]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - kernel/events/core.c
locking/atomics: COCCINELLE/treewide: Convert trivial ACCESS_ONCE() patterns to READ_...
[mirror_ubuntu-hirsute-kernel.git] / kernel / events / core.c
1 /*
2 * Performance events core code:
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53
54 #include "internal.h"
55
56 #include <asm/irq_regs.h>
57
58 typedef int (*remote_function_f)(void *);
59
60 struct remote_function_call {
61 struct task_struct *p;
62 remote_function_f func;
63 void *info;
64 int ret;
65 };
66
67 static void remote_function(void *data)
68 {
69 struct remote_function_call *tfc = data;
70 struct task_struct *p = tfc->p;
71
72 if (p) {
73 /* -EAGAIN */
74 if (task_cpu(p) != smp_processor_id())
75 return;
76
77 /*
78 * Now that we're on right CPU with IRQs disabled, we can test
79 * if we hit the right task without races.
80 */
81
82 tfc->ret = -ESRCH; /* No such (running) process */
83 if (p != current)
84 return;
85 }
86
87 tfc->ret = tfc->func(tfc->info);
88 }
89
90 /**
91 * task_function_call - call a function on the cpu on which a task runs
92 * @p: the task to evaluate
93 * @func: the function to be called
94 * @info: the function call argument
95 *
96 * Calls the function @func when the task is currently running. This might
97 * be on the current CPU, which just calls the function directly
98 *
99 * returns: @func return value, or
100 * -ESRCH - when the process isn't running
101 * -EAGAIN - when the process moved away
102 */
103 static int
104 task_function_call(struct task_struct *p, remote_function_f func, void *info)
105 {
106 struct remote_function_call data = {
107 .p = p,
108 .func = func,
109 .info = info,
110 .ret = -EAGAIN,
111 };
112 int ret;
113
114 do {
115 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
116 if (!ret)
117 ret = data.ret;
118 } while (ret == -EAGAIN);
119
120 return ret;
121 }
122
123 /**
124 * cpu_function_call - call a function on the cpu
125 * @func: the function to be called
126 * @info: the function call argument
127 *
128 * Calls the function @func on the remote cpu.
129 *
130 * returns: @func return value or -ENXIO when the cpu is offline
131 */
132 static int cpu_function_call(int cpu, remote_function_f func, void *info)
133 {
134 struct remote_function_call data = {
135 .p = NULL,
136 .func = func,
137 .info = info,
138 .ret = -ENXIO, /* No such CPU */
139 };
140
141 smp_call_function_single(cpu, remote_function, &data, 1);
142
143 return data.ret;
144 }
145
146 static inline struct perf_cpu_context *
147 __get_cpu_context(struct perf_event_context *ctx)
148 {
149 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
150 }
151
152 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
153 struct perf_event_context *ctx)
154 {
155 raw_spin_lock(&cpuctx->ctx.lock);
156 if (ctx)
157 raw_spin_lock(&ctx->lock);
158 }
159
160 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
161 struct perf_event_context *ctx)
162 {
163 if (ctx)
164 raw_spin_unlock(&ctx->lock);
165 raw_spin_unlock(&cpuctx->ctx.lock);
166 }
167
168 #define TASK_TOMBSTONE ((void *)-1L)
169
170 static bool is_kernel_event(struct perf_event *event)
171 {
172 return READ_ONCE(event->owner) == TASK_TOMBSTONE;
173 }
174
175 /*
176 * On task ctx scheduling...
177 *
178 * When !ctx->nr_events a task context will not be scheduled. This means
179 * we can disable the scheduler hooks (for performance) without leaving
180 * pending task ctx state.
181 *
182 * This however results in two special cases:
183 *
184 * - removing the last event from a task ctx; this is relatively straight
185 * forward and is done in __perf_remove_from_context.
186 *
187 * - adding the first event to a task ctx; this is tricky because we cannot
188 * rely on ctx->is_active and therefore cannot use event_function_call().
189 * See perf_install_in_context().
190 *
191 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
192 */
193
194 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
195 struct perf_event_context *, void *);
196
197 struct event_function_struct {
198 struct perf_event *event;
199 event_f func;
200 void *data;
201 };
202
203 static int event_function(void *info)
204 {
205 struct event_function_struct *efs = info;
206 struct perf_event *event = efs->event;
207 struct perf_event_context *ctx = event->ctx;
208 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
209 struct perf_event_context *task_ctx = cpuctx->task_ctx;
210 int ret = 0;
211
212 WARN_ON_ONCE(!irqs_disabled());
213
214 perf_ctx_lock(cpuctx, task_ctx);
215 /*
216 * Since we do the IPI call without holding ctx->lock things can have
217 * changed, double check we hit the task we set out to hit.
218 */
219 if (ctx->task) {
220 if (ctx->task != current) {
221 ret = -ESRCH;
222 goto unlock;
223 }
224
225 /*
226 * We only use event_function_call() on established contexts,
227 * and event_function() is only ever called when active (or
228 * rather, we'll have bailed in task_function_call() or the
229 * above ctx->task != current test), therefore we must have
230 * ctx->is_active here.
231 */
232 WARN_ON_ONCE(!ctx->is_active);
233 /*
234 * And since we have ctx->is_active, cpuctx->task_ctx must
235 * match.
236 */
237 WARN_ON_ONCE(task_ctx != ctx);
238 } else {
239 WARN_ON_ONCE(&cpuctx->ctx != ctx);
240 }
241
242 efs->func(event, cpuctx, ctx, efs->data);
243 unlock:
244 perf_ctx_unlock(cpuctx, task_ctx);
245
246 return ret;
247 }
248
249 static void event_function_call(struct perf_event *event, event_f func, void *data)
250 {
251 struct perf_event_context *ctx = event->ctx;
252 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
253 struct event_function_struct efs = {
254 .event = event,
255 .func = func,
256 .data = data,
257 };
258
259 if (!event->parent) {
260 /*
261 * If this is a !child event, we must hold ctx::mutex to
262 * stabilize the the event->ctx relation. See
263 * perf_event_ctx_lock().
264 */
265 lockdep_assert_held(&ctx->mutex);
266 }
267
268 if (!task) {
269 cpu_function_call(event->cpu, event_function, &efs);
270 return;
271 }
272
273 if (task == TASK_TOMBSTONE)
274 return;
275
276 again:
277 if (!task_function_call(task, event_function, &efs))
278 return;
279
280 raw_spin_lock_irq(&ctx->lock);
281 /*
282 * Reload the task pointer, it might have been changed by
283 * a concurrent perf_event_context_sched_out().
284 */
285 task = ctx->task;
286 if (task == TASK_TOMBSTONE) {
287 raw_spin_unlock_irq(&ctx->lock);
288 return;
289 }
290 if (ctx->is_active) {
291 raw_spin_unlock_irq(&ctx->lock);
292 goto again;
293 }
294 func(event, NULL, ctx, data);
295 raw_spin_unlock_irq(&ctx->lock);
296 }
297
298 /*
299 * Similar to event_function_call() + event_function(), but hard assumes IRQs
300 * are already disabled and we're on the right CPU.
301 */
302 static void event_function_local(struct perf_event *event, event_f func, void *data)
303 {
304 struct perf_event_context *ctx = event->ctx;
305 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
306 struct task_struct *task = READ_ONCE(ctx->task);
307 struct perf_event_context *task_ctx = NULL;
308
309 WARN_ON_ONCE(!irqs_disabled());
310
311 if (task) {
312 if (task == TASK_TOMBSTONE)
313 return;
314
315 task_ctx = ctx;
316 }
317
318 perf_ctx_lock(cpuctx, task_ctx);
319
320 task = ctx->task;
321 if (task == TASK_TOMBSTONE)
322 goto unlock;
323
324 if (task) {
325 /*
326 * We must be either inactive or active and the right task,
327 * otherwise we're screwed, since we cannot IPI to somewhere
328 * else.
329 */
330 if (ctx->is_active) {
331 if (WARN_ON_ONCE(task != current))
332 goto unlock;
333
334 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
335 goto unlock;
336 }
337 } else {
338 WARN_ON_ONCE(&cpuctx->ctx != ctx);
339 }
340
341 func(event, cpuctx, ctx, data);
342 unlock:
343 perf_ctx_unlock(cpuctx, task_ctx);
344 }
345
346 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
347 PERF_FLAG_FD_OUTPUT |\
348 PERF_FLAG_PID_CGROUP |\
349 PERF_FLAG_FD_CLOEXEC)
350
351 /*
352 * branch priv levels that need permission checks
353 */
354 #define PERF_SAMPLE_BRANCH_PERM_PLM \
355 (PERF_SAMPLE_BRANCH_KERNEL |\
356 PERF_SAMPLE_BRANCH_HV)
357
358 enum event_type_t {
359 EVENT_FLEXIBLE = 0x1,
360 EVENT_PINNED = 0x2,
361 EVENT_TIME = 0x4,
362 /* see ctx_resched() for details */
363 EVENT_CPU = 0x8,
364 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
365 };
366
367 /*
368 * perf_sched_events : >0 events exist
369 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
370 */
371
372 static void perf_sched_delayed(struct work_struct *work);
373 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
374 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
375 static DEFINE_MUTEX(perf_sched_mutex);
376 static atomic_t perf_sched_count;
377
378 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
379 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
380 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
381
382 static atomic_t nr_mmap_events __read_mostly;
383 static atomic_t nr_comm_events __read_mostly;
384 static atomic_t nr_namespaces_events __read_mostly;
385 static atomic_t nr_task_events __read_mostly;
386 static atomic_t nr_freq_events __read_mostly;
387 static atomic_t nr_switch_events __read_mostly;
388
389 static LIST_HEAD(pmus);
390 static DEFINE_MUTEX(pmus_lock);
391 static struct srcu_struct pmus_srcu;
392 static cpumask_var_t perf_online_mask;
393
394 /*
395 * perf event paranoia level:
396 * -1 - not paranoid at all
397 * 0 - disallow raw tracepoint access for unpriv
398 * 1 - disallow cpu events for unpriv
399 * 2 - disallow kernel profiling for unpriv
400 */
401 int sysctl_perf_event_paranoid __read_mostly = 2;
402
403 /* Minimum for 512 kiB + 1 user control page */
404 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
405
406 /*
407 * max perf event sample rate
408 */
409 #define DEFAULT_MAX_SAMPLE_RATE 100000
410 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
411 #define DEFAULT_CPU_TIME_MAX_PERCENT 25
412
413 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
414
415 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
416 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
417
418 static int perf_sample_allowed_ns __read_mostly =
419 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
420
421 static void update_perf_cpu_limits(void)
422 {
423 u64 tmp = perf_sample_period_ns;
424
425 tmp *= sysctl_perf_cpu_time_max_percent;
426 tmp = div_u64(tmp, 100);
427 if (!tmp)
428 tmp = 1;
429
430 WRITE_ONCE(perf_sample_allowed_ns, tmp);
431 }
432
433 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
434
435 int perf_proc_update_handler(struct ctl_table *table, int write,
436 void __user *buffer, size_t *lenp,
437 loff_t *ppos)
438 {
439 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
440
441 if (ret || !write)
442 return ret;
443
444 /*
445 * If throttling is disabled don't allow the write:
446 */
447 if (sysctl_perf_cpu_time_max_percent == 100 ||
448 sysctl_perf_cpu_time_max_percent == 0)
449 return -EINVAL;
450
451 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
452 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
453 update_perf_cpu_limits();
454
455 return 0;
456 }
457
458 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
459
460 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
461 void __user *buffer, size_t *lenp,
462 loff_t *ppos)
463 {
464 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
465
466 if (ret || !write)
467 return ret;
468
469 if (sysctl_perf_cpu_time_max_percent == 100 ||
470 sysctl_perf_cpu_time_max_percent == 0) {
471 printk(KERN_WARNING
472 "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
473 WRITE_ONCE(perf_sample_allowed_ns, 0);
474 } else {
475 update_perf_cpu_limits();
476 }
477
478 return 0;
479 }
480
481 /*
482 * perf samples are done in some very critical code paths (NMIs).
483 * If they take too much CPU time, the system can lock up and not
484 * get any real work done. This will drop the sample rate when
485 * we detect that events are taking too long.
486 */
487 #define NR_ACCUMULATED_SAMPLES 128
488 static DEFINE_PER_CPU(u64, running_sample_length);
489
490 static u64 __report_avg;
491 static u64 __report_allowed;
492
493 static void perf_duration_warn(struct irq_work *w)
494 {
495 printk_ratelimited(KERN_INFO
496 "perf: interrupt took too long (%lld > %lld), lowering "
497 "kernel.perf_event_max_sample_rate to %d\n",
498 __report_avg, __report_allowed,
499 sysctl_perf_event_sample_rate);
500 }
501
502 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
503
504 void perf_sample_event_took(u64 sample_len_ns)
505 {
506 u64 max_len = READ_ONCE(perf_sample_allowed_ns);
507 u64 running_len;
508 u64 avg_len;
509 u32 max;
510
511 if (max_len == 0)
512 return;
513
514 /* Decay the counter by 1 average sample. */
515 running_len = __this_cpu_read(running_sample_length);
516 running_len -= running_len/NR_ACCUMULATED_SAMPLES;
517 running_len += sample_len_ns;
518 __this_cpu_write(running_sample_length, running_len);
519
520 /*
521 * Note: this will be biased artifically low until we have
522 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
523 * from having to maintain a count.
524 */
525 avg_len = running_len/NR_ACCUMULATED_SAMPLES;
526 if (avg_len <= max_len)
527 return;
528
529 __report_avg = avg_len;
530 __report_allowed = max_len;
531
532 /*
533 * Compute a throttle threshold 25% below the current duration.
534 */
535 avg_len += avg_len / 4;
536 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
537 if (avg_len < max)
538 max /= (u32)avg_len;
539 else
540 max = 1;
541
542 WRITE_ONCE(perf_sample_allowed_ns, avg_len);
543 WRITE_ONCE(max_samples_per_tick, max);
544
545 sysctl_perf_event_sample_rate = max * HZ;
546 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
547
548 if (!irq_work_queue(&perf_duration_work)) {
549 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
550 "kernel.perf_event_max_sample_rate to %d\n",
551 __report_avg, __report_allowed,
552 sysctl_perf_event_sample_rate);
553 }
554 }
555
556 static atomic64_t perf_event_id;
557
558 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
559 enum event_type_t event_type);
560
561 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
562 enum event_type_t event_type,
563 struct task_struct *task);
564
565 static void update_context_time(struct perf_event_context *ctx);
566 static u64 perf_event_time(struct perf_event *event);
567
568 void __weak perf_event_print_debug(void) { }
569
570 extern __weak const char *perf_pmu_name(void)
571 {
572 return "pmu";
573 }
574
575 static inline u64 perf_clock(void)
576 {
577 return local_clock();
578 }
579
580 static inline u64 perf_event_clock(struct perf_event *event)
581 {
582 return event->clock();
583 }
584
585 #ifdef CONFIG_CGROUP_PERF
586
587 static inline bool
588 perf_cgroup_match(struct perf_event *event)
589 {
590 struct perf_event_context *ctx = event->ctx;
591 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
592
593 /* @event doesn't care about cgroup */
594 if (!event->cgrp)
595 return true;
596
597 /* wants specific cgroup scope but @cpuctx isn't associated with any */
598 if (!cpuctx->cgrp)
599 return false;
600
601 /*
602 * Cgroup scoping is recursive. An event enabled for a cgroup is
603 * also enabled for all its descendant cgroups. If @cpuctx's
604 * cgroup is a descendant of @event's (the test covers identity
605 * case), it's a match.
606 */
607 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
608 event->cgrp->css.cgroup);
609 }
610
611 static inline void perf_detach_cgroup(struct perf_event *event)
612 {
613 css_put(&event->cgrp->css);
614 event->cgrp = NULL;
615 }
616
617 static inline int is_cgroup_event(struct perf_event *event)
618 {
619 return event->cgrp != NULL;
620 }
621
622 static inline u64 perf_cgroup_event_time(struct perf_event *event)
623 {
624 struct perf_cgroup_info *t;
625
626 t = per_cpu_ptr(event->cgrp->info, event->cpu);
627 return t->time;
628 }
629
630 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
631 {
632 struct perf_cgroup_info *info;
633 u64 now;
634
635 now = perf_clock();
636
637 info = this_cpu_ptr(cgrp->info);
638
639 info->time += now - info->timestamp;
640 info->timestamp = now;
641 }
642
643 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
644 {
645 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
646 if (cgrp_out)
647 __update_cgrp_time(cgrp_out);
648 }
649
650 static inline void update_cgrp_time_from_event(struct perf_event *event)
651 {
652 struct perf_cgroup *cgrp;
653
654 /*
655 * ensure we access cgroup data only when needed and
656 * when we know the cgroup is pinned (css_get)
657 */
658 if (!is_cgroup_event(event))
659 return;
660
661 cgrp = perf_cgroup_from_task(current, event->ctx);
662 /*
663 * Do not update time when cgroup is not active
664 */
665 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
666 __update_cgrp_time(event->cgrp);
667 }
668
669 static inline void
670 perf_cgroup_set_timestamp(struct task_struct *task,
671 struct perf_event_context *ctx)
672 {
673 struct perf_cgroup *cgrp;
674 struct perf_cgroup_info *info;
675
676 /*
677 * ctx->lock held by caller
678 * ensure we do not access cgroup data
679 * unless we have the cgroup pinned (css_get)
680 */
681 if (!task || !ctx->nr_cgroups)
682 return;
683
684 cgrp = perf_cgroup_from_task(task, ctx);
685 info = this_cpu_ptr(cgrp->info);
686 info->timestamp = ctx->timestamp;
687 }
688
689 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
690
691 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
692 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
693
694 /*
695 * reschedule events based on the cgroup constraint of task.
696 *
697 * mode SWOUT : schedule out everything
698 * mode SWIN : schedule in based on cgroup for next
699 */
700 static void perf_cgroup_switch(struct task_struct *task, int mode)
701 {
702 struct perf_cpu_context *cpuctx;
703 struct list_head *list;
704 unsigned long flags;
705
706 /*
707 * Disable interrupts and preemption to avoid this CPU's
708 * cgrp_cpuctx_entry to change under us.
709 */
710 local_irq_save(flags);
711
712 list = this_cpu_ptr(&cgrp_cpuctx_list);
713 list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
714 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
715
716 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
717 perf_pmu_disable(cpuctx->ctx.pmu);
718
719 if (mode & PERF_CGROUP_SWOUT) {
720 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
721 /*
722 * must not be done before ctxswout due
723 * to event_filter_match() in event_sched_out()
724 */
725 cpuctx->cgrp = NULL;
726 }
727
728 if (mode & PERF_CGROUP_SWIN) {
729 WARN_ON_ONCE(cpuctx->cgrp);
730 /*
731 * set cgrp before ctxsw in to allow
732 * event_filter_match() to not have to pass
733 * task around
734 * we pass the cpuctx->ctx to perf_cgroup_from_task()
735 * because cgorup events are only per-cpu
736 */
737 cpuctx->cgrp = perf_cgroup_from_task(task,
738 &cpuctx->ctx);
739 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
740 }
741 perf_pmu_enable(cpuctx->ctx.pmu);
742 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
743 }
744
745 local_irq_restore(flags);
746 }
747
748 static inline void perf_cgroup_sched_out(struct task_struct *task,
749 struct task_struct *next)
750 {
751 struct perf_cgroup *cgrp1;
752 struct perf_cgroup *cgrp2 = NULL;
753
754 rcu_read_lock();
755 /*
756 * we come here when we know perf_cgroup_events > 0
757 * we do not need to pass the ctx here because we know
758 * we are holding the rcu lock
759 */
760 cgrp1 = perf_cgroup_from_task(task, NULL);
761 cgrp2 = perf_cgroup_from_task(next, NULL);
762
763 /*
764 * only schedule out current cgroup events if we know
765 * that we are switching to a different cgroup. Otherwise,
766 * do no touch the cgroup events.
767 */
768 if (cgrp1 != cgrp2)
769 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
770
771 rcu_read_unlock();
772 }
773
774 static inline void perf_cgroup_sched_in(struct task_struct *prev,
775 struct task_struct *task)
776 {
777 struct perf_cgroup *cgrp1;
778 struct perf_cgroup *cgrp2 = NULL;
779
780 rcu_read_lock();
781 /*
782 * we come here when we know perf_cgroup_events > 0
783 * we do not need to pass the ctx here because we know
784 * we are holding the rcu lock
785 */
786 cgrp1 = perf_cgroup_from_task(task, NULL);
787 cgrp2 = perf_cgroup_from_task(prev, NULL);
788
789 /*
790 * only need to schedule in cgroup events if we are changing
791 * cgroup during ctxsw. Cgroup events were not scheduled
792 * out of ctxsw out if that was not the case.
793 */
794 if (cgrp1 != cgrp2)
795 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
796
797 rcu_read_unlock();
798 }
799
800 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
801 struct perf_event_attr *attr,
802 struct perf_event *group_leader)
803 {
804 struct perf_cgroup *cgrp;
805 struct cgroup_subsys_state *css;
806 struct fd f = fdget(fd);
807 int ret = 0;
808
809 if (!f.file)
810 return -EBADF;
811
812 css = css_tryget_online_from_dir(f.file->f_path.dentry,
813 &perf_event_cgrp_subsys);
814 if (IS_ERR(css)) {
815 ret = PTR_ERR(css);
816 goto out;
817 }
818
819 cgrp = container_of(css, struct perf_cgroup, css);
820 event->cgrp = cgrp;
821
822 /*
823 * all events in a group must monitor
824 * the same cgroup because a task belongs
825 * to only one perf cgroup at a time
826 */
827 if (group_leader && group_leader->cgrp != cgrp) {
828 perf_detach_cgroup(event);
829 ret = -EINVAL;
830 }
831 out:
832 fdput(f);
833 return ret;
834 }
835
836 static inline void
837 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
838 {
839 struct perf_cgroup_info *t;
840 t = per_cpu_ptr(event->cgrp->info, event->cpu);
841 event->shadow_ctx_time = now - t->timestamp;
842 }
843
844 static inline void
845 perf_cgroup_defer_enabled(struct perf_event *event)
846 {
847 /*
848 * when the current task's perf cgroup does not match
849 * the event's, we need to remember to call the
850 * perf_mark_enable() function the first time a task with
851 * a matching perf cgroup is scheduled in.
852 */
853 if (is_cgroup_event(event) && !perf_cgroup_match(event))
854 event->cgrp_defer_enabled = 1;
855 }
856
857 static inline void
858 perf_cgroup_mark_enabled(struct perf_event *event,
859 struct perf_event_context *ctx)
860 {
861 struct perf_event *sub;
862 u64 tstamp = perf_event_time(event);
863
864 if (!event->cgrp_defer_enabled)
865 return;
866
867 event->cgrp_defer_enabled = 0;
868
869 event->tstamp_enabled = tstamp - event->total_time_enabled;
870 list_for_each_entry(sub, &event->sibling_list, group_entry) {
871 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
872 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
873 sub->cgrp_defer_enabled = 0;
874 }
875 }
876 }
877
878 /*
879 * Update cpuctx->cgrp so that it is set when first cgroup event is added and
880 * cleared when last cgroup event is removed.
881 */
882 static inline void
883 list_update_cgroup_event(struct perf_event *event,
884 struct perf_event_context *ctx, bool add)
885 {
886 struct perf_cpu_context *cpuctx;
887 struct list_head *cpuctx_entry;
888
889 if (!is_cgroup_event(event))
890 return;
891
892 if (add && ctx->nr_cgroups++)
893 return;
894 else if (!add && --ctx->nr_cgroups)
895 return;
896 /*
897 * Because cgroup events are always per-cpu events,
898 * this will always be called from the right CPU.
899 */
900 cpuctx = __get_cpu_context(ctx);
901 cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
902 /* cpuctx->cgrp is NULL unless a cgroup event is active in this CPU .*/
903 if (add) {
904 list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list));
905 if (perf_cgroup_from_task(current, ctx) == event->cgrp)
906 cpuctx->cgrp = event->cgrp;
907 } else {
908 list_del(cpuctx_entry);
909 cpuctx->cgrp = NULL;
910 }
911 }
912
913 #else /* !CONFIG_CGROUP_PERF */
914
915 static inline bool
916 perf_cgroup_match(struct perf_event *event)
917 {
918 return true;
919 }
920
921 static inline void perf_detach_cgroup(struct perf_event *event)
922 {}
923
924 static inline int is_cgroup_event(struct perf_event *event)
925 {
926 return 0;
927 }
928
929 static inline void update_cgrp_time_from_event(struct perf_event *event)
930 {
931 }
932
933 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
934 {
935 }
936
937 static inline void perf_cgroup_sched_out(struct task_struct *task,
938 struct task_struct *next)
939 {
940 }
941
942 static inline void perf_cgroup_sched_in(struct task_struct *prev,
943 struct task_struct *task)
944 {
945 }
946
947 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
948 struct perf_event_attr *attr,
949 struct perf_event *group_leader)
950 {
951 return -EINVAL;
952 }
953
954 static inline void
955 perf_cgroup_set_timestamp(struct task_struct *task,
956 struct perf_event_context *ctx)
957 {
958 }
959
960 void
961 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
962 {
963 }
964
965 static inline void
966 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
967 {
968 }
969
970 static inline u64 perf_cgroup_event_time(struct perf_event *event)
971 {
972 return 0;
973 }
974
975 static inline void
976 perf_cgroup_defer_enabled(struct perf_event *event)
977 {
978 }
979
980 static inline void
981 perf_cgroup_mark_enabled(struct perf_event *event,
982 struct perf_event_context *ctx)
983 {
984 }
985
986 static inline void
987 list_update_cgroup_event(struct perf_event *event,
988 struct perf_event_context *ctx, bool add)
989 {
990 }
991
992 #endif
993
994 /*
995 * set default to be dependent on timer tick just
996 * like original code
997 */
998 #define PERF_CPU_HRTIMER (1000 / HZ)
999 /*
1000 * function must be called with interrupts disabled
1001 */
1002 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1003 {
1004 struct perf_cpu_context *cpuctx;
1005 int rotations = 0;
1006
1007 WARN_ON(!irqs_disabled());
1008
1009 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1010 rotations = perf_rotate_context(cpuctx);
1011
1012 raw_spin_lock(&cpuctx->hrtimer_lock);
1013 if (rotations)
1014 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1015 else
1016 cpuctx->hrtimer_active = 0;
1017 raw_spin_unlock(&cpuctx->hrtimer_lock);
1018
1019 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1020 }
1021
1022 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1023 {
1024 struct hrtimer *timer = &cpuctx->hrtimer;
1025 struct pmu *pmu = cpuctx->ctx.pmu;
1026 u64 interval;
1027
1028 /* no multiplexing needed for SW PMU */
1029 if (pmu->task_ctx_nr == perf_sw_context)
1030 return;
1031
1032 /*
1033 * check default is sane, if not set then force to
1034 * default interval (1/tick)
1035 */
1036 interval = pmu->hrtimer_interval_ms;
1037 if (interval < 1)
1038 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1039
1040 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1041
1042 raw_spin_lock_init(&cpuctx->hrtimer_lock);
1043 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
1044 timer->function = perf_mux_hrtimer_handler;
1045 }
1046
1047 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1048 {
1049 struct hrtimer *timer = &cpuctx->hrtimer;
1050 struct pmu *pmu = cpuctx->ctx.pmu;
1051 unsigned long flags;
1052
1053 /* not for SW PMU */
1054 if (pmu->task_ctx_nr == perf_sw_context)
1055 return 0;
1056
1057 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1058 if (!cpuctx->hrtimer_active) {
1059 cpuctx->hrtimer_active = 1;
1060 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1061 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1062 }
1063 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1064
1065 return 0;
1066 }
1067
1068 void perf_pmu_disable(struct pmu *pmu)
1069 {
1070 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1071 if (!(*count)++)
1072 pmu->pmu_disable(pmu);
1073 }
1074
1075 void perf_pmu_enable(struct pmu *pmu)
1076 {
1077 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1078 if (!--(*count))
1079 pmu->pmu_enable(pmu);
1080 }
1081
1082 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1083
1084 /*
1085 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1086 * perf_event_task_tick() are fully serialized because they're strictly cpu
1087 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1088 * disabled, while perf_event_task_tick is called from IRQ context.
1089 */
1090 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1091 {
1092 struct list_head *head = this_cpu_ptr(&active_ctx_list);
1093
1094 WARN_ON(!irqs_disabled());
1095
1096 WARN_ON(!list_empty(&ctx->active_ctx_list));
1097
1098 list_add(&ctx->active_ctx_list, head);
1099 }
1100
1101 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1102 {
1103 WARN_ON(!irqs_disabled());
1104
1105 WARN_ON(list_empty(&ctx->active_ctx_list));
1106
1107 list_del_init(&ctx->active_ctx_list);
1108 }
1109
1110 static void get_ctx(struct perf_event_context *ctx)
1111 {
1112 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1113 }
1114
1115 static void free_ctx(struct rcu_head *head)
1116 {
1117 struct perf_event_context *ctx;
1118
1119 ctx = container_of(head, struct perf_event_context, rcu_head);
1120 kfree(ctx->task_ctx_data);
1121 kfree(ctx);
1122 }
1123
1124 static void put_ctx(struct perf_event_context *ctx)
1125 {
1126 if (atomic_dec_and_test(&ctx->refcount)) {
1127 if (ctx->parent_ctx)
1128 put_ctx(ctx->parent_ctx);
1129 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1130 put_task_struct(ctx->task);
1131 call_rcu(&ctx->rcu_head, free_ctx);
1132 }
1133 }
1134
1135 /*
1136 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1137 * perf_pmu_migrate_context() we need some magic.
1138 *
1139 * Those places that change perf_event::ctx will hold both
1140 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1141 *
1142 * Lock ordering is by mutex address. There are two other sites where
1143 * perf_event_context::mutex nests and those are:
1144 *
1145 * - perf_event_exit_task_context() [ child , 0 ]
1146 * perf_event_exit_event()
1147 * put_event() [ parent, 1 ]
1148 *
1149 * - perf_event_init_context() [ parent, 0 ]
1150 * inherit_task_group()
1151 * inherit_group()
1152 * inherit_event()
1153 * perf_event_alloc()
1154 * perf_init_event()
1155 * perf_try_init_event() [ child , 1 ]
1156 *
1157 * While it appears there is an obvious deadlock here -- the parent and child
1158 * nesting levels are inverted between the two. This is in fact safe because
1159 * life-time rules separate them. That is an exiting task cannot fork, and a
1160 * spawning task cannot (yet) exit.
1161 *
1162 * But remember that that these are parent<->child context relations, and
1163 * migration does not affect children, therefore these two orderings should not
1164 * interact.
1165 *
1166 * The change in perf_event::ctx does not affect children (as claimed above)
1167 * because the sys_perf_event_open() case will install a new event and break
1168 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1169 * concerned with cpuctx and that doesn't have children.
1170 *
1171 * The places that change perf_event::ctx will issue:
1172 *
1173 * perf_remove_from_context();
1174 * synchronize_rcu();
1175 * perf_install_in_context();
1176 *
1177 * to affect the change. The remove_from_context() + synchronize_rcu() should
1178 * quiesce the event, after which we can install it in the new location. This
1179 * means that only external vectors (perf_fops, prctl) can perturb the event
1180 * while in transit. Therefore all such accessors should also acquire
1181 * perf_event_context::mutex to serialize against this.
1182 *
1183 * However; because event->ctx can change while we're waiting to acquire
1184 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1185 * function.
1186 *
1187 * Lock order:
1188 * cred_guard_mutex
1189 * task_struct::perf_event_mutex
1190 * perf_event_context::mutex
1191 * perf_event::child_mutex;
1192 * perf_event_context::lock
1193 * perf_event::mmap_mutex
1194 * mmap_sem
1195 */
1196 static struct perf_event_context *
1197 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1198 {
1199 struct perf_event_context *ctx;
1200
1201 again:
1202 rcu_read_lock();
1203 ctx = READ_ONCE(event->ctx);
1204 if (!atomic_inc_not_zero(&ctx->refcount)) {
1205 rcu_read_unlock();
1206 goto again;
1207 }
1208 rcu_read_unlock();
1209
1210 mutex_lock_nested(&ctx->mutex, nesting);
1211 if (event->ctx != ctx) {
1212 mutex_unlock(&ctx->mutex);
1213 put_ctx(ctx);
1214 goto again;
1215 }
1216
1217 return ctx;
1218 }
1219
1220 static inline struct perf_event_context *
1221 perf_event_ctx_lock(struct perf_event *event)
1222 {
1223 return perf_event_ctx_lock_nested(event, 0);
1224 }
1225
1226 static void perf_event_ctx_unlock(struct perf_event *event,
1227 struct perf_event_context *ctx)
1228 {
1229 mutex_unlock(&ctx->mutex);
1230 put_ctx(ctx);
1231 }
1232
1233 /*
1234 * This must be done under the ctx->lock, such as to serialize against
1235 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1236 * calling scheduler related locks and ctx->lock nests inside those.
1237 */
1238 static __must_check struct perf_event_context *
1239 unclone_ctx(struct perf_event_context *ctx)
1240 {
1241 struct perf_event_context *parent_ctx = ctx->parent_ctx;
1242
1243 lockdep_assert_held(&ctx->lock);
1244
1245 if (parent_ctx)
1246 ctx->parent_ctx = NULL;
1247 ctx->generation++;
1248
1249 return parent_ctx;
1250 }
1251
1252 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1253 enum pid_type type)
1254 {
1255 u32 nr;
1256 /*
1257 * only top level events have the pid namespace they were created in
1258 */
1259 if (event->parent)
1260 event = event->parent;
1261
1262 nr = __task_pid_nr_ns(p, type, event->ns);
1263 /* avoid -1 if it is idle thread or runs in another ns */
1264 if (!nr && !pid_alive(p))
1265 nr = -1;
1266 return nr;
1267 }
1268
1269 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1270 {
1271 return perf_event_pid_type(event, p, __PIDTYPE_TGID);
1272 }
1273
1274 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1275 {
1276 return perf_event_pid_type(event, p, PIDTYPE_PID);
1277 }
1278
1279 /*
1280 * If we inherit events we want to return the parent event id
1281 * to userspace.
1282 */
1283 static u64 primary_event_id(struct perf_event *event)
1284 {
1285 u64 id = event->id;
1286
1287 if (event->parent)
1288 id = event->parent->id;
1289
1290 return id;
1291 }
1292
1293 /*
1294 * Get the perf_event_context for a task and lock it.
1295 *
1296 * This has to cope with with the fact that until it is locked,
1297 * the context could get moved to another task.
1298 */
1299 static struct perf_event_context *
1300 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1301 {
1302 struct perf_event_context *ctx;
1303
1304 retry:
1305 /*
1306 * One of the few rules of preemptible RCU is that one cannot do
1307 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1308 * part of the read side critical section was irqs-enabled -- see
1309 * rcu_read_unlock_special().
1310 *
1311 * Since ctx->lock nests under rq->lock we must ensure the entire read
1312 * side critical section has interrupts disabled.
1313 */
1314 local_irq_save(*flags);
1315 rcu_read_lock();
1316 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1317 if (ctx) {
1318 /*
1319 * If this context is a clone of another, it might
1320 * get swapped for another underneath us by
1321 * perf_event_task_sched_out, though the
1322 * rcu_read_lock() protects us from any context
1323 * getting freed. Lock the context and check if it
1324 * got swapped before we could get the lock, and retry
1325 * if so. If we locked the right context, then it
1326 * can't get swapped on us any more.
1327 */
1328 raw_spin_lock(&ctx->lock);
1329 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1330 raw_spin_unlock(&ctx->lock);
1331 rcu_read_unlock();
1332 local_irq_restore(*flags);
1333 goto retry;
1334 }
1335
1336 if (ctx->task == TASK_TOMBSTONE ||
1337 !atomic_inc_not_zero(&ctx->refcount)) {
1338 raw_spin_unlock(&ctx->lock);
1339 ctx = NULL;
1340 } else {
1341 WARN_ON_ONCE(ctx->task != task);
1342 }
1343 }
1344 rcu_read_unlock();
1345 if (!ctx)
1346 local_irq_restore(*flags);
1347 return ctx;
1348 }
1349
1350 /*
1351 * Get the context for a task and increment its pin_count so it
1352 * can't get swapped to another task. This also increments its
1353 * reference count so that the context can't get freed.
1354 */
1355 static struct perf_event_context *
1356 perf_pin_task_context(struct task_struct *task, int ctxn)
1357 {
1358 struct perf_event_context *ctx;
1359 unsigned long flags;
1360
1361 ctx = perf_lock_task_context(task, ctxn, &flags);
1362 if (ctx) {
1363 ++ctx->pin_count;
1364 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1365 }
1366 return ctx;
1367 }
1368
1369 static void perf_unpin_context(struct perf_event_context *ctx)
1370 {
1371 unsigned long flags;
1372
1373 raw_spin_lock_irqsave(&ctx->lock, flags);
1374 --ctx->pin_count;
1375 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1376 }
1377
1378 /*
1379 * Update the record of the current time in a context.
1380 */
1381 static void update_context_time(struct perf_event_context *ctx)
1382 {
1383 u64 now = perf_clock();
1384
1385 ctx->time += now - ctx->timestamp;
1386 ctx->timestamp = now;
1387 }
1388
1389 static u64 perf_event_time(struct perf_event *event)
1390 {
1391 struct perf_event_context *ctx = event->ctx;
1392
1393 if (is_cgroup_event(event))
1394 return perf_cgroup_event_time(event);
1395
1396 return ctx ? ctx->time : 0;
1397 }
1398
1399 /*
1400 * Update the total_time_enabled and total_time_running fields for a event.
1401 */
1402 static void update_event_times(struct perf_event *event)
1403 {
1404 struct perf_event_context *ctx = event->ctx;
1405 u64 run_end;
1406
1407 lockdep_assert_held(&ctx->lock);
1408
1409 if (event->state < PERF_EVENT_STATE_INACTIVE ||
1410 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1411 return;
1412
1413 /*
1414 * in cgroup mode, time_enabled represents
1415 * the time the event was enabled AND active
1416 * tasks were in the monitored cgroup. This is
1417 * independent of the activity of the context as
1418 * there may be a mix of cgroup and non-cgroup events.
1419 *
1420 * That is why we treat cgroup events differently
1421 * here.
1422 */
1423 if (is_cgroup_event(event))
1424 run_end = perf_cgroup_event_time(event);
1425 else if (ctx->is_active)
1426 run_end = ctx->time;
1427 else
1428 run_end = event->tstamp_stopped;
1429
1430 event->total_time_enabled = run_end - event->tstamp_enabled;
1431
1432 if (event->state == PERF_EVENT_STATE_INACTIVE)
1433 run_end = event->tstamp_stopped;
1434 else
1435 run_end = perf_event_time(event);
1436
1437 event->total_time_running = run_end - event->tstamp_running;
1438
1439 }
1440
1441 /*
1442 * Update total_time_enabled and total_time_running for all events in a group.
1443 */
1444 static void update_group_times(struct perf_event *leader)
1445 {
1446 struct perf_event *event;
1447
1448 update_event_times(leader);
1449 list_for_each_entry(event, &leader->sibling_list, group_entry)
1450 update_event_times(event);
1451 }
1452
1453 static enum event_type_t get_event_type(struct perf_event *event)
1454 {
1455 struct perf_event_context *ctx = event->ctx;
1456 enum event_type_t event_type;
1457
1458 lockdep_assert_held(&ctx->lock);
1459
1460 /*
1461 * It's 'group type', really, because if our group leader is
1462 * pinned, so are we.
1463 */
1464 if (event->group_leader != event)
1465 event = event->group_leader;
1466
1467 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1468 if (!ctx->task)
1469 event_type |= EVENT_CPU;
1470
1471 return event_type;
1472 }
1473
1474 static struct list_head *
1475 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1476 {
1477 if (event->attr.pinned)
1478 return &ctx->pinned_groups;
1479 else
1480 return &ctx->flexible_groups;
1481 }
1482
1483 /*
1484 * Add a event from the lists for its context.
1485 * Must be called with ctx->mutex and ctx->lock held.
1486 */
1487 static void
1488 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1489 {
1490 lockdep_assert_held(&ctx->lock);
1491
1492 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1493 event->attach_state |= PERF_ATTACH_CONTEXT;
1494
1495 /*
1496 * If we're a stand alone event or group leader, we go to the context
1497 * list, group events are kept attached to the group so that
1498 * perf_group_detach can, at all times, locate all siblings.
1499 */
1500 if (event->group_leader == event) {
1501 struct list_head *list;
1502
1503 event->group_caps = event->event_caps;
1504
1505 list = ctx_group_list(event, ctx);
1506 list_add_tail(&event->group_entry, list);
1507 }
1508
1509 list_update_cgroup_event(event, ctx, true);
1510
1511 list_add_rcu(&event->event_entry, &ctx->event_list);
1512 ctx->nr_events++;
1513 if (event->attr.inherit_stat)
1514 ctx->nr_stat++;
1515
1516 ctx->generation++;
1517 }
1518
1519 /*
1520 * Initialize event state based on the perf_event_attr::disabled.
