]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - kernel/events/core.c
Merge branch 'perf/fast' into perf/core
[mirror_ubuntu-zesty-kernel.git] / kernel / events / core.c
1 /*
2 * Performance events core code:
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/rculist.h>
32 #include <linux/uaccess.h>
33 #include <linux/syscalls.h>
34 #include <linux/anon_inodes.h>
35 #include <linux/kernel_stat.h>
36 #include <linux/perf_event.h>
37 #include <linux/ftrace_event.h>
38 #include <linux/hw_breakpoint.h>
39
40 #include "internal.h"
41
42 #include <asm/irq_regs.h>
43
44 struct remote_function_call {
45 struct task_struct *p;
46 int (*func)(void *info);
47 void *info;
48 int ret;
49 };
50
51 static void remote_function(void *data)
52 {
53 struct remote_function_call *tfc = data;
54 struct task_struct *p = tfc->p;
55
56 if (p) {
57 tfc->ret = -EAGAIN;
58 if (task_cpu(p) != smp_processor_id() || !task_curr(p))
59 return;
60 }
61
62 tfc->ret = tfc->func(tfc->info);
63 }
64
65 /**
66 * task_function_call - call a function on the cpu on which a task runs
67 * @p: the task to evaluate
68 * @func: the function to be called
69 * @info: the function call argument
70 *
71 * Calls the function @func when the task is currently running. This might
72 * be on the current CPU, which just calls the function directly
73 *
74 * returns: @func return value, or
75 * -ESRCH - when the process isn't running
76 * -EAGAIN - when the process moved away
77 */
78 static int
79 task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
80 {
81 struct remote_function_call data = {
82 .p = p,
83 .func = func,
84 .info = info,
85 .ret = -ESRCH, /* No such (running) process */
86 };
87
88 if (task_curr(p))
89 smp_call_function_single(task_cpu(p), remote_function, &data, 1);
90
91 return data.ret;
92 }
93
94 /**
95 * cpu_function_call - call a function on the cpu
96 * @func: the function to be called
97 * @info: the function call argument
98 *
99 * Calls the function @func on the remote cpu.
100 *
101 * returns: @func return value or -ENXIO when the cpu is offline
102 */
103 static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
104 {
105 struct remote_function_call data = {
106 .p = NULL,
107 .func = func,
108 .info = info,
109 .ret = -ENXIO, /* No such CPU */
110 };
111
112 smp_call_function_single(cpu, remote_function, &data, 1);
113
114 return data.ret;
115 }
116
117 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
118 PERF_FLAG_FD_OUTPUT |\
119 PERF_FLAG_PID_CGROUP)
120
121 enum event_type_t {
122 EVENT_FLEXIBLE = 0x1,
123 EVENT_PINNED = 0x2,
124 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
125 };
126
127 /*
128 * perf_sched_events : >0 events exist
129 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
130 */
131 struct jump_label_key_deferred perf_sched_events __read_mostly;
132 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
133
134 static atomic_t nr_mmap_events __read_mostly;
135 static atomic_t nr_comm_events __read_mostly;
136 static atomic_t nr_task_events __read_mostly;
137
138 static LIST_HEAD(pmus);
139 static DEFINE_MUTEX(pmus_lock);
140 static struct srcu_struct pmus_srcu;
141
142 /*
143 * perf event paranoia level:
144 * -1 - not paranoid at all
145 * 0 - disallow raw tracepoint access for unpriv
146 * 1 - disallow cpu events for unpriv
147 * 2 - disallow kernel profiling for unpriv
148 */
149 int sysctl_perf_event_paranoid __read_mostly = 1;
150
151 /* Minimum for 512 kiB + 1 user control page */
152 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
153
154 /*
155 * max perf event sample rate
156 */
157 #define DEFAULT_MAX_SAMPLE_RATE 100000
158 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
159 static int max_samples_per_tick __read_mostly =
160 DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
161
162 int perf_proc_update_handler(struct ctl_table *table, int write,
163 void __user *buffer, size_t *lenp,
164 loff_t *ppos)
165 {
166 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
167
168 if (ret || !write)
169 return ret;
170
171 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
172
173 return 0;
174 }
175
176 static atomic64_t perf_event_id;
177
178 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
179 enum event_type_t event_type);
180
181 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
182 enum event_type_t event_type,
183 struct task_struct *task);
184
185 static void update_context_time(struct perf_event_context *ctx);
186 static u64 perf_event_time(struct perf_event *event);
187
188 static void ring_buffer_attach(struct perf_event *event,
189 struct ring_buffer *rb);
190
191 void __weak perf_event_print_debug(void) { }
192
193 extern __weak const char *perf_pmu_name(void)
194 {
195 return "pmu";
196 }
197
198 static inline u64 perf_clock(void)
199 {
200 return local_clock();
201 }
202
203 static inline struct perf_cpu_context *
204 __get_cpu_context(struct perf_event_context *ctx)
205 {
206 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
207 }
208
209 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
210 struct perf_event_context *ctx)
211 {
212 raw_spin_lock(&cpuctx->ctx.lock);
213 if (ctx)
214 raw_spin_lock(&ctx->lock);
215 }
216
217 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
218 struct perf_event_context *ctx)
219 {
220 if (ctx)
221 raw_spin_unlock(&ctx->lock);
222 raw_spin_unlock(&cpuctx->ctx.lock);
223 }
224
225 #ifdef CONFIG_CGROUP_PERF
226
227 /*
228 * Must ensure cgroup is pinned (css_get) before calling
229 * this function. In other words, we cannot call this function
230 * if there is no cgroup event for the current CPU context.
231 */
232 static inline struct perf_cgroup *
233 perf_cgroup_from_task(struct task_struct *task)
234 {
235 return container_of(task_subsys_state(task, perf_subsys_id),
236 struct perf_cgroup, css);
237 }
238
239 static inline bool
240 perf_cgroup_match(struct perf_event *event)
241 {
242 struct perf_event_context *ctx = event->ctx;
243 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
244
245 return !event->cgrp || event->cgrp == cpuctx->cgrp;
246 }
247
248 static inline void perf_get_cgroup(struct perf_event *event)
249 {
250 css_get(&event->cgrp->css);
251 }
252
253 static inline void perf_put_cgroup(struct perf_event *event)
254 {
255 css_put(&event->cgrp->css);
256 }
257
258 static inline void perf_detach_cgroup(struct perf_event *event)
259 {
260 perf_put_cgroup(event);
261 event->cgrp = NULL;
262 }
263
264 static inline int is_cgroup_event(struct perf_event *event)
265 {
266 return event->cgrp != NULL;
267 }
268
269 static inline u64 perf_cgroup_event_time(struct perf_event *event)
270 {
271 struct perf_cgroup_info *t;
272
273 t = per_cpu_ptr(event->cgrp->info, event->cpu);
274 return t->time;
275 }
276
277 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
278 {
279 struct perf_cgroup_info *info;
280 u64 now;
281
282 now = perf_clock();
283
284 info = this_cpu_ptr(cgrp->info);
285
286 info->time += now - info->timestamp;
287 info->timestamp = now;
288 }
289
290 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
291 {
292 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
293 if (cgrp_out)
294 __update_cgrp_time(cgrp_out);
295 }
296
297 static inline void update_cgrp_time_from_event(struct perf_event *event)
298 {
299 struct perf_cgroup *cgrp;
300
301 /*
302 * ensure we access cgroup data only when needed and
303 * when we know the cgroup is pinned (css_get)
304 */
305 if (!is_cgroup_event(event))
306 return;
307
308 cgrp = perf_cgroup_from_task(current);
309 /*
310 * Do not update time when cgroup is not active
311 */
312 if (cgrp == event->cgrp)
313 __update_cgrp_time(event->cgrp);
314 }
315
316 static inline void
317 perf_cgroup_set_timestamp(struct task_struct *task,
318 struct perf_event_context *ctx)
319 {
320 struct perf_cgroup *cgrp;
321 struct perf_cgroup_info *info;
322
323 /*
324 * ctx->lock held by caller
325 * ensure we do not access cgroup data
326 * unless we have the cgroup pinned (css_get)
327 */
328 if (!task || !ctx->nr_cgroups)
329 return;
330
331 cgrp = perf_cgroup_from_task(task);
332 info = this_cpu_ptr(cgrp->info);
333 info->timestamp = ctx->timestamp;
334 }
335
336 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
337 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
338
339 /*
340 * reschedule events based on the cgroup constraint of task.
341 *
342 * mode SWOUT : schedule out everything
343 * mode SWIN : schedule in based on cgroup for next
344 */
345 void perf_cgroup_switch(struct task_struct *task, int mode)
346 {
347 struct perf_cpu_context *cpuctx;
348 struct pmu *pmu;
349 unsigned long flags;
350
351 /*
352 * disable interrupts to avoid geting nr_cgroup
353 * changes via __perf_event_disable(). Also
354 * avoids preemption.
355 */
356 local_irq_save(flags);
357
358 /*
359 * we reschedule only in the presence of cgroup
360 * constrained events.
361 */
362 rcu_read_lock();
363
364 list_for_each_entry_rcu(pmu, &pmus, entry) {
365 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
366
367 /*
368 * perf_cgroup_events says at least one
369 * context on this CPU has cgroup events.
370 *
371 * ctx->nr_cgroups reports the number of cgroup
372 * events for a context.
373 */
374 if (cpuctx->ctx.nr_cgroups > 0) {
375 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
376 perf_pmu_disable(cpuctx->ctx.pmu);
377
378 if (mode & PERF_CGROUP_SWOUT) {
379 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
380 /*
381 * must not be done before ctxswout due
382 * to event_filter_match() in event_sched_out()
383 */
384 cpuctx->cgrp = NULL;
385 }
386
387 if (mode & PERF_CGROUP_SWIN) {
388 WARN_ON_ONCE(cpuctx->cgrp);
389 /* set cgrp before ctxsw in to
390 * allow event_filter_match() to not
391 * have to pass task around
392 */
393 cpuctx->cgrp = perf_cgroup_from_task(task);
394 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
395 }
396 perf_pmu_enable(cpuctx->ctx.pmu);
397 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
398 }
399 }
400
401 rcu_read_unlock();
402
403 local_irq_restore(flags);
404 }
405
406 static inline void perf_cgroup_sched_out(struct task_struct *task,
407 struct task_struct *next)
408 {
409 struct perf_cgroup *cgrp1;
410 struct perf_cgroup *cgrp2 = NULL;
411
412 /*
413 * we come here when we know perf_cgroup_events > 0
414 */
415 cgrp1 = perf_cgroup_from_task(task);
416
417 /*
418 * next is NULL when called from perf_event_enable_on_exec()
419 * that will systematically cause a cgroup_switch()
420 */
421 if (next)
422 cgrp2 = perf_cgroup_from_task(next);
423
424 /*
425 * only schedule out current cgroup events if we know
426 * that we are switching to a different cgroup. Otherwise,
427 * do no touch the cgroup events.
428 */
429 if (cgrp1 != cgrp2)
430 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
431 }
432
433 static inline void perf_cgroup_sched_in(struct task_struct *prev,
434 struct task_struct *task)
435 {
436 struct perf_cgroup *cgrp1;
437 struct perf_cgroup *cgrp2 = NULL;
438
439 /*
440 * we come here when we know perf_cgroup_events > 0
441 */
442 cgrp1 = perf_cgroup_from_task(task);
443
444 /* prev can never be NULL */
445 cgrp2 = perf_cgroup_from_task(prev);
446
447 /*
448 * only need to schedule in cgroup events if we are changing
449 * cgroup during ctxsw. Cgroup events were not scheduled
450 * out of ctxsw out if that was not the case.
451 */
452 if (cgrp1 != cgrp2)
453 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
454 }
455
456 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
457 struct perf_event_attr *attr,
458 struct perf_event *group_leader)
459 {
460 struct perf_cgroup *cgrp;
461 struct cgroup_subsys_state *css;
462 struct file *file;
463 int ret = 0, fput_needed;
464
465 file = fget_light(fd, &fput_needed);
466 if (!file)
467 return -EBADF;
468
469 css = cgroup_css_from_dir(file, perf_subsys_id);
470 if (IS_ERR(css)) {
471 ret = PTR_ERR(css);
472 goto out;
473 }
474
475 cgrp = container_of(css, struct perf_cgroup, css);
476 event->cgrp = cgrp;
477
478 /* must be done before we fput() the file */
479 perf_get_cgroup(event);
480
481 /*
482 * all events in a group must monitor
483 * the same cgroup because a task belongs
484 * to only one perf cgroup at a time
485 */
486 if (group_leader && group_leader->cgrp != cgrp) {
487 perf_detach_cgroup(event);
488 ret = -EINVAL;
489 }
490 out:
491 fput_light(file, fput_needed);
492 return ret;
493 }
494
495 static inline void
496 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
497 {
498 struct perf_cgroup_info *t;
499 t = per_cpu_ptr(event->cgrp->info, event->cpu);
500 event->shadow_ctx_time = now - t->timestamp;
501 }
502
503 static inline void
504 perf_cgroup_defer_enabled(struct perf_event *event)
505 {
506 /*
507 * when the current task's perf cgroup does not match
508 * the event's, we need to remember to call the
509 * perf_mark_enable() function the first time a task with
510 * a matching perf cgroup is scheduled in.
511 */
512 if (is_cgroup_event(event) && !perf_cgroup_match(event))
513 event->cgrp_defer_enabled = 1;
514 }
515
516 static inline void
517 perf_cgroup_mark_enabled(struct perf_event *event,
518 struct perf_event_context *ctx)
519 {
520 struct perf_event *sub;
521 u64 tstamp = perf_event_time(event);
522
523 if (!event->cgrp_defer_enabled)
524 return;
525
526 event->cgrp_defer_enabled = 0;
527
528 event->tstamp_enabled = tstamp - event->total_time_enabled;
529 list_for_each_entry(sub, &event->sibling_list, group_entry) {
530 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
531 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
532 sub->cgrp_defer_enabled = 0;
533 }
534 }
535 }
536 #else /* !CONFIG_CGROUP_PERF */
537
538 static inline bool
539 perf_cgroup_match(struct perf_event *event)
540 {
541 return true;
542 }
543
544 static inline void perf_detach_cgroup(struct perf_event *event)
545 {}
546
547 static inline int is_cgroup_event(struct perf_event *event)
548 {
549 return 0;
550 }
551
552 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
553 {
554 return 0;
555 }
556
557 static inline void update_cgrp_time_from_event(struct perf_event *event)
558 {
559 }
560
561 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
562 {
563 }
564
565 static inline void perf_cgroup_sched_out(struct task_struct *task,
566 struct task_struct *next)
567 {
568 }
569
570 static inline void perf_cgroup_sched_in(struct task_struct *prev,
571 struct task_struct *task)
572 {
573 }
574
575 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
576 struct perf_event_attr *attr,
577 struct perf_event *group_leader)
578 {
579 return -EINVAL;
580 }
581
582 static inline void
583 perf_cgroup_set_timestamp(struct task_struct *task,
584 struct perf_event_context *ctx)
585 {
586 }
587
588 void
589 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
590 {
591 }
592
593 static inline void
594 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
595 {
596 }
597
598 static inline u64 perf_cgroup_event_time(struct perf_event *event)
599 {
600 return 0;
601 }
602
603 static inline void
604 perf_cgroup_defer_enabled(struct perf_event *event)
605 {
606 }
607
608 static inline void
609 perf_cgroup_mark_enabled(struct perf_event *event,
610 struct perf_event_context *ctx)
611 {
612 }
613 #endif
614
615 void perf_pmu_disable(struct pmu *pmu)
616 {
617 int *count = this_cpu_ptr(pmu->pmu_disable_count);
618 if (!(*count)++)
619 pmu->pmu_disable(pmu);
620 }
621
622 void perf_pmu_enable(struct pmu *pmu)
623 {
624 int *count = this_cpu_ptr(pmu->pmu_disable_count);
625 if (!--(*count))
626 pmu->pmu_enable(pmu);
627 }
628
629 static DEFINE_PER_CPU(struct list_head, rotation_list);
630
631 /*
632 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
633 * because they're strictly cpu affine and rotate_start is called with IRQs
634 * disabled, while rotate_context is called from IRQ context.
635 */
636 static void perf_pmu_rotate_start(struct pmu *pmu)
637 {
638 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
639 struct list_head *head = &__get_cpu_var(rotation_list);
640
641 WARN_ON(!irqs_disabled());
642
643 if (list_empty(&cpuctx->rotation_list))
644 list_add(&cpuctx->rotation_list, head);
645 }
646
647 static void get_ctx(struct perf_event_context *ctx)
648 {
649 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
650 }
651
652 static void put_ctx(struct perf_event_context *ctx)
653 {
654 if (atomic_dec_and_test(&ctx->refcount)) {
655 if (ctx->parent_ctx)
656 put_ctx(ctx->parent_ctx);
657 if (ctx->task)
658 put_task_struct(ctx->task);
659 kfree_rcu(ctx, rcu_head);
660 }
661 }
662
663 static void unclone_ctx(struct perf_event_context *ctx)
664 {
665 if (ctx->parent_ctx) {
666 put_ctx(ctx->parent_ctx);
667 ctx->parent_ctx = NULL;
668 }
669 }
670
671 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
672 {
673 /*
674 * only top level events have the pid namespace they were created in
675 */
676 if (event->parent)
677 event = event->parent;
678
679 return task_tgid_nr_ns(p, event->ns);
680 }
681
682 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
683 {
684 /*
685 * only top level events have the pid namespace they were created in
686 */
687 if (event->parent)
688 event = event->parent;
689
690 return task_pid_nr_ns(p, event->ns);
691 }
692
693 /*
694 * If we inherit events we want to return the parent event id
695 * to userspace.
696 */
697 static u64 primary_event_id(struct perf_event *event)
698 {
699 u64 id = event->id;
700
701 if (event->parent)
702 id = event->parent->id;
703
704 return id;
705 }
706
707 /*
708 * Get the perf_event_context for a task and lock it.
709 * This has to cope with with the fact that until it is locked,
710 * the context could get moved to another task.
711 */
712 static struct perf_event_context *
713 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
714 {
715 struct perf_event_context *ctx;
716
717 rcu_read_lock();
718 retry:
719 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
720 if (ctx) {
721 /*
722 * If this context is a clone of another, it might
723 * get swapped for another underneath us by
724 * perf_event_task_sched_out, though the
725 * rcu_read_lock() protects us from any context
726 * getting freed. Lock the context and check if it
727 * got swapped before we could get the lock, and retry
728 * if so. If we locked the right context, then it
729 * can't get swapped on us any more.
730 */
731 raw_spin_lock_irqsave(&ctx->lock, *flags);
732 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
733 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
734 goto retry;
735 }
736
737 if (!atomic_inc_not_zero(&ctx->refcount)) {
738 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
739 ctx = NULL;
740 }
741 }
742 rcu_read_unlock();
743 return ctx;
744 }
745
746 /*
747 * Get the context for a task and increment its pin_count so it
748 * can't get swapped to another task. This also increments its
749 * reference count so that the context can't get freed.
750 */
751 static struct perf_event_context *
752 perf_pin_task_context(struct task_struct *task, int ctxn)
753 {
754 struct perf_event_context *ctx;
755 unsigned long flags;
756
757 ctx = perf_lock_task_context(task, ctxn, &flags);
758 if (ctx) {
759 ++ctx->pin_count;
760 raw_spin_unlock_irqrestore(&ctx->lock, flags);
761 }
762 return ctx;
763 }
764
765 static void perf_unpin_context(struct perf_event_context *ctx)
766 {
767 unsigned long flags;
768
769 raw_spin_lock_irqsave(&ctx->lock, flags);
770 --ctx->pin_count;
771 raw_spin_unlock_irqrestore(&ctx->lock, flags);
772 }
773
774 /*
775 * Update the record of the current time in a context.
776 */
777 static void update_context_time(struct perf_event_context *ctx)
778 {
779 u64 now = perf_clock();
780
781 ctx->time += now - ctx->timestamp;
782 ctx->timestamp = now;
783 }
784
785 static u64 perf_event_time(struct perf_event *event)
786 {
787 struct perf_event_context *ctx = event->ctx;
788
789 if (is_cgroup_event(event))
790 return perf_cgroup_event_time(event);
791
792 return ctx ? ctx->time : 0;
793 }
794
795 /*
796 * Update the total_time_enabled and total_time_running fields for a event.
797 * The caller of this function needs to hold the ctx->lock.
798 */
799 static void update_event_times(struct perf_event *event)
800 {
801 struct perf_event_context *ctx = event->ctx;
802 u64 run_end;
803
804 if (event->state < PERF_EVENT_STATE_INACTIVE ||
805 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
806 return;
807 /*
808 * in cgroup mode, time_enabled represents
809 * the time the event was enabled AND active
810 * tasks were in the monitored cgroup. This is
811 * independent of the activity of the context as
812 * there may be a mix of cgroup and non-cgroup events.
813 *
814 * That is why we treat cgroup events differently
815 * here.
816 */
817 if (is_cgroup_event(event))
818 run_end = perf_cgroup_event_time(event);
819 else if (ctx->is_active)
820 run_end = ctx->time;
821 else
822 run_end = event->tstamp_stopped;
823
824 event->total_time_enabled = run_end - event->tstamp_enabled;
825
826 if (event->state == PERF_EVENT_STATE_INACTIVE)
827 run_end = event->tstamp_stopped;
828 else
829 run_end = perf_event_time(event);
830
831 event->total_time_running = run_end - event->tstamp_running;
832
833 }
834
835 /*
836 * Update total_time_enabled and total_time_running for all events in a group.
837 */
838 static void update_group_times(struct perf_event *leader)
839 {
840 struct perf_event *event;
841
842 update_event_times(leader);
843 list_for_each_entry(event, &leader->sibling_list, group_entry)
844 update_event_times(event);
845 }
846
847 static struct list_head *
848 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
849 {
850 if (event->attr.pinned)
851 return &ctx->pinned_groups;
852 else
853 return &ctx->flexible_groups;
854 }
855
856 /*
857 * Add a event from the lists for its context.
858 * Must be called with ctx->mutex and ctx->lock held.
859 */
860 static void
861 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
862 {
863 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
864 event->attach_state |= PERF_ATTACH_CONTEXT;
865
866 /*
867 * If we're a stand alone event or group leader, we go to the context
868 * list, group events are kept attached to the group so that
869 * perf_group_detach can, at all times, locate all siblings.
870 */
871 if (event->group_leader == event) {
872 struct list_head *list;
873
874 if (is_software_event(event))
875 event->group_flags |= PERF_GROUP_SOFTWARE;
876
877 list = ctx_group_list(event, ctx);
878 list_add_tail(&event->group_entry, list);
879 }
880
881 if (is_cgroup_event(event))
882 ctx->nr_cgroups++;
883
884 list_add_rcu(&event->event_entry, &ctx->event_list);
885 if (!ctx->nr_events)
886 perf_pmu_rotate_start(ctx->pmu);
887 ctx->nr_events++;
888 if (event->attr.inherit_stat)
889 ctx->nr_stat++;
890 }
891
892 /*
893 * Called at perf_event creation and when events are attached/detached from a
894 * group.
895 */
896 static void perf_event__read_size(struct perf_event *event)
897 {
898 int entry = sizeof(u64); /* value */
899 int size = 0;
900 int nr = 1;
901
902 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
903 size += sizeof(u64);
904
905 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
906 size += sizeof(u64);
907
908 if (event->attr.read_format & PERF_FORMAT_ID)
909 entry += sizeof(u64);
910
911 if (event->attr.read_format & PERF_FORMAT_GROUP) {
912 nr += event->group_leader->nr_siblings;
913 size += sizeof(u64);
914 }
915
916 size += entry * nr;
917 event->read_size = size;
918 }
919
920 static void perf_event__header_size(struct perf_event *event)
921 {
922 struct perf_sample_data *data;
923 u64 sample_type = event->attr.sample_type;
924 u16 size = 0;
925
926 perf_event__read_size(event);
927
928 if (sample_type & PERF_SAMPLE_IP)
929 size += sizeof(data->ip);
930
931 if (sample_type & PERF_SAMPLE_ADDR)
932 size += sizeof(data->addr);
933
934 if (sample_type & PERF_SAMPLE_PERIOD)
935 size += sizeof(data->period);
936
937 if (sample_type & PERF_SAMPLE_READ)
938 size += event->read_size;
939
940 event->header_size = size;
941 }
942
943 static void perf_event__id_header_size(struct perf_event *event)
944 {
945 struct perf_sample_data *data;
946 u64 sample_type = event->attr.sample_type;
947 u16 size = 0;
948
949 if (sample_type & PERF_SAMPLE_TID)
950 size += sizeof(data->tid_entry);
951
952 if (sample_type & PERF_SAMPLE_TIME)
953 size += sizeof(data->time);
954
955 if (sample_type & PERF_SAMPLE_ID)
956 size += sizeof(data->id);
957
958 if (sample_type & PERF_SAMPLE_STREAM_ID)
959 size += sizeof(data->stream_id);
960
961 if (sample_type & PERF_SAMPLE_CPU)
962 size += sizeof(data->cpu_entry);
963
964 event->id_header_size = size;
965 }
966
967 static void perf_group_attach(struct perf_event *event)
968 {
969 struct perf_event *group_leader = event->group_leader, *pos;
970
971 /*
972 * We can have double attach due to group movement in perf_event_open.
973 */
974 if (event->attach_state & PERF_ATTACH_GROUP)
975 return;
976
977 event->attach_state |= PERF_ATTACH_GROUP;
978
979 if (group_leader == event)
980 return;
981
982 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
983 !is_software_event(event))
984 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
985
986 list_add_tail(&event->group_entry, &group_leader->sibling_list);
987 group_leader->nr_siblings++;
988
989 perf_event__header_size(group_leader);
990
991 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
992 perf_event__header_size(pos);
993 }
994
995 /*
996 * Remove a event from the lists for its context.
