]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - kernel/events/core.c
bbdfac0182f41e6f5c5c1695d715e03909cc3b89
[mirror_ubuntu-hirsute-kernel.git] / kernel / events / core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Performance events core code:
4 *
5 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9 */
10
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/idr.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/tick.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/rculist.h>
32 #include <linux/uaccess.h>
33 #include <linux/syscalls.h>
34 #include <linux/anon_inodes.h>
35 #include <linux/kernel_stat.h>
36 #include <linux/cgroup.h>
37 #include <linux/perf_event.h>
38 #include <linux/trace_events.h>
39 #include <linux/hw_breakpoint.h>
40 #include <linux/mm_types.h>
41 #include <linux/module.h>
42 #include <linux/mman.h>
43 #include <linux/compat.h>
44 #include <linux/bpf.h>
45 #include <linux/filter.h>
46 #include <linux/namei.h>
47 #include <linux/parser.h>
48 #include <linux/sched/clock.h>
49 #include <linux/sched/mm.h>
50 #include <linux/proc_ns.h>
51 #include <linux/mount.h>
52
53 #include "internal.h"
54
55 #include <asm/irq_regs.h>
56
57 typedef int (*remote_function_f)(void *);
58
59 struct remote_function_call {
60 struct task_struct *p;
61 remote_function_f func;
62 void *info;
63 int ret;
64 };
65
66 static void remote_function(void *data)
67 {
68 struct remote_function_call *tfc = data;
69 struct task_struct *p = tfc->p;
70
71 if (p) {
72 /* -EAGAIN */
73 if (task_cpu(p) != smp_processor_id())
74 return;
75
76 /*
77 * Now that we're on right CPU with IRQs disabled, we can test
78 * if we hit the right task without races.
79 */
80
81 tfc->ret = -ESRCH; /* No such (running) process */
82 if (p != current)
83 return;
84 }
85
86 tfc->ret = tfc->func(tfc->info);
87 }
88
89 /**
90 * task_function_call - call a function on the cpu on which a task runs
91 * @p: the task to evaluate
92 * @func: the function to be called
93 * @info: the function call argument
94 *
95 * Calls the function @func when the task is currently running. This might
96 * be on the current CPU, which just calls the function directly
97 *
98 * returns: @func return value, or
99 * -ESRCH - when the process isn't running
100 * -EAGAIN - when the process moved away
101 */
102 static int
103 task_function_call(struct task_struct *p, remote_function_f func, void *info)
104 {
105 struct remote_function_call data = {
106 .p = p,
107 .func = func,
108 .info = info,
109 .ret = -EAGAIN,
110 };
111 int ret;
112
113 do {
114 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
115 if (!ret)
116 ret = data.ret;
117 } while (ret == -EAGAIN);
118
119 return ret;
120 }
121
122 /**
123 * cpu_function_call - call a function on the cpu
124 * @func: the function to be called
125 * @info: the function call argument
126 *
127 * Calls the function @func on the remote cpu.
128 *
129 * returns: @func return value or -ENXIO when the cpu is offline
130 */
131 static int cpu_function_call(int cpu, remote_function_f func, void *info)
132 {
133 struct remote_function_call data = {
134 .p = NULL,
135 .func = func,
136 .info = info,
137 .ret = -ENXIO, /* No such CPU */
138 };
139
140 smp_call_function_single(cpu, remote_function, &data, 1);
141
142 return data.ret;
143 }
144
145 static inline struct perf_cpu_context *
146 __get_cpu_context(struct perf_event_context *ctx)
147 {
148 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
149 }
150
151 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
152 struct perf_event_context *ctx)
153 {
154 raw_spin_lock(&cpuctx->ctx.lock);
155 if (ctx)
156 raw_spin_lock(&ctx->lock);
157 }
158
159 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
160 struct perf_event_context *ctx)
161 {
162 if (ctx)
163 raw_spin_unlock(&ctx->lock);
164 raw_spin_unlock(&cpuctx->ctx.lock);
165 }
166
167 #define TASK_TOMBSTONE ((void *)-1L)
168
169 static bool is_kernel_event(struct perf_event *event)
170 {
171 return READ_ONCE(event->owner) == TASK_TOMBSTONE;
172 }
173
174 /*
175 * On task ctx scheduling...
176 *
177 * When !ctx->nr_events a task context will not be scheduled. This means
178 * we can disable the scheduler hooks (for performance) without leaving
179 * pending task ctx state.
180 *
181 * This however results in two special cases:
182 *
183 * - removing the last event from a task ctx; this is relatively straight
184 * forward and is done in __perf_remove_from_context.
185 *
186 * - adding the first event to a task ctx; this is tricky because we cannot
187 * rely on ctx->is_active and therefore cannot use event_function_call().
188 * See perf_install_in_context().
189 *
190 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
191 */
192
193 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
194 struct perf_event_context *, void *);
195
196 struct event_function_struct {
197 struct perf_event *event;
198 event_f func;
199 void *data;
200 };
201
202 static int event_function(void *info)
203 {
204 struct event_function_struct *efs = info;
205 struct perf_event *event = efs->event;
206 struct perf_event_context *ctx = event->ctx;
207 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
208 struct perf_event_context *task_ctx = cpuctx->task_ctx;
209 int ret = 0;
210
211 lockdep_assert_irqs_disabled();
212
213 perf_ctx_lock(cpuctx, task_ctx);
214 /*
215 * Since we do the IPI call without holding ctx->lock things can have
216 * changed, double check we hit the task we set out to hit.
217 */
218 if (ctx->task) {
219 if (ctx->task != current) {
220 ret = -ESRCH;
221 goto unlock;
222 }
223
224 /*
225 * We only use event_function_call() on established contexts,
226 * and event_function() is only ever called when active (or
227 * rather, we'll have bailed in task_function_call() or the
228 * above ctx->task != current test), therefore we must have
229 * ctx->is_active here.
230 */
231 WARN_ON_ONCE(!ctx->is_active);
232 /*
233 * And since we have ctx->is_active, cpuctx->task_ctx must
234 * match.
235 */
236 WARN_ON_ONCE(task_ctx != ctx);
237 } else {
238 WARN_ON_ONCE(&cpuctx->ctx != ctx);
239 }
240
241 efs->func(event, cpuctx, ctx, efs->data);
242 unlock:
243 perf_ctx_unlock(cpuctx, task_ctx);
244
245 return ret;
246 }
247
248 static void event_function_call(struct perf_event *event, event_f func, void *data)
249 {
250 struct perf_event_context *ctx = event->ctx;
251 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
252 struct event_function_struct efs = {
253 .event = event,
254 .func = func,
255 .data = data,
256 };
257
258 if (!event->parent) {
259 /*
260 * If this is a !child event, we must hold ctx::mutex to
261 * stabilize the the event->ctx relation. See
262 * perf_event_ctx_lock().
263 */
264 lockdep_assert_held(&ctx->mutex);
265 }
266
267 if (!task) {
268 cpu_function_call(event->cpu, event_function, &efs);
269 return;
270 }
271
272 if (task == TASK_TOMBSTONE)
273 return;
274
275 again:
276 if (!task_function_call(task, event_function, &efs))
277 return;
278
279 raw_spin_lock_irq(&ctx->lock);
280 /*
281 * Reload the task pointer, it might have been changed by
282 * a concurrent perf_event_context_sched_out().
283 */
284 task = ctx->task;
285 if (task == TASK_TOMBSTONE) {
286 raw_spin_unlock_irq(&ctx->lock);
287 return;
288 }
289 if (ctx->is_active) {
290 raw_spin_unlock_irq(&ctx->lock);
291 goto again;
292 }
293 func(event, NULL, ctx, data);
294 raw_spin_unlock_irq(&ctx->lock);
295 }
296
297 /*
298 * Similar to event_function_call() + event_function(), but hard assumes IRQs
299 * are already disabled and we're on the right CPU.
300 */
301 static void event_function_local(struct perf_event *event, event_f func, void *data)
302 {
303 struct perf_event_context *ctx = event->ctx;
304 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
305 struct task_struct *task = READ_ONCE(ctx->task);
306 struct perf_event_context *task_ctx = NULL;
307
308 lockdep_assert_irqs_disabled();
309
310 if (task) {
311 if (task == TASK_TOMBSTONE)
312 return;
313
314 task_ctx = ctx;
315 }
316
317 perf_ctx_lock(cpuctx, task_ctx);
318
319 task = ctx->task;
320 if (task == TASK_TOMBSTONE)
321 goto unlock;
322
323 if (task) {
324 /*
325 * We must be either inactive or active and the right task,
326 * otherwise we're screwed, since we cannot IPI to somewhere
327 * else.
328 */
329 if (ctx->is_active) {
330 if (WARN_ON_ONCE(task != current))
331 goto unlock;
332
333 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
334 goto unlock;
335 }
336 } else {
337 WARN_ON_ONCE(&cpuctx->ctx != ctx);
338 }
339
340 func(event, cpuctx, ctx, data);
341 unlock:
342 perf_ctx_unlock(cpuctx, task_ctx);
343 }
344
345 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
346 PERF_FLAG_FD_OUTPUT |\
347 PERF_FLAG_PID_CGROUP |\
348 PERF_FLAG_FD_CLOEXEC)
349
350 /*
351 * branch priv levels that need permission checks
352 */
353 #define PERF_SAMPLE_BRANCH_PERM_PLM \
354 (PERF_SAMPLE_BRANCH_KERNEL |\
355 PERF_SAMPLE_BRANCH_HV)
356
357 enum event_type_t {
358 EVENT_FLEXIBLE = 0x1,
359 EVENT_PINNED = 0x2,
360 EVENT_TIME = 0x4,
361 /* see ctx_resched() for details */
362 EVENT_CPU = 0x8,
363 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
364 };
365
366 /*
367 * perf_sched_events : >0 events exist
368 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
369 */
370
371 static void perf_sched_delayed(struct work_struct *work);
372 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
373 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
374 static DEFINE_MUTEX(perf_sched_mutex);
375 static atomic_t perf_sched_count;
376
377 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
378 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
379 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
380
381 static atomic_t nr_mmap_events __read_mostly;
382 static atomic_t nr_comm_events __read_mostly;
383 static atomic_t nr_namespaces_events __read_mostly;
384 static atomic_t nr_task_events __read_mostly;
385 static atomic_t nr_freq_events __read_mostly;
386 static atomic_t nr_switch_events __read_mostly;
387 static atomic_t nr_ksymbol_events __read_mostly;
388 static atomic_t nr_bpf_events __read_mostly;
389
390 static LIST_HEAD(pmus);
391 static DEFINE_MUTEX(pmus_lock);
392 static struct srcu_struct pmus_srcu;
393 static cpumask_var_t perf_online_mask;
394
395 /*
396 * perf event paranoia level:
397 * -1 - not paranoid at all
398 * 0 - disallow raw tracepoint access for unpriv
399 * 1 - disallow cpu events for unpriv
400 * 2 - disallow kernel profiling for unpriv
401 */
402 int sysctl_perf_event_paranoid __read_mostly = 2;
403
404 /* Minimum for 512 kiB + 1 user control page */
405 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
406
407 /*
408 * max perf event sample rate
409 */
410 #define DEFAULT_MAX_SAMPLE_RATE 100000
411 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
412 #define DEFAULT_CPU_TIME_MAX_PERCENT 25
413
414 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
415
416 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
417 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
418
419 static int perf_sample_allowed_ns __read_mostly =
420 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
421
422 static void update_perf_cpu_limits(void)
423 {
424 u64 tmp = perf_sample_period_ns;
425
426 tmp *= sysctl_perf_cpu_time_max_percent;
427 tmp = div_u64(tmp, 100);
428 if (!tmp)
429 tmp = 1;
430
431 WRITE_ONCE(perf_sample_allowed_ns, tmp);
432 }
433
434 static bool perf_rotate_context(struct perf_cpu_context *cpuctx);
435
436 int perf_proc_update_handler(struct ctl_table *table, int write,
437 void __user *buffer, size_t *lenp,
438 loff_t *ppos)
439 {
440 int ret;
441 int perf_cpu = sysctl_perf_cpu_time_max_percent;
442 /*
443 * If throttling is disabled don't allow the write:
444 */
445 if (write && (perf_cpu == 100 || perf_cpu == 0))
446 return -EINVAL;
447
448 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
449 if (ret || !write)
450 return ret;
451
452 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
453 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
454 update_perf_cpu_limits();
455
456 return 0;
457 }
458
459 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
460
461 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
462 void __user *buffer, size_t *lenp,
463 loff_t *ppos)
464 {
465 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
466
467 if (ret || !write)
468 return ret;
469
470 if (sysctl_perf_cpu_time_max_percent == 100 ||
471 sysctl_perf_cpu_time_max_percent == 0) {
472 printk(KERN_WARNING
473 "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
474 WRITE_ONCE(perf_sample_allowed_ns, 0);
475 } else {
476 update_perf_cpu_limits();
477 }
478
479 return 0;
480 }
481
482 /*
483 * perf samples are done in some very critical code paths (NMIs).
484 * If they take too much CPU time, the system can lock up and not
485 * get any real work done. This will drop the sample rate when
486 * we detect that events are taking too long.
487 */
488 #define NR_ACCUMULATED_SAMPLES 128
489 static DEFINE_PER_CPU(u64, running_sample_length);
490
491 static u64 __report_avg;
492 static u64 __report_allowed;
493
494 static void perf_duration_warn(struct irq_work *w)
495 {
496 printk_ratelimited(KERN_INFO
497 "perf: interrupt took too long (%lld > %lld), lowering "
498 "kernel.perf_event_max_sample_rate to %d\n",
499 __report_avg, __report_allowed,
500 sysctl_perf_event_sample_rate);
501 }
502
503 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
504
505 void perf_sample_event_took(u64 sample_len_ns)
506 {
507 u64 max_len = READ_ONCE(perf_sample_allowed_ns);
508 u64 running_len;
509 u64 avg_len;
510 u32 max;
511
512 if (max_len == 0)
513 return;
514
515 /* Decay the counter by 1 average sample. */
516 running_len = __this_cpu_read(running_sample_length);
517 running_len -= running_len/NR_ACCUMULATED_SAMPLES;
518 running_len += sample_len_ns;
519 __this_cpu_write(running_sample_length, running_len);
520
521 /*
522 * Note: this will be biased artifically low until we have
523 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
524 * from having to maintain a count.
525 */
526 avg_len = running_len/NR_ACCUMULATED_SAMPLES;
527 if (avg_len <= max_len)
528 return;
529
530 __report_avg = avg_len;
531 __report_allowed = max_len;
532
533 /*
534 * Compute a throttle threshold 25% below the current duration.
535 */
536 avg_len += avg_len / 4;
537 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
538 if (avg_len < max)
539 max /= (u32)avg_len;
540 else
541 max = 1;
542
543 WRITE_ONCE(perf_sample_allowed_ns, avg_len);
544 WRITE_ONCE(max_samples_per_tick, max);
545
546 sysctl_perf_event_sample_rate = max * HZ;
547 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
548
549 if (!irq_work_queue(&perf_duration_work)) {
550 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
551 "kernel.perf_event_max_sample_rate to %d\n",
552 __report_avg, __report_allowed,
553 sysctl_perf_event_sample_rate);
554 }
555 }
556
557 static atomic64_t perf_event_id;
558
559 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
560 enum event_type_t event_type);
561
562 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
563 enum event_type_t event_type,
564 struct task_struct *task);
565
566 static void update_context_time(struct perf_event_context *ctx);
567 static u64 perf_event_time(struct perf_event *event);
568
569 void __weak perf_event_print_debug(void) { }
570
571 extern __weak const char *perf_pmu_name(void)
572 {
573 return "pmu";
574 }
575
576 static inline u64 perf_clock(void)
577 {
578 return local_clock();
579 }
580
581 static inline u64 perf_event_clock(struct perf_event *event)
582 {
583 return event->clock();
584 }
585
586 /*
587 * State based event timekeeping...
588 *
589 * The basic idea is to use event->state to determine which (if any) time
590 * fields to increment with the current delta. This means we only need to
591 * update timestamps when we change state or when they are explicitly requested
592 * (read).
593 *
594 * Event groups make things a little more complicated, but not terribly so. The
595 * rules for a group are that if the group leader is OFF the entire group is
596 * OFF, irrespecive of what the group member states are. This results in
597 * __perf_effective_state().
598 *
599 * A futher ramification is that when a group leader flips between OFF and
600 * !OFF, we need to update all group member times.
601 *
602 *
603 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
604 * need to make sure the relevant context time is updated before we try and
605 * update our timestamps.
606 */
607
608 static __always_inline enum perf_event_state
609 __perf_effective_state(struct perf_event *event)
610 {
611 struct perf_event *leader = event->group_leader;
612
613 if (leader->state <= PERF_EVENT_STATE_OFF)
614 return leader->state;
615
616 return event->state;
617 }
618
619 static __always_inline void
620 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
621 {
622 enum perf_event_state state = __perf_effective_state(event);
623 u64 delta = now - event->tstamp;
624
625 *enabled = event->total_time_enabled;
626 if (state >= PERF_EVENT_STATE_INACTIVE)
627 *enabled += delta;
628
629 *running = event->total_time_running;
630 if (state >= PERF_EVENT_STATE_ACTIVE)
631 *running += delta;
632 }
633
634 static void perf_event_update_time(struct perf_event *event)
635 {
636 u64 now = perf_event_time(event);
637
638 __perf_update_times(event, now, &event->total_time_enabled,
639 &event->total_time_running);
640 event->tstamp = now;
641 }
642
643 static void perf_event_update_sibling_time(struct perf_event *leader)
644 {
645 struct perf_event *sibling;
646
647 for_each_sibling_event(sibling, leader)
648 perf_event_update_time(sibling);
649 }
650
651 static void
652 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
653 {
654 if (event->state == state)
655 return;
656
657 perf_event_update_time(event);
658 /*
659 * If a group leader gets enabled/disabled all its siblings
660 * are affected too.
661 */
662 if ((event->state < 0) ^ (state < 0))
663 perf_event_update_sibling_time(event);
664
665 WRITE_ONCE(event->state, state);
666 }
667
668 #ifdef CONFIG_CGROUP_PERF
669
670 static inline bool
671 perf_cgroup_match(struct perf_event *event)
672 {
673 struct perf_event_context *ctx = event->ctx;
674 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
675
676 /* @event doesn't care about cgroup */
677 if (!event->cgrp)
678 return true;
679
680 /* wants specific cgroup scope but @cpuctx isn't associated with any */
681 if (!cpuctx->cgrp)
682 return false;
683
684 /*
685 * Cgroup scoping is recursive. An event enabled for a cgroup is
686 * also enabled for all its descendant cgroups. If @cpuctx's
687 * cgroup is a descendant of @event's (the test covers identity
688 * case), it's a match.
689 */
690 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
691 event->cgrp->css.cgroup);
692 }
693
694 static inline void perf_detach_cgroup(struct perf_event *event)
695 {
696 css_put(&event->cgrp->css);
697 event->cgrp = NULL;
698 }
699
700 static inline int is_cgroup_event(struct perf_event *event)
701 {
702 return event->cgrp != NULL;
703 }
704
705 static inline u64 perf_cgroup_event_time(struct perf_event *event)
706 {
707 struct perf_cgroup_info *t;
708
709 t = per_cpu_ptr(event->cgrp->info, event->cpu);
710 return t->time;
711 }
712
713 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
714 {
715 struct perf_cgroup_info *info;
716 u64 now;
717
718 now = perf_clock();
719
720 info = this_cpu_ptr(cgrp->info);
721
722 info->time += now - info->timestamp;
723 info->timestamp = now;
724 }
725
726 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
727 {
728 struct perf_cgroup *cgrp = cpuctx->cgrp;
729 struct cgroup_subsys_state *css;
730
731 if (cgrp) {
732 for (css = &cgrp->css; css; css = css->parent) {
733 cgrp = container_of(css, struct perf_cgroup, css);
734 __update_cgrp_time(cgrp);
735 }
736 }
737 }
738
739 static inline void update_cgrp_time_from_event(struct perf_event *event)
740 {
741 struct perf_cgroup *cgrp;
742
743 /*
744 * ensure we access cgroup data only when needed and
745 * when we know the cgroup is pinned (css_get)
746 */
747 if (!is_cgroup_event(event))
748 return;
749
750 cgrp = perf_cgroup_from_task(current, event->ctx);
751 /*
752 * Do not update time when cgroup is not active
753 */
754 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
755 __update_cgrp_time(event->cgrp);
756 }
757
758 static inline void
759 perf_cgroup_set_timestamp(struct task_struct *task,
760 struct perf_event_context *ctx)
761 {
762 struct perf_cgroup *cgrp;
763 struct perf_cgroup_info *info;
764 struct cgroup_subsys_state *css;
765
766 /*
767 * ctx->lock held by caller
768 * ensure we do not access cgroup data
769 * unless we have the cgroup pinned (css_get)
770 */
771 if (!task || !ctx->nr_cgroups)
772 return;
773
774 cgrp = perf_cgroup_from_task(task, ctx);
775
776 for (css = &cgrp->css; css; css = css->parent) {
777 cgrp = container_of(css, struct perf_cgroup, css);
778 info = this_cpu_ptr(cgrp->info);
779 info->timestamp = ctx->timestamp;
780 }
781 }
782
783 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
784
785 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
786 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
787
788 /*
789 * reschedule events based on the cgroup constraint of task.
790 *
791 * mode SWOUT : schedule out everything
792 * mode SWIN : schedule in based on cgroup for next
793 */
794 static void perf_cgroup_switch(struct task_struct *task, int mode)
795 {
796 struct perf_cpu_context *cpuctx;
797 struct list_head *list;
798 unsigned long flags;
799
800 /*
801 * Disable interrupts and preemption to avoid this CPU's
802 * cgrp_cpuctx_entry to change under us.
803 */
804 local_irq_save(flags);
805
806 list = this_cpu_ptr(&cgrp_cpuctx_list);
807 list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
808 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
809
810 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
811 perf_pmu_disable(cpuctx->ctx.pmu);
812
813 if (mode & PERF_CGROUP_SWOUT) {
814 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
815 /*
816 * must not be done before ctxswout due
817 * to event_filter_match() in event_sched_out()
818 */
819 cpuctx->cgrp = NULL;
820 }
821
822 if (mode & PERF_CGROUP_SWIN) {
823 WARN_ON_ONCE(cpuctx->cgrp);
824 /*
825 * set cgrp before ctxsw in to allow
826 * event_filter_match() to not have to pass
827 * task around
828 * we pass the cpuctx->ctx to perf_cgroup_from_task()
829 * because cgorup events are only per-cpu
830 */
831 cpuctx->cgrp = perf_cgroup_from_task(task,
832 &cpuctx->ctx);
833 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
834 }
835 perf_pmu_enable(cpuctx->ctx.pmu);
836 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
837 }
838
839 local_irq_restore(flags);
840 }
841
842 static inline void perf_cgroup_sched_out(struct task_struct *task,
843 struct task_struct *next)
844 {
845 struct perf_cgroup *cgrp1;
846 struct perf_cgroup *cgrp2 = NULL;
847
848 rcu_read_lock();
849 /*
850 * we come here when we know perf_cgroup_events > 0
851 * we do not need to pass the ctx here because we know
852 * we are holding the rcu lock
853 */
854 cgrp1 = perf_cgroup_from_task(task, NULL);
855 cgrp2 = perf_cgroup_from_task(next, NULL);
856
857 /*
858 * only schedule out current cgroup events if we know
859 * that we are switching to a different cgroup. Otherwise,
860 * do no touch the cgroup events.
861 */
862 if (cgrp1 != cgrp2)
863 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
864
865 rcu_read_unlock();
866 }
867
868 static inline void perf_cgroup_sched_in(struct task_struct *prev,
869 struct task_struct *task)
870 {
871 struct perf_cgroup *cgrp1;
872 struct perf_cgroup *cgrp2 = NULL;
873
874 rcu_read_lock();
875 /*
876 * we come here when we know perf_cgroup_events > 0
877 * we do not need to pass the ctx here because we know
878 * we are holding the rcu lock
879 */
880 cgrp1 = perf_cgroup_from_task(task, NULL);
881 cgrp2 = perf_cgroup_from_task(prev, NULL);
882
883 /*
884 * only need to schedule in cgroup events if we are changing
885 * cgroup during ctxsw. Cgroup events were not scheduled
886 * out of ctxsw out if that was not the case.
887 */
888 if (cgrp1 != cgrp2)
889 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
890
891 rcu_read_unlock();
892 }
893
894 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
895 struct perf_event_attr *attr,
896 struct perf_event *group_leader)
897 {
898 struct perf_cgroup *cgrp;
899 struct cgroup_subsys_state *css;
900 struct fd f = fdget(fd);
901 int ret = 0;
902
903 if (!f.file)
904 return -EBADF;
905
906 css = css_tryget_online_from_dir(f.file->f_path.dentry,
907 &perf_event_cgrp_subsys);
908 if (IS_ERR(css)) {
909 ret = PTR_ERR(css);
910 goto out;
911 }
912
913 cgrp = container_of(css, struct perf_cgroup, css);
914 event->cgrp = cgrp;
915
916 /*
917 * all events in a group must monitor
918 * the same cgroup because a task belongs
919 * to only one perf cgroup at a time
920 */
921 if (group_leader && group_leader->cgrp != cgrp) {
922 perf_detach_cgroup(event);
923 ret = -EINVAL;
924 }
925 out:
926 fdput(f);
927 return ret;
928 }
929
930 static inline void
931 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
932 {
933 struct perf_cgroup_info *t;
934 t = per_cpu_ptr(event->cgrp->info, event->cpu);
935 event->shadow_ctx_time = now - t->timestamp;
936 }
937
938 /*
939 * Update cpuctx->cgrp so that it is set when first cgroup event is added and
940 * cleared when last cgroup event is removed.
941 */
942 static inline void
943 list_update_cgroup_event(struct perf_event *event,
944 struct perf_event_context *ctx, bool add)
945 {
946 struct perf_cpu_context *cpuctx;
947 struct list_head *cpuctx_entry;
948
949 if (!is_cgroup_event(event))
950 return;
951
952 /*
953 * Because cgroup events are always per-cpu events,
954 * @ctx == &cpuctx->ctx.
955 */
956 cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
957
958 /*
959 * Since setting cpuctx->cgrp is conditional on the current @cgrp
960 * matching the event's cgroup, we must do this for every new event,
961 * because if the first would mismatch, the second would not try again
962 * and we would leave cpuctx->cgrp unset.
963 */
964 if (add && !cpuctx->cgrp) {
965 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
966
967 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
968 cpuctx->cgrp = cgrp;
969 }
970
971 if (add && ctx->nr_cgroups++)
972 return;
973 else if (!add && --ctx->nr_cgroups)
974 return;
975
976 /* no cgroup running */
977 if (!add)
978 cpuctx->cgrp = NULL;
979
980 cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
981 if (add)
982 list_add(cpuctx_entry,
983 per_cpu_ptr(&cgrp_cpuctx_list, event->cpu));
984 else
985 list_del(cpuctx_entry);
986 }
987
988 #else /* !CONFIG_CGROUP_PERF */
989
990 static inline bool
991 perf_cgroup_match(struct perf_event *event)
992 {
993 return true;
994 }
995
996 static inline void perf_detach_cgroup(struct perf_event *event)
997 {}
998
999 static inline int is_cgroup_event(struct perf_event *event)
1000 {
1001 return 0;
1002 }
1003
1004 static inline void update_cgrp_time_from_event(struct perf_event *event)
1005 {
1006 }
1007
1008 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
1009 {
1010 }
1011
1012 static inline void perf_cgroup_sched_out(struct task_struct *task,
1013 struct task_struct *next)
1014 {
1015 }
1016
1017 static inline void perf_cgroup_sched_in(struct task_struct *prev,
1018 struct task_struct *task)
1019 {
1020 }
1021
1022 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1023 struct perf_event_attr *attr,
1024 struct perf_event *group_leader)
1025 {
1026 return -EINVAL;
1027 }
1028
1029 static inline void
1030 perf_cgroup_set_timestamp(struct task_struct *task,
1031 struct perf_event_context *ctx)
1032 {
1033 }
1034
1035 static inline void
1036 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
1037 {
1038 }
1039
1040 static inline void
1041 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
1042 {
1043 }
1044
1045 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1046 {
1047 return 0;
1048 }
1049
1050 static inline void
1051 list_update_cgroup_event(struct perf_event *event,
1052 struct perf_event_context *ctx, bool add)
1053 {
1054 }
1055
1056 #endif
1057
1058 /*
1059 * set default to be dependent on timer tick just
1060 * like original code
1061 */
1062 #define PERF_CPU_HRTIMER (1000 / HZ)
1063 /*
1064 * function must be called with interrupts disabled
1065 */
1066 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1067 {
1068 struct perf_cpu_context *cpuctx;
1069 bool rotations;
1070
1071 lockdep_assert_irqs_disabled();
1072
1073 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1074 rotations = perf_rotate_context(cpuctx);
1075
1076 raw_spin_lock(&cpuctx->hrtimer_lock);
1077 if (rotations)
1078 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1079 else
1080 cpuctx->hrtimer_active = 0;
1081 raw_spin_unlock(&cpuctx->hrtimer_lock);
1082
1083 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1084 }
1085
1086 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1087 {
1088 struct hrtimer *timer = &cpuctx->hrtimer;
1089 struct pmu *pmu = cpuctx->ctx.pmu;
1090 u64 interval;
1091
1092 /* no multiplexing needed for SW PMU */
1093 if (pmu->task_ctx_nr == perf_sw_context)
1094 return;
1095
1096 /*
1097 * check default is sane, if not set then force to
1098 * default interval (1/tick)
1099 */
1100 interval = pmu->hrtimer_interval_ms;
1101 if (interval < 1)
1102 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1103
1104 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1105
1106 raw_spin_lock_init(&cpuctx->hrtimer_lock);
1107 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD);
1108 timer->function = perf_mux_hrtimer_handler;
1109 }
1110
1111 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1112 {
1113 struct hrtimer *timer = &cpuctx->hrtimer;
1114 struct pmu *pmu = cpuctx->ctx.pmu;
1115 unsigned long flags;
1116
1117 /* not for SW PMU */
1118 if (pmu->task_ctx_nr == perf_sw_context)
1119 return 0;
1120
1121 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1122 if (!cpuctx->hrtimer_active) {
1123 cpuctx->hrtimer_active = 1;
1124 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1125 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
1126 }
1127 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1128
1129 return 0;
1130 }
1131
1132 void perf_pmu_disable(struct pmu *pmu)
1133 {
1134 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1135 if (!(*count)++)
1136 pmu->pmu_disable(pmu);
1137 }
1138
1139 void perf_pmu_enable(struct pmu *pmu)
1140 {
1141 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1142 if (!--(*count))
1143 pmu->pmu_enable(pmu);
1144 }
1145
1146 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1147
1148 /*
1149 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1150 * perf_event_task_tick() are fully serialized because they're strictly cpu
1151 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1152 * disabled, while perf_event_task_tick is called from IRQ context.
1153 */
1154 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1155 {
1156 struct list_head *head = this_cpu_ptr(&active_ctx_list);
1157
1158 lockdep_assert_irqs_disabled();
1159
1160 WARN_ON(!list_empty(&ctx->active_ctx_list));
1161
1162 list_add(&ctx->active_ctx_list, head);
1163 }
1164
1165 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1166 {
1167 lockdep_assert_irqs_disabled();
1168
1169 WARN_ON(list_empty(&ctx->active_ctx_list));
1170
1171 list_del_init(&ctx->active_ctx_list);
1172 }
1173
1174 static void get_ctx(struct perf_event_context *ctx)
1175 {
1176 refcount_inc(&ctx->refcount);
1177 }
1178
1179 static void free_ctx(struct rcu_head *head)
1180 {
1181 struct perf_event_context *ctx;
1182
1183 ctx = container_of(head, struct perf_event_context, rcu_head);
1184 kfree(ctx->task_ctx_data);
1185 kfree(ctx);
1186 }
1187
1188 static void put_ctx(struct perf_event_context *ctx)
1189 {
1190 if (refcount_dec_and_test(&ctx->refcount)) {
1191 if (ctx->parent_ctx)
1192 put_ctx(ctx->parent_ctx);
1193 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1194 put_task_struct(ctx->task);
1195 call_rcu(&ctx->rcu_head, free_ctx);
1196 }
1197 }
1198
1199 /*
1200 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1201 * perf_pmu_migrate_context() we need some magic.
1202 *
1203 * Those places that change perf_event::ctx will hold both
1204 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1205 *
1206 * Lock ordering is by mutex address. There are two other sites where
1207 * perf_event_context::mutex nests and those are:
1208 *
1209 * - perf_event_exit_task_context() [ child , 0 ]
1210 * perf_event_exit_event()
1211 * put_event() [ parent, 1 ]
1212 *
1213 * - perf_event_init_context() [ parent, 0 ]
1214 * inherit_task_group()
1215 * inherit_group()
1216 * inherit_event()
1217 * perf_event_alloc()
1218 * perf_init_event()
1219 * perf_try_init_event() [ child , 1 ]
1220 *
1221 * While it appears there is an obvious deadlock here -- the parent and child
1222 * nesting levels are inverted between the two. This is in fact safe because
1223 * life-time rules separate them. That is an exiting task cannot fork, and a
1224 * spawning task cannot (yet) exit.
1225 *
1226 * But remember that that these are parent<->child context relations, and
1227 * migration does not affect children, therefore these two orderings should not
1228 * interact.
1229 *
1230 * The change in perf_event::ctx does not affect children (as claimed above)
1231 * because the sys_perf_event_open() case will install a new event and break
1232 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1233 * concerned with cpuctx and that doesn't have children.
1234 *
1235 * The places that change perf_event::ctx will issue:
1236 *
1237 * perf_remove_from_context();
1238 * synchronize_rcu();
1239 * perf_install_in_context();
1240 *
1241 * to affect the change. The remove_from_context() + synchronize_rcu() should
1242 * quiesce the event, after which we can install it in the new location. This
1243 * means that only external vectors (perf_fops, prctl) can perturb the event
1244 * while in transit. Therefore all such accessors should also acquire
1245 * perf_event_context::mutex to serialize against this.
1246 *
1247 * However; because event->ctx can change while we're waiting to acquire
1248 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1249 * function.
1250 *
1251 * Lock order:
1252 * cred_guard_mutex
1253 * task_struct::perf_event_mutex
1254 * perf_event_context::mutex
1255 * perf_event::child_mutex;
1256 * perf_event_context::lock
1257 * perf_event::mmap_mutex
1258 * mmap_sem
1259 * perf_addr_filters_head::lock
1260 *
1261 * cpu_hotplug_lock
1262 * pmus_lock
1263 * cpuctx->mutex / perf_event_context::mutex
1264 */
1265 static struct perf_event_context *
1266 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1267 {
1268 struct perf_event_context *ctx;
1269
1270 again:
1271 rcu_read_lock();
1272 ctx = READ_ONCE(event->ctx);
1273 if (!refcount_inc_not_zero(&ctx->refcount)) {
1274 rcu_read_unlock();
1275 goto again;
1276 }
1277 rcu_read_unlock();
1278
1279 mutex_lock_nested(&ctx->mutex, nesting);
1280 if (event->ctx != ctx) {
1281 mutex_unlock(&ctx->mutex);
1282 put_ctx(ctx);
1283 goto again;
1284 }
1285
1286 return ctx;
1287 }
1288
1289 static inline struct perf_event_context *
1290 perf_event_ctx_lock(struct perf_event *event)
1291 {
1292 return perf_event_ctx_lock_nested(event, 0);
1293 }
1294
1295 static void perf_event_ctx_unlock(struct perf_event *event,
1296 struct perf_event_context *ctx)
1297 {
1298 mutex_unlock(&ctx->mutex);
1299 put_ctx(ctx);
1300 }
1301
1302 /*
1303 * This must be done under the ctx->lock, such as to serialize against
1304 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1305 * calling scheduler related locks and ctx->lock nests inside those.
1306 */
1307 static __must_check struct perf_event_context *
1308 unclone_ctx(struct perf_event_context *ctx)
1309 {
1310 struct perf_event_context *parent_ctx = ctx->parent_ctx;
1311
1312 lockdep_assert_held(&ctx->lock);
1313
1314 if (parent_ctx)
1315 ctx->parent_ctx = NULL;
1316 ctx->generation++;
1317
1318 return parent_ctx;
1319 }
1320
1321 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1322 enum pid_type type)
1323 {
1324 u32 nr;
1325 /*
1326 * only top level events have the pid namespace they were created in
1327 */
1328 if (event->parent)
1329 event = event->parent;
1330
1331 nr = __task_pid_nr_ns(p, type, event->ns);
1332 /* avoid -1 if it is idle thread or runs in another ns */
1333 if (!nr && !pid_alive(p))
1334 nr = -1;
1335 return nr;
1336 }
1337
1338 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1339 {
1340 return perf_event_pid_type(event, p, PIDTYPE_TGID);
1341 }
1342
1343 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1344 {
1345 return perf_event_pid_type(event, p, PIDTYPE_PID);
1346 }
1347
1348 /*
1349 * If we inherit events we want to return the parent event id
1350 * to userspace.
1351 */
1352 static u64 primary_event_id(struct perf_event *event)
1353 {
1354 u64 id = event->id;
1355
1356 if (event->parent)
1357 id = event->parent->id;
1358
1359 return id;
1360 }
1361
1362 /*
1363 * Get the perf_event_context for a task and lock it.
1364 *
1365 * This has to cope with with the fact that until it is locked,
1366 * the context could get moved to another task.
1367 */
1368 static struct perf_event_context *
1369 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1370 {
1371 struct perf_event_context *ctx;
1372
1373 retry:
1374 /*
1375 * One of the few rules of preemptible RCU is that one cannot do
1376 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1377 * part of the read side critical section was irqs-enabled -- see
1378 * rcu_read_unlock_special().
1379 *
1380 * Since ctx->lock nests under rq->lock we must ensure the entire read
1381 * side critical section has interrupts disabled.
1382 */
1383 local_irq_save(*flags);
1384 rcu_read_lock();
1385 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1386 if (ctx) {
1387 /*
1388 * If this context is a clone of another, it might
1389 * get swapped for another underneath us by
1390 * perf_event_task_sched_out, though the
1391 * rcu_read_lock() protects us from any context
1392 * getting freed. Lock the context and check if it
1393 * got swapped before we could get the lock, and retry
1394 * if so. If we locked the right context, then it
1395 * can't get swapped on us any more.
1396 */
1397 raw_spin_lock(&ctx->lock);
1398 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1399 raw_spin_unlock(&ctx->lock);
1400 rcu_read_unlock();
1401 local_irq_restore(*flags);
1402 goto retry;
1403 }
1404
1405 if (ctx->task == TASK_TOMBSTONE ||
1406 !refcount_inc_not_zero(&ctx->refcount)) {
1407 raw_spin_unlock(&ctx->lock);
1408 ctx = NULL;
1409 } else {
1410 WARN_ON_ONCE(ctx->task != task);
1411 }
1412 }
1413 rcu_read_unlock();
1414 if (!ctx)
1415 local_irq_restore(*flags);
1416 return ctx;
1417 }
1418
1419 /*
1420 * Get the context for a task and increment its pin_count so it
1421 * can't get swapped to another task. This also increments its
1422 * reference count so that the context can't get freed.
1423 */
1424 static struct perf_event_context *
1425 perf_pin_task_context(struct task_struct *task, int ctxn)
1426 {
1427 struct perf_event_context *ctx;
1428 unsigned long flags;
1429
1430 ctx = perf_lock_task_context(task, ctxn, &flags);
1431 if (ctx) {
1432 ++ctx->pin_count;
1433 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1434 }
1435 return ctx;
1436 }
1437
1438 static void perf_unpin_context(struct perf_event_context *ctx)
1439 {
1440 unsigned long flags;
1441
1442 raw_spin_lock_irqsave(&ctx->lock, flags);
1443 --ctx->pin_count;
1444 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1445 }
1446
1447 /*
1448 * Update the record of the current time in a context.
1449 */
1450 static void update_context_time(struct perf_event_context *ctx)
1451 {
1452 u64 now = perf_clock();
1453
1454 ctx->time += now - ctx->timestamp;
1455 ctx->timestamp = now;
1456 }
1457
1458 static u64 perf_event_time(struct perf_event *event)
1459 {
1460 struct perf_event_context *ctx = event->ctx;
1461
1462 if (is_cgroup_event(event))
1463 return perf_cgroup_event_time(event);
1464
1465 return ctx ? ctx->time : 0;
1466 }
1467
1468 static enum event_type_t get_event_type(struct perf_event *event)
1469 {
1470 struct perf_event_context *ctx = event->ctx;
1471 enum event_type_t event_type;
1472
1473 lockdep_assert_held(&ctx->lock);
1474
1475 /*
1476 * It's 'group type', really, because if our group leader is
1477 * pinned, so are we.
1478 */
1479 if (event->group_leader != event)
1480 event = event->group_leader;
1481
1482 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1483 if (!ctx->task)
1484 event_type |= EVENT_CPU;
1485
1486 return event_type;
1487 }
1488
1489 /*
1490 * Helper function to initialize event group nodes.
1491 */
1492 static void init_event_group(struct perf_event *event)
1493 {
1494 RB_CLEAR_NODE(&event->group_node);
1495 event->group_index = 0;
1496 }
1497
1498 /*
1499 * Extract pinned or flexible groups from the context
1500 * based on event attrs bits.
1501 */
1502 static struct perf_event_groups *
1503 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1504 {
1505 if (event->attr.pinned)
1506 return &ctx->pinned_groups;
1507 else
1508 return &ctx->flexible_groups;
1509 }
1510
1511 /*
1512 * Helper function to initializes perf_event_group trees.
1513 */
1514 static void perf_event_groups_init(struct perf_event_groups *groups)
1515 {
1516 groups->tree = RB_ROOT;
1517 groups->index = 0;
1518 }
1519
1520 /*
1521 * Compare function for event groups;
1522 *
1523 * Implements complex key that first sorts by CPU and then by virtual index
1524 * which provides ordering when rotating groups for the same CPU.
1525 */
1526 static bool
1527 perf_event_groups_less(struct perf_event *left, struct perf_event *right)
1528 {
1529 if (left->cpu < right->cpu)
1530 return true;
1531 if (left->cpu > right->cpu)
1532 return false;
1533
1534 if (left->group_index < right->group_index)
1535 return true;
1536 if (left->group_index > right->group_index)
1537 return false;
1538
1539 return false;
1540 }
1541
1542 /*
1543 * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for
1544 * key (see perf_event_groups_less). This places it last inside the CPU
1545 * subtree.
1546 */
1547 static void
1548 perf_event_groups_insert(struct perf_event_groups *groups,
1549 struct perf_event *event)
1550 {
1551 struct perf_event *node_event;
1552 struct rb_node *parent;
1553 struct rb_node **node;
1554
1555 event->group_index = ++groups->index;
1556
1557 node = &groups->tree.rb_node;
1558 parent = *node;
1559
1560 while (*node) {
1561 parent = *node;
1562 node_event = container_of(*node, struct perf_event, group_node);
1563
1564 if (perf_event_groups_less(event, node_event))
1565 node = &parent->rb_left;
1566 else
1567 node = &parent->rb_right;
1568 }
1569
1570 rb_link_node(&event->group_node, parent, node);
1571 rb_insert_color(&event->group_node, &groups->tree);
1572 }
1573
1574 /*
1575 * Helper function to insert event into the pinned or flexible groups.
1576 */
1577 static void
1578 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1579 {
1580 struct perf_event_groups *groups;
1581
1582 groups = get_event_groups(event, ctx);
1583 perf_event_groups_insert(groups, event);
1584 }
1585
1586 /*
1587 * Delete a group from a tree.
1588 */
1589 static void
1590 perf_event_groups_delete(struct perf_event_groups *groups,
1591 struct perf_event *event)
1592 {
1593 WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1594 RB_EMPTY_ROOT(&groups->tree));
1595
1596 rb_erase(&event->group_node, &groups->tree);
1597 init_event_group(event);
1598 }
1599
1600 /*
1601 * Helper function to delete event from its groups.
1602 */
1603 static void
1604 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1605 {
1606 struct perf_event_groups *groups;
1607
1608 groups = get_event_groups(event, ctx);
1609 perf_event_groups_delete(groups, event);
1610 }
1611
1612 /*
1613 * Get the leftmost event in the @cpu subtree.
1614 */
1615 static struct perf_event *
1616 perf_event_groups_first(struct perf_event_groups *groups, int cpu)
1617 {
1618 struct perf_event *node_event = NULL, *match = NULL;
1619 struct rb_node *node = groups->tree.rb_node;
1620
1621 while (node) {
1622 node_event = container_of(node, struct perf_event, group_node);
1623
1624 if (cpu < node_event->cpu) {
1625 node = node->rb_left;
1626 } else if (cpu > node_event->cpu) {
1627 node = node->rb_right;
1628 } else {
1629 match = node_event;
1630 node = node->rb_left;
1631 }
1632 }
1633
1634 return match;
1635 }
1636
1637 /*
1638 * Like rb_entry_next_safe() for the @cpu subtree.
1639 */
1640 static struct perf_event *
1641 perf_event_groups_next(struct perf_event *event)
1642 {
1643 struct perf_event *next;
1644
1645 next = rb_entry_safe(rb_next(&event->group_node), typeof(*event), group_node);
1646 if (next && next->cpu == event->cpu)
1647 return next;
1648
1649 return NULL;
1650 }
1651
1652 /*
1653 * Iterate through the whole groups tree.
1654 */
1655 #define perf_event_groups_for_each(event, groups) \
1656 for (event = rb_entry_safe(rb_first(&((groups)->tree)), \
1657 typeof(*event), group_node); event; \
1658 event = rb_entry_safe(rb_next(&event->group_node), \
1659 typeof(*event), group_node))
1660
1661 /*
1662 * Add an event from the lists for its context.
1663 * Must be called with ctx->mutex and ctx->lock held.
1664 */
1665 static void
1666 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1667 {
1668 lockdep_assert_held(&ctx->lock);
1669
1670 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1671 event->attach_state |= PERF_ATTACH_CONTEXT;
1672
1673 event->tstamp = perf_event_time(event);
1674
1675 /*
1676 * If we're a stand alone event or group leader, we go to the context
1677 * list, group events are kept attached to the group so that
1678 * perf_group_detach can, at all times, locate all siblings.
1679 */
1680 if (event->group_leader == event) {
1681 event->group_caps = event->event_caps;
1682 add_event_to_groups(event, ctx);
1683 }
1684
1685 list_update_cgroup_event(event, ctx, true);
1686
1687 list_add_rcu(&event->event_entry, &ctx->event_list);
1688 ctx->nr_events++;
1689 if (event->attr.inherit_stat)
1690 ctx->nr_stat++;
1691
1692 ctx->generation++;
1693 }
1694
1695 /*
1696 * Initialize event state based on the perf_event_attr::disabled.
1697 */
1698 static inline void perf_event__state_init(struct perf_event *event)
1699 {
1700 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1701 PERF_EVENT_STATE_INACTIVE;
1702 }
1703
1704 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1705 {
1706 int entry = sizeof(u64); /* value */
1707 int size = 0;
1708 int nr = 1;
1709
1710 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1711 size += sizeof(u64);
1712
1713 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1714 size += sizeof(u64);
1715
1716 if (event->attr.read_format & PERF_FORMAT_ID)
1717 entry += sizeof(u64);
1718
1719 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1720 nr += nr_siblings;
1721 size += sizeof(u64);
1722 }
1723
1724 size += entry * nr;
1725 event->read_size = size;
1726 }
1727
1728 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1729 {
1730 struct perf_sample_data *data;
1731 u16 size = 0;
1732
1733 if (sample_type & PERF_SAMPLE_IP)
1734 size += sizeof(data->ip);
1735
1736 if (sample_type & PERF_SAMPLE_ADDR)
1737 size += sizeof(data->addr);
1738
1739 if (sample_type & PERF_SAMPLE_PERIOD)
1740 size += sizeof(data->period);
1741
1742 if (sample_type & PERF_SAMPLE_WEIGHT)
1743 size += sizeof(data->weight);
1744
1745 if (sample_type & PERF_SAMPLE_READ)
1746 size += event->read_size;
1747
1748 if (sample_type & PERF_SAMPLE_DATA_SRC)
1749 size += sizeof(data->data_src.val);
1750
1751 if (sample_type & PERF_SAMPLE_TRANSACTION)
1752 size += sizeof(data->txn);
1753
1754 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1755 size += sizeof(data->phys_addr);
1756
1757 event->header_size = size;
1758 }
1759
1760 /*
1761 * Called at perf_event creation and when events are attached/detached from a
1762 * group.
1763 */
1764 static void perf_event__header_size(struct perf_event *event)
1765 {
1766 __perf_event_read_size(event,
1767 event->group_leader->nr_siblings);
1768 __perf_event_header_size(event, event->attr.sample_type);
1769 }
1770
1771 static void perf_event__id_header_size(struct perf_event *event)
1772 {
1773 struct perf_sample_data *data;
1774 u64 sample_type = event->attr.sample_type;
1775 u16 size = 0;
1776
1777 if (sample_type & PERF_SAMPLE_TID)
1778 size += sizeof(data->tid_entry);
1779
1780 if (sample_type & PERF_SAMPLE_TIME)
1781 size += sizeof(data->time);
1782
1783 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1784 size += sizeof(data->id);
1785
1786 if (sample_type & PERF_SAMPLE_ID)
1787 size += sizeof(data->id);
1788
1789 if (sample_type & PERF_SAMPLE_STREAM_ID)
1790 size += sizeof(data->stream_id);
1791
1792 if (sample_type & PERF_SAMPLE_CPU)
1793 size += sizeof(data->cpu_entry);
1794
1795 event->id_header_size = size;
1796 }
1797
1798 static bool perf_event_validate_size(struct perf_event *event)
1799 {
1800 /*
1801 * The values computed here will be over-written when we actually
1802 * attach the event.
1803 */
1804 __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1805 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1806 perf_event__id_header_size(event);
1807
1808 /*
1809 * Sum the lot; should not exceed the 64k limit we have on records.
1810 * Conservative limit to allow for callchains and other variable fields.
1811 */
1812 if (event->read_size + event->header_size +
1813 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1814 return false;
1815
1816 return true;
1817 }
1818
1819 static void perf_group_attach(struct perf_event *event)
1820 {
1821 struct perf_event *group_leader = event->group_leader, *pos;
1822
1823 lockdep_assert_held(&event->ctx->lock);
1824
1825 /*
1826 * We can have double attach due to group movement in perf_event_open.
1827 */
1828 if (event->attach_state & PERF_ATTACH_GROUP)
1829 return;
1830
1831 event->attach_state |= PERF_ATTACH_GROUP;
1832
1833 if (group_leader == event)
1834 return;
1835
1836 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1837
1838 group_leader->group_caps &= event->event_caps;
1839
1840 list_add_tail(&event->sibling_list, &group_leader->sibling_list);
1841 group_leader->nr_siblings++;
1842
1843 perf_event__header_size(group_leader);
1844
1845 for_each_sibling_event(pos, group_leader)
1846 perf_event__header_size(pos);
1847 }
1848
1849 /*
1850 * Remove an event from the lists for its context.
1851 * Must be called with ctx->mutex and ctx->lock held.
1852 */
1853 static void
1854 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1855 {
1856 WARN_ON_ONCE(event->ctx != ctx);
1857 lockdep_assert_held(&ctx->lock);
1858
1859 /*
1860 * We can have double detach due to exit/hot-unplug + close.
1861 */
1862 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1863 return;
1864
1865 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1866
1867 list_update_cgroup_event(event, ctx, false);
1868
1869 ctx->nr_events--;
1870 if (event->attr.inherit_stat)
1871 ctx->nr_stat--;
1872
1873 list_del_rcu(&event->event_entry);
1874
1875 if (event->group_leader == event)
1876 del_event_from_groups(event, ctx);
1877
1878 /*
1879 * If event was in error state, then keep it
1880 * that way, otherwise bogus counts will be
1881 * returned on read(). The only way to get out
1882 * of error state is by explicit re-enabling
1883 * of the event
1884 */
1885 if (event->state > PERF_EVENT_STATE_OFF)
1886 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
1887
1888 ctx->generation++;
1889 }
1890
1891 static int
1892 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event)
1893 {
1894 if (!has_aux(aux_event))
1895 return 0;
1896
1897 if (!event->pmu->aux_output_match)
1898 return 0;
1899
1900 return event->pmu->aux_output_match(aux_event);
1901 }
1902
1903 static void put_event(struct perf_event *event);
1904 static void event_sched_out(struct perf_event *event,
1905 struct perf_cpu_context *cpuctx,
1906 struct perf_event_context *ctx);
1907
1908 static void perf_put_aux_event(struct perf_event *event)
1909 {
1910 struct perf_event_context *ctx = event->ctx;
1911 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1912 struct perf_event *iter;
1913
1914 /*
1915 * If event uses aux_event tear down the link
1916 */
1917 if (event->aux_event) {
1918 iter = event->aux_event;
1919 event->aux_event = NULL;
1920 put_event(iter);
1921 return;
1922 }
1923
1924 /*
1925 * If the event is an aux_event, tear down all links to
1926 * it from other events.
1927 */
1928 for_each_sibling_event(iter, event->group_leader) {
1929 if (iter->aux_event != event)
1930 continue;
1931
1932 iter->aux_event = NULL;
1933 put_event(event);
1934
1935 /*
1936 * If it's ACTIVE, schedule it out and put it into ERROR
1937 * state so that we don't try to schedule it again. Note
1938 * that perf_event_enable() will clear the ERROR status.
1939 */
1940 event_sched_out(iter, cpuctx, ctx);
1941 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
1942 }
1943 }
1944
1945 static bool perf_need_aux_event(struct perf_event *event)
1946 {
1947 return !!event->attr.aux_output || !!event->attr.aux_sample_size;
1948 }
1949
1950 static int perf_get_aux_event(struct perf_event *event,
1951 struct perf_event *group_leader)
1952 {
1953 /*
1954 * Our group leader must be an aux event if we want to be
1955 * an aux_output. This way, the aux event will precede its
1956 * aux_output events in the group, and therefore will always
1957 * schedule first.
1958 */
1959 if (!group_leader)
1960 return 0;
1961
1962 /*
1963 * aux_output and aux_sample_size are mutually exclusive.
1964 */
1965 if (event->attr.aux_output && event->attr.aux_sample_size)
1966 return 0;
1967
1968 if (event->attr.aux_output &&
1969 !perf_aux_output_match(event, group_leader))
1970 return 0;
1971
1972 if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux)
1973 return 0;
1974
1975 if (!atomic_long_inc_not_zero(&group_leader->refcount))
1976 return 0;
1977
1978 /*
1979 * Link aux_outputs to their aux event; this is undone in
1980 * perf_group_detach() by perf_put_aux_event(). When the
1981 * group in torn down, the aux_output events loose their
1982 * link to the aux_event and can't schedule any more.
1983 */
1984 event->aux_event = group_leader;
1985
1986 return 1;
1987 }
1988
1989 static void perf_group_detach(struct perf_event *event)
1990 {
1991 struct perf_event *sibling, *tmp;
1992 struct perf_event_context *ctx = event->ctx;
1993
1994 lockdep_assert_held(&ctx->lock);
1995
1996 /*
1997 * We can have double detach due to exit/hot-unplug + close.
1998 */
1999 if (!(event->attach_state & PERF_ATTACH_GROUP))
2000 return;
2001
2002 event->attach_state &= ~PERF_ATTACH_GROUP;
2003
2004 perf_put_aux_event(event);
2005
2006 /*
2007 * If this is a sibling, remove it from its group.
2008 */
2009 if (event->group_leader != event) {
2010 list_del_init(&event->sibling_list);
2011 event->group_leader->nr_siblings--;
2012 goto out;
2013 }
2014
2015 /*
2016 * If this was a group event with sibling events then
2017 * upgrade the siblings to singleton events by adding them
2018 * to whatever list we are on.
2019 */
2020 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
2021
2022 sibling->group_leader = sibling;
2023 list_del_init(&sibling->sibling_list);
2024
2025 /* Inherit group flags from the previous leader */
2026 sibling->group_caps = event->group_caps;
2027
2028 if (!RB_EMPTY_NODE(&event->group_node)) {
2029 add_event_to_groups(sibling, event->ctx);
2030
2031 if (sibling->state == PERF_EVENT_STATE_ACTIVE) {
2032 struct list_head *list = sibling->attr.pinned ?
2033 &ctx->pinned_active : &ctx->flexible_active;
2034
2035 list_add_tail(&sibling->active_list, list);
2036 }
2037 }
2038
2039 WARN_ON_ONCE(sibling->ctx != event->ctx);
2040 }
2041
2042 out:
2043 perf_event__header_size(event->group_leader);
2044
2045 for_each_sibling_event(tmp, event->group_leader)
2046 perf_event__header_size(tmp);
2047 }
2048
2049 static bool is_orphaned_event(struct perf_event *event)
2050 {
2051 return event->state == PERF_EVENT_STATE_DEAD;
2052 }
2053
2054 static inline int __pmu_filter_match(struct perf_event *event)
2055 {
2056 struct pmu *pmu = event->pmu;
2057 return pmu->filter_match ? pmu->filter_match(event) : 1;
2058 }
2059
2060 /*
2061 * Check whether we should attempt to schedule an event group based on
2062 * PMU-specific filtering. An event group can consist of HW and SW events,
2063 * potentially with a SW leader, so we must check all the filters, to
2064 * determine whether a group is schedulable:
2065 */
2066 static inline int pmu_filter_match(struct perf_event *event)
2067 {
2068 struct perf_event *sibling;
2069
2070 if (!__pmu_filter_match(event))
2071 return 0;
2072
2073 for_each_sibling_event(sibling, event) {
2074 if (!__pmu_filter_match(sibling))
2075 return 0;
2076 }
2077
2078 return 1;
2079 }
2080
2081 static inline int
2082 event_filter_match(struct perf_event *event)
2083 {
2084 return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
2085 perf_cgroup_match(event) && pmu_filter_match(event);
2086 }
2087
2088 static void
2089 event_sched_out(struct perf_event *event,
2090 struct perf_cpu_context *cpuctx,
2091 struct perf_event_context *ctx)
2092 {
2093 enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
2094
2095 WARN_ON_ONCE(event->ctx != ctx);
2096 lockdep_assert_held(&ctx->lock);
2097
2098 if (event->state != PERF_EVENT_STATE_ACTIVE)
2099 return;
2100
2101 /*
2102 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2103 * we can schedule events _OUT_ individually through things like
2104 * __perf_remove_from_context().
2105 */
2106 list_del_init(&event->active_list);
2107
2108 perf_pmu_disable(event->pmu);
2109
2110 event->pmu->del(event, 0);
2111 event->oncpu = -1;
2112
2113 if (READ_ONCE(event->pending_disable) >= 0) {
2114 WRITE_ONCE(event->pending_disable, -1);
2115 state = PERF_EVENT_STATE_OFF;
2116 }
2117 perf_event_set_state(event, state);
2118
2119 if (!is_software_event(event))
2120 cpuctx->active_oncpu--;
2121 if (!--ctx->nr_active)
2122 perf_event_ctx_deactivate(ctx);
2123 if (event->attr.freq && event->attr.sample_freq)
2124 ctx->nr_freq--;
2125 if (event->attr.exclusive || !cpuctx->active_oncpu)
2126 cpuctx->exclusive = 0;
2127
2128 perf_pmu_enable(event->pmu);
2129 }
2130
2131 static void
2132 group_sched_out(struct perf_event *group_event,
2133 struct perf_cpu_context *cpuctx,
2134 struct perf_event_context *ctx)
2135 {
2136 struct perf_event *event;
2137
2138 if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2139 return;
2140
2141 perf_pmu_disable(ctx->pmu);
2142
2143 event_sched_out(group_event, cpuctx, ctx);
2144
2145 /*
2146 * Schedule out siblings (if any):
2147 */
2148 for_each_sibling_event(event, group_event)
2149 event_sched_out(event, cpuctx, ctx);
2150
2151 perf_pmu_enable(ctx->pmu);
2152
2153 if (group_event->attr.exclusive)
2154 cpuctx->exclusive = 0;
2155 }
2156
2157 #define DETACH_GROUP 0x01UL
2158
2159 /*
2160 * Cross CPU call to remove a performance event
2161 *
2162 * We disable the event on the hardware level first. After that we
2163 * remove it from the context list.
2164 */
2165 static void
2166 __perf_remove_from_context(struct perf_event *event,
2167 struct perf_cpu_context *cpuctx,
2168 struct perf_event_context *ctx,
2169 void *info)
2170 {
2171 unsigned long flags = (unsigned long)info;
2172
2173 if (ctx->is_active & EVENT_TIME) {
2174 update_context_time(ctx);
2175 update_cgrp_time_from_cpuctx(cpuctx);
2176 }
2177
2178 event_sched_out(event, cpuctx, ctx);
2179 if (flags & DETACH_GROUP)
2180 perf_group_detach(event);
2181 list_del_event(event, ctx);
2182
2183 if (!ctx->nr_events && ctx->is_active) {
2184 ctx->is_active = 0;
2185 if (ctx->task) {
2186 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2187 cpuctx->task_ctx = NULL;
2188 }
2189 }
2190 }
2191
2192 /*
2193 * Remove the event from a task's (or a CPU's) list of events.
2194 *
2195 * If event->ctx is a cloned context, callers must make sure that
2196 * every task struct that event->ctx->task could possibly point to
2197 * remains valid. This is OK when called from perf_release since
2198 * that only calls us on the top-level context, which can't be a clone.
2199 * When called from perf_event_exit_task, it's OK because the
2200 * context has been detached from its task.
2201 */
2202 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2203 {
2204 struct perf_event_context *ctx = event->ctx;
2205
2206 lockdep_assert_held(&ctx->mutex);
2207
2208 event_function_call(event, __perf_remove_from_context, (void *)flags);
2209
2210 /*
2211 * The above event_function_call() can NO-OP when it hits
2212 * TASK_TOMBSTONE. In that case we must already have been detached
2213 * from the context (by perf_event_exit_event()) but the grouping
2214 * might still be in-tact.
2215 */
2216 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
2217 if ((flags & DETACH_GROUP) &&
2218 (event->attach_state & PERF_ATTACH_GROUP)) {
2219 /*
2220 * Since in that case we cannot possibly be scheduled, simply
2221 * detach now.
2222 */
2223 raw_spin_lock_irq(&ctx->lock);
2224 perf_group_detach(event);
2225 raw_spin_unlock_irq(&ctx->lock);
2226 }
2227 }
2228
2229 /*
2230 * Cross CPU call to disable a performance event
2231 */
2232 static void __perf_event_disable(struct perf_event *event,
2233 struct perf_cpu_context *cpuctx,
2234 struct perf_event_context *ctx,
2235 void *info)
2236 {
2237 if (event->state < PERF_EVENT_STATE_INACTIVE)
2238 return;
2239
2240 if (ctx->is_active & EVENT_TIME) {
2241 update_context_time(ctx);
2242 update_cgrp_time_from_event(event);
2243 }
2244
2245 if (event == event->group_leader)
2246 group_sched_out(event, cpuctx, ctx);
2247 else
2248 event_sched_out(event, cpuctx, ctx);
2249
2250 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2251 }
2252
2253 /*
2254 * Disable an event.
2255 *
2256 * If event->ctx is a cloned context, callers must make sure that
2257 * every task struct that event->ctx->task could possibly point to
2258 * remains valid. This condition is satisfied when called through
2259 * perf_event_for_each_child or perf_event_for_each because they
2260 * hold the top-level event's child_mutex, so any descendant that
2261 * goes to exit will block in perf_event_exit_event().
2262 *
2263 * When called from perf_pending_event it's OK because event->ctx
2264 * is the current context on this CPU and preemption is disabled,
2265 * hence we can't get into perf_event_task_sched_out for this context.
2266 */
2267 static void _perf_event_disable(struct perf_event *event)
2268 {
2269 struct perf_event_context *ctx = event->ctx;
2270
2271 raw_spin_lock_irq(&ctx->lock);
2272 if (event->state <= PERF_EVENT_STATE_OFF) {
2273 raw_spin_unlock_irq(&ctx->lock);
2274 return;
2275 }
2276 raw_spin_unlock_irq(&ctx->lock);
2277
2278 event_function_call(event, __perf_event_disable, NULL);
2279 }
2280
2281 void perf_event_disable_local(struct perf_event *event)
2282 {
2283 event_function_local(event, __perf_event_disable, NULL);
2284 }
2285
2286 /*
2287 * Strictly speaking kernel users cannot create groups and therefore this
2288 * interface does not need the perf_event_ctx_lock() magic.
2289 */
2290 void perf_event_disable(struct perf_event *event)
2291 {
2292 struct perf_event_context *ctx;
2293
2294 ctx = perf_event_ctx_lock(event);
2295 _perf_event_disable(event);
2296 perf_event_ctx_unlock(event, ctx);
2297 }
2298 EXPORT_SYMBOL_GPL(perf_event_disable);
2299
2300 void perf_event_disable_inatomic(struct perf_event *event)
2301 {
2302 WRITE_ONCE(event->pending_disable, smp_processor_id());
2303 /* can fail, see perf_pending_event_disable() */
2304 irq_work_queue(&event->pending);
2305 }
2306
2307 static void perf_set_shadow_time(struct perf_event *event,
2308 struct perf_event_context *ctx)
2309 {
2310 /*
2311 * use the correct time source for the time snapshot
2312 *
2313 * We could get by without this by leveraging the
2314 * fact that to get to this function, the caller
2315 * has most likely already called update_context_time()
2316 * and update_cgrp_time_xx() and thus both timestamp
2317 * are identical (or very close). Given that tstamp is,
2318 * already adjusted for cgroup, we could say that:
2319 * tstamp - ctx->timestamp
2320 * is equivalent to
2321 * tstamp - cgrp->timestamp.
2322 *
2323 * Then, in perf_output_read(), the calculation would
2324 * work with no changes because:
2325 * - event is guaranteed scheduled in
2326 * - no scheduled out in between
2327 * - thus the timestamp would be the same
2328 *
2329 * But this is a bit hairy.
2330 *
2331 * So instead, we have an explicit cgroup call to remain
2332 * within the time time source all along. We believe it
2333 * is cleaner and simpler to understand.
2334 */
2335 if (is_cgroup_event(event))
2336 perf_cgroup_set_shadow_time(event, event->tstamp);
2337 else
2338 event->shadow_ctx_time = event->tstamp - ctx->timestamp;
2339 }
2340
2341 #define MAX_INTERRUPTS (~0ULL)
2342
2343 static void perf_log_throttle(struct perf_event *event, int enable);
2344 static void perf_log_itrace_start(struct perf_event *event);
2345
2346 static int
2347 event_sched_in(struct perf_event *event,
2348 struct perf_cpu_context *cpuctx,
2349 struct perf_event_context *ctx)
2350 {
2351 int ret = 0;
2352
2353 lockdep_assert_held(&ctx->lock);
2354
2355 if (event->state <= PERF_EVENT_STATE_OFF)
2356 return 0;
2357
2358 WRITE_ONCE(event->oncpu, smp_processor_id());
2359 /*
2360 * Order event::oncpu write to happen before the ACTIVE state is
2361 * visible. This allows perf_event_{stop,read}() to observe the correct
2362 * ->oncpu if it sees ACTIVE.
2363 */
2364 smp_wmb();
2365 perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2366
2367 /*
2368 * Unthrottle events, since we scheduled we might have missed several
2369 * ticks already, also for a heavily scheduling task there is little
2370 * guarantee it'll get a tick in a timely manner.
2371 */
2372 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2373 perf_log_throttle(event, 1);
2374 event->hw.interrupts = 0;
2375 }
2376
2377 perf_pmu_disable(event->pmu);
2378
2379 perf_set_shadow_time(event, ctx);
2380
2381 perf_log_itrace_start(event);
2382
2383 if (event->pmu->add(event, PERF_EF_START)) {
2384 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2385 event->oncpu = -1;
2386 ret = -EAGAIN;
2387 goto out;
2388 }
2389
2390 if (!is_software_event(event))
2391 cpuctx->active_oncpu++;
2392 if (!ctx->nr_active++)
2393 perf_event_ctx_activate(ctx);
2394 if (event->attr.freq && event->attr.sample_freq)
2395 ctx->nr_freq++;
2396
2397 if (event->attr.exclusive)
2398 cpuctx->exclusive = 1;
2399
2400 out:
2401 perf_pmu_enable(event->pmu);
2402
2403 return ret;
2404 }
2405
2406 static int
2407 group_sched_in(struct perf_event *group_event,
2408 struct perf_cpu_context *cpuctx,
2409 struct perf_event_context *ctx)
2410 {
2411 struct perf_event *event, *partial_group = NULL;
2412 struct pmu *pmu = ctx->pmu;
2413
2414 if (group_event->state == PERF_EVENT_STATE_OFF)
2415 return 0;
2416
2417 pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2418
2419 if (event_sched_in(group_event, cpuctx, ctx)) {
2420 pmu->cancel_txn(pmu);
2421 perf_mux_hrtimer_restart(cpuctx);
2422 return -EAGAIN;
2423 }
2424
2425 /*
2426 * Schedule in siblings as one group (if any):
2427 */
2428 for_each_sibling_event(event, group_event) {
2429 if (event_sched_in(event, cpuctx, ctx)) {
2430 partial_group = event;
2431 goto group_error;
2432 }
2433 }
2434
2435 if (!pmu->commit_txn(pmu))
2436 return 0;
2437
2438 group_error:
2439 /*
2440 * Groups can be scheduled in as one unit only, so undo any
2441 * partial group before returning:
2442 * The events up to the failed event are scheduled out normally.
2443 */
2444 for_each_sibling_event(event, group_event) {
2445 if (event == partial_group)
2446 break;
2447
2448 event_sched_out(event, cpuctx, ctx);
2449 }
2450 event_sched_out(group_event, cpuctx, ctx);
2451
2452 pmu->cancel_txn(pmu);
2453
2454 perf_mux_hrtimer_restart(cpuctx);
2455
2456 return -EAGAIN;
2457 }
2458
2459 /*
2460 * Work out whether we can put this event group on the CPU now.
2461 */
2462 static int group_can_go_on(struct perf_event *event,
2463 struct perf_cpu_context *cpuctx,
2464 int can_add_hw)
2465 {
2466 /*
2467 * Groups consisting entirely of software events can always go on.
2468 */
2469 if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2470 return 1;
2471 /*
2472 * If an exclusive group is already on, no other hardware
2473 * events can go on.
2474 */
2475 if (cpuctx->exclusive)
2476 return 0;
2477 /*
2478 * If this group is exclusive and there are already
2479 * events on the CPU, it can't go on.
2480 */
2481 if (event->attr.exclusive && cpuctx->active_oncpu)
2482 return 0;
2483 /*
2484 * Otherwise, try to add it if all previous groups were able
2485 * to go on.
2486 */
2487 return can_add_hw;
2488 }
2489
2490 static void add_event_to_ctx(struct perf_event *event,
2491 struct perf_event_context *ctx)
2492 {
2493 list_add_event(event, ctx);
2494 perf_group_attach(event);
2495 }
2496
2497 static void ctx_sched_out(struct perf_event_context *ctx,
2498 struct perf_cpu_context *cpuctx,
2499 enum event_type_t event_type);
2500 static void
2501 ctx_sched_in(struct perf_event_context *ctx,
2502 struct perf_cpu_context *cpuctx,
2503 enum event_type_t event_type,
2504 struct task_struct *task);
2505
2506 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2507 struct perf_event_context *ctx,
2508 enum event_type_t event_type)
2509 {
2510 if (!cpuctx->task_ctx)
2511 return;
2512
2513 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2514 return;
2515
2516 ctx_sched_out(ctx, cpuctx, event_type);
2517 }
2518
2519 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2520 struct perf_event_context *ctx,
2521 struct task_struct *task)
2522 {
2523 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2524 if (ctx)
2525 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2526 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2527 if (ctx)
2528 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2529 }
2530
2531 /*
2532 * We want to maintain the following priority of scheduling:
2533 * - CPU pinned (EVENT_CPU | EVENT_PINNED)
2534 * - task pinned (EVENT_PINNED)
2535 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2536 * - task flexible (EVENT_FLEXIBLE).
2537 *
2538 * In order to avoid unscheduling and scheduling back in everything every
2539 * time an event is added, only do it for the groups of equal priority and
2540 * below.
2541 *
2542 * This can be called after a batch operation on task events, in which case
2543 * event_type is a bit mask of the types of events involved. For CPU events,
2544 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2545 */
2546 static void ctx_resched(struct perf_cpu_context *cpuctx,
2547 struct perf_event_context *task_ctx,
2548 enum event_type_t event_type)
2549 {
2550 enum event_type_t ctx_event_type;
2551 bool cpu_event = !!(event_type & EVENT_CPU);
2552
2553 /*
2554 * If pinned groups are involved, flexible groups also need to be
2555 * scheduled out.
2556 */
2557 if (event_type & EVENT_PINNED)
2558 event_type |= EVENT_FLEXIBLE;
2559
2560 ctx_event_type = event_type & EVENT_ALL;
2561
2562 perf_pmu_disable(cpuctx->ctx.pmu);
2563 if (task_ctx)
2564 task_ctx_sched_out(cpuctx, task_ctx, event_type);
2565
2566 /*
2567 * Decide which cpu ctx groups to schedule out based on the types
2568 * of events that caused rescheduling:
2569 * - EVENT_CPU: schedule out corresponding groups;
2570 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2571 * - otherwise, do nothing more.
2572 */
2573 if (cpu_event)
2574 cpu_ctx_sched_out(cpuctx, ctx_event_type);
2575 else if (ctx_event_type & EVENT_PINNED)
2576 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2577
2578 perf_event_sched_in(cpuctx, task_ctx, current);
2579 perf_pmu_enable(cpuctx->ctx.pmu);
2580 }
2581
2582 void perf_pmu_resched(struct pmu *pmu)
2583 {
2584 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2585 struct perf_event_context *task_ctx = cpuctx->task_ctx;
2586
2587 perf_ctx_lock(cpuctx, task_ctx);
2588 ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU);
2589 perf_ctx_unlock(cpuctx, task_ctx);
2590 }
2591
2592 /*
2593 * Cross CPU call to install and enable a performance event
2594 *
2595 * Very similar to remote_function() + event_function() but cannot assume that
2596 * things like ctx->is_active and cpuctx->task_ctx are set.
2597 */
2598 static int __perf_install_in_context(void *info)
2599 {
2600 struct perf_event *event = info;
2601 struct perf_event_context *ctx = event->ctx;
2602 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2603 struct perf_event_context *task_ctx = cpuctx->task_ctx;
2604 bool reprogram = true;
2605 int ret = 0;
2606
2607 raw_spin_lock(&cpuctx->ctx.lock);
2608 if (ctx->task) {
2609 raw_spin_lock(&ctx->lock);
2610 task_ctx = ctx;
2611
2612 reprogram = (ctx->task == current);
2613
2614 /*
2615 * If the task is running, it must be running on this CPU,
2616 * otherwise we cannot reprogram things.
2617 *
2618 * If its not running, we don't care, ctx->lock will
2619 * serialize against it becoming runnable.
2620 */
2621 if (task_curr(ctx->task) && !reprogram) {
2622 ret = -ESRCH;
2623 goto unlock;
2624 }
2625
2626 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2627 } else if (task_ctx) {
2628 raw_spin_lock(&task_ctx->lock);
2629 }
2630
2631 #ifdef CONFIG_CGROUP_PERF
2632 if (is_cgroup_event(event)) {
2633 /*
2634 * If the current cgroup doesn't match the event's
2635 * cgroup, we should not try to schedule it.
2636 */
2637 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2638 reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2639 event->cgrp->css.cgroup);
2640 }
2641 #endif
2642
2643 if (reprogram) {
2644 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2645 add_event_to_ctx(event, ctx);
2646 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2647 } else {
2648 add_event_to_ctx(event, ctx);
2649 }
2650
2651 unlock:
2652 perf_ctx_unlock(cpuctx, task_ctx);
2653
2654 return ret;
2655 }
2656
2657 static bool exclusive_event_installable(struct perf_event *event,
2658 struct perf_event_context *ctx);
2659
2660 /*
2661 * Attach a performance event to a context.
2662 *
2663 * Very similar to event_function_call, see comment there.
2664 */
2665 static void
2666 perf_install_in_context(struct perf_event_context *ctx,
2667 struct perf_event *event,
2668 int cpu)
2669 {
2670 struct task_struct *task = READ_ONCE(ctx->task);
2671
2672 lockdep_assert_held(&ctx->mutex);
2673
2674 WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
2675
2676 if (event->cpu != -1)
2677 event->cpu = cpu;
2678
2679 /*
2680 * Ensures that if we can observe event->ctx, both the event and ctx
2681 * will be 'complete'. See perf_iterate_sb_cpu().
2682 */
2683 smp_store_release(&event->ctx, ctx);
2684
2685 /*
2686 * perf_event_attr::disabled events will not run and can be initialized
2687 * without IPI. Except when this is the first event for the context, in
2688 * that case we need the magic of the IPI to set ctx->is_active.
2689 *
2690 * The IOC_ENABLE that is sure to follow the creation of a disabled
2691 * event will issue the IPI and reprogram the hardware.
2692 */
2693 if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF && ctx->nr_events) {
2694 raw_spin_lock_irq(&ctx->lock);
2695 if (ctx->task == TASK_TOMBSTONE) {
2696 raw_spin_unlock_irq(&ctx->lock);
2697 return;
2698 }
2699 add_event_to_ctx(event, ctx);
2700 raw_spin_unlock_irq(&ctx->lock);
2701 return;
2702 }
2703
2704 if (!task) {
2705 cpu_function_call(cpu, __perf_install_in_context, event);
2706 return;
2707 }
2708
2709 /*
2710 * Should not happen, we validate the ctx is still alive before calling.
2711 */
2712 if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2713 return;
2714
2715 /*
2716 * Installing events is tricky because we cannot rely on ctx->is_active
2717 * to be set in case this is the nr_events 0 -> 1 transition.
2718 *
2719 * Instead we use task_curr(), which tells us if the task is running.
2720 * However, since we use task_curr() outside of rq::lock, we can race
2721 * against the actual state. This means the result can be wrong.
2722 *
2723 * If we get a false positive, we retry, this is harmless.
2724 *
2725 * If we get a false negative, things are complicated. If we are after
2726 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2727 * value must be correct. If we're before, it doesn't matter since
2728 * perf_event_context_sched_in() will program the counter.
2729 *
2730 * However, this hinges on the remote context switch having observed
2731 * our task->perf_event_ctxp[] store, such that it will in fact take
2732 * ctx::lock in perf_event_context_sched_in().
2733 *
2734 * We do this by task_function_call(), if the IPI fails to hit the task
2735 * we know any future context switch of task must see the
2736 * perf_event_ctpx[] store.
2737 */
2738
2739 /*
2740 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2741 * task_cpu() load, such that if the IPI then does not find the task
2742 * running, a future context switch of that task must observe the
2743 * store.
2744 */
2745 smp_mb();
2746 again:
2747 if (!task_function_call(task, __perf_install_in_context, event))
2748 return;
2749
2750 raw_spin_lock_irq(&ctx->lock);
2751 task = ctx->task;
2752 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2753 /*
2754 * Cannot happen because we already checked above (which also
2755 * cannot happen), and we hold ctx->mutex, which serializes us
2756 * against perf_event_exit_task_context().
2757 */
2758 raw_spin_unlock_irq(&ctx->lock);
2759 return;
2760 }
2761 /*
2762 * If the task is not running, ctx->lock will avoid it becoming so,
2763 * thus we can safely install the event.
2764 */
2765 if (task_curr(task)) {
2766 raw_spin_unlock_irq(&ctx->lock);
2767 goto again;
2768 }
2769 add_event_to_ctx(event, ctx);
2770 raw_spin_unlock_irq(&ctx->lock);
2771 }
2772
2773 /*
2774 * Cross CPU call to enable a performance event
2775 */
2776 static void __perf_event_enable(struct perf_event *event,
2777 struct perf_cpu_context *cpuctx,
2778 struct perf_event_context *ctx,
2779 void *info)
2780 {
2781 struct perf_event *leader = event->group_leader;
2782 struct perf_event_context *task_ctx;
2783
2784 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2785 event->state <= PERF_EVENT_STATE_ERROR)
2786 return;
2787
2788 if (ctx->is_active)
2789 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2790
2791 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2792
2793 if (!ctx->is_active)
2794 return;
2795
2796 if (!event_filter_match(event)) {
2797 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2798 return;
2799 }
2800
2801 /*
2802 * If the event is in a group and isn't the group leader,
2803 * then don't put it on unless the group is on.
2804 */
2805 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2806 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2807 return;
2808 }
2809
2810 task_ctx = cpuctx->task_ctx;
2811 if (ctx->task)
2812 WARN_ON_ONCE(task_ctx != ctx);
2813
2814 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2815 }
2816
2817 /*
2818 * Enable an event.
2819 *
2820 * If event->ctx is a cloned context, callers must make sure that
2821 * every task struct that event->ctx->task could possibly point to
2822 * remains valid. This condition is satisfied when called through
2823 * perf_event_for_each_child or perf_event_for_each as described
2824 * for perf_event_disable.
2825 */
2826 static void _perf_event_enable(struct perf_event *event)
2827 {
2828 struct perf_event_context *ctx = event->ctx;
2829
2830 raw_spin_lock_irq(&ctx->lock);
2831 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2832 event->state < PERF_EVENT_STATE_ERROR) {
2833 raw_spin_unlock_irq(&ctx->lock);
2834 return;
2835 }
2836
2837 /*
2838 * If the event is in error state, clear that first.
2839 *
2840 * That way, if we see the event in error state below, we know that it
2841 * has gone back into error state, as distinct from the task having
2842 * been scheduled away before the cross-call arrived.
2843 */
2844 if (event->state == PERF_EVENT_STATE_ERROR)
2845 event->state = PERF_EVENT_STATE_OFF;
2846 raw_spin_unlock_irq(&ctx->lock);
2847
2848 event_function_call(event, __perf_event_enable, NULL);
2849 }
2850
2851 /*
2852 * See perf_event_disable();
2853 */
2854 void perf_event_enable(struct perf_event *event)
2855 {
2856 struct perf_event_context *ctx;
2857
2858 ctx = perf_event_ctx_lock(event);
2859 _perf_event_enable(event);
2860 perf_event_ctx_unlock(event, ctx);
2861 }
2862 EXPORT_SYMBOL_GPL(perf_event_enable);
2863
2864 struct stop_event_data {
2865 struct perf_event *event;
2866 unsigned int restart;
2867 };
2868
2869 static int __perf_event_stop(void *info)
2870 {
2871 struct stop_event_data *sd = info;
2872 struct perf_event *event = sd->event;
2873
2874 /* if it's already INACTIVE, do nothing */
2875 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2876 return 0;
2877
2878 /* matches smp_wmb() in event_sched_in() */
2879 smp_rmb();
2880
2881 /*
2882 * There is a window with interrupts enabled before we get here,
2883 * so we need to check again lest we try to stop another CPU's event.
2884 */
2885 if (READ_ONCE(event->oncpu) != smp_processor_id())
2886 return -EAGAIN;
2887
2888 event->pmu->stop(event, PERF_EF_UPDATE);
2889
2890 /*
2891 * May race with the actual stop (through perf_pmu_output_stop()),
2892 * but it is only used for events with AUX ring buffer, and such
2893 * events will refuse to restart because of rb::aux_mmap_count==0,
2894 * see comments in perf_aux_output_begin().
2895 *
2896 * Since this is happening on an event-local CPU, no trace is lost
2897 * while restarting.
2898 */
2899 if (sd->restart)
2900 event->pmu->start(event, 0);
2901
2902 return 0;
2903 }
2904
2905 static int perf_event_stop(struct perf_event *event, int restart)
2906 {
2907 struct stop_event_data sd = {
2908 .event = event,
2909 .restart = restart,
2910 };
2911 int ret = 0;
2912
2913 do {
2914 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2915 return 0;
2916
2917 /* matches smp_wmb() in event_sched_in() */
2918 smp_rmb();
2919
2920 /*
2921 * We only want to restart ACTIVE events, so if the event goes
2922 * inactive here (event->oncpu==-1), there's nothing more to do;
2923 * fall through with ret==-ENXIO.
2924 */
2925 ret = cpu_function_call(READ_ONCE(event->oncpu),
2926 __perf_event_stop, &sd);
2927 } while (ret == -EAGAIN);
2928
2929 return ret;
2930 }
2931
2932 /*
2933 * In order to contain the amount of racy and tricky in the address filter
2934 * configuration management, it is a two part process:
2935 *
2936 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2937 * we update the addresses of corresponding vmas in
2938 * event::addr_filter_ranges array and bump the event::addr_filters_gen;
2939 * (p2) when an event is scheduled in (pmu::add), it calls
2940 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2941 * if the generation has changed since the previous call.
2942 *
2943 * If (p1) happens while the event is active, we restart it to force (p2).
2944 *
2945 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2946 * pre-existing mappings, called once when new filters arrive via SET_FILTER
2947 * ioctl;
2948 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2949 * registered mapping, called for every new mmap(), with mm::mmap_sem down
2950 * for reading;
2951 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2952 * of exec.
2953 */
2954 void perf_event_addr_filters_sync(struct perf_event *event)
2955 {
2956 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2957
2958 if (!has_addr_filter(event))
2959 return;
2960
2961 raw_spin_lock(&ifh->lock);
2962 if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2963 event->pmu->addr_filters_sync(event);
2964 event->hw.addr_filters_gen = event->addr_filters_gen;
2965 }
2966 raw_spin_unlock(&ifh->lock);
2967 }
2968 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2969
2970 static int _perf_event_refresh(struct perf_event *event, int refresh)
2971 {
2972 /*
2973 * not supported on inherited events
2974 */
2975 if (event->attr.inherit || !is_sampling_event(event))
2976 return -EINVAL;
2977
2978 atomic_add(refresh, &event->event_limit);
2979 _perf_event_enable(event);
2980
2981 return 0;
2982 }
2983
2984 /*
2985 * See perf_event_disable()
2986 */
2987 int perf_event_refresh(struct perf_event *event, int refresh)
2988 {
2989 struct perf_event_context *ctx;
2990 int ret;
2991
2992 ctx = perf_event_ctx_lock(event);
2993 ret = _perf_event_refresh(event, refresh);
2994 perf_event_ctx_unlock(event, ctx);
2995
2996 return ret;
2997 }
2998 EXPORT_SYMBOL_GPL(perf_event_refresh);
2999
3000 static int perf_event_modify_breakpoint(struct perf_event *bp,
3001 struct perf_event_attr *attr)
3002 {
3003 int err;
3004
3005 _perf_event_disable(bp);
3006
3007 err = modify_user_hw_breakpoint_check(bp, attr, true);
3008
3009 if (!bp->attr.disabled)
3010 _perf_event_enable(bp);
3011
3012 return err;
3013 }
3014
3015 static int perf_event_modify_attr(struct perf_event *event,
3016 struct perf_event_attr *attr)
3017 {
3018 if (event->attr.type != attr->type)
3019 return -EINVAL;
3020
3021 switch (event->attr.type) {
3022 case PERF_TYPE_BREAKPOINT:
3023 return perf_event_modify_breakpoint(event, attr);
3024 default:
3025 /* Place holder for future additions. */
3026 return -EOPNOTSUPP;
3027 }
3028 }
3029
3030 static void ctx_sched_out(struct perf_event_context *ctx,
3031 struct perf_cpu_context *cpuctx,
3032 enum event_type_t event_type)
3033 {
3034 struct perf_event *event, *tmp;
3035 int is_active = ctx->is_active;
3036
3037 lockdep_assert_held(&ctx->lock);
3038
3039 if (likely(!ctx->nr_events)) {
3040 /*
3041 * See __perf_remove_from_context().
3042 */
3043 WARN_ON_ONCE(ctx->is_active);
3044 if (ctx->task)
3045 WARN_ON_ONCE(cpuctx->task_ctx);
3046 return;
3047 }
3048
3049 ctx->is_active &= ~event_type;
3050 if (!(ctx->is_active & EVENT_ALL))
3051 ctx->is_active = 0;
3052
3053 if (ctx->task) {
3054 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3055 if (!ctx->is_active)
3056 cpuctx->task_ctx = NULL;
3057 }
3058
3059 /*
3060 * Always update time if it was set; not only when it changes.
3061 * Otherwise we can 'forget' to update time for any but the last
3062 * context we sched out. For example:
3063 *
3064 * ctx_sched_out(.event_type = EVENT_FLEXIBLE)
3065 * ctx_sched_out(.event_type = EVENT_PINNED)
3066 *
3067 * would only update time for the pinned events.
3068 */
3069 if (is_active & EVENT_TIME) {
3070 /* update (and stop) ctx time */
3071 update_context_time(ctx);
3072 update_cgrp_time_from_cpuctx(cpuctx);
3073 }
3074
3075 is_active ^= ctx->is_active; /* changed bits */
3076
3077 if (!ctx->nr_active || !(is_active & EVENT_ALL))
3078 return;
3079
3080 /*
3081 * If we had been multiplexing, no rotations are necessary, now no events
3082 * are active.
3083 */
3084 ctx->rotate_necessary = 0;
3085
3086 perf_pmu_disable(ctx->pmu);
3087 if (is_active & EVENT_PINNED) {
3088 list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list)
3089 group_sched_out(event, cpuctx, ctx);
3090 }
3091
3092 if (is_active & EVENT_FLEXIBLE) {
3093 list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list)
3094 group_sched_out(event, cpuctx, ctx);
3095 }
3096 perf_pmu_enable(ctx->pmu);
3097 }
3098
3099 /*
3100 * Test whether two contexts are equivalent, i.e. whether they have both been
3101 * cloned from the same version of the same context.
3102 *
3103 * Equivalence is measured using a generation number in the context that is
3104 * incremented on each modification to it; see unclone_ctx(), list_add_event()
3105 * and list_del_event().
3106 */
3107 static int context_equiv(struct perf_event_context *ctx1,
3108 struct perf_event_context *ctx2)
3109 {
3110 lockdep_assert_held(&ctx1->lock);
3111 lockdep_assert_held(&ctx2->lock);
3112
3113 /* Pinning disables the swap optimization */
3114 if (ctx1->pin_count || ctx2->pin_count)
3115 return 0;
3116
3117 /* If ctx1 is the parent of ctx2 */
3118 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
3119 return 1;
3120
3121 /* If ctx2 is the parent of ctx1 */
3122 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3123 return 1;
3124
3125 /*
3126 * If ctx1 and ctx2 have the same parent; we flatten the parent
3127 * hierarchy, see perf_event_init_context().
3128 */
3129 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3130 ctx1->parent_gen == ctx2->parent_gen)
3131 return 1;
3132
3133 /* Unmatched */
3134 return 0;
3135 }
3136
3137 static void __perf_event_sync_stat(struct perf_event *event,
3138 struct perf_event *next_event)
3139 {
3140 u64 value;
3141
3142 if (!event->attr.inherit_stat)
3143 return;
3144
3145 /*
3146 * Update the event value, we cannot use perf_event_read()
3147 * because we're in the middle of a context switch and have IRQs
3148 * disabled, which upsets smp_call_function_single(), however
3149 * we know the event must be on the current CPU, therefore we
3150 * don't need to use it.
3151 */
3152 if (event->state == PERF_EVENT_STATE_ACTIVE)
3153 event->pmu->read(event);
3154
3155 perf_event_update_time(event);
3156
3157 /*
3158 * In order to keep per-task stats reliable we need to flip the event
3159 * values when we flip the contexts.
3160 */
3161 value = local64_read(&next_event->count);
3162 value = local64_xchg(&event->count, value);
3163 local64_set(&next_event->count, value);
3164
3165 swap(event->total_time_enabled, next_event->total_time_enabled);
3166 swap(event->total_time_running, next_event->total_time_running);
3167
3168 /*
3169 * Since we swizzled the values, update the user visible data too.
3170 */
3171 perf_event_update_userpage(event);
3172 perf_event_update_userpage(next_event);
3173 }
3174
3175 static void perf_event_sync_stat(struct perf_event_context *ctx,
3176 struct perf_event_context *next_ctx)
3177 {
3178 struct perf_event *event, *next_event;
3179
3180 if (!ctx->nr_stat)
3181 return;
3182
3183 update_context_time(ctx);
3184
3185 event = list_first_entry(&ctx->event_list,
3186 struct perf_event, event_entry);
3187
3188 next_event = list_first_entry(&next_ctx->event_list,
3189 struct perf_event, event_entry);
3190
3191 while (&event->event_entry != &ctx->event_list &&
3192 &next_event->event_entry != &next_ctx->event_list) {
3193
3194 __perf_event_sync_stat(event, next_event);
3195
3196 event = list_next_entry(event, event_entry);
3197 next_event = list_next_entry(next_event, event_entry);
3198 }
3199 }
3200
3201 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
3202 struct task_struct *next)
3203 {
3204 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
3205 struct perf_event_context *next_ctx;
3206 struct perf_event_context *parent, *next_parent;
3207 struct perf_cpu_context *cpuctx;
3208 int do_switch = 1;
3209
3210 if (likely(!ctx))
3211 return;
3212
3213 cpuctx = __get_cpu_context(ctx);
3214 if (!cpuctx->task_ctx)
3215 return;
3216
3217 rcu_read_lock();
3218 next_ctx = next->perf_event_ctxp[ctxn];
3219 if (!next_ctx)
3220 goto unlock;
3221
3222 parent = rcu_dereference(ctx->parent_ctx);
3223 next_parent = rcu_dereference(next_ctx->parent_ctx);
3224
3225 /* If neither context have a parent context; they cannot be clones. */
3226 if (!parent && !next_parent)
3227 goto unlock;
3228
3229 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3230 /*
3231 * Looks like the two contexts are clones, so we might be
3232 * able to optimize the context switch. We lock both
3233 * contexts and check that they are clones under the
3234 * lock (including re-checking that neither has been
3235 * uncloned in the meantime). It doesn't matter which
3236 * order we take the locks because no other cpu could
3237 * be trying to lock both of these tasks.
3238 */
3239 raw_spin_lock(&ctx->lock);
3240 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3241 if (context_equiv(ctx, next_ctx)) {
3242 struct pmu *pmu = ctx->pmu;
3243
3244 WRITE_ONCE(ctx->task, next);
3245 WRITE_ONCE(next_ctx->task, task);
3246
3247 /*
3248 * PMU specific parts of task perf context can require
3249 * additional synchronization. As an example of such
3250 * synchronization see implementation details of Intel
3251 * LBR call stack data profiling;
3252 */
3253 if (pmu->swap_task_ctx)
3254 pmu->swap_task_ctx(ctx, next_ctx);
3255 else
3256 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
3257
3258 /*
3259 * RCU_INIT_POINTER here is safe because we've not
3260 * modified the ctx and the above modification of
3261 * ctx->task and ctx->task_ctx_data are immaterial
3262 * since those values are always verified under
3263 * ctx->lock which we're now holding.
3264 */
3265 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
3266 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
3267
3268 do_switch = 0;
3269
3270 perf_event_sync_stat(ctx, next_ctx);
3271 }
3272 raw_spin_unlock(&next_ctx->lock);
3273 raw_spin_unlock(&ctx->lock);
3274 }
3275 unlock:
3276 rcu_read_unlock();
3277
3278 if (do_switch) {
3279 raw_spin_lock(&ctx->lock);
3280 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
3281 raw_spin_unlock(&ctx->lock);
3282 }
3283 }
3284
3285 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3286
3287 void perf_sched_cb_dec(struct pmu *pmu)
3288 {
3289 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3290
3291 this_cpu_dec(perf_sched_cb_usages);
3292
3293 if (!--cpuctx->sched_cb_usage)
3294 list_del(&cpuctx->sched_cb_entry);
3295 }
3296
3297
3298 void perf_sched_cb_inc(struct pmu *pmu)
3299 {
3300 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3301
3302 if (!cpuctx->sched_cb_usage++)
3303 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3304
3305 this_cpu_inc(perf_sched_cb_usages);
3306 }
3307
3308 /*
3309 * This function provides the context switch callback to the lower code
3310 * layer. It is invoked ONLY when the context switch callback is enabled.
3311 *
3312 * This callback is relevant even to per-cpu events; for example multi event
3313 * PEBS requires this to provide PID/TID information. This requires we flush
3314 * all queued PEBS records before we context switch to a new task.
3315 */
3316 static void perf_pmu_sched_task(struct task_struct *prev,
3317 struct task_struct *next,
3318 bool sched_in)
3319 {
3320 struct perf_cpu_context *cpuctx;
3321 struct pmu *pmu;
3322
3323 if (prev == next)
3324 return;
3325
3326 list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
3327 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
3328
3329 if (WARN_ON_ONCE(!pmu->sched_task))
3330 continue;
3331
3332 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3333 perf_pmu_disable(pmu);
3334
3335 pmu->sched_task(cpuctx->task_ctx, sched_in);
3336
3337 perf_pmu_enable(pmu);
3338 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3339 }
3340 }
3341
3342 static void perf_event_switch(struct task_struct *task,
3343 struct task_struct *next_prev, bool sched_in);
3344
3345 #define for_each_task_context_nr(ctxn) \
3346 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3347
3348 /*
3349 * Called from scheduler to remove the events of the current task,
3350 * with interrupts disabled.
3351 *
3352 * We stop each event and update the event value in event->count.
3353 *
3354 * This does not protect us against NMI, but disable()
3355 * sets the disabled bit in the control field of event _before_
3356 * accessing the event control register. If a NMI hits, then it will
3357 * not restart the event.
3358 */
3359 void __perf_event_task_sched_out(struct task_struct *task,
3360 struct task_struct *next)
3361 {
3362 int ctxn;
3363
3364 if (__this_cpu_read(perf_sched_cb_usages))
3365 perf_pmu_sched_task(task, next, false);
3366
3367 if (atomic_read(&nr_switch_events))
3368 perf_event_switch(task, next, false);
3369
3370 for_each_task_context_nr(ctxn)
3371 perf_event_context_sched_out(task, ctxn, next);
3372
3373 /*
3374 * if cgroup events exist on this CPU, then we need
3375 * to check if we have to switch out PMU state.
3376 * cgroup event are system-wide mode only
3377 */
3378 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3379 perf_cgroup_sched_out(task, next);
3380 }
3381
3382 /*
3383 * Called with IRQs disabled
3384 */
3385 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3386 enum event_type_t event_type)
3387 {
3388 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3389 }
3390
3391 static int visit_groups_merge(struct perf_event_groups *groups, int cpu,
3392 int (*func)(struct perf_event *, void *), void *data)
3393 {
3394 struct perf_event **evt, *evt1, *evt2;
3395 int ret;
3396
3397 evt1 = perf_event_groups_first(groups, -1);
3398 evt2 = perf_event_groups_first(groups, cpu);
3399
3400 while (evt1 || evt2) {
3401 if (evt1 && evt2) {
3402 if (evt1->group_index < evt2->group_index)
3403 evt = &evt1;
3404 else
3405 evt = &evt2;
3406 } else if (evt1) {
3407 evt = &evt1;
3408 } else {
3409 evt = &evt2;
3410 }
3411
3412 ret = func(*evt, data);
3413 if (ret)
3414 return ret;
3415
3416 *evt = perf_event_groups_next(*evt);
3417 }
3418
3419 return 0;
3420 }
3421
3422 struct sched_in_data {
3423 struct perf_event_context *ctx;
3424 struct perf_cpu_context *cpuctx;
3425 int can_add_hw;
3426 };
3427
3428 static int pinned_sched_in(struct perf_event *event, void *data)
3429 {
3430 struct sched_in_data *sid = data;
3431
3432 if (event->state <= PERF_EVENT_STATE_OFF)
3433 return 0;
3434
3435 if (!event_filter_match(event))
3436 return 0;
3437
3438 if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) {
3439 if (!group_sched_in(event, sid->cpuctx, sid->ctx))
3440 list_add_tail(&event->active_list, &sid->ctx->pinned_active);
3441 }
3442
3443 /*
3444 * If this pinned group hasn't been scheduled,
3445 * put it in error state.
3446 */
3447 if (event->state == PERF_EVENT_STATE_INACTIVE)
3448 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3449
3450 return 0;
3451 }
3452
3453 static int flexible_sched_in(struct perf_event *event, void *data)
3454 {
3455 struct sched_in_data *sid = data;
3456
3457 if (event->state <= PERF_EVENT_STATE_OFF)
3458 return 0;
3459
3460 if (!event_filter_match(event))
3461 return 0;
3462
3463 if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) {
3464 int ret = group_sched_in(event, sid->cpuctx, sid->ctx);
3465 if (ret) {
3466 sid->can_add_hw = 0;
3467 sid->ctx->rotate_necessary = 1;
3468 return 0;
3469 }
3470 list_add_tail(&event->active_list, &sid->ctx->flexible_active);
3471 }
3472
3473 return 0;
3474 }
3475
3476 static void
3477 ctx_pinned_sched_in(struct perf_event_context *ctx,
3478 struct perf_cpu_context *cpuctx)
3479 {
3480 struct sched_in_data sid = {
3481 .ctx = ctx,
3482 .cpuctx = cpuctx,
3483 .can_add_hw = 1,
3484 };
3485
3486 visit_groups_merge(&ctx->pinned_groups,
3487 smp_processor_id(),
3488 pinned_sched_in, &sid);
3489 }
3490
3491 static void
3492 ctx_flexible_sched_in(struct perf_event_context *ctx,
3493 struct perf_cpu_context *cpuctx)
3494 {
3495 struct sched_in_data sid = {
3496 .ctx = ctx,
3497 .cpuctx = cpuctx,
3498 .can_add_hw = 1,
3499 };
3500
3501 visit_groups_merge(&ctx->flexible_groups,
3502 smp_processor_id(),
3503 flexible_sched_in, &sid);
3504 }
3505
3506 static void
3507 ctx_sched_in(struct perf_event_context *ctx,
3508 struct perf_cpu_context *cpuctx,
3509 enum event_type_t event_type,
3510 struct task_struct *task)
3511 {
3512 int is_active = ctx->is_active;
3513 u64 now;
3514
3515 lockdep_assert_held(&ctx->lock);
3516
3517 if (likely(!ctx->nr_events))
3518 return;
3519
3520 ctx->is_active |= (event_type | EVENT_TIME);
3521 if (ctx->task) {
3522 if (!is_active)
3523 cpuctx->task_ctx = ctx;
3524 else
3525 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3526 }
3527
3528 is_active ^= ctx->is_active; /* changed bits */
3529
3530 if (is_active & EVENT_TIME) {
3531 /* start ctx time */
3532 now = perf_clock();
3533 ctx->timestamp = now;
3534 perf_cgroup_set_timestamp(task, ctx);
3535 }
3536
3537 /*
3538 * First go through the list and put on any pinned groups
3539 * in order to give them the best chance of going on.
3540 */
3541 if (is_active & EVENT_PINNED)
3542 ctx_pinned_sched_in(ctx, cpuctx);
3543
3544 /* Then walk through the lower prio flexible groups */
3545 if (is_active & EVENT_FLEXIBLE)
3546 ctx_flexible_sched_in(ctx, cpuctx);
3547 }
3548
3549 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3550 enum event_type_t event_type,
3551 struct task_struct *task)
3552 {
3553 struct perf_event_context *ctx = &cpuctx->ctx;
3554
3555 ctx_sched_in(ctx, cpuctx, event_type, task);
3556 }
3557
3558 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3559 struct task_struct *task)
3560 {
3561 struct perf_cpu_context *cpuctx;
3562
3563 cpuctx = __get_cpu_context(ctx);
3564 if (cpuctx->task_ctx == ctx)
3565 return;
3566
3567 perf_ctx_lock(cpuctx, ctx);
3568 /*
3569 * We must check ctx->nr_events while holding ctx->lock, such
3570 * that we serialize against perf_install_in_context().
3571 */
3572 if (!ctx->nr_events)
3573 goto unlock;
3574
3575 perf_pmu_disable(ctx->pmu);
3576 /*
3577 * We want to keep the following priority order:
3578 * cpu pinned (that don't need to move), task pinned,
3579 * cpu flexible, task flexible.
3580 *
3581 * However, if task's ctx is not carrying any pinned
3582 * events, no need to flip the cpuctx's events around.
3583 */
3584 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
3585 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3586 perf_event_sched_in(cpuctx, ctx, task);
3587 perf_pmu_enable(ctx->pmu);
3588
3589 unlock:
3590 perf_ctx_unlock(cpuctx, ctx);
3591 }
3592
3593 /*
3594 * Called from scheduler to add the events of the current task
3595 * with interrupts disabled.
3596 *
3597 * We restore the event value and then enable it.
3598 *
3599 * This does not protect us against NMI, but enable()
3600 * sets the enabled bit in the control field of event _before_
3601 * accessing the event control register. If a NMI hits, then it will
3602 * keep the event running.
3603 */
3604 void __perf_event_task_sched_in(struct task_struct *prev,
3605 struct task_struct *task)
3606 {
3607 struct perf_event_context *ctx;
3608 int ctxn;
3609
3610 /*
3611 * If cgroup events exist on this CPU, then we need to check if we have
3612 * to switch in PMU state; cgroup event are system-wide mode only.
3613 *
3614 * Since cgroup events are CPU events, we must schedule these in before
3615 * we schedule in the task events.
3616 */
3617 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3618 perf_cgroup_sched_in(prev, task);
3619
3620 for_each_task_context_nr(ctxn) {
3621 ctx = task->perf_event_ctxp[ctxn];
3622 if (likely(!ctx))
3623 continue;
3624
3625 perf_event_context_sched_in(ctx, task);
3626 }
3627
3628 if (atomic_read(&nr_switch_events))
3629 perf_event_switch(task, prev, true);
3630
3631 if (__this_cpu_read(perf_sched_cb_usages))
3632 perf_pmu_sched_task(prev, task, true);
3633 }
3634
3635 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3636 {
3637 u64 frequency = event->attr.sample_freq;
3638 u64 sec = NSEC_PER_SEC;
3639 u64 divisor, dividend;
3640
3641 int count_fls, nsec_fls, frequency_fls, sec_fls;
3642
3643 count_fls = fls64(count);
3644 nsec_fls = fls64(nsec);
3645 frequency_fls = fls64(frequency);
3646 sec_fls = 30;
3647
3648 /*
3649 * We got @count in @nsec, with a target of sample_freq HZ
3650 * the target period becomes:
3651 *
3652 * @count * 10^9
3653 * period = -------------------
3654 * @nsec * sample_freq
3655 *
3656 */
3657
3658 /*
3659 * Reduce accuracy by one bit such that @a and @b converge
3660 * to a similar magnitude.
3661 */
3662 #define REDUCE_FLS(a, b) \
3663 do { \
3664 if (a##_fls > b##_fls) { \
3665 a >>= 1; \
3666 a##_fls--; \
3667 } else { \
3668 b >>= 1; \
3669 b##_fls--; \
3670 } \
3671 } while (0)
3672
3673 /*
3674 * Reduce accuracy until either term fits in a u64, then proceed with
3675 * the other, so that finally we can do a u64/u64 division.
3676 */
3677 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3678 REDUCE_FLS(nsec, frequency);
3679 REDUCE_FLS(sec, count);
3680 }
3681
3682 if (count_fls + sec_fls > 64) {
3683 divisor = nsec * frequency;
3684
3685 while (count_fls + sec_fls > 64) {
3686 REDUCE_FLS(count, sec);
3687 divisor >>= 1;
3688 }
3689
3690 dividend = count * sec;
3691 } else {
3692 dividend = count * sec;
3693
3694 while (nsec_fls + frequency_fls > 64) {
3695 REDUCE_FLS(nsec, frequency);
3696 dividend >>= 1;
3697 }
3698
3699 divisor = nsec * frequency;
3700 }
3701
3702 if (!divisor)
3703 return dividend;
3704
3705 return div64_u64(dividend, divisor);
3706 }
3707
3708 static DEFINE_PER_CPU(int, perf_throttled_count);
3709 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3710
3711 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3712 {
3713 struct hw_perf_event *hwc = &event->hw;
3714 s64 period, sample_period;
3715 s64 delta;
3716
3717 period = perf_calculate_period(event, nsec, count);
3718
3719 delta = (s64)(period - hwc->sample_period);
3720 delta = (delta + 7) / 8; /* low pass filter */
3721
3722 sample_period = hwc->sample_period + delta;
3723
3724 if (!sample_period)
3725 sample_period = 1;
3726
3727 hwc->sample_period = sample_period;
3728
3729 if (local64_read(&hwc->period_left) > 8*sample_period) {
3730 if (disable)
3731 event->pmu->stop(event, PERF_EF_UPDATE);
3732
3733 local64_set(&hwc->period_left, 0);
3734
3735 if (disable)
3736 event->pmu->start(event, PERF_EF_RELOAD);
3737 }
3738 }
3739
3740 /*
3741 * combine freq adjustment with unthrottling to avoid two passes over the
3742 * events. At the same time, make sure, having freq events does not change
3743 * the rate of unthrottling as that would introduce bias.
3744 */
3745 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3746 int needs_unthr)
3747 {
3748 struct perf_event *event;
3749 struct hw_perf_event *hwc;
3750 u64 now, period = TICK_NSEC;
3751 s64 delta;
3752
3753 /*
3754 * only need to iterate over all events iff:
3755 * - context have events in frequency mode (needs freq adjust)
3756 * - there are events to unthrottle on this cpu
3757 */
3758 if (!(ctx->nr_freq || needs_unthr))
3759 return;
3760
3761 raw_spin_lock(&ctx->lock);
3762 perf_pmu_disable(ctx->pmu);
3763
3764 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3765 if (event->state != PERF_EVENT_STATE_ACTIVE)
3766 continue;
3767
3768 if (!event_filter_match(event))
3769 continue;
3770
3771 perf_pmu_disable(event->pmu);
3772
3773 hwc = &event->hw;
3774
3775 if (hwc->interrupts == MAX_INTERRUPTS) {
3776 hwc->interrupts = 0;
3777 perf_log_throttle(event, 1);
3778 event->pmu->start(event, 0);
3779 }
3780
3781 if (!event->attr.freq || !event->attr.sample_freq)
3782 goto next;
3783
3784 /*
3785 * stop the event and update event->count
3786 */
3787 event->pmu->stop(event, PERF_EF_UPDATE);
3788
3789 now = local64_read(&event->count);
3790 delta = now - hwc->freq_count_stamp;
3791 hwc->freq_count_stamp = now;
3792
3793 /*
3794 * restart the event
3795 * reload only if value has changed
3796 * we have stopped the event so tell that
3797 * to perf_adjust_period() to avoid stopping it
3798 * twice.
3799 */
3800 if (delta > 0)
3801 perf_adjust_period(event, period, delta, false);
3802
3803 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3804 next:
3805 perf_pmu_enable(event->pmu);
3806 }
3807
3808 perf_pmu_enable(ctx->pmu);
3809 raw_spin_unlock(&ctx->lock);
3810 }
3811
3812 /*
3813 * Move @event to the tail of the @ctx's elegible events.
3814 */
3815 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
3816 {
3817 /*
3818 * Rotate the first entry last of non-pinned groups. Rotation might be
3819 * disabled by the inheritance code.
3820 */
3821 if (ctx->rotate_disable)
3822 return;
3823
3824 perf_event_groups_delete(&ctx->flexible_groups, event);
3825 perf_event_groups_insert(&ctx->flexible_groups, event);
3826 }
3827
3828 /* pick an event from the flexible_groups to rotate */
3829 static inline struct perf_event *
3830 ctx_event_to_rotate(struct perf_event_context *ctx)
3831 {
3832 struct perf_event *event;
3833
3834 /* pick the first active flexible event */
3835 event = list_first_entry_or_null(&ctx->flexible_active,
3836 struct perf_event, active_list);
3837
3838 /* if no active flexible event, pick the first event */
3839 if (!event) {
3840 event = rb_entry_safe(rb_first(&ctx->flexible_groups.tree),
3841 typeof(*event), group_node);
3842 }
3843
3844 return event;
3845 }
3846
3847 static bool perf_rotate_context(struct perf_cpu_context *cpuctx)
3848 {
3849 struct perf_event *cpu_event = NULL, *task_event = NULL;
3850 struct perf_event_context *task_ctx = NULL;
3851 int cpu_rotate, task_rotate;
3852
3853 /*
3854 * Since we run this from IRQ context, nobody can install new
3855 * events, thus the event count values are stable.
3856 */
3857
3858 cpu_rotate = cpuctx->ctx.rotate_necessary;
3859 task_ctx = cpuctx->task_ctx;
3860 task_rotate = task_ctx ? task_ctx->rotate_necessary : 0;
3861
3862 if (!(cpu_rotate || task_rotate))
3863 return false;
3864
3865 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3866 perf_pmu_disable(cpuctx->ctx.pmu);
3867
3868 if (task_rotate)
3869 task_event = ctx_event_to_rotate(task_ctx);
3870 if (cpu_rotate)
3871 cpu_event = ctx_event_to_rotate(&cpuctx->ctx);
3872
3873 /*
3874 * As per the order given at ctx_resched() first 'pop' task flexible
3875 * and then, if needed CPU flexible.
3876 */
3877 if (task_event || (task_ctx && cpu_event))
3878 ctx_sched_out(task_ctx, cpuctx, EVENT_FLEXIBLE);
3879 if (cpu_event)
3880 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3881
3882 if (task_event)
3883 rotate_ctx(task_ctx, task_event);
3884 if (cpu_event)
3885 rotate_ctx(&cpuctx->ctx, cpu_event);
3886
3887 perf_event_sched_in(cpuctx, task_ctx, current);
3888
3889 perf_pmu_enable(cpuctx->ctx.pmu);
3890 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3891
3892 return true;
3893 }
3894
3895 void perf_event_task_tick(void)
3896 {
3897 struct list_head *head = this_cpu_ptr(&active_ctx_list);
3898 struct perf_event_context *ctx, *tmp;
3899 int throttled;
3900
3901 lockdep_assert_irqs_disabled();
3902
3903 __this_cpu_inc(perf_throttled_seq);
3904 throttled = __this_cpu_xchg(perf_throttled_count, 0);
3905 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3906
3907 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3908 perf_adjust_freq_unthr_context(ctx, throttled);
3909 }
3910
3911 static int event_enable_on_exec(struct perf_event *event,
3912 struct perf_event_context *ctx)
3913 {
3914 if (!event->attr.enable_on_exec)
3915 return 0;
3916
3917 event->attr.enable_on_exec = 0;
3918 if (event->state >= PERF_EVENT_STATE_INACTIVE)
3919 return 0;
3920
3921 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
3922
3923 return 1;
3924 }
3925
3926 /*
3927 * Enable all of a task's events that have been marked enable-on-exec.
3928 * This expects task == current.
3929 */
3930 static void perf_event_enable_on_exec(int ctxn)
3931 {
3932 struct perf_event_context *ctx, *clone_ctx = NULL;
3933 enum event_type_t event_type = 0;
3934 struct perf_cpu_context *cpuctx;
3935 struct perf_event *event;
3936 unsigned long flags;
3937 int enabled = 0;
3938
3939 local_irq_save(flags);
3940 ctx = current->perf_event_ctxp[ctxn];
3941 if (!ctx || !ctx->nr_events)
3942 goto out;
3943
3944 cpuctx = __get_cpu_context(ctx);
3945 perf_ctx_lock(cpuctx, ctx);
3946 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3947 list_for_each_entry(event, &ctx->event_list, event_entry) {
3948 enabled |= event_enable_on_exec(event, ctx);
3949 event_type |= get_event_type(event);
3950 }
3951
3952 /*
3953 * Unclone and reschedule this context if we enabled any event.
3954 */
3955 if (enabled) {
3956 clone_ctx = unclone_ctx(ctx);
3957 ctx_resched(cpuctx, ctx, event_type);
3958 } else {
3959 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3960 }
3961 perf_ctx_unlock(cpuctx, ctx);
3962
3963 out:
3964 local_irq_restore(flags);
3965
3966 if (clone_ctx)
3967 put_ctx(clone_ctx);
3968 }
3969
3970 struct perf_read_data {
3971 struct perf_event *event;
3972 bool group;
3973 int ret;
3974 };
3975
3976 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
3977 {
3978 u16 local_pkg, event_pkg;
3979
3980 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
3981 int local_cpu = smp_processor_id();
3982
3983 event_pkg = topology_physical_package_id(event_cpu);
3984 local_pkg = topology_physical_package_id(local_cpu);
3985
3986 if (event_pkg == local_pkg)
3987 return local_cpu;
3988 }
3989
3990 return event_cpu;
3991 }
3992
3993 /*
3994 * Cross CPU call to read the hardware event
3995 */
3996 static void __perf_event_read(void *info)
3997 {
3998 struct perf_read_data *data = info;
3999 struct perf_event *sub, *event = data->event;
4000 struct perf_event_context *ctx = event->ctx;
4001 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
4002 struct pmu *pmu = event->pmu;
4003
4004 /*
4005 * If this is a task context, we need to check whether it is
4006 * the current task context of this cpu. If not it has been
4007 * scheduled out before the smp call arrived. In that case
4008 * event->count would have been updated to a recent sample
4009 * when the event was scheduled out.
4010 */
4011 if (ctx->task && cpuctx->task_ctx != ctx)
4012 return;
4013
4014 raw_spin_lock(&ctx->lock);
4015 if (ctx->is_active & EVENT_TIME) {
4016 update_context_time(ctx);
4017 update_cgrp_time_from_event(event);
4018 }
4019
4020 perf_event_update_time(event);
4021 if (data->group)
4022 perf_event_update_sibling_time(event);
4023
4024 if (event->state != PERF_EVENT_STATE_ACTIVE)
4025 goto unlock;
4026
4027 if (!data->group) {
4028 pmu->read(event);
4029 data->ret = 0;
4030 goto unlock;
4031 }
4032
4033 pmu->start_txn(pmu, PERF_PMU_TXN_READ);
4034
4035 pmu->read(event);
4036
4037 for_each_sibling_event(sub, event) {
4038 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
4039 /*
4040 * Use sibling's PMU rather than @event's since
4041 * sibling could be on different (eg: software) PMU.
4042 */
4043 sub->pmu->read(sub);
4044 }
4045 }
4046
4047 data->ret = pmu->commit_txn(pmu);
4048
4049 unlock:
4050 raw_spin_unlock(&ctx->lock);
4051 }
4052
4053 static inline u64 perf_event_count(struct perf_event *event)
4054 {
4055 return local64_read(&event->count) + atomic64_read(&event->child_count);
4056 }
4057
4058 /*
4059 * NMI-safe method to read a local event, that is an event that
4060 * is:
4061 * - either for the current task, or for this CPU
4062 * - does not have inherit set, for inherited task events
4063 * will not be local and we cannot read them atomically
4064 * - must not have a pmu::count method
4065 */
4066 int perf_event_read_local(struct perf_event *event, u64 *value,
4067 u64 *enabled, u64 *running)
4068 {
4069 unsigned long flags;
4070 int ret = 0;
4071
4072 /*
4073 * Disabling interrupts avoids all counter scheduling (context
4074 * switches, timer based rotation and IPIs).
4075 */
4076 local_irq_save(flags);
4077
4078 /*
4079 * It must not be an event with inherit set, we cannot read
4080 * all child counters from atomic context.
4081 */
4082 if (event->attr.inherit) {
4083 ret = -EOPNOTSUPP;
4084 goto out;
4085 }
4086
4087 /* If this is a per-task event, it must be for current */
4088 if ((event->attach_state & PERF_ATTACH_TASK) &&
4089 event->hw.target != current) {
4090 ret = -EINVAL;
4091 goto out;
4092 }
4093
4094 /* If this is a per-CPU event, it must be for this CPU */
4095 if (!(event->attach_state & PERF_ATTACH_TASK) &&
4096 event->cpu != smp_processor_id()) {
4097 ret = -EINVAL;
4098 goto out;
4099 }
4100
4101 /* If this is a pinned event it must be running on this CPU */
4102 if (event->attr.pinned && event->oncpu != smp_processor_id()) {
4103 ret = -EBUSY;
4104 goto out;
4105 }
4106
4107 /*
4108 * If the event is currently on this CPU, its either a per-task event,
4109 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4110 * oncpu == -1).
4111 */
4112 if (event->oncpu == smp_processor_id())
4113 event->pmu->read(event);
4114
4115 *value = local64_read(&event->count);
4116 if (enabled || running) {
4117 u64 now = event->shadow_ctx_time + perf_clock();
4118 u64 __enabled, __running;
4119
4120 __perf_update_times(event, now, &__enabled, &__running);
4121 if (enabled)
4122 *enabled = __enabled;
4123 if (running)
4124 *running = __running;
4125 }
4126 out:
4127 local_irq_restore(flags);
4128
4129 return ret;
4130 }
4131
4132 static int perf_event_read(struct perf_event *event, bool group)
4133 {
4134 enum perf_event_state state = READ_ONCE(event->state);
4135 int event_cpu, ret = 0;
4136
4137 /*
4138 * If event is enabled and currently active on a CPU, update the
4139 * value in the event structure:
4140 */
4141 again:
4142 if (state == PERF_EVENT_STATE_ACTIVE) {
4143 struct perf_read_data data;
4144
4145 /*
4146 * Orders the ->state and ->oncpu loads such that if we see
4147 * ACTIVE we must also see the right ->oncpu.
4148 *
4149 * Matches the smp_wmb() from event_sched_in().
4150 */
4151 smp_rmb();
4152
4153 event_cpu = READ_ONCE(event->oncpu);
4154 if ((unsigned)event_cpu >= nr_cpu_ids)
4155 return 0;
4156
4157 data = (struct perf_read_data){
4158 .event = event,
4159 .group = group,
4160 .ret = 0,
4161 };
4162
4163 preempt_disable();
4164 event_cpu = __perf_event_read_cpu(event, event_cpu);
4165
4166 /*
4167 * Purposely ignore the smp_call_function_single() return
4168 * value.
4169 *
4170 * If event_cpu isn't a valid CPU it means the event got
4171 * scheduled out and that will have updated the event count.
4172 *
4173 * Therefore, either way, we'll have an up-to-date event count
4174 * after this.
4175 */
4176 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4177 preempt_enable();
4178 ret = data.ret;
4179
4180 } else if (state == PERF_EVENT_STATE_INACTIVE) {
4181 struct perf_event_context *ctx = event->ctx;
4182 unsigned long flags;
4183
4184 raw_spin_lock_irqsave(&ctx->lock, flags);
4185 state = event->state;
4186 if (state != PERF_EVENT_STATE_INACTIVE) {
4187 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4188 goto again;
4189 }
4190
4191 /*
4192 * May read while context is not active (e.g., thread is
4193 * blocked), in that case we cannot update context time
4194 */
4195 if (ctx->is_active & EVENT_TIME) {
4196 update_context_time(ctx);
4197 update_cgrp_time_from_event(event);
4198 }
4199
4200 perf_event_update_time(event);
4201 if (group)
4202 perf_event_update_sibling_time(event);
4203 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4204 }
4205
4206 return ret;
4207 }
4208
4209 /*
4210 * Initialize the perf_event context in a task_struct:
4211 */
4212 static void __perf_event_init_context(struct perf_event_context *ctx)
4213 {
4214 raw_spin_lock_init(&ctx->lock);
4215 mutex_init(&ctx->mutex);
4216 INIT_LIST_HEAD(&ctx->active_ctx_list);
4217 perf_event_groups_init(&ctx->pinned_groups);
4218 perf_event_groups_init(&ctx->flexible_groups);
4219 INIT_LIST_HEAD(&ctx->event_list);
4220 INIT_LIST_HEAD(&ctx->pinned_active);
4221 INIT_LIST_HEAD(&ctx->flexible_active);
4222 refcount_set(&ctx->refcount, 1);
4223 }
4224
4225 static struct perf_event_context *
4226 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
4227 {
4228 struct perf_event_context *ctx;
4229
4230 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4231 if (!ctx)
4232 return NULL;
4233
4234 __perf_event_init_context(ctx);
4235 if (task)
4236 ctx->task = get_task_struct(task);
4237 ctx->pmu = pmu;
4238
4239 return ctx;
4240 }
4241
4242 static struct task_struct *
4243 find_lively_task_by_vpid(pid_t vpid)
4244 {
4245 struct task_struct *task;
4246
4247 rcu_read_lock();
4248 if (!vpid)
4249 task = current;
4250 else
4251 task = find_task_by_vpid(vpid);
4252 if (task)
4253 get_task_struct(task);
4254 rcu_read_unlock();
4255
4256 if (!task)
4257 return ERR_PTR(-ESRCH);
4258
4259 return task;
4260 }
4261
4262 /*
4263 * Returns a matching context with refcount and pincount.
4264 */
4265 static struct perf_event_context *
4266 find_get_context(struct pmu *pmu, struct task_struct *task,
4267 struct perf_event *event)
4268 {
4269 struct perf_event_context *ctx, *clone_ctx = NULL;
4270 struct perf_cpu_context *cpuctx;
4271 void *task_ctx_data = NULL;
4272 unsigned long flags;
4273 int ctxn, err;
4274 int cpu = event->cpu;
4275
4276 if (!task) {
4277 /* Must be root to operate on a CPU event: */
4278 err = perf_allow_cpu(&event->attr);
4279 if (err)
4280 return ERR_PTR(err);
4281
4282 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
4283 ctx = &cpuctx->ctx;
4284 get_ctx(ctx);
4285 ++ctx->pin_count;
4286
4287 return ctx;
4288 }
4289
4290 err = -EINVAL;
4291 ctxn = pmu->task_ctx_nr;
4292 if (ctxn < 0)
4293 goto errout;
4294
4295 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4296 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
4297 if (!task_ctx_data) {
4298 err = -ENOMEM;
4299 goto errout;
4300 }
4301 }
4302
4303 retry:
4304 ctx = perf_lock_task_context(task, ctxn, &flags);
4305 if (ctx) {
4306 clone_ctx = unclone_ctx(ctx);
4307 ++ctx->pin_count;
4308
4309 if (task_ctx_data && !ctx->task_ctx_data) {
4310 ctx->task_ctx_data = task_ctx_data;
4311 task_ctx_data = NULL;
4312 }
4313 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4314
4315 if (clone_ctx)
4316 put_ctx(clone_ctx);
4317 } else {
4318 ctx = alloc_perf_context(pmu, task);
4319 err = -ENOMEM;
4320 if (!ctx)
4321 goto errout;
4322
4323 if (task_ctx_data) {
4324 ctx->task_ctx_data = task_ctx_data;
4325 task_ctx_data = NULL;
4326 }
4327
4328 err = 0;
4329 mutex_lock(&task->perf_event_mutex);
4330 /*
4331 * If it has already passed perf_event_exit_task().
4332 * we must see PF_EXITING, it takes this mutex too.
4333 */
4334 if (task->flags & PF_EXITING)
4335 err = -ESRCH;
4336 else if (task->perf_event_ctxp[ctxn])
4337 err = -EAGAIN;
4338 else {
4339 get_ctx(ctx);
4340 ++ctx->pin_count;
4341 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
4342 }
4343 mutex_unlock(&task->perf_event_mutex);
4344
4345 if (unlikely(err)) {
4346 put_ctx(ctx);
4347
4348 if (err == -EAGAIN)
4349 goto retry;
4350 goto errout;
4351 }
4352 }
4353
4354 kfree(task_ctx_data);
4355 return ctx;
4356
4357 errout:
4358 kfree(task_ctx_data);
4359 return ERR_PTR(err);
4360 }
4361
4362 static void perf_event_free_filter(struct perf_event *event);
4363 static void perf_event_free_bpf_prog(struct perf_event *event);
4364
4365 static void free_event_rcu(struct rcu_head *head)
4366 {
4367 struct perf_event *event;
4368
4369 event = container_of(head, struct perf_event, rcu_head);
4370 if (event->ns)
4371 put_pid_ns(event->ns);
4372 perf_event_free_filter(event);
4373 kfree(event);
4374 }
4375
4376 static void ring_buffer_attach(struct perf_event *event,
4377 struct perf_buffer *rb);
4378
4379 static void detach_sb_event(struct perf_event *event)
4380 {
4381 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4382
4383 raw_spin_lock(&pel->lock);
4384 list_del_rcu(&event->sb_list);
4385 raw_spin_unlock(&pel->lock);
4386 }
4387
4388 static bool is_sb_event(struct perf_event *event)
4389 {
4390 struct perf_event_attr *attr = &event->attr;
4391
4392 if (event->parent)
4393 return false;
4394
4395 if (event->attach_state & PERF_ATTACH_TASK)
4396 return false;
4397
4398 if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4399 attr->comm || attr->comm_exec ||
4400 attr->task || attr->ksymbol ||
4401 attr->context_switch ||
4402 attr->bpf_event)
4403 return true;
4404 return false;
4405 }
4406
4407 static void unaccount_pmu_sb_event(struct perf_event *event)
4408 {
4409 if (is_sb_event(event))
4410 detach_sb_event(event);
4411 }
4412
4413 static void unaccount_event_cpu(struct perf_event *event, int cpu)
4414 {
4415 if (event->parent)
4416 return;
4417
4418 if (is_cgroup_event(event))
4419 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4420 }
4421
4422 #ifdef CONFIG_NO_HZ_FULL
4423 static DEFINE_SPINLOCK(nr_freq_lock);
4424 #endif
4425
4426 static void unaccount_freq_event_nohz(void)
4427 {
4428 #ifdef CONFIG_NO_HZ_FULL
4429 spin_lock(&nr_freq_lock);
4430 if (atomic_dec_and_test(&nr_freq_events))
4431 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4432 spin_unlock(&nr_freq_lock);
4433 #endif
4434 }
4435
4436 static void unaccount_freq_event(void)
4437 {
4438 if (tick_nohz_full_enabled())
4439 unaccount_freq_event_nohz();
4440 else
4441 atomic_dec(&nr_freq_events);
4442 }
4443
4444 static void unaccount_event(struct perf_event *event)
4445 {
4446 bool dec = false;
4447
4448 if (event->parent)
4449 return;
4450
4451 if (event->attach_state & PERF_ATTACH_TASK)
4452 dec = true;
4453 if (event->attr.mmap || event->attr.mmap_data)
4454 atomic_dec(&nr_mmap_events);
4455 if (event->attr.comm)
4456 atomic_dec(&nr_comm_events);
4457 if (event->attr.namespaces)
4458 atomic_dec(&nr_namespaces_events);
4459 if (event->attr.task)
4460 atomic_dec(&nr_task_events);
4461 if (event->attr.freq)
4462 unaccount_freq_event();
4463 if (event->attr.context_switch) {
4464 dec = true;
4465 atomic_dec(&nr_switch_events);
4466 }
4467 if (is_cgroup_event(event))
4468 dec = true;
4469 if (has_branch_stack(event))
4470 dec = true;
4471 if (event->attr.ksymbol)
4472 atomic_dec(&nr_ksymbol_events);
4473 if (event->attr.bpf_event)
4474 atomic_dec(&nr_bpf_events);
4475
4476 if (dec) {
4477 if (!atomic_add_unless(&perf_sched_count, -1, 1))
4478 schedule_delayed_work(&perf_sched_work, HZ);
4479 }
4480
4481 unaccount_event_cpu(event, event->cpu);
4482
4483 unaccount_pmu_sb_event(event);
4484 }
4485
4486 static void perf_sched_delayed(struct work_struct *work)
4487 {
4488 mutex_lock(&perf_sched_mutex);
4489 if (atomic_dec_and_test(&perf_sched_count))
4490 static_branch_disable(&perf_sched_events);
4491 mutex_unlock(&perf_sched_mutex);
4492 }
4493
4494 /*
4495 * The following implement mutual exclusion of events on "exclusive" pmus
4496 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4497 * at a time, so we disallow creating events that might conflict, namely:
4498 *
4499 * 1) cpu-wide events in the presence of per-task events,
4500 * 2) per-task events in the presence of cpu-wide events,
4501 * 3) two matching events on the same context.
4502 *
4503 * The former two cases are handled in the allocation path (perf_event_alloc(),
4504 * _free_event()), the latter -- before the first perf_install_in_context().
4505 */
4506 static int exclusive_event_init(struct perf_event *event)
4507 {
4508 struct pmu *pmu = event->pmu;
4509
4510 if (!is_exclusive_pmu(pmu))
4511 return 0;
4512
4513 /*
4514 * Prevent co-existence of per-task and cpu-wide events on the
4515 * same exclusive pmu.
4516 *
4517 * Negative pmu::exclusive_cnt means there are cpu-wide
4518 * events on this "exclusive" pmu, positive means there are
4519 * per-task events.
4520 *
4521 * Since this is called in perf_event_alloc() path, event::ctx
4522 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4523 * to mean "per-task event", because unlike other attach states it
4524 * never gets cleared.
4525 */
4526 if (event->attach_state & PERF_ATTACH_TASK) {
4527 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4528 return -EBUSY;
4529 } else {
4530 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4531 return -EBUSY;
4532 }
4533
4534 return 0;
4535 }
4536
4537 static void exclusive_event_destroy(struct perf_event *event)
4538 {
4539 struct pmu *pmu = event->pmu;
4540
4541 if (!is_exclusive_pmu(pmu))
4542 return;
4543
4544 /* see comment in exclusive_event_init() */
4545 if (event->attach_state & PERF_ATTACH_TASK)
4546 atomic_dec(&pmu->exclusive_cnt);
4547 else
4548 atomic_inc(&pmu->exclusive_cnt);
4549 }
4550
4551 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4552 {
4553 if ((e1->pmu == e2->pmu) &&
4554 (e1->cpu == e2->cpu ||
4555 e1->cpu == -1 ||
4556 e2->cpu == -1))
4557 return true;
4558 return false;
4559 }
4560
4561 static bool exclusive_event_installable(struct perf_event *event,
4562 struct perf_event_context *ctx)
4563 {
4564 struct perf_event *iter_event;
4565 struct pmu *pmu = event->pmu;
4566
4567 lockdep_assert_held(&ctx->mutex);
4568
4569 if (!is_exclusive_pmu(pmu))
4570 return true;
4571
4572 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4573 if (exclusive_event_match(iter_event, event))
4574 return false;
4575 }
4576
4577 return true;
4578 }
4579
4580 static void perf_addr_filters_splice(struct perf_event *event,
4581 struct list_head *head);
4582
4583 static void _free_event(struct perf_event *event)
4584 {
4585 irq_work_sync(&event->pending);
4586
4587 unaccount_event(event);
4588
4589 security_perf_event_free(event);
4590
4591 if (event->rb) {
4592 /*
4593 * Can happen when we close an event with re-directed output.
4594 *
4595 * Since we have a 0 refcount, perf_mmap_close() will skip
4596 * over us; possibly making our ring_buffer_put() the last.
4597 */
4598 mutex_lock(&event->mmap_mutex);
4599 ring_buffer_attach(event, NULL);
4600 mutex_unlock(&event->mmap_mutex);
4601 }
4602
4603 if (is_cgroup_event(event))
4604 perf_detach_cgroup(event);
4605
4606 if (!event->parent) {
4607 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4608 put_callchain_buffers();
4609 }
4610
4611 perf_event_free_bpf_prog(event);
4612 perf_addr_filters_splice(event, NULL);
4613 kfree(event->addr_filter_ranges);
4614
4615 if (event->destroy)
4616 event->destroy(event);
4617
4618 /*
4619 * Must be after ->destroy(), due to uprobe_perf_close() using
4620 * hw.target.
4621 */
4622 if (event->hw.target)
4623 put_task_struct(event->hw.target);
4624
4625 /*
4626 * perf_event_free_task() relies on put_ctx() being 'last', in particular
4627 * all task references must be cleaned up.
4628 */
4629 if (event->ctx)
4630 put_ctx(event->ctx);
4631
4632 exclusive_event_destroy(event);
4633 module_put(event->pmu->module);
4634
4635 call_rcu(&event->rcu_head, free_event_rcu);
4636 }
4637
4638 /*
4639 * Used to free events which have a known refcount of 1, such as in error paths
4640 * where the event isn't exposed yet and inherited events.
4641 */
4642 static void free_event(struct perf_event *event)
4643 {
4644 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4645 "unexpected event refcount: %ld; ptr=%p\n",
4646 atomic_long_read(&event->refcount), event)) {
4647 /* leak to avoid use-after-free */
4648 return;
4649 }
4650
4651 _free_event(event);
4652 }
4653
4654 /*
4655 * Remove user event from the owner task.
4656 */
4657 static void perf_remove_from_owner(struct perf_event *event)
4658 {
4659 struct task_struct *owner;
4660
4661 rcu_read_lock();
4662 /*
4663 * Matches the smp_store_release() in perf_event_exit_task(). If we
4664 * observe !owner it means the list deletion is complete and we can
4665 * indeed free this event, otherwise we need to serialize on
4666 * owner->perf_event_mutex.
4667 */
4668 owner = READ_ONCE(event->owner);
4669 if (owner) {
4670 /*
4671 * Since delayed_put_task_struct() also drops the last
4672 * task reference we can safely take a new reference
4673 * while holding the rcu_read_lock().
4674 */
4675 get_task_struct(owner);
4676 }
4677 rcu_read_unlock();
4678
4679 if (owner) {
4680 /*
4681 * If we're here through perf_event_exit_task() we're already
4682 * holding ctx->mutex which would be an inversion wrt. the
4683 * normal lock order.
4684 *
4685 * However we can safely take this lock because its the child
4686 * ctx->mutex.
4687 */
4688 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4689
4690 /*
4691 * We have to re-check the event->owner field, if it is cleared
4692 * we raced with perf_event_exit_task(), acquiring the mutex
4693 * ensured they're done, and we can proceed with freeing the
4694 * event.
4695 */
4696 if (event->owner) {
4697 list_del_init(&event->owner_entry);
4698 smp_store_release(&event->owner, NULL);
4699 }
4700 mutex_unlock(&owner->perf_event_mutex);
4701 put_task_struct(owner);
4702 }
4703 }
4704
4705 static void put_event(struct perf_event *event)
4706 {
4707 if (!atomic_long_dec_and_test(&event->refcount))
4708 return;
4709
4710 _free_event(event);
4711 }
4712
4713 /*
4714 * Kill an event dead; while event:refcount will preserve the event
4715 * object, it will not preserve its functionality. Once the last 'user'
4716 * gives up the object, we'll destroy the thing.
4717 */
4718 int perf_event_release_kernel(struct perf_event *event)
4719 {
4720 struct perf_event_context *ctx = event->ctx;
4721 struct perf_event *child, *tmp;
4722 LIST_HEAD(free_list);
4723
4724 /*
4725 * If we got here through err_file: fput(event_file); we will not have
4726 * attached to a context yet.
4727 */
4728 if (!ctx) {
4729 WARN_ON_ONCE(event->attach_state &
4730 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4731 goto no_ctx;
4732 }
4733
4734 if (!is_kernel_event(event))
4735 perf_remove_from_owner(event);
4736
4737 ctx = perf_event_ctx_lock(event);
4738 WARN_ON_ONCE(ctx->parent_ctx);
4739 perf_remove_from_context(event, DETACH_GROUP);
4740
4741 raw_spin_lock_irq(&ctx->lock);
4742 /*
4743 * Mark this event as STATE_DEAD, there is no external reference to it
4744 * anymore.
4745 *
4746 * Anybody acquiring event->child_mutex after the below loop _must_
4747 * also see this, most importantly inherit_event() which will avoid
4748 * placing more children on the list.
4749 *
4750 * Thus this guarantees that we will in fact observe and kill _ALL_
4751 * child events.
4752 */
4753 event->state = PERF_EVENT_STATE_DEAD;
4754 raw_spin_unlock_irq(&ctx->lock);
4755
4756 perf_event_ctx_unlock(event, ctx);
4757
4758 again:
4759 mutex_lock(&event->child_mutex);
4760 list_for_each_entry(child, &event->child_list, child_list) {
4761
4762 /*
4763 * Cannot change, child events are not migrated, see the
4764 * comment with perf_event_ctx_lock_nested().
4765 */
4766 ctx = READ_ONCE(child->ctx);
4767 /*
4768 * Since child_mutex nests inside ctx::mutex, we must jump
4769 * through hoops. We start by grabbing a reference on the ctx.
4770 *
4771 * Since the event cannot get freed while we hold the
4772 * child_mutex, the context must also exist and have a !0
4773 * reference count.
4774 */
4775 get_ctx(ctx);
4776
4777 /*
4778 * Now that we have a ctx ref, we can drop child_mutex, and
4779 * acquire ctx::mutex without fear of it going away. Then we
4780 * can re-acquire child_mutex.
4781 */
4782 mutex_unlock(&event->child_mutex);
4783 mutex_lock(&ctx->mutex);
4784 mutex_lock(&event->child_mutex);
4785
4786 /*
4787 * Now that we hold ctx::mutex and child_mutex, revalidate our
4788 * state, if child is still the first entry, it didn't get freed
4789 * and we can continue doing so.
4790 */
4791 tmp = list_first_entry_or_null(&event->child_list,
4792 struct perf_event, child_list);
4793 if (tmp == child) {
4794 perf_remove_from_context(child, DETACH_GROUP);
4795 list_move(&child->child_list, &free_list);
4796 /*
4797 * This matches the refcount bump in inherit_event();
4798 * this can't be the last reference.
4799 */
4800 put_event(event);
4801 }
4802
4803 mutex_unlock(&event->child_mutex);
4804 mutex_unlock(&ctx->mutex);
4805 put_ctx(ctx);
4806 goto again;
4807 }
4808 mutex_unlock(&event->child_mutex);
4809
4810 list_for_each_entry_safe(child, tmp, &free_list, child_list) {
4811 void *var = &child->ctx->refcount;
4812
4813 list_del(&child->child_list);
4814 free_event(child);
4815
4816 /*
4817 * Wake any perf_event_free_task() waiting for this event to be
4818 * freed.
4819 */
4820 smp_mb(); /* pairs with wait_var_event() */
4821 wake_up_var(var);
4822 }
4823
4824 no_ctx:
4825 put_event(event); /* Must be the 'last' reference */
4826 return 0;
4827 }
4828 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4829
4830 /*
4831 * Called when the last reference to the file is gone.
4832 */
4833 static int perf_release(struct inode *inode, struct file *file)
4834 {
4835 perf_event_release_kernel(file->private_data);
4836 return 0;
4837 }
4838
4839 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4840 {
4841 struct perf_event *child;
4842 u64 total = 0;
4843
4844 *enabled = 0;
4845 *running = 0;
4846
4847 mutex_lock(&event->child_mutex);
4848
4849 (void)perf_event_read(event, false);
4850 total += perf_event_count(event);
4851
4852 *enabled += event->total_time_enabled +
4853 atomic64_read(&event->child_total_time_enabled);
4854 *running += event->total_time_running +
4855 atomic64_read(&event->child_total_time_running);
4856
4857 list_for_each_entry(child, &event->child_list, child_list) {
4858 (void)perf_event_read(child, false);
4859 total += perf_event_count(child);
4860 *enabled += child->total_time_enabled;
4861 *running += child->total_time_running;
4862 }
4863 mutex_unlock(&event->child_mutex);
4864
4865 return total;
4866 }
4867
4868 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4869 {
4870 struct perf_event_context *ctx;
4871 u64 count;
4872
4873 ctx = perf_event_ctx_lock(event);
4874 count = __perf_event_read_value(event, enabled, running);
4875 perf_event_ctx_unlock(event, ctx);
4876
4877 return count;
4878 }
4879 EXPORT_SYMBOL_GPL(perf_event_read_value);
4880
4881 static int __perf_read_group_add(struct perf_event *leader,
4882 u64 read_format, u64 *values)
4883 {
4884 struct perf_event_context *ctx = leader->ctx;
4885 struct perf_event *sub;
4886 unsigned long flags;
4887 int n = 1; /* skip @nr */
4888 int ret;
4889
4890 ret = perf_event_read(leader, true);
4891 if (ret)
4892 return ret;
4893
4894 raw_spin_lock_irqsave(&ctx->lock, flags);
4895
4896 /*
4897 * Since we co-schedule groups, {enabled,running} times of siblings
4898 * will be identical to those of the leader, so we only publish one
4899 * set.
4900 */
4901 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4902 values[n++] += leader->total_time_enabled +
4903 atomic64_read(&leader->child_total_time_enabled);
4904 }
4905
4906 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4907 values[n++] += leader->total_time_running +
4908 atomic64_read(&leader->child_total_time_running);
4909 }
4910
4911 /*
4912 * Write {count,id} tuples for every sibling.
4913 */
4914 values[n++] += perf_event_count(leader);
4915 if (read_format & PERF_FORMAT_ID)
4916 values[n++] = primary_event_id(leader);
4917
4918 for_each_sibling_event(sub, leader) {
4919 values[n++] += perf_event_count(sub);
4920 if (read_format & PERF_FORMAT_ID)
4921 values[n++] = primary_event_id(sub);
4922 }
4923
4924 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4925 return 0;
4926 }
4927
4928 static int perf_read_group(struct perf_event *event,
4929 u64 read_format, char __user *buf)
4930 {
4931 struct perf_event *leader = event->group_leader, *child;
4932 struct perf_event_context *ctx = leader->ctx;
4933 int ret;
4934 u64 *values;
4935
4936 lockdep_assert_held(&ctx->mutex);
4937
4938 values = kzalloc(event->read_size, GFP_KERNEL);
4939 if (!values)
4940 return -ENOMEM;
4941
4942 values[0] = 1 + leader->nr_siblings;
4943
4944 /*
4945 * By locking the child_mutex of the leader we effectively
4946 * lock the child list of all siblings.. XXX explain how.
4947 */
4948 mutex_lock(&leader->child_mutex);
4949
4950 ret = __perf_read_group_add(leader, read_format, values);
4951 if (ret)
4952 goto unlock;
4953
4954 list_for_each_entry(child, &leader->child_list, child_list) {
4955 ret = __perf_read_group_add(child, read_format, values);
4956 if (ret)
4957 goto unlock;
4958 }
4959
4960 mutex_unlock(&leader->child_mutex);
4961
4962 ret = event->read_size;
4963 if (copy_to_user(buf, values, event->read_size))
4964 ret = -EFAULT;
4965 goto out;
4966
4967 unlock:
4968 mutex_unlock(&leader->child_mutex);
4969 out:
4970 kfree(values);
4971 return ret;
4972 }
4973
4974 static int perf_read_one(struct perf_event *event,
4975 u64 read_format, char __user *buf)
4976 {
4977 u64 enabled, running;
4978 u64 values[4];
4979 int n = 0;
4980
4981 values[n++] = __perf_event_read_value(event, &enabled, &running);
4982 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4983 values[n++] = enabled;
4984 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4985 values[n++] = running;
4986 if (read_format & PERF_FORMAT_ID)
4987 values[n++] = primary_event_id(event);
4988
4989 if (copy_to_user(buf, values, n * sizeof(u64)))
4990 return -EFAULT;
4991
4992 return n * sizeof(u64);
4993 }
4994
4995 static bool is_event_hup(struct perf_event *event)
4996 {
4997 bool no_children;
4998
4999 if (event->state > PERF_EVENT_STATE_EXIT)
5000 return false;
5001
5002 mutex_lock(&event->child_mutex);
5003 no_children = list_empty(&event->child_list);
5004 mutex_unlock(&event->child_mutex);
5005 return no_children;
5006 }
5007
5008 /*
5009 * Read the performance event - simple non blocking version for now
5010 */
5011 static ssize_t
5012 __perf_read(struct perf_event *event, char __user *buf, size_t count)
5013 {
5014 u64 read_format = event->attr.read_format;
5015 int ret;
5016
5017 /*
5018 * Return end-of-file for a read on an event that is in
5019 * error state (i.e. because it was pinned but it couldn't be
5020 * scheduled on to the CPU at some point).
5021 */
5022 if (event->state == PERF_EVENT_STATE_ERROR)
5023 return 0;
5024
5025 if (count < event->read_size)
5026 return -ENOSPC;
5027
5028 WARN_ON_ONCE(event->ctx->parent_ctx);
5029 if (read_format & PERF_FORMAT_GROUP)
5030 ret = perf_read_group(event, read_format, buf);
5031 else
5032 ret = perf_read_one(event, read_format, buf);
5033
5034 return ret;
5035 }
5036
5037 static ssize_t
5038 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
5039 {
5040 struct perf_event *event = file->private_data;
5041 struct perf_event_context *ctx;
5042 int ret;
5043
5044 ret = security_perf_event_read(event);
5045 if (ret)
5046 return ret;
5047
5048 ctx = perf_event_ctx_lock(event);
5049 ret = __perf_read(event, buf, count);
5050 perf_event_ctx_unlock(event, ctx);
5051
5052 return ret;
5053 }
5054
5055 static __poll_t perf_poll(struct file *file, poll_table *wait)
5056 {
5057 struct perf_event *event = file->private_data;
5058 struct perf_buffer *rb;
5059 __poll_t events = EPOLLHUP;
5060
5061 poll_wait(file, &event->waitq, wait);
5062
5063 if (is_event_hup(event))
5064 return events;
5065
5066 /*
5067 * Pin the event->rb by taking event->mmap_mutex; otherwise
5068 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
5069 */
5070 mutex_lock(&event->mmap_mutex);
5071 rb = event->rb;
5072 if (rb)
5073 events = atomic_xchg(&rb->poll, 0);
5074 mutex_unlock(&event->mmap_mutex);
5075 return events;
5076 }
5077
5078 static void _perf_event_reset(struct perf_event *event)
5079 {
5080 (void)perf_event_read(event, false);
5081 local64_set(&event->count, 0);
5082 perf_event_update_userpage(event);
5083 }
5084
5085 /* Assume it's not an event with inherit set. */
5086 u64 perf_event_pause(struct perf_event *event, bool reset)
5087 {
5088 struct perf_event_context *ctx;
5089 u64 count;
5090
5091 ctx = perf_event_ctx_lock(event);
5092 WARN_ON_ONCE(event->attr.inherit);
5093 _perf_event_disable(event);
5094 count = local64_read(&event->count);
5095 if (reset)
5096 local64_set(&event->count, 0);
5097 perf_event_ctx_unlock(event, ctx);
5098
5099 return count;
5100 }
5101 EXPORT_SYMBOL_GPL(perf_event_pause);
5102
5103 /*
5104 * Holding the top-level event's child_mutex means that any
5105 * descendant process that has inherited this event will block
5106 * in perf_event_exit_event() if it goes to exit, thus satisfying the
5107 * task existence requirements of perf_event_enable/disable.
5108 */
5109 static void perf_event_for_each_child(struct perf_event *event,
5110 void (*func)(struct perf_event *))
5111 {
5112 struct perf_event *child;
5113
5114 WARN_ON_ONCE(event->ctx->parent_ctx);
5115
5116 mutex_lock(&event->child_mutex);
5117 func(event);
5118 list_for_each_entry(child, &event->child_list, child_list)
5119 func(child);
5120 mutex_unlock(&event->child_mutex);
5121 }
5122
5123 static void perf_event_for_each(struct perf_event *event,
5124 void (*func)(struct perf_event *))
5125 {
5126 struct perf_event_context *ctx = event->ctx;
5127 struct perf_event *sibling;
5128
5129 lockdep_assert_held(&ctx->mutex);
5130
5131 event = event->group_leader;
5132
5133 perf_event_for_each_child(event, func);
5134 for_each_sibling_event(sibling, event)
5135 perf_event_for_each_child(sibling, func);
5136 }
5137
5138 static void __perf_event_period(struct perf_event *event,
5139 struct perf_cpu_context *cpuctx,
5140 struct perf_event_context *ctx,
5141 void *info)
5142 {
5143 u64 value = *((u64 *)info);
5144 bool active;
5145
5146 if (event->attr.freq) {
5147 event->attr.sample_freq = value;
5148 } else {
5149 event->attr.sample_period = value;
5150 event->hw.sample_period = value;
5151 }
5152
5153 active = (event->state == PERF_EVENT_STATE_ACTIVE);
5154 if (active) {
5155 perf_pmu_disable(ctx->pmu);
5156 /*
5157 * We could be throttled; unthrottle now to avoid the tick
5158 * trying to unthrottle while we already re-started the event.
5159 */
5160 if (event->hw.interrupts == MAX_INTERRUPTS) {
5161 event->hw.interrupts = 0;
5162 perf_log_throttle(event, 1);
5163 }
5164 event->pmu->stop(event, PERF_EF_UPDATE);
5165 }
5166
5167 local64_set(&event->hw.period_left, 0);
5168
5169 if (active) {
5170 event->pmu->start(event, PERF_EF_RELOAD);
5171 perf_pmu_enable(ctx->pmu);
5172 }
5173 }
5174
5175 static int perf_event_check_period(struct perf_event *event, u64 value)
5176 {
5177 return event->pmu->check_period(event, value);
5178 }
5179
5180 static int _perf_event_period(struct perf_event *event, u64 value)
5181 {
5182 if (!is_sampling_event(event))
5183 return -EINVAL;
5184
5185 if (!value)
5186 return -EINVAL;
5187
5188 if (event->attr.freq && value > sysctl_perf_event_sample_rate)
5189 return -EINVAL;
5190
5191 if (perf_event_check_period(event, value))
5192 return -EINVAL;
5193
5194 if (!event->attr.freq && (value & (1ULL << 63)))
5195 return -EINVAL;
5196
5197 event_function_call(event, __perf_event_period, &value);
5198
5199 return 0;
5200 }
5201
5202 int perf_event_period(struct perf_event *event, u64 value)
5203 {
5204 struct perf_event_context *ctx;
5205 int ret;
5206
5207 ctx = perf_event_ctx_lock(event);
5208 ret = _perf_event_period(event, value);
5209 perf_event_ctx_unlock(event, ctx);
5210
5211 return ret;
5212 }
5213 EXPORT_SYMBOL_GPL(perf_event_period);
5214
5215 static const struct file_operations perf_fops;
5216
5217 static inline int perf_fget_light(int fd, struct fd *p)
5218 {
5219 struct fd f = fdget(fd);
5220 if (!f.file)
5221 return -EBADF;
5222
5223 if (f.file->f_op != &perf_fops) {
5224 fdput(f);
5225 return -EBADF;
5226 }
5227 *p = f;
5228 return 0;
5229 }
5230
5231 static int perf_event_set_output(struct perf_event *event,
5232 struct perf_event *output_event);
5233 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
5234 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
5235 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5236 struct perf_event_attr *attr);
5237
5238 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
5239 {
5240 void (*func)(struct perf_event *);
5241 u32 flags = arg;
5242
5243 switch (cmd) {
5244 case PERF_EVENT_IOC_ENABLE:
5245 func = _perf_event_enable;
5246 break;
5247 case PERF_EVENT_IOC_DISABLE:
5248 func = _perf_event_disable;
5249 break;
5250 case PERF_EVENT_IOC_RESET:
5251 func = _perf_event_reset;
5252 break;
5253
5254 case PERF_EVENT_IOC_REFRESH:
5255 return _perf_event_refresh(event, arg);
5256
5257 case PERF_EVENT_IOC_PERIOD:
5258 {
5259 u64 value;
5260
5261 if (copy_from_user(&value, (u64 __user *)arg, sizeof(value)))
5262 return -EFAULT;
5263
5264 return _perf_event_period(event, value);
5265 }
5266 case PERF_EVENT_IOC_ID:
5267 {
5268 u64 id = primary_event_id(event);
5269
5270 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5271 return -EFAULT;
5272 return 0;
5273 }
5274
5275 case PERF_EVENT_IOC_SET_OUTPUT:
5276 {
5277 int ret;
5278 if (arg != -1) {
5279 struct perf_event *output_event;
5280 struct fd output;
5281 ret = perf_fget_light(arg, &output);
5282 if (ret)
5283 return ret;
5284 output_event = output.file->private_data;
5285 ret = perf_event_set_output(event, output_event);
5286 fdput(output);
5287 } else {
5288 ret = perf_event_set_output(event, NULL);
5289 }
5290 return ret;
5291 }
5292
5293 case PERF_EVENT_IOC_SET_FILTER:
5294 return perf_event_set_filter(event, (void __user *)arg);
5295
5296 case PERF_EVENT_IOC_SET_BPF:
5297 return perf_event_set_bpf_prog(event, arg);
5298
5299 case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5300 struct perf_buffer *rb;
5301
5302 rcu_read_lock();
5303 rb = rcu_dereference(event->rb);
5304 if (!rb || !rb->nr_pages) {
5305 rcu_read_unlock();
5306 return -EINVAL;
5307 }
5308 rb_toggle_paused(rb, !!arg);
5309 rcu_read_unlock();
5310 return 0;
5311 }
5312
5313 case PERF_EVENT_IOC_QUERY_BPF:
5314 return perf_event_query_prog_array(event, (void __user *)arg);
5315
5316 case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5317 struct perf_event_attr new_attr;
5318 int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5319 &new_attr);
5320
5321 if (err)
5322 return err;
5323
5324 return perf_event_modify_attr(event, &new_attr);
5325 }
5326 default:
5327 return -ENOTTY;
5328 }
5329
5330 if (flags & PERF_IOC_FLAG_GROUP)
5331 perf_event_for_each(event, func);
5332 else
5333 perf_event_for_each_child(event, func);
5334
5335 return 0;
5336 }
5337
5338 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5339 {
5340 struct perf_event *event = file->private_data;
5341 struct perf_event_context *ctx;
5342 long ret;
5343
5344 /* Treat ioctl like writes as it is likely a mutating operation. */
5345 ret = security_perf_event_write(event);
5346 if (ret)
5347 return ret;
5348
5349 ctx = perf_event_ctx_lock(event);
5350 ret = _perf_ioctl(event, cmd, arg);
5351 perf_event_ctx_unlock(event, ctx);
5352
5353 return ret;
5354 }
5355
5356 #ifdef CONFIG_COMPAT
5357 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
5358 unsigned long arg)
5359 {
5360 switch (_IOC_NR(cmd)) {
5361 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
5362 case _IOC_NR(PERF_EVENT_IOC_ID):
5363 case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
5364 case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
5365 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
5366 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
5367 cmd &= ~IOCSIZE_MASK;
5368 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
5369 }
5370 break;
5371 }
5372 return perf_ioctl(file, cmd, arg);
5373 }
5374 #else
5375 # define perf_compat_ioctl NULL
5376 #endif
5377
5378 int perf_event_task_enable(void)
5379 {
5380 struct perf_event_context *ctx;
5381 struct perf_event *event;
5382
5383 mutex_lock(&current->perf_event_mutex);
5384 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5385 ctx = perf_event_ctx_lock(event);
5386 perf_event_for_each_child(event, _perf_event_enable);
5387 perf_event_ctx_unlock(event, ctx);
5388 }
5389 mutex_unlock(&current->perf_event_mutex);
5390
5391 return 0;
5392 }
5393
5394 int perf_event_task_disable(void)
5395 {
5396 struct perf_event_context *ctx;
5397 struct perf_event *event;
5398
5399 mutex_lock(&current->perf_event_mutex);
5400 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5401 ctx = perf_event_ctx_lock(event);
5402 perf_event_for_each_child(event, _perf_event_disable);
5403 perf_event_ctx_unlock(event, ctx);
5404 }
5405 mutex_unlock(&current->perf_event_mutex);
5406
5407 return 0;
5408 }
5409
5410 static int perf_event_index(struct perf_event *event)
5411 {
5412 if (event->hw.state & PERF_HES_STOPPED)
5413 return 0;
5414
5415 if (event->state != PERF_EVENT_STATE_ACTIVE)
5416 return 0;
5417
5418 return event->pmu->event_idx(event);
5419 }
5420
5421 static void calc_timer_values(struct perf_event *event,
5422 u64 *now,
5423 u64 *enabled,
5424 u64 *running)
5425 {
5426 u64 ctx_time;
5427
5428 *now = perf_clock();
5429 ctx_time = event->shadow_ctx_time + *now;
5430 __perf_update_times(event, ctx_time, enabled, running);
5431 }
5432
5433 static void perf_event_init_userpage(struct perf_event *event)
5434 {
5435 struct perf_event_mmap_page *userpg;
5436 struct perf_buffer *rb;
5437
5438 rcu_read_lock();
5439 rb = rcu_dereference(event->rb);
5440 if (!rb)
5441 goto unlock;
5442
5443 userpg = rb->user_page;
5444
5445 /* Allow new userspace to detect that bit 0 is deprecated */
5446 userpg->cap_bit0_is_deprecated = 1;
5447 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
5448 userpg->data_offset = PAGE_SIZE;
5449 userpg->data_size = perf_data_size(rb);
5450
5451 unlock:
5452 rcu_read_unlock();
5453 }
5454
5455 void __weak arch_perf_update_userpage(
5456 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
5457 {
5458 }
5459
5460 /*
5461 * Callers need to ensure there can be no nesting of this function, otherwise
5462 * the seqlock logic goes bad. We can not serialize this because the arch
5463 * code calls this from NMI context.
5464 */
5465 void perf_event_update_userpage(struct perf_event *event)
5466 {
5467 struct perf_event_mmap_page *userpg;
5468 struct perf_buffer *rb;
5469 u64 enabled, running, now;
5470
5471 rcu_read_lock();
5472 rb = rcu_dereference(event->rb);
5473 if (!rb)
5474 goto unlock;
5475
5476 /*
5477 * compute total_time_enabled, total_time_running
5478 * based on snapshot values taken when the event
5479 * was last scheduled in.
5480 *
5481 * we cannot simply called update_context_time()
5482 * because of locking issue as we can be called in
5483 * NMI context
5484 */
5485 calc_timer_values(event, &now, &enabled, &running);
5486
5487 userpg = rb->user_page;
5488 /*
5489 * Disable preemption to guarantee consistent time stamps are stored to
5490 * the user page.
5491 */
5492 preempt_disable();
5493 ++userpg->lock;
5494 barrier();
5495 userpg->index = perf_event_index(event);
5496 userpg->offset = perf_event_count(event);
5497 if (userpg->index)
5498 userpg->offset -= local64_read(&event->hw.prev_count);
5499
5500 userpg->time_enabled = enabled +
5501 atomic64_read(&event->child_total_time_enabled);
5502
5503 userpg->time_running = running +
5504 atomic64_read(&event->child_total_time_running);
5505
5506 arch_perf_update_userpage(event, userpg, now);
5507
5508 barrier();
5509 ++userpg->lock;
5510 preempt_enable();
5511 unlock:
5512 rcu_read_unlock();
5513 }
5514 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
5515
5516 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
5517 {
5518 struct perf_event *event = vmf->vma->vm_file->private_data;
5519 struct perf_buffer *rb;
5520 vm_fault_t ret = VM_FAULT_SIGBUS;
5521
5522 if (vmf->flags & FAULT_FLAG_MKWRITE) {
5523 if (vmf->pgoff == 0)
5524 ret = 0;
5525 return ret;
5526 }
5527
5528 rcu_read_lock();
5529 rb = rcu_dereference(event->rb);
5530 if (!rb)
5531 goto unlock;
5532
5533 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5534 goto unlock;
5535
5536 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
5537 if (!vmf->page)
5538 goto unlock;
5539
5540 get_page(vmf->page);
5541 vmf->page->mapping = vmf->vma->vm_file->f_mapping;
5542 vmf->page->index = vmf->pgoff;
5543
5544 ret = 0;
5545 unlock:
5546 rcu_read_unlock();
5547
5548 return ret;
5549 }
5550
5551 static void ring_buffer_attach(struct perf_event *event,
5552 struct perf_buffer *rb)
5553 {
5554 struct perf_buffer *old_rb = NULL;
5555 unsigned long flags;
5556
5557 if (event->rb) {
5558 /*
5559 * Should be impossible, we set this when removing
5560 * event->rb_entry and wait/clear when adding event->rb_entry.
5561 */
5562 WARN_ON_ONCE(event->rcu_pending);
5563
5564 old_rb = event->rb;
5565 spin_lock_irqsave(&old_rb->event_lock, flags);
5566 list_del_rcu(&event->rb_entry);
5567 spin_unlock_irqrestore(&old_rb->event_lock, flags);
5568
5569 event->rcu_batches = get_state_synchronize_rcu();
5570 event->rcu_pending = 1;
5571 }
5572
5573 if (rb) {
5574 if (event->rcu_pending) {
5575 cond_synchronize_rcu(event->rcu_batches);
5576 event->rcu_pending = 0;
5577 }
5578
5579 spin_lock_irqsave(&rb->event_lock, flags);
5580 list_add_rcu(&event->rb_entry, &rb->event_list);
5581 spin_unlock_irqrestore(&rb->event_lock, flags);
5582 }
5583
5584 /*
5585 * Avoid racing with perf_mmap_close(AUX): stop the event
5586 * before swizzling the event::rb pointer; if it's getting
5587 * unmapped, its aux_mmap_count will be 0 and it won't
5588 * restart. See the comment in __perf_pmu_output_stop().
5589 *
5590 * Data will inevitably be lost when set_output is done in
5591 * mid-air, but then again, whoever does it like this is
5592 * not in for the data anyway.
5593 */
5594 if (has_aux(event))
5595 perf_event_stop(event, 0);
5596
5597 rcu_assign_pointer(event->rb, rb);
5598
5599 if (old_rb) {
5600 ring_buffer_put(old_rb);
5601 /*
5602 * Since we detached before setting the new rb, so that we
5603 * could attach the new rb, we could have missed a wakeup.
5604 * Provide it now.
5605 */
5606 wake_up_all(&event->waitq);
5607 }
5608 }
5609
5610 static void ring_buffer_wakeup(struct perf_event *event)
5611 {
5612 struct perf_buffer *rb;
5613
5614 rcu_read_lock();
5615 rb = rcu_dereference(event->rb);
5616 if (rb) {
5617 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5618 wake_up_all(&event->waitq);
5619 }
5620 rcu_read_unlock();
5621 }
5622
5623 struct perf_buffer *ring_buffer_get(struct perf_event *event)
5624 {
5625 struct perf_buffer *rb;
5626
5627 rcu_read_lock();
5628 rb = rcu_dereference(event->rb);
5629 if (rb) {
5630 if (!refcount_inc_not_zero(&rb->refcount))
5631 rb = NULL;
5632 }
5633 rcu_read_unlock();
5634
5635 return rb;
5636 }
5637
5638 void ring_buffer_put(struct perf_buffer *rb)
5639 {
5640 if (!refcount_dec_and_test(&rb->refcount))
5641 return;
5642
5643 WARN_ON_ONCE(!list_empty(&rb->event_list));
5644
5645 call_rcu(&rb->rcu_head, rb_free_rcu);
5646 }
5647
5648 static void perf_mmap_open(struct vm_area_struct *vma)
5649 {
5650 struct perf_event *event = vma->vm_file->private_data;
5651
5652 atomic_inc(&event->mmap_count);
5653 atomic_inc(&event->rb->mmap_count);
5654
5655 if (vma->vm_pgoff)
5656 atomic_inc(&event->rb->aux_mmap_count);
5657
5658 if (event->pmu->event_mapped)
5659 event->pmu->event_mapped(event, vma->vm_mm);
5660 }
5661
5662 static void perf_pmu_output_stop(struct perf_event *event);
5663
5664 /*
5665 * A buffer can be mmap()ed multiple times; either directly through the same
5666 * event, or through other events by use of perf_event_set_output().
5667 *
5668 * In order to undo the VM accounting done by perf_mmap() we need to destroy
5669 * the buffer here, where we still have a VM context. This means we need
5670 * to detach all events redirecting to us.
5671 */
5672 static void perf_mmap_close(struct vm_area_struct *vma)
5673 {
5674 struct perf_event *event = vma->vm_file->private_data;
5675
5676 struct perf_buffer *rb = ring_buffer_get(event);
5677 struct user_struct *mmap_user = rb->mmap_user;
5678 int mmap_locked = rb->mmap_locked;
5679 unsigned long size = perf_data_size(rb);
5680
5681 if (event->pmu->event_unmapped)
5682 event->pmu->event_unmapped(event, vma->vm_mm);
5683
5684 /*
5685 * rb->aux_mmap_count will always drop before rb->mmap_count and
5686 * event->mmap_count, so it is ok to use event->mmap_mutex to
5687 * serialize with perf_mmap here.
5688 */
5689 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5690 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
5691 /*
5692 * Stop all AUX events that are writing to this buffer,
5693 * so that we can free its AUX pages and corresponding PMU
5694 * data. Note that after rb::aux_mmap_count dropped to zero,
5695 * they won't start any more (see perf_aux_output_begin()).
5696 */
5697 perf_pmu_output_stop(event);
5698
5699 /* now it's safe to free the pages */
5700 atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm);
5701 atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
5702
5703 /* this has to be the last one */
5704 rb_free_aux(rb);
5705 WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
5706
5707 mutex_unlock(&event->mmap_mutex);
5708 }
5709
5710 atomic_dec(&rb->mmap_count);
5711
5712 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5713 goto out_put;
5714
5715 ring_buffer_attach(event, NULL);
5716 mutex_unlock(&event->mmap_mutex);
5717
5718 /* If there's still other mmap()s of this buffer, we're done. */
5719 if (atomic_read(&rb->mmap_count))
5720 goto out_put;
5721
5722 /*
5723 * No other mmap()s, detach from all other events that might redirect
5724 * into the now unreachable buffer. Somewhat complicated by the
5725 * fact that rb::event_lock otherwise nests inside mmap_mutex.
5726 */
5727 again:
5728 rcu_read_lock();
5729 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5730 if (!atomic_long_inc_not_zero(&event->refcount)) {
5731 /*
5732 * This event is en-route to free_event() which will
5733 * detach it and remove it from the list.
5734 */
5735 continue;
5736 }
5737 rcu_read_unlock();
5738
5739 mutex_lock(&event->mmap_mutex);
5740 /*
5741 * Check we didn't race with perf_event_set_output() which can
5742 * swizzle the rb from under us while we were waiting to
5743 * acquire mmap_mutex.
5744 *
5745 * If we find a different rb; ignore this event, a next
5746 * iteration will no longer find it on the list. We have to
5747 * still restart the iteration to make sure we're not now
5748 * iterating the wrong list.
5749 */
5750 if (event->rb == rb)
5751 ring_buffer_attach(event, NULL);
5752
5753 mutex_unlock(&event->mmap_mutex);
5754 put_event(event);
5755
5756 /*
5757 * Restart the iteration; either we're on the wrong list or
5758 * destroyed its integrity by doing a deletion.
5759 */
5760 goto again;
5761 }
5762 rcu_read_unlock();
5763
5764 /*
5765 * It could be there's still a few 0-ref events on the list; they'll
5766 * get cleaned up by free_event() -- they'll also still have their
5767 * ref on the rb and will free it whenever they are done with it.
5768 *
5769 * Aside from that, this buffer is 'fully' detached and unmapped,
5770 * undo the VM accounting.
5771 */
5772
5773 atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked,
5774 &mmap_user->locked_vm);
5775 atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
5776 free_uid(mmap_user);
5777
5778 out_put:
5779 ring_buffer_put(rb); /* could be last */
5780 }
5781
5782 static const struct vm_operations_struct perf_mmap_vmops = {
5783 .open = perf_mmap_open,
5784 .close = perf_mmap_close, /* non mergeable */
5785 .fault = perf_mmap_fault,
5786 .page_mkwrite = perf_mmap_fault,
5787 };
5788
5789 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5790 {
5791 struct perf_event *event = file->private_data;
5792 unsigned long user_locked, user_lock_limit;
5793 struct user_struct *user = current_user();
5794 struct perf_buffer *rb = NULL;
5795 unsigned long locked, lock_limit;
5796 unsigned long vma_size;
5797 unsigned long nr_pages;
5798 long user_extra = 0, extra = 0;
5799 int ret = 0, flags = 0;
5800
5801 /*
5802 * Don't allow mmap() of inherited per-task counters. This would
5803 * create a performance issue due to all children writing to the
5804 * same rb.
5805 */
5806 if (event->cpu == -1 && event->attr.inherit)
5807 return -EINVAL;
5808
5809 if (!(vma->vm_flags & VM_SHARED))
5810 return -EINVAL;
5811
5812 ret = security_perf_event_read(event);
5813 if (ret)
5814 return ret;
5815
5816 vma_size = vma->vm_end - vma->vm_start;
5817
5818 if (vma->vm_pgoff == 0) {
5819 nr_pages = (vma_size / PAGE_SIZE) - 1;
5820 } else {
5821 /*
5822 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5823 * mapped, all subsequent mappings should have the same size
5824 * and offset. Must be above the normal perf buffer.
5825 */
5826 u64 aux_offset, aux_size;
5827
5828 if (!event->rb)
5829 return -EINVAL;
5830
5831 nr_pages = vma_size / PAGE_SIZE;
5832
5833 mutex_lock(&event->mmap_mutex);
5834 ret = -EINVAL;
5835
5836 rb = event->rb;
5837 if (!rb)
5838 goto aux_unlock;
5839
5840 aux_offset = READ_ONCE(rb->user_page->aux_offset);
5841 aux_size = READ_ONCE(rb->user_page->aux_size);
5842
5843 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5844 goto aux_unlock;
5845
5846 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5847 goto aux_unlock;
5848
5849 /* already mapped with a different offset */
5850 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5851 goto aux_unlock;
5852
5853 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5854 goto aux_unlock;
5855
5856 /* already mapped with a different size */
5857 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5858 goto aux_unlock;
5859
5860 if (!is_power_of_2(nr_pages))
5861 goto aux_unlock;
5862
5863 if (!atomic_inc_not_zero(&rb->mmap_count))
5864 goto aux_unlock;
5865
5866 if (rb_has_aux(rb)) {
5867 atomic_inc(&rb->aux_mmap_count);
5868 ret = 0;
5869 goto unlock;
5870 }
5871
5872 atomic_set(&rb->aux_mmap_count, 1);
5873 user_extra = nr_pages;
5874
5875 goto accounting;
5876 }
5877
5878 /*
5879 * If we have rb pages ensure they're a power-of-two number, so we
5880 * can do bitmasks instead of modulo.
5881 */
5882 if (nr_pages != 0 && !is_power_of_2(nr_pages))
5883 return -EINVAL;
5884
5885 if (vma_size != PAGE_SIZE * (1 + nr_pages))
5886 return -EINVAL;
5887
5888 WARN_ON_ONCE(event->ctx->parent_ctx);
5889 again:
5890 mutex_lock(&event->mmap_mutex);
5891 if (event->rb) {
5892 if (event->rb->nr_pages != nr_pages) {
5893 ret = -EINVAL;
5894 goto unlock;
5895 }
5896
5897 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5898 /*
5899 * Raced against perf_mmap_close() through
5900 * perf_event_set_output(). Try again, hope for better
5901 * luck.
5902 */
5903 mutex_unlock(&event->mmap_mutex);
5904 goto again;
5905 }
5906
5907 goto unlock;
5908 }
5909
5910 user_extra = nr_pages + 1;
5911
5912 accounting:
5913 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
5914
5915 /*
5916 * Increase the limit linearly with more CPUs:
5917 */
5918 user_lock_limit *= num_online_cpus();
5919
5920 user_locked = atomic_long_read(&user->locked_vm);
5921
5922 /*
5923 * sysctl_perf_event_mlock may have changed, so that
5924 * user->locked_vm > user_lock_limit
5925 */
5926 if (user_locked > user_lock_limit)
5927 user_locked = user_lock_limit;
5928 user_locked += user_extra;
5929
5930 if (user_locked > user_lock_limit) {
5931 /*
5932 * charge locked_vm until it hits user_lock_limit;
5933 * charge the rest from pinned_vm
5934 */
5935 extra = user_locked - user_lock_limit;
5936 user_extra -= extra;
5937 }
5938
5939 lock_limit = rlimit(RLIMIT_MEMLOCK);
5940 lock_limit >>= PAGE_SHIFT;
5941 locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
5942
5943 if ((locked > lock_limit) && perf_is_paranoid() &&
5944 !capable(CAP_IPC_LOCK)) {
5945 ret = -EPERM;
5946 goto unlock;
5947 }
5948
5949 WARN_ON(!rb && event->rb);
5950
5951 if (vma->vm_flags & VM_WRITE)
5952 flags |= RING_BUFFER_WRITABLE;
5953
5954 if (!rb) {
5955 rb = rb_alloc(nr_pages,
5956 event->attr.watermark ? event->attr.wakeup_watermark : 0,
5957 event->cpu, flags);
5958
5959 if (!rb) {
5960 ret = -ENOMEM;
5961 goto unlock;
5962 }
5963
5964 atomic_set(&rb->mmap_count, 1);
5965 rb->mmap_user = get_current_user();
5966 rb->mmap_locked = extra;
5967
5968 ring_buffer_attach(event, rb);
5969
5970 perf_event_init_userpage(event);
5971 perf_event_update_userpage(event);
5972 } else {
5973 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5974 event->attr.aux_watermark, flags);
5975 if (!ret)
5976 rb->aux_mmap_locked = extra;
5977 }
5978
5979 unlock:
5980 if (!ret) {
5981 atomic_long_add(user_extra, &user->locked_vm);
5982 atomic64_add(extra, &vma->vm_mm->pinned_vm);
5983
5984 atomic_inc(&event->mmap_count);
5985 } else if (rb) {
5986 atomic_dec(&rb->mmap_count);
5987 }
5988 aux_unlock:
5989 mutex_unlock(&event->mmap_mutex);
5990
5991 /*
5992 * Since pinned accounting is per vm we cannot allow fork() to copy our
5993 * vma.
5994 */
5995 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5996 vma->vm_ops = &perf_mmap_vmops;
5997
5998 if (event->pmu->event_mapped)
5999 event->pmu->event_mapped(event, vma->vm_mm);
6000
6001 return ret;
6002 }
6003
6004 static int perf_fasync(int fd, struct file *filp, int on)
6005 {
6006 struct inode *inode = file_inode(filp);
6007 struct perf_event *event = filp->private_data;
6008 int retval;
6009
6010 inode_lock(inode);
6011 retval = fasync_helper(fd, filp, on, &event->fasync);
6012 inode_unlock(inode);
6013
6014 if (retval < 0)
6015 return retval;
6016
6017 return 0;
6018 }
6019
6020 static const struct file_operations perf_fops = {
6021 .llseek = no_llseek,
6022 .release = perf_release,
6023 .read = perf_read,
6024 .poll = perf_poll,
6025 .unlocked_ioctl = perf_ioctl,
6026 .compat_ioctl = perf_compat_ioctl,
6027 .mmap = perf_mmap,
6028 .fasync = perf_fasync,
6029 };
6030
6031 /*
6032 * Perf event wakeup
6033 *
6034 * If there's data, ensure we set the poll() state and publish everything
6035 * to user-space before waking everybody up.
6036 */
6037
6038 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
6039 {
6040 /* only the parent has fasync state */
6041 if (event->parent)
6042 event = event->parent;
6043 return &event->fasync;
6044 }
6045
6046 void perf_event_wakeup(struct perf_event *event)
6047 {
6048 ring_buffer_wakeup(event);
6049
6050 if (event->pending_kill) {
6051 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
6052 event->pending_kill = 0;
6053 }
6054 }
6055
6056 static void perf_pending_event_disable(struct perf_event *event)
6057 {
6058 int cpu = READ_ONCE(event->pending_disable);
6059
6060 if (cpu < 0)
6061 return;
6062
6063 if (cpu == smp_processor_id()) {
6064 WRITE_ONCE(event->pending_disable, -1);
6065 perf_event_disable_local(event);
6066 return;
6067 }
6068
6069 /*
6070 * CPU-A CPU-B
6071 *
6072 * perf_event_disable_inatomic()
6073 * @pending_disable = CPU-A;
6074 * irq_work_queue();
6075 *
6076 * sched-out
6077 * @pending_disable = -1;
6078 *
6079 * sched-in
6080 * perf_event_disable_inatomic()
6081 * @pending_disable = CPU-B;
6082 * irq_work_queue(); // FAILS
6083 *
6084 * irq_work_run()
6085 * perf_pending_event()
6086 *
6087 * But the event runs on CPU-B and wants disabling there.
6088 */
6089 irq_work_queue_on(&event->pending, cpu);
6090 }
6091
6092 static void perf_pending_event(struct irq_work *entry)
6093 {
6094 struct perf_event *event = container_of(entry, struct perf_event, pending);
6095 int rctx;
6096
6097 rctx = perf_swevent_get_recursion_context();
6098 /*
6099 * If we 'fail' here, that's OK, it means recursion is already disabled
6100 * and we won't recurse 'further'.
6101 */
6102
6103 perf_pending_event_disable(event);
6104
6105 if (event->pending_wakeup) {
6106 event->pending_wakeup = 0;
6107 perf_event_wakeup(event);
6108 }
6109
6110 if (rctx >= 0)
6111 perf_swevent_put_recursion_context(rctx);
6112 }
6113
6114 /*
6115 * We assume there is only KVM supporting the callbacks.
6116 * Later on, we might change it to a list if there is
6117 * another virtualization implementation supporting the callbacks.
6118 */
6119 struct perf_guest_info_callbacks *perf_guest_cbs;
6120
6121 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6122 {
6123 perf_guest_cbs = cbs;
6124 return 0;
6125 }
6126 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
6127
6128 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6129 {
6130 perf_guest_cbs = NULL;
6131 return 0;
6132 }
6133 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
6134
6135 static void
6136 perf_output_sample_regs(struct perf_output_handle *handle,
6137 struct pt_regs *regs, u64 mask)
6138 {
6139 int bit;
6140 DECLARE_BITMAP(_mask, 64);
6141
6142 bitmap_from_u64(_mask, mask);
6143 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
6144 u64 val;
6145
6146 val = perf_reg_value(regs, bit);
6147 perf_output_put(handle, val);
6148 }
6149 }
6150
6151 static void perf_sample_regs_user(struct perf_regs *regs_user,
6152 struct pt_regs *regs,
6153 struct pt_regs *regs_user_copy)
6154 {
6155 if (user_mode(regs)) {
6156 regs_user->abi = perf_reg_abi(current);
6157 regs_user->regs = regs;
6158 } else if (!(current->flags & PF_KTHREAD)) {
6159 perf_get_regs_user(regs_user, regs, regs_user_copy);
6160 } else {
6161 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
6162 regs_user->regs = NULL;
6163 }
6164 }
6165
6166 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
6167 struct pt_regs *regs)
6168 {
6169 regs_intr->regs = regs;
6170 regs_intr->abi = perf_reg_abi(current);
6171 }
6172
6173
6174 /*
6175 * Get remaining task size from user stack pointer.
6176 *
6177 * It'd be better to take stack vma map and limit this more
6178 * precisely, but there's no way to get it safely under interrupt,
6179 * so using TASK_SIZE as limit.
6180 */
6181 static u64 perf_ustack_task_size(struct pt_regs *regs)
6182 {
6183 unsigned long addr = perf_user_stack_pointer(regs);
6184
6185 if (!addr || addr >= TASK_SIZE)
6186 return 0;
6187
6188 return TASK_SIZE - addr;
6189 }
6190
6191 static u16
6192 perf_sample_ustack_size(u16 stack_size, u16 header_size,
6193 struct pt_regs *regs)
6194 {
6195 u64 task_size;
6196
6197 /* No regs, no stack pointer, no dump. */
6198 if (!regs)
6199 return 0;
6200
6201 /*
6202 * Check if we fit in with the requested stack size into the:
6203 * - TASK_SIZE
6204 * If we don't, we limit the size to the TASK_SIZE.
6205 *
6206 * - remaining sample size
6207 * If we don't, we customize the stack size to
6208 * fit in to the remaining sample size.
6209 */
6210
6211 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
6212 stack_size = min(stack_size, (u16) task_size);
6213
6214 /* Current header size plus static size and dynamic size. */
6215 header_size += 2 * sizeof(u64);
6216
6217 /* Do we fit in with the current stack dump size? */
6218 if ((u16) (header_size + stack_size) < header_size) {
6219 /*
6220 * If we overflow the maximum size for the sample,
6221 * we customize the stack dump size to fit in.
6222 */
6223 stack_size = USHRT_MAX - header_size - sizeof(u64);
6224 stack_size = round_up(stack_size, sizeof(u64));
6225 }
6226
6227 return stack_size;
6228 }
6229
6230 static void
6231 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
6232 struct pt_regs *regs)
6233 {
6234 /* Case of a kernel thread, nothing to dump */
6235 if (!regs) {
6236 u64 size = 0;
6237 perf_output_put(handle, size);
6238 } else {
6239 unsigned long sp;
6240 unsigned int rem;
6241 u64 dyn_size;
6242 mm_segment_t fs;
6243
6244 /*
6245 * We dump:
6246 * static size
6247 * - the size requested by user or the best one we can fit
6248 * in to the sample max size
6249 * data
6250 * - user stack dump data
6251 * dynamic size
6252 * - the actual dumped size
6253 */
6254
6255 /* Static size. */
6256 perf_output_put(handle, dump_size);
6257
6258 /* Data. */
6259 sp = perf_user_stack_pointer(regs);
6260 fs = get_fs();
6261 set_fs(USER_DS);
6262 rem = __output_copy_user(handle, (void *) sp, dump_size);
6263 set_fs(fs);
6264 dyn_size = dump_size - rem;
6265
6266 perf_output_skip(handle, rem);
6267
6268 /* Dynamic size. */
6269 perf_output_put(handle, dyn_size);
6270 }
6271 }
6272
6273 static unsigned long perf_prepare_sample_aux(struct perf_event *event,
6274 struct perf_sample_data *data,
6275 size_t size)
6276 {
6277 struct perf_event *sampler = event->aux_event;
6278 struct perf_buffer *rb;
6279
6280 data->aux_size = 0;
6281
6282 if (!sampler)
6283 goto out;
6284
6285 if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE))
6286 goto out;
6287
6288 if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id()))
6289 goto out;
6290
6291 rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler);
6292 if (!rb)
6293 goto out;
6294
6295 /*
6296 * If this is an NMI hit inside sampling code, don't take
6297 * the sample. See also perf_aux_sample_output().
6298 */
6299 if (READ_ONCE(rb->aux_in_sampling)) {
6300 data->aux_size = 0;
6301 } else {
6302 size = min_t(size_t, size, perf_aux_size(rb));
6303 data->aux_size = ALIGN(size, sizeof(u64));
6304 }
6305 ring_buffer_put(rb);
6306
6307 out:
6308 return data->aux_size;
6309 }
6310
6311 long perf_pmu_snapshot_aux(struct perf_buffer *rb,
6312 struct perf_event *event,
6313 struct perf_output_handle *handle,
6314 unsigned long size)
6315 {
6316 unsigned long flags;
6317 long ret;
6318
6319 /*
6320 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler
6321 * paths. If we start calling them in NMI context, they may race with
6322 * the IRQ ones, that is, for example, re-starting an event that's just
6323 * been stopped, which is why we're using a separate callback that
6324 * doesn't change the event state.
6325 *
6326 * IRQs need to be disabled to prevent IPIs from racing with us.
6327 */
6328 local_irq_save(flags);
6329 /*
6330 * Guard against NMI hits inside the critical section;
6331 * see also perf_prepare_sample_aux().
6332 */
6333 WRITE_ONCE(rb->aux_in_sampling, 1);
6334 barrier();
6335
6336 ret = event->pmu->snapshot_aux(event, handle, size);
6337
6338 barrier();
6339 WRITE_ONCE(rb->aux_in_sampling, 0);
6340 local_irq_restore(flags);
6341
6342 return ret;
6343 }
6344
6345 static void perf_aux_sample_output(struct perf_event *event,
6346 struct perf_output_handle *handle,
6347 struct perf_sample_data *data)
6348 {
6349 struct perf_event *sampler = event->aux_event;
6350 struct perf_buffer *rb;
6351 unsigned long pad;
6352 long size;
6353
6354 if (WARN_ON_ONCE(!sampler || !data->aux_size))
6355 return;
6356
6357 rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler);
6358 if (!rb)
6359 return;
6360
6361 size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size);
6362
6363 /*
6364 * An error here means that perf_output_copy() failed (returned a
6365 * non-zero surplus that it didn't copy), which in its current
6366 * enlightened implementation is not possible. If that changes, we'd
6367 * like to know.
6368 */
6369 if (WARN_ON_ONCE(size < 0))
6370 goto out_put;
6371
6372 /*
6373 * The pad comes from ALIGN()ing data->aux_size up to u64 in
6374 * perf_prepare_sample_aux(), so should not be more than that.
6375 */
6376 pad = data->aux_size - size;
6377 if (WARN_ON_ONCE(pad >= sizeof(u64)))
6378 pad = 8;
6379
6380 if (pad) {
6381 u64 zero = 0;
6382 perf_output_copy(handle, &zero, pad);
6383 }
6384
6385 out_put:
6386 ring_buffer_put(rb);
6387 }
6388
6389 static void __perf_event_header__init_id(struct perf_event_header *header,
6390 struct perf_sample_data *data,
6391 struct perf_event *event)
6392 {
6393 u64 sample_type = event->attr.sample_type;
6394
6395 data->type = sample_type;
6396 header->size += event->id_header_size;
6397
6398 if (sample_type & PERF_SAMPLE_TID) {
6399 /* namespace issues */
6400 data->tid_entry.pid = perf_event_pid(event, current);
6401 data->tid_entry.tid = perf_event_tid(event, current);
6402 }
6403
6404 if (sample_type & PERF_SAMPLE_TIME)
6405 data->time = perf_event_clock(event);
6406
6407 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6408 data->id = primary_event_id(event);
6409
6410 if (sample_type & PERF_SAMPLE_STREAM_ID)
6411 data->stream_id = event->id;
6412
6413 if (sample_type & PERF_SAMPLE_CPU) {
6414 data->cpu_entry.cpu = raw_smp_processor_id();
6415 data->cpu_entry.reserved = 0;
6416 }
6417 }
6418
6419 void perf_event_header__init_id(struct perf_event_header *header,
6420 struct perf_sample_data *data,
6421 struct perf_event *event)
6422 {
6423 if (event->attr.sample_id_all)
6424 __perf_event_header__init_id(header, data, event);
6425 }
6426
6427 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
6428 struct perf_sample_data *data)
6429 {
6430 u64 sample_type = data->type;
6431
6432 if (sample_type & PERF_SAMPLE_TID)
6433 perf_output_put(handle, data->tid_entry);
6434
6435 if (sample_type & PERF_SAMPLE_TIME)
6436 perf_output_put(handle, data->time);
6437
6438 if (sample_type & PERF_SAMPLE_ID)
6439 perf_output_put(handle, data->id);
6440
6441 if (sample_type & PERF_SAMPLE_STREAM_ID)
6442 perf_output_put(handle, data->stream_id);
6443
6444 if (sample_type & PERF_SAMPLE_CPU)
6445 perf_output_put(handle, data->cpu_entry);
6446
6447 if (sample_type & PERF_SAMPLE_IDENTIFIER)
6448 perf_output_put(handle, data->id);
6449 }
6450
6451 void perf_event__output_id_sample(struct perf_event *event,
6452 struct perf_output_handle *handle,
6453 struct perf_sample_data *sample)
6454 {
6455 if (event->attr.sample_id_all)
6456 __perf_event__output_id_sample(handle, sample);
6457 }
6458
6459 static void perf_output_read_one(struct perf_output_handle *handle,
6460 struct perf_event *event,
6461 u64 enabled, u64 running)
6462 {
6463 u64 read_format = event->attr.read_format;
6464 u64 values[4];
6465 int n = 0;
6466
6467 values[n++] = perf_event_count(event);
6468 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
6469 values[n++] = enabled +
6470 atomic64_read(&event->child_total_time_enabled);
6471 }
6472 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
6473 values[n++] = running +
6474 atomic64_read(&event->child_total_time_running);
6475 }
6476 if (read_format & PERF_FORMAT_ID)
6477 values[n++] = primary_event_id(event);
6478
6479 __output_copy(handle, values, n * sizeof(u64));
6480 }
6481
6482 static void perf_output_read_group(struct perf_output_handle *handle,
6483 struct perf_event *event,
6484 u64 enabled, u64 running)
6485 {
6486 struct perf_event *leader = event->group_leader, *sub;
6487 u64 read_format = event->attr.read_format;
6488 u64 values[5];
6489 int n = 0;
6490
6491 values[n++] = 1 + leader->nr_siblings;
6492
6493 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
6494 values[n++] = enabled;
6495
6496 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
6497 values[n++] = running;
6498
6499 if ((leader != event) &&
6500 (leader->state == PERF_EVENT_STATE_ACTIVE))
6501 leader->pmu->read(leader);
6502
6503 values[n++] = perf_event_count(leader);
6504 if (read_format & PERF_FORMAT_ID)
6505 values[n++] = primary_event_id(leader);
6506
6507 __output_copy(handle, values, n * sizeof(u64));
6508
6509 for_each_sibling_event(sub, leader) {
6510 n = 0;
6511
6512 if ((sub != event) &&
6513 (sub->state == PERF_EVENT_STATE_ACTIVE))
6514 sub->pmu->read(sub);
6515
6516 values[n++] = perf_event_count(sub);
6517 if (read_format & PERF_FORMAT_ID)
6518 values[n++] = primary_event_id(sub);
6519
6520 __output_copy(handle, values, n * sizeof(u64));
6521 }
6522 }
6523
6524 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
6525 PERF_FORMAT_TOTAL_TIME_RUNNING)
6526
6527 /*
6528 * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
6529 *
6530 * The problem is that its both hard and excessively expensive to iterate the
6531 * child list, not to mention that its impossible to IPI the children running
6532 * on another CPU, from interrupt/NMI context.
6533 */
6534 static void perf_output_read(struct perf_output_handle *handle,
6535 struct perf_event *event)
6536 {
6537 u64 enabled = 0, running = 0, now;
6538 u64 read_format = event->attr.read_format;
6539
6540 /*
6541 * compute total_time_enabled, total_time_running
6542 * based on snapshot values taken when the event
6543 * was last scheduled in.
6544 *
6545 * we cannot simply called update_context_time()
6546 * because of locking issue as we are called in
6547 * NMI context
6548 */
6549 if (read_format & PERF_FORMAT_TOTAL_TIMES)
6550 calc_timer_values(event, &now, &enabled, &running);
6551
6552 if (event->attr.read_format & PERF_FORMAT_GROUP)
6553 perf_output_read_group(handle, event, enabled, running);
6554 else
6555 perf_output_read_one(handle, event, enabled, running);
6556 }
6557
6558 void perf_output_sample(struct perf_output_handle *handle,
6559 struct perf_event_header *header,
6560 struct perf_sample_data *data,
6561 struct perf_event *event)
6562 {
6563 u64 sample_type = data->type;
6564
6565 perf_output_put(handle, *header);
6566
6567 if (sample_type & PERF_SAMPLE_IDENTIFIER)
6568 perf_output_put(handle, data->id);
6569
6570 if (sample_type & PERF_SAMPLE_IP)
6571 perf_output_put(handle, data->ip);
6572
6573 if (sample_type & PERF_SAMPLE_TID)
6574 perf_output_put(handle, data->tid_entry);
6575
6576 if (sample_type & PERF_SAMPLE_TIME)
6577 perf_output_put(handle, data->time);
6578
6579 if (sample_type & PERF_SAMPLE_ADDR)
6580 perf_output_put(handle, data->addr);
6581
6582 if (sample_type & PERF_SAMPLE_ID)
6583 perf_output_put(handle, data->id);
6584
6585 if (sample_type & PERF_SAMPLE_STREAM_ID)
6586 perf_output_put(handle, data->stream_id);
6587
6588 if (sample_type & PERF_SAMPLE_CPU)
6589 perf_output_put(handle, data->cpu_entry);
6590
6591 if (sample_type & PERF_SAMPLE_PERIOD)
6592 perf_output_put(handle, data->period);
6593
6594 if (sample_type & PERF_SAMPLE_READ)
6595 perf_output_read(handle, event);
6596
6597 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6598 int size = 1;
6599
6600 size += data->callchain->nr;
6601 size *= sizeof(u64);
6602 __output_copy(handle, data->callchain, size);
6603 }
6604
6605 if (sample_type & PERF_SAMPLE_RAW) {
6606 struct perf_raw_record *raw = data->raw;
6607
6608 if (raw) {
6609 struct perf_raw_frag *frag = &raw->frag;
6610
6611 perf_output_put(handle, raw->size);
6612 do {
6613 if (frag->copy) {
6614 __output_custom(handle, frag->copy,
6615 frag->data, frag->size);
6616 } else {
6617 __output_copy(handle, frag->data,
6618 frag->size);
6619 }
6620 if (perf_raw_frag_last(frag))
6621 break;
6622 frag = frag->next;
6623 } while (1);
6624 if (frag->pad)
6625 __output_skip(handle, NULL, frag->pad);
6626 } else {
6627 struct {
6628 u32 size;
6629 u32 data;
6630 } raw = {
6631 .size = sizeof(u32),
6632 .data = 0,
6633 };
6634 perf_output_put(handle, raw);
6635 }
6636 }
6637
6638 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6639 if (data->br_stack) {
6640 size_t size;
6641
6642 size = data->br_stack->nr
6643 * sizeof(struct perf_branch_entry);
6644
6645 perf_output_put(handle, data->br_stack->nr);
6646 perf_output_copy(handle, data->br_stack->entries, size);
6647 } else {
6648 /*
6649 * we always store at least the value of nr
6650 */
6651 u64 nr = 0;
6652 perf_output_put(handle, nr);
6653 }
6654 }
6655
6656 if (sample_type & PERF_SAMPLE_REGS_USER) {
6657 u64 abi = data->regs_user.abi;
6658
6659 /*
6660 * If there are no regs to dump, notice it through
6661 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6662 */
6663 perf_output_put(handle, abi);
6664
6665 if (abi) {
6666 u64 mask = event->attr.sample_regs_user;
6667 perf_output_sample_regs(handle,
6668 data->regs_user.regs,
6669 mask);
6670 }
6671 }
6672
6673 if (sample_type & PERF_SAMPLE_STACK_USER) {
6674 perf_output_sample_ustack(handle,
6675 data->stack_user_size,
6676 data->regs_user.regs);
6677 }
6678
6679 if (sample_type & PERF_SAMPLE_WEIGHT)
6680 perf_output_put(handle, data->weight);
6681
6682 if (sample_type & PERF_SAMPLE_DATA_SRC)
6683 perf_output_put(handle, data->data_src.val);
6684
6685 if (sample_type & PERF_SAMPLE_TRANSACTION)
6686 perf_output_put(handle, data->txn);
6687
6688 if (sample_type & PERF_SAMPLE_REGS_INTR) {
6689 u64 abi = data->regs_intr.abi;
6690 /*
6691 * If there are no regs to dump, notice it through
6692 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6693 */
6694 perf_output_put(handle, abi);
6695
6696 if (abi) {
6697 u64 mask = event->attr.sample_regs_intr;
6698
6699 perf_output_sample_regs(handle,
6700 data->regs_intr.regs,
6701 mask);
6702 }
6703 }
6704
6705 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6706 perf_output_put(handle, data->phys_addr);
6707
6708 if (sample_type & PERF_SAMPLE_AUX) {
6709 perf_output_put(handle, data->aux_size);
6710
6711 if (data->aux_size)
6712 perf_aux_sample_output(event, handle, data);
6713 }
6714
6715 if (!event->attr.watermark) {
6716 int wakeup_events = event->attr.wakeup_events;
6717
6718 if (wakeup_events) {
6719 struct perf_buffer *rb = handle->rb;
6720 int events = local_inc_return(&rb->events);
6721
6722 if (events >= wakeup_events) {
6723 local_sub(wakeup_events, &rb->events);
6724 local_inc(&rb->wakeup);
6725 }
6726 }
6727 }
6728 }
6729
6730 static u64 perf_virt_to_phys(u64 virt)
6731 {
6732 u64 phys_addr = 0;
6733 struct page *p = NULL;
6734
6735 if (!virt)
6736 return 0;
6737
6738 if (virt >= TASK_SIZE) {
6739 /* If it's vmalloc()d memory, leave phys_addr as 0 */
6740 if (virt_addr_valid((void *)(uintptr_t)virt) &&
6741 !(virt >= VMALLOC_START && virt < VMALLOC_END))
6742 phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
6743 } else {
6744 /*
6745 * Walking the pages tables for user address.
6746 * Interrupts are disabled, so it prevents any tear down
6747 * of the page tables.
6748 * Try IRQ-safe __get_user_pages_fast first.
6749 * If failed, leave phys_addr as 0.
6750 */
6751 if ((current->mm != NULL) &&
6752 (__get_user_pages_fast(virt, 1, 0, &p) == 1))
6753 phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
6754
6755 if (p)
6756 put_page(p);
6757 }
6758
6759 return phys_addr;
6760 }
6761
6762 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
6763
6764 struct perf_callchain_entry *
6765 perf_callchain(struct perf_event *event, struct pt_regs *regs)
6766 {
6767 bool kernel = !event->attr.exclude_callchain_kernel;
6768 bool user = !event->attr.exclude_callchain_user;
6769 /* Disallow cross-task user callchains. */
6770 bool crosstask = event->ctx->task && event->ctx->task != current;
6771 const u32 max_stack = event->attr.sample_max_stack;
6772 struct perf_callchain_entry *callchain;
6773
6774 if (!kernel && !user)
6775 return &__empty_callchain;
6776
6777 callchain = get_perf_callchain(regs, 0, kernel, user,
6778 max_stack, crosstask, true);
6779 return callchain ?: &__empty_callchain;
6780 }
6781
6782 void perf_prepare_sample(struct perf_event_header *header,
6783 struct perf_sample_data *data,
6784 struct perf_event *event,
6785 struct pt_regs *regs)
6786 {
6787 u64 sample_type = event->attr.sample_type;
6788
6789 header->type = PERF_RECORD_SAMPLE;
6790 header->size = sizeof(*header) + event->header_size;
6791
6792 header->misc = 0;
6793 header->misc |= perf_misc_flags(regs);
6794
6795 __perf_event_header__init_id(header, data, event);
6796
6797 if (sample_type & PERF_SAMPLE_IP)
6798 data->ip = perf_instruction_pointer(regs);
6799
6800 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6801 int size = 1;
6802
6803 if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY))
6804 data->callchain = perf_callchain(event, regs);
6805
6806 size += data->callchain->nr;
6807
6808 header->size += size * sizeof(u64);
6809 }
6810
6811 if (sample_type & PERF_SAMPLE_RAW) {
6812 struct perf_raw_record *raw = data->raw;
6813 int size;
6814
6815 if (raw) {
6816 struct perf_raw_frag *frag = &raw->frag;
6817 u32 sum = 0;
6818
6819 do {
6820 sum += frag->size;
6821 if (perf_raw_frag_last(frag))
6822 break;
6823 frag = frag->next;
6824 } while (1);
6825
6826 size = round_up(sum + sizeof(u32), sizeof(u64));
6827 raw->size = size - sizeof(u32);
6828 frag->pad = raw->size - sum;
6829 } else {
6830 size = sizeof(u64);
6831 }
6832
6833 header->size += size;
6834 }
6835
6836 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6837 int size = sizeof(u64); /* nr */
6838 if (data->br_stack) {
6839 size += data->br_stack->nr
6840 * sizeof(struct perf_branch_entry);
6841 }
6842 header->size += size;
6843 }
6844
6845 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
6846 perf_sample_regs_user(&data->regs_user, regs,
6847 &data->regs_user_copy);
6848
6849 if (sample_type & PERF_SAMPLE_REGS_USER) {
6850 /* regs dump ABI info */
6851 int size = sizeof(u64);
6852
6853 if (data->regs_user.regs) {
6854 u64 mask = event->attr.sample_regs_user;
6855 size += hweight64(mask) * sizeof(u64);
6856 }
6857
6858 header->size += size;
6859 }
6860
6861 if (sample_type & PERF_SAMPLE_STACK_USER) {
6862 /*
6863 * Either we need PERF_SAMPLE_STACK_USER bit to be always
6864 * processed as the last one or have additional check added
6865 * in case new sample type is added, because we could eat
6866 * up the rest of the sample size.
6867 */
6868 u16 stack_size = event->attr.sample_stack_user;
6869 u16 size = sizeof(u64);
6870
6871 stack_size = perf_sample_ustack_size(stack_size, header->size,
6872 data->regs_user.regs);
6873
6874 /*
6875 * If there is something to dump, add space for the dump
6876 * itself and for the field that tells the dynamic size,
6877 * which is how many have been actually dumped.
6878 */
6879 if (stack_size)
6880 size += sizeof(u64) + stack_size;
6881
6882 data->stack_user_size = stack_size;
6883 header->size += size;
6884 }
6885
6886 if (sample_type & PERF_SAMPLE_REGS_INTR) {
6887 /* regs dump ABI info */
6888 int size = sizeof(u64);
6889
6890 perf_sample_regs_intr(&data->regs_intr, regs);
6891
6892 if (data->regs_intr.regs) {
6893 u64 mask = event->attr.sample_regs_intr;
6894
6895 size += hweight64(mask) * sizeof(u64);
6896 }
6897
6898 header->size += size;
6899 }
6900
6901 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6902 data->phys_addr = perf_virt_to_phys(data->addr);
6903
6904 if (sample_type & PERF_SAMPLE_AUX) {
6905 u64 size;
6906
6907 header->size += sizeof(u64); /* size */
6908
6909 /*
6910 * Given the 16bit nature of header::size, an AUX sample can
6911 * easily overflow it, what with all the preceding sample bits.
6912 * Make sure this doesn't happen by using up to U16_MAX bytes
6913 * per sample in total (rounded down to 8 byte boundary).
6914 */
6915 size = min_t(size_t, U16_MAX - header->size,
6916 event->attr.aux_sample_size);
6917 size = rounddown(size, 8);
6918 size = perf_prepare_sample_aux(event, data, size);
6919
6920 WARN_ON_ONCE(size + header->size > U16_MAX);
6921 header->size += size;
6922 }
6923 /*
6924 * If you're adding more sample types here, you likely need to do
6925 * something about the overflowing header::size, like repurpose the
6926 * lowest 3 bits of size, which should be always zero at the moment.
6927 * This raises a more important question, do we really need 512k sized
6928 * samples and why, so good argumentation is in order for whatever you
6929 * do here next.
6930 */
6931 WARN_ON_ONCE(header->size & 7);
6932 }
6933
6934 static __always_inline int
6935 __perf_event_output(struct perf_event *event,
6936 struct perf_sample_data *data,
6937 struct pt_regs *regs,
6938 int (*output_begin)(struct perf_output_handle *,
6939 struct perf_event *,
6940 unsigned int))
6941 {
6942 struct perf_output_handle handle;
6943 struct perf_event_header header;
6944 int err;
6945
6946 /* protect the callchain buffers */
6947 rcu_read_lock();
6948
6949 perf_prepare_sample(&header, data, event, regs);
6950
6951 err = output_begin(&handle, event, header.size);
6952 if (err)
6953 goto exit;
6954
6955 perf_output_sample(&handle, &header, data, event);
6956
6957 perf_output_end(&handle);
6958
6959 exit:
6960 rcu_read_unlock();
6961 return err;
6962 }
6963
6964 void
6965 perf_event_output_forward(struct perf_event *event,
6966 struct perf_sample_data *data,
6967 struct pt_regs *regs)
6968 {
6969 __perf_event_output(event, data, regs, perf_output_begin_forward);
6970 }
6971
6972 void
6973 perf_event_output_backward(struct perf_event *event,
6974 struct perf_sample_data *data,
6975 struct pt_regs *regs)
6976 {
6977 __perf_event_output(event, data, regs, perf_output_begin_backward);
6978 }
6979
6980 int
6981 perf_event_output(struct perf_event *event,
6982 struct perf_sample_data *data,
6983 struct pt_regs *regs)
6984 {
6985 return __perf_event_output(event, data, regs, perf_output_begin);
6986 }
6987
6988 /*
6989 * read event_id
6990 */
6991
6992 struct perf_read_event {
6993 struct perf_event_header header;
6994
6995 u32 pid;
6996 u32 tid;
6997 };
6998
6999 static void
7000 perf_event_read_event(struct perf_event *event,
7001 struct task_struct *task)
7002 {
7003 struct perf_output_handle handle;
7004 struct perf_sample_data sample;
7005 struct perf_read_event read_event = {
7006 .header = {
7007 .type = PERF_RECORD_READ,
7008 .misc = 0,
7009 .size = sizeof(read_event) + event->read_size,
7010 },
7011 .pid = perf_event_pid(event, task),
7012 .tid = perf_event_tid(event, task),
7013 };
7014 int ret;
7015
7016 perf_event_header__init_id(&read_event.header, &sample, event);
7017 ret = perf_output_begin(&handle, event, read_event.header.size);
7018 if (ret)
7019 return;
7020
7021 perf_output_put(&handle, read_event);
7022 perf_output_read(&handle, event);
7023 perf_event__output_id_sample(event, &handle, &sample);
7024
7025 perf_output_end(&handle);
7026 }
7027
7028 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
7029
7030 static void
7031 perf_iterate_ctx(struct perf_event_context *ctx,
7032 perf_iterate_f output,
7033 void *data, bool all)
7034 {
7035 struct perf_event *event;
7036
7037 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7038 if (!all) {
7039 if (event->state < PERF_EVENT_STATE_INACTIVE)
7040 continue;
7041 if (!event_filter_match(event))
7042 continue;
7043 }
7044
7045 output(event, data);
7046 }
7047 }
7048
7049 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
7050 {
7051 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
7052 struct perf_event *event;
7053
7054 list_for_each_entry_rcu(event, &pel->list, sb_list) {
7055 /*
7056 * Skip events that are not fully formed yet; ensure that
7057 * if we observe event->ctx, both event and ctx will be
7058 * complete enough. See perf_install_in_context().
7059 */
7060 if (!smp_load_acquire(&event->ctx))
7061 continue;
7062
7063 if (event->state < PERF_EVENT_STATE_INACTIVE)
7064 continue;
7065 if (!event_filter_match(event))
7066 continue;
7067 output(event, data);
7068 }
7069 }
7070
7071 /*
7072 * Iterate all events that need to receive side-band events.
7073 *
7074 * For new callers; ensure that account_pmu_sb_event() includes
7075 * your event, otherwise it might not get delivered.
7076 */
7077 static void
7078 perf_iterate_sb(perf_iterate_f output, void *data,
7079 struct perf_event_context *task_ctx)
7080 {
7081 struct perf_event_context *ctx;
7082 int ctxn;
7083
7084 rcu_read_lock();
7085 preempt_disable();
7086
7087 /*
7088 * If we have task_ctx != NULL we only notify the task context itself.
7089 * The task_ctx is set only for EXIT events before releasing task
7090 * context.
7091 */
7092 if (task_ctx) {
7093 perf_iterate_ctx(task_ctx, output, data, false);
7094 goto done;
7095 }
7096
7097 perf_iterate_sb_cpu(output, data);
7098
7099 for_each_task_context_nr(ctxn) {
7100 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7101 if (ctx)
7102 perf_iterate_ctx(ctx, output, data, false);
7103 }
7104 done:
7105 preempt_enable();
7106 rcu_read_unlock();
7107 }
7108
7109 /*
7110 * Clear all file-based filters at exec, they'll have to be
7111 * re-instated when/if these objects are mmapped again.
7112 */
7113 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
7114 {
7115 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7116 struct perf_addr_filter *filter;
7117 unsigned int restart = 0, count = 0;
7118 unsigned long flags;
7119
7120 if (!has_addr_filter(event))
7121 return;
7122
7123 raw_spin_lock_irqsave(&ifh->lock, flags);
7124 list_for_each_entry(filter, &ifh->list, entry) {
7125 if (filter->path.dentry) {
7126 event->addr_filter_ranges[count].start = 0;
7127 event->addr_filter_ranges[count].size = 0;
7128 restart++;
7129 }
7130
7131 count++;
7132 }
7133
7134 if (restart)
7135 event->addr_filters_gen++;
7136 raw_spin_unlock_irqrestore(&ifh->lock, flags);
7137
7138 if (restart)
7139 perf_event_stop(event, 1);
7140 }
7141
7142 void perf_event_exec(void)
7143 {
7144 struct perf_event_context *ctx;
7145 int ctxn;
7146
7147 rcu_read_lock();
7148 for_each_task_context_nr(ctxn) {
7149 ctx = current->perf_event_ctxp[ctxn];
7150 if (!ctx)
7151 continue;
7152
7153 perf_event_enable_on_exec(ctxn);
7154
7155 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
7156 true);
7157 }
7158 rcu_read_unlock();
7159 }
7160
7161 struct remote_output {
7162 struct perf_buffer *rb;
7163 int err;
7164 };
7165
7166 static void __perf_event_output_stop(struct perf_event *event, void *data)
7167 {
7168 struct perf_event *parent = event->parent;
7169 struct remote_output *ro = data;
7170 struct perf_buffer *rb = ro->rb;
7171 struct stop_event_data sd = {
7172 .event = event,
7173 };
7174
7175 if (!has_aux(event))
7176 return;
7177
7178 if (!parent)
7179 parent = event;
7180
7181 /*
7182 * In case of inheritance, it will be the parent that links to the
7183 * ring-buffer, but it will be the child that's actually using it.
7184 *
7185 * We are using event::rb to determine if the event should be stopped,
7186 * however this may race with ring_buffer_attach() (through set_output),
7187 * which will make us skip the event that actually needs to be stopped.
7188 * So ring_buffer_attach() has to stop an aux event before re-assigning
7189 * its rb pointer.
7190 */
7191 if (rcu_dereference(parent->rb) == rb)
7192 ro->err = __perf_event_stop(&sd);
7193 }
7194
7195 static int __perf_pmu_output_stop(void *info)
7196 {
7197 struct perf_event *event = info;
7198 struct pmu *pmu = event->ctx->pmu;
7199 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7200 struct remote_output ro = {
7201 .rb = event->rb,
7202 };
7203
7204 rcu_read_lock();
7205 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
7206 if (cpuctx->task_ctx)
7207 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
7208 &ro, false);
7209 rcu_read_unlock();
7210
7211 return ro.err;
7212 }
7213
7214 static void perf_pmu_output_stop(struct perf_event *event)
7215 {
7216 struct perf_event *iter;
7217 int err, cpu;
7218
7219 restart:
7220 rcu_read_lock();
7221 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
7222 /*
7223 * For per-CPU events, we need to make sure that neither they
7224 * nor their children are running; for cpu==-1 events it's
7225 * sufficient to stop the event itself if it's active, since
7226 * it can't have children.
7227 */
7228 cpu = iter->cpu;
7229 if (cpu == -1)
7230 cpu = READ_ONCE(iter->oncpu);
7231
7232 if (cpu == -1)
7233 continue;
7234
7235 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
7236 if (err == -EAGAIN) {
7237 rcu_read_unlock();
7238 goto restart;
7239 }
7240 }
7241 rcu_read_unlock();
7242 }
7243
7244 /*
7245 * task tracking -- fork/exit
7246 *
7247 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
7248 */
7249
7250 struct perf_task_event {
7251 struct task_struct *task;
7252 struct perf_event_context *task_ctx;
7253
7254 struct {
7255 struct perf_event_header header;
7256
7257 u32 pid;
7258 u32 ppid;
7259 u32 tid;
7260 u32 ptid;
7261 u64 time;
7262 } event_id;
7263 };
7264
7265 static int perf_event_task_match(struct perf_event *event)
7266 {
7267 return event->attr.comm || event->attr.mmap ||
7268 event->attr.mmap2 || event->attr.mmap_data ||
7269 event->attr.task;
7270 }
7271
7272 static void perf_event_task_output(struct perf_event *event,
7273 void *data)
7274 {
7275 struct perf_task_event *task_event = data;
7276 struct perf_output_handle handle;
7277 struct perf_sample_data sample;
7278 struct task_struct *task = task_event->task;
7279 int ret, size = task_event->event_id.header.size;
7280
7281 if (!perf_event_task_match(event))
7282 return;
7283
7284 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
7285
7286 ret = perf_output_begin(&handle, event,
7287 task_event->event_id.header.size);
7288 if (ret)
7289 goto out;
7290
7291 task_event->event_id.pid = perf_event_pid(event, task);
7292 task_event->event_id.ppid = perf_event_pid(event, current);
7293
7294 task_event->event_id.tid = perf_event_tid(event, task);
7295 task_event->event_id.ptid = perf_event_tid(event, current);
7296
7297 task_event->event_id.time = perf_event_clock(event);
7298
7299 perf_output_put(&handle, task_event->event_id);
7300
7301 perf_event__output_id_sample(event, &handle, &sample);
7302
7303 perf_output_end(&handle);
7304 out:
7305 task_event->event_id.header.size = size;
7306 }
7307
7308 static void perf_event_task(struct task_struct *task,
7309 struct perf_event_context *task_ctx,
7310 int new)
7311 {
7312 struct perf_task_event task_event;
7313
7314 if (!atomic_read(&nr_comm_events) &&
7315 !atomic_read(&nr_mmap_events) &&
7316 !atomic_read(&nr_task_events))
7317 return;
7318
7319 task_event = (struct perf_task_event){
7320 .task = task,
7321 .task_ctx = task_ctx,
7322 .event_id = {
7323 .header = {
7324 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
7325 .misc = 0,
7326 .size = sizeof(task_event.event_id),
7327 },
7328 /* .pid */
7329 /* .ppid */
7330 /* .tid */
7331 /* .ptid */
7332 /* .time */
7333 },
7334 };
7335
7336 perf_iterate_sb(perf_event_task_output,
7337 &task_event,
7338 task_ctx);
7339 }
7340
7341 void perf_event_fork(struct task_struct *task)
7342 {
7343 perf_event_task(task, NULL, 1);
7344 perf_event_namespaces(task);
7345 }
7346
7347 /*
7348 * comm tracking
7349 */
7350
7351 struct perf_comm_event {
7352 struct task_struct *task;
7353 char *comm;
7354 int comm_size;
7355
7356 struct {
7357 struct perf_event_header header;
7358
7359 u32 pid;
7360 u32 tid;
7361 } event_id;
7362 };
7363
7364 static int perf_event_comm_match(struct perf_event *event)
7365 {
7366 return event->attr.comm;
7367 }
7368
7369 static void perf_event_comm_output(struct perf_event *event,
7370 void *data)
7371 {
7372 struct perf_comm_event *comm_event = data;
7373 struct perf_output_handle handle;
7374 struct perf_sample_data sample;
7375 int size = comm_event->event_id.header.size;
7376 int ret;
7377
7378 if (!perf_event_comm_match(event))
7379 return;
7380
7381 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
7382 ret = perf_output_begin(&handle, event,
7383 comm_event->event_id.header.size);
7384
7385 if (ret)
7386 goto out;
7387
7388 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
7389 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
7390
7391 perf_output_put(&handle, comm_event->event_id);
7392 __output_copy(&handle, comm_event->comm,
7393 comm_event->comm_size);
7394
7395 perf_event__output_id_sample(event, &handle, &sample);
7396
7397 perf_output_end(&handle);
7398 out:
7399 comm_event->event_id.header.size = size;
7400 }
7401
7402 static void perf_event_comm_event(struct perf_comm_event *comm_event)
7403 {
7404 char comm[TASK_COMM_LEN];
7405 unsigned int size;
7406
7407 memset(comm, 0, sizeof(comm));
7408 strlcpy(comm, comm_event->task->comm, sizeof(comm));
7409 size = ALIGN(strlen(comm)+1, sizeof(u64));
7410
7411 comm_event->comm = comm;
7412 comm_event->comm_size = size;
7413
7414 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
7415
7416 perf_iterate_sb(perf_event_comm_output,
7417 comm_event,
7418 NULL);
7419 }
7420
7421 void perf_event_comm(struct task_struct *task, bool exec)
7422 {
7423 struct perf_comm_event comm_event;
7424
7425 if (!atomic_read(&nr_comm_events))
7426 return;
7427
7428 comm_event = (struct perf_comm_event){
7429 .task = task,
7430 /* .comm */
7431 /* .comm_size */
7432 .event_id = {
7433 .header = {
7434 .type = PERF_RECORD_COMM,
7435 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
7436 /* .size */
7437 },
7438 /* .pid */
7439 /* .tid */
7440 },
7441 };
7442
7443 perf_event_comm_event(&comm_event);
7444 }
7445
7446 /*
7447 * namespaces tracking
7448 */
7449
7450 struct perf_namespaces_event {
7451 struct task_struct *task;
7452
7453 struct {
7454 struct perf_event_header header;
7455
7456 u32 pid;
7457 u32 tid;
7458 u64 nr_namespaces;
7459 struct perf_ns_link_info link_info[NR_NAMESPACES];
7460 } event_id;
7461 };
7462
7463 static int perf_event_namespaces_match(struct perf_event *event)
7464 {
7465 return event->attr.namespaces;
7466 }
7467
7468 static void perf_event_namespaces_output(struct perf_event *event,
7469 void *data)
7470 {
7471 struct perf_namespaces_event *namespaces_event = data;
7472 struct perf_output_handle handle;
7473 struct perf_sample_data sample;
7474 u16 header_size = namespaces_event->event_id.header.size;
7475 int ret;
7476
7477 if (!perf_event_namespaces_match(event))
7478 return;
7479
7480 perf_event_header__init_id(&namespaces_event->event_id.header,
7481 &sample, event);
7482 ret = perf_output_begin(&handle, event,
7483 namespaces_event->event_id.header.size);
7484 if (ret)
7485 goto out;
7486
7487 namespaces_event->event_id.pid = perf_event_pid(event,
7488 namespaces_event->task);
7489 namespaces_event->event_id.tid = perf_event_tid(event,
7490 namespaces_event->task);
7491
7492 perf_output_put(&handle, namespaces_event->event_id);
7493
7494 perf_event__output_id_sample(event, &handle, &sample);
7495
7496 perf_output_end(&handle);
7497 out:
7498 namespaces_event->event_id.header.size = header_size;
7499 }
7500
7501 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
7502 struct task_struct *task,
7503 const struct proc_ns_operations *ns_ops)
7504 {
7505 struct path ns_path;
7506 struct inode *ns_inode;
7507 int error;
7508
7509 error = ns_get_path(&ns_path, task, ns_ops);
7510 if (!error) {
7511 ns_inode = ns_path.dentry->d_inode;
7512 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
7513 ns_link_info->ino = ns_inode->i_ino;
7514 path_put(&ns_path);
7515 }
7516 }
7517
7518 void perf_event_namespaces(struct task_struct *task)
7519 {
7520 struct perf_namespaces_event namespaces_event;
7521 struct perf_ns_link_info *ns_link_info;
7522
7523 if (!atomic_read(&nr_namespaces_events))
7524 return;
7525
7526 namespaces_event = (struct perf_namespaces_event){
7527 .task = task,
7528 .event_id = {
7529 .header = {
7530 .type = PERF_RECORD_NAMESPACES,
7531 .misc = 0,
7532 .size = sizeof(namespaces_event.event_id),
7533 },
7534 /* .pid */
7535 /* .tid */
7536 .nr_namespaces = NR_NAMESPACES,
7537 /* .link_info[NR_NAMESPACES] */
7538 },
7539 };
7540
7541 ns_link_info = namespaces_event.event_id.link_info;
7542
7543 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
7544 task, &mntns_operations);
7545
7546 #ifdef CONFIG_USER_NS
7547 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
7548 task, &userns_operations);
7549 #endif
7550 #ifdef CONFIG_NET_NS
7551 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
7552 task, &netns_operations);
7553 #endif
7554 #ifdef CONFIG_UTS_NS
7555 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
7556 task, &utsns_operations);
7557 #endif
7558 #ifdef CONFIG_IPC_NS
7559 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
7560 task, &ipcns_operations);
7561 #endif
7562 #ifdef CONFIG_PID_NS
7563 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
7564 task, &pidns_operations);
7565 #endif
7566 #ifdef CONFIG_CGROUPS
7567 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
7568 task, &cgroupns_operations);
7569 #endif
7570
7571 perf_iterate_sb(perf_event_namespaces_output,
7572 &namespaces_event,
7573 NULL);
7574 }
7575
7576 /*
7577 * mmap tracking
7578 */
7579
7580 struct perf_mmap_event {
7581 struct vm_area_struct *vma;
7582
7583 const char *file_name;
7584 int file_size;
7585 int maj, min;
7586 u64 ino;
7587 u64 ino_generation;
7588 u32 prot, flags;
7589
7590 struct {
7591 struct perf_event_header header;
7592
7593 u32 pid;
7594 u32 tid;
7595 u64 start;
7596 u64 len;
7597 u64 pgoff;
7598 } event_id;
7599 };
7600
7601 static int perf_event_mmap_match(struct perf_event *event,
7602 void *data)
7603 {
7604 struct perf_mmap_event *mmap_event = data;
7605 struct vm_area_struct *vma = mmap_event->vma;
7606 int executable = vma->vm_flags & VM_EXEC;
7607
7608 return (!executable && event->attr.mmap_data) ||
7609 (executable && (event->attr.mmap || event->attr.mmap2));
7610 }
7611
7612 static void perf_event_mmap_output(struct perf_event *event,
7613 void *data)
7614 {
7615 struct perf_mmap_event *mmap_event = data;
7616 struct perf_output_handle handle;
7617 struct perf_sample_data sample;
7618 int size = mmap_event->event_id.header.size;
7619 u32 type = mmap_event->event_id.header.type;
7620 int ret;
7621
7622 if (!perf_event_mmap_match(event, data))
7623 return;
7624
7625 if (event->attr.mmap2) {
7626 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
7627 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
7628 mmap_event->event_id.header.size += sizeof(mmap_event->min);
7629 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
7630 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
7631 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
7632 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
7633 }
7634
7635 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
7636 ret = perf_output_begin(&handle, event,
7637 mmap_event->event_id.header.size);
7638 if (ret)
7639 goto out;
7640
7641 mmap_event->event_id.pid = perf_event_pid(event, current);
7642 mmap_event->event_id.tid = perf_event_tid(event, current);
7643
7644 perf_output_put(&handle, mmap_event->event_id);
7645
7646 if (event->attr.mmap2) {
7647 perf_output_put(&handle, mmap_event->maj);
7648 perf_output_put(&handle, mmap_event->min);
7649 perf_output_put(&handle, mmap_event->ino);
7650 perf_output_put(&handle, mmap_event->ino_generation);
7651 perf_output_put(&handle, mmap_event->prot);
7652 perf_output_put(&handle, mmap_event->flags);
7653 }
7654
7655 __output_copy(&handle, mmap_event->file_name,
7656 mmap_event->file_size);
7657
7658 perf_event__output_id_sample(event, &handle, &sample);
7659
7660 perf_output_end(&handle);
7661 out:
7662 mmap_event->event_id.header.size = size;
7663 mmap_event->event_id.header.type = type;
7664 }
7665
7666 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
7667 {
7668 struct vm_area_struct *vma = mmap_event->vma;
7669 struct file *file = vma->vm_file;
7670 int maj = 0, min = 0;
7671 u64 ino = 0, gen = 0;
7672 u32 prot = 0, flags = 0;
7673 unsigned int size;
7674 char tmp[16];
7675 char *buf = NULL;
7676 char *name;
7677
7678 if (vma->vm_flags & VM_READ)
7679 prot |= PROT_READ;
7680 if (vma->vm_flags & VM_WRITE)
7681 prot |= PROT_WRITE;
7682 if (vma->vm_flags & VM_EXEC)
7683 prot |= PROT_EXEC;
7684
7685 if (vma->vm_flags & VM_MAYSHARE)
7686 flags = MAP_SHARED;
7687 else
7688 flags = MAP_PRIVATE;
7689
7690 if (vma->vm_flags & VM_DENYWRITE)
7691 flags |= MAP_DENYWRITE;
7692 if (vma->vm_flags & VM_MAYEXEC)
7693 flags |= MAP_EXECUTABLE;
7694 if (vma->vm_flags & VM_LOCKED)
7695 flags |= MAP_LOCKED;
7696 if (vma->vm_flags & VM_HUGETLB)
7697 flags |= MAP_HUGETLB;
7698
7699 if (file) {
7700 struct inode *inode;
7701 dev_t dev;
7702
7703 buf = kmalloc(PATH_MAX, GFP_KERNEL);
7704 if (!buf) {
7705 name = "//enomem";
7706 goto cpy_name;
7707 }
7708 /*
7709 * d_path() works from the end of the rb backwards, so we
7710 * need to add enough zero bytes after the string to handle
7711 * the 64bit alignment we do later.
7712 */
7713 name = file_path(file, buf, PATH_MAX - sizeof(u64));
7714 if (IS_ERR(name)) {
7715 name = "//toolong";
7716 goto cpy_name;
7717 }
7718 inode = file_inode(vma->vm_file);
7719 dev = inode->i_sb->s_dev;
7720 ino = inode->i_ino;
7721 gen = inode->i_generation;
7722 maj = MAJOR(dev);
7723 min = MINOR(dev);
7724
7725 goto got_name;
7726 } else {
7727 if (vma->vm_ops && vma->vm_ops->name) {
7728 name = (char *) vma->vm_ops->name(vma);
7729 if (name)
7730 goto cpy_name;
7731 }
7732
7733 name = (char *)arch_vma_name(vma);
7734 if (name)
7735 goto cpy_name;
7736
7737 if (vma->vm_start <= vma->vm_mm->start_brk &&
7738 vma->vm_end >= vma->vm_mm->brk) {
7739 name = "[heap]";
7740 goto cpy_name;
7741 }
7742 if (vma->vm_start <= vma->vm_mm->start_stack &&
7743 vma->vm_end >= vma->vm_mm->start_stack) {
7744 name = "[stack]";
7745 goto cpy_name;
7746 }
7747
7748 name = "//anon";
7749 goto cpy_name;
7750 }
7751
7752 cpy_name:
7753 strlcpy(tmp, name, sizeof(tmp));
7754 name = tmp;
7755 got_name:
7756 /*
7757 * Since our buffer works in 8 byte units we need to align our string
7758 * size to a multiple of 8. However, we must guarantee the tail end is
7759 * zero'd out to avoid leaking random bits to userspace.
7760 */
7761 size = strlen(name)+1;
7762 while (!IS_ALIGNED(size, sizeof(u64)))
7763 name[size++] = '\0';
7764
7765 mmap_event->file_name = name;
7766 mmap_event->file_size = size;
7767 mmap_event->maj = maj;
7768 mmap_event->min = min;
7769 mmap_event->ino = ino;
7770 mmap_event->ino_generation = gen;
7771 mmap_event->prot = prot;
7772 mmap_event->flags = flags;
7773
7774 if (!(vma->vm_flags & VM_EXEC))
7775 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
7776
7777 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
7778
7779 perf_iterate_sb(perf_event_mmap_output,
7780 mmap_event,
7781 NULL);
7782
7783 kfree(buf);
7784 }
7785
7786 /*
7787 * Check whether inode and address range match filter criteria.
7788 */
7789 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
7790 struct file *file, unsigned long offset,
7791 unsigned long size)
7792 {
7793 /* d_inode(NULL) won't be equal to any mapped user-space file */
7794 if (!filter->path.dentry)
7795 return false;
7796
7797 if (d_inode(filter->path.dentry) != file_inode(file))
7798 return false;
7799
7800 if (filter->offset > offset + size)
7801 return false;
7802
7803 if (filter->offset + filter->size < offset)
7804 return false;
7805
7806 return true;
7807 }
7808
7809 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
7810 struct vm_area_struct *vma,
7811 struct perf_addr_filter_range *fr)
7812 {
7813 unsigned long vma_size = vma->vm_end - vma->vm_start;
7814 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
7815 struct file *file = vma->vm_file;
7816
7817 if (!perf_addr_filter_match(filter, file, off, vma_size))
7818 return false;
7819
7820 if (filter->offset < off) {
7821 fr->start = vma->vm_start;
7822 fr->size = min(vma_size, filter->size - (off - filter->offset));
7823 } else {
7824 fr->start = vma->vm_start + filter->offset - off;
7825 fr->size = min(vma->vm_end - fr->start, filter->size);
7826 }
7827
7828 return true;
7829 }
7830
7831 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
7832 {
7833 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7834 struct vm_area_struct *vma = data;
7835 struct perf_addr_filter *filter;
7836 unsigned int restart = 0, count = 0;
7837 unsigned long flags;
7838
7839 if (!has_addr_filter(event))
7840 return;
7841
7842 if (!vma->vm_file)
7843 return;
7844
7845 raw_spin_lock_irqsave(&ifh->lock, flags);
7846 list_for_each_entry(filter, &ifh->list, entry) {
7847 if (perf_addr_filter_vma_adjust(filter, vma,
7848 &event->addr_filter_ranges[count]))
7849 restart++;
7850
7851 count++;
7852 }
7853
7854 if (restart)
7855 event->addr_filters_gen++;
7856 raw_spin_unlock_irqrestore(&ifh->lock, flags);
7857
7858 if (restart)
7859 perf_event_stop(event, 1);
7860 }
7861
7862 /*
7863 * Adjust all task's events' filters to the new vma
7864 */
7865 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
7866 {
7867 struct perf_event_context *ctx;
7868 int ctxn;
7869
7870 /*
7871 * Data tracing isn't supported yet and as such there is no need
7872 * to keep track of anything that isn't related to executable code:
7873 */
7874 if (!(vma->vm_flags & VM_EXEC))
7875 return;
7876
7877 rcu_read_lock();
7878 for_each_task_context_nr(ctxn) {
7879 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7880 if (!ctx)
7881 continue;
7882
7883 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
7884 }
7885 rcu_read_unlock();
7886 }
7887
7888 void perf_event_mmap(struct vm_area_struct *vma)
7889 {
7890 struct perf_mmap_event mmap_event;
7891
7892 if (!atomic_read(&nr_mmap_events))
7893 return;
7894
7895 mmap_event = (struct perf_mmap_event){
7896 .vma = vma,
7897 /* .file_name */
7898 /* .file_size */
7899 .event_id = {
7900 .header = {
7901 .type = PERF_RECORD_MMAP,
7902 .misc = PERF_RECORD_MISC_USER,
7903 /* .size */
7904 },
7905 /* .pid */
7906 /* .tid */
7907 .start = vma->vm_start,
7908 .len = vma->vm_end - vma->vm_start,
7909 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
7910 },
7911 /* .maj (attr_mmap2 only) */
7912 /* .min (attr_mmap2 only) */
7913 /* .ino (attr_mmap2 only) */
7914 /* .ino_generation (attr_mmap2 only) */
7915 /* .prot (attr_mmap2 only) */
7916 /* .flags (attr_mmap2 only) */
7917 };
7918
7919 perf_addr_filters_adjust(vma);
7920 perf_event_mmap_event(&mmap_event);
7921 }
7922
7923 void perf_event_aux_event(struct perf_event *event, unsigned long head,
7924 unsigned long size, u64 flags)
7925 {
7926 struct perf_output_handle handle;
7927 struct perf_sample_data sample;
7928 struct perf_aux_event {
7929 struct perf_event_header header;
7930 u64 offset;
7931 u64 size;
7932 u64 flags;
7933 } rec = {
7934 .header = {
7935 .type = PERF_RECORD_AUX,
7936 .misc = 0,
7937 .size = sizeof(rec),
7938 },
7939 .offset = head,
7940 .size = size,
7941 .flags = flags,
7942 };
7943 int ret;
7944
7945 perf_event_header__init_id(&rec.header, &sample, event);
7946 ret = perf_output_begin(&handle, event, rec.header.size);
7947
7948 if (ret)
7949 return;
7950
7951 perf_output_put(&handle, rec);
7952 perf_event__output_id_sample(event, &handle, &sample);
7953
7954 perf_output_end(&handle);
7955 }
7956
7957 /*
7958 * Lost/dropped samples logging
7959 */
7960 void perf_log_lost_samples(struct perf_event *event, u64 lost)
7961 {
7962 struct perf_output_handle handle;
7963 struct perf_sample_data sample;
7964 int ret;
7965
7966 struct {
7967 struct perf_event_header header;
7968 u64 lost;
7969 } lost_samples_event = {
7970 .header = {
7971 .type = PERF_RECORD_LOST_SAMPLES,
7972 .misc = 0,
7973 .size = sizeof(lost_samples_event),
7974 },
7975 .lost = lost,
7976 };
7977
7978 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
7979
7980 ret = perf_output_begin(&handle, event,
7981 lost_samples_event.header.size);
7982 if (ret)
7983 return;
7984
7985 perf_output_put(&handle, lost_samples_event);
7986 perf_event__output_id_sample(event, &handle, &sample);
7987 perf_output_end(&handle);
7988 }
7989
7990 /*
7991 * context_switch tracking
7992 */
7993
7994 struct perf_switch_event {
7995 struct task_struct *task;
7996 struct task_struct *next_prev;
7997
7998 struct {
7999 struct perf_event_header header;
8000 u32 next_prev_pid;
8001 u32 next_prev_tid;
8002 } event_id;
8003 };
8004
8005 static int perf_event_switch_match(struct perf_event *event)
8006 {
8007 return event->attr.context_switch;
8008 }
8009
8010 static void perf_event_switch_output(struct perf_event *event, void *data)
8011 {
8012 struct perf_switch_event *se = data;
8013 struct perf_output_handle handle;
8014 struct perf_sample_data sample;
8015 int ret;
8016
8017 if (!perf_event_switch_match(event))
8018 return;
8019
8020 /* Only CPU-wide events are allowed to see next/prev pid/tid */
8021 if (event->ctx->task) {
8022 se->event_id.header.type = PERF_RECORD_SWITCH;
8023 se->event_id.header.size = sizeof(se->event_id.header);
8024 } else {
8025 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
8026 se->event_id.header.size = sizeof(se->event_id);
8027 se->event_id.next_prev_pid =
8028 perf_event_pid(event, se->next_prev);
8029 se->event_id.next_prev_tid =
8030 perf_event_tid(event, se->next_prev);
8031 }
8032
8033 perf_event_header__init_id(&se->event_id.header, &sample, event);
8034
8035 ret = perf_output_begin(&handle, event, se->event_id.header.size);
8036 if (ret)
8037 return;
8038
8039 if (event->ctx->task)
8040 perf_output_put(&handle, se->event_id.header);
8041 else
8042 perf_output_put(&handle, se->event_id);
8043
8044 perf_event__output_id_sample(event, &handle, &sample);
8045
8046 perf_output_end(&handle);
8047 }
8048
8049 static void perf_event_switch(struct task_struct *task,
8050 struct task_struct *next_prev, bool sched_in)
8051 {
8052 struct perf_switch_event switch_event;
8053
8054 /* N.B. caller checks nr_switch_events != 0 */
8055
8056 switch_event = (struct perf_switch_event){
8057 .task = task,
8058 .next_prev = next_prev,
8059 .event_id = {
8060 .header = {
8061 /* .type */
8062 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
8063 /* .size */
8064 },
8065 /* .next_prev_pid */
8066 /* .next_prev_tid */
8067 },
8068 };
8069
8070 if (!sched_in && task->state == TASK_RUNNING)
8071 switch_event.event_id.header.misc |=
8072 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
8073
8074 perf_iterate_sb(perf_event_switch_output,
8075 &switch_event,
8076 NULL);
8077 }
8078
8079 /*
8080 * IRQ throttle logging
8081 */
8082
8083 static void perf_log_throttle(struct perf_event *event, int enable)
8084 {
8085 struct perf_output_handle handle;
8086 struct perf_sample_data sample;
8087 int ret;
8088
8089 struct {
8090 struct perf_event_header header;
8091 u64 time;
8092 u64 id;
8093 u64 stream_id;
8094 } throttle_event = {
8095 .header = {
8096 .type = PERF_RECORD_THROTTLE,
8097 .misc = 0,
8098 .size = sizeof(throttle_event),
8099 },
8100 .time = perf_event_clock(event),
8101 .id = primary_event_id(event),
8102 .stream_id = event->id,
8103 };
8104
8105 if (enable)
8106 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
8107
8108 perf_event_header__init_id(&throttle_event.header, &sample, event);
8109
8110 ret = perf_output_begin(&handle, event,
8111 throttle_event.header.size);
8112 if (ret)
8113 return;
8114
8115 perf_output_put(&handle, throttle_event);
8116 perf_event__output_id_sample(event, &handle, &sample);
8117 perf_output_end(&handle);
8118 }
8119
8120 /*
8121 * ksymbol register/unregister tracking
8122 */
8123
8124 struct perf_ksymbol_event {
8125 const char *name;
8126 int name_len;
8127 struct {
8128 struct perf_event_header header;
8129 u64 addr;
8130 u32 len;
8131 u16 ksym_type;
8132 u16 flags;
8133 } event_id;
8134 };
8135
8136 static int perf_event_ksymbol_match(struct perf_event *event)
8137 {
8138 return event->attr.ksymbol;
8139 }
8140
8141 static void perf_event_ksymbol_output(struct perf_event *event, void *data)
8142 {
8143 struct perf_ksymbol_event *ksymbol_event = data;
8144 struct perf_output_handle handle;
8145 struct perf_sample_data sample;
8146 int ret;
8147
8148 if (!perf_event_ksymbol_match(event))
8149 return;
8150
8151 perf_event_header__init_id(&ksymbol_event->event_id.header,
8152 &sample, event);
8153 ret = perf_output_begin(&handle, event,
8154 ksymbol_event->event_id.header.size);
8155 if (ret)
8156 return;
8157
8158 perf_output_put(&handle, ksymbol_event->event_id);
8159 __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
8160 perf_event__output_id_sample(event, &handle, &sample);
8161
8162 perf_output_end(&handle);
8163 }
8164
8165 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
8166 const char *sym)
8167 {
8168 struct perf_ksymbol_event ksymbol_event;
8169 char name[KSYM_NAME_LEN];
8170 u16 flags = 0;
8171 int name_len;
8172
8173 if (!atomic_read(&nr_ksymbol_events))
8174 return;
8175
8176 if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
8177 ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
8178 goto err;
8179
8180 strlcpy(name, sym, KSYM_NAME_LEN);
8181 name_len = strlen(name) + 1;
8182 while (!IS_ALIGNED(name_len, sizeof(u64)))
8183 name[name_len++] = '\0';
8184 BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
8185
8186 if (unregister)
8187 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
8188
8189 ksymbol_event = (struct perf_ksymbol_event){
8190 .name = name,
8191 .name_len = name_len,
8192 .event_id = {
8193 .header = {
8194 .type = PERF_RECORD_KSYMBOL,
8195 .size = sizeof(ksymbol_event.event_id) +
8196 name_len,
8197 },
8198 .addr = addr,
8199 .len = len,
8200 .ksym_type = ksym_type,
8201 .flags = flags,
8202 },
8203 };
8204
8205 perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
8206 return;
8207 err:
8208 WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
8209 }
8210
8211 /*
8212 * bpf program load/unload tracking
8213 */
8214
8215 struct perf_bpf_event {
8216 struct bpf_prog *prog;
8217 struct {
8218 struct perf_event_header header;
8219 u16 type;
8220 u16 flags;
8221 u32 id;
8222 u8 tag[BPF_TAG_SIZE];
8223 } event_id;
8224 };
8225
8226 static int perf_event_bpf_match(struct perf_event *event)
8227 {
8228 return event->attr.bpf_event;
8229 }
8230
8231 static void perf_event_bpf_output(struct perf_event *event, void *data)
8232 {
8233 struct perf_bpf_event *bpf_event = data;
8234 struct perf_output_handle handle;
8235 struct perf_sample_data sample;
8236 int ret;
8237
8238 if (!perf_event_bpf_match(event))
8239 return;
8240
8241 perf_event_header__init_id(&bpf_event->event_id.header,
8242 &sample, event);
8243 ret = perf_output_begin(&handle, event,
8244 bpf_event->event_id.header.size);
8245 if (ret)
8246 return;
8247
8248 perf_output_put(&handle, bpf_event->event_id);
8249 perf_event__output_id_sample(event, &handle, &sample);
8250
8251 perf_output_end(&handle);
8252 }
8253
8254 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
8255 enum perf_bpf_event_type type)
8256 {
8257 bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
8258 char sym[KSYM_NAME_LEN];
8259 int i;
8260
8261 if (prog->aux->func_cnt == 0) {
8262 bpf_get_prog_name(prog, sym);
8263 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
8264 (u64)(unsigned long)prog->bpf_func,
8265 prog->jited_len, unregister, sym);
8266 } else {
8267 for (i = 0; i < prog->aux->func_cnt; i++) {
8268 struct bpf_prog *subprog = prog->aux->func[i];
8269
8270 bpf_get_prog_name(subprog, sym);
8271 perf_event_ksymbol(
8272 PERF_RECORD_KSYMBOL_TYPE_BPF,
8273 (u64)(unsigned long)subprog->bpf_func,
8274 subprog->jited_len, unregister, sym);
8275 }
8276 }
8277 }
8278
8279 void perf_event_bpf_event(struct bpf_prog *prog,
8280 enum perf_bpf_event_type type,
8281 u16 flags)
8282 {
8283 struct perf_bpf_event bpf_event;
8284
8285 if (type <= PERF_BPF_EVENT_UNKNOWN ||
8286 type >= PERF_BPF_EVENT_MAX)
8287 return;
8288
8289 switch (type) {
8290 case PERF_BPF_EVENT_PROG_LOAD:
8291 case PERF_BPF_EVENT_PROG_UNLOAD:
8292 if (atomic_read(&nr_ksymbol_events))
8293 perf_event_bpf_emit_ksymbols(prog, type);
8294 break;
8295 default:
8296 break;
8297 }
8298
8299 if (!atomic_read(&nr_bpf_events))
8300 return;
8301
8302 bpf_event = (struct perf_bpf_event){
8303 .prog = prog,
8304 .event_id = {
8305 .header = {
8306 .type = PERF_RECORD_BPF_EVENT,
8307 .size = sizeof(bpf_event.event_id),
8308 },
8309 .type = type,
8310 .flags = flags,
8311 .id = prog->aux->id,
8312 },
8313 };
8314
8315 BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
8316
8317 memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
8318 perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
8319 }
8320
8321 void perf_event_itrace_started(struct perf_event *event)
8322 {
8323 event->attach_state |= PERF_ATTACH_ITRACE;
8324 }
8325
8326 static void perf_log_itrace_start(struct perf_event *event)
8327 {
8328 struct perf_output_handle handle;
8329 struct perf_sample_data sample;
8330 struct perf_aux_event {
8331 struct perf_event_header header;
8332 u32 pid;
8333 u32 tid;
8334 } rec;
8335 int ret;
8336
8337 if (event->parent)
8338 event = event->parent;
8339
8340 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
8341 event->attach_state & PERF_ATTACH_ITRACE)
8342 return;
8343
8344 rec.header.type = PERF_RECORD_ITRACE_START;
8345 rec.header.misc = 0;
8346 rec.header.size = sizeof(rec);
8347 rec.pid = perf_event_pid(event, current);
8348 rec.tid = perf_event_tid(event, current);
8349
8350 perf_event_header__init_id(&rec.header, &sample, event);
8351 ret = perf_output_begin(&handle, event, rec.header.size);
8352
8353 if (ret)
8354 return;
8355
8356 perf_output_put(&handle, rec);
8357 perf_event__output_id_sample(event, &handle, &sample);
8358
8359 perf_output_end(&handle);
8360 }
8361
8362 static int
8363 __perf_event_account_interrupt(struct perf_event *event, int throttle)
8364 {
8365 struct hw_perf_event *hwc = &event->hw;
8366 int ret = 0;
8367 u64 seq;
8368
8369 seq = __this_cpu_read(perf_throttled_seq);
8370 if (seq != hwc->interrupts_seq) {
8371 hwc->interrupts_seq = seq;
8372 hwc->interrupts = 1;
8373 } else {
8374 hwc->interrupts++;
8375 if (unlikely(throttle
8376 && hwc->interrupts >= max_samples_per_tick)) {
8377 __this_cpu_inc(perf_throttled_count);
8378 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
8379 hwc->interrupts = MAX_INTERRUPTS;
8380 perf_log_throttle(event, 0);
8381 ret = 1;
8382 }
8383 }
8384
8385 if (event->attr.freq) {
8386 u64 now = perf_clock();
8387 s64 delta = now - hwc->freq_time_stamp;
8388
8389 hwc->freq_time_stamp = now;
8390
8391 if (delta > 0 && delta < 2*TICK_NSEC)
8392 perf_adjust_period(event, delta, hwc->last_period, true);
8393 }
8394
8395 return ret;
8396 }
8397
8398 int perf_event_account_interrupt(struct perf_event *event)
8399 {
8400 return __perf_event_account_interrupt(event, 1);
8401 }
8402
8403 /*
8404 * Generic event overflow handling, sampling.
8405 */
8406
8407 static int __perf_event_overflow(struct perf_event *event,
8408 int throttle, struct perf_sample_data *data,
8409 struct pt_regs *regs)
8410 {
8411 int events = atomic_read(&event->event_limit);
8412 int ret = 0;
8413
8414 /*
8415 * Non-sampling counters might still use the PMI to fold short
8416 * hardware counters, ignore those.
8417 */
8418 if (unlikely(!is_sampling_event(event)))
8419 return 0;
8420
8421 ret = __perf_event_account_interrupt(event, throttle);
8422
8423 /*
8424 * XXX event_limit might not quite work as expected on inherited
8425 * events
8426 */
8427
8428 event->pending_kill = POLL_IN;
8429 if (events && atomic_dec_and_test(&event->event_limit)) {
8430 ret = 1;
8431 event->pending_kill = POLL_HUP;
8432
8433 perf_event_disable_inatomic(event);
8434 }
8435
8436 READ_ONCE(event->overflow_handler)(event, data, regs);
8437
8438 if (*perf_event_fasync(event) && event->pending_kill) {
8439 event->pending_wakeup = 1;
8440 irq_work_queue(&event->pending);
8441 }
8442
8443 return ret;
8444 }
8445
8446 int perf_event_overflow(struct perf_event *event,
8447 struct perf_sample_data *data,
8448 struct pt_regs *regs)
8449 {
8450 return __perf_event_overflow(event, 1, data, regs);
8451 }
8452
8453 /*
8454 * Generic software event infrastructure
8455 */
8456
8457 struct swevent_htable {
8458 struct swevent_hlist *swevent_hlist;
8459 struct mutex hlist_mutex;
8460 int hlist_refcount;
8461
8462 /* Recursion avoidance in each contexts */
8463 int recursion[PERF_NR_CONTEXTS];
8464 };
8465
8466 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
8467
8468 /*
8469 * We directly increment event->count and keep a second value in
8470 * event->hw.period_left to count intervals. This period event
8471 * is kept in the range [-sample_period, 0] so that we can use the
8472 * sign as trigger.
8473 */
8474
8475 u64 perf_swevent_set_period(struct perf_event *event)
8476 {
8477 struct hw_perf_event *hwc = &event->hw;
8478 u64 period = hwc->last_period;
8479 u64 nr, offset;
8480 s64 old, val;
8481
8482 hwc->last_period = hwc->sample_period;
8483
8484 again:
8485 old = val = local64_read(&hwc->period_left);
8486 if (val < 0)
8487 return 0;
8488
8489 nr = div64_u64(period + val, period);
8490 offset = nr * period;
8491 val -= offset;
8492 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
8493 goto again;
8494
8495 return nr;
8496 }
8497
8498 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
8499 struct perf_sample_data *data,
8500 struct pt_regs *regs)
8501 {
8502 struct hw_perf_event *hwc = &event->hw;
8503 int throttle = 0;
8504
8505 if (!overflow)
8506 overflow = perf_swevent_set_period(event);
8507
8508 if (hwc->interrupts == MAX_INTERRUPTS)
8509 return;
8510
8511 for (; overflow; overflow--) {
8512 if (__perf_event_overflow(event, throttle,
8513 data, regs)) {
8514 /*
8515 * We inhibit the overflow from happening when
8516 * hwc->interrupts == MAX_INTERRUPTS.
8517 */
8518 break;
8519 }
8520 throttle = 1;
8521 }
8522 }
8523
8524 static void perf_swevent_event(struct perf_event *event, u64 nr,
8525 struct perf_sample_data *data,
8526 struct pt_regs *regs)
8527 {
8528 struct hw_perf_event *hwc = &event->hw;
8529
8530 local64_add(nr, &event->count);
8531
8532 if (!regs)
8533 return;
8534
8535 if (!is_sampling_event(event))
8536 return;
8537
8538 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
8539 data->period = nr;
8540 return perf_swevent_overflow(event, 1, data, regs);
8541 } else
8542 data->period = event->hw.last_period;
8543
8544 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
8545 return perf_swevent_overflow(event, 1, data, regs);
8546
8547 if (local64_add_negative(nr, &hwc->period_left))
8548 return;
8549
8550 perf_swevent_overflow(event, 0, data, regs);
8551 }
8552
8553 static int perf_exclude_event(struct perf_event *event,
8554 struct pt_regs *regs)
8555 {
8556 if (event->hw.state & PERF_HES_STOPPED)
8557 return 1;
8558
8559 if (regs) {
8560 if (event->attr.exclude_user && user_mode(regs))
8561 return 1;
8562
8563 if (event->attr.exclude_kernel && !user_mode(regs))
8564 return 1;
8565 }
8566
8567 return 0;
8568 }
8569
8570 static int perf_swevent_match(struct perf_event *event,
8571 enum perf_type_id type,
8572 u32 event_id,
8573 struct perf_sample_data *data,
8574 struct pt_regs *regs)
8575 {
8576 if (event->attr.type != type)
8577 return 0;
8578
8579 if (event->attr.config != event_id)
8580 return 0;
8581
8582 if (perf_exclude_event(event, regs))
8583 return 0;
8584
8585 return 1;
8586 }
8587
8588 static inline u64 swevent_hash(u64 type, u32 event_id)
8589 {
8590 u64 val = event_id | (type << 32);
8591
8592 return hash_64(val, SWEVENT_HLIST_BITS);
8593 }
8594
8595 static inline struct hlist_head *
8596 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
8597 {
8598 u64 hash = swevent_hash(type, event_id);
8599
8600 return &hlist->heads[hash];
8601 }
8602
8603 /* For the read side: events when they trigger */
8604 static inline struct hlist_head *
8605 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
8606 {
8607 struct swevent_hlist *hlist;
8608
8609 hlist = rcu_dereference(swhash->swevent_hlist);
8610 if (!hlist)
8611 return NULL;
8612
8613 return __find_swevent_head(hlist, type, event_id);
8614 }
8615
8616 /* For the event head insertion and removal in the hlist */
8617 static inline struct hlist_head *
8618 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
8619 {
8620 struct swevent_hlist *hlist;
8621 u32 event_id = event->attr.config;
8622 u64 type = event->attr.type;
8623
8624 /*
8625 * Event scheduling is always serialized against hlist allocation
8626 * and release. Which makes the protected version suitable here.
8627 * The context lock guarantees that.
8628 */
8629 hlist = rcu_dereference_protected(swhash->swevent_hlist,
8630 lockdep_is_held(&event->ctx->lock));
8631 if (!hlist)
8632 return NULL;
8633
8634 return __find_swevent_head(hlist, type, event_id);
8635 }
8636
8637 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
8638 u64 nr,
8639 struct perf_sample_data *data,
8640 struct pt_regs *regs)
8641 {
8642 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8643 struct perf_event *event;
8644 struct hlist_head *head;
8645
8646 rcu_read_lock();
8647 head = find_swevent_head_rcu(swhash, type, event_id);
8648 if (!head)
8649 goto end;
8650
8651 hlist_for_each_entry_rcu(event, head, hlist_entry) {
8652 if (perf_swevent_match(event, type, event_id, data, regs))
8653 perf_swevent_event(event, nr, data, regs);
8654 }
8655 end:
8656 rcu_read_unlock();
8657 }
8658
8659 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
8660
8661 int perf_swevent_get_recursion_context(void)
8662 {
8663 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8664
8665 return get_recursion_context(swhash->recursion);
8666 }
8667 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
8668
8669 void perf_swevent_put_recursion_context(int rctx)
8670 {
8671 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8672
8673 put_recursion_context(swhash->recursion, rctx);
8674 }
8675
8676 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
8677 {
8678 struct perf_sample_data data;
8679
8680 if (WARN_ON_ONCE(!regs))
8681 return;
8682
8683 perf_sample_data_init(&data, addr, 0);
8684 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
8685 }
8686
8687 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
8688 {
8689 int rctx;
8690
8691 preempt_disable_notrace();
8692 rctx = perf_swevent_get_recursion_context();
8693 if (unlikely(rctx < 0))
8694 goto fail;
8695
8696 ___perf_sw_event(event_id, nr, regs, addr);
8697
8698 perf_swevent_put_recursion_context(rctx);
8699 fail:
8700 preempt_enable_notrace();
8701 }
8702
8703 static void perf_swevent_read(struct perf_event *event)
8704 {
8705 }
8706
8707 static int perf_swevent_add(struct perf_event *event, int flags)
8708 {
8709 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8710 struct hw_perf_event *hwc = &event->hw;
8711 struct hlist_head *head;
8712
8713 if (is_sampling_event(event)) {
8714 hwc->last_period = hwc->sample_period;
8715 perf_swevent_set_period(event);
8716 }
8717
8718 hwc->state = !(flags & PERF_EF_START);
8719
8720 head = find_swevent_head(swhash, event);
8721 if (WARN_ON_ONCE(!head))
8722 return -EINVAL;
8723
8724 hlist_add_head_rcu(&event->hlist_entry, head);
8725 perf_event_update_userpage(event);
8726
8727 return 0;
8728 }
8729
8730 static void perf_swevent_del(struct perf_event *event, int flags)
8731 {
8732 hlist_del_rcu(&event->hlist_entry);
8733 }
8734
8735 static void perf_swevent_start(struct perf_event *event, int flags)
8736 {
8737 event->hw.state = 0;
8738 }
8739
8740 static void perf_swevent_stop(struct perf_event *event, int flags)
8741 {
8742 event->hw.state = PERF_HES_STOPPED;
8743 }
8744
8745 /* Deref the hlist from the update side */
8746 static inline struct swevent_hlist *
8747 swevent_hlist_deref(struct swevent_htable *swhash)
8748 {
8749 return rcu_dereference_protected(swhash->swevent_hlist,
8750 lockdep_is_held(&swhash->hlist_mutex));
8751 }
8752
8753 static void swevent_hlist_release(struct swevent_htable *swhash)
8754 {
8755 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
8756
8757 if (!hlist)
8758 return;
8759
8760 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
8761 kfree_rcu(hlist, rcu_head);
8762 }
8763
8764 static void swevent_hlist_put_cpu(int cpu)
8765 {
8766 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8767
8768 mutex_lock(&swhash->hlist_mutex);
8769
8770 if (!--swhash->hlist_refcount)
8771 swevent_hlist_release(swhash);
8772
8773 mutex_unlock(&swhash->hlist_mutex);
8774 }
8775
8776 static void swevent_hlist_put(void)
8777 {
8778 int cpu;
8779
8780 for_each_possible_cpu(cpu)
8781 swevent_hlist_put_cpu(cpu);
8782 }
8783
8784 static int swevent_hlist_get_cpu(int cpu)
8785 {
8786 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8787 int err = 0;
8788
8789 mutex_lock(&swhash->hlist_mutex);
8790 if (!swevent_hlist_deref(swhash) &&
8791 cpumask_test_cpu(cpu, perf_online_mask)) {
8792 struct swevent_hlist *hlist;
8793
8794 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
8795 if (!hlist) {
8796 err = -ENOMEM;
8797 goto exit;
8798 }
8799 rcu_assign_pointer(swhash->swevent_hlist, hlist);
8800 }
8801 swhash->hlist_refcount++;
8802 exit:
8803 mutex_unlock(&swhash->hlist_mutex);
8804
8805 return err;
8806 }
8807
8808 static int swevent_hlist_get(void)
8809 {
8810 int err, cpu, failed_cpu;
8811
8812 mutex_lock(&pmus_lock);
8813 for_each_possible_cpu(cpu) {
8814 err = swevent_hlist_get_cpu(cpu);
8815 if (err) {
8816 failed_cpu = cpu;
8817 goto fail;
8818 }
8819 }
8820 mutex_unlock(&pmus_lock);
8821 return 0;
8822 fail:
8823 for_each_possible_cpu(cpu) {
8824 if (cpu == failed_cpu)
8825 break;
8826 swevent_hlist_put_cpu(cpu);
8827 }
8828 mutex_unlock(&pmus_lock);
8829 return err;
8830 }
8831
8832 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
8833
8834 static void sw_perf_event_destroy(struct perf_event *event)
8835 {
8836 u64 event_id = event->attr.config;
8837
8838 WARN_ON(event->parent);
8839
8840 static_key_slow_dec(&perf_swevent_enabled[event_id]);
8841 swevent_hlist_put();
8842 }
8843
8844 static int perf_swevent_init(struct perf_event *event)
8845 {
8846 u64 event_id = event->attr.config;
8847
8848 if (event->attr.type != PERF_TYPE_SOFTWARE)
8849 return -ENOENT;
8850
8851 /*
8852 * no branch sampling for software events
8853 */
8854 if (has_branch_stack(event))
8855 return -EOPNOTSUPP;
8856
8857 switch (event_id) {
8858 case PERF_COUNT_SW_CPU_CLOCK:
8859 case PERF_COUNT_SW_TASK_CLOCK:
8860 return -ENOENT;
8861
8862 default:
8863 break;
8864 }
8865
8866 if (event_id >= PERF_COUNT_SW_MAX)
8867 return -ENOENT;
8868
8869 if (!event->parent) {
8870 int err;
8871
8872 err = swevent_hlist_get();
8873 if (err)
8874 return err;
8875
8876 static_key_slow_inc(&perf_swevent_enabled[event_id]);
8877 event->destroy = sw_perf_event_destroy;
8878 }
8879
8880 return 0;
8881 }
8882
8883 static struct pmu perf_swevent = {
8884 .task_ctx_nr = perf_sw_context,
8885
8886 .capabilities = PERF_PMU_CAP_NO_NMI,
8887
8888 .event_init = perf_swevent_init,
8889 .add = perf_swevent_add,
8890 .del = perf_swevent_del,
8891 .start = perf_swevent_start,
8892 .stop = perf_swevent_stop,
8893 .read = perf_swevent_read,
8894 };
8895
8896 #ifdef CONFIG_EVENT_TRACING
8897
8898 static int perf_tp_filter_match(struct perf_event *event,
8899 struct perf_sample_data *data)
8900 {
8901 void *record = data->raw->frag.data;
8902
8903 /* only top level events have filters set */
8904 if (event->parent)
8905 event = event->parent;
8906
8907 if (likely(!event->filter) || filter_match_preds(event->filter, record))
8908 return 1;
8909 return 0;
8910 }
8911
8912 static int perf_tp_event_match(struct perf_event *event,
8913 struct perf_sample_data *data,
8914 struct pt_regs *regs)
8915 {
8916 if (event->hw.state & PERF_HES_STOPPED)
8917 return 0;
8918 /*
8919 * If exclude_kernel, only trace user-space tracepoints (uprobes)
8920 */
8921 if (event->attr.exclude_kernel && !user_mode(regs))
8922 return 0;
8923
8924 if (!perf_tp_filter_match(event, data))
8925 return 0;
8926
8927 return 1;
8928 }
8929
8930 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
8931 struct trace_event_call *call, u64 count,
8932 struct pt_regs *regs, struct hlist_head *head,
8933 struct task_struct *task)
8934 {
8935 if (bpf_prog_array_valid(call)) {
8936 *(struct pt_regs **)raw_data = regs;
8937 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
8938 perf_swevent_put_recursion_context(rctx);
8939 return;
8940 }
8941 }
8942 perf_tp_event(call->event.type, count, raw_data, size, regs, head,
8943 rctx, task);
8944 }
8945 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
8946
8947 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
8948 struct pt_regs *regs, struct hlist_head *head, int rctx,
8949 struct task_struct *task)
8950 {
8951 struct perf_sample_data data;
8952 struct perf_event *event;
8953
8954 struct perf_raw_record raw = {
8955 .frag = {
8956 .size = entry_size,
8957 .data = record,
8958 },
8959 };
8960
8961 perf_sample_data_init(&data, 0, 0);
8962 data.raw = &raw;
8963
8964 perf_trace_buf_update(record, event_type);
8965
8966 hlist_for_each_entry_rcu(event, head, hlist_entry) {
8967 if (perf_tp_event_match(event, &data, regs))
8968 perf_swevent_event(event, count, &data, regs);
8969 }
8970
8971 /*
8972 * If we got specified a target task, also iterate its context and
8973 * deliver this event there too.
8974 */
8975 if (task && task != current) {
8976 struct perf_event_context *ctx;
8977 struct trace_entry *entry = record;
8978
8979 rcu_read_lock();
8980 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
8981 if (!ctx)
8982 goto unlock;
8983
8984 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
8985 if (event->cpu != smp_processor_id())
8986 continue;
8987 if (event->attr.type != PERF_TYPE_TRACEPOINT)
8988 continue;
8989 if (event->attr.config != entry->type)
8990 continue;
8991 if (perf_tp_event_match(event, &data, regs))
8992 perf_swevent_event(event, count, &data, regs);
8993 }
8994 unlock:
8995 rcu_read_unlock();
8996 }
8997
8998 perf_swevent_put_recursion_context(rctx);
8999 }
9000 EXPORT_SYMBOL_GPL(perf_tp_event);
9001
9002 static void tp_perf_event_destroy(struct perf_event *event)
9003 {
9004 perf_trace_destroy(event);
9005 }
9006
9007 static int perf_tp_event_init(struct perf_event *event)
9008 {
9009 int err;
9010
9011 if (event->attr.type != PERF_TYPE_TRACEPOINT)
9012 return -ENOENT;
9013
9014 /*
9015 * no branch sampling for tracepoint events
9016 */
9017 if (has_branch_stack(event))
9018 return -EOPNOTSUPP;
9019
9020 err = perf_trace_init(event);
9021 if (err)
9022 return err;
9023
9024 event->destroy = tp_perf_event_destroy;
9025
9026 return 0;
9027 }
9028
9029 static struct pmu perf_tracepoint = {
9030 .task_ctx_nr = perf_sw_context,
9031
9032 .event_init = perf_tp_event_init,
9033 .add = perf_trace_add,
9034 .del = perf_trace_del,
9035 .start = perf_swevent_start,
9036 .stop = perf_swevent_stop,
9037 .read = perf_swevent_read,
9038 };
9039
9040 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
9041 /*
9042 * Flags in config, used by dynamic PMU kprobe and uprobe
9043 * The flags should match following PMU_FORMAT_ATTR().
9044 *
9045 * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
9046 * if not set, create kprobe/uprobe
9047 *
9048 * The following values specify a reference counter (or semaphore in the
9049 * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
9050 * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
9051 *
9052 * PERF_UPROBE_REF_CTR_OFFSET_BITS # of bits in config as th offset
9053 * PERF_UPROBE_REF_CTR_OFFSET_SHIFT # of bits to shift left
9054 */
9055 enum perf_probe_config {
9056 PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0, /* [k,u]retprobe */
9057 PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
9058 PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
9059 };
9060
9061 PMU_FORMAT_ATTR(retprobe, "config:0");
9062 #endif
9063
9064 #ifdef CONFIG_KPROBE_EVENTS
9065 static struct attribute *kprobe_attrs[] = {
9066 &format_attr_retprobe.attr,
9067 NULL,
9068 };
9069
9070 static struct attribute_group kprobe_format_group = {
9071 .name = "format",
9072 .attrs = kprobe_attrs,
9073 };
9074
9075 static const struct attribute_group *kprobe_attr_groups[] = {
9076 &kprobe_format_group,
9077 NULL,
9078 };
9079
9080 static int perf_kprobe_event_init(struct perf_event *event);
9081 static struct pmu perf_kprobe = {
9082 .task_ctx_nr = perf_sw_context,
9083 .event_init = perf_kprobe_event_init,
9084 .add = perf_trace_add,
9085 .del = perf_trace_del,
9086 .start = perf_swevent_start,
9087 .stop = perf_swevent_stop,
9088 .read = perf_swevent_read,
9089 .attr_groups = kprobe_attr_groups,
9090 };
9091
9092 static int perf_kprobe_event_init(struct perf_event *event)
9093 {
9094 int err;
9095 bool is_retprobe;
9096
9097 if (event->attr.type != perf_kprobe.type)
9098 return -ENOENT;
9099
9100 if (!capable(CAP_SYS_ADMIN))
9101 return -EACCES;
9102
9103 /*
9104 * no branch sampling for probe events
9105 */
9106 if (has_branch_stack(event))
9107 return -EOPNOTSUPP;
9108
9109 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
9110 err = perf_kprobe_init(event, is_retprobe);
9111 if (err)
9112 return err;
9113
9114 event->destroy = perf_kprobe_destroy;
9115
9116 return 0;
9117 }
9118 #endif /* CONFIG_KPROBE_EVENTS */
9119
9120 #ifdef CONFIG_UPROBE_EVENTS
9121 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
9122
9123 static struct attribute *uprobe_attrs[] = {
9124 &format_attr_retprobe.attr,
9125 &format_attr_ref_ctr_offset.attr,
9126 NULL,
9127 };
9128
9129 static struct attribute_group uprobe_format_group = {
9130 .name = "format",
9131 .attrs = uprobe_attrs,
9132 };
9133
9134 static const struct attribute_group *uprobe_attr_groups[] = {
9135 &uprobe_format_group,
9136 NULL,
9137 };
9138
9139 static int perf_uprobe_event_init(struct perf_event *event);
9140 static struct pmu perf_uprobe = {
9141 .task_ctx_nr = perf_sw_context,
9142 .event_init = perf_uprobe_event_init,
9143 .add = perf_trace_add,
9144 .del = perf_trace_del,
9145 .start = perf_swevent_start,
9146 .stop = perf_swevent_stop,
9147 .read = perf_swevent_read,
9148 .attr_groups = uprobe_attr_groups,
9149 };
9150
9151 static int perf_uprobe_event_init(struct perf_event *event)
9152 {
9153 int err;
9154 unsigned long ref_ctr_offset;
9155 bool is_retprobe;
9156
9157 if (event->attr.type != perf_uprobe.type)
9158 return -ENOENT;
9159
9160 if (!capable(CAP_SYS_ADMIN))
9161 return -EACCES;
9162
9163 /*
9164 * no branch sampling for probe events
9165 */
9166 if (has_branch_stack(event))
9167 return -EOPNOTSUPP;
9168
9169 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
9170 ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
9171 err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
9172 if (err)
9173 return err;
9174
9175 event->destroy = perf_uprobe_destroy;
9176
9177 return 0;
9178 }
9179 #endif /* CONFIG_UPROBE_EVENTS */
9180
9181 static inline void perf_tp_register(void)
9182 {
9183 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
9184 #ifdef CONFIG_KPROBE_EVENTS
9185 perf_pmu_register(&perf_kprobe, "kprobe", -1);
9186 #endif
9187 #ifdef CONFIG_UPROBE_EVENTS
9188 perf_pmu_register(&perf_uprobe, "uprobe", -1);
9189 #endif
9190 }
9191
9192 static void perf_event_free_filter(struct perf_event *event)
9193 {
9194 ftrace_profile_free_filter(event);
9195 }
9196
9197 #ifdef CONFIG_BPF_SYSCALL
9198 static void bpf_overflow_handler(struct perf_event *event,
9199 struct perf_sample_data *data,
9200 struct pt_regs *regs)
9201 {
9202 struct bpf_perf_event_data_kern ctx = {
9203 .data = data,
9204 .event = event,
9205 };
9206 int ret = 0;
9207
9208 ctx.regs = perf_arch_bpf_user_pt_regs(regs);
9209 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
9210 goto out;
9211 rcu_read_lock();
9212 ret = BPF_PROG_RUN(event->prog, &ctx);
9213 rcu_read_unlock();
9214 out:
9215 __this_cpu_dec(bpf_prog_active);
9216 if (!ret)
9217 return;
9218
9219 event->orig_overflow_handler(event, data, regs);
9220 }
9221
9222 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
9223 {
9224 struct bpf_prog *prog;
9225
9226 if (event->overflow_handler_context)
9227 /* hw breakpoint or kernel counter */
9228 return -EINVAL;
9229
9230 if (event->prog)
9231 return -EEXIST;
9232
9233 prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
9234 if (IS_ERR(prog))
9235 return PTR_ERR(prog);
9236
9237 event->prog = prog;
9238 event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
9239 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
9240 return 0;
9241 }
9242
9243 static void perf_event_free_bpf_handler(struct perf_event *event)
9244 {
9245 struct bpf_prog *prog = event->prog;
9246
9247 if (!prog)
9248 return;
9249
9250 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
9251 event->prog = NULL;
9252 bpf_prog_put(prog);
9253 }
9254 #else
9255 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
9256 {
9257 return -EOPNOTSUPP;
9258 }
9259 static void perf_event_free_bpf_handler(struct perf_event *event)
9260 {
9261 }
9262 #endif
9263
9264 /*
9265 * returns true if the event is a tracepoint, or a kprobe/upprobe created
9266 * with perf_event_open()
9267 */
9268 static inline bool perf_event_is_tracing(struct perf_event *event)
9269 {
9270 if (event->pmu == &perf_tracepoint)
9271 return true;
9272 #ifdef CONFIG_KPROBE_EVENTS
9273 if (event->pmu == &perf_kprobe)
9274 return true;
9275 #endif
9276 #ifdef CONFIG_UPROBE_EVENTS
9277 if (event->pmu == &perf_uprobe)
9278 return true;
9279 #endif
9280 return false;
9281 }
9282
9283 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
9284 {
9285 bool is_kprobe, is_tracepoint, is_syscall_tp;
9286 struct bpf_prog *prog;
9287 int ret;
9288
9289 if (!perf_event_is_tracing(event))
9290 return perf_event_set_bpf_handler(event, prog_fd);
9291
9292 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
9293 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
9294 is_syscall_tp = is_syscall_trace_event(event->tp_event);
9295 if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
9296 /* bpf programs can only be attached to u/kprobe or tracepoint */
9297 return -EINVAL;
9298
9299 prog = bpf_prog_get(prog_fd);
9300 if (IS_ERR(prog))
9301 return PTR_ERR(prog);
9302
9303 if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
9304 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
9305 (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
9306 /* valid fd, but invalid bpf program type */
9307 bpf_prog_put(prog);
9308 return -EINVAL;
9309 }
9310
9311 /* Kprobe override only works for kprobes, not uprobes. */
9312 if (prog->kprobe_override &&
9313 !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) {
9314 bpf_prog_put(prog);
9315 return -EINVAL;
9316 }
9317
9318 if (is_tracepoint || is_syscall_tp) {
9319 int off = trace_event_get_offsets(event->tp_event);
9320
9321 if (prog->aux->max_ctx_offset > off) {
9322 bpf_prog_put(prog);
9323 return -EACCES;
9324 }
9325 }
9326
9327 ret = perf_event_attach_bpf_prog(event, prog);
9328 if (ret)
9329 bpf_prog_put(prog);
9330 return ret;
9331 }
9332
9333 static void perf_event_free_bpf_prog(struct perf_event *event)
9334 {
9335 if (!perf_event_is_tracing(event)) {
9336 perf_event_free_bpf_handler(event);
9337 return;
9338 }
9339 perf_event_detach_bpf_prog(event);
9340 }
9341
9342 #else
9343
9344 static inline void perf_tp_register(void)
9345 {
9346 }
9347
9348 static void perf_event_free_filter(struct perf_event *event)
9349 {
9350 }
9351
9352 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
9353 {
9354 return -ENOENT;
9355 }
9356
9357 static void perf_event_free_bpf_prog(struct perf_event *event)
9358 {
9359 }
9360 #endif /* CONFIG_EVENT_TRACING */
9361
9362 #ifdef CONFIG_HAVE_HW_BREAKPOINT
9363 void perf_bp_event(struct perf_event *bp, void *data)
9364 {
9365 struct perf_sample_data sample;
9366 struct pt_regs *regs = data;
9367
9368 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
9369
9370 if (!bp->hw.state && !perf_exclude_event(bp, regs))
9371 perf_swevent_event(bp, 1, &sample, regs);
9372 }
9373 #endif
9374
9375 /*
9376 * Allocate a new address filter
9377 */
9378 static struct perf_addr_filter *
9379 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
9380 {
9381 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
9382 struct perf_addr_filter *filter;
9383
9384 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
9385 if (!filter)
9386 return NULL;
9387
9388 INIT_LIST_HEAD(&filter->entry);
9389 list_add_tail(&filter->entry, filters);
9390
9391 return filter;
9392 }
9393
9394 static void free_filters_list(struct list_head *filters)
9395 {
9396 struct perf_addr_filter *filter, *iter;
9397
9398 list_for_each_entry_safe(filter, iter, filters, entry) {
9399 path_put(&filter->path);
9400 list_del(&filter->entry);
9401 kfree(filter);
9402 }
9403 }
9404
9405 /*
9406 * Free existing address filters and optionally install new ones
9407 */
9408 static void perf_addr_filters_splice(struct perf_event *event,
9409 struct list_head *head)
9410 {
9411 unsigned long flags;
9412 LIST_HEAD(list);
9413
9414 if (!has_addr_filter(event))
9415 return;
9416
9417 /* don't bother with children, they don't have their own filters */
9418 if (event->parent)
9419 return;
9420
9421 raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
9422
9423 list_splice_init(&event->addr_filters.list, &list);
9424 if (head)
9425 list_splice(head, &event->addr_filters.list);
9426
9427 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
9428
9429 free_filters_list(&list);
9430 }
9431
9432 /*
9433 * Scan through mm's vmas and see if one of them matches the
9434 * @filter; if so, adjust filter's address range.
9435 * Called with mm::mmap_sem down for reading.
9436 */
9437 static void perf_addr_filter_apply(struct perf_addr_filter *filter,
9438 struct mm_struct *mm,
9439 struct perf_addr_filter_range *fr)
9440 {
9441 struct vm_area_struct *vma;
9442
9443 for (vma = mm->mmap; vma; vma = vma->vm_next) {
9444 if (!vma->vm_file)
9445 continue;
9446
9447 if (perf_addr_filter_vma_adjust(filter, vma, fr))
9448 return;
9449 }
9450 }
9451
9452 /*
9453 * Update event's address range filters based on the
9454 * task's existing mappings, if any.
9455 */
9456 static void perf_event_addr_filters_apply(struct perf_event *event)
9457 {
9458 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
9459 struct task_struct *task = READ_ONCE(event->ctx->task);
9460 struct perf_addr_filter *filter;
9461 struct mm_struct *mm = NULL;
9462 unsigned int count = 0;
9463 unsigned long flags;
9464
9465 /*
9466 * We may observe TASK_TOMBSTONE, which means that the event tear-down
9467 * will stop on the parent's child_mutex that our caller is also holding
9468 */
9469 if (task == TASK_TOMBSTONE)
9470 return;
9471
9472 if (ifh->nr_file_filters) {
9473 mm = get_task_mm(event->ctx->task);
9474 if (!mm)
9475 goto restart;
9476
9477 down_read(&mm->mmap_sem);
9478 }
9479
9480 raw_spin_lock_irqsave(&ifh->lock, flags);
9481 list_for_each_entry(filter, &ifh->list, entry) {
9482 if (filter->path.dentry) {
9483 /*
9484 * Adjust base offset if the filter is associated to a
9485 * binary that needs to be mapped:
9486 */
9487 event->addr_filter_ranges[count].start = 0;
9488 event->addr_filter_ranges[count].size = 0;
9489
9490 perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
9491 } else {
9492 event->addr_filter_ranges[count].start = filter->offset;
9493 event->addr_filter_ranges[count].size = filter->size;
9494 }
9495
9496 count++;
9497 }
9498
9499 event->addr_filters_gen++;
9500 raw_spin_unlock_irqrestore(&ifh->lock, flags);
9501
9502 if (ifh->nr_file_filters) {
9503 up_read(&mm->mmap_sem);
9504
9505 mmput(mm);
9506 }
9507
9508 restart:
9509 perf_event_stop(event, 1);
9510 }
9511
9512 /*
9513 * Address range filtering: limiting the data to certain
9514 * instruction address ranges. Filters are ioctl()ed to us from
9515 * userspace as ascii strings.
9516 *
9517 * Filter string format:
9518 *
9519 * ACTION RANGE_SPEC
9520 * where ACTION is one of the
9521 * * "filter": limit the trace to this region
9522 * * "start": start tracing from this address
9523 * * "stop": stop tracing at this address/region;
9524 * RANGE_SPEC is
9525 * * for kernel addresses: <start address>[/<size>]
9526 * * for object files: <start address>[/<size>]@</path/to/object/file>
9527 *
9528 * if <size> is not specified or is zero, the range is treated as a single
9529 * address; not valid for ACTION=="filter".
9530 */
9531 enum {
9532 IF_ACT_NONE = -1,
9533 IF_ACT_FILTER,
9534 IF_ACT_START,
9535 IF_ACT_STOP,
9536 IF_SRC_FILE,
9537 IF_SRC_KERNEL,
9538 IF_SRC_FILEADDR,
9539 IF_SRC_KERNELADDR,
9540 };
9541
9542 enum {
9543 IF_STATE_ACTION = 0,
9544 IF_STATE_SOURCE,
9545 IF_STATE_END,
9546 };
9547
9548 static const match_table_t if_tokens = {
9549 { IF_ACT_FILTER, "filter" },
9550 { IF_ACT_START, "start" },
9551 { IF_ACT_STOP, "stop" },
9552 { IF_SRC_FILE, "%u/%u@%s" },
9553 { IF_SRC_KERNEL, "%u/%u" },
9554 { IF_SRC_FILEADDR, "%u@%s" },
9555 { IF_SRC_KERNELADDR, "%u" },
9556 { IF_ACT_NONE, NULL },
9557 };
9558
9559 /*
9560 * Address filter string parser
9561 */
9562 static int
9563 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
9564 struct list_head *filters)
9565 {
9566 struct perf_addr_filter *filter = NULL;
9567 char *start, *orig, *filename = NULL;
9568 substring_t args[MAX_OPT_ARGS];
9569 int state = IF_STATE_ACTION, token;
9570 unsigned int kernel = 0;
9571 int ret = -EINVAL;
9572
9573 orig = fstr = kstrdup(fstr, GFP_KERNEL);
9574 if (!fstr)
9575 return -ENOMEM;
9576
9577 while ((start = strsep(&fstr, " ,\n")) != NULL) {
9578 static const enum perf_addr_filter_action_t actions[] = {
9579 [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER,
9580 [IF_ACT_START] = PERF_ADDR_FILTER_ACTION_START,
9581 [IF_ACT_STOP] = PERF_ADDR_FILTER_ACTION_STOP,
9582 };
9583 ret = -EINVAL;
9584
9585 if (!*start)
9586 continue;
9587
9588 /* filter definition begins */
9589 if (state == IF_STATE_ACTION) {
9590 filter = perf_addr_filter_new(event, filters);
9591 if (!filter)
9592 goto fail;
9593 }
9594
9595 token = match_token(start, if_tokens, args);
9596 switch (token) {
9597 case IF_ACT_FILTER:
9598 case IF_ACT_START:
9599 case IF_ACT_STOP:
9600 if (state != IF_STATE_ACTION)
9601 goto fail;
9602
9603 filter->action = actions[token];
9604 state = IF_STATE_SOURCE;
9605 break;
9606
9607 case IF_SRC_KERNELADDR:
9608 case IF_SRC_KERNEL:
9609 kernel = 1;
9610 /* fall through */
9611
9612 case IF_SRC_FILEADDR:
9613 case IF_SRC_FILE:
9614 if (state != IF_STATE_SOURCE)
9615 goto fail;
9616
9617 *args[0].to = 0;
9618 ret = kstrtoul(args[0].from, 0, &filter->offset);
9619 if (ret)
9620 goto fail;
9621
9622 if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
9623 *args[1].to = 0;
9624 ret = kstrtoul(args[1].from, 0, &filter->size);
9625 if (ret)
9626 goto fail;
9627 }
9628
9629 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
9630 int fpos = token == IF_SRC_FILE ? 2 : 1;
9631
9632 filename = match_strdup(&args[fpos]);
9633 if (!filename) {
9634 ret = -ENOMEM;
9635 goto fail;
9636 }
9637 }
9638
9639 state = IF_STATE_END;
9640 break;
9641
9642 default:
9643 goto fail;
9644 }
9645
9646 /*
9647 * Filter definition is fully parsed, validate and install it.
9648 * Make sure that it doesn't contradict itself or the event's
9649 * attribute.
9650 */
9651 if (state == IF_STATE_END) {
9652 ret = -EINVAL;
9653 if (kernel && event->attr.exclude_kernel)
9654 goto fail;
9655
9656 /*
9657 * ACTION "filter" must have a non-zero length region
9658 * specified.
9659 */
9660 if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
9661 !filter->size)
9662 goto fail;
9663
9664 if (!kernel) {
9665 if (!filename)
9666 goto fail;
9667
9668 /*
9669 * For now, we only support file-based filters
9670 * in per-task events; doing so for CPU-wide
9671 * events requires additional context switching
9672 * trickery, since same object code will be
9673 * mapped at different virtual addresses in
9674 * different processes.
9675 */
9676 ret = -EOPNOTSUPP;
9677 if (!event->ctx->task)
9678 goto fail_free_name;
9679
9680 /* look up the path and grab its inode */
9681 ret = kern_path(filename, LOOKUP_FOLLOW,
9682 &filter->path);
9683 if (ret)
9684 goto fail_free_name;
9685
9686 kfree(filename);
9687 filename = NULL;
9688
9689 ret = -EINVAL;
9690 if (!filter->path.dentry ||
9691 !S_ISREG(d_inode(filter->path.dentry)
9692 ->i_mode))
9693 goto fail;
9694
9695 event->addr_filters.nr_file_filters++;
9696 }
9697
9698 /* ready to consume more filters */
9699 state = IF_STATE_ACTION;
9700 filter = NULL;
9701 }
9702 }
9703
9704 if (state != IF_STATE_ACTION)
9705 goto fail;
9706
9707 kfree(orig);
9708
9709 return 0;
9710
9711 fail_free_name:
9712 kfree(filename);
9713 fail:
9714 free_filters_list(filters);
9715 kfree(orig);
9716
9717 return ret;
9718 }
9719
9720 static int
9721 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
9722 {
9723 LIST_HEAD(filters);
9724 int ret;
9725
9726 /*
9727 * Since this is called in perf_ioctl() path, we're already holding
9728 * ctx::mutex.
9729 */
9730 lockdep_assert_held(&event->ctx->mutex);
9731
9732 if (WARN_ON_ONCE(event->parent))
9733 return -EINVAL;
9734
9735 ret = perf_event_parse_addr_filter(event, filter_str, &filters);
9736 if (ret)
9737 goto fail_clear_files;
9738
9739 ret = event->pmu->addr_filters_validate(&filters);
9740 if (ret)
9741 goto fail_free_filters;
9742
9743 /* remove existing filters, if any */
9744 perf_addr_filters_splice(event, &filters);
9745
9746 /* install new filters */
9747 perf_event_for_each_child(event, perf_event_addr_filters_apply);
9748
9749 return ret;
9750
9751 fail_free_filters:
9752 free_filters_list(&filters);
9753
9754 fail_clear_files:
9755 event->addr_filters.nr_file_filters = 0;
9756
9757 return ret;
9758 }
9759
9760 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
9761 {
9762 int ret = -EINVAL;
9763 char *filter_str;
9764
9765 filter_str = strndup_user(arg, PAGE_SIZE);
9766 if (IS_ERR(filter_str))
9767 return PTR_ERR(filter_str);
9768
9769 #ifdef CONFIG_EVENT_TRACING
9770 if (perf_event_is_tracing(event)) {
9771 struct perf_event_context *ctx = event->ctx;
9772
9773 /*
9774 * Beware, here be dragons!!
9775 *
9776 * the tracepoint muck will deadlock against ctx->mutex, but
9777 * the tracepoint stuff does not actually need it. So
9778 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
9779 * already have a reference on ctx.
9780 *
9781 * This can result in event getting moved to a different ctx,
9782 * but that does not affect the tracepoint state.
9783 */
9784 mutex_unlock(&ctx->mutex);
9785 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
9786 mutex_lock(&ctx->mutex);
9787 } else
9788 #endif
9789 if (has_addr_filter(event))
9790 ret = perf_event_set_addr_filter(event, filter_str);
9791
9792 kfree(filter_str);
9793 return ret;
9794 }
9795
9796 /*
9797 * hrtimer based swevent callback
9798 */
9799
9800 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
9801 {
9802 enum hrtimer_restart ret = HRTIMER_RESTART;
9803 struct perf_sample_data data;
9804 struct pt_regs *regs;
9805 struct perf_event *event;
9806 u64 period;
9807
9808 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
9809
9810 if (event->state != PERF_EVENT_STATE_ACTIVE)
9811 return HRTIMER_NORESTART;
9812
9813 event->pmu->read(event);
9814
9815 perf_sample_data_init(&data, 0, event->hw.last_period);
9816 regs = get_irq_regs();
9817
9818 if (regs && !perf_exclude_event(event, regs)) {
9819 if (!(event->attr.exclude_idle && is_idle_task(current)))
9820 if (__perf_event_overflow(event, 1, &data, regs))
9821 ret = HRTIMER_NORESTART;
9822 }
9823
9824 period = max_t(u64, 10000, event->hw.sample_period);
9825 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
9826
9827 return ret;
9828 }
9829
9830 static void perf_swevent_start_hrtimer(struct perf_event *event)
9831 {
9832 struct hw_perf_event *hwc = &event->hw;
9833 s64 period;
9834
9835 if (!is_sampling_event(event))
9836 return;
9837
9838 period = local64_read(&hwc->period_left);
9839 if (period) {
9840 if (period < 0)
9841 period = 10000;
9842
9843 local64_set(&hwc->period_left, 0);
9844 } else {
9845 period = max_t(u64, 10000, hwc->sample_period);
9846 }
9847 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
9848 HRTIMER_MODE_REL_PINNED_HARD);
9849 }
9850
9851 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
9852 {
9853 struct hw_perf_event *hwc = &event->hw;
9854
9855 if (is_sampling_event(event)) {
9856 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
9857 local64_set(&hwc->period_left, ktime_to_ns(remaining));
9858
9859 hrtimer_cancel(&hwc->hrtimer);
9860 }
9861 }
9862
9863 static void perf_swevent_init_hrtimer(struct perf_event *event)
9864 {
9865 struct hw_perf_event *hwc = &event->hw;
9866
9867 if (!is_sampling_event(event))
9868 return;
9869
9870 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
9871 hwc->hrtimer.function = perf_swevent_hrtimer;
9872
9873 /*
9874 * Since hrtimers have a fixed rate, we can do a static freq->period
9875 * mapping and avoid the whole period adjust feedback stuff.
9876 */
9877 if (event->attr.freq) {
9878 long freq = event->attr.sample_freq;
9879
9880 event->attr.sample_period = NSEC_PER_SEC / freq;
9881 hwc->sample_period = event->attr.sample_period;
9882 local64_set(&hwc->period_left, hwc->sample_period);
9883 hwc->last_period = hwc->sample_period;
9884 event->attr.freq = 0;
9885 }
9886 }
9887
9888 /*
9889 * Software event: cpu wall time clock
9890 */
9891
9892 static void cpu_clock_event_update(struct perf_event *event)
9893 {
9894 s64 prev;
9895 u64 now;
9896
9897 now = local_clock();
9898 prev = local64_xchg(&event->hw.prev_count, now);
9899 local64_add(now - prev, &event->count);
9900 }
9901
9902 static void cpu_clock_event_start(struct perf_event *event, int flags)
9903 {
9904 local64_set(&event->hw.prev_count, local_clock());
9905 perf_swevent_start_hrtimer(event);
9906 }
9907
9908 static void cpu_clock_event_stop(struct perf_event *event, int flags)
9909 {
9910 perf_swevent_cancel_hrtimer(event);
9911 cpu_clock_event_update(event);
9912 }
9913
9914 static int cpu_clock_event_add(struct perf_event *event, int flags)
9915 {
9916 if (flags & PERF_EF_START)
9917 cpu_clock_event_start(event, flags);
9918 perf_event_update_userpage(event);
9919
9920 return 0;
9921 }
9922
9923 static void cpu_clock_event_del(struct perf_event *event, int flags)
9924 {
9925 cpu_clock_event_stop(event, flags);
9926 }
9927
9928 static void cpu_clock_event_read(struct perf_event *event)
9929 {
9930 cpu_clock_event_update(event);
9931 }
9932
9933 static int cpu_clock_event_init(struct perf_event *event)
9934 {
9935 if (event->attr.type != PERF_TYPE_SOFTWARE)
9936 return -ENOENT;
9937
9938 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
9939 return -ENOENT;
9940
9941 /*
9942 * no branch sampling for software events
9943 */
9944 if (has_branch_stack(event))
9945 return -EOPNOTSUPP;
9946
9947 perf_swevent_init_hrtimer(event);
9948
9949 return 0;
9950 }
9951
9952 static struct pmu perf_cpu_clock = {
9953 .task_ctx_nr = perf_sw_context,
9954
9955 .capabilities = PERF_PMU_CAP_NO_NMI,
9956
9957 .event_init = cpu_clock_event_init,
9958 .add = cpu_clock_event_add,
9959 .del = cpu_clock_event_del,
9960 .start = cpu_clock_event_start,
9961 .stop = cpu_clock_event_stop,
9962 .read = cpu_clock_event_read,
9963 };
9964
9965 /*
9966 * Software event: task time clock
9967 */
9968
9969 static void task_clock_event_update(struct perf_event *event, u64 now)
9970 {
9971 u64 prev;
9972 s64 delta;
9973
9974 prev = local64_xchg(&event->hw.prev_count, now);
9975 delta = now - prev;
9976 local64_add(delta, &event->count);
9977 }
9978
9979 static void task_clock_event_start(struct perf_event *event, int flags)
9980 {
9981 local64_set(&event->hw.prev_count, event->ctx->time);
9982 perf_swevent_start_hrtimer(event);
9983 }
9984
9985 static void task_clock_event_stop(struct perf_event *event, int flags)
9986 {
9987 perf_swevent_cancel_hrtimer(event);
9988 task_clock_event_update(event, event->ctx->time);
9989 }
9990
9991 static int task_clock_event_add(struct perf_event *event, int flags)
9992 {
9993 if (flags & PERF_EF_START)
9994 task_clock_event_start(event, flags);
9995 perf_event_update_userpage(event);
9996
9997 return 0;
9998 }
9999
10000 static void task_clock_event_del(struct perf_event *event, int flags)
10001 {
10002 task_clock_event_stop(event, PERF_EF_UPDATE);
10003 }
10004
10005 static void task_clock_event_read(struct perf_event *event)
10006 {
10007 u64 now = perf_clock();
10008 u64 delta = now - event->ctx->timestamp;
10009 u64 time = event->ctx->time + delta;
10010
10011 task_clock_event_update(event, time);
10012 }
10013
10014 static int task_clock_event_init(struct perf_event *event)
10015 {
10016 if (event->attr.type != PERF_TYPE_SOFTWARE)
10017 return -ENOENT;
10018
10019 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
10020 return -ENOENT;
10021
10022 /*
10023 * no branch sampling for software events
10024 */
10025 if (has_branch_stack(event))
10026 return -EOPNOTSUPP;
10027
10028 perf_swevent_init_hrtimer(event);
10029
10030 return 0;
10031 }
10032
10033 static struct pmu perf_task_clock = {
10034 .task_ctx_nr = perf_sw_context,
10035
10036 .capabilities = PERF_PMU_CAP_NO_NMI,
10037
10038 .event_init = task_clock_event_init,
10039 .add = task_clock_event_add,
10040 .del = task_clock_event_del,
10041 .start = task_clock_event_start,
10042 .stop = task_clock_event_stop,
10043 .read = task_clock_event_read,
10044 };
10045
10046 static void perf_pmu_nop_void(struct pmu *pmu)
10047 {
10048 }
10049
10050 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
10051 {
10052 }
10053
10054 static int perf_pmu_nop_int(struct pmu *pmu)
10055 {
10056 return 0;
10057 }
10058
10059 static int perf_event_nop_int(struct perf_event *event, u64 value)
10060 {
10061 return 0;
10062 }
10063
10064 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
10065
10066 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
10067 {
10068 __this_cpu_write(nop_txn_flags, flags);
10069
10070 if (flags & ~PERF_PMU_TXN_ADD)
10071 return;
10072
10073 perf_pmu_disable(pmu);
10074 }
10075
10076 static int perf_pmu_commit_txn(struct pmu *pmu)
10077 {
10078 unsigned int flags = __this_cpu_read(nop_txn_flags);
10079
10080 __this_cpu_write(nop_txn_flags, 0);
10081
10082 if (flags & ~PERF_PMU_TXN_ADD)
10083 return 0;
10084
10085 perf_pmu_enable(pmu);
10086 return 0;
10087 }
10088
10089 static void perf_pmu_cancel_txn(struct pmu *pmu)
10090 {
10091 unsigned int flags = __this_cpu_read(nop_txn_flags);
10092
10093 __this_cpu_write(nop_txn_flags, 0);
10094
10095 if (flags & ~PERF_PMU_TXN_ADD)
10096 return;
10097
10098 perf_pmu_enable(pmu);
10099 }
10100
10101 static int perf_event_idx_default(struct perf_event *event)
10102 {
10103 return 0;
10104 }
10105
10106 /*
10107 * Ensures all contexts with the same task_ctx_nr have the same
10108 * pmu_cpu_context too.
10109 */
10110 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
10111 {
10112 struct pmu *pmu;
10113
10114 if (ctxn < 0)
10115 return NULL;
10116
10117 list_for_each_entry(pmu, &pmus, entry) {
10118 if (pmu->task_ctx_nr == ctxn)
10119 return pmu->pmu_cpu_context;
10120 }
10121
10122 return NULL;
10123 }
10124
10125 static void free_pmu_context(struct pmu *pmu)
10126 {
10127 /*
10128 * Static contexts such as perf_sw_context have a global lifetime
10129 * and may be shared between different PMUs. Avoid freeing them
10130 * when a single PMU is going away.
10131 */
10132 if (pmu->task_ctx_nr > perf_invalid_context)
10133 return;
10134
10135 free_percpu(pmu->pmu_cpu_context);
10136 }
10137
10138 /*
10139 * Let userspace know that this PMU supports address range filtering:
10140 */
10141 static ssize_t nr_addr_filters_show(struct device *dev,
10142 struct device_attribute *attr,
10143 char *page)
10144 {
10145 struct pmu *pmu = dev_get_drvdata(dev);
10146
10147 return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
10148 }
10149 DEVICE_ATTR_RO(nr_addr_filters);
10150
10151 static struct idr pmu_idr;
10152
10153 static ssize_t
10154 type_show(struct device *dev, struct device_attribute *attr, char *page)
10155 {
10156 struct pmu *pmu = dev_get_drvdata(dev);
10157
10158 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
10159 }
10160 static DEVICE_ATTR_RO(type);
10161
10162 static ssize_t
10163 perf_event_mux_interval_ms_show(struct device *dev,
10164 struct device_attribute *attr,
10165 char *page)
10166 {
10167 struct pmu *pmu = dev_get_drvdata(dev);
10168
10169 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
10170 }
10171
10172 static DEFINE_MUTEX(mux_interval_mutex);
10173
10174 static ssize_t
10175 perf_event_mux_interval_ms_store(struct device *dev,
10176 struct device_attribute *attr,
10177 const char *buf, size_t count)
10178 {
10179 struct pmu *pmu = dev_get_drvdata(dev);
10180 int timer, cpu, ret;
10181
10182 ret = kstrtoint(buf, 0, &timer);
10183 if (ret)
10184 return ret;
10185
10186 if (timer < 1)
10187 return -EINVAL;
10188
10189 /* same value, noting to do */
10190 if (timer == pmu->hrtimer_interval_ms)
10191 return count;
10192
10193 mutex_lock(&mux_interval_mutex);
10194 pmu->hrtimer_interval_ms = timer;
10195
10196 /* update all cpuctx for this PMU */
10197 cpus_read_lock();
10198 for_each_online_cpu(cpu) {
10199 struct perf_cpu_context *cpuctx;
10200 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
10201 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
10202
10203 cpu_function_call(cpu,
10204 (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
10205 }
10206 cpus_read_unlock();
10207 mutex_unlock(&mux_interval_mutex);
10208
10209 return count;
10210 }
10211 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
10212
10213 static struct attribute *pmu_dev_attrs[] = {
10214 &dev_attr_type.attr,
10215 &dev_attr_perf_event_mux_interval_ms.attr,
10216 NULL,
10217 };
10218 ATTRIBUTE_GROUPS(pmu_dev);
10219
10220 static int pmu_bus_running;
10221 static struct bus_type pmu_bus = {
10222 .name = "event_source",
10223 .dev_groups = pmu_dev_groups,
10224 };
10225
10226 static void pmu_dev_release(struct device *dev)
10227 {
10228 kfree(dev);
10229 }
10230
10231 static int pmu_dev_alloc(struct pmu *pmu)
10232 {
10233 int ret = -ENOMEM;
10234
10235 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
10236 if (!pmu->dev)
10237 goto out;
10238
10239 pmu->dev->groups = pmu->attr_groups;
10240 device_initialize(pmu->dev);
10241 ret = dev_set_name(pmu->dev, "%s", pmu->name);
10242 if (ret)
10243 goto free_dev;
10244
10245 dev_set_drvdata(pmu->dev, pmu);
10246 pmu->dev->bus = &pmu_bus;
10247 pmu->dev->release = pmu_dev_release;
10248 ret = device_add(pmu->dev);
10249 if (ret)
10250 goto free_dev;
10251
10252 /* For PMUs with address filters, throw in an extra attribute: */
10253 if (pmu->nr_addr_filters)
10254 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
10255
10256 if (ret)
10257 goto del_dev;
10258
10259 if (pmu->attr_update)
10260 ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
10261
10262 if (ret)
10263 goto del_dev;
10264
10265 out:
10266 return ret;
10267
10268 del_dev:
10269 device_del(pmu->dev);
10270
10271 free_dev:
10272 put_device(pmu->dev);
10273 goto out;
10274 }
10275
10276 static struct lock_class_key cpuctx_mutex;
10277 static struct lock_class_key cpuctx_lock;
10278
10279 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
10280 {
10281 int cpu, ret, max = PERF_TYPE_MAX;
10282
10283 mutex_lock(&pmus_lock);
10284 ret = -ENOMEM;
10285 pmu->pmu_disable_count = alloc_percpu(int);
10286 if (!pmu->pmu_disable_count)
10287 goto unlock;
10288
10289 pmu->type = -1;
10290 if (!name)
10291 goto skip_type;
10292 pmu->name = name;
10293
10294 if (type != PERF_TYPE_SOFTWARE) {
10295 if (type >= 0)
10296 max = type;
10297
10298 ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL);
10299 if (ret < 0)
10300 goto free_pdc;
10301
10302 WARN_ON(type >= 0 && ret != type);
10303
10304 type = ret;
10305 }
10306 pmu->type = type;
10307
10308 if (pmu_bus_running) {
10309 ret = pmu_dev_alloc(pmu);
10310 if (ret)
10311 goto free_idr;
10312 }
10313
10314 skip_type:
10315 if (pmu->task_ctx_nr == perf_hw_context) {
10316 static int hw_context_taken = 0;
10317
10318 /*
10319 * Other than systems with heterogeneous CPUs, it never makes
10320 * sense for two PMUs to share perf_hw_context. PMUs which are
10321 * uncore must use perf_invalid_context.
10322 */
10323 if (WARN_ON_ONCE(hw_context_taken &&
10324 !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
10325 pmu->task_ctx_nr = perf_invalid_context;
10326
10327 hw_context_taken = 1;
10328 }
10329
10330 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
10331 if (pmu->pmu_cpu_context)
10332 goto got_cpu_context;
10333
10334 ret = -ENOMEM;
10335 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
10336 if (!pmu->pmu_cpu_context)
10337 goto free_dev;
10338
10339 for_each_possible_cpu(cpu) {
10340 struct perf_cpu_context *cpuctx;
10341
10342 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
10343 __perf_event_init_context(&cpuctx->ctx);
10344 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
10345 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
10346 cpuctx->ctx.pmu = pmu;
10347 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
10348
10349 __perf_mux_hrtimer_init(cpuctx, cpu);
10350 }
10351
10352 got_cpu_context:
10353 if (!pmu->start_txn) {
10354 if (pmu->pmu_enable) {
10355 /*
10356 * If we have pmu_enable/pmu_disable calls, install
10357 * transaction stubs that use that to try and batch
10358 * hardware accesses.
10359 */
10360 pmu->start_txn = perf_pmu_start_txn;
10361 pmu->commit_txn = perf_pmu_commit_txn;
10362 pmu->cancel_txn = perf_pmu_cancel_txn;
10363 } else {
10364 pmu->start_txn = perf_pmu_nop_txn;
10365 pmu->commit_txn = perf_pmu_nop_int;
10366 pmu->cancel_txn = perf_pmu_nop_void;
10367 }
10368 }
10369
10370 if (!pmu->pmu_enable) {
10371 pmu->pmu_enable = perf_pmu_nop_void;
10372 pmu->pmu_disable = perf_pmu_nop_void;
10373 }
10374
10375 if (!pmu->check_period)
10376 pmu->check_period = perf_event_nop_int;
10377
10378 if (!pmu->event_idx)
10379 pmu->event_idx = perf_event_idx_default;
10380
10381 /*
10382 * Ensure the TYPE_SOFTWARE PMUs are at the head of the list,
10383 * since these cannot be in the IDR. This way the linear search
10384 * is fast, provided a valid software event is provided.
10385 */
10386 if (type == PERF_TYPE_SOFTWARE || !name)
10387 list_add_rcu(&pmu->entry, &pmus);
10388 else
10389 list_add_tail_rcu(&pmu->entry, &pmus);
10390
10391 atomic_set(&pmu->exclusive_cnt, 0);
10392 ret = 0;
10393 unlock:
10394 mutex_unlock(&pmus_lock);
10395
10396 return ret;
10397
10398 free_dev:
10399 device_del(pmu->dev);
10400 put_device(pmu->dev);
10401
10402 free_idr:
10403 if (pmu->type != PERF_TYPE_SOFTWARE)
10404 idr_remove(&pmu_idr, pmu->type);
10405
10406 free_pdc:
10407 free_percpu(pmu->pmu_disable_count);
10408 goto unlock;
10409 }
10410 EXPORT_SYMBOL_GPL(perf_pmu_register);
10411
10412 void perf_pmu_unregister(struct pmu *pmu)
10413 {
10414 mutex_lock(&pmus_lock);
10415 list_del_rcu(&pmu->entry);
10416
10417 /*
10418 * We dereference the pmu list under both SRCU and regular RCU, so
10419 * synchronize against both of those.
10420 */
10421 synchronize_srcu(&pmus_srcu);
10422 synchronize_rcu();
10423
10424 free_percpu(pmu->pmu_disable_count);
10425 if (pmu->type != PERF_TYPE_SOFTWARE)
10426 idr_remove(&pmu_idr, pmu->type);
10427 if (pmu_bus_running) {
10428 if (pmu->nr_addr_filters)
10429 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
10430 device_del(pmu->dev);
10431 put_device(pmu->dev);
10432 }
10433 free_pmu_context(pmu);
10434 mutex_unlock(&pmus_lock);
10435 }
10436 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
10437
10438 static inline bool has_extended_regs(struct perf_event *event)
10439 {
10440 return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
10441 (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
10442 }
10443
10444 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
10445 {
10446 struct perf_event_context *ctx = NULL;
10447 int ret;
10448
10449 if (!try_module_get(pmu->module))
10450 return -ENODEV;
10451
10452 /*
10453 * A number of pmu->event_init() methods iterate the sibling_list to,
10454 * for example, validate if the group fits on the PMU. Therefore,
10455 * if this is a sibling event, acquire the ctx->mutex to protect
10456 * the sibling_list.
10457 */
10458 if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
10459 /*
10460 * This ctx->mutex can nest when we're called through
10461 * inheritance. See the perf_event_ctx_lock_nested() comment.
10462 */
10463 ctx = perf_event_ctx_lock_nested(event->group_leader,
10464 SINGLE_DEPTH_NESTING);
10465 BUG_ON(!ctx);
10466 }
10467
10468 event->pmu = pmu;
10469 ret = pmu->event_init(event);
10470
10471 if (ctx)
10472 perf_event_ctx_unlock(event->group_leader, ctx);
10473
10474 if (!ret) {
10475 if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
10476 has_extended_regs(event))
10477 ret = -EOPNOTSUPP;
10478
10479 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
10480 event_has_any_exclude_flag(event))
10481 ret = -EINVAL;
10482
10483 if (ret && event->destroy)
10484 event->destroy(event);
10485 }
10486
10487 if (ret)
10488 module_put(pmu->module);
10489
10490 return ret;
10491 }
10492
10493 static struct pmu *perf_init_event(struct perf_event *event)
10494 {
10495 int idx, type, ret;
10496 struct pmu *pmu;
10497
10498 idx = srcu_read_lock(&pmus_srcu);
10499
10500 /* Try parent's PMU first: */
10501 if (event->parent && event->parent->pmu) {
10502 pmu = event->parent->pmu;
10503 ret = perf_try_init_event(pmu, event);
10504 if (!ret)
10505 goto unlock;
10506 }
10507
10508 /*
10509 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
10510 * are often aliases for PERF_TYPE_RAW.
10511 */
10512 type = event->attr.type;
10513 if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE)
10514 type = PERF_TYPE_RAW;
10515
10516 again:
10517 rcu_read_lock();
10518 pmu = idr_find(&pmu_idr, type);
10519 rcu_read_unlock();
10520 if (pmu) {
10521 ret = perf_try_init_event(pmu, event);
10522 if (ret == -ENOENT && event->attr.type != type) {
10523 type = event->attr.type;
10524 goto again;
10525 }
10526
10527 if (ret)
10528 pmu = ERR_PTR(ret);
10529
10530 goto unlock;
10531 }
10532
10533 list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) {
10534 ret = perf_try_init_event(pmu, event);
10535 if (!ret)
10536 goto unlock;
10537
10538 if (ret != -ENOENT) {
10539 pmu = ERR_PTR(ret);
10540 goto unlock;
10541 }
10542 }
10543 pmu = ERR_PTR(-ENOENT);
10544 unlock:
10545 srcu_read_unlock(&pmus_srcu, idx);
10546
10547 return pmu;
10548 }
10549
10550 static void attach_sb_event(struct perf_event *event)
10551 {
10552 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
10553
10554 raw_spin_lock(&pel->lock);
10555 list_add_rcu(&event->sb_list, &pel->list);
10556 raw_spin_unlock(&pel->lock);
10557 }
10558
10559 /*
10560 * We keep a list of all !task (and therefore per-cpu) events
10561 * that need to receive side-band records.
10562 *
10563 * This avoids having to scan all the various PMU per-cpu contexts
10564 * looking for them.
10565 */
10566 static void account_pmu_sb_event(struct perf_event *event)
10567 {
10568 if (is_sb_event(event))
10569 attach_sb_event(event);
10570 }
10571
10572 static void account_event_cpu(struct perf_event *event, int cpu)
10573 {
10574 if (event->parent)
10575 return;
10576
10577 if (is_cgroup_event(event))
10578 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
10579 }
10580
10581 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
10582 static void account_freq_event_nohz(void)
10583 {
10584 #ifdef CONFIG_NO_HZ_FULL
10585 /* Lock so we don't race with concurrent unaccount */
10586 spin_lock(&nr_freq_lock);
10587 if (atomic_inc_return(&nr_freq_events) == 1)
10588 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
10589 spin_unlock(&nr_freq_lock);
10590 #endif
10591 }
10592
10593 static void account_freq_event(void)
10594 {
10595 if (tick_nohz_full_enabled())
10596 account_freq_event_nohz();
10597 else
10598 atomic_inc(&nr_freq_events);
10599 }
10600
10601
10602 static void account_event(struct perf_event *event)
10603 {
10604 bool inc = false;
10605
10606 if (event->parent)
10607 return;
10608
10609 if (event->attach_state & PERF_ATTACH_TASK)
10610 inc = true;
10611 if (event->attr.mmap || event->attr.mmap_data)
10612 atomic_inc(&nr_mmap_events);
10613 if (event->attr.comm)
10614 atomic_inc(&nr_comm_events);
10615 if (event->attr.namespaces)
10616 atomic_inc(&nr_namespaces_events);
10617 if (event->attr.task)
10618 atomic_inc(&nr_task_events);
10619 if (event->attr.freq)
10620 account_freq_event();
10621 if (event->attr.context_switch) {
10622 atomic_inc(&nr_switch_events);
10623 inc = true;
10624 }
10625 if (has_branch_stack(event))
10626 inc = true;
10627 if (is_cgroup_event(event))
10628 inc = true;
10629 if (event->attr.ksymbol)
10630 atomic_inc(&nr_ksymbol_events);
10631 if (event->attr.bpf_event)
10632 atomic_inc(&nr_bpf_events);
10633
10634 if (inc) {
10635 /*
10636 * We need the mutex here because static_branch_enable()
10637 * must complete *before* the perf_sched_count increment
10638 * becomes visible.
10639 */
10640 if (atomic_inc_not_zero(&perf_sched_count))
10641 goto enabled;
10642
10643 mutex_lock(&perf_sched_mutex);
10644 if (!atomic_read(&perf_sched_count)) {
10645 static_branch_enable(&perf_sched_events);
10646 /*
10647 * Guarantee that all CPUs observe they key change and
10648 * call the perf scheduling hooks before proceeding to
10649 * install events that need them.
10650 */
10651 synchronize_rcu();
10652 }
10653 /*
10654 * Now that we have waited for the sync_sched(), allow further
10655 * increments to by-pass the mutex.
10656 */
10657 atomic_inc(&perf_sched_count);
10658 mutex_unlock(&perf_sched_mutex);
10659 }
10660 enabled:
10661
10662 account_event_cpu(event, event->cpu);
10663
10664 account_pmu_sb_event(event);
10665 }
10666
10667 /*
10668 * Allocate and initialize an event structure
10669 */
10670 static struct perf_event *
10671 perf_event_alloc(struct perf_event_attr *attr, int cpu,
10672 struct task_struct *task,
10673 struct perf_event *group_leader,
10674 struct perf_event *parent_event,
10675 perf_overflow_handler_t overflow_handler,
10676 void *context, int cgroup_fd)
10677 {
10678 struct pmu *pmu;
10679 struct perf_event *event;
10680 struct hw_perf_event *hwc;
10681 long err = -EINVAL;
10682
10683 if ((unsigned)cpu >= nr_cpu_ids) {
10684 if (!task || cpu != -1)
10685 return ERR_PTR(-EINVAL);
10686 }
10687
10688 event = kzalloc(sizeof(*event), GFP_KERNEL);
10689 if (!event)
10690 return ERR_PTR(-ENOMEM);
10691
10692 /*
10693 * Single events are their own group leaders, with an
10694 * empty sibling list:
10695 */
10696 if (!group_leader)
10697 group_leader = event;
10698
10699 mutex_init(&event->child_mutex);
10700 INIT_LIST_HEAD(&event->child_list);
10701
10702 INIT_LIST_HEAD(&event->event_entry);
10703 INIT_LIST_HEAD(&event->sibling_list);
10704 INIT_LIST_HEAD(&event->active_list);
10705 init_event_group(event);
10706 INIT_LIST_HEAD(&event->rb_entry);
10707 INIT_LIST_HEAD(&event->active_entry);
10708 INIT_LIST_HEAD(&event->addr_filters.list);
10709 INIT_HLIST_NODE(&event->hlist_entry);
10710
10711
10712 init_waitqueue_head(&event->waitq);
10713 event->pending_disable = -1;
10714 init_irq_work(&event->pending, perf_pending_event);
10715
10716 mutex_init(&event->mmap_mutex);
10717 raw_spin_lock_init(&event->addr_filters.lock);
10718
10719 atomic_long_set(&event->refcount, 1);
10720 event->cpu = cpu;
10721 event->attr = *attr;
10722 event->group_leader = group_leader;
10723 event->pmu = NULL;
10724 event->oncpu = -1;
10725
10726 event->parent = parent_event;
10727
10728 event->ns = get_pid_ns(task_active_pid_ns(current));
10729 event->id = atomic64_inc_return(&perf_event_id);
10730
10731 event->state = PERF_EVENT_STATE_INACTIVE;
10732
10733 if (task) {
10734 event->attach_state = PERF_ATTACH_TASK;
10735 /*
10736 * XXX pmu::event_init needs to know what task to account to
10737 * and we cannot use the ctx information because we need the
10738 * pmu before we get a ctx.
10739 */
10740 event->hw.target = get_task_struct(task);
10741 }
10742
10743 event->clock = &local_clock;
10744 if (parent_event)
10745 event->clock = parent_event->clock;
10746
10747 if (!overflow_handler && parent_event) {
10748 overflow_handler = parent_event->overflow_handler;
10749 context = parent_event->overflow_handler_context;
10750 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
10751 if (overflow_handler == bpf_overflow_handler) {
10752 struct bpf_prog *prog = parent_event->prog;
10753
10754 bpf_prog_inc(prog);
10755 event->prog = prog;
10756 event->orig_overflow_handler =
10757 parent_event->orig_overflow_handler;
10758 }
10759 #endif
10760 }
10761
10762 if (overflow_handler) {
10763 event->overflow_handler = overflow_handler;
10764 event->overflow_handler_context = context;
10765 } else if (is_write_backward(event)){
10766 event->overflow_handler = perf_event_output_backward;
10767 event->overflow_handler_context = NULL;
10768 } else {
10769 event->overflow_handler = perf_event_output_forward;
10770 event->overflow_handler_context = NULL;
10771 }
10772
10773 perf_event__state_init(event);
10774
10775 pmu = NULL;
10776
10777 hwc = &event->hw;
10778 hwc->sample_period = attr->sample_period;
10779 if (attr->freq && attr->sample_freq)
10780 hwc->sample_period = 1;
10781 hwc->last_period = hwc->sample_period;
10782
10783 local64_set(&hwc->period_left, hwc->sample_period);
10784
10785 /*
10786 * We currently do not support PERF_SAMPLE_READ on inherited events.
10787 * See perf_output_read().
10788 */
10789 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
10790 goto err_ns;
10791
10792 if (!has_branch_stack(event))
10793 event->attr.branch_sample_type = 0;
10794
10795 if (cgroup_fd != -1) {
10796 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
10797 if (err)
10798 goto err_ns;
10799 }
10800
10801 pmu = perf_init_event(event);
10802 if (IS_ERR(pmu)) {
10803 err = PTR_ERR(pmu);
10804 goto err_ns;
10805 }
10806
10807 /*
10808 * Disallow uncore-cgroup events, they don't make sense as the cgroup will
10809 * be different on other CPUs in the uncore mask.
10810 */
10811 if (pmu->task_ctx_nr == perf_invalid_context && cgroup_fd != -1) {
10812 err = -EINVAL;
10813 goto err_pmu;
10814 }
10815
10816 if (event->attr.aux_output &&
10817 !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) {
10818 err = -EOPNOTSUPP;
10819 goto err_pmu;
10820 }
10821
10822 err = exclusive_event_init(event);
10823 if (err)
10824 goto err_pmu;
10825
10826 if (has_addr_filter(event)) {
10827 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
10828 sizeof(struct perf_addr_filter_range),
10829 GFP_KERNEL);
10830 if (!event->addr_filter_ranges) {
10831 err = -ENOMEM;
10832 goto err_per_task;
10833 }
10834
10835 /*
10836 * Clone the parent's vma offsets: they are valid until exec()
10837 * even if the mm is not shared with the parent.
10838 */
10839 if (event->parent) {
10840 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
10841
10842 raw_spin_lock_irq(&ifh->lock);
10843 memcpy(event->addr_filter_ranges,
10844 event->parent->addr_filter_ranges,
10845 pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
10846 raw_spin_unlock_irq(&ifh->lock);
10847 }
10848
10849 /* force hw sync on the address filters */
10850 event->addr_filters_gen = 1;
10851 }
10852
10853 if (!event->parent) {
10854 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
10855 err = get_callchain_buffers(attr->sample_max_stack);
10856 if (err)
10857 goto err_addr_filters;
10858 }
10859 }
10860
10861 err = security_perf_event_alloc(event);
10862 if (err)
10863 goto err_callchain_buffer;
10864
10865 /* symmetric to unaccount_event() in _free_event() */
10866 account_event(event);
10867
10868 return event;
10869
10870 err_callchain_buffer:
10871 if (!event->parent) {
10872 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
10873 put_callchain_buffers();
10874 }
10875 err_addr_filters:
10876 kfree(event->addr_filter_ranges);
10877
10878 err_per_task:
10879 exclusive_event_destroy(event);
10880
10881 err_pmu:
10882 if (event->destroy)
10883 event->destroy(event);
10884 module_put(pmu->module);
10885 err_ns:
10886 if (is_cgroup_event(event))
10887 perf_detach_cgroup(event);
10888 if (event->ns)
10889 put_pid_ns(event->ns);
10890 if (event->hw.target)
10891 put_task_struct(event->hw.target);
10892 kfree(event);
10893
10894 return ERR_PTR(err);
10895 }
10896
10897 static int perf_copy_attr(struct perf_event_attr __user *uattr,
10898 struct perf_event_attr *attr)
10899 {
10900 u32 size;
10901 int ret;
10902
10903 /* Zero the full structure, so that a short copy will be nice. */
10904 memset(attr, 0, sizeof(*attr));
10905
10906 ret = get_user(size, &uattr->size);
10907 if (ret)
10908 return ret;
10909
10910 /* ABI compatibility quirk: */
10911 if (!size)
10912 size = PERF_ATTR_SIZE_VER0;
10913 if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE)
10914 goto err_size;
10915
10916 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
10917 if (ret) {
10918 if (ret == -E2BIG)
10919 goto err_size;
10920 return ret;
10921 }
10922
10923 attr->size = size;
10924
10925 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
10926 return -EINVAL;
10927
10928 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
10929 return -EINVAL;
10930
10931 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
10932 return -EINVAL;
10933
10934 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
10935 u64 mask = attr->branch_sample_type;
10936
10937 /* only using defined bits */
10938 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
10939 return -EINVAL;
10940
10941 /* at least one branch bit must be set */
10942 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
10943 return -EINVAL;
10944
10945 /* propagate priv level, when not set for branch */
10946 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
10947
10948 /* exclude_kernel checked on syscall entry */
10949 if (!attr->exclude_kernel)
10950 mask |= PERF_SAMPLE_BRANCH_KERNEL;
10951
10952 if (!attr->exclude_user)
10953 mask |= PERF_SAMPLE_BRANCH_USER;
10954
10955 if (!attr->exclude_hv)
10956 mask |= PERF_SAMPLE_BRANCH_HV;
10957 /*
10958 * adjust user setting (for HW filter setup)
10959 */
10960 attr->branch_sample_type = mask;
10961 }
10962 /* privileged levels capture (kernel, hv): check permissions */
10963 if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) {
10964 ret = perf_allow_kernel(attr);
10965 if (ret)
10966 return ret;
10967 }
10968 }
10969
10970 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
10971 ret = perf_reg_validate(attr->sample_regs_user);
10972 if (ret)
10973 return ret;
10974 }
10975
10976 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
10977 if (!arch_perf_have_user_stack_dump())
10978 return -ENOSYS;
10979
10980 /*
10981 * We have __u32 type for the size, but so far
10982 * we can only use __u16 as maximum due to the
10983 * __u16 sample size limit.
10984 */
10985 if (attr->sample_stack_user >= USHRT_MAX)
10986 return -EINVAL;
10987 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
10988 return -EINVAL;
10989 }
10990
10991 if (!attr->sample_max_stack)
10992 attr->sample_max_stack = sysctl_perf_event_max_stack;
10993
10994 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
10995 ret = perf_reg_validate(attr->sample_regs_intr);
10996 out:
10997 return ret;
10998
10999 err_size:
11000 put_user(sizeof(*attr), &uattr->size);
11001 ret = -E2BIG;
11002 goto out;
11003 }
11004
11005 static int
11006 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
11007 {
11008 struct perf_buffer *rb = NULL;
11009 int ret = -EINVAL;
11010
11011 if (!output_event)
11012 goto set;
11013
11014 /* don't allow circular references */
11015 if (event == output_event)
11016 goto out;
11017
11018 /*
11019 * Don't allow cross-cpu buffers
11020 */
11021 if (output_event->cpu != event->cpu)
11022 goto out;
11023
11024 /*
11025 * If its not a per-cpu rb, it must be the same task.
11026 */
11027 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
11028 goto out;
11029
11030 /*
11031 * Mixing clocks in the same buffer is trouble you don't need.
11032 */
11033 if (output_event->clock != event->clock)
11034 goto out;
11035
11036 /*
11037 * Either writing ring buffer from beginning or from end.
11038 * Mixing is not allowed.
11039 */
11040 if (is_write_backward(output_event) != is_write_backward(event))
11041 goto out;
11042
11043 /*
11044 * If both events generate aux data, they must be on the same PMU
11045 */
11046 if (has_aux(event) && has_aux(output_event) &&
11047 event->pmu != output_event->pmu)
11048 goto out;
11049
11050 set:
11051 mutex_lock(&event->mmap_mutex);
11052 /* Can't redirect output if we've got an active mmap() */
11053 if (atomic_read(&event->mmap_count))
11054 goto unlock;
11055
11056 if (output_event) {
11057 /* get the rb we want to redirect to */
11058 rb = ring_buffer_get(output_event);
11059 if (!rb)
11060 goto unlock;
11061 }
11062
11063 ring_buffer_attach(event, rb);
11064
11065 ret = 0;
11066 unlock:
11067 mutex_unlock(&event->mmap_mutex);
11068
11069 out:
11070 return ret;
11071 }
11072
11073 static void mutex_lock_double(struct mutex *a, struct mutex *b)
11074 {
11075 if (b < a)
11076 swap(a, b);
11077
11078 mutex_lock(a);
11079 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
11080 }
11081
11082 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
11083 {
11084 bool nmi_safe = false;
11085
11086 switch (clk_id) {
11087 case CLOCK_MONOTONIC:
11088 event->clock = &ktime_get_mono_fast_ns;
11089 nmi_safe = true;
11090 break;
11091
11092 case CLOCK_MONOTONIC_RAW:
11093 event->clock = &ktime_get_raw_fast_ns;
11094 nmi_safe = true;
11095 break;
11096
11097 case CLOCK_REALTIME:
11098 event->clock = &ktime_get_real_ns;
11099 break;
11100
11101 case CLOCK_BOOTTIME:
11102 event->clock = &ktime_get_boottime_ns;
11103 break;
11104
11105 case CLOCK_TAI:
11106 event->clock = &ktime_get_clocktai_ns;
11107 break;
11108
11109 default:
11110 return -EINVAL;
11111 }
11112
11113 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
11114 return -EINVAL;
11115
11116 return 0;
11117 }
11118
11119 /*
11120 * Variation on perf_event_ctx_lock_nested(), except we take two context
11121 * mutexes.
11122 */
11123 static struct perf_event_context *
11124 __perf_event_ctx_lock_double(struct perf_event *group_leader,
11125 struct perf_event_context *ctx)
11126 {
11127 struct perf_event_context *gctx;
11128
11129 again:
11130 rcu_read_lock();
11131 gctx = READ_ONCE(group_leader->ctx);
11132 if (!refcount_inc_not_zero(&gctx->refcount)) {
11133 rcu_read_unlock();
11134 goto again;
11135 }
11136 rcu_read_unlock();
11137
11138 mutex_lock_double(&gctx->mutex, &ctx->mutex);
11139
11140 if (group_leader->ctx != gctx) {
11141 mutex_unlock(&ctx->mutex);
11142 mutex_unlock(&gctx->mutex);
11143 put_ctx(gctx);
11144 goto again;
11145 }
11146
11147 return gctx;
11148 }
11149
11150 /**
11151 * sys_perf_event_open - open a performance event, associate it to a task/cpu
11152 *
11153 * @attr_uptr: event_id type attributes for monitoring/sampling
11154 * @pid: target pid
11155 * @cpu: target cpu
11156 * @group_fd: group leader event fd
11157 */
11158 SYSCALL_DEFINE5(perf_event_open,
11159 struct perf_event_attr __user *, attr_uptr,
11160 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
11161 {
11162 struct perf_event *group_leader = NULL, *output_event = NULL;
11163 struct perf_event *event, *sibling;
11164 struct perf_event_attr attr;
11165 struct perf_event_context *ctx, *uninitialized_var(gctx);
11166 struct file *event_file = NULL;
11167 struct fd group = {NULL, 0};
11168 struct task_struct *task = NULL;
11169 struct pmu *pmu;
11170 int event_fd;
11171 int move_group = 0;
11172 int err;
11173 int f_flags = O_RDWR;
11174 int cgroup_fd = -1;
11175
11176 /* for future expandability... */
11177 if (flags & ~PERF_FLAG_ALL)
11178 return -EINVAL;
11179
11180 /* Do we allow access to perf_event_open(2) ? */
11181 err = security_perf_event_open(&attr, PERF_SECURITY_OPEN);
11182 if (err)
11183 return err;
11184
11185 err = perf_copy_attr(attr_uptr, &attr);
11186 if (err)
11187 return err;
11188
11189 if (!attr.exclude_kernel) {
11190 err = perf_allow_kernel(&attr);
11191 if (err)
11192 return err;
11193 }
11194
11195 if (attr.namespaces) {
11196 if (!capable(CAP_SYS_ADMIN))
11197 return -EACCES;
11198 }
11199
11200 if (attr.freq) {
11201 if (attr.sample_freq > sysctl_perf_event_sample_rate)
11202 return -EINVAL;
11203 } else {
11204 if (attr.sample_period & (1ULL << 63))
11205 return -EINVAL;
11206 }
11207
11208 /* Only privileged users can get physical addresses */
11209 if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) {
11210 err = perf_allow_kernel(&attr);
11211 if (err)
11212 return err;
11213 }
11214
11215 err = security_locked_down(LOCKDOWN_PERF);
11216 if (err && (attr.sample_type & PERF_SAMPLE_REGS_INTR))
11217 /* REGS_INTR can leak data, lockdown must prevent this */
11218 return err;
11219
11220 err = 0;
11221
11222 /*
11223 * In cgroup mode, the pid argument is used to pass the fd
11224 * opened to the cgroup directory in cgroupfs. The cpu argument
11225 * designates the cpu on which to monitor threads from that
11226 * cgroup.
11227 */
11228 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
11229 return -EINVAL;
11230
11231 if (flags & PERF_FLAG_FD_CLOEXEC)
11232 f_flags |= O_CLOEXEC;
11233
11234 event_fd = get_unused_fd_flags(f_flags);
11235 if (event_fd < 0)
11236 return event_fd;
11237
11238 if (group_fd != -1) {
11239 err = perf_fget_light(group_fd, &group);
11240 if (err)
11241 goto err_fd;
11242 group_leader = group.file->private_data;
11243 if (flags & PERF_FLAG_FD_OUTPUT)
11244 output_event = group_leader;
11245 if (flags & PERF_FLAG_FD_NO_GROUP)
11246 group_leader = NULL;
11247 }
11248
11249 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
11250 task = find_lively_task_by_vpid(pid);
11251 if (IS_ERR(task)) {
11252 err = PTR_ERR(task);
11253 goto err_group_fd;
11254 }
11255 }
11256
11257 if (task && group_leader &&
11258 group_leader->attr.inherit != attr.inherit) {
11259 err = -EINVAL;
11260 goto err_task;
11261 }
11262
11263 if (task) {
11264 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
11265 if (err)
11266 goto err_task;
11267
11268 /*
11269 * Reuse ptrace permission checks for now.
11270 *
11271 * We must hold cred_guard_mutex across this and any potential
11272 * perf_install_in_context() call for this new event to
11273 * serialize against exec() altering our credentials (and the
11274 * perf_event_exit_task() that could imply).
11275 */
11276 err = -EACCES;
11277 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
11278 goto err_cred;
11279 }
11280
11281 if (flags & PERF_FLAG_PID_CGROUP)
11282 cgroup_fd = pid;
11283
11284 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
11285 NULL, NULL, cgroup_fd);
11286 if (IS_ERR(event)) {
11287 err = PTR_ERR(event);
11288 goto err_cred;
11289 }
11290
11291 if (is_sampling_event(event)) {
11292 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
11293 err = -EOPNOTSUPP;
11294 goto err_alloc;
11295 }
11296 }
11297
11298 /*
11299 * Special case software events and allow them to be part of
11300 * any hardware group.
11301 */
11302 pmu = event->pmu;
11303
11304 if (attr.use_clockid) {
11305 err = perf_event_set_clock(event, attr.clockid);
11306 if (err)
11307 goto err_alloc;
11308 }
11309
11310 if (pmu->task_ctx_nr == perf_sw_context)
11311 event->event_caps |= PERF_EV_CAP_SOFTWARE;
11312
11313 if (group_leader) {
11314 if (is_software_event(event) &&
11315 !in_software_context(group_leader)) {
11316 /*
11317 * If the event is a sw event, but the group_leader
11318 * is on hw context.
11319 *
11320 * Allow the addition of software events to hw
11321 * groups, this is safe because software events
11322 * never fail to schedule.
11323 */
11324 pmu = group_leader->ctx->pmu;
11325 } else if (!is_software_event(event) &&
11326 is_software_event(group_leader) &&
11327 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
11328 /*
11329 * In case the group is a pure software group, and we
11330 * try to add a hardware event, move the whole group to
11331 * the hardware context.
11332 */
11333 move_group = 1;
11334 }
11335 }
11336
11337 /*
11338 * Get the target context (task or percpu):
11339 */
11340 ctx = find_get_context(pmu, task, event);
11341 if (IS_ERR(ctx)) {
11342 err = PTR_ERR(ctx);
11343 goto err_alloc;
11344 }
11345
11346 /*
11347 * Look up the group leader (we will attach this event to it):
11348 */
11349 if (group_leader) {
11350 err = -EINVAL;
11351
11352 /*
11353 * Do not allow a recursive hierarchy (this new sibling
11354 * becoming part of another group-sibling):
11355 */
11356 if (group_leader->group_leader != group_leader)
11357 goto err_context;
11358
11359 /* All events in a group should have the same clock */
11360 if (group_leader->clock != event->clock)
11361 goto err_context;
11362
11363 /*
11364 * Make sure we're both events for the same CPU;
11365 * grouping events for different CPUs is broken; since
11366 * you can never concurrently schedule them anyhow.
11367 */
11368 if (group_leader->cpu != event->cpu)
11369 goto err_context;
11370
11371 /*
11372 * Make sure we're both on the same task, or both
11373 * per-CPU events.
11374 */
11375 if (group_leader->ctx->task != ctx->task)
11376 goto err_context;
11377
11378 /*
11379 * Do not allow to attach to a group in a different task
11380 * or CPU context. If we're moving SW events, we'll fix
11381 * this up later, so allow that.
11382 */
11383 if (!move_group && group_leader->ctx != ctx)
11384 goto err_context;
11385
11386 /*
11387 * Only a group leader can be exclusive or pinned
11388 */
11389 if (attr.exclusive || attr.pinned)
11390 goto err_context;
11391 }
11392
11393 if (output_event) {
11394 err = perf_event_set_output(event, output_event);
11395 if (err)
11396 goto err_context;
11397 }
11398
11399 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
11400 f_flags);
11401 if (IS_ERR(event_file)) {
11402 err = PTR_ERR(event_file);
11403 event_file = NULL;
11404 goto err_context;
11405 }
11406
11407 if (move_group) {
11408 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
11409
11410 if (gctx->task == TASK_TOMBSTONE) {
11411 err = -ESRCH;
11412 goto err_locked;
11413 }
11414
11415 /*
11416 * Check if we raced against another sys_perf_event_open() call
11417 * moving the software group underneath us.
11418 */
11419 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
11420 /*
11421 * If someone moved the group out from under us, check
11422 * if this new event wound up on the same ctx, if so
11423 * its the regular !move_group case, otherwise fail.
11424 */
11425 if (gctx != ctx) {
11426 err = -EINVAL;
11427 goto err_locked;
11428 } else {
11429 perf_event_ctx_unlock(group_leader, gctx);
11430 move_group = 0;
11431 }
11432 }
11433
11434 /*
11435 * Failure to create exclusive events returns -EBUSY.
11436 */
11437 err = -EBUSY;
11438 if (!exclusive_event_installable(group_leader, ctx))
11439 goto err_locked;
11440
11441 for_each_sibling_event(sibling, group_leader) {
11442 if (!exclusive_event_installable(sibling, ctx))
11443 goto err_locked;
11444 }
11445 } else {
11446 mutex_lock(&ctx->mutex);
11447 }
11448
11449 if (ctx->task == TASK_TOMBSTONE) {
11450 err = -ESRCH;
11451 goto err_locked;
11452 }
11453
11454 if (!perf_event_validate_size(event)) {
11455 err = -E2BIG;
11456 goto err_locked;
11457 }
11458
11459 if (!task) {
11460 /*
11461 * Check if the @cpu we're creating an event for is online.
11462 *
11463 * We use the perf_cpu_context::ctx::mutex to serialize against
11464 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
11465 */
11466 struct perf_cpu_context *cpuctx =
11467 container_of(ctx, struct perf_cpu_context, ctx);
11468
11469 if (!cpuctx->online) {
11470 err = -ENODEV;
11471 goto err_locked;
11472 }
11473 }
11474
11475 if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) {
11476 err = -EINVAL;
11477 goto err_locked;
11478 }
11479
11480 /*
11481 * Must be under the same ctx::mutex as perf_install_in_context(),
11482 * because we need to serialize with concurrent event creation.
11483 */
11484 if (!exclusive_event_installable(event, ctx)) {
11485 err = -EBUSY;
11486 goto err_locked;
11487 }
11488
11489 WARN_ON_ONCE(ctx->parent_ctx);
11490
11491 /*
11492 * This is the point on no return; we cannot fail hereafter. This is
11493 * where we start modifying current state.
11494 */
11495
11496 if (move_group) {
11497 /*
11498 * See perf_event_ctx_lock() for comments on the details
11499 * of swizzling perf_event::ctx.
11500 */
11501 perf_remove_from_context(group_leader, 0);
11502 put_ctx(gctx);
11503
11504 for_each_sibling_event(sibling, group_leader) {
11505 perf_remove_from_context(sibling, 0);
11506 put_ctx(gctx);
11507 }
11508
11509 /*
11510 * Wait for everybody to stop referencing the events through
11511 * the old lists, before installing it on new lists.
11512 */
11513 synchronize_rcu();
11514
11515 /*
11516 * Install the group siblings before the group leader.
11517 *
11518 * Because a group leader will try and install the entire group
11519 * (through the sibling list, which is still in-tact), we can
11520 * end up with siblings installed in the wrong context.
11521 *
11522 * By installing siblings first we NO-OP because they're not
11523 * reachable through the group lists.
11524 */
11525 for_each_sibling_event(sibling, group_leader) {
11526 perf_event__state_init(sibling);
11527 perf_install_in_context(ctx, sibling, sibling->cpu);
11528 get_ctx(ctx);
11529 }
11530
11531 /*
11532 * Removing from the context ends up with disabled
11533 * event. What we want here is event in the initial
11534 * startup state, ready to be add into new context.
11535 */
11536 perf_event__state_init(group_leader);
11537 perf_install_in_context(ctx, group_leader, group_leader->cpu);
11538 get_ctx(ctx);
11539 }
11540
11541 /*
11542 * Precalculate sample_data sizes; do while holding ctx::mutex such
11543 * that we're serialized against further additions and before
11544 * perf_install_in_context() which is the point the event is active and
11545 * can use these values.
11546 */
11547 perf_event__header_size(event);
11548 perf_event__id_header_size(event);
11549
11550 event->owner = current;
11551
11552 perf_install_in_context(ctx, event, event->cpu);
11553 perf_unpin_context(ctx);
11554
11555 if (move_group)
11556 perf_event_ctx_unlock(group_leader, gctx);
11557 mutex_unlock(&ctx->mutex);
11558
11559 if (task) {
11560 mutex_unlock(&task->signal->cred_guard_mutex);
11561 put_task_struct(task);
11562 }
11563
11564 mutex_lock(&current->perf_event_mutex);
11565 list_add_tail(&event->owner_entry, &current->perf_event_list);
11566 mutex_unlock(&current->perf_event_mutex);
11567
11568 /*
11569 * Drop the reference on the group_event after placing the
11570 * new event on the sibling_list. This ensures destruction
11571 * of the group leader will find the pointer to itself in
11572 * perf_group_detach().
11573 */
11574 fdput(group);
11575 fd_install(event_fd, event_file);
11576 return event_fd;
11577
11578 err_locked:
11579 if (move_group)
11580 perf_event_ctx_unlock(group_leader, gctx);
11581 mutex_unlock(&ctx->mutex);
11582 /* err_file: */
11583 fput(event_file);
11584 err_context:
11585 perf_unpin_context(ctx);
11586 put_ctx(ctx);
11587 err_alloc:
11588 /*
11589 * If event_file is set, the fput() above will have called ->release()
11590 * and that will take care of freeing the event.
11591 */
11592 if (!event_file)
11593 free_event(event);
11594 err_cred:
11595 if (task)
11596 mutex_unlock(&task->signal->cred_guard_mutex);
11597 err_task:
11598 if (task)
11599 put_task_struct(task);
11600 err_group_fd:
11601 fdput(group);
11602 err_fd:
11603 put_unused_fd(event_fd);
11604 return err;
11605 }
11606
11607 /**
11608 * perf_event_create_kernel_counter
11609 *
11610 * @attr: attributes of the counter to create
11611 * @cpu: cpu in which the counter is bound
11612 * @task: task to profile (NULL for percpu)
11613 */
11614 struct perf_event *
11615 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
11616 struct task_struct *task,
11617 perf_overflow_handler_t overflow_handler,
11618 void *context)
11619 {
11620 struct perf_event_context *ctx;
11621 struct perf_event *event;
11622 int err;
11623
11624 /*
11625 * Grouping is not supported for kernel events, neither is 'AUX',
11626 * make sure the caller's intentions are adjusted.
11627 */
11628 if (attr->aux_output)
11629 return ERR_PTR(-EINVAL);
11630
11631 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
11632 overflow_handler, context, -1);
11633 if (IS_ERR(event)) {
11634 err = PTR_ERR(event);
11635 goto err;
11636 }
11637
11638 /* Mark owner so we could distinguish it from user events. */
11639 event->owner = TASK_TOMBSTONE;
11640
11641 /*
11642 * Get the target context (task or percpu):
11643 */
11644 ctx = find_get_context(event->pmu, task, event);
11645 if (IS_ERR(ctx)) {
11646 err = PTR_ERR(ctx);
11647 goto err_free;
11648 }
11649
11650 WARN_ON_ONCE(ctx->parent_ctx);
11651 mutex_lock(&ctx->mutex);
11652 if (ctx->task == TASK_TOMBSTONE) {
11653 err = -ESRCH;
11654 goto err_unlock;
11655 }
11656
11657 if (!task) {
11658 /*
11659 * Check if the @cpu we're creating an event for is online.
11660 *
11661 * We use the perf_cpu_context::ctx::mutex to serialize against
11662 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
11663 */
11664 struct perf_cpu_context *cpuctx =
11665 container_of(ctx, struct perf_cpu_context, ctx);
11666 if (!cpuctx->online) {
11667 err = -ENODEV;
11668 goto err_unlock;
11669 }
11670 }
11671
11672 if (!exclusive_event_installable(event, ctx)) {
11673 err = -EBUSY;
11674 goto err_unlock;
11675 }
11676
11677 perf_install_in_context(ctx, event, event->cpu);
11678 perf_unpin_context(ctx);
11679 mutex_unlock(&ctx->mutex);
11680
11681 return event;
11682
11683 err_unlock:
11684 mutex_unlock(&ctx->mutex);
11685 perf_unpin_context(ctx);
11686 put_ctx(ctx);
11687 err_free:
11688 free_event(event);
11689 err:
11690 return ERR_PTR(err);
11691 }
11692 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
11693
11694 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
11695 {
11696 struct perf_event_context *src_ctx;
11697 struct perf_event_context *dst_ctx;
11698 struct perf_event *event, *tmp;
11699 LIST_HEAD(events);
11700
11701 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
11702 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
11703
11704 /*
11705 * See perf_event_ctx_lock() for comments on the details
11706 * of swizzling perf_event::ctx.
11707 */
11708 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
11709 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
11710 event_entry) {
11711 perf_remove_from_context(event, 0);
11712 unaccount_event_cpu(event, src_cpu);
11713 put_ctx(src_ctx);
11714 list_add(&event->migrate_entry, &events);
11715 }
11716
11717 /*
11718 * Wait for the events to quiesce before re-instating them.
11719 */
11720 synchronize_rcu();
11721
11722 /*
11723 * Re-instate events in 2 passes.
11724 *
11725 * Skip over group leaders and only install siblings on this first
11726 * pass, siblings will not get enabled without a leader, however a
11727 * leader will enable its siblings, even if those are still on the old
11728 * context.
11729 */
11730 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
11731 if (event->group_leader == event)
11732 continue;
11733
11734 list_del(&event->migrate_entry);
11735 if (event->state >= PERF_EVENT_STATE_OFF)
11736 event->state = PERF_EVENT_STATE_INACTIVE;
11737 account_event_cpu(event, dst_cpu);
11738 perf_install_in_context(dst_ctx, event, dst_cpu);
11739 get_ctx(dst_ctx);
11740 }
11741
11742 /*
11743 * Once all the siblings are setup properly, install the group leaders
11744 * to make it go.
11745 */
11746 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
11747 list_del(&event->migrate_entry);
11748 if (event->state >= PERF_EVENT_STATE_OFF)
11749 event->state = PERF_EVENT_STATE_INACTIVE;
11750 account_event_cpu(event, dst_cpu);
11751 perf_install_in_context(dst_ctx, event, dst_cpu);
11752 get_ctx(dst_ctx);
11753 }
11754 mutex_unlock(&dst_ctx->mutex);
11755 mutex_unlock(&src_ctx->mutex);
11756 }
11757 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
11758
11759 static void sync_child_event(struct perf_event *child_event,
11760 struct task_struct *child)
11761 {
11762 struct perf_event *parent_event = child_event->parent;
11763 u64 child_val;
11764
11765 if (child_event->attr.inherit_stat)
11766 perf_event_read_event(child_event, child);
11767
11768 child_val = perf_event_count(child_event);
11769
11770 /*
11771 * Add back the child's count to the parent's count:
11772 */
11773 atomic64_add(child_val, &parent_event->child_count);
11774 atomic64_add(child_event->total_time_enabled,
11775 &parent_event->child_total_time_enabled);
11776 atomic64_add(child_event->total_time_running,
11777 &parent_event->child_total_time_running);
11778 }
11779
11780 static void
11781 perf_event_exit_event(struct perf_event *child_event,
11782 struct perf_event_context *child_ctx,
11783 struct task_struct *child)
11784 {
11785 struct perf_event *parent_event = child_event->parent;
11786
11787 /*
11788 * Do not destroy the 'original' grouping; because of the context
11789 * switch optimization the original events could've ended up in a
11790 * random child task.
11791 *
11792 * If we were to destroy the original group, all group related
11793 * operations would cease to function properly after this random
11794 * child dies.
11795 *
11796 * Do destroy all inherited groups, we don't care about those
11797 * and being thorough is better.
11798 */
11799 raw_spin_lock_irq(&child_ctx->lock);
11800 WARN_ON_ONCE(child_ctx->is_active);
11801
11802 if (parent_event)
11803 perf_group_detach(child_event);
11804 list_del_event(child_event, child_ctx);
11805 perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */
11806 raw_spin_unlock_irq(&child_ctx->lock);
11807
11808 /*
11809 * Parent events are governed by their filedesc, retain them.
11810 */
11811 if (!parent_event) {
11812 perf_event_wakeup(child_event);
11813 return;
11814 }
11815 /*
11816 * Child events can be cleaned up.
11817 */
11818
11819 sync_child_event(child_event, child);
11820
11821 /*
11822 * Remove this event from the parent's list
11823 */
11824 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
11825 mutex_lock(&parent_event->child_mutex);
11826 list_del_init(&child_event->child_list);
11827 mutex_unlock(&parent_event->child_mutex);
11828
11829 /*
11830 * Kick perf_poll() for is_event_hup().
11831 */
11832 perf_event_wakeup(parent_event);
11833 free_event(child_event);
11834 put_event(parent_event);
11835 }
11836
11837 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
11838 {
11839 struct perf_event_context *child_ctx, *clone_ctx = NULL;
11840 struct perf_event *child_event, *next;
11841
11842 WARN_ON_ONCE(child != current);
11843
11844 child_ctx = perf_pin_task_context(child, ctxn);
11845 if (!child_ctx)
11846 return;
11847
11848 /*
11849 * In order to reduce the amount of tricky in ctx tear-down, we hold
11850 * ctx::mutex over the entire thing. This serializes against almost
11851 * everything that wants to access the ctx.
11852 *
11853 * The exception is sys_perf_event_open() /
11854 * perf_event_create_kernel_count() which does find_get_context()
11855 * without ctx::mutex (it cannot because of the move_group double mutex
11856 * lock thing). See the comments in perf_install_in_context().
11857 */
11858 mutex_lock(&child_ctx->mutex);
11859
11860 /*
11861 * In a single ctx::lock section, de-schedule the events and detach the
11862 * context from the task such that we cannot ever get it scheduled back
11863 * in.
11864 */
11865 raw_spin_lock_irq(&child_ctx->lock);
11866 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
11867
11868 /*
11869 * Now that the context is inactive, destroy the task <-> ctx relation
11870 * and mark the context dead.
11871 */
11872 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
11873 put_ctx(child_ctx); /* cannot be last */
11874 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
11875 put_task_struct(current); /* cannot be last */
11876
11877 clone_ctx = unclone_ctx(child_ctx);
11878 raw_spin_unlock_irq(&child_ctx->lock);
11879
11880 if (clone_ctx)
11881 put_ctx(clone_ctx);
11882
11883 /*
11884 * Report the task dead after unscheduling the events so that we
11885 * won't get any samples after PERF_RECORD_EXIT. We can however still
11886 * get a few PERF_RECORD_READ events.
11887 */
11888 perf_event_task(child, child_ctx, 0);
11889
11890 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
11891 perf_event_exit_event(child_event, child_ctx, child);
11892
11893 mutex_unlock(&child_ctx->mutex);
11894
11895 put_ctx(child_ctx);
11896 }
11897
11898 /*
11899 * When a child task exits, feed back event values to parent events.
11900 *
11901 * Can be called with cred_guard_mutex held when called from
11902 * install_exec_creds().
11903 */
11904 void perf_event_exit_task(struct task_struct *child)
11905 {
11906 struct perf_event *event, *tmp;
11907 int ctxn;
11908
11909 mutex_lock(&child->perf_event_mutex);
11910 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
11911 owner_entry) {
11912 list_del_init(&event->owner_entry);
11913
11914 /*
11915 * Ensure the list deletion is visible before we clear
11916 * the owner, closes a race against perf_release() where
11917 * we need to serialize on the owner->perf_event_mutex.
11918 */
11919 smp_store_release(&event->owner, NULL);
11920 }
11921 mutex_unlock(&child->perf_event_mutex);
11922
11923 for_each_task_context_nr(ctxn)
11924 perf_event_exit_task_context(child, ctxn);
11925
11926 /*
11927 * The perf_event_exit_task_context calls perf_event_task
11928 * with child's task_ctx, which generates EXIT events for
11929 * child contexts and sets child->perf_event_ctxp[] to NULL.
11930 * At this point we need to send EXIT events to cpu contexts.
11931 */
11932 perf_event_task(child, NULL, 0);
11933 }
11934
11935 static void perf_free_event(struct perf_event *event,
11936 struct perf_event_context *ctx)
11937 {
11938 struct perf_event *parent = event->parent;
11939
11940 if (WARN_ON_ONCE(!parent))
11941 return;
11942
11943 mutex_lock(&parent->child_mutex);
11944 list_del_init(&event->child_list);
11945 mutex_unlock(&parent->child_mutex);
11946
11947 put_event(parent);
11948
11949 raw_spin_lock_irq(&ctx->lock);
11950 perf_group_detach(event);
11951 list_del_event(event, ctx);
11952 raw_spin_unlock_irq(&ctx->lock);
11953 free_event(event);
11954 }
11955
11956 /*
11957 * Free a context as created by inheritance by perf_event_init_task() below,
11958 * used by fork() in case of fail.
11959 *
11960 * Even though the task has never lived, the context and events have been
11961 * exposed through the child_list, so we must take care tearing it all down.
11962 */
11963 void perf_event_free_task(struct task_struct *task)
11964 {
11965 struct perf_event_context *ctx;
11966 struct perf_event *event, *tmp;
11967 int ctxn;
11968
11969 for_each_task_context_nr(ctxn) {
11970 ctx = task->perf_event_ctxp[ctxn];
11971 if (!ctx)
11972 continue;
11973
11974 mutex_lock(&ctx->mutex);
11975 raw_spin_lock_irq(&ctx->lock);
11976 /*
11977 * Destroy the task <-> ctx relation and mark the context dead.
11978 *
11979 * This is important because even though the task hasn't been
11980 * exposed yet the context has been (through child_list).
11981 */
11982 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
11983 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
11984 put_task_struct(task); /* cannot be last */
11985 raw_spin_unlock_irq(&ctx->lock);
11986
11987 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
11988 perf_free_event(event, ctx);
11989
11990 mutex_unlock(&ctx->mutex);
11991
11992 /*
11993 * perf_event_release_kernel() could've stolen some of our
11994 * child events and still have them on its free_list. In that
11995 * case we must wait for these events to have been freed (in
11996 * particular all their references to this task must've been
11997 * dropped).
11998 *
11999 * Without this copy_process() will unconditionally free this
12000 * task (irrespective of its reference count) and
12001 * _free_event()'s put_task_struct(event->hw.target) will be a
12002 * use-after-free.
12003 *
12004 * Wait for all events to drop their context reference.
12005 */
12006 wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1);
12007 put_ctx(ctx); /* must be last */
12008 }
12009 }
12010
12011 void perf_event_delayed_put(struct task_struct *task)
12012 {
12013 int ctxn;
12014
12015 for_each_task_context_nr(ctxn)
12016 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
12017 }
12018
12019 struct file *perf_event_get(unsigned int fd)
12020 {
12021 struct file *file = fget(fd);
12022 if (!file)
12023 return ERR_PTR(-EBADF);
12024
12025 if (file->f_op != &perf_fops) {
12026 fput(file);
12027 return ERR_PTR(-EBADF);
12028 }
12029
12030 return file;
12031 }
12032
12033 const struct perf_event *perf_get_event(struct file *file)
12034 {
12035 if (file->f_op != &perf_fops)
12036 return ERR_PTR(-EINVAL);
12037
12038 return file->private_data;
12039 }
12040
12041 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
12042 {
12043 if (!event)
12044 return ERR_PTR(-EINVAL);
12045
12046 return &event->attr;
12047 }
12048
12049 /*
12050 * Inherit an event from parent task to child task.
12051 *
12052 * Returns:
12053 * - valid pointer on success
12054 * - NULL for orphaned events
12055 * - IS_ERR() on error
12056 */
12057 static struct perf_event *
12058 inherit_event(struct perf_event *parent_event,
12059 struct task_struct *parent,
12060 struct perf_event_context *parent_ctx,
12061 struct task_struct *child,
12062 struct perf_event *group_leader,
12063 struct perf_event_context *child_ctx)
12064 {
12065 enum perf_event_state parent_state = parent_event->state;
12066 struct perf_event *child_event;
12067 unsigned long flags;
12068
12069 /*
12070 * Instead of creating recursive hierarchies of events,
12071 * we link inherited events back to the original parent,
12072 * which has a filp for sure, which we use as the reference
12073 * count:
12074 */
12075 if (parent_event->parent)
12076 parent_event = parent_event->parent;
12077
12078 child_event = perf_event_alloc(&parent_event->attr,
12079 parent_event->cpu,
12080 child,
12081 group_leader, parent_event,
12082 NULL, NULL, -1);
12083 if (IS_ERR(child_event))
12084 return child_event;
12085
12086
12087 if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) &&
12088 !child_ctx->task_ctx_data) {
12089 struct pmu *pmu = child_event->pmu;
12090
12091 child_ctx->task_ctx_data = kzalloc(pmu->task_ctx_size,
12092 GFP_KERNEL);
12093 if (!child_ctx->task_ctx_data) {
12094 free_event(child_event);
12095 return ERR_PTR(-ENOMEM);
12096 }
12097 }
12098
12099 /*
12100 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
12101 * must be under the same lock in order to serialize against
12102 * perf_event_release_kernel(), such that either we must observe
12103 * is_orphaned_event() or they will observe us on the child_list.
12104 */
12105 mutex_lock(&parent_event->child_mutex);
12106 if (is_orphaned_event(parent_event) ||
12107 !atomic_long_inc_not_zero(&parent_event->refcount)) {
12108 mutex_unlock(&parent_event->child_mutex);
12109 /* task_ctx_data is freed with child_ctx */
12110 free_event(child_event);
12111 return NULL;
12112 }
12113
12114 get_ctx(child_ctx);
12115
12116 /*
12117 * Make the child state follow the state of the parent event,
12118 * not its attr.disabled bit. We hold the parent's mutex,
12119 * so we won't race with perf_event_{en, dis}able_family.
12120 */
12121 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
12122 child_event->state = PERF_EVENT_STATE_INACTIVE;
12123 else
12124 child_event->state = PERF_EVENT_STATE_OFF;
12125
12126 if (parent_event->attr.freq) {
12127 u64 sample_period = parent_event->hw.sample_period;
12128 struct hw_perf_event *hwc = &child_event->hw;
12129
12130 hwc->sample_period = sample_period;
12131 hwc->last_period = sample_period;
12132
12133 local64_set(&hwc->period_left, sample_period);
12134 }
12135
12136 child_event->ctx = child_ctx;
12137 child_event->overflow_handler = parent_event->overflow_handler;
12138 child_event->overflow_handler_context
12139 = parent_event->overflow_handler_context;
12140
12141 /*
12142 * Precalculate sample_data sizes
12143 */
12144 perf_event__header_size(child_event);
12145 perf_event__id_header_size(child_event);
12146
12147 /*
12148 * Link it up in the child's context:
12149 */
12150 raw_spin_lock_irqsave(&child_ctx->lock, flags);
12151 add_event_to_ctx(child_event, child_ctx);
12152 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
12153
12154 /*
12155 * Link this into the parent event's child list
12156 */
12157 list_add_tail(&child_event->child_list, &parent_event->child_list);
12158 mutex_unlock(&parent_event->child_mutex);
12159
12160 return child_event;
12161 }
12162
12163 /*
12164 * Inherits an event group.
12165 *
12166 * This will quietly suppress orphaned events; !inherit_event() is not an error.
12167 * This matches with perf_event_release_kernel() removing all child events.
12168 *
12169 * Returns:
12170 * - 0 on success
12171 * - <0 on error
12172 */
12173 static int inherit_group(struct perf_event *parent_event,
12174 struct task_struct *parent,
12175 struct perf_event_context *parent_ctx,
12176 struct task_struct *child,
12177 struct perf_event_context *child_ctx)
12178 {
12179 struct perf_event *leader;
12180 struct perf_event *sub;
12181 struct perf_event *child_ctr;
12182
12183 leader = inherit_event(parent_event, parent, parent_ctx,
12184 child, NULL, child_ctx);
12185 if (IS_ERR(leader))
12186 return PTR_ERR(leader);
12187 /*
12188 * @leader can be NULL here because of is_orphaned_event(). In this
12189 * case inherit_event() will create individual events, similar to what
12190 * perf_group_detach() would do anyway.
12191 */
12192 for_each_sibling_event(sub, parent_event) {
12193 child_ctr = inherit_event(sub, parent, parent_ctx,
12194 child, leader, child_ctx);
12195 if (IS_ERR(child_ctr))
12196 return PTR_ERR(child_ctr);
12197
12198 if (sub->aux_event == parent_event && child_ctr &&
12199 !perf_get_aux_event(child_ctr, leader))
12200 return -EINVAL;
12201 }
12202 return 0;
12203 }
12204
12205 /*
12206 * Creates the child task context and tries to inherit the event-group.
12207 *
12208 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
12209 * inherited_all set when we 'fail' to inherit an orphaned event; this is
12210 * consistent with perf_event_release_kernel() removing all child events.
12211 *
12212 * Returns:
12213 * - 0 on success
12214 * - <0 on error
12215 */
12216 static int
12217 inherit_task_group(struct perf_event *event, struct task_struct *parent,
12218 struct perf_event_context *parent_ctx,
12219 struct task_struct *child, int ctxn,
12220 int *inherited_all)
12221 {
12222 int ret;
12223 struct perf_event_context *child_ctx;
12224
12225 if (!event->attr.inherit) {
12226 *inherited_all = 0;
12227 return 0;
12228 }
12229
12230 child_ctx = child->perf_event_ctxp[ctxn];
12231 if (!child_ctx) {
12232 /*
12233 * This is executed from the parent task context, so
12234 * inherit events that have been marked for cloning.
12235 * First allocate and initialize a context for the
12236 * child.
12237 */
12238 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
12239 if (!child_ctx)
12240 return -ENOMEM;
12241
12242 child->perf_event_ctxp[ctxn] = child_ctx;
12243 }
12244
12245 ret = inherit_group(event, parent, parent_ctx,
12246 child, child_ctx);
12247
12248 if (ret)
12249 *inherited_all = 0;
12250
12251 return ret;
12252 }
12253
12254 /*
12255 * Initialize the perf_event context in task_struct
12256 */
12257 static int perf_event_init_context(struct task_struct *child, int ctxn)
12258 {
12259 struct perf_event_context *child_ctx, *parent_ctx;
12260 struct perf_event_context *cloned_ctx;
12261 struct perf_event *event;
12262 struct task_struct *parent = current;
12263 int inherited_all = 1;
12264 unsigned long flags;
12265 int ret = 0;
12266
12267 if (likely(!parent->perf_event_ctxp[ctxn]))
12268 return 0;
12269
12270 /*
12271 * If the parent's context is a clone, pin it so it won't get
12272 * swapped under us.
12273 */
12274 parent_ctx = perf_pin_task_context(parent, ctxn);
12275 if (!parent_ctx)
12276 return 0;
12277
12278 /*
12279 * No need to check if parent_ctx != NULL here; since we saw
12280 * it non-NULL earlier, the only reason for it to become NULL
12281 * is if we exit, and since we're currently in the middle of
12282 * a fork we can't be exiting at the same time.
12283 */
12284
12285 /*
12286 * Lock the parent list. No need to lock the child - not PID
12287 * hashed yet and not running, so nobody can access it.
12288 */
12289 mutex_lock(&parent_ctx->mutex);
12290
12291 /*
12292 * We dont have to disable NMIs - we are only looking at
12293 * the list, not manipulating it:
12294 */
12295 perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
12296 ret = inherit_task_group(event, parent, parent_ctx,
12297 child, ctxn, &inherited_all);
12298 if (ret)
12299 goto out_unlock;
12300 }
12301
12302 /*
12303 * We can't hold ctx->lock when iterating the ->flexible_group list due
12304 * to allocations, but we need to prevent rotation because
12305 * rotate_ctx() will change the list from interrupt context.
12306 */
12307 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
12308 parent_ctx->rotate_disable = 1;
12309 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
12310
12311 perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
12312 ret = inherit_task_group(event, parent, parent_ctx,
12313 child, ctxn, &inherited_all);
12314 if (ret)
12315 goto out_unlock;
12316 }
12317
12318 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
12319 parent_ctx->rotate_disable = 0;
12320
12321 child_ctx = child->perf_event_ctxp[ctxn];
12322
12323 if (child_ctx && inherited_all) {
12324 /*
12325 * Mark the child context as a clone of the parent
12326 * context, or of whatever the parent is a clone of.
12327 *
12328 * Note that if the parent is a clone, the holding of
12329 * parent_ctx->lock avoids it from being uncloned.
12330 */
12331 cloned_ctx = parent_ctx->parent_ctx;
12332 if (cloned_ctx) {
12333 child_ctx->parent_ctx = cloned_ctx;
12334 child_ctx->parent_gen = parent_ctx->parent_gen;
12335 } else {
12336 child_ctx->parent_ctx = parent_ctx;
12337 child_ctx->parent_gen = parent_ctx->generation;
12338 }
12339 get_ctx(child_ctx->parent_ctx);
12340 }
12341
12342 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
12343 out_unlock:
12344 mutex_unlock(&parent_ctx->mutex);
12345
12346 perf_unpin_context(parent_ctx);
12347 put_ctx(parent_ctx);
12348
12349 return ret;
12350 }
12351
12352 /*
12353 * Initialize the perf_event context in task_struct
12354 */
12355 int perf_event_init_task(struct task_struct *child)
12356 {
12357 int ctxn, ret;
12358
12359 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
12360 mutex_init(&child->perf_event_mutex);
12361 INIT_LIST_HEAD(&child->perf_event_list);
12362
12363 for_each_task_context_nr(ctxn) {
12364 ret = perf_event_init_context(child, ctxn);
12365 if (ret) {
12366 perf_event_free_task(child);
12367 return ret;
12368 }
12369 }
12370
12371 return 0;
12372 }
12373
12374 static void __init perf_event_init_all_cpus(void)
12375 {
12376 struct swevent_htable *swhash;
12377 int cpu;
12378
12379 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
12380
12381 for_each_possible_cpu(cpu) {
12382 swhash = &per_cpu(swevent_htable, cpu);
12383 mutex_init(&swhash->hlist_mutex);
12384 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
12385
12386 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
12387 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
12388
12389 #ifdef CONFIG_CGROUP_PERF
12390 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
12391 #endif
12392 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
12393 }
12394 }
12395
12396 static void perf_swevent_init_cpu(unsigned int cpu)
12397 {
12398 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
12399
12400 mutex_lock(&swhash->hlist_mutex);
12401 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
12402 struct swevent_hlist *hlist;
12403
12404 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
12405 WARN_ON(!hlist);
12406 rcu_assign_pointer(swhash->swevent_hlist, hlist);
12407 }
12408 mutex_unlock(&swhash->hlist_mutex);
12409 }
12410
12411 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
12412 static void __perf_event_exit_context(void *__info)
12413 {
12414 struct perf_event_context *ctx = __info;
12415 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
12416 struct perf_event *event;
12417
12418 raw_spin_lock(&ctx->lock);
12419 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
12420 list_for_each_entry(event, &ctx->event_list, event_entry)
12421 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
12422 raw_spin_unlock(&ctx->lock);
12423 }
12424
12425 static void perf_event_exit_cpu_context(int cpu)
12426 {
12427 struct perf_cpu_context *cpuctx;
12428 struct perf_event_context *ctx;
12429 struct pmu *pmu;
12430
12431 mutex_lock(&pmus_lock);
12432 list_for_each_entry(pmu, &pmus, entry) {
12433 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
12434 ctx = &cpuctx->ctx;
12435
12436 mutex_lock(&ctx->mutex);
12437 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
12438 cpuctx->online = 0;
12439 mutex_unlock(&ctx->mutex);
12440 }
12441 cpumask_clear_cpu(cpu, perf_online_mask);
12442 mutex_unlock(&pmus_lock);
12443 }
12444 #else
12445
12446 static void perf_event_exit_cpu_context(int cpu) { }
12447
12448 #endif
12449
12450 int perf_event_init_cpu(unsigned int cpu)
12451 {
12452 struct perf_cpu_context *cpuctx;
12453 struct perf_event_context *ctx;
12454 struct pmu *pmu;
12455
12456 perf_swevent_init_cpu(cpu);
12457
12458 mutex_lock(&pmus_lock);
12459 cpumask_set_cpu(cpu, perf_online_mask);
12460 list_for_each_entry(pmu, &pmus, entry) {
12461 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
12462 ctx = &cpuctx->ctx;
12463
12464 mutex_lock(&ctx->mutex);
12465 cpuctx->online = 1;
12466 mutex_unlock(&ctx->mutex);
12467 }
12468 mutex_unlock(&pmus_lock);
12469
12470 return 0;
12471 }
12472
12473 int perf_event_exit_cpu(unsigned int cpu)
12474 {
12475 perf_event_exit_cpu_context(cpu);
12476 return 0;
12477 }
12478
12479 static int
12480 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
12481 {
12482 int cpu;
12483
12484 for_each_online_cpu(cpu)
12485 perf_event_exit_cpu(cpu);
12486
12487 return NOTIFY_OK;
12488 }
12489
12490 /*
12491 * Run the perf reboot notifier at the very last possible moment so that
12492 * the generic watchdog code runs as long as possible.
12493 */
12494 static struct notifier_block perf_reboot_notifier = {
12495 .notifier_call = perf_reboot,
12496 .priority = INT_MIN,
12497 };
12498
12499 void __init perf_event_init(void)
12500 {
12501 int ret;
12502
12503 idr_init(&pmu_idr);
12504
12505 perf_event_init_all_cpus();
12506 init_srcu_struct(&pmus_srcu);
12507 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
12508 perf_pmu_register(&perf_cpu_clock, NULL, -1);
12509 perf_pmu_register(&perf_task_clock, NULL, -1);
12510 perf_tp_register();
12511 perf_event_init_cpu(smp_processor_id());
12512 register_reboot_notifier(&perf_reboot_notifier);
12513
12514 ret = init_hw_breakpoint();
12515 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
12516
12517 /*
12518 * Build time assertion that we keep the data_head at the intended
12519 * location. IOW, validation we got the __reserved[] size right.
12520 */
12521 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
12522 != 1024);
12523 }
12524
12525 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
12526 char *page)
12527 {
12528 struct perf_pmu_events_attr *pmu_attr =
12529 container_of(attr, struct perf_pmu_events_attr, attr);
12530
12531 if (pmu_attr->event_str)
12532 return sprintf(page, "%s\n", pmu_attr->event_str);
12533
12534 return 0;
12535 }
12536 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
12537
12538 static int __init perf_event_sysfs_init(void)
12539 {
12540 struct pmu *pmu;
12541 int ret;
12542
12543 mutex_lock(&pmus_lock);
12544
12545 ret = bus_register(&pmu_bus);
12546 if (ret)
12547 goto unlock;
12548
12549 list_for_each_entry(pmu, &pmus, entry) {
12550 if (!pmu->name || pmu->type < 0)
12551 continue;
12552
12553 ret = pmu_dev_alloc(pmu);
12554 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
12555 }
12556 pmu_bus_running = 1;
12557 ret = 0;
12558
12559 unlock:
12560 mutex_unlock(&pmus_lock);
12561
12562 return ret;
12563 }
12564 device_initcall(perf_event_sysfs_init);
12565
12566 #ifdef CONFIG_CGROUP_PERF
12567 static struct cgroup_subsys_state *
12568 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
12569 {
12570 struct perf_cgroup *jc;
12571
12572 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
12573 if (!jc)
12574 return ERR_PTR(-ENOMEM);
12575
12576 jc->info = alloc_percpu(struct perf_cgroup_info);
12577 if (!jc->info) {
12578 kfree(jc);
12579 return ERR_PTR(-ENOMEM);
12580 }
12581
12582 return &jc->css;
12583 }
12584
12585 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
12586 {
12587 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
12588
12589 free_percpu(jc->info);
12590 kfree(jc);
12591 }
12592
12593 static int __perf_cgroup_move(void *info)
12594 {
12595 struct task_struct *task = info;
12596 rcu_read_lock();
12597 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
12598 rcu_read_unlock();
12599 return 0;
12600 }
12601
12602 static void perf_cgroup_attach(struct cgroup_taskset *tset)
12603 {
12604 struct task_struct *task;
12605 struct cgroup_subsys_state *css;
12606
12607 cgroup_taskset_for_each(task, css, tset)
12608 task_function_call(task, __perf_cgroup_move, task);
12609 }
12610
12611 struct cgroup_subsys perf_event_cgrp_subsys = {
12612 .css_alloc = perf_cgroup_css_alloc,
12613 .css_free = perf_cgroup_css_free,
12614 .attach = perf_cgroup_attach,
12615 /*
12616 * Implicitly enable on dfl hierarchy so that perf events can
12617 * always be filtered by cgroup2 path as long as perf_event
12618 * controller is not mounted on a legacy hierarchy.
12619 */
12620 .implicit_on_dfl = true,
12621 .threaded = true,
12622 };
12623 #endif /* CONFIG_CGROUP_PERF */