]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - kernel/events/core.c
ed50b0943213fcaee079d378c7e6c82f3739e1ec
[mirror_ubuntu-jammy-kernel.git] / kernel / events / core.c
1 /*
2 * Performance events core code:
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/perf_event.h>
38 #include <linux/ftrace_event.h>
39 #include <linux/hw_breakpoint.h>
40 #include <linux/mm_types.h>
41 #include <linux/cgroup.h>
42 #include <linux/module.h>
43
44 #include "internal.h"
45
46 #include <asm/irq_regs.h>
47
48 struct remote_function_call {
49 struct task_struct *p;
50 int (*func)(void *info);
51 void *info;
52 int ret;
53 };
54
55 static void remote_function(void *data)
56 {
57 struct remote_function_call *tfc = data;
58 struct task_struct *p = tfc->p;
59
60 if (p) {
61 tfc->ret = -EAGAIN;
62 if (task_cpu(p) != smp_processor_id() || !task_curr(p))
63 return;
64 }
65
66 tfc->ret = tfc->func(tfc->info);
67 }
68
69 /**
70 * task_function_call - call a function on the cpu on which a task runs
71 * @p: the task to evaluate
72 * @func: the function to be called
73 * @info: the function call argument
74 *
75 * Calls the function @func when the task is currently running. This might
76 * be on the current CPU, which just calls the function directly
77 *
78 * returns: @func return value, or
79 * -ESRCH - when the process isn't running
80 * -EAGAIN - when the process moved away
81 */
82 static int
83 task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
84 {
85 struct remote_function_call data = {
86 .p = p,
87 .func = func,
88 .info = info,
89 .ret = -ESRCH, /* No such (running) process */
90 };
91
92 if (task_curr(p))
93 smp_call_function_single(task_cpu(p), remote_function, &data, 1);
94
95 return data.ret;
96 }
97
98 /**
99 * cpu_function_call - call a function on the cpu
100 * @func: the function to be called
101 * @info: the function call argument
102 *
103 * Calls the function @func on the remote cpu.
104 *
105 * returns: @func return value or -ENXIO when the cpu is offline
106 */
107 static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
108 {
109 struct remote_function_call data = {
110 .p = NULL,
111 .func = func,
112 .info = info,
113 .ret = -ENXIO, /* No such CPU */
114 };
115
116 smp_call_function_single(cpu, remote_function, &data, 1);
117
118 return data.ret;
119 }
120
121 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
122 PERF_FLAG_FD_OUTPUT |\
123 PERF_FLAG_PID_CGROUP |\
124 PERF_FLAG_FD_CLOEXEC)
125
126 /*
127 * branch priv levels that need permission checks
128 */
129 #define PERF_SAMPLE_BRANCH_PERM_PLM \
130 (PERF_SAMPLE_BRANCH_KERNEL |\
131 PERF_SAMPLE_BRANCH_HV)
132
133 enum event_type_t {
134 EVENT_FLEXIBLE = 0x1,
135 EVENT_PINNED = 0x2,
136 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
137 };
138
139 /*
140 * perf_sched_events : >0 events exist
141 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
142 */
143 struct static_key_deferred perf_sched_events __read_mostly;
144 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
145 static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events);
146
147 static atomic_t nr_mmap_events __read_mostly;
148 static atomic_t nr_comm_events __read_mostly;
149 static atomic_t nr_task_events __read_mostly;
150 static atomic_t nr_freq_events __read_mostly;
151
152 static LIST_HEAD(pmus);
153 static DEFINE_MUTEX(pmus_lock);
154 static struct srcu_struct pmus_srcu;
155
156 /*
157 * perf event paranoia level:
158 * -1 - not paranoid at all
159 * 0 - disallow raw tracepoint access for unpriv
160 * 1 - disallow cpu events for unpriv
161 * 2 - disallow kernel profiling for unpriv
162 */
163 int sysctl_perf_event_paranoid __read_mostly = 1;
164
165 /* Minimum for 512 kiB + 1 user control page */
166 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
167
168 /*
169 * max perf event sample rate
170 */
171 #define DEFAULT_MAX_SAMPLE_RATE 100000
172 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
173 #define DEFAULT_CPU_TIME_MAX_PERCENT 25
174
175 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
176
177 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
178 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
179
180 static int perf_sample_allowed_ns __read_mostly =
181 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
182
183 void update_perf_cpu_limits(void)
184 {
185 u64 tmp = perf_sample_period_ns;
186
187 tmp *= sysctl_perf_cpu_time_max_percent;
188 do_div(tmp, 100);
189 ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
190 }
191
192 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
193
194 int perf_proc_update_handler(struct ctl_table *table, int write,
195 void __user *buffer, size_t *lenp,
196 loff_t *ppos)
197 {
198 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
199
200 if (ret || !write)
201 return ret;
202
203 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
204 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
205 update_perf_cpu_limits();
206
207 return 0;
208 }
209
210 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
211
212 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
213 void __user *buffer, size_t *lenp,
214 loff_t *ppos)
215 {
216 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
217
218 if (ret || !write)
219 return ret;
220
221 update_perf_cpu_limits();
222
223 return 0;
224 }
225
226 /*
227 * perf samples are done in some very critical code paths (NMIs).
228 * If they take too much CPU time, the system can lock up and not
229 * get any real work done. This will drop the sample rate when
230 * we detect that events are taking too long.
231 */
232 #define NR_ACCUMULATED_SAMPLES 128
233 static DEFINE_PER_CPU(u64, running_sample_length);
234
235 static void perf_duration_warn(struct irq_work *w)
236 {
237 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
238 u64 avg_local_sample_len;
239 u64 local_samples_len;
240
241 local_samples_len = __get_cpu_var(running_sample_length);
242 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
243
244 printk_ratelimited(KERN_WARNING
245 "perf interrupt took too long (%lld > %lld), lowering "
246 "kernel.perf_event_max_sample_rate to %d\n",
247 avg_local_sample_len, allowed_ns >> 1,
248 sysctl_perf_event_sample_rate);
249 }
250
251 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
252
253 void perf_sample_event_took(u64 sample_len_ns)
254 {
255 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
256 u64 avg_local_sample_len;
257 u64 local_samples_len;
258
259 if (allowed_ns == 0)
260 return;
261
262 /* decay the counter by 1 average sample */
263 local_samples_len = __get_cpu_var(running_sample_length);
264 local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
265 local_samples_len += sample_len_ns;
266 __get_cpu_var(running_sample_length) = local_samples_len;
267
268 /*
269 * note: this will be biased artifically low until we have
270 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
271 * from having to maintain a count.
272 */
273 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
274
275 if (avg_local_sample_len <= allowed_ns)
276 return;
277
278 if (max_samples_per_tick <= 1)
279 return;
280
281 max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
282 sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
283 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
284
285 update_perf_cpu_limits();
286
287 if (!irq_work_queue(&perf_duration_work)) {
288 early_printk("perf interrupt took too long (%lld > %lld), lowering "
289 "kernel.perf_event_max_sample_rate to %d\n",
290 avg_local_sample_len, allowed_ns >> 1,
291 sysctl_perf_event_sample_rate);
292 }
293 }
294
295 static atomic64_t perf_event_id;
296
297 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
298 enum event_type_t event_type);
299
300 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
301 enum event_type_t event_type,
302 struct task_struct *task);
303
304 static void update_context_time(struct perf_event_context *ctx);
305 static u64 perf_event_time(struct perf_event *event);
306
307 void __weak perf_event_print_debug(void) { }
308
309 extern __weak const char *perf_pmu_name(void)
310 {
311 return "pmu";
312 }
313
314 static inline u64 perf_clock(void)
315 {
316 return local_clock();
317 }
318
319 static inline struct perf_cpu_context *
320 __get_cpu_context(struct perf_event_context *ctx)
321 {
322 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
323 }
324
325 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
326 struct perf_event_context *ctx)
327 {
328 raw_spin_lock(&cpuctx->ctx.lock);
329 if (ctx)
330 raw_spin_lock(&ctx->lock);
331 }
332
333 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
334 struct perf_event_context *ctx)
335 {
336 if (ctx)
337 raw_spin_unlock(&ctx->lock);
338 raw_spin_unlock(&cpuctx->ctx.lock);
339 }
340
341 #ifdef CONFIG_CGROUP_PERF
342
343 /*
344 * perf_cgroup_info keeps track of time_enabled for a cgroup.
345 * This is a per-cpu dynamically allocated data structure.
346 */
347 struct perf_cgroup_info {
348 u64 time;
349 u64 timestamp;
350 };
351
352 struct perf_cgroup {
353 struct cgroup_subsys_state css;
354 struct perf_cgroup_info __percpu *info;
355 };
356
357 /*
358 * Must ensure cgroup is pinned (css_get) before calling
359 * this function. In other words, we cannot call this function
360 * if there is no cgroup event for the current CPU context.
361 */
362 static inline struct perf_cgroup *
363 perf_cgroup_from_task(struct task_struct *task)
364 {
365 return container_of(task_css(task, perf_event_cgrp_id),
366 struct perf_cgroup, css);
367 }
368
369 static inline bool
370 perf_cgroup_match(struct perf_event *event)
371 {
372 struct perf_event_context *ctx = event->ctx;
373 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
374
375 /* @event doesn't care about cgroup */
376 if (!event->cgrp)
377 return true;
378
379 /* wants specific cgroup scope but @cpuctx isn't associated with any */
380 if (!cpuctx->cgrp)
381 return false;
382
383 /*
384 * Cgroup scoping is recursive. An event enabled for a cgroup is
385 * also enabled for all its descendant cgroups. If @cpuctx's
386 * cgroup is a descendant of @event's (the test covers identity
387 * case), it's a match.
388 */
389 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
390 event->cgrp->css.cgroup);
391 }
392
393 static inline void perf_put_cgroup(struct perf_event *event)
394 {
395 css_put(&event->cgrp->css);
396 }
397
398 static inline void perf_detach_cgroup(struct perf_event *event)
399 {
400 perf_put_cgroup(event);
401 event->cgrp = NULL;
402 }
403
404 static inline int is_cgroup_event(struct perf_event *event)
405 {
406 return event->cgrp != NULL;
407 }
408
409 static inline u64 perf_cgroup_event_time(struct perf_event *event)
410 {
411 struct perf_cgroup_info *t;
412
413 t = per_cpu_ptr(event->cgrp->info, event->cpu);
414 return t->time;
415 }
416
417 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
418 {
419 struct perf_cgroup_info *info;
420 u64 now;
421
422 now = perf_clock();
423
424 info = this_cpu_ptr(cgrp->info);
425
426 info->time += now - info->timestamp;
427 info->timestamp = now;
428 }
429
430 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
431 {
432 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
433 if (cgrp_out)
434 __update_cgrp_time(cgrp_out);
435 }
436
437 static inline void update_cgrp_time_from_event(struct perf_event *event)
438 {
439 struct perf_cgroup *cgrp;
440
441 /*
442 * ensure we access cgroup data only when needed and
443 * when we know the cgroup is pinned (css_get)
444 */
445 if (!is_cgroup_event(event))
446 return;
447
448 cgrp = perf_cgroup_from_task(current);
449 /*
450 * Do not update time when cgroup is not active
451 */
452 if (cgrp == event->cgrp)
453 __update_cgrp_time(event->cgrp);
454 }
455
456 static inline void
457 perf_cgroup_set_timestamp(struct task_struct *task,
458 struct perf_event_context *ctx)
459 {
460 struct perf_cgroup *cgrp;
461 struct perf_cgroup_info *info;
462
463 /*
464 * ctx->lock held by caller
465 * ensure we do not access cgroup data
466 * unless we have the cgroup pinned (css_get)
467 */
468 if (!task || !ctx->nr_cgroups)
469 return;
470
471 cgrp = perf_cgroup_from_task(task);
472 info = this_cpu_ptr(cgrp->info);
473 info->timestamp = ctx->timestamp;
474 }
475
476 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
477 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
478
479 /*
480 * reschedule events based on the cgroup constraint of task.
481 *
482 * mode SWOUT : schedule out everything
483 * mode SWIN : schedule in based on cgroup for next
484 */
485 void perf_cgroup_switch(struct task_struct *task, int mode)
486 {
487 struct perf_cpu_context *cpuctx;
488 struct pmu *pmu;
489 unsigned long flags;
490
491 /*
492 * disable interrupts to avoid geting nr_cgroup
493 * changes via __perf_event_disable(). Also
494 * avoids preemption.
495 */
496 local_irq_save(flags);
497
498 /*
499 * we reschedule only in the presence of cgroup
500 * constrained events.
501 */
502 rcu_read_lock();
503
504 list_for_each_entry_rcu(pmu, &pmus, entry) {
505 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
506 if (cpuctx->unique_pmu != pmu)
507 continue; /* ensure we process each cpuctx once */
508
509 /*
510 * perf_cgroup_events says at least one
511 * context on this CPU has cgroup events.
512 *
513 * ctx->nr_cgroups reports the number of cgroup
514 * events for a context.
515 */
516 if (cpuctx->ctx.nr_cgroups > 0) {
517 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
518 perf_pmu_disable(cpuctx->ctx.pmu);
519
520 if (mode & PERF_CGROUP_SWOUT) {
521 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
522 /*
523 * must not be done before ctxswout due
524 * to event_filter_match() in event_sched_out()
525 */
526 cpuctx->cgrp = NULL;
527 }
528
529 if (mode & PERF_CGROUP_SWIN) {
530 WARN_ON_ONCE(cpuctx->cgrp);
531 /*
532 * set cgrp before ctxsw in to allow
533 * event_filter_match() to not have to pass
534 * task around
535 */
536 cpuctx->cgrp = perf_cgroup_from_task(task);
537 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
538 }
539 perf_pmu_enable(cpuctx->ctx.pmu);
540 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
541 }
542 }
543
544 rcu_read_unlock();
545
546 local_irq_restore(flags);
547 }
548
549 static inline void perf_cgroup_sched_out(struct task_struct *task,
550 struct task_struct *next)
551 {
552 struct perf_cgroup *cgrp1;
553 struct perf_cgroup *cgrp2 = NULL;
554
555 /*
556 * we come here when we know perf_cgroup_events > 0
557 */
558 cgrp1 = perf_cgroup_from_task(task);
559
560 /*
561 * next is NULL when called from perf_event_enable_on_exec()
562 * that will systematically cause a cgroup_switch()
563 */
564 if (next)
565 cgrp2 = perf_cgroup_from_task(next);
566
567 /*
568 * only schedule out current cgroup events if we know
569 * that we are switching to a different cgroup. Otherwise,
570 * do no touch the cgroup events.
571 */
572 if (cgrp1 != cgrp2)
573 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
574 }
575
576 static inline void perf_cgroup_sched_in(struct task_struct *prev,
577 struct task_struct *task)
578 {
579 struct perf_cgroup *cgrp1;
580 struct perf_cgroup *cgrp2 = NULL;
581
582 /*
583 * we come here when we know perf_cgroup_events > 0
584 */
585 cgrp1 = perf_cgroup_from_task(task);
586
587 /* prev can never be NULL */
588 cgrp2 = perf_cgroup_from_task(prev);
589
590 /*
591 * only need to schedule in cgroup events if we are changing
592 * cgroup during ctxsw. Cgroup events were not scheduled
593 * out of ctxsw out if that was not the case.
594 */
595 if (cgrp1 != cgrp2)
596 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
597 }
598
599 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
600 struct perf_event_attr *attr,
601 struct perf_event *group_leader)
602 {
603 struct perf_cgroup *cgrp;
604 struct cgroup_subsys_state *css;
605 struct fd f = fdget(fd);
606 int ret = 0;
607
608 if (!f.file)
609 return -EBADF;
610
611 css = css_tryget_from_dir(f.file->f_dentry, &perf_event_cgrp_subsys);
612 if (IS_ERR(css)) {
613 ret = PTR_ERR(css);
614 goto out;
615 }
616
617 cgrp = container_of(css, struct perf_cgroup, css);
618 event->cgrp = cgrp;
619
620 /*
621 * all events in a group must monitor
622 * the same cgroup because a task belongs
623 * to only one perf cgroup at a time
624 */
625 if (group_leader && group_leader->cgrp != cgrp) {
626 perf_detach_cgroup(event);
627 ret = -EINVAL;
628 }
629 out:
630 fdput(f);
631 return ret;
632 }
633
634 static inline void
635 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
636 {
637 struct perf_cgroup_info *t;
638 t = per_cpu_ptr(event->cgrp->info, event->cpu);
639 event->shadow_ctx_time = now - t->timestamp;
640 }
641
642 static inline void
643 perf_cgroup_defer_enabled(struct perf_event *event)
644 {
645 /*
646 * when the current task's perf cgroup does not match
647 * the event's, we need to remember to call the
648 * perf_mark_enable() function the first time a task with
649 * a matching perf cgroup is scheduled in.
650 */
651 if (is_cgroup_event(event) && !perf_cgroup_match(event))
652 event->cgrp_defer_enabled = 1;
653 }
654
655 static inline void
656 perf_cgroup_mark_enabled(struct perf_event *event,
657 struct perf_event_context *ctx)
658 {
659 struct perf_event *sub;
660 u64 tstamp = perf_event_time(event);
661
662 if (!event->cgrp_defer_enabled)
663 return;
664
665 event->cgrp_defer_enabled = 0;
666
667 event->tstamp_enabled = tstamp - event->total_time_enabled;
668 list_for_each_entry(sub, &event->sibling_list, group_entry) {
669 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
670 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
671 sub->cgrp_defer_enabled = 0;
672 }
673 }
674 }
675 #else /* !CONFIG_CGROUP_PERF */
676
677 static inline bool
678 perf_cgroup_match(struct perf_event *event)
679 {
680 return true;
681 }
682
683 static inline void perf_detach_cgroup(struct perf_event *event)
684 {}
685
686 static inline int is_cgroup_event(struct perf_event *event)
687 {
688 return 0;
689 }
690
691 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
692 {
693 return 0;
694 }
695
696 static inline void update_cgrp_time_from_event(struct perf_event *event)
697 {
698 }
699
700 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
701 {
702 }
703
704 static inline void perf_cgroup_sched_out(struct task_struct *task,
705 struct task_struct *next)
706 {
707 }
708
709 static inline void perf_cgroup_sched_in(struct task_struct *prev,
710 struct task_struct *task)
711 {
712 }
713
714 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
715 struct perf_event_attr *attr,
716 struct perf_event *group_leader)
717 {
718 return -EINVAL;
719 }
720
721 static inline void
722 perf_cgroup_set_timestamp(struct task_struct *task,
723 struct perf_event_context *ctx)
724 {
725 }
726
727 void
728 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
729 {
730 }
731
732 static inline void
733 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
734 {
735 }
736
737 static inline u64 perf_cgroup_event_time(struct perf_event *event)
738 {
739 return 0;
740 }
741
742 static inline void
743 perf_cgroup_defer_enabled(struct perf_event *event)
744 {
745 }
746
747 static inline void
748 perf_cgroup_mark_enabled(struct perf_event *event,
749 struct perf_event_context *ctx)
750 {
751 }
752 #endif
753
754 /*
755 * set default to be dependent on timer tick just
756 * like original code
757 */
758 #define PERF_CPU_HRTIMER (1000 / HZ)
759 /*
760 * function must be called with interrupts disbled
761 */
762 static enum hrtimer_restart perf_cpu_hrtimer_handler(struct hrtimer *hr)
763 {
764 struct perf_cpu_context *cpuctx;
765 enum hrtimer_restart ret = HRTIMER_NORESTART;
766 int rotations = 0;
767
768 WARN_ON(!irqs_disabled());
769
770 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
771
772 rotations = perf_rotate_context(cpuctx);
773
774 /*
775 * arm timer if needed
776 */
777 if (rotations) {
778 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
779 ret = HRTIMER_RESTART;
780 }
781
782 return ret;
783 }
784
785 /* CPU is going down */
786 void perf_cpu_hrtimer_cancel(int cpu)
787 {
788 struct perf_cpu_context *cpuctx;
789 struct pmu *pmu;
790 unsigned long flags;
791
792 if (WARN_ON(cpu != smp_processor_id()))
793 return;
794
795 local_irq_save(flags);
796
797 rcu_read_lock();
798
799 list_for_each_entry_rcu(pmu, &pmus, entry) {
800 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
801
802 if (pmu->task_ctx_nr == perf_sw_context)
803 continue;
804
805 hrtimer_cancel(&cpuctx->hrtimer);
806 }
807
808 rcu_read_unlock();
809
810 local_irq_restore(flags);
811 }
812
813 static void __perf_cpu_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
814 {
815 struct hrtimer *hr = &cpuctx->hrtimer;
816 struct pmu *pmu = cpuctx->ctx.pmu;
817 int timer;
818
819 /* no multiplexing needed for SW PMU */
820 if (pmu->task_ctx_nr == perf_sw_context)
821 return;
822
823 /*
824 * check default is sane, if not set then force to
825 * default interval (1/tick)
826 */
827 timer = pmu->hrtimer_interval_ms;
828 if (timer < 1)
829 timer = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
830
831 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
832
833 hrtimer_init(hr, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
834 hr->function = perf_cpu_hrtimer_handler;
835 }
836
837 static void perf_cpu_hrtimer_restart(struct perf_cpu_context *cpuctx)
838 {
839 struct hrtimer *hr = &cpuctx->hrtimer;
840 struct pmu *pmu = cpuctx->ctx.pmu;
841
842 /* not for SW PMU */
843 if (pmu->task_ctx_nr == perf_sw_context)
844 return;
845
846 if (hrtimer_active(hr))
847 return;
848
849 if (!hrtimer_callback_running(hr))
850 __hrtimer_start_range_ns(hr, cpuctx->hrtimer_interval,
851 0, HRTIMER_MODE_REL_PINNED, 0);
852 }
853
854 void perf_pmu_disable(struct pmu *pmu)
855 {
856 int *count = this_cpu_ptr(pmu->pmu_disable_count);
857 if (!(*count)++)
858 pmu->pmu_disable(pmu);
859 }
860
861 void perf_pmu_enable(struct pmu *pmu)
862 {
863 int *count = this_cpu_ptr(pmu->pmu_disable_count);
864 if (!--(*count))
865 pmu->pmu_enable(pmu);
866 }
867
868 static DEFINE_PER_CPU(struct list_head, rotation_list);
869
870 /*
871 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
872 * because they're strictly cpu affine and rotate_start is called with IRQs
873 * disabled, while rotate_context is called from IRQ context.
874 */
875 static void perf_pmu_rotate_start(struct pmu *pmu)
876 {
877 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
878 struct list_head *head = &__get_cpu_var(rotation_list);
879
880 WARN_ON(!irqs_disabled());
881
882 if (list_empty(&cpuctx->rotation_list))
883 list_add(&cpuctx->rotation_list, head);
884 }
885
886 static void get_ctx(struct perf_event_context *ctx)
887 {
888 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
889 }
890
891 static void put_ctx(struct perf_event_context *ctx)
892 {
893 if (atomic_dec_and_test(&ctx->refcount)) {
894 if (ctx->parent_ctx)
895 put_ctx(ctx->parent_ctx);
896 if (ctx->task)
897 put_task_struct(ctx->task);
898 kfree_rcu(ctx, rcu_head);
899 }
900 }
901
902 static void unclone_ctx(struct perf_event_context *ctx)
903 {
904 if (ctx->parent_ctx) {
905 put_ctx(ctx->parent_ctx);
906 ctx->parent_ctx = NULL;
907 }
908 ctx->generation++;
909 }
910
911 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
912 {
913 /*
914 * only top level events have the pid namespace they were created in
915 */
916 if (event->parent)
917 event = event->parent;
918
919 return task_tgid_nr_ns(p, event->ns);
920 }
921
922 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
923 {
924 /*
925 * only top level events have the pid namespace they were created in
926 */
927 if (event->parent)
928 event = event->parent;
929
930 return task_pid_nr_ns(p, event->ns);
931 }
932
933 /*
934 * If we inherit events we want to return the parent event id
935 * to userspace.
936 */
937 static u64 primary_event_id(struct perf_event *event)
938 {
939 u64 id = event->id;
940
941 if (event->parent)
942 id = event->parent->id;
943
944 return id;
945 }
946
947 /*
948 * Get the perf_event_context for a task and lock it.
949 * This has to cope with with the fact that until it is locked,
950 * the context could get moved to another task.
951 */
952 static struct perf_event_context *
953 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
954 {
955 struct perf_event_context *ctx;
956
957 retry:
958 /*
959 * One of the few rules of preemptible RCU is that one cannot do
960 * rcu_read_unlock() while holding a scheduler (or nested) lock when
961 * part of the read side critical section was preemptible -- see
962 * rcu_read_unlock_special().
963 *
964 * Since ctx->lock nests under rq->lock we must ensure the entire read
965 * side critical section is non-preemptible.
966 */
967 preempt_disable();
968 rcu_read_lock();
969 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
970 if (ctx) {
971 /*
972 * If this context is a clone of another, it might
973 * get swapped for another underneath us by
974 * perf_event_task_sched_out, though the
975 * rcu_read_lock() protects us from any context
976 * getting freed. Lock the context and check if it
977 * got swapped before we could get the lock, and retry
978 * if so. If we locked the right context, then it
979 * can't get swapped on us any more.
980 */
981 raw_spin_lock_irqsave(&ctx->lock, *flags);
982 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
983 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
984 rcu_read_unlock();
985 preempt_enable();
986 goto retry;
987 }
988
989 if (!atomic_inc_not_zero(&ctx->refcount)) {
990 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
991 ctx = NULL;
992 }
993 }
994 rcu_read_unlock();
995 preempt_enable();
996 return ctx;
997 }
998
999 /*
1000 * Get the context for a task and increment its pin_count so it
1001 * can't get swapped to another task. This also increments its
1002 * reference count so that the context can't get freed.
1003 */
1004 static struct perf_event_context *
1005 perf_pin_task_context(struct task_struct *task, int ctxn)
1006 {
1007 struct perf_event_context *ctx;
1008 unsigned long flags;
1009
1010 ctx = perf_lock_task_context(task, ctxn, &flags);
1011 if (ctx) {
1012 ++ctx->pin_count;
1013 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1014 }
1015 return ctx;
1016 }
1017
1018 static void perf_unpin_context(struct perf_event_context *ctx)
1019 {
1020 unsigned long flags;
1021
1022 raw_spin_lock_irqsave(&ctx->lock, flags);
1023 --ctx->pin_count;
1024 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1025 }
1026
1027 /*
1028 * Update the record of the current time in a context.
1029 */
1030 static void update_context_time(struct perf_event_context *ctx)
1031 {
1032 u64 now = perf_clock();
1033
1034 ctx->time += now - ctx->timestamp;
1035 ctx->timestamp = now;
1036 }
1037
1038 static u64 perf_event_time(struct perf_event *event)
1039 {
1040 struct perf_event_context *ctx = event->ctx;
1041
1042 if (is_cgroup_event(event))
1043 return perf_cgroup_event_time(event);
1044
1045 return ctx ? ctx->time : 0;
1046 }
1047
1048 /*
1049 * Update the total_time_enabled and total_time_running fields for a event.
1050 * The caller of this function needs to hold the ctx->lock.
1051 */
1052 static void update_event_times(struct perf_event *event)
1053 {
1054 struct perf_event_context *ctx = event->ctx;
1055 u64 run_end;
1056
1057 if (event->state < PERF_EVENT_STATE_INACTIVE ||
1058 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1059 return;
1060 /*
1061 * in cgroup mode, time_enabled represents
1062 * the time the event was enabled AND active
1063 * tasks were in the monitored cgroup. This is
1064 * independent of the activity of the context as
1065 * there may be a mix of cgroup and non-cgroup events.
1066 *
1067 * That is why we treat cgroup events differently
1068 * here.
1069 */
1070 if (is_cgroup_event(event))
1071 run_end = perf_cgroup_event_time(event);
1072 else if (ctx->is_active)
1073 run_end = ctx->time;
1074 else
1075 run_end = event->tstamp_stopped;
1076
1077 event->total_time_enabled = run_end - event->tstamp_enabled;
1078
1079 if (event->state == PERF_EVENT_STATE_INACTIVE)
1080 run_end = event->tstamp_stopped;
1081 else
1082 run_end = perf_event_time(event);
1083
1084 event->total_time_running = run_end - event->tstamp_running;
1085
1086 }
1087
1088 /*
1089 * Update total_time_enabled and total_time_running for all events in a group.
1090 */
1091 static void update_group_times(struct perf_event *leader)
1092 {
1093 struct perf_event *event;
1094
1095 update_event_times(leader);
1096 list_for_each_entry(event, &leader->sibling_list, group_entry)
1097 update_event_times(event);
1098 }
1099
1100 static struct list_head *
1101 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1102 {
1103 if (event->attr.pinned)
1104 return &ctx->pinned_groups;
1105 else
1106 return &ctx->flexible_groups;
1107 }
1108
1109 /*
1110 * Add a event from the lists for its context.
1111 * Must be called with ctx->mutex and ctx->lock held.
1112 */
1113 static void
1114 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1115 {
1116 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1117 event->attach_state |= PERF_ATTACH_CONTEXT;
1118
1119 /*
1120 * If we're a stand alone event or group leader, we go to the context
1121 * list, group events are kept attached to the group so that
1122 * perf_group_detach can, at all times, locate all siblings.
