]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - kernel/events/core.c
perf: Make ctx->is_active and cpuctx->task_ctx consistent
[mirror_ubuntu-jammy-kernel.git] / kernel / events / core.c
1 /*
2 * Performance events core code:
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47
48 #include "internal.h"
49
50 #include <asm/irq_regs.h>
51
52 static struct workqueue_struct *perf_wq;
53
54 typedef int (*remote_function_f)(void *);
55
56 struct remote_function_call {
57 struct task_struct *p;
58 remote_function_f func;
59 void *info;
60 int ret;
61 };
62
63 static void remote_function(void *data)
64 {
65 struct remote_function_call *tfc = data;
66 struct task_struct *p = tfc->p;
67
68 if (p) {
69 tfc->ret = -EAGAIN;
70 if (task_cpu(p) != smp_processor_id() || !task_curr(p))
71 return;
72 }
73
74 tfc->ret = tfc->func(tfc->info);
75 }
76
77 /**
78 * task_function_call - call a function on the cpu on which a task runs
79 * @p: the task to evaluate
80 * @func: the function to be called
81 * @info: the function call argument
82 *
83 * Calls the function @func when the task is currently running. This might
84 * be on the current CPU, which just calls the function directly
85 *
86 * returns: @func return value, or
87 * -ESRCH - when the process isn't running
88 * -EAGAIN - when the process moved away
89 */
90 static int
91 task_function_call(struct task_struct *p, remote_function_f func, void *info)
92 {
93 struct remote_function_call data = {
94 .p = p,
95 .func = func,
96 .info = info,
97 .ret = -ESRCH, /* No such (running) process */
98 };
99
100 if (task_curr(p))
101 smp_call_function_single(task_cpu(p), remote_function, &data, 1);
102
103 return data.ret;
104 }
105
106 /**
107 * cpu_function_call - call a function on the cpu
108 * @func: the function to be called
109 * @info: the function call argument
110 *
111 * Calls the function @func on the remote cpu.
112 *
113 * returns: @func return value or -ENXIO when the cpu is offline
114 */
115 static int cpu_function_call(int cpu, remote_function_f func, void *info)
116 {
117 struct remote_function_call data = {
118 .p = NULL,
119 .func = func,
120 .info = info,
121 .ret = -ENXIO, /* No such CPU */
122 };
123
124 smp_call_function_single(cpu, remote_function, &data, 1);
125
126 return data.ret;
127 }
128
129 static void event_function_call(struct perf_event *event,
130 int (*active)(void *),
131 void (*inactive)(void *),
132 void *data)
133 {
134 struct perf_event_context *ctx = event->ctx;
135 struct task_struct *task = ctx->task;
136
137 if (!task) {
138 cpu_function_call(event->cpu, active, data);
139 return;
140 }
141
142 again:
143 if (!task_function_call(task, active, data))
144 return;
145
146 raw_spin_lock_irq(&ctx->lock);
147 if (ctx->is_active) {
148 /*
149 * Reload the task pointer, it might have been changed by
150 * a concurrent perf_event_context_sched_out().
151 */
152 task = ctx->task;
153 raw_spin_unlock_irq(&ctx->lock);
154 goto again;
155 }
156 inactive(data);
157 raw_spin_unlock_irq(&ctx->lock);
158 }
159
160 #define EVENT_OWNER_KERNEL ((void *) -1)
161
162 static bool is_kernel_event(struct perf_event *event)
163 {
164 return event->owner == EVENT_OWNER_KERNEL;
165 }
166
167 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
168 PERF_FLAG_FD_OUTPUT |\
169 PERF_FLAG_PID_CGROUP |\
170 PERF_FLAG_FD_CLOEXEC)
171
172 /*
173 * branch priv levels that need permission checks
174 */
175 #define PERF_SAMPLE_BRANCH_PERM_PLM \
176 (PERF_SAMPLE_BRANCH_KERNEL |\
177 PERF_SAMPLE_BRANCH_HV)
178
179 enum event_type_t {
180 EVENT_FLEXIBLE = 0x1,
181 EVENT_PINNED = 0x2,
182 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
183 };
184
185 /*
186 * perf_sched_events : >0 events exist
187 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
188 */
189 struct static_key_deferred perf_sched_events __read_mostly;
190 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
191 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
192
193 static atomic_t nr_mmap_events __read_mostly;
194 static atomic_t nr_comm_events __read_mostly;
195 static atomic_t nr_task_events __read_mostly;
196 static atomic_t nr_freq_events __read_mostly;
197 static atomic_t nr_switch_events __read_mostly;
198
199 static LIST_HEAD(pmus);
200 static DEFINE_MUTEX(pmus_lock);
201 static struct srcu_struct pmus_srcu;
202
203 /*
204 * perf event paranoia level:
205 * -1 - not paranoid at all
206 * 0 - disallow raw tracepoint access for unpriv
207 * 1 - disallow cpu events for unpriv
208 * 2 - disallow kernel profiling for unpriv
209 */
210 int sysctl_perf_event_paranoid __read_mostly = 1;
211
212 /* Minimum for 512 kiB + 1 user control page */
213 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
214
215 /*
216 * max perf event sample rate
217 */
218 #define DEFAULT_MAX_SAMPLE_RATE 100000
219 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
220 #define DEFAULT_CPU_TIME_MAX_PERCENT 25
221
222 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
223
224 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
225 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
226
227 static int perf_sample_allowed_ns __read_mostly =
228 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
229
230 static void update_perf_cpu_limits(void)
231 {
232 u64 tmp = perf_sample_period_ns;
233
234 tmp *= sysctl_perf_cpu_time_max_percent;
235 do_div(tmp, 100);
236 ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
237 }
238
239 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
240
241 int perf_proc_update_handler(struct ctl_table *table, int write,
242 void __user *buffer, size_t *lenp,
243 loff_t *ppos)
244 {
245 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
246
247 if (ret || !write)
248 return ret;
249
250 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
251 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
252 update_perf_cpu_limits();
253
254 return 0;
255 }
256
257 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
258
259 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
260 void __user *buffer, size_t *lenp,
261 loff_t *ppos)
262 {
263 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
264
265 if (ret || !write)
266 return ret;
267
268 update_perf_cpu_limits();
269
270 return 0;
271 }
272
273 /*
274 * perf samples are done in some very critical code paths (NMIs).
275 * If they take too much CPU time, the system can lock up and not
276 * get any real work done. This will drop the sample rate when
277 * we detect that events are taking too long.
278 */
279 #define NR_ACCUMULATED_SAMPLES 128
280 static DEFINE_PER_CPU(u64, running_sample_length);
281
282 static void perf_duration_warn(struct irq_work *w)
283 {
284 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
285 u64 avg_local_sample_len;
286 u64 local_samples_len;
287
288 local_samples_len = __this_cpu_read(running_sample_length);
289 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
290
291 printk_ratelimited(KERN_WARNING
292 "perf interrupt took too long (%lld > %lld), lowering "
293 "kernel.perf_event_max_sample_rate to %d\n",
294 avg_local_sample_len, allowed_ns >> 1,
295 sysctl_perf_event_sample_rate);
296 }
297
298 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
299
300 void perf_sample_event_took(u64 sample_len_ns)
301 {
302 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
303 u64 avg_local_sample_len;
304 u64 local_samples_len;
305
306 if (allowed_ns == 0)
307 return;
308
309 /* decay the counter by 1 average sample */
310 local_samples_len = __this_cpu_read(running_sample_length);
311 local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
312 local_samples_len += sample_len_ns;
313 __this_cpu_write(running_sample_length, local_samples_len);
314
315 /*
316 * note: this will be biased artifically low until we have
317 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
318 * from having to maintain a count.
319 */
320 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
321
322 if (avg_local_sample_len <= allowed_ns)
323 return;
324
325 if (max_samples_per_tick <= 1)
326 return;
327
328 max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
329 sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
330 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
331
332 update_perf_cpu_limits();
333
334 if (!irq_work_queue(&perf_duration_work)) {
335 early_printk("perf interrupt took too long (%lld > %lld), lowering "
336 "kernel.perf_event_max_sample_rate to %d\n",
337 avg_local_sample_len, allowed_ns >> 1,
338 sysctl_perf_event_sample_rate);
339 }
340 }
341
342 static atomic64_t perf_event_id;
343
344 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
345 enum event_type_t event_type);
346
347 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
348 enum event_type_t event_type,
349 struct task_struct *task);
350
351 static void update_context_time(struct perf_event_context *ctx);
352 static u64 perf_event_time(struct perf_event *event);
353
354 void __weak perf_event_print_debug(void) { }
355
356 extern __weak const char *perf_pmu_name(void)
357 {
358 return "pmu";
359 }
360
361 static inline u64 perf_clock(void)
362 {
363 return local_clock();
364 }
365
366 static inline u64 perf_event_clock(struct perf_event *event)
367 {
368 return event->clock();
369 }
370
371 static inline struct perf_cpu_context *
372 __get_cpu_context(struct perf_event_context *ctx)
373 {
374 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
375 }
376
377 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
378 struct perf_event_context *ctx)
379 {
380 raw_spin_lock(&cpuctx->ctx.lock);
381 if (ctx)
382 raw_spin_lock(&ctx->lock);
383 }
384
385 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
386 struct perf_event_context *ctx)
387 {
388 if (ctx)
389 raw_spin_unlock(&ctx->lock);
390 raw_spin_unlock(&cpuctx->ctx.lock);
391 }
392
393 #ifdef CONFIG_CGROUP_PERF
394
395 static inline bool
396 perf_cgroup_match(struct perf_event *event)
397 {
398 struct perf_event_context *ctx = event->ctx;
399 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
400
401 /* @event doesn't care about cgroup */
402 if (!event->cgrp)
403 return true;
404
405 /* wants specific cgroup scope but @cpuctx isn't associated with any */
406 if (!cpuctx->cgrp)
407 return false;
408
409 /*
410 * Cgroup scoping is recursive. An event enabled for a cgroup is
411 * also enabled for all its descendant cgroups. If @cpuctx's
412 * cgroup is a descendant of @event's (the test covers identity
413 * case), it's a match.
414 */
415 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
416 event->cgrp->css.cgroup);
417 }
418
419 static inline void perf_detach_cgroup(struct perf_event *event)
420 {
421 css_put(&event->cgrp->css);
422 event->cgrp = NULL;
423 }
424
425 static inline int is_cgroup_event(struct perf_event *event)
426 {
427 return event->cgrp != NULL;
428 }
429
430 static inline u64 perf_cgroup_event_time(struct perf_event *event)
431 {
432 struct perf_cgroup_info *t;
433
434 t = per_cpu_ptr(event->cgrp->info, event->cpu);
435 return t->time;
436 }
437
438 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
439 {
440 struct perf_cgroup_info *info;
441 u64 now;
442
443 now = perf_clock();
444
445 info = this_cpu_ptr(cgrp->info);
446
447 info->time += now - info->timestamp;
448 info->timestamp = now;
449 }
450
451 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
452 {
453 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
454 if (cgrp_out)
455 __update_cgrp_time(cgrp_out);
456 }
457
458 static inline void update_cgrp_time_from_event(struct perf_event *event)
459 {
460 struct perf_cgroup *cgrp;
461
462 /*
463 * ensure we access cgroup data only when needed and
464 * when we know the cgroup is pinned (css_get)
465 */
466 if (!is_cgroup_event(event))
467 return;
468
469 cgrp = perf_cgroup_from_task(current, event->ctx);
470 /*
471 * Do not update time when cgroup is not active
472 */
473 if (cgrp == event->cgrp)
474 __update_cgrp_time(event->cgrp);
475 }
476
477 static inline void
478 perf_cgroup_set_timestamp(struct task_struct *task,
479 struct perf_event_context *ctx)
480 {
481 struct perf_cgroup *cgrp;
482 struct perf_cgroup_info *info;
483
484 /*
485 * ctx->lock held by caller
486 * ensure we do not access cgroup data
487 * unless we have the cgroup pinned (css_get)
488 */
489 if (!task || !ctx->nr_cgroups)
490 return;
491
492 cgrp = perf_cgroup_from_task(task, ctx);
493 info = this_cpu_ptr(cgrp->info);
494 info->timestamp = ctx->timestamp;
495 }
496
497 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
498 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
499
500 /*
501 * reschedule events based on the cgroup constraint of task.
502 *
503 * mode SWOUT : schedule out everything
504 * mode SWIN : schedule in based on cgroup for next
505 */
506 static void perf_cgroup_switch(struct task_struct *task, int mode)
507 {
508 struct perf_cpu_context *cpuctx;
509 struct pmu *pmu;
510 unsigned long flags;
511
512 /*
513 * disable interrupts to avoid geting nr_cgroup
514 * changes via __perf_event_disable(). Also
515 * avoids preemption.
516 */
517 local_irq_save(flags);
518
519 /*
520 * we reschedule only in the presence of cgroup
521 * constrained events.
522 */
523
524 list_for_each_entry_rcu(pmu, &pmus, entry) {
525 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
526 if (cpuctx->unique_pmu != pmu)
527 continue; /* ensure we process each cpuctx once */
528
529 /*
530 * perf_cgroup_events says at least one
531 * context on this CPU has cgroup events.
532 *
533 * ctx->nr_cgroups reports the number of cgroup
534 * events for a context.
535 */
536 if (cpuctx->ctx.nr_cgroups > 0) {
537 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
538 perf_pmu_disable(cpuctx->ctx.pmu);
539
540 if (mode & PERF_CGROUP_SWOUT) {
541 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
542 /*
543 * must not be done before ctxswout due
544 * to event_filter_match() in event_sched_out()
545 */
546 cpuctx->cgrp = NULL;
547 }
548
549 if (mode & PERF_CGROUP_SWIN) {
550 WARN_ON_ONCE(cpuctx->cgrp);
551 /*
552 * set cgrp before ctxsw in to allow
553 * event_filter_match() to not have to pass
554 * task around
555 * we pass the cpuctx->ctx to perf_cgroup_from_task()
556 * because cgorup events are only per-cpu
557 */
558 cpuctx->cgrp = perf_cgroup_from_task(task, &cpuctx->ctx);
559 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
560 }
561 perf_pmu_enable(cpuctx->ctx.pmu);
562 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
563 }
564 }
565
566 local_irq_restore(flags);
567 }
568
569 static inline void perf_cgroup_sched_out(struct task_struct *task,
570 struct task_struct *next)
571 {
572 struct perf_cgroup *cgrp1;
573 struct perf_cgroup *cgrp2 = NULL;
574
575 rcu_read_lock();
576 /*
577 * we come here when we know perf_cgroup_events > 0
578 * we do not need to pass the ctx here because we know
579 * we are holding the rcu lock
580 */
581 cgrp1 = perf_cgroup_from_task(task, NULL);
582 cgrp2 = perf_cgroup_from_task(next, NULL);
583
584 /*
585 * only schedule out current cgroup events if we know
586 * that we are switching to a different cgroup. Otherwise,
587 * do no touch the cgroup events.
588 */
589 if (cgrp1 != cgrp2)
590 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
591
592 rcu_read_unlock();
593 }
594
595 static inline void perf_cgroup_sched_in(struct task_struct *prev,
596 struct task_struct *task)
597 {
598 struct perf_cgroup *cgrp1;
599 struct perf_cgroup *cgrp2 = NULL;
600
601 rcu_read_lock();
602 /*
603 * we come here when we know perf_cgroup_events > 0
604 * we do not need to pass the ctx here because we know
605 * we are holding the rcu lock
606 */
607 cgrp1 = perf_cgroup_from_task(task, NULL);
608 cgrp2 = perf_cgroup_from_task(prev, NULL);
609
610 /*
611 * only need to schedule in cgroup events if we are changing
612 * cgroup during ctxsw. Cgroup events were not scheduled
613 * out of ctxsw out if that was not the case.
614 */
615 if (cgrp1 != cgrp2)
616 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
617
618 rcu_read_unlock();
619 }
620
621 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
622 struct perf_event_attr *attr,
623 struct perf_event *group_leader)
624 {
625 struct perf_cgroup *cgrp;
626 struct cgroup_subsys_state *css;
627 struct fd f = fdget(fd);
628 int ret = 0;
629
630 if (!f.file)
631 return -EBADF;
632
633 css = css_tryget_online_from_dir(f.file->f_path.dentry,
634 &perf_event_cgrp_subsys);
635 if (IS_ERR(css)) {
636 ret = PTR_ERR(css);
637 goto out;
638 }
639
640 cgrp = container_of(css, struct perf_cgroup, css);
641 event->cgrp = cgrp;
642
643 /*
644 * all events in a group must monitor
645 * the same cgroup because a task belongs
646 * to only one perf cgroup at a time
647 */
648 if (group_leader && group_leader->cgrp != cgrp) {
649 perf_detach_cgroup(event);
650 ret = -EINVAL;
651 }
652 out:
653 fdput(f);
654 return ret;
655 }
656
657 static inline void
658 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
659 {
660 struct perf_cgroup_info *t;
661 t = per_cpu_ptr(event->cgrp->info, event->cpu);
662 event->shadow_ctx_time = now - t->timestamp;
663 }
664
665 static inline void
666 perf_cgroup_defer_enabled(struct perf_event *event)
667 {
668 /*
669 * when the current task's perf cgroup does not match
670 * the event's, we need to remember to call the
671 * perf_mark_enable() function the first time a task with
672 * a matching perf cgroup is scheduled in.
673 */
674 if (is_cgroup_event(event) && !perf_cgroup_match(event))
675 event->cgrp_defer_enabled = 1;
676 }
677
678 static inline void
679 perf_cgroup_mark_enabled(struct perf_event *event,
680 struct perf_event_context *ctx)
681 {
682 struct perf_event *sub;
683 u64 tstamp = perf_event_time(event);
684
685 if (!event->cgrp_defer_enabled)
686 return;
687
688 event->cgrp_defer_enabled = 0;
689
690 event->tstamp_enabled = tstamp - event->total_time_enabled;
691 list_for_each_entry(sub, &event->sibling_list, group_entry) {
692 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
693 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
694 sub->cgrp_defer_enabled = 0;
695 }
696 }
697 }
698 #else /* !CONFIG_CGROUP_PERF */
699
700 static inline bool
701 perf_cgroup_match(struct perf_event *event)
702 {
703 return true;
704 }
705
706 static inline void perf_detach_cgroup(struct perf_event *event)
707 {}
708
709 static inline int is_cgroup_event(struct perf_event *event)
710 {
711 return 0;
712 }
713
714 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
715 {
716 return 0;
717 }
718
719 static inline void update_cgrp_time_from_event(struct perf_event *event)
720 {
721 }
722
723 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
724 {
725 }
726
727 static inline void perf_cgroup_sched_out(struct task_struct *task,
728 struct task_struct *next)
729 {
730 }
731
732 static inline void perf_cgroup_sched_in(struct task_struct *prev,
733 struct task_struct *task)
734 {
735 }
736
737 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
738 struct perf_event_attr *attr,
739 struct perf_event *group_leader)
740 {
741 return -EINVAL;
742 }
743
744 static inline void
745 perf_cgroup_set_timestamp(struct task_struct *task,
746 struct perf_event_context *ctx)
747 {
748 }
749
750 void
751 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
752 {
753 }
754
755 static inline void
756 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
757 {
758 }
759
760 static inline u64 perf_cgroup_event_time(struct perf_event *event)
761 {
762 return 0;
763 }
764
765 static inline void
766 perf_cgroup_defer_enabled(struct perf_event *event)
767 {
768 }
769
770 static inline void
771 perf_cgroup_mark_enabled(struct perf_event *event,
772 struct perf_event_context *ctx)
773 {
774 }
775 #endif
776
777 /*
778 * set default to be dependent on timer tick just
779 * like original code
780 */
781 #define PERF_CPU_HRTIMER (1000 / HZ)
782 /*
783 * function must be called with interrupts disbled
784 */
785 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
786 {
787 struct perf_cpu_context *cpuctx;
788 int rotations = 0;
789
790 WARN_ON(!irqs_disabled());
791
792 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
793 rotations = perf_rotate_context(cpuctx);
794
795 raw_spin_lock(&cpuctx->hrtimer_lock);
796 if (rotations)
797 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
798 else
799 cpuctx->hrtimer_active = 0;
800 raw_spin_unlock(&cpuctx->hrtimer_lock);
801
802 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
803 }
804
805 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
806 {
807 struct hrtimer *timer = &cpuctx->hrtimer;
808 struct pmu *pmu = cpuctx->ctx.pmu;
809 u64 interval;
810
811 /* no multiplexing needed for SW PMU */
812 if (pmu->task_ctx_nr == perf_sw_context)
813 return;
814
815 /*
816 * check default is sane, if not set then force to
817 * default interval (1/tick)
818 */
819 interval = pmu->hrtimer_interval_ms;
820 if (interval < 1)
821 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
822
823 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
824
825 raw_spin_lock_init(&cpuctx->hrtimer_lock);
826 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
827 timer->function = perf_mux_hrtimer_handler;
828 }
829
830 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
831 {
832 struct hrtimer *timer = &cpuctx->hrtimer;
833 struct pmu *pmu = cpuctx->ctx.pmu;
834 unsigned long flags;
835
836 /* not for SW PMU */
837 if (pmu->task_ctx_nr == perf_sw_context)
838 return 0;
839
840 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
841 if (!cpuctx->hrtimer_active) {
842 cpuctx->hrtimer_active = 1;
843 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
844 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
845 }
846 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
847
848 return 0;
849 }
850
851 void perf_pmu_disable(struct pmu *pmu)
852 {
853 int *count = this_cpu_ptr(pmu->pmu_disable_count);
854 if (!(*count)++)
855 pmu->pmu_disable(pmu);
856 }
857
858 void perf_pmu_enable(struct pmu *pmu)
859 {
860 int *count = this_cpu_ptr(pmu->pmu_disable_count);
861 if (!--(*count))
862 pmu->pmu_enable(pmu);
863 }
864
865 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
866
867 /*
868 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
869 * perf_event_task_tick() are fully serialized because they're strictly cpu
870 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
871 * disabled, while perf_event_task_tick is called from IRQ context.
872 */
873 static void perf_event_ctx_activate(struct perf_event_context *ctx)
874 {
875 struct list_head *head = this_cpu_ptr(&active_ctx_list);
876
877 WARN_ON(!irqs_disabled());
878
879 WARN_ON(!list_empty(&ctx->active_ctx_list));
880
881 list_add(&ctx->active_ctx_list, head);
882 }
883
884 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
885 {
886 WARN_ON(!irqs_disabled());
887
888 WARN_ON(list_empty(&ctx->active_ctx_list));
889
890 list_del_init(&ctx->active_ctx_list);
891 }
892
893 static void get_ctx(struct perf_event_context *ctx)
894 {
895 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
896 }
897
898 static void free_ctx(struct rcu_head *head)
899 {
900 struct perf_event_context *ctx;
901
902 ctx = container_of(head, struct perf_event_context, rcu_head);
903 kfree(ctx->task_ctx_data);
904 kfree(ctx);
905 }
906
907 static void put_ctx(struct perf_event_context *ctx)
908 {
909 if (atomic_dec_and_test(&ctx->refcount)) {
910 if (ctx->parent_ctx)
911 put_ctx(ctx->parent_ctx);
912 if (ctx->task)
913 put_task_struct(ctx->task);
914 call_rcu(&ctx->rcu_head, free_ctx);
915 }
916 }
917
918 /*
919 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
920 * perf_pmu_migrate_context() we need some magic.
921 *
922 * Those places that change perf_event::ctx will hold both
923 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
924 *
925 * Lock ordering is by mutex address. There are two other sites where
926 * perf_event_context::mutex nests and those are:
927 *
928 * - perf_event_exit_task_context() [ child , 0 ]
929 * __perf_event_exit_task()
930 * sync_child_event()
931 * put_event() [ parent, 1 ]
932 *
933 * - perf_event_init_context() [ parent, 0 ]
934 * inherit_task_group()
935 * inherit_group()
936 * inherit_event()
937 * perf_event_alloc()
938 * perf_init_event()
939 * perf_try_init_event() [ child , 1 ]
940 *
941 * While it appears there is an obvious deadlock here -- the parent and child
942 * nesting levels are inverted between the two. This is in fact safe because
943 * life-time rules separate them. That is an exiting task cannot fork, and a
944 * spawning task cannot (yet) exit.
945 *
946 * But remember that that these are parent<->child context relations, and
947 * migration does not affect children, therefore these two orderings should not
948 * interact.
949 *
950 * The change in perf_event::ctx does not affect children (as claimed above)
951 * because the sys_perf_event_open() case will install a new event and break
952 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
953 * concerned with cpuctx and that doesn't have children.
954 *
955 * The places that change perf_event::ctx will issue:
956 *
957 * perf_remove_from_context();
958 * synchronize_rcu();
959 * perf_install_in_context();
960 *
961 * to affect the change. The remove_from_context() + synchronize_rcu() should
962 * quiesce the event, after which we can install it in the new location. This
963 * means that only external vectors (perf_fops, prctl) can perturb the event
964 * while in transit. Therefore all such accessors should also acquire
965 * perf_event_context::mutex to serialize against this.
966 *
967 * However; because event->ctx can change while we're waiting to acquire
968 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
969 * function.
970 *
971 * Lock order:
972 * task_struct::perf_event_mutex
973 * perf_event_context::mutex
974 * perf_event_context::lock
975 * perf_event::child_mutex;
976 * perf_event::mmap_mutex
977 * mmap_sem
978 */
979 static struct perf_event_context *
980 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
981 {
982 struct perf_event_context *ctx;
983
984 again:
985 rcu_read_lock();
986 ctx = ACCESS_ONCE(event->ctx);
987 if (!atomic_inc_not_zero(&ctx->refcount)) {
988 rcu_read_unlock();
989 goto again;
990 }
991 rcu_read_unlock();
992
993 mutex_lock_nested(&ctx->mutex, nesting);
994 if (event->ctx != ctx) {
995 mutex_unlock(&ctx->mutex);
996 put_ctx(ctx);
997 goto again;
998 }
999
1000 return ctx;
1001 }
1002
1003 static inline struct perf_event_context *
1004 perf_event_ctx_lock(struct perf_event *event)
1005 {
1006 return perf_event_ctx_lock_nested(event, 0);
1007 }
1008
1009 static void perf_event_ctx_unlock(struct perf_event *event,
1010 struct perf_event_context *ctx)
1011 {
1012 mutex_unlock(&ctx->mutex);
1013 put_ctx(ctx);
1014 }
1015
1016 /*
1017 * This must be done under the ctx->lock, such as to serialize against
1018 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1019 * calling scheduler related locks and ctx->lock nests inside those.
1020 */
1021 static __must_check struct perf_event_context *
1022 unclone_ctx(struct perf_event_context *ctx)
1023 {
1024 struct perf_event_context *parent_ctx = ctx->parent_ctx;
1025
1026 lockdep_assert_held(&ctx->lock);
1027
1028 if (parent_ctx)
1029 ctx->parent_ctx = NULL;
1030 ctx->generation++;
1031
1032 return parent_ctx;
1033 }
1034
1035 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1036 {
1037 /*
1038 * only top level events have the pid namespace they were created in
1039 */
1040 if (event->parent)
1041 event = event->parent;
1042
1043 return task_tgid_nr_ns(p, event->ns);
1044 }
1045
1046 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1047 {
1048 /*
1049 * only top level events have the pid namespace they were created in
1050 */
1051 if (event->parent)
1052 event = event->parent;
1053
1054 return task_pid_nr_ns(p, event->ns);
1055 }
1056
1057 /*
1058 * If we inherit events we want to return the parent event id
1059 * to userspace.
1060 */
1061 static u64 primary_event_id(struct perf_event *event)
1062 {
1063 u64 id = event->id;
1064
1065 if (event->parent)
1066 id = event->parent->id;
1067
1068 return id;
1069 }
1070
1071 /*
1072 * Get the perf_event_context for a task and lock it.
1073 * This has to cope with with the fact that until it is locked,
1074 * the context could get moved to another task.
1075 */
1076 static struct perf_event_context *
1077 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1078 {
1079 struct perf_event_context *ctx;
1080
1081 retry:
1082 /*
1083 * One of the few rules of preemptible RCU is that one cannot do
1084 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1085 * part of the read side critical section was irqs-enabled -- see
1086 * rcu_read_unlock_special().
1087 *
1088 * Since ctx->lock nests under rq->lock we must ensure the entire read
1089 * side critical section has interrupts disabled.
1090 */
1091 local_irq_save(*flags);
1092 rcu_read_lock();
1093 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1094 if (ctx) {
1095 /*
1096 * If this context is a clone of another, it might
1097 * get swapped for another underneath us by
1098 * perf_event_task_sched_out, though the
1099 * rcu_read_lock() protects us from any context
1100 * getting freed. Lock the context and check if it
1101 * got swapped before we could get the lock, and retry
1102 * if so. If we locked the right context, then it
1103 * can't get swapped on us any more.
1104 */
1105 raw_spin_lock(&ctx->lock);
1106 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1107 raw_spin_unlock(&ctx->lock);
1108 rcu_read_unlock();
1109 local_irq_restore(*flags);
1110 goto retry;
1111 }
1112
1113 if (!atomic_inc_not_zero(&ctx->refcount)) {
1114 raw_spin_unlock(&ctx->lock);
1115 ctx = NULL;
1116 }
1117 }
1118 rcu_read_unlock();
1119 if (!ctx)
1120 local_irq_restore(*flags);
1121 return ctx;
1122 }
1123
1124 /*
1125 * Get the context for a task and increment its pin_count so it
1126 * can't get swapped to another task. This also increments its
1127 * reference count so that the context can't get freed.
1128 */
1129 static struct perf_event_context *
1130 perf_pin_task_context(struct task_struct *task, int ctxn)
1131 {
1132 struct perf_event_context *ctx;
1133 unsigned long flags;
1134
1135 ctx = perf_lock_task_context(task, ctxn, &flags);
1136 if (ctx) {
1137 ++ctx->pin_count;
1138 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1139 }
1140 return ctx;
1141 }
1142
1143 static void perf_unpin_context(struct perf_event_context *ctx)
1144 {
1145 unsigned long flags;
1146
1147 raw_spin_lock_irqsave(&ctx->lock, flags);
1148 --ctx->pin_count;
1149 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1150 }
1151
1152 /*
1153 * Update the record of the current time in a context.
1154 */
1155 static void update_context_time(struct perf_event_context *ctx)
1156 {
1157 u64 now = perf_clock();
1158
1159 ctx->time += now - ctx->timestamp;
1160 ctx->timestamp = now;
1161 }
1162
1163 static u64 perf_event_time(struct perf_event *event)
1164 {
1165 struct perf_event_context *ctx = event->ctx;
1166
1167 if (is_cgroup_event(event))
1168 return perf_cgroup_event_time(event);
1169
1170 return ctx ? ctx->time : 0;
1171 }
1172
1173 /*
1174 * Update the total_time_enabled and total_time_running fields for a event.
1175 * The caller of this function needs to hold the ctx->lock.
1176 */
1177 static void update_event_times(struct perf_event *event)
1178 {
1179 struct perf_event_context *ctx = event->ctx;
1180 u64 run_end;
1181
1182 if (event->state < PERF_EVENT_STATE_INACTIVE ||
1183 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1184 return;
1185 /*
1186 * in cgroup mode, time_enabled represents
1187 * the time the event was enabled AND active
1188 * tasks were in the monitored cgroup. This is
1189 * independent of the activity of the context as
1190 * there may be a mix of cgroup and non-cgroup events.
1191 *
1192 * That is why we treat cgroup events differently
1193 * here.
1194 */
1195 if (is_cgroup_event(event))
1196 run_end = perf_cgroup_event_time(event);
1197 else if (ctx->is_active)
1198 run_end = ctx->time;
1199 else
1200 run_end = event->tstamp_stopped;
1201
1202 event->total_time_enabled = run_end - event->tstamp_enabled;
1203
1204 if (event->state == PERF_EVENT_STATE_INACTIVE)
1205 run_end = event->tstamp_stopped;
1206 else
1207 run_end = perf_event_time(event);
1208
1209 event->total_time_running = run_end - event->tstamp_running;
1210
1211 }
1212
1213 /*
1214 * Update total_time_enabled and total_time_running for all events in a group.
1215 */
1216 static void update_group_times(struct perf_event *leader)
1217 {
1218 struct perf_event *event;
1219
1220 update_event_times(leader);
1221 list_for_each_entry(event, &leader->sibling_list, group_entry)
1222 update_event_times(event);
1223 }
1224
1225 static struct list_head *
1226 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1227 {
1228 if (event->attr.pinned)
1229 return &ctx->pinned_groups;
1230 else
1231 return &ctx->flexible_groups;
1232 }
1233
1234 /*
1235 * Add a event from the lists for its context.
1236 * Must be called with ctx->mutex and ctx->lock held.
1237 */
1238 static void
1239 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1240 {
1241 lockdep_assert_held(&ctx->lock);
1242
1243 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1244 event->attach_state |= PERF_ATTACH_CONTEXT;
1245
1246 /*
1247 * If we're a stand alone event or group leader, we go to the context
1248 * list, group events are kept attached to the group so that
1249 * perf_group_detach can, at all times, locate all siblings.
1250 */
1251 if (event->group_leader == event) {
1252 struct list_head *list;
1253
1254 if (is_software_event(event))
1255 event->group_flags |= PERF_GROUP_SOFTWARE;
1256
1257 list = ctx_group_list(event, ctx);
1258 list_add_tail(&event->group_entry, list);
1259 }
1260
1261 if (is_cgroup_event(event))
1262 ctx->nr_cgroups++;
1263
1264 list_add_rcu(&event->event_entry, &ctx->event_list);
1265 ctx->nr_events++;
1266 if (event->attr.inherit_stat)
1267 ctx->nr_stat++;
1268
1269 ctx->generation++;
1270 }
1271
1272 /*
1273 * Initialize event state based on the perf_event_attr::disabled.
