]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - kernel/events/core.c
eeda5403590ca5c4f94da4ab3a66290491efaecd
[mirror_ubuntu-kernels.git] / kernel / events / core.c
1 /*
2 * Performance events core code:
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/rculist.h>
32 #include <linux/uaccess.h>
33 #include <linux/syscalls.h>
34 #include <linux/anon_inodes.h>
35 #include <linux/kernel_stat.h>
36 #include <linux/perf_event.h>
37 #include <linux/ftrace_event.h>
38 #include <linux/hw_breakpoint.h>
39
40 #include "internal.h"
41
42 #include <asm/irq_regs.h>
43
44 struct remote_function_call {
45 struct task_struct *p;
46 int (*func)(void *info);
47 void *info;
48 int ret;
49 };
50
51 static void remote_function(void *data)
52 {
53 struct remote_function_call *tfc = data;
54 struct task_struct *p = tfc->p;
55
56 if (p) {
57 tfc->ret = -EAGAIN;
58 if (task_cpu(p) != smp_processor_id() || !task_curr(p))
59 return;
60 }
61
62 tfc->ret = tfc->func(tfc->info);
63 }
64
65 /**
66 * task_function_call - call a function on the cpu on which a task runs
67 * @p: the task to evaluate
68 * @func: the function to be called
69 * @info: the function call argument
70 *
71 * Calls the function @func when the task is currently running. This might
72 * be on the current CPU, which just calls the function directly
73 *
74 * returns: @func return value, or
75 * -ESRCH - when the process isn't running
76 * -EAGAIN - when the process moved away
77 */
78 static int
79 task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
80 {
81 struct remote_function_call data = {
82 .p = p,
83 .func = func,
84 .info = info,
85 .ret = -ESRCH, /* No such (running) process */
86 };
87
88 if (task_curr(p))
89 smp_call_function_single(task_cpu(p), remote_function, &data, 1);
90
91 return data.ret;
92 }
93
94 /**
95 * cpu_function_call - call a function on the cpu
96 * @func: the function to be called
97 * @info: the function call argument
98 *
99 * Calls the function @func on the remote cpu.
100 *
101 * returns: @func return value or -ENXIO when the cpu is offline
102 */
103 static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
104 {
105 struct remote_function_call data = {
106 .p = NULL,
107 .func = func,
108 .info = info,
109 .ret = -ENXIO, /* No such CPU */
110 };
111
112 smp_call_function_single(cpu, remote_function, &data, 1);
113
114 return data.ret;
115 }
116
117 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
118 PERF_FLAG_FD_OUTPUT |\
119 PERF_FLAG_PID_CGROUP)
120
121 enum event_type_t {
122 EVENT_FLEXIBLE = 0x1,
123 EVENT_PINNED = 0x2,
124 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
125 };
126
127 /*
128 * perf_sched_events : >0 events exist
129 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
130 */
131 struct jump_label_key perf_sched_events __read_mostly;
132 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
133
134 static atomic_t nr_mmap_events __read_mostly;
135 static atomic_t nr_comm_events __read_mostly;
136 static atomic_t nr_task_events __read_mostly;
137
138 static LIST_HEAD(pmus);
139 static DEFINE_MUTEX(pmus_lock);
140 static struct srcu_struct pmus_srcu;
141
142 /*
143 * perf event paranoia level:
144 * -1 - not paranoid at all
145 * 0 - disallow raw tracepoint access for unpriv
146 * 1 - disallow cpu events for unpriv
147 * 2 - disallow kernel profiling for unpriv
148 */
149 int sysctl_perf_event_paranoid __read_mostly = 1;
150
151 /* Minimum for 512 kiB + 1 user control page */
152 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
153
154 /*
155 * max perf event sample rate
156 */
157 #define DEFAULT_MAX_SAMPLE_RATE 100000
158 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
159 static int max_samples_per_tick __read_mostly =
160 DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
161
162 int perf_proc_update_handler(struct ctl_table *table, int write,
163 void __user *buffer, size_t *lenp,
164 loff_t *ppos)
165 {
166 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
167
168 if (ret || !write)
169 return ret;
170
171 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
172
173 return 0;
174 }
175
176 static atomic64_t perf_event_id;
177
178 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
179 enum event_type_t event_type);
180
181 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
182 enum event_type_t event_type,
183 struct task_struct *task);
184
185 static void update_context_time(struct perf_event_context *ctx);
186 static u64 perf_event_time(struct perf_event *event);
187
188 static void ring_buffer_attach(struct perf_event *event,
189 struct ring_buffer *rb);
190
191 void __weak perf_event_print_debug(void) { }
192
193 extern __weak const char *perf_pmu_name(void)
194 {
195 return "pmu";
196 }
197
198 static inline u64 perf_clock(void)
199 {
200 return local_clock();
201 }
202
203 static inline struct perf_cpu_context *
204 __get_cpu_context(struct perf_event_context *ctx)
205 {
206 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
207 }
208
209 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
210 struct perf_event_context *ctx)
211 {
212 raw_spin_lock(&cpuctx->ctx.lock);
213 if (ctx)
214 raw_spin_lock(&ctx->lock);
215 }
216
217 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
218 struct perf_event_context *ctx)
219 {
220 if (ctx)
221 raw_spin_unlock(&ctx->lock);
222 raw_spin_unlock(&cpuctx->ctx.lock);
223 }
224
225 #ifdef CONFIG_CGROUP_PERF
226
227 /*
228 * Must ensure cgroup is pinned (css_get) before calling
229 * this function. In other words, we cannot call this function
230 * if there is no cgroup event for the current CPU context.
231 */
232 static inline struct perf_cgroup *
233 perf_cgroup_from_task(struct task_struct *task)
234 {
235 return container_of(task_subsys_state(task, perf_subsys_id),
236 struct perf_cgroup, css);
237 }
238
239 static inline bool
240 perf_cgroup_match(struct perf_event *event)
241 {
242 struct perf_event_context *ctx = event->ctx;
243 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
244
245 return !event->cgrp || event->cgrp == cpuctx->cgrp;
246 }
247
248 static inline void perf_get_cgroup(struct perf_event *event)
249 {
250 css_get(&event->cgrp->css);
251 }
252
253 static inline void perf_put_cgroup(struct perf_event *event)
254 {
255 css_put(&event->cgrp->css);
256 }
257
258 static inline void perf_detach_cgroup(struct perf_event *event)
259 {
260 perf_put_cgroup(event);
261 event->cgrp = NULL;
262 }
263
264 static inline int is_cgroup_event(struct perf_event *event)
265 {
266 return event->cgrp != NULL;
267 }
268
269 static inline u64 perf_cgroup_event_time(struct perf_event *event)
270 {
271 struct perf_cgroup_info *t;
272
273 t = per_cpu_ptr(event->cgrp->info, event->cpu);
274 return t->time;
275 }
276
277 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
278 {
279 struct perf_cgroup_info *info;
280 u64 now;
281
282 now = perf_clock();
283
284 info = this_cpu_ptr(cgrp->info);
285
286 info->time += now - info->timestamp;
287 info->timestamp = now;
288 }
289
290 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
291 {
292 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
293 if (cgrp_out)
294 __update_cgrp_time(cgrp_out);
295 }
296
297 static inline void update_cgrp_time_from_event(struct perf_event *event)
298 {
299 struct perf_cgroup *cgrp;
300
301 /*
302 * ensure we access cgroup data only when needed and
303 * when we know the cgroup is pinned (css_get)
304 */
305 if (!is_cgroup_event(event))
306 return;
307
308 cgrp = perf_cgroup_from_task(current);
309 /*
310 * Do not update time when cgroup is not active
311 */
312 if (cgrp == event->cgrp)
313 __update_cgrp_time(event->cgrp);
314 }
315
316 static inline void
317 perf_cgroup_set_timestamp(struct task_struct *task,
318 struct perf_event_context *ctx)
319 {
320 struct perf_cgroup *cgrp;
321 struct perf_cgroup_info *info;
322
323 /*
324 * ctx->lock held by caller
325 * ensure we do not access cgroup data
326 * unless we have the cgroup pinned (css_get)
327 */
328 if (!task || !ctx->nr_cgroups)
329 return;
330
331 cgrp = perf_cgroup_from_task(task);
332 info = this_cpu_ptr(cgrp->info);
333 info->timestamp = ctx->timestamp;
334 }
335
336 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
337 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
338
339 /*
340 * reschedule events based on the cgroup constraint of task.
341 *
342 * mode SWOUT : schedule out everything
343 * mode SWIN : schedule in based on cgroup for next
344 */
345 void perf_cgroup_switch(struct task_struct *task, int mode)
346 {
347 struct perf_cpu_context *cpuctx;
348 struct pmu *pmu;
349 unsigned long flags;
350
351 /*
352 * disable interrupts to avoid geting nr_cgroup
353 * changes via __perf_event_disable(). Also
354 * avoids preemption.
355 */
356 local_irq_save(flags);
357
358 /*
359 * we reschedule only in the presence of cgroup
360 * constrained events.
361 */
362 rcu_read_lock();
363
364 list_for_each_entry_rcu(pmu, &pmus, entry) {
365 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
366
367 /*
368 * perf_cgroup_events says at least one
369 * context on this CPU has cgroup events.
370 *
371 * ctx->nr_cgroups reports the number of cgroup
372 * events for a context.