1123 */
1124 if (event->group_leader == event) {
1125 struct list_head *list;
1126
1127 if (is_software_event(event))
1128 event->group_flags |= PERF_GROUP_SOFTWARE;
1129
1130 list = ctx_group_list(event, ctx);
1131 list_add_tail(&event->group_entry, list);
1132 }
1133
1134 if (is_cgroup_event(event))
1135 ctx->nr_cgroups++;
1136
1137 if (has_branch_stack(event))
1138 ctx->nr_branch_stack++;
1139
1140 list_add_rcu(&event->event_entry, &ctx->event_list);
1141 if (!ctx->nr_events)
1142 perf_pmu_rotate_start(ctx->pmu);
1143 ctx->nr_events++;
1144 if (event->attr.inherit_stat)
1145 ctx->nr_stat++;
1146
1147 ctx->generation++;
1148 }
1149
1150 /*
1151 * Initialize event state based on the perf_event_attr::disabled.
1152 */
1153 static inline void perf_event__state_init(struct perf_event *event)
1154 {
1155 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1156 PERF_EVENT_STATE_INACTIVE;
1157 }
1158
1159 /*
1160 * Called at perf_event creation and when events are attached/detached from a
1161 * group.
1162 */
1163 static void perf_event__read_size(struct perf_event *event)
1164 {
1165 int entry = sizeof(u64); /* value */
1166 int size = 0;
1167 int nr = 1;
1168
1169 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1170 size += sizeof(u64);
1171
1172 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1173 size += sizeof(u64);
1174
1175 if (event->attr.read_format & PERF_FORMAT_ID)
1176 entry += sizeof(u64);
1177
1178 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1179 nr += event->group_leader->nr_siblings;
1180 size += sizeof(u64);
1181 }
1182
1183 size += entry * nr;
1184 event->read_size = size;
1185 }
1186
1187 static void perf_event__header_size(struct perf_event *event)
1188 {
1189 struct perf_sample_data *data;
1190 u64 sample_type = event->attr.sample_type;
1191 u16 size = 0;
1192
1193 perf_event__read_size(event);
1194
1195 if (sample_type & PERF_SAMPLE_IP)
1196 size += sizeof(data->ip);
1197
1198 if (sample_type & PERF_SAMPLE_ADDR)
1199 size += sizeof(data->addr);
1200
1201 if (sample_type & PERF_SAMPLE_PERIOD)
1202 size += sizeof(data->period);
1203
1204 if (sample_type & PERF_SAMPLE_WEIGHT)
1205 size += sizeof(data->weight);
1206
1207 if (sample_type & PERF_SAMPLE_READ)
1208 size += event->read_size;
1209
1210 if (sample_type & PERF_SAMPLE_DATA_SRC)
1211 size += sizeof(data->data_src.val);
1212
1213 if (sample_type & PERF_SAMPLE_TRANSACTION)
1214 size += sizeof(data->txn);
1215
1216 event->header_size = size;
1217 }
1218
1219 static void perf_event__id_header_size(struct perf_event *event)
1220 {
1221 struct perf_sample_data *data;
1222 u64 sample_type = event->attr.sample_type;
1223 u16 size = 0;
1224
1225 if (sample_type & PERF_SAMPLE_TID)
1226 size += sizeof(data->tid_entry);
1227
1228 if (sample_type & PERF_SAMPLE_TIME)
1229 size += sizeof(data->time);
1230
1231 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1232 size += sizeof(data->id);
1233
1234 if (sample_type & PERF_SAMPLE_ID)
1235 size += sizeof(data->id);
1236
1237 if (sample_type & PERF_SAMPLE_STREAM_ID)
1238 size += sizeof(data->stream_id);
1239
1240 if (sample_type & PERF_SAMPLE_CPU)
1241 size += sizeof(data->cpu_entry);
1242
1243 event->id_header_size = size;
1244 }
1245
1246 static void perf_group_attach(struct perf_event *event)
1247 {
1248 struct perf_event *group_leader = event->group_leader, *pos;
1249
1250 /*
1251 * We can have double attach due to group movement in perf_event_open.
1252 */
1253 if (event->attach_state & PERF_ATTACH_GROUP)
1254 return;
1255
1256 event->attach_state |= PERF_ATTACH_GROUP;
1257
1258 if (group_leader == event)
1259 return;
1260
1261 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1262 !is_software_event(event))
1263 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1264
1265 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1266 group_leader->nr_siblings++;
1267
1268 perf_event__header_size(group_leader);
1269
1270 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1271 perf_event__header_size(pos);
1272 }
1273
1274 /*
1275 * Remove a event from the lists for its context.
1276 * Must be called with ctx->mutex and ctx->lock held.
1277 */
1278 static void
1279 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1280 {
1281 struct perf_cpu_context *cpuctx;
1282 /*
1283 * We can have double detach due to exit/hot-unplug + close.
1284 */
1285 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1286 return;
1287
1288 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1289
1290 if (is_cgroup_event(event)) {
1291 ctx->nr_cgroups--;
1292 cpuctx = __get_cpu_context(ctx);
1293 /*
1294 * if there are no more cgroup events
1295 * then cler cgrp to avoid stale pointer
1296 * in update_cgrp_time_from_cpuctx()
1297 */
1298 if (!ctx->nr_cgroups)
1299 cpuctx->cgrp = NULL;
1300 }
1301
1302 if (has_branch_stack(event))
1303 ctx->nr_branch_stack--;
1304
1305 ctx->nr_events--;
1306 if (event->attr.inherit_stat)
1307 ctx->nr_stat--;
1308
1309 list_del_rcu(&event->event_entry);
1310
1311 if (event->group_leader == event)
1312 list_del_init(&event->group_entry);
1313
1314 update_group_times(event);
1315
1316 /*
1317 * If event was in error state, then keep it
1318 * that way, otherwise bogus counts will be
1319 * returned on read(). The only way to get out
1320 * of error state is by explicit re-enabling
1321 * of the event
1322 */
1323 if (event->state > PERF_EVENT_STATE_OFF)
1324 event->state = PERF_EVENT_STATE_OFF;
1325
1326 ctx->generation++;
1327 }
1328
1329 static void perf_group_detach(struct perf_event *event)
1330 {
1331 struct perf_event *sibling, *tmp;
1332 struct list_head *list = NULL;
1333
1334 /*
1335 * We can have double detach due to exit/hot-unplug + close.
1336 */
1337 if (!(event->attach_state & PERF_ATTACH_GROUP))
1338 return;
1339
1340 event->attach_state &= ~PERF_ATTACH_GROUP;
1341
1342 /*
1343 * If this is a sibling, remove it from its group.
1344 */
1345 if (event->group_leader != event) {
1346 list_del_init(&event->group_entry);
1347 event->group_leader->nr_siblings--;
1348 goto out;
1349 }
1350
1351 if (!list_empty(&event->group_entry))
1352 list = &event->group_entry;
1353
1354 /*
1355 * If this was a group event with sibling events then
1356 * upgrade the siblings to singleton events by adding them
1357 * to whatever list we are on.
1358 */
1359 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1360 if (list)
1361 list_move_tail(&sibling->group_entry, list);
1362 sibling->group_leader = sibling;
1363
1364 /* Inherit group flags from the previous leader */
1365 sibling->group_flags = event->group_flags;
1366 }
1367
1368 out:
1369 perf_event__header_size(event->group_leader);
1370
1371 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1372 perf_event__header_size(tmp);
1373 }
1374
1375 static inline int
1376 event_filter_match(struct perf_event *event)
1377 {
1378 return (event->cpu == -1 || event->cpu == smp_processor_id())
1379 && perf_cgroup_match(event);
1380 }
1381
1382 static void
1383 event_sched_out(struct perf_event *event,
1384 struct perf_cpu_context *cpuctx,
1385 struct perf_event_context *ctx)
1386 {
1387 u64 tstamp = perf_event_time(event);
1388 u64 delta;
1389 /*
1390 * An event which could not be activated because of
1391 * filter mismatch still needs to have its timings
1392 * maintained, otherwise bogus information is return
1393 * via read() for time_enabled, time_running:
1394 */
1395 if (event->state == PERF_EVENT_STATE_INACTIVE
1396 && !event_filter_match(event)) {
1397 delta = tstamp - event->tstamp_stopped;
1398 event->tstamp_running += delta;
1399 event->tstamp_stopped = tstamp;
1400 }
1401
1402 if (event->state != PERF_EVENT_STATE_ACTIVE)
1403 return;
1404
1405 perf_pmu_disable(event->pmu);
1406
1407 event->state = PERF_EVENT_STATE_INACTIVE;
1408 if (event->pending_disable) {
1409 event->pending_disable = 0;
1410 event->state = PERF_EVENT_STATE_OFF;
1411 }
1412 event->tstamp_stopped = tstamp;
1413 event->pmu->del(event, 0);
1414 event->oncpu = -1;
1415
1416 if (!is_software_event(event))
1417 cpuctx->active_oncpu--;
1418 ctx->nr_active--;
1419 if (event->attr.freq && event->attr.sample_freq)
1420 ctx->nr_freq--;
1421 if (event->attr.exclusive || !cpuctx->active_oncpu)
1422 cpuctx->exclusive = 0;
1423
1424 perf_pmu_enable(event->pmu);
1425 }
1426
1427 static void
1428 group_sched_out(struct perf_event *group_event,
1429 struct perf_cpu_context *cpuctx,
1430 struct perf_event_context *ctx)
1431 {
1432 struct perf_event *event;
1433 int state = group_event->state;
1434
1435 event_sched_out(group_event, cpuctx, ctx);
1436
1437 /*
1438 * Schedule out siblings (if any):
1439 */
1440 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1441 event_sched_out(event, cpuctx, ctx);
1442
1443 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1444 cpuctx->exclusive = 0;
1445 }
1446
1447 struct remove_event {
1448 struct perf_event *event;
1449 bool detach_group;
1450 };
1451
1452 /*
1453 * Cross CPU call to remove a performance event
1454 *
1455 * We disable the event on the hardware level first. After that we
1456 * remove it from the context list.
1457 */
1458 static int __perf_remove_from_context(void *info)
1459 {
1460 struct remove_event *re = info;
1461 struct perf_event *event = re->event;
1462 struct perf_event_context *ctx = event->ctx;
1463 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1464
1465 raw_spin_lock(&ctx->lock);
1466 event_sched_out(event, cpuctx, ctx);
1467 if (re->detach_group)
1468 perf_group_detach(event);
1469 list_del_event(event, ctx);
1470 if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1471 ctx->is_active = 0;
1472 cpuctx->task_ctx = NULL;
1473 }
1474 raw_spin_unlock(&ctx->lock);
1475
1476 return 0;
1477 }
1478
1479
1480 /*
1481 * Remove the event from a task's (or a CPU's) list of events.
1482 *
1483 * CPU events are removed with a smp call. For task events we only
1484 * call when the task is on a CPU.
1485 *
1486 * If event->ctx is a cloned context, callers must make sure that
1487 * every task struct that event->ctx->task could possibly point to
1488 * remains valid. This is OK when called from perf_release since
1489 * that only calls us on the top-level context, which can't be a clone.
1490 * When called from perf_event_exit_task, it's OK because the
1491 * context has been detached from its task.
1492 */
1493 static void perf_remove_from_context(struct perf_event *event, bool detach_group)
1494 {
1495 struct perf_event_context *ctx = event->ctx;
1496 struct task_struct *task = ctx->task;
1497 struct remove_event re = {
1498 .event = event,
1499 .detach_group = detach_group,
1500 };
1501
1502 lockdep_assert_held(&ctx->mutex);
1503
1504 if (!task) {
1505 /*
1506 * Per cpu events are removed via an smp call and
1507 * the removal is always successful.
1508 */
1509 cpu_function_call(event->cpu, __perf_remove_from_context, &re);
1510 return;
1511 }
1512
1513 retry:
1514 if (!task_function_call(task, __perf_remove_from_context, &re))
1515 return;
1516
1517 raw_spin_lock_irq(&ctx->lock);
1518 /*
1519 * If we failed to find a running task, but find the context active now
1520 * that we've acquired the ctx->lock, retry.
1521 */
1522 if (ctx->is_active) {
1523 raw_spin_unlock_irq(&ctx->lock);
1524 goto retry;
1525 }
1526
1527 /*
1528 * Since the task isn't running, its safe to remove the event, us
1529 * holding the ctx->lock ensures the task won't get scheduled in.
1530 */
1531 if (detach_group)
1532 perf_group_detach(event);
1533 list_del_event(event, ctx);
1534 raw_spin_unlock_irq(&ctx->lock);
1535 }
1536
1537 /*
1538 * Cross CPU call to disable a performance event
1539 */
1540 int __perf_event_disable(void *info)
1541 {
1542 struct perf_event *event = info;
1543 struct perf_event_context *ctx = event->ctx;
1544 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1545
1546 /*
1547 * If this is a per-task event, need to check whether this
1548 * event's task is the current task on this cpu.
1549 *
1550 * Can trigger due to concurrent perf_event_context_sched_out()
1551 * flipping contexts around.
1552 */
1553 if (ctx->task && cpuctx->task_ctx != ctx)
1554 return -EINVAL;
1555
1556 raw_spin_lock(&ctx->lock);
1557
1558 /*
1559 * If the event is on, turn it off.
1560 * If it is in error state, leave it in error state.
1561 */
1562 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1563 update_context_time(ctx);
1564 update_cgrp_time_from_event(event);
1565 update_group_times(event);
1566 if (event == event->group_leader)
1567 group_sched_out(event, cpuctx, ctx);
1568 else
1569 event_sched_out(event, cpuctx, ctx);
1570 event->state = PERF_EVENT_STATE_OFF;
1571 }
1572
1573 raw_spin_unlock(&ctx->lock);
1574
1575 return 0;
1576 }
1577
1578 /*
1579 * Disable a event.
1580 *
1581 * If event->ctx is a cloned context, callers must make sure that
1582 * every task struct that event->ctx->task could possibly point to
1583 * remains valid. This condition is satisifed when called through
1584 * perf_event_for_each_child or perf_event_for_each because they
1585 * hold the top-level event's child_mutex, so any descendant that
1586 * goes to exit will block in sync_child_event.
1587 * When called from perf_pending_event it's OK because event->ctx
1588 * is the current context on this CPU and preemption is disabled,
1589 * hence we can't get into perf_event_task_sched_out for this context.
1590 */
1591 void perf_event_disable(struct perf_event *event)
1592 {
1593 struct perf_event_context *ctx = event->ctx;
1594 struct task_struct *task = ctx->task;
1595
1596 if (!task) {
1597 /*
1598 * Disable the event on the cpu that it's on
1599 */
1600 cpu_function_call(event->cpu, __perf_event_disable, event);
1601 return;
1602 }
1603
1604 retry:
1605 if (!task_function_call(task, __perf_event_disable, event))
1606 return;
1607
1608 raw_spin_lock_irq(&ctx->lock);
1609 /*
1610 * If the event is still active, we need to retry the cross-call.
1611 */
1612 if (event->state == PERF_EVENT_STATE_ACTIVE) {
1613 raw_spin_unlock_irq(&ctx->lock);
1614 /*
1615 * Reload the task pointer, it might have been changed by
1616 * a concurrent perf_event_context_sched_out().
1617 */
1618 task = ctx->task;
1619 goto retry;
1620 }
1621
1622 /*
1623 * Since we have the lock this context can't be scheduled
1624 * in, so we can change the state safely.
1625 */
1626 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1627 update_group_times(event);
1628 event->state = PERF_EVENT_STATE_OFF;
1629 }
1630 raw_spin_unlock_irq(&ctx->lock);
1631 }
1632 EXPORT_SYMBOL_GPL(perf_event_disable);
1633
1634 static void perf_set_shadow_time(struct perf_event *event,
1635 struct perf_event_context *ctx,
1636 u64 tstamp)
1637 {
1638 /*
1639 * use the correct time source for the time snapshot
1640 *
1641 * We could get by without this by leveraging the
1642 * fact that to get to this function, the caller
1643 * has most likely already called update_context_time()
1644 * and update_cgrp_time_xx() and thus both timestamp
1645 * are identical (or very close). Given that tstamp is,
1646 * already adjusted for cgroup, we could say that:
1647 * tstamp - ctx->timestamp
1648 * is equivalent to
1649 * tstamp - cgrp->timestamp.
1650 *
1651 * Then, in perf_output_read(), the calculation would
1652 * work with no changes because:
1653 * - event is guaranteed scheduled in
1654 * - no scheduled out in between
1655 * - thus the timestamp would be the same
1656 *
1657 * But this is a bit hairy.
1658 *
1659 * So instead, we have an explicit cgroup call to remain
1660 * within the time time source all along. We believe it
1661 * is cleaner and simpler to understand.
1662 */
1663 if (is_cgroup_event(event))
1664 perf_cgroup_set_shadow_time(event, tstamp);
1665 else
1666 event->shadow_ctx_time = tstamp - ctx->timestamp;
1667 }
1668
1669 #define MAX_INTERRUPTS (~0ULL)
1670
1671 static void perf_log_throttle(struct perf_event *event, int enable);
1672
1673 static int
1674 event_sched_in(struct perf_event *event,
1675 struct perf_cpu_context *cpuctx,
1676 struct perf_event_context *ctx)
1677 {
1678 u64 tstamp = perf_event_time(event);
1679 int ret = 0;
1680
1681 lockdep_assert_held(&ctx->lock);
1682
1683 if (event->state <= PERF_EVENT_STATE_OFF)
1684 return 0;
1685
1686 event->state = PERF_EVENT_STATE_ACTIVE;
1687 event->oncpu = smp_processor_id();
1688
1689 /*
1690 * Unthrottle events, since we scheduled we might have missed several
1691 * ticks already, also for a heavily scheduling task there is little
1692 * guarantee it'll get a tick in a timely manner.
1693 */
1694 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1695 perf_log_throttle(event, 1);
1696 event->hw.interrupts = 0;
1697 }
1698
1699 /*
1700 * The new state must be visible before we turn it on in the hardware:
1701 */
1702 smp_wmb();
1703
1704 perf_pmu_disable(event->pmu);
1705
1706 if (event->pmu->add(event, PERF_EF_START)) {
1707 event->state = PERF_EVENT_STATE_INACTIVE;
1708 event->oncpu = -1;
1709 ret = -EAGAIN;
1710 goto out;
1711 }
1712
1713 event->tstamp_running += tstamp - event->tstamp_stopped;
1714
1715 perf_set_shadow_time(event, ctx, tstamp);
1716
1717 if (!is_software_event(event))
1718 cpuctx->active_oncpu++;
1719 ctx->nr_active++;
1720 if (event->attr.freq && event->attr.sample_freq)
1721 ctx->nr_freq++;
1722
1723 if (event->attr.exclusive)
1724 cpuctx->exclusive = 1;
1725
1726 out:
1727 perf_pmu_enable(event->pmu);
1728
1729 return ret;
1730 }
1731
1732 static int
1733 group_sched_in(struct perf_event *group_event,
1734 struct perf_cpu_context *cpuctx,
1735 struct perf_event_context *ctx)
1736 {
1737 struct perf_event *event, *partial_group = NULL;
1738 struct pmu *pmu = ctx->pmu;
1739 u64 now = ctx->time;
1740 bool simulate = false;
1741
1742 if (group_event->state == PERF_EVENT_STATE_OFF)
1743 return 0;
1744
1745 pmu->start_txn(pmu);
1746
1747 if (event_sched_in(group_event, cpuctx, ctx)) {
1748 pmu->cancel_txn(pmu);
1749 perf_cpu_hrtimer_restart(cpuctx);
1750 return -EAGAIN;
1751 }
1752
1753 /*
1754 * Schedule in siblings as one group (if any):
1755 */
1756 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1757 if (event_sched_in(event, cpuctx, ctx)) {
1758 partial_group = event;
1759 goto group_error;
1760 }
1761 }
1762
1763 if (!pmu->commit_txn(pmu))
1764 return 0;
1765
1766 group_error:
1767 /*
1768 * Groups can be scheduled in as one unit only, so undo any
1769 * partial group before returning:
1770 * The events up to the failed event are scheduled out normally,
1771 * tstamp_stopped will be updated.
1772 *
1773 * The failed events and the remaining siblings need to have
1774 * their timings updated as if they had gone thru event_sched_in()
1775 * and event_sched_out(). This is required to get consistent timings
1776 * across the group. This also takes care of the case where the group
1777 * could never be scheduled by ensuring tstamp_stopped is set to mark
1778 * the time the event was actually stopped, such that time delta
1779 * calculation in update_event_times() is correct.
1780 */
1781 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1782 if (event == partial_group)
1783 simulate = true;
1784
1785 if (simulate) {
1786 event->tstamp_running += now - event->tstamp_stopped;
1787 event->tstamp_stopped = now;
1788 } else {
1789 event_sched_out(event, cpuctx, ctx);
1790 }
1791 }
1792 event_sched_out(group_event, cpuctx, ctx);
1793
1794 pmu->cancel_txn(pmu);
1795
1796 perf_cpu_hrtimer_restart(cpuctx);
1797
1798 return -EAGAIN;
1799 }
1800
1801 /*
1802 * Work out whether we can put this event group on the CPU now.
1803 */
1804 static int group_can_go_on(struct perf_event *event,
1805 struct perf_cpu_context *cpuctx,
1806 int can_add_hw)
1807 {
1808 /*
1809 * Groups consisting entirely of software events can always go on.
1810 */
1811 if (event->group_flags & PERF_GROUP_SOFTWARE)
1812 return 1;
1813 /*
1814 * If an exclusive group is already on, no other hardware
1815 * events can go on.
1816 */
1817 if (cpuctx->exclusive)
1818 return 0;
1819 /*
1820 * If this group is exclusive and there are already
1821 * events on the CPU, it can't go on.
1822 */
1823 if (event->attr.exclusive && cpuctx->active_oncpu)
1824 return 0;
1825 /*
1826 * Otherwise, try to add it if all previous groups were able
1827 * to go on.
1828 */
1829 return can_add_hw;
1830 }
1831
1832 static void add_event_to_ctx(struct perf_event *event,
1833 struct perf_event_context *ctx)
1834 {
1835 u64 tstamp = perf_event_time(event);
1836
1837 list_add_event(event, ctx);
1838 perf_group_attach(event);
1839 event->tstamp_enabled = tstamp;
1840 event->tstamp_running = tstamp;
1841 event->tstamp_stopped = tstamp;
1842 }
1843
1844 static void task_ctx_sched_out(struct perf_event_context *ctx);
1845 static void
1846 ctx_sched_in(struct perf_event_context *ctx,
1847 struct perf_cpu_context *cpuctx,
1848 enum event_type_t event_type,
1849 struct task_struct *task);
1850
1851 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
1852 struct perf_event_context *ctx,
1853 struct task_struct *task)
1854 {
1855 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
1856 if (ctx)
1857 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
1858 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
1859 if (ctx)
1860 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
1861 }
1862
1863 /*
1864 * Cross CPU call to install and enable a performance event
1865 *
1866 * Must be called with ctx->mutex held
1867 */
1868 static int __perf_install_in_context(void *info)
1869 {
1870 struct perf_event *event = info;
1871 struct perf_event_context *ctx = event->ctx;
1872 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1873 struct perf_event_context *task_ctx = cpuctx->task_ctx;
1874 struct task_struct *task = current;
1875
1876 perf_ctx_lock(cpuctx, task_ctx);
1877 perf_pmu_disable(cpuctx->ctx.pmu);
1878
1879 /*
1880 * If there was an active task_ctx schedule it out.
1881 */
1882 if (task_ctx)
1883 task_ctx_sched_out(task_ctx);
1884
1885 /*
1886 * If the context we're installing events in is not the
1887 * active task_ctx, flip them.
1888 */
1889 if (ctx->task && task_ctx != ctx) {
1890 if (task_ctx)
1891 raw_spin_unlock(&task_ctx->lock);
1892 raw_spin_lock(&ctx->lock);
1893 task_ctx = ctx;
1894 }
1895
1896 if (task_ctx) {
1897 cpuctx->task_ctx = task_ctx;
1898 task = task_ctx->task;
1899 }
1900
1901 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
1902
1903 update_context_time(ctx);
1904 /*
1905 * update cgrp time only if current cgrp
1906 * matches event->cgrp. Must be done before
1907 * calling add_event_to_ctx()
1908 */
1909 update_cgrp_time_from_event(event);
1910
1911 add_event_to_ctx(event, ctx);
1912
1913 /*
1914 * Schedule everything back in
1915 */
1916 perf_event_sched_in(cpuctx, task_ctx, task);
1917
1918 perf_pmu_enable(cpuctx->ctx.pmu);
1919 perf_ctx_unlock(cpuctx, task_ctx);
1920
1921 return 0;
1922 }
1923
1924 /*
1925 * Attach a performance event to a context
1926 *
1927 * First we add the event to the list with the hardware enable bit
1928 * in event->hw_config cleared.
1929 *
1930 * If the event is attached to a task which is on a CPU we use a smp
1931 * call to enable it in the task context. The task might have been
1932 * scheduled away, but we check this in the smp call again.
1933 */
1934 static void
1935 perf_install_in_context(struct perf_event_context *ctx,
1936 struct perf_event *event,
1937 int cpu)
1938 {
1939 struct task_struct *task = ctx->task;
1940
1941 lockdep_assert_held(&ctx->mutex);
1942
1943 event->ctx = ctx;
1944 if (event->cpu != -1)
1945 event->cpu = cpu;
1946
1947 if (!task) {
1948 /*
1949 * Per cpu events are installed via an smp call and
1950 * the install is always successful.
1951 */
1952 cpu_function_call(cpu, __perf_install_in_context, event);
1953 return;
1954 }
1955
1956 retry:
1957 if (!task_function_call(task, __perf_install_in_context, event))
1958 return;
1959
1960 raw_spin_lock_irq(&ctx->lock);
1961 /*
1962 * If we failed to find a running task, but find the context active now
1963 * that we've acquired the ctx->lock, retry.
1964 */
1965 if (ctx->is_active) {
1966 raw_spin_unlock_irq(&ctx->lock);
1967 goto retry;
1968 }
1969
1970 /*
1971 * Since the task isn't running, its safe to add the event, us holding
1972 * the ctx->lock ensures the task won't get scheduled in.
1973 */
1974 add_event_to_ctx(event, ctx);
1975 raw_spin_unlock_irq(&ctx->lock);
1976 }
1977
1978 /*
1979 * Put a event into inactive state and update time fields.
1980 * Enabling the leader of a group effectively enables all
1981 * the group members that aren't explicitly disabled, so we
1982 * have to update their ->tstamp_enabled also.
1983 * Note: this works for group members as well as group leaders
1984 * since the non-leader members' sibling_lists will be empty.
1985 */
1986 static void __perf_event_mark_enabled(struct perf_event *event)
1987 {
1988 struct perf_event *sub;
1989 u64 tstamp = perf_event_time(event);
1990
1991 event->state = PERF_EVENT_STATE_INACTIVE;
1992 event->tstamp_enabled = tstamp - event->total_time_enabled;
1993 list_for_each_entry(sub, &event->sibling_list, group_entry) {
1994 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
1995 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
1996 }
1997 }
1998
1999 /*
2000 * Cross CPU call to enable a performance event
2001 */
2002 static int __perf_event_enable(void *info)
2003 {
2004 struct perf_event *event = info;
2005 struct perf_event_context *ctx = event->ctx;
2006 struct perf_event *leader = event->group_leader;
2007 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2008 int err;
2009
2010 /*
2011 * There's a time window between 'ctx->is_active' check
2012 * in perf_event_enable function and this place having:
2013 * - IRQs on
2014 * - ctx->lock unlocked
2015 *
2016 * where the task could be killed and 'ctx' deactivated
2017 * by perf_event_exit_task.
2018 */
2019 if (!ctx->is_active)
2020 return -EINVAL;
2021
2022 raw_spin_lock(&ctx->lock);
2023 update_context_time(ctx);
2024
2025 if (event->state >= PERF_EVENT_STATE_INACTIVE)
2026 goto unlock;
2027
2028 /*
2029 * set current task's cgroup time reference point
2030 */
2031 perf_cgroup_set_timestamp(current, ctx);
2032
2033 __perf_event_mark_enabled(event);
2034
2035 if (!event_filter_match(event)) {
2036 if (is_cgroup_event(event))
2037 perf_cgroup_defer_enabled(event);
2038 goto unlock;
2039 }
2040
2041 /*
2042 * If the event is in a group and isn't the group leader,
2043 * then don't put it on unless the group is on.
2044 */
2045 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
2046 goto unlock;
2047
2048 if (!group_can_go_on(event, cpuctx, 1)) {
2049 err = -EEXIST;
2050 } else {
2051 if (event == leader)
2052 err = group_sched_in(event, cpuctx, ctx);
2053 else
2054 err = event_sched_in(event, cpuctx, ctx);
2055 }
2056
2057 if (err) {
2058 /*
2059 * If this event can't go on and it's part of a
2060 * group, then the whole group has to come off.
2061 */
2062 if (leader != event) {
2063 group_sched_out(leader, cpuctx, ctx);
2064 perf_cpu_hrtimer_restart(cpuctx);
2065 }
2066 if (leader->attr.pinned) {
2067 update_group_times(leader);
2068 leader->state = PERF_EVENT_STATE_ERROR;
2069 }
2070 }
2071
2072 unlock:
2073 raw_spin_unlock(&ctx->lock);
2074
2075 return 0;
2076 }
2077
2078 /*
2079 * Enable a event.
2080 *
2081 * If event->ctx is a cloned context, callers must make sure that
2082 * every task struct that event->ctx->task could possibly point to
2083 * remains valid. This condition is satisfied when called through
2084 * perf_event_for_each_child or perf_event_for_each as described
2085 * for perf_event_disable.
2086 */
2087 void perf_event_enable(struct perf_event *event)
2088 {
2089 struct perf_event_context *ctx = event->ctx;
2090 struct task_struct *task = ctx->task;
2091
2092 if (!task) {
2093 /*
2094 * Enable the event on the cpu that it's on
2095 */
2096 cpu_function_call(event->cpu, __perf_event_enable, event);
2097 return;
2098 }
2099
2100 raw_spin_lock_irq(&ctx->lock);
2101 if (event->state >= PERF_EVENT_STATE_INACTIVE)
2102 goto out;
2103
2104 /*
2105 * If the event is in error state, clear that first.