1274 */
1275 static inline void perf_event__state_init(struct perf_event *event)
1276 {
1277 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1278 PERF_EVENT_STATE_INACTIVE;
1279 }
1280
1281 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1282 {
1283 int entry = sizeof(u64); /* value */
1284 int size = 0;
1285 int nr = 1;
1286
1287 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1288 size += sizeof(u64);
1289
1290 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1291 size += sizeof(u64);
1292
1293 if (event->attr.read_format & PERF_FORMAT_ID)
1294 entry += sizeof(u64);
1295
1296 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1297 nr += nr_siblings;
1298 size += sizeof(u64);
1299 }
1300
1301 size += entry * nr;
1302 event->read_size = size;
1303 }
1304
1305 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1306 {
1307 struct perf_sample_data *data;
1308 u16 size = 0;
1309
1310 if (sample_type & PERF_SAMPLE_IP)
1311 size += sizeof(data->ip);
1312
1313 if (sample_type & PERF_SAMPLE_ADDR)
1314 size += sizeof(data->addr);
1315
1316 if (sample_type & PERF_SAMPLE_PERIOD)
1317 size += sizeof(data->period);
1318
1319 if (sample_type & PERF_SAMPLE_WEIGHT)
1320 size += sizeof(data->weight);
1321
1322 if (sample_type & PERF_SAMPLE_READ)
1323 size += event->read_size;
1324
1325 if (sample_type & PERF_SAMPLE_DATA_SRC)
1326 size += sizeof(data->data_src.val);
1327
1328 if (sample_type & PERF_SAMPLE_TRANSACTION)
1329 size += sizeof(data->txn);
1330
1331 event->header_size = size;
1332 }
1333
1334 /*
1335 * Called at perf_event creation and when events are attached/detached from a
1336 * group.
1337 */
1338 static void perf_event__header_size(struct perf_event *event)
1339 {
1340 __perf_event_read_size(event,
1341 event->group_leader->nr_siblings);
1342 __perf_event_header_size(event, event->attr.sample_type);
1343 }
1344
1345 static void perf_event__id_header_size(struct perf_event *event)
1346 {
1347 struct perf_sample_data *data;
1348 u64 sample_type = event->attr.sample_type;
1349 u16 size = 0;
1350
1351 if (sample_type & PERF_SAMPLE_TID)
1352 size += sizeof(data->tid_entry);
1353
1354 if (sample_type & PERF_SAMPLE_TIME)
1355 size += sizeof(data->time);
1356
1357 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1358 size += sizeof(data->id);
1359
1360 if (sample_type & PERF_SAMPLE_ID)
1361 size += sizeof(data->id);
1362
1363 if (sample_type & PERF_SAMPLE_STREAM_ID)
1364 size += sizeof(data->stream_id);
1365
1366 if (sample_type & PERF_SAMPLE_CPU)
1367 size += sizeof(data->cpu_entry);
1368
1369 event->id_header_size = size;
1370 }
1371
1372 static bool perf_event_validate_size(struct perf_event *event)
1373 {
1374 /*
1375 * The values computed here will be over-written when we actually
1376 * attach the event.
1377 */
1378 __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1379 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1380 perf_event__id_header_size(event);
1381
1382 /*
1383 * Sum the lot; should not exceed the 64k limit we have on records.
1384 * Conservative limit to allow for callchains and other variable fields.
1385 */
1386 if (event->read_size + event->header_size +
1387 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1388 return false;
1389
1390 return true;
1391 }
1392
1393 static void perf_group_attach(struct perf_event *event)
1394 {
1395 struct perf_event *group_leader = event->group_leader, *pos;
1396
1397 /*
1398 * We can have double attach due to group movement in perf_event_open.
1399 */
1400 if (event->attach_state & PERF_ATTACH_GROUP)
1401 return;
1402
1403 event->attach_state |= PERF_ATTACH_GROUP;
1404
1405 if (group_leader == event)
1406 return;
1407
1408 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1409
1410 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1411 !is_software_event(event))
1412 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1413
1414 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1415 group_leader->nr_siblings++;
1416
1417 perf_event__header_size(group_leader);
1418
1419 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1420 perf_event__header_size(pos);
1421 }
1422
1423 /*
1424 * Remove a event from the lists for its context.
1425 * Must be called with ctx->mutex and ctx->lock held.
1426 */
1427 static void
1428 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1429 {
1430 struct perf_cpu_context *cpuctx;
1431
1432 WARN_ON_ONCE(event->ctx != ctx);
1433 lockdep_assert_held(&ctx->lock);
1434
1435 /*
1436 * We can have double detach due to exit/hot-unplug + close.
1437 */
1438 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1439 return;
1440
1441 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1442
1443 if (is_cgroup_event(event)) {
1444 ctx->nr_cgroups--;
1445 /*
1446 * Because cgroup events are always per-cpu events, this will
1447 * always be called from the right CPU.
1448 */
1449 cpuctx = __get_cpu_context(ctx);
1450 /*
1451 * If there are no more cgroup events then clear cgrp to avoid
1452 * stale pointer in update_cgrp_time_from_cpuctx().
1453 */
1454 if (!ctx->nr_cgroups)
1455 cpuctx->cgrp = NULL;
1456 }
1457
1458 ctx->nr_events--;
1459 if (event->attr.inherit_stat)
1460 ctx->nr_stat--;
1461
1462 list_del_rcu(&event->event_entry);
1463
1464 if (event->group_leader == event)
1465 list_del_init(&event->group_entry);
1466
1467 update_group_times(event);
1468
1469 /*
1470 * If event was in error state, then keep it
1471 * that way, otherwise bogus counts will be
1472 * returned on read(). The only way to get out
1473 * of error state is by explicit re-enabling
1474 * of the event
1475 */
1476 if (event->state > PERF_EVENT_STATE_OFF)
1477 event->state = PERF_EVENT_STATE_OFF;
1478
1479 ctx->generation++;
1480 }
1481
1482 static void perf_group_detach(struct perf_event *event)
1483 {
1484 struct perf_event *sibling, *tmp;
1485 struct list_head *list = NULL;
1486
1487 /*
1488 * We can have double detach due to exit/hot-unplug + close.
1489 */
1490 if (!(event->attach_state & PERF_ATTACH_GROUP))
1491 return;
1492
1493 event->attach_state &= ~PERF_ATTACH_GROUP;
1494
1495 /*
1496 * If this is a sibling, remove it from its group.
1497 */
1498 if (event->group_leader != event) {
1499 list_del_init(&event->group_entry);
1500 event->group_leader->nr_siblings--;
1501 goto out;
1502 }
1503
1504 if (!list_empty(&event->group_entry))
1505 list = &event->group_entry;
1506
1507 /*
1508 * If this was a group event with sibling events then
1509 * upgrade the siblings to singleton events by adding them
1510 * to whatever list we are on.
1511 */
1512 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1513 if (list)
1514 list_move_tail(&sibling->group_entry, list);
1515 sibling->group_leader = sibling;
1516
1517 /* Inherit group flags from the previous leader */
1518 sibling->group_flags = event->group_flags;
1519
1520 WARN_ON_ONCE(sibling->ctx != event->ctx);
1521 }
1522
1523 out:
1524 perf_event__header_size(event->group_leader);
1525
1526 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1527 perf_event__header_size(tmp);
1528 }
1529
1530 /*
1531 * User event without the task.
1532 */
1533 static bool is_orphaned_event(struct perf_event *event)
1534 {
1535 return event && !is_kernel_event(event) && !event->owner;
1536 }
1537
1538 /*
1539 * Event has a parent but parent's task finished and it's
1540 * alive only because of children holding refference.
1541 */
1542 static bool is_orphaned_child(struct perf_event *event)
1543 {
1544 return is_orphaned_event(event->parent);
1545 }
1546
1547 static void orphans_remove_work(struct work_struct *work);
1548
1549 static void schedule_orphans_remove(struct perf_event_context *ctx)
1550 {
1551 if (!ctx->task || ctx->orphans_remove_sched || !perf_wq)
1552 return;
1553
1554 if (queue_delayed_work(perf_wq, &ctx->orphans_remove, 1)) {
1555 get_ctx(ctx);
1556 ctx->orphans_remove_sched = true;
1557 }
1558 }
1559
1560 static int __init perf_workqueue_init(void)
1561 {
1562 perf_wq = create_singlethread_workqueue("perf");
1563 WARN(!perf_wq, "failed to create perf workqueue\n");
1564 return perf_wq ? 0 : -1;
1565 }
1566
1567 core_initcall(perf_workqueue_init);
1568
1569 static inline int pmu_filter_match(struct perf_event *event)
1570 {
1571 struct pmu *pmu = event->pmu;
1572 return pmu->filter_match ? pmu->filter_match(event) : 1;
1573 }
1574
1575 static inline int
1576 event_filter_match(struct perf_event *event)
1577 {
1578 return (event->cpu == -1 || event->cpu == smp_processor_id())
1579 && perf_cgroup_match(event) && pmu_filter_match(event);
1580 }
1581
1582 static void
1583 event_sched_out(struct perf_event *event,
1584 struct perf_cpu_context *cpuctx,
1585 struct perf_event_context *ctx)
1586 {
1587 u64 tstamp = perf_event_time(event);
1588 u64 delta;
1589
1590 WARN_ON_ONCE(event->ctx != ctx);
1591 lockdep_assert_held(&ctx->lock);
1592
1593 /*
1594 * An event which could not be activated because of
1595 * filter mismatch still needs to have its timings
1596 * maintained, otherwise bogus information is return
1597 * via read() for time_enabled, time_running:
1598 */
1599 if (event->state == PERF_EVENT_STATE_INACTIVE
1600 && !event_filter_match(event)) {
1601 delta = tstamp - event->tstamp_stopped;
1602 event->tstamp_running += delta;
1603 event->tstamp_stopped = tstamp;
1604 }
1605
1606 if (event->state != PERF_EVENT_STATE_ACTIVE)
1607 return;
1608
1609 perf_pmu_disable(event->pmu);
1610
1611 event->state = PERF_EVENT_STATE_INACTIVE;
1612 if (event->pending_disable) {
1613 event->pending_disable = 0;
1614 event->state = PERF_EVENT_STATE_OFF;
1615 }
1616 event->tstamp_stopped = tstamp;
1617 event->pmu->del(event, 0);
1618 event->oncpu = -1;
1619
1620 if (!is_software_event(event))
1621 cpuctx->active_oncpu--;
1622 if (!--ctx->nr_active)
1623 perf_event_ctx_deactivate(ctx);
1624 if (event->attr.freq && event->attr.sample_freq)
1625 ctx->nr_freq--;
1626 if (event->attr.exclusive || !cpuctx->active_oncpu)
1627 cpuctx->exclusive = 0;
1628
1629 if (is_orphaned_child(event))
1630 schedule_orphans_remove(ctx);
1631
1632 perf_pmu_enable(event->pmu);
1633 }
1634
1635 static void
1636 group_sched_out(struct perf_event *group_event,
1637 struct perf_cpu_context *cpuctx,
1638 struct perf_event_context *ctx)
1639 {
1640 struct perf_event *event;
1641 int state = group_event->state;
1642
1643 event_sched_out(group_event, cpuctx, ctx);
1644
1645 /*
1646 * Schedule out siblings (if any):
1647 */
1648 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1649 event_sched_out(event, cpuctx, ctx);
1650
1651 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1652 cpuctx->exclusive = 0;
1653 }
1654
1655 struct remove_event {
1656 struct perf_event *event;
1657 bool detach_group;
1658 };
1659
1660 static void ___perf_remove_from_context(void *info)
1661 {
1662 struct remove_event *re = info;
1663 struct perf_event *event = re->event;
1664 struct perf_event_context *ctx = event->ctx;
1665
1666 if (re->detach_group)
1667 perf_group_detach(event);
1668 list_del_event(event, ctx);
1669 }
1670
1671 /*
1672 * Cross CPU call to remove a performance event
1673 *
1674 * We disable the event on the hardware level first. After that we
1675 * remove it from the context list.
1676 */
1677 static int __perf_remove_from_context(void *info)
1678 {
1679 struct remove_event *re = info;
1680 struct perf_event *event = re->event;
1681 struct perf_event_context *ctx = event->ctx;
1682 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1683
1684 raw_spin_lock(&ctx->lock);
1685 event_sched_out(event, cpuctx, ctx);
1686 if (re->detach_group)
1687 perf_group_detach(event);
1688 list_del_event(event, ctx);
1689 if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1690 ctx->is_active = 0;
1691 cpuctx->task_ctx = NULL;
1692 }
1693 raw_spin_unlock(&ctx->lock);
1694
1695 return 0;
1696 }
1697
1698 /*
1699 * Remove the event from a task's (or a CPU's) list of events.
1700 *
1701 * CPU events are removed with a smp call. For task events we only
1702 * call when the task is on a CPU.
1703 *
1704 * If event->ctx is a cloned context, callers must make sure that
1705 * every task struct that event->ctx->task could possibly point to
1706 * remains valid. This is OK when called from perf_release since
1707 * that only calls us on the top-level context, which can't be a clone.
1708 * When called from perf_event_exit_task, it's OK because the
1709 * context has been detached from its task.
1710 */
1711 static void perf_remove_from_context(struct perf_event *event, bool detach_group)
1712 {
1713 struct perf_event_context *ctx = event->ctx;
1714 struct remove_event re = {
1715 .event = event,
1716 .detach_group = detach_group,
1717 };
1718
1719 lockdep_assert_held(&ctx->mutex);
1720
1721 event_function_call(event, __perf_remove_from_context,
1722 ___perf_remove_from_context, &re);
1723 }
1724
1725 /*
1726 * Cross CPU call to disable a performance event
1727 */
1728 int __perf_event_disable(void *info)
1729 {
1730 struct perf_event *event = info;
1731 struct perf_event_context *ctx = event->ctx;
1732 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1733
1734 /*
1735 * If this is a per-task event, need to check whether this
1736 * event's task is the current task on this cpu.
1737 *
1738 * Can trigger due to concurrent perf_event_context_sched_out()
1739 * flipping contexts around.
1740 */
1741 if (ctx->task && cpuctx->task_ctx != ctx)
1742 return -EINVAL;
1743
1744 raw_spin_lock(&ctx->lock);
1745
1746 /*
1747 * If the event is on, turn it off.
1748 * If it is in error state, leave it in error state.
1749 */
1750 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1751 update_context_time(ctx);
1752 update_cgrp_time_from_event(event);
1753 update_group_times(event);
1754 if (event == event->group_leader)
1755 group_sched_out(event, cpuctx, ctx);
1756 else
1757 event_sched_out(event, cpuctx, ctx);
1758 event->state = PERF_EVENT_STATE_OFF;
1759 }
1760
1761 raw_spin_unlock(&ctx->lock);
1762
1763 return 0;
1764 }
1765
1766 void ___perf_event_disable(void *info)
1767 {
1768 struct perf_event *event = info;
1769
1770 /*
1771 * Since we have the lock this context can't be scheduled
1772 * in, so we can change the state safely.
1773 */
1774 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1775 update_group_times(event);
1776 event->state = PERF_EVENT_STATE_OFF;
1777 }
1778 }
1779
1780 /*
1781 * Disable a event.
1782 *
1783 * If event->ctx is a cloned context, callers must make sure that
1784 * every task struct that event->ctx->task could possibly point to
1785 * remains valid. This condition is satisifed when called through
1786 * perf_event_for_each_child or perf_event_for_each because they
1787 * hold the top-level event's child_mutex, so any descendant that
1788 * goes to exit will block in sync_child_event.
1789 * When called from perf_pending_event it's OK because event->ctx
1790 * is the current context on this CPU and preemption is disabled,
1791 * hence we can't get into perf_event_task_sched_out for this context.
1792 */
1793 static void _perf_event_disable(struct perf_event *event)
1794 {
1795 struct perf_event_context *ctx = event->ctx;
1796
1797 raw_spin_lock_irq(&ctx->lock);
1798 if (event->state <= PERF_EVENT_STATE_OFF) {
1799 raw_spin_unlock_irq(&ctx->lock);
1800 return;
1801 }
1802 raw_spin_unlock_irq(&ctx->lock);
1803
1804 event_function_call(event, __perf_event_disable,
1805 ___perf_event_disable, event);
1806 }
1807
1808 /*
1809 * Strictly speaking kernel users cannot create groups and therefore this
1810 * interface does not need the perf_event_ctx_lock() magic.
1811 */
1812 void perf_event_disable(struct perf_event *event)
1813 {
1814 struct perf_event_context *ctx;
1815
1816 ctx = perf_event_ctx_lock(event);
1817 _perf_event_disable(event);
1818 perf_event_ctx_unlock(event, ctx);
1819 }
1820 EXPORT_SYMBOL_GPL(perf_event_disable);
1821
1822 static void perf_set_shadow_time(struct perf_event *event,
1823 struct perf_event_context *ctx,
1824 u64 tstamp)
1825 {
1826 /*
1827 * use the correct time source for the time snapshot
1828 *
1829 * We could get by without this by leveraging the
1830 * fact that to get to this function, the caller
1831 * has most likely already called update_context_time()
1832 * and update_cgrp_time_xx() and thus both timestamp
1833 * are identical (or very close). Given that tstamp is,
1834 * already adjusted for cgroup, we could say that:
1835 * tstamp - ctx->timestamp
1836 * is equivalent to
1837 * tstamp - cgrp->timestamp.
1838 *
1839 * Then, in perf_output_read(), the calculation would
1840 * work with no changes because:
1841 * - event is guaranteed scheduled in
1842 * - no scheduled out in between
1843 * - thus the timestamp would be the same
1844 *
1845 * But this is a bit hairy.
1846 *
1847 * So instead, we have an explicit cgroup call to remain
1848 * within the time time source all along. We believe it
1849 * is cleaner and simpler to understand.
1850 */
1851 if (is_cgroup_event(event))
1852 perf_cgroup_set_shadow_time(event, tstamp);
1853 else
1854 event->shadow_ctx_time = tstamp - ctx->timestamp;
1855 }
1856
1857 #define MAX_INTERRUPTS (~0ULL)
1858
1859 static void perf_log_throttle(struct perf_event *event, int enable);
1860 static void perf_log_itrace_start(struct perf_event *event);
1861
1862 static int
1863 event_sched_in(struct perf_event *event,
1864 struct perf_cpu_context *cpuctx,
1865 struct perf_event_context *ctx)
1866 {
1867 u64 tstamp = perf_event_time(event);
1868 int ret = 0;
1869
1870 lockdep_assert_held(&ctx->lock);
1871
1872 if (event->state <= PERF_EVENT_STATE_OFF)
1873 return 0;
1874
1875 event->state = PERF_EVENT_STATE_ACTIVE;
1876 event->oncpu = smp_processor_id();
1877
1878 /*
1879 * Unthrottle events, since we scheduled we might have missed several
1880 * ticks already, also for a heavily scheduling task there is little
1881 * guarantee it'll get a tick in a timely manner.
1882 */
1883 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1884 perf_log_throttle(event, 1);
1885 event->hw.interrupts = 0;
1886 }
1887
1888 /*
1889 * The new state must be visible before we turn it on in the hardware:
1890 */
1891 smp_wmb();
1892
1893 perf_pmu_disable(event->pmu);
1894
1895 perf_set_shadow_time(event, ctx, tstamp);
1896
1897 perf_log_itrace_start(event);
1898
1899 if (event->pmu->add(event, PERF_EF_START)) {
1900 event->state = PERF_EVENT_STATE_INACTIVE;
1901 event->oncpu = -1;
1902 ret = -EAGAIN;
1903 goto out;
1904 }
1905
1906 event->tstamp_running += tstamp - event->tstamp_stopped;
1907
1908 if (!is_software_event(event))
1909 cpuctx->active_oncpu++;
1910 if (!ctx->nr_active++)
1911 perf_event_ctx_activate(ctx);
1912 if (event->attr.freq && event->attr.sample_freq)
1913 ctx->nr_freq++;
1914
1915 if (event->attr.exclusive)
1916 cpuctx->exclusive = 1;
1917
1918 if (is_orphaned_child(event))
1919 schedule_orphans_remove(ctx);
1920
1921 out:
1922 perf_pmu_enable(event->pmu);
1923
1924 return ret;
1925 }
1926
1927 static int
1928 group_sched_in(struct perf_event *group_event,
1929 struct perf_cpu_context *cpuctx,
1930 struct perf_event_context *ctx)
1931 {
1932 struct perf_event *event, *partial_group = NULL;
1933 struct pmu *pmu = ctx->pmu;
1934 u64 now = ctx->time;
1935 bool simulate = false;
1936
1937 if (group_event->state == PERF_EVENT_STATE_OFF)
1938 return 0;
1939
1940 pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
1941
1942 if (event_sched_in(group_event, cpuctx, ctx)) {
1943 pmu->cancel_txn(pmu);
1944 perf_mux_hrtimer_restart(cpuctx);
1945 return -EAGAIN;
1946 }
1947
1948 /*
1949 * Schedule in siblings as one group (if any):
1950 */
1951 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1952 if (event_sched_in(event, cpuctx, ctx)) {
1953 partial_group = event;
1954 goto group_error;
1955 }
1956 }
1957
1958 if (!pmu->commit_txn(pmu))
1959 return 0;
1960
1961 group_error:
1962 /*
1963 * Groups can be scheduled in as one unit only, so undo any
1964 * partial group before returning:
1965 * The events up to the failed event are scheduled out normally,
1966 * tstamp_stopped will be updated.
1967 *
1968 * The failed events and the remaining siblings need to have
1969 * their timings updated as if they had gone thru event_sched_in()
1970 * and event_sched_out(). This is required to get consistent timings
1971 * across the group. This also takes care of the case where the group
1972 * could never be scheduled by ensuring tstamp_stopped is set to mark
1973 * the time the event was actually stopped, such that time delta
1974 * calculation in update_event_times() is correct.
1975 */
1976 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1977 if (event == partial_group)
1978 simulate = true;
1979
1980 if (simulate) {
1981 event->tstamp_running += now - event->tstamp_stopped;
1982 event->tstamp_stopped = now;
1983 } else {
1984 event_sched_out(event, cpuctx, ctx);
1985 }
1986 }
1987 event_sched_out(group_event, cpuctx, ctx);
1988
1989 pmu->cancel_txn(pmu);
1990
1991 perf_mux_hrtimer_restart(cpuctx);
1992
1993 return -EAGAIN;
1994 }
1995
1996 /*
1997 * Work out whether we can put this event group on the CPU now.
1998 */
1999 static int group_can_go_on(struct perf_event *event,
2000 struct perf_cpu_context *cpuctx,
2001 int can_add_hw)
2002 {
2003 /*
2004 * Groups consisting entirely of software events can always go on.
2005 */
2006 if (event->group_flags & PERF_GROUP_SOFTWARE)
2007 return 1;
2008 /*
2009 * If an exclusive group is already on, no other hardware
2010 * events can go on.
2011 */
2012 if (cpuctx->exclusive)
2013 return 0;
2014 /*
2015 * If this group is exclusive and there are already
2016 * events on the CPU, it can't go on.
2017 */
2018 if (event->attr.exclusive && cpuctx->active_oncpu)
2019 return 0;
2020 /*
2021 * Otherwise, try to add it if all previous groups were able
2022 * to go on.
2023 */
2024 return can_add_hw;
2025 }
2026
2027 static void add_event_to_ctx(struct perf_event *event,
2028 struct perf_event_context *ctx)
2029 {
2030 u64 tstamp = perf_event_time(event);
2031
2032 list_add_event(event, ctx);
2033 perf_group_attach(event);
2034 event->tstamp_enabled = tstamp;
2035 event->tstamp_running = tstamp;
2036 event->tstamp_stopped = tstamp;
2037 }
2038
2039 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2040 struct perf_event_context *ctx);
2041 static void
2042 ctx_sched_in(struct perf_event_context *ctx,
2043 struct perf_cpu_context *cpuctx,
2044 enum event_type_t event_type,
2045 struct task_struct *task);
2046
2047 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2048 struct perf_event_context *ctx,
2049 struct task_struct *task)
2050 {
2051 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2052 if (ctx)
2053 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2054 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2055 if (ctx)
2056 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2057 }
2058
2059 static void ___perf_install_in_context(void *info)
2060 {
2061 struct perf_event *event = info;
2062 struct perf_event_context *ctx = event->ctx;
2063
2064 /*
2065 * Since the task isn't running, its safe to add the event, us holding
2066 * the ctx->lock ensures the task won't get scheduled in.
2067 */
2068 add_event_to_ctx(event, ctx);
2069 }
2070
2071 static void ctx_resched(struct perf_cpu_context *cpuctx,
2072 struct perf_event_context *task_ctx)
2073 {
2074 perf_pmu_disable(cpuctx->ctx.pmu);
2075 if (task_ctx)
2076 task_ctx_sched_out(cpuctx, task_ctx);
2077 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
2078 perf_event_sched_in(cpuctx, task_ctx, current);
2079 perf_pmu_enable(cpuctx->ctx.pmu);
2080 }
2081
2082 /*
2083 * Cross CPU call to install and enable a performance event
2084 *
2085 * Must be called with ctx->mutex held
2086 */
2087 static int __perf_install_in_context(void *info)
2088 {
2089 struct perf_event *event = info;
2090 struct perf_event_context *ctx = event->ctx;
2091 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2092 struct perf_event_context *task_ctx = cpuctx->task_ctx;
2093 struct task_struct *task = current;
2094
2095 perf_ctx_lock(cpuctx, task_ctx);
2096 perf_pmu_disable(cpuctx->ctx.pmu);
2097
2098 /*
2099 * If there was an active task_ctx schedule it out.
2100 */
2101 if (task_ctx)
2102 task_ctx_sched_out(cpuctx, task_ctx);
2103
2104 /*
2105 * If the context we're installing events in is not the
2106 * active task_ctx, flip them.
2107 */
2108 if (ctx->task && task_ctx != ctx) {
2109 if (task_ctx)
2110 raw_spin_unlock(&task_ctx->lock);
2111 raw_spin_lock(&ctx->lock);
2112 task_ctx = ctx;
2113 }
2114
2115 if (task_ctx) {
2116 cpuctx->task_ctx = task_ctx;
2117 task = task_ctx->task;
2118 }
2119
2120 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
2121
2122 update_context_time(ctx);
2123 /*
2124 * update cgrp time only if current cgrp
2125 * matches event->cgrp. Must be done before
2126 * calling add_event_to_ctx()
2127 */
2128 update_cgrp_time_from_event(event);
2129
2130 add_event_to_ctx(event, ctx);
2131
2132 /*
2133 * Schedule everything back in
2134 */
2135 perf_event_sched_in(cpuctx, task_ctx, task);
2136
2137 perf_pmu_enable(cpuctx->ctx.pmu);
2138 perf_ctx_unlock(cpuctx, task_ctx);
2139
2140 return 0;
2141 }
2142
2143 /*
2144 * Attach a performance event to a context
2145 */
2146 static void
2147 perf_install_in_context(struct perf_event_context *ctx,
2148 struct perf_event *event,
2149 int cpu)
2150 {
2151 lockdep_assert_held(&ctx->mutex);
2152
2153 event->ctx = ctx;
2154 if (event->cpu != -1)
2155 event->cpu = cpu;
2156
2157 event_function_call(event, __perf_install_in_context,
2158 ___perf_install_in_context, event);
2159 }
2160
2161 /*
2162 * Put a event into inactive state and update time fields.
2163 * Enabling the leader of a group effectively enables all
2164 * the group members that aren't explicitly disabled, so we
2165 * have to update their ->tstamp_enabled also.
2166 * Note: this works for group members as well as group leaders
2167 * since the non-leader members' sibling_lists will be empty.
2168 */
2169 static void __perf_event_mark_enabled(struct perf_event *event)
2170 {
2171 struct perf_event *sub;
2172 u64 tstamp = perf_event_time(event);
2173
2174 event->state = PERF_EVENT_STATE_INACTIVE;
2175 event->tstamp_enabled = tstamp - event->total_time_enabled;
2176 list_for_each_entry(sub, &event->sibling_list, group_entry) {
2177 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2178 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
2179 }
2180 }
2181
2182 /*
2183 * Cross CPU call to enable a performance event
2184 */
2185 static int __perf_event_enable(void *info)
2186 {
2187 struct perf_event *event = info;
2188 struct perf_event_context *ctx = event->ctx;
2189 struct perf_event *leader = event->group_leader;
2190 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2191 struct perf_event_context *task_ctx = cpuctx->task_ctx;
2192
2193 /*
2194 * There's a time window between 'ctx->is_active' check
2195 * in perf_event_enable function and this place having:
2196 * - IRQs on
2197 * - ctx->lock unlocked
2198 *
2199 * where the task could be killed and 'ctx' deactivated
2200 * by perf_event_exit_task.
2201 */
2202 if (!ctx->is_active)
2203 return -EINVAL;
2204
2205 perf_ctx_lock(cpuctx, task_ctx);
2206 WARN_ON_ONCE(&cpuctx->ctx != ctx && task_ctx != ctx);
2207 update_context_time(ctx);
2208
2209 if (event->state >= PERF_EVENT_STATE_INACTIVE)
2210 goto unlock;
2211
2212 /*
2213 * set current task's cgroup time reference point
2214 */
2215 perf_cgroup_set_timestamp(current, ctx);
2216
2217 __perf_event_mark_enabled(event);
2218
2219 if (!event_filter_match(event)) {
2220 if (is_cgroup_event(event))
2221 perf_cgroup_defer_enabled(event);
2222 goto unlock;
2223 }
2224
2225 /*
2226 * If the event is in a group and isn't the group leader,
2227 * then don't put it on unless the group is on.
2228 */
2229 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
2230 goto unlock;
2231
2232 ctx_resched(cpuctx, task_ctx);
2233
2234 unlock:
2235 perf_ctx_unlock(cpuctx, task_ctx);
2236
2237 return 0;
2238 }
2239
2240 void ___perf_event_enable(void *info)
2241 {
2242 __perf_event_mark_enabled((struct perf_event *)info);
2243 }
2244
2245 /*
2246 * Enable a event.
2247 *
2248 * If event->ctx is a cloned context, callers must make sure that
2249 * every task struct that event->ctx->task could possibly point to
2250 * remains valid. This condition is satisfied when called through
2251 * perf_event_for_each_child or perf_event_for_each as described
2252 * for perf_event_disable.
2253 */
2254 static void _perf_event_enable(struct perf_event *event)
2255 {
2256 struct perf_event_context *ctx = event->ctx;
2257
2258 raw_spin_lock_irq(&ctx->lock);
2259 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
2260 raw_spin_unlock_irq(&ctx->lock);
2261 return;
2262 }
2263
2264 /*
2265 * If the event is in error state, clear that first.
2266 *
2267 * That way, if we see the event in error state below, we know that it
2268 * has gone back into error state, as distinct from the task having
2269 * been scheduled away before the cross-call arrived.
2270 */
2271 if (event->state == PERF_EVENT_STATE_ERROR)
2272 event->state = PERF_EVENT_STATE_OFF;
2273 raw_spin_unlock_irq(&ctx->lock);
2274
2275 event_function_call(event, __perf_event_enable,
2276 ___perf_event_enable, event);
2277 }
2278
2279 /*
2280 * See perf_event_disable();
2281 */
2282 void perf_event_enable(struct perf_event *event)
2283 {
2284 struct perf_event_context *ctx;
2285
2286 ctx = perf_event_ctx_lock(event);
2287 _perf_event_enable(event);
2288 perf_event_ctx_unlock(event, ctx);
2289 }
2290 EXPORT_SYMBOL_GPL(perf_event_enable);
2291
2292 static int _perf_event_refresh(struct perf_event *event, int refresh)
2293 {
2294 /*
2295 * not supported on inherited events
2296 */
2297 if (event->attr.inherit || !is_sampling_event(event))
2298 return -EINVAL;
2299
2300 atomic_add(refresh, &event->event_limit);
2301 _perf_event_enable(event);
2302
2303 return 0;
2304 }
2305
2306 /*
2307 * See perf_event_disable()
2308 */
2309 int perf_event_refresh(struct perf_event *event, int refresh)
2310 {
2311 struct perf_event_context *ctx;
2312 int ret;
2313
2314 ctx = perf_event_ctx_lock(event);
2315 ret = _perf_event_refresh(event, refresh);
2316 perf_event_ctx_unlock(event, ctx);
2317
2318 return ret;
2319 }
2320 EXPORT_SYMBOL_GPL(perf_event_refresh);
2321
2322 static void ctx_sched_out(struct perf_event_context *ctx,
2323 struct perf_cpu_context *cpuctx,
2324 enum event_type_t event_type)
2325 {
2326 int is_active = ctx->is_active;
2327 struct perf_event *event;
2328
2329 lockdep_assert_held(&ctx->lock);
2330
2331 ctx->is_active &= ~event_type;
2332 if (ctx->task) {
2333 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2334 if (!ctx->is_active)
2335 cpuctx->task_ctx = NULL;
2336 }
2337
2338 if (likely(!ctx->nr_events))
2339 return;
2340
2341 update_context_time(ctx);
2342 update_cgrp_time_from_cpuctx(cpuctx);
2343 if (!ctx->nr_active)
2344 return;
2345
2346 perf_pmu_disable(ctx->pmu);
2347 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
2348 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2349 group_sched_out(event, cpuctx, ctx);
2350 }
2351
2352 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
2353 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2354 group_sched_out(event, cpuctx, ctx);
2355 }
2356 perf_pmu_enable(ctx->pmu);
2357 }
2358
2359 /*
2360 * Test whether two contexts are equivalent, i.e. whether they have both been
2361 * cloned from the same version of the same context.
2362 *
2363 * Equivalence is measured using a generation number in the context that is
2364 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2365 * and list_del_event().
2366 */
2367 static int context_equiv(struct perf_event_context *ctx1,
2368 struct perf_event_context *ctx2)
2369 {
2370 lockdep_assert_held(&ctx1->lock);
2371 lockdep_assert_held(&ctx2->lock);
2372
2373 /* Pinning disables the swap optimization */
2374 if (ctx1->pin_count || ctx2->pin_count)
2375 return 0;
2376
2377 /* If ctx1 is the parent of ctx2 */
2378 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2379 return 1;
2380
2381 /* If ctx2 is the parent of ctx1 */
2382 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2383 return 1;
2384
2385 /*
2386 * If ctx1 and ctx2 have the same parent; we flatten the parent
2387 * hierarchy, see perf_event_init_context().