373 */
374 if (cpuctx->ctx.nr_cgroups > 0) {
375 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
376 perf_pmu_disable(cpuctx->ctx.pmu);
377
378 if (mode & PERF_CGROUP_SWOUT) {
379 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
380 /*
381 * must not be done before ctxswout due
382 * to event_filter_match() in event_sched_out()
383 */
384 cpuctx->cgrp = NULL;
385 }
386
387 if (mode & PERF_CGROUP_SWIN) {
388 WARN_ON_ONCE(cpuctx->cgrp);
389 /* set cgrp before ctxsw in to
390 * allow event_filter_match() to not
391 * have to pass task around
392 */
393 cpuctx->cgrp = perf_cgroup_from_task(task);
394 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
395 }
396 perf_pmu_enable(cpuctx->ctx.pmu);
397 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
398 }
399 }
400
401 rcu_read_unlock();
402
403 local_irq_restore(flags);
404 }
405
406 static inline void perf_cgroup_sched_out(struct task_struct *task,
407 struct task_struct *next)
408 {
409 struct perf_cgroup *cgrp1;
410 struct perf_cgroup *cgrp2 = NULL;
411
412 /*
413 * we come here when we know perf_cgroup_events > 0
414 */
415 cgrp1 = perf_cgroup_from_task(task);
416
417 /*
418 * next is NULL when called from perf_event_enable_on_exec()
419 * that will systematically cause a cgroup_switch()
420 */
421 if (next)
422 cgrp2 = perf_cgroup_from_task(next);
423
424 /*
425 * only schedule out current cgroup events if we know
426 * that we are switching to a different cgroup. Otherwise,
427 * do no touch the cgroup events.
428 */
429 if (cgrp1 != cgrp2)
430 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
431 }
432
433 static inline void perf_cgroup_sched_in(struct task_struct *prev,
434 struct task_struct *task)
435 {
436 struct perf_cgroup *cgrp1;
437 struct perf_cgroup *cgrp2 = NULL;
438
439 /*
440 * we come here when we know perf_cgroup_events > 0
441 */
442 cgrp1 = perf_cgroup_from_task(task);
443
444 /* prev can never be NULL */
445 cgrp2 = perf_cgroup_from_task(prev);
446
447 /*
448 * only need to schedule in cgroup events if we are changing
449 * cgroup during ctxsw. Cgroup events were not scheduled
450 * out of ctxsw out if that was not the case.
451 */
452 if (cgrp1 != cgrp2)
453 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
454 }
455
456 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
457 struct perf_event_attr *attr,
458 struct perf_event *group_leader)
459 {
460 struct perf_cgroup *cgrp;
461 struct cgroup_subsys_state *css;
462 struct file *file;
463 int ret = 0, fput_needed;
464
465 file = fget_light(fd, &fput_needed);
466 if (!file)
467 return -EBADF;
468
469 css = cgroup_css_from_dir(file, perf_subsys_id);
470 if (IS_ERR(css)) {
471 ret = PTR_ERR(css);
472 goto out;
473 }
474
475 cgrp = container_of(css, struct perf_cgroup, css);
476 event->cgrp = cgrp;
477
478 /* must be done before we fput() the file */
479 perf_get_cgroup(event);
480
481 /*
482 * all events in a group must monitor
483 * the same cgroup because a task belongs
484 * to only one perf cgroup at a time
485 */
486 if (group_leader && group_leader->cgrp != cgrp) {
487 perf_detach_cgroup(event);
488 ret = -EINVAL;
489 }
490 out:
491 fput_light(file, fput_needed);
492 return ret;
493 }
494
495 static inline void
496 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
497 {
498 struct perf_cgroup_info *t;
499 t = per_cpu_ptr(event->cgrp->info, event->cpu);
500 event->shadow_ctx_time = now - t->timestamp;
501 }
502
503 static inline void
504 perf_cgroup_defer_enabled(struct perf_event *event)
505 {
506 /*
507 * when the current task's perf cgroup does not match
508 * the event's, we need to remember to call the
509 * perf_mark_enable() function the first time a task with
510 * a matching perf cgroup is scheduled in.
511 */
512 if (is_cgroup_event(event) && !perf_cgroup_match(event))
513 event->cgrp_defer_enabled = 1;
514 }
515
516 static inline void
517 perf_cgroup_mark_enabled(struct perf_event *event,
518 struct perf_event_context *ctx)
519 {
520 struct perf_event *sub;
521 u64 tstamp = perf_event_time(event);
522
523 if (!event->cgrp_defer_enabled)
524 return;
525
526 event->cgrp_defer_enabled = 0;
527
528 event->tstamp_enabled = tstamp - event->total_time_enabled;
529 list_for_each_entry(sub, &event->sibling_list, group_entry) {
530 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
531 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
532 sub->cgrp_defer_enabled = 0;
533 }
534 }
535 }
536 #else /* !CONFIG_CGROUP_PERF */
537
538 static inline bool
539 perf_cgroup_match(struct perf_event *event)
540 {
541 return true;
542 }
543
544 static inline void perf_detach_cgroup(struct perf_event *event)
545 {}
546
547 static inline int is_cgroup_event(struct perf_event *event)
548 {
549 return 0;
550 }
551
552 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
553 {
554 return 0;
555 }
556
557 static inline void update_cgrp_time_from_event(struct perf_event *event)
558 {
559 }
560
561 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
562 {
563 }
564
565 static inline void perf_cgroup_sched_out(struct task_struct *task,
566 struct task_struct *next)
567 {
568 }
569
570 static inline void perf_cgroup_sched_in(struct task_struct *prev,
571 struct task_struct *task)
572 {
573 }
574
575 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
576 struct perf_event_attr *attr,
577 struct perf_event *group_leader)
578 {
579 return -EINVAL;
580 }
581
582 static inline void
583 perf_cgroup_set_timestamp(struct task_struct *task,
584 struct perf_event_context *ctx)
585 {
586 }
587
588 void
589 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
590 {
591 }
592
593 static inline void
594 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
595 {
596 }
597
598 static inline u64 perf_cgroup_event_time(struct perf_event *event)
599 {
600 return 0;
601 }
602
603 static inline void
604 perf_cgroup_defer_enabled(struct perf_event *event)
605 {
606 }
607
608 static inline void
609 perf_cgroup_mark_enabled(struct perf_event *event,
610 struct perf_event_context *ctx)
611 {
612 }
613 #endif
614
615 void perf_pmu_disable(struct pmu *pmu)
616 {
617 int *count = this_cpu_ptr(pmu->pmu_disable_count);
618 if (!(*count)++)
619 pmu->pmu_disable(pmu);
620 }
621
622 void perf_pmu_enable(struct pmu *pmu)
623 {
624 int *count = this_cpu_ptr(pmu->pmu_disable_count);
625 if (!--(*count))
626 pmu->pmu_enable(pmu);
627 }
628
629 static DEFINE_PER_CPU(struct list_head, rotation_list);
630
631 /*
632 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
633 * because they're strictly cpu affine and rotate_start is called with IRQs
634 * disabled, while rotate_context is called from IRQ context.
635 */
636 static void perf_pmu_rotate_start(struct pmu *pmu)
637 {
638 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
639 struct list_head *head = &__get_cpu_var(rotation_list);
640
641 WARN_ON(!irqs_disabled());
642
643 if (list_empty(&cpuctx->rotation_list))
644 list_add(&cpuctx->rotation_list, head);
645 }
646
647 static void get_ctx(struct perf_event_context *ctx)
648 {
649 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
650 }
651
652 static void put_ctx(struct perf_event_context *ctx)
653 {
654 if (atomic_dec_and_test(&ctx->refcount)) {
655 if (ctx->parent_ctx)
656 put_ctx(ctx->parent_ctx);
657 if (ctx->task)
658 put_task_struct(ctx->task);
659 kfree_rcu(ctx, rcu_head);
660 }
661 }
662
663 static void unclone_ctx(struct perf_event_context *ctx)
664 {
665 if (ctx->parent_ctx) {
666 put_ctx(ctx->parent_ctx);
667 ctx->parent_ctx = NULL;
668 }
669 }
670
671 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
672 {
673 /*
674 * only top level events have the pid namespace they were created in
675 */
676 if (event->parent)
677 event = event->parent;
678
679 return task_tgid_nr_ns(p, event->ns);
680 }
681
682 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
683 {
684 /*
685 * only top level events have the pid namespace they were created in
686 */
687 if (event->parent)
688 event = event->parent;
689
690 return task_pid_nr_ns(p, event->ns);
691 }
692
693 /*
694 * If we inherit events we want to return the parent event id
695 * to userspace.
696 */
697 static u64 primary_event_id(struct perf_event *event)
698 {
699 u64 id = event->id;
700
701 if (event->parent)
702 id = event->parent->id;
703
704 return id;
705 }
706
707 /*
708 * Get the perf_event_context for a task and lock it.
709 * This has to cope with with the fact that until it is locked,
710 * the context could get moved to another task.
711 */
712 static struct perf_event_context *
713 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
714 {
715 struct perf_event_context *ctx;
716
717 rcu_read_lock();
718 retry:
719 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
720 if (ctx) {
721 /*
722 * If this context is a clone of another, it might
723 * get swapped for another underneath us by
724 * perf_event_task_sched_out, though the
725 * rcu_read_lock() protects us from any context
726 * getting freed. Lock the context and check if it
727 * got swapped before we could get the lock, and retry
728 * if so. If we locked the right context, then it
729 * can't get swapped on us any more.
730 */
731 raw_spin_lock_irqsave(&ctx->lock, *flags);
732 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
733 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
734 goto retry;
735 }
736
737 if (!atomic_inc_not_zero(&ctx->refcount)) {
738 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
739 ctx = NULL;
740 }
741 }
742 rcu_read_unlock();
743 return ctx;
744 }
745
746 /*
747 * Get the context for a task and increment its pin_count so it
748 * can't get swapped to another task. This also increments its
749 * reference count so that the context can't get freed.
750 */
751 static struct perf_event_context *
752 perf_pin_task_context(struct task_struct *task, int ctxn)
753 {
754 struct perf_event_context *ctx;
755 unsigned long flags;
756
757 ctx = perf_lock_task_context(task, ctxn, &flags);
758 if (ctx) {
759 ++ctx->pin_count;
760 raw_spin_unlock_irqrestore(&ctx->lock, flags);
761 }
762 return ctx;
763 }
764
765 static void perf_unpin_context(struct perf_event_context *ctx)
766 {
767 unsigned long flags;
768
769 raw_spin_lock_irqsave(&ctx->lock, flags);
770 --ctx->pin_count;
771 raw_spin_unlock_irqrestore(&ctx->lock, flags);
772 }
773
774 /*
775 * Update the record of the current time in a context.
776 */
777 static void update_context_time(struct perf_event_context *ctx)
778 {
779 u64 now = perf_clock();
780
781 ctx->time += now - ctx->timestamp;
782 ctx->timestamp = now;
783 }
784
785 static u64 perf_event_time(struct perf_event *event)
786 {
787 struct perf_event_context *ctx = event->ctx;
788
789 if (is_cgroup_event(event))
790 return perf_cgroup_event_time(event);
791
792 return ctx ? ctx->time : 0;
793 }
794
795 /*
796 * Update the total_time_enabled and total_time_running fields for a event.
797 * The caller of this function needs to hold the ctx->lock.
798 */
799 static void update_event_times(struct perf_event *event)
800 {
801 struct perf_event_context *ctx = event->ctx;
802 u64 run_end;
803
804 if (event->state < PERF_EVENT_STATE_INACTIVE ||
805 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
806 return;
807 /*
808 * in cgroup mode, time_enabled represents
809 * the time the event was enabled AND active
810 * tasks were in the monitored cgroup. This is
811 * independent of the activity of the context as
812 * there may be a mix of cgroup and non-cgroup events.
813 *
814 * That is why we treat cgroup events differently
815 * here.
816 */
817 if (is_cgroup_event(event))
818 run_end = perf_event_time(event);
819 else if (ctx->is_active)
820 run_end = ctx->time;
821 else
822 run_end = event->tstamp_stopped;
823
824 event->total_time_enabled = run_end - event->tstamp_enabled;
825
826 if (event->state == PERF_EVENT_STATE_INACTIVE)
827 run_end = event->tstamp_stopped;
828 else
829 run_end = perf_event_time(event);
830
831 event->total_time_running = run_end - event->tstamp_running;
832
833 }
834
835 /*
836 * Update total_time_enabled and total_time_running for all events in a group.
837 */
838 static void update_group_times(struct perf_event *leader)
839 {
840 struct perf_event *event;
841
842 update_event_times(leader);
843 list_for_each_entry(event, &leader->sibling_list, group_entry)
844 update_event_times(event);
845 }
846
847 static struct list_head *
848 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
849 {
850 if (event->attr.pinned)
851 return &ctx->pinned_groups;
852 else
853 return &ctx->flexible_groups;
854 }
855
856 /*
857 * Add a event from the lists for its context.
858 * Must be called with ctx->mutex and ctx->lock held.
859 */
860 static void
861 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
862 {
863 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
864 event->attach_state |= PERF_ATTACH_CONTEXT;
865
866 /*
867 * If we're a stand alone event or group leader, we go to the context
868 * list, group events are kept attached to the group so that
869 * perf_group_detach can, at all times, locate all siblings.
870 */
871 if (event->group_leader == event) {
872 struct list_head *list;
873
874 if (is_software_event(event))
875 event->group_flags |= PERF_GROUP_SOFTWARE;
876
877 list = ctx_group_list(event, ctx);
878 list_add_tail(&event->group_entry, list);
879 }
880
881 if (is_cgroup_event(event))
882 ctx->nr_cgroups++;
883
884 list_add_rcu(&event->event_entry, &ctx->event_list);
885 if (!ctx->nr_events)
886 perf_pmu_rotate_start(ctx->pmu);
887 ctx->nr_events++;
888 if (event->attr.inherit_stat)
889 ctx->nr_stat++;
890 }
891
892 /*
893 * Called at perf_event creation and when events are attached/detached from a
894 * group.
895 */
896 static void perf_event__read_size(struct perf_event *event)
897 {
898 int entry = sizeof(u64); /* value */
899 int size = 0;
900 int nr = 1;
901
902 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
903 size += sizeof(u64);
904
905 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
906 size += sizeof(u64);
907
908 if (event->attr.read_format & PERF_FORMAT_ID)
909 entry += sizeof(u64);
910
911 if (event->attr.read_format & PERF_FORMAT_GROUP) {
912 nr += event->group_leader->nr_siblings;
913 size += sizeof(u64);
914 }
915
916 size += entry * nr;
917 event->read_size = size;
918 }
919
920 static void perf_event__header_size(struct perf_event *event)
921 {
922 struct perf_sample_data *data;
923 u64 sample_type = event->attr.sample_type;
924 u16 size = 0;
925
926 perf_event__read_size(event);
927
928 if (sample_type & PERF_SAMPLE_IP)
929 size += sizeof(data->ip);
930
931 if (sample_type & PERF_SAMPLE_ADDR)
932 size += sizeof(data->addr);
933
934 if (sample_type & PERF_SAMPLE_PERIOD)
935 size += sizeof(data->period);
936
937 if (sample_type & PERF_SAMPLE_READ)
938 size += event->read_size;
939
940 event->header_size = size;
941 }
942
943 static void perf_event__id_header_size(struct perf_event *event)
944 {
945 struct perf_sample_data *data;
946 u64 sample_type = event->attr.sample_type;
947 u16 size = 0;
948
949 if (sample_type & PERF_SAMPLE_TID)
950 size += sizeof(data->tid_entry);
951
952 if (sample_type & PERF_SAMPLE_TIME)
953 size += sizeof(data->time);
954
955 if (sample_type & PERF_SAMPLE_ID)
956 size += sizeof(data->id);
957
958 if (sample_type & PERF_SAMPLE_STREAM_ID)
959 size += sizeof(data->stream_id);
960
961 if (sample_type & PERF_SAMPLE_CPU)
962 size += sizeof(data->cpu_entry);
963
964 event->id_header_size = size;
965 }
966
967 static void perf_group_attach(struct perf_event *event)
968 {
969 struct perf_event *group_leader = event->group_leader, *pos;
970
971 /*
972 * We can have double attach due to group movement in perf_event_open.
973 */
974 if (event->attach_state & PERF_ATTACH_GROUP)
975 return;
976
977 event->attach_state |= PERF_ATTACH_GROUP;
978
979 if (group_leader == event)
980 return;
981
982 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
983 !is_software_event(event))
984 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
985
986 list_add_tail(&event->group_entry, &group_leader->sibling_list);
987 group_leader->nr_siblings++;
988
989 perf_event__header_size(group_leader);
990
991 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
992 perf_event__header_size(pos);
993 }
994
995 /*
996 * Remove a event from the lists for its context.
997 * Must be called with ctx->mutex and ctx->lock held.
998 */
999 static void
1000 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1001 {
1002 struct perf_cpu_context *cpuctx;
1003 /*
1004 * We can have double detach due to exit/hot-unplug + close.
1005 */
1006 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1007 return;
1008
1009 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1010
1011 if (is_cgroup_event(event)) {
1012 ctx->nr_cgroups--;
1013 cpuctx = __get_cpu_context(ctx);
1014 /*
1015 * if there are no more cgroup events
1016 * then cler cgrp to avoid stale pointer
1017 * in update_cgrp_time_from_cpuctx()
1018 */
1019 if (!ctx->nr_cgroups)
1020 cpuctx->cgrp = NULL;
1021 }
1022
1023 ctx->nr_events--;
1024 if (event->attr.inherit_stat)
1025 ctx->nr_stat--;
1026
1027 list_del_rcu(&event->event_entry);
1028
1029 if (event->group_leader == event)
1030 list_del_init(&event->group_entry);
1031
1032 update_group_times(event);
1033
1034 /*
1035 * If event was in error state, then keep it
1036 * that way, otherwise bogus counts will be
1037 * returned on read(). The only way to get out
1038 * of error state is by explicit re-enabling
1039 * of the event
1040 */
1041 if (event->state > PERF_EVENT_STATE_OFF)
1042 event->state = PERF_EVENT_STATE_OFF;
1043 }
1044
1045 static void perf_group_detach(struct perf_event *event)
1046 {
1047 struct perf_event *sibling, *tmp;
1048 struct list_head *list = NULL;
1049
1050 /*
1051 * We can have double detach due to exit/hot-unplug + close.
1052 */
1053 if (!(event->attach_state & PERF_ATTACH_GROUP))
1054 return;
1055
1056 event->attach_state &= ~PERF_ATTACH_GROUP;
1057
1058 /*
1059 * If this is a sibling, remove it from its group.
1060 */
1061 if (event->group_leader != event) {
1062 list_del_init(&event->group_entry);
1063 event->group_leader->nr_siblings--;
1064 goto out;
1065 }
1066
1067 if (!list_empty(&event->group_entry))
1068 list = &event->group_entry;
1069
1070 /*
1071 * If this was a group event with sibling events then
1072 * upgrade the siblings to singleton events by adding them
1073 * to whatever list we are on.
1074 */
1075 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1076 if (list)
1077 list_move_tail(&sibling->group_entry, list);
1078 sibling->group_leader = sibling;
1079
1080 /* Inherit group flags from the previous leader */
1081 sibling->group_flags = event->group_flags;
1082 }
1083
1084 out:
1085 perf_event__header_size(event->group_leader);
1086
1087 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1088 perf_event__header_size(tmp);
1089 }
1090
1091 static inline int
1092 event_filter_match(struct perf_event *event)
1093 {
1094 return (event->cpu == -1 || event->cpu == smp_processor_id())
1095 && perf_cgroup_match(event);
1096 }
1097
1098 static void
1099 event_sched_out(struct perf_event *event,
1100 struct perf_cpu_context *cpuctx,
1101 struct perf_event_context *ctx)
1102 {
1103 u64 tstamp = perf_event_time(event);
1104 u64 delta;
1105 /*
1106 * An event which could not be activated because of
1107 * filter mismatch still needs to have its timings
1108 * maintained, otherwise bogus information is return
1109 * via read() for time_enabled, time_running:
1110 */
1111 if (event->state == PERF_EVENT_STATE_INACTIVE
1112 && !event_filter_match(event)) {
1113 delta = tstamp - event->tstamp_stopped;
1114 event->tstamp_running += delta;
1115 event->tstamp_stopped = tstamp;
1116 }
1117
1118 if (event->state != PERF_EVENT_STATE_ACTIVE)
1119 return;
1120
1121 event->state = PERF_EVENT_STATE_INACTIVE;
1122 if (event->pending_disable) {
1123 event->pending_disable = 0;
1124 event->state = PERF_EVENT_STATE_OFF;
1125 }
1126 event->tstamp_stopped = tstamp;
1127 event->pmu->del(event, 0);
1128 event->oncpu = -1;
1129
1130 if (!is_software_event(event))
1131 cpuctx->active_oncpu--;
1132 ctx->nr_active--;
1133 if (event->attr.freq && event->attr.sample_freq)
1134 ctx->nr_freq--;
1135 if (event->attr.exclusive || !cpuctx->active_oncpu)
1136 cpuctx->exclusive = 0;
1137 }
1138
1139 static void
1140 group_sched_out(struct perf_event *group_event,
1141 struct perf_cpu_context *cpuctx,
1142 struct perf_event_context *ctx)
1143 {
1144 struct perf_event *event;
1145 int state = group_event->state;
1146
1147 event_sched_out(group_event, cpuctx, ctx);
1148
1149 /*
1150 * Schedule out siblings (if any):
1151 */
1152 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1153 event_sched_out(event, cpuctx, ctx);
1154
1155 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1156 cpuctx->exclusive = 0;
1157 }
1158
1159 /*
1160 * Cross CPU call to remove a performance event
1161 *
1162 * We disable the event on the hardware level first. After that we
1163 * remove it from the context list.
1164 */
1165 static int __perf_remove_from_context(void *info)
1166 {
1167 struct perf_event *event = info;
1168 struct perf_event_context *ctx = event->ctx;
1169 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1170
1171 raw_spin_lock(&ctx->lock);
1172 event_sched_out(event, cpuctx, ctx);
1173 list_del_event(event, ctx);
1174 if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1175 ctx->is_active = 0;
1176 cpuctx->task_ctx = NULL;
1177 }
1178 raw_spin_unlock(&ctx->lock);
1179
1180 return 0;
1181 }
1182
1183
1184 /*
1185 * Remove the event from a task's (or a CPU's) list of events.
1186 *
1187 * CPU events are removed with a smp call. For task events we only
1188 * call when the task is on a CPU.
1189 *
1190 * If event->ctx is a cloned context, callers must make sure that
1191 * every task struct that event->ctx->task could possibly point to
1192 * remains valid. This is OK when called from perf_release since
1193 * that only calls us on the top-level context, which can't be a clone.
1194 * When called from perf_event_exit_task, it's OK because the
1195 * context has been detached from its task.
1196 */
1197 static void perf_remove_from_context(struct perf_event *event)
1198 {
1199 struct perf_event_context *ctx = event->ctx;
1200 struct task_struct *task = ctx->task;
1201
1202 lockdep_assert_held(&ctx->mutex);
1203
1204 if (!task) {
1205 /*
1206 * Per cpu events are removed via an smp call and
1207 * the removal is always successful.
1208 */
1209 cpu_function_call(event->cpu, __perf_remove_from_context, event);
1210 return;
1211 }
1212
1213 retry:
1214 if (!task_function_call(task, __perf_remove_from_context, event))
1215 return;
1216
1217 raw_spin_lock_irq(&ctx->lock);
1218 /*
1219 * If we failed to find a running task, but find the context active now
1220 * that we've acquired the ctx->lock, retry.
1221 */
1222 if (ctx->is_active) {
1223 raw_spin_unlock_irq(&ctx->lock);
1224 goto retry;
1225 }
1226
1227 /*
1228 * Since the task isn't running, its safe to remove the event, us
1229 * holding the ctx->lock ensures the task won't get scheduled in.
1230 */
1231 list_del_event(event, ctx);
1232 raw_spin_unlock_irq(&ctx->lock);
1233 }
1234
1235 /*
1236 * Cross CPU call to disable a performance event
1237 */
1238 static int __perf_event_disable(void *info)
1239 {
1240 struct perf_event *event = info;
1241 struct perf_event_context *ctx = event->ctx;
1242 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1243
1244 /*
1245 * If this is a per-task event, need to check whether this
1246 * event's task is the current task on this cpu.
1247 *
1248 * Can trigger due to concurrent perf_event_context_sched_out()
1249 * flipping contexts around.
1250 */
1251 if (ctx->task && cpuctx->task_ctx != ctx)
1252 return -EINVAL;
1253
1254 raw_spin_lock(&ctx->lock);
1255
1256 /*
1257 * If the event is on, turn it off.
1258 * If it is in error state, leave it in error state.
1259 */
1260 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1261 update_context_time(ctx);
1262 update_cgrp_time_from_event(event);
1263 update_group_times(event);
1264 if (event == event->group_leader)
1265 group_sched_out(event, cpuctx, ctx);
1266 else
1267 event_sched_out(event, cpuctx, ctx);
1268 event->state = PERF_EVENT_STATE_OFF;
1269 }
1270
1271 raw_spin_unlock(&ctx->lock);
1272
1273 return 0;
1274 }
1275
1276 /*
1277 * Disable a event.
1278 *
1279 * If event->ctx is a cloned context, callers must make sure that
1280 * every task struct that event->ctx->task could possibly point to
1281 * remains valid. This condition is satisifed when called through
1282 * perf_event_for_each_child or perf_event_for_each because they
1283 * hold the top-level event's child_mutex, so any descendant that
1284 * goes to exit will block in sync_child_event.
1285 * When called from perf_pending_event it's OK because event->ctx
1286 * is the current context on this CPU and preemption is disabled,
1287 * hence we can't get into perf_event_task_sched_out for this context.
1288 */
1289 void perf_event_disable(struct perf_event *event)
1290 {
1291 struct perf_event_context *ctx = event->ctx;
1292 struct task_struct *task = ctx->task;
1293
1294 if (!task) {
1295 /*
1296 * Disable the event on the cpu that it's on
1297 */
1298 cpu_function_call(event->cpu, __perf_event_disable, event);
1299 return;
1300 }
1301
1302 retry:
1303 if (!task_function_call(task, __perf_event_disable, event))
1304 return;
1305
1306 raw_spin_lock_irq(&ctx->lock);
1307 /*
1308 * If the event is still active, we need to retry the cross-call.
1309 */
1310 if (event->state == PERF_EVENT_STATE_ACTIVE) {
1311 raw_spin_unlock_irq(&ctx->lock);
1312 /*
1313 * Reload the task pointer, it might have been changed by
1314 * a concurrent perf_event_context_sched_out().
1315 */
1316 task = ctx->task;
1317 goto retry;
1318 }
1319
1320 /*
1321 * Since we have the lock this context can't be scheduled
1322 * in, so we can change the state safely.
1323 */
1324 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1325 update_group_times(event);
1326 event->state = PERF_EVENT_STATE_OFF;
1327 }
1328 raw_spin_unlock_irq(&ctx->lock);
1329 }
1330 EXPORT_SYMBOL_GPL(perf_event_disable);
1331
1332 static void perf_set_shadow_time(struct perf_event *event,
1333 struct perf_event_context *ctx,
1334 u64 tstamp)
1335 {
1336 /*
1337 * use the correct time source for the time snapshot
1338 *
1339 * We could get by without this by leveraging the
1340 * fact that to get to this function, the caller
1341 * has most likely already called update_context_time()
1342 * and update_cgrp_time_xx() and thus both timestamp
1343 * are identical (or very close). Given that tstamp is,
1344 * already adjusted for cgroup, we could say that:
1345 * tstamp - ctx->timestamp
1346 * is equivalent to
1347 * tstamp - cgrp->timestamp.
1348 *
1349 * Then, in perf_output_read(), the calculation would
1350 * work with no changes because:
1351 * - event is guaranteed scheduled in
1352 * - no scheduled out in between
1353 * - thus the timestamp would be the same
1354 *
1355 * But this is a bit hairy.
1356 *
1357 * So instead, we have an explicit cgroup call to remain
1358 * within the time time source all along. We believe it
1359 * is cleaner and simpler to understand.
1360 */
1361 if (is_cgroup_event(event))
1362 perf_cgroup_set_shadow_time(event, tstamp);
1363 else
1364 event->shadow_ctx_time = tstamp - ctx->timestamp;
1365 }
1366
1367 #define MAX_INTERRUPTS (~0ULL)
1368
1369 static void perf_log_throttle(struct perf_event *event, int enable);
1370
1371 static int
1372 event_sched_in(struct perf_event *event,
1373 struct perf_cpu_context *cpuctx,
1374 struct perf_event_context *ctx)
1375 {
1376 u64 tstamp = perf_event_time(event);
1377
1378 if (event->state <= PERF_EVENT_STATE_OFF)
1379 return 0;
1380
1381 event->state = PERF_EVENT_STATE_ACTIVE;
1382 event->oncpu = smp_processor_id();
1383
1384 /*
1385 * Unthrottle events, since we scheduled we might have missed several
1386 * ticks already, also for a heavily scheduling task there is little
1387 * guarantee it'll get a tick in a timely manner.
1388 */
1389 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1390 perf_log_throttle(event, 1);
1391 event->hw.interrupts = 0;
1392 }
1393
1394 /*
1395 * The new state must be visible before we turn it on in the hardware:
1396 */
1397 smp_wmb();
1398
1399 if (event->pmu->add(event, PERF_EF_START)) {
1400 event->state = PERF_EVENT_STATE_INACTIVE;
1401 event->oncpu = -1;
1402 return -EAGAIN;
1403 }
1404
1405 event->tstamp_running += tstamp - event->tstamp_stopped;
1406
1407 perf_set_shadow_time(event, ctx, tstamp);
1408
1409 if (!is_software_event(event))
1410 cpuctx->active_oncpu++;
1411 ctx->nr_active++;
1412 if (event->attr.freq && event->attr.sample_freq)
1413 ctx->nr_freq++;
1414
1415 if (event->attr.exclusive)
1416 cpuctx->exclusive = 1;
1417
1418 return 0;
1419 }
1420
1421 static int
1422 group_sched_in(struct perf_event *group_event,
1423 struct perf_cpu_context *cpuctx,
1424 struct perf_event_context *ctx)
1425 {
1426 struct perf_event *event, *partial_group = NULL;
1427 struct pmu *pmu = group_event->pmu;
1428 u64 now = ctx->time;
1429 bool simulate = false;
1430
1431 if (group_event->state == PERF_EVENT_STATE_OFF)
1432 return 0;
1433
1434 pmu->start_txn(pmu);
1435
1436 if (event_sched_in(group_event, cpuctx, ctx)) {
1437 pmu->cancel_txn(pmu);
1438 return -EAGAIN;
1439 }
1440
1441 /*
1442 * Schedule in siblings as one group (if any):
1443 */
1444 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1445 if (event_sched_in(event, cpuctx, ctx)) {
1446 partial_group = event;
1447 goto group_error;
1448 }
1449 }
1450
1451 if (!pmu->commit_txn(pmu))
1452 return 0;
1453
1454 group_error:
1455 /*
1456 * Groups can be scheduled in as one unit only, so undo any
1457 * partial group before returning:
1458 * The events up to the failed event are scheduled out normally,
1459 * tstamp_stopped will be updated.
1460 *
1461 * The failed events and the remaining siblings need to have
1462 * their timings updated as if they had gone thru event_sched_in()
1463 * and event_sched_out(). This is required to get consistent timings
1464 * across the group. This also takes care of the case where the group
1465 * could never be scheduled by ensuring tstamp_stopped is set to mark
1466 * the time the event was actually stopped, such that time delta
1467 * calculation in update_event_times() is correct.
1468 */
1469 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1470 if (event == partial_group)
1471 simulate = true;
1472
1473 if (simulate) {
1474 event->tstamp_running += now - event->tstamp_stopped;
1475 event->tstamp_stopped = now;
1476 } else {
1477 event_sched_out(event, cpuctx, ctx);
1478 }
1479 }
1480 event_sched_out(group_event, cpuctx, ctx);
1481
1482 pmu->cancel_txn(pmu);
1483
1484 return -EAGAIN;
1485 }
1486
1487 /*
1488 * Work out whether we can put this event group on the CPU now.
1489 */
1490 static int group_can_go_on(struct perf_event *event,
1491 struct perf_cpu_context *cpuctx,
1492 int can_add_hw)
1493 {
1494 /*
1495 * Groups consisting entirely of software events can always go on.
1496 */
1497 if (event->group_flags & PERF_GROUP_SOFTWARE)
1498 return 1;
1499 /*
1500 * If an exclusive group is already on, no other hardware
1501 * events can go on.
1502 */
1503 if (cpuctx->exclusive)
1504 return 0;
1505 /*
1506 * If this group is exclusive and there are already
1507 * events on the CPU, it can't go on.
1508 */
1509 if (event->attr.exclusive && cpuctx->active_oncpu)
1510 return 0;
1511 /*
1512 * Otherwise, try to add it if all previous groups were able
1513 * to go on.
1514 */
1515 return can_add_hw;
1516 }
1517
1518 static void add_event_to_ctx(struct perf_event *event,
1519 struct perf_event_context *ctx)
1520 {
1521 u64 tstamp = perf_event_time(event);
1522
1523 list_add_event(event, ctx);
1524 perf_group_attach(event);
1525 event->tstamp_enabled = tstamp;
1526 event->tstamp_running = tstamp;
1527 event->tstamp_stopped = tstamp;
1528 }
1529
1530 static void task_ctx_sched_out(struct perf_event_context *ctx);
1531 static void
1532 ctx_sched_in(struct perf_event_context *ctx,
1533 struct perf_cpu_context *cpuctx,
1534 enum event_type_t event_type,
1535 struct task_struct *task);
1536
1537 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
1538 struct perf_event_context *ctx,
1539 struct task_struct *task)
1540 {
1541 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
1542 if (ctx)
1543 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
1544 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
1545 if (ctx)
1546 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
1547 }
1548
1549 /*
1550 * Cross CPU call to install and enable a performance event
1551 *
1552 * Must be called with ctx->mutex held
1553 */
1554 static int __perf_install_in_context(void *info)
1555 {
1556 struct perf_event *event = info;
1557 struct perf_event_context *ctx = event->ctx;
1558 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1559 struct perf_event_context *task_ctx = cpuctx->task_ctx;
1560 struct task_struct *task = current;
1561
1562 perf_ctx_lock(cpuctx, task_ctx);
1563 perf_pmu_disable(cpuctx->ctx.pmu);
1564
1565 /*
1566 * If there was an active task_ctx schedule it out.
1567 */
1568 if (task_ctx)
1569 task_ctx_sched_out(task_ctx);
1570
1571 /*
1572 * If the context we're installing events in is not the
1573 * active task_ctx, flip them.
1574 */
1575 if (ctx->task && task_ctx != ctx) {
1576 if (task_ctx)
1577 raw_spin_unlock(&task_ctx->lock);
1578 raw_spin_lock(&ctx->lock);
1579 task_ctx = ctx;
1580 }
1581
1582 if (task_ctx) {
1583 cpuctx->task_ctx = task_ctx;
1584 task = task_ctx->task;
1585 }
1586
1587 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
1588
1589 update_context_time(ctx);
1590 /*
1591 * update cgrp time only if current cgrp
1592 * matches event->cgrp. Must be done before
1593 * calling add_event_to_ctx()
1594 */
1595 update_cgrp_time_from_event(event);
1596
1597 add_event_to_ctx(event, ctx);
1598
1599 /*
1600 * Schedule everything back in
1601 */
1602 perf_event_sched_in(cpuctx, task_ctx, task);
1603
1604 perf_pmu_enable(cpuctx->ctx.pmu);
1605 perf_ctx_unlock(cpuctx, task_ctx);
1606
1607 return 0;
1608 }
1609
1610 /*
1611 * Attach a performance event to a context
1612 *
1613 * First we add the event to the list with the hardware enable bit
1614 * in event->hw_config cleared.
1615 *
1616 * If the event is attached to a task which is on a CPU we use a smp
1617 * call to enable it in the task context. The task might have been
1618 * scheduled away, but we check this in the smp call again.
1619 */
1620 static void
1621 perf_install_in_context(struct perf_event_context *ctx,
1622 struct perf_event *event,
1623 int cpu)
1624 {
1625 struct task_struct *task = ctx->task;
1626
1627 lockdep_assert_held(&ctx->mutex);
1628
1629 event->ctx = ctx;
1630
1631 if (!task) {
1632 /*
1633 * Per cpu events are installed via an smp call and
1634 * the install is always successful.
1635 */
1636 cpu_function_call(cpu, __perf_install_in_context, event);
1637 return;
1638 }
1639
1640 retry:
1641 if (!task_function_call(task, __perf_install_in_context, event))
1642 return;
1643
1644 raw_spin_lock_irq(&ctx->lock);
1645 /*
1646 * If we failed to find a running task, but find the context active now
1647 * that we've acquired the ctx->lock, retry.
1648 */
1649 if (ctx->is_active) {
1650 raw_spin_unlock_irq(&ctx->lock);
1651 goto retry;
1652 }
1653
1654 /*
1655 * Since the task isn't running, its safe to add the event, us holding
1656 * the ctx->lock ensures the task won't get scheduled in.
1657 */
1658 add_event_to_ctx(event, ctx);
1659 raw_spin_unlock_irq(&ctx->lock);
1660 }
1661
1662 /*
1663 * Put a event into inactive state and update time fields.
1664 * Enabling the leader of a group effectively enables all
1665 * the group members that aren't explicitly disabled, so we
1666 * have to update their ->tstamp_enabled also.
1667 * Note: this works for group members as well as group leaders
1668 * since the non-leader members' sibling_lists will be empty.
1669 */
1670 static void __perf_event_mark_enabled(struct perf_event *event)
1671 {
1672 struct perf_event *sub;
1673 u64 tstamp = perf_event_time(event);
1674
1675 event->state = PERF_EVENT_STATE_INACTIVE;
1676 event->tstamp_enabled = tstamp - event->total_time_enabled;
1677 list_for_each_entry(sub, &event->sibling_list, group_entry) {
1678 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
1679 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
1680 }
1681 }
1682
1683 /*
1684 * Cross CPU call to enable a performance event
1685 */
1686 static int __perf_event_enable(void *info)
1687 {
1688 struct perf_event *event = info;
1689 struct perf_event_context *ctx = event->ctx;
1690 struct perf_event *leader = event->group_leader;
1691 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1692 int err;
1693
1694 if (WARN_ON_ONCE(!ctx->is_active))
1695 return -EINVAL;
1696
1697 raw_spin_lock(&ctx->lock);
1698 update_context_time(ctx);
1699
1700 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1701 goto unlock;
1702
1703 /*
1704 * set current task's cgroup time reference point
1705 */
1706 perf_cgroup_set_timestamp(current, ctx);
1707
1708 __perf_event_mark_enabled(event);
1709
1710 if (!event_filter_match(event)) {
1711 if (is_cgroup_event(event))
1712 perf_cgroup_defer_enabled(event);
1713 goto unlock;
1714 }
1715
1716 /*
1717 * If the event is in a group and isn't the group leader,
1718 * then don't put it on unless the group is on.
1719 */
1720 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
1721 goto unlock;
1722
1723 if (!group_can_go_on(event, cpuctx, 1)) {
1724 err = -EEXIST;
1725 } else {
1726 if (event == leader)
1727 err = group_sched_in(event, cpuctx, ctx);
1728 else
1729 err = event_sched_in(event, cpuctx, ctx);
1730 }
1731
1732 if (err) {
1733 /*
1734 * If this event can't go on and it's part of a
1735 * group, then the whole group has to come off.
1736 */
1737 if (leader != event)
1738 group_sched_out(leader, cpuctx, ctx);
1739 if (leader->attr.pinned) {
1740 update_group_times(leader);
1741 leader->state = PERF_EVENT_STATE_ERROR;
1742 }
1743 }
1744
1745 unlock:
1746 raw_spin_unlock(&ctx->lock);
1747
1748 return 0;
1749 }
1750
1751 /*
1752 * Enable a event.
1753 *
1754 * If event->ctx is a cloned context, callers must make sure that
1755 * every task struct that event->ctx->task could possibly point to
1756 * remains valid. This condition is satisfied when called through
1757 * perf_event_for_each_child or perf_event_for_each as described
1758 * for perf_event_disable.
1759 */
1760 void perf_event_enable(struct perf_event *event)
1761 {
1762 struct perf_event_context *ctx = event->ctx;
1763 struct task_struct *task = ctx->task;
1764
1765 if (!task) {
1766 /*
1767 * Enable the event on the cpu that it's on
1768 */
1769 cpu_function_call(event->cpu, __perf_event_enable, event);
1770 return;
1771 }
1772
1773 raw_spin_lock_irq(&ctx->lock);
1774 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1775 goto out;
1776
1777 /*
1778 * If the event is in error state, clear that first.
1779 * That way, if we see the event in error state below, we
1780 * know that it has gone back into error state, as distinct
1781 * from the task having been scheduled away before the
1782 * cross-call arrived.
1783 */
1784 if (event->state == PERF_EVENT_STATE_ERROR)
1785 event->state = PERF_EVENT_STATE_OFF;
1786
1787 retry:
1788 if (!ctx->is_active) {
1789 __perf_event_mark_enabled(event);
1790 goto out;
1791 }
1792
1793 raw_spin_unlock_irq(&ctx->lock);
1794
1795 if (!task_function_call(task, __perf_event_enable, event))
1796 return;
1797
1798 raw_spin_lock_irq(&ctx->lock);
1799
1800 /*
1801 * If the context is active and the event is still off,
1802 * we need to retry the cross-call.
1803 */
1804 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
1805 /*
1806 * task could have been flipped by a concurrent
1807 * perf_event_context_sched_out()
1808 */
1809 task = ctx->task;
1810 goto retry;
1811 }
1812
1813 out:
1814 raw_spin_unlock_irq(&ctx->lock);
1815 }
1816 EXPORT_SYMBOL_GPL(perf_event_enable);
1817
1818 int perf_event_refresh(struct perf_event *event, int refresh)
1819 {
1820 /*
1821 * not supported on inherited events
1822 */
1823 if (event->attr.inherit || !is_sampling_event(event))
1824 return -EINVAL;
1825
1826 atomic_add(refresh, &event->event_limit);
1827 perf_event_enable(event);
1828
1829 return 0;
1830 }
1831 EXPORT_SYMBOL_GPL(perf_event_refresh);
1832
1833 static void ctx_sched_out(struct perf_event_context *ctx,
1834 struct perf_cpu_context *cpuctx,
1835 enum event_type_t event_type)
1836 {
1837 struct perf_event *event;
1838 int is_active = ctx->is_active;
1839
1840 ctx->is_active &= ~event_type;
1841 if (likely(!ctx->nr_events))
1842 return;
1843
1844 update_context_time(ctx);
1845 update_cgrp_time_from_cpuctx(cpuctx);
1846 if (!ctx->nr_active)
1847 return;
1848
1849 perf_pmu_disable(ctx->pmu);
1850 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
1851 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1852 group_sched_out(event, cpuctx, ctx);
1853 }
1854
1855 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
1856 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1857 group_sched_out(event, cpuctx, ctx);
1858 }
1859 perf_pmu_enable(ctx->pmu);
1860 }
1861
1862 /*
1863 * Test whether two contexts are equivalent, i.e. whether they
1864 * have both been cloned from the same version of the same context
1865 * and they both have the same number of enabled events.
1866 * If the number of enabled events is the same, then the set
1867 * of enabled events should be the same, because these are both
1868 * inherited contexts, therefore we can't access individual events
1869 * in them directly with an fd; we can only enable/disable all
1870 * events via prctl, or enable/disable all events in a family
1871 * via ioctl, which will have the same effect on both contexts.
1872 */
1873 static int context_equiv(struct perf_event_context *ctx1,
1874 struct perf_event_context *ctx2)
1875 {
1876 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1877 && ctx1->parent_gen == ctx2->parent_gen
1878 && !ctx1->pin_count && !ctx2->pin_count;
1879 }
1880
1881 static void __perf_event_sync_stat(struct perf_event *event,
1882 struct perf_event *next_event)
1883 {
1884 u64 value;
1885
1886 if (!event->attr.inherit_stat)
1887 return;
1888
1889 /*
1890 * Update the event value, we cannot use perf_event_read()
1891 * because we're in the middle of a context switch and have IRQs
1892 * disabled, which upsets smp_call_function_single(), however
1893 * we know the event must be on the current CPU, therefore we
1894 * don't need to use it.
1895 */
1896 switch (event->state) {
1897 case PERF_EVENT_STATE_ACTIVE:
1898 event->pmu->read(event);
1899 /* fall-through */
1900
1901 case PERF_EVENT_STATE_INACTIVE:
1902 update_event_times(event);
1903 break;
1904
1905 default:
1906 break;
1907 }
1908
1909 /*
1910 * In order to keep per-task stats reliable we need to flip the event
1911 * values when we flip the contexts.
1912 */
1913 value = local64_read(&next_event->count);
1914 value = local64_xchg(&event->count, value);
1915 local64_set(&next_event->count, value);
1916
1917 swap(event->total_time_enabled, next_event->total_time_enabled);
1918 swap(event->total_time_running, next_event->total_time_running);
1919
1920 /*
1921 * Since we swizzled the values, update the user visible data too.
1922 */
1923 perf_event_update_userpage(event);
1924 perf_event_update_userpage(next_event);
1925 }
1926
1927 #define list_next_entry(pos, member) \
1928 list_entry(pos->member.next, typeof(*pos), member)
1929
1930 static void perf_event_sync_stat(struct perf_event_context *ctx,
1931 struct perf_event_context *next_ctx)
1932 {
1933 struct perf_event *event, *next_event;
1934
1935 if (!ctx->nr_stat)
1936 return;
1937
1938 update_context_time(ctx);
1939
1940 event = list_first_entry(&ctx->event_list,
1941 struct perf_event, event_entry);
1942
1943 next_event = list_first_entry(&next_ctx->event_list,
1944 struct perf_event, event_entry);
1945
1946 while (&event->event_entry != &ctx->event_list &&
1947 &next_event->event_entry != &next_ctx->event_list) {
1948
1949 __perf_event_sync_stat(event, next_event);
1950
1951 event = list_next_entry(event, event_entry);
1952 next_event = list_next_entry(next_event, event_entry);
1953 }
1954 }
1955
1956 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
1957 struct task_struct *next)
1958 {
1959 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
1960 struct perf_event_context *next_ctx;
1961 struct perf_event_context *parent;
1962 struct perf_cpu_context *cpuctx;
1963 int do_switch = 1;
1964
1965 if (likely(!ctx))
1966 return;
1967
1968 cpuctx = __get_cpu_context(ctx);
1969 if (!cpuctx->task_ctx)
1970 return;
1971
1972 rcu_read_lock();
1973 parent = rcu_dereference(ctx->parent_ctx);
1974 next_ctx = next->perf_event_ctxp[ctxn];
1975 if (parent && next_ctx &&
1976 rcu_dereference(next_ctx->parent_ctx) == parent) {
1977 /*
1978 * Looks like the two contexts are clones, so we might be
1979 * able to optimize the context switch. We lock both
1980 * contexts and check that they are clones under the
1981 * lock (including re-checking that neither has been
1982 * uncloned in the meantime). It doesn't matter which
1983 * order we take the locks because no other cpu could
1984 * be trying to lock both of these tasks.
1985 */
1986 raw_spin_lock(&ctx->lock);
1987 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1988 if (context_equiv(ctx, next_ctx)) {
1989 /*
1990 * XXX do we need a memory barrier of sorts
1991 * wrt to rcu_dereference() of perf_event_ctxp
1992 */
1993 task->perf_event_ctxp[ctxn] = next_ctx;
1994 next->perf_event_ctxp[ctxn] = ctx;
1995 ctx->task = next;
1996 next_ctx->task = task;
1997 do_switch = 0;
1998
1999 perf_event_sync_stat(ctx, next_ctx);
2000 }
2001 raw_spin_unlock(&next_ctx->lock);
2002 raw_spin_unlock(&ctx->lock);
2003 }
2004 rcu_read_unlock();
2005
2006 if (do_switch) {
2007 raw_spin_lock(&ctx->lock);
2008 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2009 cpuctx->task_ctx = NULL;
2010 raw_spin_unlock(&ctx->lock);
2011 }
2012 }
2013
2014 #define for_each_task_context_nr(ctxn) \
2015 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2016
2017 /*
2018 * Called from scheduler to remove the events of the current task,
2019 * with interrupts disabled.
2020 *
2021 * We stop each event and update the event value in event->count.
2022 *
2023 * This does not protect us against NMI, but disable()
2024 * sets the disabled bit in the control field of event _before_
2025 * accessing the event control register. If a NMI hits, then it will
2026 * not restart the event.
2027 */
2028 void __perf_event_task_sched_out(struct task_struct *task,
2029 struct task_struct *next)
2030 {
2031 int ctxn;
2032
2033 for_each_task_context_nr(ctxn)
2034 perf_event_context_sched_out(task, ctxn, next);
2035
2036 /*
2037 * if cgroup events exist on this CPU, then we need
2038 * to check if we have to switch out PMU state.
2039 * cgroup event are system-wide mode only
2040 */
2041 if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2042 perf_cgroup_sched_out(task, next);
2043 }
2044
2045 static void task_ctx_sched_out(struct perf_event_context *ctx)
2046 {
2047 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2048
2049 if (!cpuctx->task_ctx)
2050 return;
2051
2052 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2053 return;
2054
2055 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2056 cpuctx->task_ctx = NULL;
2057 }
2058
2059 /*
2060 * Called with IRQs disabled
2061 */
2062 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2063 enum event_type_t event_type)
2064 {
2065 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2066 }
2067
2068 static void
2069 ctx_pinned_sched_in(struct perf_event_context *ctx,
2070 struct perf_cpu_context *cpuctx)
2071 {
2072 struct perf_event *event;
2073
2074 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2075 if (event->state <= PERF_EVENT_STATE_OFF)
2076 continue;
2077 if (!event_filter_match(event))
2078 continue;
2079
2080 /* may need to reset tstamp_enabled */
2081 if (is_cgroup_event(event))
2082 perf_cgroup_mark_enabled(event, ctx);
2083
2084 if (group_can_go_on(event, cpuctx, 1))
2085 group_sched_in(event, cpuctx, ctx);
2086
2087 /*
2088 * If this pinned group hasn't been scheduled,
2089 * put it in error state.
2090 */
2091 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2092 update_group_times(event);
2093 event->state = PERF_EVENT_STATE_ERROR;
2094 }
2095 }
2096 }
2097
2098 static void
2099 ctx_flexible_sched_in(struct perf_event_context *ctx,
2100 struct perf_cpu_context *cpuctx)
2101 {
2102 struct perf_event *event;
2103 int can_add_hw = 1;
2104
2105 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2106 /* Ignore events in OFF or ERROR state */
2107 if (event->state <= PERF_EVENT_STATE_OFF)
2108 continue;
2109 /*
2110 * Listen to the 'cpu' scheduling filter constraint
2111 * of events:
2112 */
2113 if (!event_filter_match(event))
2114 continue;
2115
2116 /* may need to reset tstamp_enabled */
2117 if (is_cgroup_event(event))
2118 perf_cgroup_mark_enabled(event, ctx);
2119
2120 if (group_can_go_on(event, cpuctx, can_add_hw)) {
2121 if (group_sched_in(event, cpuctx, ctx))
2122 can_add_hw = 0;
2123 }
2124 }
2125 }
2126
2127 static void
2128 ctx_sched_in(struct perf_event_context *ctx,
2129 struct perf_cpu_context *cpuctx,
2130 enum event_type_t event_type,
2131 struct task_struct *task)
2132 {
2133 u64 now;
2134 int is_active = ctx->is_active;
2135
2136 ctx->is_active |= event_type;
2137 if (likely(!ctx->nr_events))
2138 return;
2139
2140 now = perf_clock();
2141 ctx->timestamp = now;
2142 perf_cgroup_set_timestamp(task, ctx);
2143 /*
2144 * First go through the list and put on any pinned groups
2145 * in order to give them the best chance of going on.
2146 */
2147 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2148 ctx_pinned_sched_in(ctx, cpuctx);
2149
2150 /* Then walk through the lower prio flexible groups */
2151 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2152 ctx_flexible_sched_in(ctx, cpuctx);
2153 }
2154
2155 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
2156 enum event_type_t event_type,
2157 struct task_struct *task)
2158 {
2159 struct perf_event_context *ctx = &cpuctx->ctx;
2160
2161 ctx_sched_in(ctx, cpuctx, event_type, task);
2162 }
2163
2164 static void perf_event_context_sched_in(struct perf_event_context *ctx,
2165 struct task_struct *task)
2166 {
2167 struct perf_cpu_context *cpuctx;
2168
2169 cpuctx = __get_cpu_context(ctx);
2170 if (cpuctx->task_ctx == ctx)
2171 return;
2172
2173 perf_ctx_lock(cpuctx, ctx);
2174 perf_pmu_disable(ctx->pmu);
2175 /*
2176 * We want to keep the following priority order:
2177 * cpu pinned (that don't need to move), task pinned,
2178 * cpu flexible, task flexible.
2179 */
2180 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2181
2182 perf_event_sched_in(cpuctx, ctx, task);
2183
2184 if (ctx->nr_events)
2185 cpuctx->task_ctx = ctx;
2186
2187 perf_pmu_enable(ctx->pmu);
2188 perf_ctx_unlock(cpuctx, ctx);
2189
2190 /*
2191 * Since these rotations are per-cpu, we need to ensure the
2192 * cpu-context we got scheduled on is actually rotating.
2193 */
2194 perf_pmu_rotate_start(ctx->pmu);
2195 }
2196
2197 /*
2198 * Called from scheduler to add the events of the current task
2199 * with interrupts disabled.
2200 *
2201 * We restore the event value and then enable it.
2202 *
2203 * This does not protect us against NMI, but enable()
2204 * sets the enabled bit in the control field of event _before_
2205 * accessing the event control register. If a NMI hits, then it will
2206 * keep the event running.
2207 */
2208 void __perf_event_task_sched_in(struct task_struct *prev,
2209 struct task_struct *task)
2210 {
2211 struct perf_event_context *ctx;
2212 int ctxn;
2213
2214 for_each_task_context_nr(ctxn) {
2215 ctx = task->perf_event_ctxp[ctxn];
2216 if (likely(!ctx))
2217 continue;
2218
2219 perf_event_context_sched_in(ctx, task);
2220 }
2221 /*
2222 * if cgroup events exist on this CPU, then we need
2223 * to check if we have to switch in PMU state.
2224 * cgroup event are system-wide mode only
2225 */
2226 if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2227 perf_cgroup_sched_in(prev, task);
2228 }
2229
2230 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2231 {
2232 u64 frequency = event->attr.sample_freq;
2233 u64 sec = NSEC_PER_SEC;
2234 u64 divisor, dividend;
2235
2236 int count_fls, nsec_fls, frequency_fls, sec_fls;
2237
2238 count_fls = fls64(count);
2239 nsec_fls = fls64(nsec);
2240 frequency_fls = fls64(frequency);
2241 sec_fls = 30;
2242
2243 /*
2244 * We got @count in @nsec, with a target of sample_freq HZ
2245 * the target period becomes:
2246 *
2247 * @count * 10^9
2248 * period = -------------------
2249 * @nsec * sample_freq
2250 *
2251 */
2252
2253 /*
2254 * Reduce accuracy by one bit such that @a and @b converge
2255 * to a similar magnitude.
2256 */
2257 #define REDUCE_FLS(a, b) \
2258 do { \
2259 if (a##_fls > b##_fls) { \
2260 a >>= 1; \
2261 a##_fls--; \
2262 } else { \
2263 b >>= 1; \
2264 b##_fls--; \
2265 } \
2266 } while (0)
2267
2268 /*
2269 * Reduce accuracy until either term fits in a u64, then proceed with
2270 * the other, so that finally we can do a u64/u64 division.
2271 */
2272 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2273 REDUCE_FLS(nsec, frequency);
2274 REDUCE_FLS(sec, count);
2275 }
2276
2277 if (count_fls + sec_fls > 64) {
2278 divisor = nsec * frequency;
2279
2280 while (count_fls + sec_fls > 64) {
2281 REDUCE_FLS(count, sec);
2282 divisor >>= 1;
2283 }
2284
2285 dividend = count * sec;
2286 } else {
2287 dividend = count * sec;
2288
2289 while (nsec_fls + frequency_fls > 64) {
2290 REDUCE_FLS(nsec, frequency);
2291 dividend >>= 1;
2292 }
2293
2294 divisor = nsec * frequency;
2295 }
2296
2297 if (!divisor)
2298 return dividend;
2299
2300 return div64_u64(dividend, divisor);
2301 }
2302
2303 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
2304 {
2305 struct hw_perf_event *hwc = &event->hw;
2306 s64 period, sample_period;
2307 s64 delta;
2308
2309 period = perf_calculate_period(event, nsec, count);
2310
2311 delta = (s64)(period - hwc->sample_period);
2312 delta = (delta + 7) / 8; /* low pass filter */
2313
2314 sample_period = hwc->sample_period + delta;
2315
2316 if (!sample_period)
2317 sample_period = 1;
2318
2319 hwc->sample_period = sample_period;
2320
2321 if (local64_read(&hwc->period_left) > 8*sample_period) {
2322 event->pmu->stop(event, PERF_EF_UPDATE);
2323 local64_set(&hwc->period_left, 0);
2324 event->pmu->start(event, PERF_EF_RELOAD);
2325 }
2326 }
2327
2328 static void perf_ctx_adjust_freq(struct perf_event_context *ctx, u64 period)
2329 {
2330 struct perf_event *event;
2331 struct hw_perf_event *hwc;
2332 u64 interrupts, now;
2333 s64 delta;
2334
2335 if (!ctx->nr_freq)
2336 return;
2337
2338 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2339 if (event->state != PERF_EVENT_STATE_ACTIVE)
2340 continue;
2341
2342 if (!event_filter_match(event))
2343 continue;
2344
2345 hwc = &event->hw;
2346
2347 interrupts = hwc->interrupts;
2348 hwc->interrupts = 0;
2349
2350 /*
2351 * unthrottle events on the tick
2352 */
2353 if (interrupts == MAX_INTERRUPTS) {
2354 perf_log_throttle(event, 1);
2355 event->pmu->start(event, 0);
2356 }
2357
2358 if (!event->attr.freq || !event->attr.sample_freq)
2359 continue;
2360
2361 event->pmu->read(event);
2362 now = local64_read(&event->count);
2363 delta = now - hwc->freq_count_stamp;
2364 hwc->freq_count_stamp = now;
2365
2366 if (delta > 0)
2367 perf_adjust_period(event, period, delta);
2368 }
2369 }
2370
2371 /*
2372 * Round-robin a context's events:
2373 */
2374 static void rotate_ctx(struct perf_event_context *ctx)
2375 {
2376 /*
2377 * Rotate the first entry last of non-pinned groups. Rotation might be
2378 * disabled by the inheritance code.
2379 */
2380 if (!ctx->rotate_disable)
2381 list_rotate_left(&ctx->flexible_groups);
2382 }
2383
2384 /*
2385 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
2386 * because they're strictly cpu affine and rotate_start is called with IRQs
2387 * disabled, while rotate_context is called from IRQ context.
2388 */
2389 static void perf_rotate_context(struct perf_cpu_context *cpuctx)
2390 {
2391 u64 interval = (u64)cpuctx->jiffies_interval * TICK_NSEC;
2392 struct perf_event_context *ctx = NULL;
2393 int rotate = 0, remove = 1, freq = 0;
2394
2395 if (cpuctx->ctx.nr_events) {
2396 remove = 0;
2397 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
2398 rotate = 1;
2399 if (cpuctx->ctx.nr_freq)
2400 freq = 1;
2401 }
2402
2403 ctx = cpuctx->task_ctx;
2404 if (ctx && ctx->nr_events) {
2405 remove = 0;
2406 if (ctx->nr_events != ctx->nr_active)
2407 rotate = 1;
2408 if (ctx->nr_freq)
2409 freq = 1;
2410 }
2411
2412 if (!rotate && !freq)
2413 goto done;
2414
2415 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2416 perf_pmu_disable(cpuctx->ctx.pmu);
2417
2418 if (freq) {
2419 perf_ctx_adjust_freq(&cpuctx->ctx, interval);
2420 if (ctx)
2421 perf_ctx_adjust_freq(ctx, interval);
2422 }
2423
2424 if (rotate) {
2425 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2426 if (ctx)
2427 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
2428
2429 rotate_ctx(&cpuctx->ctx);
2430 if (ctx)
2431 rotate_ctx(ctx);
2432
2433 perf_event_sched_in(cpuctx, ctx, current);
2434 }
2435
2436 perf_pmu_enable(cpuctx->ctx.pmu);
2437 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2438
2439 done:
2440 if (remove)
2441 list_del_init(&cpuctx->rotation_list);
2442 }
2443
2444 void perf_event_task_tick(void)
2445 {
2446 struct list_head *head = &__get_cpu_var(rotation_list);
2447 struct perf_cpu_context *cpuctx, *tmp;
2448
2449 WARN_ON(!irqs_disabled());
2450
2451 list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
2452 if (cpuctx->jiffies_interval == 1 ||
2453 !(jiffies % cpuctx->jiffies_interval))
2454 perf_rotate_context(cpuctx);
2455 }
2456 }
2457
2458 static int event_enable_on_exec(struct perf_event *event,
2459 struct perf_event_context *ctx)
2460 {
2461 if (!event->attr.enable_on_exec)
2462 return 0;
2463
2464 event->attr.enable_on_exec = 0;
2465 if (event->state >= PERF_EVENT_STATE_INACTIVE)
2466 return 0;
2467
2468 __perf_event_mark_enabled(event);
2469
2470 return 1;
2471 }
2472
2473 /*
2474 * Enable all of a task's events that have been marked enable-on-exec.
2475 * This expects task == current.
2476 */
2477 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
2478 {
2479 struct perf_event *event;
2480 unsigned long flags;
2481 int enabled = 0;
2482 int ret;
2483
2484 local_irq_save(flags);
2485 if (!ctx || !ctx->nr_events)
2486 goto out;
2487
2488 /*
2489 * We must ctxsw out cgroup events to avoid conflict
2490 * when invoking perf_task_event_sched_in() later on
2491 * in this function. Otherwise we end up trying to
2492 * ctxswin cgroup events which are already scheduled
2493 * in.
2494 */
2495 perf_cgroup_sched_out(current, NULL);
2496
2497 raw_spin_lock(&ctx->lock);
2498 task_ctx_sched_out(ctx);
2499
2500 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2501 ret = event_enable_on_exec(event, ctx);
2502 if (ret)
2503 enabled = 1;
2504 }
2505
2506 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2507 ret = event_enable_on_exec(event, ctx);
2508 if (ret)
2509 enabled = 1;
2510 }
2511
2512 /*
2513 * Unclone this context if we enabled any event.
2514 */
2515 if (enabled)
2516 unclone_ctx(ctx);
2517
2518 raw_spin_unlock(&ctx->lock);
2519
2520 /*
2521 * Also calls ctxswin for cgroup events, if any:
2522 */
2523 perf_event_context_sched_in(ctx, ctx->task);
2524 out:
2525 local_irq_restore(flags);
2526 }
2527
2528 /*
2529 * Cross CPU call to read the hardware event
2530 */
2531 static void __perf_event_read(void *info)
2532 {
2533 struct perf_event *event = info;
2534 struct perf_event_context *ctx = event->ctx;
2535 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2536
2537 /*
2538 * If this is a task context, we need to check whether it is
2539 * the current task context of this cpu. If not it has been
2540 * scheduled out before the smp call arrived. In that case
2541 * event->count would have been updated to a recent sample
2542 * when the event was scheduled out.
2543 */
2544 if (ctx->task && cpuctx->task_ctx != ctx)
2545 return;
2546
2547 raw_spin_lock(&ctx->lock);
2548 if (ctx->is_active) {
2549 update_context_time(ctx);
2550 update_cgrp_time_from_event(event);
2551 }
2552 update_event_times(event);
2553 if (event->state == PERF_EVENT_STATE_ACTIVE)
2554 event->pmu->read(event);
2555 raw_spin_unlock(&ctx->lock);
2556 }
2557
2558 static inline u64 perf_event_count(struct perf_event *event)
2559 {
2560 return local64_read(&event->count) + atomic64_read(&event->child_count);
2561 }
2562
2563 static u64 perf_event_read(struct perf_event *event)
2564 {
2565 /*
2566 * If event is enabled and currently active on a CPU, update the
2567 * value in the event structure:
2568 */
2569 if (event->state == PERF_EVENT_STATE_ACTIVE) {
2570 smp_call_function_single(event->oncpu,
2571 __perf_event_read, event, 1);
2572 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2573 struct perf_event_context *ctx = event->ctx;