;
3859 void *task_ctx_data = NULL;
3860 unsigned long flags;
3861 int ctxn, err;
3862 int cpu = event->cpu;
3863
3864 if (!task) {
3865 /* Must be root to operate on a CPU event: */
3866 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3867 return ERR_PTR(-EACCES);
3868
3869 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3870 ctx = &cpuctx->ctx;
3871 get_ctx(ctx);
3872 ++ctx->pin_count;
3873
3874 return ctx;
3875 }
3876
3877 err = -EINVAL;
3878 ctxn = pmu->task_ctx_nr;
3879 if (ctxn < 0)
3880 goto errout;
3881
3882 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3883 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3884 if (!task_ctx_data) {
3885 err = -ENOMEM;
3886 goto errout;
3887 }
3888 }
3889
3890 retry:
3891 ctx = perf_lock_task_context(task, ctxn, &flags);
3892 if (ctx) {
3893 clone_ctx = unclone_ctx(ctx);
3894 ++ctx->pin_count;
3895
3896 if (task_ctx_data && !ctx->task_ctx_data) {
3897 ctx->task_ctx_data = task_ctx_data;
3898 task_ctx_data = NULL;
3899 }
3900 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3901
3902 if (clone_ctx)
3903 put_ctx(clone_ctx);
3904 } else {
3905 ctx = alloc_perf_context(pmu, task);
3906 err = -ENOMEM;
3907 if (!ctx)
3908 goto errout;
3909
3910 if (task_ctx_data) {
3911 ctx->task_ctx_data = task_ctx_data;
3912 task_ctx_data = NULL;
3913 }
3914
3915 err = 0;
3916 mutex_lock(&task->perf_event_mutex);
3917 /*
3918 * If it has already passed perf_event_exit_task().
3919 * we must see PF_EXITING, it takes this mutex too.
3920 */
3921 if (task->flags & PF_EXITING)
3922 err = -ESRCH;
3923 else if (task->perf_event_ctxp[ctxn])
3924 err = -EAGAIN;
3925 else {
3926 get_ctx(ctx);
3927 ++ctx->pin_count;
3928 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3929 }
3930 mutex_unlock(&task->perf_event_mutex);
3931
3932 if (unlikely(err)) {
3933 put_ctx(ctx);
3934
3935 if (err == -EAGAIN)
3936 goto retry;
3937 goto errout;
3938 }
3939 }
3940
3941 kfree(task_ctx_data);
3942 return ctx;
3943
3944 errout:
3945 kfree(task_ctx_data);
3946 return ERR_PTR(err);
3947 }
3948
3949 static void perf_event_free_filter(struct perf_event *event);
3950 static void perf_event_free_bpf_prog(struct perf_event *event);
3951
3952 static void free_event_rcu(struct rcu_head *head)
3953 {
3954 struct perf_event *event;
3955
3956 event = container_of(head, struct perf_event, rcu_head);
3957 if (event->ns)
3958 put_pid_ns(event->ns);
3959 perf_event_free_filter(event);
3960 kfree(event);
3961 }
3962
3963 static void ring_buffer_attach(struct perf_event *event,
3964 struct ring_buffer *rb);
3965
3966 static void detach_sb_event(struct perf_event *event)
3967 {
3968 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
3969
3970 raw_spin_lock(&pel->lock);
3971 list_del_rcu(&event->sb_list);
3972 raw_spin_unlock(&pel->lock);
3973 }
3974
3975 static bool is_sb_event(struct perf_event *event)
3976 {
3977 struct perf_event_attr *attr = &event->attr;
3978
3979 if (event->parent)
3980 return false;
3981
3982 if (event->attach_state & PERF_ATTACH_TASK)
3983 return false;
3984
3985 if (attr->mmap || attr->mmap_data || attr->mmap2 ||
3986 attr->comm || attr->comm_exec ||
3987 attr->task ||
3988 attr->context_switch)
3989 return true;
3990 return false;
3991 }
3992
3993 static void unaccount_pmu_sb_event(struct perf_event *event)
3994 {
3995 if (is_sb_event(event))
3996 detach_sb_event(event);
3997 }
3998
3999 static void unaccount_event_cpu(struct perf_event *event, int cpu)
4000 {
4001 if (event->parent)
4002 return;
4003
4004 if (is_cgroup_event(event))
4005 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4006 }
4007
4008 #ifdef CONFIG_NO_HZ_FULL
4009 static DEFINE_SPINLOCK(nr_freq_lock);
4010 #endif
4011
4012 static void unaccount_freq_event_nohz(void)
4013 {
4014 #ifdef CONFIG_NO_HZ_FULL
4015 spin_lock(&nr_freq_lock);
4016 if (atomic_dec_and_test(&nr_freq_events))
4017 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4018 spin_unlock(&nr_freq_lock);
4019 #endif
4020 }
4021
4022 static void unaccount_freq_event(void)
4023 {
4024 if (tick_nohz_full_enabled())
4025 unaccount_freq_event_nohz();
4026 else
4027 atomic_dec(&nr_freq_events);
4028 }
4029
4030 static void unaccount_event(struct perf_event *event)
4031 {
4032 bool dec = false;
4033
4034 if (event->parent)
4035 return;
4036
4037 if (event->attach_state & PERF_ATTACH_TASK)
4038 dec = true;
4039 if (event->attr.mmap || event->attr.mmap_data)
4040 atomic_dec(&nr_mmap_events);
4041 if (event->attr.comm)
4042 atomic_dec(&nr_comm_events);
4043 if (event->attr.namespaces)
4044 atomic_dec(&nr_namespaces_events);
4045 if (event->attr.task)
4046 atomic_dec(&nr_task_events);
4047 if (event->attr.freq)
4048 unaccount_freq_event();
4049 if (event->attr.context_switch) {
4050 dec = true;
4051 atomic_dec(&nr_switch_events);
4052 }
4053 if (is_cgroup_event(event))
4054 dec = true;
4055 if (has_branch_stack(event))
4056 dec = true;
4057
4058 if (dec) {
4059 if (!atomic_add_unless(&perf_sched_count, -1, 1))
4060 schedule_delayed_work(&perf_sched_work, HZ);
4061 }
4062
4063 unaccount_event_cpu(event, event->cpu);
4064
4065 unaccount_pmu_sb_event(event);
4066 }
4067
4068 static void perf_sched_delayed(struct work_struct *work)
4069 {
4070 mutex_lock(&perf_sched_mutex);
4071 if (atomic_dec_and_test(&perf_sched_count))
4072 static_branch_disable(&perf_sched_events);
4073 mutex_unlock(&perf_sched_mutex);
4074 }
4075
4076 /*
4077 * The following implement mutual exclusion of events on "exclusive" pmus
4078 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4079 * at a time, so we disallow creating events that might conflict, namely:
4080 *
4081 * 1) cpu-wide events in the presence of per-task events,
4082 * 2) per-task events in the presence of cpu-wide events,
4083 * 3) two matching events on the same context.
4084 *
4085 * The former two cases are handled in the allocation path (perf_event_alloc(),
4086 * _free_event()), the latter -- before the first perf_install_in_context().
4087 */
4088 static int exclusive_event_init(struct perf_event *event)
4089 {
4090 struct pmu *pmu = event->pmu;
4091
4092 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4093 return 0;
4094
4095 /*
4096 * Prevent co-existence of per-task and cpu-wide events on the
4097 * same exclusive pmu.
4098 *
4099 * Negative pmu::exclusive_cnt means there are cpu-wide
4100 * events on this "exclusive" pmu, positive means there are
4101 * per-task events.
4102 *
4103 * Since this is called in perf_event_alloc() path, event::ctx
4104 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4105 * to mean "per-task event", because unlike other attach states it
4106 * never gets cleared.
4107 */
4108 if (event->attach_state & PERF_ATTACH_TASK) {
4109 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4110 return -EBUSY;
4111 } else {
4112 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4113 return -EBUSY;
4114 }
4115
4116 return 0;
4117 }
4118
4119 static void exclusive_event_destroy(struct perf_event *event)
4120 {
4121 struct pmu *pmu = event->pmu;
4122
4123 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4124 return;
4125
4126 /* see comment in exclusive_event_init() */
4127 if (event->attach_state & PERF_ATTACH_TASK)
4128 atomic_dec(&pmu->exclusive_cnt);
4129 else
4130 atomic_inc(&pmu->exclusive_cnt);
4131 }
4132
4133 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4134 {
4135 if ((e1->pmu == e2->pmu) &&
4136 (e1->cpu == e2->cpu ||
4137 e1->cpu == -1 ||
4138 e2->cpu == -1))
4139 return true;
4140 return false;
4141 }
4142
4143 /* Called under the same ctx::mutex as perf_install_in_context() */
4144 static bool exclusive_event_installable(struct perf_event *event,
4145 struct perf_event_context *ctx)
4146 {
4147 struct perf_event *iter_event;
4148 struct pmu *pmu = event->pmu;
4149
4150 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4151 return true;
4152
4153 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4154 if (exclusive_event_match(iter_event, event))
4155 return false;
4156 }
4157
4158 return true;
4159 }
4160
4161 static void perf_addr_filters_splice(struct perf_event *event,
4162 struct list_head *head);
4163
4164 static void _free_event(struct perf_event *event)
4165 {
4166 irq_work_sync(&event->pending);
4167
4168 unaccount_event(event);
4169
4170 if (event->rb) {
4171 /*
4172 * Can happen when we close an event with re-directed output.
4173 *
4174 * Since we have a 0 refcount, perf_mmap_close() will skip
4175 * over us; possibly making our ring_buffer_put() the last.
4176 */
4177 mutex_lock(&event->mmap_mutex);
4178 ring_buffer_attach(event, NULL);
4179 mutex_unlock(&event->mmap_mutex);
4180 }
4181
4182 if (is_cgroup_event(event))
4183 perf_detach_cgroup(event);
4184
4185 if (!event->parent) {
4186 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4187 put_callchain_buffers();
4188 }
4189
4190 perf_event_free_bpf_prog(event);
4191 perf_addr_filters_splice(event, NULL);
4192 kfree(event->addr_filters_offs);
4193
4194 if (event->destroy)
4195 event->destroy(event);
4196
4197 if (event->ctx)
4198 put_ctx(event->ctx);
4199
4200 exclusive_event_destroy(event);
4201 module_put(event->pmu->module);
4202
4203 call_rcu(&event->rcu_head, free_event_rcu);
4204 }
4205
4206 /*
4207 * Used to free events which have a known refcount of 1, such as in error paths
4208 * where the event isn't exposed yet and inherited events.
4209 */
4210 static void free_event(struct perf_event *event)
4211 {
4212 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4213 "unexpected event refcount: %ld; ptr=%p\n",
4214 atomic_long_read(&event->refcount), event)) {
4215 /* leak to avoid use-after-free */
4216 return;
4217 }
4218
4219 _free_event(event);
4220 }
4221
4222 /*
4223 * Remove user event from the owner task.
4224 */
4225 static void perf_remove_from_owner(struct perf_event *event)
4226 {
4227 struct task_struct *owner;
4228
4229 rcu_read_lock();
4230 /*
4231 * Matches the smp_store_release() in perf_event_exit_task(). If we
4232 * observe !owner it means the list deletion is complete and we can
4233 * indeed free this event, otherwise we need to serialize on
4234 * owner->perf_event_mutex.
4235 */
4236 owner = READ_ONCE(event->owner);
4237 if (owner) {
4238 /*
4239 * Since delayed_put_task_struct() also drops the last
4240 * task reference we can safely take a new reference
4241 * while holding the rcu_read_lock().
4242 */
4243 get_task_struct(owner);
4244 }
4245 rcu_read_unlock();
4246
4247 if (owner) {
4248 /*
4249 * If we're here through perf_event_exit_task() we're already
4250 * holding ctx->mutex which would be an inversion wrt. the
4251 * normal lock order.
4252 *
4253 * However we can safely take this lock because its the child
4254 * ctx->mutex.
4255 */
4256 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4257
4258 /*
4259 * We have to re-check the event->owner field, if it is cleared
4260 * we raced with perf_event_exit_task(), acquiring the mutex
4261 * ensured they're done, and we can proceed with freeing the
4262 * event.
4263 */
4264 if (event->owner) {
4265 list_del_init(&event->owner_entry);
4266 smp_store_release(&event->owner, NULL);
4267 }
4268 mutex_unlock(&owner->perf_event_mutex);
4269 put_task_struct(owner);
4270 }
4271 }
4272
4273 static void put_event(struct perf_event *event)
4274 {
4275 if (!atomic_long_dec_and_test(&event->refcount))
4276 return;
4277
4278 _free_event(event);
4279 }
4280
4281 /*
4282 * Kill an event dead; while event:refcount will preserve the event
4283 * object, it will not preserve its functionality. Once the last 'user'
4284 * gives up the object, we'll destroy the thing.
4285 */
4286 int perf_event_release_kernel(struct perf_event *event)
4287 {
4288 struct perf_event_context *ctx = event->ctx;
4289 struct perf_event *child, *tmp;
4290
4291 /*
4292 * If we got here through err_file: fput(event_file); we will not have
4293 * attached to a context yet.
4294 */
4295 if (!ctx) {
4296 WARN_ON_ONCE(event->attach_state &
4297 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4298 goto no_ctx;
4299 }
4300
4301 if (!is_kernel_event(event))
4302 perf_remove_from_owner(event);
4303
4304 ctx = perf_event_ctx_lock(event);
4305 WARN_ON_ONCE(ctx->parent_ctx);
4306 perf_remove_from_context(event, DETACH_GROUP);
4307
4308 raw_spin_lock_irq(&ctx->lock);
4309 /*
4310 * Mark this event as STATE_DEAD, there is no external reference to it
4311 * anymore.
4312 *
4313 * Anybody acquiring event->child_mutex after the below loop _must_
4314 * also see this, most importantly inherit_event() which will avoid
4315 * placing more children on the list.
4316 *
4317 * Thus this guarantees that we will in fact observe and kill _ALL_
4318 * child events.
4319 */
4320 event->state = PERF_EVENT_STATE_DEAD;
4321 raw_spin_unlock_irq(&ctx->lock);
4322
4323 perf_event_ctx_unlock(event, ctx);
4324
4325 again:
4326 mutex_lock(&event->child_mutex);
4327 list_for_each_entry(child, &event->child_list, child_list) {
4328
4329 /*
4330 * Cannot change, child events are not migrated, see the
4331 * comment with perf_event_ctx_lock_nested().
4332 */
4333 ctx = READ_ONCE(child->ctx);
4334 /*
4335 * Since child_mutex nests inside ctx::mutex, we must jump
4336 * through hoops. We start by grabbing a reference on the ctx.
4337 *
4338 * Since the event cannot get freed while we hold the
4339 * child_mutex, the context must also exist and have a !0
4340 * reference count.
4341 */
4342 get_ctx(ctx);
4343
4344 /*
4345 * Now that we have a ctx ref, we can drop child_mutex, and
4346 * acquire ctx::mutex without fear of it going away. Then we
4347 * can re-acquire child_mutex.
4348 */
4349 mutex_unlock(&event->child_mutex);
4350 mutex_lock(&ctx->mutex);
4351 mutex_lock(&event->child_mutex);
4352
4353 /*
4354 * Now that we hold ctx::mutex and child_mutex, revalidate our
4355 * state, if child is still the first entry, it didn't get freed
4356 * and we can continue doing so.
4357 */
4358 tmp = list_first_entry_or_null(&event->child_list,
4359 struct perf_event, child_list);
4360 if (tmp == child) {
4361 perf_remove_from_context(child, DETACH_GROUP);
4362 list_del(&child->child_list);
4363 free_event(child);
4364 /*
4365 * This matches the refcount bump in inherit_event();
4366 * this can't be the last reference.
4367 */
4368 put_event(event);
4369 }
4370
4371 mutex_unlock(&event->child_mutex);
4372 mutex_unlock(&ctx->mutex);
4373 put_ctx(ctx);
4374 goto again;
4375 }
4376 mutex_unlock(&event->child_mutex);
4377
4378 no_ctx:
4379 put_event(event); /* Must be the 'last' reference */
4380 return 0;
4381 }
4382 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4383
4384 /*
4385 * Called when the last reference to the file is gone.
4386 */
4387 static int perf_release(struct inode *inode, struct file *file)
4388 {
4389 perf_event_release_kernel(file->private_data);
4390 return 0;
4391 }
4392
4393 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4394 {
4395 struct perf_event *child;
4396 u64 total = 0;
4397
4398 *enabled = 0;
4399 *running = 0;
4400
4401 mutex_lock(&event->child_mutex);
4402
4403 (void)perf_event_read(event, false);
4404 total += perf_event_count(event);
4405
4406 *enabled += event->total_time_enabled +
4407 atomic64_read(&event->child_total_time_enabled);
4408 *running += event->total_time_running +
4409 atomic64_read(&event->child_total_time_running);
4410
4411 list_for_each_entry(child, &event->child_list, child_list) {
4412 (void)perf_event_read(child, false);
4413 total += perf_event_count(child);
4414 *enabled += child->total_time_enabled;
4415 *running += child->total_time_running;
4416 }
4417 mutex_unlock(&event->child_mutex);
4418
4419 return total;
4420 }
4421 EXPORT_SYMBOL_GPL(perf_event_read_value);
4422
4423 static int __perf_read_group_add(struct perf_event *leader,
4424 u64 read_format, u64 *values)
4425 {
4426 struct perf_event_context *ctx = leader->ctx;
4427 struct perf_event *sub;
4428 unsigned long flags;
4429 int n = 1; /* skip @nr */
4430 int ret;
4431
4432 ret = perf_event_read(leader, true);
4433 if (ret)
4434 return ret;
4435
4436 /*
4437 * Since we co-schedule groups, {enabled,running} times of siblings
4438 * will be identical to those of the leader, so we only publish one
4439 * set.
4440 */
4441 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4442 values[n++] += leader->total_time_enabled +
4443 atomic64_read(&leader->child_total_time_enabled);
4444 }
4445
4446 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4447 values[n++] += leader->total_time_running +
4448 atomic64_read(&leader->child_total_time_running);
4449 }
4450
4451 /*
4452 * Write {count,id} tuples for every sibling.
4453 */
4454 values[n++] += perf_event_count(leader);
4455 if (read_format & PERF_FORMAT_ID)
4456 values[n++] = primary_event_id(leader);
4457
4458 raw_spin_lock_irqsave(&ctx->lock, flags);
4459
4460 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4461 values[n++] += perf_event_count(sub);
4462 if (read_format & PERF_FORMAT_ID)
4463 values[n++] = primary_event_id(sub);
4464 }
4465
4466 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4467 return 0;
4468 }
4469
4470 static int perf_read_group(struct perf_event *event,
4471 u64 read_format, char __user *buf)
4472 {
4473 struct perf_event *leader = event->group_leader, *child;
4474 struct perf_event_context *ctx = leader->ctx;
4475 int ret;
4476 u64 *values;
4477
4478 lockdep_assert_held(&ctx->mutex);
4479
4480 values = kzalloc(event->read_size, GFP_KERNEL);
4481 if (!values)
4482 return -ENOMEM;
4483
4484 values[0] = 1 + leader->nr_siblings;
4485
4486 /*
4487 * By locking the child_mutex of the leader we effectively
4488 * lock the child list of all siblings.. XXX explain how.
4489 */
4490 mutex_lock(&leader->child_mutex);
4491
4492 ret = __perf_read_group_add(leader, read_format, values);
4493 if (ret)
4494 goto unlock;
4495
4496 list_for_each_entry(child, &leader->child_list, child_list) {
4497 ret = __perf_read_group_add(child, read_format, values);
4498 if (ret)
4499 goto unlock;
4500 }
4501
4502 mutex_unlock(&leader->child_mutex);
4503
4504 ret = event->read_size;
4505 if (copy_to_user(buf, values, event->read_size))
4506 ret = -EFAULT;
4507 goto out;
4508
4509 unlock:
4510 mutex_unlock(&leader->child_mutex);
4511 out:
4512 kfree(values);
4513 return ret;
4514 }
4515
4516 static int perf_read_one(struct perf_event *event,
4517 u64 read_format, char __user *buf)
4518 {
4519 u64 enabled, running;
4520 u64 values[4];
4521 int n = 0;
4522
4523 values[n++] = perf_event_read_value(event, &enabled, &running);
4524 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4525 values[n++] = enabled;
4526 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4527 values[n++] = running;
4528 if (read_format & PERF_FORMAT_ID)
4529 values[n++] = primary_event_id(event);
4530
4531 if (copy_to_user(buf, values, n * sizeof(u64)))
4532 return -EFAULT;
4533
4534 return n * sizeof(u64);
4535 }
4536
4537 static bool is_event_hup(struct perf_event *event)
4538 {
4539 bool no_children;
4540
4541 if (event->state > PERF_EVENT_STATE_EXIT)
4542 return false;
4543
4544 mutex_lock(&event->child_mutex);
4545 no_children = list_empty(&event->child_list);
4546 mutex_unlock(&event->child_mutex);
4547 return no_children;
4548 }
4549
4550 /*
4551 * Read the performance event - simple non blocking version for now
4552 */
4553 static ssize_t
4554 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4555 {
4556 u64 read_format = event->attr.read_format;
4557 int ret;
4558
4559 /*
4560 * Return end-of-file for a read on a event that is in
4561 * error state (i.e. because it was pinned but it couldn't be
4562 * scheduled on to the CPU at some point).
4563 */
4564 if (event->state == PERF_EVENT_STATE_ERROR)
4565 return 0;
4566
4567 if (count < event->read_size)
4568 return -ENOSPC;
4569
4570 WARN_ON_ONCE(event->ctx->parent_ctx);
4571 if (read_format & PERF_FORMAT_GROUP)
4572 ret = perf_read_group(event, read_format, buf);
4573 else
4574 ret = perf_read_one(event, read_format, buf);
4575
4576 return ret;
4577 }
4578
4579 static ssize_t
4580 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4581 {
4582 struct perf_event *event = file->private_data;
4583 struct perf_event_context *ctx;
4584 int ret;
4585
4586 ctx = perf_event_ctx_lock(event);
4587 ret = __perf_read(event, buf, count);
4588 perf_event_ctx_unlock(event, ctx);
4589
4590 return ret;
4591 }
4592
4593 static unsigned int perf_poll(struct file *file, poll_table *wait)
4594 {
4595 struct perf_event *event = file->private_data;
4596 struct ring_buffer *rb;
4597 unsigned int events = POLLHUP;
4598
4599 poll_wait(file, &event->waitq, wait);
4600
4601 if (is_event_hup(event))
4602 return events;
4603
4604 /*
4605 * Pin the event->rb by taking event->mmap_mutex; otherwise
4606 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4607 */
4608 mutex_lock(&event->mmap_mutex);
4609 rb = event->rb;
4610 if (rb)
4611 events = atomic_xchg(&rb->poll, 0);
4612 mutex_unlock(&event->mmap_mutex);
4613 return events;
4614 }
4615
4616 static void _perf_event_reset(struct perf_event *event)
4617 {
4618 (void)perf_event_read(event, false);
4619 local64_set(&event->count, 0);
4620 perf_event_update_userpage(event);
4621 }
4622
4623 /*
4624 * Holding the top-level event's child_mutex means that any
4625 * descendant process that has inherited this event will block
4626 * in perf_event_exit_event() if it goes to exit, thus satisfying the
4627 * task existence requirements of perf_event_enable/disable.
4628 */
4629 static void perf_event_for_each_child(struct perf_event *event,
4630 void (*func)(struct perf_event *))
4631 {
4632 struct perf_event *child;
4633
4634 WARN_ON_ONCE(event->ctx->parent_ctx);
4635
4636 mutex_lock(&event->child_mutex);
4637 func(event);
4638 list_for_each_entry(child, &event->child_list, child_list)
4639 func(child);
4640 mutex_unlock(&event->child_mutex);
4641 }
4642
4643 static void perf_event_for_each(struct perf_event *event,
4644 void (*func)(struct perf_event *))
4645 {
4646 struct perf_event_context *ctx = event->ctx;
4647 struct perf_event *sibling;
4648
4649 lockdep_assert_held(&ctx->mutex);
4650
4651 event = event->group_leader;
4652
4653 perf_event_for_each_child(event, func);
4654 list_for_each_entry(sibling, &event->sibling_list, group_entry)
4655 perf_event_for_each_child(sibling, func);
4656 }
4657
4658 static void __perf_event_period(struct perf_event *event,
4659 struct perf_cpu_context *cpuctx,
4660 struct perf_event_context *ctx,
4661 void *info)
4662 {
4663 u64 value = *((u64 *)info);
4664 bool active;
4665
4666 if (event->attr.freq) {
4667 event->attr.sample_freq = value;
4668 } else {
4669 event->attr.sample_period = value;
4670 event->hw.sample_period = value;
4671 }
4672
4673 active = (event->state == PERF_EVENT_STATE_ACTIVE);
4674 if (active) {
4675 perf_pmu_disable(ctx->pmu);
4676 /*
4677 * We could be throttled; unthrottle now to avoid the tick
4678 * trying to unthrottle while we already re-started the event.