2388 */
2389 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2390 ctx1->parent_gen == ctx2->parent_gen)
2391 return 1;
2392
2393 /* Unmatched */
2394 return 0;
2395 }
2396
2397 static void __perf_event_sync_stat(struct perf_event *event,
2398 struct perf_event *next_event)
2399 {
2400 u64 value;
2401
2402 if (!event->attr.inherit_stat)
2403 return;
2404
2405 /*
2406 * Update the event value, we cannot use perf_event_read()
2407 * because we're in the middle of a context switch and have IRQs
2408 * disabled, which upsets smp_call_function_single(), however
2409 * we know the event must be on the current CPU, therefore we
2410 * don't need to use it.
2411 */
2412 switch (event->state) {
2413 case PERF_EVENT_STATE_ACTIVE:
2414 event->pmu->read(event);
2415 /* fall-through */
2416
2417 case PERF_EVENT_STATE_INACTIVE:
2418 update_event_times(event);
2419 break;
2420
2421 default:
2422 break;
2423 }
2424
2425 /*
2426 * In order to keep per-task stats reliable we need to flip the event
2427 * values when we flip the contexts.
2428 */
2429 value = local64_read(&next_event->count);
2430 value = local64_xchg(&event->count, value);
2431 local64_set(&next_event->count, value);
2432
2433 swap(event->total_time_enabled, next_event->total_time_enabled);
2434 swap(event->total_time_running, next_event->total_time_running);
2435
2436 /*
2437 * Since we swizzled the values, update the user visible data too.
2438 */
2439 perf_event_update_userpage(event);
2440 perf_event_update_userpage(next_event);
2441 }
2442
2443 static void perf_event_sync_stat(struct perf_event_context *ctx,
2444 struct perf_event_context *next_ctx)
2445 {
2446 struct perf_event *event, *next_event;
2447
2448 if (!ctx->nr_stat)
2449 return;
2450
2451 update_context_time(ctx);
2452
2453 event = list_first_entry(&ctx->event_list,
2454 struct perf_event, event_entry);
2455
2456 next_event = list_first_entry(&next_ctx->event_list,
2457 struct perf_event, event_entry);
2458
2459 while (&event->event_entry != &ctx->event_list &&
2460 &next_event->event_entry != &next_ctx->event_list) {
2461
2462 __perf_event_sync_stat(event, next_event);
2463
2464 event = list_next_entry(event, event_entry);
2465 next_event = list_next_entry(next_event, event_entry);
2466 }
2467 }
2468
2469 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2470 struct task_struct *next)
2471 {
2472 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2473 struct perf_event_context *next_ctx;
2474 struct perf_event_context *parent, *next_parent;
2475 struct perf_cpu_context *cpuctx;
2476 int do_switch = 1;
2477
2478 if (likely(!ctx))
2479 return;
2480
2481 cpuctx = __get_cpu_context(ctx);
2482 if (!cpuctx->task_ctx)
2483 return;
2484
2485 rcu_read_lock();
2486 next_ctx = next->perf_event_ctxp[ctxn];
2487 if (!next_ctx)
2488 goto unlock;
2489
2490 parent = rcu_dereference(ctx->parent_ctx);
2491 next_parent = rcu_dereference(next_ctx->parent_ctx);
2492
2493 /* If neither context have a parent context; they cannot be clones. */
2494 if (!parent && !next_parent)
2495 goto unlock;
2496
2497 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2498 /*
2499 * Looks like the two contexts are clones, so we might be
2500 * able to optimize the context switch. We lock both
2501 * contexts and check that they are clones under the
2502 * lock (including re-checking that neither has been
2503 * uncloned in the meantime). It doesn't matter which
2504 * order we take the locks because no other cpu could
2505 * be trying to lock both of these tasks.
2506 */
2507 raw_spin_lock(&ctx->lock);
2508 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2509 if (context_equiv(ctx, next_ctx)) {
2510 /*
2511 * XXX do we need a memory barrier of sorts
2512 * wrt to rcu_dereference() of perf_event_ctxp
2513 */
2514 task->perf_event_ctxp[ctxn] = next_ctx;
2515 next->perf_event_ctxp[ctxn] = ctx;
2516 ctx->task = next;
2517 next_ctx->task = task;
2518
2519 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2520
2521 do_switch = 0;
2522
2523 perf_event_sync_stat(ctx, next_ctx);
2524 }
2525 raw_spin_unlock(&next_ctx->lock);
2526 raw_spin_unlock(&ctx->lock);
2527 }
2528 unlock:
2529 rcu_read_unlock();
2530
2531 if (do_switch) {
2532 raw_spin_lock(&ctx->lock);
2533 task_ctx_sched_out(cpuctx, ctx);
2534 raw_spin_unlock(&ctx->lock);
2535 }
2536 }
2537
2538 void perf_sched_cb_dec(struct pmu *pmu)
2539 {
2540 this_cpu_dec(perf_sched_cb_usages);
2541 }
2542
2543 void perf_sched_cb_inc(struct pmu *pmu)
2544 {
2545 this_cpu_inc(perf_sched_cb_usages);
2546 }
2547
2548 /*
2549 * This function provides the context switch callback to the lower code
2550 * layer. It is invoked ONLY when the context switch callback is enabled.
2551 */
2552 static void perf_pmu_sched_task(struct task_struct *prev,
2553 struct task_struct *next,
2554 bool sched_in)
2555 {
2556 struct perf_cpu_context *cpuctx;
2557 struct pmu *pmu;
2558 unsigned long flags;
2559
2560 if (prev == next)
2561 return;
2562
2563 local_irq_save(flags);
2564
2565 rcu_read_lock();
2566
2567 list_for_each_entry_rcu(pmu, &pmus, entry) {
2568 if (pmu->sched_task) {
2569 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2570
2571 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2572
2573 perf_pmu_disable(pmu);
2574
2575 pmu->sched_task(cpuctx->task_ctx, sched_in);
2576
2577 perf_pmu_enable(pmu);
2578
2579 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2580 }
2581 }
2582
2583 rcu_read_unlock();
2584
2585 local_irq_restore(flags);
2586 }
2587
2588 static void perf_event_switch(struct task_struct *task,
2589 struct task_struct *next_prev, bool sched_in);
2590
2591 #define for_each_task_context_nr(ctxn) \
2592 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2593
2594 /*
2595 * Called from scheduler to remove the events of the current task,
2596 * with interrupts disabled.
2597 *
2598 * We stop each event and update the event value in event->count.
2599 *
2600 * This does not protect us against NMI, but disable()
2601 * sets the disabled bit in the control field of event _before_
2602 * accessing the event control register. If a NMI hits, then it will
2603 * not restart the event.
2604 */
2605 void __perf_event_task_sched_out(struct task_struct *task,
2606 struct task_struct *next)
2607 {
2608 int ctxn;
2609
2610 if (__this_cpu_read(perf_sched_cb_usages))
2611 perf_pmu_sched_task(task, next, false);
2612
2613 if (atomic_read(&nr_switch_events))
2614 perf_event_switch(task, next, false);
2615
2616 for_each_task_context_nr(ctxn)
2617 perf_event_context_sched_out(task, ctxn, next);
2618
2619 /*
2620 * if cgroup events exist on this CPU, then we need
2621 * to check if we have to switch out PMU state.
2622 * cgroup event are system-wide mode only
2623 */
2624 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2625 perf_cgroup_sched_out(task, next);
2626 }
2627
2628 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2629 struct perf_event_context *ctx)
2630 {
2631 if (!cpuctx->task_ctx)
2632 return;
2633
2634 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2635 return;
2636
2637 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2638 }
2639
2640 /*
2641 * Called with IRQs disabled
2642 */
2643 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2644 enum event_type_t event_type)
2645 {
2646 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2647 }
2648
2649 static void
2650 ctx_pinned_sched_in(struct perf_event_context *ctx,
2651 struct perf_cpu_context *cpuctx)
2652 {
2653 struct perf_event *event;
2654
2655 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2656 if (event->state <= PERF_EVENT_STATE_OFF)
2657 continue;
2658 if (!event_filter_match(event))
2659 continue;
2660
2661 /* may need to reset tstamp_enabled */
2662 if (is_cgroup_event(event))
2663 perf_cgroup_mark_enabled(event, ctx);
2664
2665 if (group_can_go_on(event, cpuctx, 1))
2666 group_sched_in(event, cpuctx, ctx);
2667
2668 /*
2669 * If this pinned group hasn't been scheduled,
2670 * put it in error state.
2671 */
2672 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2673 update_group_times(event);
2674 event->state = PERF_EVENT_STATE_ERROR;
2675 }
2676 }
2677 }
2678
2679 static void
2680 ctx_flexible_sched_in(struct perf_event_context *ctx,
2681 struct perf_cpu_context *cpuctx)
2682 {
2683 struct perf_event *event;
2684 int can_add_hw = 1;
2685
2686 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2687 /* Ignore events in OFF or ERROR state */
2688 if (event->state <= PERF_EVENT_STATE_OFF)
2689 continue;
2690 /*
2691 * Listen to the 'cpu' scheduling filter constraint
2692 * of events:
2693 */
2694 if (!event_filter_match(event))
2695 continue;
2696
2697 /* may need to reset tstamp_enabled */
2698 if (is_cgroup_event(event))
2699 perf_cgroup_mark_enabled(event, ctx);
2700
2701 if (group_can_go_on(event, cpuctx, can_add_hw)) {
2702 if (group_sched_in(event, cpuctx, ctx))
2703 can_add_hw = 0;
2704 }
2705 }
2706 }
2707
2708 static void
2709 ctx_sched_in(struct perf_event_context *ctx,
2710 struct perf_cpu_context *cpuctx,
2711 enum event_type_t event_type,
2712 struct task_struct *task)
2713 {
2714 int is_active = ctx->is_active;
2715 u64 now;
2716
2717 lockdep_assert_held(&ctx->lock);
2718
2719 ctx->is_active |= event_type;
2720 if (ctx->task) {
2721 if (!is_active)
2722 cpuctx->task_ctx = ctx;
2723 else
2724 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2725 }
2726
2727 if (likely(!ctx->nr_events))
2728 return;
2729
2730 now = perf_clock();
2731 ctx->timestamp = now;
2732 perf_cgroup_set_timestamp(task, ctx);
2733 /*
2734 * First go through the list and put on any pinned groups
2735 * in order to give them the best chance of going on.
2736 */
2737 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2738 ctx_pinned_sched_in(ctx, cpuctx);
2739
2740 /* Then walk through the lower prio flexible groups */
2741 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2742 ctx_flexible_sched_in(ctx, cpuctx);
2743 }
2744
2745 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
2746 enum event_type_t event_type,
2747 struct task_struct *task)
2748 {
2749 struct perf_event_context *ctx = &cpuctx->ctx;
2750
2751 ctx_sched_in(ctx, cpuctx, event_type, task);
2752 }
2753
2754 static void perf_event_context_sched_in(struct perf_event_context *ctx,
2755 struct task_struct *task)
2756 {
2757 struct perf_cpu_context *cpuctx;
2758
2759 cpuctx = __get_cpu_context(ctx);
2760 if (cpuctx->task_ctx == ctx)
2761 return;
2762
2763 perf_ctx_lock(cpuctx, ctx);
2764 perf_pmu_disable(ctx->pmu);
2765 /*
2766 * We want to keep the following priority order:
2767 * cpu pinned (that don't need to move), task pinned,
2768 * cpu flexible, task flexible.
2769 */
2770 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2771 perf_event_sched_in(cpuctx, ctx, task);
2772 perf_pmu_enable(ctx->pmu);
2773 perf_ctx_unlock(cpuctx, ctx);
2774 }
2775
2776 /*
2777 * Called from scheduler to add the events of the current task
2778 * with interrupts disabled.
2779 *
2780 * We restore the event value and then enable it.
2781 *
2782 * This does not protect us against NMI, but enable()
2783 * sets the enabled bit in the control field of event _before_
2784 * accessing the event control register. If a NMI hits, then it will
2785 * keep the event running.
2786 */
2787 void __perf_event_task_sched_in(struct task_struct *prev,
2788 struct task_struct *task)
2789 {
2790 struct perf_event_context *ctx;
2791 int ctxn;
2792
2793 /*
2794 * If cgroup events exist on this CPU, then we need to check if we have
2795 * to switch in PMU state; cgroup event are system-wide mode only.
2796 *
2797 * Since cgroup events are CPU events, we must schedule these in before
2798 * we schedule in the task events.
2799 */
2800 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2801 perf_cgroup_sched_in(prev, task);
2802
2803 for_each_task_context_nr(ctxn) {
2804 ctx = task->perf_event_ctxp[ctxn];
2805 if (likely(!ctx))
2806 continue;
2807
2808 perf_event_context_sched_in(ctx, task);
2809 }
2810
2811 if (atomic_read(&nr_switch_events))
2812 perf_event_switch(task, prev, true);
2813
2814 if (__this_cpu_read(perf_sched_cb_usages))
2815 perf_pmu_sched_task(prev, task, true);
2816 }
2817
2818 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2819 {
2820 u64 frequency = event->attr.sample_freq;
2821 u64 sec = NSEC_PER_SEC;
2822 u64 divisor, dividend;
2823
2824 int count_fls, nsec_fls, frequency_fls, sec_fls;
2825
2826 count_fls = fls64(count);
2827 nsec_fls = fls64(nsec);
2828 frequency_fls = fls64(frequency);
2829 sec_fls = 30;
2830
2831 /*
2832 * We got @count in @nsec, with a target of sample_freq HZ
2833 * the target period becomes:
2834 *
2835 * @count * 10^9
2836 * period = -------------------
2837 * @nsec * sample_freq
2838 *
2839 */
2840
2841 /*
2842 * Reduce accuracy by one bit such that @a and @b converge
2843 * to a similar magnitude.
2844 */
2845 #define REDUCE_FLS(a, b) \
2846 do { \
2847 if (a##_fls > b##_fls) { \
2848 a >>= 1; \
2849 a##_fls--; \
2850 } else { \
2851 b >>= 1; \
2852 b##_fls--; \
2853 } \
2854 } while (0)
2855
2856 /*
2857 * Reduce accuracy until either term fits in a u64, then proceed with
2858 * the other, so that finally we can do a u64/u64 division.
2859 */
2860 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2861 REDUCE_FLS(nsec, frequency);
2862 REDUCE_FLS(sec, count);
2863 }
2864
2865 if (count_fls + sec_fls > 64) {
2866 divisor = nsec * frequency;
2867
2868 while (count_fls + sec_fls > 64) {
2869 REDUCE_FLS(count, sec);
2870 divisor >>= 1;
2871 }
2872
2873 dividend = count * sec;
2874 } else {
2875 dividend = count * sec;
2876
2877 while (nsec_fls + frequency_fls > 64) {
2878 REDUCE_FLS(nsec, frequency);
2879 dividend >>= 1;
2880 }
2881
2882 divisor = nsec * frequency;
2883 }
2884
2885 if (!divisor)
2886 return dividend;
2887
2888 return div64_u64(dividend, divisor);
2889 }
2890
2891 static DEFINE_PER_CPU(int, perf_throttled_count);
2892 static DEFINE_PER_CPU(u64, perf_throttled_seq);
2893
2894 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2895 {
2896 struct hw_perf_event *hwc = &event->hw;
2897 s64 period, sample_period;
2898 s64 delta;
2899
2900 period = perf_calculate_period(event, nsec, count);
2901
2902 delta = (s64)(period - hwc->sample_period);
2903 delta = (delta + 7) / 8; /* low pass filter */
2904
2905 sample_period = hwc->sample_period + delta;
2906
2907 if (!sample_period)
2908 sample_period = 1;
2909
2910 hwc->sample_period = sample_period;
2911
2912 if (local64_read(&hwc->period_left) > 8*sample_period) {
2913 if (disable)
2914 event->pmu->stop(event, PERF_EF_UPDATE);
2915
2916 local64_set(&hwc->period_left, 0);
2917
2918 if (disable)
2919 event->pmu->start(event, PERF_EF_RELOAD);
2920 }
2921 }
2922
2923 /*
2924 * combine freq adjustment with unthrottling to avoid two passes over the
2925 * events. At the same time, make sure, having freq events does not change
2926 * the rate of unthrottling as that would introduce bias.
2927 */
2928 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2929 int needs_unthr)
2930 {
2931 struct perf_event *event;
2932 struct hw_perf_event *hwc;
2933 u64 now, period = TICK_NSEC;
2934 s64 delta;
2935
2936 /*
2937 * only need to iterate over all events iff:
2938 * - context have events in frequency mode (needs freq adjust)
2939 * - there are events to unthrottle on this cpu
2940 */
2941 if (!(ctx->nr_freq || needs_unthr))
2942 return;
2943
2944 raw_spin_lock(&ctx->lock);
2945 perf_pmu_disable(ctx->pmu);
2946
2947 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2948 if (event->state != PERF_EVENT_STATE_ACTIVE)
2949 continue;
2950
2951 if (!event_filter_match(event))
2952 continue;
2953
2954 perf_pmu_disable(event->pmu);
2955
2956 hwc = &event->hw;
2957
2958 if (hwc->interrupts == MAX_INTERRUPTS) {
2959 hwc->interrupts = 0;
2960 perf_log_throttle(event, 1);
2961 event->pmu->start(event, 0);
2962 }
2963
2964 if (!event->attr.freq || !event->attr.sample_freq)
2965 goto next;
2966
2967 /*
2968 * stop the event and update event->count
2969 */
2970 event->pmu->stop(event, PERF_EF_UPDATE);
2971
2972 now = local64_read(&event->count);
2973 delta = now - hwc->freq_count_stamp;
2974 hwc->freq_count_stamp = now;
2975
2976 /*
2977 * restart the event
2978 * reload only if value has changed
2979 * we have stopped the event so tell that
2980 * to perf_adjust_period() to avoid stopping it
2981 * twice.
2982 */
2983 if (delta > 0)
2984 perf_adjust_period(event, period, delta, false);
2985
2986 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
2987 next:
2988 perf_pmu_enable(event->pmu);
2989 }
2990
2991 perf_pmu_enable(ctx->pmu);
2992 raw_spin_unlock(&ctx->lock);
2993 }
2994
2995 /*
2996 * Round-robin a context's events:
2997 */
2998 static void rotate_ctx(struct perf_event_context *ctx)
2999 {
3000 /*
3001 * Rotate the first entry last of non-pinned groups. Rotation might be
3002 * disabled by the inheritance code.
3003 */
3004 if (!ctx->rotate_disable)
3005 list_rotate_left(&ctx->flexible_groups);
3006 }
3007
3008 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3009 {
3010 struct perf_event_context *ctx = NULL;
3011 int rotate = 0;
3012
3013 if (cpuctx->ctx.nr_events) {
3014 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3015 rotate = 1;
3016 }
3017
3018 ctx = cpuctx->task_ctx;
3019 if (ctx && ctx->nr_events) {
3020 if (ctx->nr_events != ctx->nr_active)
3021 rotate = 1;
3022 }
3023
3024 if (!rotate)
3025 goto done;
3026
3027 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3028 perf_pmu_disable(cpuctx->ctx.pmu);
3029
3030 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3031 if (ctx)
3032 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3033
3034 rotate_ctx(&cpuctx->ctx);
3035 if (ctx)
3036 rotate_ctx(ctx);
3037
3038 perf_event_sched_in(cpuctx, ctx, current);
3039
3040 perf_pmu_enable(cpuctx->ctx.pmu);
3041 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3042 done:
3043
3044 return rotate;
3045 }
3046
3047 #ifdef CONFIG_NO_HZ_FULL
3048 bool perf_event_can_stop_tick(void)
3049 {
3050 if (atomic_read(&nr_freq_events) ||
3051 __this_cpu_read(perf_throttled_count))
3052 return false;
3053 else
3054 return true;
3055 }
3056 #endif
3057
3058 void perf_event_task_tick(void)
3059 {
3060 struct list_head *head = this_cpu_ptr(&active_ctx_list);
3061 struct perf_event_context *ctx, *tmp;
3062 int throttled;
3063
3064 WARN_ON(!irqs_disabled());
3065
3066 __this_cpu_inc(perf_throttled_seq);
3067 throttled = __this_cpu_xchg(perf_throttled_count, 0);
3068
3069 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3070 perf_adjust_freq_unthr_context(ctx, throttled);
3071 }
3072
3073 static int event_enable_on_exec(struct perf_event *event,
3074 struct perf_event_context *ctx)
3075 {
3076 if (!event->attr.enable_on_exec)
3077 return 0;
3078
3079 event->attr.enable_on_exec = 0;
3080 if (event->state >= PERF_EVENT_STATE_INACTIVE)
3081 return 0;
3082
3083 __perf_event_mark_enabled(event);
3084
3085 return 1;
3086 }
3087
3088 /*
3089 * Enable all of a task's events that have been marked enable-on-exec.
3090 * This expects task == current.
3091 */
3092 static void perf_event_enable_on_exec(int ctxn)
3093 {
3094 struct perf_event_context *ctx, *clone_ctx = NULL;
3095 struct perf_cpu_context *cpuctx;
3096 struct perf_event *event;
3097 unsigned long flags;
3098 int enabled = 0;
3099
3100 local_irq_save(flags);
3101 ctx = current->perf_event_ctxp[ctxn];
3102 if (!ctx || !ctx->nr_events)
3103 goto out;
3104
3105 cpuctx = __get_cpu_context(ctx);
3106 perf_ctx_lock(cpuctx, ctx);
3107 list_for_each_entry(event, &ctx->event_list, event_entry)
3108 enabled |= event_enable_on_exec(event, ctx);
3109
3110 /*
3111 * Unclone and reschedule this context if we enabled any event.
3112 */
3113 if (enabled) {
3114 clone_ctx = unclone_ctx(ctx);
3115 ctx_resched(cpuctx, ctx);
3116 }
3117 perf_ctx_unlock(cpuctx, ctx);
3118
3119 out:
3120 local_irq_restore(flags);
3121
3122 if (clone_ctx)
3123 put_ctx(clone_ctx);
3124 }
3125
3126 void perf_event_exec(void)
3127 {
3128 int ctxn;
3129
3130 rcu_read_lock();
3131 for_each_task_context_nr(ctxn)
3132 perf_event_enable_on_exec(ctxn);
3133 rcu_read_unlock();
3134 }
3135
3136 struct perf_read_data {
3137 struct perf_event *event;
3138 bool group;
3139 int ret;
3140 };
3141
3142 /*
3143 * Cross CPU call to read the hardware event
3144 */
3145 static void __perf_event_read(void *info)
3146 {
3147 struct perf_read_data *data = info;
3148 struct perf_event *sub, *event = data->event;
3149 struct perf_event_context *ctx = event->ctx;
3150 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3151 struct pmu *pmu = event->pmu;
3152
3153 /*
3154 * If this is a task context, we need to check whether it is
3155 * the current task context of this cpu. If not it has been
3156 * scheduled out before the smp call arrived. In that case
3157 * event->count would have been updated to a recent sample
3158 * when the event was scheduled out.
3159 */
3160 if (ctx->task && cpuctx->task_ctx != ctx)
3161 return;
3162
3163 raw_spin_lock(&ctx->lock);
3164 if (ctx->is_active) {
3165 update_context_time(ctx);
3166 update_cgrp_time_from_event(event);
3167 }
3168
3169 update_event_times(event);
3170 if (event->state != PERF_EVENT_STATE_ACTIVE)
3171 goto unlock;
3172
3173 if (!data->group) {
3174 pmu->read(event);
3175 data->ret = 0;
3176 goto unlock;
3177 }
3178
3179 pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3180
3181 pmu->read(event);
3182
3183 list_for_each_entry(sub, &event->sibling_list, group_entry) {
3184 update_event_times(sub);
3185 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3186 /*
3187 * Use sibling's PMU rather than @event's since
3188 * sibling could be on different (eg: software) PMU.
3189 */
3190 sub->pmu->read(sub);
3191 }
3192 }
3193
3194 data->ret = pmu->commit_txn(pmu);
3195
3196 unlock:
3197 raw_spin_unlock(&ctx->lock);
3198 }
3199
3200 static inline u64 perf_event_count(struct perf_event *event)
3201 {
3202 if (event->pmu->count)
3203 return event->pmu->count(event);
3204
3205 return __perf_event_count(event);
3206 }
3207
3208 /*
3209 * NMI-safe method to read a local event, that is an event that
3210 * is:
3211 * - either for the current task, or for this CPU
3212 * - does not have inherit set, for inherited task events
3213 * will not be local and we cannot read them atomically
3214 * - must not have a pmu::count method
3215 */
3216 u64 perf_event_read_local(struct perf_event *event)
3217 {
3218 unsigned long flags;
3219 u64 val;
3220
3221 /*
3222 * Disabling interrupts avoids all counter scheduling (context
3223 * switches, timer based rotation and IPIs).
3224 */
3225 local_irq_save(flags);
3226
3227 /* If this is a per-task event, it must be for current */
3228 WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
3229 event->hw.target != current);
3230
3231 /* If this is a per-CPU event, it must be for this CPU */
3232 WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
3233 event->cpu != smp_processor_id());
3234
3235 /*
3236 * It must not be an event with inherit set, we cannot read
3237 * all child counters from atomic context.
3238 */
3239 WARN_ON_ONCE(event->attr.inherit);
3240
3241 /*
3242 * It must not have a pmu::count method, those are not
3243 * NMI safe.
3244 */
3245 WARN_ON_ONCE(event->pmu->count);
3246
3247 /*
3248 * If the event is currently on this CPU, its either a per-task event,
3249 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3250 * oncpu == -1).
3251 */
3252 if (event->oncpu == smp_processor_id())
3253 event->pmu->read(event);
3254
3255 val = local64_read(&event->count);
3256 local_irq_restore(flags);
3257
3258 return val;
3259 }
3260
3261 static int perf_event_read(struct perf_event *event, bool group)
3262 {
3263 int ret = 0;
3264
3265 /*
3266 * If event is enabled and currently active on a CPU, update the
3267 * value in the event structure:
3268 */
3269 if (event->state == PERF_EVENT_STATE_ACTIVE) {
3270 struct perf_read_data data = {
3271 .event = event,
3272 .group = group,
3273 .ret = 0,
3274 };
3275 smp_call_function_single(event->oncpu,
3276 __perf_event_read, &data, 1);
3277 ret = data.ret;
3278 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
3279 struct perf_event_context *ctx = event->ctx;
3280 unsigned long flags;
3281
3282 raw_spin_lock_irqsave(&ctx->lock, flags);
3283 /*
3284 * may read while context is not active
3285 * (e.g., thread is blocked), in that case
3286 * we cannot update context time
3287 */
3288 if (ctx->is_active) {
3289 update_context_time(ctx);
3290 update_cgrp_time_from_event(event);
3291 }
3292 if (group)
3293 update_group_times(event);
3294 else
3295 update_event_times(event);
3296 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3297 }
3298
3299 return ret;
3300 }
3301
3302 /*
3303 * Initialize the perf_event context in a task_struct:
3304 */
3305 static void __perf_event_init_context(struct perf_event_context *ctx)
3306 {
3307 raw_spin_lock_init(&ctx->lock);
3308 mutex_init(&ctx->mutex);
3309 INIT_LIST_HEAD(&ctx->active_ctx_list);
3310 INIT_LIST_HEAD(&ctx->pinned_groups);
3311 INIT_LIST_HEAD(&ctx->flexible_groups);
3312 INIT_LIST_HEAD(&ctx->event_list);
3313 atomic_set(&ctx->refcount, 1);
3314 INIT_DELAYED_WORK(&ctx->orphans_remove, orphans_remove_work);
3315 }
3316
3317 static struct perf_event_context *
3318 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3319 {
3320 struct perf_event_context *ctx;
3321
3322 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3323 if (!ctx)
3324 return NULL;
3325
3326 __perf_event_init_context(ctx);
3327 if (task) {
3328 ctx->task = task;
3329 get_task_struct(task);
3330 }
3331 ctx->pmu = pmu;
3332
3333 return ctx;
3334 }
3335
3336 static struct task_struct *
3337 find_lively_task_by_vpid(pid_t vpid)
3338 {
3339 struct task_struct *task;
3340 int err;
3341
3342 rcu_read_lock();
3343 if (!vpid)
3344 task = current;
3345 else
3346 task = find_task_by_vpid(vpid);
3347 if (task)
3348 get_task_struct(task);
3349 rcu_read_unlock();
3350
3351 if (!task)
3352 return ERR_PTR(-ESRCH);
3353
3354 /* Reuse ptrace permission checks for now. */
3355 err = -EACCES;
3356 if (!ptrace_may_access(task, PTRACE_MODE_READ))
3357 goto errout;
3358
3359 return task;
3360 errout:
3361 put_task_struct(task);
3362 return ERR_PTR(err);
3363
3364 }
3365
3366 /*
3367 * Returns a matching context with refcount and pincount.
3368 */
3369 static struct perf_event_context *
3370 find_get_context(struct pmu *pmu, struct task_struct *task,
3371 struct perf_event *event)
3372 {
3373 struct perf_event_context *ctx, *clone_ctx = NULL;
3374 struct perf_cpu_context *cpuctx;
3375 void *task_ctx_data = NULL;
3376 unsigned long flags;
3377 int ctxn, err;
3378 int cpu = event->cpu;
3379
3380 if (!task) {
3381 /* Must be root to operate on a CPU event: */
3382 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3383 return ERR_PTR(-EACCES);
3384
3385 /*
3386 * We could be clever and allow to attach a event to an
3387 * offline CPU and activate it when the CPU comes up, but
3388 * that's for later.
3389 */
3390 if (!cpu_online(cpu))
3391 return ERR_PTR(-ENODEV);
3392
3393 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3394 ctx = &cpuctx->ctx;
3395 get_ctx(ctx);
3396 ++ctx->pin_count;
3397
3398 return ctx;
3399 }
3400
3401 err = -EINVAL;
3402 ctxn = pmu->task_ctx_nr;
3403 if (ctxn < 0)
3404 goto errout;
3405
3406 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3407 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3408 if (!task_ctx_data) {
3409 err = -ENOMEM;
3410 goto errout;
3411 }
3412 }
3413
3414 retry:
3415 ctx = perf_lock_task_context(task, ctxn, &flags);
3416 if (ctx) {
3417 clone_ctx = unclone_ctx(ctx);
3418 ++ctx->pin_count;
3419
3420 if (task_ctx_data && !ctx->task_ctx_data) {
3421 ctx->task_ctx_data = task_ctx_data;
3422 task_ctx_data = NULL;
3423 }
3424 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3425
3426 if (clone_ctx)
3427 put_ctx(clone_ctx);
3428 } else {
3429 ctx = alloc_perf_context(pmu, task);
3430 err = -ENOMEM;
3431 if (!ctx)
3432 goto errout;
3433
3434 if (task_ctx_data) {
3435 ctx->task_ctx_data = task_ctx_data;
3436 task_ctx_data = NULL;
3437 }
3438
3439 err = 0;
3440 mutex_lock(&task->perf_event_mutex);
3441 /*
3442 * If it has already passed perf_event_exit_task().
3443 * we must see PF_EXITING, it takes this mutex too.
3444 */
3445 if (task->flags & PF_EXITING)
3446 err = -ESRCH;
3447 else if (task->perf_event_ctxp[ctxn])
3448 err = -EAGAIN;
3449 else {
3450 get_ctx(ctx);
3451 ++ctx->pin_count;
3452 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3453 }
3454 mutex_unlock(&task->perf_event_mutex);
3455
3456 if (unlikely(err)) {
3457 put_ctx(ctx);
3458
3459 if (err == -EAGAIN)
3460 goto retry;
3461 goto errout;
3462 }
3463 }
3464
3465 kfree(task_ctx_data);
3466 return ctx;
3467
3468 errout:
3469 kfree(task_ctx_data);
3470 return ERR_PTR(err);
3471 }
3472
3473 static void perf_event_free_filter(struct perf_event *event);
3474 static void perf_event_free_bpf_prog(struct perf_event *event);
3475
3476 static void free_event_rcu(struct rcu_head *head)
3477 {
3478 struct perf_event *event;
3479
3480 event = container_of(head, struct perf_event, rcu_head);
3481 if (event->ns)
3482 put_pid_ns(event->ns);
3483 perf_event_free_filter(event);
3484 kfree(event);
3485 }
3486
3487 static void ring_buffer_attach(struct perf_event *event,
3488 struct ring_buffer *rb);
3489
3490 static void unaccount_event_cpu(struct perf_event *event, int cpu)
3491 {
3492 if (event->parent)
3493 return;
3494
3495 if (is_cgroup_event(event))
3496 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3497 }
3498
3499 static void unaccount_event(struct perf_event *event)
3500 {
3501 bool dec = false;
3502
3503 if (event->parent)
3504 return;
3505
3506 if (event->attach_state & PERF_ATTACH_TASK)
3507 dec = true;
3508 if (event->attr.mmap || event->attr.mmap_data)
3509 atomic_dec(&nr_mmap_events);
3510 if (event->attr.comm)
3511 atomic_dec(&nr_comm_events);
3512 if (event->attr.task)
3513 atomic_dec(&nr_task_events);
3514 if (event->attr.freq)
3515 atomic_dec(&nr_freq_events);
3516 if (event->attr.context_switch) {
3517 dec = true;
3518 atomic_dec(&nr_switch_events);
3519 }
3520 if (is_cgroup_event(event))
3521 dec = true;
3522 if (has_branch_stack(event))
3523 dec = true;
3524
3525 if (dec)
3526 static_key_slow_dec_deferred(&perf_sched_events);
3527
3528 unaccount_event_cpu(event, event->cpu);
3529 }
3530
3531 /*
3532 * The following implement mutual exclusion of events on "exclusive" pmus
3533 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3534 * at a time, so we disallow creating events that might conflict, namely:
3535 *
3536 * 1) cpu-wide events in the presence of per-task events,
3537 * 2) per-task events in the presence of cpu-wide events,
3538 * 3) two matching events on the same context.
3539 *
3540 * The former two cases are handled in the allocation path (perf_event_alloc(),
3541 * __free_event()), the latter -- before the first perf_install_in_context().
3542 */
3543 static int exclusive_event_init(struct perf_event *event)
3544 {
3545 struct pmu *pmu = event->pmu;
3546
3547 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3548 return 0;
3549
3550 /*
3551 * Prevent co-existence of per-task and cpu-wide events on the
3552 * same exclusive pmu.