2106 * That way, if we see the event in error state below, we
2107 * know that it has gone back into error state, as distinct
2108 * from the task having been scheduled away before the
2109 * cross-call arrived.
2110 */
2111 if (event->state == PERF_EVENT_STATE_ERROR)
2112 event->state = PERF_EVENT_STATE_OFF;
2113
2114 retry:
2115 if (!ctx->is_active) {
2116 __perf_event_mark_enabled(event);
2117 goto out;
2118 }
2119
2120 raw_spin_unlock_irq(&ctx->lock);
2121
2122 if (!task_function_call(task, __perf_event_enable, event))
2123 return;
2124
2125 raw_spin_lock_irq(&ctx->lock);
2126
2127 /*
2128 * If the context is active and the event is still off,
2129 * we need to retry the cross-call.
2130 */
2131 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
2132 /*
2133 * task could have been flipped by a concurrent
2134 * perf_event_context_sched_out()
2135 */
2136 task = ctx->task;
2137 goto retry;
2138 }
2139
2140 out:
2141 raw_spin_unlock_irq(&ctx->lock);
2142 }
2143 EXPORT_SYMBOL_GPL(perf_event_enable);
2144
2145 int perf_event_refresh(struct perf_event *event, int refresh)
2146 {
2147 /*
2148 * not supported on inherited events
2149 */
2150 if (event->attr.inherit || !is_sampling_event(event))
2151 return -EINVAL;
2152
2153 atomic_add(refresh, &event->event_limit);
2154 perf_event_enable(event);
2155
2156 return 0;
2157 }
2158 EXPORT_SYMBOL_GPL(perf_event_refresh);
2159
2160 static void ctx_sched_out(struct perf_event_context *ctx,
2161 struct perf_cpu_context *cpuctx,
2162 enum event_type_t event_type)
2163 {
2164 struct perf_event *event;
2165 int is_active = ctx->is_active;
2166
2167 ctx->is_active &= ~event_type;
2168 if (likely(!ctx->nr_events))
2169 return;
2170
2171 update_context_time(ctx);
2172 update_cgrp_time_from_cpuctx(cpuctx);
2173 if (!ctx->nr_active)
2174 return;
2175
2176 perf_pmu_disable(ctx->pmu);
2177 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
2178 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2179 group_sched_out(event, cpuctx, ctx);
2180 }
2181
2182 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
2183 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2184 group_sched_out(event, cpuctx, ctx);
2185 }
2186 perf_pmu_enable(ctx->pmu);
2187 }
2188
2189 /*
2190 * Test whether two contexts are equivalent, i.e. whether they have both been
2191 * cloned from the same version of the same context.
2192 *
2193 * Equivalence is measured using a generation number in the context that is
2194 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2195 * and list_del_event().
2196 */
2197 static int context_equiv(struct perf_event_context *ctx1,
2198 struct perf_event_context *ctx2)
2199 {
2200 /* Pinning disables the swap optimization */
2201 if (ctx1->pin_count || ctx2->pin_count)
2202 return 0;
2203
2204 /* If ctx1 is the parent of ctx2 */
2205 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2206 return 1;
2207
2208 /* If ctx2 is the parent of ctx1 */
2209 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2210 return 1;
2211
2212 /*
2213 * If ctx1 and ctx2 have the same parent; we flatten the parent
2214 * hierarchy, see perf_event_init_context().
2215 */
2216 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2217 ctx1->parent_gen == ctx2->parent_gen)
2218 return 1;
2219
2220 /* Unmatched */
2221 return 0;
2222 }
2223
2224 static void __perf_event_sync_stat(struct perf_event *event,
2225 struct perf_event *next_event)
2226 {
2227 u64 value;
2228
2229 if (!event->attr.inherit_stat)
2230 return;
2231
2232 /*
2233 * Update the event value, we cannot use perf_event_read()
2234 * because we're in the middle of a context switch and have IRQs
2235 * disabled, which upsets smp_call_function_single(), however
2236 * we know the event must be on the current CPU, therefore we
2237 * don't need to use it.
2238 */
2239 switch (event->state) {
2240 case PERF_EVENT_STATE_ACTIVE:
2241 event->pmu->read(event);
2242 /* fall-through */
2243
2244 case PERF_EVENT_STATE_INACTIVE:
2245 update_event_times(event);
2246 break;
2247
2248 default:
2249 break;
2250 }
2251
2252 /*
2253 * In order to keep per-task stats reliable we need to flip the event
2254 * values when we flip the contexts.
2255 */
2256 value = local64_read(&next_event->count);
2257 value = local64_xchg(&event->count, value);
2258 local64_set(&next_event->count, value);
2259
2260 swap(event->total_time_enabled, next_event->total_time_enabled);
2261 swap(event->total_time_running, next_event->total_time_running);
2262
2263 /*
2264 * Since we swizzled the values, update the user visible data too.
2265 */
2266 perf_event_update_userpage(event);
2267 perf_event_update_userpage(next_event);
2268 }
2269
2270 static void perf_event_sync_stat(struct perf_event_context *ctx,
2271 struct perf_event_context *next_ctx)
2272 {
2273 struct perf_event *event, *next_event;
2274
2275 if (!ctx->nr_stat)
2276 return;
2277
2278 update_context_time(ctx);
2279
2280 event = list_first_entry(&ctx->event_list,
2281 struct perf_event, event_entry);
2282
2283 next_event = list_first_entry(&next_ctx->event_list,
2284 struct perf_event, event_entry);
2285
2286 while (&event->event_entry != &ctx->event_list &&
2287 &next_event->event_entry != &next_ctx->event_list) {
2288
2289 __perf_event_sync_stat(event, next_event);
2290
2291 event = list_next_entry(event, event_entry);
2292 next_event = list_next_entry(next_event, event_entry);
2293 }
2294 }
2295
2296 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2297 struct task_struct *next)
2298 {
2299 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2300 struct perf_event_context *next_ctx;
2301 struct perf_event_context *parent, *next_parent;
2302 struct perf_cpu_context *cpuctx;
2303 int do_switch = 1;
2304
2305 if (likely(!ctx))
2306 return;
2307
2308 cpuctx = __get_cpu_context(ctx);
2309 if (!cpuctx->task_ctx)
2310 return;
2311
2312 rcu_read_lock();
2313 next_ctx = next->perf_event_ctxp[ctxn];
2314 if (!next_ctx)
2315 goto unlock;
2316
2317 parent = rcu_dereference(ctx->parent_ctx);
2318 next_parent = rcu_dereference(next_ctx->parent_ctx);
2319
2320 /* If neither context have a parent context; they cannot be clones. */
2321 if (!parent && !next_parent)
2322 goto unlock;
2323
2324 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2325 /*
2326 * Looks like the two contexts are clones, so we might be
2327 * able to optimize the context switch. We lock both
2328 * contexts and check that they are clones under the
2329 * lock (including re-checking that neither has been
2330 * uncloned in the meantime). It doesn't matter which
2331 * order we take the locks because no other cpu could
2332 * be trying to lock both of these tasks.
2333 */
2334 raw_spin_lock(&ctx->lock);
2335 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2336 if (context_equiv(ctx, next_ctx)) {
2337 /*
2338 * XXX do we need a memory barrier of sorts
2339 * wrt to rcu_dereference() of perf_event_ctxp
2340 */
2341 task->perf_event_ctxp[ctxn] = next_ctx;
2342 next->perf_event_ctxp[ctxn] = ctx;
2343 ctx->task = next;
2344 next_ctx->task = task;
2345 do_switch = 0;
2346
2347 perf_event_sync_stat(ctx, next_ctx);
2348 }
2349 raw_spin_unlock(&next_ctx->lock);
2350 raw_spin_unlock(&ctx->lock);
2351 }
2352 unlock:
2353 rcu_read_unlock();
2354
2355 if (do_switch) {
2356 raw_spin_lock(&ctx->lock);
2357 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2358 cpuctx->task_ctx = NULL;
2359 raw_spin_unlock(&ctx->lock);
2360 }
2361 }
2362
2363 #define for_each_task_context_nr(ctxn) \
2364 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2365
2366 /*
2367 * Called from scheduler to remove the events of the current task,
2368 * with interrupts disabled.
2369 *
2370 * We stop each event and update the event value in event->count.
2371 *
2372 * This does not protect us against NMI, but disable()
2373 * sets the disabled bit in the control field of event _before_
2374 * accessing the event control register. If a NMI hits, then it will
2375 * not restart the event.
2376 */
2377 void __perf_event_task_sched_out(struct task_struct *task,
2378 struct task_struct *next)
2379 {
2380 int ctxn;
2381
2382 for_each_task_context_nr(ctxn)
2383 perf_event_context_sched_out(task, ctxn, next);
2384
2385 /*
2386 * if cgroup events exist on this CPU, then we need
2387 * to check if we have to switch out PMU state.
2388 * cgroup event are system-wide mode only
2389 */
2390 if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2391 perf_cgroup_sched_out(task, next);
2392 }
2393
2394 static void task_ctx_sched_out(struct perf_event_context *ctx)
2395 {
2396 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2397
2398 if (!cpuctx->task_ctx)
2399 return;
2400
2401 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2402 return;
2403
2404 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2405 cpuctx->task_ctx = NULL;
2406 }
2407
2408 /*
2409 * Called with IRQs disabled
2410 */
2411 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2412 enum event_type_t event_type)
2413 {
2414 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2415 }
2416
2417 static void
2418 ctx_pinned_sched_in(struct perf_event_context *ctx,
2419 struct perf_cpu_context *cpuctx)
2420 {
2421 struct perf_event *event;
2422
2423 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2424 if (event->state <= PERF_EVENT_STATE_OFF)
2425 continue;
2426 if (!event_filter_match(event))
2427 continue;
2428
2429 /* may need to reset tstamp_enabled */
2430 if (is_cgroup_event(event))
2431 perf_cgroup_mark_enabled(event, ctx);
2432
2433 if (group_can_go_on(event, cpuctx, 1))
2434 group_sched_in(event, cpuctx, ctx);
2435
2436 /*
2437 * If this pinned group hasn't been scheduled,
2438 * put it in error state.
2439 */
2440 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2441 update_group_times(event);
2442 event->state = PERF_EVENT_STATE_ERROR;
2443 }
2444 }
2445 }
2446
2447 static void
2448 ctx_flexible_sched_in(struct perf_event_context *ctx,
2449 struct perf_cpu_context *cpuctx)
2450 {
2451 struct perf_event *event;
2452 int can_add_hw = 1;
2453
2454 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2455 /* Ignore events in OFF or ERROR state */
2456 if (event->state <= PERF_EVENT_STATE_OFF)
2457 continue;
2458 /*
2459 * Listen to the 'cpu' scheduling filter constraint
2460 * of events:
2461 */
2462 if (!event_filter_match(event))
2463 continue;
2464
2465 /* may need to reset tstamp_enabled */
2466 if (is_cgroup_event(event))
2467 perf_cgroup_mark_enabled(event, ctx);
2468
2469 if (group_can_go_on(event, cpuctx, can_add_hw)) {
2470 if (group_sched_in(event, cpuctx, ctx))
2471 can_add_hw = 0;
2472 }
2473 }
2474 }
2475
2476 static void
2477 ctx_sched_in(struct perf_event_context *ctx,
2478 struct perf_cpu_context *cpuctx,
2479 enum event_type_t event_type,
2480 struct task_struct *task)
2481 {
2482 u64 now;
2483 int is_active = ctx->is_active;
2484
2485 ctx->is_active |= event_type;
2486 if (likely(!ctx->nr_events))
2487 return;
2488
2489 now = perf_clock();
2490 ctx->timestamp = now;
2491 perf_cgroup_set_timestamp(task, ctx);
2492 /*
2493 * First go through the list and put on any pinned groups
2494 * in order to give them the best chance of going on.
2495 */
2496 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2497 ctx_pinned_sched_in(ctx, cpuctx);
2498
2499 /* Then walk through the lower prio flexible groups */
2500 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2501 ctx_flexible_sched_in(ctx, cpuctx);
2502 }
2503
2504 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
2505 enum event_type_t event_type,
2506 struct task_struct *task)
2507 {
2508 struct perf_event_context *ctx = &cpuctx->ctx;
2509
2510 ctx_sched_in(ctx, cpuctx, event_type, task);
2511 }
2512
2513 static void perf_event_context_sched_in(struct perf_event_context *ctx,
2514 struct task_struct *task)
2515 {
2516 struct perf_cpu_context *cpuctx;
2517
2518 cpuctx = __get_cpu_context(ctx);
2519 if (cpuctx->task_ctx == ctx)
2520 return;
2521
2522 perf_ctx_lock(cpuctx, ctx);
2523 perf_pmu_disable(ctx->pmu);
2524 /*
2525 * We want to keep the following priority order:
2526 * cpu pinned (that don't need to move), task pinned,
2527 * cpu flexible, task flexible.
2528 */
2529 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2530
2531 if (ctx->nr_events)
2532 cpuctx->task_ctx = ctx;
2533
2534 perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2535
2536 perf_pmu_enable(ctx->pmu);
2537 perf_ctx_unlock(cpuctx, ctx);
2538
2539 /*
2540 * Since these rotations are per-cpu, we need to ensure the
2541 * cpu-context we got scheduled on is actually rotating.
2542 */
2543 perf_pmu_rotate_start(ctx->pmu);
2544 }
2545
2546 /*
2547 * When sampling the branck stack in system-wide, it may be necessary
2548 * to flush the stack on context switch. This happens when the branch
2549 * stack does not tag its entries with the pid of the current task.
2550 * Otherwise it becomes impossible to associate a branch entry with a
2551 * task. This ambiguity is more likely to appear when the branch stack
2552 * supports priv level filtering and the user sets it to monitor only
2553 * at the user level (which could be a useful measurement in system-wide
2554 * mode). In that case, the risk is high of having a branch stack with
2555 * branch from multiple tasks. Flushing may mean dropping the existing
2556 * entries or stashing them somewhere in the PMU specific code layer.
2557 *
2558 * This function provides the context switch callback to the lower code
2559 * layer. It is invoked ONLY when there is at least one system-wide context
2560 * with at least one active event using taken branch sampling.
2561 */
2562 static void perf_branch_stack_sched_in(struct task_struct *prev,
2563 struct task_struct *task)
2564 {
2565 struct perf_cpu_context *cpuctx;
2566 struct pmu *pmu;
2567 unsigned long flags;
2568
2569 /* no need to flush branch stack if not changing task */
2570 if (prev == task)
2571 return;
2572
2573 local_irq_save(flags);
2574
2575 rcu_read_lock();
2576
2577 list_for_each_entry_rcu(pmu, &pmus, entry) {
2578 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2579
2580 /*
2581 * check if the context has at least one
2582 * event using PERF_SAMPLE_BRANCH_STACK
2583 */
2584 if (cpuctx->ctx.nr_branch_stack > 0
2585 && pmu->flush_branch_stack) {
2586
2587 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2588
2589 perf_pmu_disable(pmu);
2590
2591 pmu->flush_branch_stack();
2592
2593 perf_pmu_enable(pmu);
2594
2595 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2596 }
2597 }
2598
2599 rcu_read_unlock();
2600
2601 local_irq_restore(flags);
2602 }
2603
2604 /*
2605 * Called from scheduler to add the events of the current task
2606 * with interrupts disabled.
2607 *
2608 * We restore the event value and then enable it.
2609 *
2610 * This does not protect us against NMI, but enable()
2611 * sets the enabled bit in the control field of event _before_
2612 * accessing the event control register. If a NMI hits, then it will
2613 * keep the event running.
2614 */
2615 void __perf_event_task_sched_in(struct task_struct *prev,
2616 struct task_struct *task)
2617 {
2618 struct perf_event_context *ctx;
2619 int ctxn;
2620
2621 for_each_task_context_nr(ctxn) {
2622 ctx = task->perf_event_ctxp[ctxn];
2623 if (likely(!ctx))
2624 continue;
2625
2626 perf_event_context_sched_in(ctx, task);
2627 }
2628 /*
2629 * if cgroup events exist on this CPU, then we need
2630 * to check if we have to switch in PMU state.
2631 * cgroup event are system-wide mode only
2632 */
2633 if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2634 perf_cgroup_sched_in(prev, task);
2635
2636 /* check for system-wide branch_stack events */
2637 if (atomic_read(&__get_cpu_var(perf_branch_stack_events)))
2638 perf_branch_stack_sched_in(prev, task);
2639 }
2640
2641 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2642 {
2643 u64 frequency = event->attr.sample_freq;
2644 u64 sec = NSEC_PER_SEC;
2645 u64 divisor, dividend;
2646
2647 int count_fls, nsec_fls, frequency_fls, sec_fls;
2648
2649 count_fls = fls64(count);
2650 nsec_fls = fls64(nsec);
2651 frequency_fls = fls64(frequency);
2652 sec_fls = 30;
2653
2654 /*
2655 * We got @count in @nsec, with a target of sample_freq HZ
2656 * the target period becomes:
2657 *
2658 * @count * 10^9
2659 * period = -------------------
2660 * @nsec * sample_freq
2661 *
2662 */
2663
2664 /*
2665 * Reduce accuracy by one bit such that @a and @b converge
2666 * to a similar magnitude.
2667 */
2668 #define REDUCE_FLS(a, b) \
2669 do { \
2670 if (a##_fls > b##_fls) { \
2671 a >>= 1; \
2672 a##_fls--; \
2673 } else { \
2674 b >>= 1; \
2675 b##_fls--; \
2676 } \
2677 } while (0)
2678
2679 /*
2680 * Reduce accuracy until either term fits in a u64, then proceed with
2681 * the other, so that finally we can do a u64/u64 division.
2682 */
2683 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2684 REDUCE_FLS(nsec, frequency);
2685 REDUCE_FLS(sec, count);
2686 }
2687
2688 if (count_fls + sec_fls > 64) {
2689 divisor = nsec * frequency;
2690
2691 while (count_fls + sec_fls > 64) {
2692 REDUCE_FLS(count, sec);
2693 divisor >>= 1;
2694 }
2695
2696 dividend = count * sec;
2697 } else {
2698 dividend = count * sec;
2699
2700 while (nsec_fls + frequency_fls > 64) {
2701 REDUCE_FLS(nsec, frequency);
2702 dividend >>= 1;
2703 }
2704
2705 divisor = nsec * frequency;
2706 }
2707
2708 if (!divisor)
2709 return dividend;
2710
2711 return div64_u64(dividend, divisor);
2712 }
2713
2714 static DEFINE_PER_CPU(int, perf_throttled_count);
2715 static DEFINE_PER_CPU(u64, perf_throttled_seq);
2716
2717 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2718 {
2719 struct hw_perf_event *hwc = &event->hw;
2720 s64 period, sample_period;
2721 s64 delta;
2722
2723 period = perf_calculate_period(event, nsec, count);
2724
2725 delta = (s64)(period - hwc->sample_period);
2726 delta = (delta + 7) / 8; /* low pass filter */
2727
2728 sample_period = hwc->sample_period + delta;
2729
2730 if (!sample_period)
2731 sample_period = 1;
2732
2733 hwc->sample_period = sample_period;
2734
2735 if (local64_read(&hwc->period_left) > 8*sample_period) {
2736 if (disable)
2737 event->pmu->stop(event, PERF_EF_UPDATE);
2738
2739 local64_set(&hwc->period_left, 0);
2740
2741 if (disable)
2742 event->pmu->start(event, PERF_EF_RELOAD);
2743 }
2744 }
2745
2746 /*
2747 * combine freq adjustment with unthrottling to avoid two passes over the
2748 * events. At the same time, make sure, having freq events does not change
2749 * the rate of unthrottling as that would introduce bias.
2750 */
2751 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2752 int needs_unthr)
2753 {
2754 struct perf_event *event;
2755 struct hw_perf_event *hwc;
2756 u64 now, period = TICK_NSEC;
2757 s64 delta;
2758
2759 /*
2760 * only need to iterate over all events iff:
2761 * - context have events in frequency mode (needs freq adjust)
2762 * - there are events to unthrottle on this cpu
2763 */
2764 if (!(ctx->nr_freq || needs_unthr))
2765 return;
2766
2767 raw_spin_lock(&ctx->lock);
2768 perf_pmu_disable(ctx->pmu);
2769
2770 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2771 if (event->state != PERF_EVENT_STATE_ACTIVE)
2772 continue;
2773
2774 if (!event_filter_match(event))
2775 continue;
2776
2777 perf_pmu_disable(event->pmu);
2778
2779 hwc = &event->hw;
2780
2781 if (hwc->interrupts == MAX_INTERRUPTS) {
2782 hwc->interrupts = 0;
2783 perf_log_throttle(event, 1);
2784 event->pmu->start(event, 0);
2785 }
2786
2787 if (!event->attr.freq || !event->attr.sample_freq)
2788 goto next;
2789
2790 /*
2791 * stop the event and update event->count
2792 */
2793 event->pmu->stop(event, PERF_EF_UPDATE);
2794
2795 now = local64_read(&event->count);
2796 delta = now - hwc->freq_count_stamp;
2797 hwc->freq_count_stamp = now;
2798
2799 /*
2800 * restart the event
2801 * reload only if value has changed
2802 * we have stopped the event so tell that
2803 * to perf_adjust_period() to avoid stopping it
2804 * twice.
2805 */
2806 if (delta > 0)
2807 perf_adjust_period(event, period, delta, false);
2808
2809 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
2810 next:
2811 perf_pmu_enable(event->pmu);
2812 }
2813
2814 perf_pmu_enable(ctx->pmu);
2815 raw_spin_unlock(&ctx->lock);
2816 }
2817
2818 /*
2819 * Round-robin a context's events:
2820 */
2821 static void rotate_ctx(struct perf_event_context *ctx)
2822 {
2823 /*
2824 * Rotate the first entry last of non-pinned groups. Rotation might be
2825 * disabled by the inheritance code.
2826 */
2827 if (!ctx->rotate_disable)
2828 list_rotate_left(&ctx->flexible_groups);
2829 }
2830
2831 /*
2832 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
2833 * because they're strictly cpu affine and rotate_start is called with IRQs
2834 * disabled, while rotate_context is called from IRQ context.
2835 */
2836 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
2837 {
2838 struct perf_event_context *ctx = NULL;
2839 int rotate = 0, remove = 1;
2840
2841 if (cpuctx->ctx.nr_events) {
2842 remove = 0;
2843 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
2844 rotate = 1;
2845 }
2846
2847 ctx = cpuctx->task_ctx;
2848 if (ctx && ctx->nr_events) {
2849 remove = 0;
2850 if (ctx->nr_events != ctx->nr_active)
2851 rotate = 1;
2852 }
2853
2854 if (!rotate)
2855 goto done;
2856
2857 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2858 perf_pmu_disable(cpuctx->ctx.pmu);
2859
2860 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2861 if (ctx)
2862 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
2863
2864 rotate_ctx(&cpuctx->ctx);
2865 if (ctx)
2866 rotate_ctx(ctx);
2867
2868 perf_event_sched_in(cpuctx, ctx, current);
2869
2870 perf_pmu_enable(cpuctx->ctx.pmu);
2871 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2872 done:
2873 if (remove)
2874 list_del_init(&cpuctx->rotation_list);
2875
2876 return rotate;
2877 }
2878
2879 #ifdef CONFIG_NO_HZ_FULL
2880 bool perf_event_can_stop_tick(void)
2881 {
2882 if (atomic_read(&nr_freq_events) ||
2883 __this_cpu_read(perf_throttled_count))
2884 return false;
2885 else
2886 return true;
2887 }
2888 #endif
2889
2890 void perf_event_task_tick(void)
2891 {
2892 struct list_head *head = &__get_cpu_var(rotation_list);
2893 struct perf_cpu_context *cpuctx, *tmp;
2894 struct perf_event_context *ctx;
2895 int throttled;
2896
2897 WARN_ON(!irqs_disabled());
2898
2899 __this_cpu_inc(perf_throttled_seq);
2900 throttled = __this_cpu_xchg(perf_throttled_count, 0);
2901
2902 list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
2903 ctx = &cpuctx->ctx;
2904 perf_adjust_freq_unthr_context(ctx, throttled);
2905
2906 ctx = cpuctx->task_ctx;
2907 if (ctx)
2908 perf_adjust_freq_unthr_context(ctx, throttled);
2909 }
2910 }
2911
2912 static int event_enable_on_exec(struct perf_event *event,
2913 struct perf_event_context *ctx)
2914 {
2915 if (!event->attr.enable_on_exec)
2916 return 0;
2917
2918 event->attr.enable_on_exec = 0;
2919 if (event->state >= PERF_EVENT_STATE_INACTIVE)
2920 return 0;
2921
2922 __perf_event_mark_enabled(event);
2923
2924 return 1;
2925 }
2926
2927 /*
2928 * Enable all of a task's events that have been marked enable-on-exec.
2929 * This expects task == current.
2930 */
2931 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
2932 {
2933 struct perf_event *event;
2934 unsigned long flags;
2935 int enabled = 0;
2936 int ret;
2937
2938 local_irq_save(flags);
2939 if (!ctx || !ctx->nr_events)
2940 goto out;
2941
2942 /*
2943 * We must ctxsw out cgroup events to avoid conflict
2944 * when invoking perf_task_event_sched_in() later on
2945 * in this function. Otherwise we end up trying to
2946 * ctxswin cgroup events which are already scheduled
2947 * in.
2948 */
2949 perf_cgroup_sched_out(current, NULL);
2950
2951 raw_spin_lock(&ctx->lock);
2952 task_ctx_sched_out(ctx);
2953
2954 list_for_each_entry(event, &ctx->event_list, event_entry) {
2955 ret = event_enable_on_exec(event, ctx);
2956 if (ret)
2957 enabled = 1;
2958 }
2959
2960 /*
2961 * Unclone this context if we enabled any event.
2962 */
2963 if (enabled)
2964 unclone_ctx(ctx);
2965
2966 raw_spin_unlock(&ctx->lock);
2967
2968 /*
2969 * Also calls ctxswin for cgroup events, if any:
2970 */
2971 perf_event_context_sched_in(ctx, ctx->task);
2972 out:
2973 local_irq_restore(flags);
2974 }
2975
2976 /*
2977 * Cross CPU call to read the hardware event
2978 */
2979 static void __perf_event_read(void *info)
2980 {
2981 struct perf_event *event = info;
2982 struct perf_event_context *ctx = event->ctx;
2983 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2984
2985 /*
2986 * If this is a task context, we need to check whether it is
2987 * the current task context of this cpu. If not it has been
2988 * scheduled out before the smp call arrived. In that case
2989 * event->count would have been updated to a recent sample
2990 * when the event was scheduled out.
2991 */
2992 if (ctx->task && cpuctx->task_ctx != ctx)
2993 return;
2994
2995 raw_spin_lock(&ctx->lock);
2996 if (ctx->is_active) {
2997 update_context_time(ctx);
2998 update_cgrp_time_from_event(event);
2999 }
3000 update_event_times(event);
3001 if (event->state == PERF_EVENT_STATE_ACTIVE)
3002 event->pmu->read(event);
3003 raw_spin_unlock(&ctx->lock);
3004 }
3005
3006 static inline u64 perf_event_count(struct perf_event *event)
3007 {
3008 return local64_read(&event->count) + atomic64_read(&event->child_count);
3009 }
3010
3011 static u64 perf_event_read(struct perf_event *event)
3012 {
3013 /*
3014 * If event is enabled and currently active on a CPU, update the
3015 * value in the event structure:
3016 */
3017 if (event->state == PERF_EVENT_STATE_ACTIVE) {
3018 smp_call_function_single(event->oncpu,
3019 __perf_event_read, event, 1);
3020 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
3021 struct perf_event_context *ctx = event->ctx;
3022 unsigned long flags;
3023
3024 raw_spin_lock_irqsave(&ctx->lock, flags);
3025 /*
3026 * may read while context is not active
3027 * (e.g., thread is blocked), in that case
3028 * we cannot update context time
3029 */
3030 if (ctx->is_active) {
3031 update_context_time(ctx);
3032 update_cgrp_time_from_event(event);
3033 }
3034 update_event_times(event);
3035 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3036 }
3037
3038 return perf_event_count(event);
3039 }
3040
3041 /*
3042 * Initialize the perf_event context in a task_struct:
3043 */
3044 static void __perf_event_init_context(struct perf_event_context *ctx)
3045 {
3046 raw_spin_lock_init(&ctx->lock);
3047 mutex_init(&ctx->mutex);
3048 INIT_LIST_HEAD(&ctx->pinned_groups);
3049 INIT_LIST_HEAD(&ctx->flexible_groups);
3050 INIT_LIST_HEAD(&ctx->event_list);
3051 atomic_set(&ctx->refcount, 1);
3052 }
3053
3054 static struct perf_event_context *
3055 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3056 {
3057 struct perf_event_context *ctx;
3058
3059 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3060 if (!ctx)
3061 return NULL;
3062
3063 __perf_event_init_context(ctx);
3064 if (task) {
3065 ctx->task = task;
3066 get_task_struct(task);
3067 }
3068 ctx->pmu = pmu;
3069
3070 return ctx;
3071 }
3072
3073 static struct task_struct *
3074 find_lively_task_by_vpid(pid_t vpid)
3075 {
3076 struct task_struct *task;
3077 int err;
3078
3079 rcu_read_lock();
3080 if (!vpid)
3081 task = current;
3082 else
3083 task = find_task_by_vpid(vpid);
3084 if (task)
3085 get_task_struct(task);
3086 rcu_read_unlock();
3087
3088 if (!task)
3089 return ERR_PTR(-ESRCH);
3090
3091 /* Reuse ptrace permission checks for now. */
3092 err = -EACCES;
3093 if (!ptrace_may_access(task, PTRACE_MODE_READ))
3094 goto errout;
3095
3096 return task;
3097 errout:
3098 put_task_struct(task);
3099 return ERR_PTR(err);
3100
3101 }
3102
3103 /*
3104 * Returns a matching context with refcount and pincount.