1521 */
1522 static inline void perf_event__state_init(struct perf_event *event)
1523 {
1524 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1525 PERF_EVENT_STATE_INACTIVE;
1526 }
1527
1528 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1529 {
1530 int entry = sizeof(u64); /* value */
1531 int size = 0;
1532 int nr = 1;
1533
1534 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1535 size += sizeof(u64);
1536
1537 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1538 size += sizeof(u64);
1539
1540 if (event->attr.read_format & PERF_FORMAT_ID)
1541 entry += sizeof(u64);
1542
1543 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1544 nr += nr_siblings;
1545 size += sizeof(u64);
1546 }
1547
1548 size += entry * nr;
1549 event->read_size = size;
1550 }
1551
1552 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1553 {
1554 struct perf_sample_data *data;
1555 u16 size = 0;
1556
1557 if (sample_type & PERF_SAMPLE_IP)
1558 size += sizeof(data->ip);
1559
1560 if (sample_type & PERF_SAMPLE_ADDR)
1561 size += sizeof(data->addr);
1562
1563 if (sample_type & PERF_SAMPLE_PERIOD)
1564 size += sizeof(data->period);
1565
1566 if (sample_type & PERF_SAMPLE_WEIGHT)
1567 size += sizeof(data->weight);
1568
1569 if (sample_type & PERF_SAMPLE_READ)
1570 size += event->read_size;
1571
1572 if (sample_type & PERF_SAMPLE_DATA_SRC)
1573 size += sizeof(data->data_src.val);
1574
1575 if (sample_type & PERF_SAMPLE_TRANSACTION)
1576 size += sizeof(data->txn);
1577
1578 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1579 size += sizeof(data->phys_addr);
1580
1581 event->header_size = size;
1582 }
1583
1584 /*
1585 * Called at perf_event creation and when events are attached/detached from a
1586 * group.
1587 */
1588 static void perf_event__header_size(struct perf_event *event)
1589 {
1590 __perf_event_read_size(event,
1591 event->group_leader->nr_siblings);
1592 __perf_event_header_size(event, event->attr.sample_type);
1593 }
1594
1595 static void perf_event__id_header_size(struct perf_event *event)
1596 {
1597 struct perf_sample_data *data;
1598 u64 sample_type = event->attr.sample_type;
1599 u16 size = 0;
1600
1601 if (sample_type & PERF_SAMPLE_TID)
1602 size += sizeof(data->tid_entry);
1603
1604 if (sample_type & PERF_SAMPLE_TIME)
1605 size += sizeof(data->time);
1606
1607 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1608 size += sizeof(data->id);
1609
1610 if (sample_type & PERF_SAMPLE_ID)
1611 size += sizeof(data->id);
1612
1613 if (sample_type & PERF_SAMPLE_STREAM_ID)
1614 size += sizeof(data->stream_id);
1615
1616 if (sample_type & PERF_SAMPLE_CPU)
1617 size += sizeof(data->cpu_entry);
1618
1619 event->id_header_size = size;
1620 }
1621
1622 static bool perf_event_validate_size(struct perf_event *event)
1623 {
1624 /*
1625 * The values computed here will be over-written when we actually
1626 * attach the event.
1627 */
1628 __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1629 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1630 perf_event__id_header_size(event);
1631
1632 /*
1633 * Sum the lot; should not exceed the 64k limit we have on records.
1634 * Conservative limit to allow for callchains and other variable fields.
1635 */
1636 if (event->read_size + event->header_size +
1637 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1638 return false;
1639
1640 return true;
1641 }
1642
1643 static void perf_group_attach(struct perf_event *event)
1644 {
1645 struct perf_event *group_leader = event->group_leader, *pos;
1646
1647 lockdep_assert_held(&event->ctx->lock);
1648
1649 /*
1650 * We can have double attach due to group movement in perf_event_open.
1651 */
1652 if (event->attach_state & PERF_ATTACH_GROUP)
1653 return;
1654
1655 event->attach_state |= PERF_ATTACH_GROUP;
1656
1657 if (group_leader == event)
1658 return;
1659
1660 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1661
1662 group_leader->group_caps &= event->event_caps;
1663
1664 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1665 group_leader->nr_siblings++;
1666
1667 perf_event__header_size(group_leader);
1668
1669 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1670 perf_event__header_size(pos);
1671 }
1672
1673 /*
1674 * Remove a event from the lists for its context.
1675 * Must be called with ctx->mutex and ctx->lock held.
1676 */
1677 static void
1678 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1679 {
1680 WARN_ON_ONCE(event->ctx != ctx);
1681 lockdep_assert_held(&ctx->lock);
1682
1683 /*
1684 * We can have double detach due to exit/hot-unplug + close.
1685 */
1686 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1687 return;
1688
1689 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1690
1691 list_update_cgroup_event(event, ctx, false);
1692
1693 ctx->nr_events--;
1694 if (event->attr.inherit_stat)
1695 ctx->nr_stat--;
1696
1697 list_del_rcu(&event->event_entry);
1698
1699 if (event->group_leader == event)
1700 list_del_init(&event->group_entry);
1701
1702 update_group_times(event);
1703
1704 /*
1705 * If event was in error state, then keep it
1706 * that way, otherwise bogus counts will be
1707 * returned on read(). The only way to get out
1708 * of error state is by explicit re-enabling
1709 * of the event
1710 */
1711 if (event->state > PERF_EVENT_STATE_OFF)
1712 event->state = PERF_EVENT_STATE_OFF;
1713
1714 ctx->generation++;
1715 }
1716
1717 static void perf_group_detach(struct perf_event *event)
1718 {
1719 struct perf_event *sibling, *tmp;
1720 struct list_head *list = NULL;
1721
1722 lockdep_assert_held(&event->ctx->lock);
1723
1724 /*
1725 * We can have double detach due to exit/hot-unplug + close.
1726 */
1727 if (!(event->attach_state & PERF_ATTACH_GROUP))
1728 return;
1729
1730 event->attach_state &= ~PERF_ATTACH_GROUP;
1731
1732 /*
1733 * If this is a sibling, remove it from its group.
1734 */
1735 if (event->group_leader != event) {
1736 list_del_init(&event->group_entry);
1737 event->group_leader->nr_siblings--;
1738 goto out;
1739 }
1740
1741 if (!list_empty(&event->group_entry))
1742 list = &event->group_entry;
1743
1744 /*
1745 * If this was a group event with sibling events then
1746 * upgrade the siblings to singleton events by adding them
1747 * to whatever list we are on.
1748 */
1749 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1750 if (list)
1751 list_move_tail(&sibling->group_entry, list);
1752 sibling->group_leader = sibling;
1753
1754 /* Inherit group flags from the previous leader */
1755 sibling->group_caps = event->group_caps;
1756
1757 WARN_ON_ONCE(sibling->ctx != event->ctx);
1758 }
1759
1760 out:
1761 perf_event__header_size(event->group_leader);
1762
1763 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1764 perf_event__header_size(tmp);
1765 }
1766
1767 static bool is_orphaned_event(struct perf_event *event)
1768 {
1769 return event->state == PERF_EVENT_STATE_DEAD;
1770 }
1771
1772 static inline int __pmu_filter_match(struct perf_event *event)
1773 {
1774 struct pmu *pmu = event->pmu;
1775 return pmu->filter_match ? pmu->filter_match(event) : 1;
1776 }
1777
1778 /*
1779 * Check whether we should attempt to schedule an event group based on
1780 * PMU-specific filtering. An event group can consist of HW and SW events,
1781 * potentially with a SW leader, so we must check all the filters, to
1782 * determine whether a group is schedulable:
1783 */
1784 static inline int pmu_filter_match(struct perf_event *event)
1785 {
1786 struct perf_event *child;
1787
1788 if (!__pmu_filter_match(event))
1789 return 0;
1790
1791 list_for_each_entry(child, &event->sibling_list, group_entry) {
1792 if (!__pmu_filter_match(child))
1793 return 0;
1794 }
1795
1796 return 1;
1797 }
1798
1799 static inline int
1800 event_filter_match(struct perf_event *event)
1801 {
1802 return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1803 perf_cgroup_match(event) && pmu_filter_match(event);
1804 }
1805
1806 static void
1807 event_sched_out(struct perf_event *event,
1808 struct perf_cpu_context *cpuctx,
1809 struct perf_event_context *ctx)
1810 {
1811 u64 tstamp = perf_event_time(event);
1812 u64 delta;
1813
1814 WARN_ON_ONCE(event->ctx != ctx);
1815 lockdep_assert_held(&ctx->lock);
1816
1817 /*
1818 * An event which could not be activated because of
1819 * filter mismatch still needs to have its timings
1820 * maintained, otherwise bogus information is return
1821 * via read() for time_enabled, time_running:
1822 */
1823 if (event->state == PERF_EVENT_STATE_INACTIVE &&
1824 !event_filter_match(event)) {
1825 delta = tstamp - event->tstamp_stopped;
1826 event->tstamp_running += delta;
1827 event->tstamp_stopped = tstamp;
1828 }
1829
1830 if (event->state != PERF_EVENT_STATE_ACTIVE)
1831 return;
1832
1833 perf_pmu_disable(event->pmu);
1834
1835 event->tstamp_stopped = tstamp;
1836 event->pmu->del(event, 0);
1837 event->oncpu = -1;
1838 event->state = PERF_EVENT_STATE_INACTIVE;
1839 if (event->pending_disable) {
1840 event->pending_disable = 0;
1841 event->state = PERF_EVENT_STATE_OFF;
1842 }
1843
1844 if (!is_software_event(event))
1845 cpuctx->active_oncpu--;
1846 if (!--ctx->nr_active)
1847 perf_event_ctx_deactivate(ctx);
1848 if (event->attr.freq && event->attr.sample_freq)
1849 ctx->nr_freq--;
1850 if (event->attr.exclusive || !cpuctx->active_oncpu)
1851 cpuctx->exclusive = 0;
1852
1853 perf_pmu_enable(event->pmu);
1854 }
1855
1856 static void
1857 group_sched_out(struct perf_event *group_event,
1858 struct perf_cpu_context *cpuctx,
1859 struct perf_event_context *ctx)
1860 {
1861 struct perf_event *event;
1862 int state = group_event->state;
1863
1864 perf_pmu_disable(ctx->pmu);
1865
1866 event_sched_out(group_event, cpuctx, ctx);
1867
1868 /*
1869 * Schedule out siblings (if any):
1870 */
1871 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1872 event_sched_out(event, cpuctx, ctx);
1873
1874 perf_pmu_enable(ctx->pmu);
1875
1876 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1877 cpuctx->exclusive = 0;
1878 }
1879
1880 #define DETACH_GROUP 0x01UL
1881
1882 /*
1883 * Cross CPU call to remove a performance event
1884 *
1885 * We disable the event on the hardware level first. After that we
1886 * remove it from the context list.
1887 */
1888 static void
1889 __perf_remove_from_context(struct perf_event *event,
1890 struct perf_cpu_context *cpuctx,
1891 struct perf_event_context *ctx,
1892 void *info)
1893 {
1894 unsigned long flags = (unsigned long)info;
1895
1896 event_sched_out(event, cpuctx, ctx);
1897 if (flags & DETACH_GROUP)
1898 perf_group_detach(event);
1899 list_del_event(event, ctx);
1900
1901 if (!ctx->nr_events && ctx->is_active) {
1902 ctx->is_active = 0;
1903 if (ctx->task) {
1904 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1905 cpuctx->task_ctx = NULL;
1906 }
1907 }
1908 }
1909
1910 /*
1911 * Remove the event from a task's (or a CPU's) list of events.
1912 *
1913 * If event->ctx is a cloned context, callers must make sure that
1914 * every task struct that event->ctx->task could possibly point to
1915 * remains valid. This is OK when called from perf_release since
1916 * that only calls us on the top-level context, which can't be a clone.
1917 * When called from perf_event_exit_task, it's OK because the
1918 * context has been detached from its task.
1919 */
1920 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
1921 {
1922 struct perf_event_context *ctx = event->ctx;
1923
1924 lockdep_assert_held(&ctx->mutex);
1925
1926 event_function_call(event, __perf_remove_from_context, (void *)flags);
1927
1928 /*
1929 * The above event_function_call() can NO-OP when it hits
1930 * TASK_TOMBSTONE. In that case we must already have been detached
1931 * from the context (by perf_event_exit_event()) but the grouping
1932 * might still be in-tact.
1933 */
1934 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1935 if ((flags & DETACH_GROUP) &&
1936 (event->attach_state & PERF_ATTACH_GROUP)) {
1937 /*
1938 * Since in that case we cannot possibly be scheduled, simply
1939 * detach now.
1940 */
1941 raw_spin_lock_irq(&ctx->lock);
1942 perf_group_detach(event);
1943 raw_spin_unlock_irq(&ctx->lock);
1944 }
1945 }
1946
1947 /*
1948 * Cross CPU call to disable a performance event
1949 */
1950 static void __perf_event_disable(struct perf_event *event,
1951 struct perf_cpu_context *cpuctx,
1952 struct perf_event_context *ctx,
1953 void *info)
1954 {
1955 if (event->state < PERF_EVENT_STATE_INACTIVE)
1956 return;
1957
1958 update_context_time(ctx);
1959 update_cgrp_time_from_event(event);
1960 update_group_times(event);
1961 if (event == event->group_leader)
1962 group_sched_out(event, cpuctx, ctx);
1963 else
1964 event_sched_out(event, cpuctx, ctx);
1965 event->state = PERF_EVENT_STATE_OFF;
1966 }
1967
1968 /*
1969 * Disable a event.
1970 *
1971 * If event->ctx is a cloned context, callers must make sure that
1972 * every task struct that event->ctx->task could possibly point to
1973 * remains valid. This condition is satisifed when called through
1974 * perf_event_for_each_child or perf_event_for_each because they
1975 * hold the top-level event's child_mutex, so any descendant that
1976 * goes to exit will block in perf_event_exit_event().
1977 *
1978 * When called from perf_pending_event it's OK because event->ctx
1979 * is the current context on this CPU and preemption is disabled,
1980 * hence we can't get into perf_event_task_sched_out for this context.
1981 */
1982 static void _perf_event_disable(struct perf_event *event)
1983 {
1984 struct perf_event_context *ctx = event->ctx;
1985
1986 raw_spin_lock_irq(&ctx->lock);
1987 if (event->state <= PERF_EVENT_STATE_OFF) {
1988 raw_spin_unlock_irq(&ctx->lock);
1989 return;
1990 }
1991 raw_spin_unlock_irq(&ctx->lock);
1992
1993 event_function_call(event, __perf_event_disable, NULL);
1994 }
1995
1996 void perf_event_disable_local(struct perf_event *event)
1997 {
1998 event_function_local(event, __perf_event_disable, NULL);
1999 }
2000
2001 /*
2002 * Strictly speaking kernel users cannot create groups and therefore this
2003 * interface does not need the perf_event_ctx_lock() magic.
2004 */
2005 void perf_event_disable(struct perf_event *event)
2006 {
2007 struct perf_event_context *ctx;
2008
2009 ctx = perf_event_ctx_lock(event);
2010 _perf_event_disable(event);
2011 perf_event_ctx_unlock(event, ctx);
2012 }
2013 EXPORT_SYMBOL_GPL(perf_event_disable);
2014
2015 void perf_event_disable_inatomic(struct perf_event *event)
2016 {
2017 event->pending_disable = 1;
2018 irq_work_queue(&event->pending);
2019 }
2020
2021 static void perf_set_shadow_time(struct perf_event *event,
2022 struct perf_event_context *ctx,
2023 u64 tstamp)
2024 {
2025 /*
2026 * use the correct time source for the time snapshot
2027 *
2028 * We could get by without this by leveraging the
2029 * fact that to get to this function, the caller
2030 * has most likely already called update_context_time()
2031 * and update_cgrp_time_xx() and thus both timestamp
2032 * are identical (or very close). Given that tstamp is,
2033 * already adjusted for cgroup, we could say that:
2034 * tstamp - ctx->timestamp
2035 * is equivalent to
2036 * tstamp - cgrp->timestamp.
2037 *
2038 * Then, in perf_output_read(), the calculation would
2039 * work with no changes because:
2040 * - event is guaranteed scheduled in
2041 * - no scheduled out in between
2042 * - thus the timestamp would be the same
2043 *
2044 * But this is a bit hairy.
2045 *
2046 * So instead, we have an explicit cgroup call to remain
2047 * within the time time source all along. We believe it
2048 * is cleaner and simpler to understand.
2049 */
2050 if (is_cgroup_event(event))
2051 perf_cgroup_set_shadow_time(event, tstamp);
2052 else
2053 event->shadow_ctx_time = tstamp - ctx->timestamp;
2054 }
2055
2056 #define MAX_INTERRUPTS (~0ULL)
2057
2058 static void perf_log_throttle(struct perf_event *event, int enable);
2059 static void perf_log_itrace_start(struct perf_event *event);
2060
2061 static int
2062 event_sched_in(struct perf_event *event,
2063 struct perf_cpu_context *cpuctx,
2064 struct perf_event_context *ctx)
2065 {
2066 u64 tstamp = perf_event_time(event);
2067 int ret = 0;
2068
2069 lockdep_assert_held(&ctx->lock);
2070
2071 if (event->state <= PERF_EVENT_STATE_OFF)
2072 return 0;
2073
2074 WRITE_ONCE(event->oncpu, smp_processor_id());
2075 /*
2076 * Order event::oncpu write to happen before the ACTIVE state
2077 * is visible.
2078 */
2079 smp_wmb();
2080 WRITE_ONCE(event->state, PERF_EVENT_STATE_ACTIVE);
2081
2082 /*
2083 * Unthrottle events, since we scheduled we might have missed several
2084 * ticks already, also for a heavily scheduling task there is little
2085 * guarantee it'll get a tick in a timely manner.
2086 */
2087 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2088 perf_log_throttle(event, 1);
2089 event->hw.interrupts = 0;
2090 }
2091
2092 /*
2093 * The new state must be visible before we turn it on in the hardware:
2094 */
2095 smp_wmb();
2096
2097 perf_pmu_disable(event->pmu);
2098
2099 perf_set_shadow_time(event, ctx, tstamp);
2100
2101 perf_log_itrace_start(event);
2102
2103 if (event->pmu->add(event, PERF_EF_START)) {
2104 event->state = PERF_EVENT_STATE_INACTIVE;
2105 event->oncpu = -1;
2106 ret = -EAGAIN;
2107 goto out;
2108 }
2109
2110 event->tstamp_running += tstamp - event->tstamp_stopped;
2111
2112 if (!is_software_event(event))
2113 cpuctx->active_oncpu++;
2114 if (!ctx->nr_active++)
2115 perf_event_ctx_activate(ctx);
2116 if (event->attr.freq && event->attr.sample_freq)
2117 ctx->nr_freq++;
2118
2119 if (event->attr.exclusive)
2120 cpuctx->exclusive = 1;
2121
2122 out:
2123 perf_pmu_enable(event->pmu);
2124
2125 return ret;
2126 }
2127
2128 static int
2129 group_sched_in(struct perf_event *group_event,
2130 struct perf_cpu_context *cpuctx,
2131 struct perf_event_context *ctx)
2132 {
2133 struct perf_event *event, *partial_group = NULL;
2134 struct pmu *pmu = ctx->pmu;
2135 u64 now = ctx->time;
2136 bool simulate = false;
2137
2138 if (group_event->state == PERF_EVENT_STATE_OFF)
2139 return 0;
2140
2141 pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2142
2143 if (event_sched_in(group_event, cpuctx, ctx)) {
2144 pmu->cancel_txn(pmu);
2145 perf_mux_hrtimer_restart(cpuctx);
2146 return -EAGAIN;
2147 }
2148
2149 /*
2150 * Schedule in siblings as one group (if any):
2151 */
2152 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2153 if (event_sched_in(event, cpuctx, ctx)) {
2154 partial_group = event;
2155 goto group_error;
2156 }
2157 }
2158
2159 if (!pmu->commit_txn(pmu))
2160 return 0;
2161
2162 group_error:
2163 /*
2164 * Groups can be scheduled in as one unit only, so undo any
2165 * partial group before returning:
2166 * The events up to the failed event are scheduled out normally,
2167 * tstamp_stopped will be updated.
2168 *
2169 * The failed events and the remaining siblings need to have
2170 * their timings updated as if they had gone thru event_sched_in()
2171 * and event_sched_out(). This is required to get consistent timings
2172 * across the group. This also takes care of the case where the group
2173 * could never be scheduled by ensuring tstamp_stopped is set to mark
2174 * the time the event was actually stopped, such that time delta
2175 * calculation in update_event_times() is correct.
2176 */
2177 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2178 if (event == partial_group)
2179 simulate = true;
2180
2181 if (simulate) {
2182 event->tstamp_running += now - event->tstamp_stopped;
2183 event->tstamp_stopped = now;
2184 } else {
2185 event_sched_out(event, cpuctx, ctx);
2186 }
2187 }
2188 event_sched_out(group_event, cpuctx, ctx);
2189
2190 pmu->cancel_txn(pmu);
2191
2192 perf_mux_hrtimer_restart(cpuctx);
2193
2194 return -EAGAIN;
2195 }
2196
2197 /*
2198 * Work out whether we can put this event group on the CPU now.
2199 */
2200 static int group_can_go_on(struct perf_event *event,
2201 struct perf_cpu_context *cpuctx,
2202 int can_add_hw)
2203 {
2204 /*
2205 * Groups consisting entirely of software events can always go on.
2206 */
2207 if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2208 return 1;
2209 /*
2210 * If an exclusive group is already on, no other hardware
2211 * events can go on.
2212 */
2213 if (cpuctx->exclusive)
2214 return 0;
2215 /*
2216 * If this group is exclusive and there are already
2217 * events on the CPU, it can't go on.
2218 */
2219 if (event->attr.exclusive && cpuctx->active_oncpu)
2220 return 0;
2221 /*
2222 * Otherwise, try to add it if all previous groups were able
2223 * to go on.
2224 */
2225 return can_add_hw;
2226 }
2227
2228 /*
2229 * Complement to update_event_times(). This computes the tstamp_* values to
2230 * continue 'enabled' state from @now, and effectively discards the time
2231 * between the prior tstamp_stopped and now (as we were in the OFF state, or
2232 * just switched (context) time base).
2233 *
2234 * This further assumes '@event->state == INACTIVE' (we just came from OFF) and
2235 * cannot have been scheduled in yet. And going into INACTIVE state means
2236 * '@event->tstamp_stopped = @now'.
2237 *
2238 * Thus given the rules of update_event_times():
2239 *
2240 * total_time_enabled = tstamp_stopped - tstamp_enabled
2241 * total_time_running = tstamp_stopped - tstamp_running
2242 *
2243 * We can insert 'tstamp_stopped == now' and reverse them to compute new
2244 * tstamp_* values.
2245 */
2246 static void __perf_event_enable_time(struct perf_event *event, u64 now)
2247 {
2248 WARN_ON_ONCE(event->state != PERF_EVENT_STATE_INACTIVE);
2249
2250 event->tstamp_stopped = now;
2251 event->tstamp_enabled = now - event->total_time_enabled;
2252 event->tstamp_running = now - event->total_time_running;
2253 }
2254
2255 static void add_event_to_ctx(struct perf_event *event,
2256 struct perf_event_context *ctx)
2257 {
2258 u64 tstamp = perf_event_time(event);
2259
2260 list_add_event(event, ctx);
2261 perf_group_attach(event);
2262 /*
2263 * We can be called with event->state == STATE_OFF when we create with
2264 * .disabled = 1. In that case the IOC_ENABLE will call this function.
2265 */
2266 if (event->state == PERF_EVENT_STATE_INACTIVE)
2267 __perf_event_enable_time(event, tstamp);
2268 }
2269
2270 static void ctx_sched_out(struct perf_event_context *ctx,
2271 struct perf_cpu_context *cpuctx,
2272 enum event_type_t event_type);
2273 static void
2274 ctx_sched_in(struct perf_event_context *ctx,
2275 struct perf_cpu_context *cpuctx,
2276 enum event_type_t event_type,
2277 struct task_struct *task);
2278
2279 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2280 struct perf_event_context *ctx,
2281 enum event_type_t event_type)
2282 {
2283 if (!cpuctx->task_ctx)
2284 return;
2285
2286 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2287 return;
2288
2289 ctx_sched_out(ctx, cpuctx, event_type);
2290 }
2291
2292 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2293 struct perf_event_context *ctx,
2294 struct task_struct *task)
2295 {
2296 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2297 if (ctx)
2298 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2299 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2300 if (ctx)
2301 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2302 }
2303
2304 /*
2305 * We want to maintain the following priority of scheduling:
2306 * - CPU pinned (EVENT_CPU | EVENT_PINNED)
2307 * - task pinned (EVENT_PINNED)
2308 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2309 * - task flexible (EVENT_FLEXIBLE).
2310 *
2311 * In order to avoid unscheduling and scheduling back in everything every
2312 * time an event is added, only do it for the groups of equal priority and
2313 * below.
2314 *
2315 * This can be called after a batch operation on task events, in which case
2316 * event_type is a bit mask of the types of events involved. For CPU events,
2317 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2318 */
2319 static void ctx_resched(struct perf_cpu_context *cpuctx,
2320 struct perf_event_context *task_ctx,
2321 enum event_type_t event_type)
2322 {
2323 enum event_type_t ctx_event_type = event_type & EVENT_ALL;
2324 bool cpu_event = !!(event_type & EVENT_CPU);
2325
2326 /*
2327 * If pinned groups are involved, flexible groups also need to be
2328 * scheduled out.
2329 */
2330 if (event_type & EVENT_PINNED)
2331 event_type |= EVENT_FLEXIBLE;
2332
2333 perf_pmu_disable(cpuctx->ctx.pmu);
2334 if (task_ctx)
2335 task_ctx_sched_out(cpuctx, task_ctx, event_type);
2336
2337 /*
2338 * Decide which cpu ctx groups to schedule out based on the types
2339 * of events that caused rescheduling:
2340 * - EVENT_CPU: schedule out corresponding groups;
2341 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2342 * - otherwise, do nothing more.
2343 */
2344 if (cpu_event)
2345 cpu_ctx_sched_out(cpuctx, ctx_event_type);
2346 else if (ctx_event_type & EVENT_PINNED)
2347 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2348
2349 perf_event_sched_in(cpuctx, task_ctx, current);
2350 perf_pmu_enable(cpuctx->ctx.pmu);
2351 }
2352
2353 /*
2354 * Cross CPU call to install and enable a performance event
2355 *
2356 * Very similar to remote_function() + event_function() but cannot assume that
2357 * things like ctx->is_active and cpuctx->task_ctx are set.
2358 */
2359 static int __perf_install_in_context(void *info)
2360 {
2361 struct perf_event *event = info;
2362 struct perf_event_context *ctx = event->ctx;
2363 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2364 struct perf_event_context *task_ctx = cpuctx->task_ctx;
2365 bool reprogram = true;
2366 int ret = 0;
2367
2368 raw_spin_lock(&cpuctx->ctx.lock);
2369 if (ctx->task) {
2370 raw_spin_lock(&ctx->lock);
2371 task_ctx = ctx;
2372
2373 reprogram = (ctx->task == current);
2374
2375 /*
2376 * If the task is running, it must be running on this CPU,
2377 * otherwise we cannot reprogram things.
2378 *
2379 * If its not running, we don't care, ctx->lock will
2380 * serialize against it becoming runnable.
2381 */
2382 if (task_curr(ctx->task) && !reprogram) {
2383 ret = -ESRCH;
2384 goto unlock;
2385 }
2386
2387 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2388 } else if (task_ctx) {
2389 raw_spin_lock(&task_ctx->lock);
2390 }
2391
2392 if (reprogram) {
2393 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2394 add_event_to_ctx(event, ctx);
2395 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2396 } else {
2397 add_event_to_ctx(event, ctx);
2398 }
2399
2400 unlock:
2401 perf_ctx_unlock(cpuctx, task_ctx);
2402
2403 return ret;
2404 }
2405
2406 /*
2407 * Attach a performance event to a context.
2408 *
2409 * Very similar to event_function_call, see comment there.
2410 */
2411 static void
2412 perf_install_in_context(struct perf_event_context *ctx,
2413 struct perf_event *event,
2414 int cpu)
2415 {
2416 struct task_struct *task = READ_ONCE(ctx->task);
2417
2418 lockdep_assert_held(&ctx->mutex);
2419
2420 if (event->cpu != -1)
2421 event->cpu = cpu;
2422
2423 /*
2424 * Ensures that if we can observe event->ctx, both the event and ctx
2425 * will be 'complete'. See perf_iterate_sb_cpu().
2426 */
2427 smp_store_release(&event->ctx, ctx);
2428
2429 if (!task) {
2430 cpu_function_call(cpu, __perf_install_in_context, event);
2431 return;
2432 }
2433
2434 /*
2435 * Should not happen, we validate the ctx is still alive before calling.
2436 */
2437 if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2438 return;
2439
2440 /*
2441 * Installing events is tricky because we cannot rely on ctx->is_active
2442 * to be set in case this is the nr_events 0 -> 1 transition.
2443 *
2444 * Instead we use task_curr(), which tells us if the task is running.
2445 * However, since we use task_curr() outside of rq::lock, we can race
2446 * against the actual state. This means the result can be wrong.
2447 *
2448 * If we get a false positive, we retry, this is harmless.
2449 *
2450 * If we get a false negative, things are complicated. If we are after
2451 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2452 * value must be correct. If we're before, it doesn't matter since
2453 * perf_event_context_sched_in() will program the counter.
2454 *
2455 * However, this hinges on the remote context switch having observed
2456 * our task->perf_event_ctxp[] store, such that it will in fact take
2457 * ctx::lock in perf_event_context_sched_in().
2458 *
2459 * We do this by task_function_call(), if the IPI fails to hit the task
2460 * we know any future context switch of task must see the
2461 * perf_event_ctpx[] store.
2462 */
2463
2464 /*
2465 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2466 * task_cpu() load, such that if the IPI then does not find the task
2467 * running, a future context switch of that task must observe the
2468 * store.
2469 */
2470 smp_mb();
2471 again:
2472 if (!task_function_call(task, __perf_install_in_context, event))
2473 return;
2474
2475 raw_spin_lock_irq(&ctx->lock);
2476 task = ctx->task;
2477 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2478 /*
2479 * Cannot happen because we already checked above (which also
2480 * cannot happen), and we hold ctx->mutex, which serializes us
2481 * against perf_event_exit_task_context().
2482 */
2483 raw_spin_unlock_irq(&ctx->lock);
2484 return;
2485 }
2486 /*
2487 * If the task is not running, ctx->lock will avoid it becoming so,
2488 * thus we can safely install the event.
2489 */
2490 if (task_curr(task)) {
2491 raw_spin_unlock_irq(&ctx->lock);
2492 goto again;
2493 }
2494 add_event_to_ctx(event, ctx);
2495 raw_spin_unlock_irq(&ctx->lock);
2496 }
2497
2498 /*
2499 * Put a event into inactive state and update time fields.
2500 * Enabling the leader of a group effectively enables all
2501 * the group members that aren't explicitly disabled, so we
2502 * have to update their ->tstamp_enabled also.
2503 * Note: this works for group members as well as group leaders
2504 * since the non-leader members' sibling_lists will be empty.
2505 */
2506 static void __perf_event_mark_enabled(struct perf_event *event)
2507 {
2508 struct perf_event *sub;
2509 u64 tstamp = perf_event_time(event);
2510
2511 event->state = PERF_EVENT_STATE_INACTIVE;
2512 __perf_event_enable_time(event, tstamp);
2513 list_for_each_entry(sub, &event->sibling_list, group_entry) {
2514 /* XXX should not be > INACTIVE if event isn't */
2515 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2516 __perf_event_enable_time(sub, tstamp);
2517 }
2518 }
2519
2520 /*
2521 * Cross CPU call to enable a performance event
2522 */
2523 static void __perf_event_enable(struct perf_event *event,
2524 struct perf_cpu_context *cpuctx,
2525 struct perf_event_context *ctx,
2526 void *info)
2527 {
2528 struct perf_event *leader = event->group_leader;
2529 struct perf_event_context *task_ctx;
2530
2531 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2532 event->state <= PERF_EVENT_STATE_ERROR)
2533 return;
2534
2535 if (ctx->is_active)
2536 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2537
2538 __perf_event_mark_enabled(event);
2539
2540 if (!ctx->is_active)
2541 return;
2542
2543 if (!event_filter_match(event)) {
2544 if (is_cgroup_event(event))
2545 perf_cgroup_defer_enabled(event);
2546 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2547 return;
2548 }
2549
2550 /*
2551 * If the event is in a group and isn't the group leader,
2552 * then don't put it on unless the group is on.
2553 */
2554 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2555 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2556 return;
2557 }
2558
2559 task_ctx = cpuctx->task_ctx;
2560 if (ctx->task)
2561 WARN_ON_ONCE(task_ctx != ctx);
2562
2563 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2564 }
2565
2566 /*
2567 * Enable a event.
2568 *
2569 * If event->ctx is a cloned context, callers must make sure that
2570 * every task struct that event->ctx->task could possibly point to
2571 * remains valid. This condition is satisfied when called through
2572 * perf_event_for_each_child or perf_event_for_each as described
2573 * for perf_event_disable.
2574 */
2575 static void _perf_event_enable(struct perf_event *event)
2576 {
2577 struct perf_event_context *ctx = event->ctx;
2578
2579 raw_spin_lock_irq(&ctx->lock);
2580 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2581 event->state < PERF_EVENT_STATE_ERROR) {
2582 raw_spin_unlock_irq(&ctx->lock);
2583 return;
2584 }
2585
2586 /*
2587 * If the event is in error state, clear that first.
2588 *
2589 * That way, if we see the event in error state below, we know that it
2590 * has gone back into error state, as distinct from the task having
2591 * been scheduled away before the cross-call arrived.
2592 */
2593 if (event->state == PERF_EVENT_STATE_ERROR)
2594 event->state = PERF_EVENT_STATE_OFF;
2595 raw_spin_unlock_irq(&ctx->lock);
2596
2597 event_function_call(event, __perf_event_enable, NULL);
2598 }
2599
2600 /*
2601 * See perf_event_disable();
2602 */
2603 void perf_event_enable(struct perf_event *event)
2604 {
2605 struct perf_event_context *ctx;
2606
2607 ctx = perf_event_ctx_lock(event);
2608 _perf_event_enable(event);
2609 perf_event_ctx_unlock(event, ctx);
2610 }
2611 EXPORT_SYMBOL_GPL(perf_event_enable);
2612
2613 struct stop_event_data {
2614 struct perf_event *event;
2615 unsigned int restart;
2616 };
2617
2618 static int __perf_event_stop(void *info)
2619 {
2620 struct stop_event_data *sd = info;
2621 struct perf_event *event = sd->event;
2622
2623 /* if it's already INACTIVE, do nothing */
2624 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2625 return 0;
2626
2627 /* matches smp_wmb() in event_sched_in() */
2628 smp_rmb();
2629
2630 /*
2631 * There is a window with interrupts enabled before we get here,
2632 * so we need to check again lest we try to stop another CPU's event.
2633 */
2634 if (READ_ONCE(event->oncpu) != smp_processor_id())
2635 return -EAGAIN;
2636
2637 event->pmu->stop(event, PERF_EF_UPDATE);
2638
2639 /*
2640 * May race with the actual stop (through perf_pmu_output_stop()),
2641 * but it is only used for events with AUX ring buffer, and such
2642 * events will refuse to restart because of rb::aux_mmap_count==0,
2643 * see comments in perf_aux_output_begin().
2644 *
2645 * Since this is happening on a event-local CPU, no trace is lost
2646 * while restarting.
2647 */
2648 if (sd->restart)
2649 event->pmu->start(event, 0);
2650
2651 return 0;
2652 }
2653
2654 static int perf_event_stop(struct perf_event *event, int restart)
2655 {
2656 struct stop_event_data sd = {
2657 .event = event,
2658 .restart = restart,
2659 };
2660 int ret = 0;
2661
2662 do {
2663 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2664 return 0;
2665
2666 /* matches smp_wmb() in event_sched_in() */
2667 smp_rmb();
2668
2669 /*
2670 * We only want to restart ACTIVE events, so if the event goes
2671 * inactive here (event->oncpu==-1), there's nothing more to do;
2672 * fall through with ret==-ENXIO.
2673 */
2674 ret = cpu_function_call(READ_ONCE(event->oncpu),
2675 __perf_event_stop, &sd);
2676 } while (ret == -EAGAIN);
2677
2678 return ret;
2679 }
2680
2681 /*
2682 * In order to contain the amount of racy and tricky in the address filter
2683 * configuration management, it is a two part process:
2684 *
2685 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2686 * we update the addresses of corresponding vmas in
2687 * event::addr_filters_offs array and bump the event::addr_filters_gen;
2688 * (p2) when an event is scheduled in (pmu::add), it calls
2689 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2690 * if the generation has changed since the previous call.
2691 *
2692 * If (p1) happens while the event is active, we restart it to force (p2).
2693 *
2694 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2695 * pre-existing mappings, called once when new filters arrive via SET_FILTER
2696 * ioctl;
2697 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2698 * registered mapping, called for every new mmap(), with mm::mmap_sem down
2699 * for reading;
2700 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2701 * of exec.
2702 */
2703 void perf_event_addr_filters_sync(struct perf_event *event)
2704 {
2705 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2706
2707 if (!has_addr_filter(event))
2708 return;
2709
2710 raw_spin_lock(&ifh->lock);
2711 if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2712 event->pmu->addr_filters_sync(event);
2713 event->hw.addr_filters_gen = event->addr_filters_gen;
2714 }
2715 raw_spin_unlock(&ifh->lock);
2716 }
2717 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2718
2719 static int _perf_event_refresh(struct perf_event *event, int refresh)
2720 {
2721 /*
2722 * not supported on inherited events
2723 */
2724 if (event->attr.inherit || !is_sampling_event(event))
2725 return -EINVAL;
2726
2727 atomic_add(refresh, &event->event_limit);
2728 _perf_event_enable(event);
2729
2730 return 0;
2731 }
2732
2733 /*
2734 * See perf_event_disable()
2735 */
2736 int perf_event_refresh(struct perf_event *event, int refresh)
2737 {
2738 struct perf_event_context *ctx;
2739 int ret;
2740
2741 ctx = perf_event_ctx_lock(event);
2742 ret = _perf_event_refresh(event, refresh);
2743 perf_event_ctx_unlock(event, ctx);
2744
2745 return ret;
2746 }
2747 EXPORT_SYMBOL_GPL(perf_event_refresh);
2748
2749 static void ctx_sched_out(struct perf_event_context *ctx,
2750 struct perf_cpu_context *cpuctx,
2751 enum event_type_t event_type)
2752 {
2753 int is_active = ctx->is_active;
2754 struct perf_event *event;
2755
2756 lockdep_assert_held(&ctx->lock);
2757
2758 if (likely(!ctx->nr_events)) {
2759 /*
2760 * See __perf_remove_from_context().
2761 */
2762 WARN_ON_ONCE(ctx->is_active);
2763 if (ctx->task)
2764 WARN_ON_ONCE(cpuctx->task_ctx);
2765 return;
2766 }
2767
2768 ctx->is_active &= ~event_type;
2769 if (!(ctx->is_active & EVENT_ALL))
2770 ctx->is_active = 0;
2771
2772 if (ctx->task) {
2773 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2774 if (!ctx->is_active)
2775 cpuctx->task_ctx = NULL;
2776 }
2777
2778 /*
2779 * Always update time if it was set; not only when it changes.
2780 * Otherwise we can 'forget' to update time for any but the last
2781 * context we sched out. For example:
2782 *
2783 * ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2784 * ctx_sched_out(.event_type = EVENT_PINNED)
2785 *
2786 * would only update time for the pinned events.
2787 */
2788 if (is_active & EVENT_TIME) {
2789 /* update (and stop) ctx time */
2790 update_context_time(ctx);
2791 update_cgrp_time_from_cpuctx(cpuctx);
2792 }
2793
2794 is_active ^= ctx->is_active; /* changed bits */
2795
2796 if (!ctx->nr_active || !(is_active & EVENT_ALL))
2797 return;
2798
2799 perf_pmu_disable(ctx->pmu);
2800 if (is_active & EVENT_PINNED) {
2801 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2802 group_sched_out(event, cpuctx, ctx);
2803 }
2804
2805 if (is_active & EVENT_FLEXIBLE) {
2806 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2807 group_sched_out(event, cpuctx, ctx);
2808 }
2809 perf_pmu_enable(ctx->pmu);
2810 }
2811
2812 /*
2813 * Test whether two contexts are equivalent, i.e. whether they have both been
2814 * cloned from the same version of the same context.
2815 *
2816 * Equivalence is measured using a generation number in the context that is
2817 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2818 * and list_del_event().
2819 */
2820 static int context_equiv(struct perf_event_context *ctx1,
2821 struct perf_event_context *ctx2)
2822 {
2823 lockdep_assert_held(&ctx1->lock);
2824 lockdep_assert_held(&ctx2->lock);
2825
2826 /* Pinning disables the swap optimization */
2827 if (ctx1->pin_count || ctx2->pin_count)
2828 return 0;
2829
2830 /* If ctx1 is the parent of ctx2 */
2831 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2832 return 1;
2833
2834 /* If ctx2 is the parent of ctx1 */
2835 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2836 return 1;
2837
2838 /*
2839 * If ctx1 and ctx2 have the same parent; we flatten the parent
2840 * hierarchy, see perf_event_init_context().
2841 */
2842 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2843 ctx1->parent_gen == ctx2->parent_gen)
2844 return 1;
2845
2846 /* Unmatched */
2847 return 0;
2848 }
2849
2850 static void __perf_event_sync_stat(struct perf_event *event,
2851 struct perf_event *next_event)
2852 {
2853 u64 value;
2854
2855 if (!event->attr.inherit_stat)
2856 return;
2857
2858 /*
2859 * Update the event value, we cannot use perf_event_read()
2860 * because we're in the middle of a context switch and have IRQs
2861 * disabled, which upsets smp_call_function_single(), however
2862 * we know the event must be on the current CPU, therefore we
2863 * don't need to use it.