3553 *
3554 * Negative pmu::exclusive_cnt means there are cpu-wide
3555 * events on this "exclusive" pmu, positive means there are
3556 * per-task events.
3557 *
3558 * Since this is called in perf_event_alloc() path, event::ctx
3559 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
3560 * to mean "per-task event", because unlike other attach states it
3561 * never gets cleared.
3562 */
3563 if (event->attach_state & PERF_ATTACH_TASK) {
3564 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
3565 return -EBUSY;
3566 } else {
3567 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
3568 return -EBUSY;
3569 }
3570
3571 return 0;
3572 }
3573
3574 static void exclusive_event_destroy(struct perf_event *event)
3575 {
3576 struct pmu *pmu = event->pmu;
3577
3578 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3579 return;
3580
3581 /* see comment in exclusive_event_init() */
3582 if (event->attach_state & PERF_ATTACH_TASK)
3583 atomic_dec(&pmu->exclusive_cnt);
3584 else
3585 atomic_inc(&pmu->exclusive_cnt);
3586 }
3587
3588 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
3589 {
3590 if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) &&
3591 (e1->cpu == e2->cpu ||
3592 e1->cpu == -1 ||
3593 e2->cpu == -1))
3594 return true;
3595 return false;
3596 }
3597
3598 /* Called under the same ctx::mutex as perf_install_in_context() */
3599 static bool exclusive_event_installable(struct perf_event *event,
3600 struct perf_event_context *ctx)
3601 {
3602 struct perf_event *iter_event;
3603 struct pmu *pmu = event->pmu;
3604
3605 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3606 return true;
3607
3608 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
3609 if (exclusive_event_match(iter_event, event))
3610 return false;
3611 }
3612
3613 return true;
3614 }
3615
3616 static void __free_event(struct perf_event *event)
3617 {
3618 if (!event->parent) {
3619 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3620 put_callchain_buffers();
3621 }
3622
3623 perf_event_free_bpf_prog(event);
3624
3625 if (event->destroy)
3626 event->destroy(event);
3627
3628 if (event->ctx)
3629 put_ctx(event->ctx);
3630
3631 if (event->pmu) {
3632 exclusive_event_destroy(event);
3633 module_put(event->pmu->module);
3634 }
3635
3636 call_rcu(&event->rcu_head, free_event_rcu);
3637 }
3638
3639 static void _free_event(struct perf_event *event)
3640 {
3641 irq_work_sync(&event->pending);
3642
3643 unaccount_event(event);
3644
3645 if (event->rb) {
3646 /*
3647 * Can happen when we close an event with re-directed output.
3648 *
3649 * Since we have a 0 refcount, perf_mmap_close() will skip
3650 * over us; possibly making our ring_buffer_put() the last.
3651 */
3652 mutex_lock(&event->mmap_mutex);
3653 ring_buffer_attach(event, NULL);
3654 mutex_unlock(&event->mmap_mutex);
3655 }
3656
3657 if (is_cgroup_event(event))
3658 perf_detach_cgroup(event);
3659
3660 __free_event(event);
3661 }
3662
3663 /*
3664 * Used to free events which have a known refcount of 1, such as in error paths
3665 * where the event isn't exposed yet and inherited events.
3666 */
3667 static void free_event(struct perf_event *event)
3668 {
3669 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
3670 "unexpected event refcount: %ld; ptr=%p\n",
3671 atomic_long_read(&event->refcount), event)) {
3672 /* leak to avoid use-after-free */
3673 return;
3674 }
3675
3676 _free_event(event);
3677 }
3678
3679 /*
3680 * Remove user event from the owner task.
3681 */
3682 static void perf_remove_from_owner(struct perf_event *event)
3683 {
3684 struct task_struct *owner;
3685
3686 rcu_read_lock();
3687 owner = ACCESS_ONCE(event->owner);
3688 /*
3689 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
3690 * !owner it means the list deletion is complete and we can indeed
3691 * free this event, otherwise we need to serialize on
3692 * owner->perf_event_mutex.
3693 */
3694 smp_read_barrier_depends();
3695 if (owner) {
3696 /*
3697 * Since delayed_put_task_struct() also drops the last
3698 * task reference we can safely take a new reference
3699 * while holding the rcu_read_lock().
3700 */
3701 get_task_struct(owner);
3702 }
3703 rcu_read_unlock();
3704
3705 if (owner) {
3706 /*
3707 * If we're here through perf_event_exit_task() we're already
3708 * holding ctx->mutex which would be an inversion wrt. the
3709 * normal lock order.
3710 *
3711 * However we can safely take this lock because its the child
3712 * ctx->mutex.
3713 */
3714 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
3715
3716 /*
3717 * We have to re-check the event->owner field, if it is cleared
3718 * we raced with perf_event_exit_task(), acquiring the mutex
3719 * ensured they're done, and we can proceed with freeing the
3720 * event.
3721 */
3722 if (event->owner)
3723 list_del_init(&event->owner_entry);
3724 mutex_unlock(&owner->perf_event_mutex);
3725 put_task_struct(owner);
3726 }
3727 }
3728
3729 static void put_event(struct perf_event *event)
3730 {
3731 struct perf_event_context *ctx;
3732
3733 if (!atomic_long_dec_and_test(&event->refcount))
3734 return;
3735
3736 if (!is_kernel_event(event))
3737 perf_remove_from_owner(event);
3738
3739 /*
3740 * There are two ways this annotation is useful:
3741 *
3742 * 1) there is a lock recursion from perf_event_exit_task
3743 * see the comment there.
3744 *
3745 * 2) there is a lock-inversion with mmap_sem through
3746 * perf_read_group(), which takes faults while
3747 * holding ctx->mutex, however this is called after
3748 * the last filedesc died, so there is no possibility
3749 * to trigger the AB-BA case.
3750 */
3751 ctx = perf_event_ctx_lock_nested(event, SINGLE_DEPTH_NESTING);
3752 WARN_ON_ONCE(ctx->parent_ctx);
3753 perf_remove_from_context(event, true);
3754 perf_event_ctx_unlock(event, ctx);
3755
3756 _free_event(event);
3757 }
3758
3759 int perf_event_release_kernel(struct perf_event *event)
3760 {
3761 put_event(event);
3762 return 0;
3763 }
3764 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
3765
3766 /*
3767 * Called when the last reference to the file is gone.
3768 */
3769 static int perf_release(struct inode *inode, struct file *file)
3770 {
3771 put_event(file->private_data);
3772 return 0;
3773 }
3774
3775 /*
3776 * Remove all orphanes events from the context.
3777 */
3778 static void orphans_remove_work(struct work_struct *work)
3779 {
3780 struct perf_event_context *ctx;
3781 struct perf_event *event, *tmp;
3782
3783 ctx = container_of(work, struct perf_event_context,
3784 orphans_remove.work);
3785
3786 mutex_lock(&ctx->mutex);
3787 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) {
3788 struct perf_event *parent_event = event->parent;
3789
3790 if (!is_orphaned_child(event))
3791 continue;
3792
3793 perf_remove_from_context(event, true);
3794
3795 mutex_lock(&parent_event->child_mutex);
3796 list_del_init(&event->child_list);
3797 mutex_unlock(&parent_event->child_mutex);
3798
3799 free_event(event);
3800 put_event(parent_event);
3801 }
3802
3803 raw_spin_lock_irq(&ctx->lock);
3804 ctx->orphans_remove_sched = false;
3805 raw_spin_unlock_irq(&ctx->lock);
3806 mutex_unlock(&ctx->mutex);
3807
3808 put_ctx(ctx);
3809 }
3810
3811 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3812 {
3813 struct perf_event *child;
3814 u64 total = 0;
3815
3816 *enabled = 0;
3817 *running = 0;
3818
3819 mutex_lock(&event->child_mutex);
3820
3821 (void)perf_event_read(event, false);
3822 total += perf_event_count(event);
3823
3824 *enabled += event->total_time_enabled +
3825 atomic64_read(&event->child_total_time_enabled);
3826 *running += event->total_time_running +
3827 atomic64_read(&event->child_total_time_running);
3828
3829 list_for_each_entry(child, &event->child_list, child_list) {
3830 (void)perf_event_read(child, false);
3831 total += perf_event_count(child);
3832 *enabled += child->total_time_enabled;
3833 *running += child->total_time_running;
3834 }
3835 mutex_unlock(&event->child_mutex);
3836
3837 return total;
3838 }
3839 EXPORT_SYMBOL_GPL(perf_event_read_value);
3840
3841 static int __perf_read_group_add(struct perf_event *leader,
3842 u64 read_format, u64 *values)
3843 {
3844 struct perf_event *sub;
3845 int n = 1; /* skip @nr */
3846 int ret;
3847
3848 ret = perf_event_read(leader, true);
3849 if (ret)
3850 return ret;
3851
3852 /*
3853 * Since we co-schedule groups, {enabled,running} times of siblings
3854 * will be identical to those of the leader, so we only publish one
3855 * set.
3856 */
3857 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3858 values[n++] += leader->total_time_enabled +
3859 atomic64_read(&leader->child_total_time_enabled);
3860 }
3861
3862 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3863 values[n++] += leader->total_time_running +
3864 atomic64_read(&leader->child_total_time_running);
3865 }
3866
3867 /*
3868 * Write {count,id} tuples for every sibling.
3869 */
3870 values[n++] += perf_event_count(leader);
3871 if (read_format & PERF_FORMAT_ID)
3872 values[n++] = primary_event_id(leader);
3873
3874 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3875 values[n++] += perf_event_count(sub);
3876 if (read_format & PERF_FORMAT_ID)
3877 values[n++] = primary_event_id(sub);
3878 }
3879
3880 return 0;
3881 }
3882
3883 static int perf_read_group(struct perf_event *event,
3884 u64 read_format, char __user *buf)
3885 {
3886 struct perf_event *leader = event->group_leader, *child;
3887 struct perf_event_context *ctx = leader->ctx;
3888 int ret;
3889 u64 *values;
3890
3891 lockdep_assert_held(&ctx->mutex);
3892
3893 values = kzalloc(event->read_size, GFP_KERNEL);
3894 if (!values)
3895 return -ENOMEM;
3896
3897 values[0] = 1 + leader->nr_siblings;
3898
3899 /*
3900 * By locking the child_mutex of the leader we effectively
3901 * lock the child list of all siblings.. XXX explain how.
3902 */
3903 mutex_lock(&leader->child_mutex);
3904
3905 ret = __perf_read_group_add(leader, read_format, values);
3906 if (ret)
3907 goto unlock;
3908
3909 list_for_each_entry(child, &leader->child_list, child_list) {
3910 ret = __perf_read_group_add(child, read_format, values);
3911 if (ret)
3912 goto unlock;
3913 }
3914
3915 mutex_unlock(&leader->child_mutex);
3916
3917 ret = event->read_size;
3918 if (copy_to_user(buf, values, event->read_size))
3919 ret = -EFAULT;
3920 goto out;
3921
3922 unlock:
3923 mutex_unlock(&leader->child_mutex);
3924 out:
3925 kfree(values);
3926 return ret;
3927 }
3928
3929 static int perf_read_one(struct perf_event *event,
3930 u64 read_format, char __user *buf)
3931 {
3932 u64 enabled, running;
3933 u64 values[4];
3934 int n = 0;
3935
3936 values[n++] = perf_event_read_value(event, &enabled, &running);
3937 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3938 values[n++] = enabled;
3939 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3940 values[n++] = running;
3941 if (read_format & PERF_FORMAT_ID)
3942 values[n++] = primary_event_id(event);
3943
3944 if (copy_to_user(buf, values, n * sizeof(u64)))
3945 return -EFAULT;
3946
3947 return n * sizeof(u64);
3948 }
3949
3950 static bool is_event_hup(struct perf_event *event)
3951 {
3952 bool no_children;
3953
3954 if (event->state != PERF_EVENT_STATE_EXIT)
3955 return false;
3956
3957 mutex_lock(&event->child_mutex);
3958 no_children = list_empty(&event->child_list);
3959 mutex_unlock(&event->child_mutex);
3960 return no_children;
3961 }
3962
3963 /*
3964 * Read the performance event - simple non blocking version for now
3965 */
3966 static ssize_t
3967 __perf_read(struct perf_event *event, char __user *buf, size_t count)
3968 {
3969 u64 read_format = event->attr.read_format;
3970 int ret;
3971
3972 /*
3973 * Return end-of-file for a read on a event that is in
3974 * error state (i.e. because it was pinned but it couldn't be
3975 * scheduled on to the CPU at some point).
3976 */
3977 if (event->state == PERF_EVENT_STATE_ERROR)
3978 return 0;
3979
3980 if (count < event->read_size)
3981 return -ENOSPC;
3982
3983 WARN_ON_ONCE(event->ctx->parent_ctx);
3984 if (read_format & PERF_FORMAT_GROUP)
3985 ret = perf_read_group(event, read_format, buf);
3986 else
3987 ret = perf_read_one(event, read_format, buf);
3988
3989 return ret;
3990 }
3991
3992 static ssize_t
3993 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
3994 {
3995 struct perf_event *event = file->private_data;
3996 struct perf_event_context *ctx;
3997 int ret;
3998
3999 ctx = perf_event_ctx_lock(event);
4000 ret = __perf_read(event, buf, count);
4001 perf_event_ctx_unlock(event, ctx);
4002
4003 return ret;
4004 }
4005
4006 static unsigned int perf_poll(struct file *file, poll_table *wait)
4007 {
4008 struct perf_event *event = file->private_data;
4009 struct ring_buffer *rb;
4010 unsigned int events = POLLHUP;
4011
4012 poll_wait(file, &event->waitq, wait);
4013
4014 if (is_event_hup(event))
4015 return events;
4016
4017 /*
4018 * Pin the event->rb by taking event->mmap_mutex; otherwise
4019 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4020 */
4021 mutex_lock(&event->mmap_mutex);
4022 rb = event->rb;
4023 if (rb)
4024 events = atomic_xchg(&rb->poll, 0);
4025 mutex_unlock(&event->mmap_mutex);
4026 return events;
4027 }
4028
4029 static void _perf_event_reset(struct perf_event *event)
4030 {
4031 (void)perf_event_read(event, false);
4032 local64_set(&event->count, 0);
4033 perf_event_update_userpage(event);
4034 }
4035
4036 /*
4037 * Holding the top-level event's child_mutex means that any
4038 * descendant process that has inherited this event will block
4039 * in sync_child_event if it goes to exit, thus satisfying the
4040 * task existence requirements of perf_event_enable/disable.
4041 */
4042 static void perf_event_for_each_child(struct perf_event *event,
4043 void (*func)(struct perf_event *))
4044 {
4045 struct perf_event *child;
4046
4047 WARN_ON_ONCE(event->ctx->parent_ctx);
4048
4049 mutex_lock(&event->child_mutex);
4050 func(event);
4051 list_for_each_entry(child, &event->child_list, child_list)
4052 func(child);
4053 mutex_unlock(&event->child_mutex);
4054 }
4055
4056 static void perf_event_for_each(struct perf_event *event,
4057 void (*func)(struct perf_event *))
4058 {
4059 struct perf_event_context *ctx = event->ctx;
4060 struct perf_event *sibling;
4061
4062 lockdep_assert_held(&ctx->mutex);
4063
4064 event = event->group_leader;
4065
4066 perf_event_for_each_child(event, func);
4067 list_for_each_entry(sibling, &event->sibling_list, group_entry)
4068 perf_event_for_each_child(sibling, func);
4069 }
4070
4071 struct period_event {
4072 struct perf_event *event;
4073 u64 value;
4074 };
4075
4076 static void ___perf_event_period(void *info)
4077 {
4078 struct period_event *pe = info;
4079 struct perf_event *event = pe->event;
4080 u64 value = pe->value;
4081
4082 if (event->attr.freq) {
4083 event->attr.sample_freq = value;
4084 } else {
4085 event->attr.sample_period = value;
4086 event->hw.sample_period = value;
4087 }
4088
4089 local64_set(&event->hw.period_left, 0);
4090 }
4091
4092 static int __perf_event_period(void *info)
4093 {
4094 struct period_event *pe = info;
4095 struct perf_event *event = pe->event;
4096 struct perf_event_context *ctx = event->ctx;
4097 u64 value = pe->value;
4098 bool active;
4099
4100 raw_spin_lock(&ctx->lock);
4101 if (event->attr.freq) {
4102 event->attr.sample_freq = value;
4103 } else {
4104 event->attr.sample_period = value;
4105 event->hw.sample_period = value;
4106 }
4107
4108 active = (event->state == PERF_EVENT_STATE_ACTIVE);
4109 if (active) {
4110 perf_pmu_disable(ctx->pmu);
4111 event->pmu->stop(event, PERF_EF_UPDATE);
4112 }
4113
4114 local64_set(&event->hw.period_left, 0);
4115
4116 if (active) {
4117 event->pmu->start(event, PERF_EF_RELOAD);
4118 perf_pmu_enable(ctx->pmu);
4119 }
4120 raw_spin_unlock(&ctx->lock);
4121
4122 return 0;
4123 }
4124
4125 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4126 {
4127 struct period_event pe = { .event = event, };
4128 u64 value;
4129
4130 if (!is_sampling_event(event))
4131 return -EINVAL;
4132
4133 if (copy_from_user(&value, arg, sizeof(value)))
4134 return -EFAULT;
4135
4136 if (!value)
4137 return -EINVAL;
4138
4139 if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4140 return -EINVAL;
4141
4142 pe.value = value;
4143
4144 event_function_call(event, __perf_event_period,
4145 ___perf_event_period, &pe);
4146
4147 return 0;
4148 }
4149
4150 static const struct file_operations perf_fops;
4151
4152 static inline int perf_fget_light(int fd, struct fd *p)
4153 {
4154 struct fd f = fdget(fd);
4155 if (!f.file)
4156 return -EBADF;
4157
4158 if (f.file->f_op != &perf_fops) {
4159 fdput(f);
4160 return -EBADF;
4161 }
4162 *p = f;
4163 return 0;
4164 }
4165
4166 static int perf_event_set_output(struct perf_event *event,
4167 struct perf_event *output_event);
4168 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4169 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4170
4171 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4172 {
4173 void (*func)(struct perf_event *);
4174 u32 flags = arg;
4175
4176 switch (cmd) {
4177 case PERF_EVENT_IOC_ENABLE:
4178 func = _perf_event_enable;
4179 break;
4180 case PERF_EVENT_IOC_DISABLE:
4181 func = _perf_event_disable;
4182 break;
4183 case PERF_EVENT_IOC_RESET:
4184 func = _perf_event_reset;
4185 break;
4186
4187 case PERF_EVENT_IOC_REFRESH:
4188 return _perf_event_refresh(event, arg);
4189
4190 case PERF_EVENT_IOC_PERIOD:
4191 return perf_event_period(event, (u64 __user *)arg);
4192
4193 case PERF_EVENT_IOC_ID:
4194 {
4195 u64 id = primary_event_id(event);
4196
4197 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4198 return -EFAULT;
4199 return 0;
4200 }
4201
4202 case PERF_EVENT_IOC_SET_OUTPUT:
4203 {
4204 int ret;
4205 if (arg != -1) {
4206 struct perf_event *output_event;
4207 struct fd output;
4208 ret = perf_fget_light(arg, &output);
4209 if (ret)
4210 return ret;
4211 output_event = output.file->private_data;
4212 ret = perf_event_set_output(event, output_event);
4213 fdput(output);
4214 } else {
4215 ret = perf_event_set_output(event, NULL);
4216 }
4217 return ret;
4218 }
4219
4220 case PERF_EVENT_IOC_SET_FILTER:
4221 return perf_event_set_filter(event, (void __user *)arg);
4222
4223 case PERF_EVENT_IOC_SET_BPF:
4224 return perf_event_set_bpf_prog(event, arg);
4225
4226 default:
4227 return -ENOTTY;
4228 }
4229
4230 if (flags & PERF_IOC_FLAG_GROUP)
4231 perf_event_for_each(event, func);
4232 else
4233 perf_event_for_each_child(event, func);
4234
4235 return 0;
4236 }
4237
4238 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4239 {
4240 struct perf_event *event = file->private_data;
4241 struct perf_event_context *ctx;
4242 long ret;
4243
4244 ctx = perf_event_ctx_lock(event);
4245 ret = _perf_ioctl(event, cmd, arg);
4246 perf_event_ctx_unlock(event, ctx);
4247
4248 return ret;
4249 }
4250
4251 #ifdef CONFIG_COMPAT
4252 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4253 unsigned long arg)
4254 {
4255 switch (_IOC_NR(cmd)) {
4256 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4257 case _IOC_NR(PERF_EVENT_IOC_ID):
4258 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4259 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4260 cmd &= ~IOCSIZE_MASK;
4261 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4262 }
4263 break;
4264 }
4265 return perf_ioctl(file, cmd, arg);
4266 }
4267 #else
4268 # define perf_compat_ioctl NULL
4269 #endif
4270
4271 int perf_event_task_enable(void)
4272 {
4273 struct perf_event_context *ctx;
4274 struct perf_event *event;
4275
4276 mutex_lock(&current->perf_event_mutex);
4277 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4278 ctx = perf_event_ctx_lock(event);
4279 perf_event_for_each_child(event, _perf_event_enable);
4280 perf_event_ctx_unlock(event, ctx);
4281 }
4282 mutex_unlock(&current->perf_event_mutex);
4283
4284 return 0;
4285 }
4286
4287 int perf_event_task_disable(void)
4288 {
4289 struct perf_event_context *ctx;
4290 struct perf_event *event;
4291
4292 mutex_lock(&current->perf_event_mutex);
4293 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4294 ctx = perf_event_ctx_lock(event);
4295 perf_event_for_each_child(event, _perf_event_disable);
4296 perf_event_ctx_unlock(event, ctx);
4297 }
4298 mutex_unlock(&current->perf_event_mutex);
4299
4300 return 0;
4301 }
4302
4303 static int perf_event_index(struct perf_event *event)
4304 {
4305 if (event->hw.state & PERF_HES_STOPPED)
4306 return 0;
4307
4308 if (event->state != PERF_EVENT_STATE_ACTIVE)
4309 return 0;
4310
4311 return event->pmu->event_idx(event);
4312 }
4313
4314 static void calc_timer_values(struct perf_event *event,
4315 u64 *now,
4316 u64 *enabled,
4317 u64 *running)
4318 {
4319 u64 ctx_time;
4320
4321 *now = perf_clock();
4322 ctx_time = event->shadow_ctx_time + *now;
4323 *enabled = ctx_time - event->tstamp_enabled;
4324 *running = ctx_time - event->tstamp_running;
4325 }
4326
4327 static void perf_event_init_userpage(struct perf_event *event)
4328 {
4329 struct perf_event_mmap_page *userpg;
4330 struct ring_buffer *rb;
4331
4332 rcu_read_lock();
4333 rb = rcu_dereference(event->rb);
4334 if (!rb)
4335 goto unlock;
4336
4337 userpg = rb->user_page;
4338
4339 /* Allow new userspace to detect that bit 0 is deprecated */
4340 userpg->cap_bit0_is_deprecated = 1;
4341 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4342 userpg->data_offset = PAGE_SIZE;
4343 userpg->data_size = perf_data_size(rb);
4344
4345 unlock:
4346 rcu_read_unlock();
4347 }
4348
4349 void __weak arch_perf_update_userpage(
4350 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4351 {
4352 }
4353
4354 /*
4355 * Callers need to ensure there can be no nesting of this function, otherwise
4356 * the seqlock logic goes bad. We can not serialize this because the arch
4357 * code calls this from NMI context.
4358 */
4359 void perf_event_update_userpage(struct perf_event *event)
4360 {
4361 struct perf_event_mmap_page *userpg;
4362 struct ring_buffer *rb;
4363 u64 enabled, running, now;
4364
4365 rcu_read_lock();
4366 rb = rcu_dereference(event->rb);
4367 if (!rb)
4368 goto unlock;
4369
4370 /*
4371 * compute total_time_enabled, total_time_running
4372 * based on snapshot values taken when the event
4373 * was last scheduled in.
4374 *
4375 * we cannot simply called update_context_time()
4376 * because of locking issue as we can be called in
4377 * NMI context
4378 */
4379 calc_timer_values(event, &now, &enabled, &running);
4380
4381 userpg = rb->user_page;
4382 /*
4383 * Disable preemption so as to not let the corresponding user-space
4384 * spin too long if we get preempted.
4385 */
4386 preempt_disable();
4387 ++userpg->lock;
4388 barrier();
4389 userpg->index = perf_event_index(event);
4390 userpg->offset = perf_event_count(event);
4391 if (userpg->index)
4392 userpg->offset -= local64_read(&event->hw.prev_count);
4393
4394 userpg->time_enabled = enabled +
4395 atomic64_read(&event->child_total_time_enabled);
4396
4397 userpg->time_running = running +
4398 atomic64_read(&event->child_total_time_running);
4399
4400 arch_perf_update_userpage(event, userpg, now);
4401
4402 barrier();
4403 ++userpg->lock;
4404 preempt_enable();
4405 unlock:
4406 rcu_read_unlock();
4407 }
4408
4409 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
4410 {
4411 struct perf_event *event = vma->vm_file->private_data;
4412 struct ring_buffer *rb;
4413 int ret = VM_FAULT_SIGBUS;
4414
4415 if (vmf->flags & FAULT_FLAG_MKWRITE) {
4416 if (vmf->pgoff == 0)
4417 ret = 0;
4418 return ret;
4419 }
4420
4421 rcu_read_lock();
4422 rb = rcu_dereference(event->rb);
4423 if (!rb)
4424 goto unlock;
4425
4426 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4427 goto unlock;
4428
4429 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4430 if (!vmf->page)
4431 goto unlock;
4432
4433 get_page(vmf->page);
4434 vmf->page->mapping = vma->vm_file->f_mapping;
4435 vmf->page->index = vmf->pgoff;
4436
4437 ret = 0;
4438 unlock:
4439 rcu_read_unlock();
4440
4441 return ret;
4442 }
4443
4444 static void ring_buffer_attach(struct perf_event *event,
4445 struct ring_buffer *rb)
4446 {
4447 struct ring_buffer *old_rb = NULL;
4448 unsigned long flags;
4449
4450 if (event->rb) {
4451 /*
4452 * Should be impossible, we set this when removing
4453 * event->rb_entry and wait/clear when adding event->rb_entry.
4454 */
4455 WARN_ON_ONCE(event->rcu_pending);
4456
4457 old_rb = event->rb;
4458 spin_lock_irqsave(&old_rb->event_lock, flags);
4459 list_del_rcu(&event->rb_entry);
4460 spin_unlock_irqrestore(&old_rb->event_lock, flags);
4461
4462 event->rcu_batches = get_state_synchronize_rcu();
4463 event->rcu_pending = 1;
4464 }
4465
4466 if (rb) {
4467 if (event->rcu_pending) {
4468 cond_synchronize_rcu(event->rcu_batches);
4469 event->rcu_pending = 0;
4470 }
4471
4472 spin_lock_irqsave(&rb->event_lock, flags);
4473 list_add_rcu(&event->rb_entry, &rb->event_list);
4474 spin_unlock_irqrestore(&rb->event_lock, flags);
4475 }
4476
4477 rcu_assign_pointer(event->rb, rb);
4478
4479 if (old_rb) {
4480 ring_buffer_put(old_rb);
4481 /*
4482 * Since we detached before setting the new rb, so that we
4483 * could attach the new rb, we could have missed a wakeup.
4484 * Provide it now.
4485 */
4486 wake_up_all(&event->waitq);
4487 }
4488 }
4489
4490 static void ring_buffer_wakeup(struct perf_event *event)
4491 {
4492 struct ring_buffer *rb;
4493
4494 rcu_read_lock();
4495 rb = rcu_dereference(event->rb);
4496 if (rb) {
4497 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
4498 wake_up_all(&event->waitq);
4499 }
4500 rcu_read_unlock();
4501 }
4502
4503 struct ring_buffer *ring_buffer_get(struct perf_event *event)
4504 {
4505 struct ring_buffer *rb;
4506
4507 rcu_read_lock();
4508 rb = rcu_dereference(event->rb);
4509 if (rb) {
4510 if (!atomic_inc_not_zero(&rb->refcount))
4511 rb = NULL;
4512 }
4513 rcu_read_unlock();
4514
4515 return rb;
4516 }
4517
4518 void ring_buffer_put(struct ring_buffer *rb)
4519 {
4520 if (!atomic_dec_and_test(&rb->refcount))
4521 return;
4522
4523 WARN_ON_ONCE(!list_empty(&rb->event_list));
4524
4525 call_rcu(&rb->rcu_head, rb_free_rcu);
4526 }
4527
4528 static void perf_mmap_open(struct vm_area_struct *vma)
4529 {
4530 struct perf_event *event = vma->vm_file->private_data;
4531
4532 atomic_inc(&event->mmap_count);
4533 atomic_inc(&event->rb->mmap_count);
4534
4535 if (vma->vm_pgoff)
4536 atomic_inc(&event->rb->aux_mmap_count);
4537
4538 if (event->pmu->event_mapped)
4539 event->pmu->event_mapped(event);
4540 }
4541
4542 /*
4543 * A buffer can be mmap()ed multiple times; either directly through the same
4544 * event, or through other events by use of perf_event_set_output().
4545 *
4546 * In order to undo the VM accounting done by perf_mmap() we need to destroy
4547 * the buffer here, where we still have a VM context. This means we need
4548 * to detach all events redirecting to us.
4549 */
4550 static void perf_mmap_close(struct vm_area_struct *vma)
4551 {
4552 struct perf_event *event = vma->vm_file->private_data;
4553
4554 struct ring_buffer *rb = ring_buffer_get(event);
4555 struct user_struct *mmap_user = rb->mmap_user;
4556 int mmap_locked = rb->mmap_locked;
4557 unsigned long size = perf_data_size(rb);
4558
4559 if (event->pmu->event_unmapped)
4560 event->pmu->event_unmapped(event);
4561
4562 /*
4563 * rb->aux_mmap_count will always drop before rb->mmap_count and
4564 * event->mmap_count, so it is ok to use event->mmap_mutex to
4565 * serialize with perf_mmap here.
4566 */
4567 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
4568 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
4569 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
4570 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
4571
4572 rb_free_aux(rb);
4573 mutex_unlock(&event->mmap_mutex);
4574 }
4575
4576 atomic_dec(&rb->mmap_count);
4577
4578 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
4579 goto out_put;
4580
4581 ring_buffer_attach(event, NULL);
4582 mutex_unlock(&event->mmap_mutex);
4583
4584 /* If there's still other mmap()s of this buffer, we're done. */
4585 if (atomic_read(&rb->mmap_count))
4586 goto out_put;
4587
4588 /*
4589 * No other mmap()s, detach from all other events that might redirect
4590 * into the now unreachable buffer. Somewhat complicated by the
4591 * fact that rb::event_lock otherwise nests inside mmap_mutex.
4592 */
4593 again:
4594 rcu_read_lock();
4595 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
4596 if (!atomic_long_inc_not_zero(&event->refcount)) {
4597 /*
4598 * This event is en-route to free_event() which will
4599 * detach it and remove it from the list.
4600 */
4601 continue;
4602 }
4603 rcu_read_unlock();
4604
4605 mutex_lock(&event->mmap_mutex);
4606 /*
4607 * Check we didn't race with perf_event_set_output() which can
4608 * swizzle the rb from under us while we were waiting to
4609 * acquire mmap_mutex.
4610 *
4611 * If we find a different rb; ignore this event, a next
4612 * iteration will no longer find it on the list. We have to
4613 * still restart the iteration to make sure we're not now
4614 * iterating the wrong list.
4615 */
4616 if (event->rb == rb)
4617 ring_buffer_attach(event, NULL);
4618
4619 mutex_unlock(&event->mmap_mutex);
4620 put_event(event);
4621
4622 /*
4623 * Restart the iteration; either we're on the wrong list or
4624 * destroyed its integrity by doing a deletion.
4625 */
4626 goto again;
4627 }
4628 rcu_read_unlock();
4629
4630 /*
4631 * It could be there's still a few 0-ref events on the list; they'll
4632 * get cleaned up by free_event() -- they'll also still have their
4633 * ref on the rb and will free it whenever they are done with it.
4634 *
4635 * Aside from that, this buffer is 'fully' detached and unmapped,
4636 * undo the VM accounting.
4637 */
4638
4639 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
4640 vma->vm_mm->pinned_vm -= mmap_locked;
4641 free_uid(mmap_user);
4642
4643 out_put:
4644 ring_buffer_put(rb); /* could be last */
4645 }
4646
4647 static const struct vm_operations_struct perf_mmap_vmops = {
4648 .open = perf_mmap_open,
4649 .close = perf_mmap_close, /* non mergable */
4650 .fault = perf_mmap_fault,
4651 .page_mkwrite = perf_mmap_fault,
4652 };
4653
4654 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
4655 {
4656 struct perf_event *event = file->private_data;
4657 unsigned long user_locked, user_lock_limit;
4658 struct user_struct *user = current_user();
4659 unsigned long locked, lock_limit;
4660 struct ring_buffer *rb = NULL;
4661 unsigned long vma_size;
4662 unsigned long nr_pages;
4663 long user_extra = 0, extra = 0;
4664 int ret = 0, flags = 0;
4665
4666 /*
4667 * Don't allow mmap() of inherited per-task counters. This would
4668 * create a performance issue due to all children writing to the
4669 * same rb.
4670 */
4671 if (event->cpu == -1 && event->attr.inherit)
4672 return -EINVAL;
4673
4674 if (!(vma->vm_flags & VM_SHARED))
4675 return -EINVAL;
4676
4677 vma_size = vma->vm_end - vma->vm_start;
4678
4679 if (vma->vm_pgoff == 0) {
4680 nr_pages = (vma_size / PAGE_SIZE) - 1;
4681 } else {
4682 /*
4683 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
4684 * mapped, all subsequent mappings should have the same size
4685 * and offset. Must be above the normal perf buffer.