4679 */
4680 if (event->hw.interrupts == MAX_INTERRUPTS) {
4681 event->hw.interrupts = 0;
4682 perf_log_throttle(event, 1);
4683 }
4684 event->pmu->stop(event, PERF_EF_UPDATE);
4685 }
4686
4687 local64_set(&event->hw.period_left, 0);
4688
4689 if (active) {
4690 event->pmu->start(event, PERF_EF_RELOAD);
4691 perf_pmu_enable(ctx->pmu);
4692 }
4693 }
4694
4695 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4696 {
4697 u64 value;
4698
4699 if (!is_sampling_event(event))
4700 return -EINVAL;
4701
4702 if (copy_from_user(&value, arg, sizeof(value)))
4703 return -EFAULT;
4704
4705 if (!value)
4706 return -EINVAL;
4707
4708 if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4709 return -EINVAL;
4710
4711 event_function_call(event, __perf_event_period, &value);
4712
4713 return 0;
4714 }
4715
4716 static const struct file_operations perf_fops;
4717
4718 static inline int perf_fget_light(int fd, struct fd *p)
4719 {
4720 struct fd f = fdget(fd);
4721 if (!f.file)
4722 return -EBADF;
4723
4724 if (f.file->f_op != &perf_fops) {
4725 fdput(f);
4726 return -EBADF;
4727 }
4728 *p = f;
4729 return 0;
4730 }
4731
4732 static int perf_event_set_output(struct perf_event *event,
4733 struct perf_event *output_event);
4734 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4735 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4736
4737 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4738 {
4739 void (*func)(struct perf_event *);
4740 u32 flags = arg;
4741
4742 switch (cmd) {
4743 case PERF_EVENT_IOC_ENABLE:
4744 func = _perf_event_enable;
4745 break;
4746 case PERF_EVENT_IOC_DISABLE:
4747 func = _perf_event_disable;
4748 break;
4749 case PERF_EVENT_IOC_RESET:
4750 func = _perf_event_reset;
4751 break;
4752
4753 case PERF_EVENT_IOC_REFRESH:
4754 return _perf_event_refresh(event, arg);
4755
4756 case PERF_EVENT_IOC_PERIOD:
4757 return perf_event_period(event, (u64 __user *)arg);
4758
4759 case PERF_EVENT_IOC_ID:
4760 {
4761 u64 id = primary_event_id(event);
4762
4763 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4764 return -EFAULT;
4765 return 0;
4766 }
4767
4768 case PERF_EVENT_IOC_SET_OUTPUT:
4769 {
4770 int ret;
4771 if (arg != -1) {
4772 struct perf_event *output_event;
4773 struct fd output;
4774 ret = perf_fget_light(arg, &output);
4775 if (ret)
4776 return ret;
4777 output_event = output.file->private_data;
4778 ret = perf_event_set_output(event, output_event);
4779 fdput(output);
4780 } else {
4781 ret = perf_event_set_output(event, NULL);
4782 }
4783 return ret;
4784 }
4785
4786 case PERF_EVENT_IOC_SET_FILTER:
4787 return perf_event_set_filter(event, (void __user *)arg);
4788
4789 case PERF_EVENT_IOC_SET_BPF:
4790 return perf_event_set_bpf_prog(event, arg);
4791
4792 case PERF_EVENT_IOC_PAUSE_OUTPUT: {
4793 struct ring_buffer *rb;
4794
4795 rcu_read_lock();
4796 rb = rcu_dereference(event->rb);
4797 if (!rb || !rb->nr_pages) {
4798 rcu_read_unlock();
4799 return -EINVAL;
4800 }
4801 rb_toggle_paused(rb, !!arg);
4802 rcu_read_unlock();
4803 return 0;
4804 }
4805 default:
4806 return -ENOTTY;
4807 }
4808
4809 if (flags & PERF_IOC_FLAG_GROUP)
4810 perf_event_for_each(event, func);
4811 else
4812 perf_event_for_each_child(event, func);
4813
4814 return 0;
4815 }
4816
4817 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4818 {
4819 struct perf_event *event = file->private_data;
4820 struct perf_event_context *ctx;
4821 long ret;
4822
4823 ctx = perf_event_ctx_lock(event);
4824 ret = _perf_ioctl(event, cmd, arg);
4825 perf_event_ctx_unlock(event, ctx);
4826
4827 return ret;
4828 }
4829
4830 #ifdef CONFIG_COMPAT
4831 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4832 unsigned long arg)
4833 {
4834 switch (_IOC_NR(cmd)) {
4835 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4836 case _IOC_NR(PERF_EVENT_IOC_ID):
4837 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4838 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4839 cmd &= ~IOCSIZE_MASK;
4840 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4841 }
4842 break;
4843 }
4844 return perf_ioctl(file, cmd, arg);
4845 }
4846 #else
4847 # define perf_compat_ioctl NULL
4848 #endif
4849
4850 int perf_event_task_enable(void)
4851 {
4852 struct perf_event_context *ctx;
4853 struct perf_event *event;
4854
4855 mutex_lock(&current->perf_event_mutex);
4856 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4857 ctx = perf_event_ctx_lock(event);
4858 perf_event_for_each_child(event, _perf_event_enable);
4859 perf_event_ctx_unlock(event, ctx);
4860 }
4861 mutex_unlock(&current->perf_event_mutex);
4862
4863 return 0;
4864 }
4865
4866 int perf_event_task_disable(void)
4867 {
4868 struct perf_event_context *ctx;
4869 struct perf_event *event;
4870
4871 mutex_lock(&current->perf_event_mutex);
4872 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4873 ctx = perf_event_ctx_lock(event);
4874 perf_event_for_each_child(event, _perf_event_disable);
4875 perf_event_ctx_unlock(event, ctx);
4876 }
4877 mutex_unlock(&current->perf_event_mutex);
4878
4879 return 0;
4880 }
4881
4882 static int perf_event_index(struct perf_event *event)
4883 {
4884 if (event->hw.state & PERF_HES_STOPPED)
4885 return 0;
4886
4887 if (event->state != PERF_EVENT_STATE_ACTIVE)
4888 return 0;
4889
4890 return event->pmu->event_idx(event);
4891 }
4892
4893 static void calc_timer_values(struct perf_event *event,
4894 u64 *now,
4895 u64 *enabled,
4896 u64 *running)
4897 {
4898 u64 ctx_time;
4899
4900 *now = perf_clock();
4901 ctx_time = event->shadow_ctx_time + *now;
4902 *enabled = ctx_time - event->tstamp_enabled;
4903 *running = ctx_time - event->tstamp_running;
4904 }
4905
4906 static void perf_event_init_userpage(struct perf_event *event)
4907 {
4908 struct perf_event_mmap_page *userpg;
4909 struct ring_buffer *rb;
4910
4911 rcu_read_lock();
4912 rb = rcu_dereference(event->rb);
4913 if (!rb)
4914 goto unlock;
4915
4916 userpg = rb->user_page;
4917
4918 /* Allow new userspace to detect that bit 0 is deprecated */
4919 userpg->cap_bit0_is_deprecated = 1;
4920 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4921 userpg->data_offset = PAGE_SIZE;
4922 userpg->data_size = perf_data_size(rb);
4923
4924 unlock:
4925 rcu_read_unlock();
4926 }
4927
4928 void __weak arch_perf_update_userpage(
4929 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4930 {
4931 }
4932
4933 /*
4934 * Callers need to ensure there can be no nesting of this function, otherwise
4935 * the seqlock logic goes bad. We can not serialize this because the arch
4936 * code calls this from NMI context.
4937 */
4938 void perf_event_update_userpage(struct perf_event *event)
4939 {
4940 struct perf_event_mmap_page *userpg;
4941 struct ring_buffer *rb;
4942 u64 enabled, running, now;
4943
4944 rcu_read_lock();
4945 rb = rcu_dereference(event->rb);
4946 if (!rb)
4947 goto unlock;
4948
4949 /*
4950 * compute total_time_enabled, total_time_running
4951 * based on snapshot values taken when the event
4952 * was last scheduled in.
4953 *
4954 * we cannot simply called update_context_time()
4955 * because of locking issue as we can be called in
4956 * NMI context
4957 */
4958 calc_timer_values(event, &now, &enabled, &running);
4959
4960 userpg = rb->user_page;
4961 /*
4962 * Disable preemption so as to not let the corresponding user-space
4963 * spin too long if we get preempted.
4964 */
4965 preempt_disable();
4966 ++userpg->lock;
4967 barrier();
4968 userpg->index = perf_event_index(event);
4969 userpg->offset = perf_event_count(event);
4970 if (userpg->index)
4971 userpg->offset -= local64_read(&event->hw.prev_count);
4972
4973 userpg->time_enabled = enabled +
4974 atomic64_read(&event->child_total_time_enabled);
4975
4976 userpg->time_running = running +
4977 atomic64_read(&event->child_total_time_running);
4978
4979 arch_perf_update_userpage(event, userpg, now);
4980
4981 barrier();
4982 ++userpg->lock;
4983 preempt_enable();
4984 unlock:
4985 rcu_read_unlock();
4986 }
4987
4988 static int perf_mmap_fault(struct vm_fault *vmf)
4989 {
4990 struct perf_event *event = vmf->vma->vm_file->private_data;
4991 struct ring_buffer *rb;
4992 int ret = VM_FAULT_SIGBUS;
4993
4994 if (vmf->flags & FAULT_FLAG_MKWRITE) {
4995 if (vmf->pgoff == 0)
4996 ret = 0;
4997 return ret;
4998 }
4999
5000 rcu_read_lock();
5001 rb = rcu_dereference(event->rb);
5002 if (!rb)
5003 goto unlock;
5004
5005 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5006 goto unlock;
5007
5008 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
5009 if (!vmf->page)
5010 goto unlock;
5011
5012 get_page(vmf->page);
5013 vmf->page->mapping = vmf->vma->vm_file->f_mapping;
5014 vmf->page->index = vmf->pgoff;
5015
5016 ret = 0;
5017 unlock:
5018 rcu_read_unlock();
5019
5020 return ret;
5021 }
5022
5023 static void ring_buffer_attach(struct perf_event *event,
5024 struct ring_buffer *rb)
5025 {
5026 struct ring_buffer *old_rb = NULL;
5027 unsigned long flags;
5028
5029 if (event->rb) {
5030 /*
5031 * Should be impossible, we set this when removing
5032 * event->rb_entry and wait/clear when adding event->rb_entry.
5033 */
5034 WARN_ON_ONCE(event->rcu_pending);
5035
5036 old_rb = event->rb;
5037 spin_lock_irqsave(&old_rb->event_lock, flags);
5038 list_del_rcu(&event->rb_entry);
5039 spin_unlock_irqrestore(&old_rb->event_lock, flags);
5040
5041 event->rcu_batches = get_state_synchronize_rcu();
5042 event->rcu_pending = 1;
5043 }
5044
5045 if (rb) {
5046 if (event->rcu_pending) {
5047 cond_synchronize_rcu(event->rcu_batches);
5048 event->rcu_pending = 0;
5049 }
5050
5051 spin_lock_irqsave(&rb->event_lock, flags);
5052 list_add_rcu(&event->rb_entry, &rb->event_list);
5053 spin_unlock_irqrestore(&rb->event_lock, flags);
5054 }
5055
5056 /*
5057 * Avoid racing with perf_mmap_close(AUX): stop the event
5058 * before swizzling the event::rb pointer; if it's getting
5059 * unmapped, its aux_mmap_count will be 0 and it won't
5060 * restart. See the comment in __perf_pmu_output_stop().
5061 *
5062 * Data will inevitably be lost when set_output is done in
5063 * mid-air, but then again, whoever does it like this is
5064 * not in for the data anyway.
5065 */
5066 if (has_aux(event))
5067 perf_event_stop(event, 0);
5068
5069 rcu_assign_pointer(event->rb, rb);
5070
5071 if (old_rb) {
5072 ring_buffer_put(old_rb);
5073 /*
5074 * Since we detached before setting the new rb, so that we
5075 * could attach the new rb, we could have missed a wakeup.
5076 * Provide it now.
5077 */
5078 wake_up_all(&event->waitq);
5079 }
5080 }
5081
5082 static void ring_buffer_wakeup(struct perf_event *event)
5083 {
5084 struct ring_buffer *rb;
5085
5086 rcu_read_lock();
5087 rb = rcu_dereference(event->rb);
5088 if (rb) {
5089 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5090 wake_up_all(&event->waitq);
5091 }
5092 rcu_read_unlock();
5093 }
5094
5095 struct ring_buffer *ring_buffer_get(struct perf_event *event)
5096 {
5097 struct ring_buffer *rb;
5098
5099 rcu_read_lock();
5100 rb = rcu_dereference(event->rb);
5101 if (rb) {
5102 if (!atomic_inc_not_zero(&rb->refcount))
5103 rb = NULL;
5104 }
5105 rcu_read_unlock();
5106
5107 return rb;
5108 }
5109
5110 void ring_buffer_put(struct ring_buffer *rb)
5111 {
5112 if (!atomic_dec_and_test(&rb->refcount))
5113 return;
5114
5115 WARN_ON_ONCE(!list_empty(&rb->event_list));
5116
5117 call_rcu(&rb->rcu_head, rb_free_rcu);
5118 }
5119
5120 static void perf_mmap_open(struct vm_area_struct *vma)
5121 {
5122 struct perf_event *event = vma->vm_file->private_data;
5123
5124 atomic_inc(&event->mmap_count);
5125 atomic_inc(&event->rb->mmap_count);
5126
5127 if (vma->vm_pgoff)
5128 atomic_inc(&event->rb->aux_mmap_count);
5129
5130 if (event->pmu->event_mapped)
5131 event->pmu->event_mapped(event, vma->vm_mm);
5132 }
5133
5134 static void perf_pmu_output_stop(struct perf_event *event);
5135
5136 /*
5137 * A buffer can be mmap()ed multiple times; either directly through the same
5138 * event, or through other events by use of perf_event_set_output().
5139 *
5140 * In order to undo the VM accounting done by perf_mmap() we need to destroy
5141 * the buffer here, where we still have a VM context. This means we need
5142 * to detach all events redirecting to us.
5143 */
5144 static void perf_mmap_close(struct vm_area_struct *vma)
5145 {
5146 struct perf_event *event = vma->vm_file->private_data;
5147
5148 struct ring_buffer *rb = ring_buffer_get(event);
5149 struct user_struct *mmap_user = rb->mmap_user;
5150 int mmap_locked = rb->mmap_locked;
5151 unsigned long size = perf_data_size(rb);
5152
5153 if (event->pmu->event_unmapped)
5154 event->pmu->event_unmapped(event, vma->vm_mm);
5155
5156 /*
5157 * rb->aux_mmap_count will always drop before rb->mmap_count and
5158 * event->mmap_count, so it is ok to use event->mmap_mutex to
5159 * serialize with perf_mmap here.
5160 */
5161 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5162 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
5163 /*
5164 * Stop all AUX events that are writing to this buffer,
5165 * so that we can free its AUX pages and corresponding PMU
5166 * data. Note that after rb::aux_mmap_count dropped to zero,
5167 * they won't start any more (see perf_aux_output_begin()).
5168 */
5169 perf_pmu_output_stop(event);
5170
5171 /* now it's safe to free the pages */
5172 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
5173 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
5174
5175 /* this has to be the last one */
5176 rb_free_aux(rb);
5177 WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
5178
5179 mutex_unlock(&event->mmap_mutex);
5180 }
5181
5182 atomic_dec(&rb->mmap_count);
5183
5184 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5185 goto out_put;
5186
5187 ring_buffer_attach(event, NULL);
5188 mutex_unlock(&event->mmap_mutex);
5189
5190 /* If there's still other mmap()s of this buffer, we're done. */
5191 if (atomic_read(&rb->mmap_count))
5192 goto out_put;
5193
5194 /*
5195 * No other mmap()s, detach from all other events that might redirect
5196 * into the now unreachable buffer. Somewhat complicated by the
5197 * fact that rb::event_lock otherwise nests inside mmap_mutex.
5198 */
5199 again:
5200 rcu_read_lock();
5201 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5202 if (!atomic_long_inc_not_zero(&event->refcount)) {
5203 /*
5204 * This event is en-route to free_event() which will
5205 * detach it and remove it from the list.
5206 */
5207 continue;
5208 }
5209 rcu_read_unlock();
5210
5211 mutex_lock(&event->mmap_mutex);
5212 /*
5213 * Check we didn't race with perf_event_set_output() which can
5214 * swizzle the rb from under us while we were waiting to
5215 * acquire mmap_mutex.
5216 *
5217 * If we find a different rb; ignore this event, a next
5218 * iteration will no longer find it on the list. We have to
5219 * still restart the iteration to make sure we're not now
5220 * iterating the wrong list.
5221 */
5222 if (event->rb == rb)
5223 ring_buffer_attach(event, NULL);
5224
5225 mutex_unlock(&event->mmap_mutex);
5226 put_event(event);
5227
5228 /*
5229 * Restart the iteration; either we're on the wrong list or
5230 * destroyed its integrity by doing a deletion.
5231 */
5232 goto again;
5233 }
5234 rcu_read_unlock();
5235
5236 /*
5237 * It could be there's still a few 0-ref events on the list; they'll
5238 * get cleaned up by free_event() -- they'll also still have their
5239 * ref on the rb and will free it whenever they are done with it.
5240 *
5241 * Aside from that, this buffer is 'fully' detached and unmapped,
5242 * undo the VM accounting.
5243 */
5244
5245 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
5246 vma->vm_mm->pinned_vm -= mmap_locked;
5247 free_uid(mmap_user);
5248
5249 out_put:
5250 ring_buffer_put(rb); /* could be last */
5251 }
5252
5253 static const struct vm_operations_struct perf_mmap_vmops = {
5254 .open = perf_mmap_open,
5255 .close = perf_mmap_close, /* non mergable */
5256 .fault = perf_mmap_fault,
5257 .page_mkwrite = perf_mmap_fault,
5258 };
5259
5260 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5261 {
5262 struct perf_event *event = file->private_data;
5263 unsigned long user_locked, user_lock_limit;
5264 struct user_struct *user = current_user();
5265 unsigned long locked, lock_limit;
5266 struct ring_buffer *rb = NULL;
5267 unsigned long vma_size;
5268 unsigned long nr_pages;
5269 long user_extra = 0, extra = 0;
5270 int ret = 0, flags = 0;
5271
5272 /*
5273 * Don't allow mmap() of inherited per-task counters. This would
5274 * create a performance issue due to all children writing to the
5275 * same rb.
5276 */
5277 if (event->cpu == -1 && event->attr.inherit)
5278 return -EINVAL;
5279
5280 if (!(vma->vm_flags & VM_SHARED))
5281 return -EINVAL;
5282
5283 vma_size = vma->vm_end - vma->vm_start;
5284
5285 if (vma->vm_pgoff == 0) {
5286 nr_pages = (vma_size / PAGE_SIZE) - 1;
5287 } else {
5288 /*
5289 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5290 * mapped, all subsequent mappings should have the same size
5291 * and offset. Must be above the normal perf buffer.
5292 */
5293 u64 aux_offset, aux_size;
5294
5295 if (!event->rb)
5296 return -EINVAL;
5297
5298 nr_pages = vma_size / PAGE_SIZE;
5299
5300 mutex_lock(&event->mmap_mutex);
5301 ret = -EINVAL;
5302
5303 rb = event->rb;
5304 if (!rb)
5305 goto aux_unlock;
5306
5307 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
5308 aux_size = ACCESS_ONCE(rb->user_page->aux_size);
5309
5310 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5311 goto aux_unlock;
5312
5313 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5314 goto aux_unlock;
5315
5316 /* already mapped with a different offset */
5317 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5318 goto aux_unlock;
5319
5320 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5321 goto aux_unlock;
5322
5323 /* already mapped with a different size */
5324 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5325 goto aux_unlock;
5326
5327 if (!is_power_of_2(nr_pages))
5328 goto aux_unlock;
5329
5330 if (!atomic_inc_not_zero(&rb->mmap_count))
5331 goto aux_unlock;
5332
5333 if (rb_has_aux(rb)) {
5334 atomic_inc(&rb->aux_mmap_count);
5335 ret = 0;
5336 goto unlock;
5337 }
5338
5339 atomic_set(&rb->aux_mmap_count, 1);
5340 user_extra = nr_pages;
5341
5342 goto accounting;
5343 }
5344
5345 /*
5346 * If we have rb pages ensure they're a power-of-two number, so we
5347 * can do bitmasks instead of modulo.
5348 */
5349 if (nr_pages != 0 && !is_power_of_2(nr_pages))
5350 return -EINVAL;
5351
5352 if (vma_size != PAGE_SIZE * (1 + nr_pages))
5353 return -EINVAL;
5354
5355 WARN_ON_ONCE(event->ctx->parent_ctx);
5356 again:
5357 mutex_lock(&event->mmap_mutex);
5358 if (event->rb) {
5359 if (event->rb->nr_pages != nr_pages) {
5360 ret = -EINVAL;
5361 goto unlock;
5362 }
5363
5364 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5365 /*
5366 * Raced against perf_mmap_close() through
5367 * perf_event_set_output(). Try again, hope for better
5368 * luck.
5369 */
5370 mutex_unlock(&event->mmap_mutex);
5371 goto again;
5372 }
5373
5374 goto unlock;
5375 }
5376
5377 user_extra = nr_pages + 1;
5378
5379 accounting:
5380 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
5381
5382 /*
5383 * Increase the limit linearly with more CPUs:
5384 */
5385 user_lock_limit *= num_online_cpus();
5386
5387 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
5388
5389 if (user_locked > user_lock_limit)
5390 extra = user_locked - user_lock_limit;
5391
5392 lock_limit = rlimit(RLIMIT_MEMLOCK);
5393 lock_limit >>= PAGE_SHIFT;
5394 locked = vma->vm_mm->pinned_vm + extra;
5395
5396 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5397 !capable(CAP_IPC_LOCK)) {
5398 ret = -EPERM;
5399 goto unlock;
5400 }
5401
5402 WARN_ON(!rb && event->rb);
5403
5404 if (vma->vm_flags & VM_WRITE)
5405 flags |= RING_BUFFER_WRITABLE;
5406
5407 if (!rb) {
5408 rb = rb_alloc(nr_pages,
5409 event->attr.watermark ? event->attr.wakeup_watermark : 0,
5410 event->cpu, flags);
5411
5412 if (!rb) {
5413 ret = -ENOMEM;
5414 goto unlock;
5415 }
5416
5417 atomic_set(&rb->mmap_count, 1);
5418 rb->mmap_user = get_current_user();
5419 rb->mmap_locked = extra;
5420
5421 ring_buffer_attach(event, rb);
5422
5423 perf_event_init_userpage(event);
5424 perf_event_update_userpage(event);
5425 } else {
5426 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5427 event->attr.aux_watermark, flags);
5428 if (!ret)
5429 rb->aux_mmap_locked = extra;
5430 }
5431
5432 unlock:
5433 if (!ret) {
5434 atomic_long_add(user_extra, &user->locked_vm);
5435 vma->vm_mm->pinned_vm += extra;
5436
5437 atomic_inc(&event->mmap_count);
5438 } else if (rb) {
5439 atomic_dec(&rb->mmap_count);
5440 }
5441 aux_unlock:
5442 mutex_unlock(&event->mmap_mutex);
5443
5444 /*
5445 * Since pinned accounting is per vm we cannot allow fork() to copy our
5446 * vma.
5447 */
5448 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5449 vma->vm_ops = &perf_mmap_vmops;
5450
5451 if (event->pmu->event_mapped)
5452 event->pmu->event_mapped(event, vma->vm_mm);
5453
5454 return ret;
5455 }
5456
5457 static int perf_fasync(int fd, struct file *filp, int on)
5458 {
5459 struct inode *inode = file_inode(filp);
5460 struct perf_event *event = filp->private_data;
5461 int retval;
5462
5463 inode_lock(inode);
5464 retval = fasync_helper(fd, filp, on, &event->fasync);
5465 inode_unlock(inode);
5466
5467 if (retval < 0)
5468 return retval;
5469
5470 return 0;
5471 }
5472
5473 static const struct file_operations perf_fops = {
5474 .llseek = no_llseek,
5475 .release = perf_release,
5476 .read = perf_read,
5477 .poll = perf_poll,
5478 .unlocked_ioctl = perf_ioctl,
5479 .compat_ioctl = perf_compat_ioctl,
5480 .mmap = perf_mmap,
5481 .fasync = perf_fasync,
5482 };
5483
5484 /*
5485 * Perf event wakeup
5486 *
5487 * If there's data, ensure we set the poll() state and publish everything
5488 * to user-space before waking everybody up.
5489 */
5490
5491 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5492 {
5493 /* only the parent has fasync state */
5494 if (event->parent)
5495 event = event->parent;
5496 return &event->fasync;
5497 }
5498
5499 void perf_event_wakeup(struct perf_event *event)
5500 {
5501 ring_buffer_wakeup(event);
5502
5503 if (event->pending_kill) {
5504 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5505 event->pending_kill = 0;
5506 }
5507 }
5508
5509 static void perf_pending_event(struct irq_work *entry)
5510 {
5511 struct perf_event *event = container_of(entry,
5512 struct perf_event, pending);
5513 int rctx;
5514
5515 rctx = perf_swevent_get_recursion_context();
5516 /*
5517 * If we 'fail' here, that's OK, it means recursion is already disabled
5518 * and we won't recurse 'further'.
5519 */
5520
5521 if (event->pending_disable) {
5522 event->pending_disable = 0;
5523 perf_event_disable_local(event);
5524 }
5525
5526 if (event->pending_wakeup) {
5527 event->pending_wakeup = 0;
5528 perf_event_wakeup(event);
5529 }
5530
5531 if (rctx >= 0)
5532 perf_swevent_put_recursion_context(rctx);
5533 }
5534
5535 /*
5536 * We assume there is only KVM supporting the callbacks.
5537 * Later on, we might change it to a list if there is
5538 * another virtualization implementation supporting the callbacks.
5539 */
5540 struct perf_guest_info_callbacks *perf_guest_cbs;
5541
5542 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5543 {
5544 perf_guest_cbs = cbs;
5545 return 0;
5546 }
5547 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5548
5549 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5550 {
5551 perf_guest_cbs = NULL;
5552 return 0;
5553 }
5554 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5555
5556 static void
5557 perf_output_sample_regs(struct perf_output_handle *handle,
5558 struct pt_regs *regs, u64 mask)
5559 {
5560 int bit;
5561 DECLARE_BITMAP(_mask, 64);
5562
5563 bitmap_from_u64(_mask, mask);
5564 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
5565 u64 val;
5566
5567 val = perf_reg_value(regs, bit);
5568 perf_output_put(handle, val);
5569 }
5570 }
5571
5572 static void perf_sample_regs_user(struct perf_regs *regs_user,
5573 struct pt_regs *regs,
5574 struct pt_regs *regs_user_copy)
5575 {
5576 if (user_mode(regs)) {
5577 regs_user->abi = perf_reg_abi(current);
5578 regs_user->regs = regs;
5579 } else if (current->mm) {
5580 perf_get_regs_user(regs_user, regs, regs_user_copy);
5581 } else {
5582 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5583 regs_user->regs = NULL;
5584 }
5585 }
5586
5587 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5588 struct pt_regs *regs)
5589 {
5590 regs_intr->regs = regs;
5591 regs_intr->abi = perf_reg_abi(current);
5592 }
5593
5594
5595 /*
5596 * Get remaining task size from user stack pointer.
5597 *
5598 * It'd be better to take stack vma map and limit this more
5599 * precisly, but there's no way to get it safely under interrupt,
5600 * so using TASK_SIZE as limit.
5601 */
5602 static u64 perf_ustack_task_size(struct pt_regs *regs)
5603 {
5604 unsigned long addr = perf_user_stack_pointer(regs);
5605
5606 if (!addr || addr >= TASK_SIZE)
5607 return 0;
5608
5609 return TASK_SIZE - addr;
5610 }
5611
5612 static u16
5613 perf_sample_ustack_size(u16 stack_size, u16 header_size,
5614 struct pt_regs *regs)
5615 {
5616 u64 task_size;
5617
5618 /* No regs, no stack pointer, no dump. */
5619 if (!regs)
5620 return 0;
5621
5622 /*
5623 * Check if we fit in with the requested stack size into the:
5624 * - TASK_SIZE
5625 * If we don't, we limit the size to the TASK_SIZE.
5626 *
5627 * - remaining sample size
5628 * If we don't, we customize the stack size to
5629 * fit in to the remaining sample size.
5630 */
5631
5632 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5633 stack_size = min(stack_size, (u16) task_size);
5634
5635 /* Current header size plus static size and dynamic size. */
5636 header_size += 2 * sizeof(u64);
5637
5638 /* Do we fit in with the current stack dump size? */
5639 if ((u16) (header_size + stack_size) < header_size) {
5640 /*
5641 * If we overflow the maximum size for the sample,
5642 * we customize the stack dump size to fit in.