997 * Must be called with ctx->mutex and ctx->lock held.
998 */
999 static void
1000 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1001 {
1002 struct perf_cpu_context *cpuctx;
1003 /*
1004 * We can have double detach due to exit/hot-unplug + close.
1005 */
1006 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1007 return;
1008
1009 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1010
1011 if (is_cgroup_event(event)) {
1012 ctx->nr_cgroups--;
1013 cpuctx = __get_cpu_context(ctx);
1014 /*
1015 * if there are no more cgroup events
1016 * then cler cgrp to avoid stale pointer
1017 * in update_cgrp_time_from_cpuctx()
1018 */
1019 if (!ctx->nr_cgroups)
1020 cpuctx->cgrp = NULL;
1021 }
1022
1023 ctx->nr_events--;
1024 if (event->attr.inherit_stat)
1025 ctx->nr_stat--;
1026
1027 list_del_rcu(&event->event_entry);
1028
1029 if (event->group_leader == event)
1030 list_del_init(&event->group_entry);
1031
1032 update_group_times(event);
1033
1034 /*
1035 * If event was in error state, then keep it
1036 * that way, otherwise bogus counts will be
1037 * returned on read(). The only way to get out
1038 * of error state is by explicit re-enabling
1039 * of the event
1040 */
1041 if (event->state > PERF_EVENT_STATE_OFF)
1042 event->state = PERF_EVENT_STATE_OFF;
1043 }
1044
1045 static void perf_group_detach(struct perf_event *event)
1046 {
1047 struct perf_event *sibling, *tmp;
1048 struct list_head *list = NULL;
1049
1050 /*
1051 * We can have double detach due to exit/hot-unplug + close.
1052 */
1053 if (!(event->attach_state & PERF_ATTACH_GROUP))
1054 return;
1055
1056 event->attach_state &= ~PERF_ATTACH_GROUP;
1057
1058 /*
1059 * If this is a sibling, remove it from its group.
1060 */
1061 if (event->group_leader != event) {
1062 list_del_init(&event->group_entry);
1063 event->group_leader->nr_siblings--;
1064 goto out;
1065 }
1066
1067 if (!list_empty(&event->group_entry))
1068 list = &event->group_entry;
1069
1070 /*
1071 * If this was a group event with sibling events then
1072 * upgrade the siblings to singleton events by adding them
1073 * to whatever list we are on.
1074 */
1075 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1076 if (list)
1077 list_move_tail(&sibling->group_entry, list);
1078 sibling->group_leader = sibling;
1079
1080 /* Inherit group flags from the previous leader */
1081 sibling->group_flags = event->group_flags;
1082 }
1083
1084 out:
1085 perf_event__header_size(event->group_leader);
1086
1087 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1088 perf_event__header_size(tmp);
1089 }
1090
1091 static inline int
1092 event_filter_match(struct perf_event *event)
1093 {
1094 return (event->cpu == -1 || event->cpu == smp_processor_id())
1095 && perf_cgroup_match(event);
1096 }
1097
1098 static void
1099 event_sched_out(struct perf_event *event,
1100 struct perf_cpu_context *cpuctx,
1101 struct perf_event_context *ctx)
1102 {
1103 u64 tstamp = perf_event_time(event);
1104 u64 delta;
1105 /*
1106 * An event which could not be activated because of
1107 * filter mismatch still needs to have its timings
1108 * maintained, otherwise bogus information is return
1109 * via read() for time_enabled, time_running:
1110 */
1111 if (event->state == PERF_EVENT_STATE_INACTIVE
1112 && !event_filter_match(event)) {
1113 delta = tstamp - event->tstamp_stopped;
1114 event->tstamp_running += delta;
1115 event->tstamp_stopped = tstamp;
1116 }
1117
1118 if (event->state != PERF_EVENT_STATE_ACTIVE)
1119 return;
1120
1121 event->state = PERF_EVENT_STATE_INACTIVE;
1122 if (event->pending_disable) {
1123 event->pending_disable = 0;
1124 event->state = PERF_EVENT_STATE_OFF;
1125 }
1126 event->tstamp_stopped = tstamp;
1127 event->pmu->del(event, 0);
1128 event->oncpu = -1;
1129
1130 if (!is_software_event(event))
1131 cpuctx->active_oncpu--;
1132 ctx->nr_active--;
1133 if (event->attr.freq && event->attr.sample_freq)
1134 ctx->nr_freq--;
1135 if (event->attr.exclusive || !cpuctx->active_oncpu)
1136 cpuctx->exclusive = 0;
1137 }
1138
1139 static void
1140 group_sched_out(struct perf_event *group_event,
1141 struct perf_cpu_context *cpuctx,
1142 struct perf_event_context *ctx)
1143 {
1144 struct perf_event *event;
1145 int state = group_event->state;
1146
1147 event_sched_out(group_event, cpuctx, ctx);
1148
1149 /*
1150 * Schedule out siblings (if any):
1151 */
1152 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1153 event_sched_out(event, cpuctx, ctx);
1154
1155 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1156 cpuctx->exclusive = 0;
1157 }
1158
1159 /*
1160 * Cross CPU call to remove a performance event
1161 *
1162 * We disable the event on the hardware level first. After that we
1163 * remove it from the context list.
1164 */
1165 static int __perf_remove_from_context(void *info)
1166 {
1167 struct perf_event *event = info;
1168 struct perf_event_context *ctx = event->ctx;
1169 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1170
1171 raw_spin_lock(&ctx->lock);
1172 event_sched_out(event, cpuctx, ctx);
1173 list_del_event(event, ctx);
1174 if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1175 ctx->is_active = 0;
1176 cpuctx->task_ctx = NULL;
1177 }
1178 raw_spin_unlock(&ctx->lock);
1179
1180 return 0;
1181 }
1182
1183
1184 /*
1185 * Remove the event from a task's (or a CPU's) list of events.
1186 *
1187 * CPU events are removed with a smp call. For task events we only
1188 * call when the task is on a CPU.
1189 *
1190 * If event->ctx is a cloned context, callers must make sure that
1191 * every task struct that event->ctx->task could possibly point to
1192 * remains valid. This is OK when called from perf_release since
1193 * that only calls us on the top-level context, which can't be a clone.
1194 * When called from perf_event_exit_task, it's OK because the
1195 * context has been detached from its task.
1196 */
1197 static void perf_remove_from_context(struct perf_event *event)
1198 {
1199 struct perf_event_context *ctx = event->ctx;
1200 struct task_struct *task = ctx->task;
1201
1202 lockdep_assert_held(&ctx->mutex);
1203
1204 if (!task) {
1205 /*
1206 * Per cpu events are removed via an smp call and
1207 * the removal is always successful.
1208 */
1209 cpu_function_call(event->cpu, __perf_remove_from_context, event);
1210 return;
1211 }
1212
1213 retry:
1214 if (!task_function_call(task, __perf_remove_from_context, event))
1215 return;
1216
1217 raw_spin_lock_irq(&ctx->lock);
1218 /*
1219 * If we failed to find a running task, but find the context active now
1220 * that we've acquired the ctx->lock, retry.
1221 */
1222 if (ctx->is_active) {
1223 raw_spin_unlock_irq(&ctx->lock);
1224 goto retry;
1225 }
1226
1227 /*
1228 * Since the task isn't running, its safe to remove the event, us
1229 * holding the ctx->lock ensures the task won't get scheduled in.
1230 */
1231 list_del_event(event, ctx);
1232 raw_spin_unlock_irq(&ctx->lock);
1233 }
1234
1235 /*
1236 * Cross CPU call to disable a performance event
1237 */
1238 static int __perf_event_disable(void *info)
1239 {
1240 struct perf_event *event = info;
1241 struct perf_event_context *ctx = event->ctx;
1242 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1243
1244 /*
1245 * If this is a per-task event, need to check whether this
1246 * event's task is the current task on this cpu.
1247 *
1248 * Can trigger due to concurrent perf_event_context_sched_out()
1249 * flipping contexts around.
1250 */
1251 if (ctx->task && cpuctx->task_ctx != ctx)
1252 return -EINVAL;
1253
1254 raw_spin_lock(&ctx->lock);
1255
1256 /*
1257 * If the event is on, turn it off.
1258 * If it is in error state, leave it in error state.
1259 */
1260 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1261 update_context_time(ctx);
1262 update_cgrp_time_from_event(event);
1263 update_group_times(event);
1264 if (event == event->group_leader)
1265 group_sched_out(event, cpuctx, ctx);
1266 else
1267 event_sched_out(event, cpuctx, ctx);
1268 event->state = PERF_EVENT_STATE_OFF;
1269 }
1270
1271 raw_spin_unlock(&ctx->lock);
1272
1273 return 0;
1274 }
1275
1276 /*
1277 * Disable a event.
1278 *
1279 * If event->ctx is a cloned context, callers must make sure that
1280 * every task struct that event->ctx->task could possibly point to
1281 * remains valid. This condition is satisifed when called through
1282 * perf_event_for_each_child or perf_event_for_each because they
1283 * hold the top-level event's child_mutex, so any descendant that
1284 * goes to exit will block in sync_child_event.
1285 * When called from perf_pending_event it's OK because event->ctx
1286 * is the current context on this CPU and preemption is disabled,
1287 * hence we can't get into perf_event_task_sched_out for this context.
1288 */
1289 void perf_event_disable(struct perf_event *event)
1290 {
1291 struct perf_event_context *ctx = event->ctx;
1292 struct task_struct *task = ctx->task;
1293
1294 if (!task) {
1295 /*
1296 * Disable the event on the cpu that it's on
1297 */
1298 cpu_function_call(event->cpu, __perf_event_disable, event);
1299 return;
1300 }
1301
1302 retry:
1303 if (!task_function_call(task, __perf_event_disable, event))
1304 return;
1305
1306 raw_spin_lock_irq(&ctx->lock);
1307 /*
1308 * If the event is still active, we need to retry the cross-call.
1309 */
1310 if (event->state == PERF_EVENT_STATE_ACTIVE) {
1311 raw_spin_unlock_irq(&ctx->lock);
1312 /*
1313 * Reload the task pointer, it might have been changed by
1314 * a concurrent perf_event_context_sched_out().
1315 */
1316 task = ctx->task;
1317 goto retry;
1318 }
1319
1320 /*
1321 * Since we have the lock this context can't be scheduled
1322 * in, so we can change the state safely.
1323 */
1324 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1325 update_group_times(event);
1326 event->state = PERF_EVENT_STATE_OFF;
1327 }
1328 raw_spin_unlock_irq(&ctx->lock);
1329 }
1330 EXPORT_SYMBOL_GPL(perf_event_disable);
1331
1332 static void perf_set_shadow_time(struct perf_event *event,
1333 struct perf_event_context *ctx,
1334 u64 tstamp)
1335 {
1336 /*
1337 * use the correct time source for the time snapshot
1338 *
1339 * We could get by without this by leveraging the
1340 * fact that to get to this function, the caller
1341 * has most likely already called update_context_time()
1342 * and update_cgrp_time_xx() and thus both timestamp
1343 * are identical (or very close). Given that tstamp is,
1344 * already adjusted for cgroup, we could say that:
1345 * tstamp - ctx->timestamp
1346 * is equivalent to
1347 * tstamp - cgrp->timestamp.
1348 *
1349 * Then, in perf_output_read(), the calculation would
1350 * work with no changes because:
1351 * - event is guaranteed scheduled in
1352 * - no scheduled out in between
1353 * - thus the timestamp would be the same
1354 *
1355 * But this is a bit hairy.
1356 *
1357 * So instead, we have an explicit cgroup call to remain
1358 * within the time time source all along. We believe it
1359 * is cleaner and simpler to understand.
1360 */
1361 if (is_cgroup_event(event))
1362 perf_cgroup_set_shadow_time(event, tstamp);
1363 else
1364 event->shadow_ctx_time = tstamp - ctx->timestamp;
1365 }
1366
1367 #define MAX_INTERRUPTS (~0ULL)
1368
1369 static void perf_log_throttle(struct perf_event *event, int enable);
1370
1371 static int
1372 event_sched_in(struct perf_event *event,
1373 struct perf_cpu_context *cpuctx,
1374 struct perf_event_context *ctx)
1375 {
1376 u64 tstamp = perf_event_time(event);
1377
1378 if (event->state <= PERF_EVENT_STATE_OFF)
1379 return 0;
1380
1381 event->state = PERF_EVENT_STATE_ACTIVE;
1382 event->oncpu = smp_processor_id();
1383
1384 /*
1385 * Unthrottle events, since we scheduled we might have missed several
1386 * ticks already, also for a heavily scheduling task there is little
1387 * guarantee it'll get a tick in a timely manner.
1388 */
1389 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1390 perf_log_throttle(event, 1);
1391 event->hw.interrupts = 0;
1392 }
1393
1394 /*
1395 * The new state must be visible before we turn it on in the hardware:
1396 */
1397 smp_wmb();
1398
1399 if (event->pmu->add(event, PERF_EF_START)) {
1400 event->state = PERF_EVENT_STATE_INACTIVE;
1401 event->oncpu = -1;
1402 return -EAGAIN;
1403 }
1404
1405 event->tstamp_running += tstamp - event->tstamp_stopped;
1406
1407 perf_set_shadow_time(event, ctx, tstamp);
1408
1409 if (!is_software_event(event))
1410 cpuctx->active_oncpu++;
1411 ctx->nr_active++;
1412 if (event->attr.freq && event->attr.sample_freq)
1413 ctx->nr_freq++;
1414
1415 if (event->attr.exclusive)
1416 cpuctx->exclusive = 1;
1417
1418 return 0;
1419 }
1420
1421 static int
1422 group_sched_in(struct perf_event *group_event,
1423 struct perf_cpu_context *cpuctx,
1424 struct perf_event_context *ctx)
1425 {
1426 struct perf_event *event, *partial_group = NULL;
1427 struct pmu *pmu = group_event->pmu;
1428 u64 now = ctx->time;
1429 bool simulate = false;
1430
1431 if (group_event->state == PERF_EVENT_STATE_OFF)
1432 return 0;
1433
1434 pmu->start_txn(pmu);
1435
1436 if (event_sched_in(group_event, cpuctx, ctx)) {
1437 pmu->cancel_txn(pmu);
1438 return -EAGAIN;
1439 }
1440
1441 /*
1442 * Schedule in siblings as one group (if any):
1443 */
1444 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1445 if (event_sched_in(event, cpuctx, ctx)) {
1446 partial_group = event;
1447 goto group_error;
1448 }
1449 }
1450
1451 if (!pmu->commit_txn(pmu))
1452 return 0;
1453
1454 group_error:
1455 /*
1456 * Groups can be scheduled in as one unit only, so undo any
1457 * partial group before returning:
1458 * The events up to the failed event are scheduled out normally,
1459 * tstamp_stopped will be updated.
1460 *
1461 * The failed events and the remaining siblings need to have
1462 * their timings updated as if they had gone thru event_sched_in()
1463 * and event_sched_out(). This is required to get consistent timings
1464 * across the group. This also takes care of the case where the group
1465 * could never be scheduled by ensuring tstamp_stopped is set to mark
1466 * the time the event was actually stopped, such that time delta
1467 * calculation in update_event_times() is correct.
1468 */
1469 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1470 if (event == partial_group)
1471 simulate = true;
1472
1473 if (simulate) {
1474 event->tstamp_running += now - event->tstamp_stopped;
1475 event->tstamp_stopped = now;
1476 } else {
1477 event_sched_out(event, cpuctx, ctx);
1478 }
1479 }
1480 event_sched_out(group_event, cpuctx, ctx);
1481
1482 pmu->cancel_txn(pmu);
1483
1484 return -EAGAIN;
1485 }
1486
1487 /*
1488 * Work out whether we can put this event group on the CPU now.
1489 */
1490 static int group_can_go_on(struct perf_event *event,
1491 struct perf_cpu_context *cpuctx,
1492 int can_add_hw)
1493 {
1494 /*
1495 * Groups consisting entirely of software events can always go on.
1496 */
1497 if (event->group_flags & PERF_GROUP_SOFTWARE)
1498 return 1;
1499 /*
1500 * If an exclusive group is already on, no other hardware
1501 * events can go on.
1502 */
1503 if (cpuctx->exclusive)
1504 return 0;
1505 /*
1506 * If this group is exclusive and there are already
1507 * events on the CPU, it can't go on.
1508 */
1509 if (event->attr.exclusive && cpuctx->active_oncpu)
1510 return 0;
1511 /*
1512 * Otherwise, try to add it if all previous groups were able
1513 * to go on.
1514 */
1515 return can_add_hw;
1516 }
1517
1518 static void add_event_to_ctx(struct perf_event *event,
1519 struct perf_event_context *ctx)
1520 {
1521 u64 tstamp = perf_event_time(event);
1522
1523 list_add_event(event, ctx);
1524 perf_group_attach(event);
1525 event->tstamp_enabled = tstamp;
1526 event->tstamp_running = tstamp;
1527 event->tstamp_stopped = tstamp;
1528 }
1529
1530 static void task_ctx_sched_out(struct perf_event_context *ctx);
1531 static void
1532 ctx_sched_in(struct perf_event_context *ctx,
1533 struct perf_cpu_context *cpuctx,
1534 enum event_type_t event_type,
1535 struct task_struct *task);
1536
1537 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
1538 struct perf_event_context *ctx,
1539 struct task_struct *task)
1540 {
1541 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
1542 if (ctx)
1543 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
1544 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
1545 if (ctx)
1546 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
1547 }
1548
1549 /*
1550 * Cross CPU call to install and enable a performance event
1551 *
1552 * Must be called with ctx->mutex held
1553 */
1554 static int __perf_install_in_context(void *info)
1555 {
1556 struct perf_event *event = info;
1557 struct perf_event_context *ctx = event->ctx;
1558 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1559 struct perf_event_context *task_ctx = cpuctx->task_ctx;
1560 struct task_struct *task = current;
1561
1562 perf_ctx_lock(cpuctx, task_ctx);
1563 perf_pmu_disable(cpuctx->ctx.pmu);
1564
1565 /*
1566 * If there was an active task_ctx schedule it out.
1567 */
1568 if (task_ctx)
1569 task_ctx_sched_out(task_ctx);
1570
1571 /*
1572 * If the context we're installing events in is not the
1573 * active task_ctx, flip them.
1574 */
1575 if (ctx->task && task_ctx != ctx) {
1576 if (task_ctx)
1577 raw_spin_unlock(&task_ctx->lock);
1578 raw_spin_lock(&ctx->lock);
1579 task_ctx = ctx;
1580 }
1581
1582 if (task_ctx) {
1583 cpuctx->task_ctx = task_ctx;
1584 task = task_ctx->task;
1585 }
1586
1587 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
1588
1589 update_context_time(ctx);
1590 /*
1591 * update cgrp time only if current cgrp
1592 * matches event->cgrp. Must be done before
1593 * calling add_event_to_ctx()
1594 */
1595 update_cgrp_time_from_event(event);
1596
1597 add_event_to_ctx(event, ctx);
1598
1599 /*
1600 * Schedule everything back in
1601 */
1602 perf_event_sched_in(cpuctx, task_ctx, task);
1603
1604 perf_pmu_enable(cpuctx->ctx.pmu);
1605 perf_ctx_unlock(cpuctx, task_ctx);
1606
1607 return 0;
1608 }
1609
1610 /*
1611 * Attach a performance event to a context
1612 *
1613 * First we add the event to the list with the hardware enable bit
1614 * in event->hw_config cleared.
1615 *
1616 * If the event is attached to a task which is on a CPU we use a smp
1617 * call to enable it in the task context. The task might have been
1618 * scheduled away, but we check this in the smp call again.
1619 */
1620 static void
1621 perf_install_in_context(struct perf_event_context *ctx,
1622 struct perf_event *event,
1623 int cpu)
1624 {
1625 struct task_struct *task = ctx->task;
1626
1627 lockdep_assert_held(&ctx->mutex);
1628
1629 event->ctx = ctx;
1630
1631 if (!task) {
1632 /*
1633 * Per cpu events are installed via an smp call and
1634 * the install is always successful.
1635 */
1636 cpu_function_call(cpu, __perf_install_in_context, event);
1637 return;
1638 }
1639
1640 retry:
1641 if (!task_function_call(task, __perf_install_in_context, event))
1642 return;
1643
1644 raw_spin_lock_irq(&ctx->lock);
1645 /*
1646 * If we failed to find a running task, but find the context active now
1647 * that we've acquired the ctx->lock, retry.
1648 */
1649 if (ctx->is_active) {
1650 raw_spin_unlock_irq(&ctx->lock);
1651 goto retry;
1652 }
1653
1654 /*
1655 * Since the task isn't running, its safe to add the event, us holding
1656 * the ctx->lock ensures the task won't get scheduled in.
1657 */
1658 add_event_to_ctx(event, ctx);
1659 raw_spin_unlock_irq(&ctx->lock);
1660 }
1661
1662 /*
1663 * Put a event into inactive state and update time fields.
1664 * Enabling the leader of a group effectively enables all
1665 * the group members that aren't explicitly disabled, so we
1666 * have to update their ->tstamp_enabled also.
1667 * Note: this works for group members as well as group leaders
1668 * since the non-leader members' sibling_lists will be empty.
1669 */
1670 static void __perf_event_mark_enabled(struct perf_event *event)
1671 {
1672 struct perf_event *sub;
1673 u64 tstamp = perf_event_time(event);
1674
1675 event->state = PERF_EVENT_STATE_INACTIVE;
1676 event->tstamp_enabled = tstamp - event->total_time_enabled;
1677 list_for_each_entry(sub, &event->sibling_list, group_entry) {
1678 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
1679 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
1680 }
1681 }
1682
1683 /*
1684 * Cross CPU call to enable a performance event
1685 */
1686 static int __perf_event_enable(void *info)
1687 {
1688 struct perf_event *event = info;
1689 struct perf_event_context *ctx = event->ctx;
1690 struct perf_event *leader = event->group_leader;
1691 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1692 int err;
1693
1694 if (WARN_ON_ONCE(!ctx->is_active))
1695 return -EINVAL;
1696
1697 raw_spin_lock(&ctx->lock);
1698 update_context_time(ctx);
1699
1700 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1701 goto unlock;
1702
1703 /*
1704 * set current task's cgroup time reference point
1705 */
1706 perf_cgroup_set_timestamp(current, ctx);
1707
1708 __perf_event_mark_enabled(event);
1709
1710 if (!event_filter_match(event)) {
1711 if (is_cgroup_event(event))
1712 perf_cgroup_defer_enabled(event);
1713 goto unlock;
1714 }
1715
1716 /*
1717 * If the event is in a group and isn't the group leader,
1718 * then don't put it on unless the group is on.
1719 */
1720 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
1721 goto unlock;
1722
1723 if (!group_can_go_on(event, cpuctx, 1)) {
1724 err = -EEXIST;
1725 } else {
1726 if (event == leader)
1727 err = group_sched_in(event, cpuctx, ctx);
1728 else
1729 err = event_sched_in(event, cpuctx, ctx);
1730 }
1731
1732 if (err) {
1733 /*
1734 * If this event can't go on and it's part of a
1735 * group, then the whole group has to come off.
1736 */
1737 if (leader != event)
1738 group_sched_out(leader, cpuctx, ctx);
1739 if (leader->attr.pinned) {
1740 update_group_times(leader);
1741 leader->state = PERF_EVENT_STATE_ERROR;
1742 }
1743 }
1744
1745 unlock:
1746 raw_spin_unlock(&ctx->lock);
1747
1748 return 0;
1749 }
1750
1751 /*
1752 * Enable a event.
1753 *
1754 * If event->ctx is a cloned context, callers must make sure that
1755 * every task struct that event->ctx->task could possibly point to
1756 * remains valid. This condition is satisfied when called through
1757 * perf_event_for_each_child or perf_event_for_each as described
1758 * for perf_event_disable.
1759 */
1760 void perf_event_enable(struct perf_event *event)
1761 {
1762 struct perf_event_context *ctx = event->ctx;
1763 struct task_struct *task = ctx->task;
1764
1765 if (!task) {
1766 /*
1767 * Enable the event on the cpu that it's on
1768 */
1769 cpu_function_call(event->cpu, __perf_event_enable, event);
1770 return;
1771 }
1772
1773 raw_spin_lock_irq(&ctx->lock);
1774 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1775 goto out;
1776
1777 /*
1778 * If the event is in error state, clear that first.
1779 * That way, if we see the event in error state below, we
1780 * know that it has gone back into error state, as distinct
1781 * from the task having been scheduled away before the
1782 * cross-call arrived.
1783 */
1784 if (event->state == PERF_EVENT_STATE_ERROR)
1785 event->state = PERF_EVENT_STATE_OFF;
1786
1787 retry:
1788 if (!ctx->is_active) {
1789 __perf_event_mark_enabled(event);
1790 goto out;
1791 }
1792
1793 raw_spin_unlock_irq(&ctx->lock);
1794
1795 if (!task_function_call(task, __perf_event_enable, event))
1796 return;
1797
1798 raw_spin_lock_irq(&ctx->lock);
1799
1800 /*
1801 * If the context is active and the event is still off,
1802 * we need to retry the cross-call.