4686 */
4687 u64 aux_offset, aux_size;
4688
4689 if (!event->rb)
4690 return -EINVAL;
4691
4692 nr_pages = vma_size / PAGE_SIZE;
4693
4694 mutex_lock(&event->mmap_mutex);
4695 ret = -EINVAL;
4696
4697 rb = event->rb;
4698 if (!rb)
4699 goto aux_unlock;
4700
4701 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
4702 aux_size = ACCESS_ONCE(rb->user_page->aux_size);
4703
4704 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
4705 goto aux_unlock;
4706
4707 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
4708 goto aux_unlock;
4709
4710 /* already mapped with a different offset */
4711 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
4712 goto aux_unlock;
4713
4714 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
4715 goto aux_unlock;
4716
4717 /* already mapped with a different size */
4718 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
4719 goto aux_unlock;
4720
4721 if (!is_power_of_2(nr_pages))
4722 goto aux_unlock;
4723
4724 if (!atomic_inc_not_zero(&rb->mmap_count))
4725 goto aux_unlock;
4726
4727 if (rb_has_aux(rb)) {
4728 atomic_inc(&rb->aux_mmap_count);
4729 ret = 0;
4730 goto unlock;
4731 }
4732
4733 atomic_set(&rb->aux_mmap_count, 1);
4734 user_extra = nr_pages;
4735
4736 goto accounting;
4737 }
4738
4739 /*
4740 * If we have rb pages ensure they're a power-of-two number, so we
4741 * can do bitmasks instead of modulo.
4742 */
4743 if (nr_pages != 0 && !is_power_of_2(nr_pages))
4744 return -EINVAL;
4745
4746 if (vma_size != PAGE_SIZE * (1 + nr_pages))
4747 return -EINVAL;
4748
4749 WARN_ON_ONCE(event->ctx->parent_ctx);
4750 again:
4751 mutex_lock(&event->mmap_mutex);
4752 if (event->rb) {
4753 if (event->rb->nr_pages != nr_pages) {
4754 ret = -EINVAL;
4755 goto unlock;
4756 }
4757
4758 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
4759 /*
4760 * Raced against perf_mmap_close() through
4761 * perf_event_set_output(). Try again, hope for better
4762 * luck.
4763 */
4764 mutex_unlock(&event->mmap_mutex);
4765 goto again;
4766 }
4767
4768 goto unlock;
4769 }
4770
4771 user_extra = nr_pages + 1;
4772
4773 accounting:
4774 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
4775
4776 /*
4777 * Increase the limit linearly with more CPUs:
4778 */
4779 user_lock_limit *= num_online_cpus();
4780
4781 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
4782
4783 if (user_locked > user_lock_limit)
4784 extra = user_locked - user_lock_limit;
4785
4786 lock_limit = rlimit(RLIMIT_MEMLOCK);
4787 lock_limit >>= PAGE_SHIFT;
4788 locked = vma->vm_mm->pinned_vm + extra;
4789
4790 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
4791 !capable(CAP_IPC_LOCK)) {
4792 ret = -EPERM;
4793 goto unlock;
4794 }
4795
4796 WARN_ON(!rb && event->rb);
4797
4798 if (vma->vm_flags & VM_WRITE)
4799 flags |= RING_BUFFER_WRITABLE;
4800
4801 if (!rb) {
4802 rb = rb_alloc(nr_pages,
4803 event->attr.watermark ? event->attr.wakeup_watermark : 0,
4804 event->cpu, flags);
4805
4806 if (!rb) {
4807 ret = -ENOMEM;
4808 goto unlock;
4809 }
4810
4811 atomic_set(&rb->mmap_count, 1);
4812 rb->mmap_user = get_current_user();
4813 rb->mmap_locked = extra;
4814
4815 ring_buffer_attach(event, rb);
4816
4817 perf_event_init_userpage(event);
4818 perf_event_update_userpage(event);
4819 } else {
4820 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
4821 event->attr.aux_watermark, flags);
4822 if (!ret)
4823 rb->aux_mmap_locked = extra;
4824 }
4825
4826 unlock:
4827 if (!ret) {
4828 atomic_long_add(user_extra, &user->locked_vm);
4829 vma->vm_mm->pinned_vm += extra;
4830
4831 atomic_inc(&event->mmap_count);
4832 } else if (rb) {
4833 atomic_dec(&rb->mmap_count);
4834 }
4835 aux_unlock:
4836 mutex_unlock(&event->mmap_mutex);
4837
4838 /*
4839 * Since pinned accounting is per vm we cannot allow fork() to copy our
4840 * vma.
4841 */
4842 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
4843 vma->vm_ops = &perf_mmap_vmops;
4844
4845 if (event->pmu->event_mapped)
4846 event->pmu->event_mapped(event);
4847
4848 return ret;
4849 }
4850
4851 static int perf_fasync(int fd, struct file *filp, int on)
4852 {
4853 struct inode *inode = file_inode(filp);
4854 struct perf_event *event = filp->private_data;
4855 int retval;
4856
4857 mutex_lock(&inode->i_mutex);
4858 retval = fasync_helper(fd, filp, on, &event->fasync);
4859 mutex_unlock(&inode->i_mutex);
4860
4861 if (retval < 0)
4862 return retval;
4863
4864 return 0;
4865 }
4866
4867 static const struct file_operations perf_fops = {
4868 .llseek = no_llseek,
4869 .release = perf_release,
4870 .read = perf_read,
4871 .poll = perf_poll,
4872 .unlocked_ioctl = perf_ioctl,
4873 .compat_ioctl = perf_compat_ioctl,
4874 .mmap = perf_mmap,
4875 .fasync = perf_fasync,
4876 };
4877
4878 /*
4879 * Perf event wakeup
4880 *
4881 * If there's data, ensure we set the poll() state and publish everything
4882 * to user-space before waking everybody up.
4883 */
4884
4885 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
4886 {
4887 /* only the parent has fasync state */
4888 if (event->parent)
4889 event = event->parent;
4890 return &event->fasync;
4891 }
4892
4893 void perf_event_wakeup(struct perf_event *event)
4894 {
4895 ring_buffer_wakeup(event);
4896
4897 if (event->pending_kill) {
4898 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
4899 event->pending_kill = 0;
4900 }
4901 }
4902
4903 static void perf_pending_event(struct irq_work *entry)
4904 {
4905 struct perf_event *event = container_of(entry,
4906 struct perf_event, pending);
4907 int rctx;
4908
4909 rctx = perf_swevent_get_recursion_context();
4910 /*
4911 * If we 'fail' here, that's OK, it means recursion is already disabled
4912 * and we won't recurse 'further'.
4913 */
4914
4915 if (event->pending_disable) {
4916 event->pending_disable = 0;
4917 __perf_event_disable(event);
4918 }
4919
4920 if (event->pending_wakeup) {
4921 event->pending_wakeup = 0;
4922 perf_event_wakeup(event);
4923 }
4924
4925 if (rctx >= 0)
4926 perf_swevent_put_recursion_context(rctx);
4927 }
4928
4929 /*
4930 * We assume there is only KVM supporting the callbacks.
4931 * Later on, we might change it to a list if there is
4932 * another virtualization implementation supporting the callbacks.
4933 */
4934 struct perf_guest_info_callbacks *perf_guest_cbs;
4935
4936 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4937 {
4938 perf_guest_cbs = cbs;
4939 return 0;
4940 }
4941 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
4942
4943 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4944 {
4945 perf_guest_cbs = NULL;
4946 return 0;
4947 }
4948 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
4949
4950 static void
4951 perf_output_sample_regs(struct perf_output_handle *handle,
4952 struct pt_regs *regs, u64 mask)
4953 {
4954 int bit;
4955
4956 for_each_set_bit(bit, (const unsigned long *) &mask,
4957 sizeof(mask) * BITS_PER_BYTE) {
4958 u64 val;
4959
4960 val = perf_reg_value(regs, bit);
4961 perf_output_put(handle, val);
4962 }
4963 }
4964
4965 static void perf_sample_regs_user(struct perf_regs *regs_user,
4966 struct pt_regs *regs,
4967 struct pt_regs *regs_user_copy)
4968 {
4969 if (user_mode(regs)) {
4970 regs_user->abi = perf_reg_abi(current);
4971 regs_user->regs = regs;
4972 } else if (current->mm) {
4973 perf_get_regs_user(regs_user, regs, regs_user_copy);
4974 } else {
4975 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
4976 regs_user->regs = NULL;
4977 }
4978 }
4979
4980 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
4981 struct pt_regs *regs)
4982 {
4983 regs_intr->regs = regs;
4984 regs_intr->abi = perf_reg_abi(current);
4985 }
4986
4987
4988 /*
4989 * Get remaining task size from user stack pointer.
4990 *
4991 * It'd be better to take stack vma map and limit this more
4992 * precisly, but there's no way to get it safely under interrupt,
4993 * so using TASK_SIZE as limit.
4994 */
4995 static u64 perf_ustack_task_size(struct pt_regs *regs)
4996 {
4997 unsigned long addr = perf_user_stack_pointer(regs);
4998
4999 if (!addr || addr >= TASK_SIZE)
5000 return 0;
5001
5002 return TASK_SIZE - addr;
5003 }
5004
5005 static u16
5006 perf_sample_ustack_size(u16 stack_size, u16 header_size,
5007 struct pt_regs *regs)
5008 {
5009 u64 task_size;
5010
5011 /* No regs, no stack pointer, no dump. */
5012 if (!regs)
5013 return 0;
5014
5015 /*
5016 * Check if we fit in with the requested stack size into the:
5017 * - TASK_SIZE
5018 * If we don't, we limit the size to the TASK_SIZE.
5019 *
5020 * - remaining sample size
5021 * If we don't, we customize the stack size to
5022 * fit in to the remaining sample size.
5023 */
5024
5025 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5026 stack_size = min(stack_size, (u16) task_size);
5027
5028 /* Current header size plus static size and dynamic size. */
5029 header_size += 2 * sizeof(u64);
5030
5031 /* Do we fit in with the current stack dump size? */
5032 if ((u16) (header_size + stack_size) < header_size) {
5033 /*
5034 * If we overflow the maximum size for the sample,
5035 * we customize the stack dump size to fit in.
5036 */
5037 stack_size = USHRT_MAX - header_size - sizeof(u64);
5038 stack_size = round_up(stack_size, sizeof(u64));
5039 }
5040
5041 return stack_size;
5042 }
5043
5044 static void
5045 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5046 struct pt_regs *regs)
5047 {
5048 /* Case of a kernel thread, nothing to dump */
5049 if (!regs) {
5050 u64 size = 0;
5051 perf_output_put(handle, size);
5052 } else {
5053 unsigned long sp;
5054 unsigned int rem;
5055 u64 dyn_size;
5056
5057 /*
5058 * We dump:
5059 * static size
5060 * - the size requested by user or the best one we can fit
5061 * in to the sample max size
5062 * data
5063 * - user stack dump data
5064 * dynamic size
5065 * - the actual dumped size
5066 */
5067
5068 /* Static size. */
5069 perf_output_put(handle, dump_size);
5070
5071 /* Data. */
5072 sp = perf_user_stack_pointer(regs);
5073 rem = __output_copy_user(handle, (void *) sp, dump_size);
5074 dyn_size = dump_size - rem;
5075
5076 perf_output_skip(handle, rem);
5077
5078 /* Dynamic size. */
5079 perf_output_put(handle, dyn_size);
5080 }
5081 }
5082
5083 static void __perf_event_header__init_id(struct perf_event_header *header,
5084 struct perf_sample_data *data,
5085 struct perf_event *event)
5086 {
5087 u64 sample_type = event->attr.sample_type;
5088
5089 data->type = sample_type;
5090 header->size += event->id_header_size;
5091
5092 if (sample_type & PERF_SAMPLE_TID) {
5093 /* namespace issues */
5094 data->tid_entry.pid = perf_event_pid(event, current);
5095 data->tid_entry.tid = perf_event_tid(event, current);
5096 }
5097
5098 if (sample_type & PERF_SAMPLE_TIME)
5099 data->time = perf_event_clock(event);
5100
5101 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5102 data->id = primary_event_id(event);
5103
5104 if (sample_type & PERF_SAMPLE_STREAM_ID)
5105 data->stream_id = event->id;
5106
5107 if (sample_type & PERF_SAMPLE_CPU) {
5108 data->cpu_entry.cpu = raw_smp_processor_id();
5109 data->cpu_entry.reserved = 0;
5110 }
5111 }
5112
5113 void perf_event_header__init_id(struct perf_event_header *header,
5114 struct perf_sample_data *data,
5115 struct perf_event *event)
5116 {
5117 if (event->attr.sample_id_all)
5118 __perf_event_header__init_id(header, data, event);
5119 }
5120
5121 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5122 struct perf_sample_data *data)
5123 {
5124 u64 sample_type = data->type;
5125
5126 if (sample_type & PERF_SAMPLE_TID)
5127 perf_output_put(handle, data->tid_entry);
5128
5129 if (sample_type & PERF_SAMPLE_TIME)
5130 perf_output_put(handle, data->time);
5131
5132 if (sample_type & PERF_SAMPLE_ID)
5133 perf_output_put(handle, data->id);
5134
5135 if (sample_type & PERF_SAMPLE_STREAM_ID)
5136 perf_output_put(handle, data->stream_id);
5137
5138 if (sample_type & PERF_SAMPLE_CPU)
5139 perf_output_put(handle, data->cpu_entry);
5140
5141 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5142 perf_output_put(handle, data->id);
5143 }
5144
5145 void perf_event__output_id_sample(struct perf_event *event,
5146 struct perf_output_handle *handle,
5147 struct perf_sample_data *sample)
5148 {
5149 if (event->attr.sample_id_all)
5150 __perf_event__output_id_sample(handle, sample);
5151 }
5152
5153 static void perf_output_read_one(struct perf_output_handle *handle,
5154 struct perf_event *event,
5155 u64 enabled, u64 running)
5156 {
5157 u64 read_format = event->attr.read_format;
5158 u64 values[4];
5159 int n = 0;
5160
5161 values[n++] = perf_event_count(event);
5162 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5163 values[n++] = enabled +
5164 atomic64_read(&event->child_total_time_enabled);
5165 }
5166 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5167 values[n++] = running +
5168 atomic64_read(&event->child_total_time_running);
5169 }
5170 if (read_format & PERF_FORMAT_ID)
5171 values[n++] = primary_event_id(event);
5172
5173 __output_copy(handle, values, n * sizeof(u64));
5174 }
5175
5176 /*
5177 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
5178 */
5179 static void perf_output_read_group(struct perf_output_handle *handle,
5180 struct perf_event *event,
5181 u64 enabled, u64 running)
5182 {
5183 struct perf_event *leader = event->group_leader, *sub;
5184 u64 read_format = event->attr.read_format;
5185 u64 values[5];
5186 int n = 0;
5187
5188 values[n++] = 1 + leader->nr_siblings;
5189
5190 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5191 values[n++] = enabled;
5192
5193 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5194 values[n++] = running;
5195
5196 if (leader != event)
5197 leader->pmu->read(leader);
5198
5199 values[n++] = perf_event_count(leader);
5200 if (read_format & PERF_FORMAT_ID)
5201 values[n++] = primary_event_id(leader);
5202
5203 __output_copy(handle, values, n * sizeof(u64));
5204
5205 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5206 n = 0;
5207
5208 if ((sub != event) &&
5209 (sub->state == PERF_EVENT_STATE_ACTIVE))
5210 sub->pmu->read(sub);
5211
5212 values[n++] = perf_event_count(sub);
5213 if (read_format & PERF_FORMAT_ID)
5214 values[n++] = primary_event_id(sub);
5215
5216 __output_copy(handle, values, n * sizeof(u64));
5217 }
5218 }
5219
5220 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5221 PERF_FORMAT_TOTAL_TIME_RUNNING)
5222
5223 static void perf_output_read(struct perf_output_handle *handle,
5224 struct perf_event *event)
5225 {
5226 u64 enabled = 0, running = 0, now;
5227 u64 read_format = event->attr.read_format;
5228
5229 /*
5230 * compute total_time_enabled, total_time_running
5231 * based on snapshot values taken when the event
5232 * was last scheduled in.
5233 *
5234 * we cannot simply called update_context_time()
5235 * because of locking issue as we are called in
5236 * NMI context
5237 */
5238 if (read_format & PERF_FORMAT_TOTAL_TIMES)
5239 calc_timer_values(event, &now, &enabled, &running);
5240
5241 if (event->attr.read_format & PERF_FORMAT_GROUP)
5242 perf_output_read_group(handle, event, enabled, running);
5243 else
5244 perf_output_read_one(handle, event, enabled, running);
5245 }
5246
5247 void perf_output_sample(struct perf_output_handle *handle,
5248 struct perf_event_header *header,
5249 struct perf_sample_data *data,
5250 struct perf_event *event)
5251 {
5252 u64 sample_type = data->type;
5253
5254 perf_output_put(handle, *header);
5255
5256 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5257 perf_output_put(handle, data->id);
5258
5259 if (sample_type & PERF_SAMPLE_IP)
5260 perf_output_put(handle, data->ip);
5261
5262 if (sample_type & PERF_SAMPLE_TID)
5263 perf_output_put(handle, data->tid_entry);
5264
5265 if (sample_type & PERF_SAMPLE_TIME)
5266 perf_output_put(handle, data->time);
5267
5268 if (sample_type & PERF_SAMPLE_ADDR)
5269 perf_output_put(handle, data->addr);
5270
5271 if (sample_type & PERF_SAMPLE_ID)
5272 perf_output_put(handle, data->id);
5273
5274 if (sample_type & PERF_SAMPLE_STREAM_ID)
5275 perf_output_put(handle, data->stream_id);
5276
5277 if (sample_type & PERF_SAMPLE_CPU)
5278 perf_output_put(handle, data->cpu_entry);
5279
5280 if (sample_type & PERF_SAMPLE_PERIOD)
5281 perf_output_put(handle, data->period);
5282
5283 if (sample_type & PERF_SAMPLE_READ)
5284 perf_output_read(handle, event);
5285
5286 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5287 if (data->callchain) {
5288 int size = 1;
5289
5290 if (data->callchain)
5291 size += data->callchain->nr;
5292
5293 size *= sizeof(u64);
5294
5295 __output_copy(handle, data->callchain, size);
5296 } else {
5297 u64 nr = 0;
5298 perf_output_put(handle, nr);
5299 }
5300 }
5301
5302 if (sample_type & PERF_SAMPLE_RAW) {
5303 if (data->raw) {
5304 u32 raw_size = data->raw->size;
5305 u32 real_size = round_up(raw_size + sizeof(u32),
5306 sizeof(u64)) - sizeof(u32);
5307 u64 zero = 0;
5308
5309 perf_output_put(handle, real_size);
5310 __output_copy(handle, data->raw->data, raw_size);
5311 if (real_size - raw_size)
5312 __output_copy(handle, &zero, real_size - raw_size);
5313 } else {
5314 struct {
5315 u32 size;
5316 u32 data;
5317 } raw = {
5318 .size = sizeof(u32),
5319 .data = 0,
5320 };
5321 perf_output_put(handle, raw);
5322 }
5323 }
5324
5325 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5326 if (data->br_stack) {
5327 size_t size;
5328
5329 size = data->br_stack->nr
5330 * sizeof(struct perf_branch_entry);
5331
5332 perf_output_put(handle, data->br_stack->nr);
5333 perf_output_copy(handle, data->br_stack->entries, size);
5334 } else {
5335 /*
5336 * we always store at least the value of nr
5337 */
5338 u64 nr = 0;
5339 perf_output_put(handle, nr);
5340 }
5341 }
5342
5343 if (sample_type & PERF_SAMPLE_REGS_USER) {
5344 u64 abi = data->regs_user.abi;
5345
5346 /*
5347 * If there are no regs to dump, notice it through
5348 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5349 */
5350 perf_output_put(handle, abi);
5351
5352 if (abi) {
5353 u64 mask = event->attr.sample_regs_user;
5354 perf_output_sample_regs(handle,
5355 data->regs_user.regs,
5356 mask);
5357 }
5358 }
5359
5360 if (sample_type & PERF_SAMPLE_STACK_USER) {
5361 perf_output_sample_ustack(handle,
5362 data->stack_user_size,
5363 data->regs_user.regs);
5364 }
5365
5366 if (sample_type & PERF_SAMPLE_WEIGHT)
5367 perf_output_put(handle, data->weight);
5368
5369 if (sample_type & PERF_SAMPLE_DATA_SRC)
5370 perf_output_put(handle, data->data_src.val);
5371
5372 if (sample_type & PERF_SAMPLE_TRANSACTION)
5373 perf_output_put(handle, data->txn);
5374
5375 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5376 u64 abi = data->regs_intr.abi;
5377 /*
5378 * If there are no regs to dump, notice it through
5379 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5380 */
5381 perf_output_put(handle, abi);
5382
5383 if (abi) {
5384 u64 mask = event->attr.sample_regs_intr;
5385
5386 perf_output_sample_regs(handle,
5387 data->regs_intr.regs,
5388 mask);
5389 }
5390 }
5391
5392 if (!event->attr.watermark) {
5393 int wakeup_events = event->attr.wakeup_events;
5394
5395 if (wakeup_events) {
5396 struct ring_buffer *rb = handle->rb;
5397 int events = local_inc_return(&rb->events);
5398
5399 if (events >= wakeup_events) {
5400 local_sub(wakeup_events, &rb->events);
5401 local_inc(&rb->wakeup);
5402 }
5403 }
5404 }
5405 }
5406
5407 void perf_prepare_sample(struct perf_event_header *header,
5408 struct perf_sample_data *data,
5409 struct perf_event *event,
5410 struct pt_regs *regs)
5411 {
5412 u64 sample_type = event->attr.sample_type;
5413
5414 header->type = PERF_RECORD_SAMPLE;
5415 header->size = sizeof(*header) + event->header_size;
5416
5417 header->misc = 0;
5418 header->misc |= perf_misc_flags(regs);
5419
5420 __perf_event_header__init_id(header, data, event);
5421
5422 if (sample_type & PERF_SAMPLE_IP)
5423 data->ip = perf_instruction_pointer(regs);
5424
5425 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5426 int size = 1;
5427
5428 data->callchain = perf_callchain(event, regs);
5429
5430 if (data->callchain)
5431 size += data->callchain->nr;
5432
5433 header->size += size * sizeof(u64);
5434 }
5435
5436 if (sample_type & PERF_SAMPLE_RAW) {
5437 int size = sizeof(u32);
5438
5439 if (data->raw)
5440 size += data->raw->size;
5441 else
5442 size += sizeof(u32);
5443
5444 header->size += round_up(size, sizeof(u64));
5445 }
5446
5447 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5448 int size = sizeof(u64); /* nr */
5449 if (data->br_stack) {
5450 size += data->br_stack->nr
5451 * sizeof(struct perf_branch_entry);
5452 }
5453 header->size += size;
5454 }
5455
5456 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
5457 perf_sample_regs_user(&data->regs_user, regs,
5458 &data->regs_user_copy);
5459
5460 if (sample_type & PERF_SAMPLE_REGS_USER) {
5461 /* regs dump ABI info */
5462 int size = sizeof(u64);
5463
5464 if (data->regs_user.regs) {
5465 u64 mask = event->attr.sample_regs_user;
5466 size += hweight64(mask) * sizeof(u64);
5467 }
5468
5469 header->size += size;
5470 }
5471
5472 if (sample_type & PERF_SAMPLE_STACK_USER) {
5473 /*
5474 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
5475 * processed as the last one or have additional check added
5476 * in case new sample type is added, because we could eat
5477 * up the rest of the sample size.
5478 */
5479 u16 stack_size = event->attr.sample_stack_user;
5480 u16 size = sizeof(u64);
5481
5482 stack_size = perf_sample_ustack_size(stack_size, header->size,
5483 data->regs_user.regs);
5484
5485 /*
5486 * If there is something to dump, add space for the dump
5487 * itself and for the field that tells the dynamic size,
5488 * which is how many have been actually dumped.
5489 */
5490 if (stack_size)
5491 size += sizeof(u64) + stack_size;
5492
5493 data->stack_user_size = stack_size;
5494 header->size += size;
5495 }
5496
5497 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5498 /* regs dump ABI info */
5499 int size = sizeof(u64);
5500
5501 perf_sample_regs_intr(&data->regs_intr, regs);
5502
5503 if (data->regs_intr.regs) {
5504 u64 mask = event->attr.sample_regs_intr;
5505
5506 size += hweight64(mask) * sizeof(u64);
5507 }
5508
5509 header->size += size;
5510 }
5511 }
5512
5513 void perf_event_output(struct perf_event *event,
5514 struct perf_sample_data *data,
5515 struct pt_regs *regs)
5516 {
5517 struct perf_output_handle handle;
5518 struct perf_event_header header;
5519
5520 /* protect the callchain buffers */
5521 rcu_read_lock();
5522
5523 perf_prepare_sample(&header, data, event, regs);
5524
5525 if (perf_output_begin(&handle, event, header.size))
5526 goto exit;
5527
5528 perf_output_sample(&handle, &header, data, event);
5529
5530 perf_output_end(&handle);
5531
5532 exit:
5533 rcu_read_unlock();
5534 }
5535
5536 /*
5537 * read event_id
5538 */
5539
5540 struct perf_read_event {
5541 struct perf_event_header header;
5542
5543 u32 pid;
5544 u32 tid;
5545 };
5546
5547 static void
5548 perf_event_read_event(struct perf_event *event,
5549 struct task_struct *task)
5550 {
5551 struct perf_output_handle handle;
5552 struct perf_sample_data sample;
5553 struct perf_read_event read_event = {
5554 .header = {
5555 .type = PERF_RECORD_READ,
5556 .misc = 0,
5557 .size = sizeof(read_event) + event->read_size,
5558 },
5559 .pid = perf_event_pid(event, task),
5560 .tid = perf_event_tid(event, task),
5561 };
5562 int ret;
5563
5564 perf_event_header__init_id(&read_event.header, &sample, event);
5565 ret = perf_output_begin(&handle, event, read_event.header.size);
5566 if (ret)
5567 return;
5568
5569 perf_output_put(&handle, read_event);
5570 perf_output_read(&handle, event);
5571 perf_event__output_id_sample(event, &handle, &sample);
5572
5573 perf_output_end(&handle);
5574 }
5575
5576 typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
5577
5578 static void
5579 perf_event_aux_ctx(struct perf_event_context *ctx,
5580 perf_event_aux_output_cb output,
5581 void *data)
5582 {
5583 struct perf_event *event;
5584
5585 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5586 if (event->state < PERF_EVENT_STATE_INACTIVE)
5587 continue;
5588 if (!event_filter_match(event))
5589 continue;
5590 output(event, data);
5591 }
5592 }
5593
5594 static void
5595 perf_event_aux_task_ctx(perf_event_aux_output_cb output, void *data,
5596 struct perf_event_context *task_ctx)
5597 {
5598 rcu_read_lock();
5599 preempt_disable();
5600 perf_event_aux_ctx(task_ctx, output, data);
5601 preempt_enable();
5602 rcu_read_unlock();
5603 }
5604
5605 static void
5606 perf_event_aux(perf_event_aux_output_cb output, void *data,
5607 struct perf_event_context *task_ctx)
5608 {
5609 struct perf_cpu_context *cpuctx;
5610 struct perf_event_context *ctx;
5611 struct pmu *pmu;
5612 int ctxn;
5613
5614 /*
5615 * If we have task_ctx != NULL we only notify
5616 * the task context itself. The task_ctx is set
5617 * only for EXIT events before releasing task
5618 * context.
5619 */
5620 if (task_ctx) {
5621 perf_event_aux_task_ctx(output, data, task_ctx);
5622 return;
5623 }
5624
5625 rcu_read_lock();
5626 list_for_each_entry_rcu(pmu, &pmus, entry) {
5627 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
5628 if (cpuctx->unique_pmu != pmu)
5629 goto next;
5630 perf_event_aux_ctx(&cpuctx->ctx, output, data);
5631 ctxn = pmu->task_ctx_nr;
5632 if (ctxn < 0)
5633 goto next;
5634 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
5635 if (ctx)
5636 perf_event_aux_ctx(ctx, output, data);
5637 next:
5638 put_cpu_ptr(pmu->pmu_cpu_context);
5639 }
5640 rcu_read_unlock();
5641 }
5642
5643 /*
5644 * task tracking -- fork/exit
5645 *
5646 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
5647 */
5648
5649 struct perf_task_event {
5650 struct task_struct *task;
5651 struct perf_event_context *task_ctx;
5652
5653 struct {
5654 struct perf_event_header header;
5655
5656 u32 pid;
5657 u32 ppid;
5658 u32 tid;
5659 u32 ptid;
5660 u64 time;
5661 } event_id;
5662 };
5663
5664 static int perf_event_task_match(struct perf_event *event)
5665 {
5666 return event->attr.comm || event->attr.mmap ||
5667 event->attr.mmap2 || event->attr.mmap_data ||
5668 event->attr.task;
5669 }
5670
5671 static void perf_event_task_output(struct perf_event *event,
5672 void *data)
5673 {
5674 struct perf_task_event *task_event = data;
5675 struct perf_output_handle handle;
5676 struct perf_sample_data sample;
5677 struct task_struct *task = task_event->task;
5678 int ret, size = task_event->event_id.header.size;
5679
5680 if (!perf_event_task_match(event))
5681 return;
5682
5683 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
5684
5685 ret = perf_output_begin(&handle, event,
5686 task_event->event_id.header.size);
5687 if (ret)
5688 goto out;
5689
5690 task_event->event_id.pid = perf_event_pid(event, task);
5691 task_event->event_id.ppid = perf_event_pid(event, current);
5692
5693 task_event->event_id.tid = perf_event_tid(event, task);
5694 task_event->event_id.ptid = perf_event_tid(event, current);
5695
5696 task_event->event_id.time = perf_event_clock(event);
5697
5698 perf_output_put(&handle, task_event->event_id);
5699
5700 perf_event__output_id_sample(event, &handle, &sample);
5701
5702 perf_output_end(&handle);
5703 out:
5704 task_event->event_id.header.size = size;
5705 }
5706
5707 static void perf_event_task(struct task_struct *task,
5708 struct perf_event_context *task_ctx,
5709 int new)
5710 {
5711 struct perf_task_event task_event;
5712
5713 if (!atomic_read(&nr_comm_events) &&
5714 !atomic_read(&nr_mmap_events) &&
5715 !atomic_read(&nr_task_events))
5716 return;
5717
5718 task_event = (struct perf_task_event){
5719 .task = task,
5720 .task_ctx = task_ctx,
5721 .event_id = {
5722 .header = {
5723 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
5724 .misc = 0,
5725 .size = sizeof(task_event.event_id),
5726 },
5727 /* .pid */
5728 /* .ppid */
5729 /* .tid */
5730 /* .ptid */
5731 /* .time */
5732 },
5733 };
5734
5735 perf_event_aux(perf_event_task_output,
5736 &task_event,
5737 task_ctx);
5738 }
5739
5740 void perf_event_fork(struct task_struct *task)
5741 {
5742 perf_event_task(task, NULL, 1);
5743 }
5744
5745 /*
5746 * comm tracking
5747 */
5748
5749 struct perf_comm_event {
5750 struct task_struct *task;
5751 char *comm;
5752 int comm_size;
5753
5754 struct {
5755 struct perf_event_header header;
5756
5757 u32 pid;
5758 u32 tid;
5759 } event_id;
5760 };
5761
5762 static int perf_event_comm_match(struct perf_event *event)
5763 {
5764 return event->attr.comm;
5765 }
5766
5767 static void perf_event_comm_output(struct perf_event *event,
5768 void *data)
5769 {
5770 struct perf_comm_event *comm_event = data;
5771 struct perf_output_handle handle;
5772 struct perf_sample_data sample;
5773 int size = comm_event->event_id.header.size;
5774 int ret;
5775
5776 if (!perf_event_comm_match(event))
5777 return;
5778
5779 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
5780 ret = perf_output_begin(&handle, event,
5781 comm_event->event_id.header.size);
5782
5783 if (ret)
5784 goto out;
5785
5786 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
5787 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
5788
5789 perf_output_put(&handle, comm_event->event_id);
5790 __output_copy(&handle, comm_event->comm,
5791 comm_event->comm_size);
5792
5793 perf_event__output_id_sample(event, &handle, &sample);
5794
5795 perf_output_end(&handle);
5796 out:
5797 comm_event->event_id.header.size = size;
5798 }
5799
5800 static void perf_event_comm_event(struct perf_comm_event *comm_event)
5801 {
5802 char comm[TASK_COMM_LEN];
5803 unsigned int size;
5804
5805 memset(comm, 0, sizeof(comm));
5806 strlcpy(comm, comm_event->task->comm, sizeof(comm));
5807 size = ALIGN(strlen(comm)+1, sizeof(u64));
5808
5809 comm_event->comm = comm;
5810 comm_event->comm_size = size;
5811
5812 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
5813
5814 perf_event_aux(perf_event_comm_output,
5815 comm_event,
5816 NULL);
5817 }
5818
5819 void perf_event_comm(struct task_struct *task, bool exec)
5820 {
5821 struct perf_comm_event comm_event;
5822
5823 if (!atomic_read(&nr_comm_events))
5824 return;
5825
5826 comm_event = (struct perf_comm_event){
5827 .task = task,
5828 /* .comm */
5829 /* .comm_size */
5830 .event_id = {
5831 .header = {
5832 .type = PERF_RECORD_COMM,
5833 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
5834 /* .size */
5835 },
5836 /* .pid */
5837 /* .tid */
5838 },
5839 };
5840
5841 perf_event_comm_event(&comm_event);
5842 }
5843
5844 /*
5845 * mmap tracking
5846 */
5847
5848 struct perf_mmap_event {
5849 struct vm_area_struct *vma;
5850
5851 const char *file_name;
5852 int file_size;
5853 int maj, min;
5854 u64 ino;
5855 u64 ino_generation;
5856 u32 prot, flags;
5857
5858 struct {
5859 struct perf_event_header header;
5860
5861 u32 pid;
5862 u32 tid;
5863 u64 start;
5864 u64 len;
5865 u64 pgoff;
5866 } event_id;
5867 };
5868
5869 static int perf_event_mmap_match(struct perf_event *event,
5870 void *data)
5871 {
5872 struct perf_mmap_event *mmap_event = data;
5873 struct vm_area_struct *vma = mmap_event->vma;
5874 int executable = vma->vm_flags & VM_EXEC;
5875
5876 return (!executable && event->attr.mmap_data) ||
5877 (executable && (event->attr.mmap || event->attr.mmap2));
5878 }
5879
5880 static void perf_event_mmap_output(struct perf_event *event,
5881 void *data)
5882 {
5883 struct perf_mmap_event *mmap_event = data;
5884 struct perf_output_handle handle;
5885 struct perf_sample_data sample;
5886 int size = mmap_event->event_id.header.size;
5887 int ret;
5888
5889 if (!perf_event_mmap_match(event, data))
5890 return;
5891
5892 if (event->attr.mmap2) {
5893 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
5894 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
5895 mmap_event->event_id.header.size += sizeof(mmap_event->min);
5896 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
5897 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
5898 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
5899 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
5900 }
5901
5902 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
5903 ret = perf_output_begin(&handle, event,
5904 mmap_event->event_id.header.size);
5905 if (ret)
5906 goto out;
5907
5908 mmap_event->event_id.pid = perf_event_pid(event, current);
5909 mmap_event->event_id.tid = perf_event_tid(event, current);
5910
5911 perf_output_put(&handle, mmap_event->event_id);
5912
5913 if (event->attr.mmap2) {
5914 perf_output_put(&handle, mmap_event->maj);
5915 perf_output_put(&handle, mmap_event->min);
5916 perf_output_put(&handle, mmap_event->ino);
5917 perf_output_put(&handle, mmap_event->ino_generation);
5918 perf_output_put(&handle, mmap_event->prot);
5919 perf_output_put(&handle, mmap_event->flags);
5920 }
5921
5922 __output_copy(&handle, mmap_event->file_name,
5923 mmap_event->file_size);
5924
5925 perf_event__output_id_sample(event, &handle, &sample);
5926
5927 perf_output_end(&handle);
5928 out:
5929 mmap_event->event_id.header.size = size;
5930 }
5931
5932 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
5933 {
5934 struct vm_area_struct *vma = mmap_event->vma;
5935 struct file *file = vma->vm_file;
5936 int maj = 0, min = 0;
5937 u64 ino = 0, gen = 0;
5938 u32 prot = 0, flags = 0;
5939 unsigned int size;
5940 char tmp[16];
5941 char *buf = NULL;
5942 char *name;
5943
5944 if (file) {
5945 struct inode *inode;
5946 dev_t dev;
5947
5948 buf = kmalloc(PATH_MAX, GFP_KERNEL);
5949 if (!buf) {
5950 name = "//enomem";
5951 goto cpy_name;
5952 }
5953 /*
5954 * d_path() works from the end of the rb backwards, so we
5955 * need to add enough zero bytes after the string to handle
5956 * the 64bit alignment we do later.