2864 */
2865 switch (event->state) {
2866 case PERF_EVENT_STATE_ACTIVE:
2867 event->pmu->read(event);
2868 /* fall-through */
2869
2870 case PERF_EVENT_STATE_INACTIVE:
2871 update_event_times(event);
2872 break;
2873
2874 default:
2875 break;
2876 }
2877
2878 /*
2879 * In order to keep per-task stats reliable we need to flip the event
2880 * values when we flip the contexts.
2881 */
2882 value = local64_read(&next_event->count);
2883 value = local64_xchg(&event->count, value);
2884 local64_set(&next_event->count, value);
2885
2886 swap(event->total_time_enabled, next_event->total_time_enabled);
2887 swap(event->total_time_running, next_event->total_time_running);
2888
2889 /*
2890 * Since we swizzled the values, update the user visible data too.
2891 */
2892 perf_event_update_userpage(event);
2893 perf_event_update_userpage(next_event);
2894 }
2895
2896 static void perf_event_sync_stat(struct perf_event_context *ctx,
2897 struct perf_event_context *next_ctx)
2898 {
2899 struct perf_event *event, *next_event;
2900
2901 if (!ctx->nr_stat)
2902 return;
2903
2904 update_context_time(ctx);
2905
2906 event = list_first_entry(&ctx->event_list,
2907 struct perf_event, event_entry);
2908
2909 next_event = list_first_entry(&next_ctx->event_list,
2910 struct perf_event, event_entry);
2911
2912 while (&event->event_entry != &ctx->event_list &&
2913 &next_event->event_entry != &next_ctx->event_list) {
2914
2915 __perf_event_sync_stat(event, next_event);
2916
2917 event = list_next_entry(event, event_entry);
2918 next_event = list_next_entry(next_event, event_entry);
2919 }
2920 }
2921
2922 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2923 struct task_struct *next)
2924 {
2925 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2926 struct perf_event_context *next_ctx;
2927 struct perf_event_context *parent, *next_parent;
2928 struct perf_cpu_context *cpuctx;
2929 int do_switch = 1;
2930
2931 if (likely(!ctx))
2932 return;
2933
2934 cpuctx = __get_cpu_context(ctx);
2935 if (!cpuctx->task_ctx)
2936 return;
2937
2938 rcu_read_lock();
2939 next_ctx = next->perf_event_ctxp[ctxn];
2940 if (!next_ctx)
2941 goto unlock;
2942
2943 parent = rcu_dereference(ctx->parent_ctx);
2944 next_parent = rcu_dereference(next_ctx->parent_ctx);
2945
2946 /* If neither context have a parent context; they cannot be clones. */
2947 if (!parent && !next_parent)
2948 goto unlock;
2949
2950 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2951 /*
2952 * Looks like the two contexts are clones, so we might be
2953 * able to optimize the context switch. We lock both
2954 * contexts and check that they are clones under the
2955 * lock (including re-checking that neither has been
2956 * uncloned in the meantime). It doesn't matter which
2957 * order we take the locks because no other cpu could
2958 * be trying to lock both of these tasks.
2959 */
2960 raw_spin_lock(&ctx->lock);
2961 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2962 if (context_equiv(ctx, next_ctx)) {
2963 WRITE_ONCE(ctx->task, next);
2964 WRITE_ONCE(next_ctx->task, task);
2965
2966 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2967
2968 /*
2969 * RCU_INIT_POINTER here is safe because we've not
2970 * modified the ctx and the above modification of
2971 * ctx->task and ctx->task_ctx_data are immaterial
2972 * since those values are always verified under
2973 * ctx->lock which we're now holding.
2974 */
2975 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
2976 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
2977
2978 do_switch = 0;
2979
2980 perf_event_sync_stat(ctx, next_ctx);
2981 }
2982 raw_spin_unlock(&next_ctx->lock);
2983 raw_spin_unlock(&ctx->lock);
2984 }
2985 unlock:
2986 rcu_read_unlock();
2987
2988 if (do_switch) {
2989 raw_spin_lock(&ctx->lock);
2990 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
2991 raw_spin_unlock(&ctx->lock);
2992 }
2993 }
2994
2995 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
2996
2997 void perf_sched_cb_dec(struct pmu *pmu)
2998 {
2999 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3000
3001 this_cpu_dec(perf_sched_cb_usages);
3002
3003 if (!--cpuctx->sched_cb_usage)
3004 list_del(&cpuctx->sched_cb_entry);
3005 }
3006
3007
3008 void perf_sched_cb_inc(struct pmu *pmu)
3009 {
3010 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3011
3012 if (!cpuctx->sched_cb_usage++)
3013 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3014
3015 this_cpu_inc(perf_sched_cb_usages);
3016 }
3017
3018 /*
3019 * This function provides the context switch callback to the lower code
3020 * layer. It is invoked ONLY when the context switch callback is enabled.
3021 *
3022 * This callback is relevant even to per-cpu events; for example multi event
3023 * PEBS requires this to provide PID/TID information. This requires we flush
3024 * all queued PEBS records before we context switch to a new task.
3025 */
3026 static void perf_pmu_sched_task(struct task_struct *prev,
3027 struct task_struct *next,
3028 bool sched_in)
3029 {
3030 struct perf_cpu_context *cpuctx;
3031 struct pmu *pmu;
3032
3033 if (prev == next)
3034 return;
3035
3036 list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
3037 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
3038
3039 if (WARN_ON_ONCE(!pmu->sched_task))
3040 continue;
3041
3042 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3043 perf_pmu_disable(pmu);
3044
3045 pmu->sched_task(cpuctx->task_ctx, sched_in);
3046
3047 perf_pmu_enable(pmu);
3048 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3049 }
3050 }
3051
3052 static void perf_event_switch(struct task_struct *task,
3053 struct task_struct *next_prev, bool sched_in);
3054
3055 #define for_each_task_context_nr(ctxn) \
3056 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3057
3058 /*
3059 * Called from scheduler to remove the events of the current task,
3060 * with interrupts disabled.
3061 *
3062 * We stop each event and update the event value in event->count.
3063 *
3064 * This does not protect us against NMI, but disable()
3065 * sets the disabled bit in the control field of event _before_
3066 * accessing the event control register. If a NMI hits, then it will
3067 * not restart the event.
3068 */
3069 void __perf_event_task_sched_out(struct task_struct *task,
3070 struct task_struct *next)
3071 {
3072 int ctxn;
3073
3074 if (__this_cpu_read(perf_sched_cb_usages))
3075 perf_pmu_sched_task(task, next, false);
3076
3077 if (atomic_read(&nr_switch_events))
3078 perf_event_switch(task, next, false);
3079
3080 for_each_task_context_nr(ctxn)
3081 perf_event_context_sched_out(task, ctxn, next);
3082
3083 /*
3084 * if cgroup events exist on this CPU, then we need
3085 * to check if we have to switch out PMU state.
3086 * cgroup event are system-wide mode only
3087 */
3088 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3089 perf_cgroup_sched_out(task, next);
3090 }
3091
3092 /*
3093 * Called with IRQs disabled
3094 */
3095 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3096 enum event_type_t event_type)
3097 {
3098 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3099 }
3100
3101 static void
3102 ctx_pinned_sched_in(struct perf_event_context *ctx,
3103 struct perf_cpu_context *cpuctx)
3104 {
3105 struct perf_event *event;
3106
3107 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
3108 if (event->state <= PERF_EVENT_STATE_OFF)
3109 continue;
3110 if (!event_filter_match(event))
3111 continue;
3112
3113 /* may need to reset tstamp_enabled */
3114 if (is_cgroup_event(event))
3115 perf_cgroup_mark_enabled(event, ctx);
3116
3117 if (group_can_go_on(event, cpuctx, 1))
3118 group_sched_in(event, cpuctx, ctx);
3119
3120 /*
3121 * If this pinned group hasn't been scheduled,
3122 * put it in error state.
3123 */
3124 if (event->state == PERF_EVENT_STATE_INACTIVE) {
3125 update_group_times(event);
3126 event->state = PERF_EVENT_STATE_ERROR;
3127 }
3128 }
3129 }
3130
3131 static void
3132 ctx_flexible_sched_in(struct perf_event_context *ctx,
3133 struct perf_cpu_context *cpuctx)
3134 {
3135 struct perf_event *event;
3136 int can_add_hw = 1;
3137
3138 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
3139 /* Ignore events in OFF or ERROR state */
3140 if (event->state <= PERF_EVENT_STATE_OFF)
3141 continue;
3142 /*
3143 * Listen to the 'cpu' scheduling filter constraint
3144 * of events:
3145 */
3146 if (!event_filter_match(event))
3147 continue;
3148
3149 /* may need to reset tstamp_enabled */
3150 if (is_cgroup_event(event))
3151 perf_cgroup_mark_enabled(event, ctx);
3152
3153 if (group_can_go_on(event, cpuctx, can_add_hw)) {
3154 if (group_sched_in(event, cpuctx, ctx))
3155 can_add_hw = 0;
3156 }
3157 }
3158 }
3159
3160 static void
3161 ctx_sched_in(struct perf_event_context *ctx,
3162 struct perf_cpu_context *cpuctx,
3163 enum event_type_t event_type,
3164 struct task_struct *task)
3165 {
3166 int is_active = ctx->is_active;
3167 u64 now;
3168
3169 lockdep_assert_held(&ctx->lock);
3170
3171 if (likely(!ctx->nr_events))
3172 return;
3173
3174 ctx->is_active |= (event_type | EVENT_TIME);
3175 if (ctx->task) {
3176 if (!is_active)
3177 cpuctx->task_ctx = ctx;
3178 else
3179 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3180 }
3181
3182 is_active ^= ctx->is_active; /* changed bits */
3183
3184 if (is_active & EVENT_TIME) {
3185 /* start ctx time */
3186 now = perf_clock();
3187 ctx->timestamp = now;
3188 perf_cgroup_set_timestamp(task, ctx);
3189 }
3190
3191 /*
3192 * First go through the list and put on any pinned groups
3193 * in order to give them the best chance of going on.
3194 */
3195 if (is_active & EVENT_PINNED)
3196 ctx_pinned_sched_in(ctx, cpuctx);
3197
3198 /* Then walk through the lower prio flexible groups */
3199 if (is_active & EVENT_FLEXIBLE)
3200 ctx_flexible_sched_in(ctx, cpuctx);
3201 }
3202
3203 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3204 enum event_type_t event_type,
3205 struct task_struct *task)
3206 {
3207 struct perf_event_context *ctx = &cpuctx->ctx;
3208
3209 ctx_sched_in(ctx, cpuctx, event_type, task);
3210 }
3211
3212 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3213 struct task_struct *task)
3214 {
3215 struct perf_cpu_context *cpuctx;
3216
3217 cpuctx = __get_cpu_context(ctx);
3218 if (cpuctx->task_ctx == ctx)
3219 return;
3220
3221 perf_ctx_lock(cpuctx, ctx);
3222 /*
3223 * We must check ctx->nr_events while holding ctx->lock, such
3224 * that we serialize against perf_install_in_context().
3225 */
3226 if (!ctx->nr_events)
3227 goto unlock;
3228
3229 perf_pmu_disable(ctx->pmu);
3230 /*
3231 * We want to keep the following priority order:
3232 * cpu pinned (that don't need to move), task pinned,
3233 * cpu flexible, task flexible.
3234 *
3235 * However, if task's ctx is not carrying any pinned
3236 * events, no need to flip the cpuctx's events around.
3237 */
3238 if (!list_empty(&ctx->pinned_groups))
3239 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3240 perf_event_sched_in(cpuctx, ctx, task);
3241 perf_pmu_enable(ctx->pmu);
3242
3243 unlock:
3244 perf_ctx_unlock(cpuctx, ctx);
3245 }
3246
3247 /*
3248 * Called from scheduler to add the events of the current task
3249 * with interrupts disabled.
3250 *
3251 * We restore the event value and then enable it.
3252 *
3253 * This does not protect us against NMI, but enable()
3254 * sets the enabled bit in the control field of event _before_
3255 * accessing the event control register. If a NMI hits, then it will
3256 * keep the event running.
3257 */
3258 void __perf_event_task_sched_in(struct task_struct *prev,
3259 struct task_struct *task)
3260 {
3261 struct perf_event_context *ctx;
3262 int ctxn;
3263
3264 /*
3265 * If cgroup events exist on this CPU, then we need to check if we have
3266 * to switch in PMU state; cgroup event are system-wide mode only.
3267 *
3268 * Since cgroup events are CPU events, we must schedule these in before
3269 * we schedule in the task events.
3270 */
3271 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3272 perf_cgroup_sched_in(prev, task);
3273
3274 for_each_task_context_nr(ctxn) {
3275 ctx = task->perf_event_ctxp[ctxn];
3276 if (likely(!ctx))
3277 continue;
3278
3279 perf_event_context_sched_in(ctx, task);
3280 }
3281
3282 if (atomic_read(&nr_switch_events))
3283 perf_event_switch(task, prev, true);
3284
3285 if (__this_cpu_read(perf_sched_cb_usages))
3286 perf_pmu_sched_task(prev, task, true);
3287 }
3288
3289 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3290 {
3291 u64 frequency = event->attr.sample_freq;
3292 u64 sec = NSEC_PER_SEC;
3293 u64 divisor, dividend;
3294
3295 int count_fls, nsec_fls, frequency_fls, sec_fls;
3296
3297 count_fls = fls64(count);
3298 nsec_fls = fls64(nsec);
3299 frequency_fls = fls64(frequency);
3300 sec_fls = 30;
3301
3302 /*
3303 * We got @count in @nsec, with a target of sample_freq HZ
3304 * the target period becomes:
3305 *
3306 * @count * 10^9
3307 * period = -------------------
3308 * @nsec * sample_freq
3309 *
3310 */
3311
3312 /*
3313 * Reduce accuracy by one bit such that @a and @b converge
3314 * to a similar magnitude.
3315 */
3316 #define REDUCE_FLS(a, b) \
3317 do { \
3318 if (a##_fls > b##_fls) { \
3319 a >>= 1; \
3320 a##_fls--; \
3321 } else { \
3322 b >>= 1; \
3323 b##_fls--; \
3324 } \
3325 } while (0)
3326
3327 /*
3328 * Reduce accuracy until either term fits in a u64, then proceed with
3329 * the other, so that finally we can do a u64/u64 division.
3330 */
3331 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3332 REDUCE_FLS(nsec, frequency);
3333 REDUCE_FLS(sec, count);
3334 }
3335
3336 if (count_fls + sec_fls > 64) {
3337 divisor = nsec * frequency;
3338
3339 while (count_fls + sec_fls > 64) {
3340 REDUCE_FLS(count, sec);
3341 divisor >>= 1;
3342 }
3343
3344 dividend = count * sec;
3345 } else {
3346 dividend = count * sec;
3347
3348 while (nsec_fls + frequency_fls > 64) {
3349 REDUCE_FLS(nsec, frequency);
3350 dividend >>= 1;
3351 }
3352
3353 divisor = nsec * frequency;
3354 }
3355
3356 if (!divisor)
3357 return dividend;
3358
3359 return div64_u64(dividend, divisor);
3360 }
3361
3362 static DEFINE_PER_CPU(int, perf_throttled_count);
3363 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3364
3365 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3366 {
3367 struct hw_perf_event *hwc = &event->hw;
3368 s64 period, sample_period;
3369 s64 delta;
3370
3371 period = perf_calculate_period(event, nsec, count);
3372
3373 delta = (s64)(period - hwc->sample_period);
3374 delta = (delta + 7) / 8; /* low pass filter */
3375
3376 sample_period = hwc->sample_period + delta;
3377
3378 if (!sample_period)
3379 sample_period = 1;
3380
3381 hwc->sample_period = sample_period;
3382
3383 if (local64_read(&hwc->period_left) > 8*sample_period) {
3384 if (disable)
3385 event->pmu->stop(event, PERF_EF_UPDATE);
3386
3387 local64_set(&hwc->period_left, 0);
3388
3389 if (disable)
3390 event->pmu->start(event, PERF_EF_RELOAD);
3391 }
3392 }
3393
3394 /*
3395 * combine freq adjustment with unthrottling to avoid two passes over the
3396 * events. At the same time, make sure, having freq events does not change
3397 * the rate of unthrottling as that would introduce bias.
3398 */
3399 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3400 int needs_unthr)
3401 {
3402 struct perf_event *event;
3403 struct hw_perf_event *hwc;
3404 u64 now, period = TICK_NSEC;
3405 s64 delta;
3406
3407 /*
3408 * only need to iterate over all events iff:
3409 * - context have events in frequency mode (needs freq adjust)
3410 * - there are events to unthrottle on this cpu
3411 */
3412 if (!(ctx->nr_freq || needs_unthr))
3413 return;
3414
3415 raw_spin_lock(&ctx->lock);
3416 perf_pmu_disable(ctx->pmu);
3417
3418 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3419 if (event->state != PERF_EVENT_STATE_ACTIVE)
3420 continue;
3421
3422 if (!event_filter_match(event))
3423 continue;
3424
3425 perf_pmu_disable(event->pmu);
3426
3427 hwc = &event->hw;
3428
3429 if (hwc->interrupts == MAX_INTERRUPTS) {
3430 hwc->interrupts = 0;
3431 perf_log_throttle(event, 1);
3432 event->pmu->start(event, 0);
3433 }
3434
3435 if (!event->attr.freq || !event->attr.sample_freq)
3436 goto next;
3437
3438 /*
3439 * stop the event and update event->count
3440 */
3441 event->pmu->stop(event, PERF_EF_UPDATE);
3442
3443 now = local64_read(&event->count);
3444 delta = now - hwc->freq_count_stamp;
3445 hwc->freq_count_stamp = now;
3446
3447 /*
3448 * restart the event
3449 * reload only if value has changed
3450 * we have stopped the event so tell that
3451 * to perf_adjust_period() to avoid stopping it
3452 * twice.
3453 */
3454 if (delta > 0)
3455 perf_adjust_period(event, period, delta, false);
3456
3457 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3458 next:
3459 perf_pmu_enable(event->pmu);
3460 }
3461
3462 perf_pmu_enable(ctx->pmu);
3463 raw_spin_unlock(&ctx->lock);
3464 }
3465
3466 /*
3467 * Round-robin a context's events:
3468 */
3469 static void rotate_ctx(struct perf_event_context *ctx)
3470 {
3471 /*
3472 * Rotate the first entry last of non-pinned groups. Rotation might be
3473 * disabled by the inheritance code.
3474 */
3475 if (!ctx->rotate_disable)
3476 list_rotate_left(&ctx->flexible_groups);
3477 }
3478
3479 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3480 {
3481 struct perf_event_context *ctx = NULL;
3482 int rotate = 0;
3483
3484 if (cpuctx->ctx.nr_events) {
3485 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3486 rotate = 1;
3487 }
3488
3489 ctx = cpuctx->task_ctx;
3490 if (ctx && ctx->nr_events) {
3491 if (ctx->nr_events != ctx->nr_active)
3492 rotate = 1;
3493 }
3494
3495 if (!rotate)
3496 goto done;
3497
3498 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3499 perf_pmu_disable(cpuctx->ctx.pmu);
3500
3501 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3502 if (ctx)
3503 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3504
3505 rotate_ctx(&cpuctx->ctx);
3506 if (ctx)
3507 rotate_ctx(ctx);
3508
3509 perf_event_sched_in(cpuctx, ctx, current);
3510
3511 perf_pmu_enable(cpuctx->ctx.pmu);
3512 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3513 done:
3514
3515 return rotate;
3516 }
3517
3518 void perf_event_task_tick(void)
3519 {
3520 struct list_head *head = this_cpu_ptr(&active_ctx_list);
3521 struct perf_event_context *ctx, *tmp;
3522 int throttled;
3523
3524 WARN_ON(!irqs_disabled());
3525
3526 __this_cpu_inc(perf_throttled_seq);
3527 throttled = __this_cpu_xchg(perf_throttled_count, 0);
3528 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3529
3530 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3531 perf_adjust_freq_unthr_context(ctx, throttled);
3532 }
3533
3534 static int event_enable_on_exec(struct perf_event *event,
3535 struct perf_event_context *ctx)
3536 {
3537 if (!event->attr.enable_on_exec)
3538 return 0;
3539
3540 event->attr.enable_on_exec = 0;
3541 if (event->state >= PERF_EVENT_STATE_INACTIVE)
3542 return 0;
3543
3544 __perf_event_mark_enabled(event);
3545
3546 return 1;
3547 }
3548
3549 /*
3550 * Enable all of a task's events that have been marked enable-on-exec.
3551 * This expects task == current.
3552 */
3553 static void perf_event_enable_on_exec(int ctxn)
3554 {
3555 struct perf_event_context *ctx, *clone_ctx = NULL;
3556 enum event_type_t event_type = 0;
3557 struct perf_cpu_context *cpuctx;
3558 struct perf_event *event;
3559 unsigned long flags;
3560 int enabled = 0;
3561
3562 local_irq_save(flags);
3563 ctx = current->perf_event_ctxp[ctxn];
3564 if (!ctx || !ctx->nr_events)
3565 goto out;
3566
3567 cpuctx = __get_cpu_context(ctx);
3568 perf_ctx_lock(cpuctx, ctx);
3569 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3570 list_for_each_entry(event, &ctx->event_list, event_entry) {
3571 enabled |= event_enable_on_exec(event, ctx);
3572 event_type |= get_event_type(event);
3573 }
3574
3575 /*
3576 * Unclone and reschedule this context if we enabled any event.
3577 */
3578 if (enabled) {
3579 clone_ctx = unclone_ctx(ctx);
3580 ctx_resched(cpuctx, ctx, event_type);
3581 } else {
3582 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3583 }
3584 perf_ctx_unlock(cpuctx, ctx);
3585
3586 out:
3587 local_irq_restore(flags);
3588
3589 if (clone_ctx)
3590 put_ctx(clone_ctx);
3591 }
3592
3593 struct perf_read_data {
3594 struct perf_event *event;
3595 bool group;
3596 int ret;
3597 };
3598
3599 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
3600 {
3601 u16 local_pkg, event_pkg;
3602
3603 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
3604 int local_cpu = smp_processor_id();
3605
3606 event_pkg = topology_physical_package_id(event_cpu);
3607 local_pkg = topology_physical_package_id(local_cpu);
3608
3609 if (event_pkg == local_pkg)
3610 return local_cpu;
3611 }
3612
3613 return event_cpu;
3614 }
3615
3616 /*
3617 * Cross CPU call to read the hardware event
3618 */
3619 static void __perf_event_read(void *info)
3620 {
3621 struct perf_read_data *data = info;
3622 struct perf_event *sub, *event = data->event;
3623 struct perf_event_context *ctx = event->ctx;
3624 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3625 struct pmu *pmu = event->pmu;
3626
3627 /*
3628 * If this is a task context, we need to check whether it is
3629 * the current task context of this cpu. If not it has been
3630 * scheduled out before the smp call arrived. In that case
3631 * event->count would have been updated to a recent sample
3632 * when the event was scheduled out.
3633 */
3634 if (ctx->task && cpuctx->task_ctx != ctx)
3635 return;
3636
3637 raw_spin_lock(&ctx->lock);
3638 if (ctx->is_active) {
3639 update_context_time(ctx);
3640 update_cgrp_time_from_event(event);
3641 }
3642
3643 update_event_times(event);
3644 if (event->state != PERF_EVENT_STATE_ACTIVE)
3645 goto unlock;
3646
3647 if (!data->group) {
3648 pmu->read(event);
3649 data->ret = 0;
3650 goto unlock;
3651 }
3652
3653 pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3654
3655 pmu->read(event);
3656
3657 list_for_each_entry(sub, &event->sibling_list, group_entry) {
3658 update_event_times(sub);
3659 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3660 /*
3661 * Use sibling's PMU rather than @event's since
3662 * sibling could be on different (eg: software) PMU.
3663 */
3664 sub->pmu->read(sub);
3665 }
3666 }
3667
3668 data->ret = pmu->commit_txn(pmu);
3669
3670 unlock:
3671 raw_spin_unlock(&ctx->lock);
3672 }
3673
3674 static inline u64 perf_event_count(struct perf_event *event)
3675 {
3676 return local64_read(&event->count) + atomic64_read(&event->child_count);
3677 }
3678
3679 /*
3680 * NMI-safe method to read a local event, that is an event that
3681 * is:
3682 * - either for the current task, or for this CPU
3683 * - does not have inherit set, for inherited task events
3684 * will not be local and we cannot read them atomically
3685 * - must not have a pmu::count method
3686 */
3687 int perf_event_read_local(struct perf_event *event, u64 *value)
3688 {
3689 unsigned long flags;
3690 int ret = 0;
3691
3692 /*
3693 * Disabling interrupts avoids all counter scheduling (context
3694 * switches, timer based rotation and IPIs).
3695 */
3696 local_irq_save(flags);
3697
3698 /*
3699 * It must not be an event with inherit set, we cannot read
3700 * all child counters from atomic context.
3701 */
3702 if (event->attr.inherit) {
3703 ret = -EOPNOTSUPP;
3704 goto out;
3705 }
3706
3707 /* If this is a per-task event, it must be for current */
3708 if ((event->attach_state & PERF_ATTACH_TASK) &&
3709 event->hw.target != current) {
3710 ret = -EINVAL;
3711 goto out;
3712 }
3713
3714 /* If this is a per-CPU event, it must be for this CPU */
3715 if (!(event->attach_state & PERF_ATTACH_TASK) &&
3716 event->cpu != smp_processor_id()) {
3717 ret = -EINVAL;
3718 goto out;
3719 }
3720
3721 /*
3722 * If the event is currently on this CPU, its either a per-task event,
3723 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3724 * oncpu == -1).
3725 */
3726 if (event->oncpu == smp_processor_id())
3727 event->pmu->read(event);
3728
3729 *value = local64_read(&event->count);
3730 out:
3731 local_irq_restore(flags);
3732
3733 return ret;
3734 }
3735
3736 static int perf_event_read(struct perf_event *event, bool group)
3737 {
3738 int event_cpu, ret = 0;
3739
3740 /*
3741 * If event is enabled and currently active on a CPU, update the
3742 * value in the event structure:
3743 */
3744 if (event->state == PERF_EVENT_STATE_ACTIVE) {
3745 struct perf_read_data data = {
3746 .event = event,
3747 .group = group,
3748 .ret = 0,
3749 };
3750
3751 event_cpu = READ_ONCE(event->oncpu);
3752 if ((unsigned)event_cpu >= nr_cpu_ids)
3753 return 0;
3754
3755 preempt_disable();
3756 event_cpu = __perf_event_read_cpu(event, event_cpu);
3757
3758 /*
3759 * Purposely ignore the smp_call_function_single() return
3760 * value.
3761 *
3762 * If event_cpu isn't a valid CPU it means the event got
3763 * scheduled out and that will have updated the event count.
3764 *
3765 * Therefore, either way, we'll have an up-to-date event count
3766 * after this.
3767 */
3768 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
3769 preempt_enable();
3770 ret = data.ret;
3771 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
3772 struct perf_event_context *ctx = event->ctx;
3773 unsigned long flags;
3774
3775 raw_spin_lock_irqsave(&ctx->lock, flags);
3776 /*
3777 * may read while context is not active
3778 * (e.g., thread is blocked), in that case
3779 * we cannot update context time
3780 */
3781 if (ctx->is_active) {
3782 update_context_time(ctx);
3783 update_cgrp_time_from_event(event);
3784 }
3785 if (group)
3786 update_group_times(event);
3787 else
3788 update_event_times(event);
3789 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3790 }
3791
3792 return ret;
3793 }
3794
3795 /*
3796 * Initialize the perf_event context in a task_struct:
3797 */
3798 static void __perf_event_init_context(struct perf_event_context *ctx)
3799 {
3800 raw_spin_lock_init(&ctx->lock);
3801 mutex_init(&ctx->mutex);
3802 INIT_LIST_HEAD(&ctx->active_ctx_list);
3803 INIT_LIST_HEAD(&ctx->pinned_groups);
3804 INIT_LIST_HEAD(&ctx->flexible_groups);
3805 INIT_LIST_HEAD(&ctx->event_list);
3806 atomic_set(&ctx->refcount, 1);
3807 }
3808
3809 static struct perf_event_context *
3810 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3811 {
3812 struct perf_event_context *ctx;
3813
3814 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3815 if (!ctx)
3816 return NULL;
3817
3818 __perf_event_init_context(ctx);
3819 if (task) {
3820 ctx->task = task;
3821 get_task_struct(task);
3822 }
3823 ctx->pmu = pmu;
3824
3825 return ctx;
3826 }
3827
3828 static struct task_struct *
3829 find_lively_task_by_vpid(pid_t vpid)
3830 {
3831 struct task_struct *task;
3832
3833 rcu_read_lock();
3834 if (!vpid)
3835 task = current;
3836 else
3837 task = find_task_by_vpid(vpid);
3838 if (task)
3839 get_task_struct(task);
3840 rcu_read_unlock();
3841
3842 if (!task)
3843 return ERR_PTR(-ESRCH);
3844
3845 return task;
3846 }
3847
3848 /*
3849 * Returns a matching context with refcount and pincount.
3850 */
3851 static struct perf_event_context *
3852 find_get_context(struct pmu *pmu, struct task_struct *task,
3853 struct perf_event *event)
3854 {
3855 struct perf_event_context *ctx, *clone_ctx = NULL;
3856 struct perf_cpu_context *cpuctx;
3857 void *task_ctx_data = NULL;
3858 unsigned long flags;
3859 int ctxn, err;
3860 int cpu = event->cpu;
3861
3862 if (!task) {
3863 /* Must be root to operate on a CPU event: */
3864 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3865 return ERR_PTR(-EACCES);
3866
3867 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3868 ctx = &cpuctx->ctx;
3869 get_ctx(ctx);
3870 ++ctx->pin_count;
3871
3872 return ctx;
3873 }
3874
3875 err = -EINVAL;
3876 ctxn = pmu->task_ctx_nr;
3877 if (ctxn < 0)
3878 goto errout;
3879
3880 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3881 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3882 if (!task_ctx_data) {
3883 err = -ENOMEM;
3884 goto errout;
3885 }
3886 }
3887
3888 retry:
3889 ctx = perf_lock_task_context(task, ctxn, &flags);
3890 if (ctx) {
3891 clone_ctx = unclone_ctx(ctx);
3892 ++ctx->pin_count;
3893
3894 if (task_ctx_data && !ctx->task_ctx_data) {
3895 ctx->task_ctx_data = task_ctx_data;
3896 task_ctx_data = NULL;
3897 }
3898 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3899
3900 if (clone_ctx)
3901 put_ctx(clone_ctx);
3902 } else {
3903 ctx = alloc_perf_context(pmu, task);
3904 err = -ENOMEM;
3905 if (!ctx)
3906 goto errout;
3907
3908 if (task_ctx_data) {
3909 ctx->task_ctx_data = task_ctx_data;
3910 task_ctx_data = NULL;
3911 }
3912
3913 err = 0;
3914 mutex_lock(&task->perf_event_mutex);
3915 /*
3916 * If it has already passed perf_event_exit_task().
3917 * we must see PF_EXITING, it takes this mutex too.
3918 */
3919 if (task->flags & PF_EXITING)
3920 err = -ESRCH;
3921 else if (task->perf_event_ctxp[ctxn])
3922 err = -EAGAIN;
3923 else {
3924 get_ctx(ctx);
3925 ++ctx->pin_count;
3926 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3927 }
3928 mutex_unlock(&task->perf_event_mutex);
3929
3930 if (unlikely(err)) {
3931 put_ctx(ctx);
3932
3933 if (err == -EAGAIN)
3934 goto retry;
3935 goto errout;
3936 }
3937 }
3938
3939 kfree(task_ctx_data);
3940 return ctx;
3941
3942 errout:
3943 kfree(task_ctx_data);
3944 return ERR_PTR(err);
3945 }
3946
3947 static void perf_event_free_filter(struct perf_event *event);
3948 static void perf_event_free_bpf_prog(struct perf_event *event);
3949
3950 static void free_event_rcu(struct rcu_head *head)
3951 {
3952 struct perf_event *event;
3953
3954 event = container_of(head, struct perf_event, rcu_head);
3955 if (event->ns)
3956 put_pid_ns(event->ns);
3957 perf_event_free_filter(event);
3958 kfree(event);
3959 }
3960
3961 static void ring_buffer_attach(struct perf_event *event,
3962 struct ring_buffer *rb);
3963
3964 static void detach_sb_event(struct perf_event *event)
3965 {
3966 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
3967
3968 raw_spin_lock(&pel->lock);
3969 list_del_rcu(&event->sb_list);
3970 raw_spin_unlock(&pel->lock);
3971 }
3972
3973 static bool is_sb_event(struct perf_event *event)
3974 {
3975 struct perf_event_attr *attr = &event->attr;
3976
3977 if (event->parent)
3978 return false;
3979
3980 if (event->attach_state & PERF_ATTACH_TASK)
3981 return false;
3982
3983 if (attr->mmap || attr->mmap_data || attr->mmap2 ||
3984 attr->comm || attr->comm_exec ||
3985 attr->task ||
3986 attr->context_switch)
3987 return true;
3988 return false;
3989 }
3990
3991 static void unaccount_pmu_sb_event(struct perf_event *event)
3992 {
3993 if (is_sb_event(event))
3994 detach_sb_event(event);
3995 }
3996
3997 static void unaccount_event_cpu(struct perf_event *event, int cpu)
3998 {
3999 if (event->parent)
4000 return;
4001
4002 if (is_cgroup_event(event))
4003 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4004 }
4005
4006 #ifdef CONFIG_NO_HZ_FULL
4007 static DEFINE_SPINLOCK(nr_freq_lock);
4008 #endif
4009
4010 static void unaccount_freq_event_nohz(void)
4011 {
4012 #ifdef CONFIG_NO_HZ_FULL
4013 spin_lock(&nr_freq_lock);
4014 if (atomic_dec_and_test(&nr_freq_events))
4015 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4016 spin_unlock(&nr_freq_lock);
4017 #endif
4018 }
4019
4020 static void unaccount_freq_event(void)
4021 {
4022 if (tick_nohz_full_enabled())
4023 unaccount_freq_event_nohz();
4024 else
4025 atomic_dec(&nr_freq_events);
4026 }
4027
4028 static void unaccount_event(struct perf_event *event)
4029 {
4030 bool dec = false;
4031
4032 if (event->parent)
4033 return;
4034
4035 if (event->attach_state & PERF_ATTACH_TASK)
4036 dec = true;
4037 if (event->attr.mmap || event->attr.mmap_data)
4038 atomic_dec(&nr_mmap_events);
4039 if (event->attr.comm)
4040 atomic_dec(&nr_comm_events);
4041 if (event->attr.namespaces)
4042 atomic_dec(&nr_namespaces_events);
4043 if (event->attr.task)
4044 atomic_dec(&nr_task_events);
4045 if (event->attr.freq)
4046 unaccount_freq_event();
4047 if (event->attr.context_switch) {
4048 dec = true;
4049 atomic_dec(&nr_switch_events);
4050 }
4051 if (is_cgroup_event(event))
4052 dec = true;
4053 if (has_branch_stack(event))
4054 dec = true;
4055
4056 if (dec) {
4057 if (!atomic_add_unless(&perf_sched_count, -1, 1))
4058 schedule_delayed_work(&perf_sched_work, HZ);
4059 }
4060
4061 unaccount_event_cpu(event, event->cpu);
4062
4063 unaccount_pmu_sb_event(event);
4064 }
4065
4066 static void perf_sched_delayed(struct work_struct *work)
4067 {
4068 mutex_lock(&perf_sched_mutex);
4069 if (atomic_dec_and_test(&perf_sched_count))
4070 static_branch_disable(&perf_sched_events);
4071 mutex_unlock(&perf_sched_mutex);
4072 }
4073
4074 /*
4075 * The following implement mutual exclusion of events on "exclusive" pmus
4076 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4077 * at a time, so we disallow creating events that might conflict, namely:
4078 *
4079 * 1) cpu-wide events in the presence of per-task events,
4080 * 2) per-task events in the presence of cpu-wide events,
4081 * 3) two matching events on the same context.
4082 *
4083 * The former two cases are handled in the allocation path (perf_event_alloc(),
4084 * _free_event()), the latter -- before the first perf_install_in_context().
4085 */
4086 static int exclusive_event_init(struct perf_event *event)
4087 {
4088 struct pmu *pmu = event->pmu;
4089
4090 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4091 return 0;
4092
4093 /*
4094 * Prevent co-existence of per-task and cpu-wide events on the
4095 * same exclusive pmu.
4096 *
4097 * Negative pmu::exclusive_cnt means there are cpu-wide
4098 * events on this "exclusive" pmu, positive means there are
4099 * per-task events.
4100 *
4101 * Since this is called in perf_event_alloc() path, event::ctx
4102 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4103 * to mean "per-task event", because unlike other attach states it
4104 * never gets cleared.
4105 */
4106 if (event->attach_state & PERF_ATTACH_TASK) {
4107 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4108 return -EBUSY;
4109 } else {
4110 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4111 return -EBUSY;
4112 }
4113
4114 return 0;
4115 }
4116
4117 static void exclusive_event_destroy(struct perf_event *event)
4118 {
4119 struct pmu *pmu = event->pmu;
4120
4121 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4122 return;
4123
4124 /* see comment in exclusive_event_init() */
4125 if (event->attach_state & PERF_ATTACH_TASK)
4126 atomic_dec(&pmu->exclusive_cnt);
4127 else
4128 atomic_inc(&pmu->exclusive_cnt);
4129 }
4130
4131 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4132 {
4133 if ((e1->pmu == e2->pmu) &&
4134 (e1->cpu == e2->cpu ||
4135 e1->cpu == -1 ||
4136 e2->cpu == -1))
4137 return true;
4138 return false;
4139 }
4140
4141 /* Called under the same ctx::mutex as perf_install_in_context() */
4142 static bool exclusive_event_installable(struct perf_event *event,
4143 struct perf_event_context *ctx)
4144 {
4145 struct perf_event *iter_event;
4146 struct pmu *pmu = event->pmu;
4147
4148 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4149 return true;
4150
4151 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4152 if (exclusive_event_match(iter_event, event))
4153 return false;
4154 }
4155
4156 return true;
4157 }
4158
4159 static void perf_addr_filters_splice(struct perf_event *event,
4160 struct list_head *head);
4161
4162 static void _free_event(struct perf_event *event)
4163 {
4164 irq_work_sync(&event->pending);
4165
4166 unaccount_event(event);
4167
4168 if (event->rb) {
4169 /*
4170 * Can happen when we close an event with re-directed output.
4171 *
4172 * Since we have a 0 refcount, perf_mmap_close() will skip
4173 * over us; possibly making our ring_buffer_put() the last.
4174 */
4175 mutex_lock(&event->mmap_mutex);
4176 ring_buffer_attach(event, NULL);
4177 mutex_unlock(&event->mmap_mutex);
4178 }
4179
4180 if (is_cgroup_event(event))
4181 perf_detach_cgroup(event);
4182
4183 if (!event->parent) {
4184 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4185 put_callchain_buffers();
4186 }
4187
4188 perf_event_free_bpf_prog(event);
4189 perf_addr_filters_splice(event, NULL);
4190 kfree(event->addr_filters_offs);
4191
4192 if (event->destroy)
4193 event->destroy(event);
4194
4195 if (event->ctx)
4196 put_ctx(event->ctx);
4197
4198 exclusive_event_destroy(event);
4199 module_put(event->pmu->module);
4200
4201 call_rcu(&event->rcu_head, free_event_rcu);
4202 }
4203
4204 /*
4205 * Used to free events which have a known refcount of 1, such as in error paths
4206 * where the event isn't exposed yet and inherited events.
4207 */
4208 static void free_event(struct perf_event *event)
4209 {
4210 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4211 "unexpected event refcount: %ld; ptr=%p\n",
4212 atomic_long_read(&event->refcount), event)) {
4213 /* leak to avoid use-after-free */
4214 return;
4215 }
4216
4217 _free_event(event);
4218 }
4219
4220 /*
4221 * Remove user event from the owner task.
4222 */
4223 static void perf_remove_from_owner(struct perf_event *event)
4224 {
4225 struct task_struct *owner;
4226
4227 rcu_read_lock();
4228 /*
4229 * Matches the smp_store_release() in perf_event_exit_task(). If we
4230 * observe !owner it means the list deletion is complete and we can
4231 * indeed free this event, otherwise we need to serialize on
4232 * owner->perf_event_mutex.
4233 */
4234 owner = READ_ONCE(event->owner);
4235 if (owner) {
4236 /*
4237 * Since delayed_put_task_struct() also drops the last
4238 * task reference we can safely take a new reference
4239 * while holding the rcu_read_lock().
4240 */
4241 get_task_struct(owner);
4242 }
4243 rcu_read_unlock();
4244
4245 if (owner) {
4246 /*
4247 * If we're here through perf_event_exit_task() we're already
4248 * holding ctx->mutex which would be an inversion wrt. the
4249 * normal lock order.
4250 *
4251 * However we can safely take this lock because its the child
4252 * ctx->mutex.
4253 */
4254 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4255
4256 /*
4257 * We have to re-check the event->owner field, if it is cleared
4258 * we raced with perf_event_exit_task(), acquiring the mutex
4259 * ensured they're done, and we can proceed with freeing the
4260 * event.