5643 */
5644 stack_size = USHRT_MAX - header_size - sizeof(u64);
5645 stack_size = round_up(stack_size, sizeof(u64));
5646 }
5647
5648 return stack_size;
5649 }
5650
5651 static void
5652 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5653 struct pt_regs *regs)
5654 {
5655 /* Case of a kernel thread, nothing to dump */
5656 if (!regs) {
5657 u64 size = 0;
5658 perf_output_put(handle, size);
5659 } else {
5660 unsigned long sp;
5661 unsigned int rem;
5662 u64 dyn_size;
5663
5664 /*
5665 * We dump:
5666 * static size
5667 * - the size requested by user or the best one we can fit
5668 * in to the sample max size
5669 * data
5670 * - user stack dump data
5671 * dynamic size
5672 * - the actual dumped size
5673 */
5674
5675 /* Static size. */
5676 perf_output_put(handle, dump_size);
5677
5678 /* Data. */
5679 sp = perf_user_stack_pointer(regs);
5680 rem = __output_copy_user(handle, (void *) sp, dump_size);
5681 dyn_size = dump_size - rem;
5682
5683 perf_output_skip(handle, rem);
5684
5685 /* Dynamic size. */
5686 perf_output_put(handle, dyn_size);
5687 }
5688 }
5689
5690 static void __perf_event_header__init_id(struct perf_event_header *header,
5691 struct perf_sample_data *data,
5692 struct perf_event *event)
5693 {
5694 u64 sample_type = event->attr.sample_type;
5695
5696 data->type = sample_type;
5697 header->size += event->id_header_size;
5698
5699 if (sample_type & PERF_SAMPLE_TID) {
5700 /* namespace issues */
5701 data->tid_entry.pid = perf_event_pid(event, current);
5702 data->tid_entry.tid = perf_event_tid(event, current);
5703 }
5704
5705 if (sample_type & PERF_SAMPLE_TIME)
5706 data->time = perf_event_clock(event);
5707
5708 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5709 data->id = primary_event_id(event);
5710
5711 if (sample_type & PERF_SAMPLE_STREAM_ID)
5712 data->stream_id = event->id;
5713
5714 if (sample_type & PERF_SAMPLE_CPU) {
5715 data->cpu_entry.cpu = raw_smp_processor_id();
5716 data->cpu_entry.reserved = 0;
5717 }
5718 }
5719
5720 void perf_event_header__init_id(struct perf_event_header *header,
5721 struct perf_sample_data *data,
5722 struct perf_event *event)
5723 {
5724 if (event->attr.sample_id_all)
5725 __perf_event_header__init_id(header, data, event);
5726 }
5727
5728 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5729 struct perf_sample_data *data)
5730 {
5731 u64 sample_type = data->type;
5732
5733 if (sample_type & PERF_SAMPLE_TID)
5734 perf_output_put(handle, data->tid_entry);
5735
5736 if (sample_type & PERF_SAMPLE_TIME)
5737 perf_output_put(handle, data->time);
5738
5739 if (sample_type & PERF_SAMPLE_ID)
5740 perf_output_put(handle, data->id);
5741
5742 if (sample_type & PERF_SAMPLE_STREAM_ID)
5743 perf_output_put(handle, data->stream_id);
5744
5745 if (sample_type & PERF_SAMPLE_CPU)
5746 perf_output_put(handle, data->cpu_entry);
5747
5748 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5749 perf_output_put(handle, data->id);
5750 }
5751
5752 void perf_event__output_id_sample(struct perf_event *event,
5753 struct perf_output_handle *handle,
5754 struct perf_sample_data *sample)
5755 {
5756 if (event->attr.sample_id_all)
5757 __perf_event__output_id_sample(handle, sample);
5758 }
5759
5760 static void perf_output_read_one(struct perf_output_handle *handle,
5761 struct perf_event *event,
5762 u64 enabled, u64 running)
5763 {
5764 u64 read_format = event->attr.read_format;
5765 u64 values[4];
5766 int n = 0;
5767
5768 values[n++] = perf_event_count(event);
5769 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5770 values[n++] = enabled +
5771 atomic64_read(&event->child_total_time_enabled);
5772 }
5773 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5774 values[n++] = running +
5775 atomic64_read(&event->child_total_time_running);
5776 }
5777 if (read_format & PERF_FORMAT_ID)
5778 values[n++] = primary_event_id(event);
5779
5780 __output_copy(handle, values, n * sizeof(u64));
5781 }
5782
5783 static void perf_output_read_group(struct perf_output_handle *handle,
5784 struct perf_event *event,
5785 u64 enabled, u64 running)
5786 {
5787 struct perf_event *leader = event->group_leader, *sub;
5788 u64 read_format = event->attr.read_format;
5789 u64 values[5];
5790 int n = 0;
5791
5792 values[n++] = 1 + leader->nr_siblings;
5793
5794 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5795 values[n++] = enabled;
5796
5797 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5798 values[n++] = running;
5799
5800 if (leader != event)
5801 leader->pmu->read(leader);
5802
5803 values[n++] = perf_event_count(leader);
5804 if (read_format & PERF_FORMAT_ID)
5805 values[n++] = primary_event_id(leader);
5806
5807 __output_copy(handle, values, n * sizeof(u64));
5808
5809 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5810 n = 0;
5811
5812 if ((sub != event) &&
5813 (sub->state == PERF_EVENT_STATE_ACTIVE))
5814 sub->pmu->read(sub);
5815
5816 values[n++] = perf_event_count(sub);
5817 if (read_format & PERF_FORMAT_ID)
5818 values[n++] = primary_event_id(sub);
5819
5820 __output_copy(handle, values, n * sizeof(u64));
5821 }
5822 }
5823
5824 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5825 PERF_FORMAT_TOTAL_TIME_RUNNING)
5826
5827 /*
5828 * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
5829 *
5830 * The problem is that its both hard and excessively expensive to iterate the
5831 * child list, not to mention that its impossible to IPI the children running
5832 * on another CPU, from interrupt/NMI context.
5833 */
5834 static void perf_output_read(struct perf_output_handle *handle,
5835 struct perf_event *event)
5836 {
5837 u64 enabled = 0, running = 0, now;
5838 u64 read_format = event->attr.read_format;
5839
5840 /*
5841 * compute total_time_enabled, total_time_running
5842 * based on snapshot values taken when the event
5843 * was last scheduled in.
5844 *
5845 * we cannot simply called update_context_time()
5846 * because of locking issue as we are called in
5847 * NMI context
5848 */
5849 if (read_format & PERF_FORMAT_TOTAL_TIMES)
5850 calc_timer_values(event, &now, &enabled, &running);
5851
5852 if (event->attr.read_format & PERF_FORMAT_GROUP)
5853 perf_output_read_group(handle, event, enabled, running);
5854 else
5855 perf_output_read_one(handle, event, enabled, running);
5856 }
5857
5858 void perf_output_sample(struct perf_output_handle *handle,
5859 struct perf_event_header *header,
5860 struct perf_sample_data *data,
5861 struct perf_event *event)
5862 {
5863 u64 sample_type = data->type;
5864
5865 perf_output_put(handle, *header);
5866
5867 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5868 perf_output_put(handle, data->id);
5869
5870 if (sample_type & PERF_SAMPLE_IP)
5871 perf_output_put(handle, data->ip);
5872
5873 if (sample_type & PERF_SAMPLE_TID)
5874 perf_output_put(handle, data->tid_entry);
5875
5876 if (sample_type & PERF_SAMPLE_TIME)
5877 perf_output_put(handle, data->time);
5878
5879 if (sample_type & PERF_SAMPLE_ADDR)
5880 perf_output_put(handle, data->addr);
5881
5882 if (sample_type & PERF_SAMPLE_ID)
5883 perf_output_put(handle, data->id);
5884
5885 if (sample_type & PERF_SAMPLE_STREAM_ID)
5886 perf_output_put(handle, data->stream_id);
5887
5888 if (sample_type & PERF_SAMPLE_CPU)
5889 perf_output_put(handle, data->cpu_entry);
5890
5891 if (sample_type & PERF_SAMPLE_PERIOD)
5892 perf_output_put(handle, data->period);
5893
5894 if (sample_type & PERF_SAMPLE_READ)
5895 perf_output_read(handle, event);
5896
5897 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5898 if (data->callchain) {
5899 int size = 1;
5900
5901 if (data->callchain)
5902 size += data->callchain->nr;
5903
5904 size *= sizeof(u64);
5905
5906 __output_copy(handle, data->callchain, size);
5907 } else {
5908 u64 nr = 0;
5909 perf_output_put(handle, nr);
5910 }
5911 }
5912
5913 if (sample_type & PERF_SAMPLE_RAW) {
5914 struct perf_raw_record *raw = data->raw;
5915
5916 if (raw) {
5917 struct perf_raw_frag *frag = &raw->frag;
5918
5919 perf_output_put(handle, raw->size);
5920 do {
5921 if (frag->copy) {
5922 __output_custom(handle, frag->copy,
5923 frag->data, frag->size);
5924 } else {
5925 __output_copy(handle, frag->data,
5926 frag->size);
5927 }
5928 if (perf_raw_frag_last(frag))
5929 break;
5930 frag = frag->next;
5931 } while (1);
5932 if (frag->pad)
5933 __output_skip(handle, NULL, frag->pad);
5934 } else {
5935 struct {
5936 u32 size;
5937 u32 data;
5938 } raw = {
5939 .size = sizeof(u32),
5940 .data = 0,
5941 };
5942 perf_output_put(handle, raw);
5943 }
5944 }
5945
5946 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5947 if (data->br_stack) {
5948 size_t size;
5949
5950 size = data->br_stack->nr
5951 * sizeof(struct perf_branch_entry);
5952
5953 perf_output_put(handle, data->br_stack->nr);
5954 perf_output_copy(handle, data->br_stack->entries, size);
5955 } else {
5956 /*
5957 * we always store at least the value of nr
5958 */
5959 u64 nr = 0;
5960 perf_output_put(handle, nr);
5961 }
5962 }
5963
5964 if (sample_type & PERF_SAMPLE_REGS_USER) {
5965 u64 abi = data->regs_user.abi;
5966
5967 /*
5968 * If there are no regs to dump, notice it through
5969 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5970 */
5971 perf_output_put(handle, abi);
5972
5973 if (abi) {
5974 u64 mask = event->attr.sample_regs_user;
5975 perf_output_sample_regs(handle,
5976 data->regs_user.regs,
5977 mask);
5978 }
5979 }
5980
5981 if (sample_type & PERF_SAMPLE_STACK_USER) {
5982 perf_output_sample_ustack(handle,
5983 data->stack_user_size,
5984 data->regs_user.regs);
5985 }
5986
5987 if (sample_type & PERF_SAMPLE_WEIGHT)
5988 perf_output_put(handle, data->weight);
5989
5990 if (sample_type & PERF_SAMPLE_DATA_SRC)
5991 perf_output_put(handle, data->data_src.val);
5992
5993 if (sample_type & PERF_SAMPLE_TRANSACTION)
5994 perf_output_put(handle, data->txn);
5995
5996 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5997 u64 abi = data->regs_intr.abi;
5998 /*
5999 * If there are no regs to dump, notice it through
6000 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6001 */
6002 perf_output_put(handle, abi);
6003
6004 if (abi) {
6005 u64 mask = event->attr.sample_regs_intr;
6006
6007 perf_output_sample_regs(handle,
6008 data->regs_intr.regs,
6009 mask);
6010 }
6011 }
6012
6013 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6014 perf_output_put(handle, data->phys_addr);
6015
6016 if (!event->attr.watermark) {
6017 int wakeup_events = event->attr.wakeup_events;
6018
6019 if (wakeup_events) {
6020 struct ring_buffer *rb = handle->rb;
6021 int events = local_inc_return(&rb->events);
6022
6023 if (events >= wakeup_events) {
6024 local_sub(wakeup_events, &rb->events);
6025 local_inc(&rb->wakeup);
6026 }
6027 }
6028 }
6029 }
6030
6031 static u64 perf_virt_to_phys(u64 virt)
6032 {
6033 u64 phys_addr = 0;
6034 struct page *p = NULL;
6035
6036 if (!virt)
6037 return 0;
6038
6039 if (virt >= TASK_SIZE) {
6040 /* If it's vmalloc()d memory, leave phys_addr as 0 */
6041 if (virt_addr_valid((void *)(uintptr_t)virt) &&
6042 !(virt >= VMALLOC_START && virt < VMALLOC_END))
6043 phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
6044 } else {
6045 /*
6046 * Walking the pages tables for user address.
6047 * Interrupts are disabled, so it prevents any tear down
6048 * of the page tables.
6049 * Try IRQ-safe __get_user_pages_fast first.
6050 * If failed, leave phys_addr as 0.
6051 */
6052 if ((current->mm != NULL) &&
6053 (__get_user_pages_fast(virt, 1, 0, &p) == 1))
6054 phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
6055
6056 if (p)
6057 put_page(p);
6058 }
6059
6060 return phys_addr;
6061 }
6062
6063 void perf_prepare_sample(struct perf_event_header *header,
6064 struct perf_sample_data *data,
6065 struct perf_event *event,
6066 struct pt_regs *regs)
6067 {
6068 u64 sample_type = event->attr.sample_type;
6069
6070 header->type = PERF_RECORD_SAMPLE;
6071 header->size = sizeof(*header) + event->header_size;
6072
6073 header->misc = 0;
6074 header->misc |= perf_misc_flags(regs);
6075
6076 __perf_event_header__init_id(header, data, event);
6077
6078 if (sample_type & PERF_SAMPLE_IP)
6079 data->ip = perf_instruction_pointer(regs);
6080
6081 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6082 int size = 1;
6083
6084 data->callchain = perf_callchain(event, regs);
6085
6086 if (data->callchain)
6087 size += data->callchain->nr;
6088
6089 header->size += size * sizeof(u64);
6090 }
6091
6092 if (sample_type & PERF_SAMPLE_RAW) {
6093 struct perf_raw_record *raw = data->raw;
6094 int size;
6095
6096 if (raw) {
6097 struct perf_raw_frag *frag = &raw->frag;
6098 u32 sum = 0;
6099
6100 do {
6101 sum += frag->size;
6102 if (perf_raw_frag_last(frag))
6103 break;
6104 frag = frag->next;
6105 } while (1);
6106
6107 size = round_up(sum + sizeof(u32), sizeof(u64));
6108 raw->size = size - sizeof(u32);
6109 frag->pad = raw->size - sum;
6110 } else {
6111 size = sizeof(u64);
6112 }
6113
6114 header->size += size;
6115 }
6116
6117 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6118 int size = sizeof(u64); /* nr */
6119 if (data->br_stack) {
6120 size += data->br_stack->nr
6121 * sizeof(struct perf_branch_entry);
6122 }
6123 header->size += size;
6124 }
6125
6126 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
6127 perf_sample_regs_user(&data->regs_user, regs,
6128 &data->regs_user_copy);
6129
6130 if (sample_type & PERF_SAMPLE_REGS_USER) {
6131 /* regs dump ABI info */
6132 int size = sizeof(u64);
6133
6134 if (data->regs_user.regs) {
6135 u64 mask = event->attr.sample_regs_user;
6136 size += hweight64(mask) * sizeof(u64);
6137 }
6138
6139 header->size += size;
6140 }
6141
6142 if (sample_type & PERF_SAMPLE_STACK_USER) {
6143 /*
6144 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
6145 * processed as the last one or have additional check added
6146 * in case new sample type is added, because we could eat
6147 * up the rest of the sample size.
6148 */
6149 u16 stack_size = event->attr.sample_stack_user;
6150 u16 size = sizeof(u64);
6151
6152 stack_size = perf_sample_ustack_size(stack_size, header->size,
6153 data->regs_user.regs);
6154
6155 /*
6156 * If there is something to dump, add space for the dump
6157 * itself and for the field that tells the dynamic size,
6158 * which is how many have been actually dumped.
6159 */
6160 if (stack_size)
6161 size += sizeof(u64) + stack_size;
6162
6163 data->stack_user_size = stack_size;
6164 header->size += size;
6165 }
6166
6167 if (sample_type & PERF_SAMPLE_REGS_INTR) {
6168 /* regs dump ABI info */
6169 int size = sizeof(u64);
6170
6171 perf_sample_regs_intr(&data->regs_intr, regs);
6172
6173 if (data->regs_intr.regs) {
6174 u64 mask = event->attr.sample_regs_intr;
6175
6176 size += hweight64(mask) * sizeof(u64);
6177 }
6178
6179 header->size += size;
6180 }
6181
6182 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6183 data->phys_addr = perf_virt_to_phys(data->addr);
6184 }
6185
6186 static void __always_inline
6187 __perf_event_output(struct perf_event *event,
6188 struct perf_sample_data *data,
6189 struct pt_regs *regs,
6190 int (*output_begin)(struct perf_output_handle *,
6191 struct perf_event *,
6192 unsigned int))
6193 {
6194 struct perf_output_handle handle;
6195 struct perf_event_header header;
6196
6197 /* protect the callchain buffers */
6198 rcu_read_lock();
6199
6200 perf_prepare_sample(&header, data, event, regs);
6201
6202 if (output_begin(&handle, event, header.size))
6203 goto exit;
6204
6205 perf_output_sample(&handle, &header, data, event);
6206
6207 perf_output_end(&handle);
6208
6209 exit:
6210 rcu_read_unlock();
6211 }
6212
6213 void
6214 perf_event_output_forward(struct perf_event *event,
6215 struct perf_sample_data *data,
6216 struct pt_regs *regs)
6217 {
6218 __perf_event_output(event, data, regs, perf_output_begin_forward);
6219 }
6220
6221 void
6222 perf_event_output_backward(struct perf_event *event,
6223 struct perf_sample_data *data,
6224 struct pt_regs *regs)
6225 {
6226 __perf_event_output(event, data, regs, perf_output_begin_backward);
6227 }
6228
6229 void
6230 perf_event_output(struct perf_event *event,
6231 struct perf_sample_data *data,
6232 struct pt_regs *regs)
6233 {
6234 __perf_event_output(event, data, regs, perf_output_begin);
6235 }
6236
6237 /*
6238 * read event_id
6239 */
6240
6241 struct perf_read_event {
6242 struct perf_event_header header;
6243
6244 u32 pid;
6245 u32 tid;
6246 };
6247
6248 static void
6249 perf_event_read_event(struct perf_event *event,
6250 struct task_struct *task)
6251 {
6252 struct perf_output_handle handle;
6253 struct perf_sample_data sample;
6254 struct perf_read_event read_event = {
6255 .header = {
6256 .type = PERF_RECORD_READ,
6257 .misc = 0,
6258 .size = sizeof(read_event) + event->read_size,
6259 },
6260 .pid = perf_event_pid(event, task),
6261 .tid = perf_event_tid(event, task),
6262 };
6263 int ret;
6264
6265 perf_event_header__init_id(&read_event.header, &sample, event);
6266 ret = perf_output_begin(&handle, event, read_event.header.size);
6267 if (ret)
6268 return;
6269
6270 perf_output_put(&handle, read_event);
6271 perf_output_read(&handle, event);
6272 perf_event__output_id_sample(event, &handle, &sample);
6273
6274 perf_output_end(&handle);
6275 }
6276
6277 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
6278
6279 static void
6280 perf_iterate_ctx(struct perf_event_context *ctx,
6281 perf_iterate_f output,
6282 void *data, bool all)
6283 {
6284 struct perf_event *event;
6285
6286 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6287 if (!all) {
6288 if (event->state < PERF_EVENT_STATE_INACTIVE)
6289 continue;
6290 if (!event_filter_match(event))
6291 continue;
6292 }
6293
6294 output(event, data);
6295 }
6296 }
6297
6298 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
6299 {
6300 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6301 struct perf_event *event;
6302
6303 list_for_each_entry_rcu(event, &pel->list, sb_list) {
6304 /*
6305 * Skip events that are not fully formed yet; ensure that
6306 * if we observe event->ctx, both event and ctx will be
6307 * complete enough. See perf_install_in_context().
6308 */
6309 if (!smp_load_acquire(&event->ctx))
6310 continue;
6311
6312 if (event->state < PERF_EVENT_STATE_INACTIVE)
6313 continue;
6314 if (!event_filter_match(event))
6315 continue;
6316 output(event, data);
6317 }
6318 }
6319
6320 /*
6321 * Iterate all events that need to receive side-band events.
6322 *
6323 * For new callers; ensure that account_pmu_sb_event() includes
6324 * your event, otherwise it might not get delivered.
6325 */
6326 static void
6327 perf_iterate_sb(perf_iterate_f output, void *data,
6328 struct perf_event_context *task_ctx)
6329 {
6330 struct perf_event_context *ctx;
6331 int ctxn;
6332
6333 rcu_read_lock();
6334 preempt_disable();
6335
6336 /*
6337 * If we have task_ctx != NULL we only notify the task context itself.
6338 * The task_ctx is set only for EXIT events before releasing task
6339 * context.
6340 */
6341 if (task_ctx) {
6342 perf_iterate_ctx(task_ctx, output, data, false);
6343 goto done;
6344 }
6345
6346 perf_iterate_sb_cpu(output, data);
6347
6348 for_each_task_context_nr(ctxn) {
6349 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6350 if (ctx)
6351 perf_iterate_ctx(ctx, output, data, false);
6352 }
6353 done:
6354 preempt_enable();
6355 rcu_read_unlock();
6356 }
6357
6358 /*
6359 * Clear all file-based filters at exec, they'll have to be
6360 * re-instated when/if these objects are mmapped again.
6361 */
6362 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6363 {
6364 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6365 struct perf_addr_filter *filter;
6366 unsigned int restart = 0, count = 0;
6367 unsigned long flags;
6368
6369 if (!has_addr_filter(event))
6370 return;
6371
6372 raw_spin_lock_irqsave(&ifh->lock, flags);
6373 list_for_each_entry(filter, &ifh->list, entry) {
6374 if (filter->inode) {
6375 event->addr_filters_offs[count] = 0;
6376 restart++;
6377 }
6378
6379 count++;
6380 }
6381
6382 if (restart)
6383 event->addr_filters_gen++;
6384 raw_spin_unlock_irqrestore(&ifh->lock, flags);
6385
6386 if (restart)
6387 perf_event_stop(event, 1);
6388 }
6389
6390 void perf_event_exec(void)
6391 {
6392 struct perf_event_context *ctx;
6393 int ctxn;
6394
6395 rcu_read_lock();
6396 for_each_task_context_nr(ctxn) {
6397 ctx = current->perf_event_ctxp[ctxn];
6398 if (!ctx)
6399 continue;
6400
6401 perf_event_enable_on_exec(ctxn);
6402
6403 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
6404 true);
6405 }
6406 rcu_read_unlock();
6407 }
6408
6409 struct remote_output {
6410 struct ring_buffer *rb;
6411 int err;
6412 };
6413
6414 static void __perf_event_output_stop(struct perf_event *event, void *data)
6415 {
6416 struct perf_event *parent = event->parent;
6417 struct remote_output *ro = data;
6418 struct ring_buffer *rb = ro->rb;
6419 struct stop_event_data sd = {
6420 .event = event,
6421 };
6422
6423 if (!has_aux(event))
6424 return;
6425
6426 if (!parent)
6427 parent = event;
6428
6429 /*
6430 * In case of inheritance, it will be the parent that links to the
6431 * ring-buffer, but it will be the child that's actually using it.
6432 *
6433 * We are using event::rb to determine if the event should be stopped,
6434 * however this may race with ring_buffer_attach() (through set_output),
6435 * which will make us skip the event that actually needs to be stopped.
6436 * So ring_buffer_attach() has to stop an aux event before re-assigning
6437 * its rb pointer.
6438 */
6439 if (rcu_dereference(parent->rb) == rb)
6440 ro->err = __perf_event_stop(&sd);
6441 }
6442
6443 static int __perf_pmu_output_stop(void *info)
6444 {
6445 struct perf_event *event = info;
6446 struct pmu *pmu = event->pmu;
6447 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6448 struct remote_output ro = {
6449 .rb = event->rb,
6450 };
6451
6452 rcu_read_lock();
6453 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6454 if (cpuctx->task_ctx)
6455 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6456 &ro, false);
6457 rcu_read_unlock();
6458
6459 return ro.err;
6460 }
6461
6462 static void perf_pmu_output_stop(struct perf_event *event)
6463 {
6464 struct perf_event *iter;
6465 int err, cpu;
6466
6467 restart:
6468 rcu_read_lock();
6469 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6470 /*
6471 * For per-CPU events, we need to make sure that neither they
6472 * nor their children are running; for cpu==-1 events it's
6473 * sufficient to stop the event itself if it's active, since
6474 * it can't have children.