5957 */
5958 name = file_path(file, buf, PATH_MAX - sizeof(u64));
5959 if (IS_ERR(name)) {
5960 name = "//toolong";
5961 goto cpy_name;
5962 }
5963 inode = file_inode(vma->vm_file);
5964 dev = inode->i_sb->s_dev;
5965 ino = inode->i_ino;
5966 gen = inode->i_generation;
5967 maj = MAJOR(dev);
5968 min = MINOR(dev);
5969
5970 if (vma->vm_flags & VM_READ)
5971 prot |= PROT_READ;
5972 if (vma->vm_flags & VM_WRITE)
5973 prot |= PROT_WRITE;
5974 if (vma->vm_flags & VM_EXEC)
5975 prot |= PROT_EXEC;
5976
5977 if (vma->vm_flags & VM_MAYSHARE)
5978 flags = MAP_SHARED;
5979 else
5980 flags = MAP_PRIVATE;
5981
5982 if (vma->vm_flags & VM_DENYWRITE)
5983 flags |= MAP_DENYWRITE;
5984 if (vma->vm_flags & VM_MAYEXEC)
5985 flags |= MAP_EXECUTABLE;
5986 if (vma->vm_flags & VM_LOCKED)
5987 flags |= MAP_LOCKED;
5988 if (vma->vm_flags & VM_HUGETLB)
5989 flags |= MAP_HUGETLB;
5990
5991 goto got_name;
5992 } else {
5993 if (vma->vm_ops && vma->vm_ops->name) {
5994 name = (char *) vma->vm_ops->name(vma);
5995 if (name)
5996 goto cpy_name;
5997 }
5998
5999 name = (char *)arch_vma_name(vma);
6000 if (name)
6001 goto cpy_name;
6002
6003 if (vma->vm_start <= vma->vm_mm->start_brk &&
6004 vma->vm_end >= vma->vm_mm->brk) {
6005 name = "[heap]";
6006 goto cpy_name;
6007 }
6008 if (vma->vm_start <= vma->vm_mm->start_stack &&
6009 vma->vm_end >= vma->vm_mm->start_stack) {
6010 name = "[stack]";
6011 goto cpy_name;
6012 }
6013
6014 name = "//anon";
6015 goto cpy_name;
6016 }
6017
6018 cpy_name:
6019 strlcpy(tmp, name, sizeof(tmp));
6020 name = tmp;
6021 got_name:
6022 /*
6023 * Since our buffer works in 8 byte units we need to align our string
6024 * size to a multiple of 8. However, we must guarantee the tail end is
6025 * zero'd out to avoid leaking random bits to userspace.
6026 */
6027 size = strlen(name)+1;
6028 while (!IS_ALIGNED(size, sizeof(u64)))
6029 name[size++] = '\0';
6030
6031 mmap_event->file_name = name;
6032 mmap_event->file_size = size;
6033 mmap_event->maj = maj;
6034 mmap_event->min = min;
6035 mmap_event->ino = ino;
6036 mmap_event->ino_generation = gen;
6037 mmap_event->prot = prot;
6038 mmap_event->flags = flags;
6039
6040 if (!(vma->vm_flags & VM_EXEC))
6041 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6042
6043 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
6044
6045 perf_event_aux(perf_event_mmap_output,
6046 mmap_event,
6047 NULL);
6048
6049 kfree(buf);
6050 }
6051
6052 void perf_event_mmap(struct vm_area_struct *vma)
6053 {
6054 struct perf_mmap_event mmap_event;
6055
6056 if (!atomic_read(&nr_mmap_events))
6057 return;
6058
6059 mmap_event = (struct perf_mmap_event){
6060 .vma = vma,
6061 /* .file_name */
6062 /* .file_size */
6063 .event_id = {
6064 .header = {
6065 .type = PERF_RECORD_MMAP,
6066 .misc = PERF_RECORD_MISC_USER,
6067 /* .size */
6068 },
6069 /* .pid */
6070 /* .tid */
6071 .start = vma->vm_start,
6072 .len = vma->vm_end - vma->vm_start,
6073 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
6074 },
6075 /* .maj (attr_mmap2 only) */
6076 /* .min (attr_mmap2 only) */
6077 /* .ino (attr_mmap2 only) */
6078 /* .ino_generation (attr_mmap2 only) */
6079 /* .prot (attr_mmap2 only) */
6080 /* .flags (attr_mmap2 only) */
6081 };
6082
6083 perf_event_mmap_event(&mmap_event);
6084 }
6085
6086 void perf_event_aux_event(struct perf_event *event, unsigned long head,
6087 unsigned long size, u64 flags)
6088 {
6089 struct perf_output_handle handle;
6090 struct perf_sample_data sample;
6091 struct perf_aux_event {
6092 struct perf_event_header header;
6093 u64 offset;
6094 u64 size;
6095 u64 flags;
6096 } rec = {
6097 .header = {
6098 .type = PERF_RECORD_AUX,
6099 .misc = 0,
6100 .size = sizeof(rec),
6101 },
6102 .offset = head,
6103 .size = size,
6104 .flags = flags,
6105 };
6106 int ret;
6107
6108 perf_event_header__init_id(&rec.header, &sample, event);
6109 ret = perf_output_begin(&handle, event, rec.header.size);
6110
6111 if (ret)
6112 return;
6113
6114 perf_output_put(&handle, rec);
6115 perf_event__output_id_sample(event, &handle, &sample);
6116
6117 perf_output_end(&handle);
6118 }
6119
6120 /*
6121 * Lost/dropped samples logging
6122 */
6123 void perf_log_lost_samples(struct perf_event *event, u64 lost)
6124 {
6125 struct perf_output_handle handle;
6126 struct perf_sample_data sample;
6127 int ret;
6128
6129 struct {
6130 struct perf_event_header header;
6131 u64 lost;
6132 } lost_samples_event = {
6133 .header = {
6134 .type = PERF_RECORD_LOST_SAMPLES,
6135 .misc = 0,
6136 .size = sizeof(lost_samples_event),
6137 },
6138 .lost = lost,
6139 };
6140
6141 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
6142
6143 ret = perf_output_begin(&handle, event,
6144 lost_samples_event.header.size);
6145 if (ret)
6146 return;
6147
6148 perf_output_put(&handle, lost_samples_event);
6149 perf_event__output_id_sample(event, &handle, &sample);
6150 perf_output_end(&handle);
6151 }
6152
6153 /*
6154 * context_switch tracking
6155 */
6156
6157 struct perf_switch_event {
6158 struct task_struct *task;
6159 struct task_struct *next_prev;
6160
6161 struct {
6162 struct perf_event_header header;
6163 u32 next_prev_pid;
6164 u32 next_prev_tid;
6165 } event_id;
6166 };
6167
6168 static int perf_event_switch_match(struct perf_event *event)
6169 {
6170 return event->attr.context_switch;
6171 }
6172
6173 static void perf_event_switch_output(struct perf_event *event, void *data)
6174 {
6175 struct perf_switch_event *se = data;
6176 struct perf_output_handle handle;
6177 struct perf_sample_data sample;
6178 int ret;
6179
6180 if (!perf_event_switch_match(event))
6181 return;
6182
6183 /* Only CPU-wide events are allowed to see next/prev pid/tid */
6184 if (event->ctx->task) {
6185 se->event_id.header.type = PERF_RECORD_SWITCH;
6186 se->event_id.header.size = sizeof(se->event_id.header);
6187 } else {
6188 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
6189 se->event_id.header.size = sizeof(se->event_id);
6190 se->event_id.next_prev_pid =
6191 perf_event_pid(event, se->next_prev);
6192 se->event_id.next_prev_tid =
6193 perf_event_tid(event, se->next_prev);
6194 }
6195
6196 perf_event_header__init_id(&se->event_id.header, &sample, event);
6197
6198 ret = perf_output_begin(&handle, event, se->event_id.header.size);
6199 if (ret)
6200 return;
6201
6202 if (event->ctx->task)
6203 perf_output_put(&handle, se->event_id.header);
6204 else
6205 perf_output_put(&handle, se->event_id);
6206
6207 perf_event__output_id_sample(event, &handle, &sample);
6208
6209 perf_output_end(&handle);
6210 }
6211
6212 static void perf_event_switch(struct task_struct *task,
6213 struct task_struct *next_prev, bool sched_in)
6214 {
6215 struct perf_switch_event switch_event;
6216
6217 /* N.B. caller checks nr_switch_events != 0 */
6218
6219 switch_event = (struct perf_switch_event){
6220 .task = task,
6221 .next_prev = next_prev,
6222 .event_id = {
6223 .header = {
6224 /* .type */
6225 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
6226 /* .size */
6227 },
6228 /* .next_prev_pid */
6229 /* .next_prev_tid */
6230 },
6231 };
6232
6233 perf_event_aux(perf_event_switch_output,
6234 &switch_event,
6235 NULL);
6236 }
6237
6238 /*
6239 * IRQ throttle logging
6240 */
6241
6242 static void perf_log_throttle(struct perf_event *event, int enable)
6243 {
6244 struct perf_output_handle handle;
6245 struct perf_sample_data sample;
6246 int ret;
6247
6248 struct {
6249 struct perf_event_header header;
6250 u64 time;
6251 u64 id;
6252 u64 stream_id;
6253 } throttle_event = {
6254 .header = {
6255 .type = PERF_RECORD_THROTTLE,
6256 .misc = 0,
6257 .size = sizeof(throttle_event),
6258 },
6259 .time = perf_event_clock(event),
6260 .id = primary_event_id(event),
6261 .stream_id = event->id,
6262 };
6263
6264 if (enable)
6265 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
6266
6267 perf_event_header__init_id(&throttle_event.header, &sample, event);
6268
6269 ret = perf_output_begin(&handle, event,
6270 throttle_event.header.size);
6271 if (ret)
6272 return;
6273
6274 perf_output_put(&handle, throttle_event);
6275 perf_event__output_id_sample(event, &handle, &sample);
6276 perf_output_end(&handle);
6277 }
6278
6279 static void perf_log_itrace_start(struct perf_event *event)
6280 {
6281 struct perf_output_handle handle;
6282 struct perf_sample_data sample;
6283 struct perf_aux_event {
6284 struct perf_event_header header;
6285 u32 pid;
6286 u32 tid;
6287 } rec;
6288 int ret;
6289
6290 if (event->parent)
6291 event = event->parent;
6292
6293 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
6294 event->hw.itrace_started)
6295 return;
6296
6297 rec.header.type = PERF_RECORD_ITRACE_START;
6298 rec.header.misc = 0;
6299 rec.header.size = sizeof(rec);
6300 rec.pid = perf_event_pid(event, current);
6301 rec.tid = perf_event_tid(event, current);
6302
6303 perf_event_header__init_id(&rec.header, &sample, event);
6304 ret = perf_output_begin(&handle, event, rec.header.size);
6305
6306 if (ret)
6307 return;
6308
6309 perf_output_put(&handle, rec);
6310 perf_event__output_id_sample(event, &handle, &sample);
6311
6312 perf_output_end(&handle);
6313 }
6314
6315 /*
6316 * Generic event overflow handling, sampling.
6317 */
6318
6319 static int __perf_event_overflow(struct perf_event *event,
6320 int throttle, struct perf_sample_data *data,
6321 struct pt_regs *regs)
6322 {
6323 int events = atomic_read(&event->event_limit);
6324 struct hw_perf_event *hwc = &event->hw;
6325 u64 seq;
6326 int ret = 0;
6327
6328 /*
6329 * Non-sampling counters might still use the PMI to fold short
6330 * hardware counters, ignore those.
6331 */
6332 if (unlikely(!is_sampling_event(event)))
6333 return 0;
6334
6335 seq = __this_cpu_read(perf_throttled_seq);
6336 if (seq != hwc->interrupts_seq) {
6337 hwc->interrupts_seq = seq;
6338 hwc->interrupts = 1;
6339 } else {
6340 hwc->interrupts++;
6341 if (unlikely(throttle
6342 && hwc->interrupts >= max_samples_per_tick)) {
6343 __this_cpu_inc(perf_throttled_count);
6344 hwc->interrupts = MAX_INTERRUPTS;
6345 perf_log_throttle(event, 0);
6346 tick_nohz_full_kick();
6347 ret = 1;
6348 }
6349 }
6350
6351 if (event->attr.freq) {
6352 u64 now = perf_clock();
6353 s64 delta = now - hwc->freq_time_stamp;
6354
6355 hwc->freq_time_stamp = now;
6356
6357 if (delta > 0 && delta < 2*TICK_NSEC)
6358 perf_adjust_period(event, delta, hwc->last_period, true);
6359 }
6360
6361 /*
6362 * XXX event_limit might not quite work as expected on inherited
6363 * events
6364 */
6365
6366 event->pending_kill = POLL_IN;
6367 if (events && atomic_dec_and_test(&event->event_limit)) {
6368 ret = 1;
6369 event->pending_kill = POLL_HUP;
6370 event->pending_disable = 1;
6371 irq_work_queue(&event->pending);
6372 }
6373
6374 if (event->overflow_handler)
6375 event->overflow_handler(event, data, regs);
6376 else
6377 perf_event_output(event, data, regs);
6378
6379 if (*perf_event_fasync(event) && event->pending_kill) {
6380 event->pending_wakeup = 1;
6381 irq_work_queue(&event->pending);
6382 }
6383
6384 return ret;
6385 }
6386
6387 int perf_event_overflow(struct perf_event *event,
6388 struct perf_sample_data *data,
6389 struct pt_regs *regs)
6390 {
6391 return __perf_event_overflow(event, 1, data, regs);
6392 }
6393
6394 /*
6395 * Generic software event infrastructure
6396 */
6397
6398 struct swevent_htable {
6399 struct swevent_hlist *swevent_hlist;
6400 struct mutex hlist_mutex;
6401 int hlist_refcount;
6402
6403 /* Recursion avoidance in each contexts */
6404 int recursion[PERF_NR_CONTEXTS];
6405 };
6406
6407 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
6408
6409 /*
6410 * We directly increment event->count and keep a second value in
6411 * event->hw.period_left to count intervals. This period event
6412 * is kept in the range [-sample_period, 0] so that we can use the
6413 * sign as trigger.
6414 */
6415
6416 u64 perf_swevent_set_period(struct perf_event *event)
6417 {
6418 struct hw_perf_event *hwc = &event->hw;
6419 u64 period = hwc->last_period;
6420 u64 nr, offset;
6421 s64 old, val;
6422
6423 hwc->last_period = hwc->sample_period;
6424
6425 again:
6426 old = val = local64_read(&hwc->period_left);
6427 if (val < 0)
6428 return 0;
6429
6430 nr = div64_u64(period + val, period);
6431 offset = nr * period;
6432 val -= offset;
6433 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
6434 goto again;
6435
6436 return nr;
6437 }
6438
6439 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
6440 struct perf_sample_data *data,
6441 struct pt_regs *regs)
6442 {
6443 struct hw_perf_event *hwc = &event->hw;
6444 int throttle = 0;
6445
6446 if (!overflow)
6447 overflow = perf_swevent_set_period(event);
6448
6449 if (hwc->interrupts == MAX_INTERRUPTS)
6450 return;
6451
6452 for (; overflow; overflow--) {
6453 if (__perf_event_overflow(event, throttle,
6454 data, regs)) {
6455 /*
6456 * We inhibit the overflow from happening when
6457 * hwc->interrupts == MAX_INTERRUPTS.
6458 */
6459 break;
6460 }
6461 throttle = 1;
6462 }
6463 }
6464
6465 static void perf_swevent_event(struct perf_event *event, u64 nr,
6466 struct perf_sample_data *data,
6467 struct pt_regs *regs)
6468 {
6469 struct hw_perf_event *hwc = &event->hw;
6470
6471 local64_add(nr, &event->count);
6472
6473 if (!regs)
6474 return;
6475
6476 if (!is_sampling_event(event))
6477 return;
6478
6479 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
6480 data->period = nr;
6481 return perf_swevent_overflow(event, 1, data, regs);
6482 } else
6483 data->period = event->hw.last_period;
6484
6485 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
6486 return perf_swevent_overflow(event, 1, data, regs);
6487
6488 if (local64_add_negative(nr, &hwc->period_left))
6489 return;
6490
6491 perf_swevent_overflow(event, 0, data, regs);
6492 }
6493
6494 static int perf_exclude_event(struct perf_event *event,
6495 struct pt_regs *regs)
6496 {
6497 if (event->hw.state & PERF_HES_STOPPED)
6498 return 1;
6499
6500 if (regs) {
6501 if (event->attr.exclude_user && user_mode(regs))
6502 return 1;
6503
6504 if (event->attr.exclude_kernel && !user_mode(regs))
6505 return 1;
6506 }
6507
6508 return 0;
6509 }
6510
6511 static int perf_swevent_match(struct perf_event *event,
6512 enum perf_type_id type,
6513 u32 event_id,
6514 struct perf_sample_data *data,
6515 struct pt_regs *regs)
6516 {
6517 if (event->attr.type != type)
6518 return 0;
6519
6520 if (event->attr.config != event_id)
6521 return 0;
6522
6523 if (perf_exclude_event(event, regs))
6524 return 0;
6525
6526 return 1;
6527 }
6528
6529 static inline u64 swevent_hash(u64 type, u32 event_id)
6530 {
6531 u64 val = event_id | (type << 32);
6532
6533 return hash_64(val, SWEVENT_HLIST_BITS);
6534 }
6535
6536 static inline struct hlist_head *
6537 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
6538 {
6539 u64 hash = swevent_hash(type, event_id);
6540
6541 return &hlist->heads[hash];
6542 }
6543
6544 /* For the read side: events when they trigger */
6545 static inline struct hlist_head *
6546 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
6547 {
6548 struct swevent_hlist *hlist;
6549
6550 hlist = rcu_dereference(swhash->swevent_hlist);
6551 if (!hlist)
6552 return NULL;
6553
6554 return __find_swevent_head(hlist, type, event_id);
6555 }
6556
6557 /* For the event head insertion and removal in the hlist */
6558 static inline struct hlist_head *
6559 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
6560 {
6561 struct swevent_hlist *hlist;
6562 u32 event_id = event->attr.config;
6563 u64 type = event->attr.type;
6564
6565 /*
6566 * Event scheduling is always serialized against hlist allocation
6567 * and release. Which makes the protected version suitable here.
6568 * The context lock guarantees that.
6569 */
6570 hlist = rcu_dereference_protected(swhash->swevent_hlist,
6571 lockdep_is_held(&event->ctx->lock));
6572 if (!hlist)
6573 return NULL;
6574
6575 return __find_swevent_head(hlist, type, event_id);
6576 }
6577
6578 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
6579 u64 nr,
6580 struct perf_sample_data *data,
6581 struct pt_regs *regs)
6582 {
6583 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6584 struct perf_event *event;
6585 struct hlist_head *head;
6586
6587 rcu_read_lock();
6588 head = find_swevent_head_rcu(swhash, type, event_id);
6589 if (!head)
6590 goto end;
6591
6592 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6593 if (perf_swevent_match(event, type, event_id, data, regs))
6594 perf_swevent_event(event, nr, data, regs);
6595 }
6596 end:
6597 rcu_read_unlock();
6598 }
6599
6600 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
6601
6602 int perf_swevent_get_recursion_context(void)
6603 {
6604 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6605
6606 return get_recursion_context(swhash->recursion);
6607 }
6608 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
6609
6610 inline void perf_swevent_put_recursion_context(int rctx)
6611 {
6612 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6613
6614 put_recursion_context(swhash->recursion, rctx);
6615 }
6616
6617 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6618 {
6619 struct perf_sample_data data;
6620
6621 if (WARN_ON_ONCE(!regs))
6622 return;
6623
6624 perf_sample_data_init(&data, addr, 0);
6625 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
6626 }
6627
6628 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6629 {
6630 int rctx;
6631
6632 preempt_disable_notrace();
6633 rctx = perf_swevent_get_recursion_context();
6634 if (unlikely(rctx < 0))
6635 goto fail;
6636
6637 ___perf_sw_event(event_id, nr, regs, addr);
6638
6639 perf_swevent_put_recursion_context(rctx);
6640 fail:
6641 preempt_enable_notrace();
6642 }
6643
6644 static void perf_swevent_read(struct perf_event *event)
6645 {
6646 }
6647
6648 static int perf_swevent_add(struct perf_event *event, int flags)
6649 {
6650 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6651 struct hw_perf_event *hwc = &event->hw;
6652 struct hlist_head *head;
6653
6654 if (is_sampling_event(event)) {
6655 hwc->last_period = hwc->sample_period;
6656 perf_swevent_set_period(event);
6657 }
6658
6659 hwc->state = !(flags & PERF_EF_START);
6660
6661 head = find_swevent_head(swhash, event);
6662 if (WARN_ON_ONCE(!head))
6663 return -EINVAL;
6664
6665 hlist_add_head_rcu(&event->hlist_entry, head);
6666 perf_event_update_userpage(event);
6667
6668 return 0;
6669 }
6670
6671 static void perf_swevent_del(struct perf_event *event, int flags)
6672 {
6673 hlist_del_rcu(&event->hlist_entry);
6674 }
6675
6676 static void perf_swevent_start(struct perf_event *event, int flags)
6677 {
6678 event->hw.state = 0;
6679 }
6680
6681 static void perf_swevent_stop(struct perf_event *event, int flags)
6682 {
6683 event->hw.state = PERF_HES_STOPPED;
6684 }
6685
6686 /* Deref the hlist from the update side */
6687 static inline struct swevent_hlist *
6688 swevent_hlist_deref(struct swevent_htable *swhash)
6689 {
6690 return rcu_dereference_protected(swhash->swevent_hlist,
6691 lockdep_is_held(&swhash->hlist_mutex));
6692 }
6693
6694 static void swevent_hlist_release(struct swevent_htable *swhash)
6695 {
6696 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
6697
6698 if (!hlist)
6699 return;
6700
6701 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
6702 kfree_rcu(hlist, rcu_head);
6703 }
6704
6705 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
6706 {
6707 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6708
6709 mutex_lock(&swhash->hlist_mutex);
6710
6711 if (!--swhash->hlist_refcount)
6712 swevent_hlist_release(swhash);
6713
6714 mutex_unlock(&swhash->hlist_mutex);
6715 }
6716
6717 static void swevent_hlist_put(struct perf_event *event)
6718 {
6719 int cpu;
6720
6721 for_each_possible_cpu(cpu)
6722 swevent_hlist_put_cpu(event, cpu);
6723 }
6724
6725 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
6726 {
6727 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6728 int err = 0;
6729
6730 mutex_lock(&swhash->hlist_mutex);
6731 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
6732 struct swevent_hlist *hlist;
6733
6734 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
6735 if (!hlist) {
6736 err = -ENOMEM;
6737 goto exit;
6738 }
6739 rcu_assign_pointer(swhash->swevent_hlist, hlist);
6740 }
6741 swhash->hlist_refcount++;
6742 exit:
6743 mutex_unlock(&swhash->hlist_mutex);
6744
6745 return err;
6746 }
6747
6748 static int swevent_hlist_get(struct perf_event *event)
6749 {
6750 int err;
6751 int cpu, failed_cpu;
6752
6753 get_online_cpus();
6754 for_each_possible_cpu(cpu) {
6755 err = swevent_hlist_get_cpu(event, cpu);
6756 if (err) {
6757 failed_cpu = cpu;
6758 goto fail;
6759 }
6760 }
6761 put_online_cpus();
6762
6763 return 0;
6764 fail:
6765 for_each_possible_cpu(cpu) {
6766 if (cpu == failed_cpu)
6767 break;
6768 swevent_hlist_put_cpu(event, cpu);
6769 }
6770
6771 put_online_cpus();
6772 return err;
6773 }
6774
6775 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
6776
6777 static void sw_perf_event_destroy(struct perf_event *event)
6778 {
6779 u64 event_id = event->attr.config;
6780
6781 WARN_ON(event->parent);
6782
6783 static_key_slow_dec(&perf_swevent_enabled[event_id]);
6784 swevent_hlist_put(event);
6785 }
6786
6787 static int perf_swevent_init(struct perf_event *event)
6788 {
6789 u64 event_id = event->attr.config;
6790
6791 if (event->attr.type != PERF_TYPE_SOFTWARE)
6792 return -ENOENT;
6793
6794 /*
6795 * no branch sampling for software events
6796 */
6797 if (has_branch_stack(event))
6798 return -EOPNOTSUPP;
6799
6800 switch (event_id) {
6801 case PERF_COUNT_SW_CPU_CLOCK:
6802 case PERF_COUNT_SW_TASK_CLOCK:
6803 return -ENOENT;
6804
6805 default:
6806 break;
6807 }
6808
6809 if (event_id >= PERF_COUNT_SW_MAX)
6810 return -ENOENT;
6811
6812 if (!event->parent) {
6813 int err;
6814
6815 err = swevent_hlist_get(event);
6816 if (err)
6817 return err;
6818
6819 static_key_slow_inc(&perf_swevent_enabled[event_id]);
6820 event->destroy = sw_perf_event_destroy;
6821 }
6822
6823 return 0;
6824 }
6825
6826 static struct pmu perf_swevent = {
6827 .task_ctx_nr = perf_sw_context,
6828
6829 .capabilities = PERF_PMU_CAP_NO_NMI,
6830
6831 .event_init = perf_swevent_init,
6832 .add = perf_swevent_add,
6833 .del = perf_swevent_del,
6834 .start = perf_swevent_start,
6835 .stop = perf_swevent_stop,
6836 .read = perf_swevent_read,
6837 };
6838
6839 #ifdef CONFIG_EVENT_TRACING
6840
6841 static int perf_tp_filter_match(struct perf_event *event,
6842 struct perf_sample_data *data)
6843 {
6844 void *record = data->raw->data;
6845
6846 /* only top level events have filters set */
6847 if (event->parent)
6848 event = event->parent;
6849
6850 if (likely(!event->filter) || filter_match_preds(event->filter, record))
6851 return 1;
6852 return 0;
6853 }
6854
6855 static int perf_tp_event_match(struct perf_event *event,
6856 struct perf_sample_data *data,
6857 struct pt_regs *regs)
6858 {
6859 if (event->hw.state & PERF_HES_STOPPED)
6860 return 0;
6861 /*
6862 * All tracepoints are from kernel-space.
6863 */
6864 if (event->attr.exclude_kernel)
6865 return 0;
6866
6867 if (!perf_tp_filter_match(event, data))
6868 return 0;
6869
6870 return 1;
6871 }
6872
6873 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
6874 struct pt_regs *regs, struct hlist_head *head, int rctx,
6875 struct task_struct *task)
6876 {
6877 struct perf_sample_data data;
6878 struct perf_event *event;
6879
6880 struct perf_raw_record raw = {
6881 .size = entry_size,
6882 .data = record,
6883 };
6884
6885 perf_sample_data_init(&data, addr, 0);
6886 data.raw = &raw;
6887
6888 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6889 if (perf_tp_event_match(event, &data, regs))
6890 perf_swevent_event(event, count, &data, regs);
6891 }
6892
6893 /*
6894 * If we got specified a target task, also iterate its context and
6895 * deliver this event there too.
6896 */
6897 if (task && task != current) {
6898 struct perf_event_context *ctx;
6899 struct trace_entry *entry = record;
6900
6901 rcu_read_lock();
6902 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
6903 if (!ctx)
6904 goto unlock;
6905
6906 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6907 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6908 continue;
6909 if (event->attr.config != entry->type)
6910 continue;
6911 if (perf_tp_event_match(event, &data, regs))
6912 perf_swevent_event(event, count, &data, regs);
6913 }
6914 unlock:
6915 rcu_read_unlock();
6916 }
6917
6918 perf_swevent_put_recursion_context(rctx);
6919 }
6920 EXPORT_SYMBOL_GPL(perf_tp_event);
6921
6922 static void tp_perf_event_destroy(struct perf_event *event)
6923 {
6924 perf_trace_destroy(event);
6925 }
6926
6927 static int perf_tp_event_init(struct perf_event *event)
6928 {
6929 int err;
6930
6931 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6932 return -ENOENT;
6933
6934 /*
6935 * no branch sampling for tracepoint events
6936 */
6937 if (has_branch_stack(event))
6938 return -EOPNOTSUPP;
6939
6940 err = perf_trace_init(event);
6941 if (err)
6942 return err;
6943
6944 event->destroy = tp_perf_event_destroy;
6945
6946 return 0;
6947 }
6948
6949 static struct pmu perf_tracepoint = {
6950 .task_ctx_nr = perf_sw_context,
6951
6952 .event_init = perf_tp_event_init,
6953 .add = perf_trace_add,
6954 .del = perf_trace_del,
6955 .start = perf_swevent_start,
6956 .stop = perf_swevent_stop,
6957 .read = perf_swevent_read,
6958 };
6959
6960 static inline void perf_tp_register(void)
6961 {
6962 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
6963 }
6964
6965 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
6966 {
6967 char *filter_str;
6968 int ret;
6969
6970 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6971 return -EINVAL;
6972
6973 filter_str = strndup_user(arg, PAGE_SIZE);
6974 if (IS_ERR(filter_str))
6975 return PTR_ERR(filter_str);
6976
6977 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
6978
6979 kfree(filter_str);
6980 return ret;
6981 }
6982
6983 static void perf_event_free_filter(struct perf_event *event)
6984 {
6985 ftrace_profile_free_filter(event);
6986 }
6987
6988 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
6989 {
6990 struct bpf_prog *prog;
6991
6992 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6993 return -EINVAL;
6994
6995 if (event->tp_event->prog)
6996 return -EEXIST;
6997
6998 if (!(event->tp_event->flags & TRACE_EVENT_FL_UKPROBE))
6999 /* bpf programs can only be attached to u/kprobes */
7000 return -EINVAL;
7001
7002 prog = bpf_prog_get(prog_fd);
7003 if (IS_ERR(prog))
7004 return PTR_ERR(prog);
7005
7006 if (prog->type != BPF_PROG_TYPE_KPROBE) {
7007 /* valid fd, but invalid bpf program type */
7008 bpf_prog_put(prog);
7009 return -EINVAL;
7010 }
7011
7012 event->tp_event->prog = prog;
7013
7014 return 0;
7015 }
7016
7017 static void perf_event_free_bpf_prog(struct perf_event *event)
7018 {
7019 struct bpf_prog *prog;
7020
7021 if (!event->tp_event)
7022 return;
7023
7024 prog = event->tp_event->prog;
7025 if (prog) {
7026 event->tp_event->prog = NULL;
7027 bpf_prog_put(prog);
7028 }
7029 }
7030
7031 #else
7032
7033 static inline void perf_tp_register(void)
7034 {
7035 }
7036
7037 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
7038 {
7039 return -ENOENT;
7040 }
7041
7042 static void perf_event_free_filter(struct perf_event *event)
7043 {
7044 }
7045
7046 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7047 {
7048 return -ENOENT;
7049 }
7050
7051 static void perf_event_free_bpf_prog(struct perf_event *event)
7052 {
7053 }
7054 #endif /* CONFIG_EVENT_TRACING */
7055
7056 #ifdef CONFIG_HAVE_HW_BREAKPOINT
7057 void perf_bp_event(struct perf_event *bp, void *data)
7058 {
7059 struct perf_sample_data sample;
7060 struct pt_regs *regs = data;
7061
7062 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
7063
7064 if (!bp->hw.state && !perf_exclude_event(bp, regs))
7065 perf_swevent_event(bp, 1, &sample, regs);
7066 }
7067 #endif
7068
7069 /*
7070 * hrtimer based swevent callback
7071 */
7072
7073 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
7074 {
7075 enum hrtimer_restart ret = HRTIMER_RESTART;
7076 struct perf_sample_data data;
7077 struct pt_regs *regs;
7078 struct perf_event *event;
7079 u64 period;
7080
7081 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
7082
7083 if (event->state != PERF_EVENT_STATE_ACTIVE)
7084 return HRTIMER_NORESTART;
7085
7086 event->pmu->read(event);
7087
7088 perf_sample_data_init(&data, 0, event->hw.last_period);
7089 regs = get_irq_regs();
7090
7091 if (regs && !perf_exclude_event(event, regs)) {
7092 if (!(event->attr.exclude_idle && is_idle_task(current)))
7093 if (__perf_event_overflow(event, 1, &data, regs))
7094 ret = HRTIMER_NORESTART;
7095 }
7096
7097 period = max_t(u64, 10000, event->hw.sample_period);
7098 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
7099
7100 return ret;
7101 }
7102
7103 static void perf_swevent_start_hrtimer(struct perf_event *event)
7104 {
7105 struct hw_perf_event *hwc = &event->hw;
7106 s64 period;
7107
7108 if (!is_sampling_event(event))
7109 return;
7110
7111 period = local64_read(&hwc->period_left);
7112 if (period) {
7113 if (period < 0)
7114 period = 10000;
7115
7116 local64_set(&hwc->period_left, 0);
7117 } else {
7118 period = max_t(u64, 10000, hwc->sample_period);
7119 }
7120 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
7121 HRTIMER_MODE_REL_PINNED);
7122 }
7123
7124 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
7125 {
7126 struct hw_perf_event *hwc = &event->hw;
7127
7128 if (is_sampling_event(event)) {
7129 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
7130 local64_set(&hwc->period_left, ktime_to_ns(remaining));
7131
7132 hrtimer_cancel(&hwc->hrtimer);
7133 }
7134 }
7135
7136 static void perf_swevent_init_hrtimer(struct perf_event *event)
7137 {
7138 struct hw_perf_event *hwc = &event->hw;
7139
7140 if (!is_sampling_event(event))
7141 return;
7142
7143 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
7144 hwc->hrtimer.function = perf_swevent_hrtimer;
7145
7146 /*
7147 * Since hrtimers have a fixed rate, we can do a static freq->period
7148 * mapping and avoid the whole period adjust feedback stuff.