3105 */
3106 static struct perf_event_context *
3107 find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
3108 {
3109 struct perf_event_context *ctx;
3110 struct perf_cpu_context *cpuctx;
3111 unsigned long flags;
3112 int ctxn, err;
3113
3114 if (!task) {
3115 /* Must be root to operate on a CPU event: */
3116 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3117 return ERR_PTR(-EACCES);
3118
3119 /*
3120 * We could be clever and allow to attach a event to an
3121 * offline CPU and activate it when the CPU comes up, but
3122 * that's for later.
3123 */
3124 if (!cpu_online(cpu))
3125 return ERR_PTR(-ENODEV);
3126
3127 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3128 ctx = &cpuctx->ctx;
3129 get_ctx(ctx);
3130 ++ctx->pin_count;
3131
3132 return ctx;
3133 }
3134
3135 err = -EINVAL;
3136 ctxn = pmu->task_ctx_nr;
3137 if (ctxn < 0)
3138 goto errout;
3139
3140 retry:
3141 ctx = perf_lock_task_context(task, ctxn, &flags);
3142 if (ctx) {
3143 unclone_ctx(ctx);
3144 ++ctx->pin_count;
3145 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3146 } else {
3147 ctx = alloc_perf_context(pmu, task);
3148 err = -ENOMEM;
3149 if (!ctx)
3150 goto errout;
3151
3152 err = 0;
3153 mutex_lock(&task->perf_event_mutex);
3154 /*
3155 * If it has already passed perf_event_exit_task().
3156 * we must see PF_EXITING, it takes this mutex too.
3157 */
3158 if (task->flags & PF_EXITING)
3159 err = -ESRCH;
3160 else if (task->perf_event_ctxp[ctxn])
3161 err = -EAGAIN;
3162 else {
3163 get_ctx(ctx);
3164 ++ctx->pin_count;
3165 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3166 }
3167 mutex_unlock(&task->perf_event_mutex);
3168
3169 if (unlikely(err)) {
3170 put_ctx(ctx);
3171
3172 if (err == -EAGAIN)
3173 goto retry;
3174 goto errout;
3175 }
3176 }
3177
3178 return ctx;
3179
3180 errout:
3181 return ERR_PTR(err);
3182 }
3183
3184 static void perf_event_free_filter(struct perf_event *event);
3185
3186 static void free_event_rcu(struct rcu_head *head)
3187 {
3188 struct perf_event *event;
3189
3190 event = container_of(head, struct perf_event, rcu_head);
3191 if (event->ns)
3192 put_pid_ns(event->ns);
3193 perf_event_free_filter(event);
3194 kfree(event);
3195 }
3196
3197 static void ring_buffer_put(struct ring_buffer *rb);
3198 static void ring_buffer_detach(struct perf_event *event, struct ring_buffer *rb);
3199
3200 static void unaccount_event_cpu(struct perf_event *event, int cpu)
3201 {
3202 if (event->parent)
3203 return;
3204
3205 if (has_branch_stack(event)) {
3206 if (!(event->attach_state & PERF_ATTACH_TASK))
3207 atomic_dec(&per_cpu(perf_branch_stack_events, cpu));
3208 }
3209 if (is_cgroup_event(event))
3210 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3211 }
3212
3213 static void unaccount_event(struct perf_event *event)
3214 {
3215 if (event->parent)
3216 return;
3217
3218 if (event->attach_state & PERF_ATTACH_TASK)
3219 static_key_slow_dec_deferred(&perf_sched_events);
3220 if (event->attr.mmap || event->attr.mmap_data)
3221 atomic_dec(&nr_mmap_events);
3222 if (event->attr.comm)
3223 atomic_dec(&nr_comm_events);
3224 if (event->attr.task)
3225 atomic_dec(&nr_task_events);
3226 if (event->attr.freq)
3227 atomic_dec(&nr_freq_events);
3228 if (is_cgroup_event(event))
3229 static_key_slow_dec_deferred(&perf_sched_events);
3230 if (has_branch_stack(event))
3231 static_key_slow_dec_deferred(&perf_sched_events);
3232
3233 unaccount_event_cpu(event, event->cpu);
3234 }
3235
3236 static void __free_event(struct perf_event *event)
3237 {
3238 if (!event->parent) {
3239 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3240 put_callchain_buffers();
3241 }
3242
3243 if (event->destroy)
3244 event->destroy(event);
3245
3246 if (event->ctx)
3247 put_ctx(event->ctx);
3248
3249 if (event->pmu)
3250 module_put(event->pmu->module);
3251
3252 call_rcu(&event->rcu_head, free_event_rcu);
3253 }
3254
3255 static void _free_event(struct perf_event *event)
3256 {
3257 irq_work_sync(&event->pending);
3258
3259 unaccount_event(event);
3260
3261 if (event->rb) {
3262 struct ring_buffer *rb;
3263
3264 /*
3265 * Can happen when we close an event with re-directed output.
3266 *
3267 * Since we have a 0 refcount, perf_mmap_close() will skip
3268 * over us; possibly making our ring_buffer_put() the last.
3269 */
3270 mutex_lock(&event->mmap_mutex);
3271 rb = event->rb;
3272 if (rb) {
3273 rcu_assign_pointer(event->rb, NULL);
3274 ring_buffer_detach(event, rb);
3275 ring_buffer_put(rb); /* could be last */
3276 }
3277 mutex_unlock(&event->mmap_mutex);
3278 }
3279
3280 if (is_cgroup_event(event))
3281 perf_detach_cgroup(event);
3282
3283 __free_event(event);
3284 }
3285
3286 /*
3287 * Used to free events which have a known refcount of 1, such as in error paths
3288 * where the event isn't exposed yet and inherited events.
3289 */
3290 static void free_event(struct perf_event *event)
3291 {
3292 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
3293 "unexpected event refcount: %ld; ptr=%p\n",
3294 atomic_long_read(&event->refcount), event)) {
3295 /* leak to avoid use-after-free */
3296 return;
3297 }
3298
3299 _free_event(event);
3300 }
3301
3302 /*
3303 * Called when the last reference to the file is gone.
3304 */
3305 static void put_event(struct perf_event *event)
3306 {
3307 struct perf_event_context *ctx = event->ctx;
3308 struct task_struct *owner;
3309
3310 if (!atomic_long_dec_and_test(&event->refcount))
3311 return;
3312
3313 rcu_read_lock();
3314 owner = ACCESS_ONCE(event->owner);
3315 /*
3316 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
3317 * !owner it means the list deletion is complete and we can indeed
3318 * free this event, otherwise we need to serialize on
3319 * owner->perf_event_mutex.
3320 */
3321 smp_read_barrier_depends();
3322 if (owner) {
3323 /*
3324 * Since delayed_put_task_struct() also drops the last
3325 * task reference we can safely take a new reference
3326 * while holding the rcu_read_lock().
3327 */
3328 get_task_struct(owner);
3329 }
3330 rcu_read_unlock();
3331
3332 if (owner) {
3333 mutex_lock(&owner->perf_event_mutex);
3334 /*
3335 * We have to re-check the event->owner field, if it is cleared
3336 * we raced with perf_event_exit_task(), acquiring the mutex
3337 * ensured they're done, and we can proceed with freeing the
3338 * event.
3339 */
3340 if (event->owner)
3341 list_del_init(&event->owner_entry);
3342 mutex_unlock(&owner->perf_event_mutex);
3343 put_task_struct(owner);
3344 }
3345
3346 WARN_ON_ONCE(ctx->parent_ctx);
3347 /*
3348 * There are two ways this annotation is useful:
3349 *
3350 * 1) there is a lock recursion from perf_event_exit_task
3351 * see the comment there.
3352 *
3353 * 2) there is a lock-inversion with mmap_sem through
3354 * perf_event_read_group(), which takes faults while
3355 * holding ctx->mutex, however this is called after
3356 * the last filedesc died, so there is no possibility
3357 * to trigger the AB-BA case.
3358 */
3359 mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
3360 perf_remove_from_context(event, true);
3361 mutex_unlock(&ctx->mutex);
3362
3363 _free_event(event);
3364 }
3365
3366 int perf_event_release_kernel(struct perf_event *event)
3367 {
3368 put_event(event);
3369 return 0;
3370 }
3371 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
3372
3373 static int perf_release(struct inode *inode, struct file *file)
3374 {
3375 put_event(file->private_data);
3376 return 0;
3377 }
3378
3379 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3380 {
3381 struct perf_event *child;
3382 u64 total = 0;
3383
3384 *enabled = 0;
3385 *running = 0;
3386
3387 mutex_lock(&event->child_mutex);
3388 total += perf_event_read(event);
3389 *enabled += event->total_time_enabled +
3390 atomic64_read(&event->child_total_time_enabled);
3391 *running += event->total_time_running +
3392 atomic64_read(&event->child_total_time_running);
3393
3394 list_for_each_entry(child, &event->child_list, child_list) {
3395 total += perf_event_read(child);
3396 *enabled += child->total_time_enabled;
3397 *running += child->total_time_running;
3398 }
3399 mutex_unlock(&event->child_mutex);
3400
3401 return total;
3402 }
3403 EXPORT_SYMBOL_GPL(perf_event_read_value);
3404
3405 static int perf_event_read_group(struct perf_event *event,
3406 u64 read_format, char __user *buf)
3407 {
3408 struct perf_event *leader = event->group_leader, *sub;
3409 int n = 0, size = 0, ret = -EFAULT;
3410 struct perf_event_context *ctx = leader->ctx;
3411 u64 values[5];
3412 u64 count, enabled, running;
3413
3414 mutex_lock(&ctx->mutex);
3415 count = perf_event_read_value(leader, &enabled, &running);
3416
3417 values[n++] = 1 + leader->nr_siblings;
3418 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3419 values[n++] = enabled;
3420 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3421 values[n++] = running;
3422 values[n++] = count;
3423 if (read_format & PERF_FORMAT_ID)
3424 values[n++] = primary_event_id(leader);
3425
3426 size = n * sizeof(u64);
3427
3428 if (copy_to_user(buf, values, size))
3429 goto unlock;
3430
3431 ret = size;
3432
3433 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3434 n = 0;
3435
3436 values[n++] = perf_event_read_value(sub, &enabled, &running);
3437 if (read_format & PERF_FORMAT_ID)
3438 values[n++] = primary_event_id(sub);
3439
3440 size = n * sizeof(u64);
3441
3442 if (copy_to_user(buf + ret, values, size)) {
3443 ret = -EFAULT;
3444 goto unlock;
3445 }
3446
3447 ret += size;
3448 }
3449 unlock:
3450 mutex_unlock(&ctx->mutex);
3451
3452 return ret;
3453 }
3454
3455 static int perf_event_read_one(struct perf_event *event,
3456 u64 read_format, char __user *buf)
3457 {
3458 u64 enabled, running;
3459 u64 values[4];
3460 int n = 0;
3461
3462 values[n++] = perf_event_read_value(event, &enabled, &running);
3463 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3464 values[n++] = enabled;
3465 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3466 values[n++] = running;
3467 if (read_format & PERF_FORMAT_ID)
3468 values[n++] = primary_event_id(event);
3469
3470 if (copy_to_user(buf, values, n * sizeof(u64)))
3471 return -EFAULT;
3472
3473 return n * sizeof(u64);
3474 }
3475
3476 /*
3477 * Read the performance event - simple non blocking version for now
3478 */
3479 static ssize_t
3480 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
3481 {
3482 u64 read_format = event->attr.read_format;
3483 int ret;
3484
3485 /*
3486 * Return end-of-file for a read on a event that is in
3487 * error state (i.e. because it was pinned but it couldn't be
3488 * scheduled on to the CPU at some point).
3489 */
3490 if (event->state == PERF_EVENT_STATE_ERROR)
3491 return 0;
3492
3493 if (count < event->read_size)
3494 return -ENOSPC;
3495
3496 WARN_ON_ONCE(event->ctx->parent_ctx);
3497 if (read_format & PERF_FORMAT_GROUP)
3498 ret = perf_event_read_group(event, read_format, buf);
3499 else
3500 ret = perf_event_read_one(event, read_format, buf);
3501
3502 return ret;
3503 }
3504
3505 static ssize_t
3506 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
3507 {
3508 struct perf_event *event = file->private_data;
3509
3510 return perf_read_hw(event, buf, count);
3511 }
3512
3513 static unsigned int perf_poll(struct file *file, poll_table *wait)
3514 {
3515 struct perf_event *event = file->private_data;
3516 struct ring_buffer *rb;
3517 unsigned int events = POLL_HUP;
3518
3519 /*
3520 * Pin the event->rb by taking event->mmap_mutex; otherwise
3521 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
3522 */
3523 mutex_lock(&event->mmap_mutex);
3524 rb = event->rb;
3525 if (rb)
3526 events = atomic_xchg(&rb->poll, 0);
3527 mutex_unlock(&event->mmap_mutex);
3528
3529 poll_wait(file, &event->waitq, wait);
3530
3531 return events;
3532 }
3533
3534 static void perf_event_reset(struct perf_event *event)
3535 {
3536 (void)perf_event_read(event);
3537 local64_set(&event->count, 0);
3538 perf_event_update_userpage(event);
3539 }
3540
3541 /*
3542 * Holding the top-level event's child_mutex means that any
3543 * descendant process that has inherited this event will block
3544 * in sync_child_event if it goes to exit, thus satisfying the
3545 * task existence requirements of perf_event_enable/disable.
3546 */
3547 static void perf_event_for_each_child(struct perf_event *event,
3548 void (*func)(struct perf_event *))
3549 {
3550 struct perf_event *child;
3551
3552 WARN_ON_ONCE(event->ctx->parent_ctx);
3553 mutex_lock(&event->child_mutex);
3554 func(event);
3555 list_for_each_entry(child, &event->child_list, child_list)
3556 func(child);
3557 mutex_unlock(&event->child_mutex);
3558 }
3559
3560 static void perf_event_for_each(struct perf_event *event,
3561 void (*func)(struct perf_event *))
3562 {
3563 struct perf_event_context *ctx = event->ctx;
3564 struct perf_event *sibling;
3565
3566 WARN_ON_ONCE(ctx->parent_ctx);
3567 mutex_lock(&ctx->mutex);
3568 event = event->group_leader;
3569
3570 perf_event_for_each_child(event, func);
3571 list_for_each_entry(sibling, &event->sibling_list, group_entry)
3572 perf_event_for_each_child(sibling, func);
3573 mutex_unlock(&ctx->mutex);
3574 }
3575
3576 static int perf_event_period(struct perf_event *event, u64 __user *arg)
3577 {
3578 struct perf_event_context *ctx = event->ctx;
3579 int ret = 0, active;
3580 u64 value;
3581
3582 if (!is_sampling_event(event))
3583 return -EINVAL;
3584
3585 if (copy_from_user(&value, arg, sizeof(value)))
3586 return -EFAULT;
3587
3588 if (!value)
3589 return -EINVAL;
3590
3591 raw_spin_lock_irq(&ctx->lock);
3592 if (event->attr.freq) {
3593 if (value > sysctl_perf_event_sample_rate) {
3594 ret = -EINVAL;
3595 goto unlock;
3596 }
3597
3598 event->attr.sample_freq = value;
3599 } else {
3600 event->attr.sample_period = value;
3601 event->hw.sample_period = value;
3602 }
3603
3604 active = (event->state == PERF_EVENT_STATE_ACTIVE);
3605 if (active) {
3606 perf_pmu_disable(ctx->pmu);
3607 event->pmu->stop(event, PERF_EF_UPDATE);
3608 }
3609
3610 local64_set(&event->hw.period_left, 0);
3611
3612 if (active) {
3613 event->pmu->start(event, PERF_EF_RELOAD);
3614 perf_pmu_enable(ctx->pmu);
3615 }
3616
3617 unlock:
3618 raw_spin_unlock_irq(&ctx->lock);
3619
3620 return ret;
3621 }
3622
3623 static const struct file_operations perf_fops;
3624
3625 static inline int perf_fget_light(int fd, struct fd *p)
3626 {
3627 struct fd f = fdget(fd);
3628 if (!f.file)
3629 return -EBADF;
3630
3631 if (f.file->f_op != &perf_fops) {
3632 fdput(f);
3633 return -EBADF;
3634 }
3635 *p = f;
3636 return 0;
3637 }
3638
3639 static int perf_event_set_output(struct perf_event *event,
3640 struct perf_event *output_event);
3641 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3642
3643 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3644 {
3645 struct perf_event *event = file->private_data;
3646 void (*func)(struct perf_event *);
3647 u32 flags = arg;
3648
3649 switch (cmd) {
3650 case PERF_EVENT_IOC_ENABLE:
3651 func = perf_event_enable;
3652 break;
3653 case PERF_EVENT_IOC_DISABLE:
3654 func = perf_event_disable;
3655 break;
3656 case PERF_EVENT_IOC_RESET:
3657 func = perf_event_reset;
3658 break;
3659
3660 case PERF_EVENT_IOC_REFRESH:
3661 return perf_event_refresh(event, arg);
3662
3663 case PERF_EVENT_IOC_PERIOD:
3664 return perf_event_period(event, (u64 __user *)arg);
3665
3666 case PERF_EVENT_IOC_ID:
3667 {
3668 u64 id = primary_event_id(event);
3669
3670 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
3671 return -EFAULT;
3672 return 0;
3673 }
3674
3675 case PERF_EVENT_IOC_SET_OUTPUT:
3676 {
3677 int ret;
3678 if (arg != -1) {
3679 struct perf_event *output_event;
3680 struct fd output;
3681 ret = perf_fget_light(arg, &output);
3682 if (ret)
3683 return ret;
3684 output_event = output.file->private_data;
3685 ret = perf_event_set_output(event, output_event);
3686 fdput(output);
3687 } else {
3688 ret = perf_event_set_output(event, NULL);
3689 }
3690 return ret;
3691 }
3692
3693 case PERF_EVENT_IOC_SET_FILTER:
3694 return perf_event_set_filter(event, (void __user *)arg);
3695
3696 default:
3697 return -ENOTTY;
3698 }
3699
3700 if (flags & PERF_IOC_FLAG_GROUP)
3701 perf_event_for_each(event, func);
3702 else
3703 perf_event_for_each_child(event, func);
3704
3705 return 0;
3706 }
3707
3708 int perf_event_task_enable(void)
3709 {
3710 struct perf_event *event;
3711
3712 mutex_lock(&current->perf_event_mutex);
3713 list_for_each_entry(event, &current->perf_event_list, owner_entry)
3714 perf_event_for_each_child(event, perf_event_enable);
3715 mutex_unlock(&current->perf_event_mutex);
3716
3717 return 0;
3718 }
3719
3720 int perf_event_task_disable(void)
3721 {
3722 struct perf_event *event;
3723
3724 mutex_lock(&current->perf_event_mutex);
3725 list_for_each_entry(event, &current->perf_event_list, owner_entry)
3726 perf_event_for_each_child(event, perf_event_disable);
3727 mutex_unlock(&current->perf_event_mutex);
3728
3729 return 0;
3730 }
3731
3732 static int perf_event_index(struct perf_event *event)
3733 {
3734 if (event->hw.state & PERF_HES_STOPPED)
3735 return 0;
3736
3737 if (event->state != PERF_EVENT_STATE_ACTIVE)
3738 return 0;
3739
3740 return event->pmu->event_idx(event);
3741 }
3742
3743 static void calc_timer_values(struct perf_event *event,
3744 u64 *now,
3745 u64 *enabled,
3746 u64 *running)
3747 {
3748 u64 ctx_time;
3749
3750 *now = perf_clock();
3751 ctx_time = event->shadow_ctx_time + *now;
3752 *enabled = ctx_time - event->tstamp_enabled;
3753 *running = ctx_time - event->tstamp_running;
3754 }
3755
3756 static void perf_event_init_userpage(struct perf_event *event)
3757 {
3758 struct perf_event_mmap_page *userpg;
3759 struct ring_buffer *rb;
3760
3761 rcu_read_lock();
3762 rb = rcu_dereference(event->rb);
3763 if (!rb)
3764 goto unlock;
3765
3766 userpg = rb->user_page;
3767
3768 /* Allow new userspace to detect that bit 0 is deprecated */
3769 userpg->cap_bit0_is_deprecated = 1;
3770 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
3771
3772 unlock:
3773 rcu_read_unlock();
3774 }
3775
3776 void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
3777 {
3778 }
3779
3780 /*
3781 * Callers need to ensure there can be no nesting of this function, otherwise
3782 * the seqlock logic goes bad. We can not serialize this because the arch
3783 * code calls this from NMI context.
3784 */
3785 void perf_event_update_userpage(struct perf_event *event)
3786 {
3787 struct perf_event_mmap_page *userpg;
3788 struct ring_buffer *rb;
3789 u64 enabled, running, now;
3790
3791 rcu_read_lock();
3792 rb = rcu_dereference(event->rb);
3793 if (!rb)
3794 goto unlock;
3795
3796 /*
3797 * compute total_time_enabled, total_time_running
3798 * based on snapshot values taken when the event
3799 * was last scheduled in.
3800 *
3801 * we cannot simply called update_context_time()
3802 * because of locking issue as we can be called in
3803 * NMI context
3804 */
3805 calc_timer_values(event, &now, &enabled, &running);
3806
3807 userpg = rb->user_page;
3808 /*
3809 * Disable preemption so as to not let the corresponding user-space
3810 * spin too long if we get preempted.
3811 */
3812 preempt_disable();
3813 ++userpg->lock;
3814 barrier();
3815 userpg->index = perf_event_index(event);
3816 userpg->offset = perf_event_count(event);
3817 if (userpg->index)
3818 userpg->offset -= local64_read(&event->hw.prev_count);
3819
3820 userpg->time_enabled = enabled +
3821 atomic64_read(&event->child_total_time_enabled);
3822
3823 userpg->time_running = running +
3824 atomic64_read(&event->child_total_time_running);
3825
3826 arch_perf_update_userpage(userpg, now);
3827
3828 barrier();
3829 ++userpg->lock;
3830 preempt_enable();
3831 unlock:
3832 rcu_read_unlock();
3833 }
3834
3835 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
3836 {
3837 struct perf_event *event = vma->vm_file->private_data;
3838 struct ring_buffer *rb;
3839 int ret = VM_FAULT_SIGBUS;
3840
3841 if (vmf->flags & FAULT_FLAG_MKWRITE) {
3842 if (vmf->pgoff == 0)
3843 ret = 0;
3844 return ret;
3845 }
3846
3847 rcu_read_lock();
3848 rb = rcu_dereference(event->rb);
3849 if (!rb)
3850 goto unlock;
3851
3852 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
3853 goto unlock;
3854
3855 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
3856 if (!vmf->page)
3857 goto unlock;
3858
3859 get_page(vmf->page);
3860 vmf->page->mapping = vma->vm_file->f_mapping;
3861 vmf->page->index = vmf->pgoff;
3862
3863 ret = 0;
3864 unlock:
3865 rcu_read_unlock();
3866
3867 return ret;
3868 }
3869
3870 static void ring_buffer_attach(struct perf_event *event,
3871 struct ring_buffer *rb)
3872 {
3873 unsigned long flags;
3874
3875 if (!list_empty(&event->rb_entry))
3876 return;
3877
3878 spin_lock_irqsave(&rb->event_lock, flags);
3879 if (list_empty(&event->rb_entry))
3880 list_add(&event->rb_entry, &rb->event_list);
3881 spin_unlock_irqrestore(&rb->event_lock, flags);
3882 }
3883
3884 static void ring_buffer_detach(struct perf_event *event, struct ring_buffer *rb)
3885 {
3886 unsigned long flags;
3887
3888 if (list_empty(&event->rb_entry))
3889 return;
3890
3891 spin_lock_irqsave(&rb->event_lock, flags);
3892 list_del_init(&event->rb_entry);
3893 wake_up_all(&event->waitq);
3894 spin_unlock_irqrestore(&rb->event_lock, flags);
3895 }
3896
3897 static void ring_buffer_wakeup(struct perf_event *event)
3898 {
3899 struct ring_buffer *rb;
3900
3901 rcu_read_lock();
3902 rb = rcu_dereference(event->rb);
3903 if (rb) {
3904 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
3905 wake_up_all(&event->waitq);
3906 }
3907 rcu_read_unlock();
3908 }
3909
3910 static void rb_free_rcu(struct rcu_head *rcu_head)
3911 {
3912 struct ring_buffer *rb;
3913
3914 rb = container_of(rcu_head, struct ring_buffer, rcu_head);
3915 rb_free(rb);
3916 }
3917
3918 static struct ring_buffer *ring_buffer_get(struct perf_event *event)
3919 {
3920 struct ring_buffer *rb;
3921
3922 rcu_read_lock();
3923 rb = rcu_dereference(event->rb);
3924 if (rb) {
3925 if (!atomic_inc_not_zero(&rb->refcount))
3926 rb = NULL;
3927 }
3928 rcu_read_unlock();
3929
3930 return rb;
3931 }
3932
3933 static void ring_buffer_put(struct ring_buffer *rb)
3934 {
3935 if (!atomic_dec_and_test(&rb->refcount))
3936 return;
3937
3938 WARN_ON_ONCE(!list_empty(&rb->event_list));
3939
3940 call_rcu(&rb->rcu_head, rb_free_rcu);
3941 }
3942
3943 static void perf_mmap_open(struct vm_area_struct *vma)
3944 {
3945 struct perf_event *event = vma->vm_file->private_data;
3946
3947 atomic_inc(&event->mmap_count);
3948 atomic_inc(&event->rb->mmap_count);
3949 }
3950
3951 /*
3952 * A buffer can be mmap()ed multiple times; either directly through the same
3953 * event, or through other events by use of perf_event_set_output().
3954 *
3955 * In order to undo the VM accounting done by perf_mmap() we need to destroy
3956 * the buffer here, where we still have a VM context. This means we need
3957 * to detach all events redirecting to us.
3958 */
3959 static void perf_mmap_close(struct vm_area_struct *vma)
3960 {
3961 struct perf_event *event = vma->vm_file->private_data;
3962
3963 struct ring_buffer *rb = event->rb;
3964 struct user_struct *mmap_user = rb->mmap_user;
3965 int mmap_locked = rb->mmap_locked;
3966 unsigned long size = perf_data_size(rb);
3967
3968 atomic_dec(&rb->mmap_count);
3969
3970 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
3971 return;
3972
3973 /* Detach current event from the buffer. */
3974 rcu_assign_pointer(event->rb, NULL);
3975 ring_buffer_detach(event, rb);
3976 mutex_unlock(&event->mmap_mutex);
3977
3978 /* If there's still other mmap()s of this buffer, we're done. */
3979 if (atomic_read(&rb->mmap_count)) {
3980 ring_buffer_put(rb); /* can't be last */
3981 return;
3982 }
3983
3984 /*
3985 * No other mmap()s, detach from all other events that might redirect
3986 * into the now unreachable buffer. Somewhat complicated by the
3987 * fact that rb::event_lock otherwise nests inside mmap_mutex.
3988 */
3989 again:
3990 rcu_read_lock();
3991 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
3992 if (!atomic_long_inc_not_zero(&event->refcount)) {
3993 /*
3994 * This event is en-route to free_event() which will
3995 * detach it and remove it from the list.
3996 */
3997 continue;
3998 }
3999 rcu_read_unlock();
4000
4001 mutex_lock(&event->mmap_mutex);
4002 /*
4003 * Check we didn't race with perf_event_set_output() which can
4004 * swizzle the rb from under us while we were waiting to
4005 * acquire mmap_mutex.
4006 *
4007 * If we find a different rb; ignore this event, a next
4008 * iteration will no longer find it on the list. We have to
4009 * still restart the iteration to make sure we're not now
4010 * iterating the wrong list.
4011 */
4012 if (event->rb == rb) {
4013 rcu_assign_pointer(event->rb, NULL);
4014 ring_buffer_detach(event, rb);
4015 ring_buffer_put(rb); /* can't be last, we still have one */
4016 }
4017 mutex_unlock(&event->mmap_mutex);
4018 put_event(event);
4019
4020 /*
4021 * Restart the iteration; either we're on the wrong list or
4022 * destroyed its integrity by doing a deletion.
4023 */
4024 goto again;
4025 }
4026 rcu_read_unlock();
4027
4028 /*
4029 * It could be there's still a few 0-ref events on the list; they'll
4030 * get cleaned up by free_event() -- they'll also still have their
4031 * ref on the rb and will free it whenever they are done with it.
4032 *
4033 * Aside from that, this buffer is 'fully' detached and unmapped,
4034 * undo the VM accounting.
4035 */
4036
4037 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
4038 vma->vm_mm->pinned_vm -= mmap_locked;
4039 free_uid(mmap_user);
4040
4041 ring_buffer_put(rb); /* could be last */
4042 }
4043
4044 static const struct vm_operations_struct perf_mmap_vmops = {
4045 .open = perf_mmap_open,
4046 .close = perf_mmap_close,
4047 .fault = perf_mmap_fault,
4048 .page_mkwrite = perf_mmap_fault,
4049 };
4050
4051 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
4052 {
4053 struct perf_event *event = file->private_data;
4054 unsigned long user_locked, user_lock_limit;
4055 struct user_struct *user = current_user();
4056 unsigned long locked, lock_limit;
4057 struct ring_buffer *rb;
4058 unsigned long vma_size;
4059 unsigned long nr_pages;
4060 long user_extra, extra;
4061 int ret = 0, flags = 0;
4062
4063 /*
4064 * Don't allow mmap() of inherited per-task counters. This would
4065 * create a performance issue due to all children writing to the
4066 * same rb.