6475 */
6476 cpu = iter->cpu;
6477 if (cpu == -1)
6478 cpu = READ_ONCE(iter->oncpu);
6479
6480 if (cpu == -1)
6481 continue;
6482
6483 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6484 if (err == -EAGAIN) {
6485 rcu_read_unlock();
6486 goto restart;
6487 }
6488 }
6489 rcu_read_unlock();
6490 }
6491
6492 /*
6493 * task tracking -- fork/exit
6494 *
6495 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
6496 */
6497
6498 struct perf_task_event {
6499 struct task_struct *task;
6500 struct perf_event_context *task_ctx;
6501
6502 struct {
6503 struct perf_event_header header;
6504
6505 u32 pid;
6506 u32 ppid;
6507 u32 tid;
6508 u32 ptid;
6509 u64 time;
6510 } event_id;
6511 };
6512
6513 static int perf_event_task_match(struct perf_event *event)
6514 {
6515 return event->attr.comm || event->attr.mmap ||
6516 event->attr.mmap2 || event->attr.mmap_data ||
6517 event->attr.task;
6518 }
6519
6520 static void perf_event_task_output(struct perf_event *event,
6521 void *data)
6522 {
6523 struct perf_task_event *task_event = data;
6524 struct perf_output_handle handle;
6525 struct perf_sample_data sample;
6526 struct task_struct *task = task_event->task;
6527 int ret, size = task_event->event_id.header.size;
6528
6529 if (!perf_event_task_match(event))
6530 return;
6531
6532 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
6533
6534 ret = perf_output_begin(&handle, event,
6535 task_event->event_id.header.size);
6536 if (ret)
6537 goto out;
6538
6539 task_event->event_id.pid = perf_event_pid(event, task);
6540 task_event->event_id.ppid = perf_event_pid(event, current);
6541
6542 task_event->event_id.tid = perf_event_tid(event, task);
6543 task_event->event_id.ptid = perf_event_tid(event, current);
6544
6545 task_event->event_id.time = perf_event_clock(event);
6546
6547 perf_output_put(&handle, task_event->event_id);
6548
6549 perf_event__output_id_sample(event, &handle, &sample);
6550
6551 perf_output_end(&handle);
6552 out:
6553 task_event->event_id.header.size = size;
6554 }
6555
6556 static void perf_event_task(struct task_struct *task,
6557 struct perf_event_context *task_ctx,
6558 int new)
6559 {
6560 struct perf_task_event task_event;
6561
6562 if (!atomic_read(&nr_comm_events) &&
6563 !atomic_read(&nr_mmap_events) &&
6564 !atomic_read(&nr_task_events))
6565 return;
6566
6567 task_event = (struct perf_task_event){
6568 .task = task,
6569 .task_ctx = task_ctx,
6570 .event_id = {
6571 .header = {
6572 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
6573 .misc = 0,
6574 .size = sizeof(task_event.event_id),
6575 },
6576 /* .pid */
6577 /* .ppid */
6578 /* .tid */
6579 /* .ptid */
6580 /* .time */
6581 },
6582 };
6583
6584 perf_iterate_sb(perf_event_task_output,
6585 &task_event,
6586 task_ctx);
6587 }
6588
6589 void perf_event_fork(struct task_struct *task)
6590 {
6591 perf_event_task(task, NULL, 1);
6592 perf_event_namespaces(task);
6593 }
6594
6595 /*
6596 * comm tracking
6597 */
6598
6599 struct perf_comm_event {
6600 struct task_struct *task;
6601 char *comm;
6602 int comm_size;
6603
6604 struct {
6605 struct perf_event_header header;
6606
6607 u32 pid;
6608 u32 tid;
6609 } event_id;
6610 };
6611
6612 static int perf_event_comm_match(struct perf_event *event)
6613 {
6614 return event->attr.comm;
6615 }
6616
6617 static void perf_event_comm_output(struct perf_event *event,
6618 void *data)
6619 {
6620 struct perf_comm_event *comm_event = data;
6621 struct perf_output_handle handle;
6622 struct perf_sample_data sample;
6623 int size = comm_event->event_id.header.size;
6624 int ret;
6625
6626 if (!perf_event_comm_match(event))
6627 return;
6628
6629 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6630 ret = perf_output_begin(&handle, event,
6631 comm_event->event_id.header.size);
6632
6633 if (ret)
6634 goto out;
6635
6636 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6637 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
6638
6639 perf_output_put(&handle, comm_event->event_id);
6640 __output_copy(&handle, comm_event->comm,
6641 comm_event->comm_size);
6642
6643 perf_event__output_id_sample(event, &handle, &sample);
6644
6645 perf_output_end(&handle);
6646 out:
6647 comm_event->event_id.header.size = size;
6648 }
6649
6650 static void perf_event_comm_event(struct perf_comm_event *comm_event)
6651 {
6652 char comm[TASK_COMM_LEN];
6653 unsigned int size;
6654
6655 memset(comm, 0, sizeof(comm));
6656 strlcpy(comm, comm_event->task->comm, sizeof(comm));
6657 size = ALIGN(strlen(comm)+1, sizeof(u64));
6658
6659 comm_event->comm = comm;
6660 comm_event->comm_size = size;
6661
6662 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
6663
6664 perf_iterate_sb(perf_event_comm_output,
6665 comm_event,
6666 NULL);
6667 }
6668
6669 void perf_event_comm(struct task_struct *task, bool exec)
6670 {
6671 struct perf_comm_event comm_event;
6672
6673 if (!atomic_read(&nr_comm_events))
6674 return;
6675
6676 comm_event = (struct perf_comm_event){
6677 .task = task,
6678 /* .comm */
6679 /* .comm_size */
6680 .event_id = {
6681 .header = {
6682 .type = PERF_RECORD_COMM,
6683 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
6684 /* .size */
6685 },
6686 /* .pid */
6687 /* .tid */
6688 },
6689 };
6690
6691 perf_event_comm_event(&comm_event);
6692 }
6693
6694 /*
6695 * namespaces tracking
6696 */
6697
6698 struct perf_namespaces_event {
6699 struct task_struct *task;
6700
6701 struct {
6702 struct perf_event_header header;
6703
6704 u32 pid;
6705 u32 tid;
6706 u64 nr_namespaces;
6707 struct perf_ns_link_info link_info[NR_NAMESPACES];
6708 } event_id;
6709 };
6710
6711 static int perf_event_namespaces_match(struct perf_event *event)
6712 {
6713 return event->attr.namespaces;
6714 }
6715
6716 static void perf_event_namespaces_output(struct perf_event *event,
6717 void *data)
6718 {
6719 struct perf_namespaces_event *namespaces_event = data;
6720 struct perf_output_handle handle;
6721 struct perf_sample_data sample;
6722 int ret;
6723
6724 if (!perf_event_namespaces_match(event))
6725 return;
6726
6727 perf_event_header__init_id(&namespaces_event->event_id.header,
6728 &sample, event);
6729 ret = perf_output_begin(&handle, event,
6730 namespaces_event->event_id.header.size);
6731 if (ret)
6732 return;
6733
6734 namespaces_event->event_id.pid = perf_event_pid(event,
6735 namespaces_event->task);
6736 namespaces_event->event_id.tid = perf_event_tid(event,
6737 namespaces_event->task);
6738
6739 perf_output_put(&handle, namespaces_event->event_id);
6740
6741 perf_event__output_id_sample(event, &handle, &sample);
6742
6743 perf_output_end(&handle);
6744 }
6745
6746 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
6747 struct task_struct *task,
6748 const struct proc_ns_operations *ns_ops)
6749 {
6750 struct path ns_path;
6751 struct inode *ns_inode;
6752 void *error;
6753
6754 error = ns_get_path(&ns_path, task, ns_ops);
6755 if (!error) {
6756 ns_inode = ns_path.dentry->d_inode;
6757 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
6758 ns_link_info->ino = ns_inode->i_ino;
6759 }
6760 }
6761
6762 void perf_event_namespaces(struct task_struct *task)
6763 {
6764 struct perf_namespaces_event namespaces_event;
6765 struct perf_ns_link_info *ns_link_info;
6766
6767 if (!atomic_read(&nr_namespaces_events))
6768 return;
6769
6770 namespaces_event = (struct perf_namespaces_event){
6771 .task = task,
6772 .event_id = {
6773 .header = {
6774 .type = PERF_RECORD_NAMESPACES,
6775 .misc = 0,
6776 .size = sizeof(namespaces_event.event_id),
6777 },
6778 /* .pid */
6779 /* .tid */
6780 .nr_namespaces = NR_NAMESPACES,
6781 /* .link_info[NR_NAMESPACES] */
6782 },
6783 };
6784
6785 ns_link_info = namespaces_event.event_id.link_info;
6786
6787 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
6788 task, &mntns_operations);
6789
6790 #ifdef CONFIG_USER_NS
6791 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
6792 task, &userns_operations);
6793 #endif
6794 #ifdef CONFIG_NET_NS
6795 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
6796 task, &netns_operations);
6797 #endif
6798 #ifdef CONFIG_UTS_NS
6799 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
6800 task, &utsns_operations);
6801 #endif
6802 #ifdef CONFIG_IPC_NS
6803 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
6804 task, &ipcns_operations);
6805 #endif
6806 #ifdef CONFIG_PID_NS
6807 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
6808 task, &pidns_operations);
6809 #endif
6810 #ifdef CONFIG_CGROUPS
6811 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
6812 task, &cgroupns_operations);
6813 #endif
6814
6815 perf_iterate_sb(perf_event_namespaces_output,
6816 &namespaces_event,
6817 NULL);
6818 }
6819
6820 /*
6821 * mmap tracking
6822 */
6823
6824 struct perf_mmap_event {
6825 struct vm_area_struct *vma;
6826
6827 const char *file_name;
6828 int file_size;
6829 int maj, min;
6830 u64 ino;
6831 u64 ino_generation;
6832 u32 prot, flags;
6833
6834 struct {
6835 struct perf_event_header header;
6836
6837 u32 pid;
6838 u32 tid;
6839 u64 start;
6840 u64 len;
6841 u64 pgoff;
6842 } event_id;
6843 };
6844
6845 static int perf_event_mmap_match(struct perf_event *event,
6846 void *data)
6847 {
6848 struct perf_mmap_event *mmap_event = data;
6849 struct vm_area_struct *vma = mmap_event->vma;
6850 int executable = vma->vm_flags & VM_EXEC;
6851
6852 return (!executable && event->attr.mmap_data) ||
6853 (executable && (event->attr.mmap || event->attr.mmap2));
6854 }
6855
6856 static void perf_event_mmap_output(struct perf_event *event,
6857 void *data)
6858 {
6859 struct perf_mmap_event *mmap_event = data;
6860 struct perf_output_handle handle;
6861 struct perf_sample_data sample;
6862 int size = mmap_event->event_id.header.size;
6863 int ret;
6864
6865 if (!perf_event_mmap_match(event, data))
6866 return;
6867
6868 if (event->attr.mmap2) {
6869 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
6870 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
6871 mmap_event->event_id.header.size += sizeof(mmap_event->min);
6872 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
6873 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
6874 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
6875 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
6876 }
6877
6878 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
6879 ret = perf_output_begin(&handle, event,
6880 mmap_event->event_id.header.size);
6881 if (ret)
6882 goto out;
6883
6884 mmap_event->event_id.pid = perf_event_pid(event, current);
6885 mmap_event->event_id.tid = perf_event_tid(event, current);
6886
6887 perf_output_put(&handle, mmap_event->event_id);
6888
6889 if (event->attr.mmap2) {
6890 perf_output_put(&handle, mmap_event->maj);
6891 perf_output_put(&handle, mmap_event->min);
6892 perf_output_put(&handle, mmap_event->ino);
6893 perf_output_put(&handle, mmap_event->ino_generation);
6894 perf_output_put(&handle, mmap_event->prot);
6895 perf_output_put(&handle, mmap_event->flags);
6896 }
6897
6898 __output_copy(&handle, mmap_event->file_name,
6899 mmap_event->file_size);
6900
6901 perf_event__output_id_sample(event, &handle, &sample);
6902
6903 perf_output_end(&handle);
6904 out:
6905 mmap_event->event_id.header.size = size;
6906 }
6907
6908 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
6909 {
6910 struct vm_area_struct *vma = mmap_event->vma;
6911 struct file *file = vma->vm_file;
6912 int maj = 0, min = 0;
6913 u64 ino = 0, gen = 0;
6914 u32 prot = 0, flags = 0;
6915 unsigned int size;
6916 char tmp[16];
6917 char *buf = NULL;
6918 char *name;
6919
6920 if (vma->vm_flags & VM_READ)
6921 prot |= PROT_READ;
6922 if (vma->vm_flags & VM_WRITE)
6923 prot |= PROT_WRITE;
6924 if (vma->vm_flags & VM_EXEC)
6925 prot |= PROT_EXEC;
6926
6927 if (vma->vm_flags & VM_MAYSHARE)
6928 flags = MAP_SHARED;
6929 else
6930 flags = MAP_PRIVATE;
6931
6932 if (vma->vm_flags & VM_DENYWRITE)
6933 flags |= MAP_DENYWRITE;
6934 if (vma->vm_flags & VM_MAYEXEC)
6935 flags |= MAP_EXECUTABLE;
6936 if (vma->vm_flags & VM_LOCKED)
6937 flags |= MAP_LOCKED;
6938 if (vma->vm_flags & VM_HUGETLB)
6939 flags |= MAP_HUGETLB;
6940
6941 if (file) {
6942 struct inode *inode;
6943 dev_t dev;
6944
6945 buf = kmalloc(PATH_MAX, GFP_KERNEL);
6946 if (!buf) {
6947 name = "//enomem";
6948 goto cpy_name;
6949 }
6950 /*
6951 * d_path() works from the end of the rb backwards, so we
6952 * need to add enough zero bytes after the string to handle
6953 * the 64bit alignment we do later.
6954 */
6955 name = file_path(file, buf, PATH_MAX - sizeof(u64));
6956 if (IS_ERR(name)) {
6957 name = "//toolong";
6958 goto cpy_name;
6959 }
6960 inode = file_inode(vma->vm_file);
6961 dev = inode->i_sb->s_dev;
6962 ino = inode->i_ino;
6963 gen = inode->i_generation;
6964 maj = MAJOR(dev);
6965 min = MINOR(dev);
6966
6967 goto got_name;
6968 } else {
6969 if (vma->vm_ops && vma->vm_ops->name) {
6970 name = (char *) vma->vm_ops->name(vma);
6971 if (name)
6972 goto cpy_name;
6973 }
6974
6975 name = (char *)arch_vma_name(vma);
6976 if (name)
6977 goto cpy_name;
6978
6979 if (vma->vm_start <= vma->vm_mm->start_brk &&
6980 vma->vm_end >= vma->vm_mm->brk) {
6981 name = "[heap]";
6982 goto cpy_name;
6983 }
6984 if (vma->vm_start <= vma->vm_mm->start_stack &&
6985 vma->vm_end >= vma->vm_mm->start_stack) {
6986 name = "[stack]";
6987 goto cpy_name;
6988 }
6989
6990 name = "//anon";
6991 goto cpy_name;
6992 }
6993
6994 cpy_name:
6995 strlcpy(tmp, name, sizeof(tmp));
6996 name = tmp;
6997 got_name:
6998 /*
6999 * Since our buffer works in 8 byte units we need to align our string
7000 * size to a multiple of 8. However, we must guarantee the tail end is
7001 * zero'd out to avoid leaking random bits to userspace.
7002 */
7003 size = strlen(name)+1;
7004 while (!IS_ALIGNED(size, sizeof(u64)))
7005 name[size++] = '\0';
7006
7007 mmap_event->file_name = name;
7008 mmap_event->file_size = size;
7009 mmap_event->maj = maj;
7010 mmap_event->min = min;
7011 mmap_event->ino = ino;
7012 mmap_event->ino_generation = gen;
7013 mmap_event->prot = prot;
7014 mmap_event->flags = flags;
7015
7016 if (!(vma->vm_flags & VM_EXEC))
7017 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
7018
7019 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
7020
7021 perf_iterate_sb(perf_event_mmap_output,
7022 mmap_event,
7023 NULL);
7024
7025 kfree(buf);
7026 }
7027
7028 /*
7029 * Check whether inode and address range match filter criteria.
7030 */
7031 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
7032 struct file *file, unsigned long offset,
7033 unsigned long size)
7034 {
7035 if (filter->inode != file_inode(file))
7036 return false;
7037
7038 if (filter->offset > offset + size)
7039 return false;
7040
7041 if (filter->offset + filter->size < offset)
7042 return false;
7043
7044 return true;
7045 }
7046
7047 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
7048 {
7049 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7050 struct vm_area_struct *vma = data;
7051 unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
7052 struct file *file = vma->vm_file;
7053 struct perf_addr_filter *filter;
7054 unsigned int restart = 0, count = 0;
7055
7056 if (!has_addr_filter(event))
7057 return;
7058
7059 if (!file)
7060 return;
7061
7062 raw_spin_lock_irqsave(&ifh->lock, flags);
7063 list_for_each_entry(filter, &ifh->list, entry) {
7064 if (perf_addr_filter_match(filter, file, off,
7065 vma->vm_end - vma->vm_start)) {
7066 event->addr_filters_offs[count] = vma->vm_start;
7067 restart++;
7068 }
7069
7070 count++;
7071 }
7072
7073 if (restart)
7074 event->addr_filters_gen++;
7075 raw_spin_unlock_irqrestore(&ifh->lock, flags);
7076
7077 if (restart)
7078 perf_event_stop(event, 1);
7079 }
7080
7081 /*
7082 * Adjust all task's events' filters to the new vma
7083 */
7084 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
7085 {
7086 struct perf_event_context *ctx;
7087 int ctxn;
7088
7089 /*
7090 * Data tracing isn't supported yet and as such there is no need
7091 * to keep track of anything that isn't related to executable code:
7092 */
7093 if (!(vma->vm_flags & VM_EXEC))
7094 return;
7095
7096 rcu_read_lock();
7097 for_each_task_context_nr(ctxn) {
7098 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7099 if (!ctx)
7100 continue;
7101
7102 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
7103 }
7104 rcu_read_unlock();
7105 }
7106
7107 void perf_event_mmap(struct vm_area_struct *vma)
7108 {
7109 struct perf_mmap_event mmap_event;
7110
7111 if (!atomic_read(&nr_mmap_events))
7112 return;
7113
7114 mmap_event = (struct perf_mmap_event){
7115 .vma = vma,
7116 /* .file_name */
7117 /* .file_size */
7118 .event_id = {
7119 .header = {
7120 .type = PERF_RECORD_MMAP,
7121 .misc = PERF_RECORD_MISC_USER,
7122 /* .size */
7123 },
7124 /* .pid */
7125 /* .tid */
7126 .start = vma->vm_start,
7127 .len = vma->vm_end - vma->vm_start,
7128 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
7129 },
7130 /* .maj (attr_mmap2 only) */
7131 /* .min (attr_mmap2 only) */
7132 /* .ino (attr_mmap2 only) */
7133 /* .ino_generation (attr_mmap2 only) */
7134 /* .prot (attr_mmap2 only) */
7135 /* .flags (attr_mmap2 only) */
7136 };
7137
7138 perf_addr_filters_adjust(vma);
7139 perf_event_mmap_event(&mmap_event);
7140 }
7141
7142 void perf_event_aux_event(struct perf_event *event, unsigned long head,
7143 unsigned long size, u64 flags)
7144 {
7145 struct perf_output_handle handle;
7146 struct perf_sample_data sample;
7147 struct perf_aux_event {
7148 struct perf_event_header header;
7149 u64 offset;
7150 u64 size;
7151 u64 flags;
7152 } rec = {
7153 .header = {
7154 .type = PERF_RECORD_AUX,
7155 .misc = 0,
7156 .size = sizeof(rec),
7157 },
7158 .offset = head,
7159 .size = size,
7160 .flags = flags,
7161 };
7162 int ret;
7163
7164 perf_event_header__init_id(&rec.header, &sample, event);
7165 ret = perf_output_begin(&handle, event, rec.header.size);
7166
7167 if (ret)
7168 return;
7169
7170 perf_output_put(&handle, rec);
7171 perf_event__output_id_sample(event, &handle, &sample);
7172
7173 perf_output_end(&handle);
7174 }
7175
7176 /*
7177 * Lost/dropped samples logging
7178 */
7179 void perf_log_lost_samples(struct perf_event *event, u64 lost)
7180 {
7181 struct perf_output_handle handle;
7182 struct perf_sample_data sample;
7183 int ret;
7184
7185 struct {
7186 struct perf_event_header header;
7187 u64 lost;
7188 } lost_samples_event = {
7189 .header = {
7190 .type = PERF_RECORD_LOST_SAMPLES,
7191 .misc = 0,
7192 .size = sizeof(lost_samples_event),
7193 },
7194 .lost = lost,
7195 };
7196
7197 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
7198
7199 ret = perf_output_begin(&handle, event,
7200 lost_samples_event.header.size);
7201 if (ret)
7202 return;
7203
7204 perf_output_put(&handle, lost_samples_event);
7205 perf_event__output_id_sample(event, &handle, &sample);
7206 perf_output_end(&handle);
7207 }
7208
7209 /*
7210 * context_switch tracking
7211 */
7212
7213 struct perf_switch_event {
7214 struct task_struct *task;
7215 struct task_struct *next_prev;
7216
7217 struct {
7218 struct perf_event_header header;
7219 u32 next_prev_pid;
7220 u32 next_prev_tid;
7221 } event_id;
7222 };
7223
7224 static int perf_event_switch_match(struct perf_event *event)
7225 {
7226 return event->attr.context_switch;
7227 }
7228
7229 static void perf_event_switch_output(struct perf_event *event, void *data)
7230 {
7231 struct perf_switch_event *se = data;
7232 struct perf_output_handle handle;
7233 struct perf_sample_data sample;
7234 int ret;
7235
7236 if (!perf_event_switch_match(event))
7237 return;
7238
7239 /* Only CPU-wide events are allowed to see next/prev pid/tid */
7240 if (event->ctx->task) {
7241 se->event_id.header.type = PERF_RECORD_SWITCH;
7242 se->event_id.header.size = sizeof(se->event_id.header);
7243 } else {
7244 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
7245 se->event_id.header.size = sizeof(se->event_id);
7246 se->event_id.next_prev_pid =
7247 perf_event_pid(event, se->next_prev);
7248 se->event_id.next_prev_tid =
7249 perf_event_tid(event, se->next_prev);
7250 }
7251
7252 perf_event_header__init_id(&se->event_id.header, &sample, event);
7253
7254 ret = perf_output_begin(&handle, event, se->event_id.header.size);
7255 if (ret)
7256 return;
7257
7258 if (event->ctx->task)
7259 perf_output_put(&handle, se->event_id.header);
7260 else
7261 perf_output_put(&handle, se->event_id);
7262
7263 perf_event__output_id_sample(event, &handle, &sample);
7264
7265 perf_output_end(&handle);
7266 }
7267
7268 static void perf_event_switch(struct task_struct *task,
7269 struct task_struct *next_prev, bool sched_in)
7270 {
7271 struct perf_switch_event switch_event;
7272
7273 /* N.B. caller checks nr_switch_events != 0 */
7274
7275 switch_event = (struct perf_switch_event){
7276 .task = task,
7277 .next_prev = next_prev,
7278 .event_id = {
7279 .header = {
7280 /* .type */
7281 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
7282 /* .size */
7283 },
7284 /* .next_prev_pid */
7285 /* .next_prev_tid */
7286 },
7287 };
7288
7289 perf_iterate_sb(perf_event_switch_output,
7290 &switch_event,
7291 NULL);
7292 }
7293
7294 /*
7295 * IRQ throttle logging
7296 */
7297
7298 static void perf_log_throttle(struct perf_event *event, int enable)
7299 {
7300 struct perf_output_handle handle;
7301 struct perf_sample_data sample;
7302 int ret;
7303
7304 struct {
7305 struct perf_event_header header;
7306 u64 time;
7307 u64 id;
7308 u64 stream_id;
7309 } throttle_event = {
7310 .header = {
7311 .type = PERF_RECORD_THROTTLE,
7312 .misc = 0,
7313 .size = sizeof(throttle_event),
7314 },
7315 .time = perf_event_clock(event),
7316 .id = primary_event_id(event),
7317 .stream_id = event->id,
7318 };
7319
7320 if (enable)
7321 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
7322
7323 perf_event_header__init_id(&throttle_event.header, &sample, event);
7324
7325 ret = perf_output_begin(&handle, event,
7326 throttle_event.header.size);
7327 if (ret)
7328 return;
7329
7330 perf_output_put(&handle, throttle_event);
7331 perf_event__output_id_sample(event, &handle, &sample);
7332 perf_output_end(&handle);
7333 }
7334
7335 void perf_event_itrace_started(struct perf_event *event)
7336 {
7337 event->attach_state |= PERF_ATTACH_ITRACE;
7338 }
7339
7340 static void perf_log_itrace_start(struct perf_event *event)
7341 {
7342 struct perf_output_handle handle;
7343 struct perf_sample_data sample;
7344 struct perf_aux_event {
7345 struct perf_event_header header;
7346 u32 pid;
7347 u32 tid;
7348 } rec;
7349 int ret;
7350
7351 if (event->parent)
7352 event = event->parent;
7353
7354 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
7355 event->attach_state & PERF_ATTACH_ITRACE)
7356 return;
7357
7358 rec.header.type = PERF_RECORD_ITRACE_START;
7359 rec.header.misc = 0;
7360 rec.header.size = sizeof(rec);
7361 rec.pid = perf_event_pid(event, current);
7362 rec.tid = perf_event_tid(event, current);
7363
7364 perf_event_header__init_id(&rec.header, &sample, event);
7365 ret = perf_output_begin(&handle, event, rec.header.size);
7366
7367 if (ret)
7368 return;
7369
7370 perf_output_put(&handle, rec);
7371 perf_event__output_id_sample(event, &handle, &sample);
7372
7373 perf_output_end(&handle);
7374 }
7375
7376 static int
7377 __perf_event_account_interrupt(struct perf_event *event, int throttle)
7378 {
7379 struct hw_perf_event *hwc = &event->hw;
7380 int ret = 0;
7381 u64 seq;
7382
7383 seq = __this_cpu_read(perf_throttled_seq);
7384 if (seq != hwc->interrupts_seq) {
7385 hwc->interrupts_seq = seq;
7386 hwc->interrupts = 1;
7387 } else {
7388 hwc->interrupts++;
7389 if (unlikely(throttle
7390 && hwc->interrupts >= max_samples_per_tick)) {
7391 __this_cpu_inc(perf_throttled_count);
7392 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
7393 hwc->interrupts = MAX_INTERRUPTS;
7394 perf_log_throttle(event, 0);
7395 ret = 1;
7396 }
7397 }
7398
7399 if (event->attr.freq) {
7400 u64 now = perf_clock();
7401 s64 delta = now - hwc->freq_time_stamp;
7402
7403 hwc->freq_time_stamp = now;
7404
7405 if (delta > 0 && delta < 2*TICK_NSEC)
7406 perf_adjust_period(event, delta, hwc->last_period, true);
7407 }
7408
7409 return ret;
7410 }
7411
7412 int perf_event_account_interrupt(struct perf_event *event)
7413 {
7414 return __perf_event_account_interrupt(event, 1);
7415 }
7416
7417 /*
7418 * Generic event overflow handling, sampling.
7419 */
7420
7421 static int __perf_event_overflow(struct perf_event *event,
7422 int throttle, struct perf_sample_data *data,
7423 struct pt_regs *regs)
7424 {
7425 int events = atomic_read(&event->event_limit);
7426 int ret = 0;
7427
7428 /*
7429 * Non-sampling counters might still use the PMI to fold short
7430 * hardware counters, ignore those.
7431 */
7432 if (unlikely(!is_sampling_event(event)))
7433 return 0;
7434
7435 ret = __perf_event_account_interrupt(event, throttle);
7436
7437 /*
7438 * XXX event_limit might not quite work as expected on inherited
7439 * events
7440 */
7441
7442 event->pending_kill = POLL_IN;
7443 if (events && atomic_dec_and_test(&event->event_limit)) {
7444 ret = 1;
7445 event->pending_kill = POLL_HUP;
7446
7447 perf_event_disable_inatomic(event);
7448 }
7449
7450 READ_ONCE(event->overflow_handler)(event, data, regs);
7451
7452 if (*perf_event_fasync(event) && event->pending_kill) {
7453 event->pending_wakeup = 1;
7454 irq_work_queue(&event->pending);
7455 }
7456
7457 return ret;
7458 }
7459
7460 int perf_event_overflow(struct perf_event *event,
7461 struct perf_sample_data *data,
7462 struct pt_regs *regs)
7463 {
7464 return __perf_event_overflow(event, 1, data, regs);
7465 }
7466
7467 /*
7468 * Generic software event infrastructure
7469 */
7470
7471 struct swevent_htable {
7472 struct swevent_hlist *swevent_hlist;
7473 struct mutex hlist_mutex;
7474 int hlist_refcount;
7475
7476 /* Recursion avoidance in each contexts */
7477 int recursion[PERF_NR_CONTEXTS];
7478 };
7479
7480 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
7481
7482 /*
7483 * We directly increment event->count and keep a second value in
7484 * event->hw.period_left to count intervals. This period event
7485 * is kept in the range [-sample_period, 0] so that we can use the
7486 * sign as trigger.
7487 */
7488
7489 u64 perf_swevent_set_period(struct perf_event *event)
7490 {
7491 struct hw_perf_event *hwc = &event->hw;
7492 u64 period = hwc->last_period;
7493 u64 nr, offset;
7494 s64 old, val;
7495
7496 hwc->last_period = hwc->sample_period;
7497
7498 again:
7499 old = val = local64_read(&hwc->period_left);
7500 if (val < 0)
7501 return 0;
7502
7503 nr = div64_u64(period + val, period);
7504 offset = nr * period;
7505 val -= offset;
7506 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7507 goto again;
7508
7509 return nr;
7510 }
7511
7512 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
7513 struct perf_sample_data *data,
7514 struct pt_regs *regs)
7515 {
7516 struct hw_perf_event *hwc = &event->hw;
7517 int throttle = 0;
7518
7519 if (!overflow)
7520 overflow = perf_swevent_set_period(event);
7521
7522 if (hwc->interrupts == MAX_INTERRUPTS)
7523 return;
7524
7525 for (; overflow; overflow--) {
7526 if (__perf_event_overflow(event, throttle,
7527 data, regs)) {
7528 /*
7529 * We inhibit the overflow from happening when
7530 * hwc->interrupts == MAX_INTERRUPTS.