7149 */
7150 if (event->attr.freq) {
7151 long freq = event->attr.sample_freq;
7152
7153 event->attr.sample_period = NSEC_PER_SEC / freq;
7154 hwc->sample_period = event->attr.sample_period;
7155 local64_set(&hwc->period_left, hwc->sample_period);
7156 hwc->last_period = hwc->sample_period;
7157 event->attr.freq = 0;
7158 }
7159 }
7160
7161 /*
7162 * Software event: cpu wall time clock
7163 */
7164
7165 static void cpu_clock_event_update(struct perf_event *event)
7166 {
7167 s64 prev;
7168 u64 now;
7169
7170 now = local_clock();
7171 prev = local64_xchg(&event->hw.prev_count, now);
7172 local64_add(now - prev, &event->count);
7173 }
7174
7175 static void cpu_clock_event_start(struct perf_event *event, int flags)
7176 {
7177 local64_set(&event->hw.prev_count, local_clock());
7178 perf_swevent_start_hrtimer(event);
7179 }
7180
7181 static void cpu_clock_event_stop(struct perf_event *event, int flags)
7182 {
7183 perf_swevent_cancel_hrtimer(event);
7184 cpu_clock_event_update(event);
7185 }
7186
7187 static int cpu_clock_event_add(struct perf_event *event, int flags)
7188 {
7189 if (flags & PERF_EF_START)
7190 cpu_clock_event_start(event, flags);
7191 perf_event_update_userpage(event);
7192
7193 return 0;
7194 }
7195
7196 static void cpu_clock_event_del(struct perf_event *event, int flags)
7197 {
7198 cpu_clock_event_stop(event, flags);
7199 }
7200
7201 static void cpu_clock_event_read(struct perf_event *event)
7202 {
7203 cpu_clock_event_update(event);
7204 }
7205
7206 static int cpu_clock_event_init(struct perf_event *event)
7207 {
7208 if (event->attr.type != PERF_TYPE_SOFTWARE)
7209 return -ENOENT;
7210
7211 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
7212 return -ENOENT;
7213
7214 /*
7215 * no branch sampling for software events
7216 */
7217 if (has_branch_stack(event))
7218 return -EOPNOTSUPP;
7219
7220 perf_swevent_init_hrtimer(event);
7221
7222 return 0;
7223 }
7224
7225 static struct pmu perf_cpu_clock = {
7226 .task_ctx_nr = perf_sw_context,
7227
7228 .capabilities = PERF_PMU_CAP_NO_NMI,
7229
7230 .event_init = cpu_clock_event_init,
7231 .add = cpu_clock_event_add,
7232 .del = cpu_clock_event_del,
7233 .start = cpu_clock_event_start,
7234 .stop = cpu_clock_event_stop,
7235 .read = cpu_clock_event_read,
7236 };
7237
7238 /*
7239 * Software event: task time clock
7240 */
7241
7242 static void task_clock_event_update(struct perf_event *event, u64 now)
7243 {
7244 u64 prev;
7245 s64 delta;
7246
7247 prev = local64_xchg(&event->hw.prev_count, now);
7248 delta = now - prev;
7249 local64_add(delta, &event->count);
7250 }
7251
7252 static void task_clock_event_start(struct perf_event *event, int flags)
7253 {
7254 local64_set(&event->hw.prev_count, event->ctx->time);
7255 perf_swevent_start_hrtimer(event);
7256 }
7257
7258 static void task_clock_event_stop(struct perf_event *event, int flags)
7259 {
7260 perf_swevent_cancel_hrtimer(event);
7261 task_clock_event_update(event, event->ctx->time);
7262 }
7263
7264 static int task_clock_event_add(struct perf_event *event, int flags)
7265 {
7266 if (flags & PERF_EF_START)
7267 task_clock_event_start(event, flags);
7268 perf_event_update_userpage(event);
7269
7270 return 0;
7271 }
7272
7273 static void task_clock_event_del(struct perf_event *event, int flags)
7274 {
7275 task_clock_event_stop(event, PERF_EF_UPDATE);
7276 }
7277
7278 static void task_clock_event_read(struct perf_event *event)
7279 {
7280 u64 now = perf_clock();
7281 u64 delta = now - event->ctx->timestamp;
7282 u64 time = event->ctx->time + delta;
7283
7284 task_clock_event_update(event, time);
7285 }
7286
7287 static int task_clock_event_init(struct perf_event *event)
7288 {
7289 if (event->attr.type != PERF_TYPE_SOFTWARE)
7290 return -ENOENT;
7291
7292 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
7293 return -ENOENT;
7294
7295 /*
7296 * no branch sampling for software events
7297 */
7298 if (has_branch_stack(event))
7299 return -EOPNOTSUPP;
7300
7301 perf_swevent_init_hrtimer(event);
7302
7303 return 0;
7304 }
7305
7306 static struct pmu perf_task_clock = {
7307 .task_ctx_nr = perf_sw_context,
7308
7309 .capabilities = PERF_PMU_CAP_NO_NMI,
7310
7311 .event_init = task_clock_event_init,
7312 .add = task_clock_event_add,
7313 .del = task_clock_event_del,
7314 .start = task_clock_event_start,
7315 .stop = task_clock_event_stop,
7316 .read = task_clock_event_read,
7317 };
7318
7319 static void perf_pmu_nop_void(struct pmu *pmu)
7320 {
7321 }
7322
7323 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
7324 {
7325 }
7326
7327 static int perf_pmu_nop_int(struct pmu *pmu)
7328 {
7329 return 0;
7330 }
7331
7332 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
7333
7334 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
7335 {
7336 __this_cpu_write(nop_txn_flags, flags);
7337
7338 if (flags & ~PERF_PMU_TXN_ADD)
7339 return;
7340
7341 perf_pmu_disable(pmu);
7342 }
7343
7344 static int perf_pmu_commit_txn(struct pmu *pmu)
7345 {
7346 unsigned int flags = __this_cpu_read(nop_txn_flags);
7347
7348 __this_cpu_write(nop_txn_flags, 0);
7349
7350 if (flags & ~PERF_PMU_TXN_ADD)
7351 return 0;
7352
7353 perf_pmu_enable(pmu);
7354 return 0;
7355 }
7356
7357 static void perf_pmu_cancel_txn(struct pmu *pmu)
7358 {
7359 unsigned int flags = __this_cpu_read(nop_txn_flags);
7360
7361 __this_cpu_write(nop_txn_flags, 0);
7362
7363 if (flags & ~PERF_PMU_TXN_ADD)
7364 return;
7365
7366 perf_pmu_enable(pmu);
7367 }
7368
7369 static int perf_event_idx_default(struct perf_event *event)
7370 {
7371 return 0;
7372 }
7373
7374 /*
7375 * Ensures all contexts with the same task_ctx_nr have the same
7376 * pmu_cpu_context too.
7377 */
7378 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
7379 {
7380 struct pmu *pmu;
7381
7382 if (ctxn < 0)
7383 return NULL;
7384
7385 list_for_each_entry(pmu, &pmus, entry) {
7386 if (pmu->task_ctx_nr == ctxn)
7387 return pmu->pmu_cpu_context;
7388 }
7389
7390 return NULL;
7391 }
7392
7393 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
7394 {
7395 int cpu;
7396
7397 for_each_possible_cpu(cpu) {
7398 struct perf_cpu_context *cpuctx;
7399
7400 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7401
7402 if (cpuctx->unique_pmu == old_pmu)
7403 cpuctx->unique_pmu = pmu;
7404 }
7405 }
7406
7407 static void free_pmu_context(struct pmu *pmu)
7408 {
7409 struct pmu *i;
7410
7411 mutex_lock(&pmus_lock);
7412 /*
7413 * Like a real lame refcount.
7414 */
7415 list_for_each_entry(i, &pmus, entry) {
7416 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
7417 update_pmu_context(i, pmu);
7418 goto out;
7419 }
7420 }
7421
7422 free_percpu(pmu->pmu_cpu_context);
7423 out:
7424 mutex_unlock(&pmus_lock);
7425 }
7426 static struct idr pmu_idr;
7427
7428 static ssize_t
7429 type_show(struct device *dev, struct device_attribute *attr, char *page)
7430 {
7431 struct pmu *pmu = dev_get_drvdata(dev);
7432
7433 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
7434 }
7435 static DEVICE_ATTR_RO(type);
7436
7437 static ssize_t
7438 perf_event_mux_interval_ms_show(struct device *dev,
7439 struct device_attribute *attr,
7440 char *page)
7441 {
7442 struct pmu *pmu = dev_get_drvdata(dev);
7443
7444 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
7445 }
7446
7447 static DEFINE_MUTEX(mux_interval_mutex);
7448
7449 static ssize_t
7450 perf_event_mux_interval_ms_store(struct device *dev,
7451 struct device_attribute *attr,
7452 const char *buf, size_t count)
7453 {
7454 struct pmu *pmu = dev_get_drvdata(dev);
7455 int timer, cpu, ret;
7456
7457 ret = kstrtoint(buf, 0, &timer);
7458 if (ret)
7459 return ret;
7460
7461 if (timer < 1)
7462 return -EINVAL;
7463
7464 /* same value, noting to do */
7465 if (timer == pmu->hrtimer_interval_ms)
7466 return count;
7467
7468 mutex_lock(&mux_interval_mutex);
7469 pmu->hrtimer_interval_ms = timer;
7470
7471 /* update all cpuctx for this PMU */
7472 get_online_cpus();
7473 for_each_online_cpu(cpu) {
7474 struct perf_cpu_context *cpuctx;
7475 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7476 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
7477
7478 cpu_function_call(cpu,
7479 (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
7480 }
7481 put_online_cpus();
7482 mutex_unlock(&mux_interval_mutex);
7483
7484 return count;
7485 }
7486 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
7487
7488 static struct attribute *pmu_dev_attrs[] = {
7489 &dev_attr_type.attr,
7490 &dev_attr_perf_event_mux_interval_ms.attr,
7491 NULL,
7492 };
7493 ATTRIBUTE_GROUPS(pmu_dev);
7494
7495 static int pmu_bus_running;
7496 static struct bus_type pmu_bus = {
7497 .name = "event_source",
7498 .dev_groups = pmu_dev_groups,
7499 };
7500
7501 static void pmu_dev_release(struct device *dev)
7502 {
7503 kfree(dev);
7504 }
7505
7506 static int pmu_dev_alloc(struct pmu *pmu)
7507 {
7508 int ret = -ENOMEM;
7509
7510 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
7511 if (!pmu->dev)
7512 goto out;
7513
7514 pmu->dev->groups = pmu->attr_groups;
7515 device_initialize(pmu->dev);
7516 ret = dev_set_name(pmu->dev, "%s", pmu->name);
7517 if (ret)
7518 goto free_dev;
7519
7520 dev_set_drvdata(pmu->dev, pmu);
7521 pmu->dev->bus = &pmu_bus;
7522 pmu->dev->release = pmu_dev_release;
7523 ret = device_add(pmu->dev);
7524 if (ret)
7525 goto free_dev;
7526
7527 out:
7528 return ret;
7529
7530 free_dev:
7531 put_device(pmu->dev);
7532 goto out;
7533 }
7534
7535 static struct lock_class_key cpuctx_mutex;
7536 static struct lock_class_key cpuctx_lock;
7537
7538 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
7539 {
7540 int cpu, ret;
7541
7542 mutex_lock(&pmus_lock);
7543 ret = -ENOMEM;
7544 pmu->pmu_disable_count = alloc_percpu(int);
7545 if (!pmu->pmu_disable_count)
7546 goto unlock;
7547
7548 pmu->type = -1;
7549 if (!name)
7550 goto skip_type;
7551 pmu->name = name;
7552
7553 if (type < 0) {
7554 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
7555 if (type < 0) {
7556 ret = type;
7557 goto free_pdc;
7558 }
7559 }
7560 pmu->type = type;
7561
7562 if (pmu_bus_running) {
7563 ret = pmu_dev_alloc(pmu);
7564 if (ret)
7565 goto free_idr;
7566 }
7567
7568 skip_type:
7569 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
7570 if (pmu->pmu_cpu_context)
7571 goto got_cpu_context;
7572
7573 ret = -ENOMEM;
7574 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
7575 if (!pmu->pmu_cpu_context)
7576 goto free_dev;
7577
7578 for_each_possible_cpu(cpu) {
7579 struct perf_cpu_context *cpuctx;
7580
7581 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7582 __perf_event_init_context(&cpuctx->ctx);
7583 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
7584 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
7585 cpuctx->ctx.pmu = pmu;
7586
7587 __perf_mux_hrtimer_init(cpuctx, cpu);
7588
7589 cpuctx->unique_pmu = pmu;
7590 }
7591
7592 got_cpu_context:
7593 if (!pmu->start_txn) {
7594 if (pmu->pmu_enable) {
7595 /*
7596 * If we have pmu_enable/pmu_disable calls, install
7597 * transaction stubs that use that to try and batch
7598 * hardware accesses.
7599 */
7600 pmu->start_txn = perf_pmu_start_txn;
7601 pmu->commit_txn = perf_pmu_commit_txn;
7602 pmu->cancel_txn = perf_pmu_cancel_txn;
7603 } else {
7604 pmu->start_txn = perf_pmu_nop_txn;
7605 pmu->commit_txn = perf_pmu_nop_int;
7606 pmu->cancel_txn = perf_pmu_nop_void;
7607 }
7608 }
7609
7610 if (!pmu->pmu_enable) {
7611 pmu->pmu_enable = perf_pmu_nop_void;
7612 pmu->pmu_disable = perf_pmu_nop_void;
7613 }
7614
7615 if (!pmu->event_idx)
7616 pmu->event_idx = perf_event_idx_default;
7617
7618 list_add_rcu(&pmu->entry, &pmus);
7619 atomic_set(&pmu->exclusive_cnt, 0);
7620 ret = 0;
7621 unlock:
7622 mutex_unlock(&pmus_lock);
7623
7624 return ret;
7625
7626 free_dev:
7627 device_del(pmu->dev);
7628 put_device(pmu->dev);
7629
7630 free_idr:
7631 if (pmu->type >= PERF_TYPE_MAX)
7632 idr_remove(&pmu_idr, pmu->type);
7633
7634 free_pdc:
7635 free_percpu(pmu->pmu_disable_count);
7636 goto unlock;
7637 }
7638 EXPORT_SYMBOL_GPL(perf_pmu_register);
7639
7640 void perf_pmu_unregister(struct pmu *pmu)
7641 {
7642 mutex_lock(&pmus_lock);
7643 list_del_rcu(&pmu->entry);
7644 mutex_unlock(&pmus_lock);
7645
7646 /*
7647 * We dereference the pmu list under both SRCU and regular RCU, so
7648 * synchronize against both of those.
7649 */
7650 synchronize_srcu(&pmus_srcu);
7651 synchronize_rcu();
7652
7653 free_percpu(pmu->pmu_disable_count);
7654 if (pmu->type >= PERF_TYPE_MAX)
7655 idr_remove(&pmu_idr, pmu->type);
7656 device_del(pmu->dev);
7657 put_device(pmu->dev);
7658 free_pmu_context(pmu);
7659 }
7660 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
7661
7662 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
7663 {
7664 struct perf_event_context *ctx = NULL;
7665 int ret;
7666
7667 if (!try_module_get(pmu->module))
7668 return -ENODEV;
7669
7670 if (event->group_leader != event) {
7671 /*
7672 * This ctx->mutex can nest when we're called through
7673 * inheritance. See the perf_event_ctx_lock_nested() comment.
7674 */
7675 ctx = perf_event_ctx_lock_nested(event->group_leader,
7676 SINGLE_DEPTH_NESTING);
7677 BUG_ON(!ctx);
7678 }
7679
7680 event->pmu = pmu;
7681 ret = pmu->event_init(event);
7682
7683 if (ctx)
7684 perf_event_ctx_unlock(event->group_leader, ctx);
7685
7686 if (ret)
7687 module_put(pmu->module);
7688
7689 return ret;
7690 }
7691
7692 static struct pmu *perf_init_event(struct perf_event *event)
7693 {
7694 struct pmu *pmu = NULL;
7695 int idx;
7696 int ret;
7697
7698 idx = srcu_read_lock(&pmus_srcu);
7699
7700 rcu_read_lock();
7701 pmu = idr_find(&pmu_idr, event->attr.type);
7702 rcu_read_unlock();
7703 if (pmu) {
7704 ret = perf_try_init_event(pmu, event);
7705 if (ret)
7706 pmu = ERR_PTR(ret);
7707 goto unlock;
7708 }
7709
7710 list_for_each_entry_rcu(pmu, &pmus, entry) {
7711 ret = perf_try_init_event(pmu, event);
7712 if (!ret)
7713 goto unlock;
7714
7715 if (ret != -ENOENT) {
7716 pmu = ERR_PTR(ret);
7717 goto unlock;
7718 }
7719 }
7720 pmu = ERR_PTR(-ENOENT);
7721 unlock:
7722 srcu_read_unlock(&pmus_srcu, idx);
7723
7724 return pmu;
7725 }
7726
7727 static void account_event_cpu(struct perf_event *event, int cpu)
7728 {
7729 if (event->parent)
7730 return;
7731
7732 if (is_cgroup_event(event))
7733 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
7734 }
7735
7736 static void account_event(struct perf_event *event)
7737 {
7738 bool inc = false;
7739
7740 if (event->parent)
7741 return;
7742
7743 if (event->attach_state & PERF_ATTACH_TASK)
7744 inc = true;
7745 if (event->attr.mmap || event->attr.mmap_data)
7746 atomic_inc(&nr_mmap_events);
7747 if (event->attr.comm)
7748 atomic_inc(&nr_comm_events);
7749 if (event->attr.task)
7750 atomic_inc(&nr_task_events);
7751 if (event->attr.freq) {
7752 if (atomic_inc_return(&nr_freq_events) == 1)
7753 tick_nohz_full_kick_all();
7754 }
7755 if (event->attr.context_switch) {
7756 atomic_inc(&nr_switch_events);
7757 inc = true;
7758 }
7759 if (has_branch_stack(event))
7760 inc = true;
7761 if (is_cgroup_event(event))
7762 inc = true;
7763
7764 if (inc)
7765 static_key_slow_inc(&perf_sched_events.key);
7766
7767 account_event_cpu(event, event->cpu);
7768 }
7769
7770 /*
7771 * Allocate and initialize a event structure
7772 */
7773 static struct perf_event *
7774 perf_event_alloc(struct perf_event_attr *attr, int cpu,
7775 struct task_struct *task,
7776 struct perf_event *group_leader,
7777 struct perf_event *parent_event,
7778 perf_overflow_handler_t overflow_handler,
7779 void *context, int cgroup_fd)
7780 {
7781 struct pmu *pmu;
7782 struct perf_event *event;
7783 struct hw_perf_event *hwc;
7784 long err = -EINVAL;
7785
7786 if ((unsigned)cpu >= nr_cpu_ids) {
7787 if (!task || cpu != -1)
7788 return ERR_PTR(-EINVAL);
7789 }
7790
7791 event = kzalloc(sizeof(*event), GFP_KERNEL);
7792 if (!event)
7793 return ERR_PTR(-ENOMEM);
7794
7795 /*
7796 * Single events are their own group leaders, with an
7797 * empty sibling list:
7798 */
7799 if (!group_leader)
7800 group_leader = event;
7801
7802 mutex_init(&event->child_mutex);
7803 INIT_LIST_HEAD(&event->child_list);
7804
7805 INIT_LIST_HEAD(&event->group_entry);
7806 INIT_LIST_HEAD(&event->event_entry);
7807 INIT_LIST_HEAD(&event->sibling_list);
7808 INIT_LIST_HEAD(&event->rb_entry);
7809 INIT_LIST_HEAD(&event->active_entry);
7810 INIT_HLIST_NODE(&event->hlist_entry);
7811
7812
7813 init_waitqueue_head(&event->waitq);
7814 init_irq_work(&event->pending, perf_pending_event);
7815
7816 mutex_init(&event->mmap_mutex);
7817
7818 atomic_long_set(&event->refcount, 1);
7819 event->cpu = cpu;
7820 event->attr = *attr;
7821 event->group_leader = group_leader;
7822 event->pmu = NULL;
7823 event->oncpu = -1;
7824
7825 event->parent = parent_event;
7826
7827 event->ns = get_pid_ns(task_active_pid_ns(current));
7828 event->id = atomic64_inc_return(&perf_event_id);
7829
7830 event->state = PERF_EVENT_STATE_INACTIVE;
7831
7832 if (task) {
7833 event->attach_state = PERF_ATTACH_TASK;
7834 /*
7835 * XXX pmu::event_init needs to know what task to account to
7836 * and we cannot use the ctx information because we need the
7837 * pmu before we get a ctx.
7838 */
7839 event->hw.target = task;
7840 }
7841
7842 event->clock = &local_clock;
7843 if (parent_event)
7844 event->clock = parent_event->clock;
7845
7846 if (!overflow_handler && parent_event) {
7847 overflow_handler = parent_event->overflow_handler;
7848 context = parent_event->overflow_handler_context;
7849 }
7850
7851 event->overflow_handler = overflow_handler;
7852 event->overflow_handler_context = context;
7853
7854 perf_event__state_init(event);
7855
7856 pmu = NULL;
7857
7858 hwc = &event->hw;
7859 hwc->sample_period = attr->sample_period;
7860 if (attr->freq && attr->sample_freq)
7861 hwc->sample_period = 1;
7862 hwc->last_period = hwc->sample_period;
7863
7864 local64_set(&hwc->period_left, hwc->sample_period);
7865
7866 /*
7867 * we currently do not support PERF_FORMAT_GROUP on inherited events
7868 */
7869 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
7870 goto err_ns;
7871
7872 if (!has_branch_stack(event))
7873 event->attr.branch_sample_type = 0;
7874
7875 if (cgroup_fd != -1) {
7876 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
7877 if (err)
7878 goto err_ns;
7879 }
7880
7881 pmu = perf_init_event(event);
7882 if (!pmu)
7883 goto err_ns;
7884 else if (IS_ERR(pmu)) {
7885 err = PTR_ERR(pmu);
7886 goto err_ns;
7887 }
7888
7889 err = exclusive_event_init(event);
7890 if (err)
7891 goto err_pmu;
7892
7893 if (!event->parent) {
7894 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
7895 err = get_callchain_buffers();
7896 if (err)
7897 goto err_per_task;
7898 }
7899 }
7900
7901 return event;
7902
7903 err_per_task:
7904 exclusive_event_destroy(event);
7905
7906 err_pmu:
7907 if (event->destroy)
7908 event->destroy(event);
7909 module_put(pmu->module);
7910 err_ns:
7911 if (is_cgroup_event(event))
7912 perf_detach_cgroup(event);
7913 if (event->ns)
7914 put_pid_ns(event->ns);
7915 kfree(event);
7916
7917 return ERR_PTR(err);
7918 }
7919
7920 static int perf_copy_attr(struct perf_event_attr __user *uattr,
7921 struct perf_event_attr *attr)
7922 {
7923 u32 size;
7924 int ret;
7925
7926 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
7927 return -EFAULT;
7928
7929 /*
7930 * zero the full structure, so that a short copy will be nice.
7931 */
7932 memset(attr, 0, sizeof(*attr));
7933
7934 ret = get_user(size, &uattr->size);
7935 if (ret)
7936 return ret;
7937
7938 if (size > PAGE_SIZE) /* silly large */
7939 goto err_size;
7940
7941 if (!size) /* abi compat */
7942 size = PERF_ATTR_SIZE_VER0;
7943
7944 if (size < PERF_ATTR_SIZE_VER0)
7945 goto err_size;
7946
7947 /*
7948 * If we're handed a bigger struct than we know of,
7949 * ensure all the unknown bits are 0 - i.e. new
7950 * user-space does not rely on any kernel feature
7951 * extensions we dont know about yet.
7952 */
7953 if (size > sizeof(*attr)) {
7954 unsigned char __user *addr;
7955 unsigned char __user *end;
7956 unsigned char val;
7957
7958 addr = (void __user *)uattr + sizeof(*attr);
7959 end = (void __user *)uattr + size;
7960
7961 for (; addr < end; addr++) {
7962 ret = get_user(val, addr);
7963 if (ret)
7964 return ret;
7965 if (val)
7966 goto err_size;
7967 }
7968 size = sizeof(*attr);
7969 }
7970
7971 ret = copy_from_user(attr, uattr, size);
7972 if (ret)
7973 return -EFAULT;
7974
7975 if (attr->__reserved_1)
7976 return -EINVAL;
7977
7978 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
7979 return -EINVAL;
7980
7981 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
7982 return -EINVAL;
7983
7984 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
7985 u64 mask = attr->branch_sample_type;
7986
7987 /* only using defined bits */
7988 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
7989 return -EINVAL;
7990
7991 /* at least one branch bit must be set */
7992 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
7993 return -EINVAL;
7994
7995 /* propagate priv level, when not set for branch */
7996 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
7997
7998 /* exclude_kernel checked on syscall entry */
7999 if (!attr->exclude_kernel)
8000 mask |= PERF_SAMPLE_BRANCH_KERNEL;
8001
8002 if (!attr->exclude_user)
8003 mask |= PERF_SAMPLE_BRANCH_USER;
8004
8005 if (!attr->exclude_hv)
8006 mask |= PERF_SAMPLE_BRANCH_HV;
8007 /*
8008 * adjust user setting (for HW filter setup)
8009 */
8010 attr->branch_sample_type = mask;
8011 }
8012 /* privileged levels capture (kernel, hv): check permissions */
8013 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
8014 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
8015 return -EACCES;
8016 }
8017
8018 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
8019 ret = perf_reg_validate(attr->sample_regs_user);
8020 if (ret)
8021 return ret;
8022 }
8023
8024 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
8025 if (!arch_perf_have_user_stack_dump())
8026 return -ENOSYS;
8027
8028 /*
8029 * We have __u32 type for the size, but so far
8030 * we can only use __u16 as maximum due to the
8031 * __u16 sample size limit.
8032 */
8033 if (attr->sample_stack_user >= USHRT_MAX)
8034 ret = -EINVAL;
8035 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
8036 ret = -EINVAL;
8037 }
8038
8039 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
8040 ret = perf_reg_validate(attr->sample_regs_intr);
8041 out:
8042 return ret;
8043
8044 err_size:
8045 put_user(sizeof(*attr), &uattr->size);
8046 ret = -E2BIG;
8047 goto out;
8048 }
8049
8050 static int
8051 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
8052 {
8053 struct ring_buffer *rb = NULL;
8054 int ret = -EINVAL;
8055
8056 if (!output_event)
8057 goto set;
8058
8059 /* don't allow circular references */
8060 if (event == output_event)
8061 goto out;
8062
8063 /*
8064 * Don't allow cross-cpu buffers
8065 */
8066 if (output_event->cpu != event->cpu)
8067 goto out;
8068
8069 /*
8070 * If its not a per-cpu rb, it must be the same task.
8071 */
8072 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
8073 goto out;
8074
8075 /*
8076 * Mixing clocks in the same buffer is trouble you don't need.
8077 */
8078 if (output_event->clock != event->clock)
8079 goto out;
8080
8081 /*
8082 * If both events generate aux data, they must be on the same PMU
8083 */
8084 if (has_aux(event) && has_aux(output_event) &&
8085 event->pmu != output_event->pmu)
8086 goto out;
8087
8088 set:
8089 mutex_lock(&event->mmap_mutex);
8090 /* Can't redirect output if we've got an active mmap() */
8091 if (atomic_read(&event->mmap_count))
8092 goto unlock;
8093
8094 if (output_event) {
8095 /* get the rb we want to redirect to */
8096 rb = ring_buffer_get(output_event);
8097 if (!rb)
8098 goto unlock;
8099 }
8100
8101 ring_buffer_attach(event, rb);
8102
8103 ret = 0;
8104 unlock:
8105 mutex_unlock(&event->mmap_mutex);
8106
8107 out:
8108 return ret;
8109 }
8110
8111 static void mutex_lock_double(struct mutex *a, struct mutex *b)
8112 {
8113 if (b < a)
8114 swap(a, b);
8115
8116 mutex_lock(a);
8117 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
8118 }
8119
8120 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
8121 {
8122 bool nmi_safe = false;
8123
8124 switch (clk_id) {
8125 case CLOCK_MONOTONIC:
8126 event->clock = &ktime_get_mono_fast_ns;
8127 nmi_safe = true;
8128 break;
8129
8130 case CLOCK_MONOTONIC_RAW:
8131 event->clock = &ktime_get_raw_fast_ns;
8132 nmi_safe = true;
8133 break;
8134
8135 case CLOCK_REALTIME:
8136 event->clock = &ktime_get_real_ns;
8137 break;
8138
8139 case CLOCK_BOOTTIME:
8140 event->clock = &ktime_get_boot_ns;
8141 break;
8142
8143 case CLOCK_TAI:
8144 event->clock = &ktime_get_tai_ns;
8145 break;
8146
8147 default:
8148 return -EINVAL;
8149 }
8150
8151 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
8152 return -EINVAL;
8153
8154 return 0;
8155 }
8156
8157 /**
8158 * sys_perf_event_open - open a performance event, associate it to a task/cpu
8159 *
8160 * @attr_uptr: event_id type attributes for monitoring/sampling
8161 * @pid: target pid
8162 * @cpu: target cpu
8163 * @group_fd: group leader event fd
8164 */
8165 SYSCALL_DEFINE5(perf_event_open,
8166 struct perf_event_attr __user *, attr_uptr,
8167 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
8168 {
8169 struct perf_event *group_leader = NULL, *output_event = NULL;
8170 struct perf_event *event, *sibling;
8171 struct perf_event_attr attr;
8172 struct perf_event_context *ctx, *uninitialized_var(gctx);
8173 struct file *event_file = NULL;
8174 struct fd group = {NULL, 0};
8175 struct task_struct *task = NULL;
8176 struct pmu *pmu;
8177 int event_fd;
8178 int move_group = 0;
8179 int err;
8180 int f_flags = O_RDWR;
8181 int cgroup_fd = -1;
8182
8183 /* for future expandability... */
8184 if (flags & ~PERF_FLAG_ALL)
8185 return -EINVAL;
8186
8187 err = perf_copy_attr(attr_uptr, &attr);
8188 if (err)
8189 return err;
8190
8191 if (!attr.exclude_kernel) {
8192 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
8193 return -EACCES;
8194 }
8195
8196 if (attr.freq) {
8197 if (attr.sample_freq > sysctl_perf_event_sample_rate)
8198 return -EINVAL;
8199 } else {
8200 if (attr.sample_period & (1ULL << 63))
8201 return -EINVAL;
8202 }
8203
8204 /*
8205 * In cgroup mode, the pid argument is used to pass the fd
8206 * opened to the cgroup directory in cgroupfs. The cpu argument
8207 * designates the cpu on which to monitor threads from that
8208 * cgroup.
8209 */
8210 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
8211 return -EINVAL;
8212
8213 if (flags & PERF_FLAG_FD_CLOEXEC)
8214 f_flags |= O_CLOEXEC;
8215
8216 event_fd = get_unused_fd_flags(f_flags);
8217 if (event_fd < 0)
8218 return event_fd;
8219
8220 if (group_fd != -1) {
8221 err = perf_fget_light(group_fd, &group);
8222 if (err)
8223 goto err_fd;
8224 group_leader = group.file->private_data;
8225 if (flags & PERF_FLAG_FD_OUTPUT)
8226 output_event = group_leader;
8227 if (flags & PERF_FLAG_FD_NO_GROUP)
8228 group_leader = NULL;
8229 }
8230
8231 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
8232 task = find_lively_task_by_vpid(pid);
8233 if (IS_ERR(task)) {
8234 err = PTR_ERR(task);
8235 goto err_group_fd;
8236 }
8237 }
8238
8239 if (task && group_leader &&
8240 group_leader->attr.inherit != attr.inherit) {
8241 err = -EINVAL;
8242 goto err_task;
8243 }
8244
8245 get_online_cpus();
8246
8247 if (flags & PERF_FLAG_PID_CGROUP)
8248 cgroup_fd = pid;
8249
8250 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
8251 NULL, NULL, cgroup_fd);
8252 if (IS_ERR(event)) {
8253 err = PTR_ERR(event);
8254 goto err_cpus;
8255 }
8256
8257 if (is_sampling_event(event)) {
8258 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
8259 err = -ENOTSUPP;
8260 goto err_alloc;
8261 }
8262 }
8263
8264 account_event(event);
8265
8266 /*
8267 * Special case software events and allow them to be part of
8268 * any hardware group.