4067 */
4068 if (event->cpu == -1 && event->attr.inherit)
4069 return -EINVAL;
4070
4071 if (!(vma->vm_flags & VM_SHARED))
4072 return -EINVAL;
4073
4074 vma_size = vma->vm_end - vma->vm_start;
4075 nr_pages = (vma_size / PAGE_SIZE) - 1;
4076
4077 /*
4078 * If we have rb pages ensure they're a power-of-two number, so we
4079 * can do bitmasks instead of modulo.
4080 */
4081 if (nr_pages != 0 && !is_power_of_2(nr_pages))
4082 return -EINVAL;
4083
4084 if (vma_size != PAGE_SIZE * (1 + nr_pages))
4085 return -EINVAL;
4086
4087 if (vma->vm_pgoff != 0)
4088 return -EINVAL;
4089
4090 WARN_ON_ONCE(event->ctx->parent_ctx);
4091 again:
4092 mutex_lock(&event->mmap_mutex);
4093 if (event->rb) {
4094 if (event->rb->nr_pages != nr_pages) {
4095 ret = -EINVAL;
4096 goto unlock;
4097 }
4098
4099 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
4100 /*
4101 * Raced against perf_mmap_close() through
4102 * perf_event_set_output(). Try again, hope for better
4103 * luck.
4104 */
4105 mutex_unlock(&event->mmap_mutex);
4106 goto again;
4107 }
4108
4109 goto unlock;
4110 }
4111
4112 user_extra = nr_pages + 1;
4113 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
4114
4115 /*
4116 * Increase the limit linearly with more CPUs:
4117 */
4118 user_lock_limit *= num_online_cpus();
4119
4120 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
4121
4122 extra = 0;
4123 if (user_locked > user_lock_limit)
4124 extra = user_locked - user_lock_limit;
4125
4126 lock_limit = rlimit(RLIMIT_MEMLOCK);
4127 lock_limit >>= PAGE_SHIFT;
4128 locked = vma->vm_mm->pinned_vm + extra;
4129
4130 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
4131 !capable(CAP_IPC_LOCK)) {
4132 ret = -EPERM;
4133 goto unlock;
4134 }
4135
4136 WARN_ON(event->rb);
4137
4138 if (vma->vm_flags & VM_WRITE)
4139 flags |= RING_BUFFER_WRITABLE;
4140
4141 rb = rb_alloc(nr_pages,
4142 event->attr.watermark ? event->attr.wakeup_watermark : 0,
4143 event->cpu, flags);
4144
4145 if (!rb) {
4146 ret = -ENOMEM;
4147 goto unlock;
4148 }
4149
4150 atomic_set(&rb->mmap_count, 1);
4151 rb->mmap_locked = extra;
4152 rb->mmap_user = get_current_user();
4153
4154 atomic_long_add(user_extra, &user->locked_vm);
4155 vma->vm_mm->pinned_vm += extra;
4156
4157 ring_buffer_attach(event, rb);
4158 rcu_assign_pointer(event->rb, rb);
4159
4160 perf_event_init_userpage(event);
4161 perf_event_update_userpage(event);
4162
4163 unlock:
4164 if (!ret)
4165 atomic_inc(&event->mmap_count);
4166 mutex_unlock(&event->mmap_mutex);
4167
4168 /*
4169 * Since pinned accounting is per vm we cannot allow fork() to copy our
4170 * vma.
4171 */
4172 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
4173 vma->vm_ops = &perf_mmap_vmops;
4174
4175 return ret;
4176 }
4177
4178 static int perf_fasync(int fd, struct file *filp, int on)
4179 {
4180 struct inode *inode = file_inode(filp);
4181 struct perf_event *event = filp->private_data;
4182 int retval;
4183
4184 mutex_lock(&inode->i_mutex);
4185 retval = fasync_helper(fd, filp, on, &event->fasync);
4186 mutex_unlock(&inode->i_mutex);
4187
4188 if (retval < 0)
4189 return retval;
4190
4191 return 0;
4192 }
4193
4194 static const struct file_operations perf_fops = {
4195 .llseek = no_llseek,
4196 .release = perf_release,
4197 .read = perf_read,
4198 .poll = perf_poll,
4199 .unlocked_ioctl = perf_ioctl,
4200 .compat_ioctl = perf_ioctl,
4201 .mmap = perf_mmap,
4202 .fasync = perf_fasync,
4203 };
4204
4205 /*
4206 * Perf event wakeup
4207 *
4208 * If there's data, ensure we set the poll() state and publish everything
4209 * to user-space before waking everybody up.
4210 */
4211
4212 void perf_event_wakeup(struct perf_event *event)
4213 {
4214 ring_buffer_wakeup(event);
4215
4216 if (event->pending_kill) {
4217 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
4218 event->pending_kill = 0;
4219 }
4220 }
4221
4222 static void perf_pending_event(struct irq_work *entry)
4223 {
4224 struct perf_event *event = container_of(entry,
4225 struct perf_event, pending);
4226
4227 if (event->pending_disable) {
4228 event->pending_disable = 0;
4229 __perf_event_disable(event);
4230 }
4231
4232 if (event->pending_wakeup) {
4233 event->pending_wakeup = 0;
4234 perf_event_wakeup(event);
4235 }
4236 }
4237
4238 /*
4239 * We assume there is only KVM supporting the callbacks.
4240 * Later on, we might change it to a list if there is
4241 * another virtualization implementation supporting the callbacks.
4242 */
4243 struct perf_guest_info_callbacks *perf_guest_cbs;
4244
4245 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4246 {
4247 perf_guest_cbs = cbs;
4248 return 0;
4249 }
4250 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
4251
4252 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4253 {
4254 perf_guest_cbs = NULL;
4255 return 0;
4256 }
4257 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
4258
4259 static void
4260 perf_output_sample_regs(struct perf_output_handle *handle,
4261 struct pt_regs *regs, u64 mask)
4262 {
4263 int bit;
4264
4265 for_each_set_bit(bit, (const unsigned long *) &mask,
4266 sizeof(mask) * BITS_PER_BYTE) {
4267 u64 val;
4268
4269 val = perf_reg_value(regs, bit);
4270 perf_output_put(handle, val);
4271 }
4272 }
4273
4274 static void perf_sample_regs_user(struct perf_regs_user *regs_user,
4275 struct pt_regs *regs)
4276 {
4277 if (!user_mode(regs)) {
4278 if (current->mm)
4279 regs = task_pt_regs(current);
4280 else
4281 regs = NULL;
4282 }
4283
4284 if (regs) {
4285 regs_user->regs = regs;
4286 regs_user->abi = perf_reg_abi(current);
4287 }
4288 }
4289
4290 /*
4291 * Get remaining task size from user stack pointer.
4292 *
4293 * It'd be better to take stack vma map and limit this more
4294 * precisly, but there's no way to get it safely under interrupt,
4295 * so using TASK_SIZE as limit.
4296 */
4297 static u64 perf_ustack_task_size(struct pt_regs *regs)
4298 {
4299 unsigned long addr = perf_user_stack_pointer(regs);
4300
4301 if (!addr || addr >= TASK_SIZE)
4302 return 0;
4303
4304 return TASK_SIZE - addr;
4305 }
4306
4307 static u16
4308 perf_sample_ustack_size(u16 stack_size, u16 header_size,
4309 struct pt_regs *regs)
4310 {
4311 u64 task_size;
4312
4313 /* No regs, no stack pointer, no dump. */
4314 if (!regs)
4315 return 0;
4316
4317 /*
4318 * Check if we fit in with the requested stack size into the:
4319 * - TASK_SIZE
4320 * If we don't, we limit the size to the TASK_SIZE.
4321 *
4322 * - remaining sample size
4323 * If we don't, we customize the stack size to
4324 * fit in to the remaining sample size.
4325 */
4326
4327 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
4328 stack_size = min(stack_size, (u16) task_size);
4329
4330 /* Current header size plus static size and dynamic size. */
4331 header_size += 2 * sizeof(u64);
4332
4333 /* Do we fit in with the current stack dump size? */
4334 if ((u16) (header_size + stack_size) < header_size) {
4335 /*
4336 * If we overflow the maximum size for the sample,
4337 * we customize the stack dump size to fit in.
4338 */
4339 stack_size = USHRT_MAX - header_size - sizeof(u64);
4340 stack_size = round_up(stack_size, sizeof(u64));
4341 }
4342
4343 return stack_size;
4344 }
4345
4346 static void
4347 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
4348 struct pt_regs *regs)
4349 {
4350 /* Case of a kernel thread, nothing to dump */
4351 if (!regs) {
4352 u64 size = 0;
4353 perf_output_put(handle, size);
4354 } else {
4355 unsigned long sp;
4356 unsigned int rem;
4357 u64 dyn_size;
4358
4359 /*
4360 * We dump:
4361 * static size
4362 * - the size requested by user or the best one we can fit
4363 * in to the sample max size
4364 * data
4365 * - user stack dump data
4366 * dynamic size
4367 * - the actual dumped size
4368 */
4369
4370 /* Static size. */
4371 perf_output_put(handle, dump_size);
4372
4373 /* Data. */
4374 sp = perf_user_stack_pointer(regs);
4375 rem = __output_copy_user(handle, (void *) sp, dump_size);
4376 dyn_size = dump_size - rem;
4377
4378 perf_output_skip(handle, rem);
4379
4380 /* Dynamic size. */
4381 perf_output_put(handle, dyn_size);
4382 }
4383 }
4384
4385 static void __perf_event_header__init_id(struct perf_event_header *header,
4386 struct perf_sample_data *data,
4387 struct perf_event *event)
4388 {
4389 u64 sample_type = event->attr.sample_type;
4390
4391 data->type = sample_type;
4392 header->size += event->id_header_size;
4393
4394 if (sample_type & PERF_SAMPLE_TID) {
4395 /* namespace issues */
4396 data->tid_entry.pid = perf_event_pid(event, current);
4397 data->tid_entry.tid = perf_event_tid(event, current);
4398 }
4399
4400 if (sample_type & PERF_SAMPLE_TIME)
4401 data->time = perf_clock();
4402
4403 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
4404 data->id = primary_event_id(event);
4405
4406 if (sample_type & PERF_SAMPLE_STREAM_ID)
4407 data->stream_id = event->id;
4408
4409 if (sample_type & PERF_SAMPLE_CPU) {
4410 data->cpu_entry.cpu = raw_smp_processor_id();
4411 data->cpu_entry.reserved = 0;
4412 }
4413 }
4414
4415 void perf_event_header__init_id(struct perf_event_header *header,
4416 struct perf_sample_data *data,
4417 struct perf_event *event)
4418 {
4419 if (event->attr.sample_id_all)
4420 __perf_event_header__init_id(header, data, event);
4421 }
4422
4423 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
4424 struct perf_sample_data *data)
4425 {
4426 u64 sample_type = data->type;
4427
4428 if (sample_type & PERF_SAMPLE_TID)
4429 perf_output_put(handle, data->tid_entry);
4430
4431 if (sample_type & PERF_SAMPLE_TIME)
4432 perf_output_put(handle, data->time);
4433
4434 if (sample_type & PERF_SAMPLE_ID)
4435 perf_output_put(handle, data->id);
4436
4437 if (sample_type & PERF_SAMPLE_STREAM_ID)
4438 perf_output_put(handle, data->stream_id);
4439
4440 if (sample_type & PERF_SAMPLE_CPU)
4441 perf_output_put(handle, data->cpu_entry);
4442
4443 if (sample_type & PERF_SAMPLE_IDENTIFIER)
4444 perf_output_put(handle, data->id);
4445 }
4446
4447 void perf_event__output_id_sample(struct perf_event *event,
4448 struct perf_output_handle *handle,
4449 struct perf_sample_data *sample)
4450 {
4451 if (event->attr.sample_id_all)
4452 __perf_event__output_id_sample(handle, sample);
4453 }
4454
4455 static void perf_output_read_one(struct perf_output_handle *handle,
4456 struct perf_event *event,
4457 u64 enabled, u64 running)
4458 {
4459 u64 read_format = event->attr.read_format;
4460 u64 values[4];
4461 int n = 0;
4462
4463 values[n++] = perf_event_count(event);
4464 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4465 values[n++] = enabled +
4466 atomic64_read(&event->child_total_time_enabled);
4467 }
4468 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4469 values[n++] = running +
4470 atomic64_read(&event->child_total_time_running);
4471 }
4472 if (read_format & PERF_FORMAT_ID)
4473 values[n++] = primary_event_id(event);
4474
4475 __output_copy(handle, values, n * sizeof(u64));
4476 }
4477
4478 /*
4479 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
4480 */
4481 static void perf_output_read_group(struct perf_output_handle *handle,
4482 struct perf_event *event,
4483 u64 enabled, u64 running)
4484 {
4485 struct perf_event *leader = event->group_leader, *sub;
4486 u64 read_format = event->attr.read_format;
4487 u64 values[5];
4488 int n = 0;
4489
4490 values[n++] = 1 + leader->nr_siblings;
4491
4492 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4493 values[n++] = enabled;
4494
4495 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4496 values[n++] = running;
4497
4498 if (leader != event)
4499 leader->pmu->read(leader);
4500
4501 values[n++] = perf_event_count(leader);
4502 if (read_format & PERF_FORMAT_ID)
4503 values[n++] = primary_event_id(leader);
4504
4505 __output_copy(handle, values, n * sizeof(u64));
4506
4507 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4508 n = 0;
4509
4510 if ((sub != event) &&
4511 (sub->state == PERF_EVENT_STATE_ACTIVE))
4512 sub->pmu->read(sub);
4513
4514 values[n++] = perf_event_count(sub);
4515 if (read_format & PERF_FORMAT_ID)
4516 values[n++] = primary_event_id(sub);
4517
4518 __output_copy(handle, values, n * sizeof(u64));
4519 }
4520 }
4521
4522 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
4523 PERF_FORMAT_TOTAL_TIME_RUNNING)
4524
4525 static void perf_output_read(struct perf_output_handle *handle,
4526 struct perf_event *event)
4527 {
4528 u64 enabled = 0, running = 0, now;
4529 u64 read_format = event->attr.read_format;
4530
4531 /*
4532 * compute total_time_enabled, total_time_running
4533 * based on snapshot values taken when the event
4534 * was last scheduled in.
4535 *
4536 * we cannot simply called update_context_time()
4537 * because of locking issue as we are called in
4538 * NMI context
4539 */
4540 if (read_format & PERF_FORMAT_TOTAL_TIMES)
4541 calc_timer_values(event, &now, &enabled, &running);
4542
4543 if (event->attr.read_format & PERF_FORMAT_GROUP)
4544 perf_output_read_group(handle, event, enabled, running);
4545 else
4546 perf_output_read_one(handle, event, enabled, running);
4547 }
4548
4549 void perf_output_sample(struct perf_output_handle *handle,
4550 struct perf_event_header *header,
4551 struct perf_sample_data *data,
4552 struct perf_event *event)
4553 {
4554 u64 sample_type = data->type;
4555
4556 perf_output_put(handle, *header);
4557
4558 if (sample_type & PERF_SAMPLE_IDENTIFIER)
4559 perf_output_put(handle, data->id);
4560
4561 if (sample_type & PERF_SAMPLE_IP)
4562 perf_output_put(handle, data->ip);
4563
4564 if (sample_type & PERF_SAMPLE_TID)
4565 perf_output_put(handle, data->tid_entry);
4566
4567 if (sample_type & PERF_SAMPLE_TIME)
4568 perf_output_put(handle, data->time);
4569
4570 if (sample_type & PERF_SAMPLE_ADDR)
4571 perf_output_put(handle, data->addr);
4572
4573 if (sample_type & PERF_SAMPLE_ID)
4574 perf_output_put(handle, data->id);
4575
4576 if (sample_type & PERF_SAMPLE_STREAM_ID)
4577 perf_output_put(handle, data->stream_id);
4578
4579 if (sample_type & PERF_SAMPLE_CPU)
4580 perf_output_put(handle, data->cpu_entry);
4581
4582 if (sample_type & PERF_SAMPLE_PERIOD)
4583 perf_output_put(handle, data->period);
4584
4585 if (sample_type & PERF_SAMPLE_READ)
4586 perf_output_read(handle, event);
4587
4588 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4589 if (data->callchain) {
4590 int size = 1;
4591
4592 if (data->callchain)
4593 size += data->callchain->nr;
4594
4595 size *= sizeof(u64);
4596
4597 __output_copy(handle, data->callchain, size);
4598 } else {
4599 u64 nr = 0;
4600 perf_output_put(handle, nr);
4601 }
4602 }
4603
4604 if (sample_type & PERF_SAMPLE_RAW) {
4605 if (data->raw) {
4606 perf_output_put(handle, data->raw->size);
4607 __output_copy(handle, data->raw->data,
4608 data->raw->size);
4609 } else {
4610 struct {
4611 u32 size;
4612 u32 data;
4613 } raw = {
4614 .size = sizeof(u32),
4615 .data = 0,
4616 };
4617 perf_output_put(handle, raw);
4618 }
4619 }
4620
4621 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4622 if (data->br_stack) {
4623 size_t size;
4624
4625 size = data->br_stack->nr
4626 * sizeof(struct perf_branch_entry);
4627
4628 perf_output_put(handle, data->br_stack->nr);
4629 perf_output_copy(handle, data->br_stack->entries, size);
4630 } else {
4631 /*
4632 * we always store at least the value of nr
4633 */
4634 u64 nr = 0;
4635 perf_output_put(handle, nr);
4636 }
4637 }
4638
4639 if (sample_type & PERF_SAMPLE_REGS_USER) {
4640 u64 abi = data->regs_user.abi;
4641
4642 /*
4643 * If there are no regs to dump, notice it through
4644 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
4645 */
4646 perf_output_put(handle, abi);
4647
4648 if (abi) {
4649 u64 mask = event->attr.sample_regs_user;
4650 perf_output_sample_regs(handle,
4651 data->regs_user.regs,
4652 mask);
4653 }
4654 }
4655
4656 if (sample_type & PERF_SAMPLE_STACK_USER) {
4657 perf_output_sample_ustack(handle,
4658 data->stack_user_size,
4659 data->regs_user.regs);
4660 }
4661
4662 if (sample_type & PERF_SAMPLE_WEIGHT)
4663 perf_output_put(handle, data->weight);
4664
4665 if (sample_type & PERF_SAMPLE_DATA_SRC)
4666 perf_output_put(handle, data->data_src.val);
4667
4668 if (sample_type & PERF_SAMPLE_TRANSACTION)
4669 perf_output_put(handle, data->txn);
4670
4671 if (!event->attr.watermark) {
4672 int wakeup_events = event->attr.wakeup_events;
4673
4674 if (wakeup_events) {
4675 struct ring_buffer *rb = handle->rb;
4676 int events = local_inc_return(&rb->events);
4677
4678 if (events >= wakeup_events) {
4679 local_sub(wakeup_events, &rb->events);
4680 local_inc(&rb->wakeup);
4681 }
4682 }
4683 }
4684 }
4685
4686 void perf_prepare_sample(struct perf_event_header *header,
4687 struct perf_sample_data *data,
4688 struct perf_event *event,
4689 struct pt_regs *regs)
4690 {
4691 u64 sample_type = event->attr.sample_type;
4692
4693 header->type = PERF_RECORD_SAMPLE;
4694 header->size = sizeof(*header) + event->header_size;
4695
4696 header->misc = 0;
4697 header->misc |= perf_misc_flags(regs);
4698
4699 __perf_event_header__init_id(header, data, event);
4700
4701 if (sample_type & PERF_SAMPLE_IP)
4702 data->ip = perf_instruction_pointer(regs);
4703
4704 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4705 int size = 1;
4706
4707 data->callchain = perf_callchain(event, regs);
4708
4709 if (data->callchain)
4710 size += data->callchain->nr;
4711
4712 header->size += size * sizeof(u64);
4713 }
4714
4715 if (sample_type & PERF_SAMPLE_RAW) {
4716 int size = sizeof(u32);
4717
4718 if (data->raw)
4719 size += data->raw->size;
4720 else
4721 size += sizeof(u32);
4722
4723 WARN_ON_ONCE(size & (sizeof(u64)-1));
4724 header->size += size;
4725 }
4726
4727 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4728 int size = sizeof(u64); /* nr */
4729 if (data->br_stack) {
4730 size += data->br_stack->nr
4731 * sizeof(struct perf_branch_entry);
4732 }
4733 header->size += size;
4734 }
4735
4736 if (sample_type & PERF_SAMPLE_REGS_USER) {
4737 /* regs dump ABI info */
4738 int size = sizeof(u64);
4739
4740 perf_sample_regs_user(&data->regs_user, regs);
4741
4742 if (data->regs_user.regs) {
4743 u64 mask = event->attr.sample_regs_user;
4744 size += hweight64(mask) * sizeof(u64);
4745 }
4746
4747 header->size += size;
4748 }
4749
4750 if (sample_type & PERF_SAMPLE_STACK_USER) {
4751 /*
4752 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
4753 * processed as the last one or have additional check added
4754 * in case new sample type is added, because we could eat
4755 * up the rest of the sample size.
4756 */
4757 struct perf_regs_user *uregs = &data->regs_user;
4758 u16 stack_size = event->attr.sample_stack_user;
4759 u16 size = sizeof(u64);
4760
4761 if (!uregs->abi)
4762 perf_sample_regs_user(uregs, regs);
4763
4764 stack_size = perf_sample_ustack_size(stack_size, header->size,
4765 uregs->regs);
4766
4767 /*
4768 * If there is something to dump, add space for the dump
4769 * itself and for the field that tells the dynamic size,
4770 * which is how many have been actually dumped.
4771 */
4772 if (stack_size)
4773 size += sizeof(u64) + stack_size;
4774
4775 data->stack_user_size = stack_size;
4776 header->size += size;
4777 }
4778 }
4779
4780 static void perf_event_output(struct perf_event *event,
4781 struct perf_sample_data *data,
4782 struct pt_regs *regs)
4783 {
4784 struct perf_output_handle handle;
4785 struct perf_event_header header;
4786
4787 /* protect the callchain buffers */
4788 rcu_read_lock();
4789
4790 perf_prepare_sample(&header, data, event, regs);
4791
4792 if (perf_output_begin(&handle, event, header.size))
4793 goto exit;
4794
4795 perf_output_sample(&handle, &header, data, event);
4796
4797 perf_output_end(&handle);
4798
4799 exit:
4800 rcu_read_unlock();
4801 }
4802
4803 /*
4804 * read event_id
4805 */
4806
4807 struct perf_read_event {
4808 struct perf_event_header header;
4809
4810 u32 pid;
4811 u32 tid;
4812 };
4813
4814 static void
4815 perf_event_read_event(struct perf_event *event,
4816 struct task_struct *task)
4817 {
4818 struct perf_output_handle handle;
4819 struct perf_sample_data sample;
4820 struct perf_read_event read_event = {
4821 .header = {
4822 .type = PERF_RECORD_READ,
4823 .misc = 0,
4824 .size = sizeof(read_event) + event->read_size,
4825 },
4826 .pid = perf_event_pid(event, task),
4827 .tid = perf_event_tid(event, task),
4828 };
4829 int ret;
4830
4831 perf_event_header__init_id(&read_event.header, &sample, event);
4832 ret = perf_output_begin(&handle, event, read_event.header.size);
4833 if (ret)
4834 return;
4835
4836 perf_output_put(&handle, read_event);
4837 perf_output_read(&handle, event);
4838 perf_event__output_id_sample(event, &handle, &sample);
4839
4840 perf_output_end(&handle);
4841 }
4842
4843 typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
4844
4845 static void
4846 perf_event_aux_ctx(struct perf_event_context *ctx,
4847 perf_event_aux_output_cb output,
4848 void *data)
4849 {
4850 struct perf_event *event;
4851
4852 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4853 if (event->state < PERF_EVENT_STATE_INACTIVE)
4854 continue;
4855 if (!event_filter_match(event))
4856 continue;
4857 output(event, data);
4858 }
4859 }
4860
4861 static void
4862 perf_event_aux(perf_event_aux_output_cb output, void *data,
4863 struct perf_event_context *task_ctx)
4864 {
4865 struct perf_cpu_context *cpuctx;
4866 struct perf_event_context *ctx;
4867 struct pmu *pmu;
4868 int ctxn;
4869
4870 rcu_read_lock();
4871 list_for_each_entry_rcu(pmu, &pmus, entry) {
4872 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4873 if (cpuctx->unique_pmu != pmu)
4874 goto next;
4875 perf_event_aux_ctx(&cpuctx->ctx, output, data);
4876 if (task_ctx)
4877 goto next;
4878 ctxn = pmu->task_ctx_nr;
4879 if (ctxn < 0)
4880 goto next;
4881 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4882 if (ctx)
4883 perf_event_aux_ctx(ctx, output, data);
4884 next:
4885 put_cpu_ptr(pmu->pmu_cpu_context);
4886 }
4887
4888 if (task_ctx) {
4889 preempt_disable();
4890 perf_event_aux_ctx(task_ctx, output, data);
4891 preempt_enable();
4892 }
4893 rcu_read_unlock();
4894 }
4895
4896 /*
4897 * task tracking -- fork/exit
4898 *
4899 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
4900 */
4901
4902 struct perf_task_event {
4903 struct task_struct *task;
4904 struct perf_event_context *task_ctx;
4905
4906 struct {
4907 struct perf_event_header header;
4908
4909 u32 pid;
4910 u32 ppid;
4911 u32 tid;
4912 u32 ptid;
4913 u64 time;
4914 } event_id;
4915 };
4916
4917 static int perf_event_task_match(struct perf_event *event)
4918 {
4919 return event->attr.comm || event->attr.mmap ||
4920 event->attr.mmap2 || event->attr.mmap_data ||
4921 event->attr.task;
4922 }
4923
4924 static void perf_event_task_output(struct perf_event *event,
4925 void *data)
4926 {
4927 struct perf_task_event *task_event = data;
4928 struct perf_output_handle handle;
4929 struct perf_sample_data sample;
4930 struct task_struct *task = task_event->task;
4931 int ret, size = task_event->event_id.header.size;
4932
4933 if (!perf_event_task_match(event))
4934 return;
4935
4936 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
4937
4938 ret = perf_output_begin(&handle, event,
4939 task_event->event_id.header.size);
4940 if (ret)
4941 goto out;
4942
4943 task_event->event_id.pid = perf_event_pid(event, task);
4944 task_event->event_id.ppid = perf_event_pid(event, current);
4945
4946 task_event->event_id.tid = perf_event_tid(event, task);
4947 task_event->event_id.ptid = perf_event_tid(event, current);
4948
4949 perf_output_put(&handle, task_event->event_id);
4950
4951 perf_event__output_id_sample(event, &handle, &sample);
4952
4953 perf_output_end(&handle);
4954 out:
4955 task_event->event_id.header.size = size;
4956 }
4957
4958 static void perf_event_task(struct task_struct *task,
4959 struct perf_event_context *task_ctx,
4960 int new)
4961 {
4962 struct perf_task_event task_event;
4963
4964 if (!atomic_read(&nr_comm_events) &&
4965 !atomic_read(&nr_mmap_events) &&
4966 !atomic_read(&nr_task_events))
4967 return;
4968
4969 task_event = (struct perf_task_event){
4970 .task = task,
4971 .task_ctx = task_ctx,
4972 .event_id = {
4973 .header = {
4974 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
4975 .misc = 0,
4976 .size = sizeof(task_event.event_id),
4977 },
4978 /* .pid */
4979 /* .ppid */
4980 /* .tid */
4981 /* .ptid */
4982 .time = perf_clock(),
4983 },
4984 };
4985
4986 perf_event_aux(perf_event_task_output,
4987 &task_event,
4988 task_ctx);
4989 }
4990
4991 void perf_event_fork(struct task_struct *task)
4992 {
4993 perf_event_task(task, NULL, 1);
4994 }
4995
4996 /*
4997 * comm tracking
4998 */
4999
5000 struct perf_comm_event {
5001 struct task_struct *task;
5002 char *comm;
5003 int comm_size;
5004
5005 struct {
5006 struct perf_event_header header;
5007
5008 u32 pid;
5009 u32 tid;
5010 } event_id;
5011 };
5012
5013 static int perf_event_comm_match(struct perf_event *event)
5014 {
5015 return event->attr.comm;
5016 }
5017
5018 static void perf_event_comm_output(struct perf_event *event,
5019 void *data)
5020 {
5021 struct perf_comm_event *comm_event = data;
5022 struct perf_output_handle handle;
5023 struct perf_sample_data sample;
5024 int size = comm_event->event_id.header.size;
5025 int ret;
5026
5027 if (!perf_event_comm_match(event))
5028 return;
5029
5030 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
5031 ret = perf_output_begin(&handle, event,
5032 comm_event->event_id.header.size);
5033
5034 if (ret)
5035 goto out;
5036
5037 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
5038 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
5039
5040 perf_output_put(&handle, comm_event->event_id);
5041 __output_copy(&handle, comm_event->comm,
5042 comm_event->comm_size);
5043
5044 perf_event__output_id_sample(event, &handle, &sample);
5045
5046 perf_output_end(&handle);
5047 out:
5048 comm_event->event_id.header.size = size;
5049 }
5050
5051 static void perf_event_comm_event(struct perf_comm_event *comm_event)
5052 {
5053 char comm[TASK_COMM_LEN];
5054 unsigned int size;
5055
5056 memset(comm, 0, sizeof(comm));
5057 strlcpy(comm, comm_event->task->comm, sizeof(comm));
5058 size = ALIGN(strlen(comm)+1, sizeof(u64));
5059
5060 comm_event->comm = comm;
5061 comm_event->comm_size = size;
5062
5063 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
5064
5065 perf_event_aux(perf_event_comm_output,
5066 comm_event,
5067 NULL);
5068 }
5069
5070 void perf_event_comm(struct task_struct *task)
5071 {
5072 struct perf_comm_event comm_event;
5073 struct perf_event_context *ctx;
5074 int ctxn;
5075
5076 rcu_read_lock();
5077 for_each_task_context_nr(ctxn) {
5078 ctx = task->perf_event_ctxp[ctxn];
5079 if (!ctx)
5080 continue;
5081
5082 perf_event_enable_on_exec(ctx);
5083 }
5084 rcu_read_unlock();
5085
5086 if (!atomic_read(&nr_comm_events))
5087 return;
5088
5089 comm_event = (struct perf_comm_event){
5090 .task = task,
5091 /* .comm */
5092 /* .comm_size */
5093 .event_id = {
5094 .header = {
5095 .type = PERF_RECORD_COMM,
5096 .misc = 0,
5097 /* .size */
5098 },
5099 /* .pid */
5100 /* .tid */
5101 },
5102 };
5103
5104 perf_event_comm_event(&comm_event);
5105 }
5106
5107 /*
5108 * mmap tracking
5109 */
5110
5111 struct perf_mmap_event {
5112 struct vm_area_struct *vma;
5113
5114 const char *file_name;
5115 int file_size;
5116 int maj, min;
5117 u64 ino;
5118 u64 ino_generation;
5119
5120 struct {
5121 struct perf_event_header header;
5122
5123 u32 pid;
5124 u32 tid;
5125 u64 start;
5126 u64 len;
5127 u64 pgoff;
5128 } event_id;
5129 };
5130
5131 static int perf_event_mmap_match(struct perf_event *event,
5132 void *data)
5133 {
5134 struct perf_mmap_event *mmap_event = data;
5135 struct vm_area_struct *vma = mmap_event->vma;
5136 int executable = vma->vm_flags & VM_EXEC;
5137
5138 return (!executable && event->attr.mmap_data) ||
5139 (executable && (event->attr.mmap || event->attr.mmap2));
5140 }
5141
5142 static void perf_event_mmap_output(struct perf_event *event,
5143 void *data)
5144 {
5145 struct perf_mmap_event *mmap_event = data;
5146 struct perf_output_handle handle;
5147 struct perf_sample_data sample;
5148 int size = mmap_event->event_id.header.size;
5149 int ret;
5150
5151 if (!perf_event_mmap_match(event, data))
5152 return;
5153
5154 if (event->attr.mmap2) {
5155 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
5156 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
5157 mmap_event->event_id.header.size += sizeof(mmap_event->min);
5158 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
5159 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
5160 }
5161
5162 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
5163 ret = perf_output_begin(&handle, event,
5164 mmap_event->event_id.header.size);
5165 if (ret)
5166 goto out;
5167
5168 mmap_event->event_id.pid = perf_event_pid(event, current);
5169 mmap_event->event_id.tid = perf_event_tid(event, current);
5170
5171 perf_output_put(&handle, mmap_event->event_id);
5172
5173 if (event->attr.mmap2) {
5174 perf_output_put(&handle, mmap_event->maj);
5175 perf_output_put(&handle, mmap_event->min);
5176 perf_output_put(&handle, mmap_event->ino);
5177 perf_output_put(&handle, mmap_event->ino_generation);
5178 }
5179
5180 __output_copy(&handle, mmap_event->file_name,
5181 mmap_event->file_size);
5182
5183 perf_event__output_id_sample(event, &handle, &sample);
5184
5185 perf_output_end(&handle);
5186 out:
5187 mmap_event->event_id.header.size = size;
5188 }
5189
5190 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
5191 {
5192 struct vm_area_struct *vma = mmap_event->vma;
5193 struct file *file = vma->vm_file;
5194 int maj = 0, min = 0;
5195 u64 ino = 0, gen = 0;
5196 unsigned int size;
5197 char tmp[16];
5198 char *buf = NULL;
5199 char *name;
5200
5201 if (file) {
5202 struct inode *inode;
5203 dev_t dev;
5204
5205 buf = kmalloc(PATH_MAX, GFP_KERNEL);
5206 if (!buf) {
5207 name = "//enomem";
5208 goto cpy_name;
5209 }
5210 /*
5211 * d_path() works from the end of the rb backwards, so we
5212 * need to add enough zero bytes after the string to handle
5213 * the 64bit alignment we do later.
5214 */
5215 name = d_path(&file->f_path, buf, PATH_MAX - sizeof(u64));
5216 if (IS_ERR(name)) {
5217 name = "//toolong";
5218 goto cpy_name;
5219 }
5220 inode = file_inode(vma->vm_file);
5221 dev = inode->i_sb->s_dev;
5222 ino = inode->i_ino;
5223 gen = inode->i_generation;
5224 maj = MAJOR(dev);
5225 min = MINOR(dev);
5226 goto got_name;
5227 } else {
5228 name = (char *)arch_vma_name(vma);
5229 if (name)
5230 goto cpy_name;
5231
5232 if (vma->vm_start <= vma->vm_mm->start_brk &&
5233 vma->vm_end >= vma->vm_mm->brk) {
5234 name = "[heap]";
5235 goto cpy_name;
5236 }
5237 if (vma->vm_start <= vma->vm_mm->start_stack &&
5238 vma->vm_end >= vma->vm_mm->start_stack) {
5239 name = "[stack]";
5240 goto cpy_name;
5241 }
5242
5243 name = "//anon";
5244 goto cpy_name;
5245 }
5246
5247 cpy_name:
5248 strlcpy(tmp, name, sizeof(tmp));
5249 name = tmp;
5250 got_name:
5251 /*
5252 * Since our buffer works in 8 byte units we need to align our string
5253 * size to a multiple of 8. However, we must guarantee the tail end is
5254 * zero'd out to avoid leaking random bits to userspace.
5255 */
5256 size = strlen(name)+1;
5257 while (!IS_ALIGNED(size, sizeof(u64)))
5258 name[size++] = '\0';
5259
5260 mmap_event->file_name = name;
5261 mmap_event->file_size = size;
5262 mmap_event->maj = maj;
5263 mmap_event->min = min;
5264 mmap_event->ino = ino;
5265 mmap_event->ino_generation = gen;
5266
5267 if (!(vma->vm_flags & VM_EXEC))
5268 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
5269
5270 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
5271
5272 perf_event_aux(perf_event_mmap_output,
5273 mmap_event,
5274 NULL);
5275
5276 kfree(buf);
5277 }
5278
5279 void perf_event_mmap(struct vm_area_struct *vma)
5280 {
5281 struct perf_mmap_event mmap_event;
5282
5283 if (!atomic_read(&nr_mmap_events))
5284 return;
5285
5286 mmap_event = (struct perf_mmap_event){
5287 .vma = vma,
5288 /* .file_name */
5289 /* .file_size */
5290 .event_id = {
5291 .header = {
5292 .type = PERF_RECORD_MMAP,
5293 .misc = PERF_RECORD_MISC_USER,
5294 /* .size */
5295 },
5296 /* .pid */
5297 /* .tid */
5298 .start = vma->vm_start,
5299 .len = vma->vm_end - vma->vm_start,
5300 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
5301 },
5302 /* .maj (attr_mmap2 only) */
5303 /* .min (attr_mmap2 only) */
5304 /* .ino (attr_mmap2 only) */
5305 /* .ino_generation (attr_mmap2 only) */
5306 };
5307
5308 perf_event_mmap_event(&mmap_event);
5309 }
5310
5311 /*
5312 * IRQ throttle logging
5313 */
5314
5315 static void perf_log_throttle(struct perf_event *event, int enable)
5316 {
5317 struct perf_output_handle handle;
5318 struct perf_sample_data sample;
5319 int ret;
5320
5321 struct {
5322 struct perf_event_header header;
5323 u64 time;
5324 u64 id;
5325 u64 stream_id;
5326 } throttle_event = {
5327 .header = {
5328 .type = PERF_RECORD_THROTTLE,
5329 .misc = 0,
5330 .size = sizeof(throttle_event),
5331 },
5332 .time = perf_clock(),
5333 .id = primary_event_id(event),
5334 .stream_id = event->id,
5335 };
5336
5337 if (enable)
5338 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
5339
5340 perf_event_header__init_id(&throttle_event.header, &sample, event);
5341
5342 ret = perf_output_begin(&handle, event,
5343 throttle_event.header.size);
5344 if (ret)
5345 return;
5346
5347 perf_output_put(&handle, throttle_event);
5348 perf_event__output_id_sample(event, &handle, &sample);
5349 perf_output_end(&handle);
5350 }
5351
5352 /*
5353 * Generic event overflow handling, sampling.
5354 */
5355
5356 static int __perf_event_overflow(struct perf_event *event,
5357 int throttle, struct perf_sample_data *data,
5358 struct pt_regs *regs)
5359 {
5360 int events = atomic_read(&event->event_limit);
5361 struct hw_perf_event *hwc = &event->hw;
5362 u64 seq;
5363 int ret = 0;
5364
5365 /*
5366 * Non-sampling counters might still use the PMI to fold short
5367 * hardware counters, ignore those.
5368 */
5369 if (unlikely(!is_sampling_event(event)))
5370 return 0;
5371
5372 seq = __this_cpu_read(perf_throttled_seq);
5373 if (seq != hwc->interrupts_seq) {
5374 hwc->interrupts_seq = seq;
5375 hwc->interrupts = 1;
5376 } else {
5377 hwc->interrupts++;
5378 if (unlikely(throttle
5379 && hwc->interrupts >= max_samples_per_tick)) {
5380 __this_cpu_inc(perf_throttled_count);
5381 hwc->interrupts = MAX_INTERRUPTS;
5382 perf_log_throttle(event, 0);
5383 tick_nohz_full_kick();
5384 ret = 1;
5385 }
5386 }
5387
5388 if (event->attr.freq) {
5389 u64 now = perf_clock();
5390 s64 delta = now - hwc->freq_time_stamp;
5391
5392 hwc->freq_time_stamp = now;
5393
5394 if (delta > 0 && delta < 2*TICK_NSEC)
5395 perf_adjust_period(event, delta, hwc->last_period, true);
5396 }
5397
5398 /*
5399 * XXX event_limit might not quite work as expected on inherited
5400 * events
5401 */
5402
5403 event->pending_kill = POLL_IN;
5404 if (events && atomic_dec_and_test(&event->event_limit)) {
5405 ret = 1;
5406 event->pending_kill = POLL_HUP;
5407 event->pending_disable = 1;
5408 irq_work_queue(&event->pending);
5409 }
5410
5411 if (event->overflow_handler)
5412 event->overflow_handler(event, data, regs);
5413 else
5414 perf_event_output(event, data, regs);
5415
5416 if (event->fasync && event->pending_kill) {
5417 event->pending_wakeup = 1;
5418 irq_work_queue(&event->pending);
5419 }
5420
5421 return ret;
5422 }
5423
5424 int perf_event_overflow(struct perf_event *event,
5425 struct perf_sample_data *data,
5426 struct pt_regs *regs)
5427 {
5428 return __perf_event_overflow(event, 1, data, regs);
5429 }
5430
5431 /*
5432 * Generic software event infrastructure
5433 */
5434
5435 struct swevent_htable {
5436 struct swevent_hlist *swevent_hlist;
5437 struct mutex hlist_mutex;
5438 int hlist_refcount;
5439
5440 /* Recursion avoidance in each contexts */
5441 int recursion[PERF_NR_CONTEXTS];
5442 };
5443
5444 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
5445
5446 /*
5447 * We directly increment event->count and keep a second value in
5448 * event->hw.period_left to count intervals. This period event
5449 * is kept in the range [-sample_period, 0] so that we can use the
5450 * sign as trigger.
5451 */
5452
5453 u64 perf_swevent_set_period(struct perf_event *event)
5454 {
5455 struct hw_perf_event *hwc = &event->hw;
5456 u64 period = hwc->last_period;
5457 u64 nr, offset;
5458 s64 old, val;
5459
5460 hwc->last_period = hwc->sample_period;
5461
5462 again:
5463 old = val = local64_read(&hwc->period_left);
5464 if (val < 0)
5465 return 0;
5466
5467 nr = div64_u64(period + val, period);
5468 offset = nr * period;
5469 val -= offset;
5470 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
5471 goto again;
5472
5473 return nr;
5474 }
5475
5476 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
5477 struct perf_sample_data *data,
5478 struct pt_regs *regs)
5479 {
5480 struct hw_perf_event *hwc = &event->hw;
5481 int throttle = 0;
5482
5483 if (!overflow)
5484 overflow = perf_swevent_set_period(event);
5485
5486 if (hwc->interrupts == MAX_INTERRUPTS)
5487 return;
5488
5489 for (; overflow; overflow--) {
5490 if (__perf_event_overflow(event, throttle,
5491 data, regs)) {
5492 /*
5493 * We inhibit the overflow from happening when
5494 * hwc->interrupts == MAX_INTERRUPTS.
5495 */
5496 break;
5497 }
5498 throttle = 1;
5499 }
5500 }
5501
5502 static void perf_swevent_event(struct perf_event *event, u64 nr,
5503 struct perf_sample_data *data,
5504 struct pt_regs *regs)
5505 {
5506 struct hw_perf_event *hwc = &event->hw;
5507
5508 local64_add(nr, &event->count);
5509
5510 if (!regs)
5511 return;
5512
5513 if (!is_sampling_event(event))
5514 return;
5515
5516 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
5517 data->period = nr;
5518 return perf_swevent_overflow(event, 1, data, regs);
5519 } else
5520 data->period = event->hw.last_period;
5521
5522 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
5523 return perf_swevent_overflow(event, 1, data, regs);
5524
5525 if (local64_add_negative(nr, &hwc->period_left))
5526 return;
5527
5528 perf_swevent_overflow(event, 0, data, regs);
5529 }
5530
5531 static int perf_exclude_event(struct perf_event *event,
5532 struct pt_regs *regs)
5533 {
5534 if (event->hw.state & PERF_HES_STOPPED)
5535 return 1;
5536
5537 if (regs) {
5538 if (event->attr.exclude_user && user_mode(regs))
5539 return 1;
5540
5541 if (event->attr.exclude_kernel && !user_mode(regs))
5542 return 1;
5543 }
5544
5545 return 0;
5546 }
5547
5548 static int perf_swevent_match(struct perf_event *event,
5549 enum perf_type_id type,
5550 u32 event_id,
5551 struct perf_sample_data *data,
5552 struct pt_regs *regs)
5553 {
5554 if (event->attr.type != type)
5555 return 0;
5556
5557 if (event->attr.config != event_id)
5558 return 0;
5559
5560 if (perf_exclude_event(event, regs))
5561 return 0;
5562
5563 return 1;
5564 }
5565
5566 static inline u64 swevent_hash(u64 type, u32 event_id)
5567 {
5568 u64 val = event_id | (type << 32);
5569
5570 return hash_64(val, SWEVENT_HLIST_BITS);
5571 }
5572
5573 static inline struct hlist_head *
5574 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
5575 {
5576 u64 hash = swevent_hash(type, event_id);
5577
5578 return &hlist->heads[hash];
5579 }
5580
5581 /* For the read side: events when they trigger */
5582 static inline struct hlist_head *
5583 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
5584 {
5585 struct swevent_hlist *hlist;
5586
5587 hlist = rcu_dereference(swhash->swevent_hlist);
5588 if (!hlist)
5589 return NULL;
5590
5591 return __find_swevent_head(hlist, type, event_id);
5592 }
5593
5594 /* For the event head insertion and removal in the hlist */
5595 static inline struct hlist_head *
5596 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
5597 {
5598 struct swevent_hlist *hlist;
5599 u32 event_id = event->attr.config;
5600 u64 type = event->attr.type;
5601
5602 /*
5603 * Event scheduling is always serialized against hlist allocation
5604 * and release. Which makes the protected version suitable here.
5605 * The context lock guarantees that.
5606 */
5607 hlist = rcu_dereference_protected(swhash->swevent_hlist,
5608 lockdep_is_held(&event->ctx->lock));
5609 if (!hlist)
5610 return NULL;
5611
5612 return __find_swevent_head(hlist, type, event_id);
5613 }
5614
5615 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
5616 u64 nr,
5617 struct perf_sample_data *data,
5618 struct pt_regs *regs)
5619 {
5620 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5621 struct perf_event *event;
5622 struct hlist_head *head;
5623
5624 rcu_read_lock();
5625 head = find_swevent_head_rcu(swhash, type, event_id);
5626 if (!head)
5627 goto end;
5628
5629 hlist_for_each_entry_rcu(event, head, hlist_entry) {
5630 if (perf_swevent_match(event, type, event_id, data, regs))
5631 perf_swevent_event(event, nr, data, regs);
5632 }
5633 end:
5634 rcu_read_unlock();
5635 }
5636
5637 int perf_swevent_get_recursion_context(void)
5638 {
5639 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5640
5641 return get_recursion_context(swhash->recursion);
5642 }
5643 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
5644
5645 inline void perf_swevent_put_recursion_context(int rctx)
5646 {
5647 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5648
5649 put_recursion_context(swhash->recursion, rctx);
5650 }
5651
5652 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
5653 {
5654 struct perf_sample_data data;
5655 int rctx;
5656
5657 preempt_disable_notrace();
5658 rctx = perf_swevent_get_recursion_context();
5659 if (rctx < 0)
5660 return;
5661
5662 perf_sample_data_init(&data, addr, 0);
5663
5664 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
5665
5666 perf_swevent_put_recursion_context(rctx);
5667 preempt_enable_notrace();
5668 }
5669
5670 static void perf_swevent_read(struct perf_event *event)
5671 {
5672 }
5673
5674 static int perf_swevent_add(struct perf_event *event, int flags)
5675 {
5676 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5677 struct hw_perf_event *hwc = &event->hw;
5678 struct hlist_head *head;
5679
5680 if (is_sampling_event(event)) {
5681 hwc->last_period = hwc->sample_period;
5682 perf_swevent_set_period(event);
5683 }
5684
5685 hwc->state = !(flags & PERF_EF_START);
5686
5687 head = find_swevent_head(swhash, event);
5688 if (WARN_ON_ONCE(!head))
5689 return -EINVAL;
5690
5691 hlist_add_head_rcu(&event->hlist_entry, head);
5692
5693 return 0;
5694 }
5695
5696 static void perf_swevent_del(struct perf_event *event, int flags)
5697 {
5698 hlist_del_rcu(&event->hlist_entry);
5699 }
5700
5701 static void perf_swevent_start(struct perf_event *event, int flags)
5702 {
5703 event->hw.state = 0;
5704 }
5705
5706 static void perf_swevent_stop(struct perf_event *event, int flags)
5707 {
5708 event->hw.state = PERF_HES_STOPPED;
5709 }
5710
5711 /* Deref the hlist from the update side */
5712 static inline struct swevent_hlist *
5713 swevent_hlist_deref(struct swevent_htable *swhash)
5714 {
5715 return rcu_dereference_protected(swhash->swevent_hlist,
5716 lockdep_is_held(&swhash->hlist_mutex));
5717 }
5718
5719 static void swevent_hlist_release(struct swevent_htable *swhash)
5720 {
5721 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
5722
5723 if (!hlist)
5724 return;
5725
5726 rcu_assign_pointer(swhash->swevent_hlist, NULL);
5727 kfree_rcu(hlist, rcu_head);
5728 }
5729
5730 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
5731 {
5732 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5733
5734 mutex_lock(&swhash->hlist_mutex);
5735
5736 if (!--swhash->hlist_refcount)
5737 swevent_hlist_release(swhash);
5738
5739 mutex_unlock(&swhash->hlist_mutex);
5740 }
5741
5742 static void swevent_hlist_put(struct perf_event *event)
5743 {
5744 int cpu;
5745
5746 for_each_possible_cpu(cpu)
5747 swevent_hlist_put_cpu(event, cpu);
5748 }
5749
5750 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
5751 {
5752 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5753 int err = 0;
5754
5755 mutex_lock(&swhash->hlist_mutex);
5756
5757 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
5758 struct swevent_hlist *hlist;
5759
5760 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
5761 if (!hlist) {
5762 err = -ENOMEM;
5763 goto exit;
5764 }
5765 rcu_assign_pointer(swhash->swevent_hlist, hlist);
5766 }
5767 swhash->hlist_refcount++;
5768 exit:
5769 mutex_unlock(&swhash->hlist_mutex);
5770
5771 return err;
5772 }
5773
5774 static int swevent_hlist_get(struct perf_event *event)
5775 {
5776 int err;
5777 int cpu, failed_cpu;
5778
5779 get_online_cpus();
5780 for_each_possible_cpu(cpu) {
5781 err = swevent_hlist_get_cpu(event, cpu);
5782 if (err) {
5783 failed_cpu = cpu;
5784 goto fail;
5785 }
5786 }
5787 put_online_cpus();
5788
5789 return 0;
5790 fail:
5791 for_each_possible_cpu(cpu) {
5792 if (cpu == failed_cpu)
5793 break;
5794 swevent_hlist_put_cpu(event, cpu);
5795 }
5796
5797 put_online_cpus();
5798 return err;
5799 }
5800
5801 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
5802
5803 static void sw_perf_event_destroy(struct perf_event *event)
5804 {
5805 u64 event_id = event->attr.config;
5806
5807 WARN_ON(event->parent);
5808
5809 static_key_slow_dec(&perf_swevent_enabled[event_id]);
5810 swevent_hlist_put(event);
5811 }
5812
5813 static int perf_swevent_init(struct perf_event *event)
5814 {
5815 u64 event_id = event->attr.config;
5816
5817 if (event->attr.type != PERF_TYPE_SOFTWARE)
5818 return -ENOENT;
5819
5820 /*
5821 * no branch sampling for software events
5822 */
5823 if (has_branch_stack(event))
5824 return -EOPNOTSUPP;
5825
5826 switch (event_id) {
5827 case PERF_COUNT_SW_CPU_CLOCK:
5828 case PERF_COUNT_SW_TASK_CLOCK:
5829 return -ENOENT;
5830
5831 default:
5832 break;
5833 }
5834
5835 if (event_id >= PERF_COUNT_SW_MAX)
5836 return -ENOENT;
5837
5838 if (!event->parent) {
5839 int err;
5840
5841 err = swevent_hlist_get(event);
5842 if (err)
5843 return err;
5844
5845 static_key_slow_inc(&perf_swevent_enabled[event_id]);
5846 event->destroy = sw_perf_event_destroy;
5847 }
5848
5849 return 0;
5850 }
5851
5852 static int perf_swevent_event_idx(struct perf_event *event)
5853 {
5854 return 0;
5855 }
5856
5857 static struct pmu perf_swevent = {
5858 .task_ctx_nr = perf_sw_context,
5859
5860 .event_init = perf_swevent_init,
5861 .add = perf_swevent_add,
5862 .del = perf_swevent_del,
5863 .start = perf_swevent_start,
5864 .stop = perf_swevent_stop,
5865 .read = perf_swevent_read,
5866
5867 .event_idx = perf_swevent_event_idx,
5868 };
5869
5870 #ifdef CONFIG_EVENT_TRACING
5871
5872 static int perf_tp_filter_match(struct perf_event *event,
5873 struct perf_sample_data *data)
5874 {
5875 void *record = data->raw->data;
5876
5877 if (likely(!event->filter) || filter_match_preds(event->filter, record))
5878 return 1;
5879 return 0;
5880 }
5881
5882 static int perf_tp_event_match(struct perf_event *event,
5883 struct perf_sample_data *data,
5884 struct pt_regs *regs)
5885 {
5886 if (event->hw.state & PERF_HES_STOPPED)
5887 return 0;
5888 /*
5889 * All tracepoints are from kernel-space.
5890 */
5891 if (event->attr.exclude_kernel)
5892 return 0;
5893
5894 if (!perf_tp_filter_match(event, data))
5895 return 0;
5896
5897 return 1;
5898 }
5899
5900 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
5901 struct pt_regs *regs, struct hlist_head *head, int rctx,
5902 struct task_struct *task)
5903 {
5904 struct perf_sample_data data;
5905 struct perf_event *event;
5906
5907 struct perf_raw_record raw = {
5908 .size = entry_size,
5909 .data = record,
5910 };
5911
5912 perf_sample_data_init(&data, addr, 0);
5913 data.raw = &raw;
5914
5915 hlist_for_each_entry_rcu(event, head, hlist_entry) {
5916 if (perf_tp_event_match(event, &data, regs))
5917 perf_swevent_event(event, count, &data, regs);
5918 }
5919
5920 /*
5921 * If we got specified a target task, also iterate its context and
5922 * deliver this event there too.
5923 */
5924 if (task && task != current) {
5925 struct perf_event_context *ctx;
5926 struct trace_entry *entry = record;
5927
5928 rcu_read_lock();
5929 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
5930 if (!ctx)
5931 goto unlock;
5932
5933 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5934 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5935 continue;
5936 if (event->attr.config != entry->type)
5937 continue;
5938 if (perf_tp_event_match(event, &data, regs))
5939 perf_swevent_event(event, count, &data, regs);
5940 }
5941 unlock:
5942 rcu_read_unlock();
5943 }
5944
5945 perf_swevent_put_recursion_context(rctx);
5946 }
5947 EXPORT_SYMBOL_GPL(perf_tp_event);
5948
5949 static void tp_perf_event_destroy(struct perf_event *event)
5950 {
5951 perf_trace_destroy(event);
5952 }
5953
5954 static int perf_tp_event_init(struct perf_event *event)
5955 {
5956 int err;
5957
5958 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5959 return -ENOENT;
5960
5961 /*
5962 * no branch sampling for tracepoint events
5963 */
5964 if (has_branch_stack(event))
5965 return -EOPNOTSUPP;
5966
5967 err = perf_trace_init(event);
5968 if (err)
5969 return err;
5970
5971 event->destroy = tp_perf_event_destroy;
5972
5973 return 0;
5974 }
5975
5976 static struct pmu perf_tracepoint = {
5977 .task_ctx_nr = perf_sw_context,
5978
5979 .event_init = perf_tp_event_init,
5980 .add = perf_trace_add,
5981 .del = perf_trace_del,
5982 .start = perf_swevent_start,
5983 .stop = perf_swevent_stop,
5984 .read = perf_swevent_read,
5985
5986 .event_idx = perf_swevent_event_idx,
5987 };
5988
5989 static inline void perf_tp_register(void)
5990 {
5991 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
5992 }
5993
5994 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5995 {
5996 char *filter_str;
5997 int ret;
5998
5999 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6000 return -EINVAL;
6001
6002 filter_str = strndup_user(arg, PAGE_SIZE);
6003 if (IS_ERR(filter_str))
6004 return PTR_ERR(filter_str);
6005
6006 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
6007
6008 kfree(filter_str);
6009 return ret;
6010 }
6011
6012 static void perf_event_free_filter(struct perf_event *event)
6013 {
6014 ftrace_profile_free_filter(event);
6015 }
6016
6017 #else
6018
6019 static inline void perf_tp_register(void)
6020 {
6021 }
6022
6023 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
6024 {
6025 return -ENOENT;
6026 }
6027
6028 static void perf_event_free_filter(struct perf_event *event)
6029 {
6030 }
6031
6032 #endif /* CONFIG_EVENT_TRACING */
6033
6034 #ifdef CONFIG_HAVE_HW_BREAKPOINT
6035 void perf_bp_event(struct perf_event *bp, void *data)
6036 {
6037 struct perf_sample_data sample;
6038 struct pt_regs *regs = data;
6039
6040 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
6041
6042 if (!bp->hw.state && !perf_exclude_event(bp, regs))
6043 perf_swevent_event(bp, 1, &sample, regs);
6044 }
6045 #endif
6046
6047 /*
6048 * hrtimer based swevent callback
6049 */
6050
6051 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
6052 {
6053 enum hrtimer_restart ret = HRTIMER_RESTART;
6054 struct perf_sample_data data;
6055 struct pt_regs *regs;
6056 struct perf_event *event;
6057 u64 period;
6058
6059 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
6060
6061 if (event->state != PERF_EVENT_STATE_ACTIVE)
6062 return HRTIMER_NORESTART;
6063
6064 event->pmu->read(event);
6065
6066 perf_sample_data_init(&data, 0, event->hw.last_period);
6067 regs = get_irq_regs();
6068
6069 if (regs && !perf_exclude_event(event, regs)) {
6070 if (!(event->attr.exclude_idle && is_idle_task(current)))
6071 if (__perf_event_overflow(event, 1, &data, regs))
6072 ret = HRTIMER_NORESTART;
6073 }
6074
6075 period = max_t(u64, 10000, event->hw.sample_period);
6076 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
6077
6078 return ret;
6079 }
6080
6081 static void perf_swevent_start_hrtimer(struct perf_event *event)
6082 {
6083 struct hw_perf_event *hwc = &event->hw;
6084 s64 period;
6085
6086 if (!is_sampling_event(event))
6087 return;
6088
6089 period = local64_read(&hwc->period_left);
6090 if (period) {
6091 if (period < 0)
6092 period = 10000;
6093
6094 local64_set(&hwc->period_left, 0);
6095 } else {
6096 period = max_t(u64, 10000, hwc->sample_period);
6097 }
6098 __hrtimer_start_range_ns(&hwc->hrtimer,
6099 ns_to_ktime(period), 0,
6100 HRTIMER_MODE_REL_PINNED, 0);
6101 }
6102
6103 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
6104 {
6105 struct hw_perf_event *hwc = &event->hw;
6106
6107 if (is_sampling_event(event)) {
6108 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
6109 local64_set(&hwc->period_left, ktime_to_ns(remaining));
6110
6111 hrtimer_cancel(&hwc->hrtimer);
6112 }
6113 }
6114
6115 static void perf_swevent_init_hrtimer(struct perf_event *event)
6116 {
6117 struct hw_perf_event *hwc = &event->hw;
6118
6119 if (!is_sampling_event(event))
6120 return;
6121
6122 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
6123 hwc->hrtimer.function = perf_swevent_hrtimer;
6124
6125 /*
6126 * Since hrtimers have a fixed rate, we can do a static freq->period
6127 * mapping and avoid the whole period adjust feedback stuff.
6128 */
6129 if (event->attr.freq) {
6130 long freq = event->attr.sample_freq;
6131
6132 event->attr.sample_period = NSEC_PER_SEC / freq;
6133 hwc->sample_period = event->attr.sample_period;
6134 local64_set(&hwc->period_left, hwc->sample_period);
6135 hwc->last_period = hwc->sample_period;
6136 event->attr.freq = 0;
6137 }
6138 }
6139
6140 /*
6141 * Software event: cpu wall time clock
6142 */
6143
6144 static void cpu_clock_event_update(struct perf_event *event)
6145 {
6146 s64 prev;
6147 u64 now;
6148
6149 now = local_clock();
6150 prev = local64_xchg(&event->hw.prev_count, now);
6151 local64_add(now - prev, &event->count);
6152 }
6153
6154 static void cpu_clock_event_start(struct perf_event *event, int flags)
6155 {
6156 local64_set(&event->hw.prev_count, local_clock());
6157 perf_swevent_start_hrtimer(event);
6158 }
6159
6160 static void cpu_clock_event_stop(struct perf_event *event, int flags)
6161 {
6162 perf_swevent_cancel_hrtimer(event);
6163 cpu_clock_event_update(event);
6164 }
6165
6166 static int cpu_clock_event_add(struct perf_event *event, int flags)
6167 {
6168 if (flags & PERF_EF_START)
6169 cpu_clock_event_start(event, flags);
6170
6171 return 0;
6172 }
6173
6174 static void cpu_clock_event_del(struct perf_event *event, int flags)
6175 {
6176 cpu_clock_event_stop(event, flags);
6177 }
6178
6179 static void cpu_clock_event_read(struct perf_event *event)
6180 {
6181 cpu_clock_event_update(event);
6182 }
6183
6184 static int cpu_clock_event_init(struct perf_event *event)
6185 {
6186 if (event->attr.type != PERF_TYPE_SOFTWARE)
6187 return -ENOENT;
6188
6189 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
6190 return -ENOENT;
6191
6192 /*
6193 * no branch sampling for software events
6194 */
6195 if (has_branch_stack(event))
6196 return -EOPNOTSUPP;
6197
6198 perf_swevent_init_hrtimer(event);
6199
6200 return 0;
6201 }
6202
6203 static struct pmu perf_cpu_clock = {
6204 .task_ctx_nr = perf_sw_context,
6205
6206 .event_init = cpu_clock_event_init,
6207 .add = cpu_clock_event_add,
6208 .del = cpu_clock_event_del,
6209 .start = cpu_clock_event_start,
6210 .stop = cpu_clock_event_stop,
6211 .read = cpu_clock_event_read,
6212
6213 .event_idx = perf_swevent_event_idx,
6214 };
6215
6216 /*
6217 * Software event: task time clock
6218 */
6219
6220 static void task_clock_event_update(struct perf_event *event, u64 now)
6221 {
6222 u64 prev;
6223 s64 delta;
6224
6225 prev = local64_xchg(&event->hw.prev_count, now);
6226 delta = now - prev;
6227 local64_add(delta, &event->count);
6228 }
6229
6230 static void task_clock_event_start(struct perf_event *event, int flags)
6231 {
6232 local64_set(&event->hw.prev_count, event->ctx->time);
6233 perf_swevent_start_hrtimer(event);
6234 }
6235
6236 static void task_clock_event_stop(struct perf_event *event, int flags)
6237 {
6238 perf_swevent_cancel_hrtimer(event);
6239 task_clock_event_update(event, event->ctx->time);
6240 }
6241
6242 static int task_clock_event_add(struct perf_event *event, int flags)
6243 {
6244 if (flags & PERF_EF_START)
6245 task_clock_event_start(event, flags);
6246
6247 return 0;
6248 }
6249
6250 static void task_clock_event_del(struct perf_event *event, int flags)
6251 {
6252 task_clock_event_stop(event, PERF_EF_UPDATE);
6253 }
6254
6255 static void task_clock_event_read(struct perf_event *event)
6256 {
6257 u64 now = perf_clock();
6258 u64 delta = now - event->ctx->timestamp;
6259 u64 time = event->ctx->time + delta;
6260
6261 task_clock_event_update(event, time);
6262 }
6263
6264 static int task_clock_event_init(struct perf_event *event)
6265 {
6266 if (event->attr.type != PERF_TYPE_SOFTWARE)
6267 return -ENOENT;
6268
6269 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
6270 return -ENOENT;
6271
6272 /*
6273 * no branch sampling for software events
6274 */
6275 if (has_branch_stack(event))
6276 return -EOPNOTSUPP;
6277
6278 perf_swevent_init_hrtimer(event);
6279
6280 return 0;
6281 }
6282
6283 static struct pmu perf_task_clock = {
6284 .task_ctx_nr = perf_sw_context,
6285
6286 .event_init = task_clock_event_init,
6287 .add = task_clock_event_add,
6288 .del = task_clock_event_del,
6289 .start = task_clock_event_start,
6290 .stop = task_clock_event_stop,
6291 .read = task_clock_event_read,
6292
6293 .event_idx = perf_swevent_event_idx,
6294 };
6295
6296 static void perf_pmu_nop_void(struct pmu *pmu)
6297 {
6298 }
6299
6300 static int perf_pmu_nop_int(struct pmu *pmu)
6301 {
6302 return 0;
6303 }
6304
6305 static void perf_pmu_start_txn(struct pmu *pmu)
6306 {
6307 perf_pmu_disable(pmu);
6308 }
6309
6310 static int perf_pmu_commit_txn(struct pmu *pmu)
6311 {
6312 perf_pmu_enable(pmu);
6313 return 0;
6314 }
6315
6316 static void perf_pmu_cancel_txn(struct pmu *pmu)
6317 {
6318 perf_pmu_enable(pmu);
6319 }
6320
6321 static int perf_event_idx_default(struct perf_event *event)
6322 {
6323 return event->hw.idx + 1;
6324 }
6325
6326 /*
6327 * Ensures all contexts with the same task_ctx_nr have the same
6328 * pmu_cpu_context too.
6329 */
6330 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
6331 {
6332 struct pmu *pmu;
6333
6334 if (ctxn < 0)
6335 return NULL;
6336
6337 list_for_each_entry(pmu, &pmus, entry) {
6338 if (pmu->task_ctx_nr == ctxn)
6339 return pmu->pmu_cpu_context;
6340 }
6341
6342 return NULL;
6343 }
6344
6345 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
6346 {
6347 int cpu;
6348
6349 for_each_possible_cpu(cpu) {
6350 struct perf_cpu_context *cpuctx;
6351
6352 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6353
6354 if (cpuctx->unique_pmu == old_pmu)
6355 cpuctx->unique_pmu = pmu;
6356 }
6357 }
6358
6359 static void free_pmu_context(struct pmu *pmu)
6360 {
6361 struct pmu *i;
6362
6363 mutex_lock(&pmus_lock);
6364 /*
6365 * Like a real lame refcount.
6366 */
6367 list_for_each_entry(i, &pmus, entry) {
6368 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
6369 update_pmu_context(i, pmu);
6370 goto out;
6371 }
6372 }
6373
6374 free_percpu(pmu->pmu_cpu_context);
6375 out:
6376 mutex_unlock(&pmus_lock);
6377 }
6378 static struct idr pmu_idr;
6379
6380 static ssize_t
6381 type_show(struct device *dev, struct device_attribute *attr, char *page)
6382 {
6383 struct pmu *pmu = dev_get_drvdata(dev);
6384
6385 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
6386 }
6387 static DEVICE_ATTR_RO(type);
6388
6389 static ssize_t
6390 perf_event_mux_interval_ms_show(struct device *dev,
6391 struct device_attribute *attr,
6392 char *page)
6393 {
6394 struct pmu *pmu = dev_get_drvdata(dev);
6395
6396 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
6397 }
6398
6399 static ssize_t
6400 perf_event_mux_interval_ms_store(struct device *dev,
6401 struct device_attribute *attr,
6402 const char *buf, size_t count)
6403 {
6404 struct pmu *pmu = dev_get_drvdata(dev);
6405 int timer, cpu, ret;
6406
6407 ret = kstrtoint(buf, 0, &timer);
6408 if (ret)
6409 return ret;
6410
6411 if (timer < 1)
6412 return -EINVAL;
6413
6414 /* same value, noting to do */
6415 if (timer == pmu->hrtimer_interval_ms)
6416 return count;
6417
6418 pmu->hrtimer_interval_ms = timer;
6419
6420 /* update all cpuctx for this PMU */
6421 for_each_possible_cpu(cpu) {
6422 struct perf_cpu_context *cpuctx;
6423 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6424 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
6425
6426 if (hrtimer_active(&cpuctx->hrtimer))
6427 hrtimer_forward_now(&cpuctx->hrtimer, cpuctx->hrtimer_interval);
6428 }
6429
6430 return count;
6431 }
6432 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
6433
6434 static struct attribute *pmu_dev_attrs[] = {
6435 &dev_attr_type.attr,
6436 &dev_attr_perf_event_mux_interval_ms.attr,
6437 NULL,
6438 };
6439 ATTRIBUTE_GROUPS(pmu_dev);
6440
6441 static int pmu_bus_running;
6442 static struct bus_type pmu_bus = {
6443 .name = "event_source",
6444 .dev_groups = pmu_dev_groups,
6445 };
6446
6447 static void pmu_dev_release(struct device *dev)
6448 {
6449 kfree(dev);
6450 }
6451
6452 static int pmu_dev_alloc(struct pmu *pmu)
6453 {
6454 int ret = -ENOMEM;
6455
6456 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
6457 if (!pmu->dev)
6458 goto out;
6459
6460 pmu->dev->groups = pmu->attr_groups;
6461 device_initialize(pmu->dev);
6462 ret = dev_set_name(pmu->dev, "%s", pmu->name);
6463 if (ret)
6464 goto free_dev;
6465
6466 dev_set_drvdata(pmu->dev, pmu);
6467 pmu->dev->bus = &pmu_bus;
6468 pmu->dev->release = pmu_dev_release;
6469 ret = device_add(pmu->dev);
6470 if (ret)
6471 goto free_dev;
6472
6473 out:
6474 return ret;
6475
6476 free_dev:
6477 put_device(pmu->dev);
6478 goto out;
6479 }
6480
6481 static struct lock_class_key cpuctx_mutex;
6482 static struct lock_class_key cpuctx_lock;
6483
6484 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
6485 {
6486 int cpu, ret;
6487
6488 mutex_lock(&pmus_lock);
6489 ret = -ENOMEM;
6490 pmu->pmu_disable_count = alloc_percpu(int);
6491 if (!pmu->pmu_disable_count)
6492 goto unlock;
6493
6494 pmu->type = -1;
6495 if (!name)
6496 goto skip_type;
6497 pmu->name = name;
6498
6499 if (type < 0) {
6500 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
6501 if (type < 0) {
6502 ret = type;
6503 goto free_pdc;
6504 }
6505 }
6506 pmu->type = type;
6507
6508 if (pmu_bus_running) {
6509 ret = pmu_dev_alloc(pmu);
6510 if (ret)
6511 goto free_idr;
6512 }
6513
6514 skip_type:
6515 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
6516 if (pmu->pmu_cpu_context)
6517 goto got_cpu_context;
6518
6519 ret = -ENOMEM;
6520 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
6521 if (!pmu->pmu_cpu_context)
6522 goto free_dev;
6523
6524 for_each_possible_cpu(cpu) {
6525 struct perf_cpu_context *cpuctx;
6526
6527 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6528 __perf_event_init_context(&cpuctx->ctx);
6529 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
6530 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
6531 cpuctx->ctx.type = cpu_context;
6532 cpuctx->ctx.pmu = pmu;
6533
6534 __perf_cpu_hrtimer_init(cpuctx, cpu);
6535
6536 INIT_LIST_HEAD(&cpuctx->rotation_list);
6537 cpuctx->unique_pmu = pmu;
6538 }
6539
6540 got_cpu_context:
6541 if (!pmu->start_txn) {
6542 if (pmu->pmu_enable) {
6543 /*
6544 * If we have pmu_enable/pmu_disable calls, install
6545 * transaction stubs that use that to try and batch
6546 * hardware accesses.
6547 */
6548 pmu->start_txn = perf_pmu_start_txn;
6549 pmu->commit_txn = perf_pmu_commit_txn;
6550 pmu->cancel_txn = perf_pmu_cancel_txn;
6551 } else {
6552 pmu->start_txn = perf_pmu_nop_void;
6553 pmu->commit_txn = perf_pmu_nop_int;
6554 pmu->cancel_txn = perf_pmu_nop_void;
6555 }
6556 }
6557
6558 if (!pmu->pmu_enable) {
6559 pmu->pmu_enable = perf_pmu_nop_void;
6560 pmu->pmu_disable = perf_pmu_nop_void;
6561 }
6562
6563 if (!pmu->event_idx)
6564 pmu->event_idx = perf_event_idx_default;
6565
6566 list_add_rcu(&pmu->entry, &pmus);
6567 ret = 0;
6568 unlock:
6569 mutex_unlock(&pmus_lock);
6570
6571 return ret;
6572
6573 free_dev:
6574 device_del(pmu->dev);
6575 put_device(pmu->dev);
6576
6577 free_idr:
6578 if (pmu->type >= PERF_TYPE_MAX)
6579 idr_remove(&pmu_idr, pmu->type);
6580
6581 free_pdc:
6582 free_percpu(pmu->pmu_disable_count);
6583 goto unlock;
6584 }
6585 EXPORT_SYMBOL_GPL(perf_pmu_register);
6586
6587 void perf_pmu_unregister(struct pmu *pmu)
6588 {
6589 mutex_lock(&pmus_lock);
6590 list_del_rcu(&pmu->entry);
6591 mutex_unlock(&pmus_lock);
6592
6593 /*
6594 * We dereference the pmu list under both SRCU and regular RCU, so
6595 * synchronize against both of those.
6596 */
6597 synchronize_srcu(&pmus_srcu);
6598 synchronize_rcu();
6599
6600 free_percpu(pmu->pmu_disable_count);
6601 if (pmu->type >= PERF_TYPE_MAX)
6602 idr_remove(&pmu_idr, pmu->type);
6603 device_del(pmu->dev);
6604 put_device(pmu->dev);
6605 free_pmu_context(pmu);
6606 }
6607 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
6608
6609 struct pmu *perf_init_event(struct perf_event *event)
6610 {
6611 struct pmu *pmu = NULL;
6612 int idx;
6613 int ret;
6614
6615 idx = srcu_read_lock(&pmus_srcu);
6616
6617 rcu_read_lock();
6618 pmu = idr_find(&pmu_idr, event->attr.type);
6619 rcu_read_unlock();
6620 if (pmu) {
6621 if (!try_module_get(pmu->module)) {
6622 pmu = ERR_PTR(-ENODEV);
6623 goto unlock;
6624 }
6625 event->pmu = pmu;
6626 ret = pmu->event_init(event);
6627 if (ret)
6628 pmu = ERR_PTR(ret);
6629 goto unlock;
6630 }
6631
6632 list_for_each_entry_rcu(pmu, &pmus, entry) {
6633 if (!try_module_get(pmu->module)) {
6634 pmu = ERR_PTR(-ENODEV);
6635 goto unlock;
6636 }
6637 event->pmu = pmu;
6638 ret = pmu->event_init(event);
6639 if (!ret)
6640 goto unlock;
6641
6642 if (ret != -ENOENT) {
6643 pmu = ERR_PTR(ret);
6644 goto unlock;
6645 }
6646 }
6647 pmu = ERR_PTR(-ENOENT);
6648 unlock:
6649 srcu_read_unlock(&pmus_srcu, idx);
6650
6651 return pmu;
6652 }
6653
6654 static void account_event_cpu(struct perf_event *event, int cpu)
6655 {
6656 if (event->parent)
6657 return;
6658
6659 if (has_branch_stack(event)) {
6660 if (!(event->attach_state & PERF_ATTACH_TASK))
6661 atomic_inc(&per_cpu(perf_branch_stack_events, cpu));
6662 }
6663 if (is_cgroup_event(event))
6664 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
6665 }
6666
6667 static void account_event(struct perf_event *event)
6668 {
6669 if (event->parent)
6670 return;
6671
6672 if (event->attach_state & PERF_ATTACH_TASK)
6673 static_key_slow_inc(&perf_sched_events.key);
6674 if (event->attr.mmap || event->attr.mmap_data)
6675 atomic_inc(&nr_mmap_events);
6676 if (event->attr.comm)
6677 atomic_inc(&nr_comm_events);
6678 if (event->attr.task)
6679 atomic_inc(&nr_task_events);
6680 if (event->attr.freq) {
6681 if (atomic_inc_return(&nr_freq_events) == 1)
6682 tick_nohz_full_kick_all();
6683 }
6684 if (has_branch_stack(event))
6685 static_key_slow_inc(&perf_sched_events.key);
6686 if (is_cgroup_event(event))
6687 static_key_slow_inc(&perf_sched_events.key);
6688
6689 account_event_cpu(event, event->cpu);
6690 }
6691
6692 /*
6693 * Allocate and initialize a event structure
6694 */
6695 static struct perf_event *
6696 perf_event_alloc(struct perf_event_attr *attr, int cpu,
6697 struct task_struct *task,
6698 struct perf_event *group_leader,
6699 struct perf_event *parent_event,
6700 perf_overflow_handler_t overflow_handler,
6701 void *context)
6702 {
6703 struct pmu *pmu;
6704 struct perf_event *event;
6705 struct hw_perf_event *hwc;
6706 long err = -EINVAL;
6707
6708 if ((unsigned)cpu >= nr_cpu_ids) {
6709 if (!task || cpu != -1)
6710 return ERR_PTR(-EINVAL);
6711 }
6712
6713 event = kzalloc(sizeof(*event), GFP_KERNEL);
6714 if (!event)
6715 return ERR_PTR(-ENOMEM);
6716
6717 /*
6718 * Single events are their own group leaders, with an
6719 * empty sibling list:
6720 */
6721 if (!group_leader)
6722 group_leader = event;
6723
6724 mutex_init(&event->child_mutex);
6725 INIT_LIST_HEAD(&event->child_list);
6726
6727 INIT_LIST_HEAD(&event->group_entry);
6728 INIT_LIST_HEAD(&event->event_entry);
6729 INIT_LIST_HEAD(&event->sibling_list);
6730 INIT_LIST_HEAD(&event->rb_entry);
6731 INIT_LIST_HEAD(&event->active_entry);
6732 INIT_HLIST_NODE(&event->hlist_entry);
6733
6734
6735 init_waitqueue_head(&event->waitq);
6736 init_irq_work(&event->pending, perf_pending_event);
6737
6738 mutex_init(&event->mmap_mutex);
6739
6740 atomic_long_set(&event->refcount, 1);
6741 event->cpu = cpu;
6742 event->attr = *attr;
6743 event->group_leader = group_leader;
6744 event->pmu = NULL;
6745 event->oncpu = -1;
6746
6747 event->parent = parent_event;
6748
6749 event->ns = get_pid_ns(task_active_pid_ns(current));
6750 event->id = atomic64_inc_return(&perf_event_id);
6751
6752 event->state = PERF_EVENT_STATE_INACTIVE;
6753
6754 if (task) {
6755 event->attach_state = PERF_ATTACH_TASK;
6756
6757 if (attr->type == PERF_TYPE_TRACEPOINT)
6758 event->hw.tp_target = task;
6759 #ifdef CONFIG_HAVE_HW_BREAKPOINT
6760 /*
6761 * hw_breakpoint is a bit difficult here..
6762 */
6763 else if (attr->type == PERF_TYPE_BREAKPOINT)
6764 event->hw.bp_target = task;
6765 #endif
6766 }
6767
6768 if (!overflow_handler && parent_event) {
6769 overflow_handler = parent_event->overflow_handler;
6770 context = parent_event->overflow_handler_context;
6771 }
6772
6773 event->overflow_handler = overflow_handler;
6774 event->overflow_handler_context = context;
6775
6776 perf_event__state_init(event);
6777
6778 pmu = NULL;
6779
6780 hwc = &event->hw;
6781 hwc->sample_period = attr->sample_period;
6782 if (attr->freq && attr->sample_freq)
6783 hwc->sample_period = 1;
6784 hwc->last_period = hwc->sample_period;
6785
6786 local64_set(&hwc->period_left, hwc->sample_period);
6787
6788 /*
6789 * we currently do not support PERF_FORMAT_GROUP on inherited events
6790 */
6791 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
6792 goto err_ns;
6793
6794 pmu = perf_init_event(event);
6795 if (!pmu)
6796 goto err_ns;
6797 else if (IS_ERR(pmu)) {
6798 err = PTR_ERR(pmu);
6799 goto err_ns;
6800 }
6801
6802 if (!event->parent) {
6803 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
6804 err = get_callchain_buffers();
6805 if (err)
6806 goto err_pmu;
6807 }
6808 }
6809
6810 return event;
6811
6812 err_pmu:
6813 if (event->destroy)
6814 event->destroy(event);
6815 module_put(pmu->module);
6816 err_ns:
6817 if (event->ns)
6818 put_pid_ns(event->ns);
6819 kfree(event);
6820
6821 return ERR_PTR(err);
6822 }
6823
6824 static int perf_copy_attr(struct perf_event_attr __user *uattr,
6825 struct perf_event_attr *attr)
6826 {
6827 u32 size;
6828 int ret;
6829
6830 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
6831 return -EFAULT;
6832
6833 /*
6834 * zero the full structure, so that a short copy will be nice.
6835 */
6836 memset(attr, 0, sizeof(*attr));
6837
6838 ret = get_user(size, &uattr->size);
6839 if (ret)
6840 return ret;
6841
6842 if (size > PAGE_SIZE) /* silly large */
6843 goto err_size;
6844
6845 if (!size) /* abi compat */
6846 size = PERF_ATTR_SIZE_VER0;
6847
6848 if (size < PERF_ATTR_SIZE_VER0)
6849 goto err_size;
6850
6851 /*
6852 * If we're handed a bigger struct than we know of,
6853 * ensure all the unknown bits are 0 - i.e. new
6854 * user-space does not rely on any kernel feature
6855 * extensions we dont know about yet.
6856 */
6857 if (size > sizeof(*attr)) {
6858 unsigned char __user *addr;
6859 unsigned char __user *end;
6860 unsigned char val;
6861
6862 addr = (void __user *)uattr + sizeof(*attr);
6863 end = (void __user *)uattr + size;
6864
6865 for (; addr < end; addr++) {
6866 ret = get_user(val, addr);
6867 if (ret)
6868 return ret;
6869 if (val)
6870 goto err_size;
6871 }
6872 size = sizeof(*attr);
6873 }
6874
6875 ret = copy_from_user(attr, uattr, size);
6876 if (ret)
6877 return -EFAULT;
6878
6879 /* disabled for now */
6880 if (attr->mmap2)
6881 return -EINVAL;
6882
6883 if (attr->__reserved_1)
6884 return -EINVAL;
6885
6886 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
6887 return -EINVAL;
6888
6889 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
6890 return -EINVAL;
6891
6892 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
6893 u64 mask = attr->branch_sample_type;
6894
6895 /* only using defined bits */
6896 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
6897 return -EINVAL;
6898
6899 /* at least one branch bit must be set */
6900 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
6901 return -EINVAL;
6902
6903 /* propagate priv level, when not set for branch */
6904 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
6905
6906 /* exclude_kernel checked on syscall entry */
6907 if (!attr->exclude_kernel)
6908 mask |= PERF_SAMPLE_BRANCH_KERNEL;
6909
6910 if (!attr->exclude_user)
6911 mask |= PERF_SAMPLE_BRANCH_USER;
6912
6913 if (!attr->exclude_hv)
6914 mask |= PERF_SAMPLE_BRANCH_HV;
6915 /*
6916 * adjust user setting (for HW filter setup)
6917 */
6918 attr->branch_sample_type = mask;
6919 }
6920 /* privileged levels capture (kernel, hv): check permissions */
6921 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
6922 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6923 return -EACCES;
6924 }
6925
6926 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
6927 ret = perf_reg_validate(attr->sample_regs_user);
6928 if (ret)
6929 return ret;
6930 }
6931
6932 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
6933 if (!arch_perf_have_user_stack_dump())
6934 return -ENOSYS;
6935
6936 /*
6937 * We have __u32 type for the size, but so far
6938 * we can only use __u16 as maximum due to the
6939 * __u16 sample size limit.
6940 */
6941 if (attr->sample_stack_user >= USHRT_MAX)
6942 ret = -EINVAL;
6943 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
6944 ret = -EINVAL;
6945 }
6946
6947 out:
6948 return ret;
6949
6950 err_size:
6951 put_user(sizeof(*attr), &uattr->size);
6952 ret = -E2BIG;
6953 goto out;
6954 }
6955
6956 static int
6957 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
6958 {
6959 struct ring_buffer *rb = NULL, *old_rb = NULL;
6960 int ret = -EINVAL;
6961
6962 if (!output_event)
6963 goto set;
6964
6965 /* don't allow circular references */
6966 if (event == output_event)
6967 goto out;
6968
6969 /*
6970 * Don't allow cross-cpu buffers
6971 */
6972 if (output_event->cpu != event->cpu)
6973 goto out;
6974
6975 /*
6976 * If its not a per-cpu rb, it must be the same task.
6977 */
6978 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
6979 goto out;
6980
6981 set:
6982 mutex_lock(&event->mmap_mutex);
6983 /* Can't redirect output if we've got an active mmap() */
6984 if (atomic_read(&event->mmap_count))
6985 goto unlock;
6986
6987 old_rb = event->rb;
6988
6989 if (output_event) {
6990 /* get the rb we want to redirect to */
6991 rb = ring_buffer_get(output_event);
6992 if (!rb)
6993 goto unlock;
6994 }
6995
6996 if (old_rb)
6997 ring_buffer_detach(event, old_rb);
6998
6999 if (rb)
7000 ring_buffer_attach(event, rb);
7001
7002 rcu_assign_pointer(event->rb, rb);
7003
7004 if (old_rb) {
7005 ring_buffer_put(old_rb);
7006 /*
7007 * Since we detached before setting the new rb, so that we
7008 * could attach the new rb, we could have missed a wakeup.
7009 * Provide it now.
7010 */
7011 wake_up_all(&event->waitq);
7012 }
7013
7014 ret = 0;
7015 unlock:
7016 mutex_unlock(&event->mmap_mutex);
7017
7018 out:
7019 return ret;
7020 }
7021
7022 /**
7023 * sys_perf_event_open - open a performance event, associate it to a task/cpu
7024 *
7025 * @attr_uptr: event_id type attributes for monitoring/sampling
7026 * @pid: target pid
7027 * @cpu: target cpu
7028 * @group_fd: group leader event fd
7029 */
7030 SYSCALL_DEFINE5(perf_event_open,
7031 struct perf_event_attr __user *, attr_uptr,
7032 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
7033 {
7034 struct perf_event *group_leader = NULL, *output_event = NULL;
7035 struct perf_event *event, *sibling;
7036 struct perf_event_attr attr;
7037 struct perf_event_context *ctx;
7038 struct file *event_file = NULL;
7039 struct fd group = {NULL, 0};
7040 struct task_struct *task = NULL;
7041 struct pmu *pmu;
7042 int event_fd;
7043 int move_group = 0;
7044 int err;
7045 int f_flags = O_RDWR;
7046
7047 /* for future expandability... */
7048 if (flags & ~PERF_FLAG_ALL)
7049 return -EINVAL;
7050
7051 err = perf_copy_attr(attr_uptr, &attr);
7052 if (err)
7053 return err;
7054
7055 if (!attr.exclude_kernel) {
7056 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
7057 return -EACCES;
7058 }
7059
7060 if (attr.freq) {
7061 if (attr.sample_freq > sysctl_perf_event_sample_rate)
7062 return -EINVAL;
7063 }
7064
7065 /*
7066 * In cgroup mode, the pid argument is used to pass the fd
7067 * opened to the cgroup directory in cgroupfs. The cpu argument
7068 * designates the cpu on which to monitor threads from that
7069 * cgroup.
7070 */
7071 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
7072 return -EINVAL;
7073
7074 if (flags & PERF_FLAG_FD_CLOEXEC)
7075 f_flags |= O_CLOEXEC;
7076
7077 event_fd = get_unused_fd_flags(f_flags);
7078 if (event_fd < 0)
7079 return event_fd;
7080
7081 if (group_fd != -1) {
7082 err = perf_fget_light(group_fd, &group);
7083 if (err)
7084 goto err_fd;
7085 group_leader = group.file->private_data;
7086 if (flags & PERF_FLAG_FD_OUTPUT)
7087 output_event = group_leader;
7088 if (flags & PERF_FLAG_FD_NO_GROUP)
7089 group_leader = NULL;
7090 }
7091
7092 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
7093 task = find_lively_task_by_vpid(pid);
7094 if (IS_ERR(task)) {
7095 err = PTR_ERR(task);
7096 goto err_group_fd;
7097 }
7098 }
7099
7100 if (task && group_leader &&
7101 group_leader->attr.inherit != attr.inherit) {
7102 err = -EINVAL;
7103 goto err_task;
7104 }
7105
7106 get_online_cpus();
7107
7108 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
7109 NULL, NULL);
7110 if (IS_ERR(event)) {
7111 err = PTR_ERR(event);
7112 goto err_cpus;
7113 }
7114
7115 if (flags & PERF_FLAG_PID_CGROUP) {
7116 err = perf_cgroup_connect(pid, event, &attr, group_leader);
7117 if (err) {
7118 __free_event(event);
7119 goto err_cpus;
7120 }
7121 }
7122
7123 account_event(event);
7124
7125 /*
7126 * Special case software events and allow them to be part of
7127 * any hardware group.
7128 */
7129 pmu = event->pmu;
7130
7131 if (group_leader &&
7132 (is_software_event(event) != is_software_event(group_leader))) {
7133 if (is_software_event(event)) {
7134 /*
7135 * If event and group_leader are not both a software
7136 * event, and event is, then group leader is not.
7137 *
7138 * Allow the addition of software events to !software
7139 * groups, this is safe because software events never
7140 * fail to schedule.
7141 */
7142 pmu = group_leader->pmu;
7143 } else if (is_software_event(group_leader) &&
7144 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
7145 /*
7146 * In case the group is a pure software group, and we
7147 * try to add a hardware event, move the whole group to
7148 * the hardware context.
7149 */
7150 move_group = 1;
7151 }
7152 }
7153
7154 /*
7155 * Get the target context (task or percpu):
7156 */
7157 ctx = find_get_context(pmu, task, event->cpu);
7158 if (IS_ERR(ctx)) {
7159 err = PTR_ERR(ctx);
7160 goto err_alloc;
7161 }
7162
7163 if (task) {
7164 put_task_struct(task);
7165 task = NULL;
7166 }
7167
7168 /*
7169 * Look up the group leader (we will attach this event to it):
7170 */
7171 if (group_leader) {
7172 err = -EINVAL;
7173
7174 /*
7175 * Do not allow a recursive hierarchy (this new sibling
7176 * becoming part of another group-sibling):
7177 */
7178 if (group_leader->group_leader != group_leader)
7179 goto err_context;
7180 /*
7181 * Do not allow to attach to a group in a different
7182 * task or CPU context:
7183 */
7184 if (move_group) {
7185 if (group_leader->ctx->type != ctx->type)
7186 goto err_context;
7187 } else {
7188 if (group_leader->ctx != ctx)
7189 goto err_context;
7190 }
7191
7192 /*
7193 * Only a group leader can be exclusive or pinned
7194 */
7195 if (attr.exclusive || attr.pinned)
7196 goto err_context;
7197 }
7198
7199 if (output_event) {
7200 err = perf_event_set_output(event, output_event);
7201 if (err)
7202 goto err_context;
7203 }
7204
7205 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
7206 f_flags);
7207 if (IS_ERR(event_file)) {
7208 err = PTR_ERR(event_file);
7209 goto err_context;
7210 }
7211
7212 if (move_group) {
7213 struct perf_event_context *gctx = group_leader->ctx;
7214
7215 mutex_lock(&gctx->mutex);
7216 perf_remove_from_context(group_leader, false);
7217
7218 /*
7219 * Removing from the context ends up with disabled
7220 * event. What we want here is event in the initial
7221 * startup state, ready to be add into new context.
7222 */
7223 perf_event__state_init(group_leader);
7224 list_for_each_entry(sibling, &group_leader->sibling_list,
7225 group_entry) {
7226 perf_remove_from_context(sibling, false);
7227 perf_event__state_init(sibling);
7228 put_ctx(gctx);
7229 }
7230 mutex_unlock(&gctx->mutex);
7231 put_ctx(gctx);
7232 }
7233
7234 WARN_ON_ONCE(ctx->parent_ctx);
7235 mutex_lock(&ctx->mutex);
7236
7237 if (move_group) {
7238 synchronize_rcu();
7239 perf_install_in_context(ctx, group_leader, event->cpu);
7240 get_ctx(ctx);
7241 list_for_each_entry(sibling, &group_leader->sibling_list,
7242 group_entry) {
7243 perf_install_in_context(ctx, sibling, event->cpu);
7244 get_ctx(ctx);
7245 }
7246 }
7247
7248 perf_install_in_context(ctx, event, event->cpu);
7249 perf_unpin_context(ctx);
7250 mutex_unlock(&ctx->mutex);
7251
7252 put_online_cpus();
7253
7254 event->owner = current;
7255
7256 mutex_lock(&current->perf_event_mutex);
7257 list_add_tail(&event->owner_entry, &current->perf_event_list);
7258 mutex_unlock(&current->perf_event_mutex);
7259
7260 /*
7261 * Precalculate sample_data sizes
7262 */
7263 perf_event__header_size(event);
7264 perf_event__id_header_size(event);
7265
7266 /*
7267 * Drop the reference on the group_event after placing the
7268 * new event on the sibling_list. This ensures destruction
7269 * of the group leader will find the pointer to itself in
7270 * perf_group_detach().
7271 */
7272 fdput(group);
7273 fd_install(event_fd, event_file);
7274 return event_fd;
7275
7276 err_context:
7277 perf_unpin_context(ctx);
7278 put_ctx(ctx);
7279 err_alloc:
7280 free_event(event);
7281 err_cpus:
7282 put_online_cpus();
7283 err_task:
7284 if (task)
7285 put_task_struct(task);
7286 err_group_fd:
7287 fdput(group);
7288 err_fd:
7289 put_unused_fd(event_fd);
7290 return err;
7291 }
7292
7293 /**
7294 * perf_event_create_kernel_counter
7295 *
7296 * @attr: attributes of the counter to create
7297 * @cpu: cpu in which the counter is bound
7298 * @task: task to profile (NULL for percpu)
7299 */
7300 struct perf_event *
7301 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
7302 struct task_struct *task,
7303 perf_overflow_handler_t overflow_handler,
7304 void *context)
7305 {
7306 struct perf_event_context *ctx;
7307 struct perf_event *event;
7308 int err;
7309
7310 /*
7311 * Get the target context (task or percpu):
7312 */
7313
7314 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
7315 overflow_handler, context);
7316 if (IS_ERR(event)) {
7317 err = PTR_ERR(event);
7318 goto err;
7319 }
7320
7321 account_event(event);
7322
7323 ctx = find_get_context(event->pmu, task, cpu);
7324 if (IS_ERR(ctx)) {
7325 err = PTR_ERR(ctx);
7326 goto err_free;
7327 }
7328
7329 WARN_ON_ONCE(ctx->parent_ctx);
7330 mutex_lock(&ctx->mutex);
7331 perf_install_in_context(ctx, event, cpu);
7332 perf_unpin_context(ctx);
7333 mutex_unlock(&ctx->mutex);
7334
7335 return event;
7336
7337 err_free:
7338 free_event(event);
7339 err:
7340 return ERR_PTR(err);
7341 }
7342 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
7343
7344 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
7345 {
7346 struct perf_event_context *src_ctx;
7347 struct perf_event_context *dst_ctx;
7348 struct perf_event *event, *tmp;
7349 LIST_HEAD(events);
7350
7351 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
7352 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
7353
7354 mutex_lock(&src_ctx->mutex);
7355 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
7356 event_entry) {
7357 perf_remove_from_context(event, false);
7358 unaccount_event_cpu(event, src_cpu);
7359 put_ctx(src_ctx);
7360 list_add(&event->migrate_entry, &events);
7361 }
7362 mutex_unlock(&src_ctx->mutex);
7363
7364 synchronize_rcu();
7365
7366 mutex_lock(&dst_ctx->mutex);
7367 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
7368 list_del(&event->migrate_entry);
7369 if (event->state >= PERF_EVENT_STATE_OFF)
7370 event->state = PERF_EVENT_STATE_INACTIVE;
7371 account_event_cpu(event, dst_cpu);
7372 perf_install_in_context(dst_ctx, event, dst_cpu);
7373 get_ctx(dst_ctx);
7374 }
7375 mutex_unlock(&dst_ctx->mutex);
7376 }
7377 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
7378
7379 static void sync_child_event(struct perf_event *child_event,
7380 struct task_struct *child)
7381 {
7382 struct perf_event *parent_event = child_event->parent;
7383 u64 child_val;
7384
7385 if (child_event->attr.inherit_stat)
7386 perf_event_read_event(child_event, child);
7387
7388 child_val = perf_event_count(child_event);
7389
7390 /*
7391 * Add back the child's count to the parent's count:
7392 */
7393 atomic64_add(child_val, &parent_event->child_count);
7394 atomic64_add(child_event->total_time_enabled,
7395 &parent_event->child_total_time_enabled);
7396 atomic64_add(child_event->total_time_running,
7397 &parent_event->child_total_time_running);
7398
7399 /*
7400 * Remove this event from the parent's list
7401 */
7402 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
7403 mutex_lock(&parent_event->child_mutex);
7404 list_del_init(&child_event->child_list);
7405 mutex_unlock(&parent_event->child_mutex);
7406
7407 /*
7408 * Release the parent event, if this was the last
7409 * reference to it.
7410 */
7411 put_event(parent_event);
7412 }
7413
7414 static void
7415 __perf_event_exit_task(struct perf_event *child_event,
7416 struct perf_event_context *child_ctx,
7417 struct task_struct *child)
7418 {
7419 perf_remove_from_context(child_event, true);
7420
7421 /*
7422 * It can happen that the parent exits first, and has events
7423 * that are still around due to the child reference. These
7424 * events need to be zapped.
7425 */
7426 if (child_event->parent) {
7427 sync_child_event(child_event, child);
7428 free_event(child_event);
7429 }
7430 }
7431
7432 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
7433 {
7434 struct perf_event *child_event;
7435 struct perf_event_context *child_ctx;
7436 unsigned long flags;
7437
7438 if (likely(!child->perf_event_ctxp[ctxn])) {
7439 perf_event_task(child, NULL, 0);
7440 return;
7441 }
7442
7443 local_irq_save(flags);
7444 /*
7445 * We can't reschedule here because interrupts are disabled,
7446 * and either child is current or it is a task that can't be
7447 * scheduled, so we are now safe from rescheduling changing
7448 * our context.
7449 */
7450 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
7451
7452 /*
7453 * Take the context lock here so that if find_get_context is
7454 * reading child->perf_event_ctxp, we wait until it has
7455 * incremented the context's refcount before we do put_ctx below.
7456 */
7457 raw_spin_lock(&child_ctx->lock);
7458 task_ctx_sched_out(child_ctx);
7459 child->perf_event_ctxp[ctxn] = NULL;
7460 /*
7461 * If this context is a clone; unclone it so it can't get
7462 * swapped to another process while we're removing all
7463 * the events from it.
7464 */
7465 unclone_ctx(child_ctx);
7466 update_context_time(child_ctx);
7467 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
7468
7469 /*
7470 * Report the task dead after unscheduling the events so that we
7471 * won't get any samples after PERF_RECORD_EXIT. We can however still
7472 * get a few PERF_RECORD_READ events.
7473 */
7474 perf_event_task(child, child_ctx, 0);
7475
7476 /*
7477 * We can recurse on the same lock type through:
7478 *
7479 * __perf_event_exit_task()
7480 * sync_child_event()
7481 * put_event()
7482 * mutex_lock(&ctx->mutex)
7483 *
7484 * But since its the parent context it won't be the same instance.
7485 */
7486 mutex_lock(&child_ctx->mutex);
7487
7488 list_for_each_entry_rcu(child_event, &child_ctx->event_list, event_entry)
7489 __perf_event_exit_task(child_event, child_ctx, child);
7490
7491 mutex_unlock(&child_ctx->mutex);
7492
7493 put_ctx(child_ctx);
7494 }
7495
7496 /*
7497 * When a child task exits, feed back event values to parent events.
7498 */
7499 void perf_event_exit_task(struct task_struct *child)
7500 {
7501 struct perf_event *event, *tmp;
7502 int ctxn;
7503
7504 mutex_lock(&child->perf_event_mutex);
7505 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
7506 owner_entry) {
7507 list_del_init(&event->owner_entry);
7508
7509 /*
7510 * Ensure the list deletion is visible before we clear
7511 * the owner, closes a race against perf_release() where
7512 * we need to serialize on the owner->perf_event_mutex.
7513 */
7514 smp_wmb();
7515 event->owner = NULL;
7516 }
7517 mutex_unlock(&child->perf_event_mutex);
7518
7519 for_each_task_context_nr(ctxn)
7520 perf_event_exit_task_context(child, ctxn);
7521 }
7522
7523 static void perf_free_event(struct perf_event *event,
7524 struct perf_event_context *ctx)
7525 {
7526 struct perf_event *parent = event->parent;
7527
7528 if (WARN_ON_ONCE(!parent))
7529 return;
7530
7531 mutex_lock(&parent->child_mutex);
7532 list_del_init(&event->child_list);
7533 mutex_unlock(&parent->child_mutex);
7534
7535 put_event(parent);
7536
7537 perf_group_detach(event);
7538 list_del_event(event, ctx);
7539 free_event(event);
7540 }
7541
7542 /*
7543 * free an unexposed, unused context as created by inheritance by
7544 * perf_event_init_task below, used by fork() in case of fail.
7545 */
7546 void perf_event_free_task(struct task_struct *task)
7547 {
7548 struct perf_event_context *ctx;
7549 struct perf_event *event, *tmp;
7550 int ctxn;
7551
7552 for_each_task_context_nr(ctxn) {
7553 ctx = task->perf_event_ctxp[ctxn];
7554 if (!ctx)
7555 continue;
7556
7557 mutex_lock(&ctx->mutex);
7558 again:
7559 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
7560 group_entry)
7561 perf_free_event(event, ctx);
7562
7563 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
7564 group_entry)
7565 perf_free_event(event, ctx);
7566
7567 if (!list_empty(&ctx->pinned_groups) ||
7568 !list_empty(&ctx->flexible_groups))
7569 goto again;
7570
7571 mutex_unlock(&ctx->mutex);
7572
7573 put_ctx(ctx);
7574 }
7575 }
7576
7577 void perf_event_delayed_put(struct task_struct *task)
7578 {
7579 int ctxn;
7580
7581 for_each_task_context_nr(ctxn)
7582 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
7583 }
7584
7585 /*
7586 * inherit a event from parent task to child task:
7587 */
7588 static struct perf_event *
7589 inherit_event(struct perf_event *parent_event,
7590 struct task_struct *parent,
7591 struct perf_event_context *parent_ctx,
7592 struct task_struct *child,
7593 struct perf_event *group_leader,
7594 struct perf_event_context *child_ctx)
7595 {
7596 struct perf_event *child_event;
7597 unsigned long flags;
7598
7599 /*
7600 * Instead of creating recursive hierarchies of events,
7601 * we link inherited events back to the original parent,
7602 * which has a filp for sure, which we use as the reference
7603 * count:
7604 */
7605 if (parent_event->parent)
7606 parent_event = parent_event->parent;
7607
7608 child_event = perf_event_alloc(&parent_event->attr,
7609 parent_event->cpu,
7610 child,
7611 group_leader, parent_event,
7612 NULL, NULL);
7613 if (IS_ERR(child_event))
7614 return child_event;
7615
7616 if (!atomic_long_inc_not_zero(&parent_event->refcount)) {
7617 free_event(child_event);
7618 return NULL;
7619 }
7620
7621 get_ctx(child_ctx);
7622
7623 /*
7624 * Make the child state follow the state of the parent event,
7625 * not its attr.disabled bit. We hold the parent's mutex,
7626 * so we won't race with perf_event_{en, dis}able_family.
7627 */
7628 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
7629 child_event->state = PERF_EVENT_STATE_INACTIVE;
7630 else
7631 child_event->state = PERF_EVENT_STATE_OFF;
7632
7633 if (parent_event->attr.freq) {
7634 u64 sample_period = parent_event->hw.sample_period;
7635 struct hw_perf_event *hwc = &child_event->hw;
7636
7637 hwc->sample_period = sample_period;
7638 hwc->last_period = sample_period;
7639
7640 local64_set(&hwc->period_left, sample_period);
7641 }
7642
7643 child_event->ctx = child_ctx;
7644 child_event->overflow_handler = parent_event->overflow_handler;
7645 child_event->overflow_handler_context
7646 = parent_event->overflow_handler_context;
7647
7648 /*
7649 * Precalculate sample_data sizes
7650 */
7651 perf_event__header_size(child_event);
7652 perf_event__id_header_size(child_event);
7653
7654 /*
7655 * Link it up in the child's context:
7656 */
7657 raw_spin_lock_irqsave(&child_ctx->lock, flags);
7658 add_event_to_ctx(child_event, child_ctx);
7659 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
7660
7661 /*
7662 * Link this into the parent event's child list
7663 */
7664 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
7665 mutex_lock(&parent_event->child_mutex);
7666 list_add_tail(&child_event->child_list, &parent_event->child_list);
7667 mutex_unlock(&parent_event->child_mutex);
7668
7669 return child_event;
7670 }
7671
7672 static int inherit_group(struct perf_event *parent_event,
7673 struct task_struct *parent,
7674 struct perf_event_context *parent_ctx,
7675 struct task_struct *child,
7676 struct perf_event_context *child_ctx)
7677 {
7678 struct perf_event *leader;
7679 struct perf_event *sub;
7680 struct perf_event *child_ctr;
7681
7682 leader = inherit_event(parent_event, parent, parent_ctx,
7683 child, NULL, child_ctx);
7684 if (IS_ERR(leader))
7685 return PTR_ERR(leader);
7686 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
7687 child_ctr = inherit_event(sub, parent, parent_ctx,
7688 child, leader, child_ctx);
7689 if (IS_ERR(child_ctr))
7690 return PTR_ERR(child_ctr);
7691 }
7692 return 0;
7693 }
7694
7695 static int
7696 inherit_task_group(struct perf_event *event, struct task_struct *parent,
7697 struct perf_event_context *parent_ctx,
7698 struct task_struct *child, int ctxn,
7699 int *inherited_all)
7700 {
7701 int ret;
7702 struct perf_event_context *child_ctx;
7703
7704 if (!event->attr.inherit) {
7705 *inherited_all = 0;
7706 return 0;
7707 }
7708
7709 child_ctx = child->perf_event_ctxp[ctxn];
7710 if (!child_ctx) {
7711 /*
7712 * This is executed from the parent task context, so
7713 * inherit events that have been marked for cloning.
7714 * First allocate and initialize a context for the
7715 * child.
7716 */
7717
7718 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
7719 if (!child_ctx)
7720 return -ENOMEM;
7721
7722 child->perf_event_ctxp[ctxn] = child_ctx;
7723 }
7724
7725 ret = inherit_group(event, parent, parent_ctx,
7726 child, child_ctx);
7727
7728 if (ret)
7729 *inherited_all = 0;
7730
7731 return ret;
7732 }
7733
7734 /*
7735 * Initialize the perf_event context in task_struct
7736 */
7737 int perf_event_init_context(struct task_struct *child, int ctxn)
7738 {
7739 struct perf_event_context *child_ctx, *parent_ctx;
7740 struct perf_event_context *cloned_ctx;
7741 struct perf_event *event;
7742 struct task_struct *parent = current;
7743 int inherited_all = 1;
7744 unsigned long flags;
7745 int ret = 0;
7746
7747 if (likely(!parent->perf_event_ctxp[ctxn]))
7748 return 0;
7749
7750 /*
7751 * If the parent's context is a clone, pin it so it won't get
7752 * swapped under us.
7753 */
7754 parent_ctx = perf_pin_task_context(parent, ctxn);
7755 if (!parent_ctx)
7756 return 0;
7757
7758 /*
7759 * No need to check if parent_ctx != NULL here; since we saw
7760 * it non-NULL earlier, the only reason for it to become NULL
7761 * is if we exit, and since we're currently in the middle of
7762 * a fork we can't be exiting at the same time.
7763 */
7764
7765 /*
7766 * Lock the parent list. No need to lock the child - not PID
7767 * hashed yet and not running, so nobody can access it.
7768 */
7769 mutex_lock(&parent_ctx->mutex);
7770
7771 /*
7772 * We dont have to disable NMIs - we are only looking at
7773 * the list, not manipulating it:
7774 */
7775 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
7776 ret = inherit_task_group(event, parent, parent_ctx,
7777 child, ctxn, &inherited_all);
7778 if (ret)
7779 break;
7780 }
7781
7782 /*
7783 * We can't hold ctx->lock when iterating the ->flexible_group list due
7784 * to allocations, but we need to prevent rotation because
7785 * rotate_ctx() will change the list from interrupt context.
7786 */
7787 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
7788 parent_ctx->rotate_disable = 1;
7789 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7790
7791 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
7792 ret = inherit_task_group(event, parent, parent_ctx,
7793 child, ctxn, &inherited_all);
7794 if (ret)
7795 break;
7796 }
7797
7798 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
7799 parent_ctx->rotate_disable = 0;
7800
7801 child_ctx = child->perf_event_ctxp[ctxn];
7802
7803 if (child_ctx && inherited_all) {
7804 /*
7805 * Mark the child context as a clone of the parent
7806 * context, or of whatever the parent is a clone of.
7807 *
7808 * Note that if the parent is a clone, the holding of
7809 * parent_ctx->lock avoids it from being uncloned.
7810 */
7811 cloned_ctx = parent_ctx->parent_ctx;
7812 if (cloned_ctx) {
7813 child_ctx->parent_ctx = cloned_ctx;
7814 child_ctx->parent_gen = parent_ctx->parent_gen;
7815 } else {
7816 child_ctx->parent_ctx = parent_ctx;
7817 child_ctx->parent_gen = parent_ctx->generation;
7818 }
7819 get_ctx(child_ctx->parent_ctx);
7820 }
7821
7822 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7823 mutex_unlock(&parent_ctx->mutex);
7824
7825 perf_unpin_context(parent_ctx);
7826 put_ctx(parent_ctx);
7827
7828 return ret;
7829 }
7830
7831 /*
7832 * Initialize the perf_event context in task_struct
7833 */
7834 int perf_event_init_task(struct task_struct *child)
7835 {
7836 int ctxn, ret;
7837
7838 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
7839 mutex_init(&child->perf_event_mutex);
7840 INIT_LIST_HEAD(&child->perf_event_list);
7841
7842 for_each_task_context_nr(ctxn) {
7843 ret = perf_event_init_context(child, ctxn);
7844 if (ret)
7845 return ret;
7846 }
7847
7848 return 0;
7849 }
7850
7851 static void __init perf_event_init_all_cpus(void)
7852 {
7853 struct swevent_htable *swhash;
7854 int cpu;
7855
7856 for_each_possible_cpu(cpu) {
7857 swhash = &per_cpu(swevent_htable, cpu);
7858 mutex_init(&swhash->hlist_mutex);
7859 INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
7860 }
7861 }
7862
7863 static void perf_event_init_cpu(int cpu)
7864 {
7865 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7866
7867 mutex_lock(&swhash->hlist_mutex);
7868 if (swhash->hlist_refcount > 0) {
7869 struct swevent_hlist *hlist;
7870
7871 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
7872 WARN_ON(!hlist);
7873 rcu_assign_pointer(swhash->swevent_hlist, hlist);
7874 }
7875 mutex_unlock(&swhash->hlist_mutex);
7876 }
7877
7878 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
7879 static void perf_pmu_rotate_stop(struct pmu *pmu)
7880 {
7881 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7882
7883 WARN_ON(!irqs_disabled());
7884
7885 list_del_init(&cpuctx->rotation_list);
7886 }
7887
7888 static void __perf_event_exit_context(void *__info)
7889 {
7890 struct remove_event re = { .detach_group = false };
7891 struct perf_event_context *ctx = __info;
7892
7893 perf_pmu_rotate_stop(ctx->pmu);
7894
7895 rcu_read_lock();
7896 list_for_each_entry_rcu(re.event, &ctx->event_list, event_entry)
7897 __perf_remove_from_context(&re);
7898 rcu_read_unlock();
7899 }
7900
7901 static void perf_event_exit_cpu_context(int cpu)
7902 {
7903 struct perf_event_context *ctx;
7904 struct pmu *pmu;
7905 int idx;
7906
7907 idx = srcu_read_lock(&pmus_srcu);
7908 list_for_each_entry_rcu(pmu, &pmus, entry) {
7909 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
7910
7911 mutex_lock(&ctx->mutex);
7912 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
7913 mutex_unlock(&ctx->mutex);
7914 }
7915 srcu_read_unlock(&pmus_srcu, idx);
7916 }
7917
7918 static void perf_event_exit_cpu(int cpu)
7919 {
7920 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7921
7922 perf_event_exit_cpu_context(cpu);
7923
7924 mutex_lock(&swhash->hlist_mutex);
7925 swevent_hlist_release(swhash);
7926 mutex_unlock(&swhash->hlist_mutex);
7927 }
7928 #else
7929 static inline void perf_event_exit_cpu(int cpu) { }
7930 #endif
7931
7932 static int
7933 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
7934 {
7935 int cpu;
7936
7937 for_each_online_cpu(cpu)
7938 perf_event_exit_cpu(cpu);
7939
7940 return NOTIFY_OK;
7941 }
7942
7943 /*
7944 * Run the perf reboot notifier at the very last possible moment so that
7945 * the generic watchdog code runs as long as possible.
7946 */
7947 static struct notifier_block perf_reboot_notifier = {
7948 .notifier_call = perf_reboot,
7949 .priority = INT_MIN,
7950 };
7951
7952 static int
7953 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
7954 {
7955 unsigned int cpu = (long)hcpu;
7956
7957 switch (action & ~CPU_TASKS_FROZEN) {
7958
7959 case CPU_UP_PREPARE:
7960 case CPU_DOWN_FAILED:
7961 perf_event_init_cpu(cpu);
7962 break;
7963
7964 case CPU_UP_CANCELED:
7965 case CPU_DOWN_PREPARE:
7966 perf_event_exit_cpu(cpu);
7967 break;
7968 default:
7969 break;
7970 }
7971
7972 return NOTIFY_OK;
7973 }
7974
7975 void __init perf_event_init(void)
7976 {
7977 int ret;
7978
7979 idr_init(&pmu_idr);
7980
7981 perf_event_init_all_cpus();
7982 init_srcu_struct(&pmus_srcu);
7983 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
7984 perf_pmu_register(&perf_cpu_clock, NULL, -1);
7985 perf_pmu_register(&perf_task_clock, NULL, -1);
7986 perf_tp_register();
7987 perf_cpu_notifier(perf_cpu_notify);
7988 register_reboot_notifier(&perf_reboot_notifier);
7989
7990 ret = init_hw_breakpoint();
7991 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
7992
7993 /* do not patch jump label more than once per second */
7994 jump_label_rate_limit(&perf_sched_events, HZ);
7995
7996 /*
7997 * Build time assertion that we keep the data_head at the intended
7998 * location. IOW, validation we got the __reserved[] size right.
7999 */
8000 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
8001 != 1024);
8002 }
8003
8004 static int __init perf_event_sysfs_init(void)
8005 {
8006 struct pmu *pmu;
8007 int ret;
8008
8009 mutex_lock(&pmus_lock);
8010
8011 ret = bus_register(&pmu_bus);
8012 if (ret)
8013 goto unlock;
8014
8015 list_for_each_entry(pmu, &pmus, entry) {
8016 if (!pmu->name || pmu->type < 0)
8017 continue;
8018
8019 ret = pmu_dev_alloc(pmu);
8020 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
8021 }
8022 pmu_bus_running = 1;
8023 ret = 0;
8024
8025 unlock:
8026 mutex_unlock(&pmus_lock);
8027
8028 return ret;
8029 }
8030 device_initcall(perf_event_sysfs_init);
8031
8032 #ifdef CONFIG_CGROUP_PERF
8033 static struct cgroup_subsys_state *
8034 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8035 {
8036 struct perf_cgroup *jc;
8037
8038 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
8039 if (!jc)
8040 return ERR_PTR(-ENOMEM);
8041
8042 jc->info = alloc_percpu(struct perf_cgroup_info);
8043 if (!jc->info) {
8044 kfree(jc);
8045 return ERR_PTR(-ENOMEM);
8046 }
8047
8048 return &jc->css;
8049 }
8050
8051 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
8052 {
8053 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
8054
8055 free_percpu(jc->info);
8056 kfree(jc);
8057 }
8058
8059 static int __perf_cgroup_move(void *info)
8060 {
8061 struct task_struct *task = info;
8062 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
8063 return 0;
8064 }
8065
8066 static void perf_cgroup_attach(struct cgroup_subsys_state *css,
8067 struct cgroup_taskset *tset)
8068 {
8069 struct task_struct *task;
8070
8071 cgroup_taskset_for_each(task, tset)
8072 task_function_call(task, __perf_cgroup_move, task);
8073 }
8074
8075 static void perf_cgroup_exit(struct cgroup_subsys_state *css,
8076 struct cgroup_subsys_state *old_css,
8077 struct task_struct *task)
8078 {
8079 /*
8080 * cgroup_exit() is called in the copy_process() failure path.
8081 * Ignore this case since the task hasn't ran yet, this avoids
8082 * trying to poke a half freed task state from generic code.
8083 */
8084 if (!(task->flags & PF_EXITING))
8085 return;
8086
8087 task_function_call(task, __perf_cgroup_move, task);
8088 }
8089
8090 struct cgroup_subsys perf_event_cgrp_subsys = {
8091 .css_alloc = perf_cgroup_css_alloc,
8092 .css_free = perf_cgroup_css_free,
8093 .exit = perf_cgroup_exit,
8094 .attach = perf_cgroup_attach,
8095 };
8096 #endif /* CONFIG_CGROUP_PERF */