4261 */
4262 if (event->owner) {
4263 list_del_init(&event->owner_entry);
4264 smp_store_release(&event->owner, NULL);
4265 }
4266 mutex_unlock(&owner->perf_event_mutex);
4267 put_task_struct(owner);
4268 }
4269 }
4270
4271 static void put_event(struct perf_event *event)
4272 {
4273 if (!atomic_long_dec_and_test(&event->refcount))
4274 return;
4275
4276 _free_event(event);
4277 }
4278
4279 /*
4280 * Kill an event dead; while event:refcount will preserve the event
4281 * object, it will not preserve its functionality. Once the last 'user'
4282 * gives up the object, we'll destroy the thing.
4283 */
4284 int perf_event_release_kernel(struct perf_event *event)
4285 {
4286 struct perf_event_context *ctx = event->ctx;
4287 struct perf_event *child, *tmp;
4288
4289 /*
4290 * If we got here through err_file: fput(event_file); we will not have
4291 * attached to a context yet.
4292 */
4293 if (!ctx) {
4294 WARN_ON_ONCE(event->attach_state &
4295 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4296 goto no_ctx;
4297 }
4298
4299 if (!is_kernel_event(event))
4300 perf_remove_from_owner(event);
4301
4302 ctx = perf_event_ctx_lock(event);
4303 WARN_ON_ONCE(ctx->parent_ctx);
4304 perf_remove_from_context(event, DETACH_GROUP);
4305
4306 raw_spin_lock_irq(&ctx->lock);
4307 /*
4308 * Mark this event as STATE_DEAD, there is no external reference to it
4309 * anymore.
4310 *
4311 * Anybody acquiring event->child_mutex after the below loop _must_
4312 * also see this, most importantly inherit_event() which will avoid
4313 * placing more children on the list.
4314 *
4315 * Thus this guarantees that we will in fact observe and kill _ALL_
4316 * child events.
4317 */
4318 event->state = PERF_EVENT_STATE_DEAD;
4319 raw_spin_unlock_irq(&ctx->lock);
4320
4321 perf_event_ctx_unlock(event, ctx);
4322
4323 again:
4324 mutex_lock(&event->child_mutex);
4325 list_for_each_entry(child, &event->child_list, child_list) {
4326
4327 /*
4328 * Cannot change, child events are not migrated, see the
4329 * comment with perf_event_ctx_lock_nested().
4330 */
4331 ctx = READ_ONCE(child->ctx);
4332 /*
4333 * Since child_mutex nests inside ctx::mutex, we must jump
4334 * through hoops. We start by grabbing a reference on the ctx.
4335 *
4336 * Since the event cannot get freed while we hold the
4337 * child_mutex, the context must also exist and have a !0
4338 * reference count.
4339 */
4340 get_ctx(ctx);
4341
4342 /*
4343 * Now that we have a ctx ref, we can drop child_mutex, and
4344 * acquire ctx::mutex without fear of it going away. Then we
4345 * can re-acquire child_mutex.
4346 */
4347 mutex_unlock(&event->child_mutex);
4348 mutex_lock(&ctx->mutex);
4349 mutex_lock(&event->child_mutex);
4350
4351 /*
4352 * Now that we hold ctx::mutex and child_mutex, revalidate our
4353 * state, if child is still the first entry, it didn't get freed
4354 * and we can continue doing so.
4355 */
4356 tmp = list_first_entry_or_null(&event->child_list,
4357 struct perf_event, child_list);
4358 if (tmp == child) {
4359 perf_remove_from_context(child, DETACH_GROUP);
4360 list_del(&child->child_list);
4361 free_event(child);
4362 /*
4363 * This matches the refcount bump in inherit_event();
4364 * this can't be the last reference.
4365 */
4366 put_event(event);
4367 }
4368
4369 mutex_unlock(&event->child_mutex);
4370 mutex_unlock(&ctx->mutex);
4371 put_ctx(ctx);
4372 goto again;
4373 }
4374 mutex_unlock(&event->child_mutex);
4375
4376 no_ctx:
4377 put_event(event); /* Must be the 'last' reference */
4378 return 0;
4379 }
4380 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4381
4382 /*
4383 * Called when the last reference to the file is gone.
4384 */
4385 static int perf_release(struct inode *inode, struct file *file)
4386 {
4387 perf_event_release_kernel(file->private_data);
4388 return 0;
4389 }
4390
4391 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4392 {
4393 struct perf_event *child;
4394 u64 total = 0;
4395
4396 *enabled = 0;
4397 *running = 0;
4398
4399 mutex_lock(&event->child_mutex);
4400
4401 (void)perf_event_read(event, false);
4402 total += perf_event_count(event);
4403
4404 *enabled += event->total_time_enabled +
4405 atomic64_read(&event->child_total_time_enabled);
4406 *running += event->total_time_running +
4407 atomic64_read(&event->child_total_time_running);
4408
4409 list_for_each_entry(child, &event->child_list, child_list) {
4410 (void)perf_event_read(child, false);
4411 total += perf_event_count(child);
4412 *enabled += child->total_time_enabled;
4413 *running += child->total_time_running;
4414 }
4415 mutex_unlock(&event->child_mutex);
4416
4417 return total;
4418 }
4419 EXPORT_SYMBOL_GPL(perf_event_read_value);
4420
4421 static int __perf_read_group_add(struct perf_event *leader,
4422 u64 read_format, u64 *values)
4423 {
4424 struct perf_event_context *ctx = leader->ctx;
4425 struct perf_event *sub;
4426 unsigned long flags;
4427 int n = 1; /* skip @nr */
4428 int ret;
4429
4430 ret = perf_event_read(leader, true);
4431 if (ret)
4432 return ret;
4433
4434 /*
4435 * Since we co-schedule groups, {enabled,running} times of siblings
4436 * will be identical to those of the leader, so we only publish one
4437 * set.
4438 */
4439 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4440 values[n++] += leader->total_time_enabled +
4441 atomic64_read(&leader->child_total_time_enabled);
4442 }
4443
4444 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4445 values[n++] += leader->total_time_running +
4446 atomic64_read(&leader->child_total_time_running);
4447 }
4448
4449 /*
4450 * Write {count,id} tuples for every sibling.
4451 */
4452 values[n++] += perf_event_count(leader);
4453 if (read_format & PERF_FORMAT_ID)
4454 values[n++] = primary_event_id(leader);
4455
4456 raw_spin_lock_irqsave(&ctx->lock, flags);
4457
4458 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4459 values[n++] += perf_event_count(sub);
4460 if (read_format & PERF_FORMAT_ID)
4461 values[n++] = primary_event_id(sub);
4462 }
4463
4464 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4465 return 0;
4466 }
4467
4468 static int perf_read_group(struct perf_event *event,
4469 u64 read_format, char __user *buf)
4470 {
4471 struct perf_event *leader = event->group_leader, *child;
4472 struct perf_event_context *ctx = leader->ctx;
4473 int ret;
4474 u64 *values;
4475
4476 lockdep_assert_held(&ctx->mutex);
4477
4478 values = kzalloc(event->read_size, GFP_KERNEL);
4479 if (!values)
4480 return -ENOMEM;
4481
4482 values[0] = 1 + leader->nr_siblings;
4483
4484 /*
4485 * By locking the child_mutex of the leader we effectively
4486 * lock the child list of all siblings.. XXX explain how.
4487 */
4488 mutex_lock(&leader->child_mutex);
4489
4490 ret = __perf_read_group_add(leader, read_format, values);
4491 if (ret)
4492 goto unlock;
4493
4494 list_for_each_entry(child, &leader->child_list, child_list) {
4495 ret = __perf_read_group_add(child, read_format, values);
4496 if (ret)
4497 goto unlock;
4498 }
4499
4500 mutex_unlock(&leader->child_mutex);
4501
4502 ret = event->read_size;
4503 if (copy_to_user(buf, values, event->read_size))
4504 ret = -EFAULT;
4505 goto out;
4506
4507 unlock:
4508 mutex_unlock(&leader->child_mutex);
4509 out:
4510 kfree(values);
4511 return ret;
4512 }
4513
4514 static int perf_read_one(struct perf_event *event,
4515 u64 read_format, char __user *buf)
4516 {
4517 u64 enabled, running;
4518 u64 values[4];
4519 int n = 0;
4520
4521 values[n++] = perf_event_read_value(event, &enabled, &running);
4522 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4523 values[n++] = enabled;
4524 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4525 values[n++] = running;
4526 if (read_format & PERF_FORMAT_ID)
4527 values[n++] = primary_event_id(event);
4528
4529 if (copy_to_user(buf, values, n * sizeof(u64)))
4530 return -EFAULT;
4531
4532 return n * sizeof(u64);
4533 }
4534
4535 static bool is_event_hup(struct perf_event *event)
4536 {
4537 bool no_children;
4538
4539 if (event->state > PERF_EVENT_STATE_EXIT)
4540 return false;
4541
4542 mutex_lock(&event->child_mutex);
4543 no_children = list_empty(&event->child_list);
4544 mutex_unlock(&event->child_mutex);
4545 return no_children;
4546 }
4547
4548 /*
4549 * Read the performance event - simple non blocking version for now
4550 */
4551 static ssize_t
4552 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4553 {
4554 u64 read_format = event->attr.read_format;
4555 int ret;
4556
4557 /*
4558 * Return end-of-file for a read on a event that is in
4559 * error state (i.e. because it was pinned but it couldn't be
4560 * scheduled on to the CPU at some point).
4561 */
4562 if (event->state == PERF_EVENT_STATE_ERROR)
4563 return 0;
4564
4565 if (count < event->read_size)
4566 return -ENOSPC;
4567
4568 WARN_ON_ONCE(event->ctx->parent_ctx);
4569 if (read_format & PERF_FORMAT_GROUP)
4570 ret = perf_read_group(event, read_format, buf);
4571 else
4572 ret = perf_read_one(event, read_format, buf);
4573
4574 return ret;
4575 }
4576
4577 static ssize_t
4578 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4579 {
4580 struct perf_event *event = file->private_data;
4581 struct perf_event_context *ctx;
4582 int ret;
4583
4584 ctx = perf_event_ctx_lock(event);
4585 ret = __perf_read(event, buf, count);
4586 perf_event_ctx_unlock(event, ctx);
4587
4588 return ret;
4589 }
4590
4591 static unsigned int perf_poll(struct file *file, poll_table *wait)
4592 {
4593 struct perf_event *event = file->private_data;
4594 struct ring_buffer *rb;
4595 unsigned int events = POLLHUP;
4596
4597 poll_wait(file, &event->waitq, wait);
4598
4599 if (is_event_hup(event))
4600 return events;
4601
4602 /*
4603 * Pin the event->rb by taking event->mmap_mutex; otherwise
4604 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4605 */
4606 mutex_lock(&event->mmap_mutex);
4607 rb = event->rb;
4608 if (rb)
4609 events = atomic_xchg(&rb->poll, 0);
4610 mutex_unlock(&event->mmap_mutex);
4611 return events;
4612 }
4613
4614 static void _perf_event_reset(struct perf_event *event)
4615 {
4616 (void)perf_event_read(event, false);
4617 local64_set(&event->count, 0);
4618 perf_event_update_userpage(event);
4619 }
4620
4621 /*
4622 * Holding the top-level event's child_mutex means that any
4623 * descendant process that has inherited this event will block
4624 * in perf_event_exit_event() if it goes to exit, thus satisfying the
4625 * task existence requirements of perf_event_enable/disable.
4626 */
4627 static void perf_event_for_each_child(struct perf_event *event,
4628 void (*func)(struct perf_event *))
4629 {
4630 struct perf_event *child;
4631
4632 WARN_ON_ONCE(event->ctx->parent_ctx);
4633
4634 mutex_lock(&event->child_mutex);
4635 func(event);
4636 list_for_each_entry(child, &event->child_list, child_list)
4637 func(child);
4638 mutex_unlock(&event->child_mutex);
4639 }
4640
4641 static void perf_event_for_each(struct perf_event *event,
4642 void (*func)(struct perf_event *))
4643 {
4644 struct perf_event_context *ctx = event->ctx;
4645 struct perf_event *sibling;
4646
4647 lockdep_assert_held(&ctx->mutex);
4648
4649 event = event->group_leader;
4650
4651 perf_event_for_each_child(event, func);
4652 list_for_each_entry(sibling, &event->sibling_list, group_entry)
4653 perf_event_for_each_child(sibling, func);
4654 }
4655
4656 static void __perf_event_period(struct perf_event *event,
4657 struct perf_cpu_context *cpuctx,
4658 struct perf_event_context *ctx,
4659 void *info)
4660 {
4661 u64 value = *((u64 *)info);
4662 bool active;
4663
4664 if (event->attr.freq) {
4665 event->attr.sample_freq = value;
4666 } else {
4667 event->attr.sample_period = value;
4668 event->hw.sample_period = value;
4669 }
4670
4671 active = (event->state == PERF_EVENT_STATE_ACTIVE);
4672 if (active) {
4673 perf_pmu_disable(ctx->pmu);
4674 /*
4675 * We could be throttled; unthrottle now to avoid the tick
4676 * trying to unthrottle while we already re-started the event.
4677 */
4678 if (event->hw.interrupts == MAX_INTERRUPTS) {
4679 event->hw.interrupts = 0;
4680 perf_log_throttle(event, 1);
4681 }
4682 event->pmu->stop(event, PERF_EF_UPDATE);
4683 }
4684
4685 local64_set(&event->hw.period_left, 0);
4686
4687 if (active) {
4688 event->pmu->start(event, PERF_EF_RELOAD);
4689 perf_pmu_enable(ctx->pmu);
4690 }
4691 }
4692
4693 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4694 {
4695 u64 value;
4696
4697 if (!is_sampling_event(event))
4698 return -EINVAL;
4699
4700 if (copy_from_user(&value, arg, sizeof(value)))
4701 return -EFAULT;
4702
4703 if (!value)
4704 return -EINVAL;
4705
4706 if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4707 return -EINVAL;
4708
4709 event_function_call(event, __perf_event_period, &value);
4710
4711 return 0;
4712 }
4713
4714 static const struct file_operations perf_fops;
4715
4716 static inline int perf_fget_light(int fd, struct fd *p)
4717 {
4718 struct fd f = fdget(fd);
4719 if (!f.file)
4720 return -EBADF;
4721
4722 if (f.file->f_op != &perf_fops) {
4723 fdput(f);
4724 return -EBADF;
4725 }
4726 *p = f;
4727 return 0;
4728 }
4729
4730 static int perf_event_set_output(struct perf_event *event,
4731 struct perf_event *output_event);
4732 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4733 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4734
4735 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4736 {
4737 void (*func)(struct perf_event *);
4738 u32 flags = arg;
4739
4740 switch (cmd) {
4741 case PERF_EVENT_IOC_ENABLE:
4742 func = _perf_event_enable;
4743 break;
4744 case PERF_EVENT_IOC_DISABLE:
4745 func = _perf_event_disable;
4746 break;
4747 case PERF_EVENT_IOC_RESET:
4748 func = _perf_event_reset;
4749 break;
4750
4751 case PERF_EVENT_IOC_REFRESH:
4752 return _perf_event_refresh(event, arg);
4753
4754 case PERF_EVENT_IOC_PERIOD:
4755 return perf_event_period(event, (u64 __user *)arg);
4756
4757 case PERF_EVENT_IOC_ID:
4758 {
4759 u64 id = primary_event_id(event);
4760
4761 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4762 return -EFAULT;
4763 return 0;
4764 }
4765
4766 case PERF_EVENT_IOC_SET_OUTPUT:
4767 {
4768 int ret;
4769 if (arg != -1) {
4770 struct perf_event *output_event;
4771 struct fd output;
4772 ret = perf_fget_light(arg, &output);
4773 if (ret)
4774 return ret;
4775 output_event = output.file->private_data;
4776 ret = perf_event_set_output(event, output_event);
4777 fdput(output);
4778 } else {
4779 ret = perf_event_set_output(event, NULL);
4780 }
4781 return ret;
4782 }
4783
4784 case PERF_EVENT_IOC_SET_FILTER:
4785 return perf_event_set_filter(event, (void __user *)arg);
4786
4787 case PERF_EVENT_IOC_SET_BPF:
4788 return perf_event_set_bpf_prog(event, arg);
4789
4790 case PERF_EVENT_IOC_PAUSE_OUTPUT: {
4791 struct ring_buffer *rb;
4792
4793 rcu_read_lock();
4794 rb = rcu_dereference(event->rb);
4795 if (!rb || !rb->nr_pages) {
4796 rcu_read_unlock();
4797 return -EINVAL;
4798 }
4799 rb_toggle_paused(rb, !!arg);
4800 rcu_read_unlock();
4801 return 0;
4802 }
4803 default:
4804 return -ENOTTY;
4805 }
4806
4807 if (flags & PERF_IOC_FLAG_GROUP)
4808 perf_event_for_each(event, func);
4809 else
4810 perf_event_for_each_child(event, func);
4811
4812 return 0;
4813 }
4814
4815 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4816 {
4817 struct perf_event *event = file->private_data;
4818 struct perf_event_context *ctx;
4819 long ret;
4820
4821 ctx = perf_event_ctx_lock(event);
4822 ret = _perf_ioctl(event, cmd, arg);
4823 perf_event_ctx_unlock(event, ctx);
4824
4825 return ret;
4826 }
4827
4828 #ifdef CONFIG_COMPAT
4829 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4830 unsigned long arg)
4831 {
4832 switch (_IOC_NR(cmd)) {
4833 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4834 case _IOC_NR(PERF_EVENT_IOC_ID):
4835 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4836 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4837 cmd &= ~IOCSIZE_MASK;
4838 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4839 }
4840 break;
4841 }
4842 return perf_ioctl(file, cmd, arg);
4843 }
4844 #else
4845 # define perf_compat_ioctl NULL
4846 #endif
4847
4848 int perf_event_task_enable(void)
4849 {
4850 struct perf_event_context *ctx;
4851 struct perf_event *event;
4852
4853 mutex_lock(&current->perf_event_mutex);
4854 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4855 ctx = perf_event_ctx_lock(event);
4856 perf_event_for_each_child(event, _perf_event_enable);
4857 perf_event_ctx_unlock(event, ctx);
4858 }
4859 mutex_unlock(&current->perf_event_mutex);
4860
4861 return 0;
4862 }
4863
4864 int perf_event_task_disable(void)
4865 {
4866 struct perf_event_context *ctx;
4867 struct perf_event *event;
4868
4869 mutex_lock(&current->perf_event_mutex);
4870 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4871 ctx = perf_event_ctx_lock(event);
4872 perf_event_for_each_child(event, _perf_event_disable);
4873 perf_event_ctx_unlock(event, ctx);
4874 }
4875 mutex_unlock(&current->perf_event_mutex);
4876
4877 return 0;
4878 }
4879
4880 static int perf_event_index(struct perf_event *event)
4881 {
4882 if (event->hw.state & PERF_HES_STOPPED)
4883 return 0;
4884
4885 if (event->state != PERF_EVENT_STATE_ACTIVE)
4886 return 0;
4887
4888 return event->pmu->event_idx(event);
4889 }
4890
4891 static void calc_timer_values(struct perf_event *event,
4892 u64 *now,
4893 u64 *enabled,
4894 u64 *running)
4895 {
4896 u64 ctx_time;
4897
4898 *now = perf_clock();
4899 ctx_time = event->shadow_ctx_time + *now;
4900 *enabled = ctx_time - event->tstamp_enabled;
4901 *running = ctx_time - event->tstamp_running;
4902 }
4903
4904 static void perf_event_init_userpage(struct perf_event *event)
4905 {
4906 struct perf_event_mmap_page *userpg;
4907 struct ring_buffer *rb;
4908
4909 rcu_read_lock();
4910 rb = rcu_dereference(event->rb);
4911 if (!rb)
4912 goto unlock;
4913
4914 userpg = rb->user_page;
4915
4916 /* Allow new userspace to detect that bit 0 is deprecated */
4917 userpg->cap_bit0_is_deprecated = 1;
4918 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4919 userpg->data_offset = PAGE_SIZE;
4920 userpg->data_size = perf_data_size(rb);
4921
4922 unlock:
4923 rcu_read_unlock();
4924 }
4925
4926 void __weak arch_perf_update_userpage(
4927 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4928 {
4929 }
4930
4931 /*
4932 * Callers need to ensure there can be no nesting of this function, otherwise
4933 * the seqlock logic goes bad. We can not serialize this because the arch
4934 * code calls this from NMI context.
4935 */
4936 void perf_event_update_userpage(struct perf_event *event)
4937 {
4938 struct perf_event_mmap_page *userpg;
4939 struct ring_buffer *rb;
4940 u64 enabled, running, now;
4941
4942 rcu_read_lock();
4943 rb = rcu_dereference(event->rb);
4944 if (!rb)
4945 goto unlock;
4946
4947 /*
4948 * compute total_time_enabled, total_time_running
4949 * based on snapshot values taken when the event
4950 * was last scheduled in.
4951 *
4952 * we cannot simply called update_context_time()
4953 * because of locking issue as we can be called in
4954 * NMI context
4955 */
4956 calc_timer_values(event, &now, &enabled, &running);
4957
4958 userpg = rb->user_page;
4959 /*
4960 * Disable preemption so as to not let the corresponding user-space
4961 * spin too long if we get preempted.
4962 */
4963 preempt_disable();
4964 ++userpg->lock;
4965 barrier();
4966 userpg->index = perf_event_index(event);
4967 userpg->offset = perf_event_count(event);
4968 if (userpg->index)
4969 userpg->offset -= local64_read(&event->hw.prev_count);
4970
4971 userpg->time_enabled = enabled +
4972 atomic64_read(&event->child_total_time_enabled);
4973
4974 userpg->time_running = running +
4975 atomic64_read(&event->child_total_time_running);
4976
4977 arch_perf_update_userpage(event, userpg, now);
4978
4979 barrier();
4980 ++userpg->lock;
4981 preempt_enable();
4982 unlock:
4983 rcu_read_unlock();
4984 }
4985
4986 static int perf_mmap_fault(struct vm_fault *vmf)
4987 {
4988 struct perf_event *event = vmf->vma->vm_file->private_data;
4989 struct ring_buffer *rb;
4990 int ret = VM_FAULT_SIGBUS;
4991
4992 if (vmf->flags & FAULT_FLAG_MKWRITE) {
4993 if (vmf->pgoff == 0)
4994 ret = 0;
4995 return ret;
4996 }
4997
4998 rcu_read_lock();
4999 rb = rcu_dereference(event->rb);
5000 if (!rb)
5001 goto unlock;
5002
5003 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5004 goto unlock;
5005
5006 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
5007 if (!vmf->page)
5008 goto unlock;
5009
5010 get_page(vmf->page);
5011 vmf->page->mapping = vmf->vma->vm_file->f_mapping;
5012 vmf->page->index = vmf->pgoff;
5013
5014 ret = 0;
5015 unlock:
5016 rcu_read_unlock();
5017
5018 return ret;
5019 }
5020
5021 static void ring_buffer_attach(struct perf_event *event,
5022 struct ring_buffer *rb)
5023 {
5024 struct ring_buffer *old_rb = NULL;
5025 unsigned long flags;
5026
5027 if (event->rb) {
5028 /*
5029 * Should be impossible, we set this when removing
5030 * event->rb_entry and wait/clear when adding event->rb_entry.
5031 */
5032 WARN_ON_ONCE(event->rcu_pending);
5033
5034 old_rb = event->rb;
5035 spin_lock_irqsave(&old_rb->event_lock, flags);
5036 list_del_rcu(&event->rb_entry);
5037 spin_unlock_irqrestore(&old_rb->event_lock, flags);
5038
5039 event->rcu_batches = get_state_synchronize_rcu();
5040 event->rcu_pending = 1;
5041 }
5042
5043 if (rb) {
5044 if (event->rcu_pending) {
5045 cond_synchronize_rcu(event->rcu_batches);
5046 event->rcu_pending = 0;
5047 }
5048
5049 spin_lock_irqsave(&rb->event_lock, flags);
5050 list_add_rcu(&event->rb_entry, &rb->event_list);
5051 spin_unlock_irqrestore(&rb->event_lock, flags);
5052 }
5053
5054 /*
5055 * Avoid racing with perf_mmap_close(AUX): stop the event
5056 * before swizzling the event::rb pointer; if it's getting
5057 * unmapped, its aux_mmap_count will be 0 and it won't
5058 * restart. See the comment in __perf_pmu_output_stop().
5059 *
5060 * Data will inevitably be lost when set_output is done in
5061 * mid-air, but then again, whoever does it like this is
5062 * not in for the data anyway.
5063 */
5064 if (has_aux(event))
5065 perf_event_stop(event, 0);
5066
5067 rcu_assign_pointer(event->rb, rb);
5068
5069 if (old_rb) {
5070 ring_buffer_put(old_rb);
5071 /*
5072 * Since we detached before setting the new rb, so that we
5073 * could attach the new rb, we could have missed a wakeup.
5074 * Provide it now.
5075 */
5076 wake_up_all(&event->waitq);
5077 }
5078 }
5079
5080 static void ring_buffer_wakeup(struct perf_event *event)
5081 {
5082 struct ring_buffer *rb;
5083
5084 rcu_read_lock();
5085 rb = rcu_dereference(event->rb);
5086 if (rb) {
5087 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5088 wake_up_all(&event->waitq);
5089 }
5090 rcu_read_unlock();
5091 }
5092
5093 struct ring_buffer *ring_buffer_get(struct perf_event *event)
5094 {
5095 struct ring_buffer *rb;
5096
5097 rcu_read_lock();
5098 rb = rcu_dereference(event->rb);
5099 if (rb) {
5100 if (!atomic_inc_not_zero(&rb->refcount))
5101 rb = NULL;
5102 }
5103 rcu_read_unlock();
5104
5105 return rb;
5106 }
5107
5108 void ring_buffer_put(struct ring_buffer *rb)
5109 {
5110 if (!atomic_dec_and_test(&rb->refcount))
5111 return;
5112
5113 WARN_ON_ONCE(!list_empty(&rb->event_list));
5114
5115 call_rcu(&rb->rcu_head, rb_free_rcu);
5116 }
5117
5118 static void perf_mmap_open(struct vm_area_struct *vma)
5119 {
5120 struct perf_event *event = vma->vm_file->private_data;
5121
5122 atomic_inc(&event->mmap_count);
5123 atomic_inc(&event->rb->mmap_count);
5124
5125 if (vma->vm_pgoff)
5126 atomic_inc(&event->rb->aux_mmap_count);
5127
5128 if (event->pmu->event_mapped)
5129 event->pmu->event_mapped(event, vma->vm_mm);
5130 }
5131
5132 static void perf_pmu_output_stop(struct perf_event *event);
5133
5134 /*
5135 * A buffer can be mmap()ed multiple times; either directly through the same
5136 * event, or through other events by use of perf_event_set_output().
5137 *
5138 * In order to undo the VM accounting done by perf_mmap() we need to destroy
5139 * the buffer here, where we still have a VM context. This means we need
5140 * to detach all events redirecting to us.
5141 */
5142 static void perf_mmap_close(struct vm_area_struct *vma)
5143 {
5144 struct perf_event *event = vma->vm_file->private_data;
5145
5146 struct ring_buffer *rb = ring_buffer_get(event);
5147 struct user_struct *mmap_user = rb->mmap_user;
5148 int mmap_locked = rb->mmap_locked;
5149 unsigned long size = perf_data_size(rb);
5150
5151 if (event->pmu->event_unmapped)
5152 event->pmu->event_unmapped(event, vma->vm_mm);
5153
5154 /*
5155 * rb->aux_mmap_count will always drop before rb->mmap_count and
5156 * event->mmap_count, so it is ok to use event->mmap_mutex to
5157 * serialize with perf_mmap here.
5158 */
5159 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5160 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
5161 /*
5162 * Stop all AUX events that are writing to this buffer,
5163 * so that we can free its AUX pages and corresponding PMU
5164 * data. Note that after rb::aux_mmap_count dropped to zero,
5165 * they won't start any more (see perf_aux_output_begin()).
5166 */
5167 perf_pmu_output_stop(event);
5168
5169 /* now it's safe to free the pages */
5170 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
5171 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
5172
5173 /* this has to be the last one */
5174 rb_free_aux(rb);
5175 WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
5176
5177 mutex_unlock(&event->mmap_mutex);
5178 }
5179
5180 atomic_dec(&rb->mmap_count);
5181
5182 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5183 goto out_put;
5184
5185 ring_buffer_attach(event, NULL);
5186 mutex_unlock(&event->mmap_mutex);
5187
5188 /* If there's still other mmap()s of this buffer, we're done. */
5189 if (atomic_read(&rb->mmap_count))
5190 goto out_put;
5191
5192 /*
5193 * No other mmap()s, detach from all other events that might redirect
5194 * into the now unreachable buffer. Somewhat complicated by the
5195 * fact that rb::event_lock otherwise nests inside mmap_mutex.
5196 */
5197 again:
5198 rcu_read_lock();
5199 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5200 if (!atomic_long_inc_not_zero(&event->refcount)) {
5201 /*
5202 * This event is en-route to free_event() which will
5203 * detach it and remove it from the list.
5204 */
5205 continue;
5206 }
5207 rcu_read_unlock();
5208
5209 mutex_lock(&event->mmap_mutex);
5210 /*
5211 * Check we didn't race with perf_event_set_output() which can
5212 * swizzle the rb from under us while we were waiting to
5213 * acquire mmap_mutex.
5214 *
5215 * If we find a different rb; ignore this event, a next
5216 * iteration will no longer find it on the list. We have to
5217 * still restart the iteration to make sure we're not now
5218 * iterating the wrong list.
5219 */
5220 if (event->rb == rb)
5221 ring_buffer_attach(event, NULL);
5222
5223 mutex_unlock(&event->mmap_mutex);
5224 put_event(event);
5225
5226 /*
5227 * Restart the iteration; either we're on the wrong list or
5228 * destroyed its integrity by doing a deletion.
5229 */
5230 goto again;
5231 }
5232 rcu_read_unlock();
5233
5234 /*
5235 * It could be there's still a few 0-ref events on the list; they'll
5236 * get cleaned up by free_event() -- they'll also still have their
5237 * ref on the rb and will free it whenever they are done with it.
5238 *
5239 * Aside from that, this buffer is 'fully' detached and unmapped,
5240 * undo the VM accounting.
5241 */
5242
5243 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
5244 vma->vm_mm->pinned_vm -= mmap_locked;
5245 free_uid(mmap_user);
5246
5247 out_put:
5248 ring_buffer_put(rb); /* could be last */
5249 }
5250
5251 static const struct vm_operations_struct perf_mmap_vmops = {
5252 .open = perf_mmap_open,
5253 .close = perf_mmap_close, /* non mergable */
5254 .fault = perf_mmap_fault,
5255 .page_mkwrite = perf_mmap_fault,
5256 };
5257
5258 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5259 {
5260 struct perf_event *event = file->private_data;
5261 unsigned long user_locked, user_lock_limit;
5262 struct user_struct *user = current_user();
5263 unsigned long locked, lock_limit;
5264 struct ring_buffer *rb = NULL;
5265 unsigned long vma_size;
5266 unsigned long nr_pages;
5267 long user_extra = 0, extra = 0;
5268 int ret = 0, flags = 0;
5269
5270 /*
5271 * Don't allow mmap() of inherited per-task counters. This would
5272 * create a performance issue due to all children writing to the
5273 * same rb.
5274 */
5275 if (event->cpu == -1 && event->attr.inherit)
5276 return -EINVAL;
5277
5278 if (!(vma->vm_flags & VM_SHARED))
5279 return -EINVAL;
5280
5281 vma_size = vma->vm_end - vma->vm_start;
5282
5283 if (vma->vm_pgoff == 0) {
5284 nr_pages = (vma_size / PAGE_SIZE) - 1;
5285 } else {
5286 /*
5287 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5288 * mapped, all subsequent mappings should have the same size
5289 * and offset. Must be above the normal perf buffer.
5290 */
5291 u64 aux_offset, aux_size;
5292
5293 if (!event->rb)
5294 return -EINVAL;
5295
5296 nr_pages = vma_size / PAGE_SIZE;
5297
5298 mutex_lock(&event->mmap_mutex);
5299 ret = -EINVAL;
5300
5301 rb = event->rb;
5302 if (!rb)
5303 goto aux_unlock;
5304
5305 aux_offset = READ_ONCE(rb->user_page->aux_offset);
5306 aux_size = READ_ONCE(rb->user_page->aux_size);
5307
5308 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5309 goto aux_unlock;
5310
5311 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5312 goto aux_unlock;
5313
5314 /* already mapped with a different offset */
5315 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5316 goto aux_unlock;
5317
5318 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5319 goto aux_unlock;
5320
5321 /* already mapped with a different size */
5322 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5323 goto aux_unlock;
5324
5325 if (!is_power_of_2(nr_pages))
5326 goto aux_unlock;
5327
5328 if (!atomic_inc_not_zero(&rb->mmap_count))
5329 goto aux_unlock;
5330
5331 if (rb_has_aux(rb)) {
5332 atomic_inc(&rb->aux_mmap_count);
5333 ret = 0;
5334 goto unlock;
5335 }
5336
5337 atomic_set(&rb->aux_mmap_count, 1);
5338 user_extra = nr_pages;
5339
5340 goto accounting;
5341 }
5342
5343 /*
5344 * If we have rb pages ensure they're a power-of-two number, so we
5345 * can do bitmasks instead of modulo.
5346 */
5347 if (nr_pages != 0 && !is_power_of_2(nr_pages))
5348 return -EINVAL;
5349
5350 if (vma_size != PAGE_SIZE * (1 + nr_pages))
5351 return -EINVAL;
5352
5353 WARN_ON_ONCE(event->ctx->parent_ctx);
5354 again:
5355 mutex_lock(&event->mmap_mutex);
5356 if (event->rb) {
5357 if (event->rb->nr_pages != nr_pages) {
5358 ret = -EINVAL;
5359 goto unlock;
5360 }
5361
5362 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5363 /*
5364 * Raced against perf_mmap_close() through
5365 * perf_event_set_output(). Try again, hope for better
5366 * luck.
5367 */
5368 mutex_unlock(&event->mmap_mutex);
5369 goto again;
5370 }
5371
5372 goto unlock;
5373 }
5374
5375 user_extra = nr_pages + 1;
5376
5377 accounting:
5378 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
5379
5380 /*
5381 * Increase the limit linearly with more CPUs:
5382 */
5383 user_lock_limit *= num_online_cpus();
5384
5385 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
5386
5387 if (user_locked > user_lock_limit)
5388 extra = user_locked - user_lock_limit;
5389
5390 lock_limit = rlimit(RLIMIT_MEMLOCK);
5391 lock_limit >>= PAGE_SHIFT;
5392 locked = vma->vm_mm->pinned_vm + extra;
5393
5394 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5395 !capable(CAP_IPC_LOCK)) {
5396 ret = -EPERM;
5397 goto unlock;
5398 }
5399
5400 WARN_ON(!rb && event->rb);
5401
5402 if (vma->vm_flags & VM_WRITE)
5403 flags |= RING_BUFFER_WRITABLE;
5404
5405 if (!rb) {
5406 rb = rb_alloc(nr_pages,
5407 event->attr.watermark ? event->attr.wakeup_watermark : 0,
5408 event->cpu, flags);
5409
5410 if (!rb) {
5411 ret = -ENOMEM;
5412 goto unlock;
5413 }
5414
5415 atomic_set(&rb->mmap_count, 1);
5416 rb->mmap_user = get_current_user();
5417 rb->mmap_locked = extra;
5418
5419 ring_buffer_attach(event, rb);
5420
5421 perf_event_init_userpage(event);
5422 perf_event_update_userpage(event);
5423 } else {
5424 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5425 event->attr.aux_watermark, flags);
5426 if (!ret)
5427 rb->aux_mmap_locked = extra;
5428 }
5429
5430 unlock:
5431 if (!ret) {
5432 atomic_long_add(user_extra, &user->locked_vm);
5433 vma->vm_mm->pinned_vm += extra;
5434
5435 atomic_inc(&event->mmap_count);
5436 } else if (rb) {
5437 atomic_dec(&rb->mmap_count);
5438 }
5439 aux_unlock:
5440 mutex_unlock(&event->mmap_mutex);
5441
5442 /*
5443 * Since pinned accounting is per vm we cannot allow fork() to copy our
5444 * vma.
5445 */
5446 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5447 vma->vm_ops = &perf_mmap_vmops;
5448
5449 if (event->pmu->event_mapped)
5450 event->pmu->event_mapped(event, vma->vm_mm);
5451
5452 return ret;
5453 }
5454
5455 static int perf_fasync(int fd, struct file *filp, int on)
5456 {
5457 struct inode *inode = file_inode(filp);
5458 struct perf_event *event = filp->private_data;
5459 int retval;
5460
5461 inode_lock(inode);
5462 retval = fasync_helper(fd, filp, on, &event->fasync);
5463 inode_unlock(inode);
5464
5465 if (retval < 0)
5466 return retval;
5467
5468 return 0;
5469 }
5470
5471 static const struct file_operations perf_fops = {
5472 .llseek = no_llseek,
5473 .release = perf_release,
5474 .read = perf_read,
5475 .poll = perf_poll,
5476 .unlocked_ioctl = perf_ioctl,
5477 .compat_ioctl = perf_compat_ioctl,
5478 .mmap = perf_mmap,
5479 .fasync = perf_fasync,
5480 };
5481
5482 /*
5483 * Perf event wakeup
5484 *
5485 * If there's data, ensure we set the poll() state and publish everything
5486 * to user-space before waking everybody up.
5487 */
5488
5489 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5490 {
5491 /* only the parent has fasync state */
5492 if (event->parent)
5493 event = event->parent;
5494 return &event->fasync;
5495 }
5496
5497 void perf_event_wakeup(struct perf_event *event)
5498 {
5499 ring_buffer_wakeup(event);
5500
5501 if (event->pending_kill) {
5502 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5503 event->pending_kill = 0;
5504 }
5505 }
5506
5507 static void perf_pending_event(struct irq_work *entry)
5508 {
5509 struct perf_event *event = container_of(entry,
5510 struct perf_event, pending);
5511 int rctx;
5512
5513 rctx = perf_swevent_get_recursion_context();
5514 /*
5515 * If we 'fail' here, that's OK, it means recursion is already disabled
5516 * and we won't recurse 'further'.
5517 */
5518
5519 if (event->pending_disable) {
5520 event->pending_disable = 0;
5521 perf_event_disable_local(event);
5522 }
5523
5524 if (event->pending_wakeup) {
5525 event->pending_wakeup = 0;
5526 perf_event_wakeup(event);
5527 }
5528
5529 if (rctx >= 0)
5530 perf_swevent_put_recursion_context(rctx);
5531 }
5532
5533 /*
5534 * We assume there is only KVM supporting the callbacks.
5535 * Later on, we might change it to a list if there is
5536 * another virtualization implementation supporting the callbacks.
5537 */
5538 struct perf_guest_info_callbacks *perf_guest_cbs;
5539
5540 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5541 {
5542 perf_guest_cbs = cbs;
5543 return 0;
5544 }
5545 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5546
5547 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5548 {
5549 perf_guest_cbs = NULL;
5550 return 0;
5551 }
5552 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5553
5554 static void
5555 perf_output_sample_regs(struct perf_output_handle *handle,
5556 struct pt_regs *regs, u64 mask)
5557 {
5558 int bit;
5559 DECLARE_BITMAP(_mask, 64);
5560
5561 bitmap_from_u64(_mask, mask);
5562 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
5563 u64 val;
5564
5565 val = perf_reg_value(regs, bit);
5566 perf_output_put(handle, val);
5567 }
5568 }
5569
5570 static void perf_sample_regs_user(struct perf_regs *regs_user,
5571 struct pt_regs *regs,
5572 struct pt_regs *regs_user_copy)
5573 {
5574 if (user_mode(regs)) {
5575 regs_user->abi = perf_reg_abi(current);
5576 regs_user->regs = regs;
5577 } else if (current->mm) {
5578 perf_get_regs_user(regs_user, regs, regs_user_copy);
5579 } else {
5580 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5581 regs_user->regs = NULL;
5582 }
5583 }
5584
5585 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5586 struct pt_regs *regs)
5587 {
5588 regs_intr->regs = regs;
5589 regs_intr->abi = perf_reg_abi(current);
5590 }
5591
5592
5593 /*
5594 * Get remaining task size from user stack pointer.
5595 *
5596 * It'd be better to take stack vma map and limit this more
5597 * precisly, but there's no way to get it safely under interrupt,
5598 * so using TASK_SIZE as limit.
5599 */
5600 static u64 perf_ustack_task_size(struct pt_regs *regs)
5601 {
5602 unsigned long addr = perf_user_stack_pointer(regs);
5603
5604 if (!addr || addr >= TASK_SIZE)
5605 return 0;
5606
5607 return TASK_SIZE - addr;
5608 }
5609
5610 static u16
5611 perf_sample_ustack_size(u16 stack_size, u16 header_size,
5612 struct pt_regs *regs)
5613 {
5614 u64 task_size;
5615
5616 /* No regs, no stack pointer, no dump. */
5617 if (!regs)
5618 return 0;
5619
5620 /*
5621 * Check if we fit in with the requested stack size into the:
5622 * - TASK_SIZE
5623 * If we don't, we limit the size to the TASK_SIZE.
5624 *
5625 * - remaining sample size
5626 * If we don't, we customize the stack size to
5627 * fit in to the remaining sample size.