1803 */
1804 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
1805 /*
1806 * task could have been flipped by a concurrent
1807 * perf_event_context_sched_out()
1808 */
1809 task = ctx->task;
1810 goto retry;
1811 }
1812
1813 out:
1814 raw_spin_unlock_irq(&ctx->lock);
1815 }
1816 EXPORT_SYMBOL_GPL(perf_event_enable);
1817
1818 int perf_event_refresh(struct perf_event *event, int refresh)
1819 {
1820 /*
1821 * not supported on inherited events
1822 */
1823 if (event->attr.inherit || !is_sampling_event(event))
1824 return -EINVAL;
1825
1826 atomic_add(refresh, &event->event_limit);
1827 perf_event_enable(event);
1828
1829 return 0;
1830 }
1831 EXPORT_SYMBOL_GPL(perf_event_refresh);
1832
1833 static void ctx_sched_out(struct perf_event_context *ctx,
1834 struct perf_cpu_context *cpuctx,
1835 enum event_type_t event_type)
1836 {
1837 struct perf_event *event;
1838 int is_active = ctx->is_active;
1839
1840 ctx->is_active &= ~event_type;
1841 if (likely(!ctx->nr_events))
1842 return;
1843
1844 update_context_time(ctx);
1845 update_cgrp_time_from_cpuctx(cpuctx);
1846 if (!ctx->nr_active)
1847 return;
1848
1849 perf_pmu_disable(ctx->pmu);
1850 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
1851 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1852 group_sched_out(event, cpuctx, ctx);
1853 }
1854
1855 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
1856 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1857 group_sched_out(event, cpuctx, ctx);
1858 }
1859 perf_pmu_enable(ctx->pmu);
1860 }
1861
1862 /*
1863 * Test whether two contexts are equivalent, i.e. whether they
1864 * have both been cloned from the same version of the same context
1865 * and they both have the same number of enabled events.
1866 * If the number of enabled events is the same, then the set
1867 * of enabled events should be the same, because these are both
1868 * inherited contexts, therefore we can't access individual events
1869 * in them directly with an fd; we can only enable/disable all
1870 * events via prctl, or enable/disable all events in a family
1871 * via ioctl, which will have the same effect on both contexts.
1872 */
1873 static int context_equiv(struct perf_event_context *ctx1,
1874 struct perf_event_context *ctx2)
1875 {
1876 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1877 && ctx1->parent_gen == ctx2->parent_gen
1878 && !ctx1->pin_count && !ctx2->pin_count;
1879 }
1880
1881 static void __perf_event_sync_stat(struct perf_event *event,
1882 struct perf_event *next_event)
1883 {
1884 u64 value;
1885
1886 if (!event->attr.inherit_stat)
1887 return;
1888
1889 /*
1890 * Update the event value, we cannot use perf_event_read()
1891 * because we're in the middle of a context switch and have IRQs
1892 * disabled, which upsets smp_call_function_single(), however
1893 * we know the event must be on the current CPU, therefore we
1894 * don't need to use it.
1895 */
1896 switch (event->state) {
1897 case PERF_EVENT_STATE_ACTIVE:
1898 event->pmu->read(event);
1899 /* fall-through */
1900
1901 case PERF_EVENT_STATE_INACTIVE:
1902 update_event_times(event);
1903 break;
1904
1905 default:
1906 break;
1907 }
1908
1909 /*
1910 * In order to keep per-task stats reliable we need to flip the event
1911 * values when we flip the contexts.
1912 */
1913 value = local64_read(&next_event->count);
1914 value = local64_xchg(&event->count, value);
1915 local64_set(&next_event->count, value);
1916
1917 swap(event->total_time_enabled, next_event->total_time_enabled);
1918 swap(event->total_time_running, next_event->total_time_running);
1919
1920 /*
1921 * Since we swizzled the values, update the user visible data too.
1922 */
1923 perf_event_update_userpage(event);
1924 perf_event_update_userpage(next_event);
1925 }
1926
1927 #define list_next_entry(pos, member) \
1928 list_entry(pos->member.next, typeof(*pos), member)
1929
1930 static void perf_event_sync_stat(struct perf_event_context *ctx,
1931 struct perf_event_context *next_ctx)
1932 {
1933 struct perf_event *event, *next_event;
1934
1935 if (!ctx->nr_stat)
1936 return;
1937
1938 update_context_time(ctx);
1939
1940 event = list_first_entry(&ctx->event_list,
1941 struct perf_event, event_entry);
1942
1943 next_event = list_first_entry(&next_ctx->event_list,
1944 struct perf_event, event_entry);
1945
1946 while (&event->event_entry != &ctx->event_list &&
1947 &next_event->event_entry != &next_ctx->event_list) {
1948
1949 __perf_event_sync_stat(event, next_event);
1950
1951 event = list_next_entry(event, event_entry);
1952 next_event = list_next_entry(next_event, event_entry);
1953 }
1954 }
1955
1956 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
1957 struct task_struct *next)
1958 {
1959 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
1960 struct perf_event_context *next_ctx;
1961 struct perf_event_context *parent;
1962 struct perf_cpu_context *cpuctx;
1963 int do_switch = 1;
1964
1965 if (likely(!ctx))
1966 return;
1967
1968 cpuctx = __get_cpu_context(ctx);
1969 if (!cpuctx->task_ctx)
1970 return;
1971
1972 rcu_read_lock();
1973 parent = rcu_dereference(ctx->parent_ctx);
1974 next_ctx = next->perf_event_ctxp[ctxn];
1975 if (parent && next_ctx &&
1976 rcu_dereference(next_ctx->parent_ctx) == parent) {
1977 /*
1978 * Looks like the two contexts are clones, so we might be
1979 * able to optimize the context switch. We lock both
1980 * contexts and check that they are clones under the
1981 * lock (including re-checking that neither has been
1982 * uncloned in the meantime). It doesn't matter which
1983 * order we take the locks because no other cpu could
1984 * be trying to lock both of these tasks.
1985 */
1986 raw_spin_lock(&ctx->lock);
1987 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1988 if (context_equiv(ctx, next_ctx)) {
1989 /*
1990 * XXX do we need a memory barrier of sorts
1991 * wrt to rcu_dereference() of perf_event_ctxp
1992 */
1993 task->perf_event_ctxp[ctxn] = next_ctx;
1994 next->perf_event_ctxp[ctxn] = ctx;
1995 ctx->task = next;
1996 next_ctx->task = task;
1997 do_switch = 0;
1998
1999 perf_event_sync_stat(ctx, next_ctx);
2000 }
2001 raw_spin_unlock(&next_ctx->lock);
2002 raw_spin_unlock(&ctx->lock);
2003 }
2004 rcu_read_unlock();
2005
2006 if (do_switch) {
2007 raw_spin_lock(&ctx->lock);
2008 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2009 cpuctx->task_ctx = NULL;
2010 raw_spin_unlock(&ctx->lock);
2011 }
2012 }
2013
2014 #define for_each_task_context_nr(ctxn) \
2015 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2016
2017 /*
2018 * Called from scheduler to remove the events of the current task,
2019 * with interrupts disabled.
2020 *
2021 * We stop each event and update the event value in event->count.
2022 *
2023 * This does not protect us against NMI, but disable()
2024 * sets the disabled bit in the control field of event _before_
2025 * accessing the event control register. If a NMI hits, then it will
2026 * not restart the event.
2027 */
2028 void __perf_event_task_sched_out(struct task_struct *task,
2029 struct task_struct *next)
2030 {
2031 int ctxn;
2032
2033 for_each_task_context_nr(ctxn)
2034 perf_event_context_sched_out(task, ctxn, next);
2035
2036 /*
2037 * if cgroup events exist on this CPU, then we need
2038 * to check if we have to switch out PMU state.
2039 * cgroup event are system-wide mode only
2040 */
2041 if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2042 perf_cgroup_sched_out(task, next);
2043 }
2044
2045 static void task_ctx_sched_out(struct perf_event_context *ctx)
2046 {
2047 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2048
2049 if (!cpuctx->task_ctx)
2050 return;
2051
2052 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2053 return;
2054
2055 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2056 cpuctx->task_ctx = NULL;
2057 }
2058
2059 /*
2060 * Called with IRQs disabled
2061 */
2062 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2063 enum event_type_t event_type)
2064 {
2065 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2066 }
2067
2068 static void
2069 ctx_pinned_sched_in(struct perf_event_context *ctx,
2070 struct perf_cpu_context *cpuctx)
2071 {
2072 struct perf_event *event;
2073
2074 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2075 if (event->state <= PERF_EVENT_STATE_OFF)
2076 continue;
2077 if (!event_filter_match(event))
2078 continue;
2079
2080 /* may need to reset tstamp_enabled */
2081 if (is_cgroup_event(event))
2082 perf_cgroup_mark_enabled(event, ctx);
2083
2084 if (group_can_go_on(event, cpuctx, 1))
2085 group_sched_in(event, cpuctx, ctx);
2086
2087 /*
2088 * If this pinned group hasn't been scheduled,
2089 * put it in error state.
2090 */
2091 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2092 update_group_times(event);
2093 event->state = PERF_EVENT_STATE_ERROR;
2094 }
2095 }
2096 }
2097
2098 static void
2099 ctx_flexible_sched_in(struct perf_event_context *ctx,
2100 struct perf_cpu_context *cpuctx)
2101 {
2102 struct perf_event *event;
2103 int can_add_hw = 1;
2104
2105 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2106 /* Ignore events in OFF or ERROR state */
2107 if (event->state <= PERF_EVENT_STATE_OFF)
2108 continue;
2109 /*
2110 * Listen to the 'cpu' scheduling filter constraint
2111 * of events:
2112 */
2113 if (!event_filter_match(event))
2114 continue;
2115
2116 /* may need to reset tstamp_enabled */
2117 if (is_cgroup_event(event))
2118 perf_cgroup_mark_enabled(event, ctx);
2119
2120 if (group_can_go_on(event, cpuctx, can_add_hw)) {
2121 if (group_sched_in(event, cpuctx, ctx))
2122 can_add_hw = 0;
2123 }
2124 }
2125 }
2126
2127 static void
2128 ctx_sched_in(struct perf_event_context *ctx,
2129 struct perf_cpu_context *cpuctx,
2130 enum event_type_t event_type,
2131 struct task_struct *task)
2132 {
2133 u64 now;
2134 int is_active = ctx->is_active;
2135
2136 ctx->is_active |= event_type;
2137 if (likely(!ctx->nr_events))
2138 return;
2139
2140 now = perf_clock();
2141 ctx->timestamp = now;
2142 perf_cgroup_set_timestamp(task, ctx);
2143 /*
2144 * First go through the list and put on any pinned groups
2145 * in order to give them the best chance of going on.
2146 */
2147 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2148 ctx_pinned_sched_in(ctx, cpuctx);
2149
2150 /* Then walk through the lower prio flexible groups */
2151 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2152 ctx_flexible_sched_in(ctx, cpuctx);
2153 }
2154
2155 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
2156 enum event_type_t event_type,
2157 struct task_struct *task)
2158 {
2159 struct perf_event_context *ctx = &cpuctx->ctx;
2160
2161 ctx_sched_in(ctx, cpuctx, event_type, task);
2162 }
2163
2164 static void perf_event_context_sched_in(struct perf_event_context *ctx,
2165 struct task_struct *task)
2166 {
2167 struct perf_cpu_context *cpuctx;
2168
2169 cpuctx = __get_cpu_context(ctx);
2170 if (cpuctx->task_ctx == ctx)
2171 return;
2172
2173 perf_ctx_lock(cpuctx, ctx);
2174 perf_pmu_disable(ctx->pmu);
2175 /*
2176 * We want to keep the following priority order:
2177 * cpu pinned (that don't need to move), task pinned,
2178 * cpu flexible, task flexible.
2179 */
2180 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2181
2182 if (ctx->nr_events)
2183 cpuctx->task_ctx = ctx;
2184
2185 perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2186
2187 perf_pmu_enable(ctx->pmu);
2188 perf_ctx_unlock(cpuctx, ctx);
2189
2190 /*
2191 * Since these rotations are per-cpu, we need to ensure the
2192 * cpu-context we got scheduled on is actually rotating.
2193 */
2194 perf_pmu_rotate_start(ctx->pmu);
2195 }
2196
2197 /*
2198 * Called from scheduler to add the events of the current task
2199 * with interrupts disabled.
2200 *
2201 * We restore the event value and then enable it.
2202 *
2203 * This does not protect us against NMI, but enable()
2204 * sets the enabled bit in the control field of event _before_
2205 * accessing the event control register. If a NMI hits, then it will
2206 * keep the event running.
2207 */
2208 void __perf_event_task_sched_in(struct task_struct *prev,
2209 struct task_struct *task)
2210 {
2211 struct perf_event_context *ctx;
2212 int ctxn;
2213
2214 for_each_task_context_nr(ctxn) {
2215 ctx = task->perf_event_ctxp[ctxn];
2216 if (likely(!ctx))
2217 continue;
2218
2219 perf_event_context_sched_in(ctx, task);
2220 }
2221 /*
2222 * if cgroup events exist on this CPU, then we need
2223 * to check if we have to switch in PMU state.
2224 * cgroup event are system-wide mode only
2225 */
2226 if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2227 perf_cgroup_sched_in(prev, task);
2228 }
2229
2230 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2231 {
2232 u64 frequency = event->attr.sample_freq;
2233 u64 sec = NSEC_PER_SEC;
2234 u64 divisor, dividend;
2235
2236 int count_fls, nsec_fls, frequency_fls, sec_fls;
2237
2238 count_fls = fls64(count);
2239 nsec_fls = fls64(nsec);
2240 frequency_fls = fls64(frequency);
2241 sec_fls = 30;
2242
2243 /*
2244 * We got @count in @nsec, with a target of sample_freq HZ
2245 * the target period becomes:
2246 *
2247 * @count * 10^9
2248 * period = -------------------
2249 * @nsec * sample_freq
2250 *
2251 */
2252
2253 /*
2254 * Reduce accuracy by one bit such that @a and @b converge
2255 * to a similar magnitude.
2256 */
2257 #define REDUCE_FLS(a, b) \
2258 do { \
2259 if (a##_fls > b##_fls) { \
2260 a >>= 1; \
2261 a##_fls--; \
2262 } else { \
2263 b >>= 1; \
2264 b##_fls--; \
2265 } \
2266 } while (0)
2267
2268 /*
2269 * Reduce accuracy until either term fits in a u64, then proceed with
2270 * the other, so that finally we can do a u64/u64 division.
2271 */
2272 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2273 REDUCE_FLS(nsec, frequency);
2274 REDUCE_FLS(sec, count);
2275 }
2276
2277 if (count_fls + sec_fls > 64) {
2278 divisor = nsec * frequency;
2279
2280 while (count_fls + sec_fls > 64) {
2281 REDUCE_FLS(count, sec);
2282 divisor >>= 1;
2283 }
2284
2285 dividend = count * sec;
2286 } else {
2287 dividend = count * sec;
2288
2289 while (nsec_fls + frequency_fls > 64) {
2290 REDUCE_FLS(nsec, frequency);
2291 dividend >>= 1;
2292 }
2293
2294 divisor = nsec * frequency;
2295 }
2296
2297 if (!divisor)
2298 return dividend;
2299
2300 return div64_u64(dividend, divisor);
2301 }
2302
2303 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
2304 {
2305 struct hw_perf_event *hwc = &event->hw;
2306 s64 period, sample_period;
2307 s64 delta;
2308
2309 period = perf_calculate_period(event, nsec, count);
2310
2311 delta = (s64)(period - hwc->sample_period);
2312 delta = (delta + 7) / 8; /* low pass filter */
2313
2314 sample_period = hwc->sample_period + delta;
2315
2316 if (!sample_period)
2317 sample_period = 1;
2318
2319 hwc->sample_period = sample_period;
2320
2321 if (local64_read(&hwc->period_left) > 8*sample_period) {
2322 event->pmu->stop(event, PERF_EF_UPDATE);
2323 local64_set(&hwc->period_left, 0);
2324 event->pmu->start(event, PERF_EF_RELOAD);
2325 }
2326 }
2327
2328 static void perf_ctx_adjust_freq(struct perf_event_context *ctx, u64 period)
2329 {
2330 struct perf_event *event;
2331 struct hw_perf_event *hwc;
2332 u64 interrupts, now;
2333 s64 delta;
2334
2335 if (!ctx->nr_freq)
2336 return;
2337
2338 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2339 if (event->state != PERF_EVENT_STATE_ACTIVE)
2340 continue;
2341
2342 if (!event_filter_match(event))
2343 continue;
2344
2345 hwc = &event->hw;
2346
2347 interrupts = hwc->interrupts;
2348 hwc->interrupts = 0;
2349
2350 /*
2351 * unthrottle events on the tick
2352 */
2353 if (interrupts == MAX_INTERRUPTS) {
2354 perf_log_throttle(event, 1);
2355 event->pmu->start(event, 0);
2356 }
2357
2358 if (!event->attr.freq || !event->attr.sample_freq)
2359 continue;
2360
2361 event->pmu->read(event);
2362 now = local64_read(&event->count);
2363 delta = now - hwc->freq_count_stamp;
2364 hwc->freq_count_stamp = now;
2365
2366 if (delta > 0)
2367 perf_adjust_period(event, period, delta);
2368 }
2369 }
2370
2371 /*
2372 * Round-robin a context's events:
2373 */
2374 static void rotate_ctx(struct perf_event_context *ctx)
2375 {
2376 /*
2377 * Rotate the first entry last of non-pinned groups. Rotation might be
2378 * disabled by the inheritance code.
2379 */
2380 if (!ctx->rotate_disable)
2381 list_rotate_left(&ctx->flexible_groups);
2382 }
2383
2384 /*
2385 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
2386 * because they're strictly cpu affine and rotate_start is called with IRQs
2387 * disabled, while rotate_context is called from IRQ context.
2388 */
2389 static void perf_rotate_context(struct perf_cpu_context *cpuctx)
2390 {
2391 u64 interval = (u64)cpuctx->jiffies_interval * TICK_NSEC;
2392 struct perf_event_context *ctx = NULL;
2393 int rotate = 0, remove = 1, freq = 0;
2394
2395 if (cpuctx->ctx.nr_events) {
2396 remove = 0;
2397 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
2398 rotate = 1;
2399 if (cpuctx->ctx.nr_freq)
2400 freq = 1;
2401 }
2402
2403 ctx = cpuctx->task_ctx;
2404 if (ctx && ctx->nr_events) {
2405 remove = 0;
2406 if (ctx->nr_events != ctx->nr_active)
2407 rotate = 1;
2408 if (ctx->nr_freq)
2409 freq = 1;
2410 }
2411
2412 if (!rotate && !freq)
2413 goto done;
2414
2415 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2416 perf_pmu_disable(cpuctx->ctx.pmu);
2417
2418 if (freq) {
2419 perf_ctx_adjust_freq(&cpuctx->ctx, interval);
2420 if (ctx)
2421 perf_ctx_adjust_freq(ctx, interval);
2422 }
2423
2424 if (rotate) {
2425 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2426 if (ctx)
2427 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
2428
2429 rotate_ctx(&cpuctx->ctx);
2430 if (ctx)
2431 rotate_ctx(ctx);
2432
2433 perf_event_sched_in(cpuctx, ctx, current);
2434 }
2435
2436 perf_pmu_enable(cpuctx->ctx.pmu);
2437 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2438
2439 done:
2440 if (remove)
2441 list_del_init(&cpuctx->rotation_list);
2442 }
2443
2444 void perf_event_task_tick(void)
2445 {
2446 struct list_head *head = &__get_cpu_var(rotation_list);
2447 struct perf_cpu_context *cpuctx, *tmp;
2448
2449 WARN_ON(!irqs_disabled());
2450
2451 list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
2452 if (cpuctx->jiffies_interval == 1 ||
2453 !(jiffies % cpuctx->jiffies_interval))
2454 perf_rotate_context(cpuctx);
2455 }
2456 }
2457
2458 static int event_enable_on_exec(struct perf_event *event,
2459 struct perf_event_context *ctx)
2460 {
2461 if (!event->attr.enable_on_exec)
2462 return 0;
2463
2464 event->attr.enable_on_exec = 0;
2465 if (event->state >= PERF_EVENT_STATE_INACTIVE)
2466 return 0;
2467
2468 __perf_event_mark_enabled(event);
2469
2470 return 1;
2471 }
2472
2473 /*
2474 * Enable all of a task's events that have been marked enable-on-exec.
2475 * This expects task == current.
2476 */
2477 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
2478 {
2479 struct perf_event *event;
2480 unsigned long flags;
2481 int enabled = 0;
2482 int ret;
2483
2484 local_irq_save(flags);
2485 if (!ctx || !ctx->nr_events)
2486 goto out;
2487
2488 /*
2489 * We must ctxsw out cgroup events to avoid conflict
2490 * when invoking perf_task_event_sched_in() later on
2491 * in this function. Otherwise we end up trying to
2492 * ctxswin cgroup events which are already scheduled
2493 * in.
2494 */
2495 perf_cgroup_sched_out(current, NULL);
2496
2497 raw_spin_lock(&ctx->lock);
2498 task_ctx_sched_out(ctx);
2499
2500 list_for_each_entry(event, &ctx->event_list, event_entry) {
2501 ret = event_enable_on_exec(event, ctx);
2502 if (ret)
2503 enabled = 1;
2504 }
2505
2506 /*
2507 * Unclone this context if we enabled any event.
2508 */
2509 if (enabled)
2510 unclone_ctx(ctx);
2511
2512 raw_spin_unlock(&ctx->lock);
2513
2514 /*
2515 * Also calls ctxswin for cgroup events, if any:
2516 */
2517 perf_event_context_sched_in(ctx, ctx->task);
2518 out:
2519 local_irq_restore(flags);
2520 }
2521
2522 /*
2523 * Cross CPU call to read the hardware event
2524 */
2525 static void __perf_event_read(void *info)
2526 {
2527 struct perf_event *event = info;
2528 struct perf_event_context *ctx = event->ctx;
2529 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2530
2531 /*
2532 * If this is a task context, we need to check whether it is
2533 * the current task context of this cpu. If not it has been
2534 * scheduled out before the smp call arrived. In that case
2535 * event->count would have been updated to a recent sample
2536 * when the event was scheduled out.
2537 */
2538 if (ctx->task && cpuctx->task_ctx != ctx)
2539 return;
2540
2541 raw_spin_lock(&ctx->lock);
2542 if (ctx->is_active) {
2543 update_context_time(ctx);
2544 update_cgrp_time_from_event(event);
2545 }
2546 update_event_times(event);
2547 if (event->state == PERF_EVENT_STATE_ACTIVE)
2548 event->pmu->read(event);
2549 raw_spin_unlock(&ctx->lock);
2550 }
2551
2552 static inline u64 perf_event_count(struct perf_event *event)
2553 {
2554 return local64_read(&event->count) + atomic64_read(&event->child_count);
2555 }
2556
2557 static u64 perf_event_read(struct perf_event *event)
2558 {
2559 /*
2560 * If event is enabled and currently active on a CPU, update the
2561 * value in the event structure:
2562 */
2563 if (event->state == PERF_EVENT_STATE_ACTIVE) {
2564 smp_call_function_single(event->oncpu,
2565 __perf_event_read, event, 1);
2566 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2567 struct perf_event_context *ctx = event->ctx;
2568 unsigned long flags;
2569
2570 raw_spin_lock_irqsave(&ctx->lock, flags);
2571 /*
2572 * may read while context is not active
2573 * (e.g., thread is blocked), in that case
2574 * we cannot update context time
2575 */
2576 if (ctx->is_active) {
2577 update_context_time(ctx);
2578 update_cgrp_time_from_event(event);
2579 }
2580 update_event_times(event);
2581 raw_spin_unlock_irqrestore(&ctx->lock, flags);
2582 }
2583
2584 return perf_event_count(event);
2585 }
2586
2587 /*
2588 * Initialize the perf_event context in a task_struct:
2589 */
2590 static void __perf_event_init_context(struct perf_event_context *ctx)
2591 {
2592 raw_spin_lock_init(&ctx->lock);
2593 mutex_init(&ctx->mutex);
2594 INIT_LIST_HEAD(&ctx->pinned_groups);
2595 INIT_LIST_HEAD(&ctx->flexible_groups);
2596 INIT_LIST_HEAD(&ctx->event_list);
2597 atomic_set(&ctx->refcount, 1);
2598 }
2599
2600 static struct perf_event_context *
2601 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
2602 {
2603 struct perf_event_context *ctx;
2604
2605 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
2606 if (!ctx)
2607 return NULL;
2608
2609 __perf_event_init_context(ctx);
2610 if (task) {
2611 ctx->task = task;
2612 get_task_struct(task);
2613 }
2614 ctx->pmu = pmu;
2615
2616 return ctx;
2617 }
2618
2619 static struct task_struct *
2620 find_lively_task_by_vpid(pid_t vpid)
2621 {
2622 struct task_struct *task;
2623 int err;
2624
2625 rcu_read_lock();
2626 if (!vpid)
2627 task = current;
2628 else
2629 task = find_task_by_vpid(vpid);
2630 if (task)
2631 get_task_struct(task);
2632 rcu_read_unlock();
2633
2634 if (!task)
2635 return ERR_PTR(-ESRCH);
2636
2637 /* Reuse ptrace permission checks for now. */
2638 err = -EACCES;
2639 if (!ptrace_may_access(task, PTRACE_MODE_READ))
2640 goto errout;
2641
2642 return task;
2643 errout:
2644 put_task_struct(task);
2645 return ERR_PTR(err);
2646
2647 }
2648
2649 /*
2650 * Returns a matching context with refcount and pincount.
2651 */
2652 static struct perf_event_context *
2653 find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
2654 {
2655 struct perf_event_context *ctx;
2656 struct perf_cpu_context *cpuctx;
2657 unsigned long flags;
2658 int ctxn, err;
2659
2660 if (!task) {
2661 /* Must be root to operate on a CPU event: */
2662 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
2663 return ERR_PTR(-EACCES);
2664
2665 /*
2666 * We could be clever and allow to attach a event to an
2667 * offline CPU and activate it when the CPU comes up, but
2668 * that's for later.
