]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - kernel/events/core.c
perf: Add lockdep assertions
[mirror_ubuntu-zesty-kernel.git] / kernel / events / core.c
1 /*
2 * Performance events core code:
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47
48 #include "internal.h"
49
50 #include <asm/irq_regs.h>
51
52 static struct workqueue_struct *perf_wq;
53
54 typedef int (*remote_function_f)(void *);
55
56 struct remote_function_call {
57 struct task_struct *p;
58 remote_function_f func;
59 void *info;
60 int ret;
61 };
62
63 static void remote_function(void *data)
64 {
65 struct remote_function_call *tfc = data;
66 struct task_struct *p = tfc->p;
67
68 if (p) {
69 tfc->ret = -EAGAIN;
70 if (task_cpu(p) != smp_processor_id() || !task_curr(p))
71 return;
72 }
73
74 tfc->ret = tfc->func(tfc->info);
75 }
76
77 /**
78 * task_function_call - call a function on the cpu on which a task runs
79 * @p: the task to evaluate
80 * @func: the function to be called
81 * @info: the function call argument
82 *
83 * Calls the function @func when the task is currently running. This might
84 * be on the current CPU, which just calls the function directly
85 *
86 * returns: @func return value, or
87 * -ESRCH - when the process isn't running
88 * -EAGAIN - when the process moved away
89 */
90 static int
91 task_function_call(struct task_struct *p, remote_function_f func, void *info)
92 {
93 struct remote_function_call data = {
94 .p = p,
95 .func = func,
96 .info = info,
97 .ret = -ESRCH, /* No such (running) process */
98 };
99
100 if (task_curr(p))
101 smp_call_function_single(task_cpu(p), remote_function, &data, 1);
102
103 return data.ret;
104 }
105
106 /**
107 * cpu_function_call - call a function on the cpu
108 * @func: the function to be called
109 * @info: the function call argument
110 *
111 * Calls the function @func on the remote cpu.
112 *
113 * returns: @func return value or -ENXIO when the cpu is offline
114 */
115 static int cpu_function_call(int cpu, remote_function_f func, void *info)
116 {
117 struct remote_function_call data = {
118 .p = NULL,
119 .func = func,
120 .info = info,
121 .ret = -ENXIO, /* No such CPU */
122 };
123
124 smp_call_function_single(cpu, remote_function, &data, 1);
125
126 return data.ret;
127 }
128
129 static void event_function_call(struct perf_event *event,
130 int (*active)(void *),
131 void (*inactive)(void *),
132 void *data)
133 {
134 struct perf_event_context *ctx = event->ctx;
135 struct task_struct *task = ctx->task;
136
137 if (!task) {
138 cpu_function_call(event->cpu, active, data);
139 return;
140 }
141
142 again:
143 if (!task_function_call(task, active, data))
144 return;
145
146 raw_spin_lock_irq(&ctx->lock);
147 if (ctx->is_active) {
148 /*
149 * Reload the task pointer, it might have been changed by
150 * a concurrent perf_event_context_sched_out().
151 */
152 task = ctx->task;
153 raw_spin_unlock_irq(&ctx->lock);
154 goto again;
155 }
156 inactive(data);
157 raw_spin_unlock_irq(&ctx->lock);
158 }
159
160 #define EVENT_OWNER_KERNEL ((void *) -1)
161
162 static bool is_kernel_event(struct perf_event *event)
163 {
164 return event->owner == EVENT_OWNER_KERNEL;
165 }
166
167 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
168 PERF_FLAG_FD_OUTPUT |\
169 PERF_FLAG_PID_CGROUP |\
170 PERF_FLAG_FD_CLOEXEC)
171
172 /*
173 * branch priv levels that need permission checks
174 */
175 #define PERF_SAMPLE_BRANCH_PERM_PLM \
176 (PERF_SAMPLE_BRANCH_KERNEL |\
177 PERF_SAMPLE_BRANCH_HV)
178
179 enum event_type_t {
180 EVENT_FLEXIBLE = 0x1,
181 EVENT_PINNED = 0x2,
182 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
183 };
184
185 /*
186 * perf_sched_events : >0 events exist
187 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
188 */
189 struct static_key_deferred perf_sched_events __read_mostly;
190 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
191 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
192
193 static atomic_t nr_mmap_events __read_mostly;
194 static atomic_t nr_comm_events __read_mostly;
195 static atomic_t nr_task_events __read_mostly;
196 static atomic_t nr_freq_events __read_mostly;
197 static atomic_t nr_switch_events __read_mostly;
198
199 static LIST_HEAD(pmus);
200 static DEFINE_MUTEX(pmus_lock);
201 static struct srcu_struct pmus_srcu;
202
203 /*
204 * perf event paranoia level:
205 * -1 - not paranoid at all
206 * 0 - disallow raw tracepoint access for unpriv
207 * 1 - disallow cpu events for unpriv
208 * 2 - disallow kernel profiling for unpriv
209 */
210 int sysctl_perf_event_paranoid __read_mostly = 1;
211
212 /* Minimum for 512 kiB + 1 user control page */
213 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
214
215 /*
216 * max perf event sample rate
217 */
218 #define DEFAULT_MAX_SAMPLE_RATE 100000
219 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
220 #define DEFAULT_CPU_TIME_MAX_PERCENT 25
221
222 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
223
224 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
225 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
226
227 static int perf_sample_allowed_ns __read_mostly =
228 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
229
230 static void update_perf_cpu_limits(void)
231 {
232 u64 tmp = perf_sample_period_ns;
233
234 tmp *= sysctl_perf_cpu_time_max_percent;
235 do_div(tmp, 100);
236 ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
237 }
238
239 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
240
241 int perf_proc_update_handler(struct ctl_table *table, int write,
242 void __user *buffer, size_t *lenp,
243 loff_t *ppos)
244 {
245 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
246
247 if (ret || !write)
248 return ret;
249
250 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
251 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
252 update_perf_cpu_limits();
253
254 return 0;
255 }
256
257 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
258
259 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
260 void __user *buffer, size_t *lenp,
261 loff_t *ppos)
262 {
263 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
264
265 if (ret || !write)
266 return ret;
267
268 update_perf_cpu_limits();
269
270 return 0;
271 }
272
273 /*
274 * perf samples are done in some very critical code paths (NMIs).
275 * If they take too much CPU time, the system can lock up and not
276 * get any real work done. This will drop the sample rate when
277 * we detect that events are taking too long.
278 */
279 #define NR_ACCUMULATED_SAMPLES 128
280 static DEFINE_PER_CPU(u64, running_sample_length);
281
282 static void perf_duration_warn(struct irq_work *w)
283 {
284 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
285 u64 avg_local_sample_len;
286 u64 local_samples_len;
287
288 local_samples_len = __this_cpu_read(running_sample_length);
289 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
290
291 printk_ratelimited(KERN_WARNING
292 "perf interrupt took too long (%lld > %lld), lowering "
293 "kernel.perf_event_max_sample_rate to %d\n",
294 avg_local_sample_len, allowed_ns >> 1,
295 sysctl_perf_event_sample_rate);
296 }
297
298 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
299
300 void perf_sample_event_took(u64 sample_len_ns)
301 {
302 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
303 u64 avg_local_sample_len;
304 u64 local_samples_len;
305
306 if (allowed_ns == 0)
307 return;
308
309 /* decay the counter by 1 average sample */
310 local_samples_len = __this_cpu_read(running_sample_length);
311 local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
312 local_samples_len += sample_len_ns;
313 __this_cpu_write(running_sample_length, local_samples_len);
314
315 /*
316 * note: this will be biased artifically low until we have
317 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
318 * from having to maintain a count.
319 */
320 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
321
322 if (avg_local_sample_len <= allowed_ns)
323 return;
324
325 if (max_samples_per_tick <= 1)
326 return;
327
328 max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
329 sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
330 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
331
332 update_perf_cpu_limits();
333
334 if (!irq_work_queue(&perf_duration_work)) {
335 early_printk("perf interrupt took too long (%lld > %lld), lowering "
336 "kernel.perf_event_max_sample_rate to %d\n",
337 avg_local_sample_len, allowed_ns >> 1,
338 sysctl_perf_event_sample_rate);
339 }
340 }
341
342 static atomic64_t perf_event_id;
343
344 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
345 enum event_type_t event_type);
346
347 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
348 enum event_type_t event_type,
349 struct task_struct *task);
350
351 static void update_context_time(struct perf_event_context *ctx);
352 static u64 perf_event_time(struct perf_event *event);
353
354 void __weak perf_event_print_debug(void) { }
355
356 extern __weak const char *perf_pmu_name(void)
357 {
358 return "pmu";
359 }
360
361 static inline u64 perf_clock(void)
362 {
363 return local_clock();
364 }
365
366 static inline u64 perf_event_clock(struct perf_event *event)
367 {
368 return event->clock();
369 }
370
371 static inline struct perf_cpu_context *
372 __get_cpu_context(struct perf_event_context *ctx)
373 {
374 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
375 }
376
377 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
378 struct perf_event_context *ctx)
379 {
380 raw_spin_lock(&cpuctx->ctx.lock);
381 if (ctx)
382 raw_spin_lock(&ctx->lock);
383 }
384
385 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
386 struct perf_event_context *ctx)
387 {
388 if (ctx)
389 raw_spin_unlock(&ctx->lock);
390 raw_spin_unlock(&cpuctx->ctx.lock);
391 }
392
393 #ifdef CONFIG_CGROUP_PERF
394
395 static inline bool
396 perf_cgroup_match(struct perf_event *event)
397 {
398 struct perf_event_context *ctx = event->ctx;
399 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
400
401 /* @event doesn't care about cgroup */
402 if (!event->cgrp)
403 return true;
404
405 /* wants specific cgroup scope but @cpuctx isn't associated with any */
406 if (!cpuctx->cgrp)
407 return false;
408
409 /*
410 * Cgroup scoping is recursive. An event enabled for a cgroup is
411 * also enabled for all its descendant cgroups. If @cpuctx's
412 * cgroup is a descendant of @event's (the test covers identity
413 * case), it's a match.
414 */
415 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
416 event->cgrp->css.cgroup);
417 }
418
419 static inline void perf_detach_cgroup(struct perf_event *event)
420 {
421 css_put(&event->cgrp->css);
422 event->cgrp = NULL;
423 }
424
425 static inline int is_cgroup_event(struct perf_event *event)
426 {
427 return event->cgrp != NULL;
428 }
429
430 static inline u64 perf_cgroup_event_time(struct perf_event *event)
431 {
432 struct perf_cgroup_info *t;
433
434 t = per_cpu_ptr(event->cgrp->info, event->cpu);
435 return t->time;
436 }
437
438 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
439 {
440 struct perf_cgroup_info *info;
441 u64 now;
442
443 now = perf_clock();
444
445 info = this_cpu_ptr(cgrp->info);
446
447 info->time += now - info->timestamp;
448 info->timestamp = now;
449 }
450
451 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
452 {
453 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
454 if (cgrp_out)
455 __update_cgrp_time(cgrp_out);
456 }
457
458 static inline void update_cgrp_time_from_event(struct perf_event *event)
459 {
460 struct perf_cgroup *cgrp;
461
462 /*
463 * ensure we access cgroup data only when needed and
464 * when we know the cgroup is pinned (css_get)
465 */
466 if (!is_cgroup_event(event))
467 return;
468
469 cgrp = perf_cgroup_from_task(current, event->ctx);
470 /*
471 * Do not update time when cgroup is not active
472 */
473 if (cgrp == event->cgrp)
474 __update_cgrp_time(event->cgrp);
475 }
476
477 static inline void
478 perf_cgroup_set_timestamp(struct task_struct *task,
479 struct perf_event_context *ctx)
480 {
481 struct perf_cgroup *cgrp;
482 struct perf_cgroup_info *info;
483
484 /*
485 * ctx->lock held by caller
486 * ensure we do not access cgroup data
487 * unless we have the cgroup pinned (css_get)
488 */
489 if (!task || !ctx->nr_cgroups)
490 return;
491
492 cgrp = perf_cgroup_from_task(task, ctx);
493 info = this_cpu_ptr(cgrp->info);
494 info->timestamp = ctx->timestamp;
495 }
496
497 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
498 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
499
500 /*
501 * reschedule events based on the cgroup constraint of task.
502 *
503 * mode SWOUT : schedule out everything
504 * mode SWIN : schedule in based on cgroup for next
505 */
506 static void perf_cgroup_switch(struct task_struct *task, int mode)
507 {
508 struct perf_cpu_context *cpuctx;
509 struct pmu *pmu;
510 unsigned long flags;
511
512 /*
513 * disable interrupts to avoid geting nr_cgroup
514 * changes via __perf_event_disable(). Also
515 * avoids preemption.
516 */
517 local_irq_save(flags);
518
519 /*
520 * we reschedule only in the presence of cgroup
521 * constrained events.
522 */
523
524 list_for_each_entry_rcu(pmu, &pmus, entry) {
525 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
526 if (cpuctx->unique_pmu != pmu)
527 continue; /* ensure we process each cpuctx once */
528
529 /*
530 * perf_cgroup_events says at least one
531 * context on this CPU has cgroup events.
532 *
533 * ctx->nr_cgroups reports the number of cgroup
534 * events for a context.
535 */
536 if (cpuctx->ctx.nr_cgroups > 0) {
537 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
538 perf_pmu_disable(cpuctx->ctx.pmu);
539
540 if (mode & PERF_CGROUP_SWOUT) {
541 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
542 /*
543 * must not be done before ctxswout due
544 * to event_filter_match() in event_sched_out()
545 */
546 cpuctx->cgrp = NULL;
547 }
548
549 if (mode & PERF_CGROUP_SWIN) {
550 WARN_ON_ONCE(cpuctx->cgrp);
551 /*
552 * set cgrp before ctxsw in to allow
553 * event_filter_match() to not have to pass
554 * task around
555 * we pass the cpuctx->ctx to perf_cgroup_from_task()
556 * because cgorup events are only per-cpu
557 */
558 cpuctx->cgrp = perf_cgroup_from_task(task, &cpuctx->ctx);
559 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
560 }
561 perf_pmu_enable(cpuctx->ctx.pmu);
562 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
563 }
564 }
565
566 local_irq_restore(flags);
567 }
568
569 static inline void perf_cgroup_sched_out(struct task_struct *task,
570 struct task_struct *next)
571 {
572 struct perf_cgroup *cgrp1;
573 struct perf_cgroup *cgrp2 = NULL;
574
575 rcu_read_lock();
576 /*
577 * we come here when we know perf_cgroup_events > 0
578 * we do not need to pass the ctx here because we know
579 * we are holding the rcu lock
580 */
581 cgrp1 = perf_cgroup_from_task(task, NULL);
582
583 /*
584 * next is NULL when called from perf_event_enable_on_exec()
585 * that will systematically cause a cgroup_switch()
586 */
587 if (next)
588 cgrp2 = perf_cgroup_from_task(next, NULL);
589
590 /*
591 * only schedule out current cgroup events if we know
592 * that we are switching to a different cgroup. Otherwise,
593 * do no touch the cgroup events.
594 */
595 if (cgrp1 != cgrp2)
596 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
597
598 rcu_read_unlock();
599 }
600
601 static inline void perf_cgroup_sched_in(struct task_struct *prev,
602 struct task_struct *task)
603 {
604 struct perf_cgroup *cgrp1;
605 struct perf_cgroup *cgrp2 = NULL;
606
607 rcu_read_lock();
608 /*
609 * we come here when we know perf_cgroup_events > 0
610 * we do not need to pass the ctx here because we know
611 * we are holding the rcu lock
612 */
613 cgrp1 = perf_cgroup_from_task(task, NULL);
614
615 /* prev can never be NULL */
616 cgrp2 = perf_cgroup_from_task(prev, NULL);
617
618 /*
619 * only need to schedule in cgroup events if we are changing
620 * cgroup during ctxsw. Cgroup events were not scheduled
621 * out of ctxsw out if that was not the case.
622 */
623 if (cgrp1 != cgrp2)
624 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
625
626 rcu_read_unlock();
627 }
628
629 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
630 struct perf_event_attr *attr,
631 struct perf_event *group_leader)
632 {
633 struct perf_cgroup *cgrp;
634 struct cgroup_subsys_state *css;
635 struct fd f = fdget(fd);
636 int ret = 0;
637
638 if (!f.file)
639 return -EBADF;
640
641 css = css_tryget_online_from_dir(f.file->f_path.dentry,
642 &perf_event_cgrp_subsys);
643 if (IS_ERR(css)) {
644 ret = PTR_ERR(css);
645 goto out;
646 }
647
648 cgrp = container_of(css, struct perf_cgroup, css);
649 event->cgrp = cgrp;
650
651 /*
652 * all events in a group must monitor
653 * the same cgroup because a task belongs
654 * to only one perf cgroup at a time
655 */
656 if (group_leader && group_leader->cgrp != cgrp) {
657 perf_detach_cgroup(event);
658 ret = -EINVAL;
659 }
660 out:
661 fdput(f);
662 return ret;
663 }
664
665 static inline void
666 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
667 {
668 struct perf_cgroup_info *t;
669 t = per_cpu_ptr(event->cgrp->info, event->cpu);
670 event->shadow_ctx_time = now - t->timestamp;
671 }
672
673 static inline void
674 perf_cgroup_defer_enabled(struct perf_event *event)
675 {
676 /*
677 * when the current task's perf cgroup does not match
678 * the event's, we need to remember to call the
679 * perf_mark_enable() function the first time a task with
680 * a matching perf cgroup is scheduled in.
681 */
682 if (is_cgroup_event(event) && !perf_cgroup_match(event))
683 event->cgrp_defer_enabled = 1;
684 }
685
686 static inline void
687 perf_cgroup_mark_enabled(struct perf_event *event,
688 struct perf_event_context *ctx)
689 {
690 struct perf_event *sub;
691 u64 tstamp = perf_event_time(event);
692
693 if (!event->cgrp_defer_enabled)
694 return;
695
696 event->cgrp_defer_enabled = 0;
697
698 event->tstamp_enabled = tstamp - event->total_time_enabled;
699 list_for_each_entry(sub, &event->sibling_list, group_entry) {
700 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
701 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
702 sub->cgrp_defer_enabled = 0;
703 }
704 }
705 }
706 #else /* !CONFIG_CGROUP_PERF */
707
708 static inline bool
709 perf_cgroup_match(struct perf_event *event)
710 {
711 return true;
712 }
713
714 static inline void perf_detach_cgroup(struct perf_event *event)
715 {}
716
717 static inline int is_cgroup_event(struct perf_event *event)
718 {
719 return 0;
720 }
721
722 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
723 {
724 return 0;
725 }
726
727 static inline void update_cgrp_time_from_event(struct perf_event *event)
728 {
729 }
730
731 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
732 {
733 }
734
735 static inline void perf_cgroup_sched_out(struct task_struct *task,
736 struct task_struct *next)
737 {
738 }
739
740 static inline void perf_cgroup_sched_in(struct task_struct *prev,
741 struct task_struct *task)
742 {
743 }
744
745 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
746 struct perf_event_attr *attr,
747 struct perf_event *group_leader)
748 {
749 return -EINVAL;
750 }
751
752 static inline void
753 perf_cgroup_set_timestamp(struct task_struct *task,
754 struct perf_event_context *ctx)
755 {
756 }
757
758 void
759 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
760 {
761 }
762
763 static inline void
764 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
765 {
766 }
767
768 static inline u64 perf_cgroup_event_time(struct perf_event *event)
769 {
770 return 0;
771 }
772
773 static inline void
774 perf_cgroup_defer_enabled(struct perf_event *event)
775 {
776 }
777
778 static inline void
779 perf_cgroup_mark_enabled(struct perf_event *event,
780 struct perf_event_context *ctx)
781 {
782 }
783 #endif
784
785 /*
786 * set default to be dependent on timer tick just
787 * like original code
788 */
789 #define PERF_CPU_HRTIMER (1000 / HZ)
790 /*
791 * function must be called with interrupts disbled
792 */
793 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
794 {
795 struct perf_cpu_context *cpuctx;
796 int rotations = 0;
797
798 WARN_ON(!irqs_disabled());
799
800 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
801 rotations = perf_rotate_context(cpuctx);
802
803 raw_spin_lock(&cpuctx->hrtimer_lock);
804 if (rotations)
805 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
806 else
807 cpuctx->hrtimer_active = 0;
808 raw_spin_unlock(&cpuctx->hrtimer_lock);
809
810 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
811 }
812
813 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
814 {
815 struct hrtimer *timer = &cpuctx->hrtimer;
816 struct pmu *pmu = cpuctx->ctx.pmu;
817 u64 interval;
818
819 /* no multiplexing needed for SW PMU */
820 if (pmu->task_ctx_nr == perf_sw_context)
821 return;
822
823 /*
824 * check default is sane, if not set then force to
825 * default interval (1/tick)
826 */
827 interval = pmu->hrtimer_interval_ms;
828 if (interval < 1)
829 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
830
831 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
832
833 raw_spin_lock_init(&cpuctx->hrtimer_lock);
834 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
835 timer->function = perf_mux_hrtimer_handler;
836 }
837
838 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
839 {
840 struct hrtimer *timer = &cpuctx->hrtimer;
841 struct pmu *pmu = cpuctx->ctx.pmu;
842 unsigned long flags;
843
844 /* not for SW PMU */
845 if (pmu->task_ctx_nr == perf_sw_context)
846 return 0;
847
848 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
849 if (!cpuctx->hrtimer_active) {
850 cpuctx->hrtimer_active = 1;
851 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
852 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
853 }
854 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
855
856 return 0;
857 }
858
859 void perf_pmu_disable(struct pmu *pmu)
860 {
861 int *count = this_cpu_ptr(pmu->pmu_disable_count);
862 if (!(*count)++)
863 pmu->pmu_disable(pmu);
864 }
865
866 void perf_pmu_enable(struct pmu *pmu)
867 {
868 int *count = this_cpu_ptr(pmu->pmu_disable_count);
869 if (!--(*count))
870 pmu->pmu_enable(pmu);
871 }
872
873 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
874
875 /*
876 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
877 * perf_event_task_tick() are fully serialized because they're strictly cpu
878 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
879 * disabled, while perf_event_task_tick is called from IRQ context.
880 */
881 static void perf_event_ctx_activate(struct perf_event_context *ctx)
882 {
883 struct list_head *head = this_cpu_ptr(&active_ctx_list);
884
885 WARN_ON(!irqs_disabled());
886
887 WARN_ON(!list_empty(&ctx->active_ctx_list));
888
889 list_add(&ctx->active_ctx_list, head);
890 }
891
892 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
893 {
894 WARN_ON(!irqs_disabled());
895
896 WARN_ON(list_empty(&ctx->active_ctx_list));
897
898 list_del_init(&ctx->active_ctx_list);
899 }
900
901 static void get_ctx(struct perf_event_context *ctx)
902 {
903 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
904 }
905
906 static void free_ctx(struct rcu_head *head)
907 {
908 struct perf_event_context *ctx;
909
910 ctx = container_of(head, struct perf_event_context, rcu_head);
911 kfree(ctx->task_ctx_data);
912 kfree(ctx);
913 }
914
915 static void put_ctx(struct perf_event_context *ctx)
916 {
917 if (atomic_dec_and_test(&ctx->refcount)) {
918 if (ctx->parent_ctx)
919 put_ctx(ctx->parent_ctx);
920 if (ctx->task)
921 put_task_struct(ctx->task);
922 call_rcu(&ctx->rcu_head, free_ctx);
923 }
924 }
925
926 /*
927 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
928 * perf_pmu_migrate_context() we need some magic.
929 *
930 * Those places that change perf_event::ctx will hold both
931 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
932 *
933 * Lock ordering is by mutex address. There are two other sites where
934 * perf_event_context::mutex nests and those are:
935 *
936 * - perf_event_exit_task_context() [ child , 0 ]
937 * __perf_event_exit_task()
938 * sync_child_event()
939 * put_event() [ parent, 1 ]
940 *
941 * - perf_event_init_context() [ parent, 0 ]
942 * inherit_task_group()
943 * inherit_group()
944 * inherit_event()
945 * perf_event_alloc()
946 * perf_init_event()
947 * perf_try_init_event() [ child , 1 ]
948 *
949 * While it appears there is an obvious deadlock here -- the parent and child
950 * nesting levels are inverted between the two. This is in fact safe because
951 * life-time rules separate them. That is an exiting task cannot fork, and a
952 * spawning task cannot (yet) exit.
953 *
954 * But remember that that these are parent<->child context relations, and
955 * migration does not affect children, therefore these two orderings should not
956 * interact.
957 *
958 * The change in perf_event::ctx does not affect children (as claimed above)
959 * because the sys_perf_event_open() case will install a new event and break
960 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
961 * concerned with cpuctx and that doesn't have children.
962 *
963 * The places that change perf_event::ctx will issue:
964 *
965 * perf_remove_from_context();
966 * synchronize_rcu();
967 * perf_install_in_context();
968 *
969 * to affect the change. The remove_from_context() + synchronize_rcu() should
970 * quiesce the event, after which we can install it in the new location. This
971 * means that only external vectors (perf_fops, prctl) can perturb the event
972 * while in transit. Therefore all such accessors should also acquire
973 * perf_event_context::mutex to serialize against this.
974 *
975 * However; because event->ctx can change while we're waiting to acquire
976 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
977 * function.
978 *
979 * Lock order:
980 * task_struct::perf_event_mutex
981 * perf_event_context::mutex
982 * perf_event_context::lock
983 * perf_event::child_mutex;
984 * perf_event::mmap_mutex
985 * mmap_sem
986 */
987 static struct perf_event_context *
988 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
989 {
990 struct perf_event_context *ctx;
991
992 again:
993 rcu_read_lock();
994 ctx = ACCESS_ONCE(event->ctx);
995 if (!atomic_inc_not_zero(&ctx->refcount)) {
996 rcu_read_unlock();
997 goto again;
998 }
999 rcu_read_unlock();
1000
1001 mutex_lock_nested(&ctx->mutex, nesting);
1002 if (event->ctx != ctx) {
1003 mutex_unlock(&ctx->mutex);
1004 put_ctx(ctx);
1005 goto again;
1006 }
1007
1008 return ctx;
1009 }
1010
1011 static inline struct perf_event_context *
1012 perf_event_ctx_lock(struct perf_event *event)
1013 {
1014 return perf_event_ctx_lock_nested(event, 0);
1015 }
1016
1017 static void perf_event_ctx_unlock(struct perf_event *event,
1018 struct perf_event_context *ctx)
1019 {
1020 mutex_unlock(&ctx->mutex);
1021 put_ctx(ctx);
1022 }
1023
1024 /*
1025 * This must be done under the ctx->lock, such as to serialize against
1026 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1027 * calling scheduler related locks and ctx->lock nests inside those.
1028 */
1029 static __must_check struct perf_event_context *
1030 unclone_ctx(struct perf_event_context *ctx)
1031 {
1032 struct perf_event_context *parent_ctx = ctx->parent_ctx;
1033
1034 lockdep_assert_held(&ctx->lock);
1035
1036 if (parent_ctx)
1037 ctx->parent_ctx = NULL;
1038 ctx->generation++;
1039
1040 return parent_ctx;
1041 }
1042
1043 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1044 {
1045 /*
1046 * only top level events have the pid namespace they were created in
1047 */
1048 if (event->parent)
1049 event = event->parent;
1050
1051 return task_tgid_nr_ns(p, event->ns);
1052 }
1053
1054 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1055 {
1056 /*
1057 * only top level events have the pid namespace they were created in
1058 */
1059 if (event->parent)
1060 event = event->parent;
1061
1062 return task_pid_nr_ns(p, event->ns);
1063 }
1064
1065 /*
1066 * If we inherit events we want to return the parent event id
1067 * to userspace.
1068 */
1069 static u64 primary_event_id(struct perf_event *event)
1070 {
1071 u64 id = event->id;
1072
1073 if (event->parent)
1074 id = event->parent->id;
1075
1076 return id;
1077 }
1078
1079 /*
1080 * Get the perf_event_context for a task and lock it.
1081 * This has to cope with with the fact that until it is locked,
1082 * the context could get moved to another task.
1083 */
1084 static struct perf_event_context *
1085 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1086 {
1087 struct perf_event_context *ctx;
1088
1089 retry:
1090 /*
1091 * One of the few rules of preemptible RCU is that one cannot do
1092 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1093 * part of the read side critical section was irqs-enabled -- see
1094 * rcu_read_unlock_special().
1095 *
1096 * Since ctx->lock nests under rq->lock we must ensure the entire read
1097 * side critical section has interrupts disabled.
1098 */
1099 local_irq_save(*flags);
1100 rcu_read_lock();
1101 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1102 if (ctx) {
1103 /*
1104 * If this context is a clone of another, it might
1105 * get swapped for another underneath us by
1106 * perf_event_task_sched_out, though the
1107 * rcu_read_lock() protects us from any context
1108 * getting freed. Lock the context and check if it
1109 * got swapped before we could get the lock, and retry
1110 * if so. If we locked the right context, then it
1111 * can't get swapped on us any more.
1112 */
1113 raw_spin_lock(&ctx->lock);
1114 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1115 raw_spin_unlock(&ctx->lock);
1116 rcu_read_unlock();
1117 local_irq_restore(*flags);
1118 goto retry;
1119 }
1120
1121 if (!atomic_inc_not_zero(&ctx->refcount)) {
1122 raw_spin_unlock(&ctx->lock);
1123 ctx = NULL;
1124 }
1125 }
1126 rcu_read_unlock();
1127 if (!ctx)
1128 local_irq_restore(*flags);
1129 return ctx;
1130 }
1131
1132 /*
1133 * Get the context for a task and increment its pin_count so it
1134 * can't get swapped to another task. This also increments its
1135 * reference count so that the context can't get freed.
1136 */
1137 static struct perf_event_context *
1138 perf_pin_task_context(struct task_struct *task, int ctxn)
1139 {
1140 struct perf_event_context *ctx;
1141 unsigned long flags;
1142
1143 ctx = perf_lock_task_context(task, ctxn, &flags);
1144 if (ctx) {
1145 ++ctx->pin_count;
1146 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1147 }
1148 return ctx;
1149 }
1150
1151 static void perf_unpin_context(struct perf_event_context *ctx)
1152 {
1153 unsigned long flags;
1154
1155 raw_spin_lock_irqsave(&ctx->lock, flags);
1156 --ctx->pin_count;
1157 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1158 }
1159
1160 /*
1161 * Update the record of the current time in a context.
1162 */
1163 static void update_context_time(struct perf_event_context *ctx)
1164 {
1165 u64 now = perf_clock();
1166
1167 ctx->time += now - ctx->timestamp;
1168 ctx->timestamp = now;
1169 }
1170
1171 static u64 perf_event_time(struct perf_event *event)
1172 {
1173 struct perf_event_context *ctx = event->ctx;
1174
1175 if (is_cgroup_event(event))
1176 return perf_cgroup_event_time(event);
1177
1178 return ctx ? ctx->time : 0;
1179 }
1180
1181 /*
1182 * Update the total_time_enabled and total_time_running fields for a event.
1183 * The caller of this function needs to hold the ctx->lock.
1184 */
1185 static void update_event_times(struct perf_event *event)
1186 {
1187 struct perf_event_context *ctx = event->ctx;
1188 u64 run_end;
1189
1190 if (event->state < PERF_EVENT_STATE_INACTIVE ||
1191 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1192 return;
1193 /*
1194 * in cgroup mode, time_enabled represents
1195 * the time the event was enabled AND active
1196 * tasks were in the monitored cgroup. This is
1197 * independent of the activity of the context as
1198 * there may be a mix of cgroup and non-cgroup events.
1199 *
1200 * That is why we treat cgroup events differently
1201 * here.
1202 */
1203 if (is_cgroup_event(event))
1204 run_end = perf_cgroup_event_time(event);
1205 else if (ctx->is_active)
1206 run_end = ctx->time;
1207 else
1208 run_end = event->tstamp_stopped;
1209
1210 event->total_time_enabled = run_end - event->tstamp_enabled;
1211
1212 if (event->state == PERF_EVENT_STATE_INACTIVE)
1213 run_end = event->tstamp_stopped;
1214 else
1215 run_end = perf_event_time(event);
1216
1217 event->total_time_running = run_end - event->tstamp_running;
1218
1219 }
1220
1221 /*
1222 * Update total_time_enabled and total_time_running for all events in a group.
1223 */
1224 static void update_group_times(struct perf_event *leader)
1225 {
1226 struct perf_event *event;
1227
1228 update_event_times(leader);
1229 list_for_each_entry(event, &leader->sibling_list, group_entry)
1230 update_event_times(event);
1231 }
1232
1233 static struct list_head *
1234 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1235 {
1236 if (event->attr.pinned)
1237 return &ctx->pinned_groups;
1238 else
1239 return &ctx->flexible_groups;
1240 }
1241
1242 /*
1243 * Add a event from the lists for its context.
1244 * Must be called with ctx->mutex and ctx->lock held.
1245 */
1246 static void
1247 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1248 {
1249 lockdep_assert_held(&ctx->lock);
1250
1251 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1252 event->attach_state |= PERF_ATTACH_CONTEXT;
1253
1254 /*
1255 * If we're a stand alone event or group leader, we go to the context
1256 * list, group events are kept attached to the group so that
1257 * perf_group_detach can, at all times, locate all siblings.
1258 */
1259 if (event->group_leader == event) {
1260 struct list_head *list;
1261
1262 if (is_software_event(event))
1263 event->group_flags |= PERF_GROUP_SOFTWARE;
1264
1265 list = ctx_group_list(event, ctx);
1266 list_add_tail(&event->group_entry, list);
1267 }
1268
1269 if (is_cgroup_event(event))
1270 ctx->nr_cgroups++;
1271
1272 list_add_rcu(&event->event_entry, &ctx->event_list);
1273 ctx->nr_events++;
1274 if (event->attr.inherit_stat)
1275 ctx->nr_stat++;
1276
1277 ctx->generation++;
1278 }
1279
1280 /*
1281 * Initialize event state based on the perf_event_attr::disabled.
1282 */
1283 static inline void perf_event__state_init(struct perf_event *event)
1284 {
1285 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1286 PERF_EVENT_STATE_INACTIVE;
1287 }
1288
1289 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1290 {
1291 int entry = sizeof(u64); /* value */
1292 int size = 0;
1293 int nr = 1;
1294
1295 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1296 size += sizeof(u64);
1297
1298 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1299 size += sizeof(u64);
1300
1301 if (event->attr.read_format & PERF_FORMAT_ID)
1302 entry += sizeof(u64);
1303
1304 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1305 nr += nr_siblings;
1306 size += sizeof(u64);
1307 }
1308
1309 size += entry * nr;
1310 event->read_size = size;
1311 }
1312
1313 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1314 {
1315 struct perf_sample_data *data;
1316 u16 size = 0;
1317
1318 if (sample_type & PERF_SAMPLE_IP)
1319 size += sizeof(data->ip);
1320
1321 if (sample_type & PERF_SAMPLE_ADDR)
1322 size += sizeof(data->addr);
1323
1324 if (sample_type & PERF_SAMPLE_PERIOD)
1325 size += sizeof(data->period);
1326
1327 if (sample_type & PERF_SAMPLE_WEIGHT)
1328 size += sizeof(data->weight);
1329
1330 if (sample_type & PERF_SAMPLE_READ)
1331 size += event->read_size;
1332
1333 if (sample_type & PERF_SAMPLE_DATA_SRC)
1334 size += sizeof(data->data_src.val);
1335
1336 if (sample_type & PERF_SAMPLE_TRANSACTION)
1337 size += sizeof(data->txn);
1338
1339 event->header_size = size;
1340 }
1341
1342 /*
1343 * Called at perf_event creation and when events are attached/detached from a
1344 * group.
1345 */
1346 static void perf_event__header_size(struct perf_event *event)
1347 {
1348 __perf_event_read_size(event,
1349 event->group_leader->nr_siblings);
1350 __perf_event_header_size(event, event->attr.sample_type);
1351 }
1352
1353 static void perf_event__id_header_size(struct perf_event *event)
1354 {
1355 struct perf_sample_data *data;
1356 u64 sample_type = event->attr.sample_type;
1357 u16 size = 0;
1358
1359 if (sample_type & PERF_SAMPLE_TID)
1360 size += sizeof(data->tid_entry);
1361
1362 if (sample_type & PERF_SAMPLE_TIME)
1363 size += sizeof(data->time);
1364
1365 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1366 size += sizeof(data->id);
1367
1368 if (sample_type & PERF_SAMPLE_ID)
1369 size += sizeof(data->id);
1370
1371 if (sample_type & PERF_SAMPLE_STREAM_ID)
1372 size += sizeof(data->stream_id);
1373
1374 if (sample_type & PERF_SAMPLE_CPU)
1375 size += sizeof(data->cpu_entry);
1376
1377 event->id_header_size = size;
1378 }
1379
1380 static bool perf_event_validate_size(struct perf_event *event)
1381 {
1382 /*
1383 * The values computed here will be over-written when we actually
1384 * attach the event.
1385 */
1386 __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1387 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1388 perf_event__id_header_size(event);
1389
1390 /*
1391 * Sum the lot; should not exceed the 64k limit we have on records.
1392 * Conservative limit to allow for callchains and other variable fields.
1393 */
1394 if (event->read_size + event->header_size +
1395 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1396 return false;
1397
1398 return true;
1399 }
1400
1401 static void perf_group_attach(struct perf_event *event)
1402 {
1403 struct perf_event *group_leader = event->group_leader, *pos;
1404
1405 /*
1406 * We can have double attach due to group movement in perf_event_open.
1407 */
1408 if (event->attach_state & PERF_ATTACH_GROUP)
1409 return;
1410
1411 event->attach_state |= PERF_ATTACH_GROUP;
1412
1413 if (group_leader == event)
1414 return;
1415
1416 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1417
1418 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1419 !is_software_event(event))
1420 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1421
1422 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1423 group_leader->nr_siblings++;
1424
1425 perf_event__header_size(group_leader);
1426
1427 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1428 perf_event__header_size(pos);
1429 }
1430
1431 /*
1432 * Remove a event from the lists for its context.
1433 * Must be called with ctx->mutex and ctx->lock held.
1434 */
1435 static void
1436 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1437 {
1438 struct perf_cpu_context *cpuctx;
1439
1440 WARN_ON_ONCE(event->ctx != ctx);
1441 lockdep_assert_held(&ctx->lock);
1442
1443 /*
1444 * We can have double detach due to exit/hot-unplug + close.
1445 */
1446 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1447 return;
1448
1449 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1450
1451 if (is_cgroup_event(event)) {
1452 ctx->nr_cgroups--;
1453 cpuctx = __get_cpu_context(ctx);
1454 /*
1455 * if there are no more cgroup events
1456 * then cler cgrp to avoid stale pointer
1457 * in update_cgrp_time_from_cpuctx()
1458 */
1459 if (!ctx->nr_cgroups)
1460 cpuctx->cgrp = NULL;
1461 }
1462
1463 ctx->nr_events--;
1464 if (event->attr.inherit_stat)
1465 ctx->nr_stat--;
1466
1467 list_del_rcu(&event->event_entry);
1468
1469 if (event->group_leader == event)
1470 list_del_init(&event->group_entry);
1471
1472 update_group_times(event);
1473
1474 /*
1475 * If event was in error state, then keep it
1476 * that way, otherwise bogus counts will be
1477 * returned on read(). The only way to get out
1478 * of error state is by explicit re-enabling
1479 * of the event
1480 */
1481 if (event->state > PERF_EVENT_STATE_OFF)
1482 event->state = PERF_EVENT_STATE_OFF;
1483
1484 ctx->generation++;
1485 }
1486
1487 static void perf_group_detach(struct perf_event *event)
1488 {
1489 struct perf_event *sibling, *tmp;
1490 struct list_head *list = NULL;
1491
1492 /*
1493 * We can have double detach due to exit/hot-unplug + close.
1494 */
1495 if (!(event->attach_state & PERF_ATTACH_GROUP))
1496 return;
1497
1498 event->attach_state &= ~PERF_ATTACH_GROUP;
1499
1500 /*
1501 * If this is a sibling, remove it from its group.
1502 */
1503 if (event->group_leader != event) {
1504 list_del_init(&event->group_entry);
1505 event->group_leader->nr_siblings--;
1506 goto out;
1507 }
1508
1509 if (!list_empty(&event->group_entry))
1510 list = &event->group_entry;
1511
1512 /*
1513 * If this was a group event with sibling events then
1514 * upgrade the siblings to singleton events by adding them
1515 * to whatever list we are on.
1516 */
1517 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1518 if (list)
1519 list_move_tail(&sibling->group_entry, list);
1520 sibling->group_leader = sibling;
1521
1522 /* Inherit group flags from the previous leader */
1523 sibling->group_flags = event->group_flags;
1524
1525 WARN_ON_ONCE(sibling->ctx != event->ctx);
1526 }
1527
1528 out:
1529 perf_event__header_size(event->group_leader);
1530
1531 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1532 perf_event__header_size(tmp);
1533 }
1534
1535 /*
1536 * User event without the task.
1537 */
1538 static bool is_orphaned_event(struct perf_event *event)
1539 {
1540 return event && !is_kernel_event(event) && !event->owner;
1541 }
1542
1543 /*
1544 * Event has a parent but parent's task finished and it's
1545 * alive only because of children holding refference.
1546 */
1547 static bool is_orphaned_child(struct perf_event *event)
1548 {
1549 return is_orphaned_event(event->parent);
1550 }
1551
1552 static void orphans_remove_work(struct work_struct *work);
1553
1554 static void schedule_orphans_remove(struct perf_event_context *ctx)
1555 {
1556 if (!ctx->task || ctx->orphans_remove_sched || !perf_wq)
1557 return;
1558
1559 if (queue_delayed_work(perf_wq, &ctx->orphans_remove, 1)) {
1560 get_ctx(ctx);
1561 ctx->orphans_remove_sched = true;
1562 }
1563 }
1564
1565 static int __init perf_workqueue_init(void)
1566 {
1567 perf_wq = create_singlethread_workqueue("perf");
1568 WARN(!perf_wq, "failed to create perf workqueue\n");
1569 return perf_wq ? 0 : -1;
1570 }
1571
1572 core_initcall(perf_workqueue_init);
1573
1574 static inline int pmu_filter_match(struct perf_event *event)
1575 {
1576 struct pmu *pmu = event->pmu;
1577 return pmu->filter_match ? pmu->filter_match(event) : 1;
1578 }
1579
1580 static inline int
1581 event_filter_match(struct perf_event *event)
1582 {
1583 return (event->cpu == -1 || event->cpu == smp_processor_id())
1584 && perf_cgroup_match(event) && pmu_filter_match(event);
1585 }
1586
1587 static void
1588 event_sched_out(struct perf_event *event,
1589 struct perf_cpu_context *cpuctx,
1590 struct perf_event_context *ctx)
1591 {
1592 u64 tstamp = perf_event_time(event);
1593 u64 delta;
1594
1595 WARN_ON_ONCE(event->ctx != ctx);
1596 lockdep_assert_held(&ctx->lock);
1597
1598 /*
1599 * An event which could not be activated because of
1600 * filter mismatch still needs to have its timings
1601 * maintained, otherwise bogus information is return
1602 * via read() for time_enabled, time_running:
1603 */
1604 if (event->state == PERF_EVENT_STATE_INACTIVE
1605 && !event_filter_match(event)) {
1606 delta = tstamp - event->tstamp_stopped;
1607 event->tstamp_running += delta;
1608 event->tstamp_stopped = tstamp;
1609 }
1610
1611 if (event->state != PERF_EVENT_STATE_ACTIVE)
1612 return;
1613
1614 perf_pmu_disable(event->pmu);
1615
1616 event->state = PERF_EVENT_STATE_INACTIVE;
1617 if (event->pending_disable) {
1618 event->pending_disable = 0;
1619 event->state = PERF_EVENT_STATE_OFF;
1620 }
1621 event->tstamp_stopped = tstamp;
1622 event->pmu->del(event, 0);
1623 event->oncpu = -1;
1624
1625 if (!is_software_event(event))
1626 cpuctx->active_oncpu--;
1627 if (!--ctx->nr_active)
1628 perf_event_ctx_deactivate(ctx);
1629 if (event->attr.freq && event->attr.sample_freq)
1630 ctx->nr_freq--;
1631 if (event->attr.exclusive || !cpuctx->active_oncpu)
1632 cpuctx->exclusive = 0;
1633
1634 if (is_orphaned_child(event))
1635 schedule_orphans_remove(ctx);
1636
1637 perf_pmu_enable(event->pmu);
1638 }
1639
1640 static void
1641 group_sched_out(struct perf_event *group_event,
1642 struct perf_cpu_context *cpuctx,
1643 struct perf_event_context *ctx)
1644 {
1645 struct perf_event *event;
1646 int state = group_event->state;
1647
1648 event_sched_out(group_event, cpuctx, ctx);
1649
1650 /*
1651 * Schedule out siblings (if any):
1652 */
1653 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1654 event_sched_out(event, cpuctx, ctx);
1655
1656 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1657 cpuctx->exclusive = 0;
1658 }
1659
1660 struct remove_event {
1661 struct perf_event *event;
1662 bool detach_group;
1663 };
1664
1665 static void ___perf_remove_from_context(void *info)
1666 {
1667 struct remove_event *re = info;
1668 struct perf_event *event = re->event;
1669 struct perf_event_context *ctx = event->ctx;
1670
1671 if (re->detach_group)
1672 perf_group_detach(event);
1673 list_del_event(event, ctx);
1674 }
1675
1676 /*
1677 * Cross CPU call to remove a performance event
1678 *
1679 * We disable the event on the hardware level first. After that we
1680 * remove it from the context list.
1681 */
1682 static int __perf_remove_from_context(void *info)
1683 {
1684 struct remove_event *re = info;
1685 struct perf_event *event = re->event;
1686 struct perf_event_context *ctx = event->ctx;
1687 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1688
1689 raw_spin_lock(&ctx->lock);
1690 event_sched_out(event, cpuctx, ctx);
1691 if (re->detach_group)
1692 perf_group_detach(event);
1693 list_del_event(event, ctx);
1694 if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1695 ctx->is_active = 0;
1696 cpuctx->task_ctx = NULL;
1697 }
1698 raw_spin_unlock(&ctx->lock);
1699
1700 return 0;
1701 }
1702
1703 /*
1704 * Remove the event from a task's (or a CPU's) list of events.
1705 *
1706 * CPU events are removed with a smp call. For task events we only
1707 * call when the task is on a CPU.
1708 *
1709 * If event->ctx is a cloned context, callers must make sure that
1710 * every task struct that event->ctx->task could possibly point to
1711 * remains valid. This is OK when called from perf_release since
1712 * that only calls us on the top-level context, which can't be a clone.
1713 * When called from perf_event_exit_task, it's OK because the
1714 * context has been detached from its task.
1715 */
1716 static void perf_remove_from_context(struct perf_event *event, bool detach_group)
1717 {
1718 struct perf_event_context *ctx = event->ctx;
1719 struct remove_event re = {
1720 .event = event,
1721 .detach_group = detach_group,
1722 };
1723
1724 lockdep_assert_held(&ctx->mutex);
1725
1726 event_function_call(event, __perf_remove_from_context,
1727 ___perf_remove_from_context, &re);
1728 }
1729
1730 /*
1731 * Cross CPU call to disable a performance event
1732 */
1733 int __perf_event_disable(void *info)
1734 {
1735 struct perf_event *event = info;
1736 struct perf_event_context *ctx = event->ctx;
1737 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1738
1739 /*
1740 * If this is a per-task event, need to check whether this
1741 * event's task is the current task on this cpu.
1742 *
1743 * Can trigger due to concurrent perf_event_context_sched_out()
1744 * flipping contexts around.
1745 */
1746 if (ctx->task && cpuctx->task_ctx != ctx)
1747 return -EINVAL;
1748
1749 raw_spin_lock(&ctx->lock);
1750
1751 /*
1752 * If the event is on, turn it off.
1753 * If it is in error state, leave it in error state.
1754 */
1755 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1756 update_context_time(ctx);
1757 update_cgrp_time_from_event(event);
1758 update_group_times(event);
1759 if (event == event->group_leader)
1760 group_sched_out(event, cpuctx, ctx);
1761 else
1762 event_sched_out(event, cpuctx, ctx);
1763 event->state = PERF_EVENT_STATE_OFF;
1764 }
1765
1766 raw_spin_unlock(&ctx->lock);
1767
1768 return 0;
1769 }
1770
1771 void ___perf_event_disable(void *info)
1772 {
1773 struct perf_event *event = info;
1774
1775 /*
1776 * Since we have the lock this context can't be scheduled
1777 * in, so we can change the state safely.
1778 */
1779 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1780 update_group_times(event);
1781 event->state = PERF_EVENT_STATE_OFF;
1782 }
1783 }
1784
1785 /*
1786 * Disable a event.
1787 *
1788 * If event->ctx is a cloned context, callers must make sure that
1789 * every task struct that event->ctx->task could possibly point to
1790 * remains valid. This condition is satisifed when called through
1791 * perf_event_for_each_child or perf_event_for_each because they
1792 * hold the top-level event's child_mutex, so any descendant that
1793 * goes to exit will block in sync_child_event.
1794 * When called from perf_pending_event it's OK because event->ctx
1795 * is the current context on this CPU and preemption is disabled,
1796 * hence we can't get into perf_event_task_sched_out for this context.
1797 */
1798 static void _perf_event_disable(struct perf_event *event)
1799 {
1800 struct perf_event_context *ctx = event->ctx;
1801
1802 raw_spin_lock_irq(&ctx->lock);
1803 if (event->state <= PERF_EVENT_STATE_OFF) {
1804 raw_spin_unlock_irq(&ctx->lock);
1805 return;
1806 }
1807 raw_spin_unlock_irq(&ctx->lock);
1808
1809 event_function_call(event, __perf_event_disable,
1810 ___perf_event_disable, event);
1811 }
1812
1813 /*
1814 * Strictly speaking kernel users cannot create groups and therefore this
1815 * interface does not need the perf_event_ctx_lock() magic.
1816 */
1817 void perf_event_disable(struct perf_event *event)
1818 {
1819 struct perf_event_context *ctx;
1820
1821 ctx = perf_event_ctx_lock(event);
1822 _perf_event_disable(event);
1823 perf_event_ctx_unlock(event, ctx);
1824 }
1825 EXPORT_SYMBOL_GPL(perf_event_disable);
1826
1827 static void perf_set_shadow_time(struct perf_event *event,
1828 struct perf_event_context *ctx,
1829 u64 tstamp)
1830 {
1831 /*
1832 * use the correct time source for the time snapshot
1833 *
1834 * We could get by without this by leveraging the
1835 * fact that to get to this function, the caller
1836 * has most likely already called update_context_time()
1837 * and update_cgrp_time_xx() and thus both timestamp
1838 * are identical (or very close). Given that tstamp is,
1839 * already adjusted for cgroup, we could say that:
1840 * tstamp - ctx->timestamp
1841 * is equivalent to
1842 * tstamp - cgrp->timestamp.
1843 *
1844 * Then, in perf_output_read(), the calculation would
1845 * work with no changes because:
1846 * - event is guaranteed scheduled in
1847 * - no scheduled out in between
1848 * - thus the timestamp would be the same
1849 *
1850 * But this is a bit hairy.
1851 *
1852 * So instead, we have an explicit cgroup call to remain
1853 * within the time time source all along. We believe it
1854 * is cleaner and simpler to understand.
1855 */
1856 if (is_cgroup_event(event))
1857 perf_cgroup_set_shadow_time(event, tstamp);
1858 else
1859 event->shadow_ctx_time = tstamp - ctx->timestamp;
1860 }
1861
1862 #define MAX_INTERRUPTS (~0ULL)
1863
1864 static void perf_log_throttle(struct perf_event *event, int enable);
1865 static void perf_log_itrace_start(struct perf_event *event);
1866
1867 static int
1868 event_sched_in(struct perf_event *event,
1869 struct perf_cpu_context *cpuctx,
1870 struct perf_event_context *ctx)
1871 {
1872 u64 tstamp = perf_event_time(event);
1873 int ret = 0;
1874
1875 lockdep_assert_held(&ctx->lock);
1876
1877 if (event->state <= PERF_EVENT_STATE_OFF)
1878 return 0;
1879
1880 event->state = PERF_EVENT_STATE_ACTIVE;
1881 event->oncpu = smp_processor_id();
1882
1883 /*
1884 * Unthrottle events, since we scheduled we might have missed several
1885 * ticks already, also for a heavily scheduling task there is little
1886 * guarantee it'll get a tick in a timely manner.
1887 */
1888 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1889 perf_log_throttle(event, 1);
1890 event->hw.interrupts = 0;
1891 }
1892
1893 /*
1894 * The new state must be visible before we turn it on in the hardware:
1895 */
1896 smp_wmb();
1897
1898 perf_pmu_disable(event->pmu);
1899
1900 perf_set_shadow_time(event, ctx, tstamp);
1901
1902 perf_log_itrace_start(event);
1903
1904 if (event->pmu->add(event, PERF_EF_START)) {
1905 event->state = PERF_EVENT_STATE_INACTIVE;
1906 event->oncpu = -1;
1907 ret = -EAGAIN;
1908 goto out;
1909 }
1910
1911 event->tstamp_running += tstamp - event->tstamp_stopped;
1912
1913 if (!is_software_event(event))
1914 cpuctx->active_oncpu++;
1915 if (!ctx->nr_active++)
1916 perf_event_ctx_activate(ctx);
1917 if (event->attr.freq && event->attr.sample_freq)
1918 ctx->nr_freq++;
1919
1920 if (event->attr.exclusive)
1921 cpuctx->exclusive = 1;
1922
1923 if (is_orphaned_child(event))
1924 schedule_orphans_remove(ctx);
1925
1926 out:
1927 perf_pmu_enable(event->pmu);
1928
1929 return ret;
1930 }
1931
1932 static int
1933 group_sched_in(struct perf_event *group_event,
1934 struct perf_cpu_context *cpuctx,
1935 struct perf_event_context *ctx)
1936 {
1937 struct perf_event *event, *partial_group = NULL;
1938 struct pmu *pmu = ctx->pmu;
1939 u64 now = ctx->time;
1940 bool simulate = false;
1941
1942 if (group_event->state == PERF_EVENT_STATE_OFF)
1943 return 0;
1944
1945 pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
1946
1947 if (event_sched_in(group_event, cpuctx, ctx)) {
1948 pmu->cancel_txn(pmu);
1949 perf_mux_hrtimer_restart(cpuctx);
1950 return -EAGAIN;
1951 }
1952
1953 /*
1954 * Schedule in siblings as one group (if any):
1955 */
1956 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1957 if (event_sched_in(event, cpuctx, ctx)) {
1958 partial_group = event;
1959 goto group_error;
1960 }
1961 }
1962
1963 if (!pmu->commit_txn(pmu))
1964 return 0;
1965
1966 group_error:
1967 /*
1968 * Groups can be scheduled in as one unit only, so undo any
1969 * partial group before returning:
1970 * The events up to the failed event are scheduled out normally,
1971 * tstamp_stopped will be updated.
1972 *
1973 * The failed events and the remaining siblings need to have
1974 * their timings updated as if they had gone thru event_sched_in()
1975 * and event_sched_out(). This is required to get consistent timings
1976 * across the group. This also takes care of the case where the group
1977 * could never be scheduled by ensuring tstamp_stopped is set to mark
1978 * the time the event was actually stopped, such that time delta
1979 * calculation in update_event_times() is correct.
1980 */
1981 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1982 if (event == partial_group)
1983 simulate = true;
1984
1985 if (simulate) {
1986 event->tstamp_running += now - event->tstamp_stopped;
1987 event->tstamp_stopped = now;
1988 } else {
1989 event_sched_out(event, cpuctx, ctx);
1990 }
1991 }
1992 event_sched_out(group_event, cpuctx, ctx);
1993
1994 pmu->cancel_txn(pmu);
1995
1996 perf_mux_hrtimer_restart(cpuctx);
1997
1998 return -EAGAIN;
1999 }
2000
2001 /*
2002 * Work out whether we can put this event group on the CPU now.
2003 */
2004 static int group_can_go_on(struct perf_event *event,
2005 struct perf_cpu_context *cpuctx,
2006 int can_add_hw)
2007 {
2008 /*
2009 * Groups consisting entirely of software events can always go on.
2010 */
2011 if (event->group_flags & PERF_GROUP_SOFTWARE)
2012 return 1;
2013 /*
2014 * If an exclusive group is already on, no other hardware
2015 * events can go on.
2016 */
2017 if (cpuctx->exclusive)
2018 return 0;
2019 /*
2020 * If this group is exclusive and there are already
2021 * events on the CPU, it can't go on.
2022 */
2023 if (event->attr.exclusive && cpuctx->active_oncpu)
2024 return 0;
2025 /*
2026 * Otherwise, try to add it if all previous groups were able
2027 * to go on.
2028 */
2029 return can_add_hw;
2030 }
2031
2032 static void add_event_to_ctx(struct perf_event *event,
2033 struct perf_event_context *ctx)
2034 {
2035 u64 tstamp = perf_event_time(event);
2036
2037 list_add_event(event, ctx);
2038 perf_group_attach(event);
2039 event->tstamp_enabled = tstamp;
2040 event->tstamp_running = tstamp;
2041 event->tstamp_stopped = tstamp;
2042 }
2043
2044 static void task_ctx_sched_out(struct perf_event_context *ctx);
2045 static void
2046 ctx_sched_in(struct perf_event_context *ctx,
2047 struct perf_cpu_context *cpuctx,
2048 enum event_type_t event_type,
2049 struct task_struct *task);
2050
2051 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2052 struct perf_event_context *ctx,
2053 struct task_struct *task)
2054 {
2055 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2056 if (ctx)
2057 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2058 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2059 if (ctx)
2060 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2061 }
2062
2063 static void ___perf_install_in_context(void *info)
2064 {
2065 struct perf_event *event = info;
2066 struct perf_event_context *ctx = event->ctx;
2067
2068 /*
2069 * Since the task isn't running, its safe to add the event, us holding
2070 * the ctx->lock ensures the task won't get scheduled in.
2071 */
2072 add_event_to_ctx(event, ctx);
2073 }
2074
2075 /*
2076 * Cross CPU call to install and enable a performance event
2077 *
2078 * Must be called with ctx->mutex held
2079 */
2080 static int __perf_install_in_context(void *info)
2081 {
2082 struct perf_event *event = info;
2083 struct perf_event_context *ctx = event->ctx;
2084 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2085 struct perf_event_context *task_ctx = cpuctx->task_ctx;
2086 struct task_struct *task = current;
2087
2088 perf_ctx_lock(cpuctx, task_ctx);
2089 perf_pmu_disable(cpuctx->ctx.pmu);
2090
2091 /*
2092 * If there was an active task_ctx schedule it out.
2093 */
2094 if (task_ctx)
2095 task_ctx_sched_out(task_ctx);
2096
2097 /*
2098 * If the context we're installing events in is not the
2099 * active task_ctx, flip them.
2100 */
2101 if (ctx->task && task_ctx != ctx) {
2102 if (task_ctx)
2103 raw_spin_unlock(&task_ctx->lock);
2104 raw_spin_lock(&ctx->lock);
2105 task_ctx = ctx;
2106 }
2107
2108 if (task_ctx) {
2109 cpuctx->task_ctx = task_ctx;
2110 task = task_ctx->task;
2111 }
2112
2113 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
2114
2115 update_context_time(ctx);
2116 /*
2117 * update cgrp time only if current cgrp
2118 * matches event->cgrp. Must be done before
2119 * calling add_event_to_ctx()
2120 */
2121 update_cgrp_time_from_event(event);
2122
2123 add_event_to_ctx(event, ctx);
2124
2125 /*
2126 * Schedule everything back in
2127 */
2128 perf_event_sched_in(cpuctx, task_ctx, task);
2129
2130 perf_pmu_enable(cpuctx->ctx.pmu);
2131 perf_ctx_unlock(cpuctx, task_ctx);
2132
2133 return 0;
2134 }
2135
2136 /*
2137 * Attach a performance event to a context
2138 *
2139 * First we add the event to the list with the hardware enable bit
2140 * in event->hw_config cleared.
2141 *
2142 * If the event is attached to a task which is on a CPU we use a smp
2143 * call to enable it in the task context. The task might have been
2144 * scheduled away, but we check this in the smp call again.
2145 */
2146 static void
2147 perf_install_in_context(struct perf_event_context *ctx,
2148 struct perf_event *event,
2149 int cpu)
2150 {
2151 lockdep_assert_held(&ctx->mutex);
2152
2153 event->ctx = ctx;
2154 if (event->cpu != -1)
2155 event->cpu = cpu;
2156
2157 event_function_call(event, __perf_install_in_context,
2158 ___perf_install_in_context, event);
2159 }
2160
2161 /*
2162 * Put a event into inactive state and update time fields.
2163 * Enabling the leader of a group effectively enables all
2164 * the group members that aren't explicitly disabled, so we
2165 * have to update their ->tstamp_enabled also.
2166 * Note: this works for group members as well as group leaders
2167 * since the non-leader members' sibling_lists will be empty.
2168 */
2169 static void __perf_event_mark_enabled(struct perf_event *event)
2170 {
2171 struct perf_event *sub;
2172 u64 tstamp = perf_event_time(event);
2173
2174 event->state = PERF_EVENT_STATE_INACTIVE;
2175 event->tstamp_enabled = tstamp - event->total_time_enabled;
2176 list_for_each_entry(sub, &event->sibling_list, group_entry) {
2177 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2178 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
2179 }
2180 }
2181
2182 /*
2183 * Cross CPU call to enable a performance event
2184 */
2185 static int __perf_event_enable(void *info)
2186 {
2187 struct perf_event *event = info;
2188 struct perf_event_context *ctx = event->ctx;
2189 struct perf_event *leader = event->group_leader;
2190 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2191 int err;
2192
2193 /*
2194 * There's a time window between 'ctx->is_active' check
2195 * in perf_event_enable function and this place having:
2196 * - IRQs on
2197 * - ctx->lock unlocked
2198 *
2199 * where the task could be killed and 'ctx' deactivated
2200 * by perf_event_exit_task.
2201 */
2202 if (!ctx->is_active)
2203 return -EINVAL;
2204
2205 raw_spin_lock(&ctx->lock);
2206 update_context_time(ctx);
2207
2208 if (event->state >= PERF_EVENT_STATE_INACTIVE)
2209 goto unlock;
2210
2211 /*
2212 * set current task's cgroup time reference point
2213 */
2214 perf_cgroup_set_timestamp(current, ctx);
2215
2216 __perf_event_mark_enabled(event);
2217
2218 if (!event_filter_match(event)) {
2219 if (is_cgroup_event(event))
2220 perf_cgroup_defer_enabled(event);
2221 goto unlock;
2222 }
2223
2224 /*
2225 * If the event is in a group and isn't the group leader,
2226 * then don't put it on unless the group is on.
2227 */
2228 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
2229 goto unlock;
2230
2231 if (!group_can_go_on(event, cpuctx, 1)) {
2232 err = -EEXIST;
2233 } else {
2234 if (event == leader)
2235 err = group_sched_in(event, cpuctx, ctx);
2236 else
2237 err = event_sched_in(event, cpuctx, ctx);
2238 }
2239
2240 if (err) {
2241 /*
2242 * If this event can't go on and it's part of a
2243 * group, then the whole group has to come off.
2244 */
2245 if (leader != event) {
2246 group_sched_out(leader, cpuctx, ctx);
2247 perf_mux_hrtimer_restart(cpuctx);
2248 }
2249 if (leader->attr.pinned) {
2250 update_group_times(leader);
2251 leader->state = PERF_EVENT_STATE_ERROR;
2252 }
2253 }
2254
2255 unlock:
2256 raw_spin_unlock(&ctx->lock);
2257
2258 return 0;
2259 }
2260
2261 void ___perf_event_enable(void *info)
2262 {
2263 __perf_event_mark_enabled((struct perf_event *)info);
2264 }
2265
2266 /*
2267 * Enable a event.
2268 *
2269 * If event->ctx is a cloned context, callers must make sure that
2270 * every task struct that event->ctx->task could possibly point to
2271 * remains valid. This condition is satisfied when called through
2272 * perf_event_for_each_child or perf_event_for_each as described
2273 * for perf_event_disable.
2274 */
2275 static void _perf_event_enable(struct perf_event *event)
2276 {
2277 struct perf_event_context *ctx = event->ctx;
2278
2279 raw_spin_lock_irq(&ctx->lock);
2280 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
2281 raw_spin_unlock_irq(&ctx->lock);
2282 return;
2283 }
2284
2285 /*
2286 * If the event is in error state, clear that first.
2287 *
2288 * That way, if we see the event in error state below, we know that it
2289 * has gone back into error state, as distinct from the task having
2290 * been scheduled away before the cross-call arrived.
2291 */
2292 if (event->state == PERF_EVENT_STATE_ERROR)
2293 event->state = PERF_EVENT_STATE_OFF;
2294 raw_spin_unlock_irq(&ctx->lock);
2295
2296 event_function_call(event, __perf_event_enable,
2297 ___perf_event_enable, event);
2298 }
2299
2300 /*
2301 * See perf_event_disable();
2302 */
2303 void perf_event_enable(struct perf_event *event)
2304 {
2305 struct perf_event_context *ctx;
2306
2307 ctx = perf_event_ctx_lock(event);
2308 _perf_event_enable(event);
2309 perf_event_ctx_unlock(event, ctx);
2310 }
2311 EXPORT_SYMBOL_GPL(perf_event_enable);
2312
2313 static int _perf_event_refresh(struct perf_event *event, int refresh)
2314 {
2315 /*
2316 * not supported on inherited events
2317 */
2318 if (event->attr.inherit || !is_sampling_event(event))
2319 return -EINVAL;
2320
2321 atomic_add(refresh, &event->event_limit);
2322 _perf_event_enable(event);
2323
2324 return 0;
2325 }
2326
2327 /*
2328 * See perf_event_disable()
2329 */
2330 int perf_event_refresh(struct perf_event *event, int refresh)
2331 {
2332 struct perf_event_context *ctx;
2333 int ret;
2334
2335 ctx = perf_event_ctx_lock(event);
2336 ret = _perf_event_refresh(event, refresh);
2337 perf_event_ctx_unlock(event, ctx);
2338
2339 return ret;
2340 }
2341 EXPORT_SYMBOL_GPL(perf_event_refresh);
2342
2343 static void ctx_sched_out(struct perf_event_context *ctx,
2344 struct perf_cpu_context *cpuctx,
2345 enum event_type_t event_type)
2346 {
2347 int is_active = ctx->is_active;
2348 struct perf_event *event;
2349
2350 lockdep_assert_held(&ctx->lock);
2351
2352 ctx->is_active &= ~event_type;
2353 if (likely(!ctx->nr_events))
2354 return;
2355
2356 update_context_time(ctx);
2357 update_cgrp_time_from_cpuctx(cpuctx);
2358 if (!ctx->nr_active)
2359 return;
2360
2361 perf_pmu_disable(ctx->pmu);
2362 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
2363 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2364 group_sched_out(event, cpuctx, ctx);
2365 }
2366
2367 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
2368 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2369 group_sched_out(event, cpuctx, ctx);
2370 }
2371 perf_pmu_enable(ctx->pmu);
2372 }
2373
2374 /*
2375 * Test whether two contexts are equivalent, i.e. whether they have both been
2376 * cloned from the same version of the same context.
2377 *
2378 * Equivalence is measured using a generation number in the context that is
2379 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2380 * and list_del_event().
2381 */
2382 static int context_equiv(struct perf_event_context *ctx1,
2383 struct perf_event_context *ctx2)
2384 {
2385 lockdep_assert_held(&ctx1->lock);
2386 lockdep_assert_held(&ctx2->lock);
2387
2388 /* Pinning disables the swap optimization */
2389 if (ctx1->pin_count || ctx2->pin_count)
2390 return 0;
2391
2392 /* If ctx1 is the parent of ctx2 */
2393 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2394 return 1;
2395
2396 /* If ctx2 is the parent of ctx1 */
2397 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2398 return 1;
2399
2400 /*
2401 * If ctx1 and ctx2 have the same parent; we flatten the parent
2402 * hierarchy, see perf_event_init_context().
2403 */
2404 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2405 ctx1->parent_gen == ctx2->parent_gen)
2406 return 1;
2407
2408 /* Unmatched */
2409 return 0;
2410 }
2411
2412 static void __perf_event_sync_stat(struct perf_event *event,
2413 struct perf_event *next_event)
2414 {
2415 u64 value;
2416
2417 if (!event->attr.inherit_stat)
2418 return;
2419
2420 /*
2421 * Update the event value, we cannot use perf_event_read()
2422 * because we're in the middle of a context switch and have IRQs
2423 * disabled, which upsets smp_call_function_single(), however
2424 * we know the event must be on the current CPU, therefore we
2425 * don't need to use it.
2426 */
2427 switch (event->state) {
2428 case PERF_EVENT_STATE_ACTIVE:
2429 event->pmu->read(event);
2430 /* fall-through */
2431
2432 case PERF_EVENT_STATE_INACTIVE:
2433 update_event_times(event);
2434 break;
2435
2436 default:
2437 break;
2438 }
2439
2440 /*
2441 * In order to keep per-task stats reliable we need to flip the event
2442 * values when we flip the contexts.
2443 */
2444 value = local64_read(&next_event->count);
2445 value = local64_xchg(&event->count, value);
2446 local64_set(&next_event->count, value);
2447
2448 swap(event->total_time_enabled, next_event->total_time_enabled);
2449 swap(event->total_time_running, next_event->total_time_running);
2450
2451 /*
2452 * Since we swizzled the values, update the user visible data too.
2453 */
2454 perf_event_update_userpage(event);
2455 perf_event_update_userpage(next_event);
2456 }
2457
2458 static void perf_event_sync_stat(struct perf_event_context *ctx,
2459 struct perf_event_context *next_ctx)
2460 {
2461 struct perf_event *event, *next_event;
2462
2463 if (!ctx->nr_stat)
2464 return;
2465
2466 update_context_time(ctx);
2467
2468 event = list_first_entry(&ctx->event_list,
2469 struct perf_event, event_entry);
2470
2471 next_event = list_first_entry(&next_ctx->event_list,
2472 struct perf_event, event_entry);
2473
2474 while (&event->event_entry != &ctx->event_list &&
2475 &next_event->event_entry != &next_ctx->event_list) {
2476
2477 __perf_event_sync_stat(event, next_event);
2478
2479 event = list_next_entry(event, event_entry);
2480 next_event = list_next_entry(next_event, event_entry);
2481 }
2482 }
2483
2484 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2485 struct task_struct *next)
2486 {
2487 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2488 struct perf_event_context *next_ctx;
2489 struct perf_event_context *parent, *next_parent;
2490 struct perf_cpu_context *cpuctx;
2491 int do_switch = 1;
2492
2493 if (likely(!ctx))
2494 return;
2495
2496 cpuctx = __get_cpu_context(ctx);
2497 if (!cpuctx->task_ctx)
2498 return;
2499
2500 rcu_read_lock();
2501 next_ctx = next->perf_event_ctxp[ctxn];
2502 if (!next_ctx)
2503 goto unlock;
2504
2505 parent = rcu_dereference(ctx->parent_ctx);
2506 next_parent = rcu_dereference(next_ctx->parent_ctx);
2507
2508 /* If neither context have a parent context; they cannot be clones. */
2509 if (!parent && !next_parent)
2510 goto unlock;
2511
2512 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2513 /*
2514 * Looks like the two contexts are clones, so we might be
2515 * able to optimize the context switch. We lock both
2516 * contexts and check that they are clones under the
2517 * lock (including re-checking that neither has been
2518 * uncloned in the meantime). It doesn't matter which
2519 * order we take the locks because no other cpu could
2520 * be trying to lock both of these tasks.
2521 */
2522 raw_spin_lock(&ctx->lock);
2523 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2524 if (context_equiv(ctx, next_ctx)) {
2525 /*
2526 * XXX do we need a memory barrier of sorts
2527 * wrt to rcu_dereference() of perf_event_ctxp
2528 */
2529 task->perf_event_ctxp[ctxn] = next_ctx;
2530 next->perf_event_ctxp[ctxn] = ctx;
2531 ctx->task = next;
2532 next_ctx->task = task;
2533
2534 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2535
2536 do_switch = 0;
2537
2538 perf_event_sync_stat(ctx, next_ctx);
2539 }
2540 raw_spin_unlock(&next_ctx->lock);
2541 raw_spin_unlock(&ctx->lock);
2542 }
2543 unlock:
2544 rcu_read_unlock();
2545
2546 if (do_switch) {
2547 raw_spin_lock(&ctx->lock);
2548 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2549 cpuctx->task_ctx = NULL;
2550 raw_spin_unlock(&ctx->lock);
2551 }
2552 }
2553
2554 void perf_sched_cb_dec(struct pmu *pmu)
2555 {
2556 this_cpu_dec(perf_sched_cb_usages);
2557 }
2558
2559 void perf_sched_cb_inc(struct pmu *pmu)
2560 {
2561 this_cpu_inc(perf_sched_cb_usages);
2562 }
2563
2564 /*
2565 * This function provides the context switch callback to the lower code
2566 * layer. It is invoked ONLY when the context switch callback is enabled.
2567 */
2568 static void perf_pmu_sched_task(struct task_struct *prev,
2569 struct task_struct *next,
2570 bool sched_in)
2571 {
2572 struct perf_cpu_context *cpuctx;
2573 struct pmu *pmu;
2574 unsigned long flags;
2575
2576 if (prev == next)
2577 return;
2578
2579 local_irq_save(flags);
2580
2581 rcu_read_lock();
2582
2583 list_for_each_entry_rcu(pmu, &pmus, entry) {
2584 if (pmu->sched_task) {
2585 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2586
2587 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2588
2589 perf_pmu_disable(pmu);
2590
2591 pmu->sched_task(cpuctx->task_ctx, sched_in);
2592
2593 perf_pmu_enable(pmu);
2594
2595 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2596 }
2597 }
2598
2599 rcu_read_unlock();
2600
2601 local_irq_restore(flags);
2602 }
2603
2604 static void perf_event_switch(struct task_struct *task,
2605 struct task_struct *next_prev, bool sched_in);
2606
2607 #define for_each_task_context_nr(ctxn) \
2608 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2609
2610 /*
2611 * Called from scheduler to remove the events of the current task,
2612 * with interrupts disabled.
2613 *
2614 * We stop each event and update the event value in event->count.
2615 *
2616 * This does not protect us against NMI, but disable()
2617 * sets the disabled bit in the control field of event _before_
2618 * accessing the event control register. If a NMI hits, then it will
2619 * not restart the event.
2620 */
2621 void __perf_event_task_sched_out(struct task_struct *task,
2622 struct task_struct *next)
2623 {
2624 int ctxn;
2625
2626 if (__this_cpu_read(perf_sched_cb_usages))
2627 perf_pmu_sched_task(task, next, false);
2628
2629 if (atomic_read(&nr_switch_events))
2630 perf_event_switch(task, next, false);
2631
2632 for_each_task_context_nr(ctxn)
2633 perf_event_context_sched_out(task, ctxn, next);
2634
2635 /*
2636 * if cgroup events exist on this CPU, then we need
2637 * to check if we have to switch out PMU state.
2638 * cgroup event are system-wide mode only
2639 */
2640 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2641 perf_cgroup_sched_out(task, next);
2642 }
2643
2644 static void task_ctx_sched_out(struct perf_event_context *ctx)
2645 {
2646 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2647
2648 if (!cpuctx->task_ctx)
2649 return;
2650
2651 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2652 return;
2653
2654 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2655 cpuctx->task_ctx = NULL;
2656 }
2657
2658 /*
2659 * Called with IRQs disabled
2660 */
2661 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2662 enum event_type_t event_type)
2663 {
2664 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2665 }
2666
2667 static void
2668 ctx_pinned_sched_in(struct perf_event_context *ctx,
2669 struct perf_cpu_context *cpuctx)
2670 {
2671 struct perf_event *event;
2672
2673 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2674 if (event->state <= PERF_EVENT_STATE_OFF)
2675 continue;
2676 if (!event_filter_match(event))
2677 continue;
2678
2679 /* may need to reset tstamp_enabled */
2680 if (is_cgroup_event(event))
2681 perf_cgroup_mark_enabled(event, ctx);
2682
2683 if (group_can_go_on(event, cpuctx, 1))
2684 group_sched_in(event, cpuctx, ctx);
2685
2686 /*
2687 * If this pinned group hasn't been scheduled,
2688 * put it in error state.
2689 */
2690 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2691 update_group_times(event);
2692 event->state = PERF_EVENT_STATE_ERROR;
2693 }
2694 }
2695 }
2696
2697 static void
2698 ctx_flexible_sched_in(struct perf_event_context *ctx,
2699 struct perf_cpu_context *cpuctx)
2700 {
2701 struct perf_event *event;
2702 int can_add_hw = 1;
2703
2704 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2705 /* Ignore events in OFF or ERROR state */
2706 if (event->state <= PERF_EVENT_STATE_OFF)
2707 continue;
2708 /*
2709 * Listen to the 'cpu' scheduling filter constraint
2710 * of events:
2711 */
2712 if (!event_filter_match(event))
2713 continue;
2714
2715 /* may need to reset tstamp_enabled */
2716 if (is_cgroup_event(event))
2717 perf_cgroup_mark_enabled(event, ctx);
2718
2719 if (group_can_go_on(event, cpuctx, can_add_hw)) {
2720 if (group_sched_in(event, cpuctx, ctx))
2721 can_add_hw = 0;
2722 }
2723 }
2724 }
2725
2726 static void
2727 ctx_sched_in(struct perf_event_context *ctx,
2728 struct perf_cpu_context *cpuctx,
2729 enum event_type_t event_type,
2730 struct task_struct *task)
2731 {
2732 int is_active = ctx->is_active;
2733 u64 now;
2734
2735 lockdep_assert_held(&ctx->lock);
2736
2737 ctx->is_active |= event_type;
2738 if (likely(!ctx->nr_events))
2739 return;
2740
2741 now = perf_clock();
2742 ctx->timestamp = now;
2743 perf_cgroup_set_timestamp(task, ctx);
2744 /*
2745 * First go through the list and put on any pinned groups
2746 * in order to give them the best chance of going on.
2747 */
2748 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2749 ctx_pinned_sched_in(ctx, cpuctx);
2750
2751 /* Then walk through the lower prio flexible groups */
2752 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2753 ctx_flexible_sched_in(ctx, cpuctx);
2754 }
2755
2756 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
2757 enum event_type_t event_type,
2758 struct task_struct *task)
2759 {
2760 struct perf_event_context *ctx = &cpuctx->ctx;
2761
2762 ctx_sched_in(ctx, cpuctx, event_type, task);
2763 }
2764
2765 static void perf_event_context_sched_in(struct perf_event_context *ctx,
2766 struct task_struct *task)
2767 {
2768 struct perf_cpu_context *cpuctx;
2769
2770 cpuctx = __get_cpu_context(ctx);
2771 if (cpuctx->task_ctx == ctx)
2772 return;
2773
2774 perf_ctx_lock(cpuctx, ctx);
2775 perf_pmu_disable(ctx->pmu);
2776 /*
2777 * We want to keep the following priority order:
2778 * cpu pinned (that don't need to move), task pinned,
2779 * cpu flexible, task flexible.
2780 */
2781 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2782
2783 if (ctx->nr_events)
2784 cpuctx->task_ctx = ctx;
2785
2786 perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2787
2788 perf_pmu_enable(ctx->pmu);
2789 perf_ctx_unlock(cpuctx, ctx);
2790 }
2791
2792 /*
2793 * Called from scheduler to add the events of the current task
2794 * with interrupts disabled.
2795 *
2796 * We restore the event value and then enable it.
2797 *
2798 * This does not protect us against NMI, but enable()
2799 * sets the enabled bit in the control field of event _before_
2800 * accessing the event control register. If a NMI hits, then it will
2801 * keep the event running.
2802 */
2803 void __perf_event_task_sched_in(struct task_struct *prev,
2804 struct task_struct *task)
2805 {
2806 struct perf_event_context *ctx;
2807 int ctxn;
2808
2809 for_each_task_context_nr(ctxn) {
2810 ctx = task->perf_event_ctxp[ctxn];
2811 if (likely(!ctx))
2812 continue;
2813
2814 perf_event_context_sched_in(ctx, task);
2815 }
2816 /*
2817 * if cgroup events exist on this CPU, then we need
2818 * to check if we have to switch in PMU state.
2819 * cgroup event are system-wide mode only
2820 */
2821 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2822 perf_cgroup_sched_in(prev, task);
2823
2824 if (atomic_read(&nr_switch_events))
2825 perf_event_switch(task, prev, true);
2826
2827 if (__this_cpu_read(perf_sched_cb_usages))
2828 perf_pmu_sched_task(prev, task, true);
2829 }
2830
2831 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2832 {
2833 u64 frequency = event->attr.sample_freq;
2834 u64 sec = NSEC_PER_SEC;
2835 u64 divisor, dividend;
2836
2837 int count_fls, nsec_fls, frequency_fls, sec_fls;
2838
2839 count_fls = fls64(count);
2840 nsec_fls = fls64(nsec);
2841 frequency_fls = fls64(frequency);
2842 sec_fls = 30;
2843
2844 /*
2845 * We got @count in @nsec, with a target of sample_freq HZ
2846 * the target period becomes:
2847 *
2848 * @count * 10^9
2849 * period = -------------------
2850 * @nsec * sample_freq
2851 *
2852 */
2853
2854 /*
2855 * Reduce accuracy by one bit such that @a and @b converge
2856 * to a similar magnitude.
2857 */
2858 #define REDUCE_FLS(a, b) \
2859 do { \
2860 if (a##_fls > b##_fls) { \
2861 a >>= 1; \
2862 a##_fls--; \
2863 } else { \
2864 b >>= 1; \
2865 b##_fls--; \
2866 } \
2867 } while (0)
2868
2869 /*
2870 * Reduce accuracy until either term fits in a u64, then proceed with
2871 * the other, so that finally we can do a u64/u64 division.
2872 */
2873 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2874 REDUCE_FLS(nsec, frequency);
2875 REDUCE_FLS(sec, count);
2876 }
2877
2878 if (count_fls + sec_fls > 64) {
2879 divisor = nsec * frequency;
2880
2881 while (count_fls + sec_fls > 64) {
2882 REDUCE_FLS(count, sec);
2883 divisor >>= 1;
2884 }
2885
2886 dividend = count * sec;
2887 } else {
2888 dividend = count * sec;
2889
2890 while (nsec_fls + frequency_fls > 64) {
2891 REDUCE_FLS(nsec, frequency);
2892 dividend >>= 1;
2893 }
2894
2895 divisor = nsec * frequency;
2896 }
2897
2898 if (!divisor)
2899 return dividend;
2900
2901 return div64_u64(dividend, divisor);
2902 }
2903
2904 static DEFINE_PER_CPU(int, perf_throttled_count);
2905 static DEFINE_PER_CPU(u64, perf_throttled_seq);
2906
2907 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2908 {
2909 struct hw_perf_event *hwc = &event->hw;
2910 s64 period, sample_period;
2911 s64 delta;
2912
2913 period = perf_calculate_period(event, nsec, count);
2914
2915 delta = (s64)(period - hwc->sample_period);
2916 delta = (delta + 7) / 8; /* low pass filter */
2917
2918 sample_period = hwc->sample_period + delta;
2919
2920 if (!sample_period)
2921 sample_period = 1;
2922
2923 hwc->sample_period = sample_period;
2924
2925 if (local64_read(&hwc->period_left) > 8*sample_period) {
2926 if (disable)
2927 event->pmu->stop(event, PERF_EF_UPDATE);
2928
2929 local64_set(&hwc->period_left, 0);
2930
2931 if (disable)
2932 event->pmu->start(event, PERF_EF_RELOAD);
2933 }
2934 }
2935
2936 /*
2937 * combine freq adjustment with unthrottling to avoid two passes over the
2938 * events. At the same time, make sure, having freq events does not change
2939 * the rate of unthrottling as that would introduce bias.
2940 */
2941 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2942 int needs_unthr)
2943 {
2944 struct perf_event *event;
2945 struct hw_perf_event *hwc;
2946 u64 now, period = TICK_NSEC;
2947 s64 delta;
2948
2949 /*
2950 * only need to iterate over all events iff:
2951 * - context have events in frequency mode (needs freq adjust)
2952 * - there are events to unthrottle on this cpu
2953 */
2954 if (!(ctx->nr_freq || needs_unthr))
2955 return;
2956
2957 raw_spin_lock(&ctx->lock);
2958 perf_pmu_disable(ctx->pmu);
2959
2960 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2961 if (event->state != PERF_EVENT_STATE_ACTIVE)
2962 continue;
2963
2964 if (!event_filter_match(event))
2965 continue;
2966
2967 perf_pmu_disable(event->pmu);
2968
2969 hwc = &event->hw;
2970
2971 if (hwc->interrupts == MAX_INTERRUPTS) {
2972 hwc->interrupts = 0;
2973 perf_log_throttle(event, 1);
2974 event->pmu->start(event, 0);
2975 }
2976
2977 if (!event->attr.freq || !event->attr.sample_freq)
2978 goto next;
2979
2980 /*
2981 * stop the event and update event->count
2982 */
2983 event->pmu->stop(event, PERF_EF_UPDATE);
2984
2985 now = local64_read(&event->count);
2986 delta = now - hwc->freq_count_stamp;
2987 hwc->freq_count_stamp = now;
2988
2989 /*
2990 * restart the event
2991 * reload only if value has changed
2992 * we have stopped the event so tell that
2993 * to perf_adjust_period() to avoid stopping it
2994 * twice.
2995 */
2996 if (delta > 0)
2997 perf_adjust_period(event, period, delta, false);
2998
2999 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3000 next:
3001 perf_pmu_enable(event->pmu);
3002 }
3003
3004 perf_pmu_enable(ctx->pmu);
3005 raw_spin_unlock(&ctx->lock);
3006 }
3007
3008 /*
3009 * Round-robin a context's events:
3010 */
3011 static void rotate_ctx(struct perf_event_context *ctx)
3012 {
3013 /*
3014 * Rotate the first entry last of non-pinned groups. Rotation might be
3015 * disabled by the inheritance code.
3016 */
3017 if (!ctx->rotate_disable)
3018 list_rotate_left(&ctx->flexible_groups);
3019 }
3020
3021 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3022 {
3023 struct perf_event_context *ctx = NULL;
3024 int rotate = 0;
3025
3026 if (cpuctx->ctx.nr_events) {
3027 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3028 rotate = 1;
3029 }
3030
3031 ctx = cpuctx->task_ctx;
3032 if (ctx && ctx->nr_events) {
3033 if (ctx->nr_events != ctx->nr_active)
3034 rotate = 1;
3035 }
3036
3037 if (!rotate)
3038 goto done;
3039
3040 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3041 perf_pmu_disable(cpuctx->ctx.pmu);
3042
3043 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3044 if (ctx)
3045 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3046
3047 rotate_ctx(&cpuctx->ctx);
3048 if (ctx)
3049 rotate_ctx(ctx);
3050
3051 perf_event_sched_in(cpuctx, ctx, current);
3052
3053 perf_pmu_enable(cpuctx->ctx.pmu);
3054 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3055 done:
3056
3057 return rotate;
3058 }
3059
3060 #ifdef CONFIG_NO_HZ_FULL
3061 bool perf_event_can_stop_tick(void)
3062 {
3063 if (atomic_read(&nr_freq_events) ||
3064 __this_cpu_read(perf_throttled_count))
3065 return false;
3066 else
3067 return true;
3068 }
3069 #endif
3070
3071 void perf_event_task_tick(void)
3072 {
3073 struct list_head *head = this_cpu_ptr(&active_ctx_list);
3074 struct perf_event_context *ctx, *tmp;
3075 int throttled;
3076
3077 WARN_ON(!irqs_disabled());
3078
3079 __this_cpu_inc(perf_throttled_seq);
3080 throttled = __this_cpu_xchg(perf_throttled_count, 0);
3081
3082 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3083 perf_adjust_freq_unthr_context(ctx, throttled);
3084 }
3085
3086 static int event_enable_on_exec(struct perf_event *event,
3087 struct perf_event_context *ctx)
3088 {
3089 if (!event->attr.enable_on_exec)
3090 return 0;
3091
3092 event->attr.enable_on_exec = 0;
3093 if (event->state >= PERF_EVENT_STATE_INACTIVE)
3094 return 0;
3095
3096 __perf_event_mark_enabled(event);
3097
3098 return 1;
3099 }
3100
3101 /*
3102 * Enable all of a task's events that have been marked enable-on-exec.
3103 * This expects task == current.
3104 */
3105 static void perf_event_enable_on_exec(int ctxn)
3106 {
3107 struct perf_event_context *ctx, *clone_ctx = NULL;
3108 struct perf_event *event;
3109 unsigned long flags;
3110 int enabled = 0;
3111 int ret;
3112
3113 local_irq_save(flags);
3114 ctx = current->perf_event_ctxp[ctxn];
3115 if (!ctx || !ctx->nr_events)
3116 goto out;
3117
3118 /*
3119 * We must ctxsw out cgroup events to avoid conflict
3120 * when invoking perf_task_event_sched_in() later on
3121 * in this function. Otherwise we end up trying to
3122 * ctxswin cgroup events which are already scheduled
3123 * in.
3124 */
3125 perf_cgroup_sched_out(current, NULL);
3126
3127 raw_spin_lock(&ctx->lock);
3128 task_ctx_sched_out(ctx);
3129
3130 list_for_each_entry(event, &ctx->event_list, event_entry) {
3131 ret = event_enable_on_exec(event, ctx);
3132 if (ret)
3133 enabled = 1;
3134 }
3135
3136 /*
3137 * Unclone this context if we enabled any event.
3138 */
3139 if (enabled)
3140 clone_ctx = unclone_ctx(ctx);
3141
3142 raw_spin_unlock(&ctx->lock);
3143
3144 /*
3145 * Also calls ctxswin for cgroup events, if any:
3146 */
3147 perf_event_context_sched_in(ctx, ctx->task);
3148 out:
3149 local_irq_restore(flags);
3150
3151 if (clone_ctx)
3152 put_ctx(clone_ctx);
3153 }
3154
3155 void perf_event_exec(void)
3156 {
3157 int ctxn;
3158
3159 rcu_read_lock();
3160 for_each_task_context_nr(ctxn)
3161 perf_event_enable_on_exec(ctxn);
3162 rcu_read_unlock();
3163 }
3164
3165 struct perf_read_data {
3166 struct perf_event *event;
3167 bool group;
3168 int ret;
3169 };
3170
3171 /*
3172 * Cross CPU call to read the hardware event
3173 */
3174 static void __perf_event_read(void *info)
3175 {
3176 struct perf_read_data *data = info;
3177 struct perf_event *sub, *event = data->event;
3178 struct perf_event_context *ctx = event->ctx;
3179 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3180 struct pmu *pmu = event->pmu;
3181
3182 /*
3183 * If this is a task context, we need to check whether it is
3184 * the current task context of this cpu. If not it has been
3185 * scheduled out before the smp call arrived. In that case
3186 * event->count would have been updated to a recent sample
3187 * when the event was scheduled out.
3188 */
3189 if (ctx->task && cpuctx->task_ctx != ctx)
3190 return;
3191
3192 raw_spin_lock(&ctx->lock);
3193 if (ctx->is_active) {
3194 update_context_time(ctx);
3195 update_cgrp_time_from_event(event);
3196 }
3197
3198 update_event_times(event);
3199 if (event->state != PERF_EVENT_STATE_ACTIVE)
3200 goto unlock;
3201
3202 if (!data->group) {
3203 pmu->read(event);
3204 data->ret = 0;
3205 goto unlock;
3206 }
3207
3208 pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3209
3210 pmu->read(event);
3211
3212 list_for_each_entry(sub, &event->sibling_list, group_entry) {
3213 update_event_times(sub);
3214 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3215 /*
3216 * Use sibling's PMU rather than @event's since
3217 * sibling could be on different (eg: software) PMU.
3218 */
3219 sub->pmu->read(sub);
3220 }
3221 }
3222
3223 data->ret = pmu->commit_txn(pmu);
3224
3225 unlock:
3226 raw_spin_unlock(&ctx->lock);
3227 }
3228
3229 static inline u64 perf_event_count(struct perf_event *event)
3230 {
3231 if (event->pmu->count)
3232 return event->pmu->count(event);
3233
3234 return __perf_event_count(event);
3235 }
3236
3237 /*
3238 * NMI-safe method to read a local event, that is an event that
3239 * is:
3240 * - either for the current task, or for this CPU
3241 * - does not have inherit set, for inherited task events
3242 * will not be local and we cannot read them atomically
3243 * - must not have a pmu::count method
3244 */
3245 u64 perf_event_read_local(struct perf_event *event)
3246 {
3247 unsigned long flags;
3248 u64 val;
3249
3250 /*
3251 * Disabling interrupts avoids all counter scheduling (context
3252 * switches, timer based rotation and IPIs).
3253 */
3254 local_irq_save(flags);
3255
3256 /* If this is a per-task event, it must be for current */
3257 WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
3258 event->hw.target != current);
3259
3260 /* If this is a per-CPU event, it must be for this CPU */
3261 WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
3262 event->cpu != smp_processor_id());
3263
3264 /*
3265 * It must not be an event with inherit set, we cannot read
3266 * all child counters from atomic context.
3267 */
3268 WARN_ON_ONCE(event->attr.inherit);
3269
3270 /*
3271 * It must not have a pmu::count method, those are not
3272 * NMI safe.
3273 */
3274 WARN_ON_ONCE(event->pmu->count);
3275
3276 /*
3277 * If the event is currently on this CPU, its either a per-task event,
3278 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3279 * oncpu == -1).
3280 */
3281 if (event->oncpu == smp_processor_id())
3282 event->pmu->read(event);
3283
3284 val = local64_read(&event->count);
3285 local_irq_restore(flags);
3286
3287 return val;
3288 }
3289
3290 static int perf_event_read(struct perf_event *event, bool group)
3291 {
3292 int ret = 0;
3293
3294 /*
3295 * If event is enabled and currently active on a CPU, update the
3296 * value in the event structure:
3297 */
3298 if (event->state == PERF_EVENT_STATE_ACTIVE) {
3299 struct perf_read_data data = {
3300 .event = event,
3301 .group = group,
3302 .ret = 0,
3303 };
3304 smp_call_function_single(event->oncpu,
3305 __perf_event_read, &data, 1);
3306 ret = data.ret;
3307 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
3308 struct perf_event_context *ctx = event->ctx;
3309 unsigned long flags;
3310
3311 raw_spin_lock_irqsave(&ctx->lock, flags);
3312 /*
3313 * may read while context is not active
3314 * (e.g., thread is blocked), in that case
3315 * we cannot update context time
3316 */
3317 if (ctx->is_active) {
3318 update_context_time(ctx);
3319 update_cgrp_time_from_event(event);
3320 }
3321 if (group)
3322 update_group_times(event);
3323 else
3324 update_event_times(event);
3325 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3326 }
3327
3328 return ret;
3329 }
3330
3331 /*
3332 * Initialize the perf_event context in a task_struct:
3333 */
3334 static void __perf_event_init_context(struct perf_event_context *ctx)
3335 {
3336 raw_spin_lock_init(&ctx->lock);
3337 mutex_init(&ctx->mutex);
3338 INIT_LIST_HEAD(&ctx->active_ctx_list);
3339 INIT_LIST_HEAD(&ctx->pinned_groups);
3340 INIT_LIST_HEAD(&ctx->flexible_groups);
3341 INIT_LIST_HEAD(&ctx->event_list);
3342 atomic_set(&ctx->refcount, 1);
3343 INIT_DELAYED_WORK(&ctx->orphans_remove, orphans_remove_work);
3344 }
3345
3346 static struct perf_event_context *
3347 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3348 {
3349 struct perf_event_context *ctx;
3350
3351 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3352 if (!ctx)
3353 return NULL;
3354
3355 __perf_event_init_context(ctx);
3356 if (task) {
3357 ctx->task = task;
3358 get_task_struct(task);
3359 }
3360 ctx->pmu = pmu;
3361
3362 return ctx;
3363 }
3364
3365 static struct task_struct *
3366 find_lively_task_by_vpid(pid_t vpid)
3367 {
3368 struct task_struct *task;
3369 int err;
3370
3371 rcu_read_lock();
3372 if (!vpid)
3373 task = current;
3374 else
3375 task = find_task_by_vpid(vpid);
3376 if (task)
3377 get_task_struct(task);
3378 rcu_read_unlock();
3379
3380 if (!task)
3381 return ERR_PTR(-ESRCH);
3382
3383 /* Reuse ptrace permission checks for now. */
3384 err = -EACCES;
3385 if (!ptrace_may_access(task, PTRACE_MODE_READ))
3386 goto errout;
3387
3388 return task;
3389 errout:
3390 put_task_struct(task);
3391 return ERR_PTR(err);
3392
3393 }
3394
3395 /*
3396 * Returns a matching context with refcount and pincount.
3397 */
3398 static struct perf_event_context *
3399 find_get_context(struct pmu *pmu, struct task_struct *task,
3400 struct perf_event *event)
3401 {
3402 struct perf_event_context *ctx, *clone_ctx = NULL;
3403 struct perf_cpu_context *cpuctx;
3404 void *task_ctx_data = NULL;
3405 unsigned long flags;
3406 int ctxn, err;
3407 int cpu = event->cpu;
3408
3409 if (!task) {
3410 /* Must be root to operate on a CPU event: */
3411 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3412 return ERR_PTR(-EACCES);
3413
3414 /*
3415 * We could be clever and allow to attach a event to an
3416 * offline CPU and activate it when the CPU comes up, but
3417 * that's for later.
3418 */
3419 if (!cpu_online(cpu))
3420 return ERR_PTR(-ENODEV);
3421
3422 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3423 ctx = &cpuctx->ctx;
3424 get_ctx(ctx);
3425 ++ctx->pin_count;
3426
3427 return ctx;
3428 }
3429
3430 err = -EINVAL;
3431 ctxn = pmu->task_ctx_nr;
3432 if (ctxn < 0)
3433 goto errout;
3434
3435 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3436 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3437 if (!task_ctx_data) {
3438 err = -ENOMEM;
3439 goto errout;
3440 }
3441 }
3442
3443 retry:
3444 ctx = perf_lock_task_context(task, ctxn, &flags);
3445 if (ctx) {
3446 clone_ctx = unclone_ctx(ctx);
3447 ++ctx->pin_count;
3448
3449 if (task_ctx_data && !ctx->task_ctx_data) {
3450 ctx->task_ctx_data = task_ctx_data;
3451 task_ctx_data = NULL;
3452 }
3453 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3454
3455 if (clone_ctx)
3456 put_ctx(clone_ctx);
3457 } else {
3458 ctx = alloc_perf_context(pmu, task);
3459 err = -ENOMEM;
3460 if (!ctx)
3461 goto errout;
3462
3463 if (task_ctx_data) {
3464 ctx->task_ctx_data = task_ctx_data;
3465 task_ctx_data = NULL;
3466 }
3467
3468 err = 0;
3469 mutex_lock(&task->perf_event_mutex);
3470 /*
3471 * If it has already passed perf_event_exit_task().
3472 * we must see PF_EXITING, it takes this mutex too.
3473 */
3474 if (task->flags & PF_EXITING)
3475 err = -ESRCH;
3476 else if (task->perf_event_ctxp[ctxn])
3477 err = -EAGAIN;
3478 else {
3479 get_ctx(ctx);
3480 ++ctx->pin_count;
3481 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3482 }
3483 mutex_unlock(&task->perf_event_mutex);
3484
3485 if (unlikely(err)) {
3486 put_ctx(ctx);
3487
3488 if (err == -EAGAIN)
3489 goto retry;
3490 goto errout;
3491 }
3492 }
3493
3494 kfree(task_ctx_data);
3495 return ctx;
3496
3497 errout:
3498 kfree(task_ctx_data);
3499 return ERR_PTR(err);
3500 }
3501
3502 static void perf_event_free_filter(struct perf_event *event);
3503 static void perf_event_free_bpf_prog(struct perf_event *event);
3504
3505 static void free_event_rcu(struct rcu_head *head)
3506 {
3507 struct perf_event *event;
3508
3509 event = container_of(head, struct perf_event, rcu_head);
3510 if (event->ns)
3511 put_pid_ns(event->ns);
3512 perf_event_free_filter(event);
3513 kfree(event);
3514 }
3515
3516 static void ring_buffer_attach(struct perf_event *event,
3517 struct ring_buffer *rb);
3518
3519 static void unaccount_event_cpu(struct perf_event *event, int cpu)
3520 {
3521 if (event->parent)
3522 return;
3523
3524 if (is_cgroup_event(event))
3525 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3526 }
3527
3528 static void unaccount_event(struct perf_event *event)
3529 {
3530 if (event->parent)
3531 return;
3532
3533 if (event->attach_state & PERF_ATTACH_TASK)
3534 static_key_slow_dec_deferred(&perf_sched_events);
3535 if (event->attr.mmap || event->attr.mmap_data)
3536 atomic_dec(&nr_mmap_events);
3537 if (event->attr.comm)
3538 atomic_dec(&nr_comm_events);
3539 if (event->attr.task)
3540 atomic_dec(&nr_task_events);
3541 if (event->attr.freq)
3542 atomic_dec(&nr_freq_events);
3543 if (event->attr.context_switch) {
3544 static_key_slow_dec_deferred(&perf_sched_events);
3545 atomic_dec(&nr_switch_events);
3546 }
3547 if (is_cgroup_event(event))
3548 static_key_slow_dec_deferred(&perf_sched_events);
3549 if (has_branch_stack(event))
3550 static_key_slow_dec_deferred(&perf_sched_events);
3551
3552 unaccount_event_cpu(event, event->cpu);
3553 }
3554
3555 /*
3556 * The following implement mutual exclusion of events on "exclusive" pmus
3557 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3558 * at a time, so we disallow creating events that might conflict, namely:
3559 *
3560 * 1) cpu-wide events in the presence of per-task events,
3561 * 2) per-task events in the presence of cpu-wide events,
3562 * 3) two matching events on the same context.
3563 *
3564 * The former two cases are handled in the allocation path (perf_event_alloc(),
3565 * __free_event()), the latter -- before the first perf_install_in_context().
3566 */
3567 static int exclusive_event_init(struct perf_event *event)
3568 {
3569 struct pmu *pmu = event->pmu;
3570
3571 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3572 return 0;
3573
3574 /*
3575 * Prevent co-existence of per-task and cpu-wide events on the
3576 * same exclusive pmu.
3577 *
3578 * Negative pmu::exclusive_cnt means there are cpu-wide
3579 * events on this "exclusive" pmu, positive means there are
3580 * per-task events.
3581 *
3582 * Since this is called in perf_event_alloc() path, event::ctx
3583 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
3584 * to mean "per-task event", because unlike other attach states it
3585 * never gets cleared.
3586 */
3587 if (event->attach_state & PERF_ATTACH_TASK) {
3588 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
3589 return -EBUSY;
3590 } else {
3591 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
3592 return -EBUSY;
3593 }
3594
3595 return 0;
3596 }
3597
3598 static void exclusive_event_destroy(struct perf_event *event)
3599 {
3600 struct pmu *pmu = event->pmu;
3601
3602 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3603 return;
3604
3605 /* see comment in exclusive_event_init() */
3606 if (event->attach_state & PERF_ATTACH_TASK)
3607 atomic_dec(&pmu->exclusive_cnt);
3608 else
3609 atomic_inc(&pmu->exclusive_cnt);
3610 }
3611
3612 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
3613 {
3614 if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) &&
3615 (e1->cpu == e2->cpu ||
3616 e1->cpu == -1 ||
3617 e2->cpu == -1))
3618 return true;
3619 return false;
3620 }
3621
3622 /* Called under the same ctx::mutex as perf_install_in_context() */
3623 static bool exclusive_event_installable(struct perf_event *event,
3624 struct perf_event_context *ctx)
3625 {
3626 struct perf_event *iter_event;
3627 struct pmu *pmu = event->pmu;
3628
3629 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3630 return true;
3631
3632 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
3633 if (exclusive_event_match(iter_event, event))
3634 return false;
3635 }
3636
3637 return true;
3638 }
3639
3640 static void __free_event(struct perf_event *event)
3641 {
3642 if (!event->parent) {
3643 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3644 put_callchain_buffers();
3645 }
3646
3647 perf_event_free_bpf_prog(event);
3648
3649 if (event->destroy)
3650 event->destroy(event);
3651
3652 if (event->ctx)
3653 put_ctx(event->ctx);
3654
3655 if (event->pmu) {
3656 exclusive_event_destroy(event);
3657 module_put(event->pmu->module);
3658 }
3659
3660 call_rcu(&event->rcu_head, free_event_rcu);
3661 }
3662
3663 static void _free_event(struct perf_event *event)
3664 {
3665 irq_work_sync(&event->pending);
3666
3667 unaccount_event(event);
3668
3669 if (event->rb) {
3670 /*
3671 * Can happen when we close an event with re-directed output.
3672 *
3673 * Since we have a 0 refcount, perf_mmap_close() will skip
3674 * over us; possibly making our ring_buffer_put() the last.
3675 */
3676 mutex_lock(&event->mmap_mutex);
3677 ring_buffer_attach(event, NULL);
3678 mutex_unlock(&event->mmap_mutex);
3679 }
3680
3681 if (is_cgroup_event(event))
3682 perf_detach_cgroup(event);
3683
3684 __free_event(event);
3685 }
3686
3687 /*
3688 * Used to free events which have a known refcount of 1, such as in error paths
3689 * where the event isn't exposed yet and inherited events.
3690 */
3691 static void free_event(struct perf_event *event)
3692 {
3693 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
3694 "unexpected event refcount: %ld; ptr=%p\n",
3695 atomic_long_read(&event->refcount), event)) {
3696 /* leak to avoid use-after-free */
3697 return;
3698 }
3699
3700 _free_event(event);
3701 }
3702
3703 /*
3704 * Remove user event from the owner task.
3705 */
3706 static void perf_remove_from_owner(struct perf_event *event)
3707 {
3708 struct task_struct *owner;
3709
3710 rcu_read_lock();
3711 owner = ACCESS_ONCE(event->owner);
3712 /*
3713 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
3714 * !owner it means the list deletion is complete and we can indeed
3715 * free this event, otherwise we need to serialize on
3716 * owner->perf_event_mutex.
3717 */
3718 smp_read_barrier_depends();
3719 if (owner) {
3720 /*
3721 * Since delayed_put_task_struct() also drops the last
3722 * task reference we can safely take a new reference
3723 * while holding the rcu_read_lock().
3724 */
3725 get_task_struct(owner);
3726 }
3727 rcu_read_unlock();
3728
3729 if (owner) {
3730 /*
3731 * If we're here through perf_event_exit_task() we're already
3732 * holding ctx->mutex which would be an inversion wrt. the
3733 * normal lock order.
3734 *
3735 * However we can safely take this lock because its the child
3736 * ctx->mutex.
3737 */
3738 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
3739
3740 /*
3741 * We have to re-check the event->owner field, if it is cleared
3742 * we raced with perf_event_exit_task(), acquiring the mutex
3743 * ensured they're done, and we can proceed with freeing the
3744 * event.
3745 */
3746 if (event->owner)
3747 list_del_init(&event->owner_entry);
3748 mutex_unlock(&owner->perf_event_mutex);
3749 put_task_struct(owner);
3750 }
3751 }
3752
3753 static void put_event(struct perf_event *event)
3754 {
3755 struct perf_event_context *ctx;
3756
3757 if (!atomic_long_dec_and_test(&event->refcount))
3758 return;
3759
3760 if (!is_kernel_event(event))
3761 perf_remove_from_owner(event);
3762
3763 /*
3764 * There are two ways this annotation is useful:
3765 *
3766 * 1) there is a lock recursion from perf_event_exit_task
3767 * see the comment there.
3768 *
3769 * 2) there is a lock-inversion with mmap_sem through
3770 * perf_read_group(), which takes faults while
3771 * holding ctx->mutex, however this is called after
3772 * the last filedesc died, so there is no possibility
3773 * to trigger the AB-BA case.
3774 */
3775 ctx = perf_event_ctx_lock_nested(event, SINGLE_DEPTH_NESTING);
3776 WARN_ON_ONCE(ctx->parent_ctx);
3777 perf_remove_from_context(event, true);
3778 perf_event_ctx_unlock(event, ctx);
3779
3780 _free_event(event);
3781 }
3782
3783 int perf_event_release_kernel(struct perf_event *event)
3784 {
3785 put_event(event);
3786 return 0;
3787 }
3788 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
3789
3790 /*
3791 * Called when the last reference to the file is gone.
3792 */
3793 static int perf_release(struct inode *inode, struct file *file)
3794 {
3795 put_event(file->private_data);
3796 return 0;
3797 }
3798
3799 /*
3800 * Remove all orphanes events from the context.
3801 */
3802 static void orphans_remove_work(struct work_struct *work)
3803 {
3804 struct perf_event_context *ctx;
3805 struct perf_event *event, *tmp;
3806
3807 ctx = container_of(work, struct perf_event_context,
3808 orphans_remove.work);
3809
3810 mutex_lock(&ctx->mutex);
3811 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) {
3812 struct perf_event *parent_event = event->parent;
3813
3814 if (!is_orphaned_child(event))
3815 continue;
3816
3817 perf_remove_from_context(event, true);
3818
3819 mutex_lock(&parent_event->child_mutex);
3820 list_del_init(&event->child_list);
3821 mutex_unlock(&parent_event->child_mutex);
3822
3823 free_event(event);
3824 put_event(parent_event);
3825 }
3826
3827 raw_spin_lock_irq(&ctx->lock);
3828 ctx->orphans_remove_sched = false;
3829 raw_spin_unlock_irq(&ctx->lock);
3830 mutex_unlock(&ctx->mutex);
3831
3832 put_ctx(ctx);
3833 }
3834
3835 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3836 {
3837 struct perf_event *child;
3838 u64 total = 0;
3839
3840 *enabled = 0;
3841 *running = 0;
3842
3843 mutex_lock(&event->child_mutex);
3844
3845 (void)perf_event_read(event, false);
3846 total += perf_event_count(event);
3847
3848 *enabled += event->total_time_enabled +
3849 atomic64_read(&event->child_total_time_enabled);
3850 *running += event->total_time_running +
3851 atomic64_read(&event->child_total_time_running);
3852
3853 list_for_each_entry(child, &event->child_list, child_list) {
3854 (void)perf_event_read(child, false);
3855 total += perf_event_count(child);
3856 *enabled += child->total_time_enabled;
3857 *running += child->total_time_running;
3858 }
3859 mutex_unlock(&event->child_mutex);
3860
3861 return total;
3862 }
3863 EXPORT_SYMBOL_GPL(perf_event_read_value);
3864
3865 static int __perf_read_group_add(struct perf_event *leader,
3866 u64 read_format, u64 *values)
3867 {
3868 struct perf_event *sub;
3869 int n = 1; /* skip @nr */
3870 int ret;
3871
3872 ret = perf_event_read(leader, true);
3873 if (ret)
3874 return ret;
3875
3876 /*
3877 * Since we co-schedule groups, {enabled,running} times of siblings
3878 * will be identical to those of the leader, so we only publish one
3879 * set.
3880 */
3881 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3882 values[n++] += leader->total_time_enabled +
3883 atomic64_read(&leader->child_total_time_enabled);
3884 }
3885
3886 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3887 values[n++] += leader->total_time_running +
3888 atomic64_read(&leader->child_total_time_running);
3889 }
3890
3891 /*
3892 * Write {count,id} tuples for every sibling.
3893 */
3894 values[n++] += perf_event_count(leader);
3895 if (read_format & PERF_FORMAT_ID)
3896 values[n++] = primary_event_id(leader);
3897
3898 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3899 values[n++] += perf_event_count(sub);
3900 if (read_format & PERF_FORMAT_ID)
3901 values[n++] = primary_event_id(sub);
3902 }
3903
3904 return 0;
3905 }
3906
3907 static int perf_read_group(struct perf_event *event,
3908 u64 read_format, char __user *buf)
3909 {
3910 struct perf_event *leader = event->group_leader, *child;
3911 struct perf_event_context *ctx = leader->ctx;
3912 int ret;
3913 u64 *values;
3914
3915 lockdep_assert_held(&ctx->mutex);
3916
3917 values = kzalloc(event->read_size, GFP_KERNEL);
3918 if (!values)
3919 return -ENOMEM;
3920
3921 values[0] = 1 + leader->nr_siblings;
3922
3923 /*
3924 * By locking the child_mutex of the leader we effectively
3925 * lock the child list of all siblings.. XXX explain how.
3926 */
3927 mutex_lock(&leader->child_mutex);
3928
3929 ret = __perf_read_group_add(leader, read_format, values);
3930 if (ret)
3931 goto unlock;
3932
3933 list_for_each_entry(child, &leader->child_list, child_list) {
3934 ret = __perf_read_group_add(child, read_format, values);
3935 if (ret)
3936 goto unlock;
3937 }
3938
3939 mutex_unlock(&leader->child_mutex);
3940
3941 ret = event->read_size;
3942 if (copy_to_user(buf, values, event->read_size))
3943 ret = -EFAULT;
3944 goto out;
3945
3946 unlock:
3947 mutex_unlock(&leader->child_mutex);
3948 out:
3949 kfree(values);
3950 return ret;
3951 }
3952
3953 static int perf_read_one(struct perf_event *event,
3954 u64 read_format, char __user *buf)
3955 {
3956 u64 enabled, running;
3957 u64 values[4];
3958 int n = 0;
3959
3960 values[n++] = perf_event_read_value(event, &enabled, &running);
3961 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3962 values[n++] = enabled;
3963 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3964 values[n++] = running;
3965 if (read_format & PERF_FORMAT_ID)
3966 values[n++] = primary_event_id(event);
3967
3968 if (copy_to_user(buf, values, n * sizeof(u64)))
3969 return -EFAULT;
3970
3971 return n * sizeof(u64);
3972 }
3973
3974 static bool is_event_hup(struct perf_event *event)
3975 {
3976 bool no_children;
3977
3978 if (event->state != PERF_EVENT_STATE_EXIT)
3979 return false;
3980
3981 mutex_lock(&event->child_mutex);
3982 no_children = list_empty(&event->child_list);
3983 mutex_unlock(&event->child_mutex);
3984 return no_children;
3985 }
3986
3987 /*
3988 * Read the performance event - simple non blocking version for now
3989 */
3990 static ssize_t
3991 __perf_read(struct perf_event *event, char __user *buf, size_t count)
3992 {
3993 u64 read_format = event->attr.read_format;
3994 int ret;
3995
3996 /*
3997 * Return end-of-file for a read on a event that is in
3998 * error state (i.e. because it was pinned but it couldn't be
3999 * scheduled on to the CPU at some point).
4000 */
4001 if (event->state == PERF_EVENT_STATE_ERROR)
4002 return 0;
4003
4004 if (count < event->read_size)
4005 return -ENOSPC;
4006
4007 WARN_ON_ONCE(event->ctx->parent_ctx);
4008 if (read_format & PERF_FORMAT_GROUP)
4009 ret = perf_read_group(event, read_format, buf);
4010 else
4011 ret = perf_read_one(event, read_format, buf);
4012
4013 return ret;
4014 }
4015
4016 static ssize_t
4017 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4018 {
4019 struct perf_event *event = file->private_data;
4020 struct perf_event_context *ctx;
4021 int ret;
4022
4023 ctx = perf_event_ctx_lock(event);
4024 ret = __perf_read(event, buf, count);
4025 perf_event_ctx_unlock(event, ctx);
4026
4027 return ret;
4028 }
4029
4030 static unsigned int perf_poll(struct file *file, poll_table *wait)
4031 {
4032 struct perf_event *event = file->private_data;
4033 struct ring_buffer *rb;
4034 unsigned int events = POLLHUP;
4035
4036 poll_wait(file, &event->waitq, wait);
4037
4038 if (is_event_hup(event))
4039 return events;
4040
4041 /*
4042 * Pin the event->rb by taking event->mmap_mutex; otherwise
4043 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4044 */
4045 mutex_lock(&event->mmap_mutex);
4046 rb = event->rb;
4047 if (rb)
4048 events = atomic_xchg(&rb->poll, 0);
4049 mutex_unlock(&event->mmap_mutex);
4050 return events;
4051 }
4052
4053 static void _perf_event_reset(struct perf_event *event)
4054 {
4055 (void)perf_event_read(event, false);
4056 local64_set(&event->count, 0);
4057 perf_event_update_userpage(event);
4058 }
4059
4060 /*
4061 * Holding the top-level event's child_mutex means that any
4062 * descendant process that has inherited this event will block
4063 * in sync_child_event if it goes to exit, thus satisfying the
4064 * task existence requirements of perf_event_enable/disable.
4065 */
4066 static void perf_event_for_each_child(struct perf_event *event,
4067 void (*func)(struct perf_event *))
4068 {
4069 struct perf_event *child;
4070
4071 WARN_ON_ONCE(event->ctx->parent_ctx);
4072
4073 mutex_lock(&event->child_mutex);
4074 func(event);
4075 list_for_each_entry(child, &event->child_list, child_list)
4076 func(child);
4077 mutex_unlock(&event->child_mutex);
4078 }
4079
4080 static void perf_event_for_each(struct perf_event *event,
4081 void (*func)(struct perf_event *))
4082 {
4083 struct perf_event_context *ctx = event->ctx;
4084 struct perf_event *sibling;
4085
4086 lockdep_assert_held(&ctx->mutex);
4087
4088 event = event->group_leader;
4089
4090 perf_event_for_each_child(event, func);
4091 list_for_each_entry(sibling, &event->sibling_list, group_entry)
4092 perf_event_for_each_child(sibling, func);
4093 }
4094
4095 struct period_event {
4096 struct perf_event *event;
4097 u64 value;
4098 };
4099
4100 static void ___perf_event_period(void *info)
4101 {
4102 struct period_event *pe = info;
4103 struct perf_event *event = pe->event;
4104 u64 value = pe->value;
4105
4106 if (event->attr.freq) {
4107 event->attr.sample_freq = value;
4108 } else {
4109 event->attr.sample_period = value;
4110 event->hw.sample_period = value;
4111 }
4112
4113 local64_set(&event->hw.period_left, 0);
4114 }
4115
4116 static int __perf_event_period(void *info)
4117 {
4118 struct period_event *pe = info;
4119 struct perf_event *event = pe->event;
4120 struct perf_event_context *ctx = event->ctx;
4121 u64 value = pe->value;
4122 bool active;
4123
4124 raw_spin_lock(&ctx->lock);
4125 if (event->attr.freq) {
4126 event->attr.sample_freq = value;
4127 } else {
4128 event->attr.sample_period = value;
4129 event->hw.sample_period = value;
4130 }
4131
4132 active = (event->state == PERF_EVENT_STATE_ACTIVE);
4133 if (active) {
4134 perf_pmu_disable(ctx->pmu);
4135 event->pmu->stop(event, PERF_EF_UPDATE);
4136 }
4137
4138 local64_set(&event->hw.period_left, 0);
4139
4140 if (active) {
4141 event->pmu->start(event, PERF_EF_RELOAD);
4142 perf_pmu_enable(ctx->pmu);
4143 }
4144 raw_spin_unlock(&ctx->lock);
4145
4146 return 0;
4147 }
4148
4149 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4150 {
4151 struct period_event pe = { .event = event, };
4152 u64 value;
4153
4154 if (!is_sampling_event(event))
4155 return -EINVAL;
4156
4157 if (copy_from_user(&value, arg, sizeof(value)))
4158 return -EFAULT;
4159
4160 if (!value)
4161 return -EINVAL;
4162
4163 if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4164 return -EINVAL;
4165
4166 pe.value = value;
4167
4168 event_function_call(event, __perf_event_period,
4169 ___perf_event_period, &pe);
4170
4171 return 0;
4172 }
4173
4174 static const struct file_operations perf_fops;
4175
4176 static inline int perf_fget_light(int fd, struct fd *p)
4177 {
4178 struct fd f = fdget(fd);
4179 if (!f.file)
4180 return -EBADF;
4181
4182 if (f.file->f_op != &perf_fops) {
4183 fdput(f);
4184 return -EBADF;
4185 }
4186 *p = f;
4187 return 0;
4188 }
4189
4190 static int perf_event_set_output(struct perf_event *event,
4191 struct perf_event *output_event);
4192 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4193 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4194
4195 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4196 {
4197 void (*func)(struct perf_event *);
4198 u32 flags = arg;
4199
4200 switch (cmd) {
4201 case PERF_EVENT_IOC_ENABLE:
4202 func = _perf_event_enable;
4203 break;
4204 case PERF_EVENT_IOC_DISABLE:
4205 func = _perf_event_disable;
4206 break;
4207 case PERF_EVENT_IOC_RESET:
4208 func = _perf_event_reset;
4209 break;
4210
4211 case PERF_EVENT_IOC_REFRESH:
4212 return _perf_event_refresh(event, arg);
4213
4214 case PERF_EVENT_IOC_PERIOD:
4215 return perf_event_period(event, (u64 __user *)arg);
4216
4217 case PERF_EVENT_IOC_ID:
4218 {
4219 u64 id = primary_event_id(event);
4220
4221 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4222 return -EFAULT;
4223 return 0;
4224 }
4225
4226 case PERF_EVENT_IOC_SET_OUTPUT:
4227 {
4228 int ret;
4229 if (arg != -1) {
4230 struct perf_event *output_event;
4231 struct fd output;
4232 ret = perf_fget_light(arg, &output);
4233 if (ret)
4234 return ret;
4235 output_event = output.file->private_data;
4236 ret = perf_event_set_output(event, output_event);
4237 fdput(output);
4238 } else {
4239 ret = perf_event_set_output(event, NULL);
4240 }
4241 return ret;
4242 }
4243
4244 case PERF_EVENT_IOC_SET_FILTER:
4245 return perf_event_set_filter(event, (void __user *)arg);
4246
4247 case PERF_EVENT_IOC_SET_BPF:
4248 return perf_event_set_bpf_prog(event, arg);
4249
4250 default:
4251 return -ENOTTY;
4252 }
4253
4254 if (flags & PERF_IOC_FLAG_GROUP)
4255 perf_event_for_each(event, func);
4256 else
4257 perf_event_for_each_child(event, func);
4258
4259 return 0;
4260 }
4261
4262 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4263 {
4264 struct perf_event *event = file->private_data;
4265 struct perf_event_context *ctx;
4266 long ret;
4267
4268 ctx = perf_event_ctx_lock(event);
4269 ret = _perf_ioctl(event, cmd, arg);
4270 perf_event_ctx_unlock(event, ctx);
4271
4272 return ret;
4273 }
4274
4275 #ifdef CONFIG_COMPAT
4276 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4277 unsigned long arg)
4278 {
4279 switch (_IOC_NR(cmd)) {
4280 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4281 case _IOC_NR(PERF_EVENT_IOC_ID):
4282 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4283 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4284 cmd &= ~IOCSIZE_MASK;
4285 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4286 }
4287 break;
4288 }
4289 return perf_ioctl(file, cmd, arg);
4290 }
4291 #else
4292 # define perf_compat_ioctl NULL
4293 #endif
4294
4295 int perf_event_task_enable(void)
4296 {
4297 struct perf_event_context *ctx;
4298 struct perf_event *event;
4299
4300 mutex_lock(&current->perf_event_mutex);
4301 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4302 ctx = perf_event_ctx_lock(event);
4303 perf_event_for_each_child(event, _perf_event_enable);
4304 perf_event_ctx_unlock(event, ctx);
4305 }
4306 mutex_unlock(&current->perf_event_mutex);
4307
4308 return 0;
4309 }
4310
4311 int perf_event_task_disable(void)
4312 {
4313 struct perf_event_context *ctx;
4314 struct perf_event *event;
4315
4316 mutex_lock(&current->perf_event_mutex);
4317 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4318 ctx = perf_event_ctx_lock(event);
4319 perf_event_for_each_child(event, _perf_event_disable);
4320 perf_event_ctx_unlock(event, ctx);
4321 }
4322 mutex_unlock(&current->perf_event_mutex);
4323
4324 return 0;
4325 }
4326
4327 static int perf_event_index(struct perf_event *event)
4328 {
4329 if (event->hw.state & PERF_HES_STOPPED)
4330 return 0;
4331
4332 if (event->state != PERF_EVENT_STATE_ACTIVE)
4333 return 0;
4334
4335 return event->pmu->event_idx(event);
4336 }
4337
4338 static void calc_timer_values(struct perf_event *event,
4339 u64 *now,
4340 u64 *enabled,
4341 u64 *running)
4342 {
4343 u64 ctx_time;
4344
4345 *now = perf_clock();
4346 ctx_time = event->shadow_ctx_time + *now;
4347 *enabled = ctx_time - event->tstamp_enabled;
4348 *running = ctx_time - event->tstamp_running;
4349 }
4350
4351 static void perf_event_init_userpage(struct perf_event *event)
4352 {
4353 struct perf_event_mmap_page *userpg;
4354 struct ring_buffer *rb;
4355
4356 rcu_read_lock();
4357 rb = rcu_dereference(event->rb);
4358 if (!rb)
4359 goto unlock;
4360
4361 userpg = rb->user_page;
4362
4363 /* Allow new userspace to detect that bit 0 is deprecated */
4364 userpg->cap_bit0_is_deprecated = 1;
4365 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4366 userpg->data_offset = PAGE_SIZE;
4367 userpg->data_size = perf_data_size(rb);
4368
4369 unlock:
4370 rcu_read_unlock();
4371 }
4372
4373 void __weak arch_perf_update_userpage(
4374 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4375 {
4376 }
4377
4378 /*
4379 * Callers need to ensure there can be no nesting of this function, otherwise
4380 * the seqlock logic goes bad. We can not serialize this because the arch
4381 * code calls this from NMI context.
4382 */
4383 void perf_event_update_userpage(struct perf_event *event)
4384 {
4385 struct perf_event_mmap_page *userpg;
4386 struct ring_buffer *rb;
4387 u64 enabled, running, now;
4388
4389 rcu_read_lock();
4390 rb = rcu_dereference(event->rb);
4391 if (!rb)
4392 goto unlock;
4393
4394 /*
4395 * compute total_time_enabled, total_time_running
4396 * based on snapshot values taken when the event
4397 * was last scheduled in.
4398 *
4399 * we cannot simply called update_context_time()
4400 * because of locking issue as we can be called in
4401 * NMI context
4402 */
4403 calc_timer_values(event, &now, &enabled, &running);
4404
4405 userpg = rb->user_page;
4406 /*
4407 * Disable preemption so as to not let the corresponding user-space
4408 * spin too long if we get preempted.
4409 */
4410 preempt_disable();
4411 ++userpg->lock;
4412 barrier();
4413 userpg->index = perf_event_index(event);
4414 userpg->offset = perf_event_count(event);
4415 if (userpg->index)
4416 userpg->offset -= local64_read(&event->hw.prev_count);
4417
4418 userpg->time_enabled = enabled +
4419 atomic64_read(&event->child_total_time_enabled);
4420
4421 userpg->time_running = running +
4422 atomic64_read(&event->child_total_time_running);
4423
4424 arch_perf_update_userpage(event, userpg, now);
4425
4426 barrier();
4427 ++userpg->lock;
4428 preempt_enable();
4429 unlock:
4430 rcu_read_unlock();
4431 }
4432
4433 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
4434 {
4435 struct perf_event *event = vma->vm_file->private_data;
4436 struct ring_buffer *rb;
4437 int ret = VM_FAULT_SIGBUS;
4438
4439 if (vmf->flags & FAULT_FLAG_MKWRITE) {
4440 if (vmf->pgoff == 0)
4441 ret = 0;
4442 return ret;
4443 }
4444
4445 rcu_read_lock();
4446 rb = rcu_dereference(event->rb);
4447 if (!rb)
4448 goto unlock;
4449
4450 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4451 goto unlock;
4452
4453 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4454 if (!vmf->page)
4455 goto unlock;
4456
4457 get_page(vmf->page);
4458 vmf->page->mapping = vma->vm_file->f_mapping;
4459 vmf->page->index = vmf->pgoff;
4460
4461 ret = 0;
4462 unlock:
4463 rcu_read_unlock();
4464
4465 return ret;
4466 }
4467
4468 static void ring_buffer_attach(struct perf_event *event,
4469 struct ring_buffer *rb)
4470 {
4471 struct ring_buffer *old_rb = NULL;
4472 unsigned long flags;
4473
4474 if (event->rb) {
4475 /*
4476 * Should be impossible, we set this when removing
4477 * event->rb_entry and wait/clear when adding event->rb_entry.
4478 */
4479 WARN_ON_ONCE(event->rcu_pending);
4480
4481 old_rb = event->rb;
4482 spin_lock_irqsave(&old_rb->event_lock, flags);
4483 list_del_rcu(&event->rb_entry);
4484 spin_unlock_irqrestore(&old_rb->event_lock, flags);
4485
4486 event->rcu_batches = get_state_synchronize_rcu();
4487 event->rcu_pending = 1;
4488 }
4489
4490 if (rb) {
4491 if (event->rcu_pending) {
4492 cond_synchronize_rcu(event->rcu_batches);
4493 event->rcu_pending = 0;
4494 }
4495
4496 spin_lock_irqsave(&rb->event_lock, flags);
4497 list_add_rcu(&event->rb_entry, &rb->event_list);
4498 spin_unlock_irqrestore(&rb->event_lock, flags);
4499 }
4500
4501 rcu_assign_pointer(event->rb, rb);
4502
4503 if (old_rb) {
4504 ring_buffer_put(old_rb);
4505 /*
4506 * Since we detached before setting the new rb, so that we
4507 * could attach the new rb, we could have missed a wakeup.
4508 * Provide it now.
4509 */
4510 wake_up_all(&event->waitq);
4511 }
4512 }
4513
4514 static void ring_buffer_wakeup(struct perf_event *event)
4515 {
4516 struct ring_buffer *rb;
4517
4518 rcu_read_lock();
4519 rb = rcu_dereference(event->rb);
4520 if (rb) {
4521 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
4522 wake_up_all(&event->waitq);
4523 }
4524 rcu_read_unlock();
4525 }
4526
4527 struct ring_buffer *ring_buffer_get(struct perf_event *event)
4528 {
4529 struct ring_buffer *rb;
4530
4531 rcu_read_lock();
4532 rb = rcu_dereference(event->rb);
4533 if (rb) {
4534 if (!atomic_inc_not_zero(&rb->refcount))
4535 rb = NULL;
4536 }
4537 rcu_read_unlock();
4538
4539 return rb;
4540 }
4541
4542 void ring_buffer_put(struct ring_buffer *rb)
4543 {
4544 if (!atomic_dec_and_test(&rb->refcount))
4545 return;
4546
4547 WARN_ON_ONCE(!list_empty(&rb->event_list));
4548
4549 call_rcu(&rb->rcu_head, rb_free_rcu);
4550 }
4551
4552 static void perf_mmap_open(struct vm_area_struct *vma)
4553 {
4554 struct perf_event *event = vma->vm_file->private_data;
4555
4556 atomic_inc(&event->mmap_count);
4557 atomic_inc(&event->rb->mmap_count);
4558
4559 if (vma->vm_pgoff)
4560 atomic_inc(&event->rb->aux_mmap_count);
4561
4562 if (event->pmu->event_mapped)
4563 event->pmu->event_mapped(event);
4564 }
4565
4566 /*
4567 * A buffer can be mmap()ed multiple times; either directly through the same
4568 * event, or through other events by use of perf_event_set_output().
4569 *
4570 * In order to undo the VM accounting done by perf_mmap() we need to destroy
4571 * the buffer here, where we still have a VM context. This means we need
4572 * to detach all events redirecting to us.
4573 */
4574 static void perf_mmap_close(struct vm_area_struct *vma)
4575 {
4576 struct perf_event *event = vma->vm_file->private_data;
4577
4578 struct ring_buffer *rb = ring_buffer_get(event);
4579 struct user_struct *mmap_user = rb->mmap_user;
4580 int mmap_locked = rb->mmap_locked;
4581 unsigned long size = perf_data_size(rb);
4582
4583 if (event->pmu->event_unmapped)
4584 event->pmu->event_unmapped(event);
4585
4586 /*
4587 * rb->aux_mmap_count will always drop before rb->mmap_count and
4588 * event->mmap_count, so it is ok to use event->mmap_mutex to
4589 * serialize with perf_mmap here.
4590 */
4591 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
4592 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
4593 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
4594 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
4595
4596 rb_free_aux(rb);
4597 mutex_unlock(&event->mmap_mutex);
4598 }
4599
4600 atomic_dec(&rb->mmap_count);
4601
4602 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
4603 goto out_put;
4604
4605 ring_buffer_attach(event, NULL);
4606 mutex_unlock(&event->mmap_mutex);
4607
4608 /* If there's still other mmap()s of this buffer, we're done. */
4609 if (atomic_read(&rb->mmap_count))
4610 goto out_put;
4611
4612 /*
4613 * No other mmap()s, detach from all other events that might redirect
4614 * into the now unreachable buffer. Somewhat complicated by the
4615 * fact that rb::event_lock otherwise nests inside mmap_mutex.
4616 */
4617 again:
4618 rcu_read_lock();
4619 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
4620 if (!atomic_long_inc_not_zero(&event->refcount)) {
4621 /*
4622 * This event is en-route to free_event() which will
4623 * detach it and remove it from the list.
4624 */
4625 continue;
4626 }
4627 rcu_read_unlock();
4628
4629 mutex_lock(&event->mmap_mutex);
4630 /*
4631 * Check we didn't race with perf_event_set_output() which can
4632 * swizzle the rb from under us while we were waiting to
4633 * acquire mmap_mutex.
4634 *
4635 * If we find a different rb; ignore this event, a next
4636 * iteration will no longer find it on the list. We have to
4637 * still restart the iteration to make sure we're not now
4638 * iterating the wrong list.
4639 */
4640 if (event->rb == rb)
4641 ring_buffer_attach(event, NULL);
4642
4643 mutex_unlock(&event->mmap_mutex);
4644 put_event(event);
4645
4646 /*
4647 * Restart the iteration; either we're on the wrong list or
4648 * destroyed its integrity by doing a deletion.
4649 */
4650 goto again;
4651 }
4652 rcu_read_unlock();
4653
4654 /*
4655 * It could be there's still a few 0-ref events on the list; they'll
4656 * get cleaned up by free_event() -- they'll also still have their
4657 * ref on the rb and will free it whenever they are done with it.
4658 *
4659 * Aside from that, this buffer is 'fully' detached and unmapped,
4660 * undo the VM accounting.
4661 */
4662
4663 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
4664 vma->vm_mm->pinned_vm -= mmap_locked;
4665 free_uid(mmap_user);
4666
4667 out_put:
4668 ring_buffer_put(rb); /* could be last */
4669 }
4670
4671 static const struct vm_operations_struct perf_mmap_vmops = {
4672 .open = perf_mmap_open,
4673 .close = perf_mmap_close, /* non mergable */
4674 .fault = perf_mmap_fault,
4675 .page_mkwrite = perf_mmap_fault,
4676 };
4677
4678 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
4679 {
4680 struct perf_event *event = file->private_data;
4681 unsigned long user_locked, user_lock_limit;
4682 struct user_struct *user = current_user();
4683 unsigned long locked, lock_limit;
4684 struct ring_buffer *rb = NULL;
4685 unsigned long vma_size;
4686 unsigned long nr_pages;
4687 long user_extra = 0, extra = 0;
4688 int ret = 0, flags = 0;
4689
4690 /*
4691 * Don't allow mmap() of inherited per-task counters. This would
4692 * create a performance issue due to all children writing to the
4693 * same rb.
4694 */
4695 if (event->cpu == -1 && event->attr.inherit)
4696 return -EINVAL;
4697
4698 if (!(vma->vm_flags & VM_SHARED))
4699 return -EINVAL;
4700
4701 vma_size = vma->vm_end - vma->vm_start;
4702
4703 if (vma->vm_pgoff == 0) {
4704 nr_pages = (vma_size / PAGE_SIZE) - 1;
4705 } else {
4706 /*
4707 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
4708 * mapped, all subsequent mappings should have the same size
4709 * and offset. Must be above the normal perf buffer.
4710 */
4711 u64 aux_offset, aux_size;
4712
4713 if (!event->rb)
4714 return -EINVAL;
4715
4716 nr_pages = vma_size / PAGE_SIZE;
4717
4718 mutex_lock(&event->mmap_mutex);
4719 ret = -EINVAL;
4720
4721 rb = event->rb;
4722 if (!rb)
4723 goto aux_unlock;
4724
4725 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
4726 aux_size = ACCESS_ONCE(rb->user_page->aux_size);
4727
4728 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
4729 goto aux_unlock;
4730
4731 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
4732 goto aux_unlock;
4733
4734 /* already mapped with a different offset */
4735 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
4736 goto aux_unlock;
4737
4738 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
4739 goto aux_unlock;
4740
4741 /* already mapped with a different size */
4742 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
4743 goto aux_unlock;
4744
4745 if (!is_power_of_2(nr_pages))
4746 goto aux_unlock;
4747
4748 if (!atomic_inc_not_zero(&rb->mmap_count))
4749 goto aux_unlock;
4750
4751 if (rb_has_aux(rb)) {
4752 atomic_inc(&rb->aux_mmap_count);
4753 ret = 0;
4754 goto unlock;
4755 }
4756
4757 atomic_set(&rb->aux_mmap_count, 1);
4758 user_extra = nr_pages;
4759
4760 goto accounting;
4761 }
4762
4763 /*
4764 * If we have rb pages ensure they're a power-of-two number, so we
4765 * can do bitmasks instead of modulo.
4766 */
4767 if (nr_pages != 0 && !is_power_of_2(nr_pages))
4768 return -EINVAL;
4769
4770 if (vma_size != PAGE_SIZE * (1 + nr_pages))
4771 return -EINVAL;
4772
4773 WARN_ON_ONCE(event->ctx->parent_ctx);
4774 again:
4775 mutex_lock(&event->mmap_mutex);
4776 if (event->rb) {
4777 if (event->rb->nr_pages != nr_pages) {
4778 ret = -EINVAL;
4779 goto unlock;
4780 }
4781
4782 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
4783 /*
4784 * Raced against perf_mmap_close() through
4785 * perf_event_set_output(). Try again, hope for better
4786 * luck.
4787 */
4788 mutex_unlock(&event->mmap_mutex);
4789 goto again;
4790 }
4791
4792 goto unlock;
4793 }
4794
4795 user_extra = nr_pages + 1;
4796
4797 accounting:
4798 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
4799
4800 /*
4801 * Increase the limit linearly with more CPUs:
4802 */
4803 user_lock_limit *= num_online_cpus();
4804
4805 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
4806
4807 if (user_locked > user_lock_limit)
4808 extra = user_locked - user_lock_limit;
4809
4810 lock_limit = rlimit(RLIMIT_MEMLOCK);
4811 lock_limit >>= PAGE_SHIFT;
4812 locked = vma->vm_mm->pinned_vm + extra;
4813
4814 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
4815 !capable(CAP_IPC_LOCK)) {
4816 ret = -EPERM;
4817 goto unlock;
4818 }
4819
4820 WARN_ON(!rb && event->rb);
4821
4822 if (vma->vm_flags & VM_WRITE)
4823 flags |= RING_BUFFER_WRITABLE;
4824
4825 if (!rb) {
4826 rb = rb_alloc(nr_pages,
4827 event->attr.watermark ? event->attr.wakeup_watermark : 0,
4828 event->cpu, flags);
4829
4830 if (!rb) {
4831 ret = -ENOMEM;
4832 goto unlock;
4833 }
4834
4835 atomic_set(&rb->mmap_count, 1);
4836 rb->mmap_user = get_current_user();
4837 rb->mmap_locked = extra;
4838
4839 ring_buffer_attach(event, rb);
4840
4841 perf_event_init_userpage(event);
4842 perf_event_update_userpage(event);
4843 } else {
4844 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
4845 event->attr.aux_watermark, flags);
4846 if (!ret)
4847 rb->aux_mmap_locked = extra;
4848 }
4849
4850 unlock:
4851 if (!ret) {
4852 atomic_long_add(user_extra, &user->locked_vm);
4853 vma->vm_mm->pinned_vm += extra;
4854
4855 atomic_inc(&event->mmap_count);
4856 } else if (rb) {
4857 atomic_dec(&rb->mmap_count);
4858 }
4859 aux_unlock:
4860 mutex_unlock(&event->mmap_mutex);
4861
4862 /*
4863 * Since pinned accounting is per vm we cannot allow fork() to copy our
4864 * vma.
4865 */
4866 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
4867 vma->vm_ops = &perf_mmap_vmops;
4868
4869 if (event->pmu->event_mapped)
4870 event->pmu->event_mapped(event);
4871
4872 return ret;
4873 }
4874
4875 static int perf_fasync(int fd, struct file *filp, int on)
4876 {
4877 struct inode *inode = file_inode(filp);
4878 struct perf_event *event = filp->private_data;
4879 int retval;
4880
4881 mutex_lock(&inode->i_mutex);
4882 retval = fasync_helper(fd, filp, on, &event->fasync);
4883 mutex_unlock(&inode->i_mutex);
4884
4885 if (retval < 0)
4886 return retval;
4887
4888 return 0;
4889 }
4890
4891 static const struct file_operations perf_fops = {
4892 .llseek = no_llseek,
4893 .release = perf_release,
4894 .read = perf_read,
4895 .poll = perf_poll,
4896 .unlocked_ioctl = perf_ioctl,
4897 .compat_ioctl = perf_compat_ioctl,
4898 .mmap = perf_mmap,
4899 .fasync = perf_fasync,
4900 };
4901
4902 /*
4903 * Perf event wakeup
4904 *
4905 * If there's data, ensure we set the poll() state and publish everything
4906 * to user-space before waking everybody up.
4907 */
4908
4909 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
4910 {
4911 /* only the parent has fasync state */
4912 if (event->parent)
4913 event = event->parent;
4914 return &event->fasync;
4915 }
4916
4917 void perf_event_wakeup(struct perf_event *event)
4918 {
4919 ring_buffer_wakeup(event);
4920
4921 if (event->pending_kill) {
4922 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
4923 event->pending_kill = 0;
4924 }
4925 }
4926
4927 static void perf_pending_event(struct irq_work *entry)
4928 {
4929 struct perf_event *event = container_of(entry,
4930 struct perf_event, pending);
4931 int rctx;
4932
4933 rctx = perf_swevent_get_recursion_context();
4934 /*
4935 * If we 'fail' here, that's OK, it means recursion is already disabled
4936 * and we won't recurse 'further'.
4937 */
4938
4939 if (event->pending_disable) {
4940 event->pending_disable = 0;
4941 __perf_event_disable(event);
4942 }
4943
4944 if (event->pending_wakeup) {
4945 event->pending_wakeup = 0;
4946 perf_event_wakeup(event);
4947 }
4948
4949 if (rctx >= 0)
4950 perf_swevent_put_recursion_context(rctx);
4951 }
4952
4953 /*
4954 * We assume there is only KVM supporting the callbacks.
4955 * Later on, we might change it to a list if there is
4956 * another virtualization implementation supporting the callbacks.
4957 */
4958 struct perf_guest_info_callbacks *perf_guest_cbs;
4959
4960 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4961 {
4962 perf_guest_cbs = cbs;
4963 return 0;
4964 }
4965 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
4966
4967 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4968 {
4969 perf_guest_cbs = NULL;
4970 return 0;
4971 }
4972 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
4973
4974 static void
4975 perf_output_sample_regs(struct perf_output_handle *handle,
4976 struct pt_regs *regs, u64 mask)
4977 {
4978 int bit;
4979
4980 for_each_set_bit(bit, (const unsigned long *) &mask,
4981 sizeof(mask) * BITS_PER_BYTE) {
4982 u64 val;
4983
4984 val = perf_reg_value(regs, bit);
4985 perf_output_put(handle, val);
4986 }
4987 }
4988
4989 static void perf_sample_regs_user(struct perf_regs *regs_user,
4990 struct pt_regs *regs,
4991 struct pt_regs *regs_user_copy)
4992 {
4993 if (user_mode(regs)) {
4994 regs_user->abi = perf_reg_abi(current);
4995 regs_user->regs = regs;
4996 } else if (current->mm) {
4997 perf_get_regs_user(regs_user, regs, regs_user_copy);
4998 } else {
4999 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5000 regs_user->regs = NULL;
5001 }
5002 }
5003
5004 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5005 struct pt_regs *regs)
5006 {
5007 regs_intr->regs = regs;
5008 regs_intr->abi = perf_reg_abi(current);
5009 }
5010
5011
5012 /*
5013 * Get remaining task size from user stack pointer.
5014 *
5015 * It'd be better to take stack vma map and limit this more
5016 * precisly, but there's no way to get it safely under interrupt,
5017 * so using TASK_SIZE as limit.
5018 */
5019 static u64 perf_ustack_task_size(struct pt_regs *regs)
5020 {
5021 unsigned long addr = perf_user_stack_pointer(regs);
5022
5023 if (!addr || addr >= TASK_SIZE)
5024 return 0;
5025
5026 return TASK_SIZE - addr;
5027 }
5028
5029 static u16
5030 perf_sample_ustack_size(u16 stack_size, u16 header_size,
5031 struct pt_regs *regs)
5032 {
5033 u64 task_size;
5034
5035 /* No regs, no stack pointer, no dump. */
5036 if (!regs)
5037 return 0;
5038
5039 /*
5040 * Check if we fit in with the requested stack size into the:
5041 * - TASK_SIZE
5042 * If we don't, we limit the size to the TASK_SIZE.
5043 *
5044 * - remaining sample size
5045 * If we don't, we customize the stack size to
5046 * fit in to the remaining sample size.
5047 */
5048
5049 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5050 stack_size = min(stack_size, (u16) task_size);
5051
5052 /* Current header size plus static size and dynamic size. */
5053 header_size += 2 * sizeof(u64);
5054
5055 /* Do we fit in with the current stack dump size? */
5056 if ((u16) (header_size + stack_size) < header_size) {
5057 /*
5058 * If we overflow the maximum size for the sample,
5059 * we customize the stack dump size to fit in.
5060 */
5061 stack_size = USHRT_MAX - header_size - sizeof(u64);
5062 stack_size = round_up(stack_size, sizeof(u64));
5063 }
5064
5065 return stack_size;
5066 }
5067
5068 static void
5069 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5070 struct pt_regs *regs)
5071 {
5072 /* Case of a kernel thread, nothing to dump */
5073 if (!regs) {
5074 u64 size = 0;
5075 perf_output_put(handle, size);
5076 } else {
5077 unsigned long sp;
5078 unsigned int rem;
5079 u64 dyn_size;
5080
5081 /*
5082 * We dump:
5083 * static size
5084 * - the size requested by user or the best one we can fit
5085 * in to the sample max size
5086 * data
5087 * - user stack dump data
5088 * dynamic size
5089 * - the actual dumped size
5090 */
5091
5092 /* Static size. */
5093 perf_output_put(handle, dump_size);
5094
5095 /* Data. */
5096 sp = perf_user_stack_pointer(regs);
5097 rem = __output_copy_user(handle, (void *) sp, dump_size);
5098 dyn_size = dump_size - rem;
5099
5100 perf_output_skip(handle, rem);
5101
5102 /* Dynamic size. */
5103 perf_output_put(handle, dyn_size);
5104 }
5105 }
5106
5107 static void __perf_event_header__init_id(struct perf_event_header *header,
5108 struct perf_sample_data *data,
5109 struct perf_event *event)
5110 {
5111 u64 sample_type = event->attr.sample_type;
5112
5113 data->type = sample_type;
5114 header->size += event->id_header_size;
5115
5116 if (sample_type & PERF_SAMPLE_TID) {
5117 /* namespace issues */
5118 data->tid_entry.pid = perf_event_pid(event, current);
5119 data->tid_entry.tid = perf_event_tid(event, current);
5120 }
5121
5122 if (sample_type & PERF_SAMPLE_TIME)
5123 data->time = perf_event_clock(event);
5124
5125 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5126 data->id = primary_event_id(event);
5127
5128 if (sample_type & PERF_SAMPLE_STREAM_ID)
5129 data->stream_id = event->id;
5130
5131 if (sample_type & PERF_SAMPLE_CPU) {
5132 data->cpu_entry.cpu = raw_smp_processor_id();
5133 data->cpu_entry.reserved = 0;
5134 }
5135 }
5136
5137 void perf_event_header__init_id(struct perf_event_header *header,
5138 struct perf_sample_data *data,
5139 struct perf_event *event)
5140 {
5141 if (event->attr.sample_id_all)
5142 __perf_event_header__init_id(header, data, event);
5143 }
5144
5145 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5146 struct perf_sample_data *data)
5147 {
5148 u64 sample_type = data->type;
5149
5150 if (sample_type & PERF_SAMPLE_TID)
5151 perf_output_put(handle, data->tid_entry);
5152
5153 if (sample_type & PERF_SAMPLE_TIME)
5154 perf_output_put(handle, data->time);
5155
5156 if (sample_type & PERF_SAMPLE_ID)
5157 perf_output_put(handle, data->id);
5158
5159 if (sample_type & PERF_SAMPLE_STREAM_ID)
5160 perf_output_put(handle, data->stream_id);
5161
5162 if (sample_type & PERF_SAMPLE_CPU)
5163 perf_output_put(handle, data->cpu_entry);
5164
5165 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5166 perf_output_put(handle, data->id);
5167 }
5168
5169 void perf_event__output_id_sample(struct perf_event *event,
5170 struct perf_output_handle *handle,
5171 struct perf_sample_data *sample)
5172 {
5173 if (event->attr.sample_id_all)
5174 __perf_event__output_id_sample(handle, sample);
5175 }
5176
5177 static void perf_output_read_one(struct perf_output_handle *handle,
5178 struct perf_event *event,
5179 u64 enabled, u64 running)
5180 {
5181 u64 read_format = event->attr.read_format;
5182 u64 values[4];
5183 int n = 0;
5184
5185 values[n++] = perf_event_count(event);
5186 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5187 values[n++] = enabled +
5188 atomic64_read(&event->child_total_time_enabled);
5189 }
5190 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5191 values[n++] = running +
5192 atomic64_read(&event->child_total_time_running);
5193 }
5194 if (read_format & PERF_FORMAT_ID)
5195 values[n++] = primary_event_id(event);
5196
5197 __output_copy(handle, values, n * sizeof(u64));
5198 }
5199
5200 /*
5201 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
5202 */
5203 static void perf_output_read_group(struct perf_output_handle *handle,
5204 struct perf_event *event,
5205 u64 enabled, u64 running)
5206 {
5207 struct perf_event *leader = event->group_leader, *sub;
5208 u64 read_format = event->attr.read_format;
5209 u64 values[5];
5210 int n = 0;
5211
5212 values[n++] = 1 + leader->nr_siblings;
5213
5214 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5215 values[n++] = enabled;
5216
5217 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5218 values[n++] = running;
5219
5220 if (leader != event)
5221 leader->pmu->read(leader);
5222
5223 values[n++] = perf_event_count(leader);
5224 if (read_format & PERF_FORMAT_ID)
5225 values[n++] = primary_event_id(leader);
5226
5227 __output_copy(handle, values, n * sizeof(u64));
5228
5229 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5230 n = 0;
5231
5232 if ((sub != event) &&
5233 (sub->state == PERF_EVENT_STATE_ACTIVE))
5234 sub->pmu->read(sub);
5235
5236 values[n++] = perf_event_count(sub);
5237 if (read_format & PERF_FORMAT_ID)
5238 values[n++] = primary_event_id(sub);
5239
5240 __output_copy(handle, values, n * sizeof(u64));
5241 }
5242 }
5243
5244 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5245 PERF_FORMAT_TOTAL_TIME_RUNNING)
5246
5247 static void perf_output_read(struct perf_output_handle *handle,
5248 struct perf_event *event)
5249 {
5250 u64 enabled = 0, running = 0, now;
5251 u64 read_format = event->attr.read_format;
5252
5253 /*
5254 * compute total_time_enabled, total_time_running
5255 * based on snapshot values taken when the event
5256 * was last scheduled in.
5257 *
5258 * we cannot simply called update_context_time()
5259 * because of locking issue as we are called in
5260 * NMI context
5261 */
5262 if (read_format & PERF_FORMAT_TOTAL_TIMES)
5263 calc_timer_values(event, &now, &enabled, &running);
5264
5265 if (event->attr.read_format & PERF_FORMAT_GROUP)
5266 perf_output_read_group(handle, event, enabled, running);
5267 else
5268 perf_output_read_one(handle, event, enabled, running);
5269 }
5270
5271 void perf_output_sample(struct perf_output_handle *handle,
5272 struct perf_event_header *header,
5273 struct perf_sample_data *data,
5274 struct perf_event *event)
5275 {
5276 u64 sample_type = data->type;
5277
5278 perf_output_put(handle, *header);
5279
5280 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5281 perf_output_put(handle, data->id);
5282
5283 if (sample_type & PERF_SAMPLE_IP)
5284 perf_output_put(handle, data->ip);
5285
5286 if (sample_type & PERF_SAMPLE_TID)
5287 perf_output_put(handle, data->tid_entry);
5288
5289 if (sample_type & PERF_SAMPLE_TIME)
5290 perf_output_put(handle, data->time);
5291
5292 if (sample_type & PERF_SAMPLE_ADDR)
5293 perf_output_put(handle, data->addr);
5294
5295 if (sample_type & PERF_SAMPLE_ID)
5296 perf_output_put(handle, data->id);
5297
5298 if (sample_type & PERF_SAMPLE_STREAM_ID)
5299 perf_output_put(handle, data->stream_id);
5300
5301 if (sample_type & PERF_SAMPLE_CPU)
5302 perf_output_put(handle, data->cpu_entry);
5303
5304 if (sample_type & PERF_SAMPLE_PERIOD)
5305 perf_output_put(handle, data->period);
5306
5307 if (sample_type & PERF_SAMPLE_READ)
5308 perf_output_read(handle, event);
5309
5310 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5311 if (data->callchain) {
5312 int size = 1;
5313
5314 if (data->callchain)
5315 size += data->callchain->nr;
5316
5317 size *= sizeof(u64);
5318
5319 __output_copy(handle, data->callchain, size);
5320 } else {
5321 u64 nr = 0;
5322 perf_output_put(handle, nr);
5323 }
5324 }
5325
5326 if (sample_type & PERF_SAMPLE_RAW) {
5327 if (data->raw) {
5328 u32 raw_size = data->raw->size;
5329 u32 real_size = round_up(raw_size + sizeof(u32),
5330 sizeof(u64)) - sizeof(u32);
5331 u64 zero = 0;
5332
5333 perf_output_put(handle, real_size);
5334 __output_copy(handle, data->raw->data, raw_size);
5335 if (real_size - raw_size)
5336 __output_copy(handle, &zero, real_size - raw_size);
5337 } else {
5338 struct {
5339 u32 size;
5340 u32 data;
5341 } raw = {
5342 .size = sizeof(u32),
5343 .data = 0,
5344 };
5345 perf_output_put(handle, raw);
5346 }
5347 }
5348
5349 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5350 if (data->br_stack) {
5351 size_t size;
5352
5353 size = data->br_stack->nr
5354 * sizeof(struct perf_branch_entry);
5355
5356 perf_output_put(handle, data->br_stack->nr);
5357 perf_output_copy(handle, data->br_stack->entries, size);
5358 } else {
5359 /*
5360 * we always store at least the value of nr
5361 */
5362 u64 nr = 0;
5363 perf_output_put(handle, nr);
5364 }
5365 }
5366
5367 if (sample_type & PERF_SAMPLE_REGS_USER) {
5368 u64 abi = data->regs_user.abi;
5369
5370 /*
5371 * If there are no regs to dump, notice it through
5372 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5373 */
5374 perf_output_put(handle, abi);
5375
5376 if (abi) {
5377 u64 mask = event->attr.sample_regs_user;
5378 perf_output_sample_regs(handle,
5379 data->regs_user.regs,
5380 mask);
5381 }
5382 }
5383
5384 if (sample_type & PERF_SAMPLE_STACK_USER) {
5385 perf_output_sample_ustack(handle,
5386 data->stack_user_size,
5387 data->regs_user.regs);
5388 }
5389
5390 if (sample_type & PERF_SAMPLE_WEIGHT)
5391 perf_output_put(handle, data->weight);
5392
5393 if (sample_type & PERF_SAMPLE_DATA_SRC)
5394 perf_output_put(handle, data->data_src.val);
5395
5396 if (sample_type & PERF_SAMPLE_TRANSACTION)
5397 perf_output_put(handle, data->txn);
5398
5399 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5400 u64 abi = data->regs_intr.abi;
5401 /*
5402 * If there are no regs to dump, notice it through
5403 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5404 */
5405 perf_output_put(handle, abi);
5406
5407 if (abi) {
5408 u64 mask = event->attr.sample_regs_intr;
5409
5410 perf_output_sample_regs(handle,
5411 data->regs_intr.regs,
5412 mask);
5413 }
5414 }
5415
5416 if (!event->attr.watermark) {
5417 int wakeup_events = event->attr.wakeup_events;
5418
5419 if (wakeup_events) {
5420 struct ring_buffer *rb = handle->rb;
5421 int events = local_inc_return(&rb->events);
5422
5423 if (events >= wakeup_events) {
5424 local_sub(wakeup_events, &rb->events);
5425 local_inc(&rb->wakeup);
5426 }
5427 }
5428 }
5429 }
5430
5431 void perf_prepare_sample(struct perf_event_header *header,
5432 struct perf_sample_data *data,
5433 struct perf_event *event,
5434 struct pt_regs *regs)
5435 {
5436 u64 sample_type = event->attr.sample_type;
5437
5438 header->type = PERF_RECORD_SAMPLE;
5439 header->size = sizeof(*header) + event->header_size;
5440
5441 header->misc = 0;
5442 header->misc |= perf_misc_flags(regs);
5443
5444 __perf_event_header__init_id(header, data, event);
5445
5446 if (sample_type & PERF_SAMPLE_IP)
5447 data->ip = perf_instruction_pointer(regs);
5448
5449 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5450 int size = 1;
5451
5452 data->callchain = perf_callchain(event, regs);
5453
5454 if (data->callchain)
5455 size += data->callchain->nr;
5456
5457 header->size += size * sizeof(u64);
5458 }
5459
5460 if (sample_type & PERF_SAMPLE_RAW) {
5461 int size = sizeof(u32);
5462
5463 if (data->raw)
5464 size += data->raw->size;
5465 else
5466 size += sizeof(u32);
5467
5468 header->size += round_up(size, sizeof(u64));
5469 }
5470
5471 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5472 int size = sizeof(u64); /* nr */
5473 if (data->br_stack) {
5474 size += data->br_stack->nr
5475 * sizeof(struct perf_branch_entry);
5476 }
5477 header->size += size;
5478 }
5479
5480 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
5481 perf_sample_regs_user(&data->regs_user, regs,
5482 &data->regs_user_copy);
5483
5484 if (sample_type & PERF_SAMPLE_REGS_USER) {
5485 /* regs dump ABI info */
5486 int size = sizeof(u64);
5487
5488 if (data->regs_user.regs) {
5489 u64 mask = event->attr.sample_regs_user;
5490 size += hweight64(mask) * sizeof(u64);
5491 }
5492
5493 header->size += size;
5494 }
5495
5496 if (sample_type & PERF_SAMPLE_STACK_USER) {
5497 /*
5498 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
5499 * processed as the last one or have additional check added
5500 * in case new sample type is added, because we could eat
5501 * up the rest of the sample size.
5502 */
5503 u16 stack_size = event->attr.sample_stack_user;
5504 u16 size = sizeof(u64);
5505
5506 stack_size = perf_sample_ustack_size(stack_size, header->size,
5507 data->regs_user.regs);
5508
5509 /*
5510 * If there is something to dump, add space for the dump
5511 * itself and for the field that tells the dynamic size,
5512 * which is how many have been actually dumped.
5513 */
5514 if (stack_size)
5515 size += sizeof(u64) + stack_size;
5516
5517 data->stack_user_size = stack_size;
5518 header->size += size;
5519 }
5520
5521 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5522 /* regs dump ABI info */
5523 int size = sizeof(u64);
5524
5525 perf_sample_regs_intr(&data->regs_intr, regs);
5526
5527 if (data->regs_intr.regs) {
5528 u64 mask = event->attr.sample_regs_intr;
5529
5530 size += hweight64(mask) * sizeof(u64);
5531 }
5532
5533 header->size += size;
5534 }
5535 }
5536
5537 void perf_event_output(struct perf_event *event,
5538 struct perf_sample_data *data,
5539 struct pt_regs *regs)
5540 {
5541 struct perf_output_handle handle;
5542 struct perf_event_header header;
5543
5544 /* protect the callchain buffers */
5545 rcu_read_lock();
5546
5547 perf_prepare_sample(&header, data, event, regs);
5548
5549 if (perf_output_begin(&handle, event, header.size))
5550 goto exit;
5551
5552 perf_output_sample(&handle, &header, data, event);
5553
5554 perf_output_end(&handle);
5555
5556 exit:
5557 rcu_read_unlock();
5558 }
5559
5560 /*
5561 * read event_id
5562 */
5563
5564 struct perf_read_event {
5565 struct perf_event_header header;
5566
5567 u32 pid;
5568 u32 tid;
5569 };
5570
5571 static void
5572 perf_event_read_event(struct perf_event *event,
5573 struct task_struct *task)
5574 {
5575 struct perf_output_handle handle;
5576 struct perf_sample_data sample;
5577 struct perf_read_event read_event = {
5578 .header = {
5579 .type = PERF_RECORD_READ,
5580 .misc = 0,
5581 .size = sizeof(read_event) + event->read_size,
5582 },
5583 .pid = perf_event_pid(event, task),
5584 .tid = perf_event_tid(event, task),
5585 };
5586 int ret;
5587
5588 perf_event_header__init_id(&read_event.header, &sample, event);
5589 ret = perf_output_begin(&handle, event, read_event.header.size);
5590 if (ret)
5591 return;
5592
5593 perf_output_put(&handle, read_event);
5594 perf_output_read(&handle, event);
5595 perf_event__output_id_sample(event, &handle, &sample);
5596
5597 perf_output_end(&handle);
5598 }
5599
5600 typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
5601
5602 static void
5603 perf_event_aux_ctx(struct perf_event_context *ctx,
5604 perf_event_aux_output_cb output,
5605 void *data)
5606 {
5607 struct perf_event *event;
5608
5609 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5610 if (event->state < PERF_EVENT_STATE_INACTIVE)
5611 continue;
5612 if (!event_filter_match(event))
5613 continue;
5614 output(event, data);
5615 }
5616 }
5617
5618 static void
5619 perf_event_aux_task_ctx(perf_event_aux_output_cb output, void *data,
5620 struct perf_event_context *task_ctx)
5621 {
5622 rcu_read_lock();
5623 preempt_disable();
5624 perf_event_aux_ctx(task_ctx, output, data);
5625 preempt_enable();
5626 rcu_read_unlock();
5627 }
5628
5629 static void
5630 perf_event_aux(perf_event_aux_output_cb output, void *data,
5631 struct perf_event_context *task_ctx)
5632 {
5633 struct perf_cpu_context *cpuctx;
5634 struct perf_event_context *ctx;
5635 struct pmu *pmu;
5636 int ctxn;
5637
5638 /*
5639 * If we have task_ctx != NULL we only notify
5640 * the task context itself. The task_ctx is set
5641 * only for EXIT events before releasing task
5642 * context.
5643 */
5644 if (task_ctx) {
5645 perf_event_aux_task_ctx(output, data, task_ctx);
5646 return;
5647 }
5648
5649 rcu_read_lock();
5650 list_for_each_entry_rcu(pmu, &pmus, entry) {
5651 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
5652 if (cpuctx->unique_pmu != pmu)
5653 goto next;
5654 perf_event_aux_ctx(&cpuctx->ctx, output, data);
5655 ctxn = pmu->task_ctx_nr;
5656 if (ctxn < 0)
5657 goto next;
5658 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
5659 if (ctx)
5660 perf_event_aux_ctx(ctx, output, data);
5661 next:
5662 put_cpu_ptr(pmu->pmu_cpu_context);
5663 }
5664 rcu_read_unlock();
5665 }
5666
5667 /*
5668 * task tracking -- fork/exit
5669 *
5670 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
5671 */
5672
5673 struct perf_task_event {
5674 struct task_struct *task;
5675 struct perf_event_context *task_ctx;
5676
5677 struct {
5678 struct perf_event_header header;
5679
5680 u32 pid;
5681 u32 ppid;
5682 u32 tid;
5683 u32 ptid;
5684 u64 time;
5685 } event_id;
5686 };
5687
5688 static int perf_event_task_match(struct perf_event *event)
5689 {
5690 return event->attr.comm || event->attr.mmap ||
5691 event->attr.mmap2 || event->attr.mmap_data ||
5692 event->attr.task;
5693 }
5694
5695 static void perf_event_task_output(struct perf_event *event,
5696 void *data)
5697 {
5698 struct perf_task_event *task_event = data;
5699 struct perf_output_handle handle;
5700 struct perf_sample_data sample;
5701 struct task_struct *task = task_event->task;
5702 int ret, size = task_event->event_id.header.size;
5703
5704 if (!perf_event_task_match(event))
5705 return;
5706
5707 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
5708
5709 ret = perf_output_begin(&handle, event,
5710 task_event->event_id.header.size);
5711 if (ret)
5712 goto out;
5713
5714 task_event->event_id.pid = perf_event_pid(event, task);
5715 task_event->event_id.ppid = perf_event_pid(event, current);
5716
5717 task_event->event_id.tid = perf_event_tid(event, task);
5718 task_event->event_id.ptid = perf_event_tid(event, current);
5719
5720 task_event->event_id.time = perf_event_clock(event);
5721
5722 perf_output_put(&handle, task_event->event_id);
5723
5724 perf_event__output_id_sample(event, &handle, &sample);
5725
5726 perf_output_end(&handle);
5727 out:
5728 task_event->event_id.header.size = size;
5729 }
5730
5731 static void perf_event_task(struct task_struct *task,
5732 struct perf_event_context *task_ctx,
5733 int new)
5734 {
5735 struct perf_task_event task_event;
5736
5737 if (!atomic_read(&nr_comm_events) &&
5738 !atomic_read(&nr_mmap_events) &&
5739 !atomic_read(&nr_task_events))
5740 return;
5741
5742 task_event = (struct perf_task_event){
5743 .task = task,
5744 .task_ctx = task_ctx,
5745 .event_id = {
5746 .header = {
5747 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
5748 .misc = 0,
5749 .size = sizeof(task_event.event_id),
5750 },
5751 /* .pid */
5752 /* .ppid */
5753 /* .tid */
5754 /* .ptid */
5755 /* .time */
5756 },
5757 };
5758
5759 perf_event_aux(perf_event_task_output,
5760 &task_event,
5761 task_ctx);
5762 }
5763
5764 void perf_event_fork(struct task_struct *task)
5765 {
5766 perf_event_task(task, NULL, 1);
5767 }
5768
5769 /*
5770 * comm tracking
5771 */
5772
5773 struct perf_comm_event {
5774 struct task_struct *task;
5775 char *comm;
5776 int comm_size;
5777
5778 struct {
5779 struct perf_event_header header;
5780
5781 u32 pid;
5782 u32 tid;
5783 } event_id;
5784 };
5785
5786 static int perf_event_comm_match(struct perf_event *event)
5787 {
5788 return event->attr.comm;
5789 }
5790
5791 static void perf_event_comm_output(struct perf_event *event,
5792 void *data)
5793 {
5794 struct perf_comm_event *comm_event = data;
5795 struct perf_output_handle handle;
5796 struct perf_sample_data sample;
5797 int size = comm_event->event_id.header.size;
5798 int ret;
5799
5800 if (!perf_event_comm_match(event))
5801 return;
5802
5803 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
5804 ret = perf_output_begin(&handle, event,
5805 comm_event->event_id.header.size);
5806
5807 if (ret)
5808 goto out;
5809
5810 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
5811 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
5812
5813 perf_output_put(&handle, comm_event->event_id);
5814 __output_copy(&handle, comm_event->comm,
5815 comm_event->comm_size);
5816
5817 perf_event__output_id_sample(event, &handle, &sample);
5818
5819 perf_output_end(&handle);
5820 out:
5821 comm_event->event_id.header.size = size;
5822 }
5823
5824 static void perf_event_comm_event(struct perf_comm_event *comm_event)
5825 {
5826 char comm[TASK_COMM_LEN];
5827 unsigned int size;
5828
5829 memset(comm, 0, sizeof(comm));
5830 strlcpy(comm, comm_event->task->comm, sizeof(comm));
5831 size = ALIGN(strlen(comm)+1, sizeof(u64));
5832
5833 comm_event->comm = comm;
5834 comm_event->comm_size = size;
5835
5836 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
5837
5838 perf_event_aux(perf_event_comm_output,
5839 comm_event,
5840 NULL);
5841 }
5842
5843 void perf_event_comm(struct task_struct *task, bool exec)
5844 {
5845 struct perf_comm_event comm_event;
5846
5847 if (!atomic_read(&nr_comm_events))
5848 return;
5849
5850 comm_event = (struct perf_comm_event){
5851 .task = task,
5852 /* .comm */
5853 /* .comm_size */
5854 .event_id = {
5855 .header = {
5856 .type = PERF_RECORD_COMM,
5857 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
5858 /* .size */
5859 },
5860 /* .pid */
5861 /* .tid */
5862 },
5863 };
5864
5865 perf_event_comm_event(&comm_event);
5866 }
5867
5868 /*
5869 * mmap tracking
5870 */
5871
5872 struct perf_mmap_event {
5873 struct vm_area_struct *vma;
5874
5875 const char *file_name;
5876 int file_size;
5877 int maj, min;
5878 u64 ino;
5879 u64 ino_generation;
5880 u32 prot, flags;
5881
5882 struct {
5883 struct perf_event_header header;
5884
5885 u32 pid;
5886 u32 tid;
5887 u64 start;
5888 u64 len;
5889 u64 pgoff;
5890 } event_id;
5891 };
5892
5893 static int perf_event_mmap_match(struct perf_event *event,
5894 void *data)
5895 {
5896 struct perf_mmap_event *mmap_event = data;
5897 struct vm_area_struct *vma = mmap_event->vma;
5898 int executable = vma->vm_flags & VM_EXEC;
5899
5900 return (!executable && event->attr.mmap_data) ||
5901 (executable && (event->attr.mmap || event->attr.mmap2));
5902 }
5903
5904 static void perf_event_mmap_output(struct perf_event *event,
5905 void *data)
5906 {
5907 struct perf_mmap_event *mmap_event = data;
5908 struct perf_output_handle handle;
5909 struct perf_sample_data sample;
5910 int size = mmap_event->event_id.header.size;
5911 int ret;
5912
5913 if (!perf_event_mmap_match(event, data))
5914 return;
5915
5916 if (event->attr.mmap2) {
5917 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
5918 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
5919 mmap_event->event_id.header.size += sizeof(mmap_event->min);
5920 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
5921 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
5922 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
5923 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
5924 }
5925
5926 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
5927 ret = perf_output_begin(&handle, event,
5928 mmap_event->event_id.header.size);
5929 if (ret)
5930 goto out;
5931
5932 mmap_event->event_id.pid = perf_event_pid(event, current);
5933 mmap_event->event_id.tid = perf_event_tid(event, current);
5934
5935 perf_output_put(&handle, mmap_event->event_id);
5936
5937 if (event->attr.mmap2) {
5938 perf_output_put(&handle, mmap_event->maj);
5939 perf_output_put(&handle, mmap_event->min);
5940 perf_output_put(&handle, mmap_event->ino);
5941 perf_output_put(&handle, mmap_event->ino_generation);
5942 perf_output_put(&handle, mmap_event->prot);
5943 perf_output_put(&handle, mmap_event->flags);
5944 }
5945
5946 __output_copy(&handle, mmap_event->file_name,
5947 mmap_event->file_size);
5948
5949 perf_event__output_id_sample(event, &handle, &sample);
5950
5951 perf_output_end(&handle);
5952 out:
5953 mmap_event->event_id.header.size = size;
5954 }
5955
5956 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
5957 {
5958 struct vm_area_struct *vma = mmap_event->vma;
5959 struct file *file = vma->vm_file;
5960 int maj = 0, min = 0;
5961 u64 ino = 0, gen = 0;
5962 u32 prot = 0, flags = 0;
5963 unsigned int size;
5964 char tmp[16];
5965 char *buf = NULL;
5966 char *name;
5967
5968 if (file) {
5969 struct inode *inode;
5970 dev_t dev;
5971
5972 buf = kmalloc(PATH_MAX, GFP_KERNEL);
5973 if (!buf) {
5974 name = "//enomem";
5975 goto cpy_name;
5976 }
5977 /*
5978 * d_path() works from the end of the rb backwards, so we
5979 * need to add enough zero bytes after the string to handle
5980 * the 64bit alignment we do later.
5981 */
5982 name = file_path(file, buf, PATH_MAX - sizeof(u64));
5983 if (IS_ERR(name)) {
5984 name = "//toolong";
5985 goto cpy_name;
5986 }
5987 inode = file_inode(vma->vm_file);
5988 dev = inode->i_sb->s_dev;
5989 ino = inode->i_ino;
5990 gen = inode->i_generation;
5991 maj = MAJOR(dev);
5992 min = MINOR(dev);
5993
5994 if (vma->vm_flags & VM_READ)
5995 prot |= PROT_READ;
5996 if (vma->vm_flags & VM_WRITE)
5997 prot |= PROT_WRITE;
5998 if (vma->vm_flags & VM_EXEC)
5999 prot |= PROT_EXEC;
6000
6001 if (vma->vm_flags & VM_MAYSHARE)
6002 flags = MAP_SHARED;
6003 else
6004 flags = MAP_PRIVATE;
6005
6006 if (vma->vm_flags & VM_DENYWRITE)
6007 flags |= MAP_DENYWRITE;
6008 if (vma->vm_flags & VM_MAYEXEC)
6009 flags |= MAP_EXECUTABLE;
6010 if (vma->vm_flags & VM_LOCKED)
6011 flags |= MAP_LOCKED;
6012 if (vma->vm_flags & VM_HUGETLB)
6013 flags |= MAP_HUGETLB;
6014
6015 goto got_name;
6016 } else {
6017 if (vma->vm_ops && vma->vm_ops->name) {
6018 name = (char *) vma->vm_ops->name(vma);
6019 if (name)
6020 goto cpy_name;
6021 }
6022
6023 name = (char *)arch_vma_name(vma);
6024 if (name)
6025 goto cpy_name;
6026
6027 if (vma->vm_start <= vma->vm_mm->start_brk &&
6028 vma->vm_end >= vma->vm_mm->brk) {
6029 name = "[heap]";
6030 goto cpy_name;
6031 }
6032 if (vma->vm_start <= vma->vm_mm->start_stack &&
6033 vma->vm_end >= vma->vm_mm->start_stack) {
6034 name = "[stack]";
6035 goto cpy_name;
6036 }
6037
6038 name = "//anon";
6039 goto cpy_name;
6040 }
6041
6042 cpy_name:
6043 strlcpy(tmp, name, sizeof(tmp));
6044 name = tmp;
6045 got_name:
6046 /*
6047 * Since our buffer works in 8 byte units we need to align our string
6048 * size to a multiple of 8. However, we must guarantee the tail end is
6049 * zero'd out to avoid leaking random bits to userspace.
6050 */
6051 size = strlen(name)+1;
6052 while (!IS_ALIGNED(size, sizeof(u64)))
6053 name[size++] = '\0';
6054
6055 mmap_event->file_name = name;
6056 mmap_event->file_size = size;
6057 mmap_event->maj = maj;
6058 mmap_event->min = min;
6059 mmap_event->ino = ino;
6060 mmap_event->ino_generation = gen;
6061 mmap_event->prot = prot;
6062 mmap_event->flags = flags;
6063
6064 if (!(vma->vm_flags & VM_EXEC))
6065 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6066
6067 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
6068
6069 perf_event_aux(perf_event_mmap_output,
6070 mmap_event,
6071 NULL);
6072
6073 kfree(buf);
6074 }
6075
6076 void perf_event_mmap(struct vm_area_struct *vma)
6077 {
6078 struct perf_mmap_event mmap_event;
6079
6080 if (!atomic_read(&nr_mmap_events))
6081 return;
6082
6083 mmap_event = (struct perf_mmap_event){
6084 .vma = vma,
6085 /* .file_name */
6086 /* .file_size */
6087 .event_id = {
6088 .header = {
6089 .type = PERF_RECORD_MMAP,
6090 .misc = PERF_RECORD_MISC_USER,
6091 /* .size */
6092 },
6093 /* .pid */
6094 /* .tid */
6095 .start = vma->vm_start,
6096 .len = vma->vm_end - vma->vm_start,
6097 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
6098 },
6099 /* .maj (attr_mmap2 only) */
6100 /* .min (attr_mmap2 only) */
6101 /* .ino (attr_mmap2 only) */
6102 /* .ino_generation (attr_mmap2 only) */
6103 /* .prot (attr_mmap2 only) */
6104 /* .flags (attr_mmap2 only) */
6105 };
6106
6107 perf_event_mmap_event(&mmap_event);
6108 }
6109
6110 void perf_event_aux_event(struct perf_event *event, unsigned long head,
6111 unsigned long size, u64 flags)
6112 {
6113 struct perf_output_handle handle;
6114 struct perf_sample_data sample;
6115 struct perf_aux_event {
6116 struct perf_event_header header;
6117 u64 offset;
6118 u64 size;
6119 u64 flags;
6120 } rec = {
6121 .header = {
6122 .type = PERF_RECORD_AUX,
6123 .misc = 0,
6124 .size = sizeof(rec),
6125 },
6126 .offset = head,
6127 .size = size,
6128 .flags = flags,
6129 };
6130 int ret;
6131
6132 perf_event_header__init_id(&rec.header, &sample, event);
6133 ret = perf_output_begin(&handle, event, rec.header.size);
6134
6135 if (ret)
6136 return;
6137
6138 perf_output_put(&handle, rec);
6139 perf_event__output_id_sample(event, &handle, &sample);
6140
6141 perf_output_end(&handle);
6142 }
6143
6144 /*
6145 * Lost/dropped samples logging
6146 */
6147 void perf_log_lost_samples(struct perf_event *event, u64 lost)
6148 {
6149 struct perf_output_handle handle;
6150 struct perf_sample_data sample;
6151 int ret;
6152
6153 struct {
6154 struct perf_event_header header;
6155 u64 lost;
6156 } lost_samples_event = {
6157 .header = {
6158 .type = PERF_RECORD_LOST_SAMPLES,
6159 .misc = 0,
6160 .size = sizeof(lost_samples_event),
6161 },
6162 .lost = lost,
6163 };
6164
6165 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
6166
6167 ret = perf_output_begin(&handle, event,
6168 lost_samples_event.header.size);
6169 if (ret)
6170 return;
6171
6172 perf_output_put(&handle, lost_samples_event);
6173 perf_event__output_id_sample(event, &handle, &sample);
6174 perf_output_end(&handle);
6175 }
6176
6177 /*
6178 * context_switch tracking
6179 */
6180
6181 struct perf_switch_event {
6182 struct task_struct *task;
6183 struct task_struct *next_prev;
6184
6185 struct {
6186 struct perf_event_header header;
6187 u32 next_prev_pid;
6188 u32 next_prev_tid;
6189 } event_id;
6190 };
6191
6192 static int perf_event_switch_match(struct perf_event *event)
6193 {
6194 return event->attr.context_switch;
6195 }
6196
6197 static void perf_event_switch_output(struct perf_event *event, void *data)
6198 {
6199 struct perf_switch_event *se = data;
6200 struct perf_output_handle handle;
6201 struct perf_sample_data sample;
6202 int ret;
6203
6204 if (!perf_event_switch_match(event))
6205 return;
6206
6207 /* Only CPU-wide events are allowed to see next/prev pid/tid */
6208 if (event->ctx->task) {
6209 se->event_id.header.type = PERF_RECORD_SWITCH;
6210 se->event_id.header.size = sizeof(se->event_id.header);
6211 } else {
6212 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
6213 se->event_id.header.size = sizeof(se->event_id);
6214 se->event_id.next_prev_pid =
6215 perf_event_pid(event, se->next_prev);
6216 se->event_id.next_prev_tid =
6217 perf_event_tid(event, se->next_prev);
6218 }
6219
6220 perf_event_header__init_id(&se->event_id.header, &sample, event);
6221
6222 ret = perf_output_begin(&handle, event, se->event_id.header.size);
6223 if (ret)
6224 return;
6225
6226 if (event->ctx->task)
6227 perf_output_put(&handle, se->event_id.header);
6228 else
6229 perf_output_put(&handle, se->event_id);
6230
6231 perf_event__output_id_sample(event, &handle, &sample);
6232
6233 perf_output_end(&handle);
6234 }
6235
6236 static void perf_event_switch(struct task_struct *task,
6237 struct task_struct *next_prev, bool sched_in)
6238 {
6239 struct perf_switch_event switch_event;
6240
6241 /* N.B. caller checks nr_switch_events != 0 */
6242
6243 switch_event = (struct perf_switch_event){
6244 .task = task,
6245 .next_prev = next_prev,
6246 .event_id = {
6247 .header = {
6248 /* .type */
6249 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
6250 /* .size */
6251 },
6252 /* .next_prev_pid */
6253 /* .next_prev_tid */
6254 },
6255 };
6256
6257 perf_event_aux(perf_event_switch_output,
6258 &switch_event,
6259 NULL);
6260 }
6261
6262 /*
6263 * IRQ throttle logging
6264 */
6265
6266 static void perf_log_throttle(struct perf_event *event, int enable)
6267 {
6268 struct perf_output_handle handle;
6269 struct perf_sample_data sample;
6270 int ret;
6271
6272 struct {
6273 struct perf_event_header header;
6274 u64 time;
6275 u64 id;
6276 u64 stream_id;
6277 } throttle_event = {
6278 .header = {
6279 .type = PERF_RECORD_THROTTLE,
6280 .misc = 0,
6281 .size = sizeof(throttle_event),
6282 },
6283 .time = perf_event_clock(event),
6284 .id = primary_event_id(event),
6285 .stream_id = event->id,
6286 };
6287
6288 if (enable)
6289 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
6290
6291 perf_event_header__init_id(&throttle_event.header, &sample, event);
6292
6293 ret = perf_output_begin(&handle, event,
6294 throttle_event.header.size);
6295 if (ret)
6296 return;
6297
6298 perf_output_put(&handle, throttle_event);
6299 perf_event__output_id_sample(event, &handle, &sample);
6300 perf_output_end(&handle);
6301 }
6302
6303 static void perf_log_itrace_start(struct perf_event *event)
6304 {
6305 struct perf_output_handle handle;
6306 struct perf_sample_data sample;
6307 struct perf_aux_event {
6308 struct perf_event_header header;
6309 u32 pid;
6310 u32 tid;
6311 } rec;
6312 int ret;
6313
6314 if (event->parent)
6315 event = event->parent;
6316
6317 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
6318 event->hw.itrace_started)
6319 return;
6320
6321 rec.header.type = PERF_RECORD_ITRACE_START;
6322 rec.header.misc = 0;
6323 rec.header.size = sizeof(rec);
6324 rec.pid = perf_event_pid(event, current);
6325 rec.tid = perf_event_tid(event, current);
6326
6327 perf_event_header__init_id(&rec.header, &sample, event);
6328 ret = perf_output_begin(&handle, event, rec.header.size);
6329
6330 if (ret)
6331 return;
6332
6333 perf_output_put(&handle, rec);
6334 perf_event__output_id_sample(event, &handle, &sample);
6335
6336 perf_output_end(&handle);
6337 }
6338
6339 /*
6340 * Generic event overflow handling, sampling.
6341 */
6342
6343 static int __perf_event_overflow(struct perf_event *event,
6344 int throttle, struct perf_sample_data *data,
6345 struct pt_regs *regs)
6346 {
6347 int events = atomic_read(&event->event_limit);
6348 struct hw_perf_event *hwc = &event->hw;
6349 u64 seq;
6350 int ret = 0;
6351
6352 /*
6353 * Non-sampling counters might still use the PMI to fold short
6354 * hardware counters, ignore those.
6355 */
6356 if (unlikely(!is_sampling_event(event)))
6357 return 0;
6358
6359 seq = __this_cpu_read(perf_throttled_seq);
6360 if (seq != hwc->interrupts_seq) {
6361 hwc->interrupts_seq = seq;
6362 hwc->interrupts = 1;
6363 } else {
6364 hwc->interrupts++;
6365 if (unlikely(throttle
6366 && hwc->interrupts >= max_samples_per_tick)) {
6367 __this_cpu_inc(perf_throttled_count);
6368 hwc->interrupts = MAX_INTERRUPTS;
6369 perf_log_throttle(event, 0);
6370 tick_nohz_full_kick();
6371 ret = 1;
6372 }
6373 }
6374
6375 if (event->attr.freq) {
6376 u64 now = perf_clock();
6377 s64 delta = now - hwc->freq_time_stamp;
6378
6379 hwc->freq_time_stamp = now;
6380
6381 if (delta > 0 && delta < 2*TICK_NSEC)
6382 perf_adjust_period(event, delta, hwc->last_period, true);
6383 }
6384
6385 /*
6386 * XXX event_limit might not quite work as expected on inherited
6387 * events
6388 */
6389
6390 event->pending_kill = POLL_IN;
6391 if (events && atomic_dec_and_test(&event->event_limit)) {
6392 ret = 1;
6393 event->pending_kill = POLL_HUP;
6394 event->pending_disable = 1;
6395 irq_work_queue(&event->pending);
6396 }
6397
6398 if (event->overflow_handler)
6399 event->overflow_handler(event, data, regs);
6400 else
6401 perf_event_output(event, data, regs);
6402
6403 if (*perf_event_fasync(event) && event->pending_kill) {
6404 event->pending_wakeup = 1;
6405 irq_work_queue(&event->pending);
6406 }
6407
6408 return ret;
6409 }
6410
6411 int perf_event_overflow(struct perf_event *event,
6412 struct perf_sample_data *data,
6413 struct pt_regs *regs)
6414 {
6415 return __perf_event_overflow(event, 1, data, regs);
6416 }
6417
6418 /*
6419 * Generic software event infrastructure
6420 */
6421
6422 struct swevent_htable {
6423 struct swevent_hlist *swevent_hlist;
6424 struct mutex hlist_mutex;
6425 int hlist_refcount;
6426
6427 /* Recursion avoidance in each contexts */
6428 int recursion[PERF_NR_CONTEXTS];
6429 };
6430
6431 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
6432
6433 /*
6434 * We directly increment event->count and keep a second value in
6435 * event->hw.period_left to count intervals. This period event
6436 * is kept in the range [-sample_period, 0] so that we can use the
6437 * sign as trigger.
6438 */
6439
6440 u64 perf_swevent_set_period(struct perf_event *event)
6441 {
6442 struct hw_perf_event *hwc = &event->hw;
6443 u64 period = hwc->last_period;
6444 u64 nr, offset;
6445 s64 old, val;
6446
6447 hwc->last_period = hwc->sample_period;
6448
6449 again:
6450 old = val = local64_read(&hwc->period_left);
6451 if (val < 0)
6452 return 0;
6453
6454 nr = div64_u64(period + val, period);
6455 offset = nr * period;
6456 val -= offset;
6457 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
6458 goto again;
6459
6460 return nr;
6461 }
6462
6463 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
6464 struct perf_sample_data *data,
6465 struct pt_regs *regs)
6466 {
6467 struct hw_perf_event *hwc = &event->hw;
6468 int throttle = 0;
6469
6470 if (!overflow)
6471 overflow = perf_swevent_set_period(event);
6472
6473 if (hwc->interrupts == MAX_INTERRUPTS)
6474 return;
6475
6476 for (; overflow; overflow--) {
6477 if (__perf_event_overflow(event, throttle,
6478 data, regs)) {
6479 /*
6480 * We inhibit the overflow from happening when
6481 * hwc->interrupts == MAX_INTERRUPTS.
6482 */
6483 break;
6484 }
6485 throttle = 1;
6486 }
6487 }
6488
6489 static void perf_swevent_event(struct perf_event *event, u64 nr,
6490 struct perf_sample_data *data,
6491 struct pt_regs *regs)
6492 {
6493 struct hw_perf_event *hwc = &event->hw;
6494
6495 local64_add(nr, &event->count);
6496
6497 if (!regs)
6498 return;
6499
6500 if (!is_sampling_event(event))
6501 return;
6502
6503 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
6504 data->period = nr;
6505 return perf_swevent_overflow(event, 1, data, regs);
6506 } else
6507 data->period = event->hw.last_period;
6508
6509 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
6510 return perf_swevent_overflow(event, 1, data, regs);
6511
6512 if (local64_add_negative(nr, &hwc->period_left))
6513 return;
6514
6515 perf_swevent_overflow(event, 0, data, regs);
6516 }
6517
6518 static int perf_exclude_event(struct perf_event *event,
6519 struct pt_regs *regs)
6520 {
6521 if (event->hw.state & PERF_HES_STOPPED)
6522 return 1;
6523
6524 if (regs) {
6525 if (event->attr.exclude_user && user_mode(regs))
6526 return 1;
6527
6528 if (event->attr.exclude_kernel && !user_mode(regs))
6529 return 1;
6530 }
6531
6532 return 0;
6533 }
6534
6535 static int perf_swevent_match(struct perf_event *event,
6536 enum perf_type_id type,
6537 u32 event_id,
6538 struct perf_sample_data *data,
6539 struct pt_regs *regs)
6540 {
6541 if (event->attr.type != type)
6542 return 0;
6543
6544 if (event->attr.config != event_id)
6545 return 0;
6546
6547 if (perf_exclude_event(event, regs))
6548 return 0;
6549
6550 return 1;
6551 }
6552
6553 static inline u64 swevent_hash(u64 type, u32 event_id)
6554 {
6555 u64 val = event_id | (type << 32);
6556
6557 return hash_64(val, SWEVENT_HLIST_BITS);
6558 }
6559
6560 static inline struct hlist_head *
6561 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
6562 {
6563 u64 hash = swevent_hash(type, event_id);
6564
6565 return &hlist->heads[hash];
6566 }
6567
6568 /* For the read side: events when they trigger */
6569 static inline struct hlist_head *
6570 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
6571 {
6572 struct swevent_hlist *hlist;
6573
6574 hlist = rcu_dereference(swhash->swevent_hlist);
6575 if (!hlist)
6576 return NULL;
6577
6578 return __find_swevent_head(hlist, type, event_id);
6579 }
6580
6581 /* For the event head insertion and removal in the hlist */
6582 static inline struct hlist_head *
6583 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
6584 {
6585 struct swevent_hlist *hlist;
6586 u32 event_id = event->attr.config;
6587 u64 type = event->attr.type;
6588
6589 /*
6590 * Event scheduling is always serialized against hlist allocation
6591 * and release. Which makes the protected version suitable here.
6592 * The context lock guarantees that.
6593 */
6594 hlist = rcu_dereference_protected(swhash->swevent_hlist,
6595 lockdep_is_held(&event->ctx->lock));
6596 if (!hlist)
6597 return NULL;
6598
6599 return __find_swevent_head(hlist, type, event_id);
6600 }
6601
6602 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
6603 u64 nr,
6604 struct perf_sample_data *data,
6605 struct pt_regs *regs)
6606 {
6607 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6608 struct perf_event *event;
6609 struct hlist_head *head;
6610
6611 rcu_read_lock();
6612 head = find_swevent_head_rcu(swhash, type, event_id);
6613 if (!head)
6614 goto end;
6615
6616 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6617 if (perf_swevent_match(event, type, event_id, data, regs))
6618 perf_swevent_event(event, nr, data, regs);
6619 }
6620 end:
6621 rcu_read_unlock();
6622 }
6623
6624 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
6625
6626 int perf_swevent_get_recursion_context(void)
6627 {
6628 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6629
6630 return get_recursion_context(swhash->recursion);
6631 }
6632 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
6633
6634 inline void perf_swevent_put_recursion_context(int rctx)
6635 {
6636 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6637
6638 put_recursion_context(swhash->recursion, rctx);
6639 }
6640
6641 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6642 {
6643 struct perf_sample_data data;
6644
6645 if (WARN_ON_ONCE(!regs))
6646 return;
6647
6648 perf_sample_data_init(&data, addr, 0);
6649 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
6650 }
6651
6652 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6653 {
6654 int rctx;
6655
6656 preempt_disable_notrace();
6657 rctx = perf_swevent_get_recursion_context();
6658 if (unlikely(rctx < 0))
6659 goto fail;
6660
6661 ___perf_sw_event(event_id, nr, regs, addr);
6662
6663 perf_swevent_put_recursion_context(rctx);
6664 fail:
6665 preempt_enable_notrace();
6666 }
6667
6668 static void perf_swevent_read(struct perf_event *event)
6669 {
6670 }
6671
6672 static int perf_swevent_add(struct perf_event *event, int flags)
6673 {
6674 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6675 struct hw_perf_event *hwc = &event->hw;
6676 struct hlist_head *head;
6677
6678 if (is_sampling_event(event)) {
6679 hwc->last_period = hwc->sample_period;
6680 perf_swevent_set_period(event);
6681 }
6682
6683 hwc->state = !(flags & PERF_EF_START);
6684
6685 head = find_swevent_head(swhash, event);
6686 if (WARN_ON_ONCE(!head))
6687 return -EINVAL;
6688
6689 hlist_add_head_rcu(&event->hlist_entry, head);
6690 perf_event_update_userpage(event);
6691
6692 return 0;
6693 }
6694
6695 static void perf_swevent_del(struct perf_event *event, int flags)
6696 {
6697 hlist_del_rcu(&event->hlist_entry);
6698 }
6699
6700 static void perf_swevent_start(struct perf_event *event, int flags)
6701 {
6702 event->hw.state = 0;
6703 }
6704
6705 static void perf_swevent_stop(struct perf_event *event, int flags)
6706 {
6707 event->hw.state = PERF_HES_STOPPED;
6708 }
6709
6710 /* Deref the hlist from the update side */
6711 static inline struct swevent_hlist *
6712 swevent_hlist_deref(struct swevent_htable *swhash)
6713 {
6714 return rcu_dereference_protected(swhash->swevent_hlist,
6715 lockdep_is_held(&swhash->hlist_mutex));
6716 }
6717
6718 static void swevent_hlist_release(struct swevent_htable *swhash)
6719 {
6720 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
6721
6722 if (!hlist)
6723 return;
6724
6725 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
6726 kfree_rcu(hlist, rcu_head);
6727 }
6728
6729 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
6730 {
6731 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6732
6733 mutex_lock(&swhash->hlist_mutex);
6734
6735 if (!--swhash->hlist_refcount)
6736 swevent_hlist_release(swhash);
6737
6738 mutex_unlock(&swhash->hlist_mutex);
6739 }
6740
6741 static void swevent_hlist_put(struct perf_event *event)
6742 {
6743 int cpu;
6744
6745 for_each_possible_cpu(cpu)
6746 swevent_hlist_put_cpu(event, cpu);
6747 }
6748
6749 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
6750 {
6751 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6752 int err = 0;
6753
6754 mutex_lock(&swhash->hlist_mutex);
6755 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
6756 struct swevent_hlist *hlist;
6757
6758 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
6759 if (!hlist) {
6760 err = -ENOMEM;
6761 goto exit;
6762 }
6763 rcu_assign_pointer(swhash->swevent_hlist, hlist);
6764 }
6765 swhash->hlist_refcount++;
6766 exit:
6767 mutex_unlock(&swhash->hlist_mutex);
6768
6769 return err;
6770 }
6771
6772 static int swevent_hlist_get(struct perf_event *event)
6773 {
6774 int err;
6775 int cpu, failed_cpu;
6776
6777 get_online_cpus();
6778 for_each_possible_cpu(cpu) {
6779 err = swevent_hlist_get_cpu(event, cpu);
6780 if (err) {
6781 failed_cpu = cpu;
6782 goto fail;
6783 }
6784 }
6785 put_online_cpus();
6786
6787 return 0;
6788 fail:
6789 for_each_possible_cpu(cpu) {
6790 if (cpu == failed_cpu)
6791 break;
6792 swevent_hlist_put_cpu(event, cpu);
6793 }
6794
6795 put_online_cpus();
6796 return err;
6797 }
6798
6799 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
6800
6801 static void sw_perf_event_destroy(struct perf_event *event)
6802 {
6803 u64 event_id = event->attr.config;
6804
6805 WARN_ON(event->parent);
6806
6807 static_key_slow_dec(&perf_swevent_enabled[event_id]);
6808 swevent_hlist_put(event);
6809 }
6810
6811 static int perf_swevent_init(struct perf_event *event)
6812 {
6813 u64 event_id = event->attr.config;
6814
6815 if (event->attr.type != PERF_TYPE_SOFTWARE)
6816 return -ENOENT;
6817
6818 /*
6819 * no branch sampling for software events
6820 */
6821 if (has_branch_stack(event))
6822 return -EOPNOTSUPP;
6823
6824 switch (event_id) {
6825 case PERF_COUNT_SW_CPU_CLOCK:
6826 case PERF_COUNT_SW_TASK_CLOCK:
6827 return -ENOENT;
6828
6829 default:
6830 break;
6831 }
6832
6833 if (event_id >= PERF_COUNT_SW_MAX)
6834 return -ENOENT;
6835
6836 if (!event->parent) {
6837 int err;
6838
6839 err = swevent_hlist_get(event);
6840 if (err)
6841 return err;
6842
6843 static_key_slow_inc(&perf_swevent_enabled[event_id]);
6844 event->destroy = sw_perf_event_destroy;
6845 }
6846
6847 return 0;
6848 }
6849
6850 static struct pmu perf_swevent = {
6851 .task_ctx_nr = perf_sw_context,
6852
6853 .capabilities = PERF_PMU_CAP_NO_NMI,
6854
6855 .event_init = perf_swevent_init,
6856 .add = perf_swevent_add,
6857 .del = perf_swevent_del,
6858 .start = perf_swevent_start,
6859 .stop = perf_swevent_stop,
6860 .read = perf_swevent_read,
6861 };
6862
6863 #ifdef CONFIG_EVENT_TRACING
6864
6865 static int perf_tp_filter_match(struct perf_event *event,
6866 struct perf_sample_data *data)
6867 {
6868 void *record = data->raw->data;
6869
6870 /* only top level events have filters set */
6871 if (event->parent)
6872 event = event->parent;
6873
6874 if (likely(!event->filter) || filter_match_preds(event->filter, record))
6875 return 1;
6876 return 0;
6877 }
6878
6879 static int perf_tp_event_match(struct perf_event *event,
6880 struct perf_sample_data *data,
6881 struct pt_regs *regs)
6882 {
6883 if (event->hw.state & PERF_HES_STOPPED)
6884 return 0;
6885 /*
6886 * All tracepoints are from kernel-space.
6887 */
6888 if (event->attr.exclude_kernel)
6889 return 0;
6890
6891 if (!perf_tp_filter_match(event, data))
6892 return 0;
6893
6894 return 1;
6895 }
6896
6897 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
6898 struct pt_regs *regs, struct hlist_head *head, int rctx,
6899 struct task_struct *task)
6900 {
6901 struct perf_sample_data data;
6902 struct perf_event *event;
6903
6904 struct perf_raw_record raw = {
6905 .size = entry_size,
6906 .data = record,
6907 };
6908
6909 perf_sample_data_init(&data, addr, 0);
6910 data.raw = &raw;
6911
6912 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6913 if (perf_tp_event_match(event, &data, regs))
6914 perf_swevent_event(event, count, &data, regs);
6915 }
6916
6917 /*
6918 * If we got specified a target task, also iterate its context and
6919 * deliver this event there too.
6920 */
6921 if (task && task != current) {
6922 struct perf_event_context *ctx;
6923 struct trace_entry *entry = record;
6924
6925 rcu_read_lock();
6926 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
6927 if (!ctx)
6928 goto unlock;
6929
6930 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6931 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6932 continue;
6933 if (event->attr.config != entry->type)
6934 continue;
6935 if (perf_tp_event_match(event, &data, regs))
6936 perf_swevent_event(event, count, &data, regs);
6937 }
6938 unlock:
6939 rcu_read_unlock();
6940 }
6941
6942 perf_swevent_put_recursion_context(rctx);
6943 }
6944 EXPORT_SYMBOL_GPL(perf_tp_event);
6945
6946 static void tp_perf_event_destroy(struct perf_event *event)
6947 {
6948 perf_trace_destroy(event);
6949 }
6950
6951 static int perf_tp_event_init(struct perf_event *event)
6952 {
6953 int err;
6954
6955 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6956 return -ENOENT;
6957
6958 /*
6959 * no branch sampling for tracepoint events
6960 */
6961 if (has_branch_stack(event))
6962 return -EOPNOTSUPP;
6963
6964 err = perf_trace_init(event);
6965 if (err)
6966 return err;
6967
6968 event->destroy = tp_perf_event_destroy;
6969
6970 return 0;
6971 }
6972
6973 static struct pmu perf_tracepoint = {
6974 .task_ctx_nr = perf_sw_context,
6975
6976 .event_init = perf_tp_event_init,
6977 .add = perf_trace_add,
6978 .del = perf_trace_del,
6979 .start = perf_swevent_start,
6980 .stop = perf_swevent_stop,
6981 .read = perf_swevent_read,
6982 };
6983
6984 static inline void perf_tp_register(void)
6985 {
6986 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
6987 }
6988
6989 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
6990 {
6991 char *filter_str;
6992 int ret;
6993
6994 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6995 return -EINVAL;
6996
6997 filter_str = strndup_user(arg, PAGE_SIZE);
6998 if (IS_ERR(filter_str))
6999 return PTR_ERR(filter_str);
7000
7001 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
7002
7003 kfree(filter_str);
7004 return ret;
7005 }
7006
7007 static void perf_event_free_filter(struct perf_event *event)
7008 {
7009 ftrace_profile_free_filter(event);
7010 }
7011
7012 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7013 {
7014 struct bpf_prog *prog;
7015
7016 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7017 return -EINVAL;
7018
7019 if (event->tp_event->prog)
7020 return -EEXIST;
7021
7022 if (!(event->tp_event->flags & TRACE_EVENT_FL_UKPROBE))
7023 /* bpf programs can only be attached to u/kprobes */
7024 return -EINVAL;
7025
7026 prog = bpf_prog_get(prog_fd);
7027 if (IS_ERR(prog))
7028 return PTR_ERR(prog);
7029
7030 if (prog->type != BPF_PROG_TYPE_KPROBE) {
7031 /* valid fd, but invalid bpf program type */
7032 bpf_prog_put(prog);
7033 return -EINVAL;
7034 }
7035
7036 event->tp_event->prog = prog;
7037
7038 return 0;
7039 }
7040
7041 static void perf_event_free_bpf_prog(struct perf_event *event)
7042 {
7043 struct bpf_prog *prog;
7044
7045 if (!event->tp_event)
7046 return;
7047
7048 prog = event->tp_event->prog;
7049 if (prog) {
7050 event->tp_event->prog = NULL;
7051 bpf_prog_put(prog);
7052 }
7053 }
7054
7055 #else
7056
7057 static inline void perf_tp_register(void)
7058 {
7059 }
7060
7061 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
7062 {
7063 return -ENOENT;
7064 }
7065
7066 static void perf_event_free_filter(struct perf_event *event)
7067 {
7068 }
7069
7070 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7071 {
7072 return -ENOENT;
7073 }
7074
7075 static void perf_event_free_bpf_prog(struct perf_event *event)
7076 {
7077 }
7078 #endif /* CONFIG_EVENT_TRACING */
7079
7080 #ifdef CONFIG_HAVE_HW_BREAKPOINT
7081 void perf_bp_event(struct perf_event *bp, void *data)
7082 {
7083 struct perf_sample_data sample;
7084 struct pt_regs *regs = data;
7085
7086 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
7087
7088 if (!bp->hw.state && !perf_exclude_event(bp, regs))
7089 perf_swevent_event(bp, 1, &sample, regs);
7090 }
7091 #endif
7092
7093 /*
7094 * hrtimer based swevent callback
7095 */
7096
7097 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
7098 {
7099 enum hrtimer_restart ret = HRTIMER_RESTART;
7100 struct perf_sample_data data;
7101 struct pt_regs *regs;
7102 struct perf_event *event;
7103 u64 period;
7104
7105 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
7106
7107 if (event->state != PERF_EVENT_STATE_ACTIVE)
7108 return HRTIMER_NORESTART;
7109
7110 event->pmu->read(event);
7111
7112 perf_sample_data_init(&data, 0, event->hw.last_period);
7113 regs = get_irq_regs();
7114
7115 if (regs && !perf_exclude_event(event, regs)) {
7116 if (!(event->attr.exclude_idle && is_idle_task(current)))
7117 if (__perf_event_overflow(event, 1, &data, regs))
7118 ret = HRTIMER_NORESTART;
7119 }
7120
7121 period = max_t(u64, 10000, event->hw.sample_period);
7122 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
7123
7124 return ret;
7125 }
7126
7127 static void perf_swevent_start_hrtimer(struct perf_event *event)
7128 {
7129 struct hw_perf_event *hwc = &event->hw;
7130 s64 period;
7131
7132 if (!is_sampling_event(event))
7133 return;
7134
7135 period = local64_read(&hwc->period_left);
7136 if (period) {
7137 if (period < 0)
7138 period = 10000;
7139
7140 local64_set(&hwc->period_left, 0);
7141 } else {
7142 period = max_t(u64, 10000, hwc->sample_period);
7143 }
7144 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
7145 HRTIMER_MODE_REL_PINNED);
7146 }
7147
7148 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
7149 {
7150 struct hw_perf_event *hwc = &event->hw;
7151
7152 if (is_sampling_event(event)) {
7153 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
7154 local64_set(&hwc->period_left, ktime_to_ns(remaining));
7155
7156 hrtimer_cancel(&hwc->hrtimer);
7157 }
7158 }
7159
7160 static void perf_swevent_init_hrtimer(struct perf_event *event)
7161 {
7162 struct hw_perf_event *hwc = &event->hw;
7163
7164 if (!is_sampling_event(event))
7165 return;
7166
7167 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
7168 hwc->hrtimer.function = perf_swevent_hrtimer;
7169
7170 /*
7171 * Since hrtimers have a fixed rate, we can do a static freq->period
7172 * mapping and avoid the whole period adjust feedback stuff.
7173 */
7174 if (event->attr.freq) {
7175 long freq = event->attr.sample_freq;
7176
7177 event->attr.sample_period = NSEC_PER_SEC / freq;
7178 hwc->sample_period = event->attr.sample_period;
7179 local64_set(&hwc->period_left, hwc->sample_period);
7180 hwc->last_period = hwc->sample_period;
7181 event->attr.freq = 0;
7182 }
7183 }
7184
7185 /*
7186 * Software event: cpu wall time clock
7187 */
7188
7189 static void cpu_clock_event_update(struct perf_event *event)
7190 {
7191 s64 prev;
7192 u64 now;
7193
7194 now = local_clock();
7195 prev = local64_xchg(&event->hw.prev_count, now);
7196 local64_add(now - prev, &event->count);
7197 }
7198
7199 static void cpu_clock_event_start(struct perf_event *event, int flags)
7200 {
7201 local64_set(&event->hw.prev_count, local_clock());
7202 perf_swevent_start_hrtimer(event);
7203 }
7204
7205 static void cpu_clock_event_stop(struct perf_event *event, int flags)
7206 {
7207 perf_swevent_cancel_hrtimer(event);
7208 cpu_clock_event_update(event);
7209 }
7210
7211 static int cpu_clock_event_add(struct perf_event *event, int flags)
7212 {
7213 if (flags & PERF_EF_START)
7214 cpu_clock_event_start(event, flags);
7215 perf_event_update_userpage(event);
7216
7217 return 0;
7218 }
7219
7220 static void cpu_clock_event_del(struct perf_event *event, int flags)
7221 {
7222 cpu_clock_event_stop(event, flags);
7223 }
7224
7225 static void cpu_clock_event_read(struct perf_event *event)
7226 {
7227 cpu_clock_event_update(event);
7228 }
7229
7230 static int cpu_clock_event_init(struct perf_event *event)
7231 {
7232 if (event->attr.type != PERF_TYPE_SOFTWARE)
7233 return -ENOENT;
7234
7235 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
7236 return -ENOENT;
7237
7238 /*
7239 * no branch sampling for software events
7240 */
7241 if (has_branch_stack(event))
7242 return -EOPNOTSUPP;
7243
7244 perf_swevent_init_hrtimer(event);
7245
7246 return 0;
7247 }
7248
7249 static struct pmu perf_cpu_clock = {
7250 .task_ctx_nr = perf_sw_context,
7251
7252 .capabilities = PERF_PMU_CAP_NO_NMI,
7253
7254 .event_init = cpu_clock_event_init,
7255 .add = cpu_clock_event_add,
7256 .del = cpu_clock_event_del,
7257 .start = cpu_clock_event_start,
7258 .stop = cpu_clock_event_stop,
7259 .read = cpu_clock_event_read,
7260 };
7261
7262 /*
7263 * Software event: task time clock
7264 */
7265
7266 static void task_clock_event_update(struct perf_event *event, u64 now)
7267 {
7268 u64 prev;
7269 s64 delta;
7270
7271 prev = local64_xchg(&event->hw.prev_count, now);
7272 delta = now - prev;
7273 local64_add(delta, &event->count);
7274 }
7275
7276 static void task_clock_event_start(struct perf_event *event, int flags)
7277 {
7278 local64_set(&event->hw.prev_count, event->ctx->time);
7279 perf_swevent_start_hrtimer(event);
7280 }
7281
7282 static void task_clock_event_stop(struct perf_event *event, int flags)
7283 {
7284 perf_swevent_cancel_hrtimer(event);
7285 task_clock_event_update(event, event->ctx->time);
7286 }
7287
7288 static int task_clock_event_add(struct perf_event *event, int flags)
7289 {
7290 if (flags & PERF_EF_START)
7291 task_clock_event_start(event, flags);
7292 perf_event_update_userpage(event);
7293
7294 return 0;
7295 }
7296
7297 static void task_clock_event_del(struct perf_event *event, int flags)
7298 {
7299 task_clock_event_stop(event, PERF_EF_UPDATE);
7300 }
7301
7302 static void task_clock_event_read(struct perf_event *event)
7303 {
7304 u64 now = perf_clock();
7305 u64 delta = now - event->ctx->timestamp;
7306 u64 time = event->ctx->time + delta;
7307
7308 task_clock_event_update(event, time);
7309 }
7310
7311 static int task_clock_event_init(struct perf_event *event)
7312 {
7313 if (event->attr.type != PERF_TYPE_SOFTWARE)
7314 return -ENOENT;
7315
7316 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
7317 return -ENOENT;
7318
7319 /*
7320 * no branch sampling for software events
7321 */
7322 if (has_branch_stack(event))
7323 return -EOPNOTSUPP;
7324
7325 perf_swevent_init_hrtimer(event);
7326
7327 return 0;
7328 }
7329
7330 static struct pmu perf_task_clock = {
7331 .task_ctx_nr = perf_sw_context,
7332
7333 .capabilities = PERF_PMU_CAP_NO_NMI,
7334
7335 .event_init = task_clock_event_init,
7336 .add = task_clock_event_add,
7337 .del = task_clock_event_del,
7338 .start = task_clock_event_start,
7339 .stop = task_clock_event_stop,
7340 .read = task_clock_event_read,
7341 };
7342
7343 static void perf_pmu_nop_void(struct pmu *pmu)
7344 {
7345 }
7346
7347 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
7348 {
7349 }
7350
7351 static int perf_pmu_nop_int(struct pmu *pmu)
7352 {
7353 return 0;
7354 }
7355
7356 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
7357
7358 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
7359 {
7360 __this_cpu_write(nop_txn_flags, flags);
7361
7362 if (flags & ~PERF_PMU_TXN_ADD)
7363 return;
7364
7365 perf_pmu_disable(pmu);
7366 }
7367
7368 static int perf_pmu_commit_txn(struct pmu *pmu)
7369 {
7370 unsigned int flags = __this_cpu_read(nop_txn_flags);
7371
7372 __this_cpu_write(nop_txn_flags, 0);
7373
7374 if (flags & ~PERF_PMU_TXN_ADD)
7375 return 0;
7376
7377 perf_pmu_enable(pmu);
7378 return 0;
7379 }
7380
7381 static void perf_pmu_cancel_txn(struct pmu *pmu)
7382 {
7383 unsigned int flags = __this_cpu_read(nop_txn_flags);
7384
7385 __this_cpu_write(nop_txn_flags, 0);
7386
7387 if (flags & ~PERF_PMU_TXN_ADD)
7388 return;
7389
7390 perf_pmu_enable(pmu);
7391 }
7392
7393 static int perf_event_idx_default(struct perf_event *event)
7394 {
7395 return 0;
7396 }
7397
7398 /*
7399 * Ensures all contexts with the same task_ctx_nr have the same
7400 * pmu_cpu_context too.
7401 */
7402 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
7403 {
7404 struct pmu *pmu;
7405
7406 if (ctxn < 0)
7407 return NULL;
7408
7409 list_for_each_entry(pmu, &pmus, entry) {
7410 if (pmu->task_ctx_nr == ctxn)
7411 return pmu->pmu_cpu_context;
7412 }
7413
7414 return NULL;
7415 }
7416
7417 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
7418 {
7419 int cpu;
7420
7421 for_each_possible_cpu(cpu) {
7422 struct perf_cpu_context *cpuctx;
7423
7424 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7425
7426 if (cpuctx->unique_pmu == old_pmu)
7427 cpuctx->unique_pmu = pmu;
7428 }
7429 }
7430
7431 static void free_pmu_context(struct pmu *pmu)
7432 {
7433 struct pmu *i;
7434
7435 mutex_lock(&pmus_lock);
7436 /*
7437 * Like a real lame refcount.
7438 */
7439 list_for_each_entry(i, &pmus, entry) {
7440 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
7441 update_pmu_context(i, pmu);
7442 goto out;
7443 }
7444 }
7445
7446 free_percpu(pmu->pmu_cpu_context);
7447 out:
7448 mutex_unlock(&pmus_lock);
7449 }
7450 static struct idr pmu_idr;
7451
7452 static ssize_t
7453 type_show(struct device *dev, struct device_attribute *attr, char *page)
7454 {
7455 struct pmu *pmu = dev_get_drvdata(dev);
7456
7457 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
7458 }
7459 static DEVICE_ATTR_RO(type);
7460
7461 static ssize_t
7462 perf_event_mux_interval_ms_show(struct device *dev,
7463 struct device_attribute *attr,
7464 char *page)
7465 {
7466 struct pmu *pmu = dev_get_drvdata(dev);
7467
7468 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
7469 }
7470
7471 static DEFINE_MUTEX(mux_interval_mutex);
7472
7473 static ssize_t
7474 perf_event_mux_interval_ms_store(struct device *dev,
7475 struct device_attribute *attr,
7476 const char *buf, size_t count)
7477 {
7478 struct pmu *pmu = dev_get_drvdata(dev);
7479 int timer, cpu, ret;
7480
7481 ret = kstrtoint(buf, 0, &timer);
7482 if (ret)
7483 return ret;
7484
7485 if (timer < 1)
7486 return -EINVAL;
7487
7488 /* same value, noting to do */
7489 if (timer == pmu->hrtimer_interval_ms)
7490 return count;
7491
7492 mutex_lock(&mux_interval_mutex);
7493 pmu->hrtimer_interval_ms = timer;
7494
7495 /* update all cpuctx for this PMU */
7496 get_online_cpus();
7497 for_each_online_cpu(cpu) {
7498 struct perf_cpu_context *cpuctx;
7499 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7500 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
7501
7502 cpu_function_call(cpu,
7503 (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
7504 }
7505 put_online_cpus();
7506 mutex_unlock(&mux_interval_mutex);
7507
7508 return count;
7509 }
7510 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
7511
7512 static struct attribute *pmu_dev_attrs[] = {
7513 &dev_attr_type.attr,
7514 &dev_attr_perf_event_mux_interval_ms.attr,
7515 NULL,
7516 };
7517 ATTRIBUTE_GROUPS(pmu_dev);
7518
7519 static int pmu_bus_running;
7520 static struct bus_type pmu_bus = {
7521 .name = "event_source",
7522 .dev_groups = pmu_dev_groups,
7523 };
7524
7525 static void pmu_dev_release(struct device *dev)
7526 {
7527 kfree(dev);
7528 }
7529
7530 static int pmu_dev_alloc(struct pmu *pmu)
7531 {
7532 int ret = -ENOMEM;
7533
7534 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
7535 if (!pmu->dev)
7536 goto out;
7537
7538 pmu->dev->groups = pmu->attr_groups;
7539 device_initialize(pmu->dev);
7540 ret = dev_set_name(pmu->dev, "%s", pmu->name);
7541 if (ret)
7542 goto free_dev;
7543
7544 dev_set_drvdata(pmu->dev, pmu);
7545 pmu->dev->bus = &pmu_bus;
7546 pmu->dev->release = pmu_dev_release;
7547 ret = device_add(pmu->dev);
7548 if (ret)
7549 goto free_dev;
7550
7551 out:
7552 return ret;
7553
7554 free_dev:
7555 put_device(pmu->dev);
7556 goto out;
7557 }
7558
7559 static struct lock_class_key cpuctx_mutex;
7560 static struct lock_class_key cpuctx_lock;
7561
7562 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
7563 {
7564 int cpu, ret;
7565
7566 mutex_lock(&pmus_lock);
7567 ret = -ENOMEM;
7568 pmu->pmu_disable_count = alloc_percpu(int);
7569 if (!pmu->pmu_disable_count)
7570 goto unlock;
7571
7572 pmu->type = -1;
7573 if (!name)
7574 goto skip_type;
7575 pmu->name = name;
7576
7577 if (type < 0) {
7578 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
7579 if (type < 0) {
7580 ret = type;
7581 goto free_pdc;
7582 }
7583 }
7584 pmu->type = type;
7585
7586 if (pmu_bus_running) {
7587 ret = pmu_dev_alloc(pmu);
7588 if (ret)
7589 goto free_idr;
7590 }
7591
7592 skip_type:
7593 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
7594 if (pmu->pmu_cpu_context)
7595 goto got_cpu_context;
7596
7597 ret = -ENOMEM;
7598 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
7599 if (!pmu->pmu_cpu_context)
7600 goto free_dev;
7601
7602 for_each_possible_cpu(cpu) {
7603 struct perf_cpu_context *cpuctx;
7604
7605 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7606 __perf_event_init_context(&cpuctx->ctx);
7607 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
7608 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
7609 cpuctx->ctx.pmu = pmu;
7610
7611 __perf_mux_hrtimer_init(cpuctx, cpu);
7612
7613 cpuctx->unique_pmu = pmu;
7614 }
7615
7616 got_cpu_context:
7617 if (!pmu->start_txn) {
7618 if (pmu->pmu_enable) {
7619 /*
7620 * If we have pmu_enable/pmu_disable calls, install
7621 * transaction stubs that use that to try and batch
7622 * hardware accesses.
7623 */
7624 pmu->start_txn = perf_pmu_start_txn;
7625 pmu->commit_txn = perf_pmu_commit_txn;
7626 pmu->cancel_txn = perf_pmu_cancel_txn;
7627 } else {
7628 pmu->start_txn = perf_pmu_nop_txn;
7629 pmu->commit_txn = perf_pmu_nop_int;
7630 pmu->cancel_txn = perf_pmu_nop_void;
7631 }
7632 }
7633
7634 if (!pmu->pmu_enable) {
7635 pmu->pmu_enable = perf_pmu_nop_void;
7636 pmu->pmu_disable = perf_pmu_nop_void;
7637 }
7638
7639 if (!pmu->event_idx)
7640 pmu->event_idx = perf_event_idx_default;
7641
7642 list_add_rcu(&pmu->entry, &pmus);
7643 atomic_set(&pmu->exclusive_cnt, 0);
7644 ret = 0;
7645 unlock:
7646 mutex_unlock(&pmus_lock);
7647
7648 return ret;
7649
7650 free_dev:
7651 device_del(pmu->dev);
7652 put_device(pmu->dev);
7653
7654 free_idr:
7655 if (pmu->type >= PERF_TYPE_MAX)
7656 idr_remove(&pmu_idr, pmu->type);
7657
7658 free_pdc:
7659 free_percpu(pmu->pmu_disable_count);
7660 goto unlock;
7661 }
7662 EXPORT_SYMBOL_GPL(perf_pmu_register);
7663
7664 void perf_pmu_unregister(struct pmu *pmu)
7665 {
7666 mutex_lock(&pmus_lock);
7667 list_del_rcu(&pmu->entry);
7668 mutex_unlock(&pmus_lock);
7669
7670 /*
7671 * We dereference the pmu list under both SRCU and regular RCU, so
7672 * synchronize against both of those.
7673 */
7674 synchronize_srcu(&pmus_srcu);
7675 synchronize_rcu();
7676
7677 free_percpu(pmu->pmu_disable_count);
7678 if (pmu->type >= PERF_TYPE_MAX)
7679 idr_remove(&pmu_idr, pmu->type);
7680 device_del(pmu->dev);
7681 put_device(pmu->dev);
7682 free_pmu_context(pmu);
7683 }
7684 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
7685
7686 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
7687 {
7688 struct perf_event_context *ctx = NULL;
7689 int ret;
7690
7691 if (!try_module_get(pmu->module))
7692 return -ENODEV;
7693
7694 if (event->group_leader != event) {
7695 /*
7696 * This ctx->mutex can nest when we're called through
7697 * inheritance. See the perf_event_ctx_lock_nested() comment.
7698 */
7699 ctx = perf_event_ctx_lock_nested(event->group_leader,
7700 SINGLE_DEPTH_NESTING);
7701 BUG_ON(!ctx);
7702 }
7703
7704 event->pmu = pmu;
7705 ret = pmu->event_init(event);
7706
7707 if (ctx)
7708 perf_event_ctx_unlock(event->group_leader, ctx);
7709
7710 if (ret)
7711 module_put(pmu->module);
7712
7713 return ret;
7714 }
7715
7716 static struct pmu *perf_init_event(struct perf_event *event)
7717 {
7718 struct pmu *pmu = NULL;
7719 int idx;
7720 int ret;
7721
7722 idx = srcu_read_lock(&pmus_srcu);
7723
7724 rcu_read_lock();
7725 pmu = idr_find(&pmu_idr, event->attr.type);
7726 rcu_read_unlock();
7727 if (pmu) {
7728 ret = perf_try_init_event(pmu, event);
7729 if (ret)
7730 pmu = ERR_PTR(ret);
7731 goto unlock;
7732 }
7733
7734 list_for_each_entry_rcu(pmu, &pmus, entry) {
7735 ret = perf_try_init_event(pmu, event);
7736 if (!ret)
7737 goto unlock;
7738
7739 if (ret != -ENOENT) {
7740 pmu = ERR_PTR(ret);
7741 goto unlock;
7742 }
7743 }
7744 pmu = ERR_PTR(-ENOENT);
7745 unlock:
7746 srcu_read_unlock(&pmus_srcu, idx);
7747
7748 return pmu;
7749 }
7750
7751 static void account_event_cpu(struct perf_event *event, int cpu)
7752 {
7753 if (event->parent)
7754 return;
7755
7756 if (is_cgroup_event(event))
7757 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
7758 }
7759
7760 static void account_event(struct perf_event *event)
7761 {
7762 if (event->parent)
7763 return;
7764
7765 if (event->attach_state & PERF_ATTACH_TASK)
7766 static_key_slow_inc(&perf_sched_events.key);
7767 if (event->attr.mmap || event->attr.mmap_data)
7768 atomic_inc(&nr_mmap_events);
7769 if (event->attr.comm)
7770 atomic_inc(&nr_comm_events);
7771 if (event->attr.task)
7772 atomic_inc(&nr_task_events);
7773 if (event->attr.freq) {
7774 if (atomic_inc_return(&nr_freq_events) == 1)
7775 tick_nohz_full_kick_all();
7776 }
7777 if (event->attr.context_switch) {
7778 atomic_inc(&nr_switch_events);
7779 static_key_slow_inc(&perf_sched_events.key);
7780 }
7781 if (has_branch_stack(event))
7782 static_key_slow_inc(&perf_sched_events.key);
7783 if (is_cgroup_event(event))
7784 static_key_slow_inc(&perf_sched_events.key);
7785
7786 account_event_cpu(event, event->cpu);
7787 }
7788
7789 /*
7790 * Allocate and initialize a event structure
7791 */
7792 static struct perf_event *
7793 perf_event_alloc(struct perf_event_attr *attr, int cpu,
7794 struct task_struct *task,
7795 struct perf_event *group_leader,
7796 struct perf_event *parent_event,
7797 perf_overflow_handler_t overflow_handler,
7798 void *context, int cgroup_fd)
7799 {
7800 struct pmu *pmu;
7801 struct perf_event *event;
7802 struct hw_perf_event *hwc;
7803 long err = -EINVAL;
7804
7805 if ((unsigned)cpu >= nr_cpu_ids) {
7806 if (!task || cpu != -1)
7807 return ERR_PTR(-EINVAL);
7808 }
7809
7810 event = kzalloc(sizeof(*event), GFP_KERNEL);
7811 if (!event)
7812 return ERR_PTR(-ENOMEM);
7813
7814 /*
7815 * Single events are their own group leaders, with an
7816 * empty sibling list:
7817 */
7818 if (!group_leader)
7819 group_leader = event;
7820
7821 mutex_init(&event->child_mutex);
7822 INIT_LIST_HEAD(&event->child_list);
7823
7824 INIT_LIST_HEAD(&event->group_entry);
7825 INIT_LIST_HEAD(&event->event_entry);
7826 INIT_LIST_HEAD(&event->sibling_list);
7827 INIT_LIST_HEAD(&event->rb_entry);
7828 INIT_LIST_HEAD(&event->active_entry);
7829 INIT_HLIST_NODE(&event->hlist_entry);
7830
7831
7832 init_waitqueue_head(&event->waitq);
7833 init_irq_work(&event->pending, perf_pending_event);
7834
7835 mutex_init(&event->mmap_mutex);
7836
7837 atomic_long_set(&event->refcount, 1);
7838 event->cpu = cpu;
7839 event->attr = *attr;
7840 event->group_leader = group_leader;
7841 event->pmu = NULL;
7842 event->oncpu = -1;
7843
7844 event->parent = parent_event;
7845
7846 event->ns = get_pid_ns(task_active_pid_ns(current));
7847 event->id = atomic64_inc_return(&perf_event_id);
7848
7849 event->state = PERF_EVENT_STATE_INACTIVE;
7850
7851 if (task) {
7852 event->attach_state = PERF_ATTACH_TASK;
7853 /*
7854 * XXX pmu::event_init needs to know what task to account to
7855 * and we cannot use the ctx information because we need the
7856 * pmu before we get a ctx.
7857 */
7858 event->hw.target = task;
7859 }
7860
7861 event->clock = &local_clock;
7862 if (parent_event)
7863 event->clock = parent_event->clock;
7864
7865 if (!overflow_handler && parent_event) {
7866 overflow_handler = parent_event->overflow_handler;
7867 context = parent_event->overflow_handler_context;
7868 }
7869
7870 event->overflow_handler = overflow_handler;
7871 event->overflow_handler_context = context;
7872
7873 perf_event__state_init(event);
7874
7875 pmu = NULL;
7876
7877 hwc = &event->hw;
7878 hwc->sample_period = attr->sample_period;
7879 if (attr->freq && attr->sample_freq)
7880 hwc->sample_period = 1;
7881 hwc->last_period = hwc->sample_period;
7882
7883 local64_set(&hwc->period_left, hwc->sample_period);
7884
7885 /*
7886 * we currently do not support PERF_FORMAT_GROUP on inherited events
7887 */
7888 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
7889 goto err_ns;
7890
7891 if (!has_branch_stack(event))
7892 event->attr.branch_sample_type = 0;
7893
7894 if (cgroup_fd != -1) {
7895 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
7896 if (err)
7897 goto err_ns;
7898 }
7899
7900 pmu = perf_init_event(event);
7901 if (!pmu)
7902 goto err_ns;
7903 else if (IS_ERR(pmu)) {
7904 err = PTR_ERR(pmu);
7905 goto err_ns;
7906 }
7907
7908 err = exclusive_event_init(event);
7909 if (err)
7910 goto err_pmu;
7911
7912 if (!event->parent) {
7913 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
7914 err = get_callchain_buffers();
7915 if (err)
7916 goto err_per_task;
7917 }
7918 }
7919
7920 return event;
7921
7922 err_per_task:
7923 exclusive_event_destroy(event);
7924
7925 err_pmu:
7926 if (event->destroy)
7927 event->destroy(event);
7928 module_put(pmu->module);
7929 err_ns:
7930 if (is_cgroup_event(event))
7931 perf_detach_cgroup(event);
7932 if (event->ns)
7933 put_pid_ns(event->ns);
7934 kfree(event);
7935
7936 return ERR_PTR(err);
7937 }
7938
7939 static int perf_copy_attr(struct perf_event_attr __user *uattr,
7940 struct perf_event_attr *attr)
7941 {
7942 u32 size;
7943 int ret;
7944
7945 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
7946 return -EFAULT;
7947
7948 /*
7949 * zero the full structure, so that a short copy will be nice.
7950 */
7951 memset(attr, 0, sizeof(*attr));
7952
7953 ret = get_user(size, &uattr->size);
7954 if (ret)
7955 return ret;
7956
7957 if (size > PAGE_SIZE) /* silly large */
7958 goto err_size;
7959
7960 if (!size) /* abi compat */
7961 size = PERF_ATTR_SIZE_VER0;
7962
7963 if (size < PERF_ATTR_SIZE_VER0)
7964 goto err_size;
7965
7966 /*
7967 * If we're handed a bigger struct than we know of,
7968 * ensure all the unknown bits are 0 - i.e. new
7969 * user-space does not rely on any kernel feature
7970 * extensions we dont know about yet.
7971 */
7972 if (size > sizeof(*attr)) {
7973 unsigned char __user *addr;
7974 unsigned char __user *end;
7975 unsigned char val;
7976
7977 addr = (void __user *)uattr + sizeof(*attr);
7978 end = (void __user *)uattr + size;
7979
7980 for (; addr < end; addr++) {
7981 ret = get_user(val, addr);
7982 if (ret)
7983 return ret;
7984 if (val)
7985 goto err_size;
7986 }
7987 size = sizeof(*attr);
7988 }
7989
7990 ret = copy_from_user(attr, uattr, size);
7991 if (ret)
7992 return -EFAULT;
7993
7994 if (attr->__reserved_1)
7995 return -EINVAL;
7996
7997 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
7998 return -EINVAL;
7999
8000 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
8001 return -EINVAL;
8002
8003 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
8004 u64 mask = attr->branch_sample_type;
8005
8006 /* only using defined bits */
8007 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
8008 return -EINVAL;
8009
8010 /* at least one branch bit must be set */
8011 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
8012 return -EINVAL;
8013
8014 /* propagate priv level, when not set for branch */
8015 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
8016
8017 /* exclude_kernel checked on syscall entry */
8018 if (!attr->exclude_kernel)
8019 mask |= PERF_SAMPLE_BRANCH_KERNEL;
8020
8021 if (!attr->exclude_user)
8022 mask |= PERF_SAMPLE_BRANCH_USER;
8023
8024 if (!attr->exclude_hv)
8025 mask |= PERF_SAMPLE_BRANCH_HV;
8026 /*
8027 * adjust user setting (for HW filter setup)
8028 */
8029 attr->branch_sample_type = mask;
8030 }
8031 /* privileged levels capture (kernel, hv): check permissions */
8032 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
8033 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
8034 return -EACCES;
8035 }
8036
8037 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
8038 ret = perf_reg_validate(attr->sample_regs_user);
8039 if (ret)
8040 return ret;
8041 }
8042
8043 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
8044 if (!arch_perf_have_user_stack_dump())
8045 return -ENOSYS;
8046
8047 /*
8048 * We have __u32 type for the size, but so far
8049 * we can only use __u16 as maximum due to the
8050 * __u16 sample size limit.
8051 */
8052 if (attr->sample_stack_user >= USHRT_MAX)
8053 ret = -EINVAL;
8054 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
8055 ret = -EINVAL;
8056 }
8057
8058 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
8059 ret = perf_reg_validate(attr->sample_regs_intr);
8060 out:
8061 return ret;
8062
8063 err_size:
8064 put_user(sizeof(*attr), &uattr->size);
8065 ret = -E2BIG;
8066 goto out;
8067 }
8068
8069 static int
8070 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
8071 {
8072 struct ring_buffer *rb = NULL;
8073 int ret = -EINVAL;
8074
8075 if (!output_event)
8076 goto set;
8077
8078 /* don't allow circular references */
8079 if (event == output_event)
8080 goto out;
8081
8082 /*
8083 * Don't allow cross-cpu buffers
8084 */
8085 if (output_event->cpu != event->cpu)
8086 goto out;
8087
8088 /*
8089 * If its not a per-cpu rb, it must be the same task.
8090 */
8091 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
8092 goto out;
8093
8094 /*
8095 * Mixing clocks in the same buffer is trouble you don't need.
8096 */
8097 if (output_event->clock != event->clock)
8098 goto out;
8099
8100 /*
8101 * If both events generate aux data, they must be on the same PMU
8102 */
8103 if (has_aux(event) && has_aux(output_event) &&
8104 event->pmu != output_event->pmu)
8105 goto out;
8106
8107 set:
8108 mutex_lock(&event->mmap_mutex);
8109 /* Can't redirect output if we've got an active mmap() */
8110 if (atomic_read(&event->mmap_count))
8111 goto unlock;
8112
8113 if (output_event) {
8114 /* get the rb we want to redirect to */
8115 rb = ring_buffer_get(output_event);
8116 if (!rb)
8117 goto unlock;
8118 }
8119
8120 ring_buffer_attach(event, rb);
8121
8122 ret = 0;
8123 unlock:
8124 mutex_unlock(&event->mmap_mutex);
8125
8126 out:
8127 return ret;
8128 }
8129
8130 static void mutex_lock_double(struct mutex *a, struct mutex *b)
8131 {
8132 if (b < a)
8133 swap(a, b);
8134
8135 mutex_lock(a);
8136 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
8137 }
8138
8139 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
8140 {
8141 bool nmi_safe = false;
8142
8143 switch (clk_id) {
8144 case CLOCK_MONOTONIC:
8145 event->clock = &ktime_get_mono_fast_ns;
8146 nmi_safe = true;
8147 break;
8148
8149 case CLOCK_MONOTONIC_RAW:
8150 event->clock = &ktime_get_raw_fast_ns;
8151 nmi_safe = true;
8152 break;
8153
8154 case CLOCK_REALTIME:
8155 event->clock = &ktime_get_real_ns;
8156 break;
8157
8158 case CLOCK_BOOTTIME:
8159 event->clock = &ktime_get_boot_ns;
8160 break;
8161
8162 case CLOCK_TAI:
8163 event->clock = &ktime_get_tai_ns;
8164 break;
8165
8166 default:
8167 return -EINVAL;
8168 }
8169
8170 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
8171 return -EINVAL;
8172
8173 return 0;
8174 }
8175
8176 /**
8177 * sys_perf_event_open - open a performance event, associate it to a task/cpu
8178 *
8179 * @attr_uptr: event_id type attributes for monitoring/sampling
8180 * @pid: target pid
8181 * @cpu: target cpu
8182 * @group_fd: group leader event fd
8183 */
8184 SYSCALL_DEFINE5(perf_event_open,
8185 struct perf_event_attr __user *, attr_uptr,
8186 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
8187 {
8188 struct perf_event *group_leader = NULL, *output_event = NULL;
8189 struct perf_event *event, *sibling;
8190 struct perf_event_attr attr;
8191 struct perf_event_context *ctx, *uninitialized_var(gctx);
8192 struct file *event_file = NULL;
8193 struct fd group = {NULL, 0};
8194 struct task_struct *task = NULL;
8195 struct pmu *pmu;
8196 int event_fd;
8197 int move_group = 0;
8198 int err;
8199 int f_flags = O_RDWR;
8200 int cgroup_fd = -1;
8201
8202 /* for future expandability... */
8203 if (flags & ~PERF_FLAG_ALL)
8204 return -EINVAL;
8205
8206 err = perf_copy_attr(attr_uptr, &attr);
8207 if (err)
8208 return err;
8209
8210 if (!attr.exclude_kernel) {
8211 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
8212 return -EACCES;
8213 }
8214
8215 if (attr.freq) {
8216 if (attr.sample_freq > sysctl_perf_event_sample_rate)
8217 return -EINVAL;
8218 } else {
8219 if (attr.sample_period & (1ULL << 63))
8220 return -EINVAL;
8221 }
8222
8223 /*
8224 * In cgroup mode, the pid argument is used to pass the fd
8225 * opened to the cgroup directory in cgroupfs. The cpu argument
8226 * designates the cpu on which to monitor threads from that
8227 * cgroup.
8228 */
8229 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
8230 return -EINVAL;
8231
8232 if (flags & PERF_FLAG_FD_CLOEXEC)
8233 f_flags |= O_CLOEXEC;
8234
8235 event_fd = get_unused_fd_flags(f_flags);
8236 if (event_fd < 0)
8237 return event_fd;
8238
8239 if (group_fd != -1) {
8240 err = perf_fget_light(group_fd, &group);
8241 if (err)
8242 goto err_fd;
8243 group_leader = group.file->private_data;
8244 if (flags & PERF_FLAG_FD_OUTPUT)
8245 output_event = group_leader;
8246 if (flags & PERF_FLAG_FD_NO_GROUP)
8247 group_leader = NULL;
8248 }
8249
8250 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
8251 task = find_lively_task_by_vpid(pid);
8252 if (IS_ERR(task)) {
8253 err = PTR_ERR(task);
8254 goto err_group_fd;
8255 }
8256 }
8257
8258 if (task && group_leader &&
8259 group_leader->attr.inherit != attr.inherit) {
8260 err = -EINVAL;
8261 goto err_task;
8262 }
8263
8264 get_online_cpus();
8265
8266 if (flags & PERF_FLAG_PID_CGROUP)
8267 cgroup_fd = pid;
8268
8269 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
8270 NULL, NULL, cgroup_fd);
8271 if (IS_ERR(event)) {
8272 err = PTR_ERR(event);
8273 goto err_cpus;
8274 }
8275
8276 if (is_sampling_event(event)) {
8277 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
8278 err = -ENOTSUPP;
8279 goto err_alloc;
8280 }
8281 }
8282
8283 account_event(event);
8284
8285 /*
8286 * Special case software events and allow them to be part of
8287 * any hardware group.
8288 */
8289 pmu = event->pmu;
8290
8291 if (attr.use_clockid) {
8292 err = perf_event_set_clock(event, attr.clockid);
8293 if (err)
8294 goto err_alloc;
8295 }
8296
8297 if (group_leader &&
8298 (is_software_event(event) != is_software_event(group_leader))) {
8299 if (is_software_event(event)) {
8300 /*
8301 * If event and group_leader are not both a software
8302 * event, and event is, then group leader is not.
8303 *
8304 * Allow the addition of software events to !software
8305 * groups, this is safe because software events never
8306 * fail to schedule.
8307 */
8308 pmu = group_leader->pmu;
8309 } else if (is_software_event(group_leader) &&
8310 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
8311 /*
8312 * In case the group is a pure software group, and we
8313 * try to add a hardware event, move the whole group to
8314 * the hardware context.
8315 */
8316 move_group = 1;
8317 }
8318 }
8319
8320 /*
8321 * Get the target context (task or percpu):
8322 */
8323 ctx = find_get_context(pmu, task, event);
8324 if (IS_ERR(ctx)) {
8325 err = PTR_ERR(ctx);
8326 goto err_alloc;
8327 }
8328
8329 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
8330 err = -EBUSY;
8331 goto err_context;
8332 }
8333
8334 if (task) {
8335 put_task_struct(task);
8336 task = NULL;
8337 }
8338
8339 /*
8340 * Look up the group leader (we will attach this event to it):
8341 */
8342 if (group_leader) {
8343 err = -EINVAL;
8344
8345 /*
8346 * Do not allow a recursive hierarchy (this new sibling
8347 * becoming part of another group-sibling):
8348 */
8349 if (group_leader->group_leader != group_leader)
8350 goto err_context;
8351
8352 /* All events in a group should have the same clock */
8353 if (group_leader->clock != event->clock)
8354 goto err_context;
8355
8356 /*
8357 * Do not allow to attach to a group in a different
8358 * task or CPU context:
8359 */
8360 if (move_group) {
8361 /*
8362 * Make sure we're both on the same task, or both
8363 * per-cpu events.
8364 */
8365 if (group_leader->ctx->task != ctx->task)
8366 goto err_context;
8367
8368 /*
8369 * Make sure we're both events for the same CPU;
8370 * grouping events for different CPUs is broken; since
8371 * you can never concurrently schedule them anyhow.
8372 */
8373 if (group_leader->cpu != event->cpu)
8374 goto err_context;
8375 } else {
8376 if (group_leader->ctx != ctx)
8377 goto err_context;
8378 }
8379
8380 /*
8381 * Only a group leader can be exclusive or pinned
8382 */
8383 if (attr.exclusive || attr.pinned)
8384 goto err_context;
8385 }
8386
8387 if (output_event) {
8388 err = perf_event_set_output(event, output_event);
8389 if (err)
8390 goto err_context;
8391 }
8392
8393 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
8394 f_flags);
8395 if (IS_ERR(event_file)) {
8396 err = PTR_ERR(event_file);
8397 goto err_context;
8398 }
8399
8400 if (move_group) {
8401 gctx = group_leader->ctx;
8402 mutex_lock_double(&gctx->mutex, &ctx->mutex);
8403 } else {
8404 mutex_lock(&ctx->mutex);
8405 }
8406
8407 if (!perf_event_validate_size(event)) {
8408 err = -E2BIG;
8409 goto err_locked;
8410 }
8411
8412 /*
8413 * Must be under the same ctx::mutex as perf_install_in_context(),
8414 * because we need to serialize with concurrent event creation.
8415 */
8416 if (!exclusive_event_installable(event, ctx)) {
8417 /* exclusive and group stuff are assumed mutually exclusive */
8418 WARN_ON_ONCE(move_group);
8419
8420 err = -EBUSY;
8421 goto err_locked;
8422 }
8423
8424 WARN_ON_ONCE(ctx->parent_ctx);
8425
8426 if (move_group) {
8427 /*
8428 * See perf_event_ctx_lock() for comments on the details
8429 * of swizzling perf_event::ctx.
8430 */
8431 perf_remove_from_context(group_leader, false);
8432
8433 list_for_each_entry(sibling, &group_leader->sibling_list,
8434 group_entry) {
8435 perf_remove_from_context(sibling, false);
8436 put_ctx(gctx);
8437 }
8438
8439 /*
8440 * Wait for everybody to stop referencing the events through
8441 * the old lists, before installing it on new lists.
8442 */
8443 synchronize_rcu();
8444
8445 /*
8446 * Install the group siblings before the group leader.
8447 *
8448 * Because a group leader will try and install the entire group
8449 * (through the sibling list, which is still in-tact), we can
8450 * end up with siblings installed in the wrong context.
8451 *
8452 * By installing siblings first we NO-OP because they're not
8453 * reachable through the group lists.
8454 */
8455 list_for_each_entry(sibling, &group_leader->sibling_list,
8456 group_entry) {
8457 perf_event__state_init(sibling);
8458 perf_install_in_context(ctx, sibling, sibling->cpu);
8459 get_ctx(ctx);
8460 }
8461
8462 /*
8463 * Removing from the context ends up with disabled
8464 * event. What we want here is event in the initial
8465 * startup state, ready to be add into new context.
8466 */
8467 perf_event__state_init(group_leader);
8468 perf_install_in_context(ctx, group_leader, group_leader->cpu);
8469 get_ctx(ctx);
8470
8471 /*
8472 * Now that all events are installed in @ctx, nothing
8473 * references @gctx anymore, so drop the last reference we have
8474 * on it.
8475 */
8476 put_ctx(gctx);
8477 }
8478
8479 /*
8480 * Precalculate sample_data sizes; do while holding ctx::mutex such
8481 * that we're serialized against further additions and before
8482 * perf_install_in_context() which is the point the event is active and
8483 * can use these values.
8484 */
8485 perf_event__header_size(event);
8486 perf_event__id_header_size(event);
8487
8488 perf_install_in_context(ctx, event, event->cpu);
8489 perf_unpin_context(ctx);
8490
8491 if (move_group)
8492 mutex_unlock(&gctx->mutex);
8493 mutex_unlock(&ctx->mutex);
8494
8495 put_online_cpus();
8496
8497 event->owner = current;
8498
8499 mutex_lock(&current->perf_event_mutex);
8500 list_add_tail(&event->owner_entry, &current->perf_event_list);
8501 mutex_unlock(&current->perf_event_mutex);
8502
8503 /*
8504 * Drop the reference on the group_event after placing the
8505 * new event on the sibling_list. This ensures destruction
8506 * of the group leader will find the pointer to itself in
8507 * perf_group_detach().
8508 */
8509 fdput(group);
8510 fd_install(event_fd, event_file);
8511 return event_fd;
8512
8513 err_locked:
8514 if (move_group)
8515 mutex_unlock(&gctx->mutex);
8516 mutex_unlock(&ctx->mutex);
8517 /* err_file: */
8518 fput(event_file);
8519 err_context:
8520 perf_unpin_context(ctx);
8521 put_ctx(ctx);
8522 err_alloc:
8523 free_event(event);
8524 err_cpus:
8525 put_online_cpus();
8526 err_task:
8527 if (task)
8528 put_task_struct(task);
8529 err_group_fd:
8530 fdput(group);
8531 err_fd:
8532 put_unused_fd(event_fd);
8533 return err;
8534 }
8535
8536 /**
8537 * perf_event_create_kernel_counter
8538 *
8539 * @attr: attributes of the counter to create
8540 * @cpu: cpu in which the counter is bound
8541 * @task: task to profile (NULL for percpu)
8542 */
8543 struct perf_event *
8544 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
8545 struct task_struct *task,
8546 perf_overflow_handler_t overflow_handler,
8547 void *context)
8548 {
8549 struct perf_event_context *ctx;
8550 struct perf_event *event;
8551 int err;
8552
8553 /*
8554 * Get the target context (task or percpu):
8555 */
8556
8557 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
8558 overflow_handler, context, -1);
8559 if (IS_ERR(event)) {
8560 err = PTR_ERR(event);
8561 goto err;
8562 }
8563
8564 /* Mark owner so we could distinguish it from user events. */
8565 event->owner = EVENT_OWNER_KERNEL;
8566
8567 account_event(event);
8568
8569 ctx = find_get_context(event->pmu, task, event);
8570 if (IS_ERR(ctx)) {
8571 err = PTR_ERR(ctx);
8572 goto err_free;
8573 }
8574
8575 WARN_ON_ONCE(ctx->parent_ctx);
8576 mutex_lock(&ctx->mutex);
8577 if (!exclusive_event_installable(event, ctx)) {
8578 mutex_unlock(&ctx->mutex);
8579 perf_unpin_context(ctx);
8580 put_ctx(ctx);
8581 err = -EBUSY;
8582 goto err_free;
8583 }
8584
8585 perf_install_in_context(ctx, event, cpu);
8586 perf_unpin_context(ctx);
8587 mutex_unlock(&ctx->mutex);
8588
8589 return event;
8590
8591 err_free:
8592 free_event(event);
8593 err:
8594 return ERR_PTR(err);
8595 }
8596 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
8597
8598 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
8599 {
8600 struct perf_event_context *src_ctx;
8601 struct perf_event_context *dst_ctx;
8602 struct perf_event *event, *tmp;
8603 LIST_HEAD(events);
8604
8605 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
8606 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
8607
8608 /*
8609 * See perf_event_ctx_lock() for comments on the details
8610 * of swizzling perf_event::ctx.
8611 */
8612 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
8613 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
8614 event_entry) {
8615 perf_remove_from_context(event, false);
8616 unaccount_event_cpu(event, src_cpu);
8617 put_ctx(src_ctx);
8618 list_add(&event->migrate_entry, &events);
8619 }
8620
8621 /*
8622 * Wait for the events to quiesce before re-instating them.
8623 */
8624 synchronize_rcu();
8625
8626 /*
8627 * Re-instate events in 2 passes.
8628 *
8629 * Skip over group leaders and only install siblings on this first
8630 * pass, siblings will not get enabled without a leader, however a
8631 * leader will enable its siblings, even if those are still on the old
8632 * context.
8633 */
8634 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8635 if (event->group_leader == event)
8636 continue;
8637
8638 list_del(&event->migrate_entry);
8639 if (event->state >= PERF_EVENT_STATE_OFF)
8640 event->state = PERF_EVENT_STATE_INACTIVE;
8641 account_event_cpu(event, dst_cpu);
8642 perf_install_in_context(dst_ctx, event, dst_cpu);
8643 get_ctx(dst_ctx);
8644 }
8645
8646 /*
8647 * Once all the siblings are setup properly, install the group leaders
8648 * to make it go.
8649 */
8650 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8651 list_del(&event->migrate_entry);
8652 if (event->state >= PERF_EVENT_STATE_OFF)
8653 event->state = PERF_EVENT_STATE_INACTIVE;
8654 account_event_cpu(event, dst_cpu);
8655 perf_install_in_context(dst_ctx, event, dst_cpu);
8656 get_ctx(dst_ctx);
8657 }
8658 mutex_unlock(&dst_ctx->mutex);
8659 mutex_unlock(&src_ctx->mutex);
8660 }
8661 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
8662
8663 static void sync_child_event(struct perf_event *child_event,
8664 struct task_struct *child)
8665 {
8666 struct perf_event *parent_event = child_event->parent;
8667 u64 child_val;
8668
8669 if (child_event->attr.inherit_stat)
8670 perf_event_read_event(child_event, child);
8671
8672 child_val = perf_event_count(child_event);
8673
8674 /*
8675 * Add back the child's count to the parent's count:
8676 */
8677 atomic64_add(child_val, &parent_event->child_count);
8678 atomic64_add(child_event->total_time_enabled,
8679 &parent_event->child_total_time_enabled);
8680 atomic64_add(child_event->total_time_running,
8681 &parent_event->child_total_time_running);
8682
8683 /*
8684 * Remove this event from the parent's list
8685 */
8686 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
8687 mutex_lock(&parent_event->child_mutex);
8688 list_del_init(&child_event->child_list);
8689 mutex_unlock(&parent_event->child_mutex);
8690
8691 /*
8692 * Make sure user/parent get notified, that we just
8693 * lost one event.
8694 */
8695 perf_event_wakeup(parent_event);
8696
8697 /*
8698 * Release the parent event, if this was the last
8699 * reference to it.
8700 */
8701 put_event(parent_event);
8702 }
8703
8704 static void
8705 __perf_event_exit_task(struct perf_event *child_event,
8706 struct perf_event_context *child_ctx,
8707 struct task_struct *child)
8708 {
8709 /*
8710 * Do not destroy the 'original' grouping; because of the context
8711 * switch optimization the original events could've ended up in a
8712 * random child task.
8713 *
8714 * If we were to destroy the original group, all group related
8715 * operations would cease to function properly after this random
8716 * child dies.
8717 *
8718 * Do destroy all inherited groups, we don't care about those
8719 * and being thorough is better.
8720 */
8721 perf_remove_from_context(child_event, !!child_event->parent);
8722
8723 /*
8724 * It can happen that the parent exits first, and has events
8725 * that are still around due to the child reference. These
8726 * events need to be zapped.
8727 */
8728 if (child_event->parent) {
8729 sync_child_event(child_event, child);
8730 free_event(child_event);
8731 } else {
8732 child_event->state = PERF_EVENT_STATE_EXIT;
8733 perf_event_wakeup(child_event);
8734 }
8735 }
8736
8737 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
8738 {
8739 struct perf_event *child_event, *next;
8740 struct perf_event_context *child_ctx, *clone_ctx = NULL;
8741 unsigned long flags;
8742
8743 if (likely(!child->perf_event_ctxp[ctxn]))
8744 return;
8745
8746 local_irq_save(flags);
8747 /*
8748 * We can't reschedule here because interrupts are disabled,
8749 * and either child is current or it is a task that can't be
8750 * scheduled, so we are now safe from rescheduling changing
8751 * our context.
8752 */
8753 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
8754
8755 /*
8756 * Take the context lock here so that if find_get_context is
8757 * reading child->perf_event_ctxp, we wait until it has
8758 * incremented the context's refcount before we do put_ctx below.
8759 */
8760 raw_spin_lock(&child_ctx->lock);
8761 task_ctx_sched_out(child_ctx);
8762 child->perf_event_ctxp[ctxn] = NULL;
8763
8764 /*
8765 * If this context is a clone; unclone it so it can't get
8766 * swapped to another process while we're removing all
8767 * the events from it.
8768 */
8769 clone_ctx = unclone_ctx(child_ctx);
8770 update_context_time(child_ctx);
8771 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
8772
8773 if (clone_ctx)
8774 put_ctx(clone_ctx);
8775
8776 /*
8777 * Report the task dead after unscheduling the events so that we
8778 * won't get any samples after PERF_RECORD_EXIT. We can however still
8779 * get a few PERF_RECORD_READ events.
8780 */
8781 perf_event_task(child, child_ctx, 0);
8782
8783 /*
8784 * We can recurse on the same lock type through:
8785 *
8786 * __perf_event_exit_task()
8787 * sync_child_event()
8788 * put_event()
8789 * mutex_lock(&ctx->mutex)
8790 *
8791 * But since its the parent context it won't be the same instance.
8792 */
8793 mutex_lock(&child_ctx->mutex);
8794
8795 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
8796 __perf_event_exit_task(child_event, child_ctx, child);
8797
8798 mutex_unlock(&child_ctx->mutex);
8799
8800 put_ctx(child_ctx);
8801 }
8802
8803 /*
8804 * When a child task exits, feed back event values to parent events.
8805 */
8806 void perf_event_exit_task(struct task_struct *child)
8807 {
8808 struct perf_event *event, *tmp;
8809 int ctxn;
8810
8811 mutex_lock(&child->perf_event_mutex);
8812 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
8813 owner_entry) {
8814 list_del_init(&event->owner_entry);
8815
8816 /*
8817 * Ensure the list deletion is visible before we clear
8818 * the owner, closes a race against perf_release() where
8819 * we need to serialize on the owner->perf_event_mutex.
8820 */
8821 smp_wmb();
8822 event->owner = NULL;
8823 }
8824 mutex_unlock(&child->perf_event_mutex);
8825
8826 for_each_task_context_nr(ctxn)
8827 perf_event_exit_task_context(child, ctxn);
8828
8829 /*
8830 * The perf_event_exit_task_context calls perf_event_task
8831 * with child's task_ctx, which generates EXIT events for
8832 * child contexts and sets child->perf_event_ctxp[] to NULL.
8833 * At this point we need to send EXIT events to cpu contexts.
8834 */
8835 perf_event_task(child, NULL, 0);
8836 }
8837
8838 static void perf_free_event(struct perf_event *event,
8839 struct perf_event_context *ctx)
8840 {
8841 struct perf_event *parent = event->parent;
8842
8843 if (WARN_ON_ONCE(!parent))
8844 return;
8845
8846 mutex_lock(&parent->child_mutex);
8847 list_del_init(&event->child_list);
8848 mutex_unlock(&parent->child_mutex);
8849
8850 put_event(parent);
8851
8852 raw_spin_lock_irq(&ctx->lock);
8853 perf_group_detach(event);
8854 list_del_event(event, ctx);
8855 raw_spin_unlock_irq(&ctx->lock);
8856 free_event(event);
8857 }
8858
8859 /*
8860 * Free an unexposed, unused context as created by inheritance by
8861 * perf_event_init_task below, used by fork() in case of fail.
8862 *
8863 * Not all locks are strictly required, but take them anyway to be nice and
8864 * help out with the lockdep assertions.
8865 */
8866 void perf_event_free_task(struct task_struct *task)
8867 {
8868 struct perf_event_context *ctx;
8869 struct perf_event *event, *tmp;
8870 int ctxn;
8871
8872 for_each_task_context_nr(ctxn) {
8873 ctx = task->perf_event_ctxp[ctxn];
8874 if (!ctx)
8875 continue;
8876
8877 mutex_lock(&ctx->mutex);
8878 again:
8879 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
8880 group_entry)
8881 perf_free_event(event, ctx);
8882
8883 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
8884 group_entry)
8885 perf_free_event(event, ctx);
8886
8887 if (!list_empty(&ctx->pinned_groups) ||
8888 !list_empty(&ctx->flexible_groups))
8889 goto again;
8890
8891 mutex_unlock(&ctx->mutex);
8892
8893 put_ctx(ctx);
8894 }
8895 }
8896
8897 void perf_event_delayed_put(struct task_struct *task)
8898 {
8899 int ctxn;
8900
8901 for_each_task_context_nr(ctxn)
8902 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
8903 }
8904
8905 struct perf_event *perf_event_get(unsigned int fd)
8906 {
8907 int err;
8908 struct fd f;
8909 struct perf_event *event;
8910
8911 err = perf_fget_light(fd, &f);
8912 if (err)
8913 return ERR_PTR(err);
8914
8915 event = f.file->private_data;
8916 atomic_long_inc(&event->refcount);
8917 fdput(f);
8918
8919 return event;
8920 }
8921
8922 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
8923 {
8924 if (!event)
8925 return ERR_PTR(-EINVAL);
8926
8927 return &event->attr;
8928 }
8929
8930 /*
8931 * inherit a event from parent task to child task:
8932 */
8933 static struct perf_event *
8934 inherit_event(struct perf_event *parent_event,
8935 struct task_struct *parent,
8936 struct perf_event_context *parent_ctx,
8937 struct task_struct *child,
8938 struct perf_event *group_leader,
8939 struct perf_event_context *child_ctx)
8940 {
8941 enum perf_event_active_state parent_state = parent_event->state;
8942 struct perf_event *child_event;
8943 unsigned long flags;
8944
8945 /*
8946 * Instead of creating recursive hierarchies of events,
8947 * we link inherited events back to the original parent,
8948 * which has a filp for sure, which we use as the reference
8949 * count:
8950 */
8951 if (parent_event->parent)
8952 parent_event = parent_event->parent;
8953
8954 child_event = perf_event_alloc(&parent_event->attr,
8955 parent_event->cpu,
8956 child,
8957 group_leader, parent_event,
8958 NULL, NULL, -1);
8959 if (IS_ERR(child_event))
8960 return child_event;
8961
8962 if (is_orphaned_event(parent_event) ||
8963 !atomic_long_inc_not_zero(&parent_event->refcount)) {
8964 free_event(child_event);
8965 return NULL;
8966 }
8967
8968 get_ctx(child_ctx);
8969
8970 /*
8971 * Make the child state follow the state of the parent event,
8972 * not its attr.disabled bit. We hold the parent's mutex,
8973 * so we won't race with perf_event_{en, dis}able_family.
8974 */
8975 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
8976 child_event->state = PERF_EVENT_STATE_INACTIVE;
8977 else
8978 child_event->state = PERF_EVENT_STATE_OFF;
8979
8980 if (parent_event->attr.freq) {
8981 u64 sample_period = parent_event->hw.sample_period;
8982 struct hw_perf_event *hwc = &child_event->hw;
8983
8984 hwc->sample_period = sample_period;
8985 hwc->last_period = sample_period;
8986
8987 local64_set(&hwc->period_left, sample_period);
8988 }
8989
8990 child_event->ctx = child_ctx;
8991 child_event->overflow_handler = parent_event->overflow_handler;
8992 child_event->overflow_handler_context
8993 = parent_event->overflow_handler_context;
8994
8995 /*
8996 * Precalculate sample_data sizes
8997 */
8998 perf_event__header_size(child_event);
8999 perf_event__id_header_size(child_event);
9000
9001 /*
9002 * Link it up in the child's context:
9003 */
9004 raw_spin_lock_irqsave(&child_ctx->lock, flags);
9005 add_event_to_ctx(child_event, child_ctx);
9006 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
9007
9008 /*
9009 * Link this into the parent event's child list
9010 */
9011 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
9012 mutex_lock(&parent_event->child_mutex);
9013 list_add_tail(&child_event->child_list, &parent_event->child_list);
9014 mutex_unlock(&parent_event->child_mutex);
9015
9016 return child_event;
9017 }
9018
9019 static int inherit_group(struct perf_event *parent_event,
9020 struct task_struct *parent,
9021 struct perf_event_context *parent_ctx,
9022 struct task_struct *child,
9023 struct perf_event_context *child_ctx)
9024 {
9025 struct perf_event *leader;
9026 struct perf_event *sub;
9027 struct perf_event *child_ctr;
9028
9029 leader = inherit_event(parent_event, parent, parent_ctx,
9030 child, NULL, child_ctx);
9031 if (IS_ERR(leader))
9032 return PTR_ERR(leader);
9033 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
9034 child_ctr = inherit_event(sub, parent, parent_ctx,
9035 child, leader, child_ctx);
9036 if (IS_ERR(child_ctr))
9037 return PTR_ERR(child_ctr);
9038 }
9039 return 0;
9040 }
9041
9042 static int
9043 inherit_task_group(struct perf_event *event, struct task_struct *parent,
9044 struct perf_event_context *parent_ctx,
9045 struct task_struct *child, int ctxn,
9046 int *inherited_all)
9047 {
9048 int ret;
9049 struct perf_event_context *child_ctx;
9050
9051 if (!event->attr.inherit) {
9052 *inherited_all = 0;
9053 return 0;
9054 }
9055
9056 child_ctx = child->perf_event_ctxp[ctxn];
9057 if (!child_ctx) {
9058 /*
9059 * This is executed from the parent task context, so
9060 * inherit events that have been marked for cloning.
9061 * First allocate and initialize a context for the
9062 * child.
9063 */
9064
9065 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
9066 if (!child_ctx)
9067 return -ENOMEM;
9068
9069 child->perf_event_ctxp[ctxn] = child_ctx;
9070 }
9071
9072 ret = inherit_group(event, parent, parent_ctx,
9073 child, child_ctx);
9074
9075 if (ret)
9076 *inherited_all = 0;
9077
9078 return ret;
9079 }
9080
9081 /*
9082 * Initialize the perf_event context in task_struct
9083 */
9084 static int perf_event_init_context(struct task_struct *child, int ctxn)
9085 {
9086 struct perf_event_context *child_ctx, *parent_ctx;
9087 struct perf_event_context *cloned_ctx;
9088 struct perf_event *event;
9089 struct task_struct *parent = current;
9090 int inherited_all = 1;
9091 unsigned long flags;
9092 int ret = 0;
9093
9094 if (likely(!parent->perf_event_ctxp[ctxn]))
9095 return 0;
9096
9097 /*
9098 * If the parent's context is a clone, pin it so it won't get
9099 * swapped under us.
9100 */
9101 parent_ctx = perf_pin_task_context(parent, ctxn);
9102 if (!parent_ctx)
9103 return 0;
9104
9105 /*
9106 * No need to check if parent_ctx != NULL here; since we saw
9107 * it non-NULL earlier, the only reason for it to become NULL
9108 * is if we exit, and since we're currently in the middle of
9109 * a fork we can't be exiting at the same time.
9110 */
9111
9112 /*
9113 * Lock the parent list. No need to lock the child - not PID
9114 * hashed yet and not running, so nobody can access it.
9115 */
9116 mutex_lock(&parent_ctx->mutex);
9117
9118 /*
9119 * We dont have to disable NMIs - we are only looking at
9120 * the list, not manipulating it:
9121 */
9122 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
9123 ret = inherit_task_group(event, parent, parent_ctx,
9124 child, ctxn, &inherited_all);
9125 if (ret)
9126 break;
9127 }
9128
9129 /*
9130 * We can't hold ctx->lock when iterating the ->flexible_group list due
9131 * to allocations, but we need to prevent rotation because
9132 * rotate_ctx() will change the list from interrupt context.
9133 */
9134 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
9135 parent_ctx->rotate_disable = 1;
9136 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
9137
9138 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
9139 ret = inherit_task_group(event, parent, parent_ctx,
9140 child, ctxn, &inherited_all);
9141 if (ret)
9142 break;
9143 }
9144
9145 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
9146 parent_ctx->rotate_disable = 0;
9147
9148 child_ctx = child->perf_event_ctxp[ctxn];
9149
9150 if (child_ctx && inherited_all) {
9151 /*
9152 * Mark the child context as a clone of the parent
9153 * context, or of whatever the parent is a clone of.
9154 *
9155 * Note that if the parent is a clone, the holding of
9156 * parent_ctx->lock avoids it from being uncloned.
9157 */
9158 cloned_ctx = parent_ctx->parent_ctx;
9159 if (cloned_ctx) {
9160 child_ctx->parent_ctx = cloned_ctx;
9161 child_ctx->parent_gen = parent_ctx->parent_gen;
9162 } else {
9163 child_ctx->parent_ctx = parent_ctx;
9164 child_ctx->parent_gen = parent_ctx->generation;
9165 }
9166 get_ctx(child_ctx->parent_ctx);
9167 }
9168
9169 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
9170 mutex_unlock(&parent_ctx->mutex);
9171
9172 perf_unpin_context(parent_ctx);
9173 put_ctx(parent_ctx);
9174
9175 return ret;
9176 }
9177
9178 /*
9179 * Initialize the perf_event context in task_struct
9180 */
9181 int perf_event_init_task(struct task_struct *child)
9182 {
9183 int ctxn, ret;
9184
9185 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
9186 mutex_init(&child->perf_event_mutex);
9187 INIT_LIST_HEAD(&child->perf_event_list);
9188
9189 for_each_task_context_nr(ctxn) {
9190 ret = perf_event_init_context(child, ctxn);
9191 if (ret) {
9192 perf_event_free_task(child);
9193 return ret;
9194 }
9195 }
9196
9197 return 0;
9198 }
9199
9200 static void __init perf_event_init_all_cpus(void)
9201 {
9202 struct swevent_htable *swhash;
9203 int cpu;
9204
9205 for_each_possible_cpu(cpu) {
9206 swhash = &per_cpu(swevent_htable, cpu);
9207 mutex_init(&swhash->hlist_mutex);
9208 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
9209 }
9210 }
9211
9212 static void perf_event_init_cpu(int cpu)
9213 {
9214 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9215
9216 mutex_lock(&swhash->hlist_mutex);
9217 if (swhash->hlist_refcount > 0) {
9218 struct swevent_hlist *hlist;
9219
9220 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
9221 WARN_ON(!hlist);
9222 rcu_assign_pointer(swhash->swevent_hlist, hlist);
9223 }
9224 mutex_unlock(&swhash->hlist_mutex);
9225 }
9226
9227 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
9228 static void __perf_event_exit_context(void *__info)
9229 {
9230 struct remove_event re = { .detach_group = true };
9231 struct perf_event_context *ctx = __info;
9232
9233 rcu_read_lock();
9234 list_for_each_entry_rcu(re.event, &ctx->event_list, event_entry)
9235 __perf_remove_from_context(&re);
9236 rcu_read_unlock();
9237 }
9238
9239 static void perf_event_exit_cpu_context(int cpu)
9240 {
9241 struct perf_event_context *ctx;
9242 struct pmu *pmu;
9243 int idx;
9244
9245 idx = srcu_read_lock(&pmus_srcu);
9246 list_for_each_entry_rcu(pmu, &pmus, entry) {
9247 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
9248
9249 mutex_lock(&ctx->mutex);
9250 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
9251 mutex_unlock(&ctx->mutex);
9252 }
9253 srcu_read_unlock(&pmus_srcu, idx);
9254 }
9255
9256 static void perf_event_exit_cpu(int cpu)
9257 {
9258 perf_event_exit_cpu_context(cpu);
9259 }
9260 #else
9261 static inline void perf_event_exit_cpu(int cpu) { }
9262 #endif
9263
9264 static int
9265 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
9266 {
9267 int cpu;
9268
9269 for_each_online_cpu(cpu)
9270 perf_event_exit_cpu(cpu);
9271
9272 return NOTIFY_OK;
9273 }
9274
9275 /*
9276 * Run the perf reboot notifier at the very last possible moment so that
9277 * the generic watchdog code runs as long as possible.
9278 */
9279 static struct notifier_block perf_reboot_notifier = {
9280 .notifier_call = perf_reboot,
9281 .priority = INT_MIN,
9282 };
9283
9284 static int
9285 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
9286 {
9287 unsigned int cpu = (long)hcpu;
9288
9289 switch (action & ~CPU_TASKS_FROZEN) {
9290
9291 case CPU_UP_PREPARE:
9292 case CPU_DOWN_FAILED:
9293 perf_event_init_cpu(cpu);
9294 break;
9295
9296 case CPU_UP_CANCELED:
9297 case CPU_DOWN_PREPARE:
9298 perf_event_exit_cpu(cpu);
9299 break;
9300 default:
9301 break;
9302 }
9303
9304 return NOTIFY_OK;
9305 }
9306
9307 void __init perf_event_init(void)
9308 {
9309 int ret;
9310
9311 idr_init(&pmu_idr);
9312
9313 perf_event_init_all_cpus();
9314 init_srcu_struct(&pmus_srcu);
9315 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
9316 perf_pmu_register(&perf_cpu_clock, NULL, -1);
9317 perf_pmu_register(&perf_task_clock, NULL, -1);
9318 perf_tp_register();
9319 perf_cpu_notifier(perf_cpu_notify);
9320 register_reboot_notifier(&perf_reboot_notifier);
9321
9322 ret = init_hw_breakpoint();
9323 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
9324
9325 /* do not patch jump label more than once per second */
9326 jump_label_rate_limit(&perf_sched_events, HZ);
9327
9328 /*
9329 * Build time assertion that we keep the data_head at the intended
9330 * location. IOW, validation we got the __reserved[] size right.
9331 */
9332 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
9333 != 1024);
9334 }
9335
9336 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
9337 char *page)
9338 {
9339 struct perf_pmu_events_attr *pmu_attr =
9340 container_of(attr, struct perf_pmu_events_attr, attr);
9341
9342 if (pmu_attr->event_str)
9343 return sprintf(page, "%s\n", pmu_attr->event_str);
9344
9345 return 0;
9346 }
9347
9348 static int __init perf_event_sysfs_init(void)
9349 {
9350 struct pmu *pmu;
9351 int ret;
9352
9353 mutex_lock(&pmus_lock);
9354
9355 ret = bus_register(&pmu_bus);
9356 if (ret)
9357 goto unlock;
9358
9359 list_for_each_entry(pmu, &pmus, entry) {
9360 if (!pmu->name || pmu->type < 0)
9361 continue;
9362
9363 ret = pmu_dev_alloc(pmu);
9364 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
9365 }
9366 pmu_bus_running = 1;
9367 ret = 0;
9368
9369 unlock:
9370 mutex_unlock(&pmus_lock);
9371
9372 return ret;
9373 }
9374 device_initcall(perf_event_sysfs_init);
9375
9376 #ifdef CONFIG_CGROUP_PERF
9377 static struct cgroup_subsys_state *
9378 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
9379 {
9380 struct perf_cgroup *jc;
9381
9382 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
9383 if (!jc)
9384 return ERR_PTR(-ENOMEM);
9385
9386 jc->info = alloc_percpu(struct perf_cgroup_info);
9387 if (!jc->info) {
9388 kfree(jc);
9389 return ERR_PTR(-ENOMEM);
9390 }
9391
9392 return &jc->css;
9393 }
9394
9395 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
9396 {
9397 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
9398
9399 free_percpu(jc->info);
9400 kfree(jc);
9401 }
9402
9403 static int __perf_cgroup_move(void *info)
9404 {
9405 struct task_struct *task = info;
9406 rcu_read_lock();
9407 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
9408 rcu_read_unlock();
9409 return 0;
9410 }
9411
9412 static void perf_cgroup_attach(struct cgroup_taskset *tset)
9413 {
9414 struct task_struct *task;
9415 struct cgroup_subsys_state *css;
9416
9417 cgroup_taskset_for_each(task, css, tset)
9418 task_function_call(task, __perf_cgroup_move, task);
9419 }
9420
9421 struct cgroup_subsys perf_event_cgrp_subsys = {
9422 .css_alloc = perf_cgroup_css_alloc,
9423 .css_free = perf_cgroup_css_free,
9424 .attach = perf_cgroup_attach,
9425 };
9426 #endif /* CONFIG_CGROUP_PERF */