5628 */
5629
5630 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5631 stack_size = min(stack_size, (u16) task_size);
5632
5633 /* Current header size plus static size and dynamic size. */
5634 header_size += 2 * sizeof(u64);
5635
5636 /* Do we fit in with the current stack dump size? */
5637 if ((u16) (header_size + stack_size) < header_size) {
5638 /*
5639 * If we overflow the maximum size for the sample,
5640 * we customize the stack dump size to fit in.
5641 */
5642 stack_size = USHRT_MAX - header_size - sizeof(u64);
5643 stack_size = round_up(stack_size, sizeof(u64));
5644 }
5645
5646 return stack_size;
5647 }
5648
5649 static void
5650 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5651 struct pt_regs *regs)
5652 {
5653 /* Case of a kernel thread, nothing to dump */
5654 if (!regs) {
5655 u64 size = 0;
5656 perf_output_put(handle, size);
5657 } else {
5658 unsigned long sp;
5659 unsigned int rem;
5660 u64 dyn_size;
5661
5662 /*
5663 * We dump:
5664 * static size
5665 * - the size requested by user or the best one we can fit
5666 * in to the sample max size
5667 * data
5668 * - user stack dump data
5669 * dynamic size
5670 * - the actual dumped size
5671 */
5672
5673 /* Static size. */
5674 perf_output_put(handle, dump_size);
5675
5676 /* Data. */
5677 sp = perf_user_stack_pointer(regs);
5678 rem = __output_copy_user(handle, (void *) sp, dump_size);
5679 dyn_size = dump_size - rem;
5680
5681 perf_output_skip(handle, rem);
5682
5683 /* Dynamic size. */
5684 perf_output_put(handle, dyn_size);
5685 }
5686 }
5687
5688 static void __perf_event_header__init_id(struct perf_event_header *header,
5689 struct perf_sample_data *data,
5690 struct perf_event *event)
5691 {
5692 u64 sample_type = event->attr.sample_type;
5693
5694 data->type = sample_type;
5695 header->size += event->id_header_size;
5696
5697 if (sample_type & PERF_SAMPLE_TID) {
5698 /* namespace issues */
5699 data->tid_entry.pid = perf_event_pid(event, current);
5700 data->tid_entry.tid = perf_event_tid(event, current);
5701 }
5702
5703 if (sample_type & PERF_SAMPLE_TIME)
5704 data->time = perf_event_clock(event);
5705
5706 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5707 data->id = primary_event_id(event);
5708
5709 if (sample_type & PERF_SAMPLE_STREAM_ID)
5710 data->stream_id = event->id;
5711
5712 if (sample_type & PERF_SAMPLE_CPU) {
5713 data->cpu_entry.cpu = raw_smp_processor_id();
5714 data->cpu_entry.reserved = 0;
5715 }
5716 }
5717
5718 void perf_event_header__init_id(struct perf_event_header *header,
5719 struct perf_sample_data *data,
5720 struct perf_event *event)
5721 {
5722 if (event->attr.sample_id_all)
5723 __perf_event_header__init_id(header, data, event);
5724 }
5725
5726 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5727 struct perf_sample_data *data)
5728 {
5729 u64 sample_type = data->type;
5730
5731 if (sample_type & PERF_SAMPLE_TID)
5732 perf_output_put(handle, data->tid_entry);
5733
5734 if (sample_type & PERF_SAMPLE_TIME)
5735 perf_output_put(handle, data->time);
5736
5737 if (sample_type & PERF_SAMPLE_ID)
5738 perf_output_put(handle, data->id);
5739
5740 if (sample_type & PERF_SAMPLE_STREAM_ID)
5741 perf_output_put(handle, data->stream_id);
5742
5743 if (sample_type & PERF_SAMPLE_CPU)
5744 perf_output_put(handle, data->cpu_entry);
5745
5746 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5747 perf_output_put(handle, data->id);
5748 }
5749
5750 void perf_event__output_id_sample(struct perf_event *event,
5751 struct perf_output_handle *handle,
5752 struct perf_sample_data *sample)
5753 {
5754 if (event->attr.sample_id_all)
5755 __perf_event__output_id_sample(handle, sample);
5756 }
5757
5758 static void perf_output_read_one(struct perf_output_handle *handle,
5759 struct perf_event *event,
5760 u64 enabled, u64 running)
5761 {
5762 u64 read_format = event->attr.read_format;
5763 u64 values[4];
5764 int n = 0;
5765
5766 values[n++] = perf_event_count(event);
5767 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5768 values[n++] = enabled +
5769 atomic64_read(&event->child_total_time_enabled);
5770 }
5771 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5772 values[n++] = running +
5773 atomic64_read(&event->child_total_time_running);
5774 }
5775 if (read_format & PERF_FORMAT_ID)
5776 values[n++] = primary_event_id(event);
5777
5778 __output_copy(handle, values, n * sizeof(u64));
5779 }
5780
5781 static void perf_output_read_group(struct perf_output_handle *handle,
5782 struct perf_event *event,
5783 u64 enabled, u64 running)
5784 {
5785 struct perf_event *leader = event->group_leader, *sub;
5786 u64 read_format = event->attr.read_format;
5787 u64 values[5];
5788 int n = 0;
5789
5790 values[n++] = 1 + leader->nr_siblings;
5791
5792 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5793 values[n++] = enabled;
5794
5795 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5796 values[n++] = running;
5797
5798 if (leader != event)
5799 leader->pmu->read(leader);
5800
5801 values[n++] = perf_event_count(leader);
5802 if (read_format & PERF_FORMAT_ID)
5803 values[n++] = primary_event_id(leader);
5804
5805 __output_copy(handle, values, n * sizeof(u64));
5806
5807 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5808 n = 0;
5809
5810 if ((sub != event) &&
5811 (sub->state == PERF_EVENT_STATE_ACTIVE))
5812 sub->pmu->read(sub);
5813
5814 values[n++] = perf_event_count(sub);
5815 if (read_format & PERF_FORMAT_ID)
5816 values[n++] = primary_event_id(sub);
5817
5818 __output_copy(handle, values, n * sizeof(u64));
5819 }
5820 }
5821
5822 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5823 PERF_FORMAT_TOTAL_TIME_RUNNING)
5824
5825 /*
5826 * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
5827 *
5828 * The problem is that its both hard and excessively expensive to iterate the
5829 * child list, not to mention that its impossible to IPI the children running
5830 * on another CPU, from interrupt/NMI context.
5831 */
5832 static void perf_output_read(struct perf_output_handle *handle,
5833 struct perf_event *event)
5834 {
5835 u64 enabled = 0, running = 0, now;
5836 u64 read_format = event->attr.read_format;
5837
5838 /*
5839 * compute total_time_enabled, total_time_running
5840 * based on snapshot values taken when the event
5841 * was last scheduled in.
5842 *
5843 * we cannot simply called update_context_time()
5844 * because of locking issue as we are called in
5845 * NMI context
5846 */
5847 if (read_format & PERF_FORMAT_TOTAL_TIMES)
5848 calc_timer_values(event, &now, &enabled, &running);
5849
5850 if (event->attr.read_format & PERF_FORMAT_GROUP)
5851 perf_output_read_group(handle, event, enabled, running);
5852 else
5853 perf_output_read_one(handle, event, enabled, running);
5854 }
5855
5856 void perf_output_sample(struct perf_output_handle *handle,
5857 struct perf_event_header *header,
5858 struct perf_sample_data *data,
5859 struct perf_event *event)
5860 {
5861 u64 sample_type = data->type;
5862
5863 perf_output_put(handle, *header);
5864
5865 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5866 perf_output_put(handle, data->id);
5867
5868 if (sample_type & PERF_SAMPLE_IP)
5869 perf_output_put(handle, data->ip);
5870
5871 if (sample_type & PERF_SAMPLE_TID)
5872 perf_output_put(handle, data->tid_entry);
5873
5874 if (sample_type & PERF_SAMPLE_TIME)
5875 perf_output_put(handle, data->time);
5876
5877 if (sample_type & PERF_SAMPLE_ADDR)
5878 perf_output_put(handle, data->addr);
5879
5880 if (sample_type & PERF_SAMPLE_ID)
5881 perf_output_put(handle, data->id);
5882
5883 if (sample_type & PERF_SAMPLE_STREAM_ID)
5884 perf_output_put(handle, data->stream_id);
5885
5886 if (sample_type & PERF_SAMPLE_CPU)
5887 perf_output_put(handle, data->cpu_entry);
5888
5889 if (sample_type & PERF_SAMPLE_PERIOD)
5890 perf_output_put(handle, data->period);
5891
5892 if (sample_type & PERF_SAMPLE_READ)
5893 perf_output_read(handle, event);
5894
5895 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5896 if (data->callchain) {
5897 int size = 1;
5898
5899 if (data->callchain)
5900 size += data->callchain->nr;
5901
5902 size *= sizeof(u64);
5903
5904 __output_copy(handle, data->callchain, size);
5905 } else {
5906 u64 nr = 0;
5907 perf_output_put(handle, nr);
5908 }
5909 }
5910
5911 if (sample_type & PERF_SAMPLE_RAW) {
5912 struct perf_raw_record *raw = data->raw;
5913
5914 if (raw) {
5915 struct perf_raw_frag *frag = &raw->frag;
5916
5917 perf_output_put(handle, raw->size);
5918 do {
5919 if (frag->copy) {
5920 __output_custom(handle, frag->copy,
5921 frag->data, frag->size);
5922 } else {
5923 __output_copy(handle, frag->data,
5924 frag->size);
5925 }
5926 if (perf_raw_frag_last(frag))
5927 break;
5928 frag = frag->next;
5929 } while (1);
5930 if (frag->pad)
5931 __output_skip(handle, NULL, frag->pad);
5932 } else {
5933 struct {
5934 u32 size;
5935 u32 data;
5936 } raw = {
5937 .size = sizeof(u32),
5938 .data = 0,
5939 };
5940 perf_output_put(handle, raw);
5941 }
5942 }
5943
5944 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5945 if (data->br_stack) {
5946 size_t size;
5947
5948 size = data->br_stack->nr
5949 * sizeof(struct perf_branch_entry);
5950
5951 perf_output_put(handle, data->br_stack->nr);
5952 perf_output_copy(handle, data->br_stack->entries, size);
5953 } else {
5954 /*
5955 * we always store at least the value of nr
5956 */
5957 u64 nr = 0;
5958 perf_output_put(handle, nr);
5959 }
5960 }
5961
5962 if (sample_type & PERF_SAMPLE_REGS_USER) {
5963 u64 abi = data->regs_user.abi;
5964
5965 /*
5966 * If there are no regs to dump, notice it through
5967 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5968 */
5969 perf_output_put(handle, abi);
5970
5971 if (abi) {
5972 u64 mask = event->attr.sample_regs_user;
5973 perf_output_sample_regs(handle,
5974 data->regs_user.regs,
5975 mask);
5976 }
5977 }
5978
5979 if (sample_type & PERF_SAMPLE_STACK_USER) {
5980 perf_output_sample_ustack(handle,
5981 data->stack_user_size,
5982 data->regs_user.regs);
5983 }
5984
5985 if (sample_type & PERF_SAMPLE_WEIGHT)
5986 perf_output_put(handle, data->weight);
5987
5988 if (sample_type & PERF_SAMPLE_DATA_SRC)
5989 perf_output_put(handle, data->data_src.val);
5990
5991 if (sample_type & PERF_SAMPLE_TRANSACTION)
5992 perf_output_put(handle, data->txn);
5993
5994 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5995 u64 abi = data->regs_intr.abi;
5996 /*
5997 * If there are no regs to dump, notice it through
5998 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5999 */
6000 perf_output_put(handle, abi);
6001
6002 if (abi) {
6003 u64 mask = event->attr.sample_regs_intr;
6004
6005 perf_output_sample_regs(handle,
6006 data->regs_intr.regs,
6007 mask);
6008 }
6009 }
6010
6011 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6012 perf_output_put(handle, data->phys_addr);
6013
6014 if (!event->attr.watermark) {
6015 int wakeup_events = event->attr.wakeup_events;
6016
6017 if (wakeup_events) {
6018 struct ring_buffer *rb = handle->rb;
6019 int events = local_inc_return(&rb->events);
6020
6021 if (events >= wakeup_events) {
6022 local_sub(wakeup_events, &rb->events);
6023 local_inc(&rb->wakeup);
6024 }
6025 }
6026 }
6027 }
6028
6029 static u64 perf_virt_to_phys(u64 virt)
6030 {
6031 u64 phys_addr = 0;
6032 struct page *p = NULL;
6033
6034 if (!virt)
6035 return 0;
6036
6037 if (virt >= TASK_SIZE) {
6038 /* If it's vmalloc()d memory, leave phys_addr as 0 */
6039 if (virt_addr_valid((void *)(uintptr_t)virt) &&
6040 !(virt >= VMALLOC_START && virt < VMALLOC_END))
6041 phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
6042 } else {
6043 /*
6044 * Walking the pages tables for user address.
6045 * Interrupts are disabled, so it prevents any tear down
6046 * of the page tables.
6047 * Try IRQ-safe __get_user_pages_fast first.
6048 * If failed, leave phys_addr as 0.
6049 */
6050 if ((current->mm != NULL) &&
6051 (__get_user_pages_fast(virt, 1, 0, &p) == 1))
6052 phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
6053
6054 if (p)
6055 put_page(p);
6056 }
6057
6058 return phys_addr;
6059 }
6060
6061 void perf_prepare_sample(struct perf_event_header *header,
6062 struct perf_sample_data *data,
6063 struct perf_event *event,
6064 struct pt_regs *regs)
6065 {
6066 u64 sample_type = event->attr.sample_type;
6067
6068 header->type = PERF_RECORD_SAMPLE;
6069 header->size = sizeof(*header) + event->header_size;
6070
6071 header->misc = 0;
6072 header->misc |= perf_misc_flags(regs);
6073
6074 __perf_event_header__init_id(header, data, event);
6075
6076 if (sample_type & PERF_SAMPLE_IP)
6077 data->ip = perf_instruction_pointer(regs);
6078
6079 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6080 int size = 1;
6081
6082 data->callchain = perf_callchain(event, regs);
6083
6084 if (data->callchain)
6085 size += data->callchain->nr;
6086
6087 header->size += size * sizeof(u64);
6088 }
6089
6090 if (sample_type & PERF_SAMPLE_RAW) {
6091 struct perf_raw_record *raw = data->raw;
6092 int size;
6093
6094 if (raw) {
6095 struct perf_raw_frag *frag = &raw->frag;
6096 u32 sum = 0;
6097
6098 do {
6099 sum += frag->size;
6100 if (perf_raw_frag_last(frag))
6101 break;
6102 frag = frag->next;
6103 } while (1);
6104
6105 size = round_up(sum + sizeof(u32), sizeof(u64));
6106 raw->size = size - sizeof(u32);
6107 frag->pad = raw->size - sum;
6108 } else {
6109 size = sizeof(u64);
6110 }
6111
6112 header->size += size;
6113 }
6114
6115 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6116 int size = sizeof(u64); /* nr */
6117 if (data->br_stack) {
6118 size += data->br_stack->nr
6119 * sizeof(struct perf_branch_entry);
6120 }
6121 header->size += size;
6122 }
6123
6124 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
6125 perf_sample_regs_user(&data->regs_user, regs,
6126 &data->regs_user_copy);
6127
6128 if (sample_type & PERF_SAMPLE_REGS_USER) {
6129 /* regs dump ABI info */
6130 int size = sizeof(u64);
6131
6132 if (data->regs_user.regs) {
6133 u64 mask = event->attr.sample_regs_user;
6134 size += hweight64(mask) * sizeof(u64);
6135 }
6136
6137 header->size += size;
6138 }
6139
6140 if (sample_type & PERF_SAMPLE_STACK_USER) {
6141 /*
6142 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
6143 * processed as the last one or have additional check added
6144 * in case new sample type is added, because we could eat
6145 * up the rest of the sample size.
6146 */
6147 u16 stack_size = event->attr.sample_stack_user;
6148 u16 size = sizeof(u64);
6149
6150 stack_size = perf_sample_ustack_size(stack_size, header->size,
6151 data->regs_user.regs);
6152
6153 /*
6154 * If there is something to dump, add space for the dump
6155 * itself and for the field that tells the dynamic size,
6156 * which is how many have been actually dumped.
6157 */
6158 if (stack_size)
6159 size += sizeof(u64) + stack_size;
6160
6161 data->stack_user_size = stack_size;
6162 header->size += size;
6163 }
6164
6165 if (sample_type & PERF_SAMPLE_REGS_INTR) {
6166 /* regs dump ABI info */
6167 int size = sizeof(u64);
6168
6169 perf_sample_regs_intr(&data->regs_intr, regs);
6170
6171 if (data->regs_intr.regs) {
6172 u64 mask = event->attr.sample_regs_intr;
6173
6174 size += hweight64(mask) * sizeof(u64);
6175 }
6176
6177 header->size += size;
6178 }
6179
6180 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6181 data->phys_addr = perf_virt_to_phys(data->addr);
6182 }
6183
6184 static void __always_inline
6185 __perf_event_output(struct perf_event *event,
6186 struct perf_sample_data *data,
6187 struct pt_regs *regs,
6188 int (*output_begin)(struct perf_output_handle *,
6189 struct perf_event *,
6190 unsigned int))
6191 {
6192 struct perf_output_handle handle;
6193 struct perf_event_header header;
6194
6195 /* protect the callchain buffers */
6196 rcu_read_lock();
6197
6198 perf_prepare_sample(&header, data, event, regs);
6199
6200 if (output_begin(&handle, event, header.size))
6201 goto exit;
6202
6203 perf_output_sample(&handle, &header, data, event);
6204
6205 perf_output_end(&handle);
6206
6207 exit:
6208 rcu_read_unlock();
6209 }
6210
6211 void
6212 perf_event_output_forward(struct perf_event *event,
6213 struct perf_sample_data *data,
6214 struct pt_regs *regs)
6215 {
6216 __perf_event_output(event, data, regs, perf_output_begin_forward);
6217 }
6218
6219 void
6220 perf_event_output_backward(struct perf_event *event,
6221 struct perf_sample_data *data,
6222 struct pt_regs *regs)
6223 {
6224 __perf_event_output(event, data, regs, perf_output_begin_backward);
6225 }
6226
6227 void
6228 perf_event_output(struct perf_event *event,
6229 struct perf_sample_data *data,
6230 struct pt_regs *regs)
6231 {
6232 __perf_event_output(event, data, regs, perf_output_begin);
6233 }
6234
6235 /*
6236 * read event_id
6237 */
6238
6239 struct perf_read_event {
6240 struct perf_event_header header;
6241
6242 u32 pid;
6243 u32 tid;
6244 };
6245
6246 static void
6247 perf_event_read_event(struct perf_event *event,
6248 struct task_struct *task)
6249 {
6250 struct perf_output_handle handle;
6251 struct perf_sample_data sample;
6252 struct perf_read_event read_event = {
6253 .header = {
6254 .type = PERF_RECORD_READ,
6255 .misc = 0,
6256 .size = sizeof(read_event) + event->read_size,
6257 },
6258 .pid = perf_event_pid(event, task),
6259 .tid = perf_event_tid(event, task),
6260 };
6261 int ret;
6262
6263 perf_event_header__init_id(&read_event.header, &sample, event);
6264 ret = perf_output_begin(&handle, event, read_event.header.size);
6265 if (ret)
6266 return;
6267
6268 perf_output_put(&handle, read_event);
6269 perf_output_read(&handle, event);
6270 perf_event__output_id_sample(event, &handle, &sample);
6271
6272 perf_output_end(&handle);
6273 }
6274
6275 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
6276
6277 static void
6278 perf_iterate_ctx(struct perf_event_context *ctx,
6279 perf_iterate_f output,
6280 void *data, bool all)
6281 {
6282 struct perf_event *event;
6283
6284 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6285 if (!all) {
6286 if (event->state < PERF_EVENT_STATE_INACTIVE)
6287 continue;
6288 if (!event_filter_match(event))
6289 continue;
6290 }
6291
6292 output(event, data);
6293 }
6294 }
6295
6296 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
6297 {
6298 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6299 struct perf_event *event;
6300
6301 list_for_each_entry_rcu(event, &pel->list, sb_list) {
6302 /*
6303 * Skip events that are not fully formed yet; ensure that
6304 * if we observe event->ctx, both event and ctx will be
6305 * complete enough. See perf_install_in_context().
6306 */
6307 if (!smp_load_acquire(&event->ctx))
6308 continue;
6309
6310 if (event->state < PERF_EVENT_STATE_INACTIVE)
6311 continue;
6312 if (!event_filter_match(event))
6313 continue;
6314 output(event, data);
6315 }
6316 }
6317
6318 /*
6319 * Iterate all events that need to receive side-band events.
6320 *
6321 * For new callers; ensure that account_pmu_sb_event() includes
6322 * your event, otherwise it might not get delivered.
6323 */
6324 static void
6325 perf_iterate_sb(perf_iterate_f output, void *data,
6326 struct perf_event_context *task_ctx)
6327 {
6328 struct perf_event_context *ctx;
6329 int ctxn;
6330
6331 rcu_read_lock();
6332 preempt_disable();
6333
6334 /*
6335 * If we have task_ctx != NULL we only notify the task context itself.
6336 * The task_ctx is set only for EXIT events before releasing task
6337 * context.
6338 */
6339 if (task_ctx) {
6340 perf_iterate_ctx(task_ctx, output, data, false);
6341 goto done;
6342 }
6343
6344 perf_iterate_sb_cpu(output, data);
6345
6346 for_each_task_context_nr(ctxn) {
6347 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6348 if (ctx)
6349 perf_iterate_ctx(ctx, output, data, false);
6350 }
6351 done:
6352 preempt_enable();
6353 rcu_read_unlock();
6354 }
6355
6356 /*
6357 * Clear all file-based filters at exec, they'll have to be
6358 * re-instated when/if these objects are mmapped again.
6359 */
6360 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6361 {
6362 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6363 struct perf_addr_filter *filter;
6364 unsigned int restart = 0, count = 0;
6365 unsigned long flags;
6366
6367 if (!has_addr_filter(event))
6368 return;
6369
6370 raw_spin_lock_irqsave(&ifh->lock, flags);
6371 list_for_each_entry(filter, &ifh->list, entry) {
6372 if (filter->inode) {
6373 event->addr_filters_offs[count] = 0;
6374 restart++;
6375 }
6376
6377 count++;
6378 }
6379
6380 if (restart)
6381 event->addr_filters_gen++;
6382 raw_spin_unlock_irqrestore(&ifh->lock, flags);
6383
6384 if (restart)
6385 perf_event_stop(event, 1);
6386 }
6387
6388 void perf_event_exec(void)
6389 {
6390 struct perf_event_context *ctx;
6391 int ctxn;
6392
6393 rcu_read_lock();
6394 for_each_task_context_nr(ctxn) {
6395 ctx = current->perf_event_ctxp[ctxn];
6396 if (!ctx)
6397 continue;
6398
6399 perf_event_enable_on_exec(ctxn);
6400
6401 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
6402 true);
6403 }
6404 rcu_read_unlock();
6405 }
6406
6407 struct remote_output {
6408 struct ring_buffer *rb;
6409 int err;
6410 };
6411
6412 static void __perf_event_output_stop(struct perf_event *event, void *data)
6413 {
6414 struct perf_event *parent = event->parent;
6415 struct remote_output *ro = data;
6416 struct ring_buffer *rb = ro->rb;
6417 struct stop_event_data sd = {
6418 .event = event,
6419 };
6420
6421 if (!has_aux(event))
6422 return;
6423
6424 if (!parent)
6425 parent = event;
6426
6427 /*
6428 * In case of inheritance, it will be the parent that links to the
6429 * ring-buffer, but it will be the child that's actually using it.
6430 *
6431 * We are using event::rb to determine if the event should be stopped,
6432 * however this may race with ring_buffer_attach() (through set_output),
6433 * which will make us skip the event that actually needs to be stopped.
6434 * So ring_buffer_attach() has to stop an aux event before re-assigning
6435 * its rb pointer.
6436 */
6437 if (rcu_dereference(parent->rb) == rb)
6438 ro->err = __perf_event_stop(&sd);
6439 }
6440
6441 static int __perf_pmu_output_stop(void *info)
6442 {
6443 struct perf_event *event = info;
6444 struct pmu *pmu = event->pmu;
6445 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6446 struct remote_output ro = {
6447 .rb = event->rb,
6448 };
6449
6450 rcu_read_lock();
6451 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6452 if (cpuctx->task_ctx)
6453 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6454 &ro, false);
6455 rcu_read_unlock();
6456
6457 return ro.err;
6458 }
6459
6460 static void perf_pmu_output_stop(struct perf_event *event)
6461 {
6462 struct perf_event *iter;
6463 int err, cpu;
6464
6465 restart:
6466 rcu_read_lock();
6467 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6468 /*
6469 * For per-CPU events, we need to make sure that neither they
6470 * nor their children are running; for cpu==-1 events it's
6471 * sufficient to stop the event itself if it's active, since
6472 * it can't have children.
6473 */
6474 cpu = iter->cpu;
6475 if (cpu == -1)
6476 cpu = READ_ONCE(iter->oncpu);
6477
6478 if (cpu == -1)
6479 continue;
6480
6481 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6482 if (err == -EAGAIN) {
6483 rcu_read_unlock();
6484 goto restart;
6485 }
6486 }
6487 rcu_read_unlock();
6488 }
6489
6490 /*
6491 * task tracking -- fork/exit
6492 *
6493 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
6494 */
6495
6496 struct perf_task_event {
6497 struct task_struct *task;
6498 struct perf_event_context *task_ctx;
6499
6500 struct {
6501 struct perf_event_header header;
6502
6503 u32 pid;
6504 u32 ppid;
6505 u32 tid;
6506 u32 ptid;
6507 u64 time;
6508 } event_id;
6509 };
6510
6511 static int perf_event_task_match(struct perf_event *event)
6512 {
6513 return event->attr.comm || event->attr.mmap ||
6514 event->attr.mmap2 || event->attr.mmap_data ||
6515 event->attr.task;
6516 }
6517
6518 static void perf_event_task_output(struct perf_event *event,
6519 void *data)
6520 {
6521 struct perf_task_event *task_event = data;
6522 struct perf_output_handle handle;
6523 struct perf_sample_data sample;
6524 struct task_struct *task = task_event->task;
6525 int ret, size = task_event->event_id.header.size;
6526
6527 if (!perf_event_task_match(event))
6528 return;
6529
6530 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
6531
6532 ret = perf_output_begin(&handle, event,
6533 task_event->event_id.header.size);
6534 if (ret)
6535 goto out;
6536
6537 task_event->event_id.pid = perf_event_pid(event, task);
6538 task_event->event_id.ppid = perf_event_pid(event, current);
6539
6540 task_event->event_id.tid = perf_event_tid(event, task);
6541 task_event->event_id.ptid = perf_event_tid(event, current);
6542
6543 task_event->event_id.time = perf_event_clock(event);
6544
6545 perf_output_put(&handle, task_event->event_id);
6546
6547 perf_event__output_id_sample(event, &handle, &sample);
6548
6549 perf_output_end(&handle);
6550 out:
6551 task_event->event_id.header.size = size;
6552 }
6553
6554 static void perf_event_task(struct task_struct *task,
6555 struct perf_event_context *task_ctx,
6556 int new)
6557 {
6558 struct perf_task_event task_event;
6559
6560 if (!atomic_read(&nr_comm_events) &&
6561 !atomic_read(&nr_mmap_events) &&
6562 !atomic_read(&nr_task_events))
6563 return;
6564
6565 task_event = (struct perf_task_event){
6566 .task = task,
6567 .task_ctx = task_ctx,
6568 .event_id = {
6569 .header = {
6570 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
6571 .misc = 0,
6572 .size = sizeof(task_event.event_id),
6573 },
6574 /* .pid */
6575 /* .ppid */
6576 /* .tid */
6577 /* .ptid */
6578 /* .time */
6579 },
6580 };
6581
6582 perf_iterate_sb(perf_event_task_output,
6583 &task_event,
6584 task_ctx);
6585 }
6586
6587 void perf_event_fork(struct task_struct *task)
6588 {
6589 perf_event_task(task, NULL, 1);
6590 perf_event_namespaces(task);
6591 }
6592
6593 /*
6594 * comm tracking
6595 */
6596
6597 struct perf_comm_event {
6598 struct task_struct *task;
6599 char *comm;
6600 int comm_size;
6601
6602 struct {
6603 struct perf_event_header header;
6604
6605 u32 pid;
6606 u32 tid;
6607 } event_id;
6608 };
6609
6610 static int perf_event_comm_match(struct perf_event *event)
6611 {
6612 return event->attr.comm;
6613 }
6614
6615 static void perf_event_comm_output(struct perf_event *event,
6616 void *data)
6617 {
6618 struct perf_comm_event *comm_event = data;
6619 struct perf_output_handle handle;
6620 struct perf_sample_data sample;
6621 int size = comm_event->event_id.header.size;
6622 int ret;
6623
6624 if (!perf_event_comm_match(event))
6625 return;
6626
6627 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6628 ret = perf_output_begin(&handle, event,
6629 comm_event->event_id.header.size);
6630
6631 if (ret)
6632 goto out;
6633
6634 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6635 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
6636
6637 perf_output_put(&handle, comm_event->event_id);
6638 __output_copy(&handle, comm_event->comm,
6639 comm_event->comm_size);
6640
6641 perf_event__output_id_sample(event, &handle, &sample);
6642
6643 perf_output_end(&handle);
6644 out:
6645 comm_event->event_id.header.size = size;
6646 }
6647
6648 static void perf_event_comm_event(struct perf_comm_event *comm_event)
6649 {
6650 char comm[TASK_COMM_LEN];
6651 unsigned int size;
6652
6653 memset(comm, 0, sizeof(comm));
6654 strlcpy(comm, comm_event->task->comm, sizeof(comm));
6655 size = ALIGN(strlen(comm)+1, sizeof(u64));
6656
6657 comm_event->comm = comm;
6658 comm_event->comm_size = size;
6659
6660 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
6661
6662 perf_iterate_sb(perf_event_comm_output,
6663 comm_event,
6664 NULL);
6665 }
6666
6667 void perf_event_comm(struct task_struct *task, bool exec)
6668 {
6669 struct perf_comm_event comm_event;
6670
6671 if (!atomic_read(&nr_comm_events))
6672 return;
6673
6674 comm_event = (struct perf_comm_event){
6675 .task = task,
6676 /* .comm */
6677 /* .comm_size */
6678 .event_id = {
6679 .header = {
6680 .type = PERF_RECORD_COMM,
6681 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
6682 /* .size */
6683 },
6684 /* .pid */
6685 /* .tid */
6686 },
6687 };
6688
6689 perf_event_comm_event(&comm_event);
6690 }
6691
6692 /*
6693 * namespaces tracking
6694 */
6695
6696 struct perf_namespaces_event {
6697 struct task_struct *task;
6698
6699 struct {
6700 struct perf_event_header header;
6701
6702 u32 pid;
6703 u32 tid;
6704 u64 nr_namespaces;
6705 struct perf_ns_link_info link_info[NR_NAMESPACES];
6706 } event_id;
6707 };
6708
6709 static int perf_event_namespaces_match(struct perf_event *event)
6710 {
6711 return event->attr.namespaces;
6712 }
6713
6714 static void perf_event_namespaces_output(struct perf_event *event,
6715 void *data)
6716 {
6717 struct perf_namespaces_event *namespaces_event = data;
6718 struct perf_output_handle handle;
6719 struct perf_sample_data sample;
6720 int ret;
6721
6722 if (!perf_event_namespaces_match(event))
6723 return;
6724
6725 perf_event_header__init_id(&namespaces_event->event_id.header,
6726 &sample, event);
6727 ret = perf_output_begin(&handle, event,
6728 namespaces_event->event_id.header.size);
6729 if (ret)
6730 return;
6731
6732 namespaces_event->event_id.pid = perf_event_pid(event,
6733 namespaces_event->task);
6734 namespaces_event->event_id.tid = perf_event_tid(event,
6735 namespaces_event->task);
6736
6737 perf_output_put(&handle, namespaces_event->event_id);
6738
6739 perf_event__output_id_sample(event, &handle, &sample);
6740
6741 perf_output_end(&handle);
6742 }
6743
6744 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
6745 struct task_struct *task,
6746 const struct proc_ns_operations *ns_ops)
6747 {
6748 struct path ns_path;
6749 struct inode *ns_inode;
6750 void *error;
6751
6752 error = ns_get_path(&ns_path, task, ns_ops);
6753 if (!error) {
6754 ns_inode = ns_path.dentry->d_inode;
6755 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
6756 ns_link_info->ino = ns_inode->i_ino;
6757 }
6758 }
6759
6760 void perf_event_namespaces(struct task_struct *task)
6761 {
6762 struct perf_namespaces_event namespaces_event;
6763 struct perf_ns_link_info *ns_link_info;
6764
6765 if (!atomic_read(&nr_namespaces_events))
6766 return;
6767
6768 namespaces_event = (struct perf_namespaces_event){
6769 .task = task,
6770 .event_id = {
6771 .header = {
6772 .type = PERF_RECORD_NAMESPACES,
6773 .misc = 0,
6774 .size = sizeof(namespaces_event.event_id),
6775 },
6776 /* .pid */
6777 /* .tid */
6778 .nr_namespaces = NR_NAMESPACES,
6779 /* .link_info[NR_NAMESPACES] */
6780 },
6781 };
6782
6783 ns_link_info = namespaces_event.event_id.link_info;
6784
6785 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
6786 task, &mntns_operations);
6787
6788 #ifdef CONFIG_USER_NS
6789 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
6790 task, &userns_operations);
6791 #endif
6792 #ifdef CONFIG_NET_NS
6793 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
6794 task, &netns_operations);
6795 #endif
6796 #ifdef CONFIG_UTS_NS
6797 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
6798 task, &utsns_operations);
6799 #endif
6800 #ifdef CONFIG_IPC_NS
6801 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
6802 task, &ipcns_operations);
6803 #endif
6804 #ifdef CONFIG_PID_NS
6805 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
6806 task, &pidns_operations);
6807 #endif
6808 #ifdef CONFIG_CGROUPS
6809 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
6810 task, &cgroupns_operations);
6811 #endif
6812
6813 perf_iterate_sb(perf_event_namespaces_output,
6814 &namespaces_event,
6815 NULL);
6816 }
6817
6818 /*
6819 * mmap tracking
6820 */
6821
6822 struct perf_mmap_event {
6823 struct vm_area_struct *vma;
6824
6825 const char *file_name;
6826 int file_size;
6827 int maj, min;
6828 u64 ino;
6829 u64 ino_generation;
6830 u32 prot, flags;
6831
6832 struct {
6833 struct perf_event_header header;
6834
6835 u32 pid;
6836 u32 tid;
6837 u64 start;
6838 u64 len;
6839 u64 pgoff;
6840 } event_id;
6841 };
6842
6843 static int perf_event_mmap_match(struct perf_event *event,
6844 void *data)
6845 {
6846 struct perf_mmap_event *mmap_event = data;
6847 struct vm_area_struct *vma = mmap_event->vma;
6848 int executable = vma->vm_flags & VM_EXEC;
6849
6850 return (!executable && event->attr.mmap_data) ||
6851 (executable && (event->attr.mmap || event->attr.mmap2));
6852 }
6853
6854 static void perf_event_mmap_output(struct perf_event *event,
6855 void *data)
6856 {
6857 struct perf_mmap_event *mmap_event = data;
6858 struct perf_output_handle handle;
6859 struct perf_sample_data sample;
6860 int size = mmap_event->event_id.header.size;
6861 int ret;
6862
6863 if (!perf_event_mmap_match(event, data))
6864 return;
6865
6866 if (event->attr.mmap2) {
6867 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
6868 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
6869 mmap_event->event_id.header.size += sizeof(mmap_event->min);
6870 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
6871 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
6872 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
6873 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
6874 }
6875
6876 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
6877 ret = perf_output_begin(&handle, event,
6878 mmap_event->event_id.header.size);
6879 if (ret)
6880 goto out;
6881
6882 mmap_event->event_id.pid = perf_event_pid(event, current);
6883 mmap_event->event_id.tid = perf_event_tid(event, current);
6884
6885 perf_output_put(&handle, mmap_event->event_id);
6886
6887 if (event->attr.mmap2) {
6888 perf_output_put(&handle, mmap_event->maj);
6889 perf_output_put(&handle, mmap_event->min);
6890 perf_output_put(&handle, mmap_event->ino);
6891 perf_output_put(&handle, mmap_event->ino_generation);
6892 perf_output_put(&handle, mmap_event->prot);
6893 perf_output_put(&handle, mmap_event->flags);
6894 }
6895
6896 __output_copy(&handle, mmap_event->file_name,
6897 mmap_event->file_size);
6898
6899 perf_event__output_id_sample(event, &handle, &sample);
6900
6901 perf_output_end(&handle);
6902 out:
6903 mmap_event->event_id.header.size = size;
6904 }
6905
6906 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
6907 {
6908 struct vm_area_struct *vma = mmap_event->vma;
6909 struct file *file = vma->vm_file;
6910 int maj = 0, min = 0;
6911 u64 ino = 0, gen = 0;
6912 u32 prot = 0, flags = 0;
6913 unsigned int size;
6914 char tmp[16];
6915 char *buf = NULL;
6916 char *name;
6917
6918 if (vma->vm_flags & VM_READ)
6919 prot |= PROT_READ;
6920 if (vma->vm_flags & VM_WRITE)
6921 prot |= PROT_WRITE;
6922 if (vma->vm_flags & VM_EXEC)
6923 prot |= PROT_EXEC;
6924
6925 if (vma->vm_flags & VM_MAYSHARE)
6926 flags = MAP_SHARED;
6927 else
6928 flags = MAP_PRIVATE;
6929
6930 if (vma->vm_flags & VM_DENYWRITE)
6931 flags |= MAP_DENYWRITE;
6932 if (vma->vm_flags & VM_MAYEXEC)
6933 flags |= MAP_EXECUTABLE;
6934 if (vma->vm_flags & VM_LOCKED)
6935 flags |= MAP_LOCKED;
6936 if (vma->vm_flags & VM_HUGETLB)
6937 flags |= MAP_HUGETLB;
6938
6939 if (file) {
6940 struct inode *inode;
6941 dev_t dev;
6942
6943 buf = kmalloc(PATH_MAX, GFP_KERNEL);
6944 if (!buf) {
6945 name = "//enomem";
6946 goto cpy_name;
6947 }
6948 /*
6949 * d_path() works from the end of the rb backwards, so we
6950 * need to add enough zero bytes after the string to handle
6951 * the 64bit alignment we do later.
6952 */
6953 name = file_path(file, buf, PATH_MAX - sizeof(u64));
6954 if (IS_ERR(name)) {
6955 name = "//toolong";
6956 goto cpy_name;
6957 }
6958 inode = file_inode(vma->vm_file);
6959 dev = inode->i_sb->s_dev;
6960 ino = inode->i_ino;
6961 gen = inode->i_generation;
6962 maj = MAJOR(dev);
6963 min = MINOR(dev);
6964
6965 goto got_name;
6966 } else {
6967 if (vma->vm_ops && vma->vm_ops->name) {
6968 name = (char *) vma->vm_ops->name(vma);
6969 if (name)
6970 goto cpy_name;
6971 }
6972
6973 name = (char *)arch_vma_name(vma);
6974 if (name)
6975 goto cpy_name;
6976
6977 if (vma->vm_start <= vma->vm_mm->start_brk &&
6978 vma->vm_end >= vma->vm_mm->brk) {
6979 name = "[heap]";
6980 goto cpy_name;
6981 }
6982 if (vma->vm_start <= vma->vm_mm->start_stack &&
6983 vma->vm_end >= vma->vm_mm->start_stack) {
6984 name = "[stack]";
6985 goto cpy_name;
6986 }
6987
6988 name = "//anon";
6989 goto cpy_name;
6990 }
6991
6992 cpy_name:
6993 strlcpy(tmp, name, sizeof(tmp));
6994 name = tmp;
6995 got_name:
6996 /*
6997 * Since our buffer works in 8 byte units we need to align our string
6998 * size to a multiple of 8. However, we must guarantee the tail end is
6999 * zero'd out to avoid leaking random bits to userspace.
7000 */
7001 size = strlen(name)+1;
7002 while (!IS_ALIGNED(size, sizeof(u64)))
7003 name[size++] = '\0';
7004
7005 mmap_event->file_name = name;
7006 mmap_event->file_size = size;
7007 mmap_event->maj = maj;
7008 mmap_event->min = min;
7009 mmap_event->ino = ino;
7010 mmap_event->ino_generation = gen;
7011 mmap_event->prot = prot;
7012 mmap_event->flags = flags;
7013
7014 if (!(vma->vm_flags & VM_EXEC))
7015 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
7016
7017 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
7018
7019 perf_iterate_sb(perf_event_mmap_output,
7020 mmap_event,
7021 NULL);
7022
7023 kfree(buf);
7024 }
7025
7026 /*
7027 * Check whether inode and address range match filter criteria.
7028 */
7029 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
7030 struct file *file, unsigned long offset,
7031 unsigned long size)
7032 {
7033 if (filter->inode != file_inode(file))
7034 return false;
7035
7036 if (filter->offset > offset + size)
7037 return false;
7038
7039 if (filter->offset + filter->size < offset)
7040 return false;
7041
7042 return true;
7043 }
7044
7045 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
7046 {
7047 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7048 struct vm_area_struct *vma = data;
7049 unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
7050 struct file *file = vma->vm_file;
7051 struct perf_addr_filter *filter;
7052 unsigned int restart = 0, count = 0;
7053
7054 if (!has_addr_filter(event))
7055 return;
7056
7057 if (!file)
7058 return;
7059
7060 raw_spin_lock_irqsave(&ifh->lock, flags);
7061 list_for_each_entry(filter, &ifh->list, entry) {
7062 if (perf_addr_filter_match(filter, file, off,
7063 vma->vm_end - vma->vm_start)) {
7064 event->addr_filters_offs[count] = vma->vm_start;
7065 restart++;
7066 }
7067
7068 count++;
7069 }
7070
7071 if (restart)
7072 event->addr_filters_gen++;
7073 raw_spin_unlock_irqrestore(&ifh->lock, flags);
7074
7075 if (restart)
7076 perf_event_stop(event, 1);
7077 }
7078
7079 /*
7080 * Adjust all task's events' filters to the new vma
7081 */
7082 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
7083 {
7084 struct perf_event_context *ctx;
7085 int ctxn;
7086
7087 /*
7088 * Data tracing isn't supported yet and as such there is no need
7089 * to keep track of anything that isn't related to executable code:
7090 */
7091 if (!(vma->vm_flags & VM_EXEC))
7092 return;
7093
7094 rcu_read_lock();
7095 for_each_task_context_nr(ctxn) {
7096 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7097 if (!ctx)
7098 continue;
7099
7100 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
7101 }
7102 rcu_read_unlock();
7103 }
7104
7105 void perf_event_mmap(struct vm_area_struct *vma)
7106 {
7107 struct perf_mmap_event mmap_event;
7108
7109 if (!atomic_read(&nr_mmap_events))
7110 return;
7111
7112 mmap_event = (struct perf_mmap_event){
7113 .vma = vma,
7114 /* .file_name */
7115 /* .file_size */
7116 .event_id = {
7117 .header = {
7118 .type = PERF_RECORD_MMAP,
7119 .misc = PERF_RECORD_MISC_USER,
7120 /* .size */
7121 },
7122 /* .pid */
7123 /* .tid */
7124 .start = vma->vm_start,
7125 .len = vma->vm_end - vma->vm_start,
7126 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
7127 },
7128 /* .maj (attr_mmap2 only) */
7129 /* .min (attr_mmap2 only) */
7130 /* .ino (attr_mmap2 only) */
7131 /* .ino_generation (attr_mmap2 only) */
7132 /* .prot (attr_mmap2 only) */
7133 /* .flags (attr_mmap2 only) */
7134 };
7135
7136 perf_addr_filters_adjust(vma);
7137 perf_event_mmap_event(&mmap_event);
7138 }
7139
7140 void perf_event_aux_event(struct perf_event *event, unsigned long head,
7141 unsigned long size, u64 flags)
7142 {
7143 struct perf_output_handle handle;
7144 struct perf_sample_data sample;
7145 struct perf_aux_event {
7146 struct perf_event_header header;
7147 u64 offset;
7148 u64 size;
7149 u64 flags;
7150 } rec = {
7151 .header = {
7152 .type = PERF_RECORD_AUX,
7153 .misc = 0,
7154 .size = sizeof(rec),
7155 },
7156 .offset = head,
7157 .size = size,
7158 .flags = flags,
7159 };
7160 int ret;
7161
7162 perf_event_header__init_id(&rec.header, &sample, event);
7163 ret = perf_output_begin(&handle, event, rec.header.size);
7164
7165 if (ret)
7166 return;
7167
7168 perf_output_put(&handle, rec);
7169 perf_event__output_id_sample(event, &handle, &sample);
7170
7171 perf_output_end(&handle);
7172 }
7173
7174 /*
7175 * Lost/dropped samples logging
7176 */
7177 void perf_log_lost_samples(struct perf_event *event, u64 lost)
7178 {
7179 struct perf_output_handle handle;
7180 struct perf_sample_data sample;
7181 int ret;
7182
7183 struct {
7184 struct perf_event_header header;
7185 u64 lost;
7186 } lost_samples_event = {
7187 .header = {
7188 .type = PERF_RECORD_LOST_SAMPLES,
7189 .misc = 0,
7190 .size = sizeof(lost_samples_event),
7191 },
7192 .lost = lost,
7193 };
7194
7195 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
7196
7197 ret = perf_output_begin(&handle, event,
7198 lost_samples_event.header.size);
7199 if (ret)
7200 return;
7201
7202 perf_output_put(&handle, lost_samples_event);
7203 perf_event__output_id_sample(event, &handle, &sample);
7204 perf_output_end(&handle);
7205 }
7206
7207 /*
7208 * context_switch tracking
7209 */
7210
7211 struct perf_switch_event {
7212 struct task_struct *task;
7213 struct task_struct *next_prev;
7214
7215 struct {
7216 struct perf_event_header header;
7217 u32 next_prev_pid;
7218 u32 next_prev_tid;
7219 } event_id;
7220 };
7221
7222 static int perf_event_switch_match(struct perf_event *event)
7223 {
7224 return event->attr.context_switch;
7225 }
7226
7227 static void perf_event_switch_output(struct perf_event *event, void *data)
7228 {
7229 struct perf_switch_event *se = data;
7230 struct perf_output_handle handle;
7231 struct perf_sample_data sample;
7232 int ret;
7233
7234 if (!perf_event_switch_match(event))
7235 return;
7236
7237 /* Only CPU-wide events are allowed to see next/prev pid/tid */
7238 if (event->ctx->task) {
7239 se->event_id.header.type = PERF_RECORD_SWITCH;
7240 se->event_id.header.size = sizeof(se->event_id.header);
7241 } else {
7242 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
7243 se->event_id.header.size = sizeof(se->event_id);
7244 se->event_id.next_prev_pid =
7245 perf_event_pid(event, se->next_prev);
7246 se->event_id.next_prev_tid =
7247 perf_event_tid(event, se->next_prev);
7248 }
7249
7250 perf_event_header__init_id(&se->event_id.header, &sample, event);
7251
7252 ret = perf_output_begin(&handle, event, se->event_id.header.size);
7253 if (ret)
7254 return;
7255
7256 if (event->ctx->task)
7257 perf_output_put(&handle, se->event_id.header);
7258 else
7259 perf_output_put(&handle, se->event_id);
7260
7261 perf_event__output_id_sample(event, &handle, &sample);
7262
7263 perf_output_end(&handle);
7264 }
7265
7266 static void perf_event_switch(struct task_struct *task,
7267 struct task_struct *next_prev, bool sched_in)
7268 {
7269 struct perf_switch_event switch_event;
7270
7271 /* N.B. caller checks nr_switch_events != 0 */
7272
7273 switch_event = (struct perf_switch_event){
7274 .task = task,
7275 .next_prev = next_prev,
7276 .event_id = {
7277 .header = {
7278 /* .type */
7279 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
7280 /* .size */
7281 },
7282 /* .next_prev_pid */
7283 /* .next_prev_tid */
7284 },
7285 };
7286
7287 perf_iterate_sb(perf_event_switch_output,
7288 &switch_event,
7289 NULL);
7290 }
7291
7292 /*
7293 * IRQ throttle logging
7294 */
7295
7296 static void perf_log_throttle(struct perf_event *event, int enable)
7297 {
7298 struct perf_output_handle handle;
7299 struct perf_sample_data sample;
7300 int ret;
7301
7302 struct {
7303 struct perf_event_header header;
7304 u64 time;
7305 u64 id;
7306 u64 stream_id;
7307 } throttle_event = {
7308 .header = {
7309 .type = PERF_RECORD_THROTTLE,
7310 .misc = 0,
7311 .size = sizeof(throttle_event),
7312 },
7313 .time = perf_event_clock(event),
7314 .id = primary_event_id(event),
7315 .stream_id = event->id,
7316 };
7317
7318 if (enable)
7319 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
7320
7321 perf_event_header__init_id(&throttle_event.header, &sample, event);
7322
7323 ret = perf_output_begin(&handle, event,
7324 throttle_event.header.size);
7325 if (ret)
7326 return;
7327
7328 perf_output_put(&handle, throttle_event);
7329 perf_event__output_id_sample(event, &handle, &sample);
7330 perf_output_end(&handle);
7331 }
7332
7333 void perf_event_itrace_started(struct perf_event *event)
7334 {
7335 event->attach_state |= PERF_ATTACH_ITRACE;
7336 }
7337
7338 static void perf_log_itrace_start(struct perf_event *event)
7339 {
7340 struct perf_output_handle handle;
7341 struct perf_sample_data sample;
7342 struct perf_aux_event {
7343 struct perf_event_header header;
7344 u32 pid;
7345 u32 tid;
7346 } rec;
7347 int ret;
7348
7349 if (event->parent)
7350 event = event->parent;
7351
7352 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
7353 event->attach_state & PERF_ATTACH_ITRACE)
7354 return;
7355
7356 rec.header.type = PERF_RECORD_ITRACE_START;
7357 rec.header.misc = 0;
7358 rec.header.size = sizeof(rec);
7359 rec.pid = perf_event_pid(event, current);
7360 rec.tid = perf_event_tid(event, current);
7361
7362 perf_event_header__init_id(&rec.header, &sample, event);
7363 ret = perf_output_begin(&handle, event, rec.header.size);
7364
7365 if (ret)
7366 return;
7367
7368 perf_output_put(&handle, rec);
7369 perf_event__output_id_sample(event, &handle, &sample);
7370
7371 perf_output_end(&handle);
7372 }
7373
7374 static int
7375 __perf_event_account_interrupt(struct perf_event *event, int throttle)
7376 {
7377 struct hw_perf_event *hwc = &event->hw;
7378 int ret = 0;
7379 u64 seq;
7380
7381 seq = __this_cpu_read(perf_throttled_seq);
7382 if (seq != hwc->interrupts_seq) {
7383 hwc->interrupts_seq = seq;
7384 hwc->interrupts = 1;
7385 } else {
7386 hwc->interrupts++;
7387 if (unlikely(throttle
7388 && hwc->interrupts >= max_samples_per_tick)) {
7389 __this_cpu_inc(perf_throttled_count);
7390 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
7391 hwc->interrupts = MAX_INTERRUPTS;
7392 perf_log_throttle(event, 0);
7393 ret = 1;
7394 }
7395 }
7396
7397 if (event->attr.freq) {
7398 u64 now = perf_clock();
7399 s64 delta = now - hwc->freq_time_stamp;
7400
7401 hwc->freq_time_stamp = now;
7402
7403 if (delta > 0 && delta < 2*TICK_NSEC)
7404 perf_adjust_period(event, delta, hwc->last_period, true);
7405 }
7406
7407 return ret;
7408 }
7409
7410 int perf_event_account_interrupt(struct perf_event *event)
7411 {
7412 return __perf_event_account_interrupt(event, 1);
7413 }
7414
7415 /*
7416 * Generic event overflow handling, sampling.
7417 */
7418
7419 static int __perf_event_overflow(struct perf_event *event,
7420 int throttle, struct perf_sample_data *data,
7421 struct pt_regs *regs)
7422 {
7423 int events = atomic_read(&event->event_limit);
7424 int ret = 0;
7425
7426 /*
7427 * Non-sampling counters might still use the PMI to fold short
7428 * hardware counters, ignore those.
7429 */
7430 if (unlikely(!is_sampling_event(event)))
7431 return 0;
7432
7433 ret = __perf_event_account_interrupt(event, throttle);
7434
7435 /*
7436 * XXX event_limit might not quite work as expected on inherited
7437 * events
7438 */
7439
7440 event->pending_kill = POLL_IN;
7441 if (events && atomic_dec_and_test(&event->event_limit)) {
7442 ret = 1;
7443 event->pending_kill = POLL_HUP;
7444
7445 perf_event_disable_inatomic(event);
7446 }
7447
7448 READ_ONCE(event->overflow_handler)(event, data, regs);
7449
7450 if (*perf_event_fasync(event) && event->pending_kill) {
7451 event->pending_wakeup = 1;
7452 irq_work_queue(&event->pending);
7453 }
7454
7455 return ret;
7456 }
7457
7458 int perf_event_overflow(struct perf_event *event,
7459 struct perf_sample_data *data,
7460 struct pt_regs *regs)
7461 {
7462 return __perf_event_overflow(event, 1, data, regs);
7463 }
7464
7465 /*
7466 * Generic software event infrastructure
7467 */
7468
7469 struct swevent_htable {
7470 struct swevent_hlist *swevent_hlist;
7471 struct mutex hlist_mutex;
7472 int hlist_refcount;
7473
7474 /* Recursion avoidance in each contexts */
7475 int recursion[PERF_NR_CONTEXTS];
7476 };
7477
7478 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
7479
7480 /*
7481 * We directly increment event->count and keep a second value in
7482 * event->hw.period_left to count intervals. This period event
7483 * is kept in the range [-sample_period, 0] so that we can use the
7484 * sign as trigger.
7485 */
7486
7487 u64 perf_swevent_set_period(struct perf_event *event)
7488 {
7489 struct hw_perf_event *hwc = &event->hw;
7490 u64 period = hwc->last_period;
7491 u64 nr, offset;
7492 s64 old, val;
7493
7494 hwc->last_period = hwc->sample_period;
7495
7496 again:
7497 old = val = local64_read(&hwc->period_left);
7498 if (val < 0)
7499 return 0;
7500
7501 nr = div64_u64(period + val, period);
7502 offset = nr * period;
7503 val -= offset;
7504 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7505 goto again;
7506
7507 return nr;
7508 }
7509
7510 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
7511 struct perf_sample_data *data,
7512 struct pt_regs *regs)
7513 {
7514 struct hw_perf_event *hwc = &event->hw;
7515 int throttle = 0;
7516
7517 if (!overflow)
7518 overflow = perf_swevent_set_period(event);
7519
7520 if (hwc->interrupts == MAX_INTERRUPTS)
7521 return;
7522
7523 for (; overflow; overflow--) {
7524 if (__perf_event_overflow(event, throttle,
7525 data, regs)) {
7526 /*
7527 * We inhibit the overflow from happening when
7528 * hwc->interrupts == MAX_INTERRUPTS.
7529 */
7530 break;
7531 }
7532 throttle = 1;
7533 }
7534 }
7535
7536 static void perf_swevent_event(struct perf_event *event, u64 nr,
7537 struct perf_sample_data *data,
7538 struct pt_regs *regs)
7539 {
7540 struct hw_perf_event *hwc = &event->hw;
7541
7542 local64_add(nr, &event->count);
7543
7544 if (!regs)
7545 return;
7546
7547 if (!is_sampling_event(event))
7548 return;
7549
7550 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
7551 data->period = nr;
7552 return perf_swevent_overflow(event, 1, data, regs);
7553 } else
7554 data->period = event->hw.last_period;
7555
7556 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
7557 return perf_swevent_overflow(event, 1, data, regs);
7558
7559 if (local64_add_negative(nr, &hwc->period_left))
7560 return;
7561
7562 perf_swevent_overflow(event, 0, data, regs);
7563 }
7564
7565 static int perf_exclude_event(struct perf_event *event,
7566 struct pt_regs *regs)
7567 {
7568 if (event->hw.state & PERF_HES_STOPPED)
7569 return 1;
7570
7571 if (regs) {
7572 if (event->attr.exclude_user && user_mode(regs))
7573 return 1;
7574
7575 if (event->attr.exclude_kernel && !user_mode(regs))
7576 return 1;
7577 }
7578
7579 return 0;
7580 }
7581
7582 static int perf_swevent_match(struct perf_event *event,
7583 enum perf_type_id type,
7584 u32 event_id,
7585 struct perf_sample_data *data,
7586 struct pt_regs *regs)
7587 {
7588 if (event->attr.type != type)
7589 return 0;
7590
7591 if (event->attr.config != event_id)
7592 return 0;
7593
7594 if (perf_exclude_event(event, regs))
7595 return 0;
7596
7597 return 1;
7598 }
7599
7600 static inline u64 swevent_hash(u64 type, u32 event_id)
7601 {
7602 u64 val = event_id | (type << 32);
7603
7604 return hash_64(val, SWEVENT_HLIST_BITS);
7605 }
7606
7607 static inline struct hlist_head *
7608 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
7609 {
7610 u64 hash = swevent_hash(type, event_id);
7611
7612 return &hlist->heads[hash];
7613 }
7614
7615 /* For the read side: events when they trigger */
7616 static inline struct hlist_head *
7617 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
7618 {
7619 struct swevent_hlist *hlist;
7620
7621 hlist = rcu_dereference(swhash->swevent_hlist);
7622 if (!hlist)
7623 return NULL;
7624
7625 return __find_swevent_head(hlist, type, event_id);
7626 }
7627
7628 /* For the event head insertion and removal in the hlist */
7629 static inline struct hlist_head *
7630 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
7631 {
7632 struct swevent_hlist *hlist;
7633 u32 event_id = event->attr.config;
7634 u64 type = event->attr.type;
7635
7636 /*
7637 * Event scheduling is always serialized against hlist allocation
7638 * and release. Which makes the protected version suitable here.
7639 * The context lock guarantees that.
7640 */
7641 hlist = rcu_dereference_protected(swhash->swevent_hlist,
7642 lockdep_is_held(&event->ctx->lock));
7643 if (!hlist)
7644 return NULL;
7645
7646 return __find_swevent_head(hlist, type, event_id);
7647 }
7648
7649 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
7650 u64 nr,
7651 struct perf_sample_data *data,
7652 struct pt_regs *regs)
7653 {
7654 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7655 struct perf_event *event;
7656 struct hlist_head *head;
7657
7658 rcu_read_lock();
7659 head = find_swevent_head_rcu(swhash, type, event_id);
7660 if (!head)
7661 goto end;
7662
7663 hlist_for_each_entry_rcu(event, head, hlist_entry) {
7664 if (perf_swevent_match(event, type, event_id, data, regs))
7665 perf_swevent_event(event, nr, data, regs);
7666 }
7667 end:
7668 rcu_read_unlock();
7669 }
7670
7671 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
7672
7673 int perf_swevent_get_recursion_context(void)
7674 {
7675 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7676
7677 return get_recursion_context(swhash->recursion);
7678 }
7679 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
7680
7681 void perf_swevent_put_recursion_context(int rctx)
7682 {
7683 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7684
7685 put_recursion_context(swhash->recursion, rctx);
7686 }
7687
7688 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7689 {
7690 struct perf_sample_data data;
7691
7692 if (WARN_ON_ONCE(!regs))
7693 return;
7694
7695 perf_sample_data_init(&data, addr, 0);
7696 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
7697 }
7698
7699 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7700 {
7701 int rctx;
7702
7703 preempt_disable_notrace();
7704 rctx = perf_swevent_get_recursion_context();
7705 if (unlikely(rctx < 0))
7706 goto fail;
7707
7708 ___perf_sw_event(event_id, nr, regs, addr);
7709
7710 perf_swevent_put_recursion_context(rctx);
7711 fail:
7712 preempt_enable_notrace();
7713 }
7714
7715 static void perf_swevent_read(struct perf_event *event)
7716 {
7717 }
7718
7719 static int perf_swevent_add(struct perf_event *event, int flags)
7720 {
7721 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7722 struct hw_perf_event *hwc = &event->hw;
7723 struct hlist_head *head;
7724
7725 if (is_sampling_event(event)) {
7726 hwc->last_period = hwc->sample_period;
7727 perf_swevent_set_period(event);
7728 }
7729
7730 hwc->state = !(flags & PERF_EF_START);
7731
7732 head = find_swevent_head(swhash, event);
7733 if (WARN_ON_ONCE(!head))
7734 return -EINVAL;
7735
7736 hlist_add_head_rcu(&event->hlist_entry, head);
7737 perf_event_update_userpage(event);
7738
7739 return 0;
7740 }
7741
7742 static void perf_swevent_del(struct perf_event *event, int flags)
7743 {
7744 hlist_del_rcu(&event->hlist_entry);
7745 }
7746
7747 static void perf_swevent_start(struct perf_event *event, int flags)
7748 {
7749 event->hw.state = 0;
7750 }
7751
7752 static void perf_swevent_stop(struct perf_event *event, int flags)
7753 {
7754 event->hw.state = PERF_HES_STOPPED;
7755 }
7756
7757 /* Deref the hlist from the update side */
7758 static inline struct swevent_hlist *
7759 swevent_hlist_deref(struct swevent_htable *swhash)
7760 {
7761 return rcu_dereference_protected(swhash->swevent_hlist,
7762 lockdep_is_held(&swhash->hlist_mutex));
7763 }
7764
7765 static void swevent_hlist_release(struct swevent_htable *swhash)
7766 {
7767 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
7768
7769 if (!hlist)
7770 return;
7771
7772 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
7773 kfree_rcu(hlist, rcu_head);
7774 }
7775
7776 static void swevent_hlist_put_cpu(int cpu)
7777 {
7778 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7779
7780 mutex_lock(&swhash->hlist_mutex);
7781
7782 if (!--swhash->hlist_refcount)
7783 swevent_hlist_release(swhash);
7784
7785 mutex_unlock(&swhash->hlist_mutex);
7786 }
7787
7788 static void swevent_hlist_put(void)
7789 {
7790 int cpu;
7791
7792 for_each_possible_cpu(cpu)
7793 swevent_hlist_put_cpu(cpu);
7794 }
7795
7796 static int swevent_hlist_get_cpu(int cpu)
7797 {
7798 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7799 int err = 0;
7800
7801 mutex_lock(&swhash->hlist_mutex);
7802 if (!swevent_hlist_deref(swhash) &&
7803 cpumask_test_cpu(cpu, perf_online_mask)) {
7804 struct swevent_hlist *hlist;
7805
7806 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
7807 if (!hlist) {
7808 err = -ENOMEM;
7809 goto exit;
7810 }
7811 rcu_assign_pointer(swhash->swevent_hlist, hlist);
7812 }
7813 swhash->hlist_refcount++;
7814 exit:
7815 mutex_unlock(&swhash->hlist_mutex);
7816
7817 return err;
7818 }
7819
7820 static int swevent_hlist_get(void)
7821 {
7822 int err, cpu, failed_cpu;
7823
7824 mutex_lock(&pmus_lock);
7825 for_each_possible_cpu(cpu) {
7826 err = swevent_hlist_get_cpu(cpu);
7827 if (err) {
7828 failed_cpu = cpu;
7829 goto fail;
7830 }
7831 }
7832 mutex_unlock(&pmus_lock);
7833 return 0;
7834 fail:
7835 for_each_possible_cpu(cpu) {
7836 if (cpu == failed_cpu)
7837 break;
7838 swevent_hlist_put_cpu(cpu);
7839 }
7840 mutex_unlock(&pmus_lock);
7841 return err;
7842 }
7843
7844 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
7845
7846 static void sw_perf_event_destroy(struct perf_event *event)
7847 {
7848 u64 event_id = event->attr.config;
7849
7850 WARN_ON(event->parent);
7851
7852 static_key_slow_dec(&perf_swevent_enabled[event_id]);
7853 swevent_hlist_put();
7854 }
7855
7856 static int perf_swevent_init(struct perf_event *event)
7857 {
7858 u64 event_id = event->attr.config;
7859
7860 if (event->attr.type != PERF_TYPE_SOFTWARE)
7861 return -ENOENT;
7862
7863 /*
7864 * no branch sampling for software events
7865 */
7866 if (has_branch_stack(event))
7867 return -EOPNOTSUPP;
7868
7869 switch (event_id) {
7870 case PERF_COUNT_SW_CPU_CLOCK:
7871 case PERF_COUNT_SW_TASK_CLOCK:
7872 return -ENOENT;
7873
7874 default:
7875 break;
7876 }
7877
7878 if (event_id >= PERF_COUNT_SW_MAX)
7879 return -ENOENT;
7880
7881 if (!event->parent) {
7882 int err;
7883
7884 err = swevent_hlist_get();
7885 if (err)
7886 return err;
7887
7888 static_key_slow_inc(&perf_swevent_enabled[event_id]);
7889 event->destroy = sw_perf_event_destroy;
7890 }
7891
7892 return 0;
7893 }
7894
7895 static struct pmu perf_swevent = {
7896 .task_ctx_nr = perf_sw_context,
7897
7898 .capabilities = PERF_PMU_CAP_NO_NMI,
7899
7900 .event_init = perf_swevent_init,
7901 .add = perf_swevent_add,
7902 .del = perf_swevent_del,
7903 .start = perf_swevent_start,
7904 .stop = perf_swevent_stop,
7905 .read = perf_swevent_read,
7906 };
7907
7908 #ifdef CONFIG_EVENT_TRACING
7909
7910 static int perf_tp_filter_match(struct perf_event *event,
7911 struct perf_sample_data *data)
7912 {
7913 void *record = data->raw->frag.data;
7914
7915 /* only top level events have filters set */
7916 if (event->parent)
7917 event = event->parent;
7918
7919 if (likely(!event->filter) || filter_match_preds(event->filter, record))
7920 return 1;
7921 return 0;
7922 }
7923
7924 static int perf_tp_event_match(struct perf_event *event,
7925 struct perf_sample_data *data,
7926 struct pt_regs *regs)
7927 {
7928 if (event->hw.state & PERF_HES_STOPPED)
7929 return 0;
7930 /*
7931 * All tracepoints are from kernel-space.
7932 */
7933 if (event->attr.exclude_kernel)
7934 return 0;
7935
7936 if (!perf_tp_filter_match(event, data))
7937 return 0;
7938
7939 return 1;
7940 }
7941
7942 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
7943 struct trace_event_call *call, u64 count,
7944 struct pt_regs *regs, struct hlist_head *head,
7945 struct task_struct *task)
7946 {
7947 struct bpf_prog *prog = call->prog;
7948
7949 if (prog) {
7950 *(struct pt_regs **)raw_data = regs;
7951 if (!trace_call_bpf(prog, raw_data) || hlist_empty(head)) {
7952 perf_swevent_put_recursion_context(rctx);
7953 return;
7954 }
7955 }
7956 perf_tp_event(call->event.type, count, raw_data, size, regs, head,
7957 rctx, task, NULL);
7958 }
7959 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
7960
7961 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
7962 struct pt_regs *regs, struct hlist_head *head, int rctx,
7963 struct task_struct *task, struct perf_event *event)
7964 {
7965 struct perf_sample_data data;
7966
7967 struct perf_raw_record raw = {
7968 .frag = {
7969 .size = entry_size,
7970 .data = record,
7971 },
7972 };
7973
7974 perf_sample_data_init(&data, 0, 0);
7975 data.raw = &raw;
7976
7977 perf_trace_buf_update(record, event_type);
7978
7979 /* Use the given event instead of the hlist */
7980 if (event) {
7981 if (perf_tp_event_match(event, &data, regs))
7982 perf_swevent_event(event, count, &data, regs);
7983 } else {
7984 hlist_for_each_entry_rcu(event, head, hlist_entry) {
7985 if (perf_tp_event_match(event, &data, regs))
7986 perf_swevent_event(event, count, &data, regs);
7987 }
7988 }
7989
7990 /*
7991 * If we got specified a target task, also iterate its context and
7992 * deliver this event there too.
7993 */
7994 if (task && task != current) {
7995 struct perf_event_context *ctx;
7996 struct trace_entry *entry = record;
7997
7998 rcu_read_lock();
7999 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
8000 if (!ctx)
8001 goto unlock;
8002
8003 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
8004 if (event->attr.type != PERF_TYPE_TRACEPOINT)
8005 continue;
8006 if (event->attr.config != entry->type)
8007 continue;
8008 if (perf_tp_event_match(event, &data, regs))
8009 perf_swevent_event(event, count, &data, regs);
8010 }
8011 unlock:
8012 rcu_read_unlock();
8013 }
8014
8015 perf_swevent_put_recursion_context(rctx);
8016 }
8017 EXPORT_SYMBOL_GPL(perf_tp_event);
8018
8019 static void tp_perf_event_destroy(struct perf_event *event)
8020 {
8021 perf_trace_destroy(event);
8022 }
8023
8024 static int perf_tp_event_init(struct perf_event *event)
8025 {
8026 int err;
8027
8028 if (event->attr.type != PERF_TYPE_TRACEPOINT)
8029 return -ENOENT;
8030
8031 /*
8032 * no branch sampling for tracepoint events
8033 */
8034 if (has_branch_stack(event))
8035 return -EOPNOTSUPP;
8036
8037 err = perf_trace_init(event);
8038 if (err)
8039 return err;
8040
8041 event->destroy = tp_perf_event_destroy;
8042
8043 return 0;
8044 }
8045
8046 static struct pmu perf_tracepoint = {
8047 .task_ctx_nr = perf_sw_context,
8048
8049 .event_init = perf_tp_event_init,
8050 .add = perf_trace_add,
8051 .del = perf_trace_del,
8052 .start = perf_swevent_start,
8053 .stop = perf_swevent_stop,
8054 .read = perf_swevent_read,
8055 };
8056
8057 static inline void perf_tp_register(void)
8058 {
8059 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
8060 }
8061
8062 static void perf_event_free_filter(struct perf_event *event)
8063 {
8064 ftrace_profile_free_filter(event);
8065 }
8066
8067 #ifdef CONFIG_BPF_SYSCALL
8068 static void bpf_overflow_handler(struct perf_event *event,
8069 struct perf_sample_data *data,
8070 struct pt_regs *regs)
8071 {
8072 struct bpf_perf_event_data_kern ctx = {
8073 .data = data,
8074 .regs = regs,
8075 };
8076 int ret = 0;
8077
8078 preempt_disable();
8079 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
8080 goto out;
8081 rcu_read_lock();
8082 ret = BPF_PROG_RUN(event->prog, &ctx);
8083 rcu_read_unlock();
8084 out:
8085 __this_cpu_dec(bpf_prog_active);
8086 preempt_enable();
8087 if (!ret)
8088 return;
8089
8090 event->orig_overflow_handler(event, data, regs);
8091 }
8092
8093 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8094 {
8095 struct bpf_prog *prog;
8096
8097 if (event->overflow_handler_context)
8098 /* hw breakpoint or kernel counter */
8099 return -EINVAL;
8100
8101 if (event->prog)
8102 return -EEXIST;
8103
8104 prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
8105 if (IS_ERR(prog))
8106 return PTR_ERR(prog);
8107
8108 event->prog = prog;
8109 event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
8110 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
8111 return 0;
8112 }
8113
8114 static void perf_event_free_bpf_handler(struct perf_event *event)
8115 {
8116 struct bpf_prog *prog = event->prog;
8117
8118 if (!prog)
8119 return;
8120
8121 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
8122 event->prog = NULL;
8123 bpf_prog_put(prog);
8124 }
8125 #else
8126 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8127 {
8128 return -EOPNOTSUPP;
8129 }
8130 static void perf_event_free_bpf_handler(struct perf_event *event)
8131 {
8132 }
8133 #endif
8134
8135 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8136 {
8137 bool is_kprobe, is_tracepoint, is_syscall_tp;
8138 struct bpf_prog *prog;
8139
8140 if (event->attr.type != PERF_TYPE_TRACEPOINT)
8141 return perf_event_set_bpf_handler(event, prog_fd);
8142
8143 if (event->tp_event->prog)
8144 return -EEXIST;
8145
8146 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
8147 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
8148 is_syscall_tp = is_syscall_trace_event(event->tp_event);
8149 if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
8150 /* bpf programs can only be attached to u/kprobe or tracepoint */
8151 return -EINVAL;
8152
8153 prog = bpf_prog_get(prog_fd);
8154 if (IS_ERR(prog))
8155 return PTR_ERR(prog);
8156
8157 if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
8158 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
8159 (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
8160 /* valid fd, but invalid bpf program type */
8161 bpf_prog_put(prog);
8162 return -EINVAL;
8163 }
8164
8165 if (is_tracepoint || is_syscall_tp) {
8166 int off = trace_event_get_offsets(event->tp_event);
8167
8168 if (prog->aux->max_ctx_offset > off) {
8169 bpf_prog_put(prog);
8170 return -EACCES;
8171 }
8172 }
8173 event->tp_event->prog = prog;
8174 event->tp_event->bpf_prog_owner = event;
8175
8176 return 0;
8177 }
8178
8179 static void perf_event_free_bpf_prog(struct perf_event *event)
8180 {
8181 struct bpf_prog *prog;
8182
8183 perf_event_free_bpf_handler(event);
8184
8185 if (!event->tp_event)
8186 return;
8187
8188 prog = event->tp_event->prog;
8189 if (prog && event->tp_event->bpf_prog_owner == event) {
8190 event->tp_event->prog = NULL;
8191 bpf_prog_put(prog);
8192 }
8193 }
8194
8195 #else
8196
8197 static inline void perf_tp_register(void)
8198 {
8199 }
8200
8201 static void perf_event_free_filter(struct perf_event *event)
8202 {
8203 }
8204
8205 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8206 {
8207 return -ENOENT;
8208 }
8209
8210 static void perf_event_free_bpf_prog(struct perf_event *event)
8211 {
8212 }
8213 #endif /* CONFIG_EVENT_TRACING */
8214
8215 #ifdef CONFIG_HAVE_HW_BREAKPOINT
8216 void perf_bp_event(struct perf_event *bp, void *data)
8217 {
8218 struct perf_sample_data sample;
8219 struct pt_regs *regs = data;
8220
8221 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
8222
8223 if (!bp->hw.state && !perf_exclude_event(bp, regs))
8224 perf_swevent_event(bp, 1, &sample, regs);
8225 }
8226 #endif
8227
8228 /*
8229 * Allocate a new address filter
8230 */
8231 static struct perf_addr_filter *
8232 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
8233 {
8234 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
8235 struct perf_addr_filter *filter;
8236
8237 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
8238 if (!filter)
8239 return NULL;
8240
8241 INIT_LIST_HEAD(&filter->entry);
8242 list_add_tail(&filter->entry, filters);
8243
8244 return filter;
8245 }
8246
8247 static void free_filters_list(struct list_head *filters)
8248 {
8249 struct perf_addr_filter *filter, *iter;
8250
8251 list_for_each_entry_safe(filter, iter, filters, entry) {
8252 if (filter->inode)
8253 iput(filter->inode);
8254 list_del(&filter->entry);
8255 kfree(filter);
8256 }
8257 }
8258
8259 /*
8260 * Free existing address filters and optionally install new ones
8261 */
8262 static void perf_addr_filters_splice(struct perf_event *event,
8263 struct list_head *head)
8264 {
8265 unsigned long flags;
8266 LIST_HEAD(list);
8267
8268 if (!has_addr_filter(event))
8269 return;
8270
8271 /* don't bother with children, they don't have their own filters */
8272 if (event->parent)
8273 return;
8274
8275 raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
8276
8277 list_splice_init(&event->addr_filters.list, &list);
8278 if (head)
8279 list_splice(head, &event->addr_filters.list);
8280
8281 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
8282
8283 free_filters_list(&list);
8284 }
8285
8286 /*
8287 * Scan through mm's vmas and see if one of them matches the
8288 * @filter; if so, adjust filter's address range.
8289 * Called with mm::mmap_sem down for reading.
8290 */
8291 static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
8292 struct mm_struct *mm)
8293 {
8294 struct vm_area_struct *vma;
8295
8296 for (vma = mm->mmap; vma; vma = vma->vm_next) {
8297 struct file *file = vma->vm_file;
8298 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8299 unsigned long vma_size = vma->vm_end - vma->vm_start;
8300
8301 if (!file)
8302 continue;
8303
8304 if (!perf_addr_filter_match(filter, file, off, vma_size))
8305 continue;
8306
8307 return vma->vm_start;
8308 }
8309
8310 return 0;
8311 }
8312
8313 /*
8314 * Update event's address range filters based on the
8315 * task's existing mappings, if any.
8316 */
8317 static void perf_event_addr_filters_apply(struct perf_event *event)
8318 {
8319 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8320 struct task_struct *task = READ_ONCE(event->ctx->task);
8321 struct perf_addr_filter *filter;
8322 struct mm_struct *mm = NULL;
8323 unsigned int count = 0;
8324 unsigned long flags;
8325
8326 /*
8327 * We may observe TASK_TOMBSTONE, which means that the event tear-down
8328 * will stop on the parent's child_mutex that our caller is also holding
8329 */
8330 if (task == TASK_TOMBSTONE)
8331 return;
8332
8333 if (!ifh->nr_file_filters)
8334 return;
8335
8336 mm = get_task_mm(event->ctx->task);
8337 if (!mm)
8338 goto restart;
8339
8340 down_read(&mm->mmap_sem);
8341
8342 raw_spin_lock_irqsave(&ifh->lock, flags);
8343 list_for_each_entry(filter, &ifh->list, entry) {
8344 event->addr_filters_offs[count] = 0;
8345
8346 /*
8347 * Adjust base offset if the filter is associated to a binary
8348 * that needs to be mapped:
8349 */
8350 if (filter->inode)
8351 event->addr_filters_offs[count] =
8352 perf_addr_filter_apply(filter, mm);
8353
8354 count++;
8355 }
8356
8357 event->addr_filters_gen++;
8358 raw_spin_unlock_irqrestore(&ifh->lock, flags);
8359
8360 up_read(&mm->mmap_sem);
8361
8362 mmput(mm);
8363
8364 restart:
8365 perf_event_stop(event, 1);
8366 }
8367
8368 /*
8369 * Address range filtering: limiting the data to certain
8370 * instruction address ranges. Filters are ioctl()ed to us from
8371 * userspace as ascii strings.
8372 *
8373 * Filter string format:
8374 *
8375 * ACTION RANGE_SPEC
8376 * where ACTION is one of the
8377 * * "filter": limit the trace to this region
8378 * * "start": start tracing from this address
8379 * * "stop": stop tracing at this address/region;
8380 * RANGE_SPEC is
8381 * * for kernel addresses: <start address>[/<size>]
8382 * * for object files: <start address>[/<size>]@</path/to/object/file>
8383 *
8384 * if <size> is not specified, the range is treated as a single address.
8385 */
8386 enum {
8387 IF_ACT_NONE = -1,
8388 IF_ACT_FILTER,
8389 IF_ACT_START,
8390 IF_ACT_STOP,
8391 IF_SRC_FILE,
8392 IF_SRC_KERNEL,
8393 IF_SRC_FILEADDR,
8394 IF_SRC_KERNELADDR,
8395 };
8396
8397 enum {
8398 IF_STATE_ACTION = 0,
8399 IF_STATE_SOURCE,
8400 IF_STATE_END,
8401 };
8402
8403 static const match_table_t if_tokens = {
8404 { IF_ACT_FILTER, "filter" },
8405 { IF_ACT_START, "start" },
8406 { IF_ACT_STOP, "stop" },
8407 { IF_SRC_FILE, "%u/%u@%s" },
8408 { IF_SRC_KERNEL, "%u/%u" },
8409 { IF_SRC_FILEADDR, "%u@%s" },
8410 { IF_SRC_KERNELADDR, "%u" },
8411 { IF_ACT_NONE, NULL },
8412 };
8413
8414 /*
8415 * Address filter string parser
8416 */
8417 static int
8418 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
8419 struct list_head *filters)
8420 {
8421 struct perf_addr_filter *filter = NULL;
8422 char *start, *orig, *filename = NULL;
8423 struct path path;
8424 substring_t args[MAX_OPT_ARGS];
8425 int state = IF_STATE_ACTION, token;
8426 unsigned int kernel = 0;
8427 int ret = -EINVAL;
8428
8429 orig = fstr = kstrdup(fstr, GFP_KERNEL);
8430 if (!fstr)
8431 return -ENOMEM;
8432
8433 while ((start = strsep(&fstr, " ,\n")) != NULL) {
8434 ret = -EINVAL;
8435
8436 if (!*start)
8437 continue;
8438
8439 /* filter definition begins */
8440 if (state == IF_STATE_ACTION) {
8441 filter = perf_addr_filter_new(event, filters);
8442 if (!filter)
8443 goto fail;
8444 }
8445
8446 token = match_token(start, if_tokens, args);
8447 switch (token) {
8448 case IF_ACT_FILTER:
8449 case IF_ACT_START:
8450 filter->filter = 1;
8451
8452 case IF_ACT_STOP:
8453 if (state != IF_STATE_ACTION)
8454 goto fail;
8455
8456 state = IF_STATE_SOURCE;
8457 break;
8458
8459 case IF_SRC_KERNELADDR:
8460 case IF_SRC_KERNEL:
8461 kernel = 1;
8462
8463 case IF_SRC_FILEADDR:
8464 case IF_SRC_FILE:
8465 if (state != IF_STATE_SOURCE)
8466 goto fail;
8467
8468 if (token == IF_SRC_FILE || token == IF_SRC_KERNEL)
8469 filter->range = 1;
8470
8471 *args[0].to = 0;
8472 ret = kstrtoul(args[0].from, 0, &filter->offset);
8473 if (ret)
8474 goto fail;
8475
8476 if (filter->range) {
8477 *args[1].to = 0;
8478 ret = kstrtoul(args[1].from, 0, &filter->size);
8479 if (ret)
8480 goto fail;
8481 }
8482
8483 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
8484 int fpos = filter->range ? 2 : 1;
8485
8486 filename = match_strdup(&args[fpos]);
8487 if (!filename) {
8488 ret = -ENOMEM;
8489 goto fail;
8490 }
8491 }
8492
8493 state = IF_STATE_END;
8494 break;
8495
8496 default:
8497 goto fail;
8498 }
8499
8500 /*
8501 * Filter definition is fully parsed, validate and install it.
8502 * Make sure that it doesn't contradict itself or the event's
8503 * attribute.
8504 */
8505 if (state == IF_STATE_END) {
8506 ret = -EINVAL;
8507 if (kernel && event->attr.exclude_kernel)
8508 goto fail;
8509
8510 if (!kernel) {
8511 if (!filename)
8512 goto fail;
8513
8514 /*
8515 * For now, we only support file-based filters
8516 * in per-task events; doing so for CPU-wide
8517 * events requires additional context switching
8518 * trickery, since same object code will be
8519 * mapped at different virtual addresses in
8520 * different processes.
8521 */
8522 ret = -EOPNOTSUPP;
8523 if (!event->ctx->task)
8524 goto fail_free_name;
8525
8526 /* look up the path and grab its inode */
8527 ret = kern_path(filename, LOOKUP_FOLLOW, &path);
8528 if (ret)
8529 goto fail_free_name;
8530
8531 filter->inode = igrab(d_inode(path.dentry));
8532 path_put(&path);
8533 kfree(filename);
8534 filename = NULL;
8535
8536 ret = -EINVAL;
8537 if (!filter->inode ||
8538 !S_ISREG(filter->inode->i_mode))
8539 /* free_filters_list() will iput() */
8540 goto fail;
8541
8542 event->addr_filters.nr_file_filters++;
8543 }
8544
8545 /* ready to consume more filters */
8546 state = IF_STATE_ACTION;
8547 filter = NULL;
8548 }
8549 }
8550
8551 if (state != IF_STATE_ACTION)
8552 goto fail;
8553
8554 kfree(orig);
8555
8556 return 0;
8557
8558 fail_free_name:
8559 kfree(filename);
8560 fail:
8561 free_filters_list(filters);
8562 kfree(orig);
8563
8564 return ret;
8565 }
8566
8567 static int
8568 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
8569 {
8570 LIST_HEAD(filters);
8571 int ret;
8572
8573 /*
8574 * Since this is called in perf_ioctl() path, we're already holding
8575 * ctx::mutex.
8576 */
8577 lockdep_assert_held(&event->ctx->mutex);
8578
8579 if (WARN_ON_ONCE(event->parent))
8580 return -EINVAL;
8581
8582 ret = perf_event_parse_addr_filter(event, filter_str, &filters);
8583 if (ret)
8584 goto fail_clear_files;
8585
8586 ret = event->pmu->addr_filters_validate(&filters);
8587 if (ret)
8588 goto fail_free_filters;
8589
8590 /* remove existing filters, if any */
8591 perf_addr_filters_splice(event, &filters);
8592
8593 /* install new filters */
8594 perf_event_for_each_child(event, perf_event_addr_filters_apply);
8595
8596 return ret;
8597
8598 fail_free_filters:
8599 free_filters_list(&filters);
8600
8601 fail_clear_files:
8602 event->addr_filters.nr_file_filters = 0;
8603
8604 return ret;
8605 }
8606
8607 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
8608 {
8609 char *filter_str;
8610 int ret = -EINVAL;
8611
8612 if ((event->attr.type != PERF_TYPE_TRACEPOINT ||
8613 !IS_ENABLED(CONFIG_EVENT_TRACING)) &&
8614 !has_addr_filter(event))
8615 return -EINVAL;
8616
8617 filter_str = strndup_user(arg, PAGE_SIZE);
8618 if (IS_ERR(filter_str))
8619 return PTR_ERR(filter_str);
8620
8621 if (IS_ENABLED(CONFIG_EVENT_TRACING) &&
8622 event->attr.type == PERF_TYPE_TRACEPOINT)
8623 ret = ftrace_profile_set_filter(event, event->attr.config,
8624 filter_str);
8625 else if (has_addr_filter(event))
8626 ret = perf_event_set_addr_filter(event, filter_str);
8627
8628 kfree(filter_str);
8629 return ret;
8630 }
8631
8632 /*
8633 * hrtimer based swevent callback
8634 */
8635
8636 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
8637 {
8638 enum hrtimer_restart ret = HRTIMER_RESTART;
8639 struct perf_sample_data data;
8640 struct pt_regs *regs;
8641 struct perf_event *event;
8642 u64 period;
8643
8644 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
8645
8646 if (event->state != PERF_EVENT_STATE_ACTIVE)
8647 return HRTIMER_NORESTART;
8648
8649 event->pmu->read(event);
8650
8651 perf_sample_data_init(&data, 0, event->hw.last_period);
8652 regs = get_irq_regs();
8653
8654 if (regs && !perf_exclude_event(event, regs)) {
8655 if (!(event->attr.exclude_idle && is_idle_task(current)))
8656 if (__perf_event_overflow(event, 1, &data, regs))
8657 ret = HRTIMER_NORESTART;
8658 }
8659
8660 period = max_t(u64, 10000, event->hw.sample_period);
8661 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
8662
8663 return ret;
8664 }
8665
8666 static void perf_swevent_start_hrtimer(struct perf_event *event)
8667 {
8668 struct hw_perf_event *hwc = &event->hw;
8669 s64 period;
8670
8671 if (!is_sampling_event(event))
8672 return;
8673
8674 period = local64_read(&hwc->period_left);
8675 if (period) {
8676 if (period < 0)
8677 period = 10000;
8678
8679 local64_set(&hwc->period_left, 0);
8680 } else {
8681 period = max_t(u64, 10000, hwc->sample_period);
8682 }
8683 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
8684 HRTIMER_MODE_REL_PINNED);
8685 }
8686
8687 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
8688 {
8689 struct hw_perf_event *hwc = &event->hw;
8690
8691 if (is_sampling_event(event)) {
8692 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
8693 local64_set(&hwc->period_left, ktime_to_ns(remaining));
8694
8695 hrtimer_cancel(&hwc->hrtimer);
8696 }
8697 }
8698
8699 static void perf_swevent_init_hrtimer(struct perf_event *event)
8700 {
8701 struct hw_perf_event *hwc = &event->hw;
8702
8703 if (!is_sampling_event(event))
8704 return;
8705
8706 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
8707 hwc->hrtimer.function = perf_swevent_hrtimer;
8708
8709 /*
8710 * Since hrtimers have a fixed rate, we can do a static freq->period
8711 * mapping and avoid the whole period adjust feedback stuff.
8712 */
8713 if (event->attr.freq) {
8714 long freq = event->attr.sample_freq;
8715
8716 event->attr.sample_period = NSEC_PER_SEC / freq;
8717 hwc->sample_period = event->attr.sample_period;
8718 local64_set(&hwc->period_left, hwc->sample_period);
8719 hwc->last_period = hwc->sample_period;
8720 event->attr.freq = 0;
8721 }
8722 }
8723
8724 /*
8725 * Software event: cpu wall time clock
8726 */
8727
8728 static void cpu_clock_event_update(struct perf_event *event)
8729 {
8730 s64 prev;
8731 u64 now;
8732
8733 now = local_clock();
8734 prev = local64_xchg(&event->hw.prev_count, now);
8735 local64_add(now - prev, &event->count);
8736 }
8737
8738 static void cpu_clock_event_start(struct perf_event *event, int flags)
8739 {
8740 local64_set(&event->hw.prev_count, local_clock());
8741 perf_swevent_start_hrtimer(event);
8742 }
8743
8744 static void cpu_clock_event_stop(struct perf_event *event, int flags)
8745 {
8746 perf_swevent_cancel_hrtimer(event);
8747 cpu_clock_event_update(event);
8748 }
8749
8750 static int cpu_clock_event_add(struct perf_event *event, int flags)
8751 {
8752 if (flags & PERF_EF_START)
8753 cpu_clock_event_start(event, flags);
8754 perf_event_update_userpage(event);
8755
8756 return 0;
8757 }
8758
8759 static void cpu_clock_event_del(struct perf_event *event, int flags)
8760 {
8761 cpu_clock_event_stop(event, flags);
8762 }
8763
8764 static void cpu_clock_event_read(struct perf_event *event)
8765 {
8766 cpu_clock_event_update(event);
8767 }
8768
8769 static int cpu_clock_event_init(struct perf_event *event)
8770 {
8771 if (event->attr.type != PERF_TYPE_SOFTWARE)
8772 return -ENOENT;
8773
8774 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
8775 return -ENOENT;
8776
8777 /*
8778 * no branch sampling for software events
8779 */
8780 if (has_branch_stack(event))
8781 return -EOPNOTSUPP;
8782
8783 perf_swevent_init_hrtimer(event);
8784
8785 return 0;
8786 }
8787
8788 static struct pmu perf_cpu_clock = {
8789 .task_ctx_nr = perf_sw_context,
8790
8791 .capabilities = PERF_PMU_CAP_NO_NMI,
8792
8793 .event_init = cpu_clock_event_init,
8794 .add = cpu_clock_event_add,
8795 .del = cpu_clock_event_del,
8796 .start = cpu_clock_event_start,
8797 .stop = cpu_clock_event_stop,
8798 .read = cpu_clock_event_read,
8799 };
8800
8801 /*
8802 * Software event: task time clock
8803 */
8804
8805 static void task_clock_event_update(struct perf_event *event, u64 now)
8806 {
8807 u64 prev;
8808 s64 delta;
8809
8810 prev = local64_xchg(&event->hw.prev_count, now);
8811 delta = now - prev;
8812 local64_add(delta, &event->count);
8813 }
8814
8815 static void task_clock_event_start(struct perf_event *event, int flags)
8816 {
8817 local64_set(&event->hw.prev_count, event->ctx->time);
8818 perf_swevent_start_hrtimer(event);
8819 }
8820
8821 static void task_clock_event_stop(struct perf_event *event, int flags)
8822 {
8823 perf_swevent_cancel_hrtimer(event);
8824 task_clock_event_update(event, event->ctx->time);
8825 }
8826
8827 static int task_clock_event_add(struct perf_event *event, int flags)
8828 {
8829 if (flags & PERF_EF_START)
8830 task_clock_event_start(event, flags);
8831 perf_event_update_userpage(event);
8832
8833 return 0;
8834 }
8835
8836 static void task_clock_event_del(struct perf_event *event, int flags)
8837 {
8838 task_clock_event_stop(event, PERF_EF_UPDATE);
8839 }
8840
8841 static void task_clock_event_read(struct perf_event *event)
8842 {
8843 u64 now = perf_clock();
8844 u64 delta = now - event->ctx->timestamp;
8845 u64 time = event->ctx->time + delta;
8846
8847 task_clock_event_update(event, time);
8848 }
8849
8850 static int task_clock_event_init(struct perf_event *event)
8851 {
8852 if (event->attr.type != PERF_TYPE_SOFTWARE)
8853 return -ENOENT;
8854
8855 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
8856 return -ENOENT;
8857
8858 /*
8859 * no branch sampling for software events
8860 */
8861 if (has_branch_stack(event))
8862 return -EOPNOTSUPP;
8863
8864 perf_swevent_init_hrtimer(event);
8865
8866 return 0;
8867 }
8868
8869 static struct pmu perf_task_clock = {
8870 .task_ctx_nr = perf_sw_context,
8871
8872 .capabilities = PERF_PMU_CAP_NO_NMI,
8873
8874 .event_init = task_clock_event_init,
8875 .add = task_clock_event_add,
8876 .del = task_clock_event_del,
8877 .start = task_clock_event_start,
8878 .stop = task_clock_event_stop,
8879 .read = task_clock_event_read,
8880 };
8881
8882 static void perf_pmu_nop_void(struct pmu *pmu)
8883 {
8884 }
8885
8886 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
8887 {
8888 }
8889
8890 static int perf_pmu_nop_int(struct pmu *pmu)
8891 {
8892 return 0;
8893 }
8894
8895 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
8896
8897 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
8898 {
8899 __this_cpu_write(nop_txn_flags, flags);
8900
8901 if (flags & ~PERF_PMU_TXN_ADD)
8902 return;
8903
8904 perf_pmu_disable(pmu);
8905 }
8906
8907 static int perf_pmu_commit_txn(struct pmu *pmu)
8908 {
8909 unsigned int flags = __this_cpu_read(nop_txn_flags);
8910
8911 __this_cpu_write(nop_txn_flags, 0);
8912
8913 if (flags & ~PERF_PMU_TXN_ADD)
8914 return 0;
8915
8916 perf_pmu_enable(pmu);
8917 return 0;
8918 }
8919
8920 static void perf_pmu_cancel_txn(struct pmu *pmu)
8921 {
8922 unsigned int flags = __this_cpu_read(nop_txn_flags);
8923
8924 __this_cpu_write(nop_txn_flags, 0);
8925
8926 if (flags & ~PERF_PMU_TXN_ADD)
8927 return;
8928
8929 perf_pmu_enable(pmu);
8930 }
8931
8932 static int perf_event_idx_default(struct perf_event *event)
8933 {
8934 return 0;
8935 }
8936
8937 /*
8938 * Ensures all contexts with the same task_ctx_nr have the same
8939 * pmu_cpu_context too.
8940 */
8941 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
8942 {
8943 struct pmu *pmu;
8944
8945 if (ctxn < 0)
8946 return NULL;
8947
8948 list_for_each_entry(pmu, &pmus, entry) {
8949 if (pmu->task_ctx_nr == ctxn)
8950 return pmu->pmu_cpu_context;
8951 }
8952
8953 return NULL;
8954 }
8955
8956 static void free_pmu_context(struct pmu *pmu)
8957 {
8958 /*
8959 * Static contexts such as perf_sw_context have a global lifetime
8960 * and may be shared between different PMUs. Avoid freeing them
8961 * when a single PMU is going away.
8962 */
8963 if (pmu->task_ctx_nr > perf_invalid_context)
8964 return;
8965
8966 mutex_lock(&pmus_lock);
8967 free_percpu(pmu->pmu_cpu_context);
8968 mutex_unlock(&pmus_lock);
8969 }
8970
8971 /*
8972 * Let userspace know that this PMU supports address range filtering:
8973 */
8974 static ssize_t nr_addr_filters_show(struct device *dev,
8975 struct device_attribute *attr,
8976 char *page)
8977 {
8978 struct pmu *pmu = dev_get_drvdata(dev);
8979
8980 return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
8981 }
8982 DEVICE_ATTR_RO(nr_addr_filters);
8983
8984 static struct idr pmu_idr;
8985
8986 static ssize_t
8987 type_show(struct device *dev, struct device_attribute *attr, char *page)
8988 {
8989 struct pmu *pmu = dev_get_drvdata(dev);
8990
8991 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
8992 }
8993 static DEVICE_ATTR_RO(type);
8994
8995 static ssize_t
8996 perf_event_mux_interval_ms_show(struct device *dev,
8997 struct device_attribute *attr,
8998 char *page)
8999 {
9000 struct pmu *pmu = dev_get_drvdata(dev);
9001
9002 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
9003 }
9004
9005 static DEFINE_MUTEX(mux_interval_mutex);
9006
9007 static ssize_t
9008 perf_event_mux_interval_ms_store(struct device *dev,
9009 struct device_attribute *attr,
9010 const char *buf, size_t count)
9011 {
9012 struct pmu *pmu = dev_get_drvdata(dev);
9013 int timer, cpu, ret;
9014
9015 ret = kstrtoint(buf, 0, &timer);
9016 if (ret)
9017 return ret;
9018
9019 if (timer < 1)
9020 return -EINVAL;
9021
9022 /* same value, noting to do */
9023 if (timer == pmu->hrtimer_interval_ms)
9024 return count;
9025
9026 mutex_lock(&mux_interval_mutex);
9027 pmu->hrtimer_interval_ms = timer;
9028
9029 /* update all cpuctx for this PMU */
9030 cpus_read_lock();
9031 for_each_online_cpu(cpu) {
9032 struct perf_cpu_context *cpuctx;
9033 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9034 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
9035
9036 cpu_function_call(cpu,
9037 (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
9038 }
9039 cpus_read_unlock();
9040 mutex_unlock(&mux_interval_mutex);
9041
9042 return count;
9043 }
9044 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
9045
9046 static struct attribute *pmu_dev_attrs[] = {
9047 &dev_attr_type.attr,
9048 &dev_attr_perf_event_mux_interval_ms.attr,
9049 NULL,
9050 };
9051 ATTRIBUTE_GROUPS(pmu_dev);
9052
9053 static int pmu_bus_running;
9054 static struct bus_type pmu_bus = {
9055 .name = "event_source",
9056 .dev_groups = pmu_dev_groups,
9057 };
9058
9059 static void pmu_dev_release(struct device *dev)
9060 {
9061 kfree(dev);
9062 }
9063
9064 static int pmu_dev_alloc(struct pmu *pmu)
9065 {
9066 int ret = -ENOMEM;
9067
9068 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
9069 if (!pmu->dev)
9070 goto out;
9071
9072 pmu->dev->groups = pmu->attr_groups;
9073 device_initialize(pmu->dev);
9074 ret = dev_set_name(pmu->dev, "%s", pmu->name);
9075 if (ret)
9076 goto free_dev;
9077
9078 dev_set_drvdata(pmu->dev, pmu);
9079 pmu->dev->bus = &pmu_bus;
9080 pmu->dev->release = pmu_dev_release;
9081 ret = device_add(pmu->dev);
9082 if (ret)
9083 goto free_dev;
9084
9085 /* For PMUs with address filters, throw in an extra attribute: */
9086 if (pmu->nr_addr_filters)
9087 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
9088
9089 if (ret)
9090 goto del_dev;
9091
9092 out:
9093 return ret;
9094
9095 del_dev:
9096 device_del(pmu->dev);
9097
9098 free_dev:
9099 put_device(pmu->dev);
9100 goto out;
9101 }
9102
9103 static struct lock_class_key cpuctx_mutex;
9104 static struct lock_class_key cpuctx_lock;
9105
9106 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
9107 {
9108 int cpu, ret;
9109
9110 mutex_lock(&pmus_lock);
9111 ret = -ENOMEM;
9112 pmu->pmu_disable_count = alloc_percpu(int);
9113 if (!pmu->pmu_disable_count)
9114 goto unlock;
9115
9116 pmu->type = -1;
9117 if (!name)
9118 goto skip_type;
9119 pmu->name = name;
9120
9121 if (type < 0) {
9122 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
9123 if (type < 0) {
9124 ret = type;
9125 goto free_pdc;
9126 }
9127 }
9128 pmu->type = type;
9129
9130 if (pmu_bus_running) {
9131 ret = pmu_dev_alloc(pmu);
9132 if (ret)
9133 goto free_idr;
9134 }
9135
9136 skip_type:
9137 if (pmu->task_ctx_nr == perf_hw_context) {
9138 static int hw_context_taken = 0;
9139
9140 /*
9141 * Other than systems with heterogeneous CPUs, it never makes
9142 * sense for two PMUs to share perf_hw_context. PMUs which are
9143 * uncore must use perf_invalid_context.
9144 */
9145 if (WARN_ON_ONCE(hw_context_taken &&
9146 !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
9147 pmu->task_ctx_nr = perf_invalid_context;
9148
9149 hw_context_taken = 1;
9150 }
9151
9152 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
9153 if (pmu->pmu_cpu_context)
9154 goto got_cpu_context;
9155
9156 ret = -ENOMEM;
9157 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
9158 if (!pmu->pmu_cpu_context)
9159 goto free_dev;
9160
9161 for_each_possible_cpu(cpu) {
9162 struct perf_cpu_context *cpuctx;
9163
9164 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9165 __perf_event_init_context(&cpuctx->ctx);
9166 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
9167 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
9168 cpuctx->ctx.pmu = pmu;
9169 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
9170
9171 __perf_mux_hrtimer_init(cpuctx, cpu);
9172 }
9173
9174 got_cpu_context:
9175 if (!pmu->start_txn) {
9176 if (pmu->pmu_enable) {
9177 /*
9178 * If we have pmu_enable/pmu_disable calls, install
9179 * transaction stubs that use that to try and batch
9180 * hardware accesses.
9181 */
9182 pmu->start_txn = perf_pmu_start_txn;
9183 pmu->commit_txn = perf_pmu_commit_txn;
9184 pmu->cancel_txn = perf_pmu_cancel_txn;
9185 } else {
9186 pmu->start_txn = perf_pmu_nop_txn;
9187 pmu->commit_txn = perf_pmu_nop_int;
9188 pmu->cancel_txn = perf_pmu_nop_void;
9189 }
9190 }
9191
9192 if (!pmu->pmu_enable) {
9193 pmu->pmu_enable = perf_pmu_nop_void;
9194 pmu->pmu_disable = perf_pmu_nop_void;
9195 }
9196
9197 if (!pmu->event_idx)
9198 pmu->event_idx = perf_event_idx_default;
9199
9200 list_add_rcu(&pmu->entry, &pmus);
9201 atomic_set(&pmu->exclusive_cnt, 0);
9202 ret = 0;
9203 unlock:
9204 mutex_unlock(&pmus_lock);
9205
9206 return ret;
9207
9208 free_dev:
9209 device_del(pmu->dev);
9210 put_device(pmu->dev);
9211
9212 free_idr:
9213 if (pmu->type >= PERF_TYPE_MAX)
9214 idr_remove(&pmu_idr, pmu->type);
9215
9216 free_pdc:
9217 free_percpu(pmu->pmu_disable_count);
9218 goto unlock;
9219 }
9220 EXPORT_SYMBOL_GPL(perf_pmu_register);
9221
9222 void perf_pmu_unregister(struct pmu *pmu)
9223 {
9224 int remove_device;
9225
9226 mutex_lock(&pmus_lock);
9227 remove_device = pmu_bus_running;
9228 list_del_rcu(&pmu->entry);
9229 mutex_unlock(&pmus_lock);
9230
9231 /*
9232 * We dereference the pmu list under both SRCU and regular RCU, so
9233 * synchronize against both of those.
9234 */
9235 synchronize_srcu(&pmus_srcu);
9236 synchronize_rcu();
9237
9238 free_percpu(pmu->pmu_disable_count);
9239 if (pmu->type >= PERF_TYPE_MAX)
9240 idr_remove(&pmu_idr, pmu->type);
9241 if (remove_device) {
9242 if (pmu->nr_addr_filters)
9243 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
9244 device_del(pmu->dev);
9245 put_device(pmu->dev);
9246 }
9247 free_pmu_context(pmu);
9248 }
9249 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
9250
9251 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
9252 {
9253 struct perf_event_context *ctx = NULL;
9254 int ret;
9255
9256 if (!try_module_get(pmu->module))
9257 return -ENODEV;
9258
9259 if (event->group_leader != event) {
9260 /*
9261 * This ctx->mutex can nest when we're called through
9262 * inheritance. See the perf_event_ctx_lock_nested() comment.
9263 */
9264 ctx = perf_event_ctx_lock_nested(event->group_leader,
9265 SINGLE_DEPTH_NESTING);
9266 BUG_ON(!ctx);
9267 }
9268
9269 event->pmu = pmu;
9270 ret = pmu->event_init(event);
9271
9272 if (ctx)
9273 perf_event_ctx_unlock(event->group_leader, ctx);
9274
9275 if (ret)
9276 module_put(pmu->module);
9277
9278 return ret;
9279 }
9280
9281 static struct pmu *perf_init_event(struct perf_event *event)
9282 {
9283 struct pmu *pmu;
9284 int idx;
9285 int ret;
9286
9287 idx = srcu_read_lock(&pmus_srcu);
9288
9289 /* Try parent's PMU first: */
9290 if (event->parent && event->parent->pmu) {
9291 pmu = event->parent->pmu;
9292 ret = perf_try_init_event(pmu, event);
9293 if (!ret)
9294 goto unlock;
9295 }
9296
9297 rcu_read_lock();
9298 pmu = idr_find(&pmu_idr, event->attr.type);
9299 rcu_read_unlock();
9300 if (pmu) {
9301 ret = perf_try_init_event(pmu, event);
9302 if (ret)
9303 pmu = ERR_PTR(ret);
9304 goto unlock;
9305 }
9306
9307 list_for_each_entry_rcu(pmu, &pmus, entry) {
9308 ret = perf_try_init_event(pmu, event);
9309 if (!ret)
9310 goto unlock;
9311
9312 if (ret != -ENOENT) {
9313 pmu = ERR_PTR(ret);
9314 goto unlock;
9315 }
9316 }
9317 pmu = ERR_PTR(-ENOENT);
9318 unlock:
9319 srcu_read_unlock(&pmus_srcu, idx);
9320
9321 return pmu;
9322 }
9323
9324 static void attach_sb_event(struct perf_event *event)
9325 {
9326 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
9327
9328 raw_spin_lock(&pel->lock);
9329 list_add_rcu(&event->sb_list, &pel->list);
9330 raw_spin_unlock(&pel->lock);
9331 }
9332
9333 /*
9334 * We keep a list of all !task (and therefore per-cpu) events
9335 * that need to receive side-band records.
9336 *
9337 * This avoids having to scan all the various PMU per-cpu contexts
9338 * looking for them.
9339 */
9340 static void account_pmu_sb_event(struct perf_event *event)
9341 {
9342 if (is_sb_event(event))
9343 attach_sb_event(event);
9344 }
9345
9346 static void account_event_cpu(struct perf_event *event, int cpu)
9347 {
9348 if (event->parent)
9349 return;
9350
9351 if (is_cgroup_event(event))
9352 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
9353 }
9354
9355 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
9356 static void account_freq_event_nohz(void)
9357 {
9358 #ifdef CONFIG_NO_HZ_FULL
9359 /* Lock so we don't race with concurrent unaccount */
9360 spin_lock(&nr_freq_lock);
9361 if (atomic_inc_return(&nr_freq_events) == 1)
9362 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
9363 spin_unlock(&nr_freq_lock);
9364 #endif
9365 }
9366
9367 static void account_freq_event(void)
9368 {
9369 if (tick_nohz_full_enabled())
9370 account_freq_event_nohz();
9371 else
9372 atomic_inc(&nr_freq_events);
9373 }
9374
9375
9376 static void account_event(struct perf_event *event)
9377 {
9378 bool inc = false;
9379
9380 if (event->parent)
9381 return;
9382
9383 if (event->attach_state & PERF_ATTACH_TASK)
9384 inc = true;
9385 if (event->attr.mmap || event->attr.mmap_data)
9386 atomic_inc(&nr_mmap_events);
9387 if (event->attr.comm)
9388 atomic_inc(&nr_comm_events);
9389 if (event->attr.namespaces)
9390 atomic_inc(&nr_namespaces_events);
9391 if (event->attr.task)
9392 atomic_inc(&nr_task_events);
9393 if (event->attr.freq)
9394 account_freq_event();
9395 if (event->attr.context_switch) {
9396 atomic_inc(&nr_switch_events);
9397 inc = true;
9398 }
9399 if (has_branch_stack(event))
9400 inc = true;
9401 if (is_cgroup_event(event))
9402 inc = true;
9403
9404 if (inc) {
9405 if (atomic_inc_not_zero(&perf_sched_count))
9406 goto enabled;
9407
9408 mutex_lock(&perf_sched_mutex);
9409 if (!atomic_read(&perf_sched_count)) {
9410 static_branch_enable(&perf_sched_events);
9411 /*
9412 * Guarantee that all CPUs observe they key change and
9413 * call the perf scheduling hooks before proceeding to
9414 * install events that need them.
9415 */
9416 synchronize_sched();
9417 }
9418 /*
9419 * Now that we have waited for the sync_sched(), allow further
9420 * increments to by-pass the mutex.
9421 */
9422 atomic_inc(&perf_sched_count);
9423 mutex_unlock(&perf_sched_mutex);
9424 }
9425 enabled:
9426
9427 account_event_cpu(event, event->cpu);
9428
9429 account_pmu_sb_event(event);
9430 }
9431
9432 /*
9433 * Allocate and initialize a event structure
9434 */
9435 static struct perf_event *
9436 perf_event_alloc(struct perf_event_attr *attr, int cpu,
9437 struct task_struct *task,
9438 struct perf_event *group_leader,
9439 struct perf_event *parent_event,
9440 perf_overflow_handler_t overflow_handler,
9441 void *context, int cgroup_fd)
9442 {
9443 struct pmu *pmu;
9444 struct perf_event *event;
9445 struct hw_perf_event *hwc;
9446 long err = -EINVAL;
9447
9448 if ((unsigned)cpu >= nr_cpu_ids) {
9449 if (!task || cpu != -1)
9450 return ERR_PTR(-EINVAL);
9451 }
9452
9453 event = kzalloc(sizeof(*event), GFP_KERNEL);
9454 if (!event)
9455 return ERR_PTR(-ENOMEM);
9456
9457 /*
9458 * Single events are their own group leaders, with an
9459 * empty sibling list:
9460 */
9461 if (!group_leader)
9462 group_leader = event;
9463
9464 mutex_init(&event->child_mutex);
9465 INIT_LIST_HEAD(&event->child_list);
9466
9467 INIT_LIST_HEAD(&event->group_entry);
9468 INIT_LIST_HEAD(&event->event_entry);
9469 INIT_LIST_HEAD(&event->sibling_list);
9470 INIT_LIST_HEAD(&event->rb_entry);
9471 INIT_LIST_HEAD(&event->active_entry);
9472 INIT_LIST_HEAD(&event->addr_filters.list);
9473 INIT_HLIST_NODE(&event->hlist_entry);
9474
9475
9476 init_waitqueue_head(&event->waitq);
9477 init_irq_work(&event->pending, perf_pending_event);
9478
9479 mutex_init(&event->mmap_mutex);
9480 raw_spin_lock_init(&event->addr_filters.lock);
9481
9482 atomic_long_set(&event->refcount, 1);
9483 event->cpu = cpu;
9484 event->attr = *attr;
9485 event->group_leader = group_leader;
9486 event->pmu = NULL;
9487 event->oncpu = -1;
9488
9489 event->parent = parent_event;
9490
9491 event->ns = get_pid_ns(task_active_pid_ns(current));
9492 event->id = atomic64_inc_return(&perf_event_id);
9493
9494 event->state = PERF_EVENT_STATE_INACTIVE;
9495
9496 if (task) {
9497 event->attach_state = PERF_ATTACH_TASK;
9498 /*
9499 * XXX pmu::event_init needs to know what task to account to
9500 * and we cannot use the ctx information because we need the
9501 * pmu before we get a ctx.
9502 */
9503 event->hw.target = task;
9504 }
9505
9506 event->clock = &local_clock;
9507 if (parent_event)
9508 event->clock = parent_event->clock;
9509
9510 if (!overflow_handler && parent_event) {
9511 overflow_handler = parent_event->overflow_handler;
9512 context = parent_event->overflow_handler_context;
9513 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
9514 if (overflow_handler == bpf_overflow_handler) {
9515 struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
9516
9517 if (IS_ERR(prog)) {
9518 err = PTR_ERR(prog);
9519 goto err_ns;
9520 }
9521 event->prog = prog;
9522 event->orig_overflow_handler =
9523 parent_event->orig_overflow_handler;
9524 }
9525 #endif
9526 }
9527
9528 if (overflow_handler) {
9529 event->overflow_handler = overflow_handler;
9530 event->overflow_handler_context = context;
9531 } else if (is_write_backward(event)){
9532 event->overflow_handler = perf_event_output_backward;
9533 event->overflow_handler_context = NULL;
9534 } else {
9535 event->overflow_handler = perf_event_output_forward;
9536 event->overflow_handler_context = NULL;
9537 }
9538
9539 perf_event__state_init(event);
9540
9541 pmu = NULL;
9542
9543 hwc = &event->hw;
9544 hwc->sample_period = attr->sample_period;
9545 if (attr->freq && attr->sample_freq)
9546 hwc->sample_period = 1;
9547 hwc->last_period = hwc->sample_period;
9548
9549 local64_set(&hwc->period_left, hwc->sample_period);
9550
9551 /*
9552 * We currently do not support PERF_SAMPLE_READ on inherited events.
9553 * See perf_output_read().
9554 */
9555 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
9556 goto err_ns;
9557
9558 if (!has_branch_stack(event))
9559 event->attr.branch_sample_type = 0;
9560
9561 if (cgroup_fd != -1) {
9562 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
9563 if (err)
9564 goto err_ns;
9565 }
9566
9567 pmu = perf_init_event(event);
9568 if (IS_ERR(pmu)) {
9569 err = PTR_ERR(pmu);
9570 goto err_ns;
9571 }
9572
9573 err = exclusive_event_init(event);
9574 if (err)
9575 goto err_pmu;
9576
9577 if (has_addr_filter(event)) {
9578 event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
9579 sizeof(unsigned long),
9580 GFP_KERNEL);
9581 if (!event->addr_filters_offs) {
9582 err = -ENOMEM;
9583 goto err_per_task;
9584 }
9585
9586 /* force hw sync on the address filters */
9587 event->addr_filters_gen = 1;
9588 }
9589
9590 if (!event->parent) {
9591 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
9592 err = get_callchain_buffers(attr->sample_max_stack);
9593 if (err)
9594 goto err_addr_filters;
9595 }
9596 }
9597
9598 /* symmetric to unaccount_event() in _free_event() */
9599 account_event(event);
9600
9601 return event;
9602
9603 err_addr_filters:
9604 kfree(event->addr_filters_offs);
9605
9606 err_per_task:
9607 exclusive_event_destroy(event);
9608
9609 err_pmu:
9610 if (event->destroy)
9611 event->destroy(event);
9612 module_put(pmu->module);
9613 err_ns:
9614 if (is_cgroup_event(event))
9615 perf_detach_cgroup(event);
9616 if (event->ns)
9617 put_pid_ns(event->ns);
9618 kfree(event);
9619
9620 return ERR_PTR(err);
9621 }
9622
9623 static int perf_copy_attr(struct perf_event_attr __user *uattr,
9624 struct perf_event_attr *attr)
9625 {
9626 u32 size;
9627 int ret;
9628
9629 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
9630 return -EFAULT;
9631
9632 /*
9633 * zero the full structure, so that a short copy will be nice.
9634 */
9635 memset(attr, 0, sizeof(*attr));
9636
9637 ret = get_user(size, &uattr->size);
9638 if (ret)
9639 return ret;
9640
9641 if (size > PAGE_SIZE) /* silly large */
9642 goto err_size;
9643
9644 if (!size) /* abi compat */
9645 size = PERF_ATTR_SIZE_VER0;
9646
9647 if (size < PERF_ATTR_SIZE_VER0)
9648 goto err_size;
9649
9650 /*
9651 * If we're handed a bigger struct than we know of,
9652 * ensure all the unknown bits are 0 - i.e. new
9653 * user-space does not rely on any kernel feature
9654 * extensions we dont know about yet.
9655 */
9656 if (size > sizeof(*attr)) {
9657 unsigned char __user *addr;
9658 unsigned char __user *end;
9659 unsigned char val;
9660
9661 addr = (void __user *)uattr + sizeof(*attr);
9662 end = (void __user *)uattr + size;
9663
9664 for (; addr < end; addr++) {
9665 ret = get_user(val, addr);
9666 if (ret)
9667 return ret;
9668 if (val)
9669 goto err_size;
9670 }
9671 size = sizeof(*attr);
9672 }
9673
9674 ret = copy_from_user(attr, uattr, size);
9675 if (ret)
9676 return -EFAULT;
9677
9678 attr->size = size;
9679
9680 if (attr->__reserved_1)
9681 return -EINVAL;
9682
9683 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
9684 return -EINVAL;
9685
9686 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
9687 return -EINVAL;
9688
9689 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
9690 u64 mask = attr->branch_sample_type;
9691
9692 /* only using defined bits */
9693 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
9694 return -EINVAL;
9695
9696 /* at least one branch bit must be set */
9697 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
9698 return -EINVAL;
9699
9700 /* propagate priv level, when not set for branch */
9701 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
9702
9703 /* exclude_kernel checked on syscall entry */
9704 if (!attr->exclude_kernel)
9705 mask |= PERF_SAMPLE_BRANCH_KERNEL;
9706
9707 if (!attr->exclude_user)
9708 mask |= PERF_SAMPLE_BRANCH_USER;
9709
9710 if (!attr->exclude_hv)
9711 mask |= PERF_SAMPLE_BRANCH_HV;
9712 /*
9713 * adjust user setting (for HW filter setup)
9714 */
9715 attr->branch_sample_type = mask;
9716 }
9717 /* privileged levels capture (kernel, hv): check permissions */
9718 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
9719 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9720 return -EACCES;
9721 }
9722
9723 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
9724 ret = perf_reg_validate(attr->sample_regs_user);
9725 if (ret)
9726 return ret;
9727 }
9728
9729 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
9730 if (!arch_perf_have_user_stack_dump())
9731 return -ENOSYS;
9732
9733 /*
9734 * We have __u32 type for the size, but so far
9735 * we can only use __u16 as maximum due to the
9736 * __u16 sample size limit.
9737 */
9738 if (attr->sample_stack_user >= USHRT_MAX)
9739 ret = -EINVAL;
9740 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
9741 ret = -EINVAL;
9742 }
9743
9744 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
9745 ret = perf_reg_validate(attr->sample_regs_intr);
9746 out:
9747 return ret;
9748
9749 err_size:
9750 put_user(sizeof(*attr), &uattr->size);
9751 ret = -E2BIG;
9752 goto out;
9753 }
9754
9755 static int
9756 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
9757 {
9758 struct ring_buffer *rb = NULL;
9759 int ret = -EINVAL;
9760
9761 if (!output_event)
9762 goto set;
9763
9764 /* don't allow circular references */
9765 if (event == output_event)
9766 goto out;
9767
9768 /*
9769 * Don't allow cross-cpu buffers
9770 */
9771 if (output_event->cpu != event->cpu)
9772 goto out;
9773
9774 /*
9775 * If its not a per-cpu rb, it must be the same task.
9776 */
9777 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
9778 goto out;
9779
9780 /*
9781 * Mixing clocks in the same buffer is trouble you don't need.
9782 */
9783 if (output_event->clock != event->clock)
9784 goto out;
9785
9786 /*
9787 * Either writing ring buffer from beginning or from end.
9788 * Mixing is not allowed.
9789 */
9790 if (is_write_backward(output_event) != is_write_backward(event))
9791 goto out;
9792
9793 /*
9794 * If both events generate aux data, they must be on the same PMU
9795 */
9796 if (has_aux(event) && has_aux(output_event) &&
9797 event->pmu != output_event->pmu)
9798 goto out;
9799
9800 set:
9801 mutex_lock(&event->mmap_mutex);
9802 /* Can't redirect output if we've got an active mmap() */
9803 if (atomic_read(&event->mmap_count))
9804 goto unlock;
9805
9806 if (output_event) {
9807 /* get the rb we want to redirect to */
9808 rb = ring_buffer_get(output_event);
9809 if (!rb)
9810 goto unlock;
9811 }
9812
9813 ring_buffer_attach(event, rb);
9814
9815 ret = 0;
9816 unlock:
9817 mutex_unlock(&event->mmap_mutex);
9818
9819 out:
9820 return ret;
9821 }
9822
9823 static void mutex_lock_double(struct mutex *a, struct mutex *b)
9824 {
9825 if (b < a)
9826 swap(a, b);
9827
9828 mutex_lock(a);
9829 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
9830 }
9831
9832 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
9833 {
9834 bool nmi_safe = false;
9835
9836 switch (clk_id) {
9837 case CLOCK_MONOTONIC:
9838 event->clock = &ktime_get_mono_fast_ns;
9839 nmi_safe = true;
9840 break;
9841
9842 case CLOCK_MONOTONIC_RAW:
9843 event->clock = &ktime_get_raw_fast_ns;
9844 nmi_safe = true;
9845 break;
9846
9847 case CLOCK_REALTIME:
9848 event->clock = &ktime_get_real_ns;
9849 break;
9850
9851 case CLOCK_BOOTTIME:
9852 event->clock = &ktime_get_boot_ns;
9853 break;
9854
9855 case CLOCK_TAI:
9856 event->clock = &ktime_get_tai_ns;
9857 break;
9858
9859 default:
9860 return -EINVAL;
9861 }
9862
9863 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
9864 return -EINVAL;
9865
9866 return 0;
9867 }
9868
9869 /*
9870 * Variation on perf_event_ctx_lock_nested(), except we take two context
9871 * mutexes.
9872 */
9873 static struct perf_event_context *
9874 __perf_event_ctx_lock_double(struct perf_event *group_leader,
9875 struct perf_event_context *ctx)
9876 {
9877 struct perf_event_context *gctx;
9878
9879 again:
9880 rcu_read_lock();
9881 gctx = READ_ONCE(group_leader->ctx);
9882 if (!atomic_inc_not_zero(&gctx->refcount)) {
9883 rcu_read_unlock();
9884 goto again;
9885 }
9886 rcu_read_unlock();
9887
9888 mutex_lock_double(&gctx->mutex, &ctx->mutex);
9889
9890 if (group_leader->ctx != gctx) {
9891 mutex_unlock(&ctx->mutex);
9892 mutex_unlock(&gctx->mutex);
9893 put_ctx(gctx);
9894 goto again;
9895 }
9896
9897 return gctx;
9898 }
9899
9900 /**
9901 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9902 *
9903 * @attr_uptr: event_id type attributes for monitoring/sampling
9904 * @pid: target pid
9905 * @cpu: target cpu
9906 * @group_fd: group leader event fd
9907 */
9908 SYSCALL_DEFINE5(perf_event_open,
9909 struct perf_event_attr __user *, attr_uptr,
9910 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
9911 {
9912 struct perf_event *group_leader = NULL, *output_event = NULL;
9913 struct perf_event *event, *sibling;
9914 struct perf_event_attr attr;
9915 struct perf_event_context *ctx, *uninitialized_var(gctx);
9916 struct file *event_file = NULL;
9917 struct fd group = {NULL, 0};
9918 struct task_struct *task = NULL;
9919 struct pmu *pmu;
9920 int event_fd;
9921 int move_group = 0;
9922 int err;
9923 int f_flags = O_RDWR;
9924 int cgroup_fd = -1;
9925
9926 /* for future expandability... */
9927 if (flags & ~PERF_FLAG_ALL)
9928 return -EINVAL;
9929
9930 err = perf_copy_attr(attr_uptr, &attr);
9931 if (err)
9932 return err;
9933
9934 if (!attr.exclude_kernel) {
9935 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9936 return -EACCES;
9937 }
9938
9939 if (attr.namespaces) {
9940 if (!capable(CAP_SYS_ADMIN))
9941 return -EACCES;
9942 }
9943
9944 if (attr.freq) {
9945 if (attr.sample_freq > sysctl_perf_event_sample_rate)
9946 return -EINVAL;
9947 } else {
9948 if (attr.sample_period & (1ULL << 63))
9949 return -EINVAL;
9950 }
9951
9952 /* Only privileged users can get physical addresses */
9953 if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR) &&
9954 perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9955 return -EACCES;
9956
9957 if (!attr.sample_max_stack)
9958 attr.sample_max_stack = sysctl_perf_event_max_stack;
9959
9960 /*
9961 * In cgroup mode, the pid argument is used to pass the fd
9962 * opened to the cgroup directory in cgroupfs. The cpu argument
9963 * designates the cpu on which to monitor threads from that
9964 * cgroup.
9965 */
9966 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
9967 return -EINVAL;
9968
9969 if (flags & PERF_FLAG_FD_CLOEXEC)
9970 f_flags |= O_CLOEXEC;
9971
9972 event_fd = get_unused_fd_flags(f_flags);
9973 if (event_fd < 0)
9974 return event_fd;
9975
9976 if (group_fd != -1) {
9977 err = perf_fget_light(group_fd, &group);
9978 if (err)
9979 goto err_fd;
9980 group_leader = group.file->private_data;
9981 if (flags & PERF_FLAG_FD_OUTPUT)
9982 output_event = group_leader;
9983 if (flags & PERF_FLAG_FD_NO_GROUP)
9984 group_leader = NULL;
9985 }
9986
9987 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
9988 task = find_lively_task_by_vpid(pid);
9989 if (IS_ERR(task)) {
9990 err = PTR_ERR(task);
9991 goto err_group_fd;
9992 }
9993 }
9994
9995 if (task && group_leader &&
9996 group_leader->attr.inherit != attr.inherit) {
9997 err = -EINVAL;
9998 goto err_task;
9999 }
10000
10001 if (task) {
10002 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
10003 if (err)
10004 goto err_task;
10005
10006 /*
10007 * Reuse ptrace permission checks for now.
10008 *
10009 * We must hold cred_guard_mutex across this and any potential
10010 * perf_install_in_context() call for this new event to
10011 * serialize against exec() altering our credentials (and the
10012 * perf_event_exit_task() that could imply).
10013 */
10014 err = -EACCES;
10015 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
10016 goto err_cred;
10017 }
10018
10019 if (flags & PERF_FLAG_PID_CGROUP)
10020 cgroup_fd = pid;
10021
10022 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
10023 NULL, NULL, cgroup_fd);
10024 if (IS_ERR(event)) {
10025 err = PTR_ERR(event);
10026 goto err_cred;
10027 }
10028
10029 if (is_sampling_event(event)) {
10030 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
10031 err = -EOPNOTSUPP;
10032 goto err_alloc;
10033 }
10034 }
10035
10036 /*
10037 * Special case software events and allow them to be part of
10038 * any hardware group.
10039 */
10040 pmu = event->pmu;
10041
10042 if (attr.use_clockid) {
10043 err = perf_event_set_clock(event, attr.clockid);
10044 if (err)
10045 goto err_alloc;
10046 }
10047
10048 if (pmu->task_ctx_nr == perf_sw_context)
10049 event->event_caps |= PERF_EV_CAP_SOFTWARE;
10050
10051 if (group_leader &&
10052 (is_software_event(event) != is_software_event(group_leader))) {
10053 if (is_software_event(event)) {
10054 /*
10055 * If event and group_leader are not both a software
10056 * event, and event is, then group leader is not.
10057 *
10058 * Allow the addition of software events to !software
10059 * groups, this is safe because software events never
10060 * fail to schedule.
10061 */
10062 pmu = group_leader->pmu;
10063 } else if (is_software_event(group_leader) &&
10064 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10065 /*
10066 * In case the group is a pure software group, and we
10067 * try to add a hardware event, move the whole group to
10068 * the hardware context.
10069 */
10070 move_group = 1;
10071 }
10072 }
10073
10074 /*
10075 * Get the target context (task or percpu):
10076 */
10077 ctx = find_get_context(pmu, task, event);
10078 if (IS_ERR(ctx)) {
10079 err = PTR_ERR(ctx);
10080 goto err_alloc;
10081 }
10082
10083 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
10084 err = -EBUSY;
10085 goto err_context;
10086 }
10087
10088 /*
10089 * Look up the group leader (we will attach this event to it):
10090 */
10091 if (group_leader) {
10092 err = -EINVAL;
10093
10094 /*
10095 * Do not allow a recursive hierarchy (this new sibling
10096 * becoming part of another group-sibling):
10097 */
10098 if (group_leader->group_leader != group_leader)
10099 goto err_context;
10100
10101 /* All events in a group should have the same clock */
10102 if (group_leader->clock != event->clock)
10103 goto err_context;
10104
10105 /*
10106 * Make sure we're both events for the same CPU;
10107 * grouping events for different CPUs is broken; since
10108 * you can never concurrently schedule them anyhow.
10109 */
10110 if (group_leader->cpu != event->cpu)
10111 goto err_context;
10112
10113 /*
10114 * Make sure we're both on the same task, or both
10115 * per-CPU events.
10116 */
10117 if (group_leader->ctx->task != ctx->task)
10118 goto err_context;
10119
10120 /*
10121 * Do not allow to attach to a group in a different task
10122 * or CPU context. If we're moving SW events, we'll fix
10123 * this up later, so allow that.
10124 */
10125 if (!move_group && group_leader->ctx != ctx)
10126 goto err_context;
10127
10128 /*
10129 * Only a group leader can be exclusive or pinned
10130 */
10131 if (attr.exclusive || attr.pinned)
10132 goto err_context;
10133 }
10134
10135 if (output_event) {
10136 err = perf_event_set_output(event, output_event);
10137 if (err)
10138 goto err_context;
10139 }
10140
10141 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
10142 f_flags);
10143 if (IS_ERR(event_file)) {
10144 err = PTR_ERR(event_file);
10145 event_file = NULL;
10146 goto err_context;
10147 }
10148
10149 if (move_group) {
10150 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
10151
10152 if (gctx->task == TASK_TOMBSTONE) {
10153 err = -ESRCH;
10154 goto err_locked;
10155 }
10156
10157 /*
10158 * Check if we raced against another sys_perf_event_open() call
10159 * moving the software group underneath us.
10160 */
10161 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10162 /*
10163 * If someone moved the group out from under us, check
10164 * if this new event wound up on the same ctx, if so
10165 * its the regular !move_group case, otherwise fail.
10166 */
10167 if (gctx != ctx) {
10168 err = -EINVAL;
10169 goto err_locked;
10170 } else {
10171 perf_event_ctx_unlock(group_leader, gctx);
10172 move_group = 0;
10173 }
10174 }
10175 } else {
10176 mutex_lock(&ctx->mutex);
10177 }
10178
10179 if (ctx->task == TASK_TOMBSTONE) {
10180 err = -ESRCH;
10181 goto err_locked;
10182 }
10183
10184 if (!perf_event_validate_size(event)) {
10185 err = -E2BIG;
10186 goto err_locked;
10187 }
10188
10189 if (!task) {
10190 /*
10191 * Check if the @cpu we're creating an event for is online.
10192 *
10193 * We use the perf_cpu_context::ctx::mutex to serialize against
10194 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10195 */
10196 struct perf_cpu_context *cpuctx =
10197 container_of(ctx, struct perf_cpu_context, ctx);
10198
10199 if (!cpuctx->online) {
10200 err = -ENODEV;
10201 goto err_locked;
10202 }
10203 }
10204
10205
10206 /*
10207 * Must be under the same ctx::mutex as perf_install_in_context(),
10208 * because we need to serialize with concurrent event creation.
10209 */
10210 if (!exclusive_event_installable(event, ctx)) {
10211 /* exclusive and group stuff are assumed mutually exclusive */
10212 WARN_ON_ONCE(move_group);
10213
10214 err = -EBUSY;
10215 goto err_locked;
10216 }
10217
10218 WARN_ON_ONCE(ctx->parent_ctx);
10219
10220 /*
10221 * This is the point on no return; we cannot fail hereafter. This is
10222 * where we start modifying current state.
10223 */
10224
10225 if (move_group) {
10226 /*
10227 * See perf_event_ctx_lock() for comments on the details
10228 * of swizzling perf_event::ctx.
10229 */
10230 perf_remove_from_context(group_leader, 0);
10231 put_ctx(gctx);
10232
10233 list_for_each_entry(sibling, &group_leader->sibling_list,
10234 group_entry) {
10235 perf_remove_from_context(sibling, 0);
10236 put_ctx(gctx);
10237 }
10238
10239 /*
10240 * Wait for everybody to stop referencing the events through
10241 * the old lists, before installing it on new lists.
10242 */
10243 synchronize_rcu();
10244
10245 /*
10246 * Install the group siblings before the group leader.
10247 *
10248 * Because a group leader will try and install the entire group
10249 * (through the sibling list, which is still in-tact), we can
10250 * end up with siblings installed in the wrong context.
10251 *
10252 * By installing siblings first we NO-OP because they're not
10253 * reachable through the group lists.
10254 */
10255 list_for_each_entry(sibling, &group_leader->sibling_list,
10256 group_entry) {
10257 perf_event__state_init(sibling);
10258 perf_install_in_context(ctx, sibling, sibling->cpu);
10259 get_ctx(ctx);
10260 }
10261
10262 /*
10263 * Removing from the context ends up with disabled
10264 * event. What we want here is event in the initial
10265 * startup state, ready to be add into new context.
10266 */
10267 perf_event__state_init(group_leader);
10268 perf_install_in_context(ctx, group_leader, group_leader->cpu);
10269 get_ctx(ctx);
10270 }
10271
10272 /*
10273 * Precalculate sample_data sizes; do while holding ctx::mutex such
10274 * that we're serialized against further additions and before
10275 * perf_install_in_context() which is the point the event is active and
10276 * can use these values.
10277 */
10278 perf_event__header_size(event);
10279 perf_event__id_header_size(event);
10280
10281 event->owner = current;
10282
10283 perf_install_in_context(ctx, event, event->cpu);
10284 perf_unpin_context(ctx);
10285
10286 if (move_group)
10287 perf_event_ctx_unlock(group_leader, gctx);
10288 mutex_unlock(&ctx->mutex);
10289
10290 if (task) {
10291 mutex_unlock(&task->signal->cred_guard_mutex);
10292 put_task_struct(task);
10293 }
10294
10295 mutex_lock(&current->perf_event_mutex);
10296 list_add_tail(&event->owner_entry, &current->perf_event_list);
10297 mutex_unlock(&current->perf_event_mutex);
10298
10299 /*
10300 * Drop the reference on the group_event after placing the
10301 * new event on the sibling_list. This ensures destruction
10302 * of the group leader will find the pointer to itself in
10303 * perf_group_detach().
10304 */
10305 fdput(group);
10306 fd_install(event_fd, event_file);
10307 return event_fd;
10308
10309 err_locked:
10310 if (move_group)
10311 perf_event_ctx_unlock(group_leader, gctx);
10312 mutex_unlock(&ctx->mutex);
10313 /* err_file: */
10314 fput(event_file);
10315 err_context:
10316 perf_unpin_context(ctx);
10317 put_ctx(ctx);
10318 err_alloc:
10319 /*
10320 * If event_file is set, the fput() above will have called ->release()
10321 * and that will take care of freeing the event.
10322 */
10323 if (!event_file)
10324 free_event(event);
10325 err_cred:
10326 if (task)
10327 mutex_unlock(&task->signal->cred_guard_mutex);
10328 err_task:
10329 if (task)
10330 put_task_struct(task);
10331 err_group_fd:
10332 fdput(group);
10333 err_fd:
10334 put_unused_fd(event_fd);
10335 return err;
10336 }
10337
10338 /**
10339 * perf_event_create_kernel_counter
10340 *
10341 * @attr: attributes of the counter to create
10342 * @cpu: cpu in which the counter is bound
10343 * @task: task to profile (NULL for percpu)
10344 */
10345 struct perf_event *
10346 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
10347 struct task_struct *task,
10348 perf_overflow_handler_t overflow_handler,
10349 void *context)
10350 {
10351 struct perf_event_context *ctx;
10352 struct perf_event *event;
10353 int err;
10354
10355 /*
10356 * Get the target context (task or percpu):
10357 */
10358
10359 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
10360 overflow_handler, context, -1);
10361 if (IS_ERR(event)) {
10362 err = PTR_ERR(event);
10363 goto err;
10364 }
10365
10366 /* Mark owner so we could distinguish it from user events. */
10367 event->owner = TASK_TOMBSTONE;
10368
10369 ctx = find_get_context(event->pmu, task, event);
10370 if (IS_ERR(ctx)) {
10371 err = PTR_ERR(ctx);
10372 goto err_free;
10373 }
10374
10375 WARN_ON_ONCE(ctx->parent_ctx);
10376 mutex_lock(&ctx->mutex);
10377 if (ctx->task == TASK_TOMBSTONE) {
10378 err = -ESRCH;
10379 goto err_unlock;
10380 }
10381
10382 if (!task) {
10383 /*
10384 * Check if the @cpu we're creating an event for is online.
10385 *
10386 * We use the perf_cpu_context::ctx::mutex to serialize against
10387 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10388 */
10389 struct perf_cpu_context *cpuctx =
10390 container_of(ctx, struct perf_cpu_context, ctx);
10391 if (!cpuctx->online) {
10392 err = -ENODEV;
10393 goto err_unlock;
10394 }
10395 }
10396
10397 if (!exclusive_event_installable(event, ctx)) {
10398 err = -EBUSY;
10399 goto err_unlock;
10400 }
10401
10402 perf_install_in_context(ctx, event, cpu);
10403 perf_unpin_context(ctx);
10404 mutex_unlock(&ctx->mutex);
10405
10406 return event;
10407
10408 err_unlock:
10409 mutex_unlock(&ctx->mutex);
10410 perf_unpin_context(ctx);
10411 put_ctx(ctx);
10412 err_free:
10413 free_event(event);
10414 err:
10415 return ERR_PTR(err);
10416 }
10417 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
10418
10419 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
10420 {
10421 struct perf_event_context *src_ctx;
10422 struct perf_event_context *dst_ctx;
10423 struct perf_event *event, *tmp;
10424 LIST_HEAD(events);
10425
10426 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
10427 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
10428
10429 /*
10430 * See perf_event_ctx_lock() for comments on the details
10431 * of swizzling perf_event::ctx.
10432 */
10433 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
10434 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
10435 event_entry) {
10436 perf_remove_from_context(event, 0);
10437 unaccount_event_cpu(event, src_cpu);
10438 put_ctx(src_ctx);
10439 list_add(&event->migrate_entry, &events);
10440 }
10441
10442 /*
10443 * Wait for the events to quiesce before re-instating them.
10444 */
10445 synchronize_rcu();
10446
10447 /*
10448 * Re-instate events in 2 passes.
10449 *
10450 * Skip over group leaders and only install siblings on this first
10451 * pass, siblings will not get enabled without a leader, however a
10452 * leader will enable its siblings, even if those are still on the old
10453 * context.
10454 */
10455 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10456 if (event->group_leader == event)
10457 continue;
10458
10459 list_del(&event->migrate_entry);
10460 if (event->state >= PERF_EVENT_STATE_OFF)
10461 event->state = PERF_EVENT_STATE_INACTIVE;
10462 account_event_cpu(event, dst_cpu);
10463 perf_install_in_context(dst_ctx, event, dst_cpu);
10464 get_ctx(dst_ctx);
10465 }
10466
10467 /*
10468 * Once all the siblings are setup properly, install the group leaders
10469 * to make it go.
10470 */
10471 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10472 list_del(&event->migrate_entry);
10473 if (event->state >= PERF_EVENT_STATE_OFF)
10474 event->state = PERF_EVENT_STATE_INACTIVE;
10475 account_event_cpu(event, dst_cpu);
10476 perf_install_in_context(dst_ctx, event, dst_cpu);
10477 get_ctx(dst_ctx);
10478 }
10479 mutex_unlock(&dst_ctx->mutex);
10480 mutex_unlock(&src_ctx->mutex);
10481 }
10482 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
10483
10484 static void sync_child_event(struct perf_event *child_event,
10485 struct task_struct *child)
10486 {
10487 struct perf_event *parent_event = child_event->parent;
10488 u64 child_val;
10489
10490 if (child_event->attr.inherit_stat)
10491 perf_event_read_event(child_event, child);
10492
10493 child_val = perf_event_count(child_event);
10494
10495 /*
10496 * Add back the child's count to the parent's count:
10497 */
10498 atomic64_add(child_val, &parent_event->child_count);
10499 atomic64_add(child_event->total_time_enabled,
10500 &parent_event->child_total_time_enabled);
10501 atomic64_add(child_event->total_time_running,
10502 &parent_event->child_total_time_running);
10503 }
10504
10505 static void
10506 perf_event_exit_event(struct perf_event *child_event,
10507 struct perf_event_context *child_ctx,
10508 struct task_struct *child)
10509 {
10510 struct perf_event *parent_event = child_event->parent;
10511
10512 /*
10513 * Do not destroy the 'original' grouping; because of the context
10514 * switch optimization the original events could've ended up in a
10515 * random child task.
10516 *
10517 * If we were to destroy the original group, all group related
10518 * operations would cease to function properly after this random
10519 * child dies.
10520 *
10521 * Do destroy all inherited groups, we don't care about those
10522 * and being thorough is better.
10523 */
10524 raw_spin_lock_irq(&child_ctx->lock);
10525 WARN_ON_ONCE(child_ctx->is_active);
10526
10527 if (parent_event)
10528 perf_group_detach(child_event);
10529 list_del_event(child_event, child_ctx);
10530 child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */
10531 raw_spin_unlock_irq(&child_ctx->lock);
10532
10533 /*
10534 * Parent events are governed by their filedesc, retain them.
10535 */
10536 if (!parent_event) {
10537 perf_event_wakeup(child_event);
10538 return;
10539 }
10540 /*
10541 * Child events can be cleaned up.
10542 */
10543
10544 sync_child_event(child_event, child);
10545
10546 /*
10547 * Remove this event from the parent's list
10548 */
10549 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
10550 mutex_lock(&parent_event->child_mutex);
10551 list_del_init(&child_event->child_list);
10552 mutex_unlock(&parent_event->child_mutex);
10553
10554 /*
10555 * Kick perf_poll() for is_event_hup().
10556 */
10557 perf_event_wakeup(parent_event);
10558 free_event(child_event);
10559 put_event(parent_event);
10560 }
10561
10562 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
10563 {
10564 struct perf_event_context *child_ctx, *clone_ctx = NULL;
10565 struct perf_event *child_event, *next;
10566
10567 WARN_ON_ONCE(child != current);
10568
10569 child_ctx = perf_pin_task_context(child, ctxn);
10570 if (!child_ctx)
10571 return;
10572
10573 /*
10574 * In order to reduce the amount of tricky in ctx tear-down, we hold
10575 * ctx::mutex over the entire thing. This serializes against almost
10576 * everything that wants to access the ctx.
10577 *
10578 * The exception is sys_perf_event_open() /
10579 * perf_event_create_kernel_count() which does find_get_context()
10580 * without ctx::mutex (it cannot because of the move_group double mutex
10581 * lock thing). See the comments in perf_install_in_context().
10582 */
10583 mutex_lock(&child_ctx->mutex);
10584
10585 /*
10586 * In a single ctx::lock section, de-schedule the events and detach the
10587 * context from the task such that we cannot ever get it scheduled back
10588 * in.
10589 */
10590 raw_spin_lock_irq(&child_ctx->lock);
10591 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
10592
10593 /*
10594 * Now that the context is inactive, destroy the task <-> ctx relation
10595 * and mark the context dead.
10596 */
10597 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
10598 put_ctx(child_ctx); /* cannot be last */
10599 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
10600 put_task_struct(current); /* cannot be last */
10601
10602 clone_ctx = unclone_ctx(child_ctx);
10603 raw_spin_unlock_irq(&child_ctx->lock);
10604
10605 if (clone_ctx)
10606 put_ctx(clone_ctx);
10607
10608 /*
10609 * Report the task dead after unscheduling the events so that we
10610 * won't get any samples after PERF_RECORD_EXIT. We can however still
10611 * get a few PERF_RECORD_READ events.
10612 */
10613 perf_event_task(child, child_ctx, 0);
10614
10615 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
10616 perf_event_exit_event(child_event, child_ctx, child);
10617
10618 mutex_unlock(&child_ctx->mutex);
10619
10620 put_ctx(child_ctx);
10621 }
10622
10623 /*
10624 * When a child task exits, feed back event values to parent events.
10625 *
10626 * Can be called with cred_guard_mutex held when called from
10627 * install_exec_creds().
10628 */
10629 void perf_event_exit_task(struct task_struct *child)
10630 {
10631 struct perf_event *event, *tmp;
10632 int ctxn;
10633
10634 mutex_lock(&child->perf_event_mutex);
10635 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
10636 owner_entry) {
10637 list_del_init(&event->owner_entry);
10638
10639 /*
10640 * Ensure the list deletion is visible before we clear
10641 * the owner, closes a race against perf_release() where
10642 * we need to serialize on the owner->perf_event_mutex.
10643 */
10644 smp_store_release(&event->owner, NULL);
10645 }
10646 mutex_unlock(&child->perf_event_mutex);
10647
10648 for_each_task_context_nr(ctxn)
10649 perf_event_exit_task_context(child, ctxn);
10650
10651 /*
10652 * The perf_event_exit_task_context calls perf_event_task
10653 * with child's task_ctx, which generates EXIT events for
10654 * child contexts and sets child->perf_event_ctxp[] to NULL.
10655 * At this point we need to send EXIT events to cpu contexts.
10656 */
10657 perf_event_task(child, NULL, 0);
10658 }
10659
10660 static void perf_free_event(struct perf_event *event,
10661 struct perf_event_context *ctx)
10662 {
10663 struct perf_event *parent = event->parent;
10664
10665 if (WARN_ON_ONCE(!parent))
10666 return;
10667
10668 mutex_lock(&parent->child_mutex);
10669 list_del_init(&event->child_list);
10670 mutex_unlock(&parent->child_mutex);
10671
10672 put_event(parent);
10673
10674 raw_spin_lock_irq(&ctx->lock);
10675 perf_group_detach(event);
10676 list_del_event(event, ctx);
10677 raw_spin_unlock_irq(&ctx->lock);
10678 free_event(event);
10679 }
10680
10681 /*
10682 * Free an unexposed, unused context as created by inheritance by
10683 * perf_event_init_task below, used by fork() in case of fail.
10684 *
10685 * Not all locks are strictly required, but take them anyway to be nice and
10686 * help out with the lockdep assertions.
10687 */
10688 void perf_event_free_task(struct task_struct *task)
10689 {
10690 struct perf_event_context *ctx;
10691 struct perf_event *event, *tmp;
10692 int ctxn;
10693
10694 for_each_task_context_nr(ctxn) {
10695 ctx = task->perf_event_ctxp[ctxn];
10696 if (!ctx)
10697 continue;
10698
10699 mutex_lock(&ctx->mutex);
10700 raw_spin_lock_irq(&ctx->lock);
10701 /*
10702 * Destroy the task <-> ctx relation and mark the context dead.
10703 *
10704 * This is important because even though the task hasn't been
10705 * exposed yet the context has been (through child_list).
10706 */
10707 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
10708 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
10709 put_task_struct(task); /* cannot be last */
10710 raw_spin_unlock_irq(&ctx->lock);
10711
10712 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
10713 perf_free_event(event, ctx);
10714
10715 mutex_unlock(&ctx->mutex);
10716 put_ctx(ctx);
10717 }
10718 }
10719
10720 void perf_event_delayed_put(struct task_struct *task)
10721 {
10722 int ctxn;
10723
10724 for_each_task_context_nr(ctxn)
10725 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
10726 }
10727
10728 struct file *perf_event_get(unsigned int fd)
10729 {
10730 struct file *file;
10731
10732 file = fget_raw(fd);
10733 if (!file)
10734 return ERR_PTR(-EBADF);
10735
10736 if (file->f_op != &perf_fops) {
10737 fput(file);
10738 return ERR_PTR(-EBADF);
10739 }
10740
10741 return file;
10742 }
10743
10744 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
10745 {
10746 if (!event)
10747 return ERR_PTR(-EINVAL);
10748
10749 return &event->attr;
10750 }
10751
10752 /*
10753 * Inherit a event from parent task to child task.
10754 *
10755 * Returns:
10756 * - valid pointer on success
10757 * - NULL for orphaned events
10758 * - IS_ERR() on error
10759 */
10760 static struct perf_event *
10761 inherit_event(struct perf_event *parent_event,
10762 struct task_struct *parent,
10763 struct perf_event_context *parent_ctx,
10764 struct task_struct *child,
10765 struct perf_event *group_leader,
10766 struct perf_event_context *child_ctx)
10767 {
10768 enum perf_event_active_state parent_state = parent_event->state;
10769 struct perf_event *child_event;
10770 unsigned long flags;
10771
10772 /*
10773 * Instead of creating recursive hierarchies of events,
10774 * we link inherited events back to the original parent,
10775 * which has a filp for sure, which we use as the reference
10776 * count:
10777 */
10778 if (parent_event->parent)
10779 parent_event = parent_event->parent;
10780
10781 child_event = perf_event_alloc(&parent_event->attr,
10782 parent_event->cpu,
10783 child,
10784 group_leader, parent_event,
10785 NULL, NULL, -1);
10786 if (IS_ERR(child_event))
10787 return child_event;
10788
10789 /*
10790 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
10791 * must be under the same lock in order to serialize against
10792 * perf_event_release_kernel(), such that either we must observe
10793 * is_orphaned_event() or they will observe us on the child_list.
10794 */
10795 mutex_lock(&parent_event->child_mutex);
10796 if (is_orphaned_event(parent_event) ||
10797 !atomic_long_inc_not_zero(&parent_event->refcount)) {
10798 mutex_unlock(&parent_event->child_mutex);
10799 free_event(child_event);
10800 return NULL;
10801 }
10802
10803 get_ctx(child_ctx);
10804
10805 /*
10806 * Make the child state follow the state of the parent event,
10807 * not its attr.disabled bit. We hold the parent's mutex,
10808 * so we won't race with perf_event_{en, dis}able_family.
10809 */
10810 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
10811 child_event->state = PERF_EVENT_STATE_INACTIVE;
10812 else
10813 child_event->state = PERF_EVENT_STATE_OFF;
10814
10815 if (parent_event->attr.freq) {
10816 u64 sample_period = parent_event->hw.sample_period;
10817 struct hw_perf_event *hwc = &child_event->hw;
10818
10819 hwc->sample_period = sample_period;
10820 hwc->last_period = sample_period;
10821
10822 local64_set(&hwc->period_left, sample_period);
10823 }
10824
10825 child_event->ctx = child_ctx;
10826 child_event->overflow_handler = parent_event->overflow_handler;
10827 child_event->overflow_handler_context
10828 = parent_event->overflow_handler_context;
10829
10830 /*
10831 * Precalculate sample_data sizes
10832 */
10833 perf_event__header_size(child_event);
10834 perf_event__id_header_size(child_event);
10835
10836 /*
10837 * Link it up in the child's context:
10838 */
10839 raw_spin_lock_irqsave(&child_ctx->lock, flags);
10840 add_event_to_ctx(child_event, child_ctx);
10841 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
10842
10843 /*
10844 * Link this into the parent event's child list
10845 */
10846 list_add_tail(&child_event->child_list, &parent_event->child_list);
10847 mutex_unlock(&parent_event->child_mutex);
10848
10849 return child_event;
10850 }
10851
10852 /*
10853 * Inherits an event group.
10854 *
10855 * This will quietly suppress orphaned events; !inherit_event() is not an error.
10856 * This matches with perf_event_release_kernel() removing all child events.
10857 *
10858 * Returns:
10859 * - 0 on success
10860 * - <0 on error
10861 */
10862 static int inherit_group(struct perf_event *parent_event,
10863 struct task_struct *parent,
10864 struct perf_event_context *parent_ctx,
10865 struct task_struct *child,
10866 struct perf_event_context *child_ctx)
10867 {
10868 struct perf_event *leader;
10869 struct perf_event *sub;
10870 struct perf_event *child_ctr;
10871
10872 leader = inherit_event(parent_event, parent, parent_ctx,
10873 child, NULL, child_ctx);
10874 if (IS_ERR(leader))
10875 return PTR_ERR(leader);
10876 /*
10877 * @leader can be NULL here because of is_orphaned_event(). In this
10878 * case inherit_event() will create individual events, similar to what
10879 * perf_group_detach() would do anyway.
10880 */
10881 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
10882 child_ctr = inherit_event(sub, parent, parent_ctx,
10883 child, leader, child_ctx);
10884 if (IS_ERR(child_ctr))
10885 return PTR_ERR(child_ctr);
10886 }
10887 return 0;
10888 }
10889
10890 /*
10891 * Creates the child task context and tries to inherit the event-group.
10892 *
10893 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
10894 * inherited_all set when we 'fail' to inherit an orphaned event; this is
10895 * consistent with perf_event_release_kernel() removing all child events.
10896 *
10897 * Returns:
10898 * - 0 on success
10899 * - <0 on error
10900 */
10901 static int
10902 inherit_task_group(struct perf_event *event, struct task_struct *parent,
10903 struct perf_event_context *parent_ctx,
10904 struct task_struct *child, int ctxn,
10905 int *inherited_all)
10906 {
10907 int ret;
10908 struct perf_event_context *child_ctx;
10909
10910 if (!event->attr.inherit) {
10911 *inherited_all = 0;
10912 return 0;
10913 }
10914
10915 child_ctx = child->perf_event_ctxp[ctxn];
10916 if (!child_ctx) {
10917 /*
10918 * This is executed from the parent task context, so
10919 * inherit events that have been marked for cloning.
10920 * First allocate and initialize a context for the
10921 * child.
10922 */
10923 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
10924 if (!child_ctx)
10925 return -ENOMEM;
10926
10927 child->perf_event_ctxp[ctxn] = child_ctx;
10928 }
10929
10930 ret = inherit_group(event, parent, parent_ctx,
10931 child, child_ctx);
10932
10933 if (ret)
10934 *inherited_all = 0;
10935
10936 return ret;
10937 }
10938
10939 /*
10940 * Initialize the perf_event context in task_struct
10941 */
10942 static int perf_event_init_context(struct task_struct *child, int ctxn)
10943 {
10944 struct perf_event_context *child_ctx, *parent_ctx;
10945 struct perf_event_context *cloned_ctx;
10946 struct perf_event *event;
10947 struct task_struct *parent = current;
10948 int inherited_all = 1;
10949 unsigned long flags;
10950 int ret = 0;
10951
10952 if (likely(!parent->perf_event_ctxp[ctxn]))
10953 return 0;
10954
10955 /*
10956 * If the parent's context is a clone, pin it so it won't get
10957 * swapped under us.
10958 */
10959 parent_ctx = perf_pin_task_context(parent, ctxn);
10960 if (!parent_ctx)
10961 return 0;
10962
10963 /*
10964 * No need to check if parent_ctx != NULL here; since we saw
10965 * it non-NULL earlier, the only reason for it to become NULL
10966 * is if we exit, and since we're currently in the middle of
10967 * a fork we can't be exiting at the same time.
10968 */
10969
10970 /*
10971 * Lock the parent list. No need to lock the child - not PID
10972 * hashed yet and not running, so nobody can access it.
10973 */
10974 mutex_lock(&parent_ctx->mutex);
10975
10976 /*
10977 * We dont have to disable NMIs - we are only looking at
10978 * the list, not manipulating it:
10979 */
10980 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
10981 ret = inherit_task_group(event, parent, parent_ctx,
10982 child, ctxn, &inherited_all);
10983 if (ret)
10984 goto out_unlock;
10985 }
10986
10987 /*
10988 * We can't hold ctx->lock when iterating the ->flexible_group list due
10989 * to allocations, but we need to prevent rotation because
10990 * rotate_ctx() will change the list from interrupt context.
10991 */
10992 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10993 parent_ctx->rotate_disable = 1;
10994 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10995
10996 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
10997 ret = inherit_task_group(event, parent, parent_ctx,
10998 child, ctxn, &inherited_all);
10999 if (ret)
11000 goto out_unlock;
11001 }
11002
11003 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
11004 parent_ctx->rotate_disable = 0;
11005
11006 child_ctx = child->perf_event_ctxp[ctxn];
11007
11008 if (child_ctx && inherited_all) {
11009 /*
11010 * Mark the child context as a clone of the parent
11011 * context, or of whatever the parent is a clone of.
11012 *
11013 * Note that if the parent is a clone, the holding of
11014 * parent_ctx->lock avoids it from being uncloned.
11015 */
11016 cloned_ctx = parent_ctx->parent_ctx;
11017 if (cloned_ctx) {
11018 child_ctx->parent_ctx = cloned_ctx;
11019 child_ctx->parent_gen = parent_ctx->parent_gen;
11020 } else {
11021 child_ctx->parent_ctx = parent_ctx;
11022 child_ctx->parent_gen = parent_ctx->generation;
11023 }
11024 get_ctx(child_ctx->parent_ctx);
11025 }
11026
11027 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
11028 out_unlock:
11029 mutex_unlock(&parent_ctx->mutex);
11030
11031 perf_unpin_context(parent_ctx);
11032 put_ctx(parent_ctx);
11033
11034 return ret;
11035 }
11036
11037 /*
11038 * Initialize the perf_event context in task_struct
11039 */
11040 int perf_event_init_task(struct task_struct *child)
11041 {
11042 int ctxn, ret;
11043
11044 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
11045 mutex_init(&child->perf_event_mutex);
11046 INIT_LIST_HEAD(&child->perf_event_list);
11047
11048 for_each_task_context_nr(ctxn) {
11049 ret = perf_event_init_context(child, ctxn);
11050 if (ret) {
11051 perf_event_free_task(child);
11052 return ret;
11053 }
11054 }
11055
11056 return 0;
11057 }
11058
11059 static void __init perf_event_init_all_cpus(void)
11060 {
11061 struct swevent_htable *swhash;
11062 int cpu;
11063
11064 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
11065
11066 for_each_possible_cpu(cpu) {
11067 swhash = &per_cpu(swevent_htable, cpu);
11068 mutex_init(&swhash->hlist_mutex);
11069 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
11070
11071 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
11072 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
11073
11074 #ifdef CONFIG_CGROUP_PERF
11075 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
11076 #endif
11077 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
11078 }
11079 }
11080
11081 void perf_swevent_init_cpu(unsigned int cpu)
11082 {
11083 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
11084
11085 mutex_lock(&swhash->hlist_mutex);
11086 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
11087 struct swevent_hlist *hlist;
11088
11089 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
11090 WARN_ON(!hlist);
11091 rcu_assign_pointer(swhash->swevent_hlist, hlist);
11092 }
11093 mutex_unlock(&swhash->hlist_mutex);
11094 }
11095
11096 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
11097 static void __perf_event_exit_context(void *__info)
11098 {
11099 struct perf_event_context *ctx = __info;
11100 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
11101 struct perf_event *event;
11102
11103 raw_spin_lock(&ctx->lock);
11104 list_for_each_entry(event, &ctx->event_list, event_entry)
11105 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
11106 raw_spin_unlock(&ctx->lock);
11107 }
11108
11109 static void perf_event_exit_cpu_context(int cpu)
11110 {
11111 struct perf_cpu_context *cpuctx;
11112 struct perf_event_context *ctx;
11113 struct pmu *pmu;
11114
11115 mutex_lock(&pmus_lock);
11116 list_for_each_entry(pmu, &pmus, entry) {
11117 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11118 ctx = &cpuctx->ctx;
11119
11120 mutex_lock(&ctx->mutex);
11121 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
11122 cpuctx->online = 0;
11123 mutex_unlock(&ctx->mutex);
11124 }
11125 cpumask_clear_cpu(cpu, perf_online_mask);
11126 mutex_unlock(&pmus_lock);
11127 }
11128 #else
11129
11130 static void perf_event_exit_cpu_context(int cpu) { }
11131
11132 #endif
11133
11134 int perf_event_init_cpu(unsigned int cpu)
11135 {
11136 struct perf_cpu_context *cpuctx;
11137 struct perf_event_context *ctx;
11138 struct pmu *pmu;
11139
11140 perf_swevent_init_cpu(cpu);
11141
11142 mutex_lock(&pmus_lock);
11143 cpumask_set_cpu(cpu, perf_online_mask);
11144 list_for_each_entry(pmu, &pmus, entry) {
11145 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11146 ctx = &cpuctx->ctx;
11147
11148 mutex_lock(&ctx->mutex);
11149 cpuctx->online = 1;
11150 mutex_unlock(&ctx->mutex);
11151 }
11152 mutex_unlock(&pmus_lock);
11153
11154 return 0;
11155 }
11156
11157 int perf_event_exit_cpu(unsigned int cpu)
11158 {
11159 perf_event_exit_cpu_context(cpu);
11160 return 0;
11161 }
11162
11163 static int
11164 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
11165 {
11166 int cpu;
11167
11168 for_each_online_cpu(cpu)
11169 perf_event_exit_cpu(cpu);
11170
11171 return NOTIFY_OK;
11172 }
11173
11174 /*
11175 * Run the perf reboot notifier at the very last possible moment so that
11176 * the generic watchdog code runs as long as possible.
11177 */
11178 static struct notifier_block perf_reboot_notifier = {
11179 .notifier_call = perf_reboot,
11180 .priority = INT_MIN,
11181 };
11182
11183 void __init perf_event_init(void)
11184 {
11185 int ret;
11186
11187 idr_init(&pmu_idr);
11188
11189 perf_event_init_all_cpus();
11190 init_srcu_struct(&pmus_srcu);
11191 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
11192 perf_pmu_register(&perf_cpu_clock, NULL, -1);
11193 perf_pmu_register(&perf_task_clock, NULL, -1);
11194 perf_tp_register();
11195 perf_event_init_cpu(smp_processor_id());
11196 register_reboot_notifier(&perf_reboot_notifier);
11197
11198 ret = init_hw_breakpoint();
11199 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
11200
11201 /*
11202 * Build time assertion that we keep the data_head at the intended
11203 * location. IOW, validation we got the __reserved[] size right.
11204 */
11205 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
11206 != 1024);
11207 }
11208
11209 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
11210 char *page)
11211 {
11212 struct perf_pmu_events_attr *pmu_attr =
11213 container_of(attr, struct perf_pmu_events_attr, attr);
11214
11215 if (pmu_attr->event_str)
11216 return sprintf(page, "%s\n", pmu_attr->event_str);
11217
11218 return 0;
11219 }
11220 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
11221
11222 static int __init perf_event_sysfs_init(void)
11223 {
11224 struct pmu *pmu;
11225 int ret;
11226
11227 mutex_lock(&pmus_lock);
11228
11229 ret = bus_register(&pmu_bus);
11230 if (ret)
11231 goto unlock;
11232
11233 list_for_each_entry(pmu, &pmus, entry) {
11234 if (!pmu->name || pmu->type < 0)
11235 continue;
11236
11237 ret = pmu_dev_alloc(pmu);
11238 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
11239 }
11240 pmu_bus_running = 1;
11241 ret = 0;
11242
11243 unlock:
11244 mutex_unlock(&pmus_lock);
11245
11246 return ret;
11247 }
11248 device_initcall(perf_event_sysfs_init);
11249
11250 #ifdef CONFIG_CGROUP_PERF
11251 static struct cgroup_subsys_state *
11252 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
11253 {
11254 struct perf_cgroup *jc;
11255
11256 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
11257 if (!jc)
11258 return ERR_PTR(-ENOMEM);
11259
11260 jc->info = alloc_percpu(struct perf_cgroup_info);
11261 if (!jc->info) {
11262 kfree(jc);
11263 return ERR_PTR(-ENOMEM);
11264 }
11265
11266 return &jc->css;
11267 }
11268
11269 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
11270 {
11271 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
11272
11273 free_percpu(jc->info);
11274 kfree(jc);
11275 }
11276
11277 static int __perf_cgroup_move(void *info)
11278 {
11279 struct task_struct *task = info;
11280 rcu_read_lock();
11281 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
11282 rcu_read_unlock();
11283 return 0;
11284 }
11285
11286 static void perf_cgroup_attach(struct cgroup_taskset *tset)
11287 {
11288 struct task_struct *task;
11289 struct cgroup_subsys_state *css;
11290
11291 cgroup_taskset_for_each(task, css, tset)
11292 task_function_call(task, __perf_cgroup_move, task);
11293 }
11294
11295 struct cgroup_subsys perf_event_cgrp_subsys = {
11296 .css_alloc = perf_cgroup_css_alloc,
11297 .css_free = perf_cgroup_css_free,
11298 .attach = perf_cgroup_attach,
11299 /*
11300 * Implicitly enable on dfl hierarchy so that perf events can
11301 * always be filtered by cgroup2 path as long as perf_event
11302 * controller is not mounted on a legacy hierarchy.
11303 */
11304 .implicit_on_dfl = true,
11305 .threaded = true,
11306 };
11307 #endif /* CONFIG_CGROUP_PERF */