2669 */
2670 if (!cpu_online(cpu))
2671 return ERR_PTR(-ENODEV);
2672
2673 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
2674 ctx = &cpuctx->ctx;
2675 get_ctx(ctx);
2676 ++ctx->pin_count;
2677
2678 return ctx;
2679 }
2680
2681 err = -EINVAL;
2682 ctxn = pmu->task_ctx_nr;
2683 if (ctxn < 0)
2684 goto errout;
2685
2686 retry:
2687 ctx = perf_lock_task_context(task, ctxn, &flags);
2688 if (ctx) {
2689 unclone_ctx(ctx);
2690 ++ctx->pin_count;
2691 raw_spin_unlock_irqrestore(&ctx->lock, flags);
2692 } else {
2693 ctx = alloc_perf_context(pmu, task);
2694 err = -ENOMEM;
2695 if (!ctx)
2696 goto errout;
2697
2698 err = 0;
2699 mutex_lock(&task->perf_event_mutex);
2700 /*
2701 * If it has already passed perf_event_exit_task().
2702 * we must see PF_EXITING, it takes this mutex too.
2703 */
2704 if (task->flags & PF_EXITING)
2705 err = -ESRCH;
2706 else if (task->perf_event_ctxp[ctxn])
2707 err = -EAGAIN;
2708 else {
2709 get_ctx(ctx);
2710 ++ctx->pin_count;
2711 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
2712 }
2713 mutex_unlock(&task->perf_event_mutex);
2714
2715 if (unlikely(err)) {
2716 put_ctx(ctx);
2717
2718 if (err == -EAGAIN)
2719 goto retry;
2720 goto errout;
2721 }
2722 }
2723
2724 return ctx;
2725
2726 errout:
2727 return ERR_PTR(err);
2728 }
2729
2730 static void perf_event_free_filter(struct perf_event *event);
2731
2732 static void free_event_rcu(struct rcu_head *head)
2733 {
2734 struct perf_event *event;
2735
2736 event = container_of(head, struct perf_event, rcu_head);
2737 if (event->ns)
2738 put_pid_ns(event->ns);
2739 perf_event_free_filter(event);
2740 kfree(event);
2741 }
2742
2743 static void ring_buffer_put(struct ring_buffer *rb);
2744
2745 static void free_event(struct perf_event *event)
2746 {
2747 irq_work_sync(&event->pending);
2748
2749 if (!event->parent) {
2750 if (event->attach_state & PERF_ATTACH_TASK)
2751 jump_label_dec_deferred(&perf_sched_events);
2752 if (event->attr.mmap || event->attr.mmap_data)
2753 atomic_dec(&nr_mmap_events);
2754 if (event->attr.comm)
2755 atomic_dec(&nr_comm_events);
2756 if (event->attr.task)
2757 atomic_dec(&nr_task_events);
2758 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
2759 put_callchain_buffers();
2760 if (is_cgroup_event(event)) {
2761 atomic_dec(&per_cpu(perf_cgroup_events, event->cpu));
2762 jump_label_dec_deferred(&perf_sched_events);
2763 }
2764 }
2765
2766 if (event->rb) {
2767 ring_buffer_put(event->rb);
2768 event->rb = NULL;
2769 }
2770
2771 if (is_cgroup_event(event))
2772 perf_detach_cgroup(event);
2773
2774 if (event->destroy)
2775 event->destroy(event);
2776
2777 if (event->ctx)
2778 put_ctx(event->ctx);
2779
2780 call_rcu(&event->rcu_head, free_event_rcu);
2781 }
2782
2783 int perf_event_release_kernel(struct perf_event *event)
2784 {
2785 struct perf_event_context *ctx = event->ctx;
2786
2787 WARN_ON_ONCE(ctx->parent_ctx);
2788 /*
2789 * There are two ways this annotation is useful:
2790 *
2791 * 1) there is a lock recursion from perf_event_exit_task
2792 * see the comment there.
2793 *
2794 * 2) there is a lock-inversion with mmap_sem through
2795 * perf_event_read_group(), which takes faults while
2796 * holding ctx->mutex, however this is called after
2797 * the last filedesc died, so there is no possibility
2798 * to trigger the AB-BA case.
2799 */
2800 mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
2801 raw_spin_lock_irq(&ctx->lock);
2802 perf_group_detach(event);
2803 raw_spin_unlock_irq(&ctx->lock);
2804 perf_remove_from_context(event);
2805 mutex_unlock(&ctx->mutex);
2806
2807 free_event(event);
2808
2809 return 0;
2810 }
2811 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
2812
2813 /*
2814 * Called when the last reference to the file is gone.
2815 */
2816 static int perf_release(struct inode *inode, struct file *file)
2817 {
2818 struct perf_event *event = file->private_data;
2819 struct task_struct *owner;
2820
2821 file->private_data = NULL;
2822
2823 rcu_read_lock();
2824 owner = ACCESS_ONCE(event->owner);
2825 /*
2826 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
2827 * !owner it means the list deletion is complete and we can indeed
2828 * free this event, otherwise we need to serialize on
2829 * owner->perf_event_mutex.
2830 */
2831 smp_read_barrier_depends();
2832 if (owner) {
2833 /*
2834 * Since delayed_put_task_struct() also drops the last
2835 * task reference we can safely take a new reference
2836 * while holding the rcu_read_lock().
2837 */
2838 get_task_struct(owner);
2839 }
2840 rcu_read_unlock();
2841
2842 if (owner) {
2843 mutex_lock(&owner->perf_event_mutex);
2844 /*
2845 * We have to re-check the event->owner field, if it is cleared
2846 * we raced with perf_event_exit_task(), acquiring the mutex
2847 * ensured they're done, and we can proceed with freeing the
2848 * event.
2849 */
2850 if (event->owner)
2851 list_del_init(&event->owner_entry);
2852 mutex_unlock(&owner->perf_event_mutex);
2853 put_task_struct(owner);
2854 }
2855
2856 return perf_event_release_kernel(event);
2857 }
2858
2859 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
2860 {
2861 struct perf_event *child;
2862 u64 total = 0;
2863
2864 *enabled = 0;
2865 *running = 0;
2866
2867 mutex_lock(&event->child_mutex);
2868 total += perf_event_read(event);
2869 *enabled += event->total_time_enabled +
2870 atomic64_read(&event->child_total_time_enabled);
2871 *running += event->total_time_running +
2872 atomic64_read(&event->child_total_time_running);
2873
2874 list_for_each_entry(child, &event->child_list, child_list) {
2875 total += perf_event_read(child);
2876 *enabled += child->total_time_enabled;
2877 *running += child->total_time_running;
2878 }
2879 mutex_unlock(&event->child_mutex);
2880
2881 return total;
2882 }
2883 EXPORT_SYMBOL_GPL(perf_event_read_value);
2884
2885 static int perf_event_read_group(struct perf_event *event,
2886 u64 read_format, char __user *buf)
2887 {
2888 struct perf_event *leader = event->group_leader, *sub;
2889 int n = 0, size = 0, ret = -EFAULT;
2890 struct perf_event_context *ctx = leader->ctx;
2891 u64 values[5];
2892 u64 count, enabled, running;
2893
2894 mutex_lock(&ctx->mutex);
2895 count = perf_event_read_value(leader, &enabled, &running);
2896
2897 values[n++] = 1 + leader->nr_siblings;
2898 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2899 values[n++] = enabled;
2900 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2901 values[n++] = running;
2902 values[n++] = count;
2903 if (read_format & PERF_FORMAT_ID)
2904 values[n++] = primary_event_id(leader);
2905
2906 size = n * sizeof(u64);
2907
2908 if (copy_to_user(buf, values, size))
2909 goto unlock;
2910
2911 ret = size;
2912
2913 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
2914 n = 0;
2915
2916 values[n++] = perf_event_read_value(sub, &enabled, &running);
2917 if (read_format & PERF_FORMAT_ID)
2918 values[n++] = primary_event_id(sub);
2919
2920 size = n * sizeof(u64);
2921
2922 if (copy_to_user(buf + ret, values, size)) {
2923 ret = -EFAULT;
2924 goto unlock;
2925 }
2926
2927 ret += size;
2928 }
2929 unlock:
2930 mutex_unlock(&ctx->mutex);
2931
2932 return ret;
2933 }
2934
2935 static int perf_event_read_one(struct perf_event *event,
2936 u64 read_format, char __user *buf)
2937 {
2938 u64 enabled, running;
2939 u64 values[4];
2940 int n = 0;
2941
2942 values[n++] = perf_event_read_value(event, &enabled, &running);
2943 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2944 values[n++] = enabled;
2945 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2946 values[n++] = running;
2947 if (read_format & PERF_FORMAT_ID)
2948 values[n++] = primary_event_id(event);
2949
2950 if (copy_to_user(buf, values, n * sizeof(u64)))
2951 return -EFAULT;
2952
2953 return n * sizeof(u64);
2954 }
2955
2956 /*
2957 * Read the performance event - simple non blocking version for now
2958 */
2959 static ssize_t
2960 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
2961 {
2962 u64 read_format = event->attr.read_format;
2963 int ret;
2964
2965 /*
2966 * Return end-of-file for a read on a event that is in
2967 * error state (i.e. because it was pinned but it couldn't be
2968 * scheduled on to the CPU at some point).
2969 */
2970 if (event->state == PERF_EVENT_STATE_ERROR)
2971 return 0;
2972
2973 if (count < event->read_size)
2974 return -ENOSPC;
2975
2976 WARN_ON_ONCE(event->ctx->parent_ctx);
2977 if (read_format & PERF_FORMAT_GROUP)
2978 ret = perf_event_read_group(event, read_format, buf);
2979 else
2980 ret = perf_event_read_one(event, read_format, buf);
2981
2982 return ret;
2983 }
2984
2985 static ssize_t
2986 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
2987 {
2988 struct perf_event *event = file->private_data;
2989
2990 return perf_read_hw(event, buf, count);
2991 }
2992
2993 static unsigned int perf_poll(struct file *file, poll_table *wait)
2994 {
2995 struct perf_event *event = file->private_data;
2996 struct ring_buffer *rb;
2997 unsigned int events = POLL_HUP;
2998
2999 /*
3000 * Race between perf_event_set_output() and perf_poll(): perf_poll()
3001 * grabs the rb reference but perf_event_set_output() overrides it.
3002 * Here is the timeline for two threads T1, T2:
3003 * t0: T1, rb = rcu_dereference(event->rb)
3004 * t1: T2, old_rb = event->rb
3005 * t2: T2, event->rb = new rb
3006 * t3: T2, ring_buffer_detach(old_rb)
3007 * t4: T1, ring_buffer_attach(rb1)
3008 * t5: T1, poll_wait(event->waitq)
3009 *
3010 * To avoid this problem, we grab mmap_mutex in perf_poll()
3011 * thereby ensuring that the assignment of the new ring buffer
3012 * and the detachment of the old buffer appear atomic to perf_poll()
3013 */
3014 mutex_lock(&event->mmap_mutex);
3015
3016 rcu_read_lock();
3017 rb = rcu_dereference(event->rb);
3018 if (rb) {
3019 ring_buffer_attach(event, rb);
3020 events = atomic_xchg(&rb->poll, 0);
3021 }
3022 rcu_read_unlock();
3023
3024 mutex_unlock(&event->mmap_mutex);
3025
3026 poll_wait(file, &event->waitq, wait);
3027
3028 return events;
3029 }
3030
3031 static void perf_event_reset(struct perf_event *event)
3032 {
3033 (void)perf_event_read(event);
3034 local64_set(&event->count, 0);
3035 perf_event_update_userpage(event);
3036 }
3037
3038 /*
3039 * Holding the top-level event's child_mutex means that any
3040 * descendant process that has inherited this event will block
3041 * in sync_child_event if it goes to exit, thus satisfying the
3042 * task existence requirements of perf_event_enable/disable.
3043 */
3044 static void perf_event_for_each_child(struct perf_event *event,
3045 void (*func)(struct perf_event *))
3046 {
3047 struct perf_event *child;
3048
3049 WARN_ON_ONCE(event->ctx->parent_ctx);
3050 mutex_lock(&event->child_mutex);
3051 func(event);
3052 list_for_each_entry(child, &event->child_list, child_list)
3053 func(child);
3054 mutex_unlock(&event->child_mutex);
3055 }
3056
3057 static void perf_event_for_each(struct perf_event *event,
3058 void (*func)(struct perf_event *))
3059 {
3060 struct perf_event_context *ctx = event->ctx;
3061 struct perf_event *sibling;
3062
3063 WARN_ON_ONCE(ctx->parent_ctx);
3064 mutex_lock(&ctx->mutex);
3065 event = event->group_leader;
3066
3067 perf_event_for_each_child(event, func);
3068 func(event);
3069 list_for_each_entry(sibling, &event->sibling_list, group_entry)
3070 perf_event_for_each_child(event, func);
3071 mutex_unlock(&ctx->mutex);
3072 }
3073
3074 static int perf_event_period(struct perf_event *event, u64 __user *arg)
3075 {
3076 struct perf_event_context *ctx = event->ctx;
3077 int ret = 0;
3078 u64 value;
3079
3080 if (!is_sampling_event(event))
3081 return -EINVAL;
3082
3083 if (copy_from_user(&value, arg, sizeof(value)))
3084 return -EFAULT;
3085
3086 if (!value)
3087 return -EINVAL;
3088
3089 raw_spin_lock_irq(&ctx->lock);
3090 if (event->attr.freq) {
3091 if (value > sysctl_perf_event_sample_rate) {
3092 ret = -EINVAL;
3093 goto unlock;
3094 }
3095
3096 event->attr.sample_freq = value;
3097 } else {
3098 event->attr.sample_period = value;
3099 event->hw.sample_period = value;
3100 }
3101 unlock:
3102 raw_spin_unlock_irq(&ctx->lock);
3103
3104 return ret;
3105 }
3106
3107 static const struct file_operations perf_fops;
3108
3109 static struct perf_event *perf_fget_light(int fd, int *fput_needed)
3110 {
3111 struct file *file;
3112
3113 file = fget_light(fd, fput_needed);
3114 if (!file)
3115 return ERR_PTR(-EBADF);
3116
3117 if (file->f_op != &perf_fops) {
3118 fput_light(file, *fput_needed);
3119 *fput_needed = 0;
3120 return ERR_PTR(-EBADF);
3121 }
3122
3123 return file->private_data;
3124 }
3125
3126 static int perf_event_set_output(struct perf_event *event,
3127 struct perf_event *output_event);
3128 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3129
3130 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3131 {
3132 struct perf_event *event = file->private_data;
3133 void (*func)(struct perf_event *);
3134 u32 flags = arg;
3135
3136 switch (cmd) {
3137 case PERF_EVENT_IOC_ENABLE:
3138 func = perf_event_enable;
3139 break;
3140 case PERF_EVENT_IOC_DISABLE:
3141 func = perf_event_disable;
3142 break;
3143 case PERF_EVENT_IOC_RESET:
3144 func = perf_event_reset;
3145 break;
3146
3147 case PERF_EVENT_IOC_REFRESH:
3148 return perf_event_refresh(event, arg);
3149
3150 case PERF_EVENT_IOC_PERIOD:
3151 return perf_event_period(event, (u64 __user *)arg);
3152
3153 case PERF_EVENT_IOC_SET_OUTPUT:
3154 {
3155 struct perf_event *output_event = NULL;
3156 int fput_needed = 0;
3157 int ret;
3158
3159 if (arg != -1) {
3160 output_event = perf_fget_light(arg, &fput_needed);
3161 if (IS_ERR(output_event))
3162 return PTR_ERR(output_event);
3163 }
3164
3165 ret = perf_event_set_output(event, output_event);
3166 if (output_event)
3167 fput_light(output_event->filp, fput_needed);
3168
3169 return ret;
3170 }
3171
3172 case PERF_EVENT_IOC_SET_FILTER:
3173 return perf_event_set_filter(event, (void __user *)arg);
3174
3175 default:
3176 return -ENOTTY;
3177 }
3178
3179 if (flags & PERF_IOC_FLAG_GROUP)
3180 perf_event_for_each(event, func);
3181 else
3182 perf_event_for_each_child(event, func);
3183
3184 return 0;
3185 }
3186
3187 int perf_event_task_enable(void)
3188 {
3189 struct perf_event *event;
3190
3191 mutex_lock(&current->perf_event_mutex);
3192 list_for_each_entry(event, &current->perf_event_list, owner_entry)
3193 perf_event_for_each_child(event, perf_event_enable);
3194 mutex_unlock(&current->perf_event_mutex);
3195
3196 return 0;
3197 }
3198
3199 int perf_event_task_disable(void)
3200 {
3201 struct perf_event *event;
3202
3203 mutex_lock(&current->perf_event_mutex);
3204 list_for_each_entry(event, &current->perf_event_list, owner_entry)
3205 perf_event_for_each_child(event, perf_event_disable);
3206 mutex_unlock(&current->perf_event_mutex);
3207
3208 return 0;
3209 }
3210
3211 static int perf_event_index(struct perf_event *event)
3212 {
3213 if (event->hw.state & PERF_HES_STOPPED)
3214 return 0;
3215
3216 if (event->state != PERF_EVENT_STATE_ACTIVE)
3217 return 0;
3218
3219 return event->pmu->event_idx(event);
3220 }
3221
3222 static void calc_timer_values(struct perf_event *event,
3223 u64 *now,
3224 u64 *enabled,
3225 u64 *running)
3226 {
3227 u64 ctx_time;
3228
3229 *now = perf_clock();
3230 ctx_time = event->shadow_ctx_time + *now;
3231 *enabled = ctx_time - event->tstamp_enabled;
3232 *running = ctx_time - event->tstamp_running;
3233 }
3234
3235 void __weak perf_update_user_clock(struct perf_event_mmap_page *userpg, u64 now)
3236 {
3237 }
3238
3239 /*
3240 * Callers need to ensure there can be no nesting of this function, otherwise
3241 * the seqlock logic goes bad. We can not serialize this because the arch
3242 * code calls this from NMI context.
3243 */
3244 void perf_event_update_userpage(struct perf_event *event)
3245 {
3246 struct perf_event_mmap_page *userpg;
3247 struct ring_buffer *rb;
3248 u64 enabled, running, now;
3249
3250 rcu_read_lock();
3251 /*
3252 * compute total_time_enabled, total_time_running
3253 * based on snapshot values taken when the event
3254 * was last scheduled in.
3255 *
3256 * we cannot simply called update_context_time()
3257 * because of locking issue as we can be called in
3258 * NMI context
3259 */
3260 calc_timer_values(event, &now, &enabled, &running);
3261 rb = rcu_dereference(event->rb);
3262 if (!rb)
3263 goto unlock;
3264
3265 userpg = rb->user_page;
3266
3267 /*
3268 * Disable preemption so as to not let the corresponding user-space
3269 * spin too long if we get preempted.
3270 */
3271 preempt_disable();
3272 ++userpg->lock;
3273 barrier();
3274 userpg->index = perf_event_index(event);
3275 userpg->offset = perf_event_count(event);
3276 if (userpg->index)
3277 userpg->offset -= local64_read(&event->hw.prev_count);
3278
3279 userpg->time_enabled = enabled +
3280 atomic64_read(&event->child_total_time_enabled);
3281
3282 userpg->time_running = running +
3283 atomic64_read(&event->child_total_time_running);
3284
3285 perf_update_user_clock(userpg, now);
3286
3287 barrier();
3288 ++userpg->lock;
3289 preempt_enable();
3290 unlock:
3291 rcu_read_unlock();
3292 }
3293
3294 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
3295 {
3296 struct perf_event *event = vma->vm_file->private_data;
3297 struct ring_buffer *rb;
3298 int ret = VM_FAULT_SIGBUS;
3299
3300 if (vmf->flags & FAULT_FLAG_MKWRITE) {
3301 if (vmf->pgoff == 0)
3302 ret = 0;
3303 return ret;
3304 }
3305
3306 rcu_read_lock();
3307 rb = rcu_dereference(event->rb);
3308 if (!rb)
3309 goto unlock;
3310
3311 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
3312 goto unlock;
3313
3314 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
3315 if (!vmf->page)
3316 goto unlock;
3317
3318 get_page(vmf->page);
3319 vmf->page->mapping = vma->vm_file->f_mapping;
3320 vmf->page->index = vmf->pgoff;
3321
3322 ret = 0;
3323 unlock:
3324 rcu_read_unlock();
3325
3326 return ret;
3327 }
3328
3329 static void ring_buffer_attach(struct perf_event *event,
3330 struct ring_buffer *rb)
3331 {
3332 unsigned long flags;
3333
3334 if (!list_empty(&event->rb_entry))
3335 return;
3336
3337 spin_lock_irqsave(&rb->event_lock, flags);
3338 if (!list_empty(&event->rb_entry))
3339 goto unlock;
3340
3341 list_add(&event->rb_entry, &rb->event_list);
3342 unlock:
3343 spin_unlock_irqrestore(&rb->event_lock, flags);
3344 }
3345
3346 static void ring_buffer_detach(struct perf_event *event,
3347 struct ring_buffer *rb)
3348 {
3349 unsigned long flags;
3350
3351 if (list_empty(&event->rb_entry))
3352 return;
3353
3354 spin_lock_irqsave(&rb->event_lock, flags);
3355 list_del_init(&event->rb_entry);
3356 wake_up_all(&event->waitq);
3357 spin_unlock_irqrestore(&rb->event_lock, flags);
3358 }
3359
3360 static void ring_buffer_wakeup(struct perf_event *event)
3361 {
3362 struct ring_buffer *rb;
3363
3364 rcu_read_lock();
3365 rb = rcu_dereference(event->rb);
3366 if (!rb)
3367 goto unlock;
3368
3369 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
3370 wake_up_all(&event->waitq);
3371
3372 unlock:
3373 rcu_read_unlock();
3374 }
3375
3376 static void rb_free_rcu(struct rcu_head *rcu_head)
3377 {
3378 struct ring_buffer *rb;
3379
3380 rb = container_of(rcu_head, struct ring_buffer, rcu_head);
3381 rb_free(rb);
3382 }
3383
3384 static struct ring_buffer *ring_buffer_get(struct perf_event *event)
3385 {
3386 struct ring_buffer *rb;
3387
3388 rcu_read_lock();
3389 rb = rcu_dereference(event->rb);
3390 if (rb) {
3391 if (!atomic_inc_not_zero(&rb->refcount))
3392 rb = NULL;
3393 }
3394 rcu_read_unlock();
3395
3396 return rb;
3397 }
3398
3399 static void ring_buffer_put(struct ring_buffer *rb)
3400 {
3401 struct perf_event *event, *n;
3402 unsigned long flags;
3403
3404 if (!atomic_dec_and_test(&rb->refcount))
3405 return;
3406
3407 spin_lock_irqsave(&rb->event_lock, flags);
3408 list_for_each_entry_safe(event, n, &rb->event_list, rb_entry) {
3409 list_del_init(&event->rb_entry);
3410 wake_up_all(&event->waitq);
3411 }
3412 spin_unlock_irqrestore(&rb->event_lock, flags);
3413
3414 call_rcu(&rb->rcu_head, rb_free_rcu);
3415 }
3416
3417 static void perf_mmap_open(struct vm_area_struct *vma)
3418 {
3419 struct perf_event *event = vma->vm_file->private_data;
3420
3421 atomic_inc(&event->mmap_count);
3422 }
3423
3424 static void perf_mmap_close(struct vm_area_struct *vma)
3425 {
3426 struct perf_event *event = vma->vm_file->private_data;
3427
3428 if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
3429 unsigned long size = perf_data_size(event->rb);
3430 struct user_struct *user = event->mmap_user;
3431 struct ring_buffer *rb = event->rb;
3432
3433 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
3434 vma->vm_mm->pinned_vm -= event->mmap_locked;
3435 rcu_assign_pointer(event->rb, NULL);
3436 ring_buffer_detach(event, rb);
3437 mutex_unlock(&event->mmap_mutex);
3438
3439 ring_buffer_put(rb);
3440 free_uid(user);
3441 }
3442 }
3443
3444 static const struct vm_operations_struct perf_mmap_vmops = {
3445 .open = perf_mmap_open,
3446 .close = perf_mmap_close,
3447 .fault = perf_mmap_fault,
3448 .page_mkwrite = perf_mmap_fault,
3449 };
3450
3451 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
3452 {
3453 struct perf_event *event = file->private_data;
3454 unsigned long user_locked, user_lock_limit;
3455 struct user_struct *user = current_user();
3456 unsigned long locked, lock_limit;
3457 struct ring_buffer *rb;
3458 unsigned long vma_size;
3459 unsigned long nr_pages;
3460 long user_extra, extra;
3461 int ret = 0, flags = 0;
3462
3463 /*
3464 * Don't allow mmap() of inherited per-task counters. This would
3465 * create a performance issue due to all children writing to the
3466 * same rb.
3467 */
3468 if (event->cpu == -1 && event->attr.inherit)
3469 return -EINVAL;
3470
3471 if (!(vma->vm_flags & VM_SHARED))
3472 return -EINVAL;
3473
3474 vma_size = vma->vm_end - vma->vm_start;
3475 nr_pages = (vma_size / PAGE_SIZE) - 1;
3476
3477 /*
3478 * If we have rb pages ensure they're a power-of-two number, so we
3479 * can do bitmasks instead of modulo.
3480 */
3481 if (nr_pages != 0 && !is_power_of_2(nr_pages))
3482 return -EINVAL;
3483
3484 if (vma_size != PAGE_SIZE * (1 + nr_pages))
3485 return -EINVAL;
3486
3487 if (vma->vm_pgoff != 0)
3488 return -EINVAL;
3489
3490 WARN_ON_ONCE(event->ctx->parent_ctx);
3491 mutex_lock(&event->mmap_mutex);
3492 if (event->rb) {
3493 if (event->rb->nr_pages == nr_pages)
3494 atomic_inc(&event->rb->refcount);
3495 else
3496 ret = -EINVAL;
3497 goto unlock;
3498 }
3499
3500 user_extra = nr_pages + 1;
3501 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
3502
3503 /*
3504 * Increase the limit linearly with more CPUs:
3505 */
3506 user_lock_limit *= num_online_cpus();
3507
3508 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
3509
3510 extra = 0;
3511 if (user_locked > user_lock_limit)
3512 extra = user_locked - user_lock_limit;
3513
3514 lock_limit = rlimit(RLIMIT_MEMLOCK);
3515 lock_limit >>= PAGE_SHIFT;
3516 locked = vma->vm_mm->pinned_vm + extra;
3517
3518 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
3519 !capable(CAP_IPC_LOCK)) {
3520 ret = -EPERM;
3521 goto unlock;
3522 }
3523
3524 WARN_ON(event->rb);
3525
3526 if (vma->vm_flags & VM_WRITE)
3527 flags |= RING_BUFFER_WRITABLE;
3528
3529 rb = rb_alloc(nr_pages,
3530 event->attr.watermark ? event->attr.wakeup_watermark : 0,
3531 event->cpu, flags);
3532
3533 if (!rb) {
3534 ret = -ENOMEM;
3535 goto unlock;
3536 }
3537 rcu_assign_pointer(event->rb, rb);
3538
3539 atomic_long_add(user_extra, &user->locked_vm);
3540 event->mmap_locked = extra;
3541 event->mmap_user = get_current_user();
3542 vma->vm_mm->pinned_vm += event->mmap_locked;
3543
3544 perf_event_update_userpage(event);
3545
3546 unlock:
3547 if (!ret)
3548 atomic_inc(&event->mmap_count);
3549 mutex_unlock(&event->mmap_mutex);
3550
3551 vma->vm_flags |= VM_RESERVED;
3552 vma->vm_ops = &perf_mmap_vmops;
3553
3554 return ret;
3555 }
3556
3557 static int perf_fasync(int fd, struct file *filp, int on)
3558 {
3559 struct inode *inode = filp->f_path.dentry->d_inode;
3560 struct perf_event *event = filp->private_data;
3561 int retval;
3562
3563 mutex_lock(&inode->i_mutex);
3564 retval = fasync_helper(fd, filp, on, &event->fasync);
3565 mutex_unlock(&inode->i_mutex);
3566
3567 if (retval < 0)
3568 return retval;
3569
3570 return 0;
3571 }
3572
3573 static const struct file_operations perf_fops = {
3574 .llseek = no_llseek,
3575 .release = perf_release,
3576 .read = perf_read,
3577 .poll = perf_poll,
3578 .unlocked_ioctl = perf_ioctl,
3579 .compat_ioctl = perf_ioctl,
3580 .mmap = perf_mmap,
3581 .fasync = perf_fasync,
3582 };
3583
3584 /*
3585 * Perf event wakeup
3586 *
3587 * If there's data, ensure we set the poll() state and publish everything
3588 * to user-space before waking everybody up.
3589 */
3590
3591 void perf_event_wakeup(struct perf_event *event)
3592 {
3593 ring_buffer_wakeup(event);
3594
3595 if (event->pending_kill) {
3596 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
3597 event->pending_kill = 0;
3598 }
3599 }
3600
3601 static void perf_pending_event(struct irq_work *entry)
3602 {
3603 struct perf_event *event = container_of(entry,
3604 struct perf_event, pending);
3605
3606 if (event->pending_disable) {
3607 event->pending_disable = 0;
3608 __perf_event_disable(event);
3609 }
3610
3611 if (event->pending_wakeup) {
3612 event->pending_wakeup = 0;
3613 perf_event_wakeup(event);
3614 }
3615 }
3616
3617 /*
3618 * We assume there is only KVM supporting the callbacks.
3619 * Later on, we might change it to a list if there is
3620 * another virtualization implementation supporting the callbacks.
3621 */
3622 struct perf_guest_info_callbacks *perf_guest_cbs;
3623
3624 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3625 {
3626 perf_guest_cbs = cbs;
3627 return 0;
3628 }
3629 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
3630
3631 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3632 {
3633 perf_guest_cbs = NULL;
3634 return 0;
3635 }
3636 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
3637
3638 static void __perf_event_header__init_id(struct perf_event_header *header,
3639 struct perf_sample_data *data,
3640 struct perf_event *event)
3641 {
3642 u64 sample_type = event->attr.sample_type;
3643
3644 data->type = sample_type;
3645 header->size += event->id_header_size;
3646
3647 if (sample_type & PERF_SAMPLE_TID) {
3648 /* namespace issues */
3649 data->tid_entry.pid = perf_event_pid(event, current);
3650 data->tid_entry.tid = perf_event_tid(event, current);
3651 }
3652
3653 if (sample_type & PERF_SAMPLE_TIME)
3654 data->time = perf_clock();
3655
3656 if (sample_type & PERF_SAMPLE_ID)
3657 data->id = primary_event_id(event);
3658
3659 if (sample_type & PERF_SAMPLE_STREAM_ID)
3660 data->stream_id = event->id;
3661
3662 if (sample_type & PERF_SAMPLE_CPU) {
3663 data->cpu_entry.cpu = raw_smp_processor_id();
3664 data->cpu_entry.reserved = 0;
3665 }
3666 }
3667
3668 void perf_event_header__init_id(struct perf_event_header *header,
3669 struct perf_sample_data *data,
3670 struct perf_event *event)
3671 {
3672 if (event->attr.sample_id_all)
3673 __perf_event_header__init_id(header, data, event);
3674 }
3675
3676 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
3677 struct perf_sample_data *data)
3678 {
3679 u64 sample_type = data->type;
3680
3681 if (sample_type & PERF_SAMPLE_TID)
3682 perf_output_put(handle, data->tid_entry);
3683
3684 if (sample_type & PERF_SAMPLE_TIME)
3685 perf_output_put(handle, data->time);
3686
3687 if (sample_type & PERF_SAMPLE_ID)
3688 perf_output_put(handle, data->id);
3689
3690 if (sample_type & PERF_SAMPLE_STREAM_ID)
3691 perf_output_put(handle, data->stream_id);
3692
3693 if (sample_type & PERF_SAMPLE_CPU)
3694 perf_output_put(handle, data->cpu_entry);
3695 }
3696
3697 void perf_event__output_id_sample(struct perf_event *event,
3698 struct perf_output_handle *handle,
3699 struct perf_sample_data *sample)
3700 {
3701 if (event->attr.sample_id_all)
3702 __perf_event__output_id_sample(handle, sample);
3703 }
3704
3705 static void perf_output_read_one(struct perf_output_handle *handle,
3706 struct perf_event *event,
3707 u64 enabled, u64 running)
3708 {
3709 u64 read_format = event->attr.read_format;
3710 u64 values[4];
3711 int n = 0;
3712
3713 values[n++] = perf_event_count(event);
3714 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3715 values[n++] = enabled +
3716 atomic64_read(&event->child_total_time_enabled);
3717 }
3718 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3719 values[n++] = running +
3720 atomic64_read(&event->child_total_time_running);
3721 }
3722 if (read_format & PERF_FORMAT_ID)
3723 values[n++] = primary_event_id(event);
3724
3725 __output_copy(handle, values, n * sizeof(u64));
3726 }
3727
3728 /*
3729 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3730 */
3731 static void perf_output_read_group(struct perf_output_handle *handle,
3732 struct perf_event *event,
3733 u64 enabled, u64 running)
3734 {
3735 struct perf_event *leader = event->group_leader, *sub;
3736 u64 read_format = event->attr.read_format;
3737 u64 values[5];
3738 int n = 0;
3739
3740 values[n++] = 1 + leader->nr_siblings;
3741
3742 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3743 values[n++] = enabled;
3744
3745 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3746 values[n++] = running;
3747
3748 if (leader != event)
3749 leader->pmu->read(leader);
3750
3751 values[n++] = perf_event_count(leader);
3752 if (read_format & PERF_FORMAT_ID)
3753 values[n++] = primary_event_id(leader);
3754
3755 __output_copy(handle, values, n * sizeof(u64));
3756
3757 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3758 n = 0;
3759
3760 if (sub != event)
3761 sub->pmu->read(sub);
3762
3763 values[n++] = perf_event_count(sub);
3764 if (read_format & PERF_FORMAT_ID)
3765 values[n++] = primary_event_id(sub);
3766
3767 __output_copy(handle, values, n * sizeof(u64));
3768 }
3769 }
3770
3771 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
3772 PERF_FORMAT_TOTAL_TIME_RUNNING)
3773
3774 static void perf_output_read(struct perf_output_handle *handle,
3775 struct perf_event *event)
3776 {
3777 u64 enabled = 0, running = 0, now;
3778 u64 read_format = event->attr.read_format;
3779
3780 /*
3781 * compute total_time_enabled, total_time_running
3782 * based on snapshot values taken when the event
3783 * was last scheduled in.
3784 *
3785 * we cannot simply called update_context_time()
3786 * because of locking issue as we are called in
3787 * NMI context
3788 */
3789 if (read_format & PERF_FORMAT_TOTAL_TIMES)
3790 calc_timer_values(event, &now, &enabled, &running);
3791
3792 if (event->attr.read_format & PERF_FORMAT_GROUP)
3793 perf_output_read_group(handle, event, enabled, running);
3794 else
3795 perf_output_read_one(handle, event, enabled, running);
3796 }
3797
3798 void perf_output_sample(struct perf_output_handle *handle,
3799 struct perf_event_header *header,
3800 struct perf_sample_data *data,
3801 struct perf_event *event)
3802 {
3803 u64 sample_type = data->type;
3804
3805 perf_output_put(handle, *header);
3806
3807 if (sample_type & PERF_SAMPLE_IP)
3808 perf_output_put(handle, data->ip);
3809
3810 if (sample_type & PERF_SAMPLE_TID)
3811 perf_output_put(handle, data->tid_entry);
3812
3813 if (sample_type & PERF_SAMPLE_TIME)
3814 perf_output_put(handle, data->time);
3815
3816 if (sample_type & PERF_SAMPLE_ADDR)
3817 perf_output_put(handle, data->addr);
3818
3819 if (sample_type & PERF_SAMPLE_ID)
3820 perf_output_put(handle, data->id);
3821
3822 if (sample_type & PERF_SAMPLE_STREAM_ID)
3823 perf_output_put(handle, data->stream_id);
3824
3825 if (sample_type & PERF_SAMPLE_CPU)
3826 perf_output_put(handle, data->cpu_entry);
3827
3828 if (sample_type & PERF_SAMPLE_PERIOD)
3829 perf_output_put(handle, data->period);
3830
3831 if (sample_type & PERF_SAMPLE_READ)
3832 perf_output_read(handle, event);
3833
3834 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3835 if (data->callchain) {
3836 int size = 1;
3837
3838 if (data->callchain)
3839 size += data->callchain->nr;
3840
3841 size *= sizeof(u64);
3842
3843 __output_copy(handle, data->callchain, size);
3844 } else {
3845 u64 nr = 0;
3846 perf_output_put(handle, nr);
3847 }
3848 }
3849
3850 if (sample_type & PERF_SAMPLE_RAW) {
3851 if (data->raw) {
3852 perf_output_put(handle, data->raw->size);
3853 __output_copy(handle, data->raw->data,
3854 data->raw->size);
3855 } else {
3856 struct {
3857 u32 size;
3858 u32 data;
3859 } raw = {
3860 .size = sizeof(u32),
3861 .data = 0,
3862 };
3863 perf_output_put(handle, raw);
3864 }
3865 }
3866
3867 if (!event->attr.watermark) {
3868 int wakeup_events = event->attr.wakeup_events;
3869
3870 if (wakeup_events) {
3871 struct ring_buffer *rb = handle->rb;
3872 int events = local_inc_return(&rb->events);
3873
3874 if (events >= wakeup_events) {
3875 local_sub(wakeup_events, &rb->events);
3876 local_inc(&rb->wakeup);
3877 }
3878 }
3879 }
3880 }
3881
3882 void perf_prepare_sample(struct perf_event_header *header,
3883 struct perf_sample_data *data,
3884 struct perf_event *event,
3885 struct pt_regs *regs)
3886 {
3887 u64 sample_type = event->attr.sample_type;
3888
3889 header->type = PERF_RECORD_SAMPLE;
3890 header->size = sizeof(*header) + event->header_size;
3891
3892 header->misc = 0;
3893 header->misc |= perf_misc_flags(regs);
3894
3895 __perf_event_header__init_id(header, data, event);
3896
3897 if (sample_type & PERF_SAMPLE_IP)
3898 data->ip = perf_instruction_pointer(regs);
3899
3900 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3901 int size = 1;
3902
3903 data->callchain = perf_callchain(regs);
3904
3905 if (data->callchain)
3906 size += data->callchain->nr;
3907
3908 header->size += size * sizeof(u64);
3909 }
3910
3911 if (sample_type & PERF_SAMPLE_RAW) {
3912 int size = sizeof(u32);
3913
3914 if (data->raw)
3915 size += data->raw->size;
3916 else
3917 size += sizeof(u32);
3918
3919 WARN_ON_ONCE(size & (sizeof(u64)-1));
3920 header->size += size;
3921 }
3922 }
3923
3924 static void perf_event_output(struct perf_event *event,
3925 struct perf_sample_data *data,
3926 struct pt_regs *regs)
3927 {
3928 struct perf_output_handle handle;
3929 struct perf_event_header header;
3930
3931 /* protect the callchain buffers */
3932 rcu_read_lock();
3933
3934 perf_prepare_sample(&header, data, event, regs);
3935
3936 if (perf_output_begin(&handle, event, header.size))
3937 goto exit;
3938
3939 perf_output_sample(&handle, &header, data, event);
3940
3941 perf_output_end(&handle);
3942
3943 exit:
3944 rcu_read_unlock();
3945 }
3946
3947 /*
3948 * read event_id
3949 */
3950
3951 struct perf_read_event {
3952 struct perf_event_header header;
3953
3954 u32 pid;
3955 u32 tid;
3956 };
3957
3958 static void
3959 perf_event_read_event(struct perf_event *event,
3960 struct task_struct *task)
3961 {
3962 struct perf_output_handle handle;
3963 struct perf_sample_data sample;
3964 struct perf_read_event read_event = {
3965 .header = {
3966 .type = PERF_RECORD_READ,
3967 .misc = 0,
3968 .size = sizeof(read_event) + event->read_size,
3969 },
3970 .pid = perf_event_pid(event, task),
3971 .tid = perf_event_tid(event, task),
3972 };
3973 int ret;
3974
3975 perf_event_header__init_id(&read_event.header, &sample, event);
3976 ret = perf_output_begin(&handle, event, read_event.header.size);
3977 if (ret)
3978 return;
3979
3980 perf_output_put(&handle, read_event);
3981 perf_output_read(&handle, event);
3982 perf_event__output_id_sample(event, &handle, &sample);
3983
3984 perf_output_end(&handle);
3985 }
3986
3987 /*
3988 * task tracking -- fork/exit
3989 *
3990 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
3991 */
3992
3993 struct perf_task_event {
3994 struct task_struct *task;
3995 struct perf_event_context *task_ctx;
3996
3997 struct {
3998 struct perf_event_header header;
3999
4000 u32 pid;
4001 u32 ppid;
4002 u32 tid;
4003 u32 ptid;
4004 u64 time;
4005 } event_id;
4006 };
4007
4008 static void perf_event_task_output(struct perf_event *event,
4009 struct perf_task_event *task_event)
4010 {
4011 struct perf_output_handle handle;
4012 struct perf_sample_data sample;
4013 struct task_struct *task = task_event->task;
4014 int ret, size = task_event->event_id.header.size;
4015
4016 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
4017
4018 ret = perf_output_begin(&handle, event,
4019 task_event->event_id.header.size);
4020 if (ret)
4021 goto out;
4022
4023 task_event->event_id.pid = perf_event_pid(event, task);
4024 task_event->event_id.ppid = perf_event_pid(event, current);
4025
4026 task_event->event_id.tid = perf_event_tid(event, task);
4027 task_event->event_id.ptid = perf_event_tid(event, current);
4028
4029 perf_output_put(&handle, task_event->event_id);
4030
4031 perf_event__output_id_sample(event, &handle, &sample);
4032
4033 perf_output_end(&handle);
4034 out:
4035 task_event->event_id.header.size = size;
4036 }
4037
4038 static int perf_event_task_match(struct perf_event *event)
4039 {
4040 if (event->state < PERF_EVENT_STATE_INACTIVE)
4041 return 0;
4042
4043 if (!event_filter_match(event))
4044 return 0;
4045
4046 if (event->attr.comm || event->attr.mmap ||
4047 event->attr.mmap_data || event->attr.task)
4048 return 1;
4049
4050 return 0;
4051 }
4052
4053 static void perf_event_task_ctx(struct perf_event_context *ctx,
4054 struct perf_task_event *task_event)
4055 {
4056 struct perf_event *event;
4057
4058 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4059 if (perf_event_task_match(event))
4060 perf_event_task_output(event, task_event);
4061 }
4062 }
4063
4064 static void perf_event_task_event(struct perf_task_event *task_event)
4065 {
4066 struct perf_cpu_context *cpuctx;
4067 struct perf_event_context *ctx;
4068 struct pmu *pmu;
4069 int ctxn;
4070
4071 rcu_read_lock();
4072 list_for_each_entry_rcu(pmu, &pmus, entry) {
4073 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4074 if (cpuctx->active_pmu != pmu)
4075 goto next;
4076 perf_event_task_ctx(&cpuctx->ctx, task_event);
4077
4078 ctx = task_event->task_ctx;
4079 if (!ctx) {
4080 ctxn = pmu->task_ctx_nr;
4081 if (ctxn < 0)
4082 goto next;
4083 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4084 }
4085 if (ctx)
4086 perf_event_task_ctx(ctx, task_event);
4087 next:
4088 put_cpu_ptr(pmu->pmu_cpu_context);
4089 }
4090 rcu_read_unlock();
4091 }
4092
4093 static void perf_event_task(struct task_struct *task,
4094 struct perf_event_context *task_ctx,
4095 int new)
4096 {
4097 struct perf_task_event task_event;
4098
4099 if (!atomic_read(&nr_comm_events) &&
4100 !atomic_read(&nr_mmap_events) &&
4101 !atomic_read(&nr_task_events))
4102 return;
4103
4104 task_event = (struct perf_task_event){
4105 .task = task,
4106 .task_ctx = task_ctx,
4107 .event_id = {
4108 .header = {
4109 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
4110 .misc = 0,
4111 .size = sizeof(task_event.event_id),
4112 },
4113 /* .pid */
4114 /* .ppid */
4115 /* .tid */
4116 /* .ptid */
4117 .time = perf_clock(),
4118 },
4119 };
4120
4121 perf_event_task_event(&task_event);
4122 }
4123
4124 void perf_event_fork(struct task_struct *task)
4125 {
4126 perf_event_task(task, NULL, 1);
4127 }
4128
4129 /*
4130 * comm tracking
4131 */
4132
4133 struct perf_comm_event {
4134 struct task_struct *task;
4135 char *comm;
4136 int comm_size;
4137
4138 struct {
4139 struct perf_event_header header;
4140
4141 u32 pid;
4142 u32 tid;
4143 } event_id;
4144 };
4145
4146 static void perf_event_comm_output(struct perf_event *event,
4147 struct perf_comm_event *comm_event)
4148 {
4149 struct perf_output_handle handle;
4150 struct perf_sample_data sample;
4151 int size = comm_event->event_id.header.size;
4152 int ret;
4153
4154 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
4155 ret = perf_output_begin(&handle, event,
4156 comm_event->event_id.header.size);
4157
4158 if (ret)
4159 goto out;
4160
4161 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
4162 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
4163
4164 perf_output_put(&handle, comm_event->event_id);
4165 __output_copy(&handle, comm_event->comm,
4166 comm_event->comm_size);
4167
4168 perf_event__output_id_sample(event, &handle, &sample);
4169
4170 perf_output_end(&handle);
4171 out:
4172 comm_event->event_id.header.size = size;
4173 }
4174
4175 static int perf_event_comm_match(struct perf_event *event)
4176 {
4177 if (event->state < PERF_EVENT_STATE_INACTIVE)
4178 return 0;
4179
4180 if (!event_filter_match(event))
4181 return 0;
4182
4183 if (event->attr.comm)
4184 return 1;
4185
4186 return 0;
4187 }
4188
4189 static void perf_event_comm_ctx(struct perf_event_context *ctx,
4190 struct perf_comm_event *comm_event)
4191 {
4192 struct perf_event *event;
4193
4194 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4195 if (perf_event_comm_match(event))
4196 perf_event_comm_output(event, comm_event);
4197 }
4198 }
4199
4200 static void perf_event_comm_event(struct perf_comm_event *comm_event)
4201 {
4202 struct perf_cpu_context *cpuctx;
4203 struct perf_event_context *ctx;
4204 char comm[TASK_COMM_LEN];
4205 unsigned int size;
4206 struct pmu *pmu;
4207 int ctxn;
4208
4209 memset(comm, 0, sizeof(comm));
4210 strlcpy(comm, comm_event->task->comm, sizeof(comm));
4211 size = ALIGN(strlen(comm)+1, sizeof(u64));
4212
4213 comm_event->comm = comm;
4214 comm_event->comm_size = size;
4215
4216 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
4217 rcu_read_lock();
4218 list_for_each_entry_rcu(pmu, &pmus, entry) {
4219 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4220 if (cpuctx->active_pmu != pmu)
4221 goto next;
4222 perf_event_comm_ctx(&cpuctx->ctx, comm_event);
4223
4224 ctxn = pmu->task_ctx_nr;
4225 if (ctxn < 0)
4226 goto next;
4227
4228 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4229 if (ctx)
4230 perf_event_comm_ctx(ctx, comm_event);
4231 next:
4232 put_cpu_ptr(pmu->pmu_cpu_context);
4233 }
4234 rcu_read_unlock();
4235 }
4236
4237 void perf_event_comm(struct task_struct *task)
4238 {
4239 struct perf_comm_event comm_event;
4240 struct perf_event_context *ctx;
4241 int ctxn;
4242
4243 for_each_task_context_nr(ctxn) {
4244 ctx = task->perf_event_ctxp[ctxn];
4245 if (!ctx)
4246 continue;
4247
4248 perf_event_enable_on_exec(ctx);
4249 }
4250
4251 if (!atomic_read(&nr_comm_events))
4252 return;
4253
4254 comm_event = (struct perf_comm_event){
4255 .task = task,
4256 /* .comm */
4257 /* .comm_size */
4258 .event_id = {
4259 .header = {
4260 .type = PERF_RECORD_COMM,
4261 .misc = 0,
4262 /* .size */
4263 },
4264 /* .pid */
4265 /* .tid */
4266 },
4267 };
4268
4269 perf_event_comm_event(&comm_event);
4270 }
4271
4272 /*
4273 * mmap tracking
4274 */
4275
4276 struct perf_mmap_event {
4277 struct vm_area_struct *vma;
4278
4279 const char *file_name;
4280 int file_size;
4281
4282 struct {
4283 struct perf_event_header header;
4284
4285 u32 pid;
4286 u32 tid;
4287 u64 start;
4288 u64 len;
4289 u64 pgoff;
4290 } event_id;
4291 };
4292
4293 static void perf_event_mmap_output(struct perf_event *event,
4294 struct perf_mmap_event *mmap_event)
4295 {
4296 struct perf_output_handle handle;
4297 struct perf_sample_data sample;
4298 int size = mmap_event->event_id.header.size;
4299 int ret;
4300
4301 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
4302 ret = perf_output_begin(&handle, event,
4303 mmap_event->event_id.header.size);
4304 if (ret)
4305 goto out;
4306
4307 mmap_event->event_id.pid = perf_event_pid(event, current);
4308 mmap_event->event_id.tid = perf_event_tid(event, current);
4309
4310 perf_output_put(&handle, mmap_event->event_id);
4311 __output_copy(&handle, mmap_event->file_name,
4312 mmap_event->file_size);
4313
4314 perf_event__output_id_sample(event, &handle, &sample);
4315
4316 perf_output_end(&handle);
4317 out:
4318 mmap_event->event_id.header.size = size;
4319 }
4320
4321 static int perf_event_mmap_match(struct perf_event *event,
4322 struct perf_mmap_event *mmap_event,
4323 int executable)
4324 {
4325 if (event->state < PERF_EVENT_STATE_INACTIVE)
4326 return 0;
4327
4328 if (!event_filter_match(event))
4329 return 0;
4330
4331 if ((!executable && event->attr.mmap_data) ||
4332 (executable && event->attr.mmap))
4333 return 1;
4334
4335 return 0;
4336 }
4337
4338 static void perf_event_mmap_ctx(struct perf_event_context *ctx,
4339 struct perf_mmap_event *mmap_event,
4340 int executable)
4341 {
4342 struct perf_event *event;
4343
4344 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4345 if (perf_event_mmap_match(event, mmap_event, executable))
4346 perf_event_mmap_output(event, mmap_event);
4347 }
4348 }
4349
4350 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
4351 {
4352 struct perf_cpu_context *cpuctx;
4353 struct perf_event_context *ctx;
4354 struct vm_area_struct *vma = mmap_event->vma;
4355 struct file *file = vma->vm_file;
4356 unsigned int size;
4357 char tmp[16];
4358 char *buf = NULL;
4359 const char *name;
4360 struct pmu *pmu;
4361 int ctxn;
4362
4363 memset(tmp, 0, sizeof(tmp));
4364
4365 if (file) {
4366 /*
4367 * d_path works from the end of the rb backwards, so we
4368 * need to add enough zero bytes after the string to handle
4369 * the 64bit alignment we do later.
4370 */
4371 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
4372 if (!buf) {
4373 name = strncpy(tmp, "//enomem", sizeof(tmp));
4374 goto got_name;
4375 }
4376 name = d_path(&file->f_path, buf, PATH_MAX);
4377 if (IS_ERR(name)) {
4378 name = strncpy(tmp, "//toolong", sizeof(tmp));
4379 goto got_name;
4380 }
4381 } else {
4382 if (arch_vma_name(mmap_event->vma)) {
4383 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
4384 sizeof(tmp));
4385 goto got_name;
4386 }
4387
4388 if (!vma->vm_mm) {
4389 name = strncpy(tmp, "[vdso]", sizeof(tmp));
4390 goto got_name;
4391 } else if (vma->vm_start <= vma->vm_mm->start_brk &&
4392 vma->vm_end >= vma->vm_mm->brk) {
4393 name = strncpy(tmp, "[heap]", sizeof(tmp));
4394 goto got_name;
4395 } else if (vma->vm_start <= vma->vm_mm->start_stack &&
4396 vma->vm_end >= vma->vm_mm->start_stack) {
4397 name = strncpy(tmp, "[stack]", sizeof(tmp));
4398 goto got_name;
4399 }
4400
4401 name = strncpy(tmp, "//anon", sizeof(tmp));
4402 goto got_name;
4403 }
4404
4405 got_name:
4406 size = ALIGN(strlen(name)+1, sizeof(u64));
4407
4408 mmap_event->file_name = name;
4409 mmap_event->file_size = size;
4410
4411 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
4412
4413 rcu_read_lock();
4414 list_for_each_entry_rcu(pmu, &pmus, entry) {
4415 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4416 if (cpuctx->active_pmu != pmu)
4417 goto next;
4418 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event,
4419 vma->vm_flags & VM_EXEC);
4420
4421 ctxn = pmu->task_ctx_nr;
4422 if (ctxn < 0)
4423 goto next;
4424
4425 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4426 if (ctx) {
4427 perf_event_mmap_ctx(ctx, mmap_event,
4428 vma->vm_flags & VM_EXEC);
4429 }
4430 next:
4431 put_cpu_ptr(pmu->pmu_cpu_context);
4432 }
4433 rcu_read_unlock();
4434
4435 kfree(buf);
4436 }
4437
4438 void perf_event_mmap(struct vm_area_struct *vma)
4439 {
4440 struct perf_mmap_event mmap_event;
4441
4442 if (!atomic_read(&nr_mmap_events))
4443 return;
4444
4445 mmap_event = (struct perf_mmap_event){
4446 .vma = vma,
4447 /* .file_name */
4448 /* .file_size */
4449 .event_id = {
4450 .header = {
4451 .type = PERF_RECORD_MMAP,
4452 .misc = PERF_RECORD_MISC_USER,
4453 /* .size */
4454 },
4455 /* .pid */
4456 /* .tid */
4457 .start = vma->vm_start,
4458 .len = vma->vm_end - vma->vm_start,
4459 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
4460 },
4461 };
4462
4463 perf_event_mmap_event(&mmap_event);
4464 }
4465
4466 /*
4467 * IRQ throttle logging
4468 */
4469
4470 static void perf_log_throttle(struct perf_event *event, int enable)
4471 {
4472 struct perf_output_handle handle;
4473 struct perf_sample_data sample;
4474 int ret;
4475
4476 struct {
4477 struct perf_event_header header;
4478 u64 time;
4479 u64 id;
4480 u64 stream_id;
4481 } throttle_event = {
4482 .header = {
4483 .type = PERF_RECORD_THROTTLE,
4484 .misc = 0,
4485 .size = sizeof(throttle_event),
4486 },
4487 .time = perf_clock(),
4488 .id = primary_event_id(event),
4489 .stream_id = event->id,
4490 };
4491
4492 if (enable)
4493 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
4494
4495 perf_event_header__init_id(&throttle_event.header, &sample, event);
4496
4497 ret = perf_output_begin(&handle, event,
4498 throttle_event.header.size);
4499 if (ret)
4500 return;
4501
4502 perf_output_put(&handle, throttle_event);
4503 perf_event__output_id_sample(event, &handle, &sample);
4504 perf_output_end(&handle);
4505 }
4506
4507 /*
4508 * Generic event overflow handling, sampling.
4509 */
4510
4511 static int __perf_event_overflow(struct perf_event *event,
4512 int throttle, struct perf_sample_data *data,
4513 struct pt_regs *regs)
4514 {
4515 int events = atomic_read(&event->event_limit);
4516 struct hw_perf_event *hwc = &event->hw;
4517 int ret = 0;
4518
4519 /*
4520 * Non-sampling counters might still use the PMI to fold short
4521 * hardware counters, ignore those.
4522 */
4523 if (unlikely(!is_sampling_event(event)))
4524 return 0;
4525
4526 if (unlikely(hwc->interrupts >= max_samples_per_tick)) {
4527 if (throttle) {
4528 hwc->interrupts = MAX_INTERRUPTS;
4529 perf_log_throttle(event, 0);
4530 ret = 1;
4531 }
4532 } else
4533 hwc->interrupts++;
4534
4535 if (event->attr.freq) {
4536 u64 now = perf_clock();
4537 s64 delta = now - hwc->freq_time_stamp;
4538
4539 hwc->freq_time_stamp = now;
4540
4541 if (delta > 0 && delta < 2*TICK_NSEC)
4542 perf_adjust_period(event, delta, hwc->last_period);
4543 }
4544
4545 /*
4546 * XXX event_limit might not quite work as expected on inherited
4547 * events
4548 */
4549
4550 event->pending_kill = POLL_IN;
4551 if (events && atomic_dec_and_test(&event->event_limit)) {
4552 ret = 1;
4553 event->pending_kill = POLL_HUP;
4554 event->pending_disable = 1;
4555 irq_work_queue(&event->pending);
4556 }
4557
4558 if (event->overflow_handler)
4559 event->overflow_handler(event, data, regs);
4560 else
4561 perf_event_output(event, data, regs);
4562
4563 if (event->fasync && event->pending_kill) {
4564 event->pending_wakeup = 1;
4565 irq_work_queue(&event->pending);
4566 }
4567
4568 return ret;
4569 }
4570
4571 int perf_event_overflow(struct perf_event *event,
4572 struct perf_sample_data *data,
4573 struct pt_regs *regs)
4574 {
4575 return __perf_event_overflow(event, 1, data, regs);
4576 }
4577
4578 /*
4579 * Generic software event infrastructure
4580 */
4581
4582 struct swevent_htable {
4583 struct swevent_hlist *swevent_hlist;
4584 struct mutex hlist_mutex;
4585 int hlist_refcount;
4586
4587 /* Recursion avoidance in each contexts */
4588 int recursion[PERF_NR_CONTEXTS];
4589 };
4590
4591 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
4592
4593 /*
4594 * We directly increment event->count and keep a second value in
4595 * event->hw.period_left to count intervals. This period event
4596 * is kept in the range [-sample_period, 0] so that we can use the
4597 * sign as trigger.
4598 */
4599
4600 static u64 perf_swevent_set_period(struct perf_event *event)
4601 {
4602 struct hw_perf_event *hwc = &event->hw;
4603 u64 period = hwc->last_period;
4604 u64 nr, offset;
4605 s64 old, val;
4606
4607 hwc->last_period = hwc->sample_period;
4608
4609 again:
4610 old = val = local64_read(&hwc->period_left);
4611 if (val < 0)
4612 return 0;
4613
4614 nr = div64_u64(period + val, period);
4615 offset = nr * period;
4616 val -= offset;
4617 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
4618 goto again;
4619
4620 return nr;
4621 }
4622
4623 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
4624 struct perf_sample_data *data,
4625 struct pt_regs *regs)
4626 {
4627 struct hw_perf_event *hwc = &event->hw;
4628 int throttle = 0;
4629
4630 if (!overflow)
4631 overflow = perf_swevent_set_period(event);
4632
4633 if (hwc->interrupts == MAX_INTERRUPTS)
4634 return;
4635
4636 for (; overflow; overflow--) {
4637 if (__perf_event_overflow(event, throttle,
4638 data, regs)) {
4639 /*
4640 * We inhibit the overflow from happening when
4641 * hwc->interrupts == MAX_INTERRUPTS.
4642 */
4643 break;
4644 }
4645 throttle = 1;
4646 }
4647 }
4648
4649 static void perf_swevent_event(struct perf_event *event, u64 nr,
4650 struct perf_sample_data *data,
4651 struct pt_regs *regs)
4652 {
4653 struct hw_perf_event *hwc = &event->hw;
4654
4655 local64_add(nr, &event->count);
4656
4657 if (!regs)
4658 return;
4659
4660 if (!is_sampling_event(event))
4661 return;
4662
4663 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
4664 data->period = nr;
4665 return perf_swevent_overflow(event, 1, data, regs);
4666 } else
4667 data->period = event->hw.last_period;
4668
4669 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
4670 return perf_swevent_overflow(event, 1, data, regs);
4671
4672 if (local64_add_negative(nr, &hwc->period_left))
4673 return;
4674
4675 perf_swevent_overflow(event, 0, data, regs);
4676 }
4677
4678 static int perf_exclude_event(struct perf_event *event,
4679 struct pt_regs *regs)
4680 {
4681 if (event->hw.state & PERF_HES_STOPPED)
4682 return 1;
4683
4684 if (regs) {
4685 if (event->attr.exclude_user && user_mode(regs))
4686 return 1;
4687
4688 if (event->attr.exclude_kernel && !user_mode(regs))
4689 return 1;
4690 }
4691
4692 return 0;
4693 }
4694
4695 static int perf_swevent_match(struct perf_event *event,
4696 enum perf_type_id type,
4697 u32 event_id,
4698 struct perf_sample_data *data,
4699 struct pt_regs *regs)
4700 {
4701 if (event->attr.type != type)
4702 return 0;
4703
4704 if (event->attr.config != event_id)
4705 return 0;
4706
4707 if (perf_exclude_event(event, regs))
4708 return 0;
4709
4710 return 1;
4711 }
4712
4713 static inline u64 swevent_hash(u64 type, u32 event_id)
4714 {
4715 u64 val = event_id | (type << 32);
4716
4717 return hash_64(val, SWEVENT_HLIST_BITS);
4718 }
4719
4720 static inline struct hlist_head *
4721 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
4722 {
4723 u64 hash = swevent_hash(type, event_id);
4724
4725 return &hlist->heads[hash];
4726 }
4727
4728 /* For the read side: events when they trigger */
4729 static inline struct hlist_head *
4730 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
4731 {
4732 struct swevent_hlist *hlist;
4733
4734 hlist = rcu_dereference(swhash->swevent_hlist);
4735 if (!hlist)
4736 return NULL;
4737
4738 return __find_swevent_head(hlist, type, event_id);
4739 }
4740
4741 /* For the event head insertion and removal in the hlist */
4742 static inline struct hlist_head *
4743 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
4744 {
4745 struct swevent_hlist *hlist;
4746 u32 event_id = event->attr.config;
4747 u64 type = event->attr.type;
4748
4749 /*
4750 * Event scheduling is always serialized against hlist allocation
4751 * and release. Which makes the protected version suitable here.
4752 * The context lock guarantees that.
4753 */
4754 hlist = rcu_dereference_protected(swhash->swevent_hlist,
4755 lockdep_is_held(&event->ctx->lock));
4756 if (!hlist)
4757 return NULL;
4758
4759 return __find_swevent_head(hlist, type, event_id);
4760 }
4761
4762 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
4763 u64 nr,
4764 struct perf_sample_data *data,
4765 struct pt_regs *regs)
4766 {
4767 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4768 struct perf_event *event;
4769 struct hlist_node *node;
4770 struct hlist_head *head;
4771
4772 rcu_read_lock();
4773 head = find_swevent_head_rcu(swhash, type, event_id);
4774 if (!head)
4775 goto end;
4776
4777 hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4778 if (perf_swevent_match(event, type, event_id, data, regs))
4779 perf_swevent_event(event, nr, data, regs);
4780 }
4781 end:
4782 rcu_read_unlock();
4783 }
4784
4785 int perf_swevent_get_recursion_context(void)
4786 {
4787 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4788
4789 return get_recursion_context(swhash->recursion);
4790 }
4791 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
4792
4793 inline void perf_swevent_put_recursion_context(int rctx)
4794 {
4795 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4796
4797 put_recursion_context(swhash->recursion, rctx);
4798 }
4799
4800 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
4801 {
4802 struct perf_sample_data data;
4803 int rctx;
4804
4805 preempt_disable_notrace();
4806 rctx = perf_swevent_get_recursion_context();
4807 if (rctx < 0)
4808 return;
4809
4810 perf_sample_data_init(&data, addr);
4811
4812 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
4813
4814 perf_swevent_put_recursion_context(rctx);
4815 preempt_enable_notrace();
4816 }
4817
4818 static void perf_swevent_read(struct perf_event *event)
4819 {
4820 }
4821
4822 static int perf_swevent_add(struct perf_event *event, int flags)
4823 {
4824 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4825 struct hw_perf_event *hwc = &event->hw;
4826 struct hlist_head *head;
4827
4828 if (is_sampling_event(event)) {
4829 hwc->last_period = hwc->sample_period;
4830 perf_swevent_set_period(event);
4831 }
4832
4833 hwc->state = !(flags & PERF_EF_START);
4834
4835 head = find_swevent_head(swhash, event);
4836 if (WARN_ON_ONCE(!head))
4837 return -EINVAL;
4838
4839 hlist_add_head_rcu(&event->hlist_entry, head);
4840
4841 return 0;
4842 }
4843
4844 static void perf_swevent_del(struct perf_event *event, int flags)
4845 {
4846 hlist_del_rcu(&event->hlist_entry);
4847 }
4848
4849 static void perf_swevent_start(struct perf_event *event, int flags)
4850 {
4851 event->hw.state = 0;
4852 }
4853
4854 static void perf_swevent_stop(struct perf_event *event, int flags)
4855 {
4856 event->hw.state = PERF_HES_STOPPED;
4857 }
4858
4859 /* Deref the hlist from the update side */
4860 static inline struct swevent_hlist *
4861 swevent_hlist_deref(struct swevent_htable *swhash)
4862 {
4863 return rcu_dereference_protected(swhash->swevent_hlist,
4864 lockdep_is_held(&swhash->hlist_mutex));
4865 }
4866
4867 static void swevent_hlist_release(struct swevent_htable *swhash)
4868 {
4869 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
4870
4871 if (!hlist)
4872 return;
4873
4874 rcu_assign_pointer(swhash->swevent_hlist, NULL);
4875 kfree_rcu(hlist, rcu_head);
4876 }
4877
4878 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
4879 {
4880 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4881
4882 mutex_lock(&swhash->hlist_mutex);
4883
4884 if (!--swhash->hlist_refcount)
4885 swevent_hlist_release(swhash);
4886
4887 mutex_unlock(&swhash->hlist_mutex);
4888 }
4889
4890 static void swevent_hlist_put(struct perf_event *event)
4891 {
4892 int cpu;
4893
4894 if (event->cpu != -1) {
4895 swevent_hlist_put_cpu(event, event->cpu);
4896 return;
4897 }
4898
4899 for_each_possible_cpu(cpu)
4900 swevent_hlist_put_cpu(event, cpu);
4901 }
4902
4903 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
4904 {
4905 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4906 int err = 0;
4907
4908 mutex_lock(&swhash->hlist_mutex);
4909
4910 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
4911 struct swevent_hlist *hlist;
4912
4913 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
4914 if (!hlist) {
4915 err = -ENOMEM;
4916 goto exit;
4917 }
4918 rcu_assign_pointer(swhash->swevent_hlist, hlist);
4919 }
4920 swhash->hlist_refcount++;
4921 exit:
4922 mutex_unlock(&swhash->hlist_mutex);
4923
4924 return err;
4925 }
4926
4927 static int swevent_hlist_get(struct perf_event *event)
4928 {
4929 int err;
4930 int cpu, failed_cpu;
4931
4932 if (event->cpu != -1)
4933 return swevent_hlist_get_cpu(event, event->cpu);
4934
4935 get_online_cpus();
4936 for_each_possible_cpu(cpu) {
4937 err = swevent_hlist_get_cpu(event, cpu);
4938 if (err) {
4939 failed_cpu = cpu;
4940 goto fail;
4941 }
4942 }
4943 put_online_cpus();
4944
4945 return 0;
4946 fail:
4947 for_each_possible_cpu(cpu) {
4948 if (cpu == failed_cpu)
4949 break;
4950 swevent_hlist_put_cpu(event, cpu);
4951 }
4952
4953 put_online_cpus();
4954 return err;
4955 }
4956
4957 struct jump_label_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
4958
4959 static void sw_perf_event_destroy(struct perf_event *event)
4960 {
4961 u64 event_id = event->attr.config;
4962
4963 WARN_ON(event->parent);
4964
4965 jump_label_dec(&perf_swevent_enabled[event_id]);
4966 swevent_hlist_put(event);
4967 }
4968
4969 static int perf_swevent_init(struct perf_event *event)
4970 {
4971 int event_id = event->attr.config;
4972
4973 if (event->attr.type != PERF_TYPE_SOFTWARE)
4974 return -ENOENT;
4975
4976 switch (event_id) {
4977 case PERF_COUNT_SW_CPU_CLOCK:
4978 case PERF_COUNT_SW_TASK_CLOCK:
4979 return -ENOENT;
4980
4981 default:
4982 break;
4983 }
4984
4985 if (event_id >= PERF_COUNT_SW_MAX)
4986 return -ENOENT;
4987
4988 if (!event->parent) {
4989 int err;
4990
4991 err = swevent_hlist_get(event);
4992 if (err)
4993 return err;
4994
4995 jump_label_inc(&perf_swevent_enabled[event_id]);
4996 event->destroy = sw_perf_event_destroy;
4997 }
4998
4999 return 0;
5000 }
5001
5002 static int perf_swevent_event_idx(struct perf_event *event)
5003 {
5004 return 0;
5005 }
5006
5007 static struct pmu perf_swevent = {
5008 .task_ctx_nr = perf_sw_context,
5009
5010 .event_init = perf_swevent_init,
5011 .add = perf_swevent_add,
5012 .del = perf_swevent_del,
5013 .start = perf_swevent_start,
5014 .stop = perf_swevent_stop,
5015 .read = perf_swevent_read,
5016
5017 .event_idx = perf_swevent_event_idx,
5018 };
5019
5020 #ifdef CONFIG_EVENT_TRACING
5021
5022 static int perf_tp_filter_match(struct perf_event *event,
5023 struct perf_sample_data *data)
5024 {
5025 void *record = data->raw->data;
5026
5027 if (likely(!event->filter) || filter_match_preds(event->filter, record))
5028 return 1;
5029 return 0;
5030 }
5031
5032 static int perf_tp_event_match(struct perf_event *event,
5033 struct perf_sample_data *data,
5034 struct pt_regs *regs)
5035 {
5036 if (event->hw.state & PERF_HES_STOPPED)
5037 return 0;
5038 /*
5039 * All tracepoints are from kernel-space.
5040 */
5041 if (event->attr.exclude_kernel)
5042 return 0;
5043
5044 if (!perf_tp_filter_match(event, data))
5045 return 0;
5046
5047 return 1;
5048 }
5049
5050 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
5051 struct pt_regs *regs, struct hlist_head *head, int rctx)
5052 {
5053 struct perf_sample_data data;
5054 struct perf_event *event;
5055 struct hlist_node *node;
5056
5057 struct perf_raw_record raw = {
5058 .size = entry_size,
5059 .data = record,
5060 };
5061
5062 perf_sample_data_init(&data, addr);
5063 data.raw = &raw;
5064
5065 hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
5066 if (perf_tp_event_match(event, &data, regs))
5067 perf_swevent_event(event, count, &data, regs);
5068 }
5069
5070 perf_swevent_put_recursion_context(rctx);
5071 }
5072 EXPORT_SYMBOL_GPL(perf_tp_event);
5073
5074 static void tp_perf_event_destroy(struct perf_event *event)
5075 {
5076 perf_trace_destroy(event);
5077 }
5078
5079 static int perf_tp_event_init(struct perf_event *event)
5080 {
5081 int err;
5082
5083 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5084 return -ENOENT;
5085
5086 err = perf_trace_init(event);
5087 if (err)
5088 return err;
5089
5090 event->destroy = tp_perf_event_destroy;
5091
5092 return 0;
5093 }
5094
5095 static struct pmu perf_tracepoint = {
5096 .task_ctx_nr = perf_sw_context,
5097
5098 .event_init = perf_tp_event_init,
5099 .add = perf_trace_add,
5100 .del = perf_trace_del,
5101 .start = perf_swevent_start,
5102 .stop = perf_swevent_stop,
5103 .read = perf_swevent_read,
5104
5105 .event_idx = perf_swevent_event_idx,
5106 };
5107
5108 static inline void perf_tp_register(void)
5109 {
5110 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
5111 }
5112
5113 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5114 {
5115 char *filter_str;
5116 int ret;
5117
5118 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5119 return -EINVAL;
5120
5121 filter_str = strndup_user(arg, PAGE_SIZE);
5122 if (IS_ERR(filter_str))
5123 return PTR_ERR(filter_str);
5124
5125 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
5126
5127 kfree(filter_str);
5128 return ret;
5129 }
5130
5131 static void perf_event_free_filter(struct perf_event *event)
5132 {
5133 ftrace_profile_free_filter(event);
5134 }
5135
5136 #else
5137
5138 static inline void perf_tp_register(void)
5139 {
5140 }
5141
5142 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5143 {
5144 return -ENOENT;
5145 }
5146
5147 static void perf_event_free_filter(struct perf_event *event)
5148 {
5149 }
5150
5151 #endif /* CONFIG_EVENT_TRACING */
5152
5153 #ifdef CONFIG_HAVE_HW_BREAKPOINT
5154 void perf_bp_event(struct perf_event *bp, void *data)
5155 {
5156 struct perf_sample_data sample;
5157 struct pt_regs *regs = data;
5158
5159 perf_sample_data_init(&sample, bp->attr.bp_addr);
5160
5161 if (!bp->hw.state && !perf_exclude_event(bp, regs))
5162 perf_swevent_event(bp, 1, &sample, regs);
5163 }
5164 #endif
5165
5166 /*
5167 * hrtimer based swevent callback
5168 */
5169
5170 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
5171 {
5172 enum hrtimer_restart ret = HRTIMER_RESTART;
5173 struct perf_sample_data data;
5174 struct pt_regs *regs;
5175 struct perf_event *event;
5176 u64 period;
5177
5178 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
5179
5180 if (event->state != PERF_EVENT_STATE_ACTIVE)
5181 return HRTIMER_NORESTART;
5182
5183 event->pmu->read(event);
5184
5185 perf_sample_data_init(&data, 0);
5186 data.period = event->hw.last_period;
5187 regs = get_irq_regs();
5188
5189 if (regs && !perf_exclude_event(event, regs)) {
5190 if (!(event->attr.exclude_idle && is_idle_task(current)))
5191 if (perf_event_overflow(event, &data, regs))
5192 ret = HRTIMER_NORESTART;
5193 }
5194
5195 period = max_t(u64, 10000, event->hw.sample_period);
5196 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
5197
5198 return ret;
5199 }
5200
5201 static void perf_swevent_start_hrtimer(struct perf_event *event)
5202 {
5203 struct hw_perf_event *hwc = &event->hw;
5204 s64 period;
5205
5206 if (!is_sampling_event(event))
5207 return;
5208
5209 period = local64_read(&hwc->period_left);
5210 if (period) {
5211 if (period < 0)
5212 period = 10000;
5213
5214 local64_set(&hwc->period_left, 0);
5215 } else {
5216 period = max_t(u64, 10000, hwc->sample_period);
5217 }
5218 __hrtimer_start_range_ns(&hwc->hrtimer,
5219 ns_to_ktime(period), 0,
5220 HRTIMER_MODE_REL_PINNED, 0);
5221 }
5222
5223 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
5224 {
5225 struct hw_perf_event *hwc = &event->hw;
5226
5227 if (is_sampling_event(event)) {
5228 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
5229 local64_set(&hwc->period_left, ktime_to_ns(remaining));
5230
5231 hrtimer_cancel(&hwc->hrtimer);
5232 }
5233 }
5234
5235 static void perf_swevent_init_hrtimer(struct perf_event *event)
5236 {
5237 struct hw_perf_event *hwc = &event->hw;
5238
5239 if (!is_sampling_event(event))
5240 return;
5241
5242 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5243 hwc->hrtimer.function = perf_swevent_hrtimer;
5244
5245 /*
5246 * Since hrtimers have a fixed rate, we can do a static freq->period
5247 * mapping and avoid the whole period adjust feedback stuff.
5248 */
5249 if (event->attr.freq) {
5250 long freq = event->attr.sample_freq;
5251
5252 event->attr.sample_period = NSEC_PER_SEC / freq;
5253 hwc->sample_period = event->attr.sample_period;
5254 local64_set(&hwc->period_left, hwc->sample_period);
5255 event->attr.freq = 0;
5256 }
5257 }
5258
5259 /*
5260 * Software event: cpu wall time clock
5261 */
5262
5263 static void cpu_clock_event_update(struct perf_event *event)
5264 {
5265 s64 prev;
5266 u64 now;
5267
5268 now = local_clock();
5269 prev = local64_xchg(&event->hw.prev_count, now);
5270 local64_add(now - prev, &event->count);
5271 }
5272
5273 static void cpu_clock_event_start(struct perf_event *event, int flags)
5274 {
5275 local64_set(&event->hw.prev_count, local_clock());
5276 perf_swevent_start_hrtimer(event);
5277 }
5278
5279 static void cpu_clock_event_stop(struct perf_event *event, int flags)
5280 {
5281 perf_swevent_cancel_hrtimer(event);
5282 cpu_clock_event_update(event);
5283 }
5284
5285 static int cpu_clock_event_add(struct perf_event *event, int flags)
5286 {
5287 if (flags & PERF_EF_START)
5288 cpu_clock_event_start(event, flags);
5289
5290 return 0;
5291 }
5292
5293 static void cpu_clock_event_del(struct perf_event *event, int flags)
5294 {
5295 cpu_clock_event_stop(event, flags);
5296 }
5297
5298 static void cpu_clock_event_read(struct perf_event *event)
5299 {
5300 cpu_clock_event_update(event);
5301 }
5302
5303 static int cpu_clock_event_init(struct perf_event *event)
5304 {
5305 if (event->attr.type != PERF_TYPE_SOFTWARE)
5306 return -ENOENT;
5307
5308 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
5309 return -ENOENT;
5310
5311 perf_swevent_init_hrtimer(event);
5312
5313 return 0;
5314 }
5315
5316 static struct pmu perf_cpu_clock = {
5317 .task_ctx_nr = perf_sw_context,
5318
5319 .event_init = cpu_clock_event_init,
5320 .add = cpu_clock_event_add,
5321 .del = cpu_clock_event_del,
5322 .start = cpu_clock_event_start,
5323 .stop = cpu_clock_event_stop,
5324 .read = cpu_clock_event_read,
5325
5326 .event_idx = perf_swevent_event_idx,
5327 };
5328
5329 /*
5330 * Software event: task time clock
5331 */
5332
5333 static void task_clock_event_update(struct perf_event *event, u64 now)
5334 {
5335 u64 prev;
5336 s64 delta;
5337
5338 prev = local64_xchg(&event->hw.prev_count, now);
5339 delta = now - prev;
5340 local64_add(delta, &event->count);
5341 }
5342
5343 static void task_clock_event_start(struct perf_event *event, int flags)
5344 {
5345 local64_set(&event->hw.prev_count, event->ctx->time);
5346 perf_swevent_start_hrtimer(event);
5347 }
5348
5349 static void task_clock_event_stop(struct perf_event *event, int flags)
5350 {
5351 perf_swevent_cancel_hrtimer(event);
5352 task_clock_event_update(event, event->ctx->time);
5353 }
5354
5355 static int task_clock_event_add(struct perf_event *event, int flags)
5356 {
5357 if (flags & PERF_EF_START)
5358 task_clock_event_start(event, flags);
5359
5360 return 0;
5361 }
5362
5363 static void task_clock_event_del(struct perf_event *event, int flags)
5364 {
5365 task_clock_event_stop(event, PERF_EF_UPDATE);
5366 }
5367
5368 static void task_clock_event_read(struct perf_event *event)
5369 {
5370 u64 now = perf_clock();
5371 u64 delta = now - event->ctx->timestamp;
5372 u64 time = event->ctx->time + delta;
5373
5374 task_clock_event_update(event, time);
5375 }
5376
5377 static int task_clock_event_init(struct perf_event *event)
5378 {
5379 if (event->attr.type != PERF_TYPE_SOFTWARE)
5380 return -ENOENT;
5381
5382 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
5383 return -ENOENT;
5384
5385 perf_swevent_init_hrtimer(event);
5386
5387 return 0;
5388 }
5389
5390 static struct pmu perf_task_clock = {
5391 .task_ctx_nr = perf_sw_context,
5392
5393 .event_init = task_clock_event_init,
5394 .add = task_clock_event_add,
5395 .del = task_clock_event_del,
5396 .start = task_clock_event_start,
5397 .stop = task_clock_event_stop,
5398 .read = task_clock_event_read,
5399
5400 .event_idx = perf_swevent_event_idx,
5401 };
5402
5403 static void perf_pmu_nop_void(struct pmu *pmu)
5404 {
5405 }
5406
5407 static int perf_pmu_nop_int(struct pmu *pmu)
5408 {
5409 return 0;
5410 }
5411
5412 static void perf_pmu_start_txn(struct pmu *pmu)
5413 {
5414 perf_pmu_disable(pmu);
5415 }
5416
5417 static int perf_pmu_commit_txn(struct pmu *pmu)
5418 {
5419 perf_pmu_enable(pmu);
5420 return 0;
5421 }
5422
5423 static void perf_pmu_cancel_txn(struct pmu *pmu)
5424 {
5425 perf_pmu_enable(pmu);
5426 }
5427
5428 static int perf_event_idx_default(struct perf_event *event)
5429 {
5430 return event->hw.idx + 1;
5431 }
5432
5433 /*
5434 * Ensures all contexts with the same task_ctx_nr have the same
5435 * pmu_cpu_context too.
5436 */
5437 static void *find_pmu_context(int ctxn)
5438 {
5439 struct pmu *pmu;
5440
5441 if (ctxn < 0)
5442 return NULL;
5443
5444 list_for_each_entry(pmu, &pmus, entry) {
5445 if (pmu->task_ctx_nr == ctxn)
5446 return pmu->pmu_cpu_context;
5447 }
5448
5449 return NULL;
5450 }
5451
5452 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
5453 {
5454 int cpu;
5455
5456 for_each_possible_cpu(cpu) {
5457 struct perf_cpu_context *cpuctx;
5458
5459 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5460
5461 if (cpuctx->active_pmu == old_pmu)
5462 cpuctx->active_pmu = pmu;
5463 }
5464 }
5465
5466 static void free_pmu_context(struct pmu *pmu)
5467 {
5468 struct pmu *i;
5469
5470 mutex_lock(&pmus_lock);
5471 /*
5472 * Like a real lame refcount.
5473 */
5474 list_for_each_entry(i, &pmus, entry) {
5475 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
5476 update_pmu_context(i, pmu);
5477 goto out;
5478 }
5479 }
5480
5481 free_percpu(pmu->pmu_cpu_context);
5482 out:
5483 mutex_unlock(&pmus_lock);
5484 }
5485 static struct idr pmu_idr;
5486
5487 static ssize_t
5488 type_show(struct device *dev, struct device_attribute *attr, char *page)
5489 {
5490 struct pmu *pmu = dev_get_drvdata(dev);
5491
5492 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
5493 }
5494
5495 static struct device_attribute pmu_dev_attrs[] = {
5496 __ATTR_RO(type),
5497 __ATTR_NULL,
5498 };
5499
5500 static int pmu_bus_running;
5501 static struct bus_type pmu_bus = {
5502 .name = "event_source",
5503 .dev_attrs = pmu_dev_attrs,
5504 };
5505
5506 static void pmu_dev_release(struct device *dev)
5507 {
5508 kfree(dev);
5509 }
5510
5511 static int pmu_dev_alloc(struct pmu *pmu)
5512 {
5513 int ret = -ENOMEM;
5514
5515 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
5516 if (!pmu->dev)
5517 goto out;
5518
5519 pmu->dev->groups = pmu->attr_groups;
5520 device_initialize(pmu->dev);
5521 ret = dev_set_name(pmu->dev, "%s", pmu->name);
5522 if (ret)
5523 goto free_dev;
5524
5525 dev_set_drvdata(pmu->dev, pmu);
5526 pmu->dev->bus = &pmu_bus;
5527 pmu->dev->release = pmu_dev_release;
5528 ret = device_add(pmu->dev);
5529 if (ret)
5530 goto free_dev;
5531
5532 out:
5533 return ret;
5534
5535 free_dev:
5536 put_device(pmu->dev);
5537 goto out;
5538 }
5539
5540 static struct lock_class_key cpuctx_mutex;
5541 static struct lock_class_key cpuctx_lock;
5542
5543 int perf_pmu_register(struct pmu *pmu, char *name, int type)
5544 {
5545 int cpu, ret;
5546
5547 mutex_lock(&pmus_lock);
5548 ret = -ENOMEM;
5549 pmu->pmu_disable_count = alloc_percpu(int);
5550 if (!pmu->pmu_disable_count)
5551 goto unlock;
5552
5553 pmu->type = -1;
5554 if (!name)
5555 goto skip_type;
5556 pmu->name = name;
5557
5558 if (type < 0) {
5559 int err = idr_pre_get(&pmu_idr, GFP_KERNEL);
5560 if (!err)
5561 goto free_pdc;
5562
5563 err = idr_get_new_above(&pmu_idr, pmu, PERF_TYPE_MAX, &type);
5564 if (err) {
5565 ret = err;
5566 goto free_pdc;
5567 }
5568 }
5569 pmu->type = type;
5570
5571 if (pmu_bus_running) {
5572 ret = pmu_dev_alloc(pmu);
5573 if (ret)
5574 goto free_idr;
5575 }
5576
5577 skip_type:
5578 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
5579 if (pmu->pmu_cpu_context)
5580 goto got_cpu_context;
5581
5582 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
5583 if (!pmu->pmu_cpu_context)
5584 goto free_dev;
5585
5586 for_each_possible_cpu(cpu) {
5587 struct perf_cpu_context *cpuctx;
5588
5589 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5590 __perf_event_init_context(&cpuctx->ctx);
5591 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
5592 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
5593 cpuctx->ctx.type = cpu_context;
5594 cpuctx->ctx.pmu = pmu;
5595 cpuctx->jiffies_interval = 1;
5596 INIT_LIST_HEAD(&cpuctx->rotation_list);
5597 cpuctx->active_pmu = pmu;
5598 }
5599
5600 got_cpu_context:
5601 if (!pmu->start_txn) {
5602 if (pmu->pmu_enable) {
5603 /*
5604 * If we have pmu_enable/pmu_disable calls, install
5605 * transaction stubs that use that to try and batch
5606 * hardware accesses.
5607 */
5608 pmu->start_txn = perf_pmu_start_txn;
5609 pmu->commit_txn = perf_pmu_commit_txn;
5610 pmu->cancel_txn = perf_pmu_cancel_txn;
5611 } else {
5612 pmu->start_txn = perf_pmu_nop_void;
5613 pmu->commit_txn = perf_pmu_nop_int;
5614 pmu->cancel_txn = perf_pmu_nop_void;
5615 }
5616 }
5617
5618 if (!pmu->pmu_enable) {
5619 pmu->pmu_enable = perf_pmu_nop_void;
5620 pmu->pmu_disable = perf_pmu_nop_void;
5621 }
5622
5623 if (!pmu->event_idx)
5624 pmu->event_idx = perf_event_idx_default;
5625
5626 list_add_rcu(&pmu->entry, &pmus);
5627 ret = 0;
5628 unlock:
5629 mutex_unlock(&pmus_lock);
5630
5631 return ret;
5632
5633 free_dev:
5634 device_del(pmu->dev);
5635 put_device(pmu->dev);
5636
5637 free_idr:
5638 if (pmu->type >= PERF_TYPE_MAX)
5639 idr_remove(&pmu_idr, pmu->type);
5640
5641 free_pdc:
5642 free_percpu(pmu->pmu_disable_count);
5643 goto unlock;
5644 }
5645
5646 void perf_pmu_unregister(struct pmu *pmu)
5647 {
5648 mutex_lock(&pmus_lock);
5649 list_del_rcu(&pmu->entry);
5650 mutex_unlock(&pmus_lock);
5651
5652 /*
5653 * We dereference the pmu list under both SRCU and regular RCU, so
5654 * synchronize against both of those.
5655 */
5656 synchronize_srcu(&pmus_srcu);
5657 synchronize_rcu();
5658
5659 free_percpu(pmu->pmu_disable_count);
5660 if (pmu->type >= PERF_TYPE_MAX)
5661 idr_remove(&pmu_idr, pmu->type);
5662 device_del(pmu->dev);
5663 put_device(pmu->dev);
5664 free_pmu_context(pmu);
5665 }
5666
5667 struct pmu *perf_init_event(struct perf_event *event)
5668 {
5669 struct pmu *pmu = NULL;
5670 int idx;
5671 int ret;
5672
5673 idx = srcu_read_lock(&pmus_srcu);
5674
5675 rcu_read_lock();
5676 pmu = idr_find(&pmu_idr, event->attr.type);
5677 rcu_read_unlock();
5678 if (pmu) {
5679 event->pmu = pmu;
5680 ret = pmu->event_init(event);
5681 if (ret)
5682 pmu = ERR_PTR(ret);
5683 goto unlock;
5684 }
5685
5686 list_for_each_entry_rcu(pmu, &pmus, entry) {
5687 event->pmu = pmu;
5688 ret = pmu->event_init(event);
5689 if (!ret)
5690 goto unlock;
5691
5692 if (ret != -ENOENT) {
5693 pmu = ERR_PTR(ret);
5694 goto unlock;
5695 }
5696 }
5697 pmu = ERR_PTR(-ENOENT);
5698 unlock:
5699 srcu_read_unlock(&pmus_srcu, idx);
5700
5701 return pmu;
5702 }
5703
5704 /*
5705 * Allocate and initialize a event structure
5706 */
5707 static struct perf_event *
5708 perf_event_alloc(struct perf_event_attr *attr, int cpu,
5709 struct task_struct *task,
5710 struct perf_event *group_leader,
5711 struct perf_event *parent_event,
5712 perf_overflow_handler_t overflow_handler,
5713 void *context)
5714 {
5715 struct pmu *pmu;
5716 struct perf_event *event;
5717 struct hw_perf_event *hwc;
5718 long err;
5719
5720 if ((unsigned)cpu >= nr_cpu_ids) {
5721 if (!task || cpu != -1)
5722 return ERR_PTR(-EINVAL);
5723 }
5724
5725 event = kzalloc(sizeof(*event), GFP_KERNEL);
5726 if (!event)
5727 return ERR_PTR(-ENOMEM);
5728
5729 /*
5730 * Single events are their own group leaders, with an
5731 * empty sibling list:
5732 */
5733 if (!group_leader)
5734 group_leader = event;
5735
5736 mutex_init(&event->child_mutex);
5737 INIT_LIST_HEAD(&event->child_list);
5738
5739 INIT_LIST_HEAD(&event->group_entry);
5740 INIT_LIST_HEAD(&event->event_entry);
5741 INIT_LIST_HEAD(&event->sibling_list);
5742 INIT_LIST_HEAD(&event->rb_entry);
5743
5744 init_waitqueue_head(&event->waitq);
5745 init_irq_work(&event->pending, perf_pending_event);
5746
5747 mutex_init(&event->mmap_mutex);
5748
5749 event->cpu = cpu;
5750 event->attr = *attr;
5751 event->group_leader = group_leader;
5752 event->pmu = NULL;
5753 event->oncpu = -1;
5754
5755 event->parent = parent_event;
5756
5757 event->ns = get_pid_ns(current->nsproxy->pid_ns);
5758 event->id = atomic64_inc_return(&perf_event_id);
5759
5760 event->state = PERF_EVENT_STATE_INACTIVE;
5761
5762 if (task) {
5763 event->attach_state = PERF_ATTACH_TASK;
5764 #ifdef CONFIG_HAVE_HW_BREAKPOINT
5765 /*
5766 * hw_breakpoint is a bit difficult here..
5767 */
5768 if (attr->type == PERF_TYPE_BREAKPOINT)
5769 event->hw.bp_target = task;
5770 #endif
5771 }
5772
5773 if (!overflow_handler && parent_event) {
5774 overflow_handler = parent_event->overflow_handler;
5775 context = parent_event->overflow_handler_context;
5776 }
5777
5778 event->overflow_handler = overflow_handler;
5779 event->overflow_handler_context = context;
5780
5781 if (attr->disabled)
5782 event->state = PERF_EVENT_STATE_OFF;
5783
5784 pmu = NULL;
5785
5786 hwc = &event->hw;
5787 hwc->sample_period = attr->sample_period;
5788 if (attr->freq && attr->sample_freq)
5789 hwc->sample_period = 1;
5790 hwc->last_period = hwc->sample_period;
5791
5792 local64_set(&hwc->period_left, hwc->sample_period);
5793
5794 /*
5795 * we currently do not support PERF_FORMAT_GROUP on inherited events
5796 */
5797 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
5798 goto done;
5799
5800 pmu = perf_init_event(event);
5801
5802 done:
5803 err = 0;
5804 if (!pmu)
5805 err = -EINVAL;
5806 else if (IS_ERR(pmu))
5807 err = PTR_ERR(pmu);
5808
5809 if (err) {
5810 if (event->ns)
5811 put_pid_ns(event->ns);
5812 kfree(event);
5813 return ERR_PTR(err);
5814 }
5815
5816 if (!event->parent) {
5817 if (event->attach_state & PERF_ATTACH_TASK)
5818 jump_label_inc(&perf_sched_events.key);
5819 if (event->attr.mmap || event->attr.mmap_data)
5820 atomic_inc(&nr_mmap_events);
5821 if (event->attr.comm)
5822 atomic_inc(&nr_comm_events);
5823 if (event->attr.task)
5824 atomic_inc(&nr_task_events);
5825 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
5826 err = get_callchain_buffers();
5827 if (err) {
5828 free_event(event);
5829 return ERR_PTR(err);
5830 }
5831 }
5832 }
5833
5834 return event;
5835 }
5836
5837 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5838 struct perf_event_attr *attr)
5839 {
5840 u32 size;
5841 int ret;
5842
5843 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
5844 return -EFAULT;
5845
5846 /*
5847 * zero the full structure, so that a short copy will be nice.
5848 */
5849 memset(attr, 0, sizeof(*attr));
5850
5851 ret = get_user(size, &uattr->size);
5852 if (ret)
5853 return ret;
5854
5855 if (size > PAGE_SIZE) /* silly large */
5856 goto err_size;
5857
5858 if (!size) /* abi compat */
5859 size = PERF_ATTR_SIZE_VER0;
5860
5861 if (size < PERF_ATTR_SIZE_VER0)
5862 goto err_size;
5863
5864 /*
5865 * If we're handed a bigger struct than we know of,
5866 * ensure all the unknown bits are 0 - i.e. new
5867 * user-space does not rely on any kernel feature
5868 * extensions we dont know about yet.
5869 */
5870 if (size > sizeof(*attr)) {
5871 unsigned char __user *addr;
5872 unsigned char __user *end;
5873 unsigned char val;
5874
5875 addr = (void __user *)uattr + sizeof(*attr);
5876 end = (void __user *)uattr + size;
5877
5878 for (; addr < end; addr++) {
5879 ret = get_user(val, addr);
5880 if (ret)
5881 return ret;
5882 if (val)
5883 goto err_size;
5884 }
5885 size = sizeof(*attr);
5886 }
5887
5888 ret = copy_from_user(attr, uattr, size);
5889 if (ret)
5890 return -EFAULT;
5891
5892 if (attr->__reserved_1)
5893 return -EINVAL;
5894
5895 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
5896 return -EINVAL;
5897
5898 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
5899 return -EINVAL;
5900
5901 out:
5902 return ret;
5903
5904 err_size:
5905 put_user(sizeof(*attr), &uattr->size);
5906 ret = -E2BIG;
5907 goto out;
5908 }
5909
5910 static int
5911 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
5912 {
5913 struct ring_buffer *rb = NULL, *old_rb = NULL;
5914 int ret = -EINVAL;
5915
5916 if (!output_event)
5917 goto set;
5918
5919 /* don't allow circular references */
5920 if (event == output_event)
5921 goto out;
5922
5923 /*
5924 * Don't allow cross-cpu buffers
5925 */
5926 if (output_event->cpu != event->cpu)
5927 goto out;
5928
5929 /*
5930 * If its not a per-cpu rb, it must be the same task.
5931 */
5932 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
5933 goto out;
5934
5935 set:
5936 mutex_lock(&event->mmap_mutex);
5937 /* Can't redirect output if we've got an active mmap() */
5938 if (atomic_read(&event->mmap_count))
5939 goto unlock;
5940
5941 if (output_event) {
5942 /* get the rb we want to redirect to */
5943 rb = ring_buffer_get(output_event);
5944 if (!rb)
5945 goto unlock;
5946 }
5947
5948 old_rb = event->rb;
5949 rcu_assign_pointer(event->rb, rb);
5950 if (old_rb)
5951 ring_buffer_detach(event, old_rb);
5952 ret = 0;
5953 unlock:
5954 mutex_unlock(&event->mmap_mutex);
5955
5956 if (old_rb)
5957 ring_buffer_put(old_rb);
5958 out:
5959 return ret;
5960 }
5961
5962 /**
5963 * sys_perf_event_open - open a performance event, associate it to a task/cpu
5964 *
5965 * @attr_uptr: event_id type attributes for monitoring/sampling
5966 * @pid: target pid
5967 * @cpu: target cpu
5968 * @group_fd: group leader event fd
5969 */
5970 SYSCALL_DEFINE5(perf_event_open,
5971 struct perf_event_attr __user *, attr_uptr,
5972 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
5973 {
5974 struct perf_event *group_leader = NULL, *output_event = NULL;
5975 struct perf_event *event, *sibling;
5976 struct perf_event_attr attr;
5977 struct perf_event_context *ctx;
5978 struct file *event_file = NULL;
5979 struct file *group_file = NULL;
5980 struct task_struct *task = NULL;
5981 struct pmu *pmu;
5982 int event_fd;
5983 int move_group = 0;
5984 int fput_needed = 0;
5985 int err;
5986
5987 /* for future expandability... */
5988 if (flags & ~PERF_FLAG_ALL)
5989 return -EINVAL;
5990
5991 err = perf_copy_attr(attr_uptr, &attr);
5992 if (err)
5993 return err;
5994
5995 if (!attr.exclude_kernel) {
5996 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
5997 return -EACCES;
5998 }
5999
6000 if (attr.freq) {
6001 if (attr.sample_freq > sysctl_perf_event_sample_rate)
6002 return -EINVAL;
6003 }
6004
6005 /*
6006 * In cgroup mode, the pid argument is used to pass the fd
6007 * opened to the cgroup directory in cgroupfs. The cpu argument
6008 * designates the cpu on which to monitor threads from that
6009 * cgroup.
6010 */
6011 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
6012 return -EINVAL;
6013
6014 event_fd = get_unused_fd_flags(O_RDWR);
6015 if (event_fd < 0)
6016 return event_fd;
6017
6018 if (group_fd != -1) {
6019 group_leader = perf_fget_light(group_fd, &fput_needed);
6020 if (IS_ERR(group_leader)) {
6021 err = PTR_ERR(group_leader);
6022 goto err_fd;
6023 }
6024 group_file = group_leader->filp;
6025 if (flags & PERF_FLAG_FD_OUTPUT)
6026 output_event = group_leader;
6027 if (flags & PERF_FLAG_FD_NO_GROUP)
6028 group_leader = NULL;
6029 }
6030
6031 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
6032 task = find_lively_task_by_vpid(pid);
6033 if (IS_ERR(task)) {
6034 err = PTR_ERR(task);
6035 goto err_group_fd;
6036 }
6037 }
6038
6039 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
6040 NULL, NULL);
6041 if (IS_ERR(event)) {
6042 err = PTR_ERR(event);
6043 goto err_task;
6044 }
6045
6046 if (flags & PERF_FLAG_PID_CGROUP) {
6047 err = perf_cgroup_connect(pid, event, &attr, group_leader);
6048 if (err)
6049 goto err_alloc;
6050 /*
6051 * one more event:
6052 * - that has cgroup constraint on event->cpu
6053 * - that may need work on context switch
6054 */
6055 atomic_inc(&per_cpu(perf_cgroup_events, event->cpu));
6056 jump_label_inc(&perf_sched_events.key);
6057 }
6058
6059 /*
6060 * Special case software events and allow them to be part of
6061 * any hardware group.
6062 */
6063 pmu = event->pmu;
6064
6065 if (group_leader &&
6066 (is_software_event(event) != is_software_event(group_leader))) {
6067 if (is_software_event(event)) {
6068 /*
6069 * If event and group_leader are not both a software
6070 * event, and event is, then group leader is not.
6071 *
6072 * Allow the addition of software events to !software
6073 * groups, this is safe because software events never
6074 * fail to schedule.
6075 */
6076 pmu = group_leader->pmu;
6077 } else if (is_software_event(group_leader) &&
6078 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
6079 /*
6080 * In case the group is a pure software group, and we
6081 * try to add a hardware event, move the whole group to
6082 * the hardware context.
6083 */
6084 move_group = 1;
6085 }
6086 }
6087
6088 /*
6089 * Get the target context (task or percpu):
6090 */
6091 ctx = find_get_context(pmu, task, cpu);
6092 if (IS_ERR(ctx)) {
6093 err = PTR_ERR(ctx);
6094 goto err_alloc;
6095 }
6096
6097 if (task) {
6098 put_task_struct(task);
6099 task = NULL;
6100 }
6101
6102 /*
6103 * Look up the group leader (we will attach this event to it):
6104 */
6105 if (group_leader) {
6106 err = -EINVAL;
6107
6108 /*
6109 * Do not allow a recursive hierarchy (this new sibling
6110 * becoming part of another group-sibling):
6111 */
6112 if (group_leader->group_leader != group_leader)
6113 goto err_context;
6114 /*
6115 * Do not allow to attach to a group in a different
6116 * task or CPU context:
6117 */
6118 if (move_group) {
6119 if (group_leader->ctx->type != ctx->type)
6120 goto err_context;
6121 } else {
6122 if (group_leader->ctx != ctx)
6123 goto err_context;
6124 }
6125
6126 /*
6127 * Only a group leader can be exclusive or pinned
6128 */
6129 if (attr.exclusive || attr.pinned)
6130 goto err_context;
6131 }
6132
6133 if (output_event) {
6134 err = perf_event_set_output(event, output_event);
6135 if (err)
6136 goto err_context;
6137 }
6138
6139 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
6140 if (IS_ERR(event_file)) {
6141 err = PTR_ERR(event_file);
6142 goto err_context;
6143 }
6144
6145 if (move_group) {
6146 struct perf_event_context *gctx = group_leader->ctx;
6147
6148 mutex_lock(&gctx->mutex);
6149 perf_remove_from_context(group_leader);
6150 list_for_each_entry(sibling, &group_leader->sibling_list,
6151 group_entry) {
6152 perf_remove_from_context(sibling);
6153 put_ctx(gctx);
6154 }
6155 mutex_unlock(&gctx->mutex);
6156 put_ctx(gctx);
6157 }
6158
6159 event->filp = event_file;
6160 WARN_ON_ONCE(ctx->parent_ctx);
6161 mutex_lock(&ctx->mutex);
6162
6163 if (move_group) {
6164 perf_install_in_context(ctx, group_leader, cpu);
6165 get_ctx(ctx);
6166 list_for_each_entry(sibling, &group_leader->sibling_list,
6167 group_entry) {
6168 perf_install_in_context(ctx, sibling, cpu);
6169 get_ctx(ctx);
6170 }
6171 }
6172
6173 perf_install_in_context(ctx, event, cpu);
6174 ++ctx->generation;
6175 perf_unpin_context(ctx);
6176 mutex_unlock(&ctx->mutex);
6177
6178 event->owner = current;
6179
6180 mutex_lock(&current->perf_event_mutex);
6181 list_add_tail(&event->owner_entry, &current->perf_event_list);
6182 mutex_unlock(&current->perf_event_mutex);
6183
6184 /*
6185 * Precalculate sample_data sizes
6186 */
6187 perf_event__header_size(event);
6188 perf_event__id_header_size(event);
6189
6190 /*
6191 * Drop the reference on the group_event after placing the
6192 * new event on the sibling_list. This ensures destruction
6193 * of the group leader will find the pointer to itself in
6194 * perf_group_detach().
6195 */
6196 fput_light(group_file, fput_needed);
6197 fd_install(event_fd, event_file);
6198 return event_fd;
6199
6200 err_context:
6201 perf_unpin_context(ctx);
6202 put_ctx(ctx);
6203 err_alloc:
6204 free_event(event);
6205 err_task:
6206 if (task)
6207 put_task_struct(task);
6208 err_group_fd:
6209 fput_light(group_file, fput_needed);
6210 err_fd:
6211 put_unused_fd(event_fd);
6212 return err;
6213 }
6214
6215 /**
6216 * perf_event_create_kernel_counter
6217 *
6218 * @attr: attributes of the counter to create
6219 * @cpu: cpu in which the counter is bound
6220 * @task: task to profile (NULL for percpu)
6221 */
6222 struct perf_event *
6223 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
6224 struct task_struct *task,
6225 perf_overflow_handler_t overflow_handler,
6226 void *context)
6227 {
6228 struct perf_event_context *ctx;
6229 struct perf_event *event;
6230 int err;
6231
6232 /*
6233 * Get the target context (task or percpu):
6234 */
6235
6236 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
6237 overflow_handler, context);
6238 if (IS_ERR(event)) {
6239 err = PTR_ERR(event);
6240 goto err;
6241 }
6242
6243 ctx = find_get_context(event->pmu, task, cpu);
6244 if (IS_ERR(ctx)) {
6245 err = PTR_ERR(ctx);
6246 goto err_free;
6247 }
6248
6249 event->filp = NULL;
6250 WARN_ON_ONCE(ctx->parent_ctx);
6251 mutex_lock(&ctx->mutex);
6252 perf_install_in_context(ctx, event, cpu);
6253 ++ctx->generation;
6254 perf_unpin_context(ctx);
6255 mutex_unlock(&ctx->mutex);
6256
6257 return event;
6258
6259 err_free:
6260 free_event(event);
6261 err:
6262 return ERR_PTR(err);
6263 }
6264 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
6265
6266 static void sync_child_event(struct perf_event *child_event,
6267 struct task_struct *child)
6268 {
6269 struct perf_event *parent_event = child_event->parent;
6270 u64 child_val;
6271
6272 if (child_event->attr.inherit_stat)
6273 perf_event_read_event(child_event, child);
6274
6275 child_val = perf_event_count(child_event);
6276
6277 /*
6278 * Add back the child's count to the parent's count:
6279 */
6280 atomic64_add(child_val, &parent_event->child_count);
6281 atomic64_add(child_event->total_time_enabled,
6282 &parent_event->child_total_time_enabled);
6283 atomic64_add(child_event->total_time_running,
6284 &parent_event->child_total_time_running);
6285
6286 /*
6287 * Remove this event from the parent's list
6288 */
6289 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
6290 mutex_lock(&parent_event->child_mutex);
6291 list_del_init(&child_event->child_list);
6292 mutex_unlock(&parent_event->child_mutex);
6293
6294 /*
6295 * Release the parent event, if this was the last
6296 * reference to it.
6297 */
6298 fput(parent_event->filp);
6299 }
6300
6301 static void
6302 __perf_event_exit_task(struct perf_event *child_event,
6303 struct perf_event_context *child_ctx,
6304 struct task_struct *child)
6305 {
6306 if (child_event->parent) {
6307 raw_spin_lock_irq(&child_ctx->lock);
6308 perf_group_detach(child_event);
6309 raw_spin_unlock_irq(&child_ctx->lock);
6310 }
6311
6312 perf_remove_from_context(child_event);
6313
6314 /*
6315 * It can happen that the parent exits first, and has events
6316 * that are still around due to the child reference. These
6317 * events need to be zapped.
6318 */
6319 if (child_event->parent) {
6320 sync_child_event(child_event, child);
6321 free_event(child_event);
6322 }
6323 }
6324
6325 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
6326 {
6327 struct perf_event *child_event, *tmp;
6328 struct perf_event_context *child_ctx;
6329 unsigned long flags;
6330
6331 if (likely(!child->perf_event_ctxp[ctxn])) {
6332 perf_event_task(child, NULL, 0);
6333 return;
6334 }
6335
6336 local_irq_save(flags);
6337 /*
6338 * We can't reschedule here because interrupts are disabled,
6339 * and either child is current or it is a task that can't be
6340 * scheduled, so we are now safe from rescheduling changing
6341 * our context.
6342 */
6343 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
6344
6345 /*
6346 * Take the context lock here so that if find_get_context is
6347 * reading child->perf_event_ctxp, we wait until it has
6348 * incremented the context's refcount before we do put_ctx below.
6349 */
6350 raw_spin_lock(&child_ctx->lock);
6351 task_ctx_sched_out(child_ctx);
6352 child->perf_event_ctxp[ctxn] = NULL;
6353 /*
6354 * If this context is a clone; unclone it so it can't get
6355 * swapped to another process while we're removing all
6356 * the events from it.
6357 */
6358 unclone_ctx(child_ctx);
6359 update_context_time(child_ctx);
6360 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
6361
6362 /*
6363 * Report the task dead after unscheduling the events so that we
6364 * won't get any samples after PERF_RECORD_EXIT. We can however still
6365 * get a few PERF_RECORD_READ events.
6366 */
6367 perf_event_task(child, child_ctx, 0);
6368
6369 /*
6370 * We can recurse on the same lock type through:
6371 *
6372 * __perf_event_exit_task()
6373 * sync_child_event()
6374 * fput(parent_event->filp)
6375 * perf_release()
6376 * mutex_lock(&ctx->mutex)
6377 *
6378 * But since its the parent context it won't be the same instance.
6379 */
6380 mutex_lock(&child_ctx->mutex);
6381
6382 again:
6383 list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
6384 group_entry)
6385 __perf_event_exit_task(child_event, child_ctx, child);
6386
6387 list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
6388 group_entry)
6389 __perf_event_exit_task(child_event, child_ctx, child);
6390
6391 /*
6392 * If the last event was a group event, it will have appended all
6393 * its siblings to the list, but we obtained 'tmp' before that which
6394 * will still point to the list head terminating the iteration.
6395 */
6396 if (!list_empty(&child_ctx->pinned_groups) ||
6397 !list_empty(&child_ctx->flexible_groups))
6398 goto again;
6399
6400 mutex_unlock(&child_ctx->mutex);
6401
6402 put_ctx(child_ctx);
6403 }
6404
6405 /*
6406 * When a child task exits, feed back event values to parent events.
6407 */
6408 void perf_event_exit_task(struct task_struct *child)
6409 {
6410 struct perf_event *event, *tmp;
6411 int ctxn;
6412
6413 mutex_lock(&child->perf_event_mutex);
6414 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
6415 owner_entry) {
6416 list_del_init(&event->owner_entry);
6417
6418 /*
6419 * Ensure the list deletion is visible before we clear
6420 * the owner, closes a race against perf_release() where
6421 * we need to serialize on the owner->perf_event_mutex.
6422 */
6423 smp_wmb();
6424 event->owner = NULL;
6425 }
6426 mutex_unlock(&child->perf_event_mutex);
6427
6428 for_each_task_context_nr(ctxn)
6429 perf_event_exit_task_context(child, ctxn);
6430 }
6431
6432 static void perf_free_event(struct perf_event *event,
6433 struct perf_event_context *ctx)
6434 {
6435 struct perf_event *parent = event->parent;
6436
6437 if (WARN_ON_ONCE(!parent))
6438 return;
6439
6440 mutex_lock(&parent->child_mutex);
6441 list_del_init(&event->child_list);
6442 mutex_unlock(&parent->child_mutex);
6443
6444 fput(parent->filp);
6445
6446 perf_group_detach(event);
6447 list_del_event(event, ctx);
6448 free_event(event);
6449 }
6450
6451 /*
6452 * free an unexposed, unused context as created by inheritance by
6453 * perf_event_init_task below, used by fork() in case of fail.
6454 */
6455 void perf_event_free_task(struct task_struct *task)
6456 {
6457 struct perf_event_context *ctx;
6458 struct perf_event *event, *tmp;
6459 int ctxn;
6460
6461 for_each_task_context_nr(ctxn) {
6462 ctx = task->perf_event_ctxp[ctxn];
6463 if (!ctx)
6464 continue;
6465
6466 mutex_lock(&ctx->mutex);
6467 again:
6468 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
6469 group_entry)
6470 perf_free_event(event, ctx);
6471
6472 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
6473 group_entry)
6474 perf_free_event(event, ctx);
6475
6476 if (!list_empty(&ctx->pinned_groups) ||
6477 !list_empty(&ctx->flexible_groups))
6478 goto again;
6479
6480 mutex_unlock(&ctx->mutex);
6481
6482 put_ctx(ctx);
6483 }
6484 }
6485
6486 void perf_event_delayed_put(struct task_struct *task)
6487 {
6488 int ctxn;
6489
6490 for_each_task_context_nr(ctxn)
6491 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
6492 }
6493
6494 /*
6495 * inherit a event from parent task to child task:
6496 */
6497 static struct perf_event *
6498 inherit_event(struct perf_event *parent_event,
6499 struct task_struct *parent,
6500 struct perf_event_context *parent_ctx,
6501 struct task_struct *child,
6502 struct perf_event *group_leader,
6503 struct perf_event_context *child_ctx)
6504 {
6505 struct perf_event *child_event;
6506 unsigned long flags;
6507
6508 /*
6509 * Instead of creating recursive hierarchies of events,
6510 * we link inherited events back to the original parent,
6511 * which has a filp for sure, which we use as the reference
6512 * count:
6513 */
6514 if (parent_event->parent)
6515 parent_event = parent_event->parent;
6516
6517 child_event = perf_event_alloc(&parent_event->attr,
6518 parent_event->cpu,
6519 child,
6520 group_leader, parent_event,
6521 NULL, NULL);
6522 if (IS_ERR(child_event))
6523 return child_event;
6524 get_ctx(child_ctx);
6525
6526 /*
6527 * Make the child state follow the state of the parent event,
6528 * not its attr.disabled bit. We hold the parent's mutex,
6529 * so we won't race with perf_event_{en, dis}able_family.
6530 */
6531 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
6532 child_event->state = PERF_EVENT_STATE_INACTIVE;
6533 else
6534 child_event->state = PERF_EVENT_STATE_OFF;
6535
6536 if (parent_event->attr.freq) {
6537 u64 sample_period = parent_event->hw.sample_period;
6538 struct hw_perf_event *hwc = &child_event->hw;
6539
6540 hwc->sample_period = sample_period;
6541 hwc->last_period = sample_period;
6542
6543 local64_set(&hwc->period_left, sample_period);
6544 }
6545
6546 child_event->ctx = child_ctx;
6547 child_event->overflow_handler = parent_event->overflow_handler;
6548 child_event->overflow_handler_context
6549 = parent_event->overflow_handler_context;
6550
6551 /*
6552 * Precalculate sample_data sizes
6553 */
6554 perf_event__header_size(child_event);
6555 perf_event__id_header_size(child_event);
6556
6557 /*
6558 * Link it up in the child's context:
6559 */
6560 raw_spin_lock_irqsave(&child_ctx->lock, flags);
6561 add_event_to_ctx(child_event, child_ctx);
6562 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
6563
6564 /*
6565 * Get a reference to the parent filp - we will fput it
6566 * when the child event exits. This is safe to do because
6567 * we are in the parent and we know that the filp still
6568 * exists and has a nonzero count:
6569 */
6570 atomic_long_inc(&parent_event->filp->f_count);
6571
6572 /*
6573 * Link this into the parent event's child list
6574 */
6575 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
6576 mutex_lock(&parent_event->child_mutex);
6577 list_add_tail(&child_event->child_list, &parent_event->child_list);
6578 mutex_unlock(&parent_event->child_mutex);
6579
6580 return child_event;
6581 }
6582
6583 static int inherit_group(struct perf_event *parent_event,
6584 struct task_struct *parent,
6585 struct perf_event_context *parent_ctx,
6586 struct task_struct *child,
6587 struct perf_event_context *child_ctx)
6588 {
6589 struct perf_event *leader;
6590 struct perf_event *sub;
6591 struct perf_event *child_ctr;
6592
6593 leader = inherit_event(parent_event, parent, parent_ctx,
6594 child, NULL, child_ctx);
6595 if (IS_ERR(leader))
6596 return PTR_ERR(leader);
6597 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
6598 child_ctr = inherit_event(sub, parent, parent_ctx,
6599 child, leader, child_ctx);
6600 if (IS_ERR(child_ctr))
6601 return PTR_ERR(child_ctr);
6602 }
6603 return 0;
6604 }
6605
6606 static int
6607 inherit_task_group(struct perf_event *event, struct task_struct *parent,
6608 struct perf_event_context *parent_ctx,
6609 struct task_struct *child, int ctxn,
6610 int *inherited_all)
6611 {
6612 int ret;
6613 struct perf_event_context *child_ctx;
6614
6615 if (!event->attr.inherit) {
6616 *inherited_all = 0;
6617 return 0;
6618 }
6619
6620 child_ctx = child->perf_event_ctxp[ctxn];
6621 if (!child_ctx) {
6622 /*
6623 * This is executed from the parent task context, so
6624 * inherit events that have been marked for cloning.
6625 * First allocate and initialize a context for the
6626 * child.
6627 */
6628
6629 child_ctx = alloc_perf_context(event->pmu, child);
6630 if (!child_ctx)
6631 return -ENOMEM;
6632
6633 child->perf_event_ctxp[ctxn] = child_ctx;
6634 }
6635
6636 ret = inherit_group(event, parent, parent_ctx,
6637 child, child_ctx);
6638
6639 if (ret)
6640 *inherited_all = 0;
6641
6642 return ret;
6643 }
6644
6645 /*
6646 * Initialize the perf_event context in task_struct
6647 */
6648 int perf_event_init_context(struct task_struct *child, int ctxn)
6649 {
6650 struct perf_event_context *child_ctx, *parent_ctx;
6651 struct perf_event_context *cloned_ctx;
6652 struct perf_event *event;
6653 struct task_struct *parent = current;
6654 int inherited_all = 1;
6655 unsigned long flags;
6656 int ret = 0;
6657
6658 if (likely(!parent->perf_event_ctxp[ctxn]))
6659 return 0;
6660
6661 /*
6662 * If the parent's context is a clone, pin it so it won't get
6663 * swapped under us.
6664 */
6665 parent_ctx = perf_pin_task_context(parent, ctxn);
6666
6667 /*
6668 * No need to check if parent_ctx != NULL here; since we saw
6669 * it non-NULL earlier, the only reason for it to become NULL
6670 * is if we exit, and since we're currently in the middle of
6671 * a fork we can't be exiting at the same time.
6672 */
6673
6674 /*
6675 * Lock the parent list. No need to lock the child - not PID
6676 * hashed yet and not running, so nobody can access it.
6677 */
6678 mutex_lock(&parent_ctx->mutex);
6679
6680 /*
6681 * We dont have to disable NMIs - we are only looking at
6682 * the list, not manipulating it:
6683 */
6684 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
6685 ret = inherit_task_group(event, parent, parent_ctx,
6686 child, ctxn, &inherited_all);
6687 if (ret)
6688 break;
6689 }
6690
6691 /*
6692 * We can't hold ctx->lock when iterating the ->flexible_group list due
6693 * to allocations, but we need to prevent rotation because
6694 * rotate_ctx() will change the list from interrupt context.
6695 */
6696 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
6697 parent_ctx->rotate_disable = 1;
6698 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
6699
6700 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
6701 ret = inherit_task_group(event, parent, parent_ctx,
6702 child, ctxn, &inherited_all);
6703 if (ret)
6704 break;
6705 }
6706
6707 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
6708 parent_ctx->rotate_disable = 0;
6709
6710 child_ctx = child->perf_event_ctxp[ctxn];
6711
6712 if (child_ctx && inherited_all) {
6713 /*
6714 * Mark the child context as a clone of the parent
6715 * context, or of whatever the parent is a clone of.
6716 *
6717 * Note that if the parent is a clone, the holding of
6718 * parent_ctx->lock avoids it from being uncloned.
6719 */
6720 cloned_ctx = parent_ctx->parent_ctx;
6721 if (cloned_ctx) {
6722 child_ctx->parent_ctx = cloned_ctx;
6723 child_ctx->parent_gen = parent_ctx->parent_gen;
6724 } else {
6725 child_ctx->parent_ctx = parent_ctx;
6726 child_ctx->parent_gen = parent_ctx->generation;
6727 }
6728 get_ctx(child_ctx->parent_ctx);
6729 }
6730
6731 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
6732 mutex_unlock(&parent_ctx->mutex);
6733
6734 perf_unpin_context(parent_ctx);
6735 put_ctx(parent_ctx);
6736
6737 return ret;
6738 }
6739
6740 /*
6741 * Initialize the perf_event context in task_struct
6742 */
6743 int perf_event_init_task(struct task_struct *child)
6744 {
6745 int ctxn, ret;
6746
6747 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
6748 mutex_init(&child->perf_event_mutex);
6749 INIT_LIST_HEAD(&child->perf_event_list);
6750
6751 for_each_task_context_nr(ctxn) {
6752 ret = perf_event_init_context(child, ctxn);
6753 if (ret)
6754 return ret;
6755 }
6756
6757 return 0;
6758 }
6759
6760 static void __init perf_event_init_all_cpus(void)
6761 {
6762 struct swevent_htable *swhash;
6763 int cpu;
6764
6765 for_each_possible_cpu(cpu) {
6766 swhash = &per_cpu(swevent_htable, cpu);
6767 mutex_init(&swhash->hlist_mutex);
6768 INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
6769 }
6770 }
6771
6772 static void __cpuinit perf_event_init_cpu(int cpu)
6773 {
6774 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6775
6776 mutex_lock(&swhash->hlist_mutex);
6777 if (swhash->hlist_refcount > 0) {
6778 struct swevent_hlist *hlist;
6779
6780 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
6781 WARN_ON(!hlist);
6782 rcu_assign_pointer(swhash->swevent_hlist, hlist);
6783 }
6784 mutex_unlock(&swhash->hlist_mutex);
6785 }
6786
6787 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
6788 static void perf_pmu_rotate_stop(struct pmu *pmu)
6789 {
6790 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6791
6792 WARN_ON(!irqs_disabled());
6793
6794 list_del_init(&cpuctx->rotation_list);
6795 }
6796
6797 static void __perf_event_exit_context(void *__info)
6798 {
6799 struct perf_event_context *ctx = __info;
6800 struct perf_event *event, *tmp;
6801
6802 perf_pmu_rotate_stop(ctx->pmu);
6803
6804 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
6805 __perf_remove_from_context(event);
6806 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
6807 __perf_remove_from_context(event);
6808 }
6809
6810 static void perf_event_exit_cpu_context(int cpu)
6811 {
6812 struct perf_event_context *ctx;
6813 struct pmu *pmu;
6814 int idx;
6815
6816 idx = srcu_read_lock(&pmus_srcu);
6817 list_for_each_entry_rcu(pmu, &pmus, entry) {
6818 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
6819
6820 mutex_lock(&ctx->mutex);
6821 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
6822 mutex_unlock(&ctx->mutex);
6823 }
6824 srcu_read_unlock(&pmus_srcu, idx);
6825 }
6826
6827 static void perf_event_exit_cpu(int cpu)
6828 {
6829 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6830
6831 mutex_lock(&swhash->hlist_mutex);
6832 swevent_hlist_release(swhash);
6833 mutex_unlock(&swhash->hlist_mutex);
6834
6835 perf_event_exit_cpu_context(cpu);
6836 }
6837 #else
6838 static inline void perf_event_exit_cpu(int cpu) { }
6839 #endif
6840
6841 static int
6842 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
6843 {
6844 int cpu;
6845
6846 for_each_online_cpu(cpu)
6847 perf_event_exit_cpu(cpu);
6848
6849 return NOTIFY_OK;
6850 }
6851
6852 /*
6853 * Run the perf reboot notifier at the very last possible moment so that
6854 * the generic watchdog code runs as long as possible.
6855 */
6856 static struct notifier_block perf_reboot_notifier = {
6857 .notifier_call = perf_reboot,
6858 .priority = INT_MIN,
6859 };
6860
6861 static int __cpuinit
6862 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
6863 {
6864 unsigned int cpu = (long)hcpu;
6865
6866 switch (action & ~CPU_TASKS_FROZEN) {
6867
6868 case CPU_UP_PREPARE:
6869 case CPU_DOWN_FAILED:
6870 perf_event_init_cpu(cpu);
6871 break;
6872
6873 case CPU_UP_CANCELED:
6874 case CPU_DOWN_PREPARE:
6875 perf_event_exit_cpu(cpu);
6876 break;
6877
6878 default:
6879 break;
6880 }
6881
6882 return NOTIFY_OK;
6883 }
6884
6885 void __init perf_event_init(void)
6886 {
6887 int ret;
6888
6889 idr_init(&pmu_idr);
6890
6891 perf_event_init_all_cpus();
6892 init_srcu_struct(&pmus_srcu);
6893 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
6894 perf_pmu_register(&perf_cpu_clock, NULL, -1);
6895 perf_pmu_register(&perf_task_clock, NULL, -1);
6896 perf_tp_register();
6897 perf_cpu_notifier(perf_cpu_notify);
6898 register_reboot_notifier(&perf_reboot_notifier);
6899
6900 ret = init_hw_breakpoint();
6901 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
6902
6903 /* do not patch jump label more than once per second */
6904 jump_label_rate_limit(&perf_sched_events, HZ);
6905 }
6906
6907 static int __init perf_event_sysfs_init(void)
6908 {
6909 struct pmu *pmu;
6910 int ret;
6911
6912 mutex_lock(&pmus_lock);
6913
6914 ret = bus_register(&pmu_bus);
6915 if (ret)
6916 goto unlock;
6917
6918 list_for_each_entry(pmu, &pmus, entry) {
6919 if (!pmu->name || pmu->type < 0)
6920 continue;
6921
6922 ret = pmu_dev_alloc(pmu);
6923 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
6924 }
6925 pmu_bus_running = 1;
6926 ret = 0;
6927
6928 unlock:
6929 mutex_unlock(&pmus_lock);
6930
6931 return ret;
6932 }
6933 device_initcall(perf_event_sysfs_init);
6934
6935 #ifdef CONFIG_CGROUP_PERF
6936 static struct cgroup_subsys_state *perf_cgroup_create(
6937 struct cgroup_subsys *ss, struct cgroup *cont)
6938 {
6939 struct perf_cgroup *jc;
6940
6941 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
6942 if (!jc)
6943 return ERR_PTR(-ENOMEM);
6944
6945 jc->info = alloc_percpu(struct perf_cgroup_info);
6946 if (!jc->info) {
6947 kfree(jc);
6948 return ERR_PTR(-ENOMEM);
6949 }
6950
6951 return &jc->css;
6952 }
6953
6954 static void perf_cgroup_destroy(struct cgroup_subsys *ss,
6955 struct cgroup *cont)
6956 {
6957 struct perf_cgroup *jc;
6958 jc = container_of(cgroup_subsys_state(cont, perf_subsys_id),
6959 struct perf_cgroup, css);
6960 free_percpu(jc->info);
6961 kfree(jc);
6962 }
6963
6964 static int __perf_cgroup_move(void *info)
6965 {
6966 struct task_struct *task = info;
6967 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
6968 return 0;
6969 }
6970
6971 static void perf_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
6972 struct cgroup_taskset *tset)
6973 {
6974 struct task_struct *task;
6975
6976 cgroup_taskset_for_each(task, cgrp, tset)
6977 task_function_call(task, __perf_cgroup_move, task);
6978 }
6979
6980 static void perf_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
6981 struct cgroup *old_cgrp, struct task_struct *task)
6982 {
6983 /*
6984 * cgroup_exit() is called in the copy_process() failure path.
6985 * Ignore this case since the task hasn't ran yet, this avoids
6986 * trying to poke a half freed task state from generic code.
6987 */
6988 if (!(task->flags & PF_EXITING))
6989 return;
6990
6991 task_function_call(task, __perf_cgroup_move, task);
6992 }
6993
6994 struct cgroup_subsys perf_subsys = {
6995 .name = "perf_event",
6996 .subsys_id = perf_subsys_id,
6997 .create = perf_cgroup_create,
6998 .destroy = perf_cgroup_destroy,
6999 .exit = perf_cgroup_exit,
7000 .attach = perf_cgroup_attach,
7001 };
7002 #endif /* CONFIG_CGROUP_PERF */