]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - kernel/events/core.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next
[mirror_ubuntu-zesty-kernel.git] / kernel / events / core.c
1 /*
2 * Performance events core code:
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49
50 #include "internal.h"
51
52 #include <asm/irq_regs.h>
53
54 typedef int (*remote_function_f)(void *);
55
56 struct remote_function_call {
57 struct task_struct *p;
58 remote_function_f func;
59 void *info;
60 int ret;
61 };
62
63 static void remote_function(void *data)
64 {
65 struct remote_function_call *tfc = data;
66 struct task_struct *p = tfc->p;
67
68 if (p) {
69 /* -EAGAIN */
70 if (task_cpu(p) != smp_processor_id())
71 return;
72
73 /*
74 * Now that we're on right CPU with IRQs disabled, we can test
75 * if we hit the right task without races.
76 */
77
78 tfc->ret = -ESRCH; /* No such (running) process */
79 if (p != current)
80 return;
81 }
82
83 tfc->ret = tfc->func(tfc->info);
84 }
85
86 /**
87 * task_function_call - call a function on the cpu on which a task runs
88 * @p: the task to evaluate
89 * @func: the function to be called
90 * @info: the function call argument
91 *
92 * Calls the function @func when the task is currently running. This might
93 * be on the current CPU, which just calls the function directly
94 *
95 * returns: @func return value, or
96 * -ESRCH - when the process isn't running
97 * -EAGAIN - when the process moved away
98 */
99 static int
100 task_function_call(struct task_struct *p, remote_function_f func, void *info)
101 {
102 struct remote_function_call data = {
103 .p = p,
104 .func = func,
105 .info = info,
106 .ret = -EAGAIN,
107 };
108 int ret;
109
110 do {
111 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
112 if (!ret)
113 ret = data.ret;
114 } while (ret == -EAGAIN);
115
116 return ret;
117 }
118
119 /**
120 * cpu_function_call - call a function on the cpu
121 * @func: the function to be called
122 * @info: the function call argument
123 *
124 * Calls the function @func on the remote cpu.
125 *
126 * returns: @func return value or -ENXIO when the cpu is offline
127 */
128 static int cpu_function_call(int cpu, remote_function_f func, void *info)
129 {
130 struct remote_function_call data = {
131 .p = NULL,
132 .func = func,
133 .info = info,
134 .ret = -ENXIO, /* No such CPU */
135 };
136
137 smp_call_function_single(cpu, remote_function, &data, 1);
138
139 return data.ret;
140 }
141
142 static inline struct perf_cpu_context *
143 __get_cpu_context(struct perf_event_context *ctx)
144 {
145 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
146 }
147
148 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
149 struct perf_event_context *ctx)
150 {
151 raw_spin_lock(&cpuctx->ctx.lock);
152 if (ctx)
153 raw_spin_lock(&ctx->lock);
154 }
155
156 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
157 struct perf_event_context *ctx)
158 {
159 if (ctx)
160 raw_spin_unlock(&ctx->lock);
161 raw_spin_unlock(&cpuctx->ctx.lock);
162 }
163
164 #define TASK_TOMBSTONE ((void *)-1L)
165
166 static bool is_kernel_event(struct perf_event *event)
167 {
168 return READ_ONCE(event->owner) == TASK_TOMBSTONE;
169 }
170
171 /*
172 * On task ctx scheduling...
173 *
174 * When !ctx->nr_events a task context will not be scheduled. This means
175 * we can disable the scheduler hooks (for performance) without leaving
176 * pending task ctx state.
177 *
178 * This however results in two special cases:
179 *
180 * - removing the last event from a task ctx; this is relatively straight
181 * forward and is done in __perf_remove_from_context.
182 *
183 * - adding the first event to a task ctx; this is tricky because we cannot
184 * rely on ctx->is_active and therefore cannot use event_function_call().
185 * See perf_install_in_context().
186 *
187 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
188 */
189
190 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
191 struct perf_event_context *, void *);
192
193 struct event_function_struct {
194 struct perf_event *event;
195 event_f func;
196 void *data;
197 };
198
199 static int event_function(void *info)
200 {
201 struct event_function_struct *efs = info;
202 struct perf_event *event = efs->event;
203 struct perf_event_context *ctx = event->ctx;
204 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
205 struct perf_event_context *task_ctx = cpuctx->task_ctx;
206 int ret = 0;
207
208 WARN_ON_ONCE(!irqs_disabled());
209
210 perf_ctx_lock(cpuctx, task_ctx);
211 /*
212 * Since we do the IPI call without holding ctx->lock things can have
213 * changed, double check we hit the task we set out to hit.
214 */
215 if (ctx->task) {
216 if (ctx->task != current) {
217 ret = -ESRCH;
218 goto unlock;
219 }
220
221 /*
222 * We only use event_function_call() on established contexts,
223 * and event_function() is only ever called when active (or
224 * rather, we'll have bailed in task_function_call() or the
225 * above ctx->task != current test), therefore we must have
226 * ctx->is_active here.
227 */
228 WARN_ON_ONCE(!ctx->is_active);
229 /*
230 * And since we have ctx->is_active, cpuctx->task_ctx must
231 * match.
232 */
233 WARN_ON_ONCE(task_ctx != ctx);
234 } else {
235 WARN_ON_ONCE(&cpuctx->ctx != ctx);
236 }
237
238 efs->func(event, cpuctx, ctx, efs->data);
239 unlock:
240 perf_ctx_unlock(cpuctx, task_ctx);
241
242 return ret;
243 }
244
245 static void event_function_call(struct perf_event *event, event_f func, void *data)
246 {
247 struct perf_event_context *ctx = event->ctx;
248 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
249 struct event_function_struct efs = {
250 .event = event,
251 .func = func,
252 .data = data,
253 };
254
255 if (!event->parent) {
256 /*
257 * If this is a !child event, we must hold ctx::mutex to
258 * stabilize the the event->ctx relation. See
259 * perf_event_ctx_lock().
260 */
261 lockdep_assert_held(&ctx->mutex);
262 }
263
264 if (!task) {
265 cpu_function_call(event->cpu, event_function, &efs);
266 return;
267 }
268
269 if (task == TASK_TOMBSTONE)
270 return;
271
272 again:
273 if (!task_function_call(task, event_function, &efs))
274 return;
275
276 raw_spin_lock_irq(&ctx->lock);
277 /*
278 * Reload the task pointer, it might have been changed by
279 * a concurrent perf_event_context_sched_out().
280 */
281 task = ctx->task;
282 if (task == TASK_TOMBSTONE) {
283 raw_spin_unlock_irq(&ctx->lock);
284 return;
285 }
286 if (ctx->is_active) {
287 raw_spin_unlock_irq(&ctx->lock);
288 goto again;
289 }
290 func(event, NULL, ctx, data);
291 raw_spin_unlock_irq(&ctx->lock);
292 }
293
294 /*
295 * Similar to event_function_call() + event_function(), but hard assumes IRQs
296 * are already disabled and we're on the right CPU.
297 */
298 static void event_function_local(struct perf_event *event, event_f func, void *data)
299 {
300 struct perf_event_context *ctx = event->ctx;
301 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
302 struct task_struct *task = READ_ONCE(ctx->task);
303 struct perf_event_context *task_ctx = NULL;
304
305 WARN_ON_ONCE(!irqs_disabled());
306
307 if (task) {
308 if (task == TASK_TOMBSTONE)
309 return;
310
311 task_ctx = ctx;
312 }
313
314 perf_ctx_lock(cpuctx, task_ctx);
315
316 task = ctx->task;
317 if (task == TASK_TOMBSTONE)
318 goto unlock;
319
320 if (task) {
321 /*
322 * We must be either inactive or active and the right task,
323 * otherwise we're screwed, since we cannot IPI to somewhere
324 * else.
325 */
326 if (ctx->is_active) {
327 if (WARN_ON_ONCE(task != current))
328 goto unlock;
329
330 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
331 goto unlock;
332 }
333 } else {
334 WARN_ON_ONCE(&cpuctx->ctx != ctx);
335 }
336
337 func(event, cpuctx, ctx, data);
338 unlock:
339 perf_ctx_unlock(cpuctx, task_ctx);
340 }
341
342 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
343 PERF_FLAG_FD_OUTPUT |\
344 PERF_FLAG_PID_CGROUP |\
345 PERF_FLAG_FD_CLOEXEC)
346
347 /*
348 * branch priv levels that need permission checks
349 */
350 #define PERF_SAMPLE_BRANCH_PERM_PLM \
351 (PERF_SAMPLE_BRANCH_KERNEL |\
352 PERF_SAMPLE_BRANCH_HV)
353
354 enum event_type_t {
355 EVENT_FLEXIBLE = 0x1,
356 EVENT_PINNED = 0x2,
357 EVENT_TIME = 0x4,
358 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
359 };
360
361 /*
362 * perf_sched_events : >0 events exist
363 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
364 */
365
366 static void perf_sched_delayed(struct work_struct *work);
367 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
368 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
369 static DEFINE_MUTEX(perf_sched_mutex);
370 static atomic_t perf_sched_count;
371
372 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
373 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
374 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
375
376 static atomic_t nr_mmap_events __read_mostly;
377 static atomic_t nr_comm_events __read_mostly;
378 static atomic_t nr_task_events __read_mostly;
379 static atomic_t nr_freq_events __read_mostly;
380 static atomic_t nr_switch_events __read_mostly;
381
382 static LIST_HEAD(pmus);
383 static DEFINE_MUTEX(pmus_lock);
384 static struct srcu_struct pmus_srcu;
385
386 /*
387 * perf event paranoia level:
388 * -1 - not paranoid at all
389 * 0 - disallow raw tracepoint access for unpriv
390 * 1 - disallow cpu events for unpriv
391 * 2 - disallow kernel profiling for unpriv
392 */
393 int sysctl_perf_event_paranoid __read_mostly = 2;
394
395 /* Minimum for 512 kiB + 1 user control page */
396 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
397
398 /*
399 * max perf event sample rate
400 */
401 #define DEFAULT_MAX_SAMPLE_RATE 100000
402 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
403 #define DEFAULT_CPU_TIME_MAX_PERCENT 25
404
405 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
406
407 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
408 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
409
410 static int perf_sample_allowed_ns __read_mostly =
411 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
412
413 static void update_perf_cpu_limits(void)
414 {
415 u64 tmp = perf_sample_period_ns;
416
417 tmp *= sysctl_perf_cpu_time_max_percent;
418 tmp = div_u64(tmp, 100);
419 if (!tmp)
420 tmp = 1;
421
422 WRITE_ONCE(perf_sample_allowed_ns, tmp);
423 }
424
425 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
426
427 int perf_proc_update_handler(struct ctl_table *table, int write,
428 void __user *buffer, size_t *lenp,
429 loff_t *ppos)
430 {
431 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
432
433 if (ret || !write)
434 return ret;
435
436 /*
437 * If throttling is disabled don't allow the write:
438 */
439 if (sysctl_perf_cpu_time_max_percent == 100 ||
440 sysctl_perf_cpu_time_max_percent == 0)
441 return -EINVAL;
442
443 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
444 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
445 update_perf_cpu_limits();
446
447 return 0;
448 }
449
450 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
451
452 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
453 void __user *buffer, size_t *lenp,
454 loff_t *ppos)
455 {
456 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
457
458 if (ret || !write)
459 return ret;
460
461 if (sysctl_perf_cpu_time_max_percent == 100 ||
462 sysctl_perf_cpu_time_max_percent == 0) {
463 printk(KERN_WARNING
464 "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
465 WRITE_ONCE(perf_sample_allowed_ns, 0);
466 } else {
467 update_perf_cpu_limits();
468 }
469
470 return 0;
471 }
472
473 /*
474 * perf samples are done in some very critical code paths (NMIs).
475 * If they take too much CPU time, the system can lock up and not
476 * get any real work done. This will drop the sample rate when
477 * we detect that events are taking too long.
478 */
479 #define NR_ACCUMULATED_SAMPLES 128
480 static DEFINE_PER_CPU(u64, running_sample_length);
481
482 static u64 __report_avg;
483 static u64 __report_allowed;
484
485 static void perf_duration_warn(struct irq_work *w)
486 {
487 printk_ratelimited(KERN_INFO
488 "perf: interrupt took too long (%lld > %lld), lowering "
489 "kernel.perf_event_max_sample_rate to %d\n",
490 __report_avg, __report_allowed,
491 sysctl_perf_event_sample_rate);
492 }
493
494 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
495
496 void perf_sample_event_took(u64 sample_len_ns)
497 {
498 u64 max_len = READ_ONCE(perf_sample_allowed_ns);
499 u64 running_len;
500 u64 avg_len;
501 u32 max;
502
503 if (max_len == 0)
504 return;
505
506 /* Decay the counter by 1 average sample. */
507 running_len = __this_cpu_read(running_sample_length);
508 running_len -= running_len/NR_ACCUMULATED_SAMPLES;
509 running_len += sample_len_ns;
510 __this_cpu_write(running_sample_length, running_len);
511
512 /*
513 * Note: this will be biased artifically low until we have
514 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
515 * from having to maintain a count.
516 */
517 avg_len = running_len/NR_ACCUMULATED_SAMPLES;
518 if (avg_len <= max_len)
519 return;
520
521 __report_avg = avg_len;
522 __report_allowed = max_len;
523
524 /*
525 * Compute a throttle threshold 25% below the current duration.
526 */
527 avg_len += avg_len / 4;
528 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
529 if (avg_len < max)
530 max /= (u32)avg_len;
531 else
532 max = 1;
533
534 WRITE_ONCE(perf_sample_allowed_ns, avg_len);
535 WRITE_ONCE(max_samples_per_tick, max);
536
537 sysctl_perf_event_sample_rate = max * HZ;
538 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
539
540 if (!irq_work_queue(&perf_duration_work)) {
541 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
542 "kernel.perf_event_max_sample_rate to %d\n",
543 __report_avg, __report_allowed,
544 sysctl_perf_event_sample_rate);
545 }
546 }
547
548 static atomic64_t perf_event_id;
549
550 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
551 enum event_type_t event_type);
552
553 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
554 enum event_type_t event_type,
555 struct task_struct *task);
556
557 static void update_context_time(struct perf_event_context *ctx);
558 static u64 perf_event_time(struct perf_event *event);
559
560 void __weak perf_event_print_debug(void) { }
561
562 extern __weak const char *perf_pmu_name(void)
563 {
564 return "pmu";
565 }
566
567 static inline u64 perf_clock(void)
568 {
569 return local_clock();
570 }
571
572 static inline u64 perf_event_clock(struct perf_event *event)
573 {
574 return event->clock();
575 }
576
577 #ifdef CONFIG_CGROUP_PERF
578
579 static inline bool
580 perf_cgroup_match(struct perf_event *event)
581 {
582 struct perf_event_context *ctx = event->ctx;
583 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
584
585 /* @event doesn't care about cgroup */
586 if (!event->cgrp)
587 return true;
588
589 /* wants specific cgroup scope but @cpuctx isn't associated with any */
590 if (!cpuctx->cgrp)
591 return false;
592
593 /*
594 * Cgroup scoping is recursive. An event enabled for a cgroup is
595 * also enabled for all its descendant cgroups. If @cpuctx's
596 * cgroup is a descendant of @event's (the test covers identity
597 * case), it's a match.
598 */
599 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
600 event->cgrp->css.cgroup);
601 }
602
603 static inline void perf_detach_cgroup(struct perf_event *event)
604 {
605 css_put(&event->cgrp->css);
606 event->cgrp = NULL;
607 }
608
609 static inline int is_cgroup_event(struct perf_event *event)
610 {
611 return event->cgrp != NULL;
612 }
613
614 static inline u64 perf_cgroup_event_time(struct perf_event *event)
615 {
616 struct perf_cgroup_info *t;
617
618 t = per_cpu_ptr(event->cgrp->info, event->cpu);
619 return t->time;
620 }
621
622 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
623 {
624 struct perf_cgroup_info *info;
625 u64 now;
626
627 now = perf_clock();
628
629 info = this_cpu_ptr(cgrp->info);
630
631 info->time += now - info->timestamp;
632 info->timestamp = now;
633 }
634
635 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
636 {
637 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
638 if (cgrp_out)
639 __update_cgrp_time(cgrp_out);
640 }
641
642 static inline void update_cgrp_time_from_event(struct perf_event *event)
643 {
644 struct perf_cgroup *cgrp;
645
646 /*
647 * ensure we access cgroup data only when needed and
648 * when we know the cgroup is pinned (css_get)
649 */
650 if (!is_cgroup_event(event))
651 return;
652
653 cgrp = perf_cgroup_from_task(current, event->ctx);
654 /*
655 * Do not update time when cgroup is not active
656 */
657 if (cgrp == event->cgrp)
658 __update_cgrp_time(event->cgrp);
659 }
660
661 static inline void
662 perf_cgroup_set_timestamp(struct task_struct *task,
663 struct perf_event_context *ctx)
664 {
665 struct perf_cgroup *cgrp;
666 struct perf_cgroup_info *info;
667
668 /*
669 * ctx->lock held by caller
670 * ensure we do not access cgroup data
671 * unless we have the cgroup pinned (css_get)
672 */
673 if (!task || !ctx->nr_cgroups)
674 return;
675
676 cgrp = perf_cgroup_from_task(task, ctx);
677 info = this_cpu_ptr(cgrp->info);
678 info->timestamp = ctx->timestamp;
679 }
680
681 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
682 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
683
684 /*
685 * reschedule events based on the cgroup constraint of task.
686 *
687 * mode SWOUT : schedule out everything
688 * mode SWIN : schedule in based on cgroup for next
689 */
690 static void perf_cgroup_switch(struct task_struct *task, int mode)
691 {
692 struct perf_cpu_context *cpuctx;
693 struct pmu *pmu;
694 unsigned long flags;
695
696 /*
697 * disable interrupts to avoid geting nr_cgroup
698 * changes via __perf_event_disable(). Also
699 * avoids preemption.
700 */
701 local_irq_save(flags);
702
703 /*
704 * we reschedule only in the presence of cgroup
705 * constrained events.
706 */
707
708 list_for_each_entry_rcu(pmu, &pmus, entry) {
709 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
710 if (cpuctx->unique_pmu != pmu)
711 continue; /* ensure we process each cpuctx once */
712
713 /*
714 * perf_cgroup_events says at least one
715 * context on this CPU has cgroup events.
716 *
717 * ctx->nr_cgroups reports the number of cgroup
718 * events for a context.
719 */
720 if (cpuctx->ctx.nr_cgroups > 0) {
721 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
722 perf_pmu_disable(cpuctx->ctx.pmu);
723
724 if (mode & PERF_CGROUP_SWOUT) {
725 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
726 /*
727 * must not be done before ctxswout due
728 * to event_filter_match() in event_sched_out()
729 */
730 cpuctx->cgrp = NULL;
731 }
732
733 if (mode & PERF_CGROUP_SWIN) {
734 WARN_ON_ONCE(cpuctx->cgrp);
735 /*
736 * set cgrp before ctxsw in to allow
737 * event_filter_match() to not have to pass
738 * task around
739 * we pass the cpuctx->ctx to perf_cgroup_from_task()
740 * because cgorup events are only per-cpu
741 */
742 cpuctx->cgrp = perf_cgroup_from_task(task, &cpuctx->ctx);
743 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
744 }
745 perf_pmu_enable(cpuctx->ctx.pmu);
746 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
747 }
748 }
749
750 local_irq_restore(flags);
751 }
752
753 static inline void perf_cgroup_sched_out(struct task_struct *task,
754 struct task_struct *next)
755 {
756 struct perf_cgroup *cgrp1;
757 struct perf_cgroup *cgrp2 = NULL;
758
759 rcu_read_lock();
760 /*
761 * we come here when we know perf_cgroup_events > 0
762 * we do not need to pass the ctx here because we know
763 * we are holding the rcu lock
764 */
765 cgrp1 = perf_cgroup_from_task(task, NULL);
766 cgrp2 = perf_cgroup_from_task(next, NULL);
767
768 /*
769 * only schedule out current cgroup events if we know
770 * that we are switching to a different cgroup. Otherwise,
771 * do no touch the cgroup events.
772 */
773 if (cgrp1 != cgrp2)
774 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
775
776 rcu_read_unlock();
777 }
778
779 static inline void perf_cgroup_sched_in(struct task_struct *prev,
780 struct task_struct *task)
781 {
782 struct perf_cgroup *cgrp1;
783 struct perf_cgroup *cgrp2 = NULL;
784
785 rcu_read_lock();
786 /*
787 * we come here when we know perf_cgroup_events > 0
788 * we do not need to pass the ctx here because we know
789 * we are holding the rcu lock
790 */
791 cgrp1 = perf_cgroup_from_task(task, NULL);
792 cgrp2 = perf_cgroup_from_task(prev, NULL);
793
794 /*
795 * only need to schedule in cgroup events if we are changing
796 * cgroup during ctxsw. Cgroup events were not scheduled
797 * out of ctxsw out if that was not the case.
798 */
799 if (cgrp1 != cgrp2)
800 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
801
802 rcu_read_unlock();
803 }
804
805 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
806 struct perf_event_attr *attr,
807 struct perf_event *group_leader)
808 {
809 struct perf_cgroup *cgrp;
810 struct cgroup_subsys_state *css;
811 struct fd f = fdget(fd);
812 int ret = 0;
813
814 if (!f.file)
815 return -EBADF;
816
817 css = css_tryget_online_from_dir(f.file->f_path.dentry,
818 &perf_event_cgrp_subsys);
819 if (IS_ERR(css)) {
820 ret = PTR_ERR(css);
821 goto out;
822 }
823
824 cgrp = container_of(css, struct perf_cgroup, css);
825 event->cgrp = cgrp;
826
827 /*
828 * all events in a group must monitor
829 * the same cgroup because a task belongs
830 * to only one perf cgroup at a time
831 */
832 if (group_leader && group_leader->cgrp != cgrp) {
833 perf_detach_cgroup(event);
834 ret = -EINVAL;
835 }
836 out:
837 fdput(f);
838 return ret;
839 }
840
841 static inline void
842 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
843 {
844 struct perf_cgroup_info *t;
845 t = per_cpu_ptr(event->cgrp->info, event->cpu);
846 event->shadow_ctx_time = now - t->timestamp;
847 }
848
849 static inline void
850 perf_cgroup_defer_enabled(struct perf_event *event)
851 {
852 /*
853 * when the current task's perf cgroup does not match
854 * the event's, we need to remember to call the
855 * perf_mark_enable() function the first time a task with
856 * a matching perf cgroup is scheduled in.
857 */
858 if (is_cgroup_event(event) && !perf_cgroup_match(event))
859 event->cgrp_defer_enabled = 1;
860 }
861
862 static inline void
863 perf_cgroup_mark_enabled(struct perf_event *event,
864 struct perf_event_context *ctx)
865 {
866 struct perf_event *sub;
867 u64 tstamp = perf_event_time(event);
868
869 if (!event->cgrp_defer_enabled)
870 return;
871
872 event->cgrp_defer_enabled = 0;
873
874 event->tstamp_enabled = tstamp - event->total_time_enabled;
875 list_for_each_entry(sub, &event->sibling_list, group_entry) {
876 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
877 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
878 sub->cgrp_defer_enabled = 0;
879 }
880 }
881 }
882
883 /*
884 * Update cpuctx->cgrp so that it is set when first cgroup event is added and
885 * cleared when last cgroup event is removed.
886 */
887 static inline void
888 list_update_cgroup_event(struct perf_event *event,
889 struct perf_event_context *ctx, bool add)
890 {
891 struct perf_cpu_context *cpuctx;
892
893 if (!is_cgroup_event(event))
894 return;
895
896 if (add && ctx->nr_cgroups++)
897 return;
898 else if (!add && --ctx->nr_cgroups)
899 return;
900 /*
901 * Because cgroup events are always per-cpu events,
902 * this will always be called from the right CPU.
903 */
904 cpuctx = __get_cpu_context(ctx);
905 cpuctx->cgrp = add ? event->cgrp : NULL;
906 }
907
908 #else /* !CONFIG_CGROUP_PERF */
909
910 static inline bool
911 perf_cgroup_match(struct perf_event *event)
912 {
913 return true;
914 }
915
916 static inline void perf_detach_cgroup(struct perf_event *event)
917 {}
918
919 static inline int is_cgroup_event(struct perf_event *event)
920 {
921 return 0;
922 }
923
924 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
925 {
926 return 0;
927 }
928
929 static inline void update_cgrp_time_from_event(struct perf_event *event)
930 {
931 }
932
933 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
934 {
935 }
936
937 static inline void perf_cgroup_sched_out(struct task_struct *task,
938 struct task_struct *next)
939 {
940 }
941
942 static inline void perf_cgroup_sched_in(struct task_struct *prev,
943 struct task_struct *task)
944 {
945 }
946
947 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
948 struct perf_event_attr *attr,
949 struct perf_event *group_leader)
950 {
951 return -EINVAL;
952 }
953
954 static inline void
955 perf_cgroup_set_timestamp(struct task_struct *task,
956 struct perf_event_context *ctx)
957 {
958 }
959
960 void
961 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
962 {
963 }
964
965 static inline void
966 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
967 {
968 }
969
970 static inline u64 perf_cgroup_event_time(struct perf_event *event)
971 {
972 return 0;
973 }
974
975 static inline void
976 perf_cgroup_defer_enabled(struct perf_event *event)
977 {
978 }
979
980 static inline void
981 perf_cgroup_mark_enabled(struct perf_event *event,
982 struct perf_event_context *ctx)
983 {
984 }
985
986 static inline void
987 list_update_cgroup_event(struct perf_event *event,
988 struct perf_event_context *ctx, bool add)
989 {
990 }
991
992 #endif
993
994 /*
995 * set default to be dependent on timer tick just
996 * like original code
997 */
998 #define PERF_CPU_HRTIMER (1000 / HZ)
999 /*
1000 * function must be called with interrupts disbled
1001 */
1002 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1003 {
1004 struct perf_cpu_context *cpuctx;
1005 int rotations = 0;
1006
1007 WARN_ON(!irqs_disabled());
1008
1009 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1010 rotations = perf_rotate_context(cpuctx);
1011
1012 raw_spin_lock(&cpuctx->hrtimer_lock);
1013 if (rotations)
1014 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1015 else
1016 cpuctx->hrtimer_active = 0;
1017 raw_spin_unlock(&cpuctx->hrtimer_lock);
1018
1019 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1020 }
1021
1022 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1023 {
1024 struct hrtimer *timer = &cpuctx->hrtimer;
1025 struct pmu *pmu = cpuctx->ctx.pmu;
1026 u64 interval;
1027
1028 /* no multiplexing needed for SW PMU */
1029 if (pmu->task_ctx_nr == perf_sw_context)
1030 return;
1031
1032 /*
1033 * check default is sane, if not set then force to
1034 * default interval (1/tick)
1035 */
1036 interval = pmu->hrtimer_interval_ms;
1037 if (interval < 1)
1038 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1039
1040 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1041
1042 raw_spin_lock_init(&cpuctx->hrtimer_lock);
1043 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
1044 timer->function = perf_mux_hrtimer_handler;
1045 }
1046
1047 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1048 {
1049 struct hrtimer *timer = &cpuctx->hrtimer;
1050 struct pmu *pmu = cpuctx->ctx.pmu;
1051 unsigned long flags;
1052
1053 /* not for SW PMU */
1054 if (pmu->task_ctx_nr == perf_sw_context)
1055 return 0;
1056
1057 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1058 if (!cpuctx->hrtimer_active) {
1059 cpuctx->hrtimer_active = 1;
1060 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1061 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1062 }
1063 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1064
1065 return 0;
1066 }
1067
1068 void perf_pmu_disable(struct pmu *pmu)
1069 {
1070 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1071 if (!(*count)++)
1072 pmu->pmu_disable(pmu);
1073 }
1074
1075 void perf_pmu_enable(struct pmu *pmu)
1076 {
1077 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1078 if (!--(*count))
1079 pmu->pmu_enable(pmu);
1080 }
1081
1082 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1083
1084 /*
1085 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1086 * perf_event_task_tick() are fully serialized because they're strictly cpu
1087 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1088 * disabled, while perf_event_task_tick is called from IRQ context.
1089 */
1090 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1091 {
1092 struct list_head *head = this_cpu_ptr(&active_ctx_list);
1093
1094 WARN_ON(!irqs_disabled());
1095
1096 WARN_ON(!list_empty(&ctx->active_ctx_list));
1097
1098 list_add(&ctx->active_ctx_list, head);
1099 }
1100
1101 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1102 {
1103 WARN_ON(!irqs_disabled());
1104
1105 WARN_ON(list_empty(&ctx->active_ctx_list));
1106
1107 list_del_init(&ctx->active_ctx_list);
1108 }
1109
1110 static void get_ctx(struct perf_event_context *ctx)
1111 {
1112 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1113 }
1114
1115 static void free_ctx(struct rcu_head *head)
1116 {
1117 struct perf_event_context *ctx;
1118
1119 ctx = container_of(head, struct perf_event_context, rcu_head);
1120 kfree(ctx->task_ctx_data);
1121 kfree(ctx);
1122 }
1123
1124 static void put_ctx(struct perf_event_context *ctx)
1125 {
1126 if (atomic_dec_and_test(&ctx->refcount)) {
1127 if (ctx->parent_ctx)
1128 put_ctx(ctx->parent_ctx);
1129 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1130 put_task_struct(ctx->task);
1131 call_rcu(&ctx->rcu_head, free_ctx);
1132 }
1133 }
1134
1135 /*
1136 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1137 * perf_pmu_migrate_context() we need some magic.
1138 *
1139 * Those places that change perf_event::ctx will hold both
1140 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1141 *
1142 * Lock ordering is by mutex address. There are two other sites where
1143 * perf_event_context::mutex nests and those are:
1144 *
1145 * - perf_event_exit_task_context() [ child , 0 ]
1146 * perf_event_exit_event()
1147 * put_event() [ parent, 1 ]
1148 *
1149 * - perf_event_init_context() [ parent, 0 ]
1150 * inherit_task_group()
1151 * inherit_group()
1152 * inherit_event()
1153 * perf_event_alloc()
1154 * perf_init_event()
1155 * perf_try_init_event() [ child , 1 ]
1156 *
1157 * While it appears there is an obvious deadlock here -- the parent and child
1158 * nesting levels are inverted between the two. This is in fact safe because
1159 * life-time rules separate them. That is an exiting task cannot fork, and a
1160 * spawning task cannot (yet) exit.
1161 *
1162 * But remember that that these are parent<->child context relations, and
1163 * migration does not affect children, therefore these two orderings should not
1164 * interact.
1165 *
1166 * The change in perf_event::ctx does not affect children (as claimed above)
1167 * because the sys_perf_event_open() case will install a new event and break
1168 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1169 * concerned with cpuctx and that doesn't have children.
1170 *
1171 * The places that change perf_event::ctx will issue:
1172 *
1173 * perf_remove_from_context();
1174 * synchronize_rcu();
1175 * perf_install_in_context();
1176 *
1177 * to affect the change. The remove_from_context() + synchronize_rcu() should
1178 * quiesce the event, after which we can install it in the new location. This
1179 * means that only external vectors (perf_fops, prctl) can perturb the event
1180 * while in transit. Therefore all such accessors should also acquire
1181 * perf_event_context::mutex to serialize against this.
1182 *
1183 * However; because event->ctx can change while we're waiting to acquire
1184 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1185 * function.
1186 *
1187 * Lock order:
1188 * cred_guard_mutex
1189 * task_struct::perf_event_mutex
1190 * perf_event_context::mutex
1191 * perf_event::child_mutex;
1192 * perf_event_context::lock
1193 * perf_event::mmap_mutex
1194 * mmap_sem
1195 */
1196 static struct perf_event_context *
1197 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1198 {
1199 struct perf_event_context *ctx;
1200
1201 again:
1202 rcu_read_lock();
1203 ctx = ACCESS_ONCE(event->ctx);
1204 if (!atomic_inc_not_zero(&ctx->refcount)) {
1205 rcu_read_unlock();
1206 goto again;
1207 }
1208 rcu_read_unlock();
1209
1210 mutex_lock_nested(&ctx->mutex, nesting);
1211 if (event->ctx != ctx) {
1212 mutex_unlock(&ctx->mutex);
1213 put_ctx(ctx);
1214 goto again;
1215 }
1216
1217 return ctx;
1218 }
1219
1220 static inline struct perf_event_context *
1221 perf_event_ctx_lock(struct perf_event *event)
1222 {
1223 return perf_event_ctx_lock_nested(event, 0);
1224 }
1225
1226 static void perf_event_ctx_unlock(struct perf_event *event,
1227 struct perf_event_context *ctx)
1228 {
1229 mutex_unlock(&ctx->mutex);
1230 put_ctx(ctx);
1231 }
1232
1233 /*
1234 * This must be done under the ctx->lock, such as to serialize against
1235 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1236 * calling scheduler related locks and ctx->lock nests inside those.
1237 */
1238 static __must_check struct perf_event_context *
1239 unclone_ctx(struct perf_event_context *ctx)
1240 {
1241 struct perf_event_context *parent_ctx = ctx->parent_ctx;
1242
1243 lockdep_assert_held(&ctx->lock);
1244
1245 if (parent_ctx)
1246 ctx->parent_ctx = NULL;
1247 ctx->generation++;
1248
1249 return parent_ctx;
1250 }
1251
1252 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1253 {
1254 /*
1255 * only top level events have the pid namespace they were created in
1256 */
1257 if (event->parent)
1258 event = event->parent;
1259
1260 return task_tgid_nr_ns(p, event->ns);
1261 }
1262
1263 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1264 {
1265 /*
1266 * only top level events have the pid namespace they were created in
1267 */
1268 if (event->parent)
1269 event = event->parent;
1270
1271 return task_pid_nr_ns(p, event->ns);
1272 }
1273
1274 /*
1275 * If we inherit events we want to return the parent event id
1276 * to userspace.
1277 */
1278 static u64 primary_event_id(struct perf_event *event)
1279 {
1280 u64 id = event->id;
1281
1282 if (event->parent)
1283 id = event->parent->id;
1284
1285 return id;
1286 }
1287
1288 /*
1289 * Get the perf_event_context for a task and lock it.
1290 *
1291 * This has to cope with with the fact that until it is locked,
1292 * the context could get moved to another task.
1293 */
1294 static struct perf_event_context *
1295 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1296 {
1297 struct perf_event_context *ctx;
1298
1299 retry:
1300 /*
1301 * One of the few rules of preemptible RCU is that one cannot do
1302 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1303 * part of the read side critical section was irqs-enabled -- see
1304 * rcu_read_unlock_special().
1305 *
1306 * Since ctx->lock nests under rq->lock we must ensure the entire read
1307 * side critical section has interrupts disabled.
1308 */
1309 local_irq_save(*flags);
1310 rcu_read_lock();
1311 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1312 if (ctx) {
1313 /*
1314 * If this context is a clone of another, it might
1315 * get swapped for another underneath us by
1316 * perf_event_task_sched_out, though the
1317 * rcu_read_lock() protects us from any context
1318 * getting freed. Lock the context and check if it
1319 * got swapped before we could get the lock, and retry
1320 * if so. If we locked the right context, then it
1321 * can't get swapped on us any more.
1322 */
1323 raw_spin_lock(&ctx->lock);
1324 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1325 raw_spin_unlock(&ctx->lock);
1326 rcu_read_unlock();
1327 local_irq_restore(*flags);
1328 goto retry;
1329 }
1330
1331 if (ctx->task == TASK_TOMBSTONE ||
1332 !atomic_inc_not_zero(&ctx->refcount)) {
1333 raw_spin_unlock(&ctx->lock);
1334 ctx = NULL;
1335 } else {
1336 WARN_ON_ONCE(ctx->task != task);
1337 }
1338 }
1339 rcu_read_unlock();
1340 if (!ctx)
1341 local_irq_restore(*flags);
1342 return ctx;
1343 }
1344
1345 /*
1346 * Get the context for a task and increment its pin_count so it
1347 * can't get swapped to another task. This also increments its
1348 * reference count so that the context can't get freed.
1349 */
1350 static struct perf_event_context *
1351 perf_pin_task_context(struct task_struct *task, int ctxn)
1352 {
1353 struct perf_event_context *ctx;
1354 unsigned long flags;
1355
1356 ctx = perf_lock_task_context(task, ctxn, &flags);
1357 if (ctx) {
1358 ++ctx->pin_count;
1359 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1360 }
1361 return ctx;
1362 }
1363
1364 static void perf_unpin_context(struct perf_event_context *ctx)
1365 {
1366 unsigned long flags;
1367
1368 raw_spin_lock_irqsave(&ctx->lock, flags);
1369 --ctx->pin_count;
1370 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1371 }
1372
1373 /*
1374 * Update the record of the current time in a context.
1375 */
1376 static void update_context_time(struct perf_event_context *ctx)
1377 {
1378 u64 now = perf_clock();
1379
1380 ctx->time += now - ctx->timestamp;
1381 ctx->timestamp = now;
1382 }
1383
1384 static u64 perf_event_time(struct perf_event *event)
1385 {
1386 struct perf_event_context *ctx = event->ctx;
1387
1388 if (is_cgroup_event(event))
1389 return perf_cgroup_event_time(event);
1390
1391 return ctx ? ctx->time : 0;
1392 }
1393
1394 /*
1395 * Update the total_time_enabled and total_time_running fields for a event.
1396 */
1397 static void update_event_times(struct perf_event *event)
1398 {
1399 struct perf_event_context *ctx = event->ctx;
1400 u64 run_end;
1401
1402 lockdep_assert_held(&ctx->lock);
1403
1404 if (event->state < PERF_EVENT_STATE_INACTIVE ||
1405 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1406 return;
1407
1408 /*
1409 * in cgroup mode, time_enabled represents
1410 * the time the event was enabled AND active
1411 * tasks were in the monitored cgroup. This is
1412 * independent of the activity of the context as
1413 * there may be a mix of cgroup and non-cgroup events.
1414 *
1415 * That is why we treat cgroup events differently
1416 * here.
1417 */
1418 if (is_cgroup_event(event))
1419 run_end = perf_cgroup_event_time(event);
1420 else if (ctx->is_active)
1421 run_end = ctx->time;
1422 else
1423 run_end = event->tstamp_stopped;
1424
1425 event->total_time_enabled = run_end - event->tstamp_enabled;
1426
1427 if (event->state == PERF_EVENT_STATE_INACTIVE)
1428 run_end = event->tstamp_stopped;
1429 else
1430 run_end = perf_event_time(event);
1431
1432 event->total_time_running = run_end - event->tstamp_running;
1433
1434 }
1435
1436 /*
1437 * Update total_time_enabled and total_time_running for all events in a group.
1438 */
1439 static void update_group_times(struct perf_event *leader)
1440 {
1441 struct perf_event *event;
1442
1443 update_event_times(leader);
1444 list_for_each_entry(event, &leader->sibling_list, group_entry)
1445 update_event_times(event);
1446 }
1447
1448 static struct list_head *
1449 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1450 {
1451 if (event->attr.pinned)
1452 return &ctx->pinned_groups;
1453 else
1454 return &ctx->flexible_groups;
1455 }
1456
1457 /*
1458 * Add a event from the lists for its context.
1459 * Must be called with ctx->mutex and ctx->lock held.
1460 */
1461 static void
1462 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1463 {
1464
1465 lockdep_assert_held(&ctx->lock);
1466
1467 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1468 event->attach_state |= PERF_ATTACH_CONTEXT;
1469
1470 /*
1471 * If we're a stand alone event or group leader, we go to the context
1472 * list, group events are kept attached to the group so that
1473 * perf_group_detach can, at all times, locate all siblings.
1474 */
1475 if (event->group_leader == event) {
1476 struct list_head *list;
1477
1478 event->group_caps = event->event_caps;
1479
1480 list = ctx_group_list(event, ctx);
1481 list_add_tail(&event->group_entry, list);
1482 }
1483
1484 list_update_cgroup_event(event, ctx, true);
1485
1486 list_add_rcu(&event->event_entry, &ctx->event_list);
1487 ctx->nr_events++;
1488 if (event->attr.inherit_stat)
1489 ctx->nr_stat++;
1490
1491 ctx->generation++;
1492 }
1493
1494 /*
1495 * Initialize event state based on the perf_event_attr::disabled.
1496 */
1497 static inline void perf_event__state_init(struct perf_event *event)
1498 {
1499 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1500 PERF_EVENT_STATE_INACTIVE;
1501 }
1502
1503 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1504 {
1505 int entry = sizeof(u64); /* value */
1506 int size = 0;
1507 int nr = 1;
1508
1509 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1510 size += sizeof(u64);
1511
1512 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1513 size += sizeof(u64);
1514
1515 if (event->attr.read_format & PERF_FORMAT_ID)
1516 entry += sizeof(u64);
1517
1518 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1519 nr += nr_siblings;
1520 size += sizeof(u64);
1521 }
1522
1523 size += entry * nr;
1524 event->read_size = size;
1525 }
1526
1527 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1528 {
1529 struct perf_sample_data *data;
1530 u16 size = 0;
1531
1532 if (sample_type & PERF_SAMPLE_IP)
1533 size += sizeof(data->ip);
1534
1535 if (sample_type & PERF_SAMPLE_ADDR)
1536 size += sizeof(data->addr);
1537
1538 if (sample_type & PERF_SAMPLE_PERIOD)
1539 size += sizeof(data->period);
1540
1541 if (sample_type & PERF_SAMPLE_WEIGHT)
1542 size += sizeof(data->weight);
1543
1544 if (sample_type & PERF_SAMPLE_READ)
1545 size += event->read_size;
1546
1547 if (sample_type & PERF_SAMPLE_DATA_SRC)
1548 size += sizeof(data->data_src.val);
1549
1550 if (sample_type & PERF_SAMPLE_TRANSACTION)
1551 size += sizeof(data->txn);
1552
1553 event->header_size = size;
1554 }
1555
1556 /*
1557 * Called at perf_event creation and when events are attached/detached from a
1558 * group.
1559 */
1560 static void perf_event__header_size(struct perf_event *event)
1561 {
1562 __perf_event_read_size(event,
1563 event->group_leader->nr_siblings);
1564 __perf_event_header_size(event, event->attr.sample_type);
1565 }
1566
1567 static void perf_event__id_header_size(struct perf_event *event)
1568 {
1569 struct perf_sample_data *data;
1570 u64 sample_type = event->attr.sample_type;
1571 u16 size = 0;
1572
1573 if (sample_type & PERF_SAMPLE_TID)
1574 size += sizeof(data->tid_entry);
1575
1576 if (sample_type & PERF_SAMPLE_TIME)
1577 size += sizeof(data->time);
1578
1579 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1580 size += sizeof(data->id);
1581
1582 if (sample_type & PERF_SAMPLE_ID)
1583 size += sizeof(data->id);
1584
1585 if (sample_type & PERF_SAMPLE_STREAM_ID)
1586 size += sizeof(data->stream_id);
1587
1588 if (sample_type & PERF_SAMPLE_CPU)
1589 size += sizeof(data->cpu_entry);
1590
1591 event->id_header_size = size;
1592 }
1593
1594 static bool perf_event_validate_size(struct perf_event *event)
1595 {
1596 /*
1597 * The values computed here will be over-written when we actually
1598 * attach the event.
1599 */
1600 __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1601 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1602 perf_event__id_header_size(event);
1603
1604 /*
1605 * Sum the lot; should not exceed the 64k limit we have on records.
1606 * Conservative limit to allow for callchains and other variable fields.
1607 */
1608 if (event->read_size + event->header_size +
1609 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1610 return false;
1611
1612 return true;
1613 }
1614
1615 static void perf_group_attach(struct perf_event *event)
1616 {
1617 struct perf_event *group_leader = event->group_leader, *pos;
1618
1619 /*
1620 * We can have double attach due to group movement in perf_event_open.
1621 */
1622 if (event->attach_state & PERF_ATTACH_GROUP)
1623 return;
1624
1625 event->attach_state |= PERF_ATTACH_GROUP;
1626
1627 if (group_leader == event)
1628 return;
1629
1630 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1631
1632 group_leader->group_caps &= event->event_caps;
1633
1634 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1635 group_leader->nr_siblings++;
1636
1637 perf_event__header_size(group_leader);
1638
1639 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1640 perf_event__header_size(pos);
1641 }
1642
1643 /*
1644 * Remove a event from the lists for its context.
1645 * Must be called with ctx->mutex and ctx->lock held.
1646 */
1647 static void
1648 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1649 {
1650 WARN_ON_ONCE(event->ctx != ctx);
1651 lockdep_assert_held(&ctx->lock);
1652
1653 /*
1654 * We can have double detach due to exit/hot-unplug + close.
1655 */
1656 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1657 return;
1658
1659 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1660
1661 list_update_cgroup_event(event, ctx, false);
1662
1663 ctx->nr_events--;
1664 if (event->attr.inherit_stat)
1665 ctx->nr_stat--;
1666
1667 list_del_rcu(&event->event_entry);
1668
1669 if (event->group_leader == event)
1670 list_del_init(&event->group_entry);
1671
1672 update_group_times(event);
1673
1674 /*
1675 * If event was in error state, then keep it
1676 * that way, otherwise bogus counts will be
1677 * returned on read(). The only way to get out
1678 * of error state is by explicit re-enabling
1679 * of the event
1680 */
1681 if (event->state > PERF_EVENT_STATE_OFF)
1682 event->state = PERF_EVENT_STATE_OFF;
1683
1684 ctx->generation++;
1685 }
1686
1687 static void perf_group_detach(struct perf_event *event)
1688 {
1689 struct perf_event *sibling, *tmp;
1690 struct list_head *list = NULL;
1691
1692 /*
1693 * We can have double detach due to exit/hot-unplug + close.
1694 */
1695 if (!(event->attach_state & PERF_ATTACH_GROUP))
1696 return;
1697
1698 event->attach_state &= ~PERF_ATTACH_GROUP;
1699
1700 /*
1701 * If this is a sibling, remove it from its group.
1702 */
1703 if (event->group_leader != event) {
1704 list_del_init(&event->group_entry);
1705 event->group_leader->nr_siblings--;
1706 goto out;
1707 }
1708
1709 if (!list_empty(&event->group_entry))
1710 list = &event->group_entry;
1711
1712 /*
1713 * If this was a group event with sibling events then
1714 * upgrade the siblings to singleton events by adding them
1715 * to whatever list we are on.
1716 */
1717 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1718 if (list)
1719 list_move_tail(&sibling->group_entry, list);
1720 sibling->group_leader = sibling;
1721
1722 /* Inherit group flags from the previous leader */
1723 sibling->group_caps = event->group_caps;
1724
1725 WARN_ON_ONCE(sibling->ctx != event->ctx);
1726 }
1727
1728 out:
1729 perf_event__header_size(event->group_leader);
1730
1731 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1732 perf_event__header_size(tmp);
1733 }
1734
1735 static bool is_orphaned_event(struct perf_event *event)
1736 {
1737 return event->state == PERF_EVENT_STATE_DEAD;
1738 }
1739
1740 static inline int __pmu_filter_match(struct perf_event *event)
1741 {
1742 struct pmu *pmu = event->pmu;
1743 return pmu->filter_match ? pmu->filter_match(event) : 1;
1744 }
1745
1746 /*
1747 * Check whether we should attempt to schedule an event group based on
1748 * PMU-specific filtering. An event group can consist of HW and SW events,
1749 * potentially with a SW leader, so we must check all the filters, to
1750 * determine whether a group is schedulable:
1751 */
1752 static inline int pmu_filter_match(struct perf_event *event)
1753 {
1754 struct perf_event *child;
1755
1756 if (!__pmu_filter_match(event))
1757 return 0;
1758
1759 list_for_each_entry(child, &event->sibling_list, group_entry) {
1760 if (!__pmu_filter_match(child))
1761 return 0;
1762 }
1763
1764 return 1;
1765 }
1766
1767 static inline int
1768 event_filter_match(struct perf_event *event)
1769 {
1770 return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1771 perf_cgroup_match(event) && pmu_filter_match(event);
1772 }
1773
1774 static void
1775 event_sched_out(struct perf_event *event,
1776 struct perf_cpu_context *cpuctx,
1777 struct perf_event_context *ctx)
1778 {
1779 u64 tstamp = perf_event_time(event);
1780 u64 delta;
1781
1782 WARN_ON_ONCE(event->ctx != ctx);
1783 lockdep_assert_held(&ctx->lock);
1784
1785 /*
1786 * An event which could not be activated because of
1787 * filter mismatch still needs to have its timings
1788 * maintained, otherwise bogus information is return
1789 * via read() for time_enabled, time_running:
1790 */
1791 if (event->state == PERF_EVENT_STATE_INACTIVE &&
1792 !event_filter_match(event)) {
1793 delta = tstamp - event->tstamp_stopped;
1794 event->tstamp_running += delta;
1795 event->tstamp_stopped = tstamp;
1796 }
1797
1798 if (event->state != PERF_EVENT_STATE_ACTIVE)
1799 return;
1800
1801 perf_pmu_disable(event->pmu);
1802
1803 event->tstamp_stopped = tstamp;
1804 event->pmu->del(event, 0);
1805 event->oncpu = -1;
1806 event->state = PERF_EVENT_STATE_INACTIVE;
1807 if (event->pending_disable) {
1808 event->pending_disable = 0;
1809 event->state = PERF_EVENT_STATE_OFF;
1810 }
1811
1812 if (!is_software_event(event))
1813 cpuctx->active_oncpu--;
1814 if (!--ctx->nr_active)
1815 perf_event_ctx_deactivate(ctx);
1816 if (event->attr.freq && event->attr.sample_freq)
1817 ctx->nr_freq--;
1818 if (event->attr.exclusive || !cpuctx->active_oncpu)
1819 cpuctx->exclusive = 0;
1820
1821 perf_pmu_enable(event->pmu);
1822 }
1823
1824 static void
1825 group_sched_out(struct perf_event *group_event,
1826 struct perf_cpu_context *cpuctx,
1827 struct perf_event_context *ctx)
1828 {
1829 struct perf_event *event;
1830 int state = group_event->state;
1831
1832 perf_pmu_disable(ctx->pmu);
1833
1834 event_sched_out(group_event, cpuctx, ctx);
1835
1836 /*
1837 * Schedule out siblings (if any):
1838 */
1839 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1840 event_sched_out(event, cpuctx, ctx);
1841
1842 perf_pmu_enable(ctx->pmu);
1843
1844 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1845 cpuctx->exclusive = 0;
1846 }
1847
1848 #define DETACH_GROUP 0x01UL
1849
1850 /*
1851 * Cross CPU call to remove a performance event
1852 *
1853 * We disable the event on the hardware level first. After that we
1854 * remove it from the context list.
1855 */
1856 static void
1857 __perf_remove_from_context(struct perf_event *event,
1858 struct perf_cpu_context *cpuctx,
1859 struct perf_event_context *ctx,
1860 void *info)
1861 {
1862 unsigned long flags = (unsigned long)info;
1863
1864 event_sched_out(event, cpuctx, ctx);
1865 if (flags & DETACH_GROUP)
1866 perf_group_detach(event);
1867 list_del_event(event, ctx);
1868
1869 if (!ctx->nr_events && ctx->is_active) {
1870 ctx->is_active = 0;
1871 if (ctx->task) {
1872 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1873 cpuctx->task_ctx = NULL;
1874 }
1875 }
1876 }
1877
1878 /*
1879 * Remove the event from a task's (or a CPU's) list of events.
1880 *
1881 * If event->ctx is a cloned context, callers must make sure that
1882 * every task struct that event->ctx->task could possibly point to
1883 * remains valid. This is OK when called from perf_release since
1884 * that only calls us on the top-level context, which can't be a clone.
1885 * When called from perf_event_exit_task, it's OK because the
1886 * context has been detached from its task.
1887 */
1888 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
1889 {
1890 lockdep_assert_held(&event->ctx->mutex);
1891
1892 event_function_call(event, __perf_remove_from_context, (void *)flags);
1893 }
1894
1895 /*
1896 * Cross CPU call to disable a performance event
1897 */
1898 static void __perf_event_disable(struct perf_event *event,
1899 struct perf_cpu_context *cpuctx,
1900 struct perf_event_context *ctx,
1901 void *info)
1902 {
1903 if (event->state < PERF_EVENT_STATE_INACTIVE)
1904 return;
1905
1906 update_context_time(ctx);
1907 update_cgrp_time_from_event(event);
1908 update_group_times(event);
1909 if (event == event->group_leader)
1910 group_sched_out(event, cpuctx, ctx);
1911 else
1912 event_sched_out(event, cpuctx, ctx);
1913 event->state = PERF_EVENT_STATE_OFF;
1914 }
1915
1916 /*
1917 * Disable a event.
1918 *
1919 * If event->ctx is a cloned context, callers must make sure that
1920 * every task struct that event->ctx->task could possibly point to
1921 * remains valid. This condition is satisifed when called through
1922 * perf_event_for_each_child or perf_event_for_each because they
1923 * hold the top-level event's child_mutex, so any descendant that
1924 * goes to exit will block in perf_event_exit_event().
1925 *
1926 * When called from perf_pending_event it's OK because event->ctx
1927 * is the current context on this CPU and preemption is disabled,
1928 * hence we can't get into perf_event_task_sched_out for this context.
1929 */
1930 static void _perf_event_disable(struct perf_event *event)
1931 {
1932 struct perf_event_context *ctx = event->ctx;
1933
1934 raw_spin_lock_irq(&ctx->lock);
1935 if (event->state <= PERF_EVENT_STATE_OFF) {
1936 raw_spin_unlock_irq(&ctx->lock);
1937 return;
1938 }
1939 raw_spin_unlock_irq(&ctx->lock);
1940
1941 event_function_call(event, __perf_event_disable, NULL);
1942 }
1943
1944 void perf_event_disable_local(struct perf_event *event)
1945 {
1946 event_function_local(event, __perf_event_disable, NULL);
1947 }
1948
1949 /*
1950 * Strictly speaking kernel users cannot create groups and therefore this
1951 * interface does not need the perf_event_ctx_lock() magic.
1952 */
1953 void perf_event_disable(struct perf_event *event)
1954 {
1955 struct perf_event_context *ctx;
1956
1957 ctx = perf_event_ctx_lock(event);
1958 _perf_event_disable(event);
1959 perf_event_ctx_unlock(event, ctx);
1960 }
1961 EXPORT_SYMBOL_GPL(perf_event_disable);
1962
1963 static void perf_set_shadow_time(struct perf_event *event,
1964 struct perf_event_context *ctx,
1965 u64 tstamp)
1966 {
1967 /*
1968 * use the correct time source for the time snapshot
1969 *
1970 * We could get by without this by leveraging the
1971 * fact that to get to this function, the caller
1972 * has most likely already called update_context_time()
1973 * and update_cgrp_time_xx() and thus both timestamp
1974 * are identical (or very close). Given that tstamp is,
1975 * already adjusted for cgroup, we could say that:
1976 * tstamp - ctx->timestamp
1977 * is equivalent to
1978 * tstamp - cgrp->timestamp.
1979 *
1980 * Then, in perf_output_read(), the calculation would
1981 * work with no changes because:
1982 * - event is guaranteed scheduled in
1983 * - no scheduled out in between
1984 * - thus the timestamp would be the same
1985 *
1986 * But this is a bit hairy.
1987 *
1988 * So instead, we have an explicit cgroup call to remain
1989 * within the time time source all along. We believe it
1990 * is cleaner and simpler to understand.
1991 */
1992 if (is_cgroup_event(event))
1993 perf_cgroup_set_shadow_time(event, tstamp);
1994 else
1995 event->shadow_ctx_time = tstamp - ctx->timestamp;
1996 }
1997
1998 #define MAX_INTERRUPTS (~0ULL)
1999
2000 static void perf_log_throttle(struct perf_event *event, int enable);
2001 static void perf_log_itrace_start(struct perf_event *event);
2002
2003 static int
2004 event_sched_in(struct perf_event *event,
2005 struct perf_cpu_context *cpuctx,
2006 struct perf_event_context *ctx)
2007 {
2008 u64 tstamp = perf_event_time(event);
2009 int ret = 0;
2010
2011 lockdep_assert_held(&ctx->lock);
2012
2013 if (event->state <= PERF_EVENT_STATE_OFF)
2014 return 0;
2015
2016 WRITE_ONCE(event->oncpu, smp_processor_id());
2017 /*
2018 * Order event::oncpu write to happen before the ACTIVE state
2019 * is visible.
2020 */
2021 smp_wmb();
2022 WRITE_ONCE(event->state, PERF_EVENT_STATE_ACTIVE);
2023
2024 /*
2025 * Unthrottle events, since we scheduled we might have missed several
2026 * ticks already, also for a heavily scheduling task there is little
2027 * guarantee it'll get a tick in a timely manner.
2028 */
2029 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2030 perf_log_throttle(event, 1);
2031 event->hw.interrupts = 0;
2032 }
2033
2034 /*
2035 * The new state must be visible before we turn it on in the hardware:
2036 */
2037 smp_wmb();
2038
2039 perf_pmu_disable(event->pmu);
2040
2041 perf_set_shadow_time(event, ctx, tstamp);
2042
2043 perf_log_itrace_start(event);
2044
2045 if (event->pmu->add(event, PERF_EF_START)) {
2046 event->state = PERF_EVENT_STATE_INACTIVE;
2047 event->oncpu = -1;
2048 ret = -EAGAIN;
2049 goto out;
2050 }
2051
2052 event->tstamp_running += tstamp - event->tstamp_stopped;
2053
2054 if (!is_software_event(event))
2055 cpuctx->active_oncpu++;
2056 if (!ctx->nr_active++)
2057 perf_event_ctx_activate(ctx);
2058 if (event->attr.freq && event->attr.sample_freq)
2059 ctx->nr_freq++;
2060
2061 if (event->attr.exclusive)
2062 cpuctx->exclusive = 1;
2063
2064 out:
2065 perf_pmu_enable(event->pmu);
2066
2067 return ret;
2068 }
2069
2070 static int
2071 group_sched_in(struct perf_event *group_event,
2072 struct perf_cpu_context *cpuctx,
2073 struct perf_event_context *ctx)
2074 {
2075 struct perf_event *event, *partial_group = NULL;
2076 struct pmu *pmu = ctx->pmu;
2077 u64 now = ctx->time;
2078 bool simulate = false;
2079
2080 if (group_event->state == PERF_EVENT_STATE_OFF)
2081 return 0;
2082
2083 pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2084
2085 if (event_sched_in(group_event, cpuctx, ctx)) {
2086 pmu->cancel_txn(pmu);
2087 perf_mux_hrtimer_restart(cpuctx);
2088 return -EAGAIN;
2089 }
2090
2091 /*
2092 * Schedule in siblings as one group (if any):
2093 */
2094 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2095 if (event_sched_in(event, cpuctx, ctx)) {
2096 partial_group = event;
2097 goto group_error;
2098 }
2099 }
2100
2101 if (!pmu->commit_txn(pmu))
2102 return 0;
2103
2104 group_error:
2105 /*
2106 * Groups can be scheduled in as one unit only, so undo any
2107 * partial group before returning:
2108 * The events up to the failed event are scheduled out normally,
2109 * tstamp_stopped will be updated.
2110 *
2111 * The failed events and the remaining siblings need to have
2112 * their timings updated as if they had gone thru event_sched_in()
2113 * and event_sched_out(). This is required to get consistent timings
2114 * across the group. This also takes care of the case where the group
2115 * could never be scheduled by ensuring tstamp_stopped is set to mark
2116 * the time the event was actually stopped, such that time delta
2117 * calculation in update_event_times() is correct.
2118 */
2119 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2120 if (event == partial_group)
2121 simulate = true;
2122
2123 if (simulate) {
2124 event->tstamp_running += now - event->tstamp_stopped;
2125 event->tstamp_stopped = now;
2126 } else {
2127 event_sched_out(event, cpuctx, ctx);
2128 }
2129 }
2130 event_sched_out(group_event, cpuctx, ctx);
2131
2132 pmu->cancel_txn(pmu);
2133
2134 perf_mux_hrtimer_restart(cpuctx);
2135
2136 return -EAGAIN;
2137 }
2138
2139 /*
2140 * Work out whether we can put this event group on the CPU now.
2141 */
2142 static int group_can_go_on(struct perf_event *event,
2143 struct perf_cpu_context *cpuctx,
2144 int can_add_hw)
2145 {
2146 /*
2147 * Groups consisting entirely of software events can always go on.
2148 */
2149 if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2150 return 1;
2151 /*
2152 * If an exclusive group is already on, no other hardware
2153 * events can go on.
2154 */
2155 if (cpuctx->exclusive)
2156 return 0;
2157 /*
2158 * If this group is exclusive and there are already
2159 * events on the CPU, it can't go on.
2160 */
2161 if (event->attr.exclusive && cpuctx->active_oncpu)
2162 return 0;
2163 /*
2164 * Otherwise, try to add it if all previous groups were able
2165 * to go on.
2166 */
2167 return can_add_hw;
2168 }
2169
2170 static void add_event_to_ctx(struct perf_event *event,
2171 struct perf_event_context *ctx)
2172 {
2173 u64 tstamp = perf_event_time(event);
2174
2175 list_add_event(event, ctx);
2176 perf_group_attach(event);
2177 event->tstamp_enabled = tstamp;
2178 event->tstamp_running = tstamp;
2179 event->tstamp_stopped = tstamp;
2180 }
2181
2182 static void ctx_sched_out(struct perf_event_context *ctx,
2183 struct perf_cpu_context *cpuctx,
2184 enum event_type_t event_type);
2185 static void
2186 ctx_sched_in(struct perf_event_context *ctx,
2187 struct perf_cpu_context *cpuctx,
2188 enum event_type_t event_type,
2189 struct task_struct *task);
2190
2191 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2192 struct perf_event_context *ctx)
2193 {
2194 if (!cpuctx->task_ctx)
2195 return;
2196
2197 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2198 return;
2199
2200 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2201 }
2202
2203 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2204 struct perf_event_context *ctx,
2205 struct task_struct *task)
2206 {
2207 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2208 if (ctx)
2209 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2210 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2211 if (ctx)
2212 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2213 }
2214
2215 static void ctx_resched(struct perf_cpu_context *cpuctx,
2216 struct perf_event_context *task_ctx)
2217 {
2218 perf_pmu_disable(cpuctx->ctx.pmu);
2219 if (task_ctx)
2220 task_ctx_sched_out(cpuctx, task_ctx);
2221 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
2222 perf_event_sched_in(cpuctx, task_ctx, current);
2223 perf_pmu_enable(cpuctx->ctx.pmu);
2224 }
2225
2226 /*
2227 * Cross CPU call to install and enable a performance event
2228 *
2229 * Very similar to remote_function() + event_function() but cannot assume that
2230 * things like ctx->is_active and cpuctx->task_ctx are set.
2231 */
2232 static int __perf_install_in_context(void *info)
2233 {
2234 struct perf_event *event = info;
2235 struct perf_event_context *ctx = event->ctx;
2236 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2237 struct perf_event_context *task_ctx = cpuctx->task_ctx;
2238 bool activate = true;
2239 int ret = 0;
2240
2241 raw_spin_lock(&cpuctx->ctx.lock);
2242 if (ctx->task) {
2243 raw_spin_lock(&ctx->lock);
2244 task_ctx = ctx;
2245
2246 /* If we're on the wrong CPU, try again */
2247 if (task_cpu(ctx->task) != smp_processor_id()) {
2248 ret = -ESRCH;
2249 goto unlock;
2250 }
2251
2252 /*
2253 * If we're on the right CPU, see if the task we target is
2254 * current, if not we don't have to activate the ctx, a future
2255 * context switch will do that for us.
2256 */
2257 if (ctx->task != current)
2258 activate = false;
2259 else
2260 WARN_ON_ONCE(cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2261
2262 } else if (task_ctx) {
2263 raw_spin_lock(&task_ctx->lock);
2264 }
2265
2266 if (activate) {
2267 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2268 add_event_to_ctx(event, ctx);
2269 ctx_resched(cpuctx, task_ctx);
2270 } else {
2271 add_event_to_ctx(event, ctx);
2272 }
2273
2274 unlock:
2275 perf_ctx_unlock(cpuctx, task_ctx);
2276
2277 return ret;
2278 }
2279
2280 /*
2281 * Attach a performance event to a context.
2282 *
2283 * Very similar to event_function_call, see comment there.
2284 */
2285 static void
2286 perf_install_in_context(struct perf_event_context *ctx,
2287 struct perf_event *event,
2288 int cpu)
2289 {
2290 struct task_struct *task = READ_ONCE(ctx->task);
2291
2292 lockdep_assert_held(&ctx->mutex);
2293
2294 if (event->cpu != -1)
2295 event->cpu = cpu;
2296
2297 /*
2298 * Ensures that if we can observe event->ctx, both the event and ctx
2299 * will be 'complete'. See perf_iterate_sb_cpu().
2300 */
2301 smp_store_release(&event->ctx, ctx);
2302
2303 if (!task) {
2304 cpu_function_call(cpu, __perf_install_in_context, event);
2305 return;
2306 }
2307
2308 /*
2309 * Should not happen, we validate the ctx is still alive before calling.
2310 */
2311 if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2312 return;
2313
2314 /*
2315 * Installing events is tricky because we cannot rely on ctx->is_active
2316 * to be set in case this is the nr_events 0 -> 1 transition.
2317 */
2318 again:
2319 /*
2320 * Cannot use task_function_call() because we need to run on the task's
2321 * CPU regardless of whether its current or not.
2322 */
2323 if (!cpu_function_call(task_cpu(task), __perf_install_in_context, event))
2324 return;
2325
2326 raw_spin_lock_irq(&ctx->lock);
2327 task = ctx->task;
2328 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2329 /*
2330 * Cannot happen because we already checked above (which also
2331 * cannot happen), and we hold ctx->mutex, which serializes us
2332 * against perf_event_exit_task_context().
2333 */
2334 raw_spin_unlock_irq(&ctx->lock);
2335 return;
2336 }
2337 raw_spin_unlock_irq(&ctx->lock);
2338 /*
2339 * Since !ctx->is_active doesn't mean anything, we must IPI
2340 * unconditionally.
2341 */
2342 goto again;
2343 }
2344
2345 /*
2346 * Put a event into inactive state and update time fields.
2347 * Enabling the leader of a group effectively enables all
2348 * the group members that aren't explicitly disabled, so we
2349 * have to update their ->tstamp_enabled also.
2350 * Note: this works for group members as well as group leaders
2351 * since the non-leader members' sibling_lists will be empty.
2352 */
2353 static void __perf_event_mark_enabled(struct perf_event *event)
2354 {
2355 struct perf_event *sub;
2356 u64 tstamp = perf_event_time(event);
2357
2358 event->state = PERF_EVENT_STATE_INACTIVE;
2359 event->tstamp_enabled = tstamp - event->total_time_enabled;
2360 list_for_each_entry(sub, &event->sibling_list, group_entry) {
2361 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2362 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
2363 }
2364 }
2365
2366 /*
2367 * Cross CPU call to enable a performance event
2368 */
2369 static void __perf_event_enable(struct perf_event *event,
2370 struct perf_cpu_context *cpuctx,
2371 struct perf_event_context *ctx,
2372 void *info)
2373 {
2374 struct perf_event *leader = event->group_leader;
2375 struct perf_event_context *task_ctx;
2376
2377 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2378 event->state <= PERF_EVENT_STATE_ERROR)
2379 return;
2380
2381 if (ctx->is_active)
2382 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2383
2384 __perf_event_mark_enabled(event);
2385
2386 if (!ctx->is_active)
2387 return;
2388
2389 if (!event_filter_match(event)) {
2390 if (is_cgroup_event(event))
2391 perf_cgroup_defer_enabled(event);
2392 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2393 return;
2394 }
2395
2396 /*
2397 * If the event is in a group and isn't the group leader,
2398 * then don't put it on unless the group is on.
2399 */
2400 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2401 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2402 return;
2403 }
2404
2405 task_ctx = cpuctx->task_ctx;
2406 if (ctx->task)
2407 WARN_ON_ONCE(task_ctx != ctx);
2408
2409 ctx_resched(cpuctx, task_ctx);
2410 }
2411
2412 /*
2413 * Enable a event.
2414 *
2415 * If event->ctx is a cloned context, callers must make sure that
2416 * every task struct that event->ctx->task could possibly point to
2417 * remains valid. This condition is satisfied when called through
2418 * perf_event_for_each_child or perf_event_for_each as described
2419 * for perf_event_disable.
2420 */
2421 static void _perf_event_enable(struct perf_event *event)
2422 {
2423 struct perf_event_context *ctx = event->ctx;
2424
2425 raw_spin_lock_irq(&ctx->lock);
2426 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2427 event->state < PERF_EVENT_STATE_ERROR) {
2428 raw_spin_unlock_irq(&ctx->lock);
2429 return;
2430 }
2431
2432 /*
2433 * If the event is in error state, clear that first.
2434 *
2435 * That way, if we see the event in error state below, we know that it
2436 * has gone back into error state, as distinct from the task having
2437 * been scheduled away before the cross-call arrived.
2438 */
2439 if (event->state == PERF_EVENT_STATE_ERROR)
2440 event->state = PERF_EVENT_STATE_OFF;
2441 raw_spin_unlock_irq(&ctx->lock);
2442
2443 event_function_call(event, __perf_event_enable, NULL);
2444 }
2445
2446 /*
2447 * See perf_event_disable();
2448 */
2449 void perf_event_enable(struct perf_event *event)
2450 {
2451 struct perf_event_context *ctx;
2452
2453 ctx = perf_event_ctx_lock(event);
2454 _perf_event_enable(event);
2455 perf_event_ctx_unlock(event, ctx);
2456 }
2457 EXPORT_SYMBOL_GPL(perf_event_enable);
2458
2459 struct stop_event_data {
2460 struct perf_event *event;
2461 unsigned int restart;
2462 };
2463
2464 static int __perf_event_stop(void *info)
2465 {
2466 struct stop_event_data *sd = info;
2467 struct perf_event *event = sd->event;
2468
2469 /* if it's already INACTIVE, do nothing */
2470 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2471 return 0;
2472
2473 /* matches smp_wmb() in event_sched_in() */
2474 smp_rmb();
2475
2476 /*
2477 * There is a window with interrupts enabled before we get here,
2478 * so we need to check again lest we try to stop another CPU's event.
2479 */
2480 if (READ_ONCE(event->oncpu) != smp_processor_id())
2481 return -EAGAIN;
2482
2483 event->pmu->stop(event, PERF_EF_UPDATE);
2484
2485 /*
2486 * May race with the actual stop (through perf_pmu_output_stop()),
2487 * but it is only used for events with AUX ring buffer, and such
2488 * events will refuse to restart because of rb::aux_mmap_count==0,
2489 * see comments in perf_aux_output_begin().
2490 *
2491 * Since this is happening on a event-local CPU, no trace is lost
2492 * while restarting.
2493 */
2494 if (sd->restart)
2495 event->pmu->start(event, 0);
2496
2497 return 0;
2498 }
2499
2500 static int perf_event_stop(struct perf_event *event, int restart)
2501 {
2502 struct stop_event_data sd = {
2503 .event = event,
2504 .restart = restart,
2505 };
2506 int ret = 0;
2507
2508 do {
2509 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2510 return 0;
2511
2512 /* matches smp_wmb() in event_sched_in() */
2513 smp_rmb();
2514
2515 /*
2516 * We only want to restart ACTIVE events, so if the event goes
2517 * inactive here (event->oncpu==-1), there's nothing more to do;
2518 * fall through with ret==-ENXIO.
2519 */
2520 ret = cpu_function_call(READ_ONCE(event->oncpu),
2521 __perf_event_stop, &sd);
2522 } while (ret == -EAGAIN);
2523
2524 return ret;
2525 }
2526
2527 /*
2528 * In order to contain the amount of racy and tricky in the address filter
2529 * configuration management, it is a two part process:
2530 *
2531 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2532 * we update the addresses of corresponding vmas in
2533 * event::addr_filters_offs array and bump the event::addr_filters_gen;
2534 * (p2) when an event is scheduled in (pmu::add), it calls
2535 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2536 * if the generation has changed since the previous call.
2537 *
2538 * If (p1) happens while the event is active, we restart it to force (p2).
2539 *
2540 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2541 * pre-existing mappings, called once when new filters arrive via SET_FILTER
2542 * ioctl;
2543 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2544 * registered mapping, called for every new mmap(), with mm::mmap_sem down
2545 * for reading;
2546 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2547 * of exec.
2548 */
2549 void perf_event_addr_filters_sync(struct perf_event *event)
2550 {
2551 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2552
2553 if (!has_addr_filter(event))
2554 return;
2555
2556 raw_spin_lock(&ifh->lock);
2557 if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2558 event->pmu->addr_filters_sync(event);
2559 event->hw.addr_filters_gen = event->addr_filters_gen;
2560 }
2561 raw_spin_unlock(&ifh->lock);
2562 }
2563 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2564
2565 static int _perf_event_refresh(struct perf_event *event, int refresh)
2566 {
2567 /*
2568 * not supported on inherited events
2569 */
2570 if (event->attr.inherit || !is_sampling_event(event))
2571 return -EINVAL;
2572
2573 atomic_add(refresh, &event->event_limit);
2574 _perf_event_enable(event);
2575
2576 return 0;
2577 }
2578
2579 /*
2580 * See perf_event_disable()
2581 */
2582 int perf_event_refresh(struct perf_event *event, int refresh)
2583 {
2584 struct perf_event_context *ctx;
2585 int ret;
2586
2587 ctx = perf_event_ctx_lock(event);
2588 ret = _perf_event_refresh(event, refresh);
2589 perf_event_ctx_unlock(event, ctx);
2590
2591 return ret;
2592 }
2593 EXPORT_SYMBOL_GPL(perf_event_refresh);
2594
2595 static void ctx_sched_out(struct perf_event_context *ctx,
2596 struct perf_cpu_context *cpuctx,
2597 enum event_type_t event_type)
2598 {
2599 int is_active = ctx->is_active;
2600 struct perf_event *event;
2601
2602 lockdep_assert_held(&ctx->lock);
2603
2604 if (likely(!ctx->nr_events)) {
2605 /*
2606 * See __perf_remove_from_context().
2607 */
2608 WARN_ON_ONCE(ctx->is_active);
2609 if (ctx->task)
2610 WARN_ON_ONCE(cpuctx->task_ctx);
2611 return;
2612 }
2613
2614 ctx->is_active &= ~event_type;
2615 if (!(ctx->is_active & EVENT_ALL))
2616 ctx->is_active = 0;
2617
2618 if (ctx->task) {
2619 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2620 if (!ctx->is_active)
2621 cpuctx->task_ctx = NULL;
2622 }
2623
2624 /*
2625 * Always update time if it was set; not only when it changes.
2626 * Otherwise we can 'forget' to update time for any but the last
2627 * context we sched out. For example:
2628 *
2629 * ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2630 * ctx_sched_out(.event_type = EVENT_PINNED)
2631 *
2632 * would only update time for the pinned events.
2633 */
2634 if (is_active & EVENT_TIME) {
2635 /* update (and stop) ctx time */
2636 update_context_time(ctx);
2637 update_cgrp_time_from_cpuctx(cpuctx);
2638 }
2639
2640 is_active ^= ctx->is_active; /* changed bits */
2641
2642 if (!ctx->nr_active || !(is_active & EVENT_ALL))
2643 return;
2644
2645 perf_pmu_disable(ctx->pmu);
2646 if (is_active & EVENT_PINNED) {
2647 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2648 group_sched_out(event, cpuctx, ctx);
2649 }
2650
2651 if (is_active & EVENT_FLEXIBLE) {
2652 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2653 group_sched_out(event, cpuctx, ctx);
2654 }
2655 perf_pmu_enable(ctx->pmu);
2656 }
2657
2658 /*
2659 * Test whether two contexts are equivalent, i.e. whether they have both been
2660 * cloned from the same version of the same context.
2661 *
2662 * Equivalence is measured using a generation number in the context that is
2663 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2664 * and list_del_event().
2665 */
2666 static int context_equiv(struct perf_event_context *ctx1,
2667 struct perf_event_context *ctx2)
2668 {
2669 lockdep_assert_held(&ctx1->lock);
2670 lockdep_assert_held(&ctx2->lock);
2671
2672 /* Pinning disables the swap optimization */
2673 if (ctx1->pin_count || ctx2->pin_count)
2674 return 0;
2675
2676 /* If ctx1 is the parent of ctx2 */
2677 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2678 return 1;
2679
2680 /* If ctx2 is the parent of ctx1 */
2681 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2682 return 1;
2683
2684 /*
2685 * If ctx1 and ctx2 have the same parent; we flatten the parent
2686 * hierarchy, see perf_event_init_context().
2687 */
2688 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2689 ctx1->parent_gen == ctx2->parent_gen)
2690 return 1;
2691
2692 /* Unmatched */
2693 return 0;
2694 }
2695
2696 static void __perf_event_sync_stat(struct perf_event *event,
2697 struct perf_event *next_event)
2698 {
2699 u64 value;
2700
2701 if (!event->attr.inherit_stat)
2702 return;
2703
2704 /*
2705 * Update the event value, we cannot use perf_event_read()
2706 * because we're in the middle of a context switch and have IRQs
2707 * disabled, which upsets smp_call_function_single(), however
2708 * we know the event must be on the current CPU, therefore we
2709 * don't need to use it.
2710 */
2711 switch (event->state) {
2712 case PERF_EVENT_STATE_ACTIVE:
2713 event->pmu->read(event);
2714 /* fall-through */
2715
2716 case PERF_EVENT_STATE_INACTIVE:
2717 update_event_times(event);
2718 break;
2719
2720 default:
2721 break;
2722 }
2723
2724 /*
2725 * In order to keep per-task stats reliable we need to flip the event
2726 * values when we flip the contexts.
2727 */
2728 value = local64_read(&next_event->count);
2729 value = local64_xchg(&event->count, value);
2730 local64_set(&next_event->count, value);
2731
2732 swap(event->total_time_enabled, next_event->total_time_enabled);
2733 swap(event->total_time_running, next_event->total_time_running);
2734
2735 /*
2736 * Since we swizzled the values, update the user visible data too.
2737 */
2738 perf_event_update_userpage(event);
2739 perf_event_update_userpage(next_event);
2740 }
2741
2742 static void perf_event_sync_stat(struct perf_event_context *ctx,
2743 struct perf_event_context *next_ctx)
2744 {
2745 struct perf_event *event, *next_event;
2746
2747 if (!ctx->nr_stat)
2748 return;
2749
2750 update_context_time(ctx);
2751
2752 event = list_first_entry(&ctx->event_list,
2753 struct perf_event, event_entry);
2754
2755 next_event = list_first_entry(&next_ctx->event_list,
2756 struct perf_event, event_entry);
2757
2758 while (&event->event_entry != &ctx->event_list &&
2759 &next_event->event_entry != &next_ctx->event_list) {
2760
2761 __perf_event_sync_stat(event, next_event);
2762
2763 event = list_next_entry(event, event_entry);
2764 next_event = list_next_entry(next_event, event_entry);
2765 }
2766 }
2767
2768 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2769 struct task_struct *next)
2770 {
2771 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2772 struct perf_event_context *next_ctx;
2773 struct perf_event_context *parent, *next_parent;
2774 struct perf_cpu_context *cpuctx;
2775 int do_switch = 1;
2776
2777 if (likely(!ctx))
2778 return;
2779
2780 cpuctx = __get_cpu_context(ctx);
2781 if (!cpuctx->task_ctx)
2782 return;
2783
2784 rcu_read_lock();
2785 next_ctx = next->perf_event_ctxp[ctxn];
2786 if (!next_ctx)
2787 goto unlock;
2788
2789 parent = rcu_dereference(ctx->parent_ctx);
2790 next_parent = rcu_dereference(next_ctx->parent_ctx);
2791
2792 /* If neither context have a parent context; they cannot be clones. */
2793 if (!parent && !next_parent)
2794 goto unlock;
2795
2796 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2797 /*
2798 * Looks like the two contexts are clones, so we might be
2799 * able to optimize the context switch. We lock both
2800 * contexts and check that they are clones under the
2801 * lock (including re-checking that neither has been
2802 * uncloned in the meantime). It doesn't matter which
2803 * order we take the locks because no other cpu could
2804 * be trying to lock both of these tasks.
2805 */
2806 raw_spin_lock(&ctx->lock);
2807 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2808 if (context_equiv(ctx, next_ctx)) {
2809 WRITE_ONCE(ctx->task, next);
2810 WRITE_ONCE(next_ctx->task, task);
2811
2812 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2813
2814 /*
2815 * RCU_INIT_POINTER here is safe because we've not
2816 * modified the ctx and the above modification of
2817 * ctx->task and ctx->task_ctx_data are immaterial
2818 * since those values are always verified under
2819 * ctx->lock which we're now holding.
2820 */
2821 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
2822 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
2823
2824 do_switch = 0;
2825
2826 perf_event_sync_stat(ctx, next_ctx);
2827 }
2828 raw_spin_unlock(&next_ctx->lock);
2829 raw_spin_unlock(&ctx->lock);
2830 }
2831 unlock:
2832 rcu_read_unlock();
2833
2834 if (do_switch) {
2835 raw_spin_lock(&ctx->lock);
2836 task_ctx_sched_out(cpuctx, ctx);
2837 raw_spin_unlock(&ctx->lock);
2838 }
2839 }
2840
2841 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
2842
2843 void perf_sched_cb_dec(struct pmu *pmu)
2844 {
2845 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2846
2847 this_cpu_dec(perf_sched_cb_usages);
2848
2849 if (!--cpuctx->sched_cb_usage)
2850 list_del(&cpuctx->sched_cb_entry);
2851 }
2852
2853
2854 void perf_sched_cb_inc(struct pmu *pmu)
2855 {
2856 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2857
2858 if (!cpuctx->sched_cb_usage++)
2859 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
2860
2861 this_cpu_inc(perf_sched_cb_usages);
2862 }
2863
2864 /*
2865 * This function provides the context switch callback to the lower code
2866 * layer. It is invoked ONLY when the context switch callback is enabled.
2867 *
2868 * This callback is relevant even to per-cpu events; for example multi event
2869 * PEBS requires this to provide PID/TID information. This requires we flush
2870 * all queued PEBS records before we context switch to a new task.
2871 */
2872 static void perf_pmu_sched_task(struct task_struct *prev,
2873 struct task_struct *next,
2874 bool sched_in)
2875 {
2876 struct perf_cpu_context *cpuctx;
2877 struct pmu *pmu;
2878
2879 if (prev == next)
2880 return;
2881
2882 list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
2883 pmu = cpuctx->unique_pmu; /* software PMUs will not have sched_task */
2884
2885 if (WARN_ON_ONCE(!pmu->sched_task))
2886 continue;
2887
2888 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2889 perf_pmu_disable(pmu);
2890
2891 pmu->sched_task(cpuctx->task_ctx, sched_in);
2892
2893 perf_pmu_enable(pmu);
2894 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2895 }
2896 }
2897
2898 static void perf_event_switch(struct task_struct *task,
2899 struct task_struct *next_prev, bool sched_in);
2900
2901 #define for_each_task_context_nr(ctxn) \
2902 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2903
2904 /*
2905 * Called from scheduler to remove the events of the current task,
2906 * with interrupts disabled.
2907 *
2908 * We stop each event and update the event value in event->count.
2909 *
2910 * This does not protect us against NMI, but disable()
2911 * sets the disabled bit in the control field of event _before_
2912 * accessing the event control register. If a NMI hits, then it will
2913 * not restart the event.
2914 */
2915 void __perf_event_task_sched_out(struct task_struct *task,
2916 struct task_struct *next)
2917 {
2918 int ctxn;
2919
2920 if (__this_cpu_read(perf_sched_cb_usages))
2921 perf_pmu_sched_task(task, next, false);
2922
2923 if (atomic_read(&nr_switch_events))
2924 perf_event_switch(task, next, false);
2925
2926 for_each_task_context_nr(ctxn)
2927 perf_event_context_sched_out(task, ctxn, next);
2928
2929 /*
2930 * if cgroup events exist on this CPU, then we need
2931 * to check if we have to switch out PMU state.
2932 * cgroup event are system-wide mode only
2933 */
2934 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2935 perf_cgroup_sched_out(task, next);
2936 }
2937
2938 /*
2939 * Called with IRQs disabled
2940 */
2941 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2942 enum event_type_t event_type)
2943 {
2944 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2945 }
2946
2947 static void
2948 ctx_pinned_sched_in(struct perf_event_context *ctx,
2949 struct perf_cpu_context *cpuctx)
2950 {
2951 struct perf_event *event;
2952
2953 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2954 if (event->state <= PERF_EVENT_STATE_OFF)
2955 continue;
2956 if (!event_filter_match(event))
2957 continue;
2958
2959 /* may need to reset tstamp_enabled */
2960 if (is_cgroup_event(event))
2961 perf_cgroup_mark_enabled(event, ctx);
2962
2963 if (group_can_go_on(event, cpuctx, 1))
2964 group_sched_in(event, cpuctx, ctx);
2965
2966 /*
2967 * If this pinned group hasn't been scheduled,
2968 * put it in error state.
2969 */
2970 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2971 update_group_times(event);
2972 event->state = PERF_EVENT_STATE_ERROR;
2973 }
2974 }
2975 }
2976
2977 static void
2978 ctx_flexible_sched_in(struct perf_event_context *ctx,
2979 struct perf_cpu_context *cpuctx)
2980 {
2981 struct perf_event *event;
2982 int can_add_hw = 1;
2983
2984 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2985 /* Ignore events in OFF or ERROR state */
2986 if (event->state <= PERF_EVENT_STATE_OFF)
2987 continue;
2988 /*
2989 * Listen to the 'cpu' scheduling filter constraint
2990 * of events:
2991 */
2992 if (!event_filter_match(event))
2993 continue;
2994
2995 /* may need to reset tstamp_enabled */
2996 if (is_cgroup_event(event))
2997 perf_cgroup_mark_enabled(event, ctx);
2998
2999 if (group_can_go_on(event, cpuctx, can_add_hw)) {
3000 if (group_sched_in(event, cpuctx, ctx))
3001 can_add_hw = 0;
3002 }
3003 }
3004 }
3005
3006 static void
3007 ctx_sched_in(struct perf_event_context *ctx,
3008 struct perf_cpu_context *cpuctx,
3009 enum event_type_t event_type,
3010 struct task_struct *task)
3011 {
3012 int is_active = ctx->is_active;
3013 u64 now;
3014
3015 lockdep_assert_held(&ctx->lock);
3016
3017 if (likely(!ctx->nr_events))
3018 return;
3019
3020 ctx->is_active |= (event_type | EVENT_TIME);
3021 if (ctx->task) {
3022 if (!is_active)
3023 cpuctx->task_ctx = ctx;
3024 else
3025 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3026 }
3027
3028 is_active ^= ctx->is_active; /* changed bits */
3029
3030 if (is_active & EVENT_TIME) {
3031 /* start ctx time */
3032 now = perf_clock();
3033 ctx->timestamp = now;
3034 perf_cgroup_set_timestamp(task, ctx);
3035 }
3036
3037 /*
3038 * First go through the list and put on any pinned groups
3039 * in order to give them the best chance of going on.
3040 */
3041 if (is_active & EVENT_PINNED)
3042 ctx_pinned_sched_in(ctx, cpuctx);
3043
3044 /* Then walk through the lower prio flexible groups */
3045 if (is_active & EVENT_FLEXIBLE)
3046 ctx_flexible_sched_in(ctx, cpuctx);
3047 }
3048
3049 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3050 enum event_type_t event_type,
3051 struct task_struct *task)
3052 {
3053 struct perf_event_context *ctx = &cpuctx->ctx;
3054
3055 ctx_sched_in(ctx, cpuctx, event_type, task);
3056 }
3057
3058 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3059 struct task_struct *task)
3060 {
3061 struct perf_cpu_context *cpuctx;
3062
3063 cpuctx = __get_cpu_context(ctx);
3064 if (cpuctx->task_ctx == ctx)
3065 return;
3066
3067 perf_ctx_lock(cpuctx, ctx);
3068 perf_pmu_disable(ctx->pmu);
3069 /*
3070 * We want to keep the following priority order:
3071 * cpu pinned (that don't need to move), task pinned,
3072 * cpu flexible, task flexible.
3073 */
3074 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3075 perf_event_sched_in(cpuctx, ctx, task);
3076 perf_pmu_enable(ctx->pmu);
3077 perf_ctx_unlock(cpuctx, ctx);
3078 }
3079
3080 /*
3081 * Called from scheduler to add the events of the current task
3082 * with interrupts disabled.
3083 *
3084 * We restore the event value and then enable it.
3085 *
3086 * This does not protect us against NMI, but enable()
3087 * sets the enabled bit in the control field of event _before_
3088 * accessing the event control register. If a NMI hits, then it will
3089 * keep the event running.
3090 */
3091 void __perf_event_task_sched_in(struct task_struct *prev,
3092 struct task_struct *task)
3093 {
3094 struct perf_event_context *ctx;
3095 int ctxn;
3096
3097 /*
3098 * If cgroup events exist on this CPU, then we need to check if we have
3099 * to switch in PMU state; cgroup event are system-wide mode only.
3100 *
3101 * Since cgroup events are CPU events, we must schedule these in before
3102 * we schedule in the task events.
3103 */
3104 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3105 perf_cgroup_sched_in(prev, task);
3106
3107 for_each_task_context_nr(ctxn) {
3108 ctx = task->perf_event_ctxp[ctxn];
3109 if (likely(!ctx))
3110 continue;
3111
3112 perf_event_context_sched_in(ctx, task);
3113 }
3114
3115 if (atomic_read(&nr_switch_events))
3116 perf_event_switch(task, prev, true);
3117
3118 if (__this_cpu_read(perf_sched_cb_usages))
3119 perf_pmu_sched_task(prev, task, true);
3120 }
3121
3122 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3123 {
3124 u64 frequency = event->attr.sample_freq;
3125 u64 sec = NSEC_PER_SEC;
3126 u64 divisor, dividend;
3127
3128 int count_fls, nsec_fls, frequency_fls, sec_fls;
3129
3130 count_fls = fls64(count);
3131 nsec_fls = fls64(nsec);
3132 frequency_fls = fls64(frequency);
3133 sec_fls = 30;
3134
3135 /*
3136 * We got @count in @nsec, with a target of sample_freq HZ
3137 * the target period becomes:
3138 *
3139 * @count * 10^9
3140 * period = -------------------
3141 * @nsec * sample_freq
3142 *
3143 */
3144
3145 /*
3146 * Reduce accuracy by one bit such that @a and @b converge
3147 * to a similar magnitude.
3148 */
3149 #define REDUCE_FLS(a, b) \
3150 do { \
3151 if (a##_fls > b##_fls) { \
3152 a >>= 1; \
3153 a##_fls--; \
3154 } else { \
3155 b >>= 1; \
3156 b##_fls--; \
3157 } \
3158 } while (0)
3159
3160 /*
3161 * Reduce accuracy until either term fits in a u64, then proceed with
3162 * the other, so that finally we can do a u64/u64 division.
3163 */
3164 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3165 REDUCE_FLS(nsec, frequency);
3166 REDUCE_FLS(sec, count);
3167 }
3168
3169 if (count_fls + sec_fls > 64) {
3170 divisor = nsec * frequency;
3171
3172 while (count_fls + sec_fls > 64) {
3173 REDUCE_FLS(count, sec);
3174 divisor >>= 1;
3175 }
3176
3177 dividend = count * sec;
3178 } else {
3179 dividend = count * sec;
3180
3181 while (nsec_fls + frequency_fls > 64) {
3182 REDUCE_FLS(nsec, frequency);
3183 dividend >>= 1;
3184 }
3185
3186 divisor = nsec * frequency;
3187 }
3188
3189 if (!divisor)
3190 return dividend;
3191
3192 return div64_u64(dividend, divisor);
3193 }
3194
3195 static DEFINE_PER_CPU(int, perf_throttled_count);
3196 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3197
3198 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3199 {
3200 struct hw_perf_event *hwc = &event->hw;
3201 s64 period, sample_period;
3202 s64 delta;
3203
3204 period = perf_calculate_period(event, nsec, count);
3205
3206 delta = (s64)(period - hwc->sample_period);
3207 delta = (delta + 7) / 8; /* low pass filter */
3208
3209 sample_period = hwc->sample_period + delta;
3210
3211 if (!sample_period)
3212 sample_period = 1;
3213
3214 hwc->sample_period = sample_period;
3215
3216 if (local64_read(&hwc->period_left) > 8*sample_period) {
3217 if (disable)
3218 event->pmu->stop(event, PERF_EF_UPDATE);
3219
3220 local64_set(&hwc->period_left, 0);
3221
3222 if (disable)
3223 event->pmu->start(event, PERF_EF_RELOAD);
3224 }
3225 }
3226
3227 /*
3228 * combine freq adjustment with unthrottling to avoid two passes over the
3229 * events. At the same time, make sure, having freq events does not change
3230 * the rate of unthrottling as that would introduce bias.
3231 */
3232 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3233 int needs_unthr)
3234 {
3235 struct perf_event *event;
3236 struct hw_perf_event *hwc;
3237 u64 now, period = TICK_NSEC;
3238 s64 delta;
3239
3240 /*
3241 * only need to iterate over all events iff:
3242 * - context have events in frequency mode (needs freq adjust)
3243 * - there are events to unthrottle on this cpu
3244 */
3245 if (!(ctx->nr_freq || needs_unthr))
3246 return;
3247
3248 raw_spin_lock(&ctx->lock);
3249 perf_pmu_disable(ctx->pmu);
3250
3251 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3252 if (event->state != PERF_EVENT_STATE_ACTIVE)
3253 continue;
3254
3255 if (!event_filter_match(event))
3256 continue;
3257
3258 perf_pmu_disable(event->pmu);
3259
3260 hwc = &event->hw;
3261
3262 if (hwc->interrupts == MAX_INTERRUPTS) {
3263 hwc->interrupts = 0;
3264 perf_log_throttle(event, 1);
3265 event->pmu->start(event, 0);
3266 }
3267
3268 if (!event->attr.freq || !event->attr.sample_freq)
3269 goto next;
3270
3271 /*
3272 * stop the event and update event->count
3273 */
3274 event->pmu->stop(event, PERF_EF_UPDATE);
3275
3276 now = local64_read(&event->count);
3277 delta = now - hwc->freq_count_stamp;
3278 hwc->freq_count_stamp = now;
3279
3280 /*
3281 * restart the event
3282 * reload only if value has changed
3283 * we have stopped the event so tell that
3284 * to perf_adjust_period() to avoid stopping it
3285 * twice.
3286 */
3287 if (delta > 0)
3288 perf_adjust_period(event, period, delta, false);
3289
3290 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3291 next:
3292 perf_pmu_enable(event->pmu);
3293 }
3294
3295 perf_pmu_enable(ctx->pmu);
3296 raw_spin_unlock(&ctx->lock);
3297 }
3298
3299 /*
3300 * Round-robin a context's events:
3301 */
3302 static void rotate_ctx(struct perf_event_context *ctx)
3303 {
3304 /*
3305 * Rotate the first entry last of non-pinned groups. Rotation might be
3306 * disabled by the inheritance code.
3307 */
3308 if (!ctx->rotate_disable)
3309 list_rotate_left(&ctx->flexible_groups);
3310 }
3311
3312 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3313 {
3314 struct perf_event_context *ctx = NULL;
3315 int rotate = 0;
3316
3317 if (cpuctx->ctx.nr_events) {
3318 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3319 rotate = 1;
3320 }
3321
3322 ctx = cpuctx->task_ctx;
3323 if (ctx && ctx->nr_events) {
3324 if (ctx->nr_events != ctx->nr_active)
3325 rotate = 1;
3326 }
3327
3328 if (!rotate)
3329 goto done;
3330
3331 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3332 perf_pmu_disable(cpuctx->ctx.pmu);
3333
3334 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3335 if (ctx)
3336 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3337
3338 rotate_ctx(&cpuctx->ctx);
3339 if (ctx)
3340 rotate_ctx(ctx);
3341
3342 perf_event_sched_in(cpuctx, ctx, current);
3343
3344 perf_pmu_enable(cpuctx->ctx.pmu);
3345 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3346 done:
3347
3348 return rotate;
3349 }
3350
3351 void perf_event_task_tick(void)
3352 {
3353 struct list_head *head = this_cpu_ptr(&active_ctx_list);
3354 struct perf_event_context *ctx, *tmp;
3355 int throttled;
3356
3357 WARN_ON(!irqs_disabled());
3358
3359 __this_cpu_inc(perf_throttled_seq);
3360 throttled = __this_cpu_xchg(perf_throttled_count, 0);
3361 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3362
3363 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3364 perf_adjust_freq_unthr_context(ctx, throttled);
3365 }
3366
3367 static int event_enable_on_exec(struct perf_event *event,
3368 struct perf_event_context *ctx)
3369 {
3370 if (!event->attr.enable_on_exec)
3371 return 0;
3372
3373 event->attr.enable_on_exec = 0;
3374 if (event->state >= PERF_EVENT_STATE_INACTIVE)
3375 return 0;
3376
3377 __perf_event_mark_enabled(event);
3378
3379 return 1;
3380 }
3381
3382 /*
3383 * Enable all of a task's events that have been marked enable-on-exec.
3384 * This expects task == current.
3385 */
3386 static void perf_event_enable_on_exec(int ctxn)
3387 {
3388 struct perf_event_context *ctx, *clone_ctx = NULL;
3389 struct perf_cpu_context *cpuctx;
3390 struct perf_event *event;
3391 unsigned long flags;
3392 int enabled = 0;
3393
3394 local_irq_save(flags);
3395 ctx = current->perf_event_ctxp[ctxn];
3396 if (!ctx || !ctx->nr_events)
3397 goto out;
3398
3399 cpuctx = __get_cpu_context(ctx);
3400 perf_ctx_lock(cpuctx, ctx);
3401 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3402 list_for_each_entry(event, &ctx->event_list, event_entry)
3403 enabled |= event_enable_on_exec(event, ctx);
3404
3405 /*
3406 * Unclone and reschedule this context if we enabled any event.
3407 */
3408 if (enabled) {
3409 clone_ctx = unclone_ctx(ctx);
3410 ctx_resched(cpuctx, ctx);
3411 }
3412 perf_ctx_unlock(cpuctx, ctx);
3413
3414 out:
3415 local_irq_restore(flags);
3416
3417 if (clone_ctx)
3418 put_ctx(clone_ctx);
3419 }
3420
3421 struct perf_read_data {
3422 struct perf_event *event;
3423 bool group;
3424 int ret;
3425 };
3426
3427 static int find_cpu_to_read(struct perf_event *event, int local_cpu)
3428 {
3429 int event_cpu = event->oncpu;
3430 u16 local_pkg, event_pkg;
3431
3432 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
3433 event_pkg = topology_physical_package_id(event_cpu);
3434 local_pkg = topology_physical_package_id(local_cpu);
3435
3436 if (event_pkg == local_pkg)
3437 return local_cpu;
3438 }
3439
3440 return event_cpu;
3441 }
3442
3443 /*
3444 * Cross CPU call to read the hardware event
3445 */
3446 static void __perf_event_read(void *info)
3447 {
3448 struct perf_read_data *data = info;
3449 struct perf_event *sub, *event = data->event;
3450 struct perf_event_context *ctx = event->ctx;
3451 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3452 struct pmu *pmu = event->pmu;
3453
3454 /*
3455 * If this is a task context, we need to check whether it is
3456 * the current task context of this cpu. If not it has been
3457 * scheduled out before the smp call arrived. In that case
3458 * event->count would have been updated to a recent sample
3459 * when the event was scheduled out.
3460 */
3461 if (ctx->task && cpuctx->task_ctx != ctx)
3462 return;
3463
3464 raw_spin_lock(&ctx->lock);
3465 if (ctx->is_active) {
3466 update_context_time(ctx);
3467 update_cgrp_time_from_event(event);
3468 }
3469
3470 update_event_times(event);
3471 if (event->state != PERF_EVENT_STATE_ACTIVE)
3472 goto unlock;
3473
3474 if (!data->group) {
3475 pmu->read(event);
3476 data->ret = 0;
3477 goto unlock;
3478 }
3479
3480 pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3481
3482 pmu->read(event);
3483
3484 list_for_each_entry(sub, &event->sibling_list, group_entry) {
3485 update_event_times(sub);
3486 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3487 /*
3488 * Use sibling's PMU rather than @event's since
3489 * sibling could be on different (eg: software) PMU.
3490 */
3491 sub->pmu->read(sub);
3492 }
3493 }
3494
3495 data->ret = pmu->commit_txn(pmu);
3496
3497 unlock:
3498 raw_spin_unlock(&ctx->lock);
3499 }
3500
3501 static inline u64 perf_event_count(struct perf_event *event)
3502 {
3503 if (event->pmu->count)
3504 return event->pmu->count(event);
3505
3506 return __perf_event_count(event);
3507 }
3508
3509 /*
3510 * NMI-safe method to read a local event, that is an event that
3511 * is:
3512 * - either for the current task, or for this CPU
3513 * - does not have inherit set, for inherited task events
3514 * will not be local and we cannot read them atomically
3515 * - must not have a pmu::count method
3516 */
3517 u64 perf_event_read_local(struct perf_event *event)
3518 {
3519 unsigned long flags;
3520 u64 val;
3521
3522 /*
3523 * Disabling interrupts avoids all counter scheduling (context
3524 * switches, timer based rotation and IPIs).
3525 */
3526 local_irq_save(flags);
3527
3528 /* If this is a per-task event, it must be for current */
3529 WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
3530 event->hw.target != current);
3531
3532 /* If this is a per-CPU event, it must be for this CPU */
3533 WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
3534 event->cpu != smp_processor_id());
3535
3536 /*
3537 * It must not be an event with inherit set, we cannot read
3538 * all child counters from atomic context.
3539 */
3540 WARN_ON_ONCE(event->attr.inherit);
3541
3542 /*
3543 * It must not have a pmu::count method, those are not
3544 * NMI safe.
3545 */
3546 WARN_ON_ONCE(event->pmu->count);
3547
3548 /*
3549 * If the event is currently on this CPU, its either a per-task event,
3550 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3551 * oncpu == -1).
3552 */
3553 if (event->oncpu == smp_processor_id())
3554 event->pmu->read(event);
3555
3556 val = local64_read(&event->count);
3557 local_irq_restore(flags);
3558
3559 return val;
3560 }
3561
3562 static int perf_event_read(struct perf_event *event, bool group)
3563 {
3564 int ret = 0, cpu_to_read, local_cpu;
3565
3566 /*
3567 * If event is enabled and currently active on a CPU, update the
3568 * value in the event structure:
3569 */
3570 if (event->state == PERF_EVENT_STATE_ACTIVE) {
3571 struct perf_read_data data = {
3572 .event = event,
3573 .group = group,
3574 .ret = 0,
3575 };
3576
3577 local_cpu = get_cpu();
3578 cpu_to_read = find_cpu_to_read(event, local_cpu);
3579 put_cpu();
3580
3581 /*
3582 * Purposely ignore the smp_call_function_single() return
3583 * value.
3584 *
3585 * If event->oncpu isn't a valid CPU it means the event got
3586 * scheduled out and that will have updated the event count.
3587 *
3588 * Therefore, either way, we'll have an up-to-date event count
3589 * after this.
3590 */
3591 (void)smp_call_function_single(cpu_to_read, __perf_event_read, &data, 1);
3592 ret = data.ret;
3593 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
3594 struct perf_event_context *ctx = event->ctx;
3595 unsigned long flags;
3596
3597 raw_spin_lock_irqsave(&ctx->lock, flags);
3598 /*
3599 * may read while context is not active
3600 * (e.g., thread is blocked), in that case
3601 * we cannot update context time
3602 */
3603 if (ctx->is_active) {
3604 update_context_time(ctx);
3605 update_cgrp_time_from_event(event);
3606 }
3607 if (group)
3608 update_group_times(event);
3609 else
3610 update_event_times(event);
3611 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3612 }
3613
3614 return ret;
3615 }
3616
3617 /*
3618 * Initialize the perf_event context in a task_struct:
3619 */
3620 static void __perf_event_init_context(struct perf_event_context *ctx)
3621 {
3622 raw_spin_lock_init(&ctx->lock);
3623 mutex_init(&ctx->mutex);
3624 INIT_LIST_HEAD(&ctx->active_ctx_list);
3625 INIT_LIST_HEAD(&ctx->pinned_groups);
3626 INIT_LIST_HEAD(&ctx->flexible_groups);
3627 INIT_LIST_HEAD(&ctx->event_list);
3628 atomic_set(&ctx->refcount, 1);
3629 }
3630
3631 static struct perf_event_context *
3632 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3633 {
3634 struct perf_event_context *ctx;
3635
3636 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3637 if (!ctx)
3638 return NULL;
3639
3640 __perf_event_init_context(ctx);
3641 if (task) {
3642 ctx->task = task;
3643 get_task_struct(task);
3644 }
3645 ctx->pmu = pmu;
3646
3647 return ctx;
3648 }
3649
3650 static struct task_struct *
3651 find_lively_task_by_vpid(pid_t vpid)
3652 {
3653 struct task_struct *task;
3654
3655 rcu_read_lock();
3656 if (!vpid)
3657 task = current;
3658 else
3659 task = find_task_by_vpid(vpid);
3660 if (task)
3661 get_task_struct(task);
3662 rcu_read_unlock();
3663
3664 if (!task)
3665 return ERR_PTR(-ESRCH);
3666
3667 return task;
3668 }
3669
3670 /*
3671 * Returns a matching context with refcount and pincount.
3672 */
3673 static struct perf_event_context *
3674 find_get_context(struct pmu *pmu, struct task_struct *task,
3675 struct perf_event *event)
3676 {
3677 struct perf_event_context *ctx, *clone_ctx = NULL;
3678 struct perf_cpu_context *cpuctx;
3679 void *task_ctx_data = NULL;
3680 unsigned long flags;
3681 int ctxn, err;
3682 int cpu = event->cpu;
3683
3684 if (!task) {
3685 /* Must be root to operate on a CPU event: */
3686 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3687 return ERR_PTR(-EACCES);
3688
3689 /*
3690 * We could be clever and allow to attach a event to an
3691 * offline CPU and activate it when the CPU comes up, but
3692 * that's for later.
3693 */
3694 if (!cpu_online(cpu))
3695 return ERR_PTR(-ENODEV);
3696
3697 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3698 ctx = &cpuctx->ctx;
3699 get_ctx(ctx);
3700 ++ctx->pin_count;
3701
3702 return ctx;
3703 }
3704
3705 err = -EINVAL;
3706 ctxn = pmu->task_ctx_nr;
3707 if (ctxn < 0)
3708 goto errout;
3709
3710 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3711 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3712 if (!task_ctx_data) {
3713 err = -ENOMEM;
3714 goto errout;
3715 }
3716 }
3717
3718 retry:
3719 ctx = perf_lock_task_context(task, ctxn, &flags);
3720 if (ctx) {
3721 clone_ctx = unclone_ctx(ctx);
3722 ++ctx->pin_count;
3723
3724 if (task_ctx_data && !ctx->task_ctx_data) {
3725 ctx->task_ctx_data = task_ctx_data;
3726 task_ctx_data = NULL;
3727 }
3728 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3729
3730 if (clone_ctx)
3731 put_ctx(clone_ctx);
3732 } else {
3733 ctx = alloc_perf_context(pmu, task);
3734 err = -ENOMEM;
3735 if (!ctx)
3736 goto errout;
3737
3738 if (task_ctx_data) {
3739 ctx->task_ctx_data = task_ctx_data;
3740 task_ctx_data = NULL;
3741 }
3742
3743 err = 0;
3744 mutex_lock(&task->perf_event_mutex);
3745 /*
3746 * If it has already passed perf_event_exit_task().
3747 * we must see PF_EXITING, it takes this mutex too.
3748 */
3749 if (task->flags & PF_EXITING)
3750 err = -ESRCH;
3751 else if (task->perf_event_ctxp[ctxn])
3752 err = -EAGAIN;
3753 else {
3754 get_ctx(ctx);
3755 ++ctx->pin_count;
3756 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3757 }
3758 mutex_unlock(&task->perf_event_mutex);
3759
3760 if (unlikely(err)) {
3761 put_ctx(ctx);
3762
3763 if (err == -EAGAIN)
3764 goto retry;
3765 goto errout;
3766 }
3767 }
3768
3769 kfree(task_ctx_data);
3770 return ctx;
3771
3772 errout:
3773 kfree(task_ctx_data);
3774 return ERR_PTR(err);
3775 }
3776
3777 static void perf_event_free_filter(struct perf_event *event);
3778 static void perf_event_free_bpf_prog(struct perf_event *event);
3779
3780 static void free_event_rcu(struct rcu_head *head)
3781 {
3782 struct perf_event *event;
3783
3784 event = container_of(head, struct perf_event, rcu_head);
3785 if (event->ns)
3786 put_pid_ns(event->ns);
3787 perf_event_free_filter(event);
3788 kfree(event);
3789 }
3790
3791 static void ring_buffer_attach(struct perf_event *event,
3792 struct ring_buffer *rb);
3793
3794 static void detach_sb_event(struct perf_event *event)
3795 {
3796 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
3797
3798 raw_spin_lock(&pel->lock);
3799 list_del_rcu(&event->sb_list);
3800 raw_spin_unlock(&pel->lock);
3801 }
3802
3803 static bool is_sb_event(struct perf_event *event)
3804 {
3805 struct perf_event_attr *attr = &event->attr;
3806
3807 if (event->parent)
3808 return false;
3809
3810 if (event->attach_state & PERF_ATTACH_TASK)
3811 return false;
3812
3813 if (attr->mmap || attr->mmap_data || attr->mmap2 ||
3814 attr->comm || attr->comm_exec ||
3815 attr->task ||
3816 attr->context_switch)
3817 return true;
3818 return false;
3819 }
3820
3821 static void unaccount_pmu_sb_event(struct perf_event *event)
3822 {
3823 if (is_sb_event(event))
3824 detach_sb_event(event);
3825 }
3826
3827 static void unaccount_event_cpu(struct perf_event *event, int cpu)
3828 {
3829 if (event->parent)
3830 return;
3831
3832 if (is_cgroup_event(event))
3833 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3834 }
3835
3836 #ifdef CONFIG_NO_HZ_FULL
3837 static DEFINE_SPINLOCK(nr_freq_lock);
3838 #endif
3839
3840 static void unaccount_freq_event_nohz(void)
3841 {
3842 #ifdef CONFIG_NO_HZ_FULL
3843 spin_lock(&nr_freq_lock);
3844 if (atomic_dec_and_test(&nr_freq_events))
3845 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
3846 spin_unlock(&nr_freq_lock);
3847 #endif
3848 }
3849
3850 static void unaccount_freq_event(void)
3851 {
3852 if (tick_nohz_full_enabled())
3853 unaccount_freq_event_nohz();
3854 else
3855 atomic_dec(&nr_freq_events);
3856 }
3857
3858 static void unaccount_event(struct perf_event *event)
3859 {
3860 bool dec = false;
3861
3862 if (event->parent)
3863 return;
3864
3865 if (event->attach_state & PERF_ATTACH_TASK)
3866 dec = true;
3867 if (event->attr.mmap || event->attr.mmap_data)
3868 atomic_dec(&nr_mmap_events);
3869 if (event->attr.comm)
3870 atomic_dec(&nr_comm_events);
3871 if (event->attr.task)
3872 atomic_dec(&nr_task_events);
3873 if (event->attr.freq)
3874 unaccount_freq_event();
3875 if (event->attr.context_switch) {
3876 dec = true;
3877 atomic_dec(&nr_switch_events);
3878 }
3879 if (is_cgroup_event(event))
3880 dec = true;
3881 if (has_branch_stack(event))
3882 dec = true;
3883
3884 if (dec) {
3885 if (!atomic_add_unless(&perf_sched_count, -1, 1))
3886 schedule_delayed_work(&perf_sched_work, HZ);
3887 }
3888
3889 unaccount_event_cpu(event, event->cpu);
3890
3891 unaccount_pmu_sb_event(event);
3892 }
3893
3894 static void perf_sched_delayed(struct work_struct *work)
3895 {
3896 mutex_lock(&perf_sched_mutex);
3897 if (atomic_dec_and_test(&perf_sched_count))
3898 static_branch_disable(&perf_sched_events);
3899 mutex_unlock(&perf_sched_mutex);
3900 }
3901
3902 /*
3903 * The following implement mutual exclusion of events on "exclusive" pmus
3904 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3905 * at a time, so we disallow creating events that might conflict, namely:
3906 *
3907 * 1) cpu-wide events in the presence of per-task events,
3908 * 2) per-task events in the presence of cpu-wide events,
3909 * 3) two matching events on the same context.
3910 *
3911 * The former two cases are handled in the allocation path (perf_event_alloc(),
3912 * _free_event()), the latter -- before the first perf_install_in_context().
3913 */
3914 static int exclusive_event_init(struct perf_event *event)
3915 {
3916 struct pmu *pmu = event->pmu;
3917
3918 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3919 return 0;
3920
3921 /*
3922 * Prevent co-existence of per-task and cpu-wide events on the
3923 * same exclusive pmu.
3924 *
3925 * Negative pmu::exclusive_cnt means there are cpu-wide
3926 * events on this "exclusive" pmu, positive means there are
3927 * per-task events.
3928 *
3929 * Since this is called in perf_event_alloc() path, event::ctx
3930 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
3931 * to mean "per-task event", because unlike other attach states it
3932 * never gets cleared.
3933 */
3934 if (event->attach_state & PERF_ATTACH_TASK) {
3935 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
3936 return -EBUSY;
3937 } else {
3938 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
3939 return -EBUSY;
3940 }
3941
3942 return 0;
3943 }
3944
3945 static void exclusive_event_destroy(struct perf_event *event)
3946 {
3947 struct pmu *pmu = event->pmu;
3948
3949 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3950 return;
3951
3952 /* see comment in exclusive_event_init() */
3953 if (event->attach_state & PERF_ATTACH_TASK)
3954 atomic_dec(&pmu->exclusive_cnt);
3955 else
3956 atomic_inc(&pmu->exclusive_cnt);
3957 }
3958
3959 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
3960 {
3961 if ((e1->pmu == e2->pmu) &&
3962 (e1->cpu == e2->cpu ||
3963 e1->cpu == -1 ||
3964 e2->cpu == -1))
3965 return true;
3966 return false;
3967 }
3968
3969 /* Called under the same ctx::mutex as perf_install_in_context() */
3970 static bool exclusive_event_installable(struct perf_event *event,
3971 struct perf_event_context *ctx)
3972 {
3973 struct perf_event *iter_event;
3974 struct pmu *pmu = event->pmu;
3975
3976 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3977 return true;
3978
3979 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
3980 if (exclusive_event_match(iter_event, event))
3981 return false;
3982 }
3983
3984 return true;
3985 }
3986
3987 static void perf_addr_filters_splice(struct perf_event *event,
3988 struct list_head *head);
3989
3990 static void _free_event(struct perf_event *event)
3991 {
3992 irq_work_sync(&event->pending);
3993
3994 unaccount_event(event);
3995
3996 if (event->rb) {
3997 /*
3998 * Can happen when we close an event with re-directed output.
3999 *
4000 * Since we have a 0 refcount, perf_mmap_close() will skip
4001 * over us; possibly making our ring_buffer_put() the last.
4002 */
4003 mutex_lock(&event->mmap_mutex);
4004 ring_buffer_attach(event, NULL);
4005 mutex_unlock(&event->mmap_mutex);
4006 }
4007
4008 if (is_cgroup_event(event))
4009 perf_detach_cgroup(event);
4010
4011 if (!event->parent) {
4012 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4013 put_callchain_buffers();
4014 }
4015
4016 perf_event_free_bpf_prog(event);
4017 perf_addr_filters_splice(event, NULL);
4018 kfree(event->addr_filters_offs);
4019
4020 if (event->destroy)
4021 event->destroy(event);
4022
4023 if (event->ctx)
4024 put_ctx(event->ctx);
4025
4026 exclusive_event_destroy(event);
4027 module_put(event->pmu->module);
4028
4029 call_rcu(&event->rcu_head, free_event_rcu);
4030 }
4031
4032 /*
4033 * Used to free events which have a known refcount of 1, such as in error paths
4034 * where the event isn't exposed yet and inherited events.
4035 */
4036 static void free_event(struct perf_event *event)
4037 {
4038 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4039 "unexpected event refcount: %ld; ptr=%p\n",
4040 atomic_long_read(&event->refcount), event)) {
4041 /* leak to avoid use-after-free */
4042 return;
4043 }
4044
4045 _free_event(event);
4046 }
4047
4048 /*
4049 * Remove user event from the owner task.
4050 */
4051 static void perf_remove_from_owner(struct perf_event *event)
4052 {
4053 struct task_struct *owner;
4054
4055 rcu_read_lock();
4056 /*
4057 * Matches the smp_store_release() in perf_event_exit_task(). If we
4058 * observe !owner it means the list deletion is complete and we can
4059 * indeed free this event, otherwise we need to serialize on
4060 * owner->perf_event_mutex.
4061 */
4062 owner = lockless_dereference(event->owner);
4063 if (owner) {
4064 /*
4065 * Since delayed_put_task_struct() also drops the last
4066 * task reference we can safely take a new reference
4067 * while holding the rcu_read_lock().
4068 */
4069 get_task_struct(owner);
4070 }
4071 rcu_read_unlock();
4072
4073 if (owner) {
4074 /*
4075 * If we're here through perf_event_exit_task() we're already
4076 * holding ctx->mutex which would be an inversion wrt. the
4077 * normal lock order.
4078 *
4079 * However we can safely take this lock because its the child
4080 * ctx->mutex.
4081 */
4082 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4083
4084 /*
4085 * We have to re-check the event->owner field, if it is cleared
4086 * we raced with perf_event_exit_task(), acquiring the mutex
4087 * ensured they're done, and we can proceed with freeing the
4088 * event.
4089 */
4090 if (event->owner) {
4091 list_del_init(&event->owner_entry);
4092 smp_store_release(&event->owner, NULL);
4093 }
4094 mutex_unlock(&owner->perf_event_mutex);
4095 put_task_struct(owner);
4096 }
4097 }
4098
4099 static void put_event(struct perf_event *event)
4100 {
4101 if (!atomic_long_dec_and_test(&event->refcount))
4102 return;
4103
4104 _free_event(event);
4105 }
4106
4107 /*
4108 * Kill an event dead; while event:refcount will preserve the event
4109 * object, it will not preserve its functionality. Once the last 'user'
4110 * gives up the object, we'll destroy the thing.
4111 */
4112 int perf_event_release_kernel(struct perf_event *event)
4113 {
4114 struct perf_event_context *ctx = event->ctx;
4115 struct perf_event *child, *tmp;
4116
4117 /*
4118 * If we got here through err_file: fput(event_file); we will not have
4119 * attached to a context yet.
4120 */
4121 if (!ctx) {
4122 WARN_ON_ONCE(event->attach_state &
4123 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4124 goto no_ctx;
4125 }
4126
4127 if (!is_kernel_event(event))
4128 perf_remove_from_owner(event);
4129
4130 ctx = perf_event_ctx_lock(event);
4131 WARN_ON_ONCE(ctx->parent_ctx);
4132 perf_remove_from_context(event, DETACH_GROUP);
4133
4134 raw_spin_lock_irq(&ctx->lock);
4135 /*
4136 * Mark this even as STATE_DEAD, there is no external reference to it
4137 * anymore.
4138 *
4139 * Anybody acquiring event->child_mutex after the below loop _must_
4140 * also see this, most importantly inherit_event() which will avoid
4141 * placing more children on the list.
4142 *
4143 * Thus this guarantees that we will in fact observe and kill _ALL_
4144 * child events.
4145 */
4146 event->state = PERF_EVENT_STATE_DEAD;
4147 raw_spin_unlock_irq(&ctx->lock);
4148
4149 perf_event_ctx_unlock(event, ctx);
4150
4151 again:
4152 mutex_lock(&event->child_mutex);
4153 list_for_each_entry(child, &event->child_list, child_list) {
4154
4155 /*
4156 * Cannot change, child events are not migrated, see the
4157 * comment with perf_event_ctx_lock_nested().
4158 */
4159 ctx = lockless_dereference(child->ctx);
4160 /*
4161 * Since child_mutex nests inside ctx::mutex, we must jump
4162 * through hoops. We start by grabbing a reference on the ctx.
4163 *
4164 * Since the event cannot get freed while we hold the
4165 * child_mutex, the context must also exist and have a !0
4166 * reference count.
4167 */
4168 get_ctx(ctx);
4169
4170 /*
4171 * Now that we have a ctx ref, we can drop child_mutex, and
4172 * acquire ctx::mutex without fear of it going away. Then we
4173 * can re-acquire child_mutex.
4174 */
4175 mutex_unlock(&event->child_mutex);
4176 mutex_lock(&ctx->mutex);
4177 mutex_lock(&event->child_mutex);
4178
4179 /*
4180 * Now that we hold ctx::mutex and child_mutex, revalidate our
4181 * state, if child is still the first entry, it didn't get freed
4182 * and we can continue doing so.
4183 */
4184 tmp = list_first_entry_or_null(&event->child_list,
4185 struct perf_event, child_list);
4186 if (tmp == child) {
4187 perf_remove_from_context(child, DETACH_GROUP);
4188 list_del(&child->child_list);
4189 free_event(child);
4190 /*
4191 * This matches the refcount bump in inherit_event();
4192 * this can't be the last reference.
4193 */
4194 put_event(event);
4195 }
4196
4197 mutex_unlock(&event->child_mutex);
4198 mutex_unlock(&ctx->mutex);
4199 put_ctx(ctx);
4200 goto again;
4201 }
4202 mutex_unlock(&event->child_mutex);
4203
4204 no_ctx:
4205 put_event(event); /* Must be the 'last' reference */
4206 return 0;
4207 }
4208 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4209
4210 /*
4211 * Called when the last reference to the file is gone.
4212 */
4213 static int perf_release(struct inode *inode, struct file *file)
4214 {
4215 perf_event_release_kernel(file->private_data);
4216 return 0;
4217 }
4218
4219 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4220 {
4221 struct perf_event *child;
4222 u64 total = 0;
4223
4224 *enabled = 0;
4225 *running = 0;
4226
4227 mutex_lock(&event->child_mutex);
4228
4229 (void)perf_event_read(event, false);
4230 total += perf_event_count(event);
4231
4232 *enabled += event->total_time_enabled +
4233 atomic64_read(&event->child_total_time_enabled);
4234 *running += event->total_time_running +
4235 atomic64_read(&event->child_total_time_running);
4236
4237 list_for_each_entry(child, &event->child_list, child_list) {
4238 (void)perf_event_read(child, false);
4239 total += perf_event_count(child);
4240 *enabled += child->total_time_enabled;
4241 *running += child->total_time_running;
4242 }
4243 mutex_unlock(&event->child_mutex);
4244
4245 return total;
4246 }
4247 EXPORT_SYMBOL_GPL(perf_event_read_value);
4248
4249 static int __perf_read_group_add(struct perf_event *leader,
4250 u64 read_format, u64 *values)
4251 {
4252 struct perf_event *sub;
4253 int n = 1; /* skip @nr */
4254 int ret;
4255
4256 ret = perf_event_read(leader, true);
4257 if (ret)
4258 return ret;
4259
4260 /*
4261 * Since we co-schedule groups, {enabled,running} times of siblings
4262 * will be identical to those of the leader, so we only publish one
4263 * set.
4264 */
4265 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4266 values[n++] += leader->total_time_enabled +
4267 atomic64_read(&leader->child_total_time_enabled);
4268 }
4269
4270 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4271 values[n++] += leader->total_time_running +
4272 atomic64_read(&leader->child_total_time_running);
4273 }
4274
4275 /*
4276 * Write {count,id} tuples for every sibling.
4277 */
4278 values[n++] += perf_event_count(leader);
4279 if (read_format & PERF_FORMAT_ID)
4280 values[n++] = primary_event_id(leader);
4281
4282 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4283 values[n++] += perf_event_count(sub);
4284 if (read_format & PERF_FORMAT_ID)
4285 values[n++] = primary_event_id(sub);
4286 }
4287
4288 return 0;
4289 }
4290
4291 static int perf_read_group(struct perf_event *event,
4292 u64 read_format, char __user *buf)
4293 {
4294 struct perf_event *leader = event->group_leader, *child;
4295 struct perf_event_context *ctx = leader->ctx;
4296 int ret;
4297 u64 *values;
4298
4299 lockdep_assert_held(&ctx->mutex);
4300
4301 values = kzalloc(event->read_size, GFP_KERNEL);
4302 if (!values)
4303 return -ENOMEM;
4304
4305 values[0] = 1 + leader->nr_siblings;
4306
4307 /*
4308 * By locking the child_mutex of the leader we effectively
4309 * lock the child list of all siblings.. XXX explain how.
4310 */
4311 mutex_lock(&leader->child_mutex);
4312
4313 ret = __perf_read_group_add(leader, read_format, values);
4314 if (ret)
4315 goto unlock;
4316
4317 list_for_each_entry(child, &leader->child_list, child_list) {
4318 ret = __perf_read_group_add(child, read_format, values);
4319 if (ret)
4320 goto unlock;
4321 }
4322
4323 mutex_unlock(&leader->child_mutex);
4324
4325 ret = event->read_size;
4326 if (copy_to_user(buf, values, event->read_size))
4327 ret = -EFAULT;
4328 goto out;
4329
4330 unlock:
4331 mutex_unlock(&leader->child_mutex);
4332 out:
4333 kfree(values);
4334 return ret;
4335 }
4336
4337 static int perf_read_one(struct perf_event *event,
4338 u64 read_format, char __user *buf)
4339 {
4340 u64 enabled, running;
4341 u64 values[4];
4342 int n = 0;
4343
4344 values[n++] = perf_event_read_value(event, &enabled, &running);
4345 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4346 values[n++] = enabled;
4347 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4348 values[n++] = running;
4349 if (read_format & PERF_FORMAT_ID)
4350 values[n++] = primary_event_id(event);
4351
4352 if (copy_to_user(buf, values, n * sizeof(u64)))
4353 return -EFAULT;
4354
4355 return n * sizeof(u64);
4356 }
4357
4358 static bool is_event_hup(struct perf_event *event)
4359 {
4360 bool no_children;
4361
4362 if (event->state > PERF_EVENT_STATE_EXIT)
4363 return false;
4364
4365 mutex_lock(&event->child_mutex);
4366 no_children = list_empty(&event->child_list);
4367 mutex_unlock(&event->child_mutex);
4368 return no_children;
4369 }
4370
4371 /*
4372 * Read the performance event - simple non blocking version for now
4373 */
4374 static ssize_t
4375 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4376 {
4377 u64 read_format = event->attr.read_format;
4378 int ret;
4379
4380 /*
4381 * Return end-of-file for a read on a event that is in
4382 * error state (i.e. because it was pinned but it couldn't be
4383 * scheduled on to the CPU at some point).
4384 */
4385 if (event->state == PERF_EVENT_STATE_ERROR)
4386 return 0;
4387
4388 if (count < event->read_size)
4389 return -ENOSPC;
4390
4391 WARN_ON_ONCE(event->ctx->parent_ctx);
4392 if (read_format & PERF_FORMAT_GROUP)
4393 ret = perf_read_group(event, read_format, buf);
4394 else
4395 ret = perf_read_one(event, read_format, buf);
4396
4397 return ret;
4398 }
4399
4400 static ssize_t
4401 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4402 {
4403 struct perf_event *event = file->private_data;
4404 struct perf_event_context *ctx;
4405 int ret;
4406
4407 ctx = perf_event_ctx_lock(event);
4408 ret = __perf_read(event, buf, count);
4409 perf_event_ctx_unlock(event, ctx);
4410
4411 return ret;
4412 }
4413
4414 static unsigned int perf_poll(struct file *file, poll_table *wait)
4415 {
4416 struct perf_event *event = file->private_data;
4417 struct ring_buffer *rb;
4418 unsigned int events = POLLHUP;
4419
4420 poll_wait(file, &event->waitq, wait);
4421
4422 if (is_event_hup(event))
4423 return events;
4424
4425 /*
4426 * Pin the event->rb by taking event->mmap_mutex; otherwise
4427 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4428 */
4429 mutex_lock(&event->mmap_mutex);
4430 rb = event->rb;
4431 if (rb)
4432 events = atomic_xchg(&rb->poll, 0);
4433 mutex_unlock(&event->mmap_mutex);
4434 return events;
4435 }
4436
4437 static void _perf_event_reset(struct perf_event *event)
4438 {
4439 (void)perf_event_read(event, false);
4440 local64_set(&event->count, 0);
4441 perf_event_update_userpage(event);
4442 }
4443
4444 /*
4445 * Holding the top-level event's child_mutex means that any
4446 * descendant process that has inherited this event will block
4447 * in perf_event_exit_event() if it goes to exit, thus satisfying the
4448 * task existence requirements of perf_event_enable/disable.
4449 */
4450 static void perf_event_for_each_child(struct perf_event *event,
4451 void (*func)(struct perf_event *))
4452 {
4453 struct perf_event *child;
4454
4455 WARN_ON_ONCE(event->ctx->parent_ctx);
4456
4457 mutex_lock(&event->child_mutex);
4458 func(event);
4459 list_for_each_entry(child, &event->child_list, child_list)
4460 func(child);
4461 mutex_unlock(&event->child_mutex);
4462 }
4463
4464 static void perf_event_for_each(struct perf_event *event,
4465 void (*func)(struct perf_event *))
4466 {
4467 struct perf_event_context *ctx = event->ctx;
4468 struct perf_event *sibling;
4469
4470 lockdep_assert_held(&ctx->mutex);
4471
4472 event = event->group_leader;
4473
4474 perf_event_for_each_child(event, func);
4475 list_for_each_entry(sibling, &event->sibling_list, group_entry)
4476 perf_event_for_each_child(sibling, func);
4477 }
4478
4479 static void __perf_event_period(struct perf_event *event,
4480 struct perf_cpu_context *cpuctx,
4481 struct perf_event_context *ctx,
4482 void *info)
4483 {
4484 u64 value = *((u64 *)info);
4485 bool active;
4486
4487 if (event->attr.freq) {
4488 event->attr.sample_freq = value;
4489 } else {
4490 event->attr.sample_period = value;
4491 event->hw.sample_period = value;
4492 }
4493
4494 active = (event->state == PERF_EVENT_STATE_ACTIVE);
4495 if (active) {
4496 perf_pmu_disable(ctx->pmu);
4497 /*
4498 * We could be throttled; unthrottle now to avoid the tick
4499 * trying to unthrottle while we already re-started the event.
4500 */
4501 if (event->hw.interrupts == MAX_INTERRUPTS) {
4502 event->hw.interrupts = 0;
4503 perf_log_throttle(event, 1);
4504 }
4505 event->pmu->stop(event, PERF_EF_UPDATE);
4506 }
4507
4508 local64_set(&event->hw.period_left, 0);
4509
4510 if (active) {
4511 event->pmu->start(event, PERF_EF_RELOAD);
4512 perf_pmu_enable(ctx->pmu);
4513 }
4514 }
4515
4516 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4517 {
4518 u64 value;
4519
4520 if (!is_sampling_event(event))
4521 return -EINVAL;
4522
4523 if (copy_from_user(&value, arg, sizeof(value)))
4524 return -EFAULT;
4525
4526 if (!value)
4527 return -EINVAL;
4528
4529 if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4530 return -EINVAL;
4531
4532 event_function_call(event, __perf_event_period, &value);
4533
4534 return 0;
4535 }
4536
4537 static const struct file_operations perf_fops;
4538
4539 static inline int perf_fget_light(int fd, struct fd *p)
4540 {
4541 struct fd f = fdget(fd);
4542 if (!f.file)
4543 return -EBADF;
4544
4545 if (f.file->f_op != &perf_fops) {
4546 fdput(f);
4547 return -EBADF;
4548 }
4549 *p = f;
4550 return 0;
4551 }
4552
4553 static int perf_event_set_output(struct perf_event *event,
4554 struct perf_event *output_event);
4555 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4556 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4557
4558 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4559 {
4560 void (*func)(struct perf_event *);
4561 u32 flags = arg;
4562
4563 switch (cmd) {
4564 case PERF_EVENT_IOC_ENABLE:
4565 func = _perf_event_enable;
4566 break;
4567 case PERF_EVENT_IOC_DISABLE:
4568 func = _perf_event_disable;
4569 break;
4570 case PERF_EVENT_IOC_RESET:
4571 func = _perf_event_reset;
4572 break;
4573
4574 case PERF_EVENT_IOC_REFRESH:
4575 return _perf_event_refresh(event, arg);
4576
4577 case PERF_EVENT_IOC_PERIOD:
4578 return perf_event_period(event, (u64 __user *)arg);
4579
4580 case PERF_EVENT_IOC_ID:
4581 {
4582 u64 id = primary_event_id(event);
4583
4584 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4585 return -EFAULT;
4586 return 0;
4587 }
4588
4589 case PERF_EVENT_IOC_SET_OUTPUT:
4590 {
4591 int ret;
4592 if (arg != -1) {
4593 struct perf_event *output_event;
4594 struct fd output;
4595 ret = perf_fget_light(arg, &output);
4596 if (ret)
4597 return ret;
4598 output_event = output.file->private_data;
4599 ret = perf_event_set_output(event, output_event);
4600 fdput(output);
4601 } else {
4602 ret = perf_event_set_output(event, NULL);
4603 }
4604 return ret;
4605 }
4606
4607 case PERF_EVENT_IOC_SET_FILTER:
4608 return perf_event_set_filter(event, (void __user *)arg);
4609
4610 case PERF_EVENT_IOC_SET_BPF:
4611 return perf_event_set_bpf_prog(event, arg);
4612
4613 case PERF_EVENT_IOC_PAUSE_OUTPUT: {
4614 struct ring_buffer *rb;
4615
4616 rcu_read_lock();
4617 rb = rcu_dereference(event->rb);
4618 if (!rb || !rb->nr_pages) {
4619 rcu_read_unlock();
4620 return -EINVAL;
4621 }
4622 rb_toggle_paused(rb, !!arg);
4623 rcu_read_unlock();
4624 return 0;
4625 }
4626 default:
4627 return -ENOTTY;
4628 }
4629
4630 if (flags & PERF_IOC_FLAG_GROUP)
4631 perf_event_for_each(event, func);
4632 else
4633 perf_event_for_each_child(event, func);
4634
4635 return 0;
4636 }
4637
4638 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4639 {
4640 struct perf_event *event = file->private_data;
4641 struct perf_event_context *ctx;
4642 long ret;
4643
4644 ctx = perf_event_ctx_lock(event);
4645 ret = _perf_ioctl(event, cmd, arg);
4646 perf_event_ctx_unlock(event, ctx);
4647
4648 return ret;
4649 }
4650
4651 #ifdef CONFIG_COMPAT
4652 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4653 unsigned long arg)
4654 {
4655 switch (_IOC_NR(cmd)) {
4656 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4657 case _IOC_NR(PERF_EVENT_IOC_ID):
4658 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4659 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4660 cmd &= ~IOCSIZE_MASK;
4661 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4662 }
4663 break;
4664 }
4665 return perf_ioctl(file, cmd, arg);
4666 }
4667 #else
4668 # define perf_compat_ioctl NULL
4669 #endif
4670
4671 int perf_event_task_enable(void)
4672 {
4673 struct perf_event_context *ctx;
4674 struct perf_event *event;
4675
4676 mutex_lock(&current->perf_event_mutex);
4677 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4678 ctx = perf_event_ctx_lock(event);
4679 perf_event_for_each_child(event, _perf_event_enable);
4680 perf_event_ctx_unlock(event, ctx);
4681 }
4682 mutex_unlock(&current->perf_event_mutex);
4683
4684 return 0;
4685 }
4686
4687 int perf_event_task_disable(void)
4688 {
4689 struct perf_event_context *ctx;
4690 struct perf_event *event;
4691
4692 mutex_lock(&current->perf_event_mutex);
4693 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4694 ctx = perf_event_ctx_lock(event);
4695 perf_event_for_each_child(event, _perf_event_disable);
4696 perf_event_ctx_unlock(event, ctx);
4697 }
4698 mutex_unlock(&current->perf_event_mutex);
4699
4700 return 0;
4701 }
4702
4703 static int perf_event_index(struct perf_event *event)
4704 {
4705 if (event->hw.state & PERF_HES_STOPPED)
4706 return 0;
4707
4708 if (event->state != PERF_EVENT_STATE_ACTIVE)
4709 return 0;
4710
4711 return event->pmu->event_idx(event);
4712 }
4713
4714 static void calc_timer_values(struct perf_event *event,
4715 u64 *now,
4716 u64 *enabled,
4717 u64 *running)
4718 {
4719 u64 ctx_time;
4720
4721 *now = perf_clock();
4722 ctx_time = event->shadow_ctx_time + *now;
4723 *enabled = ctx_time - event->tstamp_enabled;
4724 *running = ctx_time - event->tstamp_running;
4725 }
4726
4727 static void perf_event_init_userpage(struct perf_event *event)
4728 {
4729 struct perf_event_mmap_page *userpg;
4730 struct ring_buffer *rb;
4731
4732 rcu_read_lock();
4733 rb = rcu_dereference(event->rb);
4734 if (!rb)
4735 goto unlock;
4736
4737 userpg = rb->user_page;
4738
4739 /* Allow new userspace to detect that bit 0 is deprecated */
4740 userpg->cap_bit0_is_deprecated = 1;
4741 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4742 userpg->data_offset = PAGE_SIZE;
4743 userpg->data_size = perf_data_size(rb);
4744
4745 unlock:
4746 rcu_read_unlock();
4747 }
4748
4749 void __weak arch_perf_update_userpage(
4750 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4751 {
4752 }
4753
4754 /*
4755 * Callers need to ensure there can be no nesting of this function, otherwise
4756 * the seqlock logic goes bad. We can not serialize this because the arch
4757 * code calls this from NMI context.
4758 */
4759 void perf_event_update_userpage(struct perf_event *event)
4760 {
4761 struct perf_event_mmap_page *userpg;
4762 struct ring_buffer *rb;
4763 u64 enabled, running, now;
4764
4765 rcu_read_lock();
4766 rb = rcu_dereference(event->rb);
4767 if (!rb)
4768 goto unlock;
4769
4770 /*
4771 * compute total_time_enabled, total_time_running
4772 * based on snapshot values taken when the event
4773 * was last scheduled in.
4774 *
4775 * we cannot simply called update_context_time()
4776 * because of locking issue as we can be called in
4777 * NMI context
4778 */
4779 calc_timer_values(event, &now, &enabled, &running);
4780
4781 userpg = rb->user_page;
4782 /*
4783 * Disable preemption so as to not let the corresponding user-space
4784 * spin too long if we get preempted.
4785 */
4786 preempt_disable();
4787 ++userpg->lock;
4788 barrier();
4789 userpg->index = perf_event_index(event);
4790 userpg->offset = perf_event_count(event);
4791 if (userpg->index)
4792 userpg->offset -= local64_read(&event->hw.prev_count);
4793
4794 userpg->time_enabled = enabled +
4795 atomic64_read(&event->child_total_time_enabled);
4796
4797 userpg->time_running = running +
4798 atomic64_read(&event->child_total_time_running);
4799
4800 arch_perf_update_userpage(event, userpg, now);
4801
4802 barrier();
4803 ++userpg->lock;
4804 preempt_enable();
4805 unlock:
4806 rcu_read_unlock();
4807 }
4808
4809 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
4810 {
4811 struct perf_event *event = vma->vm_file->private_data;
4812 struct ring_buffer *rb;
4813 int ret = VM_FAULT_SIGBUS;
4814
4815 if (vmf->flags & FAULT_FLAG_MKWRITE) {
4816 if (vmf->pgoff == 0)
4817 ret = 0;
4818 return ret;
4819 }
4820
4821 rcu_read_lock();
4822 rb = rcu_dereference(event->rb);
4823 if (!rb)
4824 goto unlock;
4825
4826 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4827 goto unlock;
4828
4829 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4830 if (!vmf->page)
4831 goto unlock;
4832
4833 get_page(vmf->page);
4834 vmf->page->mapping = vma->vm_file->f_mapping;
4835 vmf->page->index = vmf->pgoff;
4836
4837 ret = 0;
4838 unlock:
4839 rcu_read_unlock();
4840
4841 return ret;
4842 }
4843
4844 static void ring_buffer_attach(struct perf_event *event,
4845 struct ring_buffer *rb)
4846 {
4847 struct ring_buffer *old_rb = NULL;
4848 unsigned long flags;
4849
4850 if (event->rb) {
4851 /*
4852 * Should be impossible, we set this when removing
4853 * event->rb_entry and wait/clear when adding event->rb_entry.
4854 */
4855 WARN_ON_ONCE(event->rcu_pending);
4856
4857 old_rb = event->rb;
4858 spin_lock_irqsave(&old_rb->event_lock, flags);
4859 list_del_rcu(&event->rb_entry);
4860 spin_unlock_irqrestore(&old_rb->event_lock, flags);
4861
4862 event->rcu_batches = get_state_synchronize_rcu();
4863 event->rcu_pending = 1;
4864 }
4865
4866 if (rb) {
4867 if (event->rcu_pending) {
4868 cond_synchronize_rcu(event->rcu_batches);
4869 event->rcu_pending = 0;
4870 }
4871
4872 spin_lock_irqsave(&rb->event_lock, flags);
4873 list_add_rcu(&event->rb_entry, &rb->event_list);
4874 spin_unlock_irqrestore(&rb->event_lock, flags);
4875 }
4876
4877 /*
4878 * Avoid racing with perf_mmap_close(AUX): stop the event
4879 * before swizzling the event::rb pointer; if it's getting
4880 * unmapped, its aux_mmap_count will be 0 and it won't
4881 * restart. See the comment in __perf_pmu_output_stop().
4882 *
4883 * Data will inevitably be lost when set_output is done in
4884 * mid-air, but then again, whoever does it like this is
4885 * not in for the data anyway.
4886 */
4887 if (has_aux(event))
4888 perf_event_stop(event, 0);
4889
4890 rcu_assign_pointer(event->rb, rb);
4891
4892 if (old_rb) {
4893 ring_buffer_put(old_rb);
4894 /*
4895 * Since we detached before setting the new rb, so that we
4896 * could attach the new rb, we could have missed a wakeup.
4897 * Provide it now.
4898 */
4899 wake_up_all(&event->waitq);
4900 }
4901 }
4902
4903 static void ring_buffer_wakeup(struct perf_event *event)
4904 {
4905 struct ring_buffer *rb;
4906
4907 rcu_read_lock();
4908 rb = rcu_dereference(event->rb);
4909 if (rb) {
4910 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
4911 wake_up_all(&event->waitq);
4912 }
4913 rcu_read_unlock();
4914 }
4915
4916 struct ring_buffer *ring_buffer_get(struct perf_event *event)
4917 {
4918 struct ring_buffer *rb;
4919
4920 rcu_read_lock();
4921 rb = rcu_dereference(event->rb);
4922 if (rb) {
4923 if (!atomic_inc_not_zero(&rb->refcount))
4924 rb = NULL;
4925 }
4926 rcu_read_unlock();
4927
4928 return rb;
4929 }
4930
4931 void ring_buffer_put(struct ring_buffer *rb)
4932 {
4933 if (!atomic_dec_and_test(&rb->refcount))
4934 return;
4935
4936 WARN_ON_ONCE(!list_empty(&rb->event_list));
4937
4938 call_rcu(&rb->rcu_head, rb_free_rcu);
4939 }
4940
4941 static void perf_mmap_open(struct vm_area_struct *vma)
4942 {
4943 struct perf_event *event = vma->vm_file->private_data;
4944
4945 atomic_inc(&event->mmap_count);
4946 atomic_inc(&event->rb->mmap_count);
4947
4948 if (vma->vm_pgoff)
4949 atomic_inc(&event->rb->aux_mmap_count);
4950
4951 if (event->pmu->event_mapped)
4952 event->pmu->event_mapped(event);
4953 }
4954
4955 static void perf_pmu_output_stop(struct perf_event *event);
4956
4957 /*
4958 * A buffer can be mmap()ed multiple times; either directly through the same
4959 * event, or through other events by use of perf_event_set_output().
4960 *
4961 * In order to undo the VM accounting done by perf_mmap() we need to destroy
4962 * the buffer here, where we still have a VM context. This means we need
4963 * to detach all events redirecting to us.
4964 */
4965 static void perf_mmap_close(struct vm_area_struct *vma)
4966 {
4967 struct perf_event *event = vma->vm_file->private_data;
4968
4969 struct ring_buffer *rb = ring_buffer_get(event);
4970 struct user_struct *mmap_user = rb->mmap_user;
4971 int mmap_locked = rb->mmap_locked;
4972 unsigned long size = perf_data_size(rb);
4973
4974 if (event->pmu->event_unmapped)
4975 event->pmu->event_unmapped(event);
4976
4977 /*
4978 * rb->aux_mmap_count will always drop before rb->mmap_count and
4979 * event->mmap_count, so it is ok to use event->mmap_mutex to
4980 * serialize with perf_mmap here.
4981 */
4982 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
4983 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
4984 /*
4985 * Stop all AUX events that are writing to this buffer,
4986 * so that we can free its AUX pages and corresponding PMU
4987 * data. Note that after rb::aux_mmap_count dropped to zero,
4988 * they won't start any more (see perf_aux_output_begin()).
4989 */
4990 perf_pmu_output_stop(event);
4991
4992 /* now it's safe to free the pages */
4993 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
4994 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
4995
4996 /* this has to be the last one */
4997 rb_free_aux(rb);
4998 WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
4999
5000 mutex_unlock(&event->mmap_mutex);
5001 }
5002
5003 atomic_dec(&rb->mmap_count);
5004
5005 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5006 goto out_put;
5007
5008 ring_buffer_attach(event, NULL);
5009 mutex_unlock(&event->mmap_mutex);
5010
5011 /* If there's still other mmap()s of this buffer, we're done. */
5012 if (atomic_read(&rb->mmap_count))
5013 goto out_put;
5014
5015 /*
5016 * No other mmap()s, detach from all other events that might redirect
5017 * into the now unreachable buffer. Somewhat complicated by the
5018 * fact that rb::event_lock otherwise nests inside mmap_mutex.
5019 */
5020 again:
5021 rcu_read_lock();
5022 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5023 if (!atomic_long_inc_not_zero(&event->refcount)) {
5024 /*
5025 * This event is en-route to free_event() which will
5026 * detach it and remove it from the list.
5027 */
5028 continue;
5029 }
5030 rcu_read_unlock();
5031
5032 mutex_lock(&event->mmap_mutex);
5033 /*
5034 * Check we didn't race with perf_event_set_output() which can
5035 * swizzle the rb from under us while we were waiting to
5036 * acquire mmap_mutex.
5037 *
5038 * If we find a different rb; ignore this event, a next
5039 * iteration will no longer find it on the list. We have to
5040 * still restart the iteration to make sure we're not now
5041 * iterating the wrong list.
5042 */
5043 if (event->rb == rb)
5044 ring_buffer_attach(event, NULL);
5045
5046 mutex_unlock(&event->mmap_mutex);
5047 put_event(event);
5048
5049 /*
5050 * Restart the iteration; either we're on the wrong list or
5051 * destroyed its integrity by doing a deletion.
5052 */
5053 goto again;
5054 }
5055 rcu_read_unlock();
5056
5057 /*
5058 * It could be there's still a few 0-ref events on the list; they'll
5059 * get cleaned up by free_event() -- they'll also still have their
5060 * ref on the rb and will free it whenever they are done with it.
5061 *
5062 * Aside from that, this buffer is 'fully' detached and unmapped,
5063 * undo the VM accounting.
5064 */
5065
5066 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
5067 vma->vm_mm->pinned_vm -= mmap_locked;
5068 free_uid(mmap_user);
5069
5070 out_put:
5071 ring_buffer_put(rb); /* could be last */
5072 }
5073
5074 static const struct vm_operations_struct perf_mmap_vmops = {
5075 .open = perf_mmap_open,
5076 .close = perf_mmap_close, /* non mergable */
5077 .fault = perf_mmap_fault,
5078 .page_mkwrite = perf_mmap_fault,
5079 };
5080
5081 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5082 {
5083 struct perf_event *event = file->private_data;
5084 unsigned long user_locked, user_lock_limit;
5085 struct user_struct *user = current_user();
5086 unsigned long locked, lock_limit;
5087 struct ring_buffer *rb = NULL;
5088 unsigned long vma_size;
5089 unsigned long nr_pages;
5090 long user_extra = 0, extra = 0;
5091 int ret = 0, flags = 0;
5092
5093 /*
5094 * Don't allow mmap() of inherited per-task counters. This would
5095 * create a performance issue due to all children writing to the
5096 * same rb.
5097 */
5098 if (event->cpu == -1 && event->attr.inherit)
5099 return -EINVAL;
5100
5101 if (!(vma->vm_flags & VM_SHARED))
5102 return -EINVAL;
5103
5104 vma_size = vma->vm_end - vma->vm_start;
5105
5106 if (vma->vm_pgoff == 0) {
5107 nr_pages = (vma_size / PAGE_SIZE) - 1;
5108 } else {
5109 /*
5110 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5111 * mapped, all subsequent mappings should have the same size
5112 * and offset. Must be above the normal perf buffer.
5113 */
5114 u64 aux_offset, aux_size;
5115
5116 if (!event->rb)
5117 return -EINVAL;
5118
5119 nr_pages = vma_size / PAGE_SIZE;
5120
5121 mutex_lock(&event->mmap_mutex);
5122 ret = -EINVAL;
5123
5124 rb = event->rb;
5125 if (!rb)
5126 goto aux_unlock;
5127
5128 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
5129 aux_size = ACCESS_ONCE(rb->user_page->aux_size);
5130
5131 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5132 goto aux_unlock;
5133
5134 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5135 goto aux_unlock;
5136
5137 /* already mapped with a different offset */
5138 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5139 goto aux_unlock;
5140
5141 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5142 goto aux_unlock;
5143
5144 /* already mapped with a different size */
5145 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5146 goto aux_unlock;
5147
5148 if (!is_power_of_2(nr_pages))
5149 goto aux_unlock;
5150
5151 if (!atomic_inc_not_zero(&rb->mmap_count))
5152 goto aux_unlock;
5153
5154 if (rb_has_aux(rb)) {
5155 atomic_inc(&rb->aux_mmap_count);
5156 ret = 0;
5157 goto unlock;
5158 }
5159
5160 atomic_set(&rb->aux_mmap_count, 1);
5161 user_extra = nr_pages;
5162
5163 goto accounting;
5164 }
5165
5166 /*
5167 * If we have rb pages ensure they're a power-of-two number, so we
5168 * can do bitmasks instead of modulo.
5169 */
5170 if (nr_pages != 0 && !is_power_of_2(nr_pages))
5171 return -EINVAL;
5172
5173 if (vma_size != PAGE_SIZE * (1 + nr_pages))
5174 return -EINVAL;
5175
5176 WARN_ON_ONCE(event->ctx->parent_ctx);
5177 again:
5178 mutex_lock(&event->mmap_mutex);
5179 if (event->rb) {
5180 if (event->rb->nr_pages != nr_pages) {
5181 ret = -EINVAL;
5182 goto unlock;
5183 }
5184
5185 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5186 /*
5187 * Raced against perf_mmap_close() through
5188 * perf_event_set_output(). Try again, hope for better
5189 * luck.
5190 */
5191 mutex_unlock(&event->mmap_mutex);
5192 goto again;
5193 }
5194
5195 goto unlock;
5196 }
5197
5198 user_extra = nr_pages + 1;
5199
5200 accounting:
5201 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
5202
5203 /*
5204 * Increase the limit linearly with more CPUs:
5205 */
5206 user_lock_limit *= num_online_cpus();
5207
5208 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
5209
5210 if (user_locked > user_lock_limit)
5211 extra = user_locked - user_lock_limit;
5212
5213 lock_limit = rlimit(RLIMIT_MEMLOCK);
5214 lock_limit >>= PAGE_SHIFT;
5215 locked = vma->vm_mm->pinned_vm + extra;
5216
5217 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5218 !capable(CAP_IPC_LOCK)) {
5219 ret = -EPERM;
5220 goto unlock;
5221 }
5222
5223 WARN_ON(!rb && event->rb);
5224
5225 if (vma->vm_flags & VM_WRITE)
5226 flags |= RING_BUFFER_WRITABLE;
5227
5228 if (!rb) {
5229 rb = rb_alloc(nr_pages,
5230 event->attr.watermark ? event->attr.wakeup_watermark : 0,
5231 event->cpu, flags);
5232
5233 if (!rb) {
5234 ret = -ENOMEM;
5235 goto unlock;
5236 }
5237
5238 atomic_set(&rb->mmap_count, 1);
5239 rb->mmap_user = get_current_user();
5240 rb->mmap_locked = extra;
5241
5242 ring_buffer_attach(event, rb);
5243
5244 perf_event_init_userpage(event);
5245 perf_event_update_userpage(event);
5246 } else {
5247 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5248 event->attr.aux_watermark, flags);
5249 if (!ret)
5250 rb->aux_mmap_locked = extra;
5251 }
5252
5253 unlock:
5254 if (!ret) {
5255 atomic_long_add(user_extra, &user->locked_vm);
5256 vma->vm_mm->pinned_vm += extra;
5257
5258 atomic_inc(&event->mmap_count);
5259 } else if (rb) {
5260 atomic_dec(&rb->mmap_count);
5261 }
5262 aux_unlock:
5263 mutex_unlock(&event->mmap_mutex);
5264
5265 /*
5266 * Since pinned accounting is per vm we cannot allow fork() to copy our
5267 * vma.
5268 */
5269 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5270 vma->vm_ops = &perf_mmap_vmops;
5271
5272 if (event->pmu->event_mapped)
5273 event->pmu->event_mapped(event);
5274
5275 return ret;
5276 }
5277
5278 static int perf_fasync(int fd, struct file *filp, int on)
5279 {
5280 struct inode *inode = file_inode(filp);
5281 struct perf_event *event = filp->private_data;
5282 int retval;
5283
5284 inode_lock(inode);
5285 retval = fasync_helper(fd, filp, on, &event->fasync);
5286 inode_unlock(inode);
5287
5288 if (retval < 0)
5289 return retval;
5290
5291 return 0;
5292 }
5293
5294 static const struct file_operations perf_fops = {
5295 .llseek = no_llseek,
5296 .release = perf_release,
5297 .read = perf_read,
5298 .poll = perf_poll,
5299 .unlocked_ioctl = perf_ioctl,
5300 .compat_ioctl = perf_compat_ioctl,
5301 .mmap = perf_mmap,
5302 .fasync = perf_fasync,
5303 };
5304
5305 /*
5306 * Perf event wakeup
5307 *
5308 * If there's data, ensure we set the poll() state and publish everything
5309 * to user-space before waking everybody up.
5310 */
5311
5312 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5313 {
5314 /* only the parent has fasync state */
5315 if (event->parent)
5316 event = event->parent;
5317 return &event->fasync;
5318 }
5319
5320 void perf_event_wakeup(struct perf_event *event)
5321 {
5322 ring_buffer_wakeup(event);
5323
5324 if (event->pending_kill) {
5325 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5326 event->pending_kill = 0;
5327 }
5328 }
5329
5330 static void perf_pending_event(struct irq_work *entry)
5331 {
5332 struct perf_event *event = container_of(entry,
5333 struct perf_event, pending);
5334 int rctx;
5335
5336 rctx = perf_swevent_get_recursion_context();
5337 /*
5338 * If we 'fail' here, that's OK, it means recursion is already disabled
5339 * and we won't recurse 'further'.
5340 */
5341
5342 if (event->pending_disable) {
5343 event->pending_disable = 0;
5344 perf_event_disable_local(event);
5345 }
5346
5347 if (event->pending_wakeup) {
5348 event->pending_wakeup = 0;
5349 perf_event_wakeup(event);
5350 }
5351
5352 if (rctx >= 0)
5353 perf_swevent_put_recursion_context(rctx);
5354 }
5355
5356 /*
5357 * We assume there is only KVM supporting the callbacks.
5358 * Later on, we might change it to a list if there is
5359 * another virtualization implementation supporting the callbacks.
5360 */
5361 struct perf_guest_info_callbacks *perf_guest_cbs;
5362
5363 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5364 {
5365 perf_guest_cbs = cbs;
5366 return 0;
5367 }
5368 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5369
5370 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5371 {
5372 perf_guest_cbs = NULL;
5373 return 0;
5374 }
5375 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5376
5377 static void
5378 perf_output_sample_regs(struct perf_output_handle *handle,
5379 struct pt_regs *regs, u64 mask)
5380 {
5381 int bit;
5382 DECLARE_BITMAP(_mask, 64);
5383
5384 bitmap_from_u64(_mask, mask);
5385 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
5386 u64 val;
5387
5388 val = perf_reg_value(regs, bit);
5389 perf_output_put(handle, val);
5390 }
5391 }
5392
5393 static void perf_sample_regs_user(struct perf_regs *regs_user,
5394 struct pt_regs *regs,
5395 struct pt_regs *regs_user_copy)
5396 {
5397 if (user_mode(regs)) {
5398 regs_user->abi = perf_reg_abi(current);
5399 regs_user->regs = regs;
5400 } else if (current->mm) {
5401 perf_get_regs_user(regs_user, regs, regs_user_copy);
5402 } else {
5403 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5404 regs_user->regs = NULL;
5405 }
5406 }
5407
5408 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5409 struct pt_regs *regs)
5410 {
5411 regs_intr->regs = regs;
5412 regs_intr->abi = perf_reg_abi(current);
5413 }
5414
5415
5416 /*
5417 * Get remaining task size from user stack pointer.
5418 *
5419 * It'd be better to take stack vma map and limit this more
5420 * precisly, but there's no way to get it safely under interrupt,
5421 * so using TASK_SIZE as limit.
5422 */
5423 static u64 perf_ustack_task_size(struct pt_regs *regs)
5424 {
5425 unsigned long addr = perf_user_stack_pointer(regs);
5426
5427 if (!addr || addr >= TASK_SIZE)
5428 return 0;
5429
5430 return TASK_SIZE - addr;
5431 }
5432
5433 static u16
5434 perf_sample_ustack_size(u16 stack_size, u16 header_size,
5435 struct pt_regs *regs)
5436 {
5437 u64 task_size;
5438
5439 /* No regs, no stack pointer, no dump. */
5440 if (!regs)
5441 return 0;
5442
5443 /*
5444 * Check if we fit in with the requested stack size into the:
5445 * - TASK_SIZE
5446 * If we don't, we limit the size to the TASK_SIZE.
5447 *
5448 * - remaining sample size
5449 * If we don't, we customize the stack size to
5450 * fit in to the remaining sample size.
5451 */
5452
5453 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5454 stack_size = min(stack_size, (u16) task_size);
5455
5456 /* Current header size plus static size and dynamic size. */
5457 header_size += 2 * sizeof(u64);
5458
5459 /* Do we fit in with the current stack dump size? */
5460 if ((u16) (header_size + stack_size) < header_size) {
5461 /*
5462 * If we overflow the maximum size for the sample,
5463 * we customize the stack dump size to fit in.
5464 */
5465 stack_size = USHRT_MAX - header_size - sizeof(u64);
5466 stack_size = round_up(stack_size, sizeof(u64));
5467 }
5468
5469 return stack_size;
5470 }
5471
5472 static void
5473 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5474 struct pt_regs *regs)
5475 {
5476 /* Case of a kernel thread, nothing to dump */
5477 if (!regs) {
5478 u64 size = 0;
5479 perf_output_put(handle, size);
5480 } else {
5481 unsigned long sp;
5482 unsigned int rem;
5483 u64 dyn_size;
5484
5485 /*
5486 * We dump:
5487 * static size
5488 * - the size requested by user or the best one we can fit
5489 * in to the sample max size
5490 * data
5491 * - user stack dump data
5492 * dynamic size
5493 * - the actual dumped size
5494 */
5495
5496 /* Static size. */
5497 perf_output_put(handle, dump_size);
5498
5499 /* Data. */
5500 sp = perf_user_stack_pointer(regs);
5501 rem = __output_copy_user(handle, (void *) sp, dump_size);
5502 dyn_size = dump_size - rem;
5503
5504 perf_output_skip(handle, rem);
5505
5506 /* Dynamic size. */
5507 perf_output_put(handle, dyn_size);
5508 }
5509 }
5510
5511 static void __perf_event_header__init_id(struct perf_event_header *header,
5512 struct perf_sample_data *data,
5513 struct perf_event *event)
5514 {
5515 u64 sample_type = event->attr.sample_type;
5516
5517 data->type = sample_type;
5518 header->size += event->id_header_size;
5519
5520 if (sample_type & PERF_SAMPLE_TID) {
5521 /* namespace issues */
5522 data->tid_entry.pid = perf_event_pid(event, current);
5523 data->tid_entry.tid = perf_event_tid(event, current);
5524 }
5525
5526 if (sample_type & PERF_SAMPLE_TIME)
5527 data->time = perf_event_clock(event);
5528
5529 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5530 data->id = primary_event_id(event);
5531
5532 if (sample_type & PERF_SAMPLE_STREAM_ID)
5533 data->stream_id = event->id;
5534
5535 if (sample_type & PERF_SAMPLE_CPU) {
5536 data->cpu_entry.cpu = raw_smp_processor_id();
5537 data->cpu_entry.reserved = 0;
5538 }
5539 }
5540
5541 void perf_event_header__init_id(struct perf_event_header *header,
5542 struct perf_sample_data *data,
5543 struct perf_event *event)
5544 {
5545 if (event->attr.sample_id_all)
5546 __perf_event_header__init_id(header, data, event);
5547 }
5548
5549 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5550 struct perf_sample_data *data)
5551 {
5552 u64 sample_type = data->type;
5553
5554 if (sample_type & PERF_SAMPLE_TID)
5555 perf_output_put(handle, data->tid_entry);
5556
5557 if (sample_type & PERF_SAMPLE_TIME)
5558 perf_output_put(handle, data->time);
5559
5560 if (sample_type & PERF_SAMPLE_ID)
5561 perf_output_put(handle, data->id);
5562
5563 if (sample_type & PERF_SAMPLE_STREAM_ID)
5564 perf_output_put(handle, data->stream_id);
5565
5566 if (sample_type & PERF_SAMPLE_CPU)
5567 perf_output_put(handle, data->cpu_entry);
5568
5569 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5570 perf_output_put(handle, data->id);
5571 }
5572
5573 void perf_event__output_id_sample(struct perf_event *event,
5574 struct perf_output_handle *handle,
5575 struct perf_sample_data *sample)
5576 {
5577 if (event->attr.sample_id_all)
5578 __perf_event__output_id_sample(handle, sample);
5579 }
5580
5581 static void perf_output_read_one(struct perf_output_handle *handle,
5582 struct perf_event *event,
5583 u64 enabled, u64 running)
5584 {
5585 u64 read_format = event->attr.read_format;
5586 u64 values[4];
5587 int n = 0;
5588
5589 values[n++] = perf_event_count(event);
5590 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5591 values[n++] = enabled +
5592 atomic64_read(&event->child_total_time_enabled);
5593 }
5594 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5595 values[n++] = running +
5596 atomic64_read(&event->child_total_time_running);
5597 }
5598 if (read_format & PERF_FORMAT_ID)
5599 values[n++] = primary_event_id(event);
5600
5601 __output_copy(handle, values, n * sizeof(u64));
5602 }
5603
5604 /*
5605 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
5606 */
5607 static void perf_output_read_group(struct perf_output_handle *handle,
5608 struct perf_event *event,
5609 u64 enabled, u64 running)
5610 {
5611 struct perf_event *leader = event->group_leader, *sub;
5612 u64 read_format = event->attr.read_format;
5613 u64 values[5];
5614 int n = 0;
5615
5616 values[n++] = 1 + leader->nr_siblings;
5617
5618 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5619 values[n++] = enabled;
5620
5621 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5622 values[n++] = running;
5623
5624 if (leader != event)
5625 leader->pmu->read(leader);
5626
5627 values[n++] = perf_event_count(leader);
5628 if (read_format & PERF_FORMAT_ID)
5629 values[n++] = primary_event_id(leader);
5630
5631 __output_copy(handle, values, n * sizeof(u64));
5632
5633 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5634 n = 0;
5635
5636 if ((sub != event) &&
5637 (sub->state == PERF_EVENT_STATE_ACTIVE))
5638 sub->pmu->read(sub);
5639
5640 values[n++] = perf_event_count(sub);
5641 if (read_format & PERF_FORMAT_ID)
5642 values[n++] = primary_event_id(sub);
5643
5644 __output_copy(handle, values, n * sizeof(u64));
5645 }
5646 }
5647
5648 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5649 PERF_FORMAT_TOTAL_TIME_RUNNING)
5650
5651 static void perf_output_read(struct perf_output_handle *handle,
5652 struct perf_event *event)
5653 {
5654 u64 enabled = 0, running = 0, now;
5655 u64 read_format = event->attr.read_format;
5656
5657 /*
5658 * compute total_time_enabled, total_time_running
5659 * based on snapshot values taken when the event
5660 * was last scheduled in.
5661 *
5662 * we cannot simply called update_context_time()
5663 * because of locking issue as we are called in
5664 * NMI context
5665 */
5666 if (read_format & PERF_FORMAT_TOTAL_TIMES)
5667 calc_timer_values(event, &now, &enabled, &running);
5668
5669 if (event->attr.read_format & PERF_FORMAT_GROUP)
5670 perf_output_read_group(handle, event, enabled, running);
5671 else
5672 perf_output_read_one(handle, event, enabled, running);
5673 }
5674
5675 void perf_output_sample(struct perf_output_handle *handle,
5676 struct perf_event_header *header,
5677 struct perf_sample_data *data,
5678 struct perf_event *event)
5679 {
5680 u64 sample_type = data->type;
5681
5682 perf_output_put(handle, *header);
5683
5684 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5685 perf_output_put(handle, data->id);
5686
5687 if (sample_type & PERF_SAMPLE_IP)
5688 perf_output_put(handle, data->ip);
5689
5690 if (sample_type & PERF_SAMPLE_TID)
5691 perf_output_put(handle, data->tid_entry);
5692
5693 if (sample_type & PERF_SAMPLE_TIME)
5694 perf_output_put(handle, data->time);
5695
5696 if (sample_type & PERF_SAMPLE_ADDR)
5697 perf_output_put(handle, data->addr);
5698
5699 if (sample_type & PERF_SAMPLE_ID)
5700 perf_output_put(handle, data->id);
5701
5702 if (sample_type & PERF_SAMPLE_STREAM_ID)
5703 perf_output_put(handle, data->stream_id);
5704
5705 if (sample_type & PERF_SAMPLE_CPU)
5706 perf_output_put(handle, data->cpu_entry);
5707
5708 if (sample_type & PERF_SAMPLE_PERIOD)
5709 perf_output_put(handle, data->period);
5710
5711 if (sample_type & PERF_SAMPLE_READ)
5712 perf_output_read(handle, event);
5713
5714 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5715 if (data->callchain) {
5716 int size = 1;
5717
5718 if (data->callchain)
5719 size += data->callchain->nr;
5720
5721 size *= sizeof(u64);
5722
5723 __output_copy(handle, data->callchain, size);
5724 } else {
5725 u64 nr = 0;
5726 perf_output_put(handle, nr);
5727 }
5728 }
5729
5730 if (sample_type & PERF_SAMPLE_RAW) {
5731 struct perf_raw_record *raw = data->raw;
5732
5733 if (raw) {
5734 struct perf_raw_frag *frag = &raw->frag;
5735
5736 perf_output_put(handle, raw->size);
5737 do {
5738 if (frag->copy) {
5739 __output_custom(handle, frag->copy,
5740 frag->data, frag->size);
5741 } else {
5742 __output_copy(handle, frag->data,
5743 frag->size);
5744 }
5745 if (perf_raw_frag_last(frag))
5746 break;
5747 frag = frag->next;
5748 } while (1);
5749 if (frag->pad)
5750 __output_skip(handle, NULL, frag->pad);
5751 } else {
5752 struct {
5753 u32 size;
5754 u32 data;
5755 } raw = {
5756 .size = sizeof(u32),
5757 .data = 0,
5758 };
5759 perf_output_put(handle, raw);
5760 }
5761 }
5762
5763 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5764 if (data->br_stack) {
5765 size_t size;
5766
5767 size = data->br_stack->nr
5768 * sizeof(struct perf_branch_entry);
5769
5770 perf_output_put(handle, data->br_stack->nr);
5771 perf_output_copy(handle, data->br_stack->entries, size);
5772 } else {
5773 /*
5774 * we always store at least the value of nr
5775 */
5776 u64 nr = 0;
5777 perf_output_put(handle, nr);
5778 }
5779 }
5780
5781 if (sample_type & PERF_SAMPLE_REGS_USER) {
5782 u64 abi = data->regs_user.abi;
5783
5784 /*
5785 * If there are no regs to dump, notice it through
5786 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5787 */
5788 perf_output_put(handle, abi);
5789
5790 if (abi) {
5791 u64 mask = event->attr.sample_regs_user;
5792 perf_output_sample_regs(handle,
5793 data->regs_user.regs,
5794 mask);
5795 }
5796 }
5797
5798 if (sample_type & PERF_SAMPLE_STACK_USER) {
5799 perf_output_sample_ustack(handle,
5800 data->stack_user_size,
5801 data->regs_user.regs);
5802 }
5803
5804 if (sample_type & PERF_SAMPLE_WEIGHT)
5805 perf_output_put(handle, data->weight);
5806
5807 if (sample_type & PERF_SAMPLE_DATA_SRC)
5808 perf_output_put(handle, data->data_src.val);
5809
5810 if (sample_type & PERF_SAMPLE_TRANSACTION)
5811 perf_output_put(handle, data->txn);
5812
5813 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5814 u64 abi = data->regs_intr.abi;
5815 /*
5816 * If there are no regs to dump, notice it through
5817 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5818 */
5819 perf_output_put(handle, abi);
5820
5821 if (abi) {
5822 u64 mask = event->attr.sample_regs_intr;
5823
5824 perf_output_sample_regs(handle,
5825 data->regs_intr.regs,
5826 mask);
5827 }
5828 }
5829
5830 if (!event->attr.watermark) {
5831 int wakeup_events = event->attr.wakeup_events;
5832
5833 if (wakeup_events) {
5834 struct ring_buffer *rb = handle->rb;
5835 int events = local_inc_return(&rb->events);
5836
5837 if (events >= wakeup_events) {
5838 local_sub(wakeup_events, &rb->events);
5839 local_inc(&rb->wakeup);
5840 }
5841 }
5842 }
5843 }
5844
5845 void perf_prepare_sample(struct perf_event_header *header,
5846 struct perf_sample_data *data,
5847 struct perf_event *event,
5848 struct pt_regs *regs)
5849 {
5850 u64 sample_type = event->attr.sample_type;
5851
5852 header->type = PERF_RECORD_SAMPLE;
5853 header->size = sizeof(*header) + event->header_size;
5854
5855 header->misc = 0;
5856 header->misc |= perf_misc_flags(regs);
5857
5858 __perf_event_header__init_id(header, data, event);
5859
5860 if (sample_type & PERF_SAMPLE_IP)
5861 data->ip = perf_instruction_pointer(regs);
5862
5863 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5864 int size = 1;
5865
5866 data->callchain = perf_callchain(event, regs);
5867
5868 if (data->callchain)
5869 size += data->callchain->nr;
5870
5871 header->size += size * sizeof(u64);
5872 }
5873
5874 if (sample_type & PERF_SAMPLE_RAW) {
5875 struct perf_raw_record *raw = data->raw;
5876 int size;
5877
5878 if (raw) {
5879 struct perf_raw_frag *frag = &raw->frag;
5880 u32 sum = 0;
5881
5882 do {
5883 sum += frag->size;
5884 if (perf_raw_frag_last(frag))
5885 break;
5886 frag = frag->next;
5887 } while (1);
5888
5889 size = round_up(sum + sizeof(u32), sizeof(u64));
5890 raw->size = size - sizeof(u32);
5891 frag->pad = raw->size - sum;
5892 } else {
5893 size = sizeof(u64);
5894 }
5895
5896 header->size += size;
5897 }
5898
5899 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5900 int size = sizeof(u64); /* nr */
5901 if (data->br_stack) {
5902 size += data->br_stack->nr
5903 * sizeof(struct perf_branch_entry);
5904 }
5905 header->size += size;
5906 }
5907
5908 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
5909 perf_sample_regs_user(&data->regs_user, regs,
5910 &data->regs_user_copy);
5911
5912 if (sample_type & PERF_SAMPLE_REGS_USER) {
5913 /* regs dump ABI info */
5914 int size = sizeof(u64);
5915
5916 if (data->regs_user.regs) {
5917 u64 mask = event->attr.sample_regs_user;
5918 size += hweight64(mask) * sizeof(u64);
5919 }
5920
5921 header->size += size;
5922 }
5923
5924 if (sample_type & PERF_SAMPLE_STACK_USER) {
5925 /*
5926 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
5927 * processed as the last one or have additional check added
5928 * in case new sample type is added, because we could eat
5929 * up the rest of the sample size.
5930 */
5931 u16 stack_size = event->attr.sample_stack_user;
5932 u16 size = sizeof(u64);
5933
5934 stack_size = perf_sample_ustack_size(stack_size, header->size,
5935 data->regs_user.regs);
5936
5937 /*
5938 * If there is something to dump, add space for the dump
5939 * itself and for the field that tells the dynamic size,
5940 * which is how many have been actually dumped.
5941 */
5942 if (stack_size)
5943 size += sizeof(u64) + stack_size;
5944
5945 data->stack_user_size = stack_size;
5946 header->size += size;
5947 }
5948
5949 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5950 /* regs dump ABI info */
5951 int size = sizeof(u64);
5952
5953 perf_sample_regs_intr(&data->regs_intr, regs);
5954
5955 if (data->regs_intr.regs) {
5956 u64 mask = event->attr.sample_regs_intr;
5957
5958 size += hweight64(mask) * sizeof(u64);
5959 }
5960
5961 header->size += size;
5962 }
5963 }
5964
5965 static void __always_inline
5966 __perf_event_output(struct perf_event *event,
5967 struct perf_sample_data *data,
5968 struct pt_regs *regs,
5969 int (*output_begin)(struct perf_output_handle *,
5970 struct perf_event *,
5971 unsigned int))
5972 {
5973 struct perf_output_handle handle;
5974 struct perf_event_header header;
5975
5976 /* protect the callchain buffers */
5977 rcu_read_lock();
5978
5979 perf_prepare_sample(&header, data, event, regs);
5980
5981 if (output_begin(&handle, event, header.size))
5982 goto exit;
5983
5984 perf_output_sample(&handle, &header, data, event);
5985
5986 perf_output_end(&handle);
5987
5988 exit:
5989 rcu_read_unlock();
5990 }
5991
5992 void
5993 perf_event_output_forward(struct perf_event *event,
5994 struct perf_sample_data *data,
5995 struct pt_regs *regs)
5996 {
5997 __perf_event_output(event, data, regs, perf_output_begin_forward);
5998 }
5999
6000 void
6001 perf_event_output_backward(struct perf_event *event,
6002 struct perf_sample_data *data,
6003 struct pt_regs *regs)
6004 {
6005 __perf_event_output(event, data, regs, perf_output_begin_backward);
6006 }
6007
6008 void
6009 perf_event_output(struct perf_event *event,
6010 struct perf_sample_data *data,
6011 struct pt_regs *regs)
6012 {
6013 __perf_event_output(event, data, regs, perf_output_begin);
6014 }
6015
6016 /*
6017 * read event_id
6018 */
6019
6020 struct perf_read_event {
6021 struct perf_event_header header;
6022
6023 u32 pid;
6024 u32 tid;
6025 };
6026
6027 static void
6028 perf_event_read_event(struct perf_event *event,
6029 struct task_struct *task)
6030 {
6031 struct perf_output_handle handle;
6032 struct perf_sample_data sample;
6033 struct perf_read_event read_event = {
6034 .header = {
6035 .type = PERF_RECORD_READ,
6036 .misc = 0,
6037 .size = sizeof(read_event) + event->read_size,
6038 },
6039 .pid = perf_event_pid(event, task),
6040 .tid = perf_event_tid(event, task),
6041 };
6042 int ret;
6043
6044 perf_event_header__init_id(&read_event.header, &sample, event);
6045 ret = perf_output_begin(&handle, event, read_event.header.size);
6046 if (ret)
6047 return;
6048
6049 perf_output_put(&handle, read_event);
6050 perf_output_read(&handle, event);
6051 perf_event__output_id_sample(event, &handle, &sample);
6052
6053 perf_output_end(&handle);
6054 }
6055
6056 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
6057
6058 static void
6059 perf_iterate_ctx(struct perf_event_context *ctx,
6060 perf_iterate_f output,
6061 void *data, bool all)
6062 {
6063 struct perf_event *event;
6064
6065 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6066 if (!all) {
6067 if (event->state < PERF_EVENT_STATE_INACTIVE)
6068 continue;
6069 if (!event_filter_match(event))
6070 continue;
6071 }
6072
6073 output(event, data);
6074 }
6075 }
6076
6077 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
6078 {
6079 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6080 struct perf_event *event;
6081
6082 list_for_each_entry_rcu(event, &pel->list, sb_list) {
6083 /*
6084 * Skip events that are not fully formed yet; ensure that
6085 * if we observe event->ctx, both event and ctx will be
6086 * complete enough. See perf_install_in_context().
6087 */
6088 if (!smp_load_acquire(&event->ctx))
6089 continue;
6090
6091 if (event->state < PERF_EVENT_STATE_INACTIVE)
6092 continue;
6093 if (!event_filter_match(event))
6094 continue;
6095 output(event, data);
6096 }
6097 }
6098
6099 /*
6100 * Iterate all events that need to receive side-band events.
6101 *
6102 * For new callers; ensure that account_pmu_sb_event() includes
6103 * your event, otherwise it might not get delivered.
6104 */
6105 static void
6106 perf_iterate_sb(perf_iterate_f output, void *data,
6107 struct perf_event_context *task_ctx)
6108 {
6109 struct perf_event_context *ctx;
6110 int ctxn;
6111
6112 rcu_read_lock();
6113 preempt_disable();
6114
6115 /*
6116 * If we have task_ctx != NULL we only notify the task context itself.
6117 * The task_ctx is set only for EXIT events before releasing task
6118 * context.
6119 */
6120 if (task_ctx) {
6121 perf_iterate_ctx(task_ctx, output, data, false);
6122 goto done;
6123 }
6124
6125 perf_iterate_sb_cpu(output, data);
6126
6127 for_each_task_context_nr(ctxn) {
6128 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6129 if (ctx)
6130 perf_iterate_ctx(ctx, output, data, false);
6131 }
6132 done:
6133 preempt_enable();
6134 rcu_read_unlock();
6135 }
6136
6137 /*
6138 * Clear all file-based filters at exec, they'll have to be
6139 * re-instated when/if these objects are mmapped again.
6140 */
6141 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6142 {
6143 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6144 struct perf_addr_filter *filter;
6145 unsigned int restart = 0, count = 0;
6146 unsigned long flags;
6147
6148 if (!has_addr_filter(event))
6149 return;
6150
6151 raw_spin_lock_irqsave(&ifh->lock, flags);
6152 list_for_each_entry(filter, &ifh->list, entry) {
6153 if (filter->inode) {
6154 event->addr_filters_offs[count] = 0;
6155 restart++;
6156 }
6157
6158 count++;
6159 }
6160
6161 if (restart)
6162 event->addr_filters_gen++;
6163 raw_spin_unlock_irqrestore(&ifh->lock, flags);
6164
6165 if (restart)
6166 perf_event_stop(event, 1);
6167 }
6168
6169 void perf_event_exec(void)
6170 {
6171 struct perf_event_context *ctx;
6172 int ctxn;
6173
6174 rcu_read_lock();
6175 for_each_task_context_nr(ctxn) {
6176 ctx = current->perf_event_ctxp[ctxn];
6177 if (!ctx)
6178 continue;
6179
6180 perf_event_enable_on_exec(ctxn);
6181
6182 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
6183 true);
6184 }
6185 rcu_read_unlock();
6186 }
6187
6188 struct remote_output {
6189 struct ring_buffer *rb;
6190 int err;
6191 };
6192
6193 static void __perf_event_output_stop(struct perf_event *event, void *data)
6194 {
6195 struct perf_event *parent = event->parent;
6196 struct remote_output *ro = data;
6197 struct ring_buffer *rb = ro->rb;
6198 struct stop_event_data sd = {
6199 .event = event,
6200 };
6201
6202 if (!has_aux(event))
6203 return;
6204
6205 if (!parent)
6206 parent = event;
6207
6208 /*
6209 * In case of inheritance, it will be the parent that links to the
6210 * ring-buffer, but it will be the child that's actually using it.
6211 *
6212 * We are using event::rb to determine if the event should be stopped,
6213 * however this may race with ring_buffer_attach() (through set_output),
6214 * which will make us skip the event that actually needs to be stopped.
6215 * So ring_buffer_attach() has to stop an aux event before re-assigning
6216 * its rb pointer.
6217 */
6218 if (rcu_dereference(parent->rb) == rb)
6219 ro->err = __perf_event_stop(&sd);
6220 }
6221
6222 static int __perf_pmu_output_stop(void *info)
6223 {
6224 struct perf_event *event = info;
6225 struct pmu *pmu = event->pmu;
6226 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6227 struct remote_output ro = {
6228 .rb = event->rb,
6229 };
6230
6231 rcu_read_lock();
6232 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6233 if (cpuctx->task_ctx)
6234 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6235 &ro, false);
6236 rcu_read_unlock();
6237
6238 return ro.err;
6239 }
6240
6241 static void perf_pmu_output_stop(struct perf_event *event)
6242 {
6243 struct perf_event *iter;
6244 int err, cpu;
6245
6246 restart:
6247 rcu_read_lock();
6248 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6249 /*
6250 * For per-CPU events, we need to make sure that neither they
6251 * nor their children are running; for cpu==-1 events it's
6252 * sufficient to stop the event itself if it's active, since
6253 * it can't have children.
6254 */
6255 cpu = iter->cpu;
6256 if (cpu == -1)
6257 cpu = READ_ONCE(iter->oncpu);
6258
6259 if (cpu == -1)
6260 continue;
6261
6262 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6263 if (err == -EAGAIN) {
6264 rcu_read_unlock();
6265 goto restart;
6266 }
6267 }
6268 rcu_read_unlock();
6269 }
6270
6271 /*
6272 * task tracking -- fork/exit
6273 *
6274 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
6275 */
6276
6277 struct perf_task_event {
6278 struct task_struct *task;
6279 struct perf_event_context *task_ctx;
6280
6281 struct {
6282 struct perf_event_header header;
6283
6284 u32 pid;
6285 u32 ppid;
6286 u32 tid;
6287 u32 ptid;
6288 u64 time;
6289 } event_id;
6290 };
6291
6292 static int perf_event_task_match(struct perf_event *event)
6293 {
6294 return event->attr.comm || event->attr.mmap ||
6295 event->attr.mmap2 || event->attr.mmap_data ||
6296 event->attr.task;
6297 }
6298
6299 static void perf_event_task_output(struct perf_event *event,
6300 void *data)
6301 {
6302 struct perf_task_event *task_event = data;
6303 struct perf_output_handle handle;
6304 struct perf_sample_data sample;
6305 struct task_struct *task = task_event->task;
6306 int ret, size = task_event->event_id.header.size;
6307
6308 if (!perf_event_task_match(event))
6309 return;
6310
6311 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
6312
6313 ret = perf_output_begin(&handle, event,
6314 task_event->event_id.header.size);
6315 if (ret)
6316 goto out;
6317
6318 task_event->event_id.pid = perf_event_pid(event, task);
6319 task_event->event_id.ppid = perf_event_pid(event, current);
6320
6321 task_event->event_id.tid = perf_event_tid(event, task);
6322 task_event->event_id.ptid = perf_event_tid(event, current);
6323
6324 task_event->event_id.time = perf_event_clock(event);
6325
6326 perf_output_put(&handle, task_event->event_id);
6327
6328 perf_event__output_id_sample(event, &handle, &sample);
6329
6330 perf_output_end(&handle);
6331 out:
6332 task_event->event_id.header.size = size;
6333 }
6334
6335 static void perf_event_task(struct task_struct *task,
6336 struct perf_event_context *task_ctx,
6337 int new)
6338 {
6339 struct perf_task_event task_event;
6340
6341 if (!atomic_read(&nr_comm_events) &&
6342 !atomic_read(&nr_mmap_events) &&
6343 !atomic_read(&nr_task_events))
6344 return;
6345
6346 task_event = (struct perf_task_event){
6347 .task = task,
6348 .task_ctx = task_ctx,
6349 .event_id = {
6350 .header = {
6351 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
6352 .misc = 0,
6353 .size = sizeof(task_event.event_id),
6354 },
6355 /* .pid */
6356 /* .ppid */
6357 /* .tid */
6358 /* .ptid */
6359 /* .time */
6360 },
6361 };
6362
6363 perf_iterate_sb(perf_event_task_output,
6364 &task_event,
6365 task_ctx);
6366 }
6367
6368 void perf_event_fork(struct task_struct *task)
6369 {
6370 perf_event_task(task, NULL, 1);
6371 }
6372
6373 /*
6374 * comm tracking
6375 */
6376
6377 struct perf_comm_event {
6378 struct task_struct *task;
6379 char *comm;
6380 int comm_size;
6381
6382 struct {
6383 struct perf_event_header header;
6384
6385 u32 pid;
6386 u32 tid;
6387 } event_id;
6388 };
6389
6390 static int perf_event_comm_match(struct perf_event *event)
6391 {
6392 return event->attr.comm;
6393 }
6394
6395 static void perf_event_comm_output(struct perf_event *event,
6396 void *data)
6397 {
6398 struct perf_comm_event *comm_event = data;
6399 struct perf_output_handle handle;
6400 struct perf_sample_data sample;
6401 int size = comm_event->event_id.header.size;
6402 int ret;
6403
6404 if (!perf_event_comm_match(event))
6405 return;
6406
6407 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6408 ret = perf_output_begin(&handle, event,
6409 comm_event->event_id.header.size);
6410
6411 if (ret)
6412 goto out;
6413
6414 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6415 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
6416
6417 perf_output_put(&handle, comm_event->event_id);
6418 __output_copy(&handle, comm_event->comm,
6419 comm_event->comm_size);
6420
6421 perf_event__output_id_sample(event, &handle, &sample);
6422
6423 perf_output_end(&handle);
6424 out:
6425 comm_event->event_id.header.size = size;
6426 }
6427
6428 static void perf_event_comm_event(struct perf_comm_event *comm_event)
6429 {
6430 char comm[TASK_COMM_LEN];
6431 unsigned int size;
6432
6433 memset(comm, 0, sizeof(comm));
6434 strlcpy(comm, comm_event->task->comm, sizeof(comm));
6435 size = ALIGN(strlen(comm)+1, sizeof(u64));
6436
6437 comm_event->comm = comm;
6438 comm_event->comm_size = size;
6439
6440 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
6441
6442 perf_iterate_sb(perf_event_comm_output,
6443 comm_event,
6444 NULL);
6445 }
6446
6447 void perf_event_comm(struct task_struct *task, bool exec)
6448 {
6449 struct perf_comm_event comm_event;
6450
6451 if (!atomic_read(&nr_comm_events))
6452 return;
6453
6454 comm_event = (struct perf_comm_event){
6455 .task = task,
6456 /* .comm */
6457 /* .comm_size */
6458 .event_id = {
6459 .header = {
6460 .type = PERF_RECORD_COMM,
6461 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
6462 /* .size */
6463 },
6464 /* .pid */
6465 /* .tid */
6466 },
6467 };
6468
6469 perf_event_comm_event(&comm_event);
6470 }
6471
6472 /*
6473 * mmap tracking
6474 */
6475
6476 struct perf_mmap_event {
6477 struct vm_area_struct *vma;
6478
6479 const char *file_name;
6480 int file_size;
6481 int maj, min;
6482 u64 ino;
6483 u64 ino_generation;
6484 u32 prot, flags;
6485
6486 struct {
6487 struct perf_event_header header;
6488
6489 u32 pid;
6490 u32 tid;
6491 u64 start;
6492 u64 len;
6493 u64 pgoff;
6494 } event_id;
6495 };
6496
6497 static int perf_event_mmap_match(struct perf_event *event,
6498 void *data)
6499 {
6500 struct perf_mmap_event *mmap_event = data;
6501 struct vm_area_struct *vma = mmap_event->vma;
6502 int executable = vma->vm_flags & VM_EXEC;
6503
6504 return (!executable && event->attr.mmap_data) ||
6505 (executable && (event->attr.mmap || event->attr.mmap2));
6506 }
6507
6508 static void perf_event_mmap_output(struct perf_event *event,
6509 void *data)
6510 {
6511 struct perf_mmap_event *mmap_event = data;
6512 struct perf_output_handle handle;
6513 struct perf_sample_data sample;
6514 int size = mmap_event->event_id.header.size;
6515 int ret;
6516
6517 if (!perf_event_mmap_match(event, data))
6518 return;
6519
6520 if (event->attr.mmap2) {
6521 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
6522 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
6523 mmap_event->event_id.header.size += sizeof(mmap_event->min);
6524 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
6525 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
6526 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
6527 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
6528 }
6529
6530 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
6531 ret = perf_output_begin(&handle, event,
6532 mmap_event->event_id.header.size);
6533 if (ret)
6534 goto out;
6535
6536 mmap_event->event_id.pid = perf_event_pid(event, current);
6537 mmap_event->event_id.tid = perf_event_tid(event, current);
6538
6539 perf_output_put(&handle, mmap_event->event_id);
6540
6541 if (event->attr.mmap2) {
6542 perf_output_put(&handle, mmap_event->maj);
6543 perf_output_put(&handle, mmap_event->min);
6544 perf_output_put(&handle, mmap_event->ino);
6545 perf_output_put(&handle, mmap_event->ino_generation);
6546 perf_output_put(&handle, mmap_event->prot);
6547 perf_output_put(&handle, mmap_event->flags);
6548 }
6549
6550 __output_copy(&handle, mmap_event->file_name,
6551 mmap_event->file_size);
6552
6553 perf_event__output_id_sample(event, &handle, &sample);
6554
6555 perf_output_end(&handle);
6556 out:
6557 mmap_event->event_id.header.size = size;
6558 }
6559
6560 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
6561 {
6562 struct vm_area_struct *vma = mmap_event->vma;
6563 struct file *file = vma->vm_file;
6564 int maj = 0, min = 0;
6565 u64 ino = 0, gen = 0;
6566 u32 prot = 0, flags = 0;
6567 unsigned int size;
6568 char tmp[16];
6569 char *buf = NULL;
6570 char *name;
6571
6572 if (file) {
6573 struct inode *inode;
6574 dev_t dev;
6575
6576 buf = kmalloc(PATH_MAX, GFP_KERNEL);
6577 if (!buf) {
6578 name = "//enomem";
6579 goto cpy_name;
6580 }
6581 /*
6582 * d_path() works from the end of the rb backwards, so we
6583 * need to add enough zero bytes after the string to handle
6584 * the 64bit alignment we do later.
6585 */
6586 name = file_path(file, buf, PATH_MAX - sizeof(u64));
6587 if (IS_ERR(name)) {
6588 name = "//toolong";
6589 goto cpy_name;
6590 }
6591 inode = file_inode(vma->vm_file);
6592 dev = inode->i_sb->s_dev;
6593 ino = inode->i_ino;
6594 gen = inode->i_generation;
6595 maj = MAJOR(dev);
6596 min = MINOR(dev);
6597
6598 if (vma->vm_flags & VM_READ)
6599 prot |= PROT_READ;
6600 if (vma->vm_flags & VM_WRITE)
6601 prot |= PROT_WRITE;
6602 if (vma->vm_flags & VM_EXEC)
6603 prot |= PROT_EXEC;
6604
6605 if (vma->vm_flags & VM_MAYSHARE)
6606 flags = MAP_SHARED;
6607 else
6608 flags = MAP_PRIVATE;
6609
6610 if (vma->vm_flags & VM_DENYWRITE)
6611 flags |= MAP_DENYWRITE;
6612 if (vma->vm_flags & VM_MAYEXEC)
6613 flags |= MAP_EXECUTABLE;
6614 if (vma->vm_flags & VM_LOCKED)
6615 flags |= MAP_LOCKED;
6616 if (vma->vm_flags & VM_HUGETLB)
6617 flags |= MAP_HUGETLB;
6618
6619 goto got_name;
6620 } else {
6621 if (vma->vm_ops && vma->vm_ops->name) {
6622 name = (char *) vma->vm_ops->name(vma);
6623 if (name)
6624 goto cpy_name;
6625 }
6626
6627 name = (char *)arch_vma_name(vma);
6628 if (name)
6629 goto cpy_name;
6630
6631 if (vma->vm_start <= vma->vm_mm->start_brk &&
6632 vma->vm_end >= vma->vm_mm->brk) {
6633 name = "[heap]";
6634 goto cpy_name;
6635 }
6636 if (vma->vm_start <= vma->vm_mm->start_stack &&
6637 vma->vm_end >= vma->vm_mm->start_stack) {
6638 name = "[stack]";
6639 goto cpy_name;
6640 }
6641
6642 name = "//anon";
6643 goto cpy_name;
6644 }
6645
6646 cpy_name:
6647 strlcpy(tmp, name, sizeof(tmp));
6648 name = tmp;
6649 got_name:
6650 /*
6651 * Since our buffer works in 8 byte units we need to align our string
6652 * size to a multiple of 8. However, we must guarantee the tail end is
6653 * zero'd out to avoid leaking random bits to userspace.
6654 */
6655 size = strlen(name)+1;
6656 while (!IS_ALIGNED(size, sizeof(u64)))
6657 name[size++] = '\0';
6658
6659 mmap_event->file_name = name;
6660 mmap_event->file_size = size;
6661 mmap_event->maj = maj;
6662 mmap_event->min = min;
6663 mmap_event->ino = ino;
6664 mmap_event->ino_generation = gen;
6665 mmap_event->prot = prot;
6666 mmap_event->flags = flags;
6667
6668 if (!(vma->vm_flags & VM_EXEC))
6669 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6670
6671 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
6672
6673 perf_iterate_sb(perf_event_mmap_output,
6674 mmap_event,
6675 NULL);
6676
6677 kfree(buf);
6678 }
6679
6680 /*
6681 * Check whether inode and address range match filter criteria.
6682 */
6683 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
6684 struct file *file, unsigned long offset,
6685 unsigned long size)
6686 {
6687 if (filter->inode != file->f_inode)
6688 return false;
6689
6690 if (filter->offset > offset + size)
6691 return false;
6692
6693 if (filter->offset + filter->size < offset)
6694 return false;
6695
6696 return true;
6697 }
6698
6699 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
6700 {
6701 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6702 struct vm_area_struct *vma = data;
6703 unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
6704 struct file *file = vma->vm_file;
6705 struct perf_addr_filter *filter;
6706 unsigned int restart = 0, count = 0;
6707
6708 if (!has_addr_filter(event))
6709 return;
6710
6711 if (!file)
6712 return;
6713
6714 raw_spin_lock_irqsave(&ifh->lock, flags);
6715 list_for_each_entry(filter, &ifh->list, entry) {
6716 if (perf_addr_filter_match(filter, file, off,
6717 vma->vm_end - vma->vm_start)) {
6718 event->addr_filters_offs[count] = vma->vm_start;
6719 restart++;
6720 }
6721
6722 count++;
6723 }
6724
6725 if (restart)
6726 event->addr_filters_gen++;
6727 raw_spin_unlock_irqrestore(&ifh->lock, flags);
6728
6729 if (restart)
6730 perf_event_stop(event, 1);
6731 }
6732
6733 /*
6734 * Adjust all task's events' filters to the new vma
6735 */
6736 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
6737 {
6738 struct perf_event_context *ctx;
6739 int ctxn;
6740
6741 /*
6742 * Data tracing isn't supported yet and as such there is no need
6743 * to keep track of anything that isn't related to executable code:
6744 */
6745 if (!(vma->vm_flags & VM_EXEC))
6746 return;
6747
6748 rcu_read_lock();
6749 for_each_task_context_nr(ctxn) {
6750 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6751 if (!ctx)
6752 continue;
6753
6754 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
6755 }
6756 rcu_read_unlock();
6757 }
6758
6759 void perf_event_mmap(struct vm_area_struct *vma)
6760 {
6761 struct perf_mmap_event mmap_event;
6762
6763 if (!atomic_read(&nr_mmap_events))
6764 return;
6765
6766 mmap_event = (struct perf_mmap_event){
6767 .vma = vma,
6768 /* .file_name */
6769 /* .file_size */
6770 .event_id = {
6771 .header = {
6772 .type = PERF_RECORD_MMAP,
6773 .misc = PERF_RECORD_MISC_USER,
6774 /* .size */
6775 },
6776 /* .pid */
6777 /* .tid */
6778 .start = vma->vm_start,
6779 .len = vma->vm_end - vma->vm_start,
6780 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
6781 },
6782 /* .maj (attr_mmap2 only) */
6783 /* .min (attr_mmap2 only) */
6784 /* .ino (attr_mmap2 only) */
6785 /* .ino_generation (attr_mmap2 only) */
6786 /* .prot (attr_mmap2 only) */
6787 /* .flags (attr_mmap2 only) */
6788 };
6789
6790 perf_addr_filters_adjust(vma);
6791 perf_event_mmap_event(&mmap_event);
6792 }
6793
6794 void perf_event_aux_event(struct perf_event *event, unsigned long head,
6795 unsigned long size, u64 flags)
6796 {
6797 struct perf_output_handle handle;
6798 struct perf_sample_data sample;
6799 struct perf_aux_event {
6800 struct perf_event_header header;
6801 u64 offset;
6802 u64 size;
6803 u64 flags;
6804 } rec = {
6805 .header = {
6806 .type = PERF_RECORD_AUX,
6807 .misc = 0,
6808 .size = sizeof(rec),
6809 },
6810 .offset = head,
6811 .size = size,
6812 .flags = flags,
6813 };
6814 int ret;
6815
6816 perf_event_header__init_id(&rec.header, &sample, event);
6817 ret = perf_output_begin(&handle, event, rec.header.size);
6818
6819 if (ret)
6820 return;
6821
6822 perf_output_put(&handle, rec);
6823 perf_event__output_id_sample(event, &handle, &sample);
6824
6825 perf_output_end(&handle);
6826 }
6827
6828 /*
6829 * Lost/dropped samples logging
6830 */
6831 void perf_log_lost_samples(struct perf_event *event, u64 lost)
6832 {
6833 struct perf_output_handle handle;
6834 struct perf_sample_data sample;
6835 int ret;
6836
6837 struct {
6838 struct perf_event_header header;
6839 u64 lost;
6840 } lost_samples_event = {
6841 .header = {
6842 .type = PERF_RECORD_LOST_SAMPLES,
6843 .misc = 0,
6844 .size = sizeof(lost_samples_event),
6845 },
6846 .lost = lost,
6847 };
6848
6849 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
6850
6851 ret = perf_output_begin(&handle, event,
6852 lost_samples_event.header.size);
6853 if (ret)
6854 return;
6855
6856 perf_output_put(&handle, lost_samples_event);
6857 perf_event__output_id_sample(event, &handle, &sample);
6858 perf_output_end(&handle);
6859 }
6860
6861 /*
6862 * context_switch tracking
6863 */
6864
6865 struct perf_switch_event {
6866 struct task_struct *task;
6867 struct task_struct *next_prev;
6868
6869 struct {
6870 struct perf_event_header header;
6871 u32 next_prev_pid;
6872 u32 next_prev_tid;
6873 } event_id;
6874 };
6875
6876 static int perf_event_switch_match(struct perf_event *event)
6877 {
6878 return event->attr.context_switch;
6879 }
6880
6881 static void perf_event_switch_output(struct perf_event *event, void *data)
6882 {
6883 struct perf_switch_event *se = data;
6884 struct perf_output_handle handle;
6885 struct perf_sample_data sample;
6886 int ret;
6887
6888 if (!perf_event_switch_match(event))
6889 return;
6890
6891 /* Only CPU-wide events are allowed to see next/prev pid/tid */
6892 if (event->ctx->task) {
6893 se->event_id.header.type = PERF_RECORD_SWITCH;
6894 se->event_id.header.size = sizeof(se->event_id.header);
6895 } else {
6896 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
6897 se->event_id.header.size = sizeof(se->event_id);
6898 se->event_id.next_prev_pid =
6899 perf_event_pid(event, se->next_prev);
6900 se->event_id.next_prev_tid =
6901 perf_event_tid(event, se->next_prev);
6902 }
6903
6904 perf_event_header__init_id(&se->event_id.header, &sample, event);
6905
6906 ret = perf_output_begin(&handle, event, se->event_id.header.size);
6907 if (ret)
6908 return;
6909
6910 if (event->ctx->task)
6911 perf_output_put(&handle, se->event_id.header);
6912 else
6913 perf_output_put(&handle, se->event_id);
6914
6915 perf_event__output_id_sample(event, &handle, &sample);
6916
6917 perf_output_end(&handle);
6918 }
6919
6920 static void perf_event_switch(struct task_struct *task,
6921 struct task_struct *next_prev, bool sched_in)
6922 {
6923 struct perf_switch_event switch_event;
6924
6925 /* N.B. caller checks nr_switch_events != 0 */
6926
6927 switch_event = (struct perf_switch_event){
6928 .task = task,
6929 .next_prev = next_prev,
6930 .event_id = {
6931 .header = {
6932 /* .type */
6933 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
6934 /* .size */
6935 },
6936 /* .next_prev_pid */
6937 /* .next_prev_tid */
6938 },
6939 };
6940
6941 perf_iterate_sb(perf_event_switch_output,
6942 &switch_event,
6943 NULL);
6944 }
6945
6946 /*
6947 * IRQ throttle logging
6948 */
6949
6950 static void perf_log_throttle(struct perf_event *event, int enable)
6951 {
6952 struct perf_output_handle handle;
6953 struct perf_sample_data sample;
6954 int ret;
6955
6956 struct {
6957 struct perf_event_header header;
6958 u64 time;
6959 u64 id;
6960 u64 stream_id;
6961 } throttle_event = {
6962 .header = {
6963 .type = PERF_RECORD_THROTTLE,
6964 .misc = 0,
6965 .size = sizeof(throttle_event),
6966 },
6967 .time = perf_event_clock(event),
6968 .id = primary_event_id(event),
6969 .stream_id = event->id,
6970 };
6971
6972 if (enable)
6973 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
6974
6975 perf_event_header__init_id(&throttle_event.header, &sample, event);
6976
6977 ret = perf_output_begin(&handle, event,
6978 throttle_event.header.size);
6979 if (ret)
6980 return;
6981
6982 perf_output_put(&handle, throttle_event);
6983 perf_event__output_id_sample(event, &handle, &sample);
6984 perf_output_end(&handle);
6985 }
6986
6987 static void perf_log_itrace_start(struct perf_event *event)
6988 {
6989 struct perf_output_handle handle;
6990 struct perf_sample_data sample;
6991 struct perf_aux_event {
6992 struct perf_event_header header;
6993 u32 pid;
6994 u32 tid;
6995 } rec;
6996 int ret;
6997
6998 if (event->parent)
6999 event = event->parent;
7000
7001 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
7002 event->hw.itrace_started)
7003 return;
7004
7005 rec.header.type = PERF_RECORD_ITRACE_START;
7006 rec.header.misc = 0;
7007 rec.header.size = sizeof(rec);
7008 rec.pid = perf_event_pid(event, current);
7009 rec.tid = perf_event_tid(event, current);
7010
7011 perf_event_header__init_id(&rec.header, &sample, event);
7012 ret = perf_output_begin(&handle, event, rec.header.size);
7013
7014 if (ret)
7015 return;
7016
7017 perf_output_put(&handle, rec);
7018 perf_event__output_id_sample(event, &handle, &sample);
7019
7020 perf_output_end(&handle);
7021 }
7022
7023 /*
7024 * Generic event overflow handling, sampling.
7025 */
7026
7027 static int __perf_event_overflow(struct perf_event *event,
7028 int throttle, struct perf_sample_data *data,
7029 struct pt_regs *regs)
7030 {
7031 int events = atomic_read(&event->event_limit);
7032 struct hw_perf_event *hwc = &event->hw;
7033 u64 seq;
7034 int ret = 0;
7035
7036 /*
7037 * Non-sampling counters might still use the PMI to fold short
7038 * hardware counters, ignore those.
7039 */
7040 if (unlikely(!is_sampling_event(event)))
7041 return 0;
7042
7043 seq = __this_cpu_read(perf_throttled_seq);
7044 if (seq != hwc->interrupts_seq) {
7045 hwc->interrupts_seq = seq;
7046 hwc->interrupts = 1;
7047 } else {
7048 hwc->interrupts++;
7049 if (unlikely(throttle
7050 && hwc->interrupts >= max_samples_per_tick)) {
7051 __this_cpu_inc(perf_throttled_count);
7052 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
7053 hwc->interrupts = MAX_INTERRUPTS;
7054 perf_log_throttle(event, 0);
7055 ret = 1;
7056 }
7057 }
7058
7059 if (event->attr.freq) {
7060 u64 now = perf_clock();
7061 s64 delta = now - hwc->freq_time_stamp;
7062
7063 hwc->freq_time_stamp = now;
7064
7065 if (delta > 0 && delta < 2*TICK_NSEC)
7066 perf_adjust_period(event, delta, hwc->last_period, true);
7067 }
7068
7069 /*
7070 * XXX event_limit might not quite work as expected on inherited
7071 * events
7072 */
7073
7074 event->pending_kill = POLL_IN;
7075 if (events && atomic_dec_and_test(&event->event_limit)) {
7076 ret = 1;
7077 event->pending_kill = POLL_HUP;
7078 event->pending_disable = 1;
7079 irq_work_queue(&event->pending);
7080 }
7081
7082 READ_ONCE(event->overflow_handler)(event, data, regs);
7083
7084 if (*perf_event_fasync(event) && event->pending_kill) {
7085 event->pending_wakeup = 1;
7086 irq_work_queue(&event->pending);
7087 }
7088
7089 return ret;
7090 }
7091
7092 int perf_event_overflow(struct perf_event *event,
7093 struct perf_sample_data *data,
7094 struct pt_regs *regs)
7095 {
7096 return __perf_event_overflow(event, 1, data, regs);
7097 }
7098
7099 /*
7100 * Generic software event infrastructure
7101 */
7102
7103 struct swevent_htable {
7104 struct swevent_hlist *swevent_hlist;
7105 struct mutex hlist_mutex;
7106 int hlist_refcount;
7107
7108 /* Recursion avoidance in each contexts */
7109 int recursion[PERF_NR_CONTEXTS];
7110 };
7111
7112 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
7113
7114 /*
7115 * We directly increment event->count and keep a second value in
7116 * event->hw.period_left to count intervals. This period event
7117 * is kept in the range [-sample_period, 0] so that we can use the
7118 * sign as trigger.
7119 */
7120
7121 u64 perf_swevent_set_period(struct perf_event *event)
7122 {
7123 struct hw_perf_event *hwc = &event->hw;
7124 u64 period = hwc->last_period;
7125 u64 nr, offset;
7126 s64 old, val;
7127
7128 hwc->last_period = hwc->sample_period;
7129
7130 again:
7131 old = val = local64_read(&hwc->period_left);
7132 if (val < 0)
7133 return 0;
7134
7135 nr = div64_u64(period + val, period);
7136 offset = nr * period;
7137 val -= offset;
7138 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7139 goto again;
7140
7141 return nr;
7142 }
7143
7144 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
7145 struct perf_sample_data *data,
7146 struct pt_regs *regs)
7147 {
7148 struct hw_perf_event *hwc = &event->hw;
7149 int throttle = 0;
7150
7151 if (!overflow)
7152 overflow = perf_swevent_set_period(event);
7153
7154 if (hwc->interrupts == MAX_INTERRUPTS)
7155 return;
7156
7157 for (; overflow; overflow--) {
7158 if (__perf_event_overflow(event, throttle,
7159 data, regs)) {
7160 /*
7161 * We inhibit the overflow from happening when
7162 * hwc->interrupts == MAX_INTERRUPTS.
7163 */
7164 break;
7165 }
7166 throttle = 1;
7167 }
7168 }
7169
7170 static void perf_swevent_event(struct perf_event *event, u64 nr,
7171 struct perf_sample_data *data,
7172 struct pt_regs *regs)
7173 {
7174 struct hw_perf_event *hwc = &event->hw;
7175
7176 local64_add(nr, &event->count);
7177
7178 if (!regs)
7179 return;
7180
7181 if (!is_sampling_event(event))
7182 return;
7183
7184 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
7185 data->period = nr;
7186 return perf_swevent_overflow(event, 1, data, regs);
7187 } else
7188 data->period = event->hw.last_period;
7189
7190 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
7191 return perf_swevent_overflow(event, 1, data, regs);
7192
7193 if (local64_add_negative(nr, &hwc->period_left))
7194 return;
7195
7196 perf_swevent_overflow(event, 0, data, regs);
7197 }
7198
7199 static int perf_exclude_event(struct perf_event *event,
7200 struct pt_regs *regs)
7201 {
7202 if (event->hw.state & PERF_HES_STOPPED)
7203 return 1;
7204
7205 if (regs) {
7206 if (event->attr.exclude_user && user_mode(regs))
7207 return 1;
7208
7209 if (event->attr.exclude_kernel && !user_mode(regs))
7210 return 1;
7211 }
7212
7213 return 0;
7214 }
7215
7216 static int perf_swevent_match(struct perf_event *event,
7217 enum perf_type_id type,
7218 u32 event_id,
7219 struct perf_sample_data *data,
7220 struct pt_regs *regs)
7221 {
7222 if (event->attr.type != type)
7223 return 0;
7224
7225 if (event->attr.config != event_id)
7226 return 0;
7227
7228 if (perf_exclude_event(event, regs))
7229 return 0;
7230
7231 return 1;
7232 }
7233
7234 static inline u64 swevent_hash(u64 type, u32 event_id)
7235 {
7236 u64 val = event_id | (type << 32);
7237
7238 return hash_64(val, SWEVENT_HLIST_BITS);
7239 }
7240
7241 static inline struct hlist_head *
7242 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
7243 {
7244 u64 hash = swevent_hash(type, event_id);
7245
7246 return &hlist->heads[hash];
7247 }
7248
7249 /* For the read side: events when they trigger */
7250 static inline struct hlist_head *
7251 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
7252 {
7253 struct swevent_hlist *hlist;
7254
7255 hlist = rcu_dereference(swhash->swevent_hlist);
7256 if (!hlist)
7257 return NULL;
7258
7259 return __find_swevent_head(hlist, type, event_id);
7260 }
7261
7262 /* For the event head insertion and removal in the hlist */
7263 static inline struct hlist_head *
7264 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
7265 {
7266 struct swevent_hlist *hlist;
7267 u32 event_id = event->attr.config;
7268 u64 type = event->attr.type;
7269
7270 /*
7271 * Event scheduling is always serialized against hlist allocation
7272 * and release. Which makes the protected version suitable here.
7273 * The context lock guarantees that.
7274 */
7275 hlist = rcu_dereference_protected(swhash->swevent_hlist,
7276 lockdep_is_held(&event->ctx->lock));
7277 if (!hlist)
7278 return NULL;
7279
7280 return __find_swevent_head(hlist, type, event_id);
7281 }
7282
7283 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
7284 u64 nr,
7285 struct perf_sample_data *data,
7286 struct pt_regs *regs)
7287 {
7288 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7289 struct perf_event *event;
7290 struct hlist_head *head;
7291
7292 rcu_read_lock();
7293 head = find_swevent_head_rcu(swhash, type, event_id);
7294 if (!head)
7295 goto end;
7296
7297 hlist_for_each_entry_rcu(event, head, hlist_entry) {
7298 if (perf_swevent_match(event, type, event_id, data, regs))
7299 perf_swevent_event(event, nr, data, regs);
7300 }
7301 end:
7302 rcu_read_unlock();
7303 }
7304
7305 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
7306
7307 int perf_swevent_get_recursion_context(void)
7308 {
7309 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7310
7311 return get_recursion_context(swhash->recursion);
7312 }
7313 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
7314
7315 void perf_swevent_put_recursion_context(int rctx)
7316 {
7317 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7318
7319 put_recursion_context(swhash->recursion, rctx);
7320 }
7321
7322 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7323 {
7324 struct perf_sample_data data;
7325
7326 if (WARN_ON_ONCE(!regs))
7327 return;
7328
7329 perf_sample_data_init(&data, addr, 0);
7330 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
7331 }
7332
7333 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7334 {
7335 int rctx;
7336
7337 preempt_disable_notrace();
7338 rctx = perf_swevent_get_recursion_context();
7339 if (unlikely(rctx < 0))
7340 goto fail;
7341
7342 ___perf_sw_event(event_id, nr, regs, addr);
7343
7344 perf_swevent_put_recursion_context(rctx);
7345 fail:
7346 preempt_enable_notrace();
7347 }
7348
7349 static void perf_swevent_read(struct perf_event *event)
7350 {
7351 }
7352
7353 static int perf_swevent_add(struct perf_event *event, int flags)
7354 {
7355 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7356 struct hw_perf_event *hwc = &event->hw;
7357 struct hlist_head *head;
7358
7359 if (is_sampling_event(event)) {
7360 hwc->last_period = hwc->sample_period;
7361 perf_swevent_set_period(event);
7362 }
7363
7364 hwc->state = !(flags & PERF_EF_START);
7365
7366 head = find_swevent_head(swhash, event);
7367 if (WARN_ON_ONCE(!head))
7368 return -EINVAL;
7369
7370 hlist_add_head_rcu(&event->hlist_entry, head);
7371 perf_event_update_userpage(event);
7372
7373 return 0;
7374 }
7375
7376 static void perf_swevent_del(struct perf_event *event, int flags)
7377 {
7378 hlist_del_rcu(&event->hlist_entry);
7379 }
7380
7381 static void perf_swevent_start(struct perf_event *event, int flags)
7382 {
7383 event->hw.state = 0;
7384 }
7385
7386 static void perf_swevent_stop(struct perf_event *event, int flags)
7387 {
7388 event->hw.state = PERF_HES_STOPPED;
7389 }
7390
7391 /* Deref the hlist from the update side */
7392 static inline struct swevent_hlist *
7393 swevent_hlist_deref(struct swevent_htable *swhash)
7394 {
7395 return rcu_dereference_protected(swhash->swevent_hlist,
7396 lockdep_is_held(&swhash->hlist_mutex));
7397 }
7398
7399 static void swevent_hlist_release(struct swevent_htable *swhash)
7400 {
7401 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
7402
7403 if (!hlist)
7404 return;
7405
7406 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
7407 kfree_rcu(hlist, rcu_head);
7408 }
7409
7410 static void swevent_hlist_put_cpu(int cpu)
7411 {
7412 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7413
7414 mutex_lock(&swhash->hlist_mutex);
7415
7416 if (!--swhash->hlist_refcount)
7417 swevent_hlist_release(swhash);
7418
7419 mutex_unlock(&swhash->hlist_mutex);
7420 }
7421
7422 static void swevent_hlist_put(void)
7423 {
7424 int cpu;
7425
7426 for_each_possible_cpu(cpu)
7427 swevent_hlist_put_cpu(cpu);
7428 }
7429
7430 static int swevent_hlist_get_cpu(int cpu)
7431 {
7432 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7433 int err = 0;
7434
7435 mutex_lock(&swhash->hlist_mutex);
7436 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
7437 struct swevent_hlist *hlist;
7438
7439 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
7440 if (!hlist) {
7441 err = -ENOMEM;
7442 goto exit;
7443 }
7444 rcu_assign_pointer(swhash->swevent_hlist, hlist);
7445 }
7446 swhash->hlist_refcount++;
7447 exit:
7448 mutex_unlock(&swhash->hlist_mutex);
7449
7450 return err;
7451 }
7452
7453 static int swevent_hlist_get(void)
7454 {
7455 int err, cpu, failed_cpu;
7456
7457 get_online_cpus();
7458 for_each_possible_cpu(cpu) {
7459 err = swevent_hlist_get_cpu(cpu);
7460 if (err) {
7461 failed_cpu = cpu;
7462 goto fail;
7463 }
7464 }
7465 put_online_cpus();
7466
7467 return 0;
7468 fail:
7469 for_each_possible_cpu(cpu) {
7470 if (cpu == failed_cpu)
7471 break;
7472 swevent_hlist_put_cpu(cpu);
7473 }
7474
7475 put_online_cpus();
7476 return err;
7477 }
7478
7479 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
7480
7481 static void sw_perf_event_destroy(struct perf_event *event)
7482 {
7483 u64 event_id = event->attr.config;
7484
7485 WARN_ON(event->parent);
7486
7487 static_key_slow_dec(&perf_swevent_enabled[event_id]);
7488 swevent_hlist_put();
7489 }
7490
7491 static int perf_swevent_init(struct perf_event *event)
7492 {
7493 u64 event_id = event->attr.config;
7494
7495 if (event->attr.type != PERF_TYPE_SOFTWARE)
7496 return -ENOENT;
7497
7498 /*
7499 * no branch sampling for software events
7500 */
7501 if (has_branch_stack(event))
7502 return -EOPNOTSUPP;
7503
7504 switch (event_id) {
7505 case PERF_COUNT_SW_CPU_CLOCK:
7506 case PERF_COUNT_SW_TASK_CLOCK:
7507 return -ENOENT;
7508
7509 default:
7510 break;
7511 }
7512
7513 if (event_id >= PERF_COUNT_SW_MAX)
7514 return -ENOENT;
7515
7516 if (!event->parent) {
7517 int err;
7518
7519 err = swevent_hlist_get();
7520 if (err)
7521 return err;
7522
7523 static_key_slow_inc(&perf_swevent_enabled[event_id]);
7524 event->destroy = sw_perf_event_destroy;
7525 }
7526
7527 return 0;
7528 }
7529
7530 static struct pmu perf_swevent = {
7531 .task_ctx_nr = perf_sw_context,
7532
7533 .capabilities = PERF_PMU_CAP_NO_NMI,
7534
7535 .event_init = perf_swevent_init,
7536 .add = perf_swevent_add,
7537 .del = perf_swevent_del,
7538 .start = perf_swevent_start,
7539 .stop = perf_swevent_stop,
7540 .read = perf_swevent_read,
7541 };
7542
7543 #ifdef CONFIG_EVENT_TRACING
7544
7545 static int perf_tp_filter_match(struct perf_event *event,
7546 struct perf_sample_data *data)
7547 {
7548 void *record = data->raw->frag.data;
7549
7550 /* only top level events have filters set */
7551 if (event->parent)
7552 event = event->parent;
7553
7554 if (likely(!event->filter) || filter_match_preds(event->filter, record))
7555 return 1;
7556 return 0;
7557 }
7558
7559 static int perf_tp_event_match(struct perf_event *event,
7560 struct perf_sample_data *data,
7561 struct pt_regs *regs)
7562 {
7563 if (event->hw.state & PERF_HES_STOPPED)
7564 return 0;
7565 /*
7566 * All tracepoints are from kernel-space.
7567 */
7568 if (event->attr.exclude_kernel)
7569 return 0;
7570
7571 if (!perf_tp_filter_match(event, data))
7572 return 0;
7573
7574 return 1;
7575 }
7576
7577 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
7578 struct trace_event_call *call, u64 count,
7579 struct pt_regs *regs, struct hlist_head *head,
7580 struct task_struct *task)
7581 {
7582 struct bpf_prog *prog = call->prog;
7583
7584 if (prog) {
7585 *(struct pt_regs **)raw_data = regs;
7586 if (!trace_call_bpf(prog, raw_data) || hlist_empty(head)) {
7587 perf_swevent_put_recursion_context(rctx);
7588 return;
7589 }
7590 }
7591 perf_tp_event(call->event.type, count, raw_data, size, regs, head,
7592 rctx, task);
7593 }
7594 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
7595
7596 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
7597 struct pt_regs *regs, struct hlist_head *head, int rctx,
7598 struct task_struct *task)
7599 {
7600 struct perf_sample_data data;
7601 struct perf_event *event;
7602
7603 struct perf_raw_record raw = {
7604 .frag = {
7605 .size = entry_size,
7606 .data = record,
7607 },
7608 };
7609
7610 perf_sample_data_init(&data, 0, 0);
7611 data.raw = &raw;
7612
7613 perf_trace_buf_update(record, event_type);
7614
7615 hlist_for_each_entry_rcu(event, head, hlist_entry) {
7616 if (perf_tp_event_match(event, &data, regs))
7617 perf_swevent_event(event, count, &data, regs);
7618 }
7619
7620 /*
7621 * If we got specified a target task, also iterate its context and
7622 * deliver this event there too.
7623 */
7624 if (task && task != current) {
7625 struct perf_event_context *ctx;
7626 struct trace_entry *entry = record;
7627
7628 rcu_read_lock();
7629 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
7630 if (!ctx)
7631 goto unlock;
7632
7633 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7634 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7635 continue;
7636 if (event->attr.config != entry->type)
7637 continue;
7638 if (perf_tp_event_match(event, &data, regs))
7639 perf_swevent_event(event, count, &data, regs);
7640 }
7641 unlock:
7642 rcu_read_unlock();
7643 }
7644
7645 perf_swevent_put_recursion_context(rctx);
7646 }
7647 EXPORT_SYMBOL_GPL(perf_tp_event);
7648
7649 static void tp_perf_event_destroy(struct perf_event *event)
7650 {
7651 perf_trace_destroy(event);
7652 }
7653
7654 static int perf_tp_event_init(struct perf_event *event)
7655 {
7656 int err;
7657
7658 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7659 return -ENOENT;
7660
7661 /*
7662 * no branch sampling for tracepoint events
7663 */
7664 if (has_branch_stack(event))
7665 return -EOPNOTSUPP;
7666
7667 err = perf_trace_init(event);
7668 if (err)
7669 return err;
7670
7671 event->destroy = tp_perf_event_destroy;
7672
7673 return 0;
7674 }
7675
7676 static struct pmu perf_tracepoint = {
7677 .task_ctx_nr = perf_sw_context,
7678
7679 .event_init = perf_tp_event_init,
7680 .add = perf_trace_add,
7681 .del = perf_trace_del,
7682 .start = perf_swevent_start,
7683 .stop = perf_swevent_stop,
7684 .read = perf_swevent_read,
7685 };
7686
7687 static inline void perf_tp_register(void)
7688 {
7689 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
7690 }
7691
7692 static void perf_event_free_filter(struct perf_event *event)
7693 {
7694 ftrace_profile_free_filter(event);
7695 }
7696
7697 #ifdef CONFIG_BPF_SYSCALL
7698 static void bpf_overflow_handler(struct perf_event *event,
7699 struct perf_sample_data *data,
7700 struct pt_regs *regs)
7701 {
7702 struct bpf_perf_event_data_kern ctx = {
7703 .data = data,
7704 .regs = regs,
7705 };
7706 int ret = 0;
7707
7708 preempt_disable();
7709 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
7710 goto out;
7711 rcu_read_lock();
7712 ret = BPF_PROG_RUN(event->prog, (void *)&ctx);
7713 rcu_read_unlock();
7714 out:
7715 __this_cpu_dec(bpf_prog_active);
7716 preempt_enable();
7717 if (!ret)
7718 return;
7719
7720 event->orig_overflow_handler(event, data, regs);
7721 }
7722
7723 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
7724 {
7725 struct bpf_prog *prog;
7726
7727 if (event->overflow_handler_context)
7728 /* hw breakpoint or kernel counter */
7729 return -EINVAL;
7730
7731 if (event->prog)
7732 return -EEXIST;
7733
7734 prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
7735 if (IS_ERR(prog))
7736 return PTR_ERR(prog);
7737
7738 event->prog = prog;
7739 event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
7740 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
7741 return 0;
7742 }
7743
7744 static void perf_event_free_bpf_handler(struct perf_event *event)
7745 {
7746 struct bpf_prog *prog = event->prog;
7747
7748 if (!prog)
7749 return;
7750
7751 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
7752 event->prog = NULL;
7753 bpf_prog_put(prog);
7754 }
7755 #else
7756 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
7757 {
7758 return -EOPNOTSUPP;
7759 }
7760 static void perf_event_free_bpf_handler(struct perf_event *event)
7761 {
7762 }
7763 #endif
7764
7765 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7766 {
7767 bool is_kprobe, is_tracepoint;
7768 struct bpf_prog *prog;
7769
7770 if (event->attr.type == PERF_TYPE_HARDWARE ||
7771 event->attr.type == PERF_TYPE_SOFTWARE)
7772 return perf_event_set_bpf_handler(event, prog_fd);
7773
7774 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7775 return -EINVAL;
7776
7777 if (event->tp_event->prog)
7778 return -EEXIST;
7779
7780 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
7781 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
7782 if (!is_kprobe && !is_tracepoint)
7783 /* bpf programs can only be attached to u/kprobe or tracepoint */
7784 return -EINVAL;
7785
7786 prog = bpf_prog_get(prog_fd);
7787 if (IS_ERR(prog))
7788 return PTR_ERR(prog);
7789
7790 if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
7791 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
7792 /* valid fd, but invalid bpf program type */
7793 bpf_prog_put(prog);
7794 return -EINVAL;
7795 }
7796
7797 if (is_tracepoint) {
7798 int off = trace_event_get_offsets(event->tp_event);
7799
7800 if (prog->aux->max_ctx_offset > off) {
7801 bpf_prog_put(prog);
7802 return -EACCES;
7803 }
7804 }
7805 event->tp_event->prog = prog;
7806
7807 return 0;
7808 }
7809
7810 static void perf_event_free_bpf_prog(struct perf_event *event)
7811 {
7812 struct bpf_prog *prog;
7813
7814 perf_event_free_bpf_handler(event);
7815
7816 if (!event->tp_event)
7817 return;
7818
7819 prog = event->tp_event->prog;
7820 if (prog) {
7821 event->tp_event->prog = NULL;
7822 bpf_prog_put(prog);
7823 }
7824 }
7825
7826 #else
7827
7828 static inline void perf_tp_register(void)
7829 {
7830 }
7831
7832 static void perf_event_free_filter(struct perf_event *event)
7833 {
7834 }
7835
7836 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7837 {
7838 return -ENOENT;
7839 }
7840
7841 static void perf_event_free_bpf_prog(struct perf_event *event)
7842 {
7843 }
7844 #endif /* CONFIG_EVENT_TRACING */
7845
7846 #ifdef CONFIG_HAVE_HW_BREAKPOINT
7847 void perf_bp_event(struct perf_event *bp, void *data)
7848 {
7849 struct perf_sample_data sample;
7850 struct pt_regs *regs = data;
7851
7852 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
7853
7854 if (!bp->hw.state && !perf_exclude_event(bp, regs))
7855 perf_swevent_event(bp, 1, &sample, regs);
7856 }
7857 #endif
7858
7859 /*
7860 * Allocate a new address filter
7861 */
7862 static struct perf_addr_filter *
7863 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
7864 {
7865 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
7866 struct perf_addr_filter *filter;
7867
7868 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
7869 if (!filter)
7870 return NULL;
7871
7872 INIT_LIST_HEAD(&filter->entry);
7873 list_add_tail(&filter->entry, filters);
7874
7875 return filter;
7876 }
7877
7878 static void free_filters_list(struct list_head *filters)
7879 {
7880 struct perf_addr_filter *filter, *iter;
7881
7882 list_for_each_entry_safe(filter, iter, filters, entry) {
7883 if (filter->inode)
7884 iput(filter->inode);
7885 list_del(&filter->entry);
7886 kfree(filter);
7887 }
7888 }
7889
7890 /*
7891 * Free existing address filters and optionally install new ones
7892 */
7893 static void perf_addr_filters_splice(struct perf_event *event,
7894 struct list_head *head)
7895 {
7896 unsigned long flags;
7897 LIST_HEAD(list);
7898
7899 if (!has_addr_filter(event))
7900 return;
7901
7902 /* don't bother with children, they don't have their own filters */
7903 if (event->parent)
7904 return;
7905
7906 raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
7907
7908 list_splice_init(&event->addr_filters.list, &list);
7909 if (head)
7910 list_splice(head, &event->addr_filters.list);
7911
7912 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
7913
7914 free_filters_list(&list);
7915 }
7916
7917 /*
7918 * Scan through mm's vmas and see if one of them matches the
7919 * @filter; if so, adjust filter's address range.
7920 * Called with mm::mmap_sem down for reading.
7921 */
7922 static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
7923 struct mm_struct *mm)
7924 {
7925 struct vm_area_struct *vma;
7926
7927 for (vma = mm->mmap; vma; vma = vma->vm_next) {
7928 struct file *file = vma->vm_file;
7929 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
7930 unsigned long vma_size = vma->vm_end - vma->vm_start;
7931
7932 if (!file)
7933 continue;
7934
7935 if (!perf_addr_filter_match(filter, file, off, vma_size))
7936 continue;
7937
7938 return vma->vm_start;
7939 }
7940
7941 return 0;
7942 }
7943
7944 /*
7945 * Update event's address range filters based on the
7946 * task's existing mappings, if any.
7947 */
7948 static void perf_event_addr_filters_apply(struct perf_event *event)
7949 {
7950 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7951 struct task_struct *task = READ_ONCE(event->ctx->task);
7952 struct perf_addr_filter *filter;
7953 struct mm_struct *mm = NULL;
7954 unsigned int count = 0;
7955 unsigned long flags;
7956
7957 /*
7958 * We may observe TASK_TOMBSTONE, which means that the event tear-down
7959 * will stop on the parent's child_mutex that our caller is also holding
7960 */
7961 if (task == TASK_TOMBSTONE)
7962 return;
7963
7964 mm = get_task_mm(event->ctx->task);
7965 if (!mm)
7966 goto restart;
7967
7968 down_read(&mm->mmap_sem);
7969
7970 raw_spin_lock_irqsave(&ifh->lock, flags);
7971 list_for_each_entry(filter, &ifh->list, entry) {
7972 event->addr_filters_offs[count] = 0;
7973
7974 /*
7975 * Adjust base offset if the filter is associated to a binary
7976 * that needs to be mapped:
7977 */
7978 if (filter->inode)
7979 event->addr_filters_offs[count] =
7980 perf_addr_filter_apply(filter, mm);
7981
7982 count++;
7983 }
7984
7985 event->addr_filters_gen++;
7986 raw_spin_unlock_irqrestore(&ifh->lock, flags);
7987
7988 up_read(&mm->mmap_sem);
7989
7990 mmput(mm);
7991
7992 restart:
7993 perf_event_stop(event, 1);
7994 }
7995
7996 /*
7997 * Address range filtering: limiting the data to certain
7998 * instruction address ranges. Filters are ioctl()ed to us from
7999 * userspace as ascii strings.
8000 *
8001 * Filter string format:
8002 *
8003 * ACTION RANGE_SPEC
8004 * where ACTION is one of the
8005 * * "filter": limit the trace to this region
8006 * * "start": start tracing from this address
8007 * * "stop": stop tracing at this address/region;
8008 * RANGE_SPEC is
8009 * * for kernel addresses: <start address>[/<size>]
8010 * * for object files: <start address>[/<size>]@</path/to/object/file>
8011 *
8012 * if <size> is not specified, the range is treated as a single address.
8013 */
8014 enum {
8015 IF_ACT_FILTER,
8016 IF_ACT_START,
8017 IF_ACT_STOP,
8018 IF_SRC_FILE,
8019 IF_SRC_KERNEL,
8020 IF_SRC_FILEADDR,
8021 IF_SRC_KERNELADDR,
8022 };
8023
8024 enum {
8025 IF_STATE_ACTION = 0,
8026 IF_STATE_SOURCE,
8027 IF_STATE_END,
8028 };
8029
8030 static const match_table_t if_tokens = {
8031 { IF_ACT_FILTER, "filter" },
8032 { IF_ACT_START, "start" },
8033 { IF_ACT_STOP, "stop" },
8034 { IF_SRC_FILE, "%u/%u@%s" },
8035 { IF_SRC_KERNEL, "%u/%u" },
8036 { IF_SRC_FILEADDR, "%u@%s" },
8037 { IF_SRC_KERNELADDR, "%u" },
8038 };
8039
8040 /*
8041 * Address filter string parser
8042 */
8043 static int
8044 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
8045 struct list_head *filters)
8046 {
8047 struct perf_addr_filter *filter = NULL;
8048 char *start, *orig, *filename = NULL;
8049 struct path path;
8050 substring_t args[MAX_OPT_ARGS];
8051 int state = IF_STATE_ACTION, token;
8052 unsigned int kernel = 0;
8053 int ret = -EINVAL;
8054
8055 orig = fstr = kstrdup(fstr, GFP_KERNEL);
8056 if (!fstr)
8057 return -ENOMEM;
8058
8059 while ((start = strsep(&fstr, " ,\n")) != NULL) {
8060 ret = -EINVAL;
8061
8062 if (!*start)
8063 continue;
8064
8065 /* filter definition begins */
8066 if (state == IF_STATE_ACTION) {
8067 filter = perf_addr_filter_new(event, filters);
8068 if (!filter)
8069 goto fail;
8070 }
8071
8072 token = match_token(start, if_tokens, args);
8073 switch (token) {
8074 case IF_ACT_FILTER:
8075 case IF_ACT_START:
8076 filter->filter = 1;
8077
8078 case IF_ACT_STOP:
8079 if (state != IF_STATE_ACTION)
8080 goto fail;
8081
8082 state = IF_STATE_SOURCE;
8083 break;
8084
8085 case IF_SRC_KERNELADDR:
8086 case IF_SRC_KERNEL:
8087 kernel = 1;
8088
8089 case IF_SRC_FILEADDR:
8090 case IF_SRC_FILE:
8091 if (state != IF_STATE_SOURCE)
8092 goto fail;
8093
8094 if (token == IF_SRC_FILE || token == IF_SRC_KERNEL)
8095 filter->range = 1;
8096
8097 *args[0].to = 0;
8098 ret = kstrtoul(args[0].from, 0, &filter->offset);
8099 if (ret)
8100 goto fail;
8101
8102 if (filter->range) {
8103 *args[1].to = 0;
8104 ret = kstrtoul(args[1].from, 0, &filter->size);
8105 if (ret)
8106 goto fail;
8107 }
8108
8109 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
8110 int fpos = filter->range ? 2 : 1;
8111
8112 filename = match_strdup(&args[fpos]);
8113 if (!filename) {
8114 ret = -ENOMEM;
8115 goto fail;
8116 }
8117 }
8118
8119 state = IF_STATE_END;
8120 break;
8121
8122 default:
8123 goto fail;
8124 }
8125
8126 /*
8127 * Filter definition is fully parsed, validate and install it.
8128 * Make sure that it doesn't contradict itself or the event's
8129 * attribute.
8130 */
8131 if (state == IF_STATE_END) {
8132 if (kernel && event->attr.exclude_kernel)
8133 goto fail;
8134
8135 if (!kernel) {
8136 if (!filename)
8137 goto fail;
8138
8139 /* look up the path and grab its inode */
8140 ret = kern_path(filename, LOOKUP_FOLLOW, &path);
8141 if (ret)
8142 goto fail_free_name;
8143
8144 filter->inode = igrab(d_inode(path.dentry));
8145 path_put(&path);
8146 kfree(filename);
8147 filename = NULL;
8148
8149 ret = -EINVAL;
8150 if (!filter->inode ||
8151 !S_ISREG(filter->inode->i_mode))
8152 /* free_filters_list() will iput() */
8153 goto fail;
8154 }
8155
8156 /* ready to consume more filters */
8157 state = IF_STATE_ACTION;
8158 filter = NULL;
8159 }
8160 }
8161
8162 if (state != IF_STATE_ACTION)
8163 goto fail;
8164
8165 kfree(orig);
8166
8167 return 0;
8168
8169 fail_free_name:
8170 kfree(filename);
8171 fail:
8172 free_filters_list(filters);
8173 kfree(orig);
8174
8175 return ret;
8176 }
8177
8178 static int
8179 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
8180 {
8181 LIST_HEAD(filters);
8182 int ret;
8183
8184 /*
8185 * Since this is called in perf_ioctl() path, we're already holding
8186 * ctx::mutex.
8187 */
8188 lockdep_assert_held(&event->ctx->mutex);
8189
8190 if (WARN_ON_ONCE(event->parent))
8191 return -EINVAL;
8192
8193 /*
8194 * For now, we only support filtering in per-task events; doing so
8195 * for CPU-wide events requires additional context switching trickery,
8196 * since same object code will be mapped at different virtual
8197 * addresses in different processes.
8198 */
8199 if (!event->ctx->task)
8200 return -EOPNOTSUPP;
8201
8202 ret = perf_event_parse_addr_filter(event, filter_str, &filters);
8203 if (ret)
8204 return ret;
8205
8206 ret = event->pmu->addr_filters_validate(&filters);
8207 if (ret) {
8208 free_filters_list(&filters);
8209 return ret;
8210 }
8211
8212 /* remove existing filters, if any */
8213 perf_addr_filters_splice(event, &filters);
8214
8215 /* install new filters */
8216 perf_event_for_each_child(event, perf_event_addr_filters_apply);
8217
8218 return ret;
8219 }
8220
8221 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
8222 {
8223 char *filter_str;
8224 int ret = -EINVAL;
8225
8226 if ((event->attr.type != PERF_TYPE_TRACEPOINT ||
8227 !IS_ENABLED(CONFIG_EVENT_TRACING)) &&
8228 !has_addr_filter(event))
8229 return -EINVAL;
8230
8231 filter_str = strndup_user(arg, PAGE_SIZE);
8232 if (IS_ERR(filter_str))
8233 return PTR_ERR(filter_str);
8234
8235 if (IS_ENABLED(CONFIG_EVENT_TRACING) &&
8236 event->attr.type == PERF_TYPE_TRACEPOINT)
8237 ret = ftrace_profile_set_filter(event, event->attr.config,
8238 filter_str);
8239 else if (has_addr_filter(event))
8240 ret = perf_event_set_addr_filter(event, filter_str);
8241
8242 kfree(filter_str);
8243 return ret;
8244 }
8245
8246 /*
8247 * hrtimer based swevent callback
8248 */
8249
8250 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
8251 {
8252 enum hrtimer_restart ret = HRTIMER_RESTART;
8253 struct perf_sample_data data;
8254 struct pt_regs *regs;
8255 struct perf_event *event;
8256 u64 period;
8257
8258 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
8259
8260 if (event->state != PERF_EVENT_STATE_ACTIVE)
8261 return HRTIMER_NORESTART;
8262
8263 event->pmu->read(event);
8264
8265 perf_sample_data_init(&data, 0, event->hw.last_period);
8266 regs = get_irq_regs();
8267
8268 if (regs && !perf_exclude_event(event, regs)) {
8269 if (!(event->attr.exclude_idle && is_idle_task(current)))
8270 if (__perf_event_overflow(event, 1, &data, regs))
8271 ret = HRTIMER_NORESTART;
8272 }
8273
8274 period = max_t(u64, 10000, event->hw.sample_period);
8275 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
8276
8277 return ret;
8278 }
8279
8280 static void perf_swevent_start_hrtimer(struct perf_event *event)
8281 {
8282 struct hw_perf_event *hwc = &event->hw;
8283 s64 period;
8284
8285 if (!is_sampling_event(event))
8286 return;
8287
8288 period = local64_read(&hwc->period_left);
8289 if (period) {
8290 if (period < 0)
8291 period = 10000;
8292
8293 local64_set(&hwc->period_left, 0);
8294 } else {
8295 period = max_t(u64, 10000, hwc->sample_period);
8296 }
8297 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
8298 HRTIMER_MODE_REL_PINNED);
8299 }
8300
8301 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
8302 {
8303 struct hw_perf_event *hwc = &event->hw;
8304
8305 if (is_sampling_event(event)) {
8306 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
8307 local64_set(&hwc->period_left, ktime_to_ns(remaining));
8308
8309 hrtimer_cancel(&hwc->hrtimer);
8310 }
8311 }
8312
8313 static void perf_swevent_init_hrtimer(struct perf_event *event)
8314 {
8315 struct hw_perf_event *hwc = &event->hw;
8316
8317 if (!is_sampling_event(event))
8318 return;
8319
8320 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
8321 hwc->hrtimer.function = perf_swevent_hrtimer;
8322
8323 /*
8324 * Since hrtimers have a fixed rate, we can do a static freq->period
8325 * mapping and avoid the whole period adjust feedback stuff.
8326 */
8327 if (event->attr.freq) {
8328 long freq = event->attr.sample_freq;
8329
8330 event->attr.sample_period = NSEC_PER_SEC / freq;
8331 hwc->sample_period = event->attr.sample_period;
8332 local64_set(&hwc->period_left, hwc->sample_period);
8333 hwc->last_period = hwc->sample_period;
8334 event->attr.freq = 0;
8335 }
8336 }
8337
8338 /*
8339 * Software event: cpu wall time clock
8340 */
8341
8342 static void cpu_clock_event_update(struct perf_event *event)
8343 {
8344 s64 prev;
8345 u64 now;
8346
8347 now = local_clock();
8348 prev = local64_xchg(&event->hw.prev_count, now);
8349 local64_add(now - prev, &event->count);
8350 }
8351
8352 static void cpu_clock_event_start(struct perf_event *event, int flags)
8353 {
8354 local64_set(&event->hw.prev_count, local_clock());
8355 perf_swevent_start_hrtimer(event);
8356 }
8357
8358 static void cpu_clock_event_stop(struct perf_event *event, int flags)
8359 {
8360 perf_swevent_cancel_hrtimer(event);
8361 cpu_clock_event_update(event);
8362 }
8363
8364 static int cpu_clock_event_add(struct perf_event *event, int flags)
8365 {
8366 if (flags & PERF_EF_START)
8367 cpu_clock_event_start(event, flags);
8368 perf_event_update_userpage(event);
8369
8370 return 0;
8371 }
8372
8373 static void cpu_clock_event_del(struct perf_event *event, int flags)
8374 {
8375 cpu_clock_event_stop(event, flags);
8376 }
8377
8378 static void cpu_clock_event_read(struct perf_event *event)
8379 {
8380 cpu_clock_event_update(event);
8381 }
8382
8383 static int cpu_clock_event_init(struct perf_event *event)
8384 {
8385 if (event->attr.type != PERF_TYPE_SOFTWARE)
8386 return -ENOENT;
8387
8388 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
8389 return -ENOENT;
8390
8391 /*
8392 * no branch sampling for software events
8393 */
8394 if (has_branch_stack(event))
8395 return -EOPNOTSUPP;
8396
8397 perf_swevent_init_hrtimer(event);
8398
8399 return 0;
8400 }
8401
8402 static struct pmu perf_cpu_clock = {
8403 .task_ctx_nr = perf_sw_context,
8404
8405 .capabilities = PERF_PMU_CAP_NO_NMI,
8406
8407 .event_init = cpu_clock_event_init,
8408 .add = cpu_clock_event_add,
8409 .del = cpu_clock_event_del,
8410 .start = cpu_clock_event_start,
8411 .stop = cpu_clock_event_stop,
8412 .read = cpu_clock_event_read,
8413 };
8414
8415 /*
8416 * Software event: task time clock
8417 */
8418
8419 static void task_clock_event_update(struct perf_event *event, u64 now)
8420 {
8421 u64 prev;
8422 s64 delta;
8423
8424 prev = local64_xchg(&event->hw.prev_count, now);
8425 delta = now - prev;
8426 local64_add(delta, &event->count);
8427 }
8428
8429 static void task_clock_event_start(struct perf_event *event, int flags)
8430 {
8431 local64_set(&event->hw.prev_count, event->ctx->time);
8432 perf_swevent_start_hrtimer(event);
8433 }
8434
8435 static void task_clock_event_stop(struct perf_event *event, int flags)
8436 {
8437 perf_swevent_cancel_hrtimer(event);
8438 task_clock_event_update(event, event->ctx->time);
8439 }
8440
8441 static int task_clock_event_add(struct perf_event *event, int flags)
8442 {
8443 if (flags & PERF_EF_START)
8444 task_clock_event_start(event, flags);
8445 perf_event_update_userpage(event);
8446
8447 return 0;
8448 }
8449
8450 static void task_clock_event_del(struct perf_event *event, int flags)
8451 {
8452 task_clock_event_stop(event, PERF_EF_UPDATE);
8453 }
8454
8455 static void task_clock_event_read(struct perf_event *event)
8456 {
8457 u64 now = perf_clock();
8458 u64 delta = now - event->ctx->timestamp;
8459 u64 time = event->ctx->time + delta;
8460
8461 task_clock_event_update(event, time);
8462 }
8463
8464 static int task_clock_event_init(struct perf_event *event)
8465 {
8466 if (event->attr.type != PERF_TYPE_SOFTWARE)
8467 return -ENOENT;
8468
8469 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
8470 return -ENOENT;
8471
8472 /*
8473 * no branch sampling for software events
8474 */
8475 if (has_branch_stack(event))
8476 return -EOPNOTSUPP;
8477
8478 perf_swevent_init_hrtimer(event);
8479
8480 return 0;
8481 }
8482
8483 static struct pmu perf_task_clock = {
8484 .task_ctx_nr = perf_sw_context,
8485
8486 .capabilities = PERF_PMU_CAP_NO_NMI,
8487
8488 .event_init = task_clock_event_init,
8489 .add = task_clock_event_add,
8490 .del = task_clock_event_del,
8491 .start = task_clock_event_start,
8492 .stop = task_clock_event_stop,
8493 .read = task_clock_event_read,
8494 };
8495
8496 static void perf_pmu_nop_void(struct pmu *pmu)
8497 {
8498 }
8499
8500 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
8501 {
8502 }
8503
8504 static int perf_pmu_nop_int(struct pmu *pmu)
8505 {
8506 return 0;
8507 }
8508
8509 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
8510
8511 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
8512 {
8513 __this_cpu_write(nop_txn_flags, flags);
8514
8515 if (flags & ~PERF_PMU_TXN_ADD)
8516 return;
8517
8518 perf_pmu_disable(pmu);
8519 }
8520
8521 static int perf_pmu_commit_txn(struct pmu *pmu)
8522 {
8523 unsigned int flags = __this_cpu_read(nop_txn_flags);
8524
8525 __this_cpu_write(nop_txn_flags, 0);
8526
8527 if (flags & ~PERF_PMU_TXN_ADD)
8528 return 0;
8529
8530 perf_pmu_enable(pmu);
8531 return 0;
8532 }
8533
8534 static void perf_pmu_cancel_txn(struct pmu *pmu)
8535 {
8536 unsigned int flags = __this_cpu_read(nop_txn_flags);
8537
8538 __this_cpu_write(nop_txn_flags, 0);
8539
8540 if (flags & ~PERF_PMU_TXN_ADD)
8541 return;
8542
8543 perf_pmu_enable(pmu);
8544 }
8545
8546 static int perf_event_idx_default(struct perf_event *event)
8547 {
8548 return 0;
8549 }
8550
8551 /*
8552 * Ensures all contexts with the same task_ctx_nr have the same
8553 * pmu_cpu_context too.
8554 */
8555 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
8556 {
8557 struct pmu *pmu;
8558
8559 if (ctxn < 0)
8560 return NULL;
8561
8562 list_for_each_entry(pmu, &pmus, entry) {
8563 if (pmu->task_ctx_nr == ctxn)
8564 return pmu->pmu_cpu_context;
8565 }
8566
8567 return NULL;
8568 }
8569
8570 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
8571 {
8572 int cpu;
8573
8574 for_each_possible_cpu(cpu) {
8575 struct perf_cpu_context *cpuctx;
8576
8577 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8578
8579 if (cpuctx->unique_pmu == old_pmu)
8580 cpuctx->unique_pmu = pmu;
8581 }
8582 }
8583
8584 static void free_pmu_context(struct pmu *pmu)
8585 {
8586 struct pmu *i;
8587
8588 mutex_lock(&pmus_lock);
8589 /*
8590 * Like a real lame refcount.
8591 */
8592 list_for_each_entry(i, &pmus, entry) {
8593 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
8594 update_pmu_context(i, pmu);
8595 goto out;
8596 }
8597 }
8598
8599 free_percpu(pmu->pmu_cpu_context);
8600 out:
8601 mutex_unlock(&pmus_lock);
8602 }
8603
8604 /*
8605 * Let userspace know that this PMU supports address range filtering:
8606 */
8607 static ssize_t nr_addr_filters_show(struct device *dev,
8608 struct device_attribute *attr,
8609 char *page)
8610 {
8611 struct pmu *pmu = dev_get_drvdata(dev);
8612
8613 return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
8614 }
8615 DEVICE_ATTR_RO(nr_addr_filters);
8616
8617 static struct idr pmu_idr;
8618
8619 static ssize_t
8620 type_show(struct device *dev, struct device_attribute *attr, char *page)
8621 {
8622 struct pmu *pmu = dev_get_drvdata(dev);
8623
8624 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
8625 }
8626 static DEVICE_ATTR_RO(type);
8627
8628 static ssize_t
8629 perf_event_mux_interval_ms_show(struct device *dev,
8630 struct device_attribute *attr,
8631 char *page)
8632 {
8633 struct pmu *pmu = dev_get_drvdata(dev);
8634
8635 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
8636 }
8637
8638 static DEFINE_MUTEX(mux_interval_mutex);
8639
8640 static ssize_t
8641 perf_event_mux_interval_ms_store(struct device *dev,
8642 struct device_attribute *attr,
8643 const char *buf, size_t count)
8644 {
8645 struct pmu *pmu = dev_get_drvdata(dev);
8646 int timer, cpu, ret;
8647
8648 ret = kstrtoint(buf, 0, &timer);
8649 if (ret)
8650 return ret;
8651
8652 if (timer < 1)
8653 return -EINVAL;
8654
8655 /* same value, noting to do */
8656 if (timer == pmu->hrtimer_interval_ms)
8657 return count;
8658
8659 mutex_lock(&mux_interval_mutex);
8660 pmu->hrtimer_interval_ms = timer;
8661
8662 /* update all cpuctx for this PMU */
8663 get_online_cpus();
8664 for_each_online_cpu(cpu) {
8665 struct perf_cpu_context *cpuctx;
8666 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8667 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
8668
8669 cpu_function_call(cpu,
8670 (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
8671 }
8672 put_online_cpus();
8673 mutex_unlock(&mux_interval_mutex);
8674
8675 return count;
8676 }
8677 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
8678
8679 static struct attribute *pmu_dev_attrs[] = {
8680 &dev_attr_type.attr,
8681 &dev_attr_perf_event_mux_interval_ms.attr,
8682 NULL,
8683 };
8684 ATTRIBUTE_GROUPS(pmu_dev);
8685
8686 static int pmu_bus_running;
8687 static struct bus_type pmu_bus = {
8688 .name = "event_source",
8689 .dev_groups = pmu_dev_groups,
8690 };
8691
8692 static void pmu_dev_release(struct device *dev)
8693 {
8694 kfree(dev);
8695 }
8696
8697 static int pmu_dev_alloc(struct pmu *pmu)
8698 {
8699 int ret = -ENOMEM;
8700
8701 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
8702 if (!pmu->dev)
8703 goto out;
8704
8705 pmu->dev->groups = pmu->attr_groups;
8706 device_initialize(pmu->dev);
8707 ret = dev_set_name(pmu->dev, "%s", pmu->name);
8708 if (ret)
8709 goto free_dev;
8710
8711 dev_set_drvdata(pmu->dev, pmu);
8712 pmu->dev->bus = &pmu_bus;
8713 pmu->dev->release = pmu_dev_release;
8714 ret = device_add(pmu->dev);
8715 if (ret)
8716 goto free_dev;
8717
8718 /* For PMUs with address filters, throw in an extra attribute: */
8719 if (pmu->nr_addr_filters)
8720 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
8721
8722 if (ret)
8723 goto del_dev;
8724
8725 out:
8726 return ret;
8727
8728 del_dev:
8729 device_del(pmu->dev);
8730
8731 free_dev:
8732 put_device(pmu->dev);
8733 goto out;
8734 }
8735
8736 static struct lock_class_key cpuctx_mutex;
8737 static struct lock_class_key cpuctx_lock;
8738
8739 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
8740 {
8741 int cpu, ret;
8742
8743 mutex_lock(&pmus_lock);
8744 ret = -ENOMEM;
8745 pmu->pmu_disable_count = alloc_percpu(int);
8746 if (!pmu->pmu_disable_count)
8747 goto unlock;
8748
8749 pmu->type = -1;
8750 if (!name)
8751 goto skip_type;
8752 pmu->name = name;
8753
8754 if (type < 0) {
8755 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
8756 if (type < 0) {
8757 ret = type;
8758 goto free_pdc;
8759 }
8760 }
8761 pmu->type = type;
8762
8763 if (pmu_bus_running) {
8764 ret = pmu_dev_alloc(pmu);
8765 if (ret)
8766 goto free_idr;
8767 }
8768
8769 skip_type:
8770 if (pmu->task_ctx_nr == perf_hw_context) {
8771 static int hw_context_taken = 0;
8772
8773 /*
8774 * Other than systems with heterogeneous CPUs, it never makes
8775 * sense for two PMUs to share perf_hw_context. PMUs which are
8776 * uncore must use perf_invalid_context.
8777 */
8778 if (WARN_ON_ONCE(hw_context_taken &&
8779 !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
8780 pmu->task_ctx_nr = perf_invalid_context;
8781
8782 hw_context_taken = 1;
8783 }
8784
8785 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
8786 if (pmu->pmu_cpu_context)
8787 goto got_cpu_context;
8788
8789 ret = -ENOMEM;
8790 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
8791 if (!pmu->pmu_cpu_context)
8792 goto free_dev;
8793
8794 for_each_possible_cpu(cpu) {
8795 struct perf_cpu_context *cpuctx;
8796
8797 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8798 __perf_event_init_context(&cpuctx->ctx);
8799 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
8800 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
8801 cpuctx->ctx.pmu = pmu;
8802
8803 __perf_mux_hrtimer_init(cpuctx, cpu);
8804
8805 cpuctx->unique_pmu = pmu;
8806 }
8807
8808 got_cpu_context:
8809 if (!pmu->start_txn) {
8810 if (pmu->pmu_enable) {
8811 /*
8812 * If we have pmu_enable/pmu_disable calls, install
8813 * transaction stubs that use that to try and batch
8814 * hardware accesses.
8815 */
8816 pmu->start_txn = perf_pmu_start_txn;
8817 pmu->commit_txn = perf_pmu_commit_txn;
8818 pmu->cancel_txn = perf_pmu_cancel_txn;
8819 } else {
8820 pmu->start_txn = perf_pmu_nop_txn;
8821 pmu->commit_txn = perf_pmu_nop_int;
8822 pmu->cancel_txn = perf_pmu_nop_void;
8823 }
8824 }
8825
8826 if (!pmu->pmu_enable) {
8827 pmu->pmu_enable = perf_pmu_nop_void;
8828 pmu->pmu_disable = perf_pmu_nop_void;
8829 }
8830
8831 if (!pmu->event_idx)
8832 pmu->event_idx = perf_event_idx_default;
8833
8834 list_add_rcu(&pmu->entry, &pmus);
8835 atomic_set(&pmu->exclusive_cnt, 0);
8836 ret = 0;
8837 unlock:
8838 mutex_unlock(&pmus_lock);
8839
8840 return ret;
8841
8842 free_dev:
8843 device_del(pmu->dev);
8844 put_device(pmu->dev);
8845
8846 free_idr:
8847 if (pmu->type >= PERF_TYPE_MAX)
8848 idr_remove(&pmu_idr, pmu->type);
8849
8850 free_pdc:
8851 free_percpu(pmu->pmu_disable_count);
8852 goto unlock;
8853 }
8854 EXPORT_SYMBOL_GPL(perf_pmu_register);
8855
8856 void perf_pmu_unregister(struct pmu *pmu)
8857 {
8858 mutex_lock(&pmus_lock);
8859 list_del_rcu(&pmu->entry);
8860 mutex_unlock(&pmus_lock);
8861
8862 /*
8863 * We dereference the pmu list under both SRCU and regular RCU, so
8864 * synchronize against both of those.
8865 */
8866 synchronize_srcu(&pmus_srcu);
8867 synchronize_rcu();
8868
8869 free_percpu(pmu->pmu_disable_count);
8870 if (pmu->type >= PERF_TYPE_MAX)
8871 idr_remove(&pmu_idr, pmu->type);
8872 if (pmu->nr_addr_filters)
8873 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
8874 device_del(pmu->dev);
8875 put_device(pmu->dev);
8876 free_pmu_context(pmu);
8877 }
8878 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
8879
8880 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
8881 {
8882 struct perf_event_context *ctx = NULL;
8883 int ret;
8884
8885 if (!try_module_get(pmu->module))
8886 return -ENODEV;
8887
8888 if (event->group_leader != event) {
8889 /*
8890 * This ctx->mutex can nest when we're called through
8891 * inheritance. See the perf_event_ctx_lock_nested() comment.
8892 */
8893 ctx = perf_event_ctx_lock_nested(event->group_leader,
8894 SINGLE_DEPTH_NESTING);
8895 BUG_ON(!ctx);
8896 }
8897
8898 event->pmu = pmu;
8899 ret = pmu->event_init(event);
8900
8901 if (ctx)
8902 perf_event_ctx_unlock(event->group_leader, ctx);
8903
8904 if (ret)
8905 module_put(pmu->module);
8906
8907 return ret;
8908 }
8909
8910 static struct pmu *perf_init_event(struct perf_event *event)
8911 {
8912 struct pmu *pmu = NULL;
8913 int idx;
8914 int ret;
8915
8916 idx = srcu_read_lock(&pmus_srcu);
8917
8918 rcu_read_lock();
8919 pmu = idr_find(&pmu_idr, event->attr.type);
8920 rcu_read_unlock();
8921 if (pmu) {
8922 ret = perf_try_init_event(pmu, event);
8923 if (ret)
8924 pmu = ERR_PTR(ret);
8925 goto unlock;
8926 }
8927
8928 list_for_each_entry_rcu(pmu, &pmus, entry) {
8929 ret = perf_try_init_event(pmu, event);
8930 if (!ret)
8931 goto unlock;
8932
8933 if (ret != -ENOENT) {
8934 pmu = ERR_PTR(ret);
8935 goto unlock;
8936 }
8937 }
8938 pmu = ERR_PTR(-ENOENT);
8939 unlock:
8940 srcu_read_unlock(&pmus_srcu, idx);
8941
8942 return pmu;
8943 }
8944
8945 static void attach_sb_event(struct perf_event *event)
8946 {
8947 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
8948
8949 raw_spin_lock(&pel->lock);
8950 list_add_rcu(&event->sb_list, &pel->list);
8951 raw_spin_unlock(&pel->lock);
8952 }
8953
8954 /*
8955 * We keep a list of all !task (and therefore per-cpu) events
8956 * that need to receive side-band records.
8957 *
8958 * This avoids having to scan all the various PMU per-cpu contexts
8959 * looking for them.
8960 */
8961 static void account_pmu_sb_event(struct perf_event *event)
8962 {
8963 if (is_sb_event(event))
8964 attach_sb_event(event);
8965 }
8966
8967 static void account_event_cpu(struct perf_event *event, int cpu)
8968 {
8969 if (event->parent)
8970 return;
8971
8972 if (is_cgroup_event(event))
8973 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
8974 }
8975
8976 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
8977 static void account_freq_event_nohz(void)
8978 {
8979 #ifdef CONFIG_NO_HZ_FULL
8980 /* Lock so we don't race with concurrent unaccount */
8981 spin_lock(&nr_freq_lock);
8982 if (atomic_inc_return(&nr_freq_events) == 1)
8983 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
8984 spin_unlock(&nr_freq_lock);
8985 #endif
8986 }
8987
8988 static void account_freq_event(void)
8989 {
8990 if (tick_nohz_full_enabled())
8991 account_freq_event_nohz();
8992 else
8993 atomic_inc(&nr_freq_events);
8994 }
8995
8996
8997 static void account_event(struct perf_event *event)
8998 {
8999 bool inc = false;
9000
9001 if (event->parent)
9002 return;
9003
9004 if (event->attach_state & PERF_ATTACH_TASK)
9005 inc = true;
9006 if (event->attr.mmap || event->attr.mmap_data)
9007 atomic_inc(&nr_mmap_events);
9008 if (event->attr.comm)
9009 atomic_inc(&nr_comm_events);
9010 if (event->attr.task)
9011 atomic_inc(&nr_task_events);
9012 if (event->attr.freq)
9013 account_freq_event();
9014 if (event->attr.context_switch) {
9015 atomic_inc(&nr_switch_events);
9016 inc = true;
9017 }
9018 if (has_branch_stack(event))
9019 inc = true;
9020 if (is_cgroup_event(event))
9021 inc = true;
9022
9023 if (inc) {
9024 if (atomic_inc_not_zero(&perf_sched_count))
9025 goto enabled;
9026
9027 mutex_lock(&perf_sched_mutex);
9028 if (!atomic_read(&perf_sched_count)) {
9029 static_branch_enable(&perf_sched_events);
9030 /*
9031 * Guarantee that all CPUs observe they key change and
9032 * call the perf scheduling hooks before proceeding to
9033 * install events that need them.
9034 */
9035 synchronize_sched();
9036 }
9037 /*
9038 * Now that we have waited for the sync_sched(), allow further
9039 * increments to by-pass the mutex.
9040 */
9041 atomic_inc(&perf_sched_count);
9042 mutex_unlock(&perf_sched_mutex);
9043 }
9044 enabled:
9045
9046 account_event_cpu(event, event->cpu);
9047
9048 account_pmu_sb_event(event);
9049 }
9050
9051 /*
9052 * Allocate and initialize a event structure
9053 */
9054 static struct perf_event *
9055 perf_event_alloc(struct perf_event_attr *attr, int cpu,
9056 struct task_struct *task,
9057 struct perf_event *group_leader,
9058 struct perf_event *parent_event,
9059 perf_overflow_handler_t overflow_handler,
9060 void *context, int cgroup_fd)
9061 {
9062 struct pmu *pmu;
9063 struct perf_event *event;
9064 struct hw_perf_event *hwc;
9065 long err = -EINVAL;
9066
9067 if ((unsigned)cpu >= nr_cpu_ids) {
9068 if (!task || cpu != -1)
9069 return ERR_PTR(-EINVAL);
9070 }
9071
9072 event = kzalloc(sizeof(*event), GFP_KERNEL);
9073 if (!event)
9074 return ERR_PTR(-ENOMEM);
9075
9076 /*
9077 * Single events are their own group leaders, with an
9078 * empty sibling list:
9079 */
9080 if (!group_leader)
9081 group_leader = event;
9082
9083 mutex_init(&event->child_mutex);
9084 INIT_LIST_HEAD(&event->child_list);
9085
9086 INIT_LIST_HEAD(&event->group_entry);
9087 INIT_LIST_HEAD(&event->event_entry);
9088 INIT_LIST_HEAD(&event->sibling_list);
9089 INIT_LIST_HEAD(&event->rb_entry);
9090 INIT_LIST_HEAD(&event->active_entry);
9091 INIT_LIST_HEAD(&event->addr_filters.list);
9092 INIT_HLIST_NODE(&event->hlist_entry);
9093
9094
9095 init_waitqueue_head(&event->waitq);
9096 init_irq_work(&event->pending, perf_pending_event);
9097
9098 mutex_init(&event->mmap_mutex);
9099 raw_spin_lock_init(&event->addr_filters.lock);
9100
9101 atomic_long_set(&event->refcount, 1);
9102 event->cpu = cpu;
9103 event->attr = *attr;
9104 event->group_leader = group_leader;
9105 event->pmu = NULL;
9106 event->oncpu = -1;
9107
9108 event->parent = parent_event;
9109
9110 event->ns = get_pid_ns(task_active_pid_ns(current));
9111 event->id = atomic64_inc_return(&perf_event_id);
9112
9113 event->state = PERF_EVENT_STATE_INACTIVE;
9114
9115 if (task) {
9116 event->attach_state = PERF_ATTACH_TASK;
9117 /*
9118 * XXX pmu::event_init needs to know what task to account to
9119 * and we cannot use the ctx information because we need the
9120 * pmu before we get a ctx.
9121 */
9122 event->hw.target = task;
9123 }
9124
9125 event->clock = &local_clock;
9126 if (parent_event)
9127 event->clock = parent_event->clock;
9128
9129 if (!overflow_handler && parent_event) {
9130 overflow_handler = parent_event->overflow_handler;
9131 context = parent_event->overflow_handler_context;
9132 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
9133 if (overflow_handler == bpf_overflow_handler) {
9134 struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
9135
9136 if (IS_ERR(prog)) {
9137 err = PTR_ERR(prog);
9138 goto err_ns;
9139 }
9140 event->prog = prog;
9141 event->orig_overflow_handler =
9142 parent_event->orig_overflow_handler;
9143 }
9144 #endif
9145 }
9146
9147 if (overflow_handler) {
9148 event->overflow_handler = overflow_handler;
9149 event->overflow_handler_context = context;
9150 } else if (is_write_backward(event)){
9151 event->overflow_handler = perf_event_output_backward;
9152 event->overflow_handler_context = NULL;
9153 } else {
9154 event->overflow_handler = perf_event_output_forward;
9155 event->overflow_handler_context = NULL;
9156 }
9157
9158 perf_event__state_init(event);
9159
9160 pmu = NULL;
9161
9162 hwc = &event->hw;
9163 hwc->sample_period = attr->sample_period;
9164 if (attr->freq && attr->sample_freq)
9165 hwc->sample_period = 1;
9166 hwc->last_period = hwc->sample_period;
9167
9168 local64_set(&hwc->period_left, hwc->sample_period);
9169
9170 /*
9171 * we currently do not support PERF_FORMAT_GROUP on inherited events
9172 */
9173 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
9174 goto err_ns;
9175
9176 if (!has_branch_stack(event))
9177 event->attr.branch_sample_type = 0;
9178
9179 if (cgroup_fd != -1) {
9180 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
9181 if (err)
9182 goto err_ns;
9183 }
9184
9185 pmu = perf_init_event(event);
9186 if (!pmu)
9187 goto err_ns;
9188 else if (IS_ERR(pmu)) {
9189 err = PTR_ERR(pmu);
9190 goto err_ns;
9191 }
9192
9193 err = exclusive_event_init(event);
9194 if (err)
9195 goto err_pmu;
9196
9197 if (has_addr_filter(event)) {
9198 event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
9199 sizeof(unsigned long),
9200 GFP_KERNEL);
9201 if (!event->addr_filters_offs)
9202 goto err_per_task;
9203
9204 /* force hw sync on the address filters */
9205 event->addr_filters_gen = 1;
9206 }
9207
9208 if (!event->parent) {
9209 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
9210 err = get_callchain_buffers(attr->sample_max_stack);
9211 if (err)
9212 goto err_addr_filters;
9213 }
9214 }
9215
9216 /* symmetric to unaccount_event() in _free_event() */
9217 account_event(event);
9218
9219 return event;
9220
9221 err_addr_filters:
9222 kfree(event->addr_filters_offs);
9223
9224 err_per_task:
9225 exclusive_event_destroy(event);
9226
9227 err_pmu:
9228 if (event->destroy)
9229 event->destroy(event);
9230 module_put(pmu->module);
9231 err_ns:
9232 if (is_cgroup_event(event))
9233 perf_detach_cgroup(event);
9234 if (event->ns)
9235 put_pid_ns(event->ns);
9236 kfree(event);
9237
9238 return ERR_PTR(err);
9239 }
9240
9241 static int perf_copy_attr(struct perf_event_attr __user *uattr,
9242 struct perf_event_attr *attr)
9243 {
9244 u32 size;
9245 int ret;
9246
9247 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
9248 return -EFAULT;
9249
9250 /*
9251 * zero the full structure, so that a short copy will be nice.
9252 */
9253 memset(attr, 0, sizeof(*attr));
9254
9255 ret = get_user(size, &uattr->size);
9256 if (ret)
9257 return ret;
9258
9259 if (size > PAGE_SIZE) /* silly large */
9260 goto err_size;
9261
9262 if (!size) /* abi compat */
9263 size = PERF_ATTR_SIZE_VER0;
9264
9265 if (size < PERF_ATTR_SIZE_VER0)
9266 goto err_size;
9267
9268 /*
9269 * If we're handed a bigger struct than we know of,
9270 * ensure all the unknown bits are 0 - i.e. new
9271 * user-space does not rely on any kernel feature
9272 * extensions we dont know about yet.
9273 */
9274 if (size > sizeof(*attr)) {
9275 unsigned char __user *addr;
9276 unsigned char __user *end;
9277 unsigned char val;
9278
9279 addr = (void __user *)uattr + sizeof(*attr);
9280 end = (void __user *)uattr + size;
9281
9282 for (; addr < end; addr++) {
9283 ret = get_user(val, addr);
9284 if (ret)
9285 return ret;
9286 if (val)
9287 goto err_size;
9288 }
9289 size = sizeof(*attr);
9290 }
9291
9292 ret = copy_from_user(attr, uattr, size);
9293 if (ret)
9294 return -EFAULT;
9295
9296 if (attr->__reserved_1)
9297 return -EINVAL;
9298
9299 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
9300 return -EINVAL;
9301
9302 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
9303 return -EINVAL;
9304
9305 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
9306 u64 mask = attr->branch_sample_type;
9307
9308 /* only using defined bits */
9309 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
9310 return -EINVAL;
9311
9312 /* at least one branch bit must be set */
9313 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
9314 return -EINVAL;
9315
9316 /* propagate priv level, when not set for branch */
9317 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
9318
9319 /* exclude_kernel checked on syscall entry */
9320 if (!attr->exclude_kernel)
9321 mask |= PERF_SAMPLE_BRANCH_KERNEL;
9322
9323 if (!attr->exclude_user)
9324 mask |= PERF_SAMPLE_BRANCH_USER;
9325
9326 if (!attr->exclude_hv)
9327 mask |= PERF_SAMPLE_BRANCH_HV;
9328 /*
9329 * adjust user setting (for HW filter setup)
9330 */
9331 attr->branch_sample_type = mask;
9332 }
9333 /* privileged levels capture (kernel, hv): check permissions */
9334 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
9335 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9336 return -EACCES;
9337 }
9338
9339 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
9340 ret = perf_reg_validate(attr->sample_regs_user);
9341 if (ret)
9342 return ret;
9343 }
9344
9345 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
9346 if (!arch_perf_have_user_stack_dump())
9347 return -ENOSYS;
9348
9349 /*
9350 * We have __u32 type for the size, but so far
9351 * we can only use __u16 as maximum due to the
9352 * __u16 sample size limit.
9353 */
9354 if (attr->sample_stack_user >= USHRT_MAX)
9355 ret = -EINVAL;
9356 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
9357 ret = -EINVAL;
9358 }
9359
9360 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
9361 ret = perf_reg_validate(attr->sample_regs_intr);
9362 out:
9363 return ret;
9364
9365 err_size:
9366 put_user(sizeof(*attr), &uattr->size);
9367 ret = -E2BIG;
9368 goto out;
9369 }
9370
9371 static int
9372 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
9373 {
9374 struct ring_buffer *rb = NULL;
9375 int ret = -EINVAL;
9376
9377 if (!output_event)
9378 goto set;
9379
9380 /* don't allow circular references */
9381 if (event == output_event)
9382 goto out;
9383
9384 /*
9385 * Don't allow cross-cpu buffers
9386 */
9387 if (output_event->cpu != event->cpu)
9388 goto out;
9389
9390 /*
9391 * If its not a per-cpu rb, it must be the same task.
9392 */
9393 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
9394 goto out;
9395
9396 /*
9397 * Mixing clocks in the same buffer is trouble you don't need.
9398 */
9399 if (output_event->clock != event->clock)
9400 goto out;
9401
9402 /*
9403 * Either writing ring buffer from beginning or from end.
9404 * Mixing is not allowed.
9405 */
9406 if (is_write_backward(output_event) != is_write_backward(event))
9407 goto out;
9408
9409 /*
9410 * If both events generate aux data, they must be on the same PMU
9411 */
9412 if (has_aux(event) && has_aux(output_event) &&
9413 event->pmu != output_event->pmu)
9414 goto out;
9415
9416 set:
9417 mutex_lock(&event->mmap_mutex);
9418 /* Can't redirect output if we've got an active mmap() */
9419 if (atomic_read(&event->mmap_count))
9420 goto unlock;
9421
9422 if (output_event) {
9423 /* get the rb we want to redirect to */
9424 rb = ring_buffer_get(output_event);
9425 if (!rb)
9426 goto unlock;
9427 }
9428
9429 ring_buffer_attach(event, rb);
9430
9431 ret = 0;
9432 unlock:
9433 mutex_unlock(&event->mmap_mutex);
9434
9435 out:
9436 return ret;
9437 }
9438
9439 static void mutex_lock_double(struct mutex *a, struct mutex *b)
9440 {
9441 if (b < a)
9442 swap(a, b);
9443
9444 mutex_lock(a);
9445 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
9446 }
9447
9448 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
9449 {
9450 bool nmi_safe = false;
9451
9452 switch (clk_id) {
9453 case CLOCK_MONOTONIC:
9454 event->clock = &ktime_get_mono_fast_ns;
9455 nmi_safe = true;
9456 break;
9457
9458 case CLOCK_MONOTONIC_RAW:
9459 event->clock = &ktime_get_raw_fast_ns;
9460 nmi_safe = true;
9461 break;
9462
9463 case CLOCK_REALTIME:
9464 event->clock = &ktime_get_real_ns;
9465 break;
9466
9467 case CLOCK_BOOTTIME:
9468 event->clock = &ktime_get_boot_ns;
9469 break;
9470
9471 case CLOCK_TAI:
9472 event->clock = &ktime_get_tai_ns;
9473 break;
9474
9475 default:
9476 return -EINVAL;
9477 }
9478
9479 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
9480 return -EINVAL;
9481
9482 return 0;
9483 }
9484
9485 /**
9486 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9487 *
9488 * @attr_uptr: event_id type attributes for monitoring/sampling
9489 * @pid: target pid
9490 * @cpu: target cpu
9491 * @group_fd: group leader event fd
9492 */
9493 SYSCALL_DEFINE5(perf_event_open,
9494 struct perf_event_attr __user *, attr_uptr,
9495 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
9496 {
9497 struct perf_event *group_leader = NULL, *output_event = NULL;
9498 struct perf_event *event, *sibling;
9499 struct perf_event_attr attr;
9500 struct perf_event_context *ctx, *uninitialized_var(gctx);
9501 struct file *event_file = NULL;
9502 struct fd group = {NULL, 0};
9503 struct task_struct *task = NULL;
9504 struct pmu *pmu;
9505 int event_fd;
9506 int move_group = 0;
9507 int err;
9508 int f_flags = O_RDWR;
9509 int cgroup_fd = -1;
9510
9511 /* for future expandability... */
9512 if (flags & ~PERF_FLAG_ALL)
9513 return -EINVAL;
9514
9515 err = perf_copy_attr(attr_uptr, &attr);
9516 if (err)
9517 return err;
9518
9519 if (!attr.exclude_kernel) {
9520 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9521 return -EACCES;
9522 }
9523
9524 if (attr.freq) {
9525 if (attr.sample_freq > sysctl_perf_event_sample_rate)
9526 return -EINVAL;
9527 } else {
9528 if (attr.sample_period & (1ULL << 63))
9529 return -EINVAL;
9530 }
9531
9532 if (!attr.sample_max_stack)
9533 attr.sample_max_stack = sysctl_perf_event_max_stack;
9534
9535 /*
9536 * In cgroup mode, the pid argument is used to pass the fd
9537 * opened to the cgroup directory in cgroupfs. The cpu argument
9538 * designates the cpu on which to monitor threads from that
9539 * cgroup.
9540 */
9541 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
9542 return -EINVAL;
9543
9544 if (flags & PERF_FLAG_FD_CLOEXEC)
9545 f_flags |= O_CLOEXEC;
9546
9547 event_fd = get_unused_fd_flags(f_flags);
9548 if (event_fd < 0)
9549 return event_fd;
9550
9551 if (group_fd != -1) {
9552 err = perf_fget_light(group_fd, &group);
9553 if (err)
9554 goto err_fd;
9555 group_leader = group.file->private_data;
9556 if (flags & PERF_FLAG_FD_OUTPUT)
9557 output_event = group_leader;
9558 if (flags & PERF_FLAG_FD_NO_GROUP)
9559 group_leader = NULL;
9560 }
9561
9562 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
9563 task = find_lively_task_by_vpid(pid);
9564 if (IS_ERR(task)) {
9565 err = PTR_ERR(task);
9566 goto err_group_fd;
9567 }
9568 }
9569
9570 if (task && group_leader &&
9571 group_leader->attr.inherit != attr.inherit) {
9572 err = -EINVAL;
9573 goto err_task;
9574 }
9575
9576 get_online_cpus();
9577
9578 if (task) {
9579 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
9580 if (err)
9581 goto err_cpus;
9582
9583 /*
9584 * Reuse ptrace permission checks for now.
9585 *
9586 * We must hold cred_guard_mutex across this and any potential
9587 * perf_install_in_context() call for this new event to
9588 * serialize against exec() altering our credentials (and the
9589 * perf_event_exit_task() that could imply).
9590 */
9591 err = -EACCES;
9592 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
9593 goto err_cred;
9594 }
9595
9596 if (flags & PERF_FLAG_PID_CGROUP)
9597 cgroup_fd = pid;
9598
9599 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
9600 NULL, NULL, cgroup_fd);
9601 if (IS_ERR(event)) {
9602 err = PTR_ERR(event);
9603 goto err_cred;
9604 }
9605
9606 if (is_sampling_event(event)) {
9607 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
9608 err = -EOPNOTSUPP;
9609 goto err_alloc;
9610 }
9611 }
9612
9613 /*
9614 * Special case software events and allow them to be part of
9615 * any hardware group.
9616 */
9617 pmu = event->pmu;
9618
9619 if (attr.use_clockid) {
9620 err = perf_event_set_clock(event, attr.clockid);
9621 if (err)
9622 goto err_alloc;
9623 }
9624
9625 if (pmu->task_ctx_nr == perf_sw_context)
9626 event->event_caps |= PERF_EV_CAP_SOFTWARE;
9627
9628 if (group_leader &&
9629 (is_software_event(event) != is_software_event(group_leader))) {
9630 if (is_software_event(event)) {
9631 /*
9632 * If event and group_leader are not both a software
9633 * event, and event is, then group leader is not.
9634 *
9635 * Allow the addition of software events to !software
9636 * groups, this is safe because software events never
9637 * fail to schedule.
9638 */
9639 pmu = group_leader->pmu;
9640 } else if (is_software_event(group_leader) &&
9641 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
9642 /*
9643 * In case the group is a pure software group, and we
9644 * try to add a hardware event, move the whole group to
9645 * the hardware context.
9646 */
9647 move_group = 1;
9648 }
9649 }
9650
9651 /*
9652 * Get the target context (task or percpu):
9653 */
9654 ctx = find_get_context(pmu, task, event);
9655 if (IS_ERR(ctx)) {
9656 err = PTR_ERR(ctx);
9657 goto err_alloc;
9658 }
9659
9660 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
9661 err = -EBUSY;
9662 goto err_context;
9663 }
9664
9665 /*
9666 * Look up the group leader (we will attach this event to it):
9667 */
9668 if (group_leader) {
9669 err = -EINVAL;
9670
9671 /*
9672 * Do not allow a recursive hierarchy (this new sibling
9673 * becoming part of another group-sibling):
9674 */
9675 if (group_leader->group_leader != group_leader)
9676 goto err_context;
9677
9678 /* All events in a group should have the same clock */
9679 if (group_leader->clock != event->clock)
9680 goto err_context;
9681
9682 /*
9683 * Do not allow to attach to a group in a different
9684 * task or CPU context:
9685 */
9686 if (move_group) {
9687 /*
9688 * Make sure we're both on the same task, or both
9689 * per-cpu events.
9690 */
9691 if (group_leader->ctx->task != ctx->task)
9692 goto err_context;
9693
9694 /*
9695 * Make sure we're both events for the same CPU;
9696 * grouping events for different CPUs is broken; since
9697 * you can never concurrently schedule them anyhow.
9698 */
9699 if (group_leader->cpu != event->cpu)
9700 goto err_context;
9701 } else {
9702 if (group_leader->ctx != ctx)
9703 goto err_context;
9704 }
9705
9706 /*
9707 * Only a group leader can be exclusive or pinned
9708 */
9709 if (attr.exclusive || attr.pinned)
9710 goto err_context;
9711 }
9712
9713 if (output_event) {
9714 err = perf_event_set_output(event, output_event);
9715 if (err)
9716 goto err_context;
9717 }
9718
9719 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
9720 f_flags);
9721 if (IS_ERR(event_file)) {
9722 err = PTR_ERR(event_file);
9723 event_file = NULL;
9724 goto err_context;
9725 }
9726
9727 if (move_group) {
9728 gctx = group_leader->ctx;
9729 mutex_lock_double(&gctx->mutex, &ctx->mutex);
9730 if (gctx->task == TASK_TOMBSTONE) {
9731 err = -ESRCH;
9732 goto err_locked;
9733 }
9734 } else {
9735 mutex_lock(&ctx->mutex);
9736 }
9737
9738 if (ctx->task == TASK_TOMBSTONE) {
9739 err = -ESRCH;
9740 goto err_locked;
9741 }
9742
9743 if (!perf_event_validate_size(event)) {
9744 err = -E2BIG;
9745 goto err_locked;
9746 }
9747
9748 /*
9749 * Must be under the same ctx::mutex as perf_install_in_context(),
9750 * because we need to serialize with concurrent event creation.
9751 */
9752 if (!exclusive_event_installable(event, ctx)) {
9753 /* exclusive and group stuff are assumed mutually exclusive */
9754 WARN_ON_ONCE(move_group);
9755
9756 err = -EBUSY;
9757 goto err_locked;
9758 }
9759
9760 WARN_ON_ONCE(ctx->parent_ctx);
9761
9762 /*
9763 * This is the point on no return; we cannot fail hereafter. This is
9764 * where we start modifying current state.
9765 */
9766
9767 if (move_group) {
9768 /*
9769 * See perf_event_ctx_lock() for comments on the details
9770 * of swizzling perf_event::ctx.
9771 */
9772 perf_remove_from_context(group_leader, 0);
9773
9774 list_for_each_entry(sibling, &group_leader->sibling_list,
9775 group_entry) {
9776 perf_remove_from_context(sibling, 0);
9777 put_ctx(gctx);
9778 }
9779
9780 /*
9781 * Wait for everybody to stop referencing the events through
9782 * the old lists, before installing it on new lists.
9783 */
9784 synchronize_rcu();
9785
9786 /*
9787 * Install the group siblings before the group leader.
9788 *
9789 * Because a group leader will try and install the entire group
9790 * (through the sibling list, which is still in-tact), we can
9791 * end up with siblings installed in the wrong context.
9792 *
9793 * By installing siblings first we NO-OP because they're not
9794 * reachable through the group lists.
9795 */
9796 list_for_each_entry(sibling, &group_leader->sibling_list,
9797 group_entry) {
9798 perf_event__state_init(sibling);
9799 perf_install_in_context(ctx, sibling, sibling->cpu);
9800 get_ctx(ctx);
9801 }
9802
9803 /*
9804 * Removing from the context ends up with disabled
9805 * event. What we want here is event in the initial
9806 * startup state, ready to be add into new context.
9807 */
9808 perf_event__state_init(group_leader);
9809 perf_install_in_context(ctx, group_leader, group_leader->cpu);
9810 get_ctx(ctx);
9811
9812 /*
9813 * Now that all events are installed in @ctx, nothing
9814 * references @gctx anymore, so drop the last reference we have
9815 * on it.
9816 */
9817 put_ctx(gctx);
9818 }
9819
9820 /*
9821 * Precalculate sample_data sizes; do while holding ctx::mutex such
9822 * that we're serialized against further additions and before
9823 * perf_install_in_context() which is the point the event is active and
9824 * can use these values.
9825 */
9826 perf_event__header_size(event);
9827 perf_event__id_header_size(event);
9828
9829 event->owner = current;
9830
9831 perf_install_in_context(ctx, event, event->cpu);
9832 perf_unpin_context(ctx);
9833
9834 if (move_group)
9835 mutex_unlock(&gctx->mutex);
9836 mutex_unlock(&ctx->mutex);
9837
9838 if (task) {
9839 mutex_unlock(&task->signal->cred_guard_mutex);
9840 put_task_struct(task);
9841 }
9842
9843 put_online_cpus();
9844
9845 mutex_lock(&current->perf_event_mutex);
9846 list_add_tail(&event->owner_entry, &current->perf_event_list);
9847 mutex_unlock(&current->perf_event_mutex);
9848
9849 /*
9850 * Drop the reference on the group_event after placing the
9851 * new event on the sibling_list. This ensures destruction
9852 * of the group leader will find the pointer to itself in
9853 * perf_group_detach().
9854 */
9855 fdput(group);
9856 fd_install(event_fd, event_file);
9857 return event_fd;
9858
9859 err_locked:
9860 if (move_group)
9861 mutex_unlock(&gctx->mutex);
9862 mutex_unlock(&ctx->mutex);
9863 /* err_file: */
9864 fput(event_file);
9865 err_context:
9866 perf_unpin_context(ctx);
9867 put_ctx(ctx);
9868 err_alloc:
9869 /*
9870 * If event_file is set, the fput() above will have called ->release()
9871 * and that will take care of freeing the event.
9872 */
9873 if (!event_file)
9874 free_event(event);
9875 err_cred:
9876 if (task)
9877 mutex_unlock(&task->signal->cred_guard_mutex);
9878 err_cpus:
9879 put_online_cpus();
9880 err_task:
9881 if (task)
9882 put_task_struct(task);
9883 err_group_fd:
9884 fdput(group);
9885 err_fd:
9886 put_unused_fd(event_fd);
9887 return err;
9888 }
9889
9890 /**
9891 * perf_event_create_kernel_counter
9892 *
9893 * @attr: attributes of the counter to create
9894 * @cpu: cpu in which the counter is bound
9895 * @task: task to profile (NULL for percpu)
9896 */
9897 struct perf_event *
9898 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
9899 struct task_struct *task,
9900 perf_overflow_handler_t overflow_handler,
9901 void *context)
9902 {
9903 struct perf_event_context *ctx;
9904 struct perf_event *event;
9905 int err;
9906
9907 /*
9908 * Get the target context (task or percpu):
9909 */
9910
9911 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
9912 overflow_handler, context, -1);
9913 if (IS_ERR(event)) {
9914 err = PTR_ERR(event);
9915 goto err;
9916 }
9917
9918 /* Mark owner so we could distinguish it from user events. */
9919 event->owner = TASK_TOMBSTONE;
9920
9921 ctx = find_get_context(event->pmu, task, event);
9922 if (IS_ERR(ctx)) {
9923 err = PTR_ERR(ctx);
9924 goto err_free;
9925 }
9926
9927 WARN_ON_ONCE(ctx->parent_ctx);
9928 mutex_lock(&ctx->mutex);
9929 if (ctx->task == TASK_TOMBSTONE) {
9930 err = -ESRCH;
9931 goto err_unlock;
9932 }
9933
9934 if (!exclusive_event_installable(event, ctx)) {
9935 err = -EBUSY;
9936 goto err_unlock;
9937 }
9938
9939 perf_install_in_context(ctx, event, cpu);
9940 perf_unpin_context(ctx);
9941 mutex_unlock(&ctx->mutex);
9942
9943 return event;
9944
9945 err_unlock:
9946 mutex_unlock(&ctx->mutex);
9947 perf_unpin_context(ctx);
9948 put_ctx(ctx);
9949 err_free:
9950 free_event(event);
9951 err:
9952 return ERR_PTR(err);
9953 }
9954 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9955
9956 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
9957 {
9958 struct perf_event_context *src_ctx;
9959 struct perf_event_context *dst_ctx;
9960 struct perf_event *event, *tmp;
9961 LIST_HEAD(events);
9962
9963 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
9964 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
9965
9966 /*
9967 * See perf_event_ctx_lock() for comments on the details
9968 * of swizzling perf_event::ctx.
9969 */
9970 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
9971 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
9972 event_entry) {
9973 perf_remove_from_context(event, 0);
9974 unaccount_event_cpu(event, src_cpu);
9975 put_ctx(src_ctx);
9976 list_add(&event->migrate_entry, &events);
9977 }
9978
9979 /*
9980 * Wait for the events to quiesce before re-instating them.
9981 */
9982 synchronize_rcu();
9983
9984 /*
9985 * Re-instate events in 2 passes.
9986 *
9987 * Skip over group leaders and only install siblings on this first
9988 * pass, siblings will not get enabled without a leader, however a
9989 * leader will enable its siblings, even if those are still on the old
9990 * context.
9991 */
9992 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
9993 if (event->group_leader == event)
9994 continue;
9995
9996 list_del(&event->migrate_entry);
9997 if (event->state >= PERF_EVENT_STATE_OFF)
9998 event->state = PERF_EVENT_STATE_INACTIVE;
9999 account_event_cpu(event, dst_cpu);
10000 perf_install_in_context(dst_ctx, event, dst_cpu);
10001 get_ctx(dst_ctx);
10002 }
10003
10004 /*
10005 * Once all the siblings are setup properly, install the group leaders
10006 * to make it go.
10007 */
10008 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10009 list_del(&event->migrate_entry);
10010 if (event->state >= PERF_EVENT_STATE_OFF)
10011 event->state = PERF_EVENT_STATE_INACTIVE;
10012 account_event_cpu(event, dst_cpu);
10013 perf_install_in_context(dst_ctx, event, dst_cpu);
10014 get_ctx(dst_ctx);
10015 }
10016 mutex_unlock(&dst_ctx->mutex);
10017 mutex_unlock(&src_ctx->mutex);
10018 }
10019 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
10020
10021 static void sync_child_event(struct perf_event *child_event,
10022 struct task_struct *child)
10023 {
10024 struct perf_event *parent_event = child_event->parent;
10025 u64 child_val;
10026
10027 if (child_event->attr.inherit_stat)
10028 perf_event_read_event(child_event, child);
10029
10030 child_val = perf_event_count(child_event);
10031
10032 /*
10033 * Add back the child's count to the parent's count:
10034 */
10035 atomic64_add(child_val, &parent_event->child_count);
10036 atomic64_add(child_event->total_time_enabled,
10037 &parent_event->child_total_time_enabled);
10038 atomic64_add(child_event->total_time_running,
10039 &parent_event->child_total_time_running);
10040 }
10041
10042 static void
10043 perf_event_exit_event(struct perf_event *child_event,
10044 struct perf_event_context *child_ctx,
10045 struct task_struct *child)
10046 {
10047 struct perf_event *parent_event = child_event->parent;
10048
10049 /*
10050 * Do not destroy the 'original' grouping; because of the context
10051 * switch optimization the original events could've ended up in a
10052 * random child task.
10053 *
10054 * If we were to destroy the original group, all group related
10055 * operations would cease to function properly after this random
10056 * child dies.
10057 *
10058 * Do destroy all inherited groups, we don't care about those
10059 * and being thorough is better.
10060 */
10061 raw_spin_lock_irq(&child_ctx->lock);
10062 WARN_ON_ONCE(child_ctx->is_active);
10063
10064 if (parent_event)
10065 perf_group_detach(child_event);
10066 list_del_event(child_event, child_ctx);
10067 child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */
10068 raw_spin_unlock_irq(&child_ctx->lock);
10069
10070 /*
10071 * Parent events are governed by their filedesc, retain them.
10072 */
10073 if (!parent_event) {
10074 perf_event_wakeup(child_event);
10075 return;
10076 }
10077 /*
10078 * Child events can be cleaned up.
10079 */
10080
10081 sync_child_event(child_event, child);
10082
10083 /*
10084 * Remove this event from the parent's list
10085 */
10086 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
10087 mutex_lock(&parent_event->child_mutex);
10088 list_del_init(&child_event->child_list);
10089 mutex_unlock(&parent_event->child_mutex);
10090
10091 /*
10092 * Kick perf_poll() for is_event_hup().
10093 */
10094 perf_event_wakeup(parent_event);
10095 free_event(child_event);
10096 put_event(parent_event);
10097 }
10098
10099 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
10100 {
10101 struct perf_event_context *child_ctx, *clone_ctx = NULL;
10102 struct perf_event *child_event, *next;
10103
10104 WARN_ON_ONCE(child != current);
10105
10106 child_ctx = perf_pin_task_context(child, ctxn);
10107 if (!child_ctx)
10108 return;
10109
10110 /*
10111 * In order to reduce the amount of tricky in ctx tear-down, we hold
10112 * ctx::mutex over the entire thing. This serializes against almost
10113 * everything that wants to access the ctx.
10114 *
10115 * The exception is sys_perf_event_open() /
10116 * perf_event_create_kernel_count() which does find_get_context()
10117 * without ctx::mutex (it cannot because of the move_group double mutex
10118 * lock thing). See the comments in perf_install_in_context().
10119 */
10120 mutex_lock(&child_ctx->mutex);
10121
10122 /*
10123 * In a single ctx::lock section, de-schedule the events and detach the
10124 * context from the task such that we cannot ever get it scheduled back
10125 * in.
10126 */
10127 raw_spin_lock_irq(&child_ctx->lock);
10128 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx);
10129
10130 /*
10131 * Now that the context is inactive, destroy the task <-> ctx relation
10132 * and mark the context dead.
10133 */
10134 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
10135 put_ctx(child_ctx); /* cannot be last */
10136 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
10137 put_task_struct(current); /* cannot be last */
10138
10139 clone_ctx = unclone_ctx(child_ctx);
10140 raw_spin_unlock_irq(&child_ctx->lock);
10141
10142 if (clone_ctx)
10143 put_ctx(clone_ctx);
10144
10145 /*
10146 * Report the task dead after unscheduling the events so that we
10147 * won't get any samples after PERF_RECORD_EXIT. We can however still
10148 * get a few PERF_RECORD_READ events.
10149 */
10150 perf_event_task(child, child_ctx, 0);
10151
10152 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
10153 perf_event_exit_event(child_event, child_ctx, child);
10154
10155 mutex_unlock(&child_ctx->mutex);
10156
10157 put_ctx(child_ctx);
10158 }
10159
10160 /*
10161 * When a child task exits, feed back event values to parent events.
10162 *
10163 * Can be called with cred_guard_mutex held when called from
10164 * install_exec_creds().
10165 */
10166 void perf_event_exit_task(struct task_struct *child)
10167 {
10168 struct perf_event *event, *tmp;
10169 int ctxn;
10170
10171 mutex_lock(&child->perf_event_mutex);
10172 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
10173 owner_entry) {
10174 list_del_init(&event->owner_entry);
10175
10176 /*
10177 * Ensure the list deletion is visible before we clear
10178 * the owner, closes a race against perf_release() where
10179 * we need to serialize on the owner->perf_event_mutex.
10180 */
10181 smp_store_release(&event->owner, NULL);
10182 }
10183 mutex_unlock(&child->perf_event_mutex);
10184
10185 for_each_task_context_nr(ctxn)
10186 perf_event_exit_task_context(child, ctxn);
10187
10188 /*
10189 * The perf_event_exit_task_context calls perf_event_task
10190 * with child's task_ctx, which generates EXIT events for
10191 * child contexts and sets child->perf_event_ctxp[] to NULL.
10192 * At this point we need to send EXIT events to cpu contexts.
10193 */
10194 perf_event_task(child, NULL, 0);
10195 }
10196
10197 static void perf_free_event(struct perf_event *event,
10198 struct perf_event_context *ctx)
10199 {
10200 struct perf_event *parent = event->parent;
10201
10202 if (WARN_ON_ONCE(!parent))
10203 return;
10204
10205 mutex_lock(&parent->child_mutex);
10206 list_del_init(&event->child_list);
10207 mutex_unlock(&parent->child_mutex);
10208
10209 put_event(parent);
10210
10211 raw_spin_lock_irq(&ctx->lock);
10212 perf_group_detach(event);
10213 list_del_event(event, ctx);
10214 raw_spin_unlock_irq(&ctx->lock);
10215 free_event(event);
10216 }
10217
10218 /*
10219 * Free an unexposed, unused context as created by inheritance by
10220 * perf_event_init_task below, used by fork() in case of fail.
10221 *
10222 * Not all locks are strictly required, but take them anyway to be nice and
10223 * help out with the lockdep assertions.
10224 */
10225 void perf_event_free_task(struct task_struct *task)
10226 {
10227 struct perf_event_context *ctx;
10228 struct perf_event *event, *tmp;
10229 int ctxn;
10230
10231 for_each_task_context_nr(ctxn) {
10232 ctx = task->perf_event_ctxp[ctxn];
10233 if (!ctx)
10234 continue;
10235
10236 mutex_lock(&ctx->mutex);
10237 again:
10238 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
10239 group_entry)
10240 perf_free_event(event, ctx);
10241
10242 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
10243 group_entry)
10244 perf_free_event(event, ctx);
10245
10246 if (!list_empty(&ctx->pinned_groups) ||
10247 !list_empty(&ctx->flexible_groups))
10248 goto again;
10249
10250 mutex_unlock(&ctx->mutex);
10251
10252 put_ctx(ctx);
10253 }
10254 }
10255
10256 void perf_event_delayed_put(struct task_struct *task)
10257 {
10258 int ctxn;
10259
10260 for_each_task_context_nr(ctxn)
10261 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
10262 }
10263
10264 struct file *perf_event_get(unsigned int fd)
10265 {
10266 struct file *file;
10267
10268 file = fget_raw(fd);
10269 if (!file)
10270 return ERR_PTR(-EBADF);
10271
10272 if (file->f_op != &perf_fops) {
10273 fput(file);
10274 return ERR_PTR(-EBADF);
10275 }
10276
10277 return file;
10278 }
10279
10280 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
10281 {
10282 if (!event)
10283 return ERR_PTR(-EINVAL);
10284
10285 return &event->attr;
10286 }
10287
10288 /*
10289 * inherit a event from parent task to child task:
10290 */
10291 static struct perf_event *
10292 inherit_event(struct perf_event *parent_event,
10293 struct task_struct *parent,
10294 struct perf_event_context *parent_ctx,
10295 struct task_struct *child,
10296 struct perf_event *group_leader,
10297 struct perf_event_context *child_ctx)
10298 {
10299 enum perf_event_active_state parent_state = parent_event->state;
10300 struct perf_event *child_event;
10301 unsigned long flags;
10302
10303 /*
10304 * Instead of creating recursive hierarchies of events,
10305 * we link inherited events back to the original parent,
10306 * which has a filp for sure, which we use as the reference
10307 * count:
10308 */
10309 if (parent_event->parent)
10310 parent_event = parent_event->parent;
10311
10312 child_event = perf_event_alloc(&parent_event->attr,
10313 parent_event->cpu,
10314 child,
10315 group_leader, parent_event,
10316 NULL, NULL, -1);
10317 if (IS_ERR(child_event))
10318 return child_event;
10319
10320 /*
10321 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
10322 * must be under the same lock in order to serialize against
10323 * perf_event_release_kernel(), such that either we must observe
10324 * is_orphaned_event() or they will observe us on the child_list.
10325 */
10326 mutex_lock(&parent_event->child_mutex);
10327 if (is_orphaned_event(parent_event) ||
10328 !atomic_long_inc_not_zero(&parent_event->refcount)) {
10329 mutex_unlock(&parent_event->child_mutex);
10330 free_event(child_event);
10331 return NULL;
10332 }
10333
10334 get_ctx(child_ctx);
10335
10336 /*
10337 * Make the child state follow the state of the parent event,
10338 * not its attr.disabled bit. We hold the parent's mutex,
10339 * so we won't race with perf_event_{en, dis}able_family.
10340 */
10341 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
10342 child_event->state = PERF_EVENT_STATE_INACTIVE;
10343 else
10344 child_event->state = PERF_EVENT_STATE_OFF;
10345
10346 if (parent_event->attr.freq) {
10347 u64 sample_period = parent_event->hw.sample_period;
10348 struct hw_perf_event *hwc = &child_event->hw;
10349
10350 hwc->sample_period = sample_period;
10351 hwc->last_period = sample_period;
10352
10353 local64_set(&hwc->period_left, sample_period);
10354 }
10355
10356 child_event->ctx = child_ctx;
10357 child_event->overflow_handler = parent_event->overflow_handler;
10358 child_event->overflow_handler_context
10359 = parent_event->overflow_handler_context;
10360
10361 /*
10362 * Precalculate sample_data sizes
10363 */
10364 perf_event__header_size(child_event);
10365 perf_event__id_header_size(child_event);
10366
10367 /*
10368 * Link it up in the child's context:
10369 */
10370 raw_spin_lock_irqsave(&child_ctx->lock, flags);
10371 add_event_to_ctx(child_event, child_ctx);
10372 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
10373
10374 /*
10375 * Link this into the parent event's child list
10376 */
10377 list_add_tail(&child_event->child_list, &parent_event->child_list);
10378 mutex_unlock(&parent_event->child_mutex);
10379
10380 return child_event;
10381 }
10382
10383 static int inherit_group(struct perf_event *parent_event,
10384 struct task_struct *parent,
10385 struct perf_event_context *parent_ctx,
10386 struct task_struct *child,
10387 struct perf_event_context *child_ctx)
10388 {
10389 struct perf_event *leader;
10390 struct perf_event *sub;
10391 struct perf_event *child_ctr;
10392
10393 leader = inherit_event(parent_event, parent, parent_ctx,
10394 child, NULL, child_ctx);
10395 if (IS_ERR(leader))
10396 return PTR_ERR(leader);
10397 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
10398 child_ctr = inherit_event(sub, parent, parent_ctx,
10399 child, leader, child_ctx);
10400 if (IS_ERR(child_ctr))
10401 return PTR_ERR(child_ctr);
10402 }
10403 return 0;
10404 }
10405
10406 static int
10407 inherit_task_group(struct perf_event *event, struct task_struct *parent,
10408 struct perf_event_context *parent_ctx,
10409 struct task_struct *child, int ctxn,
10410 int *inherited_all)
10411 {
10412 int ret;
10413 struct perf_event_context *child_ctx;
10414
10415 if (!event->attr.inherit) {
10416 *inherited_all = 0;
10417 return 0;
10418 }
10419
10420 child_ctx = child->perf_event_ctxp[ctxn];
10421 if (!child_ctx) {
10422 /*
10423 * This is executed from the parent task context, so
10424 * inherit events that have been marked for cloning.
10425 * First allocate and initialize a context for the
10426 * child.
10427 */
10428
10429 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
10430 if (!child_ctx)
10431 return -ENOMEM;
10432
10433 child->perf_event_ctxp[ctxn] = child_ctx;
10434 }
10435
10436 ret = inherit_group(event, parent, parent_ctx,
10437 child, child_ctx);
10438
10439 if (ret)
10440 *inherited_all = 0;
10441
10442 return ret;
10443 }
10444
10445 /*
10446 * Initialize the perf_event context in task_struct
10447 */
10448 static int perf_event_init_context(struct task_struct *child, int ctxn)
10449 {
10450 struct perf_event_context *child_ctx, *parent_ctx;
10451 struct perf_event_context *cloned_ctx;
10452 struct perf_event *event;
10453 struct task_struct *parent = current;
10454 int inherited_all = 1;
10455 unsigned long flags;
10456 int ret = 0;
10457
10458 if (likely(!parent->perf_event_ctxp[ctxn]))
10459 return 0;
10460
10461 /*
10462 * If the parent's context is a clone, pin it so it won't get
10463 * swapped under us.
10464 */
10465 parent_ctx = perf_pin_task_context(parent, ctxn);
10466 if (!parent_ctx)
10467 return 0;
10468
10469 /*
10470 * No need to check if parent_ctx != NULL here; since we saw
10471 * it non-NULL earlier, the only reason for it to become NULL
10472 * is if we exit, and since we're currently in the middle of
10473 * a fork we can't be exiting at the same time.
10474 */
10475
10476 /*
10477 * Lock the parent list. No need to lock the child - not PID
10478 * hashed yet and not running, so nobody can access it.
10479 */
10480 mutex_lock(&parent_ctx->mutex);
10481
10482 /*
10483 * We dont have to disable NMIs - we are only looking at
10484 * the list, not manipulating it:
10485 */
10486 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
10487 ret = inherit_task_group(event, parent, parent_ctx,
10488 child, ctxn, &inherited_all);
10489 if (ret)
10490 break;
10491 }
10492
10493 /*
10494 * We can't hold ctx->lock when iterating the ->flexible_group list due
10495 * to allocations, but we need to prevent rotation because
10496 * rotate_ctx() will change the list from interrupt context.
10497 */
10498 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10499 parent_ctx->rotate_disable = 1;
10500 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10501
10502 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
10503 ret = inherit_task_group(event, parent, parent_ctx,
10504 child, ctxn, &inherited_all);
10505 if (ret)
10506 break;
10507 }
10508
10509 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10510 parent_ctx->rotate_disable = 0;
10511
10512 child_ctx = child->perf_event_ctxp[ctxn];
10513
10514 if (child_ctx && inherited_all) {
10515 /*
10516 * Mark the child context as a clone of the parent
10517 * context, or of whatever the parent is a clone of.
10518 *
10519 * Note that if the parent is a clone, the holding of
10520 * parent_ctx->lock avoids it from being uncloned.
10521 */
10522 cloned_ctx = parent_ctx->parent_ctx;
10523 if (cloned_ctx) {
10524 child_ctx->parent_ctx = cloned_ctx;
10525 child_ctx->parent_gen = parent_ctx->parent_gen;
10526 } else {
10527 child_ctx->parent_ctx = parent_ctx;
10528 child_ctx->parent_gen = parent_ctx->generation;
10529 }
10530 get_ctx(child_ctx->parent_ctx);
10531 }
10532
10533 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10534 mutex_unlock(&parent_ctx->mutex);
10535
10536 perf_unpin_context(parent_ctx);
10537 put_ctx(parent_ctx);
10538
10539 return ret;
10540 }
10541
10542 /*
10543 * Initialize the perf_event context in task_struct
10544 */
10545 int perf_event_init_task(struct task_struct *child)
10546 {
10547 int ctxn, ret;
10548
10549 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
10550 mutex_init(&child->perf_event_mutex);
10551 INIT_LIST_HEAD(&child->perf_event_list);
10552
10553 for_each_task_context_nr(ctxn) {
10554 ret = perf_event_init_context(child, ctxn);
10555 if (ret) {
10556 perf_event_free_task(child);
10557 return ret;
10558 }
10559 }
10560
10561 return 0;
10562 }
10563
10564 static void __init perf_event_init_all_cpus(void)
10565 {
10566 struct swevent_htable *swhash;
10567 int cpu;
10568
10569 for_each_possible_cpu(cpu) {
10570 swhash = &per_cpu(swevent_htable, cpu);
10571 mutex_init(&swhash->hlist_mutex);
10572 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
10573
10574 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
10575 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
10576
10577 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
10578 }
10579 }
10580
10581 int perf_event_init_cpu(unsigned int cpu)
10582 {
10583 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
10584
10585 mutex_lock(&swhash->hlist_mutex);
10586 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
10587 struct swevent_hlist *hlist;
10588
10589 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
10590 WARN_ON(!hlist);
10591 rcu_assign_pointer(swhash->swevent_hlist, hlist);
10592 }
10593 mutex_unlock(&swhash->hlist_mutex);
10594 return 0;
10595 }
10596
10597 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
10598 static void __perf_event_exit_context(void *__info)
10599 {
10600 struct perf_event_context *ctx = __info;
10601 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
10602 struct perf_event *event;
10603
10604 raw_spin_lock(&ctx->lock);
10605 list_for_each_entry(event, &ctx->event_list, event_entry)
10606 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
10607 raw_spin_unlock(&ctx->lock);
10608 }
10609
10610 static void perf_event_exit_cpu_context(int cpu)
10611 {
10612 struct perf_event_context *ctx;
10613 struct pmu *pmu;
10614 int idx;
10615
10616 idx = srcu_read_lock(&pmus_srcu);
10617 list_for_each_entry_rcu(pmu, &pmus, entry) {
10618 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
10619
10620 mutex_lock(&ctx->mutex);
10621 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
10622 mutex_unlock(&ctx->mutex);
10623 }
10624 srcu_read_unlock(&pmus_srcu, idx);
10625 }
10626 #else
10627
10628 static void perf_event_exit_cpu_context(int cpu) { }
10629
10630 #endif
10631
10632 int perf_event_exit_cpu(unsigned int cpu)
10633 {
10634 perf_event_exit_cpu_context(cpu);
10635 return 0;
10636 }
10637
10638 static int
10639 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
10640 {
10641 int cpu;
10642
10643 for_each_online_cpu(cpu)
10644 perf_event_exit_cpu(cpu);
10645
10646 return NOTIFY_OK;
10647 }
10648
10649 /*
10650 * Run the perf reboot notifier at the very last possible moment so that
10651 * the generic watchdog code runs as long as possible.
10652 */
10653 static struct notifier_block perf_reboot_notifier = {
10654 .notifier_call = perf_reboot,
10655 .priority = INT_MIN,
10656 };
10657
10658 void __init perf_event_init(void)
10659 {
10660 int ret;
10661
10662 idr_init(&pmu_idr);
10663
10664 perf_event_init_all_cpus();
10665 init_srcu_struct(&pmus_srcu);
10666 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
10667 perf_pmu_register(&perf_cpu_clock, NULL, -1);
10668 perf_pmu_register(&perf_task_clock, NULL, -1);
10669 perf_tp_register();
10670 perf_event_init_cpu(smp_processor_id());
10671 register_reboot_notifier(&perf_reboot_notifier);
10672
10673 ret = init_hw_breakpoint();
10674 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
10675
10676 /*
10677 * Build time assertion that we keep the data_head at the intended
10678 * location. IOW, validation we got the __reserved[] size right.
10679 */
10680 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
10681 != 1024);
10682 }
10683
10684 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
10685 char *page)
10686 {
10687 struct perf_pmu_events_attr *pmu_attr =
10688 container_of(attr, struct perf_pmu_events_attr, attr);
10689
10690 if (pmu_attr->event_str)
10691 return sprintf(page, "%s\n", pmu_attr->event_str);
10692
10693 return 0;
10694 }
10695 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
10696
10697 static int __init perf_event_sysfs_init(void)
10698 {
10699 struct pmu *pmu;
10700 int ret;
10701
10702 mutex_lock(&pmus_lock);
10703
10704 ret = bus_register(&pmu_bus);
10705 if (ret)
10706 goto unlock;
10707
10708 list_for_each_entry(pmu, &pmus, entry) {
10709 if (!pmu->name || pmu->type < 0)
10710 continue;
10711
10712 ret = pmu_dev_alloc(pmu);
10713 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
10714 }
10715 pmu_bus_running = 1;
10716 ret = 0;
10717
10718 unlock:
10719 mutex_unlock(&pmus_lock);
10720
10721 return ret;
10722 }
10723 device_initcall(perf_event_sysfs_init);
10724
10725 #ifdef CONFIG_CGROUP_PERF
10726 static struct cgroup_subsys_state *
10727 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
10728 {
10729 struct perf_cgroup *jc;
10730
10731 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
10732 if (!jc)
10733 return ERR_PTR(-ENOMEM);
10734
10735 jc->info = alloc_percpu(struct perf_cgroup_info);
10736 if (!jc->info) {
10737 kfree(jc);
10738 return ERR_PTR(-ENOMEM);
10739 }
10740
10741 return &jc->css;
10742 }
10743
10744 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
10745 {
10746 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
10747
10748 free_percpu(jc->info);
10749 kfree(jc);
10750 }
10751
10752 static int __perf_cgroup_move(void *info)
10753 {
10754 struct task_struct *task = info;
10755 rcu_read_lock();
10756 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
10757 rcu_read_unlock();
10758 return 0;
10759 }
10760
10761 static void perf_cgroup_attach(struct cgroup_taskset *tset)
10762 {
10763 struct task_struct *task;
10764 struct cgroup_subsys_state *css;
10765
10766 cgroup_taskset_for_each(task, css, tset)
10767 task_function_call(task, __perf_cgroup_move, task);
10768 }
10769
10770 struct cgroup_subsys perf_event_cgrp_subsys = {
10771 .css_alloc = perf_cgroup_css_alloc,
10772 .css_free = perf_cgroup_css_free,
10773 .attach = perf_cgroup_attach,
10774 };
10775 #endif /* CONFIG_CGROUP_PERF */