8269 */
8270 pmu = event->pmu;
8271
8272 if (attr.use_clockid) {
8273 err = perf_event_set_clock(event, attr.clockid);
8274 if (err)
8275 goto err_alloc;
8276 }
8277
8278 if (group_leader &&
8279 (is_software_event(event) != is_software_event(group_leader))) {
8280 if (is_software_event(event)) {
8281 /*
8282 * If event and group_leader are not both a software
8283 * event, and event is, then group leader is not.
8284 *
8285 * Allow the addition of software events to !software
8286 * groups, this is safe because software events never
8287 * fail to schedule.
8288 */
8289 pmu = group_leader->pmu;
8290 } else if (is_software_event(group_leader) &&
8291 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
8292 /*
8293 * In case the group is a pure software group, and we
8294 * try to add a hardware event, move the whole group to
8295 * the hardware context.
8296 */
8297 move_group = 1;
8298 }
8299 }
8300
8301 /*
8302 * Get the target context (task or percpu):
8303 */
8304 ctx = find_get_context(pmu, task, event);
8305 if (IS_ERR(ctx)) {
8306 err = PTR_ERR(ctx);
8307 goto err_alloc;
8308 }
8309
8310 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
8311 err = -EBUSY;
8312 goto err_context;
8313 }
8314
8315 if (task) {
8316 put_task_struct(task);
8317 task = NULL;
8318 }
8319
8320 /*
8321 * Look up the group leader (we will attach this event to it):
8322 */
8323 if (group_leader) {
8324 err = -EINVAL;
8325
8326 /*
8327 * Do not allow a recursive hierarchy (this new sibling
8328 * becoming part of another group-sibling):
8329 */
8330 if (group_leader->group_leader != group_leader)
8331 goto err_context;
8332
8333 /* All events in a group should have the same clock */
8334 if (group_leader->clock != event->clock)
8335 goto err_context;
8336
8337 /*
8338 * Do not allow to attach to a group in a different
8339 * task or CPU context:
8340 */
8341 if (move_group) {
8342 /*
8343 * Make sure we're both on the same task, or both
8344 * per-cpu events.
8345 */
8346 if (group_leader->ctx->task != ctx->task)
8347 goto err_context;
8348
8349 /*
8350 * Make sure we're both events for the same CPU;
8351 * grouping events for different CPUs is broken; since
8352 * you can never concurrently schedule them anyhow.
8353 */
8354 if (group_leader->cpu != event->cpu)
8355 goto err_context;
8356 } else {
8357 if (group_leader->ctx != ctx)
8358 goto err_context;
8359 }
8360
8361 /*
8362 * Only a group leader can be exclusive or pinned
8363 */
8364 if (attr.exclusive || attr.pinned)
8365 goto err_context;
8366 }
8367
8368 if (output_event) {
8369 err = perf_event_set_output(event, output_event);
8370 if (err)
8371 goto err_context;
8372 }
8373
8374 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
8375 f_flags);
8376 if (IS_ERR(event_file)) {
8377 err = PTR_ERR(event_file);
8378 goto err_context;
8379 }
8380
8381 if (move_group) {
8382 gctx = group_leader->ctx;
8383 mutex_lock_double(&gctx->mutex, &ctx->mutex);
8384 } else {
8385 mutex_lock(&ctx->mutex);
8386 }
8387
8388 if (!perf_event_validate_size(event)) {
8389 err = -E2BIG;
8390 goto err_locked;
8391 }
8392
8393 /*
8394 * Must be under the same ctx::mutex as perf_install_in_context(),
8395 * because we need to serialize with concurrent event creation.
8396 */
8397 if (!exclusive_event_installable(event, ctx)) {
8398 /* exclusive and group stuff are assumed mutually exclusive */
8399 WARN_ON_ONCE(move_group);
8400
8401 err = -EBUSY;
8402 goto err_locked;
8403 }
8404
8405 WARN_ON_ONCE(ctx->parent_ctx);
8406
8407 if (move_group) {
8408 /*
8409 * See perf_event_ctx_lock() for comments on the details
8410 * of swizzling perf_event::ctx.
8411 */
8412 perf_remove_from_context(group_leader, false);
8413
8414 list_for_each_entry(sibling, &group_leader->sibling_list,
8415 group_entry) {
8416 perf_remove_from_context(sibling, false);
8417 put_ctx(gctx);
8418 }
8419
8420 /*
8421 * Wait for everybody to stop referencing the events through
8422 * the old lists, before installing it on new lists.
8423 */
8424 synchronize_rcu();
8425
8426 /*
8427 * Install the group siblings before the group leader.
8428 *
8429 * Because a group leader will try and install the entire group
8430 * (through the sibling list, which is still in-tact), we can
8431 * end up with siblings installed in the wrong context.
8432 *
8433 * By installing siblings first we NO-OP because they're not
8434 * reachable through the group lists.
8435 */
8436 list_for_each_entry(sibling, &group_leader->sibling_list,
8437 group_entry) {
8438 perf_event__state_init(sibling);
8439 perf_install_in_context(ctx, sibling, sibling->cpu);
8440 get_ctx(ctx);
8441 }
8442
8443 /*
8444 * Removing from the context ends up with disabled
8445 * event. What we want here is event in the initial
8446 * startup state, ready to be add into new context.
8447 */
8448 perf_event__state_init(group_leader);
8449 perf_install_in_context(ctx, group_leader, group_leader->cpu);
8450 get_ctx(ctx);
8451
8452 /*
8453 * Now that all events are installed in @ctx, nothing
8454 * references @gctx anymore, so drop the last reference we have
8455 * on it.
8456 */
8457 put_ctx(gctx);
8458 }
8459
8460 /*
8461 * Precalculate sample_data sizes; do while holding ctx::mutex such
8462 * that we're serialized against further additions and before
8463 * perf_install_in_context() which is the point the event is active and
8464 * can use these values.
8465 */
8466 perf_event__header_size(event);
8467 perf_event__id_header_size(event);
8468
8469 perf_install_in_context(ctx, event, event->cpu);
8470 perf_unpin_context(ctx);
8471
8472 if (move_group)
8473 mutex_unlock(&gctx->mutex);
8474 mutex_unlock(&ctx->mutex);
8475
8476 put_online_cpus();
8477
8478 event->owner = current;
8479
8480 mutex_lock(&current->perf_event_mutex);
8481 list_add_tail(&event->owner_entry, &current->perf_event_list);
8482 mutex_unlock(&current->perf_event_mutex);
8483
8484 /*
8485 * Drop the reference on the group_event after placing the
8486 * new event on the sibling_list. This ensures destruction
8487 * of the group leader will find the pointer to itself in
8488 * perf_group_detach().
8489 */
8490 fdput(group);
8491 fd_install(event_fd, event_file);
8492 return event_fd;
8493
8494 err_locked:
8495 if (move_group)
8496 mutex_unlock(&gctx->mutex);
8497 mutex_unlock(&ctx->mutex);
8498 /* err_file: */
8499 fput(event_file);
8500 err_context:
8501 perf_unpin_context(ctx);
8502 put_ctx(ctx);
8503 err_alloc:
8504 free_event(event);
8505 err_cpus:
8506 put_online_cpus();
8507 err_task:
8508 if (task)
8509 put_task_struct(task);
8510 err_group_fd:
8511 fdput(group);
8512 err_fd:
8513 put_unused_fd(event_fd);
8514 return err;
8515 }
8516
8517 /**
8518 * perf_event_create_kernel_counter
8519 *
8520 * @attr: attributes of the counter to create
8521 * @cpu: cpu in which the counter is bound
8522 * @task: task to profile (NULL for percpu)
8523 */
8524 struct perf_event *
8525 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
8526 struct task_struct *task,
8527 perf_overflow_handler_t overflow_handler,
8528 void *context)
8529 {
8530 struct perf_event_context *ctx;
8531 struct perf_event *event;
8532 int err;
8533
8534 /*
8535 * Get the target context (task or percpu):
8536 */
8537
8538 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
8539 overflow_handler, context, -1);
8540 if (IS_ERR(event)) {
8541 err = PTR_ERR(event);
8542 goto err;
8543 }
8544
8545 /* Mark owner so we could distinguish it from user events. */
8546 event->owner = EVENT_OWNER_KERNEL;
8547
8548 account_event(event);
8549
8550 ctx = find_get_context(event->pmu, task, event);
8551 if (IS_ERR(ctx)) {
8552 err = PTR_ERR(ctx);
8553 goto err_free;
8554 }
8555
8556 WARN_ON_ONCE(ctx->parent_ctx);
8557 mutex_lock(&ctx->mutex);
8558 if (!exclusive_event_installable(event, ctx)) {
8559 mutex_unlock(&ctx->mutex);
8560 perf_unpin_context(ctx);
8561 put_ctx(ctx);
8562 err = -EBUSY;
8563 goto err_free;
8564 }
8565
8566 perf_install_in_context(ctx, event, cpu);
8567 perf_unpin_context(ctx);
8568 mutex_unlock(&ctx->mutex);
8569
8570 return event;
8571
8572 err_free:
8573 free_event(event);
8574 err:
8575 return ERR_PTR(err);
8576 }
8577 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
8578
8579 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
8580 {
8581 struct perf_event_context *src_ctx;
8582 struct perf_event_context *dst_ctx;
8583 struct perf_event *event, *tmp;
8584 LIST_HEAD(events);
8585
8586 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
8587 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
8588
8589 /*
8590 * See perf_event_ctx_lock() for comments on the details
8591 * of swizzling perf_event::ctx.
8592 */
8593 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
8594 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
8595 event_entry) {
8596 perf_remove_from_context(event, false);
8597 unaccount_event_cpu(event, src_cpu);
8598 put_ctx(src_ctx);
8599 list_add(&event->migrate_entry, &events);
8600 }
8601
8602 /*
8603 * Wait for the events to quiesce before re-instating them.
8604 */
8605 synchronize_rcu();
8606
8607 /*
8608 * Re-instate events in 2 passes.
8609 *
8610 * Skip over group leaders and only install siblings on this first
8611 * pass, siblings will not get enabled without a leader, however a
8612 * leader will enable its siblings, even if those are still on the old
8613 * context.
8614 */
8615 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8616 if (event->group_leader == event)
8617 continue;
8618
8619 list_del(&event->migrate_entry);
8620 if (event->state >= PERF_EVENT_STATE_OFF)
8621 event->state = PERF_EVENT_STATE_INACTIVE;
8622 account_event_cpu(event, dst_cpu);
8623 perf_install_in_context(dst_ctx, event, dst_cpu);
8624 get_ctx(dst_ctx);
8625 }
8626
8627 /*
8628 * Once all the siblings are setup properly, install the group leaders
8629 * to make it go.
8630 */
8631 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8632 list_del(&event->migrate_entry);
8633 if (event->state >= PERF_EVENT_STATE_OFF)
8634 event->state = PERF_EVENT_STATE_INACTIVE;
8635 account_event_cpu(event, dst_cpu);
8636 perf_install_in_context(dst_ctx, event, dst_cpu);
8637 get_ctx(dst_ctx);
8638 }
8639 mutex_unlock(&dst_ctx->mutex);
8640 mutex_unlock(&src_ctx->mutex);
8641 }
8642 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
8643
8644 static void sync_child_event(struct perf_event *child_event,
8645 struct task_struct *child)
8646 {
8647 struct perf_event *parent_event = child_event->parent;
8648 u64 child_val;
8649
8650 if (child_event->attr.inherit_stat)
8651 perf_event_read_event(child_event, child);
8652
8653 child_val = perf_event_count(child_event);
8654
8655 /*
8656 * Add back the child's count to the parent's count:
8657 */
8658 atomic64_add(child_val, &parent_event->child_count);
8659 atomic64_add(child_event->total_time_enabled,
8660 &parent_event->child_total_time_enabled);
8661 atomic64_add(child_event->total_time_running,
8662 &parent_event->child_total_time_running);
8663
8664 /*
8665 * Remove this event from the parent's list
8666 */
8667 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
8668 mutex_lock(&parent_event->child_mutex);
8669 list_del_init(&child_event->child_list);
8670 mutex_unlock(&parent_event->child_mutex);
8671
8672 /*
8673 * Make sure user/parent get notified, that we just
8674 * lost one event.
8675 */
8676 perf_event_wakeup(parent_event);
8677
8678 /*
8679 * Release the parent event, if this was the last
8680 * reference to it.
8681 */
8682 put_event(parent_event);
8683 }
8684
8685 static void
8686 __perf_event_exit_task(struct perf_event *child_event,
8687 struct perf_event_context *child_ctx,
8688 struct task_struct *child)
8689 {
8690 /*
8691 * Do not destroy the 'original' grouping; because of the context
8692 * switch optimization the original events could've ended up in a
8693 * random child task.
8694 *
8695 * If we were to destroy the original group, all group related
8696 * operations would cease to function properly after this random
8697 * child dies.
8698 *
8699 * Do destroy all inherited groups, we don't care about those
8700 * and being thorough is better.
8701 */
8702 perf_remove_from_context(child_event, !!child_event->parent);
8703
8704 /*
8705 * It can happen that the parent exits first, and has events
8706 * that are still around due to the child reference. These
8707 * events need to be zapped.
8708 */
8709 if (child_event->parent) {
8710 sync_child_event(child_event, child);
8711 free_event(child_event);
8712 } else {
8713 child_event->state = PERF_EVENT_STATE_EXIT;
8714 perf_event_wakeup(child_event);
8715 }
8716 }
8717
8718 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
8719 {
8720 struct perf_event *child_event, *next;
8721 struct perf_event_context *child_ctx, *clone_ctx = NULL;
8722 unsigned long flags;
8723
8724 if (likely(!child->perf_event_ctxp[ctxn]))
8725 return;
8726
8727 local_irq_save(flags);
8728 /*
8729 * We can't reschedule here because interrupts are disabled,
8730 * and either child is current or it is a task that can't be
8731 * scheduled, so we are now safe from rescheduling changing
8732 * our context.
8733 */
8734 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
8735
8736 /*
8737 * Take the context lock here so that if find_get_context is
8738 * reading child->perf_event_ctxp, we wait until it has
8739 * incremented the context's refcount before we do put_ctx below.
8740 */
8741 raw_spin_lock(&child_ctx->lock);
8742 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx);
8743 child->perf_event_ctxp[ctxn] = NULL;
8744
8745 /*
8746 * If this context is a clone; unclone it so it can't get
8747 * swapped to another process while we're removing all
8748 * the events from it.
8749 */
8750 clone_ctx = unclone_ctx(child_ctx);
8751 update_context_time(child_ctx);
8752 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
8753
8754 if (clone_ctx)
8755 put_ctx(clone_ctx);
8756
8757 /*
8758 * Report the task dead after unscheduling the events so that we
8759 * won't get any samples after PERF_RECORD_EXIT. We can however still
8760 * get a few PERF_RECORD_READ events.
8761 */
8762 perf_event_task(child, child_ctx, 0);
8763
8764 /*
8765 * We can recurse on the same lock type through:
8766 *
8767 * __perf_event_exit_task()
8768 * sync_child_event()
8769 * put_event()
8770 * mutex_lock(&ctx->mutex)
8771 *
8772 * But since its the parent context it won't be the same instance.
8773 */
8774 mutex_lock(&child_ctx->mutex);
8775
8776 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
8777 __perf_event_exit_task(child_event, child_ctx, child);
8778
8779 mutex_unlock(&child_ctx->mutex);
8780
8781 put_ctx(child_ctx);
8782 }
8783
8784 /*
8785 * When a child task exits, feed back event values to parent events.
8786 */
8787 void perf_event_exit_task(struct task_struct *child)
8788 {
8789 struct perf_event *event, *tmp;
8790 int ctxn;
8791
8792 mutex_lock(&child->perf_event_mutex);
8793 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
8794 owner_entry) {
8795 list_del_init(&event->owner_entry);
8796
8797 /*
8798 * Ensure the list deletion is visible before we clear
8799 * the owner, closes a race against perf_release() where
8800 * we need to serialize on the owner->perf_event_mutex.
8801 */
8802 smp_wmb();
8803 event->owner = NULL;
8804 }
8805 mutex_unlock(&child->perf_event_mutex);
8806
8807 for_each_task_context_nr(ctxn)
8808 perf_event_exit_task_context(child, ctxn);
8809
8810 /*
8811 * The perf_event_exit_task_context calls perf_event_task
8812 * with child's task_ctx, which generates EXIT events for
8813 * child contexts and sets child->perf_event_ctxp[] to NULL.
8814 * At this point we need to send EXIT events to cpu contexts.
8815 */
8816 perf_event_task(child, NULL, 0);
8817 }
8818
8819 static void perf_free_event(struct perf_event *event,
8820 struct perf_event_context *ctx)
8821 {
8822 struct perf_event *parent = event->parent;
8823
8824 if (WARN_ON_ONCE(!parent))
8825 return;
8826
8827 mutex_lock(&parent->child_mutex);
8828 list_del_init(&event->child_list);
8829 mutex_unlock(&parent->child_mutex);
8830
8831 put_event(parent);
8832
8833 raw_spin_lock_irq(&ctx->lock);
8834 perf_group_detach(event);
8835 list_del_event(event, ctx);
8836 raw_spin_unlock_irq(&ctx->lock);
8837 free_event(event);
8838 }
8839
8840 /*
8841 * Free an unexposed, unused context as created by inheritance by
8842 * perf_event_init_task below, used by fork() in case of fail.
8843 *
8844 * Not all locks are strictly required, but take them anyway to be nice and
8845 * help out with the lockdep assertions.
8846 */
8847 void perf_event_free_task(struct task_struct *task)
8848 {
8849 struct perf_event_context *ctx;
8850 struct perf_event *event, *tmp;
8851 int ctxn;
8852
8853 for_each_task_context_nr(ctxn) {
8854 ctx = task->perf_event_ctxp[ctxn];
8855 if (!ctx)
8856 continue;
8857
8858 mutex_lock(&ctx->mutex);
8859 again:
8860 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
8861 group_entry)
8862 perf_free_event(event, ctx);
8863
8864 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
8865 group_entry)
8866 perf_free_event(event, ctx);
8867
8868 if (!list_empty(&ctx->pinned_groups) ||
8869 !list_empty(&ctx->flexible_groups))
8870 goto again;
8871
8872 mutex_unlock(&ctx->mutex);
8873
8874 put_ctx(ctx);
8875 }
8876 }
8877
8878 void perf_event_delayed_put(struct task_struct *task)
8879 {
8880 int ctxn;
8881
8882 for_each_task_context_nr(ctxn)
8883 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
8884 }
8885
8886 struct perf_event *perf_event_get(unsigned int fd)
8887 {
8888 int err;
8889 struct fd f;
8890 struct perf_event *event;
8891
8892 err = perf_fget_light(fd, &f);
8893 if (err)
8894 return ERR_PTR(err);
8895
8896 event = f.file->private_data;
8897 atomic_long_inc(&event->refcount);
8898 fdput(f);
8899
8900 return event;
8901 }
8902
8903 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
8904 {
8905 if (!event)
8906 return ERR_PTR(-EINVAL);
8907
8908 return &event->attr;
8909 }
8910
8911 /*
8912 * inherit a event from parent task to child task:
8913 */
8914 static struct perf_event *
8915 inherit_event(struct perf_event *parent_event,
8916 struct task_struct *parent,
8917 struct perf_event_context *parent_ctx,
8918 struct task_struct *child,
8919 struct perf_event *group_leader,
8920 struct perf_event_context *child_ctx)
8921 {
8922 enum perf_event_active_state parent_state = parent_event->state;
8923 struct perf_event *child_event;
8924 unsigned long flags;
8925
8926 /*
8927 * Instead of creating recursive hierarchies of events,
8928 * we link inherited events back to the original parent,
8929 * which has a filp for sure, which we use as the reference
8930 * count:
8931 */
8932 if (parent_event->parent)
8933 parent_event = parent_event->parent;
8934
8935 child_event = perf_event_alloc(&parent_event->attr,
8936 parent_event->cpu,
8937 child,
8938 group_leader, parent_event,
8939 NULL, NULL, -1);
8940 if (IS_ERR(child_event))
8941 return child_event;
8942
8943 if (is_orphaned_event(parent_event) ||
8944 !atomic_long_inc_not_zero(&parent_event->refcount)) {
8945 free_event(child_event);
8946 return NULL;
8947 }
8948
8949 get_ctx(child_ctx);
8950
8951 /*
8952 * Make the child state follow the state of the parent event,
8953 * not its attr.disabled bit. We hold the parent's mutex,
8954 * so we won't race with perf_event_{en, dis}able_family.
8955 */
8956 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
8957 child_event->state = PERF_EVENT_STATE_INACTIVE;
8958 else
8959 child_event->state = PERF_EVENT_STATE_OFF;
8960
8961 if (parent_event->attr.freq) {
8962 u64 sample_period = parent_event->hw.sample_period;
8963 struct hw_perf_event *hwc = &child_event->hw;
8964
8965 hwc->sample_period = sample_period;
8966 hwc->last_period = sample_period;
8967
8968 local64_set(&hwc->period_left, sample_period);
8969 }
8970
8971 child_event->ctx = child_ctx;
8972 child_event->overflow_handler = parent_event->overflow_handler;
8973 child_event->overflow_handler_context
8974 = parent_event->overflow_handler_context;
8975
8976 /*
8977 * Precalculate sample_data sizes
8978 */
8979 perf_event__header_size(child_event);
8980 perf_event__id_header_size(child_event);
8981
8982 /*
8983 * Link it up in the child's context:
8984 */
8985 raw_spin_lock_irqsave(&child_ctx->lock, flags);
8986 add_event_to_ctx(child_event, child_ctx);
8987 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
8988
8989 /*
8990 * Link this into the parent event's child list
8991 */
8992 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
8993 mutex_lock(&parent_event->child_mutex);
8994 list_add_tail(&child_event->child_list, &parent_event->child_list);
8995 mutex_unlock(&parent_event->child_mutex);
8996
8997 return child_event;
8998 }
8999
9000 static int inherit_group(struct perf_event *parent_event,
9001 struct task_struct *parent,
9002 struct perf_event_context *parent_ctx,
9003 struct task_struct *child,
9004 struct perf_event_context *child_ctx)
9005 {
9006 struct perf_event *leader;
9007 struct perf_event *sub;
9008 struct perf_event *child_ctr;
9009
9010 leader = inherit_event(parent_event, parent, parent_ctx,
9011 child, NULL, child_ctx);
9012 if (IS_ERR(leader))
9013 return PTR_ERR(leader);
9014 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
9015 child_ctr = inherit_event(sub, parent, parent_ctx,
9016 child, leader, child_ctx);
9017 if (IS_ERR(child_ctr))
9018 return PTR_ERR(child_ctr);
9019 }
9020 return 0;
9021 }
9022
9023 static int
9024 inherit_task_group(struct perf_event *event, struct task_struct *parent,
9025 struct perf_event_context *parent_ctx,
9026 struct task_struct *child, int ctxn,
9027 int *inherited_all)
9028 {
9029 int ret;
9030 struct perf_event_context *child_ctx;
9031
9032 if (!event->attr.inherit) {
9033 *inherited_all = 0;
9034 return 0;
9035 }
9036
9037 child_ctx = child->perf_event_ctxp[ctxn];
9038 if (!child_ctx) {
9039 /*
9040 * This is executed from the parent task context, so
9041 * inherit events that have been marked for cloning.
9042 * First allocate and initialize a context for the
9043 * child.
9044 */
9045
9046 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
9047 if (!child_ctx)
9048 return -ENOMEM;
9049
9050 child->perf_event_ctxp[ctxn] = child_ctx;
9051 }
9052
9053 ret = inherit_group(event, parent, parent_ctx,
9054 child, child_ctx);
9055
9056 if (ret)
9057 *inherited_all = 0;
9058
9059 return ret;
9060 }
9061
9062 /*
9063 * Initialize the perf_event context in task_struct
9064 */
9065 static int perf_event_init_context(struct task_struct *child, int ctxn)
9066 {
9067 struct perf_event_context *child_ctx, *parent_ctx;
9068 struct perf_event_context *cloned_ctx;
9069 struct perf_event *event;
9070 struct task_struct *parent = current;
9071 int inherited_all = 1;
9072 unsigned long flags;
9073 int ret = 0;
9074
9075 if (likely(!parent->perf_event_ctxp[ctxn]))
9076 return 0;
9077
9078 /*
9079 * If the parent's context is a clone, pin it so it won't get
9080 * swapped under us.
9081 */
9082 parent_ctx = perf_pin_task_context(parent, ctxn);
9083 if (!parent_ctx)
9084 return 0;
9085
9086 /*
9087 * No need to check if parent_ctx != NULL here; since we saw
9088 * it non-NULL earlier, the only reason for it to become NULL
9089 * is if we exit, and since we're currently in the middle of
9090 * a fork we can't be exiting at the same time.
9091 */
9092
9093 /*
9094 * Lock the parent list. No need to lock the child - not PID
9095 * hashed yet and not running, so nobody can access it.
9096 */
9097 mutex_lock(&parent_ctx->mutex);
9098
9099 /*
9100 * We dont have to disable NMIs - we are only looking at
9101 * the list, not manipulating it:
9102 */
9103 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
9104 ret = inherit_task_group(event, parent, parent_ctx,
9105 child, ctxn, &inherited_all);
9106 if (ret)
9107 break;
9108 }
9109
9110 /*
9111 * We can't hold ctx->lock when iterating the ->flexible_group list due
9112 * to allocations, but we need to prevent rotation because
9113 * rotate_ctx() will change the list from interrupt context.
9114 */
9115 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
9116 parent_ctx->rotate_disable = 1;
9117 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
9118
9119 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
9120 ret = inherit_task_group(event, parent, parent_ctx,
9121 child, ctxn, &inherited_all);
9122 if (ret)
9123 break;
9124 }
9125
9126 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
9127 parent_ctx->rotate_disable = 0;
9128
9129 child_ctx = child->perf_event_ctxp[ctxn];
9130
9131 if (child_ctx && inherited_all) {
9132 /*
9133 * Mark the child context as a clone of the parent
9134 * context, or of whatever the parent is a clone of.
9135 *
9136 * Note that if the parent is a clone, the holding of
9137 * parent_ctx->lock avoids it from being uncloned.
9138 */
9139 cloned_ctx = parent_ctx->parent_ctx;
9140 if (cloned_ctx) {
9141 child_ctx->parent_ctx = cloned_ctx;
9142 child_ctx->parent_gen = parent_ctx->parent_gen;
9143 } else {
9144 child_ctx->parent_ctx = parent_ctx;
9145 child_ctx->parent_gen = parent_ctx->generation;
9146 }
9147 get_ctx(child_ctx->parent_ctx);
9148 }
9149
9150 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
9151 mutex_unlock(&parent_ctx->mutex);
9152
9153 perf_unpin_context(parent_ctx);
9154 put_ctx(parent_ctx);
9155
9156 return ret;
9157 }
9158
9159 /*
9160 * Initialize the perf_event context in task_struct
9161 */
9162 int perf_event_init_task(struct task_struct *child)
9163 {
9164 int ctxn, ret;
9165
9166 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
9167 mutex_init(&child->perf_event_mutex);
9168 INIT_LIST_HEAD(&child->perf_event_list);
9169
9170 for_each_task_context_nr(ctxn) {
9171 ret = perf_event_init_context(child, ctxn);
9172 if (ret) {
9173 perf_event_free_task(child);
9174 return ret;
9175 }
9176 }
9177
9178 return 0;
9179 }
9180
9181 static void __init perf_event_init_all_cpus(void)
9182 {
9183 struct swevent_htable *swhash;
9184 int cpu;
9185
9186 for_each_possible_cpu(cpu) {
9187 swhash = &per_cpu(swevent_htable, cpu);
9188 mutex_init(&swhash->hlist_mutex);
9189 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
9190 }
9191 }
9192
9193 static void perf_event_init_cpu(int cpu)
9194 {
9195 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9196
9197 mutex_lock(&swhash->hlist_mutex);
9198 if (swhash->hlist_refcount > 0) {
9199 struct swevent_hlist *hlist;
9200
9201 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
9202 WARN_ON(!hlist);
9203 rcu_assign_pointer(swhash->swevent_hlist, hlist);
9204 }
9205 mutex_unlock(&swhash->hlist_mutex);
9206 }
9207
9208 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
9209 static void __perf_event_exit_context(void *__info)
9210 {
9211 struct remove_event re = { .detach_group = true };
9212 struct perf_event_context *ctx = __info;
9213
9214 rcu_read_lock();
9215 list_for_each_entry_rcu(re.event, &ctx->event_list, event_entry)
9216 __perf_remove_from_context(&re);
9217 rcu_read_unlock();
9218 }
9219
9220 static void perf_event_exit_cpu_context(int cpu)
9221 {
9222 struct perf_event_context *ctx;
9223 struct pmu *pmu;
9224 int idx;
9225
9226 idx = srcu_read_lock(&pmus_srcu);
9227 list_for_each_entry_rcu(pmu, &pmus, entry) {
9228 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
9229
9230 mutex_lock(&ctx->mutex);
9231 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
9232 mutex_unlock(&ctx->mutex);
9233 }
9234 srcu_read_unlock(&pmus_srcu, idx);
9235 }
9236
9237 static void perf_event_exit_cpu(int cpu)
9238 {
9239 perf_event_exit_cpu_context(cpu);
9240 }
9241 #else
9242 static inline void perf_event_exit_cpu(int cpu) { }
9243 #endif
9244
9245 static int
9246 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
9247 {
9248 int cpu;
9249
9250 for_each_online_cpu(cpu)
9251 perf_event_exit_cpu(cpu);
9252
9253 return NOTIFY_OK;
9254 }
9255
9256 /*
9257 * Run the perf reboot notifier at the very last possible moment so that
9258 * the generic watchdog code runs as long as possible.
9259 */
9260 static struct notifier_block perf_reboot_notifier = {
9261 .notifier_call = perf_reboot,
9262 .priority = INT_MIN,
9263 };
9264
9265 static int
9266 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
9267 {
9268 unsigned int cpu = (long)hcpu;
9269
9270 switch (action & ~CPU_TASKS_FROZEN) {
9271
9272 case CPU_UP_PREPARE:
9273 case CPU_DOWN_FAILED:
9274 perf_event_init_cpu(cpu);
9275 break;
9276
9277 case CPU_UP_CANCELED:
9278 case CPU_DOWN_PREPARE:
9279 perf_event_exit_cpu(cpu);
9280 break;
9281 default:
9282 break;
9283 }
9284
9285 return NOTIFY_OK;
9286 }
9287
9288 void __init perf_event_init(void)
9289 {
9290 int ret;
9291
9292 idr_init(&pmu_idr);
9293
9294 perf_event_init_all_cpus();
9295 init_srcu_struct(&pmus_srcu);
9296 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
9297 perf_pmu_register(&perf_cpu_clock, NULL, -1);
9298 perf_pmu_register(&perf_task_clock, NULL, -1);
9299 perf_tp_register();
9300 perf_cpu_notifier(perf_cpu_notify);
9301 register_reboot_notifier(&perf_reboot_notifier);
9302
9303 ret = init_hw_breakpoint();
9304 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
9305
9306 /* do not patch jump label more than once per second */
9307 jump_label_rate_limit(&perf_sched_events, HZ);
9308
9309 /*
9310 * Build time assertion that we keep the data_head at the intended
9311 * location. IOW, validation we got the __reserved[] size right.
9312 */
9313 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
9314 != 1024);
9315 }
9316
9317 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
9318 char *page)
9319 {
9320 struct perf_pmu_events_attr *pmu_attr =
9321 container_of(attr, struct perf_pmu_events_attr, attr);
9322
9323 if (pmu_attr->event_str)
9324 return sprintf(page, "%s\n", pmu_attr->event_str);
9325
9326 return 0;
9327 }
9328
9329 static int __init perf_event_sysfs_init(void)
9330 {
9331 struct pmu *pmu;
9332 int ret;
9333
9334 mutex_lock(&pmus_lock);
9335
9336 ret = bus_register(&pmu_bus);
9337 if (ret)
9338 goto unlock;
9339
9340 list_for_each_entry(pmu, &pmus, entry) {
9341 if (!pmu->name || pmu->type < 0)
9342 continue;
9343
9344 ret = pmu_dev_alloc(pmu);
9345 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
9346 }
9347 pmu_bus_running = 1;
9348 ret = 0;
9349
9350 unlock:
9351 mutex_unlock(&pmus_lock);
9352
9353 return ret;
9354 }
9355 device_initcall(perf_event_sysfs_init);
9356
9357 #ifdef CONFIG_CGROUP_PERF
9358 static struct cgroup_subsys_state *
9359 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
9360 {
9361 struct perf_cgroup *jc;
9362
9363 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
9364 if (!jc)
9365 return ERR_PTR(-ENOMEM);
9366
9367 jc->info = alloc_percpu(struct perf_cgroup_info);
9368 if (!jc->info) {
9369 kfree(jc);
9370 return ERR_PTR(-ENOMEM);
9371 }
9372
9373 return &jc->css;
9374 }
9375
9376 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
9377 {
9378 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
9379
9380 free_percpu(jc->info);
9381 kfree(jc);
9382 }
9383
9384 static int __perf_cgroup_move(void *info)
9385 {
9386 struct task_struct *task = info;
9387 rcu_read_lock();
9388 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
9389 rcu_read_unlock();
9390 return 0;
9391 }
9392
9393 static void perf_cgroup_attach(struct cgroup_taskset *tset)
9394 {
9395 struct task_struct *task;
9396 struct cgroup_subsys_state *css;
9397
9398 cgroup_taskset_for_each(task, css, tset)
9399 task_function_call(task, __perf_cgroup_move, task);
9400 }
9401
9402 struct cgroup_subsys perf_event_cgrp_subsys = {
9403 .css_alloc = perf_cgroup_css_alloc,
9404 .css_free = perf_cgroup_css_free,
9405 .attach = perf_cgroup_attach,
9406 };
9407 #endif /* CONFIG_CGROUP_PERF */