7531 */
7532 break;
7533 }
7534 throttle = 1;
7535 }
7536 }
7537
7538 static void perf_swevent_event(struct perf_event *event, u64 nr,
7539 struct perf_sample_data *data,
7540 struct pt_regs *regs)
7541 {
7542 struct hw_perf_event *hwc = &event->hw;
7543
7544 local64_add(nr, &event->count);
7545
7546 if (!regs)
7547 return;
7548
7549 if (!is_sampling_event(event))
7550 return;
7551
7552 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
7553 data->period = nr;
7554 return perf_swevent_overflow(event, 1, data, regs);
7555 } else
7556 data->period = event->hw.last_period;
7557
7558 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
7559 return perf_swevent_overflow(event, 1, data, regs);
7560
7561 if (local64_add_negative(nr, &hwc->period_left))
7562 return;
7563
7564 perf_swevent_overflow(event, 0, data, regs);
7565 }
7566
7567 static int perf_exclude_event(struct perf_event *event,
7568 struct pt_regs *regs)
7569 {
7570 if (event->hw.state & PERF_HES_STOPPED)
7571 return 1;
7572
7573 if (regs) {
7574 if (event->attr.exclude_user && user_mode(regs))
7575 return 1;
7576
7577 if (event->attr.exclude_kernel && !user_mode(regs))
7578 return 1;
7579 }
7580
7581 return 0;
7582 }
7583
7584 static int perf_swevent_match(struct perf_event *event,
7585 enum perf_type_id type,
7586 u32 event_id,
7587 struct perf_sample_data *data,
7588 struct pt_regs *regs)
7589 {
7590 if (event->attr.type != type)
7591 return 0;
7592
7593 if (event->attr.config != event_id)
7594 return 0;
7595
7596 if (perf_exclude_event(event, regs))
7597 return 0;
7598
7599 return 1;
7600 }
7601
7602 static inline u64 swevent_hash(u64 type, u32 event_id)
7603 {
7604 u64 val = event_id | (type << 32);
7605
7606 return hash_64(val, SWEVENT_HLIST_BITS);
7607 }
7608
7609 static inline struct hlist_head *
7610 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
7611 {
7612 u64 hash = swevent_hash(type, event_id);
7613
7614 return &hlist->heads[hash];
7615 }
7616
7617 /* For the read side: events when they trigger */
7618 static inline struct hlist_head *
7619 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
7620 {
7621 struct swevent_hlist *hlist;
7622
7623 hlist = rcu_dereference(swhash->swevent_hlist);
7624 if (!hlist)
7625 return NULL;
7626
7627 return __find_swevent_head(hlist, type, event_id);
7628 }
7629
7630 /* For the event head insertion and removal in the hlist */
7631 static inline struct hlist_head *
7632 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
7633 {
7634 struct swevent_hlist *hlist;
7635 u32 event_id = event->attr.config;
7636 u64 type = event->attr.type;
7637
7638 /*
7639 * Event scheduling is always serialized against hlist allocation
7640 * and release. Which makes the protected version suitable here.
7641 * The context lock guarantees that.
7642 */
7643 hlist = rcu_dereference_protected(swhash->swevent_hlist,
7644 lockdep_is_held(&event->ctx->lock));
7645 if (!hlist)
7646 return NULL;
7647
7648 return __find_swevent_head(hlist, type, event_id);
7649 }
7650
7651 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
7652 u64 nr,
7653 struct perf_sample_data *data,
7654 struct pt_regs *regs)
7655 {
7656 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7657 struct perf_event *event;
7658 struct hlist_head *head;
7659
7660 rcu_read_lock();
7661 head = find_swevent_head_rcu(swhash, type, event_id);
7662 if (!head)
7663 goto end;
7664
7665 hlist_for_each_entry_rcu(event, head, hlist_entry) {
7666 if (perf_swevent_match(event, type, event_id, data, regs))
7667 perf_swevent_event(event, nr, data, regs);
7668 }
7669 end:
7670 rcu_read_unlock();
7671 }
7672
7673 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
7674
7675 int perf_swevent_get_recursion_context(void)
7676 {
7677 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7678
7679 return get_recursion_context(swhash->recursion);
7680 }
7681 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
7682
7683 void perf_swevent_put_recursion_context(int rctx)
7684 {
7685 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7686
7687 put_recursion_context(swhash->recursion, rctx);
7688 }
7689
7690 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7691 {
7692 struct perf_sample_data data;
7693
7694 if (WARN_ON_ONCE(!regs))
7695 return;
7696
7697 perf_sample_data_init(&data, addr, 0);
7698 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
7699 }
7700
7701 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7702 {
7703 int rctx;
7704
7705 preempt_disable_notrace();
7706 rctx = perf_swevent_get_recursion_context();
7707 if (unlikely(rctx < 0))
7708 goto fail;
7709
7710 ___perf_sw_event(event_id, nr, regs, addr);
7711
7712 perf_swevent_put_recursion_context(rctx);
7713 fail:
7714 preempt_enable_notrace();
7715 }
7716
7717 static void perf_swevent_read(struct perf_event *event)
7718 {
7719 }
7720
7721 static int perf_swevent_add(struct perf_event *event, int flags)
7722 {
7723 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7724 struct hw_perf_event *hwc = &event->hw;
7725 struct hlist_head *head;
7726
7727 if (is_sampling_event(event)) {
7728 hwc->last_period = hwc->sample_period;
7729 perf_swevent_set_period(event);
7730 }
7731
7732 hwc->state = !(flags & PERF_EF_START);
7733
7734 head = find_swevent_head(swhash, event);
7735 if (WARN_ON_ONCE(!head))
7736 return -EINVAL;
7737
7738 hlist_add_head_rcu(&event->hlist_entry, head);
7739 perf_event_update_userpage(event);
7740
7741 return 0;
7742 }
7743
7744 static void perf_swevent_del(struct perf_event *event, int flags)
7745 {
7746 hlist_del_rcu(&event->hlist_entry);
7747 }
7748
7749 static void perf_swevent_start(struct perf_event *event, int flags)
7750 {
7751 event->hw.state = 0;
7752 }
7753
7754 static void perf_swevent_stop(struct perf_event *event, int flags)
7755 {
7756 event->hw.state = PERF_HES_STOPPED;
7757 }
7758
7759 /* Deref the hlist from the update side */
7760 static inline struct swevent_hlist *
7761 swevent_hlist_deref(struct swevent_htable *swhash)
7762 {
7763 return rcu_dereference_protected(swhash->swevent_hlist,
7764 lockdep_is_held(&swhash->hlist_mutex));
7765 }
7766
7767 static void swevent_hlist_release(struct swevent_htable *swhash)
7768 {
7769 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
7770
7771 if (!hlist)
7772 return;
7773
7774 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
7775 kfree_rcu(hlist, rcu_head);
7776 }
7777
7778 static void swevent_hlist_put_cpu(int cpu)
7779 {
7780 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7781
7782 mutex_lock(&swhash->hlist_mutex);
7783
7784 if (!--swhash->hlist_refcount)
7785 swevent_hlist_release(swhash);
7786
7787 mutex_unlock(&swhash->hlist_mutex);
7788 }
7789
7790 static void swevent_hlist_put(void)
7791 {
7792 int cpu;
7793
7794 for_each_possible_cpu(cpu)
7795 swevent_hlist_put_cpu(cpu);
7796 }
7797
7798 static int swevent_hlist_get_cpu(int cpu)
7799 {
7800 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7801 int err = 0;
7802
7803 mutex_lock(&swhash->hlist_mutex);
7804 if (!swevent_hlist_deref(swhash) &&
7805 cpumask_test_cpu(cpu, perf_online_mask)) {
7806 struct swevent_hlist *hlist;
7807
7808 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
7809 if (!hlist) {
7810 err = -ENOMEM;
7811 goto exit;
7812 }
7813 rcu_assign_pointer(swhash->swevent_hlist, hlist);
7814 }
7815 swhash->hlist_refcount++;
7816 exit:
7817 mutex_unlock(&swhash->hlist_mutex);
7818
7819 return err;
7820 }
7821
7822 static int swevent_hlist_get(void)
7823 {
7824 int err, cpu, failed_cpu;
7825
7826 mutex_lock(&pmus_lock);
7827 for_each_possible_cpu(cpu) {
7828 err = swevent_hlist_get_cpu(cpu);
7829 if (err) {
7830 failed_cpu = cpu;
7831 goto fail;
7832 }
7833 }
7834 mutex_unlock(&pmus_lock);
7835 return 0;
7836 fail:
7837 for_each_possible_cpu(cpu) {
7838 if (cpu == failed_cpu)
7839 break;
7840 swevent_hlist_put_cpu(cpu);
7841 }
7842 mutex_unlock(&pmus_lock);
7843 return err;
7844 }
7845
7846 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
7847
7848 static void sw_perf_event_destroy(struct perf_event *event)
7849 {
7850 u64 event_id = event->attr.config;
7851
7852 WARN_ON(event->parent);
7853
7854 static_key_slow_dec(&perf_swevent_enabled[event_id]);
7855 swevent_hlist_put();
7856 }
7857
7858 static int perf_swevent_init(struct perf_event *event)
7859 {
7860 u64 event_id = event->attr.config;
7861
7862 if (event->attr.type != PERF_TYPE_SOFTWARE)
7863 return -ENOENT;
7864
7865 /*
7866 * no branch sampling for software events
7867 */
7868 if (has_branch_stack(event))
7869 return -EOPNOTSUPP;
7870
7871 switch (event_id) {
7872 case PERF_COUNT_SW_CPU_CLOCK:
7873 case PERF_COUNT_SW_TASK_CLOCK:
7874 return -ENOENT;
7875
7876 default:
7877 break;
7878 }
7879
7880 if (event_id >= PERF_COUNT_SW_MAX)
7881 return -ENOENT;
7882
7883 if (!event->parent) {
7884 int err;
7885
7886 err = swevent_hlist_get();
7887 if (err)
7888 return err;
7889
7890 static_key_slow_inc(&perf_swevent_enabled[event_id]);
7891 event->destroy = sw_perf_event_destroy;
7892 }
7893
7894 return 0;
7895 }
7896
7897 static struct pmu perf_swevent = {
7898 .task_ctx_nr = perf_sw_context,
7899
7900 .capabilities = PERF_PMU_CAP_NO_NMI,
7901
7902 .event_init = perf_swevent_init,
7903 .add = perf_swevent_add,
7904 .del = perf_swevent_del,
7905 .start = perf_swevent_start,
7906 .stop = perf_swevent_stop,
7907 .read = perf_swevent_read,
7908 };
7909
7910 #ifdef CONFIG_EVENT_TRACING
7911
7912 static int perf_tp_filter_match(struct perf_event *event,
7913 struct perf_sample_data *data)
7914 {
7915 void *record = data->raw->frag.data;
7916
7917 /* only top level events have filters set */
7918 if (event->parent)
7919 event = event->parent;
7920
7921 if (likely(!event->filter) || filter_match_preds(event->filter, record))
7922 return 1;
7923 return 0;
7924 }
7925
7926 static int perf_tp_event_match(struct perf_event *event,
7927 struct perf_sample_data *data,
7928 struct pt_regs *regs)
7929 {
7930 if (event->hw.state & PERF_HES_STOPPED)
7931 return 0;
7932 /*
7933 * All tracepoints are from kernel-space.
7934 */
7935 if (event->attr.exclude_kernel)
7936 return 0;
7937
7938 if (!perf_tp_filter_match(event, data))
7939 return 0;
7940
7941 return 1;
7942 }
7943
7944 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
7945 struct trace_event_call *call, u64 count,
7946 struct pt_regs *regs, struct hlist_head *head,
7947 struct task_struct *task)
7948 {
7949 struct bpf_prog *prog = call->prog;
7950
7951 if (prog) {
7952 *(struct pt_regs **)raw_data = regs;
7953 if (!trace_call_bpf(prog, raw_data) || hlist_empty(head)) {
7954 perf_swevent_put_recursion_context(rctx);
7955 return;
7956 }
7957 }
7958 perf_tp_event(call->event.type, count, raw_data, size, regs, head,
7959 rctx, task, NULL);
7960 }
7961 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
7962
7963 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
7964 struct pt_regs *regs, struct hlist_head *head, int rctx,
7965 struct task_struct *task, struct perf_event *event)
7966 {
7967 struct perf_sample_data data;
7968
7969 struct perf_raw_record raw = {
7970 .frag = {
7971 .size = entry_size,
7972 .data = record,
7973 },
7974 };
7975
7976 perf_sample_data_init(&data, 0, 0);
7977 data.raw = &raw;
7978
7979 perf_trace_buf_update(record, event_type);
7980
7981 /* Use the given event instead of the hlist */
7982 if (event) {
7983 if (perf_tp_event_match(event, &data, regs))
7984 perf_swevent_event(event, count, &data, regs);
7985 } else {
7986 hlist_for_each_entry_rcu(event, head, hlist_entry) {
7987 if (perf_tp_event_match(event, &data, regs))
7988 perf_swevent_event(event, count, &data, regs);
7989 }
7990 }
7991
7992 /*
7993 * If we got specified a target task, also iterate its context and
7994 * deliver this event there too.
7995 */
7996 if (task && task != current) {
7997 struct perf_event_context *ctx;
7998 struct trace_entry *entry = record;
7999
8000 rcu_read_lock();
8001 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
8002 if (!ctx)
8003 goto unlock;
8004
8005 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
8006 if (event->attr.type != PERF_TYPE_TRACEPOINT)
8007 continue;
8008 if (event->attr.config != entry->type)
8009 continue;
8010 if (perf_tp_event_match(event, &data, regs))
8011 perf_swevent_event(event, count, &data, regs);
8012 }
8013 unlock:
8014 rcu_read_unlock();
8015 }
8016
8017 perf_swevent_put_recursion_context(rctx);
8018 }
8019 EXPORT_SYMBOL_GPL(perf_tp_event);
8020
8021 static void tp_perf_event_destroy(struct perf_event *event)
8022 {
8023 perf_trace_destroy(event);
8024 }
8025
8026 static int perf_tp_event_init(struct perf_event *event)
8027 {
8028 int err;
8029
8030 if (event->attr.type != PERF_TYPE_TRACEPOINT)
8031 return -ENOENT;
8032
8033 /*
8034 * no branch sampling for tracepoint events
8035 */
8036 if (has_branch_stack(event))
8037 return -EOPNOTSUPP;
8038
8039 err = perf_trace_init(event);
8040 if (err)
8041 return err;
8042
8043 event->destroy = tp_perf_event_destroy;
8044
8045 return 0;
8046 }
8047
8048 static struct pmu perf_tracepoint = {
8049 .task_ctx_nr = perf_sw_context,
8050
8051 .event_init = perf_tp_event_init,
8052 .add = perf_trace_add,
8053 .del = perf_trace_del,
8054 .start = perf_swevent_start,
8055 .stop = perf_swevent_stop,
8056 .read = perf_swevent_read,
8057 };
8058
8059 static inline void perf_tp_register(void)
8060 {
8061 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
8062 }
8063
8064 static void perf_event_free_filter(struct perf_event *event)
8065 {
8066 ftrace_profile_free_filter(event);
8067 }
8068
8069 #ifdef CONFIG_BPF_SYSCALL
8070 static void bpf_overflow_handler(struct perf_event *event,
8071 struct perf_sample_data *data,
8072 struct pt_regs *regs)
8073 {
8074 struct bpf_perf_event_data_kern ctx = {
8075 .data = data,
8076 .regs = regs,
8077 };
8078 int ret = 0;
8079
8080 preempt_disable();
8081 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
8082 goto out;
8083 rcu_read_lock();
8084 ret = BPF_PROG_RUN(event->prog, &ctx);
8085 rcu_read_unlock();
8086 out:
8087 __this_cpu_dec(bpf_prog_active);
8088 preempt_enable();
8089 if (!ret)
8090 return;
8091
8092 event->orig_overflow_handler(event, data, regs);
8093 }
8094
8095 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8096 {
8097 struct bpf_prog *prog;
8098
8099 if (event->overflow_handler_context)
8100 /* hw breakpoint or kernel counter */
8101 return -EINVAL;
8102
8103 if (event->prog)
8104 return -EEXIST;
8105
8106 prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
8107 if (IS_ERR(prog))
8108 return PTR_ERR(prog);
8109
8110 event->prog = prog;
8111 event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
8112 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
8113 return 0;
8114 }
8115
8116 static void perf_event_free_bpf_handler(struct perf_event *event)
8117 {
8118 struct bpf_prog *prog = event->prog;
8119
8120 if (!prog)
8121 return;
8122
8123 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
8124 event->prog = NULL;
8125 bpf_prog_put(prog);
8126 }
8127 #else
8128 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8129 {
8130 return -EOPNOTSUPP;
8131 }
8132 static void perf_event_free_bpf_handler(struct perf_event *event)
8133 {
8134 }
8135 #endif
8136
8137 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8138 {
8139 bool is_kprobe, is_tracepoint, is_syscall_tp;
8140 struct bpf_prog *prog;
8141
8142 if (event->attr.type != PERF_TYPE_TRACEPOINT)
8143 return perf_event_set_bpf_handler(event, prog_fd);
8144
8145 if (event->tp_event->prog)
8146 return -EEXIST;
8147
8148 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
8149 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
8150 is_syscall_tp = is_syscall_trace_event(event->tp_event);
8151 if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
8152 /* bpf programs can only be attached to u/kprobe or tracepoint */
8153 return -EINVAL;
8154
8155 prog = bpf_prog_get(prog_fd);
8156 if (IS_ERR(prog))
8157 return PTR_ERR(prog);
8158
8159 if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
8160 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
8161 (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
8162 /* valid fd, but invalid bpf program type */
8163 bpf_prog_put(prog);
8164 return -EINVAL;
8165 }
8166
8167 if (is_tracepoint || is_syscall_tp) {
8168 int off = trace_event_get_offsets(event->tp_event);
8169
8170 if (prog->aux->max_ctx_offset > off) {
8171 bpf_prog_put(prog);
8172 return -EACCES;
8173 }
8174 }
8175 event->tp_event->prog = prog;
8176 event->tp_event->bpf_prog_owner = event;
8177
8178 return 0;
8179 }
8180
8181 static void perf_event_free_bpf_prog(struct perf_event *event)
8182 {
8183 struct bpf_prog *prog;
8184
8185 perf_event_free_bpf_handler(event);
8186
8187 if (!event->tp_event)
8188 return;
8189
8190 prog = event->tp_event->prog;
8191 if (prog && event->tp_event->bpf_prog_owner == event) {
8192 event->tp_event->prog = NULL;
8193 bpf_prog_put(prog);
8194 }
8195 }
8196
8197 #else
8198
8199 static inline void perf_tp_register(void)
8200 {
8201 }
8202
8203 static void perf_event_free_filter(struct perf_event *event)
8204 {
8205 }
8206
8207 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8208 {
8209 return -ENOENT;
8210 }
8211
8212 static void perf_event_free_bpf_prog(struct perf_event *event)
8213 {
8214 }
8215 #endif /* CONFIG_EVENT_TRACING */
8216
8217 #ifdef CONFIG_HAVE_HW_BREAKPOINT
8218 void perf_bp_event(struct perf_event *bp, void *data)
8219 {
8220 struct perf_sample_data sample;
8221 struct pt_regs *regs = data;
8222
8223 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
8224
8225 if (!bp->hw.state && !perf_exclude_event(bp, regs))
8226 perf_swevent_event(bp, 1, &sample, regs);
8227 }
8228 #endif
8229
8230 /*
8231 * Allocate a new address filter
8232 */
8233 static struct perf_addr_filter *
8234 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
8235 {
8236 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
8237 struct perf_addr_filter *filter;
8238
8239 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
8240 if (!filter)
8241 return NULL;
8242
8243 INIT_LIST_HEAD(&filter->entry);
8244 list_add_tail(&filter->entry, filters);
8245
8246 return filter;
8247 }
8248
8249 static void free_filters_list(struct list_head *filters)
8250 {
8251 struct perf_addr_filter *filter, *iter;
8252
8253 list_for_each_entry_safe(filter, iter, filters, entry) {
8254 if (filter->inode)
8255 iput(filter->inode);
8256 list_del(&filter->entry);
8257 kfree(filter);
8258 }
8259 }
8260
8261 /*
8262 * Free existing address filters and optionally install new ones
8263 */
8264 static void perf_addr_filters_splice(struct perf_event *event,
8265 struct list_head *head)
8266 {
8267 unsigned long flags;
8268 LIST_HEAD(list);
8269
8270 if (!has_addr_filter(event))
8271 return;
8272
8273 /* don't bother with children, they don't have their own filters */
8274 if (event->parent)
8275 return;
8276
8277 raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
8278
8279 list_splice_init(&event->addr_filters.list, &list);
8280 if (head)
8281 list_splice(head, &event->addr_filters.list);
8282
8283 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
8284
8285 free_filters_list(&list);
8286 }
8287
8288 /*
8289 * Scan through mm's vmas and see if one of them matches the
8290 * @filter; if so, adjust filter's address range.
8291 * Called with mm::mmap_sem down for reading.
8292 */
8293 static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
8294 struct mm_struct *mm)
8295 {
8296 struct vm_area_struct *vma;
8297
8298 for (vma = mm->mmap; vma; vma = vma->vm_next) {
8299 struct file *file = vma->vm_file;
8300 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8301 unsigned long vma_size = vma->vm_end - vma->vm_start;
8302
8303 if (!file)
8304 continue;
8305
8306 if (!perf_addr_filter_match(filter, file, off, vma_size))
8307 continue;
8308
8309 return vma->vm_start;
8310 }
8311
8312 return 0;
8313 }
8314
8315 /*
8316 * Update event's address range filters based on the
8317 * task's existing mappings, if any.
8318 */
8319 static void perf_event_addr_filters_apply(struct perf_event *event)
8320 {
8321 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8322 struct task_struct *task = READ_ONCE(event->ctx->task);
8323 struct perf_addr_filter *filter;
8324 struct mm_struct *mm = NULL;
8325 unsigned int count = 0;
8326 unsigned long flags;
8327
8328 /*
8329 * We may observe TASK_TOMBSTONE, which means that the event tear-down
8330 * will stop on the parent's child_mutex that our caller is also holding
8331 */
8332 if (task == TASK_TOMBSTONE)
8333 return;
8334
8335 if (!ifh->nr_file_filters)
8336 return;
8337
8338 mm = get_task_mm(event->ctx->task);
8339 if (!mm)
8340 goto restart;
8341
8342 down_read(&mm->mmap_sem);
8343
8344 raw_spin_lock_irqsave(&ifh->lock, flags);
8345 list_for_each_entry(filter, &ifh->list, entry) {
8346 event->addr_filters_offs[count] = 0;
8347
8348 /*
8349 * Adjust base offset if the filter is associated to a binary
8350 * that needs to be mapped:
8351 */
8352 if (filter->inode)
8353 event->addr_filters_offs[count] =
8354 perf_addr_filter_apply(filter, mm);
8355
8356 count++;
8357 }
8358
8359 event->addr_filters_gen++;
8360 raw_spin_unlock_irqrestore(&ifh->lock, flags);
8361
8362 up_read(&mm->mmap_sem);
8363
8364 mmput(mm);
8365
8366 restart:
8367 perf_event_stop(event, 1);
8368 }
8369
8370 /*
8371 * Address range filtering: limiting the data to certain
8372 * instruction address ranges. Filters are ioctl()ed to us from
8373 * userspace as ascii strings.
8374 *
8375 * Filter string format:
8376 *
8377 * ACTION RANGE_SPEC
8378 * where ACTION is one of the
8379 * * "filter": limit the trace to this region
8380 * * "start": start tracing from this address
8381 * * "stop": stop tracing at this address/region;
8382 * RANGE_SPEC is
8383 * * for kernel addresses: <start address>[/<size>]
8384 * * for object files: <start address>[/<size>]@</path/to/object/file>
8385 *
8386 * if <size> is not specified, the range is treated as a single address.
8387 */
8388 enum {
8389 IF_ACT_NONE = -1,
8390 IF_ACT_FILTER,
8391 IF_ACT_START,
8392 IF_ACT_STOP,
8393 IF_SRC_FILE,
8394 IF_SRC_KERNEL,
8395 IF_SRC_FILEADDR,
8396 IF_SRC_KERNELADDR,
8397 };
8398
8399 enum {
8400 IF_STATE_ACTION = 0,
8401 IF_STATE_SOURCE,
8402 IF_STATE_END,
8403 };
8404
8405 static const match_table_t if_tokens = {
8406 { IF_ACT_FILTER, "filter" },
8407 { IF_ACT_START, "start" },
8408 { IF_ACT_STOP, "stop" },
8409 { IF_SRC_FILE, "%u/%u@%s" },
8410 { IF_SRC_KERNEL, "%u/%u" },
8411 { IF_SRC_FILEADDR, "%u@%s" },
8412 { IF_SRC_KERNELADDR, "%u" },
8413 { IF_ACT_NONE, NULL },
8414 };
8415
8416 /*
8417 * Address filter string parser
8418 */
8419 static int
8420 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
8421 struct list_head *filters)
8422 {
8423 struct perf_addr_filter *filter = NULL;
8424 char *start, *orig, *filename = NULL;
8425 struct path path;
8426 substring_t args[MAX_OPT_ARGS];
8427 int state = IF_STATE_ACTION, token;
8428 unsigned int kernel = 0;
8429 int ret = -EINVAL;
8430
8431 orig = fstr = kstrdup(fstr, GFP_KERNEL);
8432 if (!fstr)
8433 return -ENOMEM;
8434
8435 while ((start = strsep(&fstr, " ,\n")) != NULL) {
8436 ret = -EINVAL;
8437
8438 if (!*start)
8439 continue;
8440
8441 /* filter definition begins */
8442 if (state == IF_STATE_ACTION) {
8443 filter = perf_addr_filter_new(event, filters);
8444 if (!filter)
8445 goto fail;
8446 }
8447
8448 token = match_token(start, if_tokens, args);
8449 switch (token) {
8450 case IF_ACT_FILTER:
8451 case IF_ACT_START:
8452 filter->filter = 1;
8453
8454 case IF_ACT_STOP:
8455 if (state != IF_STATE_ACTION)
8456 goto fail;
8457
8458 state = IF_STATE_SOURCE;
8459 break;
8460
8461 case IF_SRC_KERNELADDR:
8462 case IF_SRC_KERNEL:
8463 kernel = 1;
8464
8465 case IF_SRC_FILEADDR:
8466 case IF_SRC_FILE:
8467 if (state != IF_STATE_SOURCE)
8468 goto fail;
8469
8470 if (token == IF_SRC_FILE || token == IF_SRC_KERNEL)
8471 filter->range = 1;
8472
8473 *args[0].to = 0;
8474 ret = kstrtoul(args[0].from, 0, &filter->offset);
8475 if (ret)
8476 goto fail;
8477
8478 if (filter->range) {
8479 *args[1].to = 0;
8480 ret = kstrtoul(args[1].from, 0, &filter->size);
8481 if (ret)
8482 goto fail;
8483 }
8484
8485 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
8486 int fpos = filter->range ? 2 : 1;
8487
8488 filename = match_strdup(&args[fpos]);
8489 if (!filename) {
8490 ret = -ENOMEM;
8491 goto fail;
8492 }
8493 }
8494
8495 state = IF_STATE_END;
8496 break;
8497
8498 default:
8499 goto fail;
8500 }
8501
8502 /*
8503 * Filter definition is fully parsed, validate and install it.
8504 * Make sure that it doesn't contradict itself or the event's
8505 * attribute.
8506 */
8507 if (state == IF_STATE_END) {
8508 ret = -EINVAL;
8509 if (kernel && event->attr.exclude_kernel)
8510 goto fail;
8511
8512 if (!kernel) {
8513 if (!filename)
8514 goto fail;
8515
8516 /*
8517 * For now, we only support file-based filters
8518 * in per-task events; doing so for CPU-wide
8519 * events requires additional context switching
8520 * trickery, since same object code will be
8521 * mapped at different virtual addresses in
8522 * different processes.
8523 */
8524 ret = -EOPNOTSUPP;
8525 if (!event->ctx->task)
8526 goto fail_free_name;
8527
8528 /* look up the path and grab its inode */
8529 ret = kern_path(filename, LOOKUP_FOLLOW, &path);
8530 if (ret)
8531 goto fail_free_name;
8532
8533 filter->inode = igrab(d_inode(path.dentry));
8534 path_put(&path);
8535 kfree(filename);
8536 filename = NULL;
8537
8538 ret = -EINVAL;
8539 if (!filter->inode ||
8540 !S_ISREG(filter->inode->i_mode))
8541 /* free_filters_list() will iput() */
8542 goto fail;
8543
8544 event->addr_filters.nr_file_filters++;
8545 }
8546
8547 /* ready to consume more filters */
8548 state = IF_STATE_ACTION;
8549 filter = NULL;
8550 }
8551 }
8552
8553 if (state != IF_STATE_ACTION)
8554 goto fail;
8555
8556 kfree(orig);
8557
8558 return 0;
8559
8560 fail_free_name:
8561 kfree(filename);
8562 fail:
8563 free_filters_list(filters);
8564 kfree(orig);
8565
8566 return ret;
8567 }
8568
8569 static int
8570 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
8571 {
8572 LIST_HEAD(filters);
8573 int ret;
8574
8575 /*
8576 * Since this is called in perf_ioctl() path, we're already holding
8577 * ctx::mutex.
8578 */
8579 lockdep_assert_held(&event->ctx->mutex);
8580
8581 if (WARN_ON_ONCE(event->parent))
8582 return -EINVAL;
8583
8584 ret = perf_event_parse_addr_filter(event, filter_str, &filters);
8585 if (ret)
8586 goto fail_clear_files;
8587
8588 ret = event->pmu->addr_filters_validate(&filters);
8589 if (ret)
8590 goto fail_free_filters;
8591
8592 /* remove existing filters, if any */
8593 perf_addr_filters_splice(event, &filters);
8594
8595 /* install new filters */
8596 perf_event_for_each_child(event, perf_event_addr_filters_apply);
8597
8598 return ret;
8599
8600 fail_free_filters:
8601 free_filters_list(&filters);
8602
8603 fail_clear_files:
8604 event->addr_filters.nr_file_filters = 0;
8605
8606 return ret;
8607 }
8608
8609 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
8610 {
8611 char *filter_str;
8612 int ret = -EINVAL;
8613
8614 if ((event->attr.type != PERF_TYPE_TRACEPOINT ||
8615 !IS_ENABLED(CONFIG_EVENT_TRACING)) &&
8616 !has_addr_filter(event))
8617 return -EINVAL;
8618
8619 filter_str = strndup_user(arg, PAGE_SIZE);
8620 if (IS_ERR(filter_str))
8621 return PTR_ERR(filter_str);
8622
8623 if (IS_ENABLED(CONFIG_EVENT_TRACING) &&
8624 event->attr.type == PERF_TYPE_TRACEPOINT)
8625 ret = ftrace_profile_set_filter(event, event->attr.config,
8626 filter_str);
8627 else if (has_addr_filter(event))
8628 ret = perf_event_set_addr_filter(event, filter_str);
8629
8630 kfree(filter_str);
8631 return ret;
8632 }
8633
8634 /*
8635 * hrtimer based swevent callback
8636 */
8637
8638 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
8639 {
8640 enum hrtimer_restart ret = HRTIMER_RESTART;
8641 struct perf_sample_data data;
8642 struct pt_regs *regs;
8643 struct perf_event *event;
8644 u64 period;
8645
8646 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
8647
8648 if (event->state != PERF_EVENT_STATE_ACTIVE)
8649 return HRTIMER_NORESTART;
8650
8651 event->pmu->read(event);
8652
8653 perf_sample_data_init(&data, 0, event->hw.last_period);
8654 regs = get_irq_regs();
8655
8656 if (regs && !perf_exclude_event(event, regs)) {
8657 if (!(event->attr.exclude_idle && is_idle_task(current)))
8658 if (__perf_event_overflow(event, 1, &data, regs))
8659 ret = HRTIMER_NORESTART;
8660 }
8661
8662 period = max_t(u64, 10000, event->hw.sample_period);
8663 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
8664
8665 return ret;
8666 }
8667
8668 static void perf_swevent_start_hrtimer(struct perf_event *event)
8669 {
8670 struct hw_perf_event *hwc = &event->hw;
8671 s64 period;
8672
8673 if (!is_sampling_event(event))
8674 return;
8675
8676 period = local64_read(&hwc->period_left);
8677 if (period) {
8678 if (period < 0)
8679 period = 10000;
8680
8681 local64_set(&hwc->period_left, 0);
8682 } else {
8683 period = max_t(u64, 10000, hwc->sample_period);
8684 }
8685 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
8686 HRTIMER_MODE_REL_PINNED);
8687 }
8688
8689 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
8690 {
8691 struct hw_perf_event *hwc = &event->hw;
8692
8693 if (is_sampling_event(event)) {
8694 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
8695 local64_set(&hwc->period_left, ktime_to_ns(remaining));
8696
8697 hrtimer_cancel(&hwc->hrtimer);
8698 }
8699 }
8700
8701 static void perf_swevent_init_hrtimer(struct perf_event *event)
8702 {
8703 struct hw_perf_event *hwc = &event->hw;
8704
8705 if (!is_sampling_event(event))
8706 return;
8707
8708 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
8709 hwc->hrtimer.function = perf_swevent_hrtimer;
8710
8711 /*
8712 * Since hrtimers have a fixed rate, we can do a static freq->period
8713 * mapping and avoid the whole period adjust feedback stuff.
8714 */
8715 if (event->attr.freq) {
8716 long freq = event->attr.sample_freq;
8717
8718 event->attr.sample_period = NSEC_PER_SEC / freq;
8719 hwc->sample_period = event->attr.sample_period;
8720 local64_set(&hwc->period_left, hwc->sample_period);
8721 hwc->last_period = hwc->sample_period;
8722 event->attr.freq = 0;
8723 }
8724 }
8725
8726 /*
8727 * Software event: cpu wall time clock
8728 */
8729
8730 static void cpu_clock_event_update(struct perf_event *event)
8731 {
8732 s64 prev;
8733 u64 now;
8734
8735 now = local_clock();
8736 prev = local64_xchg(&event->hw.prev_count, now);
8737 local64_add(now - prev, &event->count);
8738 }
8739
8740 static void cpu_clock_event_start(struct perf_event *event, int flags)
8741 {
8742 local64_set(&event->hw.prev_count, local_clock());
8743 perf_swevent_start_hrtimer(event);
8744 }
8745
8746 static void cpu_clock_event_stop(struct perf_event *event, int flags)
8747 {
8748 perf_swevent_cancel_hrtimer(event);
8749 cpu_clock_event_update(event);
8750 }
8751
8752 static int cpu_clock_event_add(struct perf_event *event, int flags)
8753 {
8754 if (flags & PERF_EF_START)
8755 cpu_clock_event_start(event, flags);
8756 perf_event_update_userpage(event);
8757
8758 return 0;
8759 }
8760
8761 static void cpu_clock_event_del(struct perf_event *event, int flags)
8762 {
8763 cpu_clock_event_stop(event, flags);
8764 }
8765
8766 static void cpu_clock_event_read(struct perf_event *event)
8767 {
8768 cpu_clock_event_update(event);
8769 }
8770
8771 static int cpu_clock_event_init(struct perf_event *event)
8772 {
8773 if (event->attr.type != PERF_TYPE_SOFTWARE)
8774 return -ENOENT;
8775
8776 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
8777 return -ENOENT;
8778
8779 /*
8780 * no branch sampling for software events
8781 */
8782 if (has_branch_stack(event))
8783 return -EOPNOTSUPP;
8784
8785 perf_swevent_init_hrtimer(event);
8786
8787 return 0;
8788 }
8789
8790 static struct pmu perf_cpu_clock = {
8791 .task_ctx_nr = perf_sw_context,
8792
8793 .capabilities = PERF_PMU_CAP_NO_NMI,
8794
8795 .event_init = cpu_clock_event_init,
8796 .add = cpu_clock_event_add,
8797 .del = cpu_clock_event_del,
8798 .start = cpu_clock_event_start,
8799 .stop = cpu_clock_event_stop,
8800 .read = cpu_clock_event_read,
8801 };
8802
8803 /*
8804 * Software event: task time clock
8805 */
8806
8807 static void task_clock_event_update(struct perf_event *event, u64 now)
8808 {
8809 u64 prev;
8810 s64 delta;
8811
8812 prev = local64_xchg(&event->hw.prev_count, now);
8813 delta = now - prev;
8814 local64_add(delta, &event->count);
8815 }
8816
8817 static void task_clock_event_start(struct perf_event *event, int flags)
8818 {
8819 local64_set(&event->hw.prev_count, event->ctx->time);
8820 perf_swevent_start_hrtimer(event);
8821 }
8822
8823 static void task_clock_event_stop(struct perf_event *event, int flags)
8824 {
8825 perf_swevent_cancel_hrtimer(event);
8826 task_clock_event_update(event, event->ctx->time);
8827 }
8828
8829 static int task_clock_event_add(struct perf_event *event, int flags)
8830 {
8831 if (flags & PERF_EF_START)
8832 task_clock_event_start(event, flags);
8833 perf_event_update_userpage(event);
8834
8835 return 0;
8836 }
8837
8838 static void task_clock_event_del(struct perf_event *event, int flags)
8839 {
8840 task_clock_event_stop(event, PERF_EF_UPDATE);
8841 }
8842
8843 static void task_clock_event_read(struct perf_event *event)
8844 {
8845 u64 now = perf_clock();
8846 u64 delta = now - event->ctx->timestamp;
8847 u64 time = event->ctx->time + delta;
8848
8849 task_clock_event_update(event, time);
8850 }
8851
8852 static int task_clock_event_init(struct perf_event *event)
8853 {
8854 if (event->attr.type != PERF_TYPE_SOFTWARE)
8855 return -ENOENT;
8856
8857 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
8858 return -ENOENT;
8859
8860 /*
8861 * no branch sampling for software events
8862 */
8863 if (has_branch_stack(event))
8864 return -EOPNOTSUPP;
8865
8866 perf_swevent_init_hrtimer(event);
8867
8868 return 0;
8869 }
8870
8871 static struct pmu perf_task_clock = {
8872 .task_ctx_nr = perf_sw_context,
8873
8874 .capabilities = PERF_PMU_CAP_NO_NMI,
8875
8876 .event_init = task_clock_event_init,
8877 .add = task_clock_event_add,
8878 .del = task_clock_event_del,
8879 .start = task_clock_event_start,
8880 .stop = task_clock_event_stop,
8881 .read = task_clock_event_read,
8882 };
8883
8884 static void perf_pmu_nop_void(struct pmu *pmu)
8885 {
8886 }
8887
8888 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
8889 {
8890 }
8891
8892 static int perf_pmu_nop_int(struct pmu *pmu)
8893 {
8894 return 0;
8895 }
8896
8897 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
8898
8899 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
8900 {
8901 __this_cpu_write(nop_txn_flags, flags);
8902
8903 if (flags & ~PERF_PMU_TXN_ADD)
8904 return;
8905
8906 perf_pmu_disable(pmu);
8907 }
8908
8909 static int perf_pmu_commit_txn(struct pmu *pmu)
8910 {
8911 unsigned int flags = __this_cpu_read(nop_txn_flags);
8912
8913 __this_cpu_write(nop_txn_flags, 0);
8914
8915 if (flags & ~PERF_PMU_TXN_ADD)
8916 return 0;
8917
8918 perf_pmu_enable(pmu);
8919 return 0;
8920 }
8921
8922 static void perf_pmu_cancel_txn(struct pmu *pmu)
8923 {
8924 unsigned int flags = __this_cpu_read(nop_txn_flags);
8925
8926 __this_cpu_write(nop_txn_flags, 0);
8927
8928 if (flags & ~PERF_PMU_TXN_ADD)
8929 return;
8930
8931 perf_pmu_enable(pmu);
8932 }
8933
8934 static int perf_event_idx_default(struct perf_event *event)
8935 {
8936 return 0;
8937 }
8938
8939 /*
8940 * Ensures all contexts with the same task_ctx_nr have the same
8941 * pmu_cpu_context too.
8942 */
8943 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
8944 {
8945 struct pmu *pmu;
8946
8947 if (ctxn < 0)
8948 return NULL;
8949
8950 list_for_each_entry(pmu, &pmus, entry) {
8951 if (pmu->task_ctx_nr == ctxn)
8952 return pmu->pmu_cpu_context;
8953 }
8954
8955 return NULL;
8956 }
8957
8958 static void free_pmu_context(struct pmu *pmu)
8959 {
8960 /*
8961 * Static contexts such as perf_sw_context have a global lifetime
8962 * and may be shared between different PMUs. Avoid freeing them
8963 * when a single PMU is going away.
8964 */
8965 if (pmu->task_ctx_nr > perf_invalid_context)
8966 return;
8967
8968 mutex_lock(&pmus_lock);
8969 free_percpu(pmu->pmu_cpu_context);
8970 mutex_unlock(&pmus_lock);
8971 }
8972
8973 /*
8974 * Let userspace know that this PMU supports address range filtering:
8975 */
8976 static ssize_t nr_addr_filters_show(struct device *dev,
8977 struct device_attribute *attr,
8978 char *page)
8979 {
8980 struct pmu *pmu = dev_get_drvdata(dev);
8981
8982 return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
8983 }
8984 DEVICE_ATTR_RO(nr_addr_filters);
8985
8986 static struct idr pmu_idr;
8987
8988 static ssize_t
8989 type_show(struct device *dev, struct device_attribute *attr, char *page)
8990 {
8991 struct pmu *pmu = dev_get_drvdata(dev);
8992
8993 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
8994 }
8995 static DEVICE_ATTR_RO(type);
8996
8997 static ssize_t
8998 perf_event_mux_interval_ms_show(struct device *dev,
8999 struct device_attribute *attr,
9000 char *page)
9001 {
9002 struct pmu *pmu = dev_get_drvdata(dev);
9003
9004 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
9005 }
9006
9007 static DEFINE_MUTEX(mux_interval_mutex);
9008
9009 static ssize_t
9010 perf_event_mux_interval_ms_store(struct device *dev,
9011 struct device_attribute *attr,
9012 const char *buf, size_t count)
9013 {
9014 struct pmu *pmu = dev_get_drvdata(dev);
9015 int timer, cpu, ret;
9016
9017 ret = kstrtoint(buf, 0, &timer);
9018 if (ret)
9019 return ret;
9020
9021 if (timer < 1)
9022 return -EINVAL;
9023
9024 /* same value, noting to do */
9025 if (timer == pmu->hrtimer_interval_ms)
9026 return count;
9027
9028 mutex_lock(&mux_interval_mutex);
9029 pmu->hrtimer_interval_ms = timer;
9030
9031 /* update all cpuctx for this PMU */
9032 cpus_read_lock();
9033 for_each_online_cpu(cpu) {
9034 struct perf_cpu_context *cpuctx;
9035 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9036 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
9037
9038 cpu_function_call(cpu,
9039 (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
9040 }
9041 cpus_read_unlock();
9042 mutex_unlock(&mux_interval_mutex);
9043
9044 return count;
9045 }
9046 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
9047
9048 static struct attribute *pmu_dev_attrs[] = {
9049 &dev_attr_type.attr,
9050 &dev_attr_perf_event_mux_interval_ms.attr,
9051 NULL,
9052 };
9053 ATTRIBUTE_GROUPS(pmu_dev);
9054
9055 static int pmu_bus_running;
9056 static struct bus_type pmu_bus = {
9057 .name = "event_source",
9058 .dev_groups = pmu_dev_groups,
9059 };
9060
9061 static void pmu_dev_release(struct device *dev)
9062 {
9063 kfree(dev);
9064 }
9065
9066 static int pmu_dev_alloc(struct pmu *pmu)
9067 {
9068 int ret = -ENOMEM;
9069
9070 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
9071 if (!pmu->dev)
9072 goto out;
9073
9074 pmu->dev->groups = pmu->attr_groups;
9075 device_initialize(pmu->dev);
9076 ret = dev_set_name(pmu->dev, "%s", pmu->name);
9077 if (ret)
9078 goto free_dev;
9079
9080 dev_set_drvdata(pmu->dev, pmu);
9081 pmu->dev->bus = &pmu_bus;
9082 pmu->dev->release = pmu_dev_release;
9083 ret = device_add(pmu->dev);
9084 if (ret)
9085 goto free_dev;
9086
9087 /* For PMUs with address filters, throw in an extra attribute: */
9088 if (pmu->nr_addr_filters)
9089 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
9090
9091 if (ret)
9092 goto del_dev;
9093
9094 out:
9095 return ret;
9096
9097 del_dev:
9098 device_del(pmu->dev);
9099
9100 free_dev:
9101 put_device(pmu->dev);
9102 goto out;
9103 }
9104
9105 static struct lock_class_key cpuctx_mutex;
9106 static struct lock_class_key cpuctx_lock;
9107
9108 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
9109 {
9110 int cpu, ret;
9111
9112 mutex_lock(&pmus_lock);
9113 ret = -ENOMEM;
9114 pmu->pmu_disable_count = alloc_percpu(int);
9115 if (!pmu->pmu_disable_count)
9116 goto unlock;
9117
9118 pmu->type = -1;
9119 if (!name)
9120 goto skip_type;
9121 pmu->name = name;
9122
9123 if (type < 0) {
9124 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
9125 if (type < 0) {
9126 ret = type;
9127 goto free_pdc;
9128 }
9129 }
9130 pmu->type = type;
9131
9132 if (pmu_bus_running) {
9133 ret = pmu_dev_alloc(pmu);
9134 if (ret)
9135 goto free_idr;
9136 }
9137
9138 skip_type:
9139 if (pmu->task_ctx_nr == perf_hw_context) {
9140 static int hw_context_taken = 0;
9141
9142 /*
9143 * Other than systems with heterogeneous CPUs, it never makes
9144 * sense for two PMUs to share perf_hw_context. PMUs which are
9145 * uncore must use perf_invalid_context.
9146 */
9147 if (WARN_ON_ONCE(hw_context_taken &&
9148 !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
9149 pmu->task_ctx_nr = perf_invalid_context;
9150
9151 hw_context_taken = 1;
9152 }
9153
9154 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
9155 if (pmu->pmu_cpu_context)
9156 goto got_cpu_context;
9157
9158 ret = -ENOMEM;
9159 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
9160 if (!pmu->pmu_cpu_context)
9161 goto free_dev;
9162
9163 for_each_possible_cpu(cpu) {
9164 struct perf_cpu_context *cpuctx;
9165
9166 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9167 __perf_event_init_context(&cpuctx->ctx);
9168 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
9169 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
9170 cpuctx->ctx.pmu = pmu;
9171 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
9172
9173 __perf_mux_hrtimer_init(cpuctx, cpu);
9174 }
9175
9176 got_cpu_context:
9177 if (!pmu->start_txn) {
9178 if (pmu->pmu_enable) {
9179 /*
9180 * If we have pmu_enable/pmu_disable calls, install
9181 * transaction stubs that use that to try and batch
9182 * hardware accesses.
9183 */
9184 pmu->start_txn = perf_pmu_start_txn;
9185 pmu->commit_txn = perf_pmu_commit_txn;
9186 pmu->cancel_txn = perf_pmu_cancel_txn;
9187 } else {
9188 pmu->start_txn = perf_pmu_nop_txn;
9189 pmu->commit_txn = perf_pmu_nop_int;
9190 pmu->cancel_txn = perf_pmu_nop_void;
9191 }
9192 }
9193
9194 if (!pmu->pmu_enable) {
9195 pmu->pmu_enable = perf_pmu_nop_void;
9196 pmu->pmu_disable = perf_pmu_nop_void;
9197 }
9198
9199 if (!pmu->event_idx)
9200 pmu->event_idx = perf_event_idx_default;
9201
9202 list_add_rcu(&pmu->entry, &pmus);
9203 atomic_set(&pmu->exclusive_cnt, 0);
9204 ret = 0;
9205 unlock:
9206 mutex_unlock(&pmus_lock);
9207
9208 return ret;
9209
9210 free_dev:
9211 device_del(pmu->dev);
9212 put_device(pmu->dev);
9213
9214 free_idr:
9215 if (pmu->type >= PERF_TYPE_MAX)
9216 idr_remove(&pmu_idr, pmu->type);
9217
9218 free_pdc:
9219 free_percpu(pmu->pmu_disable_count);
9220 goto unlock;
9221 }
9222 EXPORT_SYMBOL_GPL(perf_pmu_register);
9223
9224 void perf_pmu_unregister(struct pmu *pmu)
9225 {
9226 int remove_device;
9227
9228 mutex_lock(&pmus_lock);
9229 remove_device = pmu_bus_running;
9230 list_del_rcu(&pmu->entry);
9231 mutex_unlock(&pmus_lock);
9232
9233 /*
9234 * We dereference the pmu list under both SRCU and regular RCU, so
9235 * synchronize against both of those.
9236 */
9237 synchronize_srcu(&pmus_srcu);
9238 synchronize_rcu();
9239
9240 free_percpu(pmu->pmu_disable_count);
9241 if (pmu->type >= PERF_TYPE_MAX)
9242 idr_remove(&pmu_idr, pmu->type);
9243 if (remove_device) {
9244 if (pmu->nr_addr_filters)
9245 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
9246 device_del(pmu->dev);
9247 put_device(pmu->dev);
9248 }
9249 free_pmu_context(pmu);
9250 }
9251 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
9252
9253 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
9254 {
9255 struct perf_event_context *ctx = NULL;
9256 int ret;
9257
9258 if (!try_module_get(pmu->module))
9259 return -ENODEV;
9260
9261 if (event->group_leader != event) {
9262 /*
9263 * This ctx->mutex can nest when we're called through
9264 * inheritance. See the perf_event_ctx_lock_nested() comment.
9265 */
9266 ctx = perf_event_ctx_lock_nested(event->group_leader,
9267 SINGLE_DEPTH_NESTING);
9268 BUG_ON(!ctx);
9269 }
9270
9271 event->pmu = pmu;
9272 ret = pmu->event_init(event);
9273
9274 if (ctx)
9275 perf_event_ctx_unlock(event->group_leader, ctx);
9276
9277 if (ret)
9278 module_put(pmu->module);
9279
9280 return ret;
9281 }
9282
9283 static struct pmu *perf_init_event(struct perf_event *event)
9284 {
9285 struct pmu *pmu;
9286 int idx;
9287 int ret;
9288
9289 idx = srcu_read_lock(&pmus_srcu);
9290
9291 /* Try parent's PMU first: */
9292 if (event->parent && event->parent->pmu) {
9293 pmu = event->parent->pmu;
9294 ret = perf_try_init_event(pmu, event);
9295 if (!ret)
9296 goto unlock;
9297 }
9298
9299 rcu_read_lock();
9300 pmu = idr_find(&pmu_idr, event->attr.type);
9301 rcu_read_unlock();
9302 if (pmu) {
9303 ret = perf_try_init_event(pmu, event);
9304 if (ret)
9305 pmu = ERR_PTR(ret);
9306 goto unlock;
9307 }
9308
9309 list_for_each_entry_rcu(pmu, &pmus, entry) {
9310 ret = perf_try_init_event(pmu, event);
9311 if (!ret)
9312 goto unlock;
9313
9314 if (ret != -ENOENT) {
9315 pmu = ERR_PTR(ret);
9316 goto unlock;
9317 }
9318 }
9319 pmu = ERR_PTR(-ENOENT);
9320 unlock:
9321 srcu_read_unlock(&pmus_srcu, idx);
9322
9323 return pmu;
9324 }
9325
9326 static void attach_sb_event(struct perf_event *event)
9327 {
9328 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
9329
9330 raw_spin_lock(&pel->lock);
9331 list_add_rcu(&event->sb_list, &pel->list);
9332 raw_spin_unlock(&pel->lock);
9333 }
9334
9335 /*
9336 * We keep a list of all !task (and therefore per-cpu) events
9337 * that need to receive side-band records.
9338 *
9339 * This avoids having to scan all the various PMU per-cpu contexts
9340 * looking for them.
9341 */
9342 static void account_pmu_sb_event(struct perf_event *event)
9343 {
9344 if (is_sb_event(event))
9345 attach_sb_event(event);
9346 }
9347
9348 static void account_event_cpu(struct perf_event *event, int cpu)
9349 {
9350 if (event->parent)
9351 return;
9352
9353 if (is_cgroup_event(event))
9354 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
9355 }
9356
9357 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
9358 static void account_freq_event_nohz(void)
9359 {
9360 #ifdef CONFIG_NO_HZ_FULL
9361 /* Lock so we don't race with concurrent unaccount */
9362 spin_lock(&nr_freq_lock);
9363 if (atomic_inc_return(&nr_freq_events) == 1)
9364 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
9365 spin_unlock(&nr_freq_lock);
9366 #endif
9367 }
9368
9369 static void account_freq_event(void)
9370 {
9371 if (tick_nohz_full_enabled())
9372 account_freq_event_nohz();
9373 else
9374 atomic_inc(&nr_freq_events);
9375 }
9376
9377
9378 static void account_event(struct perf_event *event)
9379 {
9380 bool inc = false;
9381
9382 if (event->parent)
9383 return;
9384
9385 if (event->attach_state & PERF_ATTACH_TASK)
9386 inc = true;
9387 if (event->attr.mmap || event->attr.mmap_data)
9388 atomic_inc(&nr_mmap_events);
9389 if (event->attr.comm)
9390 atomic_inc(&nr_comm_events);
9391 if (event->attr.namespaces)
9392 atomic_inc(&nr_namespaces_events);
9393 if (event->attr.task)
9394 atomic_inc(&nr_task_events);
9395 if (event->attr.freq)
9396 account_freq_event();
9397 if (event->attr.context_switch) {
9398 atomic_inc(&nr_switch_events);
9399 inc = true;
9400 }
9401 if (has_branch_stack(event))
9402 inc = true;
9403 if (is_cgroup_event(event))
9404 inc = true;
9405
9406 if (inc) {
9407 if (atomic_inc_not_zero(&perf_sched_count))
9408 goto enabled;
9409
9410 mutex_lock(&perf_sched_mutex);
9411 if (!atomic_read(&perf_sched_count)) {
9412 static_branch_enable(&perf_sched_events);
9413 /*
9414 * Guarantee that all CPUs observe they key change and
9415 * call the perf scheduling hooks before proceeding to
9416 * install events that need them.
9417 */
9418 synchronize_sched();
9419 }
9420 /*
9421 * Now that we have waited for the sync_sched(), allow further
9422 * increments to by-pass the mutex.
9423 */
9424 atomic_inc(&perf_sched_count);
9425 mutex_unlock(&perf_sched_mutex);
9426 }
9427 enabled:
9428
9429 account_event_cpu(event, event->cpu);
9430
9431 account_pmu_sb_event(event);
9432 }
9433
9434 /*
9435 * Allocate and initialize a event structure
9436 */
9437 static struct perf_event *
9438 perf_event_alloc(struct perf_event_attr *attr, int cpu,
9439 struct task_struct *task,
9440 struct perf_event *group_leader,
9441 struct perf_event *parent_event,
9442 perf_overflow_handler_t overflow_handler,
9443 void *context, int cgroup_fd)
9444 {
9445 struct pmu *pmu;
9446 struct perf_event *event;
9447 struct hw_perf_event *hwc;
9448 long err = -EINVAL;
9449
9450 if ((unsigned)cpu >= nr_cpu_ids) {
9451 if (!task || cpu != -1)
9452 return ERR_PTR(-EINVAL);
9453 }
9454
9455 event = kzalloc(sizeof(*event), GFP_KERNEL);
9456 if (!event)
9457 return ERR_PTR(-ENOMEM);
9458
9459 /*
9460 * Single events are their own group leaders, with an
9461 * empty sibling list:
9462 */
9463 if (!group_leader)
9464 group_leader = event;
9465
9466 mutex_init(&event->child_mutex);
9467 INIT_LIST_HEAD(&event->child_list);
9468
9469 INIT_LIST_HEAD(&event->group_entry);
9470 INIT_LIST_HEAD(&event->event_entry);
9471 INIT_LIST_HEAD(&event->sibling_list);
9472 INIT_LIST_HEAD(&event->rb_entry);
9473 INIT_LIST_HEAD(&event->active_entry);
9474 INIT_LIST_HEAD(&event->addr_filters.list);
9475 INIT_HLIST_NODE(&event->hlist_entry);
9476
9477
9478 init_waitqueue_head(&event->waitq);
9479 init_irq_work(&event->pending, perf_pending_event);
9480
9481 mutex_init(&event->mmap_mutex);
9482 raw_spin_lock_init(&event->addr_filters.lock);
9483
9484 atomic_long_set(&event->refcount, 1);
9485 event->cpu = cpu;
9486 event->attr = *attr;
9487 event->group_leader = group_leader;
9488 event->pmu = NULL;
9489 event->oncpu = -1;
9490
9491 event->parent = parent_event;
9492
9493 event->ns = get_pid_ns(task_active_pid_ns(current));
9494 event->id = atomic64_inc_return(&perf_event_id);
9495
9496 event->state = PERF_EVENT_STATE_INACTIVE;
9497
9498 if (task) {
9499 event->attach_state = PERF_ATTACH_TASK;
9500 /*
9501 * XXX pmu::event_init needs to know what task to account to
9502 * and we cannot use the ctx information because we need the
9503 * pmu before we get a ctx.
9504 */
9505 event->hw.target = task;
9506 }
9507
9508 event->clock = &local_clock;
9509 if (parent_event)
9510 event->clock = parent_event->clock;
9511
9512 if (!overflow_handler && parent_event) {
9513 overflow_handler = parent_event->overflow_handler;
9514 context = parent_event->overflow_handler_context;
9515 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
9516 if (overflow_handler == bpf_overflow_handler) {
9517 struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
9518
9519 if (IS_ERR(prog)) {
9520 err = PTR_ERR(prog);
9521 goto err_ns;
9522 }
9523 event->prog = prog;
9524 event->orig_overflow_handler =
9525 parent_event->orig_overflow_handler;
9526 }
9527 #endif
9528 }
9529
9530 if (overflow_handler) {
9531 event->overflow_handler = overflow_handler;
9532 event->overflow_handler_context = context;
9533 } else if (is_write_backward(event)){
9534 event->overflow_handler = perf_event_output_backward;
9535 event->overflow_handler_context = NULL;
9536 } else {
9537 event->overflow_handler = perf_event_output_forward;
9538 event->overflow_handler_context = NULL;
9539 }
9540
9541 perf_event__state_init(event);
9542
9543 pmu = NULL;
9544
9545 hwc = &event->hw;
9546 hwc->sample_period = attr->sample_period;
9547 if (attr->freq && attr->sample_freq)
9548 hwc->sample_period = 1;
9549 hwc->last_period = hwc->sample_period;
9550
9551 local64_set(&hwc->period_left, hwc->sample_period);
9552
9553 /*
9554 * We currently do not support PERF_SAMPLE_READ on inherited events.
9555 * See perf_output_read().
9556 */
9557 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
9558 goto err_ns;
9559
9560 if (!has_branch_stack(event))
9561 event->attr.branch_sample_type = 0;
9562
9563 if (cgroup_fd != -1) {
9564 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
9565 if (err)
9566 goto err_ns;
9567 }
9568
9569 pmu = perf_init_event(event);
9570 if (IS_ERR(pmu)) {
9571 err = PTR_ERR(pmu);
9572 goto err_ns;
9573 }
9574
9575 err = exclusive_event_init(event);
9576 if (err)
9577 goto err_pmu;
9578
9579 if (has_addr_filter(event)) {
9580 event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
9581 sizeof(unsigned long),
9582 GFP_KERNEL);
9583 if (!event->addr_filters_offs) {
9584 err = -ENOMEM;
9585 goto err_per_task;
9586 }
9587
9588 /* force hw sync on the address filters */
9589 event->addr_filters_gen = 1;
9590 }
9591
9592 if (!event->parent) {
9593 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
9594 err = get_callchain_buffers(attr->sample_max_stack);
9595 if (err)
9596 goto err_addr_filters;
9597 }
9598 }
9599
9600 /* symmetric to unaccount_event() in _free_event() */
9601 account_event(event);
9602
9603 return event;
9604
9605 err_addr_filters:
9606 kfree(event->addr_filters_offs);
9607
9608 err_per_task:
9609 exclusive_event_destroy(event);
9610
9611 err_pmu:
9612 if (event->destroy)
9613 event->destroy(event);
9614 module_put(pmu->module);
9615 err_ns:
9616 if (is_cgroup_event(event))
9617 perf_detach_cgroup(event);
9618 if (event->ns)
9619 put_pid_ns(event->ns);
9620 kfree(event);
9621
9622 return ERR_PTR(err);
9623 }
9624
9625 static int perf_copy_attr(struct perf_event_attr __user *uattr,
9626 struct perf_event_attr *attr)
9627 {
9628 u32 size;
9629 int ret;
9630
9631 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
9632 return -EFAULT;
9633
9634 /*
9635 * zero the full structure, so that a short copy will be nice.
9636 */
9637 memset(attr, 0, sizeof(*attr));
9638
9639 ret = get_user(size, &uattr->size);
9640 if (ret)
9641 return ret;
9642
9643 if (size > PAGE_SIZE) /* silly large */
9644 goto err_size;
9645
9646 if (!size) /* abi compat */
9647 size = PERF_ATTR_SIZE_VER0;
9648
9649 if (size < PERF_ATTR_SIZE_VER0)
9650 goto err_size;
9651
9652 /*
9653 * If we're handed a bigger struct than we know of,
9654 * ensure all the unknown bits are 0 - i.e. new
9655 * user-space does not rely on any kernel feature
9656 * extensions we dont know about yet.
9657 */
9658 if (size > sizeof(*attr)) {
9659 unsigned char __user *addr;
9660 unsigned char __user *end;
9661 unsigned char val;
9662
9663 addr = (void __user *)uattr + sizeof(*attr);
9664 end = (void __user *)uattr + size;
9665
9666 for (; addr < end; addr++) {
9667 ret = get_user(val, addr);
9668 if (ret)
9669 return ret;
9670 if (val)
9671 goto err_size;
9672 }
9673 size = sizeof(*attr);
9674 }
9675
9676 ret = copy_from_user(attr, uattr, size);
9677 if (ret)
9678 return -EFAULT;
9679
9680 attr->size = size;
9681
9682 if (attr->__reserved_1)
9683 return -EINVAL;
9684
9685 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
9686 return -EINVAL;
9687
9688 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
9689 return -EINVAL;
9690
9691 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
9692 u64 mask = attr->branch_sample_type;
9693
9694 /* only using defined bits */
9695 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
9696 return -EINVAL;
9697
9698 /* at least one branch bit must be set */
9699 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
9700 return -EINVAL;
9701
9702 /* propagate priv level, when not set for branch */
9703 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
9704
9705 /* exclude_kernel checked on syscall entry */
9706 if (!attr->exclude_kernel)
9707 mask |= PERF_SAMPLE_BRANCH_KERNEL;
9708
9709 if (!attr->exclude_user)
9710 mask |= PERF_SAMPLE_BRANCH_USER;
9711
9712 if (!attr->exclude_hv)
9713 mask |= PERF_SAMPLE_BRANCH_HV;
9714 /*
9715 * adjust user setting (for HW filter setup)
9716 */
9717 attr->branch_sample_type = mask;
9718 }
9719 /* privileged levels capture (kernel, hv): check permissions */
9720 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
9721 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9722 return -EACCES;
9723 }
9724
9725 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
9726 ret = perf_reg_validate(attr->sample_regs_user);
9727 if (ret)
9728 return ret;
9729 }
9730
9731 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
9732 if (!arch_perf_have_user_stack_dump())
9733 return -ENOSYS;
9734
9735 /*
9736 * We have __u32 type for the size, but so far
9737 * we can only use __u16 as maximum due to the
9738 * __u16 sample size limit.
9739 */
9740 if (attr->sample_stack_user >= USHRT_MAX)
9741 ret = -EINVAL;
9742 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
9743 ret = -EINVAL;
9744 }
9745
9746 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
9747 ret = perf_reg_validate(attr->sample_regs_intr);
9748 out:
9749 return ret;
9750
9751 err_size:
9752 put_user(sizeof(*attr), &uattr->size);
9753 ret = -E2BIG;
9754 goto out;
9755 }
9756
9757 static int
9758 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
9759 {
9760 struct ring_buffer *rb = NULL;
9761 int ret = -EINVAL;
9762
9763 if (!output_event)
9764 goto set;
9765
9766 /* don't allow circular references */
9767 if (event == output_event)
9768 goto out;
9769
9770 /*
9771 * Don't allow cross-cpu buffers
9772 */
9773 if (output_event->cpu != event->cpu)
9774 goto out;
9775
9776 /*
9777 * If its not a per-cpu rb, it must be the same task.
9778 */
9779 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
9780 goto out;
9781
9782 /*
9783 * Mixing clocks in the same buffer is trouble you don't need.
9784 */
9785 if (output_event->clock != event->clock)
9786 goto out;
9787
9788 /*
9789 * Either writing ring buffer from beginning or from end.
9790 * Mixing is not allowed.
9791 */
9792 if (is_write_backward(output_event) != is_write_backward(event))
9793 goto out;
9794
9795 /*
9796 * If both events generate aux data, they must be on the same PMU
9797 */
9798 if (has_aux(event) && has_aux(output_event) &&
9799 event->pmu != output_event->pmu)
9800 goto out;
9801
9802 set:
9803 mutex_lock(&event->mmap_mutex);
9804 /* Can't redirect output if we've got an active mmap() */
9805 if (atomic_read(&event->mmap_count))
9806 goto unlock;
9807
9808 if (output_event) {
9809 /* get the rb we want to redirect to */
9810 rb = ring_buffer_get(output_event);
9811 if (!rb)
9812 goto unlock;
9813 }
9814
9815 ring_buffer_attach(event, rb);
9816
9817 ret = 0;
9818 unlock:
9819 mutex_unlock(&event->mmap_mutex);
9820
9821 out:
9822 return ret;
9823 }
9824
9825 static void mutex_lock_double(struct mutex *a, struct mutex *b)
9826 {
9827 if (b < a)
9828 swap(a, b);
9829
9830 mutex_lock(a);
9831 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
9832 }
9833
9834 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
9835 {
9836 bool nmi_safe = false;
9837
9838 switch (clk_id) {
9839 case CLOCK_MONOTONIC:
9840 event->clock = &ktime_get_mono_fast_ns;
9841 nmi_safe = true;
9842 break;
9843
9844 case CLOCK_MONOTONIC_RAW:
9845 event->clock = &ktime_get_raw_fast_ns;
9846 nmi_safe = true;
9847 break;
9848
9849 case CLOCK_REALTIME:
9850 event->clock = &ktime_get_real_ns;
9851 break;
9852
9853 case CLOCK_BOOTTIME:
9854 event->clock = &ktime_get_boot_ns;
9855 break;
9856
9857 case CLOCK_TAI:
9858 event->clock = &ktime_get_tai_ns;
9859 break;
9860
9861 default:
9862 return -EINVAL;
9863 }
9864
9865 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
9866 return -EINVAL;
9867
9868 return 0;
9869 }
9870
9871 /*
9872 * Variation on perf_event_ctx_lock_nested(), except we take two context
9873 * mutexes.
9874 */
9875 static struct perf_event_context *
9876 __perf_event_ctx_lock_double(struct perf_event *group_leader,
9877 struct perf_event_context *ctx)
9878 {
9879 struct perf_event_context *gctx;
9880
9881 again:
9882 rcu_read_lock();
9883 gctx = READ_ONCE(group_leader->ctx);
9884 if (!atomic_inc_not_zero(&gctx->refcount)) {
9885 rcu_read_unlock();
9886 goto again;
9887 }
9888 rcu_read_unlock();
9889
9890 mutex_lock_double(&gctx->mutex, &ctx->mutex);
9891
9892 if (group_leader->ctx != gctx) {
9893 mutex_unlock(&ctx->mutex);
9894 mutex_unlock(&gctx->mutex);
9895 put_ctx(gctx);
9896 goto again;
9897 }
9898
9899 return gctx;
9900 }
9901
9902 /**
9903 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9904 *
9905 * @attr_uptr: event_id type attributes for monitoring/sampling
9906 * @pid: target pid
9907 * @cpu: target cpu
9908 * @group_fd: group leader event fd
9909 */
9910 SYSCALL_DEFINE5(perf_event_open,
9911 struct perf_event_attr __user *, attr_uptr,
9912 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
9913 {
9914 struct perf_event *group_leader = NULL, *output_event = NULL;
9915 struct perf_event *event, *sibling;
9916 struct perf_event_attr attr;
9917 struct perf_event_context *ctx, *uninitialized_var(gctx);
9918 struct file *event_file = NULL;
9919 struct fd group = {NULL, 0};
9920 struct task_struct *task = NULL;
9921 struct pmu *pmu;
9922 int event_fd;
9923 int move_group = 0;
9924 int err;
9925 int f_flags = O_RDWR;
9926 int cgroup_fd = -1;
9927
9928 /* for future expandability... */
9929 if (flags & ~PERF_FLAG_ALL)
9930 return -EINVAL;
9931
9932 err = perf_copy_attr(attr_uptr, &attr);
9933 if (err)
9934 return err;
9935
9936 if (!attr.exclude_kernel) {
9937 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9938 return -EACCES;
9939 }
9940
9941 if (attr.namespaces) {
9942 if (!capable(CAP_SYS_ADMIN))
9943 return -EACCES;
9944 }
9945
9946 if (attr.freq) {
9947 if (attr.sample_freq > sysctl_perf_event_sample_rate)
9948 return -EINVAL;
9949 } else {
9950 if (attr.sample_period & (1ULL << 63))
9951 return -EINVAL;
9952 }
9953
9954 /* Only privileged users can get physical addresses */
9955 if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR) &&
9956 perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9957 return -EACCES;
9958
9959 if (!attr.sample_max_stack)
9960 attr.sample_max_stack = sysctl_perf_event_max_stack;
9961
9962 /*
9963 * In cgroup mode, the pid argument is used to pass the fd
9964 * opened to the cgroup directory in cgroupfs. The cpu argument
9965 * designates the cpu on which to monitor threads from that
9966 * cgroup.
9967 */
9968 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
9969 return -EINVAL;
9970
9971 if (flags & PERF_FLAG_FD_CLOEXEC)
9972 f_flags |= O_CLOEXEC;
9973
9974 event_fd = get_unused_fd_flags(f_flags);
9975 if (event_fd < 0)
9976 return event_fd;
9977
9978 if (group_fd != -1) {
9979 err = perf_fget_light(group_fd, &group);
9980 if (err)
9981 goto err_fd;
9982 group_leader = group.file->private_data;
9983 if (flags & PERF_FLAG_FD_OUTPUT)
9984 output_event = group_leader;
9985 if (flags & PERF_FLAG_FD_NO_GROUP)
9986 group_leader = NULL;
9987 }
9988
9989 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
9990 task = find_lively_task_by_vpid(pid);
9991 if (IS_ERR(task)) {
9992 err = PTR_ERR(task);
9993 goto err_group_fd;
9994 }
9995 }
9996
9997 if (task && group_leader &&
9998 group_leader->attr.inherit != attr.inherit) {
9999 err = -EINVAL;
10000 goto err_task;
10001 }
10002
10003 if (task) {
10004 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
10005 if (err)
10006 goto err_task;
10007
10008 /*
10009 * Reuse ptrace permission checks for now.
10010 *
10011 * We must hold cred_guard_mutex across this and any potential
10012 * perf_install_in_context() call for this new event to
10013 * serialize against exec() altering our credentials (and the
10014 * perf_event_exit_task() that could imply).
10015 */
10016 err = -EACCES;
10017 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
10018 goto err_cred;
10019 }
10020
10021 if (flags & PERF_FLAG_PID_CGROUP)
10022 cgroup_fd = pid;
10023
10024 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
10025 NULL, NULL, cgroup_fd);
10026 if (IS_ERR(event)) {
10027 err = PTR_ERR(event);
10028 goto err_cred;
10029 }
10030
10031 if (is_sampling_event(event)) {
10032 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
10033 err = -EOPNOTSUPP;
10034 goto err_alloc;
10035 }
10036 }
10037
10038 /*
10039 * Special case software events and allow them to be part of
10040 * any hardware group.
10041 */
10042 pmu = event->pmu;
10043
10044 if (attr.use_clockid) {
10045 err = perf_event_set_clock(event, attr.clockid);
10046 if (err)
10047 goto err_alloc;
10048 }
10049
10050 if (pmu->task_ctx_nr == perf_sw_context)
10051 event->event_caps |= PERF_EV_CAP_SOFTWARE;
10052
10053 if (group_leader &&
10054 (is_software_event(event) != is_software_event(group_leader))) {
10055 if (is_software_event(event)) {
10056 /*
10057 * If event and group_leader are not both a software
10058 * event, and event is, then group leader is not.
10059 *
10060 * Allow the addition of software events to !software
10061 * groups, this is safe because software events never
10062 * fail to schedule.
10063 */
10064 pmu = group_leader->pmu;
10065 } else if (is_software_event(group_leader) &&
10066 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10067 /*
10068 * In case the group is a pure software group, and we
10069 * try to add a hardware event, move the whole group to
10070 * the hardware context.
10071 */
10072 move_group = 1;
10073 }
10074 }
10075
10076 /*
10077 * Get the target context (task or percpu):
10078 */
10079 ctx = find_get_context(pmu, task, event);
10080 if (IS_ERR(ctx)) {
10081 err = PTR_ERR(ctx);
10082 goto err_alloc;
10083 }
10084
10085 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
10086 err = -EBUSY;
10087 goto err_context;
10088 }
10089
10090 /*
10091 * Look up the group leader (we will attach this event to it):
10092 */
10093 if (group_leader) {
10094 err = -EINVAL;
10095
10096 /*
10097 * Do not allow a recursive hierarchy (this new sibling
10098 * becoming part of another group-sibling):
10099 */
10100 if (group_leader->group_leader != group_leader)
10101 goto err_context;
10102
10103 /* All events in a group should have the same clock */
10104 if (group_leader->clock != event->clock)
10105 goto err_context;
10106
10107 /*
10108 * Make sure we're both events for the same CPU;
10109 * grouping events for different CPUs is broken; since
10110 * you can never concurrently schedule them anyhow.
10111 */
10112 if (group_leader->cpu != event->cpu)
10113 goto err_context;
10114
10115 /*
10116 * Make sure we're both on the same task, or both
10117 * per-CPU events.
10118 */
10119 if (group_leader->ctx->task != ctx->task)
10120 goto err_context;
10121
10122 /*
10123 * Do not allow to attach to a group in a different task
10124 * or CPU context. If we're moving SW events, we'll fix
10125 * this up later, so allow that.
10126 */
10127 if (!move_group && group_leader->ctx != ctx)
10128 goto err_context;
10129
10130 /*
10131 * Only a group leader can be exclusive or pinned
10132 */
10133 if (attr.exclusive || attr.pinned)
10134 goto err_context;
10135 }
10136
10137 if (output_event) {
10138 err = perf_event_set_output(event, output_event);
10139 if (err)
10140 goto err_context;
10141 }
10142
10143 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
10144 f_flags);
10145 if (IS_ERR(event_file)) {
10146 err = PTR_ERR(event_file);
10147 event_file = NULL;
10148 goto err_context;
10149 }
10150
10151 if (move_group) {
10152 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
10153
10154 if (gctx->task == TASK_TOMBSTONE) {
10155 err = -ESRCH;
10156 goto err_locked;
10157 }
10158
10159 /*
10160 * Check if we raced against another sys_perf_event_open() call
10161 * moving the software group underneath us.
10162 */
10163 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10164 /*
10165 * If someone moved the group out from under us, check
10166 * if this new event wound up on the same ctx, if so
10167 * its the regular !move_group case, otherwise fail.
10168 */
10169 if (gctx != ctx) {
10170 err = -EINVAL;
10171 goto err_locked;
10172 } else {
10173 perf_event_ctx_unlock(group_leader, gctx);
10174 move_group = 0;
10175 }
10176 }
10177 } else {
10178 mutex_lock(&ctx->mutex);
10179 }
10180
10181 if (ctx->task == TASK_TOMBSTONE) {
10182 err = -ESRCH;
10183 goto err_locked;
10184 }
10185
10186 if (!perf_event_validate_size(event)) {
10187 err = -E2BIG;
10188 goto err_locked;
10189 }
10190
10191 if (!task) {
10192 /*
10193 * Check if the @cpu we're creating an event for is online.
10194 *
10195 * We use the perf_cpu_context::ctx::mutex to serialize against
10196 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10197 */
10198 struct perf_cpu_context *cpuctx =
10199 container_of(ctx, struct perf_cpu_context, ctx);
10200
10201 if (!cpuctx->online) {
10202 err = -ENODEV;
10203 goto err_locked;
10204 }
10205 }
10206
10207
10208 /*
10209 * Must be under the same ctx::mutex as perf_install_in_context(),
10210 * because we need to serialize with concurrent event creation.
10211 */
10212 if (!exclusive_event_installable(event, ctx)) {
10213 /* exclusive and group stuff are assumed mutually exclusive */
10214 WARN_ON_ONCE(move_group);
10215
10216 err = -EBUSY;
10217 goto err_locked;
10218 }
10219
10220 WARN_ON_ONCE(ctx->parent_ctx);
10221
10222 /*
10223 * This is the point on no return; we cannot fail hereafter. This is
10224 * where we start modifying current state.
10225 */
10226
10227 if (move_group) {
10228 /*
10229 * See perf_event_ctx_lock() for comments on the details
10230 * of swizzling perf_event::ctx.
10231 */
10232 perf_remove_from_context(group_leader, 0);
10233 put_ctx(gctx);
10234
10235 list_for_each_entry(sibling, &group_leader->sibling_list,
10236 group_entry) {
10237 perf_remove_from_context(sibling, 0);
10238 put_ctx(gctx);
10239 }
10240
10241 /*
10242 * Wait for everybody to stop referencing the events through
10243 * the old lists, before installing it on new lists.
10244 */
10245 synchronize_rcu();
10246
10247 /*
10248 * Install the group siblings before the group leader.
10249 *
10250 * Because a group leader will try and install the entire group
10251 * (through the sibling list, which is still in-tact), we can
10252 * end up with siblings installed in the wrong context.
10253 *
10254 * By installing siblings first we NO-OP because they're not
10255 * reachable through the group lists.
10256 */
10257 list_for_each_entry(sibling, &group_leader->sibling_list,
10258 group_entry) {
10259 perf_event__state_init(sibling);
10260 perf_install_in_context(ctx, sibling, sibling->cpu);
10261 get_ctx(ctx);
10262 }
10263
10264 /*
10265 * Removing from the context ends up with disabled
10266 * event. What we want here is event in the initial
10267 * startup state, ready to be add into new context.
10268 */
10269 perf_event__state_init(group_leader);
10270 perf_install_in_context(ctx, group_leader, group_leader->cpu);
10271 get_ctx(ctx);
10272 }
10273
10274 /*
10275 * Precalculate sample_data sizes; do while holding ctx::mutex such
10276 * that we're serialized against further additions and before
10277 * perf_install_in_context() which is the point the event is active and
10278 * can use these values.
10279 */
10280 perf_event__header_size(event);
10281 perf_event__id_header_size(event);
10282
10283 event->owner = current;
10284
10285 perf_install_in_context(ctx, event, event->cpu);
10286 perf_unpin_context(ctx);
10287
10288 if (move_group)
10289 perf_event_ctx_unlock(group_leader, gctx);
10290 mutex_unlock(&ctx->mutex);
10291
10292 if (task) {
10293 mutex_unlock(&task->signal->cred_guard_mutex);
10294 put_task_struct(task);
10295 }
10296
10297 mutex_lock(&current->perf_event_mutex);
10298 list_add_tail(&event->owner_entry, &current->perf_event_list);
10299 mutex_unlock(&current->perf_event_mutex);
10300
10301 /*
10302 * Drop the reference on the group_event after placing the
10303 * new event on the sibling_list. This ensures destruction
10304 * of the group leader will find the pointer to itself in
10305 * perf_group_detach().
10306 */
10307 fdput(group);
10308 fd_install(event_fd, event_file);
10309 return event_fd;
10310
10311 err_locked:
10312 if (move_group)
10313 perf_event_ctx_unlock(group_leader, gctx);
10314 mutex_unlock(&ctx->mutex);
10315 /* err_file: */
10316 fput(event_file);
10317 err_context:
10318 perf_unpin_context(ctx);
10319 put_ctx(ctx);
10320 err_alloc:
10321 /*
10322 * If event_file is set, the fput() above will have called ->release()
10323 * and that will take care of freeing the event.
10324 */
10325 if (!event_file)
10326 free_event(event);
10327 err_cred:
10328 if (task)
10329 mutex_unlock(&task->signal->cred_guard_mutex);
10330 err_task:
10331 if (task)
10332 put_task_struct(task);
10333 err_group_fd:
10334 fdput(group);
10335 err_fd:
10336 put_unused_fd(event_fd);
10337 return err;
10338 }
10339
10340 /**
10341 * perf_event_create_kernel_counter
10342 *
10343 * @attr: attributes of the counter to create
10344 * @cpu: cpu in which the counter is bound
10345 * @task: task to profile (NULL for percpu)
10346 */
10347 struct perf_event *
10348 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
10349 struct task_struct *task,
10350 perf_overflow_handler_t overflow_handler,
10351 void *context)
10352 {
10353 struct perf_event_context *ctx;
10354 struct perf_event *event;
10355 int err;
10356
10357 /*
10358 * Get the target context (task or percpu):
10359 */
10360
10361 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
10362 overflow_handler, context, -1);
10363 if (IS_ERR(event)) {
10364 err = PTR_ERR(event);
10365 goto err;
10366 }
10367
10368 /* Mark owner so we could distinguish it from user events. */
10369 event->owner = TASK_TOMBSTONE;
10370
10371 ctx = find_get_context(event->pmu, task, event);
10372 if (IS_ERR(ctx)) {
10373 err = PTR_ERR(ctx);
10374 goto err_free;
10375 }
10376
10377 WARN_ON_ONCE(ctx->parent_ctx);
10378 mutex_lock(&ctx->mutex);
10379 if (ctx->task == TASK_TOMBSTONE) {
10380 err = -ESRCH;
10381 goto err_unlock;
10382 }
10383
10384 if (!task) {
10385 /*
10386 * Check if the @cpu we're creating an event for is online.
10387 *
10388 * We use the perf_cpu_context::ctx::mutex to serialize against
10389 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10390 */
10391 struct perf_cpu_context *cpuctx =
10392 container_of(ctx, struct perf_cpu_context, ctx);
10393 if (!cpuctx->online) {
10394 err = -ENODEV;
10395 goto err_unlock;
10396 }
10397 }
10398
10399 if (!exclusive_event_installable(event, ctx)) {
10400 err = -EBUSY;
10401 goto err_unlock;
10402 }
10403
10404 perf_install_in_context(ctx, event, cpu);
10405 perf_unpin_context(ctx);
10406 mutex_unlock(&ctx->mutex);
10407
10408 return event;
10409
10410 err_unlock:
10411 mutex_unlock(&ctx->mutex);
10412 perf_unpin_context(ctx);
10413 put_ctx(ctx);
10414 err_free:
10415 free_event(event);
10416 err:
10417 return ERR_PTR(err);
10418 }
10419 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
10420
10421 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
10422 {
10423 struct perf_event_context *src_ctx;
10424 struct perf_event_context *dst_ctx;
10425 struct perf_event *event, *tmp;
10426 LIST_HEAD(events);
10427
10428 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
10429 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
10430
10431 /*
10432 * See perf_event_ctx_lock() for comments on the details
10433 * of swizzling perf_event::ctx.
10434 */
10435 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
10436 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
10437 event_entry) {
10438 perf_remove_from_context(event, 0);
10439 unaccount_event_cpu(event, src_cpu);
10440 put_ctx(src_ctx);
10441 list_add(&event->migrate_entry, &events);
10442 }
10443
10444 /*
10445 * Wait for the events to quiesce before re-instating them.
10446 */
10447 synchronize_rcu();
10448
10449 /*
10450 * Re-instate events in 2 passes.
10451 *
10452 * Skip over group leaders and only install siblings on this first
10453 * pass, siblings will not get enabled without a leader, however a
10454 * leader will enable its siblings, even if those are still on the old
10455 * context.
10456 */
10457 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10458 if (event->group_leader == event)
10459 continue;
10460
10461 list_del(&event->migrate_entry);
10462 if (event->state >= PERF_EVENT_STATE_OFF)
10463 event->state = PERF_EVENT_STATE_INACTIVE;
10464 account_event_cpu(event, dst_cpu);
10465 perf_install_in_context(dst_ctx, event, dst_cpu);
10466 get_ctx(dst_ctx);
10467 }
10468
10469 /*
10470 * Once all the siblings are setup properly, install the group leaders
10471 * to make it go.
10472 */
10473 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10474 list_del(&event->migrate_entry);
10475 if (event->state >= PERF_EVENT_STATE_OFF)
10476 event->state = PERF_EVENT_STATE_INACTIVE;
10477 account_event_cpu(event, dst_cpu);
10478 perf_install_in_context(dst_ctx, event, dst_cpu);
10479 get_ctx(dst_ctx);
10480 }
10481 mutex_unlock(&dst_ctx->mutex);
10482 mutex_unlock(&src_ctx->mutex);
10483 }
10484 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
10485
10486 static void sync_child_event(struct perf_event *child_event,
10487 struct task_struct *child)
10488 {
10489 struct perf_event *parent_event = child_event->parent;
10490 u64 child_val;
10491
10492 if (child_event->attr.inherit_stat)
10493 perf_event_read_event(child_event, child);
10494
10495 child_val = perf_event_count(child_event);
10496
10497 /*
10498 * Add back the child's count to the parent's count:
10499 */
10500 atomic64_add(child_val, &parent_event->child_count);
10501 atomic64_add(child_event->total_time_enabled,
10502 &parent_event->child_total_time_enabled);
10503 atomic64_add(child_event->total_time_running,
10504 &parent_event->child_total_time_running);
10505 }
10506
10507 static void
10508 perf_event_exit_event(struct perf_event *child_event,
10509 struct perf_event_context *child_ctx,
10510 struct task_struct *child)
10511 {
10512 struct perf_event *parent_event = child_event->parent;
10513
10514 /*
10515 * Do not destroy the 'original' grouping; because of the context
10516 * switch optimization the original events could've ended up in a
10517 * random child task.
10518 *
10519 * If we were to destroy the original group, all group related
10520 * operations would cease to function properly after this random
10521 * child dies.
10522 *
10523 * Do destroy all inherited groups, we don't care about those
10524 * and being thorough is better.
10525 */
10526 raw_spin_lock_irq(&child_ctx->lock);
10527 WARN_ON_ONCE(child_ctx->is_active);
10528
10529 if (parent_event)
10530 perf_group_detach(child_event);
10531 list_del_event(child_event, child_ctx);
10532 child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */
10533 raw_spin_unlock_irq(&child_ctx->lock);
10534
10535 /*
10536 * Parent events are governed by their filedesc, retain them.
10537 */
10538 if (!parent_event) {
10539 perf_event_wakeup(child_event);
10540 return;
10541 }
10542 /*
10543 * Child events can be cleaned up.
10544 */
10545
10546 sync_child_event(child_event, child);
10547
10548 /*
10549 * Remove this event from the parent's list
10550 */
10551 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
10552 mutex_lock(&parent_event->child_mutex);
10553 list_del_init(&child_event->child_list);
10554 mutex_unlock(&parent_event->child_mutex);
10555
10556 /*
10557 * Kick perf_poll() for is_event_hup().
10558 */
10559 perf_event_wakeup(parent_event);
10560 free_event(child_event);
10561 put_event(parent_event);
10562 }
10563
10564 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
10565 {
10566 struct perf_event_context *child_ctx, *clone_ctx = NULL;
10567 struct perf_event *child_event, *next;
10568
10569 WARN_ON_ONCE(child != current);
10570
10571 child_ctx = perf_pin_task_context(child, ctxn);
10572 if (!child_ctx)
10573 return;
10574
10575 /*
10576 * In order to reduce the amount of tricky in ctx tear-down, we hold
10577 * ctx::mutex over the entire thing. This serializes against almost
10578 * everything that wants to access the ctx.
10579 *
10580 * The exception is sys_perf_event_open() /
10581 * perf_event_create_kernel_count() which does find_get_context()
10582 * without ctx::mutex (it cannot because of the move_group double mutex
10583 * lock thing). See the comments in perf_install_in_context().
10584 */
10585 mutex_lock(&child_ctx->mutex);
10586
10587 /*
10588 * In a single ctx::lock section, de-schedule the events and detach the
10589 * context from the task such that we cannot ever get it scheduled back
10590 * in.
10591 */
10592 raw_spin_lock_irq(&child_ctx->lock);
10593 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
10594
10595 /*
10596 * Now that the context is inactive, destroy the task <-> ctx relation
10597 * and mark the context dead.
10598 */
10599 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
10600 put_ctx(child_ctx); /* cannot be last */
10601 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
10602 put_task_struct(current); /* cannot be last */
10603
10604 clone_ctx = unclone_ctx(child_ctx);
10605 raw_spin_unlock_irq(&child_ctx->lock);
10606
10607 if (clone_ctx)
10608 put_ctx(clone_ctx);
10609
10610 /*
10611 * Report the task dead after unscheduling the events so that we
10612 * won't get any samples after PERF_RECORD_EXIT. We can however still
10613 * get a few PERF_RECORD_READ events.
10614 */
10615 perf_event_task(child, child_ctx, 0);
10616
10617 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
10618 perf_event_exit_event(child_event, child_ctx, child);
10619
10620 mutex_unlock(&child_ctx->mutex);
10621
10622 put_ctx(child_ctx);
10623 }
10624
10625 /*
10626 * When a child task exits, feed back event values to parent events.
10627 *
10628 * Can be called with cred_guard_mutex held when called from
10629 * install_exec_creds().
10630 */
10631 void perf_event_exit_task(struct task_struct *child)
10632 {
10633 struct perf_event *event, *tmp;
10634 int ctxn;
10635
10636 mutex_lock(&child->perf_event_mutex);
10637 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
10638 owner_entry) {
10639 list_del_init(&event->owner_entry);
10640
10641 /*
10642 * Ensure the list deletion is visible before we clear
10643 * the owner, closes a race against perf_release() where
10644 * we need to serialize on the owner->perf_event_mutex.
10645 */
10646 smp_store_release(&event->owner, NULL);
10647 }
10648 mutex_unlock(&child->perf_event_mutex);
10649
10650 for_each_task_context_nr(ctxn)
10651 perf_event_exit_task_context(child, ctxn);
10652
10653 /*
10654 * The perf_event_exit_task_context calls perf_event_task
10655 * with child's task_ctx, which generates EXIT events for
10656 * child contexts and sets child->perf_event_ctxp[] to NULL.
10657 * At this point we need to send EXIT events to cpu contexts.
10658 */
10659 perf_event_task(child, NULL, 0);
10660 }
10661
10662 static void perf_free_event(struct perf_event *event,
10663 struct perf_event_context *ctx)
10664 {
10665 struct perf_event *parent = event->parent;
10666
10667 if (WARN_ON_ONCE(!parent))
10668 return;
10669
10670 mutex_lock(&parent->child_mutex);
10671 list_del_init(&event->child_list);
10672 mutex_unlock(&parent->child_mutex);
10673
10674 put_event(parent);
10675
10676 raw_spin_lock_irq(&ctx->lock);
10677 perf_group_detach(event);
10678 list_del_event(event, ctx);
10679 raw_spin_unlock_irq(&ctx->lock);
10680 free_event(event);
10681 }
10682
10683 /*
10684 * Free an unexposed, unused context as created by inheritance by
10685 * perf_event_init_task below, used by fork() in case of fail.
10686 *
10687 * Not all locks are strictly required, but take them anyway to be nice and
10688 * help out with the lockdep assertions.
10689 */
10690 void perf_event_free_task(struct task_struct *task)
10691 {
10692 struct perf_event_context *ctx;
10693 struct perf_event *event, *tmp;
10694 int ctxn;
10695
10696 for_each_task_context_nr(ctxn) {
10697 ctx = task->perf_event_ctxp[ctxn];
10698 if (!ctx)
10699 continue;
10700
10701 mutex_lock(&ctx->mutex);
10702 raw_spin_lock_irq(&ctx->lock);
10703 /*
10704 * Destroy the task <-> ctx relation and mark the context dead.
10705 *
10706 * This is important because even though the task hasn't been
10707 * exposed yet the context has been (through child_list).
10708 */
10709 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
10710 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
10711 put_task_struct(task); /* cannot be last */
10712 raw_spin_unlock_irq(&ctx->lock);
10713
10714 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
10715 perf_free_event(event, ctx);
10716
10717 mutex_unlock(&ctx->mutex);
10718 put_ctx(ctx);
10719 }
10720 }
10721
10722 void perf_event_delayed_put(struct task_struct *task)
10723 {
10724 int ctxn;
10725
10726 for_each_task_context_nr(ctxn)
10727 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
10728 }
10729
10730 struct file *perf_event_get(unsigned int fd)
10731 {
10732 struct file *file;
10733
10734 file = fget_raw(fd);
10735 if (!file)
10736 return ERR_PTR(-EBADF);
10737
10738 if (file->f_op != &perf_fops) {
10739 fput(file);
10740 return ERR_PTR(-EBADF);
10741 }
10742
10743 return file;
10744 }
10745
10746 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
10747 {
10748 if (!event)
10749 return ERR_PTR(-EINVAL);
10750
10751 return &event->attr;
10752 }
10753
10754 /*
10755 * Inherit a event from parent task to child task.
10756 *
10757 * Returns:
10758 * - valid pointer on success
10759 * - NULL for orphaned events
10760 * - IS_ERR() on error
10761 */
10762 static struct perf_event *
10763 inherit_event(struct perf_event *parent_event,
10764 struct task_struct *parent,
10765 struct perf_event_context *parent_ctx,
10766 struct task_struct *child,
10767 struct perf_event *group_leader,
10768 struct perf_event_context *child_ctx)
10769 {
10770 enum perf_event_active_state parent_state = parent_event->state;
10771 struct perf_event *child_event;
10772 unsigned long flags;
10773
10774 /*
10775 * Instead of creating recursive hierarchies of events,
10776 * we link inherited events back to the original parent,
10777 * which has a filp for sure, which we use as the reference
10778 * count:
10779 */
10780 if (parent_event->parent)
10781 parent_event = parent_event->parent;
10782
10783 child_event = perf_event_alloc(&parent_event->attr,
10784 parent_event->cpu,
10785 child,
10786 group_leader, parent_event,
10787 NULL, NULL, -1);
10788 if (IS_ERR(child_event))
10789 return child_event;
10790
10791 /*
10792 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
10793 * must be under the same lock in order to serialize against
10794 * perf_event_release_kernel(), such that either we must observe
10795 * is_orphaned_event() or they will observe us on the child_list.
10796 */
10797 mutex_lock(&parent_event->child_mutex);
10798 if (is_orphaned_event(parent_event) ||
10799 !atomic_long_inc_not_zero(&parent_event->refcount)) {
10800 mutex_unlock(&parent_event->child_mutex);
10801 free_event(child_event);
10802 return NULL;
10803 }
10804
10805 get_ctx(child_ctx);
10806
10807 /*
10808 * Make the child state follow the state of the parent event,
10809 * not its attr.disabled bit. We hold the parent's mutex,
10810 * so we won't race with perf_event_{en, dis}able_family.
10811 */
10812 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
10813 child_event->state = PERF_EVENT_STATE_INACTIVE;
10814 else
10815 child_event->state = PERF_EVENT_STATE_OFF;
10816
10817 if (parent_event->attr.freq) {
10818 u64 sample_period = parent_event->hw.sample_period;
10819 struct hw_perf_event *hwc = &child_event->hw;
10820
10821 hwc->sample_period = sample_period;
10822 hwc->last_period = sample_period;
10823
10824 local64_set(&hwc->period_left, sample_period);
10825 }
10826
10827 child_event->ctx = child_ctx;
10828 child_event->overflow_handler = parent_event->overflow_handler;
10829 child_event->overflow_handler_context
10830 = parent_event->overflow_handler_context;
10831
10832 /*
10833 * Precalculate sample_data sizes
10834 */
10835 perf_event__header_size(child_event);
10836 perf_event__id_header_size(child_event);
10837
10838 /*
10839 * Link it up in the child's context:
10840 */
10841 raw_spin_lock_irqsave(&child_ctx->lock, flags);
10842 add_event_to_ctx(child_event, child_ctx);
10843 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
10844
10845 /*
10846 * Link this into the parent event's child list
10847 */
10848 list_add_tail(&child_event->child_list, &parent_event->child_list);
10849 mutex_unlock(&parent_event->child_mutex);
10850
10851 return child_event;
10852 }
10853
10854 /*
10855 * Inherits an event group.
10856 *
10857 * This will quietly suppress orphaned events; !inherit_event() is not an error.
10858 * This matches with perf_event_release_kernel() removing all child events.
10859 *
10860 * Returns:
10861 * - 0 on success
10862 * - <0 on error
10863 */
10864 static int inherit_group(struct perf_event *parent_event,
10865 struct task_struct *parent,
10866 struct perf_event_context *parent_ctx,
10867 struct task_struct *child,
10868 struct perf_event_context *child_ctx)
10869 {
10870 struct perf_event *leader;
10871 struct perf_event *sub;
10872 struct perf_event *child_ctr;
10873
10874 leader = inherit_event(parent_event, parent, parent_ctx,
10875 child, NULL, child_ctx);
10876 if (IS_ERR(leader))
10877 return PTR_ERR(leader);
10878 /*
10879 * @leader can be NULL here because of is_orphaned_event(). In this
10880 * case inherit_event() will create individual events, similar to what
10881 * perf_group_detach() would do anyway.
10882 */
10883 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
10884 child_ctr = inherit_event(sub, parent, parent_ctx,
10885 child, leader, child_ctx);
10886 if (IS_ERR(child_ctr))
10887 return PTR_ERR(child_ctr);
10888 }
10889 return 0;
10890 }
10891
10892 /*
10893 * Creates the child task context and tries to inherit the event-group.
10894 *
10895 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
10896 * inherited_all set when we 'fail' to inherit an orphaned event; this is
10897 * consistent with perf_event_release_kernel() removing all child events.
10898 *
10899 * Returns:
10900 * - 0 on success
10901 * - <0 on error
10902 */
10903 static int
10904 inherit_task_group(struct perf_event *event, struct task_struct *parent,
10905 struct perf_event_context *parent_ctx,
10906 struct task_struct *child, int ctxn,
10907 int *inherited_all)
10908 {
10909 int ret;
10910 struct perf_event_context *child_ctx;
10911
10912 if (!event->attr.inherit) {
10913 *inherited_all = 0;
10914 return 0;
10915 }
10916
10917 child_ctx = child->perf_event_ctxp[ctxn];
10918 if (!child_ctx) {
10919 /*
10920 * This is executed from the parent task context, so
10921 * inherit events that have been marked for cloning.
10922 * First allocate and initialize a context for the
10923 * child.
10924 */
10925 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
10926 if (!child_ctx)
10927 return -ENOMEM;
10928
10929 child->perf_event_ctxp[ctxn] = child_ctx;
10930 }
10931
10932 ret = inherit_group(event, parent, parent_ctx,
10933 child, child_ctx);
10934
10935 if (ret)
10936 *inherited_all = 0;
10937
10938 return ret;
10939 }
10940
10941 /*
10942 * Initialize the perf_event context in task_struct
10943 */
10944 static int perf_event_init_context(struct task_struct *child, int ctxn)
10945 {
10946 struct perf_event_context *child_ctx, *parent_ctx;
10947 struct perf_event_context *cloned_ctx;
10948 struct perf_event *event;
10949 struct task_struct *parent = current;
10950 int inherited_all = 1;
10951 unsigned long flags;
10952 int ret = 0;
10953
10954 if (likely(!parent->perf_event_ctxp[ctxn]))
10955 return 0;
10956
10957 /*
10958 * If the parent's context is a clone, pin it so it won't get
10959 * swapped under us.
10960 */
10961 parent_ctx = perf_pin_task_context(parent, ctxn);
10962 if (!parent_ctx)
10963 return 0;
10964
10965 /*
10966 * No need to check if parent_ctx != NULL here; since we saw
10967 * it non-NULL earlier, the only reason for it to become NULL
10968 * is if we exit, and since we're currently in the middle of
10969 * a fork we can't be exiting at the same time.
10970 */
10971
10972 /*
10973 * Lock the parent list. No need to lock the child - not PID
10974 * hashed yet and not running, so nobody can access it.
10975 */
10976 mutex_lock(&parent_ctx->mutex);
10977
10978 /*
10979 * We dont have to disable NMIs - we are only looking at
10980 * the list, not manipulating it:
10981 */
10982 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
10983 ret = inherit_task_group(event, parent, parent_ctx,
10984 child, ctxn, &inherited_all);
10985 if (ret)
10986 goto out_unlock;
10987 }
10988
10989 /*
10990 * We can't hold ctx->lock when iterating the ->flexible_group list due
10991 * to allocations, but we need to prevent rotation because
10992 * rotate_ctx() will change the list from interrupt context.
10993 */
10994 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10995 parent_ctx->rotate_disable = 1;
10996 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10997
10998 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
10999 ret = inherit_task_group(event, parent, parent_ctx,
11000 child, ctxn, &inherited_all);
11001 if (ret)
11002 goto out_unlock;
11003 }
11004
11005 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
11006 parent_ctx->rotate_disable = 0;
11007
11008 child_ctx = child->perf_event_ctxp[ctxn];
11009
11010 if (child_ctx && inherited_all) {
11011 /*
11012 * Mark the child context as a clone of the parent
11013 * context, or of whatever the parent is a clone of.
11014 *
11015 * Note that if the parent is a clone, the holding of
11016 * parent_ctx->lock avoids it from being uncloned.
11017 */
11018 cloned_ctx = parent_ctx->parent_ctx;
11019 if (cloned_ctx) {
11020 child_ctx->parent_ctx = cloned_ctx;
11021 child_ctx->parent_gen = parent_ctx->parent_gen;
11022 } else {
11023 child_ctx->parent_ctx = parent_ctx;
11024 child_ctx->parent_gen = parent_ctx->generation;
11025 }
11026 get_ctx(child_ctx->parent_ctx);
11027 }
11028
11029 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
11030 out_unlock:
11031 mutex_unlock(&parent_ctx->mutex);
11032
11033 perf_unpin_context(parent_ctx);
11034 put_ctx(parent_ctx);
11035
11036 return ret;
11037 }
11038
11039 /*
11040 * Initialize the perf_event context in task_struct
11041 */
11042 int perf_event_init_task(struct task_struct *child)
11043 {
11044 int ctxn, ret;
11045
11046 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
11047 mutex_init(&child->perf_event_mutex);
11048 INIT_LIST_HEAD(&child->perf_event_list);
11049
11050 for_each_task_context_nr(ctxn) {
11051 ret = perf_event_init_context(child, ctxn);
11052 if (ret) {
11053 perf_event_free_task(child);
11054 return ret;
11055 }
11056 }
11057
11058 return 0;
11059 }
11060
11061 static void __init perf_event_init_all_cpus(void)
11062 {
11063 struct swevent_htable *swhash;
11064 int cpu;
11065
11066 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
11067
11068 for_each_possible_cpu(cpu) {
11069 swhash = &per_cpu(swevent_htable, cpu);
11070 mutex_init(&swhash->hlist_mutex);
11071 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
11072
11073 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
11074 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
11075
11076 #ifdef CONFIG_CGROUP_PERF
11077 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
11078 #endif
11079 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
11080 }
11081 }
11082
11083 void perf_swevent_init_cpu(unsigned int cpu)
11084 {
11085 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
11086
11087 mutex_lock(&swhash->hlist_mutex);
11088 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
11089 struct swevent_hlist *hlist;
11090
11091 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
11092 WARN_ON(!hlist);
11093 rcu_assign_pointer(swhash->swevent_hlist, hlist);
11094 }
11095 mutex_unlock(&swhash->hlist_mutex);
11096 }
11097
11098 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
11099 static void __perf_event_exit_context(void *__info)
11100 {
11101 struct perf_event_context *ctx = __info;
11102 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
11103 struct perf_event *event;
11104
11105 raw_spin_lock(&ctx->lock);
11106 list_for_each_entry(event, &ctx->event_list, event_entry)
11107 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
11108 raw_spin_unlock(&ctx->lock);
11109 }
11110
11111 static void perf_event_exit_cpu_context(int cpu)
11112 {
11113 struct perf_cpu_context *cpuctx;
11114 struct perf_event_context *ctx;
11115 struct pmu *pmu;
11116
11117 mutex_lock(&pmus_lock);
11118 list_for_each_entry(pmu, &pmus, entry) {
11119 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11120 ctx = &cpuctx->ctx;
11121
11122 mutex_lock(&ctx->mutex);
11123 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
11124 cpuctx->online = 0;
11125 mutex_unlock(&ctx->mutex);
11126 }
11127 cpumask_clear_cpu(cpu, perf_online_mask);
11128 mutex_unlock(&pmus_lock);
11129 }
11130 #else
11131
11132 static void perf_event_exit_cpu_context(int cpu) { }
11133
11134 #endif
11135
11136 int perf_event_init_cpu(unsigned int cpu)
11137 {
11138 struct perf_cpu_context *cpuctx;
11139 struct perf_event_context *ctx;
11140 struct pmu *pmu;
11141
11142 perf_swevent_init_cpu(cpu);
11143
11144 mutex_lock(&pmus_lock);
11145 cpumask_set_cpu(cpu, perf_online_mask);
11146 list_for_each_entry(pmu, &pmus, entry) {
11147 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11148 ctx = &cpuctx->ctx;
11149
11150 mutex_lock(&ctx->mutex);
11151 cpuctx->online = 1;
11152 mutex_unlock(&ctx->mutex);
11153 }
11154 mutex_unlock(&pmus_lock);
11155
11156 return 0;
11157 }
11158
11159 int perf_event_exit_cpu(unsigned int cpu)
11160 {
11161 perf_event_exit_cpu_context(cpu);
11162 return 0;
11163 }
11164
11165 static int
11166 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
11167 {
11168 int cpu;
11169
11170 for_each_online_cpu(cpu)
11171 perf_event_exit_cpu(cpu);
11172
11173 return NOTIFY_OK;
11174 }
11175
11176 /*
11177 * Run the perf reboot notifier at the very last possible moment so that
11178 * the generic watchdog code runs as long as possible.
11179 */
11180 static struct notifier_block perf_reboot_notifier = {
11181 .notifier_call = perf_reboot,
11182 .priority = INT_MIN,
11183 };
11184
11185 void __init perf_event_init(void)
11186 {
11187 int ret;
11188
11189 idr_init(&pmu_idr);
11190
11191 perf_event_init_all_cpus();
11192 init_srcu_struct(&pmus_srcu);
11193 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
11194 perf_pmu_register(&perf_cpu_clock, NULL, -1);
11195 perf_pmu_register(&perf_task_clock, NULL, -1);
11196 perf_tp_register();
11197 perf_event_init_cpu(smp_processor_id());
11198 register_reboot_notifier(&perf_reboot_notifier);
11199
11200 ret = init_hw_breakpoint();
11201 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
11202
11203 /*
11204 * Build time assertion that we keep the data_head at the intended
11205 * location. IOW, validation we got the __reserved[] size right.
11206 */
11207 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
11208 != 1024);
11209 }
11210
11211 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
11212 char *page)
11213 {
11214 struct perf_pmu_events_attr *pmu_attr =
11215 container_of(attr, struct perf_pmu_events_attr, attr);
11216
11217 if (pmu_attr->event_str)
11218 return sprintf(page, "%s\n", pmu_attr->event_str);
11219
11220 return 0;
11221 }
11222 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
11223
11224 static int __init perf_event_sysfs_init(void)
11225 {
11226 struct pmu *pmu;
11227 int ret;
11228
11229 mutex_lock(&pmus_lock);
11230
11231 ret = bus_register(&pmu_bus);
11232 if (ret)
11233 goto unlock;
11234
11235 list_for_each_entry(pmu, &pmus, entry) {
11236 if (!pmu->name || pmu->type < 0)
11237 continue;
11238
11239 ret = pmu_dev_alloc(pmu);
11240 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
11241 }
11242 pmu_bus_running = 1;
11243 ret = 0;
11244
11245 unlock:
11246 mutex_unlock(&pmus_lock);
11247
11248 return ret;
11249 }
11250 device_initcall(perf_event_sysfs_init);
11251
11252 #ifdef CONFIG_CGROUP_PERF
11253 static struct cgroup_subsys_state *
11254 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
11255 {
11256 struct perf_cgroup *jc;
11257
11258 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
11259 if (!jc)
11260 return ERR_PTR(-ENOMEM);
11261
11262 jc->info = alloc_percpu(struct perf_cgroup_info);
11263 if (!jc->info) {
11264 kfree(jc);
11265 return ERR_PTR(-ENOMEM);
11266 }
11267
11268 return &jc->css;
11269 }
11270
11271 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
11272 {
11273 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
11274
11275 free_percpu(jc->info);
11276 kfree(jc);
11277 }
11278
11279 static int __perf_cgroup_move(void *info)
11280 {
11281 struct task_struct *task = info;
11282 rcu_read_lock();
11283 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
11284 rcu_read_unlock();
11285 return 0;
11286 }
11287
11288 static void perf_cgroup_attach(struct cgroup_taskset *tset)
11289 {
11290 struct task_struct *task;
11291 struct cgroup_subsys_state *css;
11292
11293 cgroup_taskset_for_each(task, css, tset)
11294 task_function_call(task, __perf_cgroup_move, task);
11295 }
11296
11297 struct cgroup_subsys perf_event_cgrp_subsys = {
11298 .css_alloc = perf_cgroup_css_alloc,
11299 .css_free = perf_cgroup_css_free,
11300 .attach = perf_cgroup_attach,
11301 /*
11302 * Implicitly enable on dfl hierarchy so that perf events can
11303 * always be filtered by cgroup2 path as long as perf_event
11304 * controller is not mounted on a legacy hierarchy.
11305 */
11306 .implicit_on_dfl = true,
11307 .threaded = true,
11308 };
11309 #endif /* CONFIG_CGROUP_PERF */