]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - kernel/events/core.c
Merge tag 'perf-core-for-mingo' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-eoan-kernel.git] / kernel / events / core.c
1 /*
2 * Performance events core code:
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/perf_event.h>
38 #include <linux/ftrace_event.h>
39 #include <linux/hw_breakpoint.h>
40 #include <linux/mm_types.h>
41 #include <linux/cgroup.h>
42
43 #include "internal.h"
44
45 #include <asm/irq_regs.h>
46
47 struct remote_function_call {
48 struct task_struct *p;
49 int (*func)(void *info);
50 void *info;
51 int ret;
52 };
53
54 static void remote_function(void *data)
55 {
56 struct remote_function_call *tfc = data;
57 struct task_struct *p = tfc->p;
58
59 if (p) {
60 tfc->ret = -EAGAIN;
61 if (task_cpu(p) != smp_processor_id() || !task_curr(p))
62 return;
63 }
64
65 tfc->ret = tfc->func(tfc->info);
66 }
67
68 /**
69 * task_function_call - call a function on the cpu on which a task runs
70 * @p: the task to evaluate
71 * @func: the function to be called
72 * @info: the function call argument
73 *
74 * Calls the function @func when the task is currently running. This might
75 * be on the current CPU, which just calls the function directly
76 *
77 * returns: @func return value, or
78 * -ESRCH - when the process isn't running
79 * -EAGAIN - when the process moved away
80 */
81 static int
82 task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
83 {
84 struct remote_function_call data = {
85 .p = p,
86 .func = func,
87 .info = info,
88 .ret = -ESRCH, /* No such (running) process */
89 };
90
91 if (task_curr(p))
92 smp_call_function_single(task_cpu(p), remote_function, &data, 1);
93
94 return data.ret;
95 }
96
97 /**
98 * cpu_function_call - call a function on the cpu
99 * @func: the function to be called
100 * @info: the function call argument
101 *
102 * Calls the function @func on the remote cpu.
103 *
104 * returns: @func return value or -ENXIO when the cpu is offline
105 */
106 static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
107 {
108 struct remote_function_call data = {
109 .p = NULL,
110 .func = func,
111 .info = info,
112 .ret = -ENXIO, /* No such CPU */
113 };
114
115 smp_call_function_single(cpu, remote_function, &data, 1);
116
117 return data.ret;
118 }
119
120 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
121 PERF_FLAG_FD_OUTPUT |\
122 PERF_FLAG_PID_CGROUP)
123
124 /*
125 * branch priv levels that need permission checks
126 */
127 #define PERF_SAMPLE_BRANCH_PERM_PLM \
128 (PERF_SAMPLE_BRANCH_KERNEL |\
129 PERF_SAMPLE_BRANCH_HV)
130
131 enum event_type_t {
132 EVENT_FLEXIBLE = 0x1,
133 EVENT_PINNED = 0x2,
134 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
135 };
136
137 /*
138 * perf_sched_events : >0 events exist
139 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
140 */
141 struct static_key_deferred perf_sched_events __read_mostly;
142 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
143 static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events);
144
145 static atomic_t nr_mmap_events __read_mostly;
146 static atomic_t nr_comm_events __read_mostly;
147 static atomic_t nr_task_events __read_mostly;
148 static atomic_t nr_freq_events __read_mostly;
149
150 static LIST_HEAD(pmus);
151 static DEFINE_MUTEX(pmus_lock);
152 static struct srcu_struct pmus_srcu;
153
154 /*
155 * perf event paranoia level:
156 * -1 - not paranoid at all
157 * 0 - disallow raw tracepoint access for unpriv
158 * 1 - disallow cpu events for unpriv
159 * 2 - disallow kernel profiling for unpriv
160 */
161 int sysctl_perf_event_paranoid __read_mostly = 1;
162
163 /* Minimum for 512 kiB + 1 user control page */
164 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
165
166 /*
167 * max perf event sample rate
168 */
169 #define DEFAULT_MAX_SAMPLE_RATE 100000
170 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
171 #define DEFAULT_CPU_TIME_MAX_PERCENT 25
172
173 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
174
175 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
176 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
177
178 static atomic_t perf_sample_allowed_ns __read_mostly =
179 ATOMIC_INIT( DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100);
180
181 void update_perf_cpu_limits(void)
182 {
183 u64 tmp = perf_sample_period_ns;
184
185 tmp *= sysctl_perf_cpu_time_max_percent;
186 do_div(tmp, 100);
187 atomic_set(&perf_sample_allowed_ns, tmp);
188 }
189
190 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
191
192 int perf_proc_update_handler(struct ctl_table *table, int write,
193 void __user *buffer, size_t *lenp,
194 loff_t *ppos)
195 {
196 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
197
198 if (ret || !write)
199 return ret;
200
201 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
202 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
203 update_perf_cpu_limits();
204
205 return 0;
206 }
207
208 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
209
210 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
211 void __user *buffer, size_t *lenp,
212 loff_t *ppos)
213 {
214 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
215
216 if (ret || !write)
217 return ret;
218
219 update_perf_cpu_limits();
220
221 return 0;
222 }
223
224 /*
225 * perf samples are done in some very critical code paths (NMIs).
226 * If they take too much CPU time, the system can lock up and not
227 * get any real work done. This will drop the sample rate when
228 * we detect that events are taking too long.
229 */
230 #define NR_ACCUMULATED_SAMPLES 128
231 DEFINE_PER_CPU(u64, running_sample_length);
232
233 void perf_sample_event_took(u64 sample_len_ns)
234 {
235 u64 avg_local_sample_len;
236 u64 local_samples_len;
237
238 if (atomic_read(&perf_sample_allowed_ns) == 0)
239 return;
240
241 /* decay the counter by 1 average sample */
242 local_samples_len = __get_cpu_var(running_sample_length);
243 local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
244 local_samples_len += sample_len_ns;
245 __get_cpu_var(running_sample_length) = local_samples_len;
246
247 /*
248 * note: this will be biased artifically low until we have
249 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
250 * from having to maintain a count.
251 */
252 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
253
254 if (avg_local_sample_len <= atomic_read(&perf_sample_allowed_ns))
255 return;
256
257 if (max_samples_per_tick <= 1)
258 return;
259
260 max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
261 sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
262 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
263
264 printk_ratelimited(KERN_WARNING
265 "perf samples too long (%lld > %d), lowering "
266 "kernel.perf_event_max_sample_rate to %d\n",
267 avg_local_sample_len,
268 atomic_read(&perf_sample_allowed_ns),
269 sysctl_perf_event_sample_rate);
270
271 update_perf_cpu_limits();
272 }
273
274 static atomic64_t perf_event_id;
275
276 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
277 enum event_type_t event_type);
278
279 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
280 enum event_type_t event_type,
281 struct task_struct *task);
282
283 static void update_context_time(struct perf_event_context *ctx);
284 static u64 perf_event_time(struct perf_event *event);
285
286 void __weak perf_event_print_debug(void) { }
287
288 extern __weak const char *perf_pmu_name(void)
289 {
290 return "pmu";
291 }
292
293 static inline u64 perf_clock(void)
294 {
295 return local_clock();
296 }
297
298 static inline struct perf_cpu_context *
299 __get_cpu_context(struct perf_event_context *ctx)
300 {
301 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
302 }
303
304 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
305 struct perf_event_context *ctx)
306 {
307 raw_spin_lock(&cpuctx->ctx.lock);
308 if (ctx)
309 raw_spin_lock(&ctx->lock);
310 }
311
312 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
313 struct perf_event_context *ctx)
314 {
315 if (ctx)
316 raw_spin_unlock(&ctx->lock);
317 raw_spin_unlock(&cpuctx->ctx.lock);
318 }
319
320 #ifdef CONFIG_CGROUP_PERF
321
322 /*
323 * perf_cgroup_info keeps track of time_enabled for a cgroup.
324 * This is a per-cpu dynamically allocated data structure.
325 */
326 struct perf_cgroup_info {
327 u64 time;
328 u64 timestamp;
329 };
330
331 struct perf_cgroup {
332 struct cgroup_subsys_state css;
333 struct perf_cgroup_info __percpu *info;
334 };
335
336 /*
337 * Must ensure cgroup is pinned (css_get) before calling
338 * this function. In other words, we cannot call this function
339 * if there is no cgroup event for the current CPU context.
340 */
341 static inline struct perf_cgroup *
342 perf_cgroup_from_task(struct task_struct *task)
343 {
344 return container_of(task_subsys_state(task, perf_subsys_id),
345 struct perf_cgroup, css);
346 }
347
348 static inline bool
349 perf_cgroup_match(struct perf_event *event)
350 {
351 struct perf_event_context *ctx = event->ctx;
352 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
353
354 /* @event doesn't care about cgroup */
355 if (!event->cgrp)
356 return true;
357
358 /* wants specific cgroup scope but @cpuctx isn't associated with any */
359 if (!cpuctx->cgrp)
360 return false;
361
362 /*
363 * Cgroup scoping is recursive. An event enabled for a cgroup is
364 * also enabled for all its descendant cgroups. If @cpuctx's
365 * cgroup is a descendant of @event's (the test covers identity
366 * case), it's a match.
367 */
368 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
369 event->cgrp->css.cgroup);
370 }
371
372 static inline bool perf_tryget_cgroup(struct perf_event *event)
373 {
374 return css_tryget(&event->cgrp->css);
375 }
376
377 static inline void perf_put_cgroup(struct perf_event *event)
378 {
379 css_put(&event->cgrp->css);
380 }
381
382 static inline void perf_detach_cgroup(struct perf_event *event)
383 {
384 perf_put_cgroup(event);
385 event->cgrp = NULL;
386 }
387
388 static inline int is_cgroup_event(struct perf_event *event)
389 {
390 return event->cgrp != NULL;
391 }
392
393 static inline u64 perf_cgroup_event_time(struct perf_event *event)
394 {
395 struct perf_cgroup_info *t;
396
397 t = per_cpu_ptr(event->cgrp->info, event->cpu);
398 return t->time;
399 }
400
401 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
402 {
403 struct perf_cgroup_info *info;
404 u64 now;
405
406 now = perf_clock();
407
408 info = this_cpu_ptr(cgrp->info);
409
410 info->time += now - info->timestamp;
411 info->timestamp = now;
412 }
413
414 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
415 {
416 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
417 if (cgrp_out)
418 __update_cgrp_time(cgrp_out);
419 }
420
421 static inline void update_cgrp_time_from_event(struct perf_event *event)
422 {
423 struct perf_cgroup *cgrp;
424
425 /*
426 * ensure we access cgroup data only when needed and
427 * when we know the cgroup is pinned (css_get)
428 */
429 if (!is_cgroup_event(event))
430 return;
431
432 cgrp = perf_cgroup_from_task(current);
433 /*
434 * Do not update time when cgroup is not active
435 */
436 if (cgrp == event->cgrp)
437 __update_cgrp_time(event->cgrp);
438 }
439
440 static inline void
441 perf_cgroup_set_timestamp(struct task_struct *task,
442 struct perf_event_context *ctx)
443 {
444 struct perf_cgroup *cgrp;
445 struct perf_cgroup_info *info;
446
447 /*
448 * ctx->lock held by caller
449 * ensure we do not access cgroup data
450 * unless we have the cgroup pinned (css_get)
451 */
452 if (!task || !ctx->nr_cgroups)
453 return;
454
455 cgrp = perf_cgroup_from_task(task);
456 info = this_cpu_ptr(cgrp->info);
457 info->timestamp = ctx->timestamp;
458 }
459
460 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
461 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
462
463 /*
464 * reschedule events based on the cgroup constraint of task.
465 *
466 * mode SWOUT : schedule out everything
467 * mode SWIN : schedule in based on cgroup for next
468 */
469 void perf_cgroup_switch(struct task_struct *task, int mode)
470 {
471 struct perf_cpu_context *cpuctx;
472 struct pmu *pmu;
473 unsigned long flags;
474
475 /*
476 * disable interrupts to avoid geting nr_cgroup
477 * changes via __perf_event_disable(). Also
478 * avoids preemption.
479 */
480 local_irq_save(flags);
481
482 /*
483 * we reschedule only in the presence of cgroup
484 * constrained events.
485 */
486 rcu_read_lock();
487
488 list_for_each_entry_rcu(pmu, &pmus, entry) {
489 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
490 if (cpuctx->unique_pmu != pmu)
491 continue; /* ensure we process each cpuctx once */
492
493 /*
494 * perf_cgroup_events says at least one
495 * context on this CPU has cgroup events.
496 *
497 * ctx->nr_cgroups reports the number of cgroup
498 * events for a context.
499 */
500 if (cpuctx->ctx.nr_cgroups > 0) {
501 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
502 perf_pmu_disable(cpuctx->ctx.pmu);
503
504 if (mode & PERF_CGROUP_SWOUT) {
505 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
506 /*
507 * must not be done before ctxswout due
508 * to event_filter_match() in event_sched_out()
509 */
510 cpuctx->cgrp = NULL;
511 }
512
513 if (mode & PERF_CGROUP_SWIN) {
514 WARN_ON_ONCE(cpuctx->cgrp);
515 /*
516 * set cgrp before ctxsw in to allow
517 * event_filter_match() to not have to pass
518 * task around
519 */
520 cpuctx->cgrp = perf_cgroup_from_task(task);
521 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
522 }
523 perf_pmu_enable(cpuctx->ctx.pmu);
524 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
525 }
526 }
527
528 rcu_read_unlock();
529
530 local_irq_restore(flags);
531 }
532
533 static inline void perf_cgroup_sched_out(struct task_struct *task,
534 struct task_struct *next)
535 {
536 struct perf_cgroup *cgrp1;
537 struct perf_cgroup *cgrp2 = NULL;
538
539 /*
540 * we come here when we know perf_cgroup_events > 0
541 */
542 cgrp1 = perf_cgroup_from_task(task);
543
544 /*
545 * next is NULL when called from perf_event_enable_on_exec()
546 * that will systematically cause a cgroup_switch()
547 */
548 if (next)
549 cgrp2 = perf_cgroup_from_task(next);
550
551 /*
552 * only schedule out current cgroup events if we know
553 * that we are switching to a different cgroup. Otherwise,
554 * do no touch the cgroup events.
555 */
556 if (cgrp1 != cgrp2)
557 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
558 }
559
560 static inline void perf_cgroup_sched_in(struct task_struct *prev,
561 struct task_struct *task)
562 {
563 struct perf_cgroup *cgrp1;
564 struct perf_cgroup *cgrp2 = NULL;
565
566 /*
567 * we come here when we know perf_cgroup_events > 0
568 */
569 cgrp1 = perf_cgroup_from_task(task);
570
571 /* prev can never be NULL */
572 cgrp2 = perf_cgroup_from_task(prev);
573
574 /*
575 * only need to schedule in cgroup events if we are changing
576 * cgroup during ctxsw. Cgroup events were not scheduled
577 * out of ctxsw out if that was not the case.
578 */
579 if (cgrp1 != cgrp2)
580 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
581 }
582
583 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
584 struct perf_event_attr *attr,
585 struct perf_event *group_leader)
586 {
587 struct perf_cgroup *cgrp;
588 struct cgroup_subsys_state *css;
589 struct fd f = fdget(fd);
590 int ret = 0;
591
592 if (!f.file)
593 return -EBADF;
594
595 css = cgroup_css_from_dir(f.file, perf_subsys_id);
596 if (IS_ERR(css)) {
597 ret = PTR_ERR(css);
598 goto out;
599 }
600
601 cgrp = container_of(css, struct perf_cgroup, css);
602 event->cgrp = cgrp;
603
604 /* must be done before we fput() the file */
605 if (!perf_tryget_cgroup(event)) {
606 event->cgrp = NULL;
607 ret = -ENOENT;
608 goto out;
609 }
610
611 /*
612 * all events in a group must monitor
613 * the same cgroup because a task belongs
614 * to only one perf cgroup at a time
615 */
616 if (group_leader && group_leader->cgrp != cgrp) {
617 perf_detach_cgroup(event);
618 ret = -EINVAL;
619 }
620 out:
621 fdput(f);
622 return ret;
623 }
624
625 static inline void
626 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
627 {
628 struct perf_cgroup_info *t;
629 t = per_cpu_ptr(event->cgrp->info, event->cpu);
630 event->shadow_ctx_time = now - t->timestamp;
631 }
632
633 static inline void
634 perf_cgroup_defer_enabled(struct perf_event *event)
635 {
636 /*
637 * when the current task's perf cgroup does not match
638 * the event's, we need to remember to call the
639 * perf_mark_enable() function the first time a task with
640 * a matching perf cgroup is scheduled in.
641 */
642 if (is_cgroup_event(event) && !perf_cgroup_match(event))
643 event->cgrp_defer_enabled = 1;
644 }
645
646 static inline void
647 perf_cgroup_mark_enabled(struct perf_event *event,
648 struct perf_event_context *ctx)
649 {
650 struct perf_event *sub;
651 u64 tstamp = perf_event_time(event);
652
653 if (!event->cgrp_defer_enabled)
654 return;
655
656 event->cgrp_defer_enabled = 0;
657
658 event->tstamp_enabled = tstamp - event->total_time_enabled;
659 list_for_each_entry(sub, &event->sibling_list, group_entry) {
660 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
661 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
662 sub->cgrp_defer_enabled = 0;
663 }
664 }
665 }
666 #else /* !CONFIG_CGROUP_PERF */
667
668 static inline bool
669 perf_cgroup_match(struct perf_event *event)
670 {
671 return true;
672 }
673
674 static inline void perf_detach_cgroup(struct perf_event *event)
675 {}
676
677 static inline int is_cgroup_event(struct perf_event *event)
678 {
679 return 0;
680 }
681
682 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
683 {
684 return 0;
685 }
686
687 static inline void update_cgrp_time_from_event(struct perf_event *event)
688 {
689 }
690
691 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
692 {
693 }
694
695 static inline void perf_cgroup_sched_out(struct task_struct *task,
696 struct task_struct *next)
697 {
698 }
699
700 static inline void perf_cgroup_sched_in(struct task_struct *prev,
701 struct task_struct *task)
702 {
703 }
704
705 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
706 struct perf_event_attr *attr,
707 struct perf_event *group_leader)
708 {
709 return -EINVAL;
710 }
711
712 static inline void
713 perf_cgroup_set_timestamp(struct task_struct *task,
714 struct perf_event_context *ctx)
715 {
716 }
717
718 void
719 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
720 {
721 }
722
723 static inline void
724 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
725 {
726 }
727
728 static inline u64 perf_cgroup_event_time(struct perf_event *event)
729 {
730 return 0;
731 }
732
733 static inline void
734 perf_cgroup_defer_enabled(struct perf_event *event)
735 {
736 }
737
738 static inline void
739 perf_cgroup_mark_enabled(struct perf_event *event,
740 struct perf_event_context *ctx)
741 {
742 }
743 #endif
744
745 /*
746 * set default to be dependent on timer tick just
747 * like original code
748 */
749 #define PERF_CPU_HRTIMER (1000 / HZ)
750 /*
751 * function must be called with interrupts disbled
752 */
753 static enum hrtimer_restart perf_cpu_hrtimer_handler(struct hrtimer *hr)
754 {
755 struct perf_cpu_context *cpuctx;
756 enum hrtimer_restart ret = HRTIMER_NORESTART;
757 int rotations = 0;
758
759 WARN_ON(!irqs_disabled());
760
761 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
762
763 rotations = perf_rotate_context(cpuctx);
764
765 /*
766 * arm timer if needed
767 */
768 if (rotations) {
769 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
770 ret = HRTIMER_RESTART;
771 }
772
773 return ret;
774 }
775
776 /* CPU is going down */
777 void perf_cpu_hrtimer_cancel(int cpu)
778 {
779 struct perf_cpu_context *cpuctx;
780 struct pmu *pmu;
781 unsigned long flags;
782
783 if (WARN_ON(cpu != smp_processor_id()))
784 return;
785
786 local_irq_save(flags);
787
788 rcu_read_lock();
789
790 list_for_each_entry_rcu(pmu, &pmus, entry) {
791 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
792
793 if (pmu->task_ctx_nr == perf_sw_context)
794 continue;
795
796 hrtimer_cancel(&cpuctx->hrtimer);
797 }
798
799 rcu_read_unlock();
800
801 local_irq_restore(flags);
802 }
803
804 static void __perf_cpu_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
805 {
806 struct hrtimer *hr = &cpuctx->hrtimer;
807 struct pmu *pmu = cpuctx->ctx.pmu;
808 int timer;
809
810 /* no multiplexing needed for SW PMU */
811 if (pmu->task_ctx_nr == perf_sw_context)
812 return;
813
814 /*
815 * check default is sane, if not set then force to
816 * default interval (1/tick)
817 */
818 timer = pmu->hrtimer_interval_ms;
819 if (timer < 1)
820 timer = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
821
822 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
823
824 hrtimer_init(hr, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
825 hr->function = perf_cpu_hrtimer_handler;
826 }
827
828 static void perf_cpu_hrtimer_restart(struct perf_cpu_context *cpuctx)
829 {
830 struct hrtimer *hr = &cpuctx->hrtimer;
831 struct pmu *pmu = cpuctx->ctx.pmu;
832
833 /* not for SW PMU */
834 if (pmu->task_ctx_nr == perf_sw_context)
835 return;
836
837 if (hrtimer_active(hr))
838 return;
839
840 if (!hrtimer_callback_running(hr))
841 __hrtimer_start_range_ns(hr, cpuctx->hrtimer_interval,
842 0, HRTIMER_MODE_REL_PINNED, 0);
843 }
844
845 void perf_pmu_disable(struct pmu *pmu)
846 {
847 int *count = this_cpu_ptr(pmu->pmu_disable_count);
848 if (!(*count)++)
849 pmu->pmu_disable(pmu);
850 }
851
852 void perf_pmu_enable(struct pmu *pmu)
853 {
854 int *count = this_cpu_ptr(pmu->pmu_disable_count);
855 if (!--(*count))
856 pmu->pmu_enable(pmu);
857 }
858
859 static DEFINE_PER_CPU(struct list_head, rotation_list);
860
861 /*
862 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
863 * because they're strictly cpu affine and rotate_start is called with IRQs
864 * disabled, while rotate_context is called from IRQ context.
865 */
866 static void perf_pmu_rotate_start(struct pmu *pmu)
867 {
868 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
869 struct list_head *head = &__get_cpu_var(rotation_list);
870
871 WARN_ON(!irqs_disabled());
872
873 if (list_empty(&cpuctx->rotation_list))
874 list_add(&cpuctx->rotation_list, head);
875 }
876
877 static void get_ctx(struct perf_event_context *ctx)
878 {
879 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
880 }
881
882 static void put_ctx(struct perf_event_context *ctx)
883 {
884 if (atomic_dec_and_test(&ctx->refcount)) {
885 if (ctx->parent_ctx)
886 put_ctx(ctx->parent_ctx);
887 if (ctx->task)
888 put_task_struct(ctx->task);
889 kfree_rcu(ctx, rcu_head);
890 }
891 }
892
893 static void unclone_ctx(struct perf_event_context *ctx)
894 {
895 if (ctx->parent_ctx) {
896 put_ctx(ctx->parent_ctx);
897 ctx->parent_ctx = NULL;
898 }
899 }
900
901 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
902 {
903 /*
904 * only top level events have the pid namespace they were created in
905 */
906 if (event->parent)
907 event = event->parent;
908
909 return task_tgid_nr_ns(p, event->ns);
910 }
911
912 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
913 {
914 /*
915 * only top level events have the pid namespace they were created in
916 */
917 if (event->parent)
918 event = event->parent;
919
920 return task_pid_nr_ns(p, event->ns);
921 }
922
923 /*
924 * If we inherit events we want to return the parent event id
925 * to userspace.
926 */
927 static u64 primary_event_id(struct perf_event *event)
928 {
929 u64 id = event->id;
930
931 if (event->parent)
932 id = event->parent->id;
933
934 return id;
935 }
936
937 /*
938 * Get the perf_event_context for a task and lock it.
939 * This has to cope with with the fact that until it is locked,
940 * the context could get moved to another task.
941 */
942 static struct perf_event_context *
943 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
944 {
945 struct perf_event_context *ctx;
946
947 retry:
948 /*
949 * One of the few rules of preemptible RCU is that one cannot do
950 * rcu_read_unlock() while holding a scheduler (or nested) lock when
951 * part of the read side critical section was preemptible -- see
952 * rcu_read_unlock_special().
953 *
954 * Since ctx->lock nests under rq->lock we must ensure the entire read
955 * side critical section is non-preemptible.
956 */
957 preempt_disable();
958 rcu_read_lock();
959 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
960 if (ctx) {
961 /*
962 * If this context is a clone of another, it might
963 * get swapped for another underneath us by
964 * perf_event_task_sched_out, though the
965 * rcu_read_lock() protects us from any context
966 * getting freed. Lock the context and check if it
967 * got swapped before we could get the lock, and retry
968 * if so. If we locked the right context, then it
969 * can't get swapped on us any more.
970 */
971 raw_spin_lock_irqsave(&ctx->lock, *flags);
972 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
973 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
974 rcu_read_unlock();
975 preempt_enable();
976 goto retry;
977 }
978
979 if (!atomic_inc_not_zero(&ctx->refcount)) {
980 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
981 ctx = NULL;
982 }
983 }
984 rcu_read_unlock();
985 preempt_enable();
986 return ctx;
987 }
988
989 /*
990 * Get the context for a task and increment its pin_count so it
991 * can't get swapped to another task. This also increments its
992 * reference count so that the context can't get freed.
993 */
994 static struct perf_event_context *
995 perf_pin_task_context(struct task_struct *task, int ctxn)
996 {
997 struct perf_event_context *ctx;
998 unsigned long flags;
999
1000 ctx = perf_lock_task_context(task, ctxn, &flags);
1001 if (ctx) {
1002 ++ctx->pin_count;
1003 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1004 }
1005 return ctx;
1006 }
1007
1008 static void perf_unpin_context(struct perf_event_context *ctx)
1009 {
1010 unsigned long flags;
1011
1012 raw_spin_lock_irqsave(&ctx->lock, flags);
1013 --ctx->pin_count;
1014 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1015 }
1016
1017 /*
1018 * Update the record of the current time in a context.
1019 */
1020 static void update_context_time(struct perf_event_context *ctx)
1021 {
1022 u64 now = perf_clock();
1023
1024 ctx->time += now - ctx->timestamp;
1025 ctx->timestamp = now;
1026 }
1027
1028 static u64 perf_event_time(struct perf_event *event)
1029 {
1030 struct perf_event_context *ctx = event->ctx;
1031
1032 if (is_cgroup_event(event))
1033 return perf_cgroup_event_time(event);
1034
1035 return ctx ? ctx->time : 0;
1036 }
1037
1038 /*
1039 * Update the total_time_enabled and total_time_running fields for a event.
1040 * The caller of this function needs to hold the ctx->lock.
1041 */
1042 static void update_event_times(struct perf_event *event)
1043 {
1044 struct perf_event_context *ctx = event->ctx;
1045 u64 run_end;
1046
1047 if (event->state < PERF_EVENT_STATE_INACTIVE ||
1048 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1049 return;
1050 /*
1051 * in cgroup mode, time_enabled represents
1052 * the time the event was enabled AND active
1053 * tasks were in the monitored cgroup. This is
1054 * independent of the activity of the context as
1055 * there may be a mix of cgroup and non-cgroup events.
1056 *
1057 * That is why we treat cgroup events differently
1058 * here.
1059 */
1060 if (is_cgroup_event(event))
1061 run_end = perf_cgroup_event_time(event);
1062 else if (ctx->is_active)
1063 run_end = ctx->time;
1064 else
1065 run_end = event->tstamp_stopped;
1066
1067 event->total_time_enabled = run_end - event->tstamp_enabled;
1068
1069 if (event->state == PERF_EVENT_STATE_INACTIVE)
1070 run_end = event->tstamp_stopped;
1071 else
1072 run_end = perf_event_time(event);
1073
1074 event->total_time_running = run_end - event->tstamp_running;
1075
1076 }
1077
1078 /*
1079 * Update total_time_enabled and total_time_running for all events in a group.
1080 */
1081 static void update_group_times(struct perf_event *leader)
1082 {
1083 struct perf_event *event;
1084
1085 update_event_times(leader);
1086 list_for_each_entry(event, &leader->sibling_list, group_entry)
1087 update_event_times(event);
1088 }
1089
1090 static struct list_head *
1091 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1092 {
1093 if (event->attr.pinned)
1094 return &ctx->pinned_groups;
1095 else
1096 return &ctx->flexible_groups;
1097 }
1098
1099 /*
1100 * Add a event from the lists for its context.
1101 * Must be called with ctx->mutex and ctx->lock held.
1102 */
1103 static void
1104 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1105 {
1106 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1107 event->attach_state |= PERF_ATTACH_CONTEXT;
1108
1109 /*
1110 * If we're a stand alone event or group leader, we go to the context
1111 * list, group events are kept attached to the group so that
1112 * perf_group_detach can, at all times, locate all siblings.
1113 */
1114 if (event->group_leader == event) {
1115 struct list_head *list;
1116
1117 if (is_software_event(event))
1118 event->group_flags |= PERF_GROUP_SOFTWARE;
1119
1120 list = ctx_group_list(event, ctx);
1121 list_add_tail(&event->group_entry, list);
1122 }
1123
1124 if (is_cgroup_event(event))
1125 ctx->nr_cgroups++;
1126
1127 if (has_branch_stack(event))
1128 ctx->nr_branch_stack++;
1129
1130 list_add_rcu(&event->event_entry, &ctx->event_list);
1131 if (!ctx->nr_events)
1132 perf_pmu_rotate_start(ctx->pmu);
1133 ctx->nr_events++;
1134 if (event->attr.inherit_stat)
1135 ctx->nr_stat++;
1136 }
1137
1138 /*
1139 * Initialize event state based on the perf_event_attr::disabled.
1140 */
1141 static inline void perf_event__state_init(struct perf_event *event)
1142 {
1143 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1144 PERF_EVENT_STATE_INACTIVE;
1145 }
1146
1147 /*
1148 * Called at perf_event creation and when events are attached/detached from a
1149 * group.
1150 */
1151 static void perf_event__read_size(struct perf_event *event)
1152 {
1153 int entry = sizeof(u64); /* value */
1154 int size = 0;
1155 int nr = 1;
1156
1157 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1158 size += sizeof(u64);
1159
1160 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1161 size += sizeof(u64);
1162
1163 if (event->attr.read_format & PERF_FORMAT_ID)
1164 entry += sizeof(u64);
1165
1166 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1167 nr += event->group_leader->nr_siblings;
1168 size += sizeof(u64);
1169 }
1170
1171 size += entry * nr;
1172 event->read_size = size;
1173 }
1174
1175 static void perf_event__header_size(struct perf_event *event)
1176 {
1177 struct perf_sample_data *data;
1178 u64 sample_type = event->attr.sample_type;
1179 u16 size = 0;
1180
1181 perf_event__read_size(event);
1182
1183 if (sample_type & PERF_SAMPLE_IP)
1184 size += sizeof(data->ip);
1185
1186 if (sample_type & PERF_SAMPLE_ADDR)
1187 size += sizeof(data->addr);
1188
1189 if (sample_type & PERF_SAMPLE_PERIOD)
1190 size += sizeof(data->period);
1191
1192 if (sample_type & PERF_SAMPLE_WEIGHT)
1193 size += sizeof(data->weight);
1194
1195 if (sample_type & PERF_SAMPLE_READ)
1196 size += event->read_size;
1197
1198 if (sample_type & PERF_SAMPLE_DATA_SRC)
1199 size += sizeof(data->data_src.val);
1200
1201 event->header_size = size;
1202 }
1203
1204 static void perf_event__id_header_size(struct perf_event *event)
1205 {
1206 struct perf_sample_data *data;
1207 u64 sample_type = event->attr.sample_type;
1208 u16 size = 0;
1209
1210 if (sample_type & PERF_SAMPLE_TID)
1211 size += sizeof(data->tid_entry);
1212
1213 if (sample_type & PERF_SAMPLE_TIME)
1214 size += sizeof(data->time);
1215
1216 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1217 size += sizeof(data->id);
1218
1219 if (sample_type & PERF_SAMPLE_ID)
1220 size += sizeof(data->id);
1221
1222 if (sample_type & PERF_SAMPLE_STREAM_ID)
1223 size += sizeof(data->stream_id);
1224
1225 if (sample_type & PERF_SAMPLE_CPU)
1226 size += sizeof(data->cpu_entry);
1227
1228 event->id_header_size = size;
1229 }
1230
1231 static void perf_group_attach(struct perf_event *event)
1232 {
1233 struct perf_event *group_leader = event->group_leader, *pos;
1234
1235 /*
1236 * We can have double attach due to group movement in perf_event_open.
1237 */
1238 if (event->attach_state & PERF_ATTACH_GROUP)
1239 return;
1240
1241 event->attach_state |= PERF_ATTACH_GROUP;
1242
1243 if (group_leader == event)
1244 return;
1245
1246 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1247 !is_software_event(event))
1248 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1249
1250 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1251 group_leader->nr_siblings++;
1252
1253 perf_event__header_size(group_leader);
1254
1255 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1256 perf_event__header_size(pos);
1257 }
1258
1259 /*
1260 * Remove a event from the lists for its context.
1261 * Must be called with ctx->mutex and ctx->lock held.
1262 */
1263 static void
1264 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1265 {
1266 struct perf_cpu_context *cpuctx;
1267 /*
1268 * We can have double detach due to exit/hot-unplug + close.
1269 */
1270 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1271 return;
1272
1273 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1274
1275 if (is_cgroup_event(event)) {
1276 ctx->nr_cgroups--;
1277 cpuctx = __get_cpu_context(ctx);
1278 /*
1279 * if there are no more cgroup events
1280 * then cler cgrp to avoid stale pointer
1281 * in update_cgrp_time_from_cpuctx()
1282 */
1283 if (!ctx->nr_cgroups)
1284 cpuctx->cgrp = NULL;
1285 }
1286
1287 if (has_branch_stack(event))
1288 ctx->nr_branch_stack--;
1289
1290 ctx->nr_events--;
1291 if (event->attr.inherit_stat)
1292 ctx->nr_stat--;
1293
1294 list_del_rcu(&event->event_entry);
1295
1296 if (event->group_leader == event)
1297 list_del_init(&event->group_entry);
1298
1299 update_group_times(event);
1300
1301 /*
1302 * If event was in error state, then keep it
1303 * that way, otherwise bogus counts will be
1304 * returned on read(). The only way to get out
1305 * of error state is by explicit re-enabling
1306 * of the event
1307 */
1308 if (event->state > PERF_EVENT_STATE_OFF)
1309 event->state = PERF_EVENT_STATE_OFF;
1310 }
1311
1312 static void perf_group_detach(struct perf_event *event)
1313 {
1314 struct perf_event *sibling, *tmp;
1315 struct list_head *list = NULL;
1316
1317 /*
1318 * We can have double detach due to exit/hot-unplug + close.
1319 */
1320 if (!(event->attach_state & PERF_ATTACH_GROUP))
1321 return;
1322
1323 event->attach_state &= ~PERF_ATTACH_GROUP;
1324
1325 /*
1326 * If this is a sibling, remove it from its group.
1327 */
1328 if (event->group_leader != event) {
1329 list_del_init(&event->group_entry);
1330 event->group_leader->nr_siblings--;
1331 goto out;
1332 }
1333
1334 if (!list_empty(&event->group_entry))
1335 list = &event->group_entry;
1336
1337 /*
1338 * If this was a group event with sibling events then
1339 * upgrade the siblings to singleton events by adding them
1340 * to whatever list we are on.
1341 */
1342 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1343 if (list)
1344 list_move_tail(&sibling->group_entry, list);
1345 sibling->group_leader = sibling;
1346
1347 /* Inherit group flags from the previous leader */
1348 sibling->group_flags = event->group_flags;
1349 }
1350
1351 out:
1352 perf_event__header_size(event->group_leader);
1353
1354 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1355 perf_event__header_size(tmp);
1356 }
1357
1358 static inline int
1359 event_filter_match(struct perf_event *event)
1360 {
1361 return (event->cpu == -1 || event->cpu == smp_processor_id())
1362 && perf_cgroup_match(event);
1363 }
1364
1365 static void
1366 event_sched_out(struct perf_event *event,
1367 struct perf_cpu_context *cpuctx,
1368 struct perf_event_context *ctx)
1369 {
1370 u64 tstamp = perf_event_time(event);
1371 u64 delta;
1372 /*
1373 * An event which could not be activated because of
1374 * filter mismatch still needs to have its timings
1375 * maintained, otherwise bogus information is return
1376 * via read() for time_enabled, time_running:
1377 */
1378 if (event->state == PERF_EVENT_STATE_INACTIVE
1379 && !event_filter_match(event)) {
1380 delta = tstamp - event->tstamp_stopped;
1381 event->tstamp_running += delta;
1382 event->tstamp_stopped = tstamp;
1383 }
1384
1385 if (event->state != PERF_EVENT_STATE_ACTIVE)
1386 return;
1387
1388 event->state = PERF_EVENT_STATE_INACTIVE;
1389 if (event->pending_disable) {
1390 event->pending_disable = 0;
1391 event->state = PERF_EVENT_STATE_OFF;
1392 }
1393 event->tstamp_stopped = tstamp;
1394 event->pmu->del(event, 0);
1395 event->oncpu = -1;
1396
1397 if (!is_software_event(event))
1398 cpuctx->active_oncpu--;
1399 ctx->nr_active--;
1400 if (event->attr.freq && event->attr.sample_freq)
1401 ctx->nr_freq--;
1402 if (event->attr.exclusive || !cpuctx->active_oncpu)
1403 cpuctx->exclusive = 0;
1404 }
1405
1406 static void
1407 group_sched_out(struct perf_event *group_event,
1408 struct perf_cpu_context *cpuctx,
1409 struct perf_event_context *ctx)
1410 {
1411 struct perf_event *event;
1412 int state = group_event->state;
1413
1414 event_sched_out(group_event, cpuctx, ctx);
1415
1416 /*
1417 * Schedule out siblings (if any):
1418 */
1419 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1420 event_sched_out(event, cpuctx, ctx);
1421
1422 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1423 cpuctx->exclusive = 0;
1424 }
1425
1426 /*
1427 * Cross CPU call to remove a performance event
1428 *
1429 * We disable the event on the hardware level first. After that we
1430 * remove it from the context list.
1431 */
1432 static int __perf_remove_from_context(void *info)
1433 {
1434 struct perf_event *event = info;
1435 struct perf_event_context *ctx = event->ctx;
1436 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1437
1438 raw_spin_lock(&ctx->lock);
1439 event_sched_out(event, cpuctx, ctx);
1440 list_del_event(event, ctx);
1441 if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1442 ctx->is_active = 0;
1443 cpuctx->task_ctx = NULL;
1444 }
1445 raw_spin_unlock(&ctx->lock);
1446
1447 return 0;
1448 }
1449
1450
1451 /*
1452 * Remove the event from a task's (or a CPU's) list of events.
1453 *
1454 * CPU events are removed with a smp call. For task events we only
1455 * call when the task is on a CPU.
1456 *
1457 * If event->ctx is a cloned context, callers must make sure that
1458 * every task struct that event->ctx->task could possibly point to
1459 * remains valid. This is OK when called from perf_release since
1460 * that only calls us on the top-level context, which can't be a clone.
1461 * When called from perf_event_exit_task, it's OK because the
1462 * context has been detached from its task.
1463 */
1464 static void perf_remove_from_context(struct perf_event *event)
1465 {
1466 struct perf_event_context *ctx = event->ctx;
1467 struct task_struct *task = ctx->task;
1468
1469 lockdep_assert_held(&ctx->mutex);
1470
1471 if (!task) {
1472 /*
1473 * Per cpu events are removed via an smp call and
1474 * the removal is always successful.
1475 */
1476 cpu_function_call(event->cpu, __perf_remove_from_context, event);
1477 return;
1478 }
1479
1480 retry:
1481 if (!task_function_call(task, __perf_remove_from_context, event))
1482 return;
1483
1484 raw_spin_lock_irq(&ctx->lock);
1485 /*
1486 * If we failed to find a running task, but find the context active now
1487 * that we've acquired the ctx->lock, retry.
1488 */
1489 if (ctx->is_active) {
1490 raw_spin_unlock_irq(&ctx->lock);
1491 goto retry;
1492 }
1493
1494 /*
1495 * Since the task isn't running, its safe to remove the event, us
1496 * holding the ctx->lock ensures the task won't get scheduled in.
1497 */
1498 list_del_event(event, ctx);
1499 raw_spin_unlock_irq(&ctx->lock);
1500 }
1501
1502 /*
1503 * Cross CPU call to disable a performance event
1504 */
1505 int __perf_event_disable(void *info)
1506 {
1507 struct perf_event *event = info;
1508 struct perf_event_context *ctx = event->ctx;
1509 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1510
1511 /*
1512 * If this is a per-task event, need to check whether this
1513 * event's task is the current task on this cpu.
1514 *
1515 * Can trigger due to concurrent perf_event_context_sched_out()
1516 * flipping contexts around.
1517 */
1518 if (ctx->task && cpuctx->task_ctx != ctx)
1519 return -EINVAL;
1520
1521 raw_spin_lock(&ctx->lock);
1522
1523 /*
1524 * If the event is on, turn it off.
1525 * If it is in error state, leave it in error state.
1526 */
1527 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1528 update_context_time(ctx);
1529 update_cgrp_time_from_event(event);
1530 update_group_times(event);
1531 if (event == event->group_leader)
1532 group_sched_out(event, cpuctx, ctx);
1533 else
1534 event_sched_out(event, cpuctx, ctx);
1535 event->state = PERF_EVENT_STATE_OFF;
1536 }
1537
1538 raw_spin_unlock(&ctx->lock);
1539
1540 return 0;
1541 }
1542
1543 /*
1544 * Disable a event.
1545 *
1546 * If event->ctx is a cloned context, callers must make sure that
1547 * every task struct that event->ctx->task could possibly point to
1548 * remains valid. This condition is satisifed when called through
1549 * perf_event_for_each_child or perf_event_for_each because they
1550 * hold the top-level event's child_mutex, so any descendant that
1551 * goes to exit will block in sync_child_event.
1552 * When called from perf_pending_event it's OK because event->ctx
1553 * is the current context on this CPU and preemption is disabled,
1554 * hence we can't get into perf_event_task_sched_out for this context.
1555 */
1556 void perf_event_disable(struct perf_event *event)
1557 {
1558 struct perf_event_context *ctx = event->ctx;
1559 struct task_struct *task = ctx->task;
1560
1561 if (!task) {
1562 /*
1563 * Disable the event on the cpu that it's on
1564 */
1565 cpu_function_call(event->cpu, __perf_event_disable, event);
1566 return;
1567 }
1568
1569 retry:
1570 if (!task_function_call(task, __perf_event_disable, event))
1571 return;
1572
1573 raw_spin_lock_irq(&ctx->lock);
1574 /*
1575 * If the event is still active, we need to retry the cross-call.
1576 */
1577 if (event->state == PERF_EVENT_STATE_ACTIVE) {
1578 raw_spin_unlock_irq(&ctx->lock);
1579 /*
1580 * Reload the task pointer, it might have been changed by
1581 * a concurrent perf_event_context_sched_out().
1582 */
1583 task = ctx->task;
1584 goto retry;
1585 }
1586
1587 /*
1588 * Since we have the lock this context can't be scheduled
1589 * in, so we can change the state safely.
1590 */
1591 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1592 update_group_times(event);
1593 event->state = PERF_EVENT_STATE_OFF;
1594 }
1595 raw_spin_unlock_irq(&ctx->lock);
1596 }
1597 EXPORT_SYMBOL_GPL(perf_event_disable);
1598
1599 static void perf_set_shadow_time(struct perf_event *event,
1600 struct perf_event_context *ctx,
1601 u64 tstamp)
1602 {
1603 /*
1604 * use the correct time source for the time snapshot
1605 *
1606 * We could get by without this by leveraging the
1607 * fact that to get to this function, the caller
1608 * has most likely already called update_context_time()
1609 * and update_cgrp_time_xx() and thus both timestamp
1610 * are identical (or very close). Given that tstamp is,
1611 * already adjusted for cgroup, we could say that:
1612 * tstamp - ctx->timestamp
1613 * is equivalent to
1614 * tstamp - cgrp->timestamp.
1615 *
1616 * Then, in perf_output_read(), the calculation would
1617 * work with no changes because:
1618 * - event is guaranteed scheduled in
1619 * - no scheduled out in between
1620 * - thus the timestamp would be the same
1621 *
1622 * But this is a bit hairy.
1623 *
1624 * So instead, we have an explicit cgroup call to remain
1625 * within the time time source all along. We believe it
1626 * is cleaner and simpler to understand.
1627 */
1628 if (is_cgroup_event(event))
1629 perf_cgroup_set_shadow_time(event, tstamp);
1630 else
1631 event->shadow_ctx_time = tstamp - ctx->timestamp;
1632 }
1633
1634 #define MAX_INTERRUPTS (~0ULL)
1635
1636 static void perf_log_throttle(struct perf_event *event, int enable);
1637
1638 static int
1639 event_sched_in(struct perf_event *event,
1640 struct perf_cpu_context *cpuctx,
1641 struct perf_event_context *ctx)
1642 {
1643 u64 tstamp = perf_event_time(event);
1644
1645 if (event->state <= PERF_EVENT_STATE_OFF)
1646 return 0;
1647
1648 event->state = PERF_EVENT_STATE_ACTIVE;
1649 event->oncpu = smp_processor_id();
1650
1651 /*
1652 * Unthrottle events, since we scheduled we might have missed several
1653 * ticks already, also for a heavily scheduling task there is little
1654 * guarantee it'll get a tick in a timely manner.
1655 */
1656 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1657 perf_log_throttle(event, 1);
1658 event->hw.interrupts = 0;
1659 }
1660
1661 /*
1662 * The new state must be visible before we turn it on in the hardware:
1663 */
1664 smp_wmb();
1665
1666 if (event->pmu->add(event, PERF_EF_START)) {
1667 event->state = PERF_EVENT_STATE_INACTIVE;
1668 event->oncpu = -1;
1669 return -EAGAIN;
1670 }
1671
1672 event->tstamp_running += tstamp - event->tstamp_stopped;
1673
1674 perf_set_shadow_time(event, ctx, tstamp);
1675
1676 if (!is_software_event(event))
1677 cpuctx->active_oncpu++;
1678 ctx->nr_active++;
1679 if (event->attr.freq && event->attr.sample_freq)
1680 ctx->nr_freq++;
1681
1682 if (event->attr.exclusive)
1683 cpuctx->exclusive = 1;
1684
1685 return 0;
1686 }
1687
1688 static int
1689 group_sched_in(struct perf_event *group_event,
1690 struct perf_cpu_context *cpuctx,
1691 struct perf_event_context *ctx)
1692 {
1693 struct perf_event *event, *partial_group = NULL;
1694 struct pmu *pmu = group_event->pmu;
1695 u64 now = ctx->time;
1696 bool simulate = false;
1697
1698 if (group_event->state == PERF_EVENT_STATE_OFF)
1699 return 0;
1700
1701 pmu->start_txn(pmu);
1702
1703 if (event_sched_in(group_event, cpuctx, ctx)) {
1704 pmu->cancel_txn(pmu);
1705 perf_cpu_hrtimer_restart(cpuctx);
1706 return -EAGAIN;
1707 }
1708
1709 /*
1710 * Schedule in siblings as one group (if any):
1711 */
1712 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1713 if (event_sched_in(event, cpuctx, ctx)) {
1714 partial_group = event;
1715 goto group_error;
1716 }
1717 }
1718
1719 if (!pmu->commit_txn(pmu))
1720 return 0;
1721
1722 group_error:
1723 /*
1724 * Groups can be scheduled in as one unit only, so undo any
1725 * partial group before returning:
1726 * The events up to the failed event are scheduled out normally,
1727 * tstamp_stopped will be updated.
1728 *
1729 * The failed events and the remaining siblings need to have
1730 * their timings updated as if they had gone thru event_sched_in()
1731 * and event_sched_out(). This is required to get consistent timings
1732 * across the group. This also takes care of the case where the group
1733 * could never be scheduled by ensuring tstamp_stopped is set to mark
1734 * the time the event was actually stopped, such that time delta
1735 * calculation in update_event_times() is correct.
1736 */
1737 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1738 if (event == partial_group)
1739 simulate = true;
1740
1741 if (simulate) {
1742 event->tstamp_running += now - event->tstamp_stopped;
1743 event->tstamp_stopped = now;
1744 } else {
1745 event_sched_out(event, cpuctx, ctx);
1746 }
1747 }
1748 event_sched_out(group_event, cpuctx, ctx);
1749
1750 pmu->cancel_txn(pmu);
1751
1752 perf_cpu_hrtimer_restart(cpuctx);
1753
1754 return -EAGAIN;
1755 }
1756
1757 /*
1758 * Work out whether we can put this event group on the CPU now.
1759 */
1760 static int group_can_go_on(struct perf_event *event,
1761 struct perf_cpu_context *cpuctx,
1762 int can_add_hw)
1763 {
1764 /*
1765 * Groups consisting entirely of software events can always go on.
1766 */
1767 if (event->group_flags & PERF_GROUP_SOFTWARE)
1768 return 1;
1769 /*
1770 * If an exclusive group is already on, no other hardware
1771 * events can go on.
1772 */
1773 if (cpuctx->exclusive)
1774 return 0;
1775 /*
1776 * If this group is exclusive and there are already
1777 * events on the CPU, it can't go on.
1778 */
1779 if (event->attr.exclusive && cpuctx->active_oncpu)
1780 return 0;
1781 /*
1782 * Otherwise, try to add it if all previous groups were able
1783 * to go on.
1784 */
1785 return can_add_hw;
1786 }
1787
1788 static void add_event_to_ctx(struct perf_event *event,
1789 struct perf_event_context *ctx)
1790 {
1791 u64 tstamp = perf_event_time(event);
1792
1793 list_add_event(event, ctx);
1794 perf_group_attach(event);
1795 event->tstamp_enabled = tstamp;
1796 event->tstamp_running = tstamp;
1797 event->tstamp_stopped = tstamp;
1798 }
1799
1800 static void task_ctx_sched_out(struct perf_event_context *ctx);
1801 static void
1802 ctx_sched_in(struct perf_event_context *ctx,
1803 struct perf_cpu_context *cpuctx,
1804 enum event_type_t event_type,
1805 struct task_struct *task);
1806
1807 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
1808 struct perf_event_context *ctx,
1809 struct task_struct *task)
1810 {
1811 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
1812 if (ctx)
1813 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
1814 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
1815 if (ctx)
1816 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
1817 }
1818
1819 /*
1820 * Cross CPU call to install and enable a performance event
1821 *
1822 * Must be called with ctx->mutex held
1823 */
1824 static int __perf_install_in_context(void *info)
1825 {
1826 struct perf_event *event = info;
1827 struct perf_event_context *ctx = event->ctx;
1828 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1829 struct perf_event_context *task_ctx = cpuctx->task_ctx;
1830 struct task_struct *task = current;
1831
1832 perf_ctx_lock(cpuctx, task_ctx);
1833 perf_pmu_disable(cpuctx->ctx.pmu);
1834
1835 /*
1836 * If there was an active task_ctx schedule it out.
1837 */
1838 if (task_ctx)
1839 task_ctx_sched_out(task_ctx);
1840
1841 /*
1842 * If the context we're installing events in is not the
1843 * active task_ctx, flip them.
1844 */
1845 if (ctx->task && task_ctx != ctx) {
1846 if (task_ctx)
1847 raw_spin_unlock(&task_ctx->lock);
1848 raw_spin_lock(&ctx->lock);
1849 task_ctx = ctx;
1850 }
1851
1852 if (task_ctx) {
1853 cpuctx->task_ctx = task_ctx;
1854 task = task_ctx->task;
1855 }
1856
1857 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
1858
1859 update_context_time(ctx);
1860 /*
1861 * update cgrp time only if current cgrp
1862 * matches event->cgrp. Must be done before
1863 * calling add_event_to_ctx()
1864 */
1865 update_cgrp_time_from_event(event);
1866
1867 add_event_to_ctx(event, ctx);
1868
1869 /*
1870 * Schedule everything back in
1871 */
1872 perf_event_sched_in(cpuctx, task_ctx, task);
1873
1874 perf_pmu_enable(cpuctx->ctx.pmu);
1875 perf_ctx_unlock(cpuctx, task_ctx);
1876
1877 return 0;
1878 }
1879
1880 /*
1881 * Attach a performance event to a context
1882 *
1883 * First we add the event to the list with the hardware enable bit
1884 * in event->hw_config cleared.
1885 *
1886 * If the event is attached to a task which is on a CPU we use a smp
1887 * call to enable it in the task context. The task might have been
1888 * scheduled away, but we check this in the smp call again.
1889 */
1890 static void
1891 perf_install_in_context(struct perf_event_context *ctx,
1892 struct perf_event *event,
1893 int cpu)
1894 {
1895 struct task_struct *task = ctx->task;
1896
1897 lockdep_assert_held(&ctx->mutex);
1898
1899 event->ctx = ctx;
1900 if (event->cpu != -1)
1901 event->cpu = cpu;
1902
1903 if (!task) {
1904 /*
1905 * Per cpu events are installed via an smp call and
1906 * the install is always successful.
1907 */
1908 cpu_function_call(cpu, __perf_install_in_context, event);
1909 return;
1910 }
1911
1912 retry:
1913 if (!task_function_call(task, __perf_install_in_context, event))
1914 return;
1915
1916 raw_spin_lock_irq(&ctx->lock);
1917 /*
1918 * If we failed to find a running task, but find the context active now
1919 * that we've acquired the ctx->lock, retry.
1920 */
1921 if (ctx->is_active) {
1922 raw_spin_unlock_irq(&ctx->lock);
1923 goto retry;
1924 }
1925
1926 /*
1927 * Since the task isn't running, its safe to add the event, us holding
1928 * the ctx->lock ensures the task won't get scheduled in.
1929 */
1930 add_event_to_ctx(event, ctx);
1931 raw_spin_unlock_irq(&ctx->lock);
1932 }
1933
1934 /*
1935 * Put a event into inactive state and update time fields.
1936 * Enabling the leader of a group effectively enables all
1937 * the group members that aren't explicitly disabled, so we
1938 * have to update their ->tstamp_enabled also.
1939 * Note: this works for group members as well as group leaders
1940 * since the non-leader members' sibling_lists will be empty.
1941 */
1942 static void __perf_event_mark_enabled(struct perf_event *event)
1943 {
1944 struct perf_event *sub;
1945 u64 tstamp = perf_event_time(event);
1946
1947 event->state = PERF_EVENT_STATE_INACTIVE;
1948 event->tstamp_enabled = tstamp - event->total_time_enabled;
1949 list_for_each_entry(sub, &event->sibling_list, group_entry) {
1950 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
1951 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
1952 }
1953 }
1954
1955 /*
1956 * Cross CPU call to enable a performance event
1957 */
1958 static int __perf_event_enable(void *info)
1959 {
1960 struct perf_event *event = info;
1961 struct perf_event_context *ctx = event->ctx;
1962 struct perf_event *leader = event->group_leader;
1963 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1964 int err;
1965
1966 /*
1967 * There's a time window between 'ctx->is_active' check
1968 * in perf_event_enable function and this place having:
1969 * - IRQs on
1970 * - ctx->lock unlocked
1971 *
1972 * where the task could be killed and 'ctx' deactivated
1973 * by perf_event_exit_task.
1974 */
1975 if (!ctx->is_active)
1976 return -EINVAL;
1977
1978 raw_spin_lock(&ctx->lock);
1979 update_context_time(ctx);
1980
1981 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1982 goto unlock;
1983
1984 /*
1985 * set current task's cgroup time reference point
1986 */
1987 perf_cgroup_set_timestamp(current, ctx);
1988
1989 __perf_event_mark_enabled(event);
1990
1991 if (!event_filter_match(event)) {
1992 if (is_cgroup_event(event))
1993 perf_cgroup_defer_enabled(event);
1994 goto unlock;
1995 }
1996
1997 /*
1998 * If the event is in a group and isn't the group leader,
1999 * then don't put it on unless the group is on.
2000 */
2001 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
2002 goto unlock;
2003
2004 if (!group_can_go_on(event, cpuctx, 1)) {
2005 err = -EEXIST;
2006 } else {
2007 if (event == leader)
2008 err = group_sched_in(event, cpuctx, ctx);
2009 else
2010 err = event_sched_in(event, cpuctx, ctx);
2011 }
2012
2013 if (err) {
2014 /*
2015 * If this event can't go on and it's part of a
2016 * group, then the whole group has to come off.
2017 */
2018 if (leader != event) {
2019 group_sched_out(leader, cpuctx, ctx);
2020 perf_cpu_hrtimer_restart(cpuctx);
2021 }
2022 if (leader->attr.pinned) {
2023 update_group_times(leader);
2024 leader->state = PERF_EVENT_STATE_ERROR;
2025 }
2026 }
2027
2028 unlock:
2029 raw_spin_unlock(&ctx->lock);
2030
2031 return 0;
2032 }
2033
2034 /*
2035 * Enable a event.
2036 *
2037 * If event->ctx is a cloned context, callers must make sure that
2038 * every task struct that event->ctx->task could possibly point to
2039 * remains valid. This condition is satisfied when called through
2040 * perf_event_for_each_child or perf_event_for_each as described
2041 * for perf_event_disable.
2042 */
2043 void perf_event_enable(struct perf_event *event)
2044 {
2045 struct perf_event_context *ctx = event->ctx;
2046 struct task_struct *task = ctx->task;
2047
2048 if (!task) {
2049 /*
2050 * Enable the event on the cpu that it's on
2051 */
2052 cpu_function_call(event->cpu, __perf_event_enable, event);
2053 return;
2054 }
2055
2056 raw_spin_lock_irq(&ctx->lock);
2057 if (event->state >= PERF_EVENT_STATE_INACTIVE)
2058 goto out;
2059
2060 /*
2061 * If the event is in error state, clear that first.
2062 * That way, if we see the event in error state below, we
2063 * know that it has gone back into error state, as distinct
2064 * from the task having been scheduled away before the
2065 * cross-call arrived.
2066 */
2067 if (event->state == PERF_EVENT_STATE_ERROR)
2068 event->state = PERF_EVENT_STATE_OFF;
2069
2070 retry:
2071 if (!ctx->is_active) {
2072 __perf_event_mark_enabled(event);
2073 goto out;
2074 }
2075
2076 raw_spin_unlock_irq(&ctx->lock);
2077
2078 if (!task_function_call(task, __perf_event_enable, event))
2079 return;
2080
2081 raw_spin_lock_irq(&ctx->lock);
2082
2083 /*
2084 * If the context is active and the event is still off,
2085 * we need to retry the cross-call.
2086 */
2087 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
2088 /*
2089 * task could have been flipped by a concurrent
2090 * perf_event_context_sched_out()
2091 */
2092 task = ctx->task;
2093 goto retry;
2094 }
2095
2096 out:
2097 raw_spin_unlock_irq(&ctx->lock);
2098 }
2099 EXPORT_SYMBOL_GPL(perf_event_enable);
2100
2101 int perf_event_refresh(struct perf_event *event, int refresh)
2102 {
2103 /*
2104 * not supported on inherited events
2105 */
2106 if (event->attr.inherit || !is_sampling_event(event))
2107 return -EINVAL;
2108
2109 atomic_add(refresh, &event->event_limit);
2110 perf_event_enable(event);
2111
2112 return 0;
2113 }
2114 EXPORT_SYMBOL_GPL(perf_event_refresh);
2115
2116 static void ctx_sched_out(struct perf_event_context *ctx,
2117 struct perf_cpu_context *cpuctx,
2118 enum event_type_t event_type)
2119 {
2120 struct perf_event *event;
2121 int is_active = ctx->is_active;
2122
2123 ctx->is_active &= ~event_type;
2124 if (likely(!ctx->nr_events))
2125 return;
2126
2127 update_context_time(ctx);
2128 update_cgrp_time_from_cpuctx(cpuctx);
2129 if (!ctx->nr_active)
2130 return;
2131
2132 perf_pmu_disable(ctx->pmu);
2133 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
2134 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2135 group_sched_out(event, cpuctx, ctx);
2136 }
2137
2138 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
2139 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2140 group_sched_out(event, cpuctx, ctx);
2141 }
2142 perf_pmu_enable(ctx->pmu);
2143 }
2144
2145 /*
2146 * Test whether two contexts are equivalent, i.e. whether they
2147 * have both been cloned from the same version of the same context
2148 * and they both have the same number of enabled events.
2149 * If the number of enabled events is the same, then the set
2150 * of enabled events should be the same, because these are both
2151 * inherited contexts, therefore we can't access individual events
2152 * in them directly with an fd; we can only enable/disable all
2153 * events via prctl, or enable/disable all events in a family
2154 * via ioctl, which will have the same effect on both contexts.
2155 */
2156 static int context_equiv(struct perf_event_context *ctx1,
2157 struct perf_event_context *ctx2)
2158 {
2159 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
2160 && ctx1->parent_gen == ctx2->parent_gen
2161 && !ctx1->pin_count && !ctx2->pin_count;
2162 }
2163
2164 static void __perf_event_sync_stat(struct perf_event *event,
2165 struct perf_event *next_event)
2166 {
2167 u64 value;
2168
2169 if (!event->attr.inherit_stat)
2170 return;
2171
2172 /*
2173 * Update the event value, we cannot use perf_event_read()
2174 * because we're in the middle of a context switch and have IRQs
2175 * disabled, which upsets smp_call_function_single(), however
2176 * we know the event must be on the current CPU, therefore we
2177 * don't need to use it.
2178 */
2179 switch (event->state) {
2180 case PERF_EVENT_STATE_ACTIVE:
2181 event->pmu->read(event);
2182 /* fall-through */
2183
2184 case PERF_EVENT_STATE_INACTIVE:
2185 update_event_times(event);
2186 break;
2187
2188 default:
2189 break;
2190 }
2191
2192 /*
2193 * In order to keep per-task stats reliable we need to flip the event
2194 * values when we flip the contexts.
2195 */
2196 value = local64_read(&next_event->count);
2197 value = local64_xchg(&event->count, value);
2198 local64_set(&next_event->count, value);
2199
2200 swap(event->total_time_enabled, next_event->total_time_enabled);
2201 swap(event->total_time_running, next_event->total_time_running);
2202
2203 /*
2204 * Since we swizzled the values, update the user visible data too.
2205 */
2206 perf_event_update_userpage(event);
2207 perf_event_update_userpage(next_event);
2208 }
2209
2210 #define list_next_entry(pos, member) \
2211 list_entry(pos->member.next, typeof(*pos), member)
2212
2213 static void perf_event_sync_stat(struct perf_event_context *ctx,
2214 struct perf_event_context *next_ctx)
2215 {
2216 struct perf_event *event, *next_event;
2217
2218 if (!ctx->nr_stat)
2219 return;
2220
2221 update_context_time(ctx);
2222
2223 event = list_first_entry(&ctx->event_list,
2224 struct perf_event, event_entry);
2225
2226 next_event = list_first_entry(&next_ctx->event_list,
2227 struct perf_event, event_entry);
2228
2229 while (&event->event_entry != &ctx->event_list &&
2230 &next_event->event_entry != &next_ctx->event_list) {
2231
2232 __perf_event_sync_stat(event, next_event);
2233
2234 event = list_next_entry(event, event_entry);
2235 next_event = list_next_entry(next_event, event_entry);
2236 }
2237 }
2238
2239 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2240 struct task_struct *next)
2241 {
2242 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2243 struct perf_event_context *next_ctx;
2244 struct perf_event_context *parent;
2245 struct perf_cpu_context *cpuctx;
2246 int do_switch = 1;
2247
2248 if (likely(!ctx))
2249 return;
2250
2251 cpuctx = __get_cpu_context(ctx);
2252 if (!cpuctx->task_ctx)
2253 return;
2254
2255 rcu_read_lock();
2256 parent = rcu_dereference(ctx->parent_ctx);
2257 next_ctx = next->perf_event_ctxp[ctxn];
2258 if (parent && next_ctx &&
2259 rcu_dereference(next_ctx->parent_ctx) == parent) {
2260 /*
2261 * Looks like the two contexts are clones, so we might be
2262 * able to optimize the context switch. We lock both
2263 * contexts and check that they are clones under the
2264 * lock (including re-checking that neither has been
2265 * uncloned in the meantime). It doesn't matter which
2266 * order we take the locks because no other cpu could
2267 * be trying to lock both of these tasks.
2268 */
2269 raw_spin_lock(&ctx->lock);
2270 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2271 if (context_equiv(ctx, next_ctx)) {
2272 /*
2273 * XXX do we need a memory barrier of sorts
2274 * wrt to rcu_dereference() of perf_event_ctxp
2275 */
2276 task->perf_event_ctxp[ctxn] = next_ctx;
2277 next->perf_event_ctxp[ctxn] = ctx;
2278 ctx->task = next;
2279 next_ctx->task = task;
2280 do_switch = 0;
2281
2282 perf_event_sync_stat(ctx, next_ctx);
2283 }
2284 raw_spin_unlock(&next_ctx->lock);
2285 raw_spin_unlock(&ctx->lock);
2286 }
2287 rcu_read_unlock();
2288
2289 if (do_switch) {
2290 raw_spin_lock(&ctx->lock);
2291 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2292 cpuctx->task_ctx = NULL;
2293 raw_spin_unlock(&ctx->lock);
2294 }
2295 }
2296
2297 #define for_each_task_context_nr(ctxn) \
2298 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2299
2300 /*
2301 * Called from scheduler to remove the events of the current task,
2302 * with interrupts disabled.
2303 *
2304 * We stop each event and update the event value in event->count.
2305 *
2306 * This does not protect us against NMI, but disable()
2307 * sets the disabled bit in the control field of event _before_
2308 * accessing the event control register. If a NMI hits, then it will
2309 * not restart the event.
2310 */
2311 void __perf_event_task_sched_out(struct task_struct *task,
2312 struct task_struct *next)
2313 {
2314 int ctxn;
2315
2316 for_each_task_context_nr(ctxn)
2317 perf_event_context_sched_out(task, ctxn, next);
2318
2319 /*
2320 * if cgroup events exist on this CPU, then we need
2321 * to check if we have to switch out PMU state.
2322 * cgroup event are system-wide mode only
2323 */
2324 if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2325 perf_cgroup_sched_out(task, next);
2326 }
2327
2328 static void task_ctx_sched_out(struct perf_event_context *ctx)
2329 {
2330 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2331
2332 if (!cpuctx->task_ctx)
2333 return;
2334
2335 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2336 return;
2337
2338 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2339 cpuctx->task_ctx = NULL;
2340 }
2341
2342 /*
2343 * Called with IRQs disabled
2344 */
2345 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2346 enum event_type_t event_type)
2347 {
2348 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2349 }
2350
2351 static void
2352 ctx_pinned_sched_in(struct perf_event_context *ctx,
2353 struct perf_cpu_context *cpuctx)
2354 {
2355 struct perf_event *event;
2356
2357 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2358 if (event->state <= PERF_EVENT_STATE_OFF)
2359 continue;
2360 if (!event_filter_match(event))
2361 continue;
2362
2363 /* may need to reset tstamp_enabled */
2364 if (is_cgroup_event(event))
2365 perf_cgroup_mark_enabled(event, ctx);
2366
2367 if (group_can_go_on(event, cpuctx, 1))
2368 group_sched_in(event, cpuctx, ctx);
2369
2370 /*
2371 * If this pinned group hasn't been scheduled,
2372 * put it in error state.
2373 */
2374 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2375 update_group_times(event);
2376 event->state = PERF_EVENT_STATE_ERROR;
2377 }
2378 }
2379 }
2380
2381 static void
2382 ctx_flexible_sched_in(struct perf_event_context *ctx,
2383 struct perf_cpu_context *cpuctx)
2384 {
2385 struct perf_event *event;
2386 int can_add_hw = 1;
2387
2388 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2389 /* Ignore events in OFF or ERROR state */
2390 if (event->state <= PERF_EVENT_STATE_OFF)
2391 continue;
2392 /*
2393 * Listen to the 'cpu' scheduling filter constraint
2394 * of events:
2395 */
2396 if (!event_filter_match(event))
2397 continue;
2398
2399 /* may need to reset tstamp_enabled */
2400 if (is_cgroup_event(event))
2401 perf_cgroup_mark_enabled(event, ctx);
2402
2403 if (group_can_go_on(event, cpuctx, can_add_hw)) {
2404 if (group_sched_in(event, cpuctx, ctx))
2405 can_add_hw = 0;
2406 }
2407 }
2408 }
2409
2410 static void
2411 ctx_sched_in(struct perf_event_context *ctx,
2412 struct perf_cpu_context *cpuctx,
2413 enum event_type_t event_type,
2414 struct task_struct *task)
2415 {
2416 u64 now;
2417 int is_active = ctx->is_active;
2418
2419 ctx->is_active |= event_type;
2420 if (likely(!ctx->nr_events))
2421 return;
2422
2423 now = perf_clock();
2424 ctx->timestamp = now;
2425 perf_cgroup_set_timestamp(task, ctx);
2426 /*
2427 * First go through the list and put on any pinned groups
2428 * in order to give them the best chance of going on.
2429 */
2430 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2431 ctx_pinned_sched_in(ctx, cpuctx);
2432
2433 /* Then walk through the lower prio flexible groups */
2434 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2435 ctx_flexible_sched_in(ctx, cpuctx);
2436 }
2437
2438 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
2439 enum event_type_t event_type,
2440 struct task_struct *task)
2441 {
2442 struct perf_event_context *ctx = &cpuctx->ctx;
2443
2444 ctx_sched_in(ctx, cpuctx, event_type, task);
2445 }
2446
2447 static void perf_event_context_sched_in(struct perf_event_context *ctx,
2448 struct task_struct *task)
2449 {
2450 struct perf_cpu_context *cpuctx;
2451
2452 cpuctx = __get_cpu_context(ctx);
2453 if (cpuctx->task_ctx == ctx)
2454 return;
2455
2456 perf_ctx_lock(cpuctx, ctx);
2457 perf_pmu_disable(ctx->pmu);
2458 /*
2459 * We want to keep the following priority order:
2460 * cpu pinned (that don't need to move), task pinned,
2461 * cpu flexible, task flexible.
2462 */
2463 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2464
2465 if (ctx->nr_events)
2466 cpuctx->task_ctx = ctx;
2467
2468 perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2469
2470 perf_pmu_enable(ctx->pmu);
2471 perf_ctx_unlock(cpuctx, ctx);
2472
2473 /*
2474 * Since these rotations are per-cpu, we need to ensure the
2475 * cpu-context we got scheduled on is actually rotating.
2476 */
2477 perf_pmu_rotate_start(ctx->pmu);
2478 }
2479
2480 /*
2481 * When sampling the branck stack in system-wide, it may be necessary
2482 * to flush the stack on context switch. This happens when the branch
2483 * stack does not tag its entries with the pid of the current task.
2484 * Otherwise it becomes impossible to associate a branch entry with a
2485 * task. This ambiguity is more likely to appear when the branch stack
2486 * supports priv level filtering and the user sets it to monitor only
2487 * at the user level (which could be a useful measurement in system-wide
2488 * mode). In that case, the risk is high of having a branch stack with
2489 * branch from multiple tasks. Flushing may mean dropping the existing
2490 * entries or stashing them somewhere in the PMU specific code layer.
2491 *
2492 * This function provides the context switch callback to the lower code
2493 * layer. It is invoked ONLY when there is at least one system-wide context
2494 * with at least one active event using taken branch sampling.
2495 */
2496 static void perf_branch_stack_sched_in(struct task_struct *prev,
2497 struct task_struct *task)
2498 {
2499 struct perf_cpu_context *cpuctx;
2500 struct pmu *pmu;
2501 unsigned long flags;
2502
2503 /* no need to flush branch stack if not changing task */
2504 if (prev == task)
2505 return;
2506
2507 local_irq_save(flags);
2508
2509 rcu_read_lock();
2510
2511 list_for_each_entry_rcu(pmu, &pmus, entry) {
2512 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2513
2514 /*
2515 * check if the context has at least one
2516 * event using PERF_SAMPLE_BRANCH_STACK
2517 */
2518 if (cpuctx->ctx.nr_branch_stack > 0
2519 && pmu->flush_branch_stack) {
2520
2521 pmu = cpuctx->ctx.pmu;
2522
2523 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2524
2525 perf_pmu_disable(pmu);
2526
2527 pmu->flush_branch_stack();
2528
2529 perf_pmu_enable(pmu);
2530
2531 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2532 }
2533 }
2534
2535 rcu_read_unlock();
2536
2537 local_irq_restore(flags);
2538 }
2539
2540 /*
2541 * Called from scheduler to add the events of the current task
2542 * with interrupts disabled.
2543 *
2544 * We restore the event value and then enable it.
2545 *
2546 * This does not protect us against NMI, but enable()
2547 * sets the enabled bit in the control field of event _before_
2548 * accessing the event control register. If a NMI hits, then it will
2549 * keep the event running.
2550 */
2551 void __perf_event_task_sched_in(struct task_struct *prev,
2552 struct task_struct *task)
2553 {
2554 struct perf_event_context *ctx;
2555 int ctxn;
2556
2557 for_each_task_context_nr(ctxn) {
2558 ctx = task->perf_event_ctxp[ctxn];
2559 if (likely(!ctx))
2560 continue;
2561
2562 perf_event_context_sched_in(ctx, task);
2563 }
2564 /*
2565 * if cgroup events exist on this CPU, then we need
2566 * to check if we have to switch in PMU state.
2567 * cgroup event are system-wide mode only
2568 */
2569 if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2570 perf_cgroup_sched_in(prev, task);
2571
2572 /* check for system-wide branch_stack events */
2573 if (atomic_read(&__get_cpu_var(perf_branch_stack_events)))
2574 perf_branch_stack_sched_in(prev, task);
2575 }
2576
2577 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2578 {
2579 u64 frequency = event->attr.sample_freq;
2580 u64 sec = NSEC_PER_SEC;
2581 u64 divisor, dividend;
2582
2583 int count_fls, nsec_fls, frequency_fls, sec_fls;
2584
2585 count_fls = fls64(count);
2586 nsec_fls = fls64(nsec);
2587 frequency_fls = fls64(frequency);
2588 sec_fls = 30;
2589
2590 /*
2591 * We got @count in @nsec, with a target of sample_freq HZ
2592 * the target period becomes:
2593 *
2594 * @count * 10^9
2595 * period = -------------------
2596 * @nsec * sample_freq
2597 *
2598 */
2599
2600 /*
2601 * Reduce accuracy by one bit such that @a and @b converge
2602 * to a similar magnitude.
2603 */
2604 #define REDUCE_FLS(a, b) \
2605 do { \
2606 if (a##_fls > b##_fls) { \
2607 a >>= 1; \
2608 a##_fls--; \
2609 } else { \
2610 b >>= 1; \
2611 b##_fls--; \
2612 } \
2613 } while (0)
2614
2615 /*
2616 * Reduce accuracy until either term fits in a u64, then proceed with
2617 * the other, so that finally we can do a u64/u64 division.
2618 */
2619 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2620 REDUCE_FLS(nsec, frequency);
2621 REDUCE_FLS(sec, count);
2622 }
2623
2624 if (count_fls + sec_fls > 64) {
2625 divisor = nsec * frequency;
2626
2627 while (count_fls + sec_fls > 64) {
2628 REDUCE_FLS(count, sec);
2629 divisor >>= 1;
2630 }
2631
2632 dividend = count * sec;
2633 } else {
2634 dividend = count * sec;
2635
2636 while (nsec_fls + frequency_fls > 64) {
2637 REDUCE_FLS(nsec, frequency);
2638 dividend >>= 1;
2639 }
2640
2641 divisor = nsec * frequency;
2642 }
2643
2644 if (!divisor)
2645 return dividend;
2646
2647 return div64_u64(dividend, divisor);
2648 }
2649
2650 static DEFINE_PER_CPU(int, perf_throttled_count);
2651 static DEFINE_PER_CPU(u64, perf_throttled_seq);
2652
2653 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2654 {
2655 struct hw_perf_event *hwc = &event->hw;
2656 s64 period, sample_period;
2657 s64 delta;
2658
2659 period = perf_calculate_period(event, nsec, count);
2660
2661 delta = (s64)(period - hwc->sample_period);
2662 delta = (delta + 7) / 8; /* low pass filter */
2663
2664 sample_period = hwc->sample_period + delta;
2665
2666 if (!sample_period)
2667 sample_period = 1;
2668
2669 hwc->sample_period = sample_period;
2670
2671 if (local64_read(&hwc->period_left) > 8*sample_period) {
2672 if (disable)
2673 event->pmu->stop(event, PERF_EF_UPDATE);
2674
2675 local64_set(&hwc->period_left, 0);
2676
2677 if (disable)
2678 event->pmu->start(event, PERF_EF_RELOAD);
2679 }
2680 }
2681
2682 /*
2683 * combine freq adjustment with unthrottling to avoid two passes over the
2684 * events. At the same time, make sure, having freq events does not change
2685 * the rate of unthrottling as that would introduce bias.
2686 */
2687 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2688 int needs_unthr)
2689 {
2690 struct perf_event *event;
2691 struct hw_perf_event *hwc;
2692 u64 now, period = TICK_NSEC;
2693 s64 delta;
2694
2695 /*
2696 * only need to iterate over all events iff:
2697 * - context have events in frequency mode (needs freq adjust)
2698 * - there are events to unthrottle on this cpu
2699 */
2700 if (!(ctx->nr_freq || needs_unthr))
2701 return;
2702
2703 raw_spin_lock(&ctx->lock);
2704 perf_pmu_disable(ctx->pmu);
2705
2706 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2707 if (event->state != PERF_EVENT_STATE_ACTIVE)
2708 continue;
2709
2710 if (!event_filter_match(event))
2711 continue;
2712
2713 hwc = &event->hw;
2714
2715 if (needs_unthr && hwc->interrupts == MAX_INTERRUPTS) {
2716 hwc->interrupts = 0;
2717 perf_log_throttle(event, 1);
2718 event->pmu->start(event, 0);
2719 }
2720
2721 if (!event->attr.freq || !event->attr.sample_freq)
2722 continue;
2723
2724 /*
2725 * stop the event and update event->count
2726 */
2727 event->pmu->stop(event, PERF_EF_UPDATE);
2728
2729 now = local64_read(&event->count);
2730 delta = now - hwc->freq_count_stamp;
2731 hwc->freq_count_stamp = now;
2732
2733 /*
2734 * restart the event
2735 * reload only if value has changed
2736 * we have stopped the event so tell that
2737 * to perf_adjust_period() to avoid stopping it
2738 * twice.
2739 */
2740 if (delta > 0)
2741 perf_adjust_period(event, period, delta, false);
2742
2743 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
2744 }
2745
2746 perf_pmu_enable(ctx->pmu);
2747 raw_spin_unlock(&ctx->lock);
2748 }
2749
2750 /*
2751 * Round-robin a context's events:
2752 */
2753 static void rotate_ctx(struct perf_event_context *ctx)
2754 {
2755 /*
2756 * Rotate the first entry last of non-pinned groups. Rotation might be
2757 * disabled by the inheritance code.
2758 */
2759 if (!ctx->rotate_disable)
2760 list_rotate_left(&ctx->flexible_groups);
2761 }
2762
2763 /*
2764 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
2765 * because they're strictly cpu affine and rotate_start is called with IRQs
2766 * disabled, while rotate_context is called from IRQ context.
2767 */
2768 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
2769 {
2770 struct perf_event_context *ctx = NULL;
2771 int rotate = 0, remove = 1;
2772
2773 if (cpuctx->ctx.nr_events) {
2774 remove = 0;
2775 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
2776 rotate = 1;
2777 }
2778
2779 ctx = cpuctx->task_ctx;
2780 if (ctx && ctx->nr_events) {
2781 remove = 0;
2782 if (ctx->nr_events != ctx->nr_active)
2783 rotate = 1;
2784 }
2785
2786 if (!rotate)
2787 goto done;
2788
2789 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2790 perf_pmu_disable(cpuctx->ctx.pmu);
2791
2792 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2793 if (ctx)
2794 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
2795
2796 rotate_ctx(&cpuctx->ctx);
2797 if (ctx)
2798 rotate_ctx(ctx);
2799
2800 perf_event_sched_in(cpuctx, ctx, current);
2801
2802 perf_pmu_enable(cpuctx->ctx.pmu);
2803 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2804 done:
2805 if (remove)
2806 list_del_init(&cpuctx->rotation_list);
2807
2808 return rotate;
2809 }
2810
2811 #ifdef CONFIG_NO_HZ_FULL
2812 bool perf_event_can_stop_tick(void)
2813 {
2814 if (atomic_read(&nr_freq_events) ||
2815 __this_cpu_read(perf_throttled_count))
2816 return false;
2817 else
2818 return true;
2819 }
2820 #endif
2821
2822 void perf_event_task_tick(void)
2823 {
2824 struct list_head *head = &__get_cpu_var(rotation_list);
2825 struct perf_cpu_context *cpuctx, *tmp;
2826 struct perf_event_context *ctx;
2827 int throttled;
2828
2829 WARN_ON(!irqs_disabled());
2830
2831 __this_cpu_inc(perf_throttled_seq);
2832 throttled = __this_cpu_xchg(perf_throttled_count, 0);
2833
2834 list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
2835 ctx = &cpuctx->ctx;
2836 perf_adjust_freq_unthr_context(ctx, throttled);
2837
2838 ctx = cpuctx->task_ctx;
2839 if (ctx)
2840 perf_adjust_freq_unthr_context(ctx, throttled);
2841 }
2842 }
2843
2844 static int event_enable_on_exec(struct perf_event *event,
2845 struct perf_event_context *ctx)
2846 {
2847 if (!event->attr.enable_on_exec)
2848 return 0;
2849
2850 event->attr.enable_on_exec = 0;
2851 if (event->state >= PERF_EVENT_STATE_INACTIVE)
2852 return 0;
2853
2854 __perf_event_mark_enabled(event);
2855
2856 return 1;
2857 }
2858
2859 /*
2860 * Enable all of a task's events that have been marked enable-on-exec.
2861 * This expects task == current.
2862 */
2863 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
2864 {
2865 struct perf_event *event;
2866 unsigned long flags;
2867 int enabled = 0;
2868 int ret;
2869
2870 local_irq_save(flags);
2871 if (!ctx || !ctx->nr_events)
2872 goto out;
2873
2874 /*
2875 * We must ctxsw out cgroup events to avoid conflict
2876 * when invoking perf_task_event_sched_in() later on
2877 * in this function. Otherwise we end up trying to
2878 * ctxswin cgroup events which are already scheduled
2879 * in.
2880 */
2881 perf_cgroup_sched_out(current, NULL);
2882
2883 raw_spin_lock(&ctx->lock);
2884 task_ctx_sched_out(ctx);
2885
2886 list_for_each_entry(event, &ctx->event_list, event_entry) {
2887 ret = event_enable_on_exec(event, ctx);
2888 if (ret)
2889 enabled = 1;
2890 }
2891
2892 /*
2893 * Unclone this context if we enabled any event.
2894 */
2895 if (enabled)
2896 unclone_ctx(ctx);
2897
2898 raw_spin_unlock(&ctx->lock);
2899
2900 /*
2901 * Also calls ctxswin for cgroup events, if any:
2902 */
2903 perf_event_context_sched_in(ctx, ctx->task);
2904 out:
2905 local_irq_restore(flags);
2906 }
2907
2908 /*
2909 * Cross CPU call to read the hardware event
2910 */
2911 static void __perf_event_read(void *info)
2912 {
2913 struct perf_event *event = info;
2914 struct perf_event_context *ctx = event->ctx;
2915 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2916
2917 /*
2918 * If this is a task context, we need to check whether it is
2919 * the current task context of this cpu. If not it has been
2920 * scheduled out before the smp call arrived. In that case
2921 * event->count would have been updated to a recent sample
2922 * when the event was scheduled out.
2923 */
2924 if (ctx->task && cpuctx->task_ctx != ctx)
2925 return;
2926
2927 raw_spin_lock(&ctx->lock);
2928 if (ctx->is_active) {
2929 update_context_time(ctx);
2930 update_cgrp_time_from_event(event);
2931 }
2932 update_event_times(event);
2933 if (event->state == PERF_EVENT_STATE_ACTIVE)
2934 event->pmu->read(event);
2935 raw_spin_unlock(&ctx->lock);
2936 }
2937
2938 static inline u64 perf_event_count(struct perf_event *event)
2939 {
2940 return local64_read(&event->count) + atomic64_read(&event->child_count);
2941 }
2942
2943 static u64 perf_event_read(struct perf_event *event)
2944 {
2945 /*
2946 * If event is enabled and currently active on a CPU, update the
2947 * value in the event structure:
2948 */
2949 if (event->state == PERF_EVENT_STATE_ACTIVE) {
2950 smp_call_function_single(event->oncpu,
2951 __perf_event_read, event, 1);
2952 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2953 struct perf_event_context *ctx = event->ctx;
2954 unsigned long flags;
2955
2956 raw_spin_lock_irqsave(&ctx->lock, flags);
2957 /*
2958 * may read while context is not active
2959 * (e.g., thread is blocked), in that case
2960 * we cannot update context time
2961 */
2962 if (ctx->is_active) {
2963 update_context_time(ctx);
2964 update_cgrp_time_from_event(event);
2965 }
2966 update_event_times(event);
2967 raw_spin_unlock_irqrestore(&ctx->lock, flags);
2968 }
2969
2970 return perf_event_count(event);
2971 }
2972
2973 /*
2974 * Initialize the perf_event context in a task_struct:
2975 */
2976 static void __perf_event_init_context(struct perf_event_context *ctx)
2977 {
2978 raw_spin_lock_init(&ctx->lock);
2979 mutex_init(&ctx->mutex);
2980 INIT_LIST_HEAD(&ctx->pinned_groups);
2981 INIT_LIST_HEAD(&ctx->flexible_groups);
2982 INIT_LIST_HEAD(&ctx->event_list);
2983 atomic_set(&ctx->refcount, 1);
2984 }
2985
2986 static struct perf_event_context *
2987 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
2988 {
2989 struct perf_event_context *ctx;
2990
2991 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
2992 if (!ctx)
2993 return NULL;
2994
2995 __perf_event_init_context(ctx);
2996 if (task) {
2997 ctx->task = task;
2998 get_task_struct(task);
2999 }
3000 ctx->pmu = pmu;
3001
3002 return ctx;
3003 }
3004
3005 static struct task_struct *
3006 find_lively_task_by_vpid(pid_t vpid)
3007 {
3008 struct task_struct *task;
3009 int err;
3010
3011 rcu_read_lock();
3012 if (!vpid)
3013 task = current;
3014 else
3015 task = find_task_by_vpid(vpid);
3016 if (task)
3017 get_task_struct(task);
3018 rcu_read_unlock();
3019
3020 if (!task)
3021 return ERR_PTR(-ESRCH);
3022
3023 /* Reuse ptrace permission checks for now. */
3024 err = -EACCES;
3025 if (!ptrace_may_access(task, PTRACE_MODE_READ))
3026 goto errout;
3027
3028 return task;
3029 errout:
3030 put_task_struct(task);
3031 return ERR_PTR(err);
3032
3033 }
3034
3035 /*
3036 * Returns a matching context with refcount and pincount.
3037 */
3038 static struct perf_event_context *
3039 find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
3040 {
3041 struct perf_event_context *ctx;
3042 struct perf_cpu_context *cpuctx;
3043 unsigned long flags;
3044 int ctxn, err;
3045
3046 if (!task) {
3047 /* Must be root to operate on a CPU event: */
3048 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3049 return ERR_PTR(-EACCES);
3050
3051 /*
3052 * We could be clever and allow to attach a event to an
3053 * offline CPU and activate it when the CPU comes up, but
3054 * that's for later.
3055 */
3056 if (!cpu_online(cpu))
3057 return ERR_PTR(-ENODEV);
3058
3059 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3060 ctx = &cpuctx->ctx;
3061 get_ctx(ctx);
3062 ++ctx->pin_count;
3063
3064 return ctx;
3065 }
3066
3067 err = -EINVAL;
3068 ctxn = pmu->task_ctx_nr;
3069 if (ctxn < 0)
3070 goto errout;
3071
3072 retry:
3073 ctx = perf_lock_task_context(task, ctxn, &flags);
3074 if (ctx) {
3075 unclone_ctx(ctx);
3076 ++ctx->pin_count;
3077 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3078 } else {
3079 ctx = alloc_perf_context(pmu, task);
3080 err = -ENOMEM;
3081 if (!ctx)
3082 goto errout;
3083
3084 err = 0;
3085 mutex_lock(&task->perf_event_mutex);
3086 /*
3087 * If it has already passed perf_event_exit_task().
3088 * we must see PF_EXITING, it takes this mutex too.
3089 */
3090 if (task->flags & PF_EXITING)
3091 err = -ESRCH;
3092 else if (task->perf_event_ctxp[ctxn])
3093 err = -EAGAIN;
3094 else {
3095 get_ctx(ctx);
3096 ++ctx->pin_count;
3097 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3098 }
3099 mutex_unlock(&task->perf_event_mutex);
3100
3101 if (unlikely(err)) {
3102 put_ctx(ctx);
3103
3104 if (err == -EAGAIN)
3105 goto retry;
3106 goto errout;
3107 }
3108 }
3109
3110 return ctx;
3111
3112 errout:
3113 return ERR_PTR(err);
3114 }
3115
3116 static void perf_event_free_filter(struct perf_event *event);
3117
3118 static void free_event_rcu(struct rcu_head *head)
3119 {
3120 struct perf_event *event;
3121
3122 event = container_of(head, struct perf_event, rcu_head);
3123 if (event->ns)
3124 put_pid_ns(event->ns);
3125 perf_event_free_filter(event);
3126 kfree(event);
3127 }
3128
3129 static void ring_buffer_put(struct ring_buffer *rb);
3130 static void ring_buffer_detach(struct perf_event *event, struct ring_buffer *rb);
3131
3132 static void unaccount_event_cpu(struct perf_event *event, int cpu)
3133 {
3134 if (event->parent)
3135 return;
3136
3137 if (has_branch_stack(event)) {
3138 if (!(event->attach_state & PERF_ATTACH_TASK))
3139 atomic_dec(&per_cpu(perf_branch_stack_events, cpu));
3140 }
3141 if (is_cgroup_event(event))
3142 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3143 }
3144
3145 static void unaccount_event(struct perf_event *event)
3146 {
3147 if (event->parent)
3148 return;
3149
3150 if (event->attach_state & PERF_ATTACH_TASK)
3151 static_key_slow_dec_deferred(&perf_sched_events);
3152 if (event->attr.mmap || event->attr.mmap_data)
3153 atomic_dec(&nr_mmap_events);
3154 if (event->attr.comm)
3155 atomic_dec(&nr_comm_events);
3156 if (event->attr.task)
3157 atomic_dec(&nr_task_events);
3158 if (event->attr.freq)
3159 atomic_dec(&nr_freq_events);
3160 if (is_cgroup_event(event))
3161 static_key_slow_dec_deferred(&perf_sched_events);
3162 if (has_branch_stack(event))
3163 static_key_slow_dec_deferred(&perf_sched_events);
3164
3165 unaccount_event_cpu(event, event->cpu);
3166 }
3167
3168 static void __free_event(struct perf_event *event)
3169 {
3170 if (!event->parent) {
3171 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3172 put_callchain_buffers();
3173 }
3174
3175 if (event->destroy)
3176 event->destroy(event);
3177
3178 if (event->ctx)
3179 put_ctx(event->ctx);
3180
3181 call_rcu(&event->rcu_head, free_event_rcu);
3182 }
3183 static void free_event(struct perf_event *event)
3184 {
3185 irq_work_sync(&event->pending);
3186
3187 unaccount_event(event);
3188
3189 if (event->rb) {
3190 struct ring_buffer *rb;
3191
3192 /*
3193 * Can happen when we close an event with re-directed output.
3194 *
3195 * Since we have a 0 refcount, perf_mmap_close() will skip
3196 * over us; possibly making our ring_buffer_put() the last.
3197 */
3198 mutex_lock(&event->mmap_mutex);
3199 rb = event->rb;
3200 if (rb) {
3201 rcu_assign_pointer(event->rb, NULL);
3202 ring_buffer_detach(event, rb);
3203 ring_buffer_put(rb); /* could be last */
3204 }
3205 mutex_unlock(&event->mmap_mutex);
3206 }
3207
3208 if (is_cgroup_event(event))
3209 perf_detach_cgroup(event);
3210
3211
3212 __free_event(event);
3213 }
3214
3215 int perf_event_release_kernel(struct perf_event *event)
3216 {
3217 struct perf_event_context *ctx = event->ctx;
3218
3219 WARN_ON_ONCE(ctx->parent_ctx);
3220 /*
3221 * There are two ways this annotation is useful:
3222 *
3223 * 1) there is a lock recursion from perf_event_exit_task
3224 * see the comment there.
3225 *
3226 * 2) there is a lock-inversion with mmap_sem through
3227 * perf_event_read_group(), which takes faults while
3228 * holding ctx->mutex, however this is called after
3229 * the last filedesc died, so there is no possibility
3230 * to trigger the AB-BA case.
3231 */
3232 mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
3233 raw_spin_lock_irq(&ctx->lock);
3234 perf_group_detach(event);
3235 raw_spin_unlock_irq(&ctx->lock);
3236 perf_remove_from_context(event);
3237 mutex_unlock(&ctx->mutex);
3238
3239 free_event(event);
3240
3241 return 0;
3242 }
3243 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
3244
3245 /*
3246 * Called when the last reference to the file is gone.
3247 */
3248 static void put_event(struct perf_event *event)
3249 {
3250 struct task_struct *owner;
3251
3252 if (!atomic_long_dec_and_test(&event->refcount))
3253 return;
3254
3255 rcu_read_lock();
3256 owner = ACCESS_ONCE(event->owner);
3257 /*
3258 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
3259 * !owner it means the list deletion is complete and we can indeed
3260 * free this event, otherwise we need to serialize on
3261 * owner->perf_event_mutex.
3262 */
3263 smp_read_barrier_depends();
3264 if (owner) {
3265 /*
3266 * Since delayed_put_task_struct() also drops the last
3267 * task reference we can safely take a new reference
3268 * while holding the rcu_read_lock().
3269 */
3270 get_task_struct(owner);
3271 }
3272 rcu_read_unlock();
3273
3274 if (owner) {
3275 mutex_lock(&owner->perf_event_mutex);
3276 /*
3277 * We have to re-check the event->owner field, if it is cleared
3278 * we raced with perf_event_exit_task(), acquiring the mutex
3279 * ensured they're done, and we can proceed with freeing the
3280 * event.
3281 */
3282 if (event->owner)
3283 list_del_init(&event->owner_entry);
3284 mutex_unlock(&owner->perf_event_mutex);
3285 put_task_struct(owner);
3286 }
3287
3288 perf_event_release_kernel(event);
3289 }
3290
3291 static int perf_release(struct inode *inode, struct file *file)
3292 {
3293 put_event(file->private_data);
3294 return 0;
3295 }
3296
3297 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3298 {
3299 struct perf_event *child;
3300 u64 total = 0;
3301
3302 *enabled = 0;
3303 *running = 0;
3304
3305 mutex_lock(&event->child_mutex);
3306 total += perf_event_read(event);
3307 *enabled += event->total_time_enabled +
3308 atomic64_read(&event->child_total_time_enabled);
3309 *running += event->total_time_running +
3310 atomic64_read(&event->child_total_time_running);
3311
3312 list_for_each_entry(child, &event->child_list, child_list) {
3313 total += perf_event_read(child);
3314 *enabled += child->total_time_enabled;
3315 *running += child->total_time_running;
3316 }
3317 mutex_unlock(&event->child_mutex);
3318
3319 return total;
3320 }
3321 EXPORT_SYMBOL_GPL(perf_event_read_value);
3322
3323 static int perf_event_read_group(struct perf_event *event,
3324 u64 read_format, char __user *buf)
3325 {
3326 struct perf_event *leader = event->group_leader, *sub;
3327 int n = 0, size = 0, ret = -EFAULT;
3328 struct perf_event_context *ctx = leader->ctx;
3329 u64 values[5];
3330 u64 count, enabled, running;
3331
3332 mutex_lock(&ctx->mutex);
3333 count = perf_event_read_value(leader, &enabled, &running);
3334
3335 values[n++] = 1 + leader->nr_siblings;
3336 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3337 values[n++] = enabled;
3338 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3339 values[n++] = running;
3340 values[n++] = count;
3341 if (read_format & PERF_FORMAT_ID)
3342 values[n++] = primary_event_id(leader);
3343
3344 size = n * sizeof(u64);
3345
3346 if (copy_to_user(buf, values, size))
3347 goto unlock;
3348
3349 ret = size;
3350
3351 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3352 n = 0;
3353
3354 values[n++] = perf_event_read_value(sub, &enabled, &running);
3355 if (read_format & PERF_FORMAT_ID)
3356 values[n++] = primary_event_id(sub);
3357
3358 size = n * sizeof(u64);
3359
3360 if (copy_to_user(buf + ret, values, size)) {
3361 ret = -EFAULT;
3362 goto unlock;
3363 }
3364
3365 ret += size;
3366 }
3367 unlock:
3368 mutex_unlock(&ctx->mutex);
3369
3370 return ret;
3371 }
3372
3373 static int perf_event_read_one(struct perf_event *event,
3374 u64 read_format, char __user *buf)
3375 {
3376 u64 enabled, running;
3377 u64 values[4];
3378 int n = 0;
3379
3380 values[n++] = perf_event_read_value(event, &enabled, &running);
3381 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3382 values[n++] = enabled;
3383 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3384 values[n++] = running;
3385 if (read_format & PERF_FORMAT_ID)
3386 values[n++] = primary_event_id(event);
3387
3388 if (copy_to_user(buf, values, n * sizeof(u64)))
3389 return -EFAULT;
3390
3391 return n * sizeof(u64);
3392 }
3393
3394 /*
3395 * Read the performance event - simple non blocking version for now
3396 */
3397 static ssize_t
3398 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
3399 {
3400 u64 read_format = event->attr.read_format;
3401 int ret;
3402
3403 /*
3404 * Return end-of-file for a read on a event that is in
3405 * error state (i.e. because it was pinned but it couldn't be
3406 * scheduled on to the CPU at some point).
3407 */
3408 if (event->state == PERF_EVENT_STATE_ERROR)
3409 return 0;
3410
3411 if (count < event->read_size)
3412 return -ENOSPC;
3413
3414 WARN_ON_ONCE(event->ctx->parent_ctx);
3415 if (read_format & PERF_FORMAT_GROUP)
3416 ret = perf_event_read_group(event, read_format, buf);
3417 else
3418 ret = perf_event_read_one(event, read_format, buf);
3419
3420 return ret;
3421 }
3422
3423 static ssize_t
3424 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
3425 {
3426 struct perf_event *event = file->private_data;
3427
3428 return perf_read_hw(event, buf, count);
3429 }
3430
3431 static unsigned int perf_poll(struct file *file, poll_table *wait)
3432 {
3433 struct perf_event *event = file->private_data;
3434 struct ring_buffer *rb;
3435 unsigned int events = POLL_HUP;
3436
3437 /*
3438 * Pin the event->rb by taking event->mmap_mutex; otherwise
3439 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
3440 */
3441 mutex_lock(&event->mmap_mutex);
3442 rb = event->rb;
3443 if (rb)
3444 events = atomic_xchg(&rb->poll, 0);
3445 mutex_unlock(&event->mmap_mutex);
3446
3447 poll_wait(file, &event->waitq, wait);
3448
3449 return events;
3450 }
3451
3452 static void perf_event_reset(struct perf_event *event)
3453 {
3454 (void)perf_event_read(event);
3455 local64_set(&event->count, 0);
3456 perf_event_update_userpage(event);
3457 }
3458
3459 /*
3460 * Holding the top-level event's child_mutex means that any
3461 * descendant process that has inherited this event will block
3462 * in sync_child_event if it goes to exit, thus satisfying the
3463 * task existence requirements of perf_event_enable/disable.
3464 */
3465 static void perf_event_for_each_child(struct perf_event *event,
3466 void (*func)(struct perf_event *))
3467 {
3468 struct perf_event *child;
3469
3470 WARN_ON_ONCE(event->ctx->parent_ctx);
3471 mutex_lock(&event->child_mutex);
3472 func(event);
3473 list_for_each_entry(child, &event->child_list, child_list)
3474 func(child);
3475 mutex_unlock(&event->child_mutex);
3476 }
3477
3478 static void perf_event_for_each(struct perf_event *event,
3479 void (*func)(struct perf_event *))
3480 {
3481 struct perf_event_context *ctx = event->ctx;
3482 struct perf_event *sibling;
3483
3484 WARN_ON_ONCE(ctx->parent_ctx);
3485 mutex_lock(&ctx->mutex);
3486 event = event->group_leader;
3487
3488 perf_event_for_each_child(event, func);
3489 list_for_each_entry(sibling, &event->sibling_list, group_entry)
3490 perf_event_for_each_child(sibling, func);
3491 mutex_unlock(&ctx->mutex);
3492 }
3493
3494 static int perf_event_period(struct perf_event *event, u64 __user *arg)
3495 {
3496 struct perf_event_context *ctx = event->ctx;
3497 int ret = 0;
3498 u64 value;
3499
3500 if (!is_sampling_event(event))
3501 return -EINVAL;
3502
3503 if (copy_from_user(&value, arg, sizeof(value)))
3504 return -EFAULT;
3505
3506 if (!value)
3507 return -EINVAL;
3508
3509 raw_spin_lock_irq(&ctx->lock);
3510 if (event->attr.freq) {
3511 if (value > sysctl_perf_event_sample_rate) {
3512 ret = -EINVAL;
3513 goto unlock;
3514 }
3515
3516 event->attr.sample_freq = value;
3517 } else {
3518 event->attr.sample_period = value;
3519 event->hw.sample_period = value;
3520 }
3521 unlock:
3522 raw_spin_unlock_irq(&ctx->lock);
3523
3524 return ret;
3525 }
3526
3527 static const struct file_operations perf_fops;
3528
3529 static inline int perf_fget_light(int fd, struct fd *p)
3530 {
3531 struct fd f = fdget(fd);
3532 if (!f.file)
3533 return -EBADF;
3534
3535 if (f.file->f_op != &perf_fops) {
3536 fdput(f);
3537 return -EBADF;
3538 }
3539 *p = f;
3540 return 0;
3541 }
3542
3543 static int perf_event_set_output(struct perf_event *event,
3544 struct perf_event *output_event);
3545 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3546
3547 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3548 {
3549 struct perf_event *event = file->private_data;
3550 void (*func)(struct perf_event *);
3551 u32 flags = arg;
3552
3553 switch (cmd) {
3554 case PERF_EVENT_IOC_ENABLE:
3555 func = perf_event_enable;
3556 break;
3557 case PERF_EVENT_IOC_DISABLE:
3558 func = perf_event_disable;
3559 break;
3560 case PERF_EVENT_IOC_RESET:
3561 func = perf_event_reset;
3562 break;
3563
3564 case PERF_EVENT_IOC_REFRESH:
3565 return perf_event_refresh(event, arg);
3566
3567 case PERF_EVENT_IOC_PERIOD:
3568 return perf_event_period(event, (u64 __user *)arg);
3569
3570 case PERF_EVENT_IOC_ID:
3571 {
3572 u64 id = primary_event_id(event);
3573
3574 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
3575 return -EFAULT;
3576 return 0;
3577 }
3578
3579 case PERF_EVENT_IOC_SET_OUTPUT:
3580 {
3581 int ret;
3582 if (arg != -1) {
3583 struct perf_event *output_event;
3584 struct fd output;
3585 ret = perf_fget_light(arg, &output);
3586 if (ret)
3587 return ret;
3588 output_event = output.file->private_data;
3589 ret = perf_event_set_output(event, output_event);
3590 fdput(output);
3591 } else {
3592 ret = perf_event_set_output(event, NULL);
3593 }
3594 return ret;
3595 }
3596
3597 case PERF_EVENT_IOC_SET_FILTER:
3598 return perf_event_set_filter(event, (void __user *)arg);
3599
3600 default:
3601 return -ENOTTY;
3602 }
3603
3604 if (flags & PERF_IOC_FLAG_GROUP)
3605 perf_event_for_each(event, func);
3606 else
3607 perf_event_for_each_child(event, func);
3608
3609 return 0;
3610 }
3611
3612 int perf_event_task_enable(void)
3613 {
3614 struct perf_event *event;
3615
3616 mutex_lock(&current->perf_event_mutex);
3617 list_for_each_entry(event, &current->perf_event_list, owner_entry)
3618 perf_event_for_each_child(event, perf_event_enable);
3619 mutex_unlock(&current->perf_event_mutex);
3620
3621 return 0;
3622 }
3623
3624 int perf_event_task_disable(void)
3625 {
3626 struct perf_event *event;
3627
3628 mutex_lock(&current->perf_event_mutex);
3629 list_for_each_entry(event, &current->perf_event_list, owner_entry)
3630 perf_event_for_each_child(event, perf_event_disable);
3631 mutex_unlock(&current->perf_event_mutex);
3632
3633 return 0;
3634 }
3635
3636 static int perf_event_index(struct perf_event *event)
3637 {
3638 if (event->hw.state & PERF_HES_STOPPED)
3639 return 0;
3640
3641 if (event->state != PERF_EVENT_STATE_ACTIVE)
3642 return 0;
3643
3644 return event->pmu->event_idx(event);
3645 }
3646
3647 static void calc_timer_values(struct perf_event *event,
3648 u64 *now,
3649 u64 *enabled,
3650 u64 *running)
3651 {
3652 u64 ctx_time;
3653
3654 *now = perf_clock();
3655 ctx_time = event->shadow_ctx_time + *now;
3656 *enabled = ctx_time - event->tstamp_enabled;
3657 *running = ctx_time - event->tstamp_running;
3658 }
3659
3660 void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
3661 {
3662 }
3663
3664 /*
3665 * Callers need to ensure there can be no nesting of this function, otherwise
3666 * the seqlock logic goes bad. We can not serialize this because the arch
3667 * code calls this from NMI context.
3668 */
3669 void perf_event_update_userpage(struct perf_event *event)
3670 {
3671 struct perf_event_mmap_page *userpg;
3672 struct ring_buffer *rb;
3673 u64 enabled, running, now;
3674
3675 rcu_read_lock();
3676 rb = rcu_dereference(event->rb);
3677 if (!rb)
3678 goto unlock;
3679
3680 /*
3681 * compute total_time_enabled, total_time_running
3682 * based on snapshot values taken when the event
3683 * was last scheduled in.
3684 *
3685 * we cannot simply called update_context_time()
3686 * because of locking issue as we can be called in
3687 * NMI context
3688 */
3689 calc_timer_values(event, &now, &enabled, &running);
3690
3691 userpg = rb->user_page;
3692 /*
3693 * Disable preemption so as to not let the corresponding user-space
3694 * spin too long if we get preempted.
3695 */
3696 preempt_disable();
3697 ++userpg->lock;
3698 barrier();
3699 userpg->index = perf_event_index(event);
3700 userpg->offset = perf_event_count(event);
3701 if (userpg->index)
3702 userpg->offset -= local64_read(&event->hw.prev_count);
3703
3704 userpg->time_enabled = enabled +
3705 atomic64_read(&event->child_total_time_enabled);
3706
3707 userpg->time_running = running +
3708 atomic64_read(&event->child_total_time_running);
3709
3710 arch_perf_update_userpage(userpg, now);
3711
3712 barrier();
3713 ++userpg->lock;
3714 preempt_enable();
3715 unlock:
3716 rcu_read_unlock();
3717 }
3718
3719 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
3720 {
3721 struct perf_event *event = vma->vm_file->private_data;
3722 struct ring_buffer *rb;
3723 int ret = VM_FAULT_SIGBUS;
3724
3725 if (vmf->flags & FAULT_FLAG_MKWRITE) {
3726 if (vmf->pgoff == 0)
3727 ret = 0;
3728 return ret;
3729 }
3730
3731 rcu_read_lock();
3732 rb = rcu_dereference(event->rb);
3733 if (!rb)
3734 goto unlock;
3735
3736 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
3737 goto unlock;
3738
3739 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
3740 if (!vmf->page)
3741 goto unlock;
3742
3743 get_page(vmf->page);
3744 vmf->page->mapping = vma->vm_file->f_mapping;
3745 vmf->page->index = vmf->pgoff;
3746
3747 ret = 0;
3748 unlock:
3749 rcu_read_unlock();
3750
3751 return ret;
3752 }
3753
3754 static void ring_buffer_attach(struct perf_event *event,
3755 struct ring_buffer *rb)
3756 {
3757 unsigned long flags;
3758
3759 if (!list_empty(&event->rb_entry))
3760 return;
3761
3762 spin_lock_irqsave(&rb->event_lock, flags);
3763 if (list_empty(&event->rb_entry))
3764 list_add(&event->rb_entry, &rb->event_list);
3765 spin_unlock_irqrestore(&rb->event_lock, flags);
3766 }
3767
3768 static void ring_buffer_detach(struct perf_event *event, struct ring_buffer *rb)
3769 {
3770 unsigned long flags;
3771
3772 if (list_empty(&event->rb_entry))
3773 return;
3774
3775 spin_lock_irqsave(&rb->event_lock, flags);
3776 list_del_init(&event->rb_entry);
3777 wake_up_all(&event->waitq);
3778 spin_unlock_irqrestore(&rb->event_lock, flags);
3779 }
3780
3781 static void ring_buffer_wakeup(struct perf_event *event)
3782 {
3783 struct ring_buffer *rb;
3784
3785 rcu_read_lock();
3786 rb = rcu_dereference(event->rb);
3787 if (rb) {
3788 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
3789 wake_up_all(&event->waitq);
3790 }
3791 rcu_read_unlock();
3792 }
3793
3794 static void rb_free_rcu(struct rcu_head *rcu_head)
3795 {
3796 struct ring_buffer *rb;
3797
3798 rb = container_of(rcu_head, struct ring_buffer, rcu_head);
3799 rb_free(rb);
3800 }
3801
3802 static struct ring_buffer *ring_buffer_get(struct perf_event *event)
3803 {
3804 struct ring_buffer *rb;
3805
3806 rcu_read_lock();
3807 rb = rcu_dereference(event->rb);
3808 if (rb) {
3809 if (!atomic_inc_not_zero(&rb->refcount))
3810 rb = NULL;
3811 }
3812 rcu_read_unlock();
3813
3814 return rb;
3815 }
3816
3817 static void ring_buffer_put(struct ring_buffer *rb)
3818 {
3819 if (!atomic_dec_and_test(&rb->refcount))
3820 return;
3821
3822 WARN_ON_ONCE(!list_empty(&rb->event_list));
3823
3824 call_rcu(&rb->rcu_head, rb_free_rcu);
3825 }
3826
3827 static void perf_mmap_open(struct vm_area_struct *vma)
3828 {
3829 struct perf_event *event = vma->vm_file->private_data;
3830
3831 atomic_inc(&event->mmap_count);
3832 atomic_inc(&event->rb->mmap_count);
3833 }
3834
3835 /*
3836 * A buffer can be mmap()ed multiple times; either directly through the same
3837 * event, or through other events by use of perf_event_set_output().
3838 *
3839 * In order to undo the VM accounting done by perf_mmap() we need to destroy
3840 * the buffer here, where we still have a VM context. This means we need
3841 * to detach all events redirecting to us.
3842 */
3843 static void perf_mmap_close(struct vm_area_struct *vma)
3844 {
3845 struct perf_event *event = vma->vm_file->private_data;
3846
3847 struct ring_buffer *rb = event->rb;
3848 struct user_struct *mmap_user = rb->mmap_user;
3849 int mmap_locked = rb->mmap_locked;
3850 unsigned long size = perf_data_size(rb);
3851
3852 atomic_dec(&rb->mmap_count);
3853
3854 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
3855 return;
3856
3857 /* Detach current event from the buffer. */
3858 rcu_assign_pointer(event->rb, NULL);
3859 ring_buffer_detach(event, rb);
3860 mutex_unlock(&event->mmap_mutex);
3861
3862 /* If there's still other mmap()s of this buffer, we're done. */
3863 if (atomic_read(&rb->mmap_count)) {
3864 ring_buffer_put(rb); /* can't be last */
3865 return;
3866 }
3867
3868 /*
3869 * No other mmap()s, detach from all other events that might redirect
3870 * into the now unreachable buffer. Somewhat complicated by the
3871 * fact that rb::event_lock otherwise nests inside mmap_mutex.
3872 */
3873 again:
3874 rcu_read_lock();
3875 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
3876 if (!atomic_long_inc_not_zero(&event->refcount)) {
3877 /*
3878 * This event is en-route to free_event() which will
3879 * detach it and remove it from the list.
3880 */
3881 continue;
3882 }
3883 rcu_read_unlock();
3884
3885 mutex_lock(&event->mmap_mutex);
3886 /*
3887 * Check we didn't race with perf_event_set_output() which can
3888 * swizzle the rb from under us while we were waiting to
3889 * acquire mmap_mutex.
3890 *
3891 * If we find a different rb; ignore this event, a next
3892 * iteration will no longer find it on the list. We have to
3893 * still restart the iteration to make sure we're not now
3894 * iterating the wrong list.
3895 */
3896 if (event->rb == rb) {
3897 rcu_assign_pointer(event->rb, NULL);
3898 ring_buffer_detach(event, rb);
3899 ring_buffer_put(rb); /* can't be last, we still have one */
3900 }
3901 mutex_unlock(&event->mmap_mutex);
3902 put_event(event);
3903
3904 /*
3905 * Restart the iteration; either we're on the wrong list or
3906 * destroyed its integrity by doing a deletion.
3907 */
3908 goto again;
3909 }
3910 rcu_read_unlock();
3911
3912 /*
3913 * It could be there's still a few 0-ref events on the list; they'll
3914 * get cleaned up by free_event() -- they'll also still have their
3915 * ref on the rb and will free it whenever they are done with it.
3916 *
3917 * Aside from that, this buffer is 'fully' detached and unmapped,
3918 * undo the VM accounting.
3919 */
3920
3921 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
3922 vma->vm_mm->pinned_vm -= mmap_locked;
3923 free_uid(mmap_user);
3924
3925 ring_buffer_put(rb); /* could be last */
3926 }
3927
3928 static const struct vm_operations_struct perf_mmap_vmops = {
3929 .open = perf_mmap_open,
3930 .close = perf_mmap_close,
3931 .fault = perf_mmap_fault,
3932 .page_mkwrite = perf_mmap_fault,
3933 };
3934
3935 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
3936 {
3937 struct perf_event *event = file->private_data;
3938 unsigned long user_locked, user_lock_limit;
3939 struct user_struct *user = current_user();
3940 unsigned long locked, lock_limit;
3941 struct ring_buffer *rb;
3942 unsigned long vma_size;
3943 unsigned long nr_pages;
3944 long user_extra, extra;
3945 int ret = 0, flags = 0;
3946
3947 /*
3948 * Don't allow mmap() of inherited per-task counters. This would
3949 * create a performance issue due to all children writing to the
3950 * same rb.
3951 */
3952 if (event->cpu == -1 && event->attr.inherit)
3953 return -EINVAL;
3954
3955 if (!(vma->vm_flags & VM_SHARED))
3956 return -EINVAL;
3957
3958 vma_size = vma->vm_end - vma->vm_start;
3959 nr_pages = (vma_size / PAGE_SIZE) - 1;
3960
3961 /*
3962 * If we have rb pages ensure they're a power-of-two number, so we
3963 * can do bitmasks instead of modulo.
3964 */
3965 if (nr_pages != 0 && !is_power_of_2(nr_pages))
3966 return -EINVAL;
3967
3968 if (vma_size != PAGE_SIZE * (1 + nr_pages))
3969 return -EINVAL;
3970
3971 if (vma->vm_pgoff != 0)
3972 return -EINVAL;
3973
3974 WARN_ON_ONCE(event->ctx->parent_ctx);
3975 again:
3976 mutex_lock(&event->mmap_mutex);
3977 if (event->rb) {
3978 if (event->rb->nr_pages != nr_pages) {
3979 ret = -EINVAL;
3980 goto unlock;
3981 }
3982
3983 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
3984 /*
3985 * Raced against perf_mmap_close() through
3986 * perf_event_set_output(). Try again, hope for better
3987 * luck.
3988 */
3989 mutex_unlock(&event->mmap_mutex);
3990 goto again;
3991 }
3992
3993 goto unlock;
3994 }
3995
3996 user_extra = nr_pages + 1;
3997 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
3998
3999 /*
4000 * Increase the limit linearly with more CPUs:
4001 */
4002 user_lock_limit *= num_online_cpus();
4003
4004 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
4005
4006 extra = 0;
4007 if (user_locked > user_lock_limit)
4008 extra = user_locked - user_lock_limit;
4009
4010 lock_limit = rlimit(RLIMIT_MEMLOCK);
4011 lock_limit >>= PAGE_SHIFT;
4012 locked = vma->vm_mm->pinned_vm + extra;
4013
4014 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
4015 !capable(CAP_IPC_LOCK)) {
4016 ret = -EPERM;
4017 goto unlock;
4018 }
4019
4020 WARN_ON(event->rb);
4021
4022 if (vma->vm_flags & VM_WRITE)
4023 flags |= RING_BUFFER_WRITABLE;
4024
4025 rb = rb_alloc(nr_pages,
4026 event->attr.watermark ? event->attr.wakeup_watermark : 0,
4027 event->cpu, flags);
4028
4029 if (!rb) {
4030 ret = -ENOMEM;
4031 goto unlock;
4032 }
4033
4034 atomic_set(&rb->mmap_count, 1);
4035 rb->mmap_locked = extra;
4036 rb->mmap_user = get_current_user();
4037
4038 atomic_long_add(user_extra, &user->locked_vm);
4039 vma->vm_mm->pinned_vm += extra;
4040
4041 ring_buffer_attach(event, rb);
4042 rcu_assign_pointer(event->rb, rb);
4043
4044 perf_event_update_userpage(event);
4045
4046 unlock:
4047 if (!ret)
4048 atomic_inc(&event->mmap_count);
4049 mutex_unlock(&event->mmap_mutex);
4050
4051 /*
4052 * Since pinned accounting is per vm we cannot allow fork() to copy our
4053 * vma.
4054 */
4055 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
4056 vma->vm_ops = &perf_mmap_vmops;
4057
4058 return ret;
4059 }
4060
4061 static int perf_fasync(int fd, struct file *filp, int on)
4062 {
4063 struct inode *inode = file_inode(filp);
4064 struct perf_event *event = filp->private_data;
4065 int retval;
4066
4067 mutex_lock(&inode->i_mutex);
4068 retval = fasync_helper(fd, filp, on, &event->fasync);
4069 mutex_unlock(&inode->i_mutex);
4070
4071 if (retval < 0)
4072 return retval;
4073
4074 return 0;
4075 }
4076
4077 static const struct file_operations perf_fops = {
4078 .llseek = no_llseek,
4079 .release = perf_release,
4080 .read = perf_read,
4081 .poll = perf_poll,
4082 .unlocked_ioctl = perf_ioctl,
4083 .compat_ioctl = perf_ioctl,
4084 .mmap = perf_mmap,
4085 .fasync = perf_fasync,
4086 };
4087
4088 /*
4089 * Perf event wakeup
4090 *
4091 * If there's data, ensure we set the poll() state and publish everything
4092 * to user-space before waking everybody up.
4093 */
4094
4095 void perf_event_wakeup(struct perf_event *event)
4096 {
4097 ring_buffer_wakeup(event);
4098
4099 if (event->pending_kill) {
4100 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
4101 event->pending_kill = 0;
4102 }
4103 }
4104
4105 static void perf_pending_event(struct irq_work *entry)
4106 {
4107 struct perf_event *event = container_of(entry,
4108 struct perf_event, pending);
4109
4110 if (event->pending_disable) {
4111 event->pending_disable = 0;
4112 __perf_event_disable(event);
4113 }
4114
4115 if (event->pending_wakeup) {
4116 event->pending_wakeup = 0;
4117 perf_event_wakeup(event);
4118 }
4119 }
4120
4121 /*
4122 * We assume there is only KVM supporting the callbacks.
4123 * Later on, we might change it to a list if there is
4124 * another virtualization implementation supporting the callbacks.
4125 */
4126 struct perf_guest_info_callbacks *perf_guest_cbs;
4127
4128 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4129 {
4130 perf_guest_cbs = cbs;
4131 return 0;
4132 }
4133 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
4134
4135 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4136 {
4137 perf_guest_cbs = NULL;
4138 return 0;
4139 }
4140 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
4141
4142 static void
4143 perf_output_sample_regs(struct perf_output_handle *handle,
4144 struct pt_regs *regs, u64 mask)
4145 {
4146 int bit;
4147
4148 for_each_set_bit(bit, (const unsigned long *) &mask,
4149 sizeof(mask) * BITS_PER_BYTE) {
4150 u64 val;
4151
4152 val = perf_reg_value(regs, bit);
4153 perf_output_put(handle, val);
4154 }
4155 }
4156
4157 static void perf_sample_regs_user(struct perf_regs_user *regs_user,
4158 struct pt_regs *regs)
4159 {
4160 if (!user_mode(regs)) {
4161 if (current->mm)
4162 regs = task_pt_regs(current);
4163 else
4164 regs = NULL;
4165 }
4166
4167 if (regs) {
4168 regs_user->regs = regs;
4169 regs_user->abi = perf_reg_abi(current);
4170 }
4171 }
4172
4173 /*
4174 * Get remaining task size from user stack pointer.
4175 *
4176 * It'd be better to take stack vma map and limit this more
4177 * precisly, but there's no way to get it safely under interrupt,
4178 * so using TASK_SIZE as limit.
4179 */
4180 static u64 perf_ustack_task_size(struct pt_regs *regs)
4181 {
4182 unsigned long addr = perf_user_stack_pointer(regs);
4183
4184 if (!addr || addr >= TASK_SIZE)
4185 return 0;
4186
4187 return TASK_SIZE - addr;
4188 }
4189
4190 static u16
4191 perf_sample_ustack_size(u16 stack_size, u16 header_size,
4192 struct pt_regs *regs)
4193 {
4194 u64 task_size;
4195
4196 /* No regs, no stack pointer, no dump. */
4197 if (!regs)
4198 return 0;
4199
4200 /*
4201 * Check if we fit in with the requested stack size into the:
4202 * - TASK_SIZE
4203 * If we don't, we limit the size to the TASK_SIZE.
4204 *
4205 * - remaining sample size
4206 * If we don't, we customize the stack size to
4207 * fit in to the remaining sample size.
4208 */
4209
4210 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
4211 stack_size = min(stack_size, (u16) task_size);
4212
4213 /* Current header size plus static size and dynamic size. */
4214 header_size += 2 * sizeof(u64);
4215
4216 /* Do we fit in with the current stack dump size? */
4217 if ((u16) (header_size + stack_size) < header_size) {
4218 /*
4219 * If we overflow the maximum size for the sample,
4220 * we customize the stack dump size to fit in.
4221 */
4222 stack_size = USHRT_MAX - header_size - sizeof(u64);
4223 stack_size = round_up(stack_size, sizeof(u64));
4224 }
4225
4226 return stack_size;
4227 }
4228
4229 static void
4230 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
4231 struct pt_regs *regs)
4232 {
4233 /* Case of a kernel thread, nothing to dump */
4234 if (!regs) {
4235 u64 size = 0;
4236 perf_output_put(handle, size);
4237 } else {
4238 unsigned long sp;
4239 unsigned int rem;
4240 u64 dyn_size;
4241
4242 /*
4243 * We dump:
4244 * static size
4245 * - the size requested by user or the best one we can fit
4246 * in to the sample max size
4247 * data
4248 * - user stack dump data
4249 * dynamic size
4250 * - the actual dumped size
4251 */
4252
4253 /* Static size. */
4254 perf_output_put(handle, dump_size);
4255
4256 /* Data. */
4257 sp = perf_user_stack_pointer(regs);
4258 rem = __output_copy_user(handle, (void *) sp, dump_size);
4259 dyn_size = dump_size - rem;
4260
4261 perf_output_skip(handle, rem);
4262
4263 /* Dynamic size. */
4264 perf_output_put(handle, dyn_size);
4265 }
4266 }
4267
4268 static void __perf_event_header__init_id(struct perf_event_header *header,
4269 struct perf_sample_data *data,
4270 struct perf_event *event)
4271 {
4272 u64 sample_type = event->attr.sample_type;
4273
4274 data->type = sample_type;
4275 header->size += event->id_header_size;
4276
4277 if (sample_type & PERF_SAMPLE_TID) {
4278 /* namespace issues */
4279 data->tid_entry.pid = perf_event_pid(event, current);
4280 data->tid_entry.tid = perf_event_tid(event, current);
4281 }
4282
4283 if (sample_type & PERF_SAMPLE_TIME)
4284 data->time = perf_clock();
4285
4286 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
4287 data->id = primary_event_id(event);
4288
4289 if (sample_type & PERF_SAMPLE_STREAM_ID)
4290 data->stream_id = event->id;
4291
4292 if (sample_type & PERF_SAMPLE_CPU) {
4293 data->cpu_entry.cpu = raw_smp_processor_id();
4294 data->cpu_entry.reserved = 0;
4295 }
4296 }
4297
4298 void perf_event_header__init_id(struct perf_event_header *header,
4299 struct perf_sample_data *data,
4300 struct perf_event *event)
4301 {
4302 if (event->attr.sample_id_all)
4303 __perf_event_header__init_id(header, data, event);
4304 }
4305
4306 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
4307 struct perf_sample_data *data)
4308 {
4309 u64 sample_type = data->type;
4310
4311 if (sample_type & PERF_SAMPLE_TID)
4312 perf_output_put(handle, data->tid_entry);
4313
4314 if (sample_type & PERF_SAMPLE_TIME)
4315 perf_output_put(handle, data->time);
4316
4317 if (sample_type & PERF_SAMPLE_ID)
4318 perf_output_put(handle, data->id);
4319
4320 if (sample_type & PERF_SAMPLE_STREAM_ID)
4321 perf_output_put(handle, data->stream_id);
4322
4323 if (sample_type & PERF_SAMPLE_CPU)
4324 perf_output_put(handle, data->cpu_entry);
4325
4326 if (sample_type & PERF_SAMPLE_IDENTIFIER)
4327 perf_output_put(handle, data->id);
4328 }
4329
4330 void perf_event__output_id_sample(struct perf_event *event,
4331 struct perf_output_handle *handle,
4332 struct perf_sample_data *sample)
4333 {
4334 if (event->attr.sample_id_all)
4335 __perf_event__output_id_sample(handle, sample);
4336 }
4337
4338 static void perf_output_read_one(struct perf_output_handle *handle,
4339 struct perf_event *event,
4340 u64 enabled, u64 running)
4341 {
4342 u64 read_format = event->attr.read_format;
4343 u64 values[4];
4344 int n = 0;
4345
4346 values[n++] = perf_event_count(event);
4347 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4348 values[n++] = enabled +
4349 atomic64_read(&event->child_total_time_enabled);
4350 }
4351 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4352 values[n++] = running +
4353 atomic64_read(&event->child_total_time_running);
4354 }
4355 if (read_format & PERF_FORMAT_ID)
4356 values[n++] = primary_event_id(event);
4357
4358 __output_copy(handle, values, n * sizeof(u64));
4359 }
4360
4361 /*
4362 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
4363 */
4364 static void perf_output_read_group(struct perf_output_handle *handle,
4365 struct perf_event *event,
4366 u64 enabled, u64 running)
4367 {
4368 struct perf_event *leader = event->group_leader, *sub;
4369 u64 read_format = event->attr.read_format;
4370 u64 values[5];
4371 int n = 0;
4372
4373 values[n++] = 1 + leader->nr_siblings;
4374
4375 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4376 values[n++] = enabled;
4377
4378 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4379 values[n++] = running;
4380
4381 if (leader != event)
4382 leader->pmu->read(leader);
4383
4384 values[n++] = perf_event_count(leader);
4385 if (read_format & PERF_FORMAT_ID)
4386 values[n++] = primary_event_id(leader);
4387
4388 __output_copy(handle, values, n * sizeof(u64));
4389
4390 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4391 n = 0;
4392
4393 if ((sub != event) &&
4394 (sub->state == PERF_EVENT_STATE_ACTIVE))
4395 sub->pmu->read(sub);
4396
4397 values[n++] = perf_event_count(sub);
4398 if (read_format & PERF_FORMAT_ID)
4399 values[n++] = primary_event_id(sub);
4400
4401 __output_copy(handle, values, n * sizeof(u64));
4402 }
4403 }
4404
4405 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
4406 PERF_FORMAT_TOTAL_TIME_RUNNING)
4407
4408 static void perf_output_read(struct perf_output_handle *handle,
4409 struct perf_event *event)
4410 {
4411 u64 enabled = 0, running = 0, now;
4412 u64 read_format = event->attr.read_format;
4413
4414 /*
4415 * compute total_time_enabled, total_time_running
4416 * based on snapshot values taken when the event
4417 * was last scheduled in.
4418 *
4419 * we cannot simply called update_context_time()
4420 * because of locking issue as we are called in
4421 * NMI context
4422 */
4423 if (read_format & PERF_FORMAT_TOTAL_TIMES)
4424 calc_timer_values(event, &now, &enabled, &running);
4425
4426 if (event->attr.read_format & PERF_FORMAT_GROUP)
4427 perf_output_read_group(handle, event, enabled, running);
4428 else
4429 perf_output_read_one(handle, event, enabled, running);
4430 }
4431
4432 void perf_output_sample(struct perf_output_handle *handle,
4433 struct perf_event_header *header,
4434 struct perf_sample_data *data,
4435 struct perf_event *event)
4436 {
4437 u64 sample_type = data->type;
4438
4439 perf_output_put(handle, *header);
4440
4441 if (sample_type & PERF_SAMPLE_IDENTIFIER)
4442 perf_output_put(handle, data->id);
4443
4444 if (sample_type & PERF_SAMPLE_IP)
4445 perf_output_put(handle, data->ip);
4446
4447 if (sample_type & PERF_SAMPLE_TID)
4448 perf_output_put(handle, data->tid_entry);
4449
4450 if (sample_type & PERF_SAMPLE_TIME)
4451 perf_output_put(handle, data->time);
4452
4453 if (sample_type & PERF_SAMPLE_ADDR)
4454 perf_output_put(handle, data->addr);
4455
4456 if (sample_type & PERF_SAMPLE_ID)
4457 perf_output_put(handle, data->id);
4458
4459 if (sample_type & PERF_SAMPLE_STREAM_ID)
4460 perf_output_put(handle, data->stream_id);
4461
4462 if (sample_type & PERF_SAMPLE_CPU)
4463 perf_output_put(handle, data->cpu_entry);
4464
4465 if (sample_type & PERF_SAMPLE_PERIOD)
4466 perf_output_put(handle, data->period);
4467
4468 if (sample_type & PERF_SAMPLE_READ)
4469 perf_output_read(handle, event);
4470
4471 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4472 if (data->callchain) {
4473 int size = 1;
4474
4475 if (data->callchain)
4476 size += data->callchain->nr;
4477
4478 size *= sizeof(u64);
4479
4480 __output_copy(handle, data->callchain, size);
4481 } else {
4482 u64 nr = 0;
4483 perf_output_put(handle, nr);
4484 }
4485 }
4486
4487 if (sample_type & PERF_SAMPLE_RAW) {
4488 if (data->raw) {
4489 perf_output_put(handle, data->raw->size);
4490 __output_copy(handle, data->raw->data,
4491 data->raw->size);
4492 } else {
4493 struct {
4494 u32 size;
4495 u32 data;
4496 } raw = {
4497 .size = sizeof(u32),
4498 .data = 0,
4499 };
4500 perf_output_put(handle, raw);
4501 }
4502 }
4503
4504 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4505 if (data->br_stack) {
4506 size_t size;
4507
4508 size = data->br_stack->nr
4509 * sizeof(struct perf_branch_entry);
4510
4511 perf_output_put(handle, data->br_stack->nr);
4512 perf_output_copy(handle, data->br_stack->entries, size);
4513 } else {
4514 /*
4515 * we always store at least the value of nr
4516 */
4517 u64 nr = 0;
4518 perf_output_put(handle, nr);
4519 }
4520 }
4521
4522 if (sample_type & PERF_SAMPLE_REGS_USER) {
4523 u64 abi = data->regs_user.abi;
4524
4525 /*
4526 * If there are no regs to dump, notice it through
4527 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
4528 */
4529 perf_output_put(handle, abi);
4530
4531 if (abi) {
4532 u64 mask = event->attr.sample_regs_user;
4533 perf_output_sample_regs(handle,
4534 data->regs_user.regs,
4535 mask);
4536 }
4537 }
4538
4539 if (sample_type & PERF_SAMPLE_STACK_USER) {
4540 perf_output_sample_ustack(handle,
4541 data->stack_user_size,
4542 data->regs_user.regs);
4543 }
4544
4545 if (sample_type & PERF_SAMPLE_WEIGHT)
4546 perf_output_put(handle, data->weight);
4547
4548 if (sample_type & PERF_SAMPLE_DATA_SRC)
4549 perf_output_put(handle, data->data_src.val);
4550
4551 if (!event->attr.watermark) {
4552 int wakeup_events = event->attr.wakeup_events;
4553
4554 if (wakeup_events) {
4555 struct ring_buffer *rb = handle->rb;
4556 int events = local_inc_return(&rb->events);
4557
4558 if (events >= wakeup_events) {
4559 local_sub(wakeup_events, &rb->events);
4560 local_inc(&rb->wakeup);
4561 }
4562 }
4563 }
4564 }
4565
4566 void perf_prepare_sample(struct perf_event_header *header,
4567 struct perf_sample_data *data,
4568 struct perf_event *event,
4569 struct pt_regs *regs)
4570 {
4571 u64 sample_type = event->attr.sample_type;
4572
4573 header->type = PERF_RECORD_SAMPLE;
4574 header->size = sizeof(*header) + event->header_size;
4575
4576 header->misc = 0;
4577 header->misc |= perf_misc_flags(regs);
4578
4579 __perf_event_header__init_id(header, data, event);
4580
4581 if (sample_type & PERF_SAMPLE_IP)
4582 data->ip = perf_instruction_pointer(regs);
4583
4584 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4585 int size = 1;
4586
4587 data->callchain = perf_callchain(event, regs);
4588
4589 if (data->callchain)
4590 size += data->callchain->nr;
4591
4592 header->size += size * sizeof(u64);
4593 }
4594
4595 if (sample_type & PERF_SAMPLE_RAW) {
4596 int size = sizeof(u32);
4597
4598 if (data->raw)
4599 size += data->raw->size;
4600 else
4601 size += sizeof(u32);
4602
4603 WARN_ON_ONCE(size & (sizeof(u64)-1));
4604 header->size += size;
4605 }
4606
4607 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4608 int size = sizeof(u64); /* nr */
4609 if (data->br_stack) {
4610 size += data->br_stack->nr
4611 * sizeof(struct perf_branch_entry);
4612 }
4613 header->size += size;
4614 }
4615
4616 if (sample_type & PERF_SAMPLE_REGS_USER) {
4617 /* regs dump ABI info */
4618 int size = sizeof(u64);
4619
4620 perf_sample_regs_user(&data->regs_user, regs);
4621
4622 if (data->regs_user.regs) {
4623 u64 mask = event->attr.sample_regs_user;
4624 size += hweight64(mask) * sizeof(u64);
4625 }
4626
4627 header->size += size;
4628 }
4629
4630 if (sample_type & PERF_SAMPLE_STACK_USER) {
4631 /*
4632 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
4633 * processed as the last one or have additional check added
4634 * in case new sample type is added, because we could eat
4635 * up the rest of the sample size.
4636 */
4637 struct perf_regs_user *uregs = &data->regs_user;
4638 u16 stack_size = event->attr.sample_stack_user;
4639 u16 size = sizeof(u64);
4640
4641 if (!uregs->abi)
4642 perf_sample_regs_user(uregs, regs);
4643
4644 stack_size = perf_sample_ustack_size(stack_size, header->size,
4645 uregs->regs);
4646
4647 /*
4648 * If there is something to dump, add space for the dump
4649 * itself and for the field that tells the dynamic size,
4650 * which is how many have been actually dumped.
4651 */
4652 if (stack_size)
4653 size += sizeof(u64) + stack_size;
4654
4655 data->stack_user_size = stack_size;
4656 header->size += size;
4657 }
4658 }
4659
4660 static void perf_event_output(struct perf_event *event,
4661 struct perf_sample_data *data,
4662 struct pt_regs *regs)
4663 {
4664 struct perf_output_handle handle;
4665 struct perf_event_header header;
4666
4667 /* protect the callchain buffers */
4668 rcu_read_lock();
4669
4670 perf_prepare_sample(&header, data, event, regs);
4671
4672 if (perf_output_begin(&handle, event, header.size))
4673 goto exit;
4674
4675 perf_output_sample(&handle, &header, data, event);
4676
4677 perf_output_end(&handle);
4678
4679 exit:
4680 rcu_read_unlock();
4681 }
4682
4683 /*
4684 * read event_id
4685 */
4686
4687 struct perf_read_event {
4688 struct perf_event_header header;
4689
4690 u32 pid;
4691 u32 tid;
4692 };
4693
4694 static void
4695 perf_event_read_event(struct perf_event *event,
4696 struct task_struct *task)
4697 {
4698 struct perf_output_handle handle;
4699 struct perf_sample_data sample;
4700 struct perf_read_event read_event = {
4701 .header = {
4702 .type = PERF_RECORD_READ,
4703 .misc = 0,
4704 .size = sizeof(read_event) + event->read_size,
4705 },
4706 .pid = perf_event_pid(event, task),
4707 .tid = perf_event_tid(event, task),
4708 };
4709 int ret;
4710
4711 perf_event_header__init_id(&read_event.header, &sample, event);
4712 ret = perf_output_begin(&handle, event, read_event.header.size);
4713 if (ret)
4714 return;
4715
4716 perf_output_put(&handle, read_event);
4717 perf_output_read(&handle, event);
4718 perf_event__output_id_sample(event, &handle, &sample);
4719
4720 perf_output_end(&handle);
4721 }
4722
4723 typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
4724
4725 static void
4726 perf_event_aux_ctx(struct perf_event_context *ctx,
4727 perf_event_aux_output_cb output,
4728 void *data)
4729 {
4730 struct perf_event *event;
4731
4732 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4733 if (event->state < PERF_EVENT_STATE_INACTIVE)
4734 continue;
4735 if (!event_filter_match(event))
4736 continue;
4737 output(event, data);
4738 }
4739 }
4740
4741 static void
4742 perf_event_aux(perf_event_aux_output_cb output, void *data,
4743 struct perf_event_context *task_ctx)
4744 {
4745 struct perf_cpu_context *cpuctx;
4746 struct perf_event_context *ctx;
4747 struct pmu *pmu;
4748 int ctxn;
4749
4750 rcu_read_lock();
4751 list_for_each_entry_rcu(pmu, &pmus, entry) {
4752 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4753 if (cpuctx->unique_pmu != pmu)
4754 goto next;
4755 perf_event_aux_ctx(&cpuctx->ctx, output, data);
4756 if (task_ctx)
4757 goto next;
4758 ctxn = pmu->task_ctx_nr;
4759 if (ctxn < 0)
4760 goto next;
4761 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4762 if (ctx)
4763 perf_event_aux_ctx(ctx, output, data);
4764 next:
4765 put_cpu_ptr(pmu->pmu_cpu_context);
4766 }
4767
4768 if (task_ctx) {
4769 preempt_disable();
4770 perf_event_aux_ctx(task_ctx, output, data);
4771 preempt_enable();
4772 }
4773 rcu_read_unlock();
4774 }
4775
4776 /*
4777 * task tracking -- fork/exit
4778 *
4779 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
4780 */
4781
4782 struct perf_task_event {
4783 struct task_struct *task;
4784 struct perf_event_context *task_ctx;
4785
4786 struct {
4787 struct perf_event_header header;
4788
4789 u32 pid;
4790 u32 ppid;
4791 u32 tid;
4792 u32 ptid;
4793 u64 time;
4794 } event_id;
4795 };
4796
4797 static int perf_event_task_match(struct perf_event *event)
4798 {
4799 return event->attr.comm || event->attr.mmap ||
4800 event->attr.mmap2 || event->attr.mmap_data ||
4801 event->attr.task;
4802 }
4803
4804 static void perf_event_task_output(struct perf_event *event,
4805 void *data)
4806 {
4807 struct perf_task_event *task_event = data;
4808 struct perf_output_handle handle;
4809 struct perf_sample_data sample;
4810 struct task_struct *task = task_event->task;
4811 int ret, size = task_event->event_id.header.size;
4812
4813 if (!perf_event_task_match(event))
4814 return;
4815
4816 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
4817
4818 ret = perf_output_begin(&handle, event,
4819 task_event->event_id.header.size);
4820 if (ret)
4821 goto out;
4822
4823 task_event->event_id.pid = perf_event_pid(event, task);
4824 task_event->event_id.ppid = perf_event_pid(event, current);
4825
4826 task_event->event_id.tid = perf_event_tid(event, task);
4827 task_event->event_id.ptid = perf_event_tid(event, current);
4828
4829 perf_output_put(&handle, task_event->event_id);
4830
4831 perf_event__output_id_sample(event, &handle, &sample);
4832
4833 perf_output_end(&handle);
4834 out:
4835 task_event->event_id.header.size = size;
4836 }
4837
4838 static void perf_event_task(struct task_struct *task,
4839 struct perf_event_context *task_ctx,
4840 int new)
4841 {
4842 struct perf_task_event task_event;
4843
4844 if (!atomic_read(&nr_comm_events) &&
4845 !atomic_read(&nr_mmap_events) &&
4846 !atomic_read(&nr_task_events))
4847 return;
4848
4849 task_event = (struct perf_task_event){
4850 .task = task,
4851 .task_ctx = task_ctx,
4852 .event_id = {
4853 .header = {
4854 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
4855 .misc = 0,
4856 .size = sizeof(task_event.event_id),
4857 },
4858 /* .pid */
4859 /* .ppid */
4860 /* .tid */
4861 /* .ptid */
4862 .time = perf_clock(),
4863 },
4864 };
4865
4866 perf_event_aux(perf_event_task_output,
4867 &task_event,
4868 task_ctx);
4869 }
4870
4871 void perf_event_fork(struct task_struct *task)
4872 {
4873 perf_event_task(task, NULL, 1);
4874 }
4875
4876 /*
4877 * comm tracking
4878 */
4879
4880 struct perf_comm_event {
4881 struct task_struct *task;
4882 char *comm;
4883 int comm_size;
4884
4885 struct {
4886 struct perf_event_header header;
4887
4888 u32 pid;
4889 u32 tid;
4890 } event_id;
4891 };
4892
4893 static int perf_event_comm_match(struct perf_event *event)
4894 {
4895 return event->attr.comm;
4896 }
4897
4898 static void perf_event_comm_output(struct perf_event *event,
4899 void *data)
4900 {
4901 struct perf_comm_event *comm_event = data;
4902 struct perf_output_handle handle;
4903 struct perf_sample_data sample;
4904 int size = comm_event->event_id.header.size;
4905 int ret;
4906
4907 if (!perf_event_comm_match(event))
4908 return;
4909
4910 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
4911 ret = perf_output_begin(&handle, event,
4912 comm_event->event_id.header.size);
4913
4914 if (ret)
4915 goto out;
4916
4917 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
4918 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
4919
4920 perf_output_put(&handle, comm_event->event_id);
4921 __output_copy(&handle, comm_event->comm,
4922 comm_event->comm_size);
4923
4924 perf_event__output_id_sample(event, &handle, &sample);
4925
4926 perf_output_end(&handle);
4927 out:
4928 comm_event->event_id.header.size = size;
4929 }
4930
4931 static void perf_event_comm_event(struct perf_comm_event *comm_event)
4932 {
4933 char comm[TASK_COMM_LEN];
4934 unsigned int size;
4935
4936 memset(comm, 0, sizeof(comm));
4937 strlcpy(comm, comm_event->task->comm, sizeof(comm));
4938 size = ALIGN(strlen(comm)+1, sizeof(u64));
4939
4940 comm_event->comm = comm;
4941 comm_event->comm_size = size;
4942
4943 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
4944
4945 perf_event_aux(perf_event_comm_output,
4946 comm_event,
4947 NULL);
4948 }
4949
4950 void perf_event_comm(struct task_struct *task)
4951 {
4952 struct perf_comm_event comm_event;
4953 struct perf_event_context *ctx;
4954 int ctxn;
4955
4956 rcu_read_lock();
4957 for_each_task_context_nr(ctxn) {
4958 ctx = task->perf_event_ctxp[ctxn];
4959 if (!ctx)
4960 continue;
4961
4962 perf_event_enable_on_exec(ctx);
4963 }
4964 rcu_read_unlock();
4965
4966 if (!atomic_read(&nr_comm_events))
4967 return;
4968
4969 comm_event = (struct perf_comm_event){
4970 .task = task,
4971 /* .comm */
4972 /* .comm_size */
4973 .event_id = {
4974 .header = {
4975 .type = PERF_RECORD_COMM,
4976 .misc = 0,
4977 /* .size */
4978 },
4979 /* .pid */
4980 /* .tid */
4981 },
4982 };
4983
4984 perf_event_comm_event(&comm_event);
4985 }
4986
4987 /*
4988 * mmap tracking
4989 */
4990
4991 struct perf_mmap_event {
4992 struct vm_area_struct *vma;
4993
4994 const char *file_name;
4995 int file_size;
4996 int maj, min;
4997 u64 ino;
4998 u64 ino_generation;
4999
5000 struct {
5001 struct perf_event_header header;
5002
5003 u32 pid;
5004 u32 tid;
5005 u64 start;
5006 u64 len;
5007 u64 pgoff;
5008 } event_id;
5009 };
5010
5011 static int perf_event_mmap_match(struct perf_event *event,
5012 void *data)
5013 {
5014 struct perf_mmap_event *mmap_event = data;
5015 struct vm_area_struct *vma = mmap_event->vma;
5016 int executable = vma->vm_flags & VM_EXEC;
5017
5018 return (!executable && event->attr.mmap_data) ||
5019 (executable && (event->attr.mmap || event->attr.mmap2));
5020 }
5021
5022 static void perf_event_mmap_output(struct perf_event *event,
5023 void *data)
5024 {
5025 struct perf_mmap_event *mmap_event = data;
5026 struct perf_output_handle handle;
5027 struct perf_sample_data sample;
5028 int size = mmap_event->event_id.header.size;
5029 int ret;
5030
5031 if (!perf_event_mmap_match(event, data))
5032 return;
5033
5034 if (event->attr.mmap2) {
5035 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
5036 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
5037 mmap_event->event_id.header.size += sizeof(mmap_event->min);
5038 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
5039 }
5040
5041 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
5042 ret = perf_output_begin(&handle, event,
5043 mmap_event->event_id.header.size);
5044 if (ret)
5045 goto out;
5046
5047 mmap_event->event_id.pid = perf_event_pid(event, current);
5048 mmap_event->event_id.tid = perf_event_tid(event, current);
5049
5050 perf_output_put(&handle, mmap_event->event_id);
5051
5052 if (event->attr.mmap2) {
5053 perf_output_put(&handle, mmap_event->maj);
5054 perf_output_put(&handle, mmap_event->min);
5055 perf_output_put(&handle, mmap_event->ino);
5056 perf_output_put(&handle, mmap_event->ino_generation);
5057 }
5058
5059 __output_copy(&handle, mmap_event->file_name,
5060 mmap_event->file_size);
5061
5062 perf_event__output_id_sample(event, &handle, &sample);
5063
5064 perf_output_end(&handle);
5065 out:
5066 mmap_event->event_id.header.size = size;
5067 }
5068
5069 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
5070 {
5071 struct vm_area_struct *vma = mmap_event->vma;
5072 struct file *file = vma->vm_file;
5073 int maj = 0, min = 0;
5074 u64 ino = 0, gen = 0;
5075 unsigned int size;
5076 char tmp[16];
5077 char *buf = NULL;
5078 const char *name;
5079
5080 memset(tmp, 0, sizeof(tmp));
5081
5082 if (file) {
5083 struct inode *inode;
5084 dev_t dev;
5085 /*
5086 * d_path works from the end of the rb backwards, so we
5087 * need to add enough zero bytes after the string to handle
5088 * the 64bit alignment we do later.
5089 */
5090 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
5091 if (!buf) {
5092 name = strncpy(tmp, "//enomem", sizeof(tmp));
5093 goto got_name;
5094 }
5095 name = d_path(&file->f_path, buf, PATH_MAX);
5096 if (IS_ERR(name)) {
5097 name = strncpy(tmp, "//toolong", sizeof(tmp));
5098 goto got_name;
5099 }
5100 inode = file_inode(vma->vm_file);
5101 dev = inode->i_sb->s_dev;
5102 ino = inode->i_ino;
5103 gen = inode->i_generation;
5104 maj = MAJOR(dev);
5105 min = MINOR(dev);
5106
5107 } else {
5108 if (arch_vma_name(mmap_event->vma)) {
5109 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
5110 sizeof(tmp) - 1);
5111 tmp[sizeof(tmp) - 1] = '\0';
5112 goto got_name;
5113 }
5114
5115 if (!vma->vm_mm) {
5116 name = strncpy(tmp, "[vdso]", sizeof(tmp));
5117 goto got_name;
5118 } else if (vma->vm_start <= vma->vm_mm->start_brk &&
5119 vma->vm_end >= vma->vm_mm->brk) {
5120 name = strncpy(tmp, "[heap]", sizeof(tmp));
5121 goto got_name;
5122 } else if (vma->vm_start <= vma->vm_mm->start_stack &&
5123 vma->vm_end >= vma->vm_mm->start_stack) {
5124 name = strncpy(tmp, "[stack]", sizeof(tmp));
5125 goto got_name;
5126 }
5127
5128 name = strncpy(tmp, "//anon", sizeof(tmp));
5129 goto got_name;
5130 }
5131
5132 got_name:
5133 size = ALIGN(strlen(name)+1, sizeof(u64));
5134
5135 mmap_event->file_name = name;
5136 mmap_event->file_size = size;
5137 mmap_event->maj = maj;
5138 mmap_event->min = min;
5139 mmap_event->ino = ino;
5140 mmap_event->ino_generation = gen;
5141
5142 if (!(vma->vm_flags & VM_EXEC))
5143 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
5144
5145 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
5146
5147 perf_event_aux(perf_event_mmap_output,
5148 mmap_event,
5149 NULL);
5150
5151 kfree(buf);
5152 }
5153
5154 void perf_event_mmap(struct vm_area_struct *vma)
5155 {
5156 struct perf_mmap_event mmap_event;
5157
5158 if (!atomic_read(&nr_mmap_events))
5159 return;
5160
5161 mmap_event = (struct perf_mmap_event){
5162 .vma = vma,
5163 /* .file_name */
5164 /* .file_size */
5165 .event_id = {
5166 .header = {
5167 .type = PERF_RECORD_MMAP,
5168 .misc = PERF_RECORD_MISC_USER,
5169 /* .size */
5170 },
5171 /* .pid */
5172 /* .tid */
5173 .start = vma->vm_start,
5174 .len = vma->vm_end - vma->vm_start,
5175 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
5176 },
5177 /* .maj (attr_mmap2 only) */
5178 /* .min (attr_mmap2 only) */
5179 /* .ino (attr_mmap2 only) */
5180 /* .ino_generation (attr_mmap2 only) */
5181 };
5182
5183 perf_event_mmap_event(&mmap_event);
5184 }
5185
5186 /*
5187 * IRQ throttle logging
5188 */
5189
5190 static void perf_log_throttle(struct perf_event *event, int enable)
5191 {
5192 struct perf_output_handle handle;
5193 struct perf_sample_data sample;
5194 int ret;
5195
5196 struct {
5197 struct perf_event_header header;
5198 u64 time;
5199 u64 id;
5200 u64 stream_id;
5201 } throttle_event = {
5202 .header = {
5203 .type = PERF_RECORD_THROTTLE,
5204 .misc = 0,
5205 .size = sizeof(throttle_event),
5206 },
5207 .time = perf_clock(),
5208 .id = primary_event_id(event),
5209 .stream_id = event->id,
5210 };
5211
5212 if (enable)
5213 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
5214
5215 perf_event_header__init_id(&throttle_event.header, &sample, event);
5216
5217 ret = perf_output_begin(&handle, event,
5218 throttle_event.header.size);
5219 if (ret)
5220 return;
5221
5222 perf_output_put(&handle, throttle_event);
5223 perf_event__output_id_sample(event, &handle, &sample);
5224 perf_output_end(&handle);
5225 }
5226
5227 /*
5228 * Generic event overflow handling, sampling.
5229 */
5230
5231 static int __perf_event_overflow(struct perf_event *event,
5232 int throttle, struct perf_sample_data *data,
5233 struct pt_regs *regs)
5234 {
5235 int events = atomic_read(&event->event_limit);
5236 struct hw_perf_event *hwc = &event->hw;
5237 u64 seq;
5238 int ret = 0;
5239
5240 /*
5241 * Non-sampling counters might still use the PMI to fold short
5242 * hardware counters, ignore those.
5243 */
5244 if (unlikely(!is_sampling_event(event)))
5245 return 0;
5246
5247 seq = __this_cpu_read(perf_throttled_seq);
5248 if (seq != hwc->interrupts_seq) {
5249 hwc->interrupts_seq = seq;
5250 hwc->interrupts = 1;
5251 } else {
5252 hwc->interrupts++;
5253 if (unlikely(throttle
5254 && hwc->interrupts >= max_samples_per_tick)) {
5255 __this_cpu_inc(perf_throttled_count);
5256 hwc->interrupts = MAX_INTERRUPTS;
5257 perf_log_throttle(event, 0);
5258 tick_nohz_full_kick();
5259 ret = 1;
5260 }
5261 }
5262
5263 if (event->attr.freq) {
5264 u64 now = perf_clock();
5265 s64 delta = now - hwc->freq_time_stamp;
5266
5267 hwc->freq_time_stamp = now;
5268
5269 if (delta > 0 && delta < 2*TICK_NSEC)
5270 perf_adjust_period(event, delta, hwc->last_period, true);
5271 }
5272
5273 /*
5274 * XXX event_limit might not quite work as expected on inherited
5275 * events
5276 */
5277
5278 event->pending_kill = POLL_IN;
5279 if (events && atomic_dec_and_test(&event->event_limit)) {
5280 ret = 1;
5281 event->pending_kill = POLL_HUP;
5282 event->pending_disable = 1;
5283 irq_work_queue(&event->pending);
5284 }
5285
5286 if (event->overflow_handler)
5287 event->overflow_handler(event, data, regs);
5288 else
5289 perf_event_output(event, data, regs);
5290
5291 if (event->fasync && event->pending_kill) {
5292 event->pending_wakeup = 1;
5293 irq_work_queue(&event->pending);
5294 }
5295
5296 return ret;
5297 }
5298
5299 int perf_event_overflow(struct perf_event *event,
5300 struct perf_sample_data *data,
5301 struct pt_regs *regs)
5302 {
5303 return __perf_event_overflow(event, 1, data, regs);
5304 }
5305
5306 /*
5307 * Generic software event infrastructure
5308 */
5309
5310 struct swevent_htable {
5311 struct swevent_hlist *swevent_hlist;
5312 struct mutex hlist_mutex;
5313 int hlist_refcount;
5314
5315 /* Recursion avoidance in each contexts */
5316 int recursion[PERF_NR_CONTEXTS];
5317 };
5318
5319 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
5320
5321 /*
5322 * We directly increment event->count and keep a second value in
5323 * event->hw.period_left to count intervals. This period event
5324 * is kept in the range [-sample_period, 0] so that we can use the
5325 * sign as trigger.
5326 */
5327
5328 u64 perf_swevent_set_period(struct perf_event *event)
5329 {
5330 struct hw_perf_event *hwc = &event->hw;
5331 u64 period = hwc->last_period;
5332 u64 nr, offset;
5333 s64 old, val;
5334
5335 hwc->last_period = hwc->sample_period;
5336
5337 again:
5338 old = val = local64_read(&hwc->period_left);
5339 if (val < 0)
5340 return 0;
5341
5342 nr = div64_u64(period + val, period);
5343 offset = nr * period;
5344 val -= offset;
5345 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
5346 goto again;
5347
5348 return nr;
5349 }
5350
5351 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
5352 struct perf_sample_data *data,
5353 struct pt_regs *regs)
5354 {
5355 struct hw_perf_event *hwc = &event->hw;
5356 int throttle = 0;
5357
5358 if (!overflow)
5359 overflow = perf_swevent_set_period(event);
5360
5361 if (hwc->interrupts == MAX_INTERRUPTS)
5362 return;
5363
5364 for (; overflow; overflow--) {
5365 if (__perf_event_overflow(event, throttle,
5366 data, regs)) {
5367 /*
5368 * We inhibit the overflow from happening when
5369 * hwc->interrupts == MAX_INTERRUPTS.
5370 */
5371 break;
5372 }
5373 throttle = 1;
5374 }
5375 }
5376
5377 static void perf_swevent_event(struct perf_event *event, u64 nr,
5378 struct perf_sample_data *data,
5379 struct pt_regs *regs)
5380 {
5381 struct hw_perf_event *hwc = &event->hw;
5382
5383 local64_add(nr, &event->count);
5384
5385 if (!regs)
5386 return;
5387
5388 if (!is_sampling_event(event))
5389 return;
5390
5391 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
5392 data->period = nr;
5393 return perf_swevent_overflow(event, 1, data, regs);
5394 } else
5395 data->period = event->hw.last_period;
5396
5397 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
5398 return perf_swevent_overflow(event, 1, data, regs);
5399
5400 if (local64_add_negative(nr, &hwc->period_left))
5401 return;
5402
5403 perf_swevent_overflow(event, 0, data, regs);
5404 }
5405
5406 static int perf_exclude_event(struct perf_event *event,
5407 struct pt_regs *regs)
5408 {
5409 if (event->hw.state & PERF_HES_STOPPED)
5410 return 1;
5411
5412 if (regs) {
5413 if (event->attr.exclude_user && user_mode(regs))
5414 return 1;
5415
5416 if (event->attr.exclude_kernel && !user_mode(regs))
5417 return 1;
5418 }
5419
5420 return 0;
5421 }
5422
5423 static int perf_swevent_match(struct perf_event *event,
5424 enum perf_type_id type,
5425 u32 event_id,
5426 struct perf_sample_data *data,
5427 struct pt_regs *regs)
5428 {
5429 if (event->attr.type != type)
5430 return 0;
5431
5432 if (event->attr.config != event_id)
5433 return 0;
5434
5435 if (perf_exclude_event(event, regs))
5436 return 0;
5437
5438 return 1;
5439 }
5440
5441 static inline u64 swevent_hash(u64 type, u32 event_id)
5442 {
5443 u64 val = event_id | (type << 32);
5444
5445 return hash_64(val, SWEVENT_HLIST_BITS);
5446 }
5447
5448 static inline struct hlist_head *
5449 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
5450 {
5451 u64 hash = swevent_hash(type, event_id);
5452
5453 return &hlist->heads[hash];
5454 }
5455
5456 /* For the read side: events when they trigger */
5457 static inline struct hlist_head *
5458 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
5459 {
5460 struct swevent_hlist *hlist;
5461
5462 hlist = rcu_dereference(swhash->swevent_hlist);
5463 if (!hlist)
5464 return NULL;
5465
5466 return __find_swevent_head(hlist, type, event_id);
5467 }
5468
5469 /* For the event head insertion and removal in the hlist */
5470 static inline struct hlist_head *
5471 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
5472 {
5473 struct swevent_hlist *hlist;
5474 u32 event_id = event->attr.config;
5475 u64 type = event->attr.type;
5476
5477 /*
5478 * Event scheduling is always serialized against hlist allocation
5479 * and release. Which makes the protected version suitable here.
5480 * The context lock guarantees that.
5481 */
5482 hlist = rcu_dereference_protected(swhash->swevent_hlist,
5483 lockdep_is_held(&event->ctx->lock));
5484 if (!hlist)
5485 return NULL;
5486
5487 return __find_swevent_head(hlist, type, event_id);
5488 }
5489
5490 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
5491 u64 nr,
5492 struct perf_sample_data *data,
5493 struct pt_regs *regs)
5494 {
5495 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5496 struct perf_event *event;
5497 struct hlist_head *head;
5498
5499 rcu_read_lock();
5500 head = find_swevent_head_rcu(swhash, type, event_id);
5501 if (!head)
5502 goto end;
5503
5504 hlist_for_each_entry_rcu(event, head, hlist_entry) {
5505 if (perf_swevent_match(event, type, event_id, data, regs))
5506 perf_swevent_event(event, nr, data, regs);
5507 }
5508 end:
5509 rcu_read_unlock();
5510 }
5511
5512 int perf_swevent_get_recursion_context(void)
5513 {
5514 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5515
5516 return get_recursion_context(swhash->recursion);
5517 }
5518 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
5519
5520 inline void perf_swevent_put_recursion_context(int rctx)
5521 {
5522 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5523
5524 put_recursion_context(swhash->recursion, rctx);
5525 }
5526
5527 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
5528 {
5529 struct perf_sample_data data;
5530 int rctx;
5531
5532 preempt_disable_notrace();
5533 rctx = perf_swevent_get_recursion_context();
5534 if (rctx < 0)
5535 return;
5536
5537 perf_sample_data_init(&data, addr, 0);
5538
5539 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
5540
5541 perf_swevent_put_recursion_context(rctx);
5542 preempt_enable_notrace();
5543 }
5544
5545 static void perf_swevent_read(struct perf_event *event)
5546 {
5547 }
5548
5549 static int perf_swevent_add(struct perf_event *event, int flags)
5550 {
5551 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5552 struct hw_perf_event *hwc = &event->hw;
5553 struct hlist_head *head;
5554
5555 if (is_sampling_event(event)) {
5556 hwc->last_period = hwc->sample_period;
5557 perf_swevent_set_period(event);
5558 }
5559
5560 hwc->state = !(flags & PERF_EF_START);
5561
5562 head = find_swevent_head(swhash, event);
5563 if (WARN_ON_ONCE(!head))
5564 return -EINVAL;
5565
5566 hlist_add_head_rcu(&event->hlist_entry, head);
5567
5568 return 0;
5569 }
5570
5571 static void perf_swevent_del(struct perf_event *event, int flags)
5572 {
5573 hlist_del_rcu(&event->hlist_entry);
5574 }
5575
5576 static void perf_swevent_start(struct perf_event *event, int flags)
5577 {
5578 event->hw.state = 0;
5579 }
5580
5581 static void perf_swevent_stop(struct perf_event *event, int flags)
5582 {
5583 event->hw.state = PERF_HES_STOPPED;
5584 }
5585
5586 /* Deref the hlist from the update side */
5587 static inline struct swevent_hlist *
5588 swevent_hlist_deref(struct swevent_htable *swhash)
5589 {
5590 return rcu_dereference_protected(swhash->swevent_hlist,
5591 lockdep_is_held(&swhash->hlist_mutex));
5592 }
5593
5594 static void swevent_hlist_release(struct swevent_htable *swhash)
5595 {
5596 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
5597
5598 if (!hlist)
5599 return;
5600
5601 rcu_assign_pointer(swhash->swevent_hlist, NULL);
5602 kfree_rcu(hlist, rcu_head);
5603 }
5604
5605 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
5606 {
5607 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5608
5609 mutex_lock(&swhash->hlist_mutex);
5610
5611 if (!--swhash->hlist_refcount)
5612 swevent_hlist_release(swhash);
5613
5614 mutex_unlock(&swhash->hlist_mutex);
5615 }
5616
5617 static void swevent_hlist_put(struct perf_event *event)
5618 {
5619 int cpu;
5620
5621 if (event->cpu != -1) {
5622 swevent_hlist_put_cpu(event, event->cpu);
5623 return;
5624 }
5625
5626 for_each_possible_cpu(cpu)
5627 swevent_hlist_put_cpu(event, cpu);
5628 }
5629
5630 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
5631 {
5632 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5633 int err = 0;
5634
5635 mutex_lock(&swhash->hlist_mutex);
5636
5637 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
5638 struct swevent_hlist *hlist;
5639
5640 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
5641 if (!hlist) {
5642 err = -ENOMEM;
5643 goto exit;
5644 }
5645 rcu_assign_pointer(swhash->swevent_hlist, hlist);
5646 }
5647 swhash->hlist_refcount++;
5648 exit:
5649 mutex_unlock(&swhash->hlist_mutex);
5650
5651 return err;
5652 }
5653
5654 static int swevent_hlist_get(struct perf_event *event)
5655 {
5656 int err;
5657 int cpu, failed_cpu;
5658
5659 if (event->cpu != -1)
5660 return swevent_hlist_get_cpu(event, event->cpu);
5661
5662 get_online_cpus();
5663 for_each_possible_cpu(cpu) {
5664 err = swevent_hlist_get_cpu(event, cpu);
5665 if (err) {
5666 failed_cpu = cpu;
5667 goto fail;
5668 }
5669 }
5670 put_online_cpus();
5671
5672 return 0;
5673 fail:
5674 for_each_possible_cpu(cpu) {
5675 if (cpu == failed_cpu)
5676 break;
5677 swevent_hlist_put_cpu(event, cpu);
5678 }
5679
5680 put_online_cpus();
5681 return err;
5682 }
5683
5684 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
5685
5686 static void sw_perf_event_destroy(struct perf_event *event)
5687 {
5688 u64 event_id = event->attr.config;
5689
5690 WARN_ON(event->parent);
5691
5692 static_key_slow_dec(&perf_swevent_enabled[event_id]);
5693 swevent_hlist_put(event);
5694 }
5695
5696 static int perf_swevent_init(struct perf_event *event)
5697 {
5698 u64 event_id = event->attr.config;
5699
5700 if (event->attr.type != PERF_TYPE_SOFTWARE)
5701 return -ENOENT;
5702
5703 /*
5704 * no branch sampling for software events
5705 */
5706 if (has_branch_stack(event))
5707 return -EOPNOTSUPP;
5708
5709 switch (event_id) {
5710 case PERF_COUNT_SW_CPU_CLOCK:
5711 case PERF_COUNT_SW_TASK_CLOCK:
5712 return -ENOENT;
5713
5714 default:
5715 break;
5716 }
5717
5718 if (event_id >= PERF_COUNT_SW_MAX)
5719 return -ENOENT;
5720
5721 if (!event->parent) {
5722 int err;
5723
5724 err = swevent_hlist_get(event);
5725 if (err)
5726 return err;
5727
5728 static_key_slow_inc(&perf_swevent_enabled[event_id]);
5729 event->destroy = sw_perf_event_destroy;
5730 }
5731
5732 return 0;
5733 }
5734
5735 static int perf_swevent_event_idx(struct perf_event *event)
5736 {
5737 return 0;
5738 }
5739
5740 static struct pmu perf_swevent = {
5741 .task_ctx_nr = perf_sw_context,
5742
5743 .event_init = perf_swevent_init,
5744 .add = perf_swevent_add,
5745 .del = perf_swevent_del,
5746 .start = perf_swevent_start,
5747 .stop = perf_swevent_stop,
5748 .read = perf_swevent_read,
5749
5750 .event_idx = perf_swevent_event_idx,
5751 };
5752
5753 #ifdef CONFIG_EVENT_TRACING
5754
5755 static int perf_tp_filter_match(struct perf_event *event,
5756 struct perf_sample_data *data)
5757 {
5758 void *record = data->raw->data;
5759
5760 if (likely(!event->filter) || filter_match_preds(event->filter, record))
5761 return 1;
5762 return 0;
5763 }
5764
5765 static int perf_tp_event_match(struct perf_event *event,
5766 struct perf_sample_data *data,
5767 struct pt_regs *regs)
5768 {
5769 if (event->hw.state & PERF_HES_STOPPED)
5770 return 0;
5771 /*
5772 * All tracepoints are from kernel-space.
5773 */
5774 if (event->attr.exclude_kernel)
5775 return 0;
5776
5777 if (!perf_tp_filter_match(event, data))
5778 return 0;
5779
5780 return 1;
5781 }
5782
5783 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
5784 struct pt_regs *regs, struct hlist_head *head, int rctx,
5785 struct task_struct *task)
5786 {
5787 struct perf_sample_data data;
5788 struct perf_event *event;
5789
5790 struct perf_raw_record raw = {
5791 .size = entry_size,
5792 .data = record,
5793 };
5794
5795 perf_sample_data_init(&data, addr, 0);
5796 data.raw = &raw;
5797
5798 hlist_for_each_entry_rcu(event, head, hlist_entry) {
5799 if (perf_tp_event_match(event, &data, regs))
5800 perf_swevent_event(event, count, &data, regs);
5801 }
5802
5803 /*
5804 * If we got specified a target task, also iterate its context and
5805 * deliver this event there too.
5806 */
5807 if (task && task != current) {
5808 struct perf_event_context *ctx;
5809 struct trace_entry *entry = record;
5810
5811 rcu_read_lock();
5812 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
5813 if (!ctx)
5814 goto unlock;
5815
5816 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5817 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5818 continue;
5819 if (event->attr.config != entry->type)
5820 continue;
5821 if (perf_tp_event_match(event, &data, regs))
5822 perf_swevent_event(event, count, &data, regs);
5823 }
5824 unlock:
5825 rcu_read_unlock();
5826 }
5827
5828 perf_swevent_put_recursion_context(rctx);
5829 }
5830 EXPORT_SYMBOL_GPL(perf_tp_event);
5831
5832 static void tp_perf_event_destroy(struct perf_event *event)
5833 {
5834 perf_trace_destroy(event);
5835 }
5836
5837 static int perf_tp_event_init(struct perf_event *event)
5838 {
5839 int err;
5840
5841 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5842 return -ENOENT;
5843
5844 /*
5845 * no branch sampling for tracepoint events
5846 */
5847 if (has_branch_stack(event))
5848 return -EOPNOTSUPP;
5849
5850 err = perf_trace_init(event);
5851 if (err)
5852 return err;
5853
5854 event->destroy = tp_perf_event_destroy;
5855
5856 return 0;
5857 }
5858
5859 static struct pmu perf_tracepoint = {
5860 .task_ctx_nr = perf_sw_context,
5861
5862 .event_init = perf_tp_event_init,
5863 .add = perf_trace_add,
5864 .del = perf_trace_del,
5865 .start = perf_swevent_start,
5866 .stop = perf_swevent_stop,
5867 .read = perf_swevent_read,
5868
5869 .event_idx = perf_swevent_event_idx,
5870 };
5871
5872 static inline void perf_tp_register(void)
5873 {
5874 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
5875 }
5876
5877 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5878 {
5879 char *filter_str;
5880 int ret;
5881
5882 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5883 return -EINVAL;
5884
5885 filter_str = strndup_user(arg, PAGE_SIZE);
5886 if (IS_ERR(filter_str))
5887 return PTR_ERR(filter_str);
5888
5889 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
5890
5891 kfree(filter_str);
5892 return ret;
5893 }
5894
5895 static void perf_event_free_filter(struct perf_event *event)
5896 {
5897 ftrace_profile_free_filter(event);
5898 }
5899
5900 #else
5901
5902 static inline void perf_tp_register(void)
5903 {
5904 }
5905
5906 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5907 {
5908 return -ENOENT;
5909 }
5910
5911 static void perf_event_free_filter(struct perf_event *event)
5912 {
5913 }
5914
5915 #endif /* CONFIG_EVENT_TRACING */
5916
5917 #ifdef CONFIG_HAVE_HW_BREAKPOINT
5918 void perf_bp_event(struct perf_event *bp, void *data)
5919 {
5920 struct perf_sample_data sample;
5921 struct pt_regs *regs = data;
5922
5923 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
5924
5925 if (!bp->hw.state && !perf_exclude_event(bp, regs))
5926 perf_swevent_event(bp, 1, &sample, regs);
5927 }
5928 #endif
5929
5930 /*
5931 * hrtimer based swevent callback
5932 */
5933
5934 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
5935 {
5936 enum hrtimer_restart ret = HRTIMER_RESTART;
5937 struct perf_sample_data data;
5938 struct pt_regs *regs;
5939 struct perf_event *event;
5940 u64 period;
5941
5942 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
5943
5944 if (event->state != PERF_EVENT_STATE_ACTIVE)
5945 return HRTIMER_NORESTART;
5946
5947 event->pmu->read(event);
5948
5949 perf_sample_data_init(&data, 0, event->hw.last_period);
5950 regs = get_irq_regs();
5951
5952 if (regs && !perf_exclude_event(event, regs)) {
5953 if (!(event->attr.exclude_idle && is_idle_task(current)))
5954 if (__perf_event_overflow(event, 1, &data, regs))
5955 ret = HRTIMER_NORESTART;
5956 }
5957
5958 period = max_t(u64, 10000, event->hw.sample_period);
5959 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
5960
5961 return ret;
5962 }
5963
5964 static void perf_swevent_start_hrtimer(struct perf_event *event)
5965 {
5966 struct hw_perf_event *hwc = &event->hw;
5967 s64 period;
5968
5969 if (!is_sampling_event(event))
5970 return;
5971
5972 period = local64_read(&hwc->period_left);
5973 if (period) {
5974 if (period < 0)
5975 period = 10000;
5976
5977 local64_set(&hwc->period_left, 0);
5978 } else {
5979 period = max_t(u64, 10000, hwc->sample_period);
5980 }
5981 __hrtimer_start_range_ns(&hwc->hrtimer,
5982 ns_to_ktime(period), 0,
5983 HRTIMER_MODE_REL_PINNED, 0);
5984 }
5985
5986 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
5987 {
5988 struct hw_perf_event *hwc = &event->hw;
5989
5990 if (is_sampling_event(event)) {
5991 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
5992 local64_set(&hwc->period_left, ktime_to_ns(remaining));
5993
5994 hrtimer_cancel(&hwc->hrtimer);
5995 }
5996 }
5997
5998 static void perf_swevent_init_hrtimer(struct perf_event *event)
5999 {
6000 struct hw_perf_event *hwc = &event->hw;
6001
6002 if (!is_sampling_event(event))
6003 return;
6004
6005 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
6006 hwc->hrtimer.function = perf_swevent_hrtimer;
6007
6008 /*
6009 * Since hrtimers have a fixed rate, we can do a static freq->period
6010 * mapping and avoid the whole period adjust feedback stuff.
6011 */
6012 if (event->attr.freq) {
6013 long freq = event->attr.sample_freq;
6014
6015 event->attr.sample_period = NSEC_PER_SEC / freq;
6016 hwc->sample_period = event->attr.sample_period;
6017 local64_set(&hwc->period_left, hwc->sample_period);
6018 hwc->last_period = hwc->sample_period;
6019 event->attr.freq = 0;
6020 }
6021 }
6022
6023 /*
6024 * Software event: cpu wall time clock
6025 */
6026
6027 static void cpu_clock_event_update(struct perf_event *event)
6028 {
6029 s64 prev;
6030 u64 now;
6031
6032 now = local_clock();
6033 prev = local64_xchg(&event->hw.prev_count, now);
6034 local64_add(now - prev, &event->count);
6035 }
6036
6037 static void cpu_clock_event_start(struct perf_event *event, int flags)
6038 {
6039 local64_set(&event->hw.prev_count, local_clock());
6040 perf_swevent_start_hrtimer(event);
6041 }
6042
6043 static void cpu_clock_event_stop(struct perf_event *event, int flags)
6044 {
6045 perf_swevent_cancel_hrtimer(event);
6046 cpu_clock_event_update(event);
6047 }
6048
6049 static int cpu_clock_event_add(struct perf_event *event, int flags)
6050 {
6051 if (flags & PERF_EF_START)
6052 cpu_clock_event_start(event, flags);
6053
6054 return 0;
6055 }
6056
6057 static void cpu_clock_event_del(struct perf_event *event, int flags)
6058 {
6059 cpu_clock_event_stop(event, flags);
6060 }
6061
6062 static void cpu_clock_event_read(struct perf_event *event)
6063 {
6064 cpu_clock_event_update(event);
6065 }
6066
6067 static int cpu_clock_event_init(struct perf_event *event)
6068 {
6069 if (event->attr.type != PERF_TYPE_SOFTWARE)
6070 return -ENOENT;
6071
6072 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
6073 return -ENOENT;
6074
6075 /*
6076 * no branch sampling for software events
6077 */
6078 if (has_branch_stack(event))
6079 return -EOPNOTSUPP;
6080
6081 perf_swevent_init_hrtimer(event);
6082
6083 return 0;
6084 }
6085
6086 static struct pmu perf_cpu_clock = {
6087 .task_ctx_nr = perf_sw_context,
6088
6089 .event_init = cpu_clock_event_init,
6090 .add = cpu_clock_event_add,
6091 .del = cpu_clock_event_del,
6092 .start = cpu_clock_event_start,
6093 .stop = cpu_clock_event_stop,
6094 .read = cpu_clock_event_read,
6095
6096 .event_idx = perf_swevent_event_idx,
6097 };
6098
6099 /*
6100 * Software event: task time clock
6101 */
6102
6103 static void task_clock_event_update(struct perf_event *event, u64 now)
6104 {
6105 u64 prev;
6106 s64 delta;
6107
6108 prev = local64_xchg(&event->hw.prev_count, now);
6109 delta = now - prev;
6110 local64_add(delta, &event->count);
6111 }
6112
6113 static void task_clock_event_start(struct perf_event *event, int flags)
6114 {
6115 local64_set(&event->hw.prev_count, event->ctx->time);
6116 perf_swevent_start_hrtimer(event);
6117 }
6118
6119 static void task_clock_event_stop(struct perf_event *event, int flags)
6120 {
6121 perf_swevent_cancel_hrtimer(event);
6122 task_clock_event_update(event, event->ctx->time);
6123 }
6124
6125 static int task_clock_event_add(struct perf_event *event, int flags)
6126 {
6127 if (flags & PERF_EF_START)
6128 task_clock_event_start(event, flags);
6129
6130 return 0;
6131 }
6132
6133 static void task_clock_event_del(struct perf_event *event, int flags)
6134 {
6135 task_clock_event_stop(event, PERF_EF_UPDATE);
6136 }
6137
6138 static void task_clock_event_read(struct perf_event *event)
6139 {
6140 u64 now = perf_clock();
6141 u64 delta = now - event->ctx->timestamp;
6142 u64 time = event->ctx->time + delta;
6143
6144 task_clock_event_update(event, time);
6145 }
6146
6147 static int task_clock_event_init(struct perf_event *event)
6148 {
6149 if (event->attr.type != PERF_TYPE_SOFTWARE)
6150 return -ENOENT;
6151
6152 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
6153 return -ENOENT;
6154
6155 /*
6156 * no branch sampling for software events
6157 */
6158 if (has_branch_stack(event))
6159 return -EOPNOTSUPP;
6160
6161 perf_swevent_init_hrtimer(event);
6162
6163 return 0;
6164 }
6165
6166 static struct pmu perf_task_clock = {
6167 .task_ctx_nr = perf_sw_context,
6168
6169 .event_init = task_clock_event_init,
6170 .add = task_clock_event_add,
6171 .del = task_clock_event_del,
6172 .start = task_clock_event_start,
6173 .stop = task_clock_event_stop,
6174 .read = task_clock_event_read,
6175
6176 .event_idx = perf_swevent_event_idx,
6177 };
6178
6179 static void perf_pmu_nop_void(struct pmu *pmu)
6180 {
6181 }
6182
6183 static int perf_pmu_nop_int(struct pmu *pmu)
6184 {
6185 return 0;
6186 }
6187
6188 static void perf_pmu_start_txn(struct pmu *pmu)
6189 {
6190 perf_pmu_disable(pmu);
6191 }
6192
6193 static int perf_pmu_commit_txn(struct pmu *pmu)
6194 {
6195 perf_pmu_enable(pmu);
6196 return 0;
6197 }
6198
6199 static void perf_pmu_cancel_txn(struct pmu *pmu)
6200 {
6201 perf_pmu_enable(pmu);
6202 }
6203
6204 static int perf_event_idx_default(struct perf_event *event)
6205 {
6206 return event->hw.idx + 1;
6207 }
6208
6209 /*
6210 * Ensures all contexts with the same task_ctx_nr have the same
6211 * pmu_cpu_context too.
6212 */
6213 static void *find_pmu_context(int ctxn)
6214 {
6215 struct pmu *pmu;
6216
6217 if (ctxn < 0)
6218 return NULL;
6219
6220 list_for_each_entry(pmu, &pmus, entry) {
6221 if (pmu->task_ctx_nr == ctxn)
6222 return pmu->pmu_cpu_context;
6223 }
6224
6225 return NULL;
6226 }
6227
6228 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
6229 {
6230 int cpu;
6231
6232 for_each_possible_cpu(cpu) {
6233 struct perf_cpu_context *cpuctx;
6234
6235 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6236
6237 if (cpuctx->unique_pmu == old_pmu)
6238 cpuctx->unique_pmu = pmu;
6239 }
6240 }
6241
6242 static void free_pmu_context(struct pmu *pmu)
6243 {
6244 struct pmu *i;
6245
6246 mutex_lock(&pmus_lock);
6247 /*
6248 * Like a real lame refcount.
6249 */
6250 list_for_each_entry(i, &pmus, entry) {
6251 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
6252 update_pmu_context(i, pmu);
6253 goto out;
6254 }
6255 }
6256
6257 free_percpu(pmu->pmu_cpu_context);
6258 out:
6259 mutex_unlock(&pmus_lock);
6260 }
6261 static struct idr pmu_idr;
6262
6263 static ssize_t
6264 type_show(struct device *dev, struct device_attribute *attr, char *page)
6265 {
6266 struct pmu *pmu = dev_get_drvdata(dev);
6267
6268 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
6269 }
6270
6271 static ssize_t
6272 perf_event_mux_interval_ms_show(struct device *dev,
6273 struct device_attribute *attr,
6274 char *page)
6275 {
6276 struct pmu *pmu = dev_get_drvdata(dev);
6277
6278 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
6279 }
6280
6281 static ssize_t
6282 perf_event_mux_interval_ms_store(struct device *dev,
6283 struct device_attribute *attr,
6284 const char *buf, size_t count)
6285 {
6286 struct pmu *pmu = dev_get_drvdata(dev);
6287 int timer, cpu, ret;
6288
6289 ret = kstrtoint(buf, 0, &timer);
6290 if (ret)
6291 return ret;
6292
6293 if (timer < 1)
6294 return -EINVAL;
6295
6296 /* same value, noting to do */
6297 if (timer == pmu->hrtimer_interval_ms)
6298 return count;
6299
6300 pmu->hrtimer_interval_ms = timer;
6301
6302 /* update all cpuctx for this PMU */
6303 for_each_possible_cpu(cpu) {
6304 struct perf_cpu_context *cpuctx;
6305 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6306 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
6307
6308 if (hrtimer_active(&cpuctx->hrtimer))
6309 hrtimer_forward_now(&cpuctx->hrtimer, cpuctx->hrtimer_interval);
6310 }
6311
6312 return count;
6313 }
6314
6315 static struct device_attribute pmu_dev_attrs[] = {
6316 __ATTR_RO(type),
6317 __ATTR_RW(perf_event_mux_interval_ms),
6318 __ATTR_NULL,
6319 };
6320
6321 static int pmu_bus_running;
6322 static struct bus_type pmu_bus = {
6323 .name = "event_source",
6324 .dev_attrs = pmu_dev_attrs,
6325 };
6326
6327 static void pmu_dev_release(struct device *dev)
6328 {
6329 kfree(dev);
6330 }
6331
6332 static int pmu_dev_alloc(struct pmu *pmu)
6333 {
6334 int ret = -ENOMEM;
6335
6336 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
6337 if (!pmu->dev)
6338 goto out;
6339
6340 pmu->dev->groups = pmu->attr_groups;
6341 device_initialize(pmu->dev);
6342 ret = dev_set_name(pmu->dev, "%s", pmu->name);
6343 if (ret)
6344 goto free_dev;
6345
6346 dev_set_drvdata(pmu->dev, pmu);
6347 pmu->dev->bus = &pmu_bus;
6348 pmu->dev->release = pmu_dev_release;
6349 ret = device_add(pmu->dev);
6350 if (ret)
6351 goto free_dev;
6352
6353 out:
6354 return ret;
6355
6356 free_dev:
6357 put_device(pmu->dev);
6358 goto out;
6359 }
6360
6361 static struct lock_class_key cpuctx_mutex;
6362 static struct lock_class_key cpuctx_lock;
6363
6364 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
6365 {
6366 int cpu, ret;
6367
6368 mutex_lock(&pmus_lock);
6369 ret = -ENOMEM;
6370 pmu->pmu_disable_count = alloc_percpu(int);
6371 if (!pmu->pmu_disable_count)
6372 goto unlock;
6373
6374 pmu->type = -1;
6375 if (!name)
6376 goto skip_type;
6377 pmu->name = name;
6378
6379 if (type < 0) {
6380 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
6381 if (type < 0) {
6382 ret = type;
6383 goto free_pdc;
6384 }
6385 }
6386 pmu->type = type;
6387
6388 if (pmu_bus_running) {
6389 ret = pmu_dev_alloc(pmu);
6390 if (ret)
6391 goto free_idr;
6392 }
6393
6394 skip_type:
6395 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
6396 if (pmu->pmu_cpu_context)
6397 goto got_cpu_context;
6398
6399 ret = -ENOMEM;
6400 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
6401 if (!pmu->pmu_cpu_context)
6402 goto free_dev;
6403
6404 for_each_possible_cpu(cpu) {
6405 struct perf_cpu_context *cpuctx;
6406
6407 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6408 __perf_event_init_context(&cpuctx->ctx);
6409 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
6410 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
6411 cpuctx->ctx.type = cpu_context;
6412 cpuctx->ctx.pmu = pmu;
6413
6414 __perf_cpu_hrtimer_init(cpuctx, cpu);
6415
6416 INIT_LIST_HEAD(&cpuctx->rotation_list);
6417 cpuctx->unique_pmu = pmu;
6418 }
6419
6420 got_cpu_context:
6421 if (!pmu->start_txn) {
6422 if (pmu->pmu_enable) {
6423 /*
6424 * If we have pmu_enable/pmu_disable calls, install
6425 * transaction stubs that use that to try and batch
6426 * hardware accesses.
6427 */
6428 pmu->start_txn = perf_pmu_start_txn;
6429 pmu->commit_txn = perf_pmu_commit_txn;
6430 pmu->cancel_txn = perf_pmu_cancel_txn;
6431 } else {
6432 pmu->start_txn = perf_pmu_nop_void;
6433 pmu->commit_txn = perf_pmu_nop_int;
6434 pmu->cancel_txn = perf_pmu_nop_void;
6435 }
6436 }
6437
6438 if (!pmu->pmu_enable) {
6439 pmu->pmu_enable = perf_pmu_nop_void;
6440 pmu->pmu_disable = perf_pmu_nop_void;
6441 }
6442
6443 if (!pmu->event_idx)
6444 pmu->event_idx = perf_event_idx_default;
6445
6446 list_add_rcu(&pmu->entry, &pmus);
6447 ret = 0;
6448 unlock:
6449 mutex_unlock(&pmus_lock);
6450
6451 return ret;
6452
6453 free_dev:
6454 device_del(pmu->dev);
6455 put_device(pmu->dev);
6456
6457 free_idr:
6458 if (pmu->type >= PERF_TYPE_MAX)
6459 idr_remove(&pmu_idr, pmu->type);
6460
6461 free_pdc:
6462 free_percpu(pmu->pmu_disable_count);
6463 goto unlock;
6464 }
6465
6466 void perf_pmu_unregister(struct pmu *pmu)
6467 {
6468 mutex_lock(&pmus_lock);
6469 list_del_rcu(&pmu->entry);
6470 mutex_unlock(&pmus_lock);
6471
6472 /*
6473 * We dereference the pmu list under both SRCU and regular RCU, so
6474 * synchronize against both of those.
6475 */
6476 synchronize_srcu(&pmus_srcu);
6477 synchronize_rcu();
6478
6479 free_percpu(pmu->pmu_disable_count);
6480 if (pmu->type >= PERF_TYPE_MAX)
6481 idr_remove(&pmu_idr, pmu->type);
6482 device_del(pmu->dev);
6483 put_device(pmu->dev);
6484 free_pmu_context(pmu);
6485 }
6486
6487 struct pmu *perf_init_event(struct perf_event *event)
6488 {
6489 struct pmu *pmu = NULL;
6490 int idx;
6491 int ret;
6492
6493 idx = srcu_read_lock(&pmus_srcu);
6494
6495 rcu_read_lock();
6496 pmu = idr_find(&pmu_idr, event->attr.type);
6497 rcu_read_unlock();
6498 if (pmu) {
6499 event->pmu = pmu;
6500 ret = pmu->event_init(event);
6501 if (ret)
6502 pmu = ERR_PTR(ret);
6503 goto unlock;
6504 }
6505
6506 list_for_each_entry_rcu(pmu, &pmus, entry) {
6507 event->pmu = pmu;
6508 ret = pmu->event_init(event);
6509 if (!ret)
6510 goto unlock;
6511
6512 if (ret != -ENOENT) {
6513 pmu = ERR_PTR(ret);
6514 goto unlock;
6515 }
6516 }
6517 pmu = ERR_PTR(-ENOENT);
6518 unlock:
6519 srcu_read_unlock(&pmus_srcu, idx);
6520
6521 return pmu;
6522 }
6523
6524 static void account_event_cpu(struct perf_event *event, int cpu)
6525 {
6526 if (event->parent)
6527 return;
6528
6529 if (has_branch_stack(event)) {
6530 if (!(event->attach_state & PERF_ATTACH_TASK))
6531 atomic_inc(&per_cpu(perf_branch_stack_events, cpu));
6532 }
6533 if (is_cgroup_event(event))
6534 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
6535 }
6536
6537 static void account_event(struct perf_event *event)
6538 {
6539 if (event->parent)
6540 return;
6541
6542 if (event->attach_state & PERF_ATTACH_TASK)
6543 static_key_slow_inc(&perf_sched_events.key);
6544 if (event->attr.mmap || event->attr.mmap_data)
6545 atomic_inc(&nr_mmap_events);
6546 if (event->attr.comm)
6547 atomic_inc(&nr_comm_events);
6548 if (event->attr.task)
6549 atomic_inc(&nr_task_events);
6550 if (event->attr.freq) {
6551 if (atomic_inc_return(&nr_freq_events) == 1)
6552 tick_nohz_full_kick_all();
6553 }
6554 if (has_branch_stack(event))
6555 static_key_slow_inc(&perf_sched_events.key);
6556 if (is_cgroup_event(event))
6557 static_key_slow_inc(&perf_sched_events.key);
6558
6559 account_event_cpu(event, event->cpu);
6560 }
6561
6562 /*
6563 * Allocate and initialize a event structure
6564 */
6565 static struct perf_event *
6566 perf_event_alloc(struct perf_event_attr *attr, int cpu,
6567 struct task_struct *task,
6568 struct perf_event *group_leader,
6569 struct perf_event *parent_event,
6570 perf_overflow_handler_t overflow_handler,
6571 void *context)
6572 {
6573 struct pmu *pmu;
6574 struct perf_event *event;
6575 struct hw_perf_event *hwc;
6576 long err = -EINVAL;
6577
6578 if ((unsigned)cpu >= nr_cpu_ids) {
6579 if (!task || cpu != -1)
6580 return ERR_PTR(-EINVAL);
6581 }
6582
6583 event = kzalloc(sizeof(*event), GFP_KERNEL);
6584 if (!event)
6585 return ERR_PTR(-ENOMEM);
6586
6587 /*
6588 * Single events are their own group leaders, with an
6589 * empty sibling list:
6590 */
6591 if (!group_leader)
6592 group_leader = event;
6593
6594 mutex_init(&event->child_mutex);
6595 INIT_LIST_HEAD(&event->child_list);
6596
6597 INIT_LIST_HEAD(&event->group_entry);
6598 INIT_LIST_HEAD(&event->event_entry);
6599 INIT_LIST_HEAD(&event->sibling_list);
6600 INIT_LIST_HEAD(&event->rb_entry);
6601
6602 init_waitqueue_head(&event->waitq);
6603 init_irq_work(&event->pending, perf_pending_event);
6604
6605 mutex_init(&event->mmap_mutex);
6606
6607 atomic_long_set(&event->refcount, 1);
6608 event->cpu = cpu;
6609 event->attr = *attr;
6610 event->group_leader = group_leader;
6611 event->pmu = NULL;
6612 event->oncpu = -1;
6613
6614 event->parent = parent_event;
6615
6616 event->ns = get_pid_ns(task_active_pid_ns(current));
6617 event->id = atomic64_inc_return(&perf_event_id);
6618
6619 event->state = PERF_EVENT_STATE_INACTIVE;
6620
6621 if (task) {
6622 event->attach_state = PERF_ATTACH_TASK;
6623
6624 if (attr->type == PERF_TYPE_TRACEPOINT)
6625 event->hw.tp_target = task;
6626 #ifdef CONFIG_HAVE_HW_BREAKPOINT
6627 /*
6628 * hw_breakpoint is a bit difficult here..
6629 */
6630 else if (attr->type == PERF_TYPE_BREAKPOINT)
6631 event->hw.bp_target = task;
6632 #endif
6633 }
6634
6635 if (!overflow_handler && parent_event) {
6636 overflow_handler = parent_event->overflow_handler;
6637 context = parent_event->overflow_handler_context;
6638 }
6639
6640 event->overflow_handler = overflow_handler;
6641 event->overflow_handler_context = context;
6642
6643 perf_event__state_init(event);
6644
6645 pmu = NULL;
6646
6647 hwc = &event->hw;
6648 hwc->sample_period = attr->sample_period;
6649 if (attr->freq && attr->sample_freq)
6650 hwc->sample_period = 1;
6651 hwc->last_period = hwc->sample_period;
6652
6653 local64_set(&hwc->period_left, hwc->sample_period);
6654
6655 /*
6656 * we currently do not support PERF_FORMAT_GROUP on inherited events
6657 */
6658 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
6659 goto err_ns;
6660
6661 pmu = perf_init_event(event);
6662 if (!pmu)
6663 goto err_ns;
6664 else if (IS_ERR(pmu)) {
6665 err = PTR_ERR(pmu);
6666 goto err_ns;
6667 }
6668
6669 if (!event->parent) {
6670 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
6671 err = get_callchain_buffers();
6672 if (err)
6673 goto err_pmu;
6674 }
6675 }
6676
6677 return event;
6678
6679 err_pmu:
6680 if (event->destroy)
6681 event->destroy(event);
6682 err_ns:
6683 if (event->ns)
6684 put_pid_ns(event->ns);
6685 kfree(event);
6686
6687 return ERR_PTR(err);
6688 }
6689
6690 static int perf_copy_attr(struct perf_event_attr __user *uattr,
6691 struct perf_event_attr *attr)
6692 {
6693 u32 size;
6694 int ret;
6695
6696 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
6697 return -EFAULT;
6698
6699 /*
6700 * zero the full structure, so that a short copy will be nice.
6701 */
6702 memset(attr, 0, sizeof(*attr));
6703
6704 ret = get_user(size, &uattr->size);
6705 if (ret)
6706 return ret;
6707
6708 if (size > PAGE_SIZE) /* silly large */
6709 goto err_size;
6710
6711 if (!size) /* abi compat */
6712 size = PERF_ATTR_SIZE_VER0;
6713
6714 if (size < PERF_ATTR_SIZE_VER0)
6715 goto err_size;
6716
6717 /*
6718 * If we're handed a bigger struct than we know of,
6719 * ensure all the unknown bits are 0 - i.e. new
6720 * user-space does not rely on any kernel feature
6721 * extensions we dont know about yet.
6722 */
6723 if (size > sizeof(*attr)) {
6724 unsigned char __user *addr;
6725 unsigned char __user *end;
6726 unsigned char val;
6727
6728 addr = (void __user *)uattr + sizeof(*attr);
6729 end = (void __user *)uattr + size;
6730
6731 for (; addr < end; addr++) {
6732 ret = get_user(val, addr);
6733 if (ret)
6734 return ret;
6735 if (val)
6736 goto err_size;
6737 }
6738 size = sizeof(*attr);
6739 }
6740
6741 ret = copy_from_user(attr, uattr, size);
6742 if (ret)
6743 return -EFAULT;
6744
6745 if (attr->__reserved_1)
6746 return -EINVAL;
6747
6748 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
6749 return -EINVAL;
6750
6751 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
6752 return -EINVAL;
6753
6754 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
6755 u64 mask = attr->branch_sample_type;
6756
6757 /* only using defined bits */
6758 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
6759 return -EINVAL;
6760
6761 /* at least one branch bit must be set */
6762 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
6763 return -EINVAL;
6764
6765 /* propagate priv level, when not set for branch */
6766 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
6767
6768 /* exclude_kernel checked on syscall entry */
6769 if (!attr->exclude_kernel)
6770 mask |= PERF_SAMPLE_BRANCH_KERNEL;
6771
6772 if (!attr->exclude_user)
6773 mask |= PERF_SAMPLE_BRANCH_USER;
6774
6775 if (!attr->exclude_hv)
6776 mask |= PERF_SAMPLE_BRANCH_HV;
6777 /*
6778 * adjust user setting (for HW filter setup)
6779 */
6780 attr->branch_sample_type = mask;
6781 }
6782 /* privileged levels capture (kernel, hv): check permissions */
6783 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
6784 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6785 return -EACCES;
6786 }
6787
6788 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
6789 ret = perf_reg_validate(attr->sample_regs_user);
6790 if (ret)
6791 return ret;
6792 }
6793
6794 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
6795 if (!arch_perf_have_user_stack_dump())
6796 return -ENOSYS;
6797
6798 /*
6799 * We have __u32 type for the size, but so far
6800 * we can only use __u16 as maximum due to the
6801 * __u16 sample size limit.
6802 */
6803 if (attr->sample_stack_user >= USHRT_MAX)
6804 ret = -EINVAL;
6805 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
6806 ret = -EINVAL;
6807 }
6808
6809 out:
6810 return ret;
6811
6812 err_size:
6813 put_user(sizeof(*attr), &uattr->size);
6814 ret = -E2BIG;
6815 goto out;
6816 }
6817
6818 static int
6819 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
6820 {
6821 struct ring_buffer *rb = NULL, *old_rb = NULL;
6822 int ret = -EINVAL;
6823
6824 if (!output_event)
6825 goto set;
6826
6827 /* don't allow circular references */
6828 if (event == output_event)
6829 goto out;
6830
6831 /*
6832 * Don't allow cross-cpu buffers
6833 */
6834 if (output_event->cpu != event->cpu)
6835 goto out;
6836
6837 /*
6838 * If its not a per-cpu rb, it must be the same task.
6839 */
6840 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
6841 goto out;
6842
6843 set:
6844 mutex_lock(&event->mmap_mutex);
6845 /* Can't redirect output if we've got an active mmap() */
6846 if (atomic_read(&event->mmap_count))
6847 goto unlock;
6848
6849 old_rb = event->rb;
6850
6851 if (output_event) {
6852 /* get the rb we want to redirect to */
6853 rb = ring_buffer_get(output_event);
6854 if (!rb)
6855 goto unlock;
6856 }
6857
6858 if (old_rb)
6859 ring_buffer_detach(event, old_rb);
6860
6861 if (rb)
6862 ring_buffer_attach(event, rb);
6863
6864 rcu_assign_pointer(event->rb, rb);
6865
6866 if (old_rb) {
6867 ring_buffer_put(old_rb);
6868 /*
6869 * Since we detached before setting the new rb, so that we
6870 * could attach the new rb, we could have missed a wakeup.
6871 * Provide it now.
6872 */
6873 wake_up_all(&event->waitq);
6874 }
6875
6876 ret = 0;
6877 unlock:
6878 mutex_unlock(&event->mmap_mutex);
6879
6880 out:
6881 return ret;
6882 }
6883
6884 /**
6885 * sys_perf_event_open - open a performance event, associate it to a task/cpu
6886 *
6887 * @attr_uptr: event_id type attributes for monitoring/sampling
6888 * @pid: target pid
6889 * @cpu: target cpu
6890 * @group_fd: group leader event fd
6891 */
6892 SYSCALL_DEFINE5(perf_event_open,
6893 struct perf_event_attr __user *, attr_uptr,
6894 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
6895 {
6896 struct perf_event *group_leader = NULL, *output_event = NULL;
6897 struct perf_event *event, *sibling;
6898 struct perf_event_attr attr;
6899 struct perf_event_context *ctx;
6900 struct file *event_file = NULL;
6901 struct fd group = {NULL, 0};
6902 struct task_struct *task = NULL;
6903 struct pmu *pmu;
6904 int event_fd;
6905 int move_group = 0;
6906 int err;
6907
6908 /* for future expandability... */
6909 if (flags & ~PERF_FLAG_ALL)
6910 return -EINVAL;
6911
6912 err = perf_copy_attr(attr_uptr, &attr);
6913 if (err)
6914 return err;
6915
6916 if (!attr.exclude_kernel) {
6917 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6918 return -EACCES;
6919 }
6920
6921 if (attr.freq) {
6922 if (attr.sample_freq > sysctl_perf_event_sample_rate)
6923 return -EINVAL;
6924 }
6925
6926 /*
6927 * In cgroup mode, the pid argument is used to pass the fd
6928 * opened to the cgroup directory in cgroupfs. The cpu argument
6929 * designates the cpu on which to monitor threads from that
6930 * cgroup.
6931 */
6932 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
6933 return -EINVAL;
6934
6935 event_fd = get_unused_fd();
6936 if (event_fd < 0)
6937 return event_fd;
6938
6939 if (group_fd != -1) {
6940 err = perf_fget_light(group_fd, &group);
6941 if (err)
6942 goto err_fd;
6943 group_leader = group.file->private_data;
6944 if (flags & PERF_FLAG_FD_OUTPUT)
6945 output_event = group_leader;
6946 if (flags & PERF_FLAG_FD_NO_GROUP)
6947 group_leader = NULL;
6948 }
6949
6950 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
6951 task = find_lively_task_by_vpid(pid);
6952 if (IS_ERR(task)) {
6953 err = PTR_ERR(task);
6954 goto err_group_fd;
6955 }
6956 }
6957
6958 get_online_cpus();
6959
6960 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
6961 NULL, NULL);
6962 if (IS_ERR(event)) {
6963 err = PTR_ERR(event);
6964 goto err_task;
6965 }
6966
6967 if (flags & PERF_FLAG_PID_CGROUP) {
6968 err = perf_cgroup_connect(pid, event, &attr, group_leader);
6969 if (err) {
6970 __free_event(event);
6971 goto err_task;
6972 }
6973 }
6974
6975 account_event(event);
6976
6977 /*
6978 * Special case software events and allow them to be part of
6979 * any hardware group.
6980 */
6981 pmu = event->pmu;
6982
6983 if (group_leader &&
6984 (is_software_event(event) != is_software_event(group_leader))) {
6985 if (is_software_event(event)) {
6986 /*
6987 * If event and group_leader are not both a software
6988 * event, and event is, then group leader is not.
6989 *
6990 * Allow the addition of software events to !software
6991 * groups, this is safe because software events never
6992 * fail to schedule.
6993 */
6994 pmu = group_leader->pmu;
6995 } else if (is_software_event(group_leader) &&
6996 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
6997 /*
6998 * In case the group is a pure software group, and we
6999 * try to add a hardware event, move the whole group to
7000 * the hardware context.
7001 */
7002 move_group = 1;
7003 }
7004 }
7005
7006 /*
7007 * Get the target context (task or percpu):
7008 */
7009 ctx = find_get_context(pmu, task, event->cpu);
7010 if (IS_ERR(ctx)) {
7011 err = PTR_ERR(ctx);
7012 goto err_alloc;
7013 }
7014
7015 if (task) {
7016 put_task_struct(task);
7017 task = NULL;
7018 }
7019
7020 /*
7021 * Look up the group leader (we will attach this event to it):
7022 */
7023 if (group_leader) {
7024 err = -EINVAL;
7025
7026 /*
7027 * Do not allow a recursive hierarchy (this new sibling
7028 * becoming part of another group-sibling):
7029 */
7030 if (group_leader->group_leader != group_leader)
7031 goto err_context;
7032 /*
7033 * Do not allow to attach to a group in a different
7034 * task or CPU context:
7035 */
7036 if (move_group) {
7037 if (group_leader->ctx->type != ctx->type)
7038 goto err_context;
7039 } else {
7040 if (group_leader->ctx != ctx)
7041 goto err_context;
7042 }
7043
7044 /*
7045 * Only a group leader can be exclusive or pinned
7046 */
7047 if (attr.exclusive || attr.pinned)
7048 goto err_context;
7049 }
7050
7051 if (output_event) {
7052 err = perf_event_set_output(event, output_event);
7053 if (err)
7054 goto err_context;
7055 }
7056
7057 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
7058 if (IS_ERR(event_file)) {
7059 err = PTR_ERR(event_file);
7060 goto err_context;
7061 }
7062
7063 if (move_group) {
7064 struct perf_event_context *gctx = group_leader->ctx;
7065
7066 mutex_lock(&gctx->mutex);
7067 perf_remove_from_context(group_leader);
7068
7069 /*
7070 * Removing from the context ends up with disabled
7071 * event. What we want here is event in the initial
7072 * startup state, ready to be add into new context.
7073 */
7074 perf_event__state_init(group_leader);
7075 list_for_each_entry(sibling, &group_leader->sibling_list,
7076 group_entry) {
7077 perf_remove_from_context(sibling);
7078 perf_event__state_init(sibling);
7079 put_ctx(gctx);
7080 }
7081 mutex_unlock(&gctx->mutex);
7082 put_ctx(gctx);
7083 }
7084
7085 WARN_ON_ONCE(ctx->parent_ctx);
7086 mutex_lock(&ctx->mutex);
7087
7088 if (move_group) {
7089 synchronize_rcu();
7090 perf_install_in_context(ctx, group_leader, event->cpu);
7091 get_ctx(ctx);
7092 list_for_each_entry(sibling, &group_leader->sibling_list,
7093 group_entry) {
7094 perf_install_in_context(ctx, sibling, event->cpu);
7095 get_ctx(ctx);
7096 }
7097 }
7098
7099 perf_install_in_context(ctx, event, event->cpu);
7100 ++ctx->generation;
7101 perf_unpin_context(ctx);
7102 mutex_unlock(&ctx->mutex);
7103
7104 put_online_cpus();
7105
7106 event->owner = current;
7107
7108 mutex_lock(&current->perf_event_mutex);
7109 list_add_tail(&event->owner_entry, &current->perf_event_list);
7110 mutex_unlock(&current->perf_event_mutex);
7111
7112 /*
7113 * Precalculate sample_data sizes
7114 */
7115 perf_event__header_size(event);
7116 perf_event__id_header_size(event);
7117
7118 /*
7119 * Drop the reference on the group_event after placing the
7120 * new event on the sibling_list. This ensures destruction
7121 * of the group leader will find the pointer to itself in
7122 * perf_group_detach().
7123 */
7124 fdput(group);
7125 fd_install(event_fd, event_file);
7126 return event_fd;
7127
7128 err_context:
7129 perf_unpin_context(ctx);
7130 put_ctx(ctx);
7131 err_alloc:
7132 free_event(event);
7133 err_task:
7134 put_online_cpus();
7135 if (task)
7136 put_task_struct(task);
7137 err_group_fd:
7138 fdput(group);
7139 err_fd:
7140 put_unused_fd(event_fd);
7141 return err;
7142 }
7143
7144 /**
7145 * perf_event_create_kernel_counter
7146 *
7147 * @attr: attributes of the counter to create
7148 * @cpu: cpu in which the counter is bound
7149 * @task: task to profile (NULL for percpu)
7150 */
7151 struct perf_event *
7152 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
7153 struct task_struct *task,
7154 perf_overflow_handler_t overflow_handler,
7155 void *context)
7156 {
7157 struct perf_event_context *ctx;
7158 struct perf_event *event;
7159 int err;
7160
7161 /*
7162 * Get the target context (task or percpu):
7163 */
7164
7165 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
7166 overflow_handler, context);
7167 if (IS_ERR(event)) {
7168 err = PTR_ERR(event);
7169 goto err;
7170 }
7171
7172 account_event(event);
7173
7174 ctx = find_get_context(event->pmu, task, cpu);
7175 if (IS_ERR(ctx)) {
7176 err = PTR_ERR(ctx);
7177 goto err_free;
7178 }
7179
7180 WARN_ON_ONCE(ctx->parent_ctx);
7181 mutex_lock(&ctx->mutex);
7182 perf_install_in_context(ctx, event, cpu);
7183 ++ctx->generation;
7184 perf_unpin_context(ctx);
7185 mutex_unlock(&ctx->mutex);
7186
7187 return event;
7188
7189 err_free:
7190 free_event(event);
7191 err:
7192 return ERR_PTR(err);
7193 }
7194 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
7195
7196 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
7197 {
7198 struct perf_event_context *src_ctx;
7199 struct perf_event_context *dst_ctx;
7200 struct perf_event *event, *tmp;
7201 LIST_HEAD(events);
7202
7203 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
7204 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
7205
7206 mutex_lock(&src_ctx->mutex);
7207 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
7208 event_entry) {
7209 perf_remove_from_context(event);
7210 unaccount_event_cpu(event, src_cpu);
7211 put_ctx(src_ctx);
7212 list_add(&event->event_entry, &events);
7213 }
7214 mutex_unlock(&src_ctx->mutex);
7215
7216 synchronize_rcu();
7217
7218 mutex_lock(&dst_ctx->mutex);
7219 list_for_each_entry_safe(event, tmp, &events, event_entry) {
7220 list_del(&event->event_entry);
7221 if (event->state >= PERF_EVENT_STATE_OFF)
7222 event->state = PERF_EVENT_STATE_INACTIVE;
7223 account_event_cpu(event, dst_cpu);
7224 perf_install_in_context(dst_ctx, event, dst_cpu);
7225 get_ctx(dst_ctx);
7226 }
7227 mutex_unlock(&dst_ctx->mutex);
7228 }
7229 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
7230
7231 static void sync_child_event(struct perf_event *child_event,
7232 struct task_struct *child)
7233 {
7234 struct perf_event *parent_event = child_event->parent;
7235 u64 child_val;
7236
7237 if (child_event->attr.inherit_stat)
7238 perf_event_read_event(child_event, child);
7239
7240 child_val = perf_event_count(child_event);
7241
7242 /*
7243 * Add back the child's count to the parent's count:
7244 */
7245 atomic64_add(child_val, &parent_event->child_count);
7246 atomic64_add(child_event->total_time_enabled,
7247 &parent_event->child_total_time_enabled);
7248 atomic64_add(child_event->total_time_running,
7249 &parent_event->child_total_time_running);
7250
7251 /*
7252 * Remove this event from the parent's list
7253 */
7254 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
7255 mutex_lock(&parent_event->child_mutex);
7256 list_del_init(&child_event->child_list);
7257 mutex_unlock(&parent_event->child_mutex);
7258
7259 /*
7260 * Release the parent event, if this was the last
7261 * reference to it.
7262 */
7263 put_event(parent_event);
7264 }
7265
7266 static void
7267 __perf_event_exit_task(struct perf_event *child_event,
7268 struct perf_event_context *child_ctx,
7269 struct task_struct *child)
7270 {
7271 if (child_event->parent) {
7272 raw_spin_lock_irq(&child_ctx->lock);
7273 perf_group_detach(child_event);
7274 raw_spin_unlock_irq(&child_ctx->lock);
7275 }
7276
7277 perf_remove_from_context(child_event);
7278
7279 /*
7280 * It can happen that the parent exits first, and has events
7281 * that are still around due to the child reference. These
7282 * events need to be zapped.
7283 */
7284 if (child_event->parent) {
7285 sync_child_event(child_event, child);
7286 free_event(child_event);
7287 }
7288 }
7289
7290 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
7291 {
7292 struct perf_event *child_event, *tmp;
7293 struct perf_event_context *child_ctx;
7294 unsigned long flags;
7295
7296 if (likely(!child->perf_event_ctxp[ctxn])) {
7297 perf_event_task(child, NULL, 0);
7298 return;
7299 }
7300
7301 local_irq_save(flags);
7302 /*
7303 * We can't reschedule here because interrupts are disabled,
7304 * and either child is current or it is a task that can't be
7305 * scheduled, so we are now safe from rescheduling changing
7306 * our context.
7307 */
7308 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
7309
7310 /*
7311 * Take the context lock here so that if find_get_context is
7312 * reading child->perf_event_ctxp, we wait until it has
7313 * incremented the context's refcount before we do put_ctx below.
7314 */
7315 raw_spin_lock(&child_ctx->lock);
7316 task_ctx_sched_out(child_ctx);
7317 child->perf_event_ctxp[ctxn] = NULL;
7318 /*
7319 * If this context is a clone; unclone it so it can't get
7320 * swapped to another process while we're removing all
7321 * the events from it.
7322 */
7323 unclone_ctx(child_ctx);
7324 update_context_time(child_ctx);
7325 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
7326
7327 /*
7328 * Report the task dead after unscheduling the events so that we
7329 * won't get any samples after PERF_RECORD_EXIT. We can however still
7330 * get a few PERF_RECORD_READ events.
7331 */
7332 perf_event_task(child, child_ctx, 0);
7333
7334 /*
7335 * We can recurse on the same lock type through:
7336 *
7337 * __perf_event_exit_task()
7338 * sync_child_event()
7339 * put_event()
7340 * mutex_lock(&ctx->mutex)
7341 *
7342 * But since its the parent context it won't be the same instance.
7343 */
7344 mutex_lock(&child_ctx->mutex);
7345
7346 again:
7347 list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
7348 group_entry)
7349 __perf_event_exit_task(child_event, child_ctx, child);
7350
7351 list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
7352 group_entry)
7353 __perf_event_exit_task(child_event, child_ctx, child);
7354
7355 /*
7356 * If the last event was a group event, it will have appended all
7357 * its siblings to the list, but we obtained 'tmp' before that which
7358 * will still point to the list head terminating the iteration.
7359 */
7360 if (!list_empty(&child_ctx->pinned_groups) ||
7361 !list_empty(&child_ctx->flexible_groups))
7362 goto again;
7363
7364 mutex_unlock(&child_ctx->mutex);
7365
7366 put_ctx(child_ctx);
7367 }
7368
7369 /*
7370 * When a child task exits, feed back event values to parent events.
7371 */
7372 void perf_event_exit_task(struct task_struct *child)
7373 {
7374 struct perf_event *event, *tmp;
7375 int ctxn;
7376
7377 mutex_lock(&child->perf_event_mutex);
7378 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
7379 owner_entry) {
7380 list_del_init(&event->owner_entry);
7381
7382 /*
7383 * Ensure the list deletion is visible before we clear
7384 * the owner, closes a race against perf_release() where
7385 * we need to serialize on the owner->perf_event_mutex.
7386 */
7387 smp_wmb();
7388 event->owner = NULL;
7389 }
7390 mutex_unlock(&child->perf_event_mutex);
7391
7392 for_each_task_context_nr(ctxn)
7393 perf_event_exit_task_context(child, ctxn);
7394 }
7395
7396 static void perf_free_event(struct perf_event *event,
7397 struct perf_event_context *ctx)
7398 {
7399 struct perf_event *parent = event->parent;
7400
7401 if (WARN_ON_ONCE(!parent))
7402 return;
7403
7404 mutex_lock(&parent->child_mutex);
7405 list_del_init(&event->child_list);
7406 mutex_unlock(&parent->child_mutex);
7407
7408 put_event(parent);
7409
7410 perf_group_detach(event);
7411 list_del_event(event, ctx);
7412 free_event(event);
7413 }
7414
7415 /*
7416 * free an unexposed, unused context as created by inheritance by
7417 * perf_event_init_task below, used by fork() in case of fail.
7418 */
7419 void perf_event_free_task(struct task_struct *task)
7420 {
7421 struct perf_event_context *ctx;
7422 struct perf_event *event, *tmp;
7423 int ctxn;
7424
7425 for_each_task_context_nr(ctxn) {
7426 ctx = task->perf_event_ctxp[ctxn];
7427 if (!ctx)
7428 continue;
7429
7430 mutex_lock(&ctx->mutex);
7431 again:
7432 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
7433 group_entry)
7434 perf_free_event(event, ctx);
7435
7436 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
7437 group_entry)
7438 perf_free_event(event, ctx);
7439
7440 if (!list_empty(&ctx->pinned_groups) ||
7441 !list_empty(&ctx->flexible_groups))
7442 goto again;
7443
7444 mutex_unlock(&ctx->mutex);
7445
7446 put_ctx(ctx);
7447 }
7448 }
7449
7450 void perf_event_delayed_put(struct task_struct *task)
7451 {
7452 int ctxn;
7453
7454 for_each_task_context_nr(ctxn)
7455 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
7456 }
7457
7458 /*
7459 * inherit a event from parent task to child task:
7460 */
7461 static struct perf_event *
7462 inherit_event(struct perf_event *parent_event,
7463 struct task_struct *parent,
7464 struct perf_event_context *parent_ctx,
7465 struct task_struct *child,
7466 struct perf_event *group_leader,
7467 struct perf_event_context *child_ctx)
7468 {
7469 struct perf_event *child_event;
7470 unsigned long flags;
7471
7472 /*
7473 * Instead of creating recursive hierarchies of events,
7474 * we link inherited events back to the original parent,
7475 * which has a filp for sure, which we use as the reference
7476 * count:
7477 */
7478 if (parent_event->parent)
7479 parent_event = parent_event->parent;
7480
7481 child_event = perf_event_alloc(&parent_event->attr,
7482 parent_event->cpu,
7483 child,
7484 group_leader, parent_event,
7485 NULL, NULL);
7486 if (IS_ERR(child_event))
7487 return child_event;
7488
7489 if (!atomic_long_inc_not_zero(&parent_event->refcount)) {
7490 free_event(child_event);
7491 return NULL;
7492 }
7493
7494 get_ctx(child_ctx);
7495
7496 /*
7497 * Make the child state follow the state of the parent event,
7498 * not its attr.disabled bit. We hold the parent's mutex,
7499 * so we won't race with perf_event_{en, dis}able_family.
7500 */
7501 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
7502 child_event->state = PERF_EVENT_STATE_INACTIVE;
7503 else
7504 child_event->state = PERF_EVENT_STATE_OFF;
7505
7506 if (parent_event->attr.freq) {
7507 u64 sample_period = parent_event->hw.sample_period;
7508 struct hw_perf_event *hwc = &child_event->hw;
7509
7510 hwc->sample_period = sample_period;
7511 hwc->last_period = sample_period;
7512
7513 local64_set(&hwc->period_left, sample_period);
7514 }
7515
7516 child_event->ctx = child_ctx;
7517 child_event->overflow_handler = parent_event->overflow_handler;
7518 child_event->overflow_handler_context
7519 = parent_event->overflow_handler_context;
7520
7521 /*
7522 * Precalculate sample_data sizes
7523 */
7524 perf_event__header_size(child_event);
7525 perf_event__id_header_size(child_event);
7526
7527 /*
7528 * Link it up in the child's context:
7529 */
7530 raw_spin_lock_irqsave(&child_ctx->lock, flags);
7531 add_event_to_ctx(child_event, child_ctx);
7532 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
7533
7534 /*
7535 * Link this into the parent event's child list
7536 */
7537 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
7538 mutex_lock(&parent_event->child_mutex);
7539 list_add_tail(&child_event->child_list, &parent_event->child_list);
7540 mutex_unlock(&parent_event->child_mutex);
7541
7542 return child_event;
7543 }
7544
7545 static int inherit_group(struct perf_event *parent_event,
7546 struct task_struct *parent,
7547 struct perf_event_context *parent_ctx,
7548 struct task_struct *child,
7549 struct perf_event_context *child_ctx)
7550 {
7551 struct perf_event *leader;
7552 struct perf_event *sub;
7553 struct perf_event *child_ctr;
7554
7555 leader = inherit_event(parent_event, parent, parent_ctx,
7556 child, NULL, child_ctx);
7557 if (IS_ERR(leader))
7558 return PTR_ERR(leader);
7559 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
7560 child_ctr = inherit_event(sub, parent, parent_ctx,
7561 child, leader, child_ctx);
7562 if (IS_ERR(child_ctr))
7563 return PTR_ERR(child_ctr);
7564 }
7565 return 0;
7566 }
7567
7568 static int
7569 inherit_task_group(struct perf_event *event, struct task_struct *parent,
7570 struct perf_event_context *parent_ctx,
7571 struct task_struct *child, int ctxn,
7572 int *inherited_all)
7573 {
7574 int ret;
7575 struct perf_event_context *child_ctx;
7576
7577 if (!event->attr.inherit) {
7578 *inherited_all = 0;
7579 return 0;
7580 }
7581
7582 child_ctx = child->perf_event_ctxp[ctxn];
7583 if (!child_ctx) {
7584 /*
7585 * This is executed from the parent task context, so
7586 * inherit events that have been marked for cloning.
7587 * First allocate and initialize a context for the
7588 * child.
7589 */
7590
7591 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
7592 if (!child_ctx)
7593 return -ENOMEM;
7594
7595 child->perf_event_ctxp[ctxn] = child_ctx;
7596 }
7597
7598 ret = inherit_group(event, parent, parent_ctx,
7599 child, child_ctx);
7600
7601 if (ret)
7602 *inherited_all = 0;
7603
7604 return ret;
7605 }
7606
7607 /*
7608 * Initialize the perf_event context in task_struct
7609 */
7610 int perf_event_init_context(struct task_struct *child, int ctxn)
7611 {
7612 struct perf_event_context *child_ctx, *parent_ctx;
7613 struct perf_event_context *cloned_ctx;
7614 struct perf_event *event;
7615 struct task_struct *parent = current;
7616 int inherited_all = 1;
7617 unsigned long flags;
7618 int ret = 0;
7619
7620 if (likely(!parent->perf_event_ctxp[ctxn]))
7621 return 0;
7622
7623 /*
7624 * If the parent's context is a clone, pin it so it won't get
7625 * swapped under us.
7626 */
7627 parent_ctx = perf_pin_task_context(parent, ctxn);
7628
7629 /*
7630 * No need to check if parent_ctx != NULL here; since we saw
7631 * it non-NULL earlier, the only reason for it to become NULL
7632 * is if we exit, and since we're currently in the middle of
7633 * a fork we can't be exiting at the same time.
7634 */
7635
7636 /*
7637 * Lock the parent list. No need to lock the child - not PID
7638 * hashed yet and not running, so nobody can access it.
7639 */
7640 mutex_lock(&parent_ctx->mutex);
7641
7642 /*
7643 * We dont have to disable NMIs - we are only looking at
7644 * the list, not manipulating it:
7645 */
7646 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
7647 ret = inherit_task_group(event, parent, parent_ctx,
7648 child, ctxn, &inherited_all);
7649 if (ret)
7650 break;
7651 }
7652
7653 /*
7654 * We can't hold ctx->lock when iterating the ->flexible_group list due
7655 * to allocations, but we need to prevent rotation because
7656 * rotate_ctx() will change the list from interrupt context.
7657 */
7658 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
7659 parent_ctx->rotate_disable = 1;
7660 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7661
7662 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
7663 ret = inherit_task_group(event, parent, parent_ctx,
7664 child, ctxn, &inherited_all);
7665 if (ret)
7666 break;
7667 }
7668
7669 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
7670 parent_ctx->rotate_disable = 0;
7671
7672 child_ctx = child->perf_event_ctxp[ctxn];
7673
7674 if (child_ctx && inherited_all) {
7675 /*
7676 * Mark the child context as a clone of the parent
7677 * context, or of whatever the parent is a clone of.
7678 *
7679 * Note that if the parent is a clone, the holding of
7680 * parent_ctx->lock avoids it from being uncloned.
7681 */
7682 cloned_ctx = parent_ctx->parent_ctx;
7683 if (cloned_ctx) {
7684 child_ctx->parent_ctx = cloned_ctx;
7685 child_ctx->parent_gen = parent_ctx->parent_gen;
7686 } else {
7687 child_ctx->parent_ctx = parent_ctx;
7688 child_ctx->parent_gen = parent_ctx->generation;
7689 }
7690 get_ctx(child_ctx->parent_ctx);
7691 }
7692
7693 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7694 mutex_unlock(&parent_ctx->mutex);
7695
7696 perf_unpin_context(parent_ctx);
7697 put_ctx(parent_ctx);
7698
7699 return ret;
7700 }
7701
7702 /*
7703 * Initialize the perf_event context in task_struct
7704 */
7705 int perf_event_init_task(struct task_struct *child)
7706 {
7707 int ctxn, ret;
7708
7709 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
7710 mutex_init(&child->perf_event_mutex);
7711 INIT_LIST_HEAD(&child->perf_event_list);
7712
7713 for_each_task_context_nr(ctxn) {
7714 ret = perf_event_init_context(child, ctxn);
7715 if (ret)
7716 return ret;
7717 }
7718
7719 return 0;
7720 }
7721
7722 static void __init perf_event_init_all_cpus(void)
7723 {
7724 struct swevent_htable *swhash;
7725 int cpu;
7726
7727 for_each_possible_cpu(cpu) {
7728 swhash = &per_cpu(swevent_htable, cpu);
7729 mutex_init(&swhash->hlist_mutex);
7730 INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
7731 }
7732 }
7733
7734 static void perf_event_init_cpu(int cpu)
7735 {
7736 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7737
7738 mutex_lock(&swhash->hlist_mutex);
7739 if (swhash->hlist_refcount > 0) {
7740 struct swevent_hlist *hlist;
7741
7742 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
7743 WARN_ON(!hlist);
7744 rcu_assign_pointer(swhash->swevent_hlist, hlist);
7745 }
7746 mutex_unlock(&swhash->hlist_mutex);
7747 }
7748
7749 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
7750 static void perf_pmu_rotate_stop(struct pmu *pmu)
7751 {
7752 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7753
7754 WARN_ON(!irqs_disabled());
7755
7756 list_del_init(&cpuctx->rotation_list);
7757 }
7758
7759 static void __perf_event_exit_context(void *__info)
7760 {
7761 struct perf_event_context *ctx = __info;
7762 struct perf_event *event, *tmp;
7763
7764 perf_pmu_rotate_stop(ctx->pmu);
7765
7766 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
7767 __perf_remove_from_context(event);
7768 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
7769 __perf_remove_from_context(event);
7770 }
7771
7772 static void perf_event_exit_cpu_context(int cpu)
7773 {
7774 struct perf_event_context *ctx;
7775 struct pmu *pmu;
7776 int idx;
7777
7778 idx = srcu_read_lock(&pmus_srcu);
7779 list_for_each_entry_rcu(pmu, &pmus, entry) {
7780 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
7781
7782 mutex_lock(&ctx->mutex);
7783 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
7784 mutex_unlock(&ctx->mutex);
7785 }
7786 srcu_read_unlock(&pmus_srcu, idx);
7787 }
7788
7789 static void perf_event_exit_cpu(int cpu)
7790 {
7791 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7792
7793 mutex_lock(&swhash->hlist_mutex);
7794 swevent_hlist_release(swhash);
7795 mutex_unlock(&swhash->hlist_mutex);
7796
7797 perf_event_exit_cpu_context(cpu);
7798 }
7799 #else
7800 static inline void perf_event_exit_cpu(int cpu) { }
7801 #endif
7802
7803 static int
7804 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
7805 {
7806 int cpu;
7807
7808 for_each_online_cpu(cpu)
7809 perf_event_exit_cpu(cpu);
7810
7811 return NOTIFY_OK;
7812 }
7813
7814 /*
7815 * Run the perf reboot notifier at the very last possible moment so that
7816 * the generic watchdog code runs as long as possible.
7817 */
7818 static struct notifier_block perf_reboot_notifier = {
7819 .notifier_call = perf_reboot,
7820 .priority = INT_MIN,
7821 };
7822
7823 static int
7824 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
7825 {
7826 unsigned int cpu = (long)hcpu;
7827
7828 switch (action & ~CPU_TASKS_FROZEN) {
7829
7830 case CPU_UP_PREPARE:
7831 case CPU_DOWN_FAILED:
7832 perf_event_init_cpu(cpu);
7833 break;
7834
7835 case CPU_UP_CANCELED:
7836 case CPU_DOWN_PREPARE:
7837 perf_event_exit_cpu(cpu);
7838 break;
7839 default:
7840 break;
7841 }
7842
7843 return NOTIFY_OK;
7844 }
7845
7846 void __init perf_event_init(void)
7847 {
7848 int ret;
7849
7850 idr_init(&pmu_idr);
7851
7852 perf_event_init_all_cpus();
7853 init_srcu_struct(&pmus_srcu);
7854 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
7855 perf_pmu_register(&perf_cpu_clock, NULL, -1);
7856 perf_pmu_register(&perf_task_clock, NULL, -1);
7857 perf_tp_register();
7858 perf_cpu_notifier(perf_cpu_notify);
7859 register_reboot_notifier(&perf_reboot_notifier);
7860
7861 ret = init_hw_breakpoint();
7862 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
7863
7864 /* do not patch jump label more than once per second */
7865 jump_label_rate_limit(&perf_sched_events, HZ);
7866
7867 /*
7868 * Build time assertion that we keep the data_head at the intended
7869 * location. IOW, validation we got the __reserved[] size right.
7870 */
7871 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
7872 != 1024);
7873 }
7874
7875 static int __init perf_event_sysfs_init(void)
7876 {
7877 struct pmu *pmu;
7878 int ret;
7879
7880 mutex_lock(&pmus_lock);
7881
7882 ret = bus_register(&pmu_bus);
7883 if (ret)
7884 goto unlock;
7885
7886 list_for_each_entry(pmu, &pmus, entry) {
7887 if (!pmu->name || pmu->type < 0)
7888 continue;
7889
7890 ret = pmu_dev_alloc(pmu);
7891 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
7892 }
7893 pmu_bus_running = 1;
7894 ret = 0;
7895
7896 unlock:
7897 mutex_unlock(&pmus_lock);
7898
7899 return ret;
7900 }
7901 device_initcall(perf_event_sysfs_init);
7902
7903 #ifdef CONFIG_CGROUP_PERF
7904 static struct cgroup_subsys_state *perf_cgroup_css_alloc(struct cgroup *cont)
7905 {
7906 struct perf_cgroup *jc;
7907
7908 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
7909 if (!jc)
7910 return ERR_PTR(-ENOMEM);
7911
7912 jc->info = alloc_percpu(struct perf_cgroup_info);
7913 if (!jc->info) {
7914 kfree(jc);
7915 return ERR_PTR(-ENOMEM);
7916 }
7917
7918 return &jc->css;
7919 }
7920
7921 static void perf_cgroup_css_free(struct cgroup *cont)
7922 {
7923 struct perf_cgroup *jc;
7924 jc = container_of(cgroup_subsys_state(cont, perf_subsys_id),
7925 struct perf_cgroup, css);
7926 free_percpu(jc->info);
7927 kfree(jc);
7928 }
7929
7930 static int __perf_cgroup_move(void *info)
7931 {
7932 struct task_struct *task = info;
7933 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
7934 return 0;
7935 }
7936
7937 static void perf_cgroup_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
7938 {
7939 struct task_struct *task;
7940
7941 cgroup_taskset_for_each(task, cgrp, tset)
7942 task_function_call(task, __perf_cgroup_move, task);
7943 }
7944
7945 static void perf_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
7946 struct task_struct *task)
7947 {
7948 /*
7949 * cgroup_exit() is called in the copy_process() failure path.
7950 * Ignore this case since the task hasn't ran yet, this avoids
7951 * trying to poke a half freed task state from generic code.
7952 */
7953 if (!(task->flags & PF_EXITING))
7954 return;
7955
7956 task_function_call(task, __perf_cgroup_move, task);
7957 }
7958
7959 struct cgroup_subsys perf_subsys = {
7960 .name = "perf_event",
7961 .subsys_id = perf_subsys_id,
7962 .css_alloc = perf_cgroup_css_alloc,
7963 .css_free = perf_cgroup_css_free,
7964 .exit = perf_cgroup_exit,
7965 .attach = perf_cgroup_attach,
7966 };
7967 #endif /* CONFIG_CGROUP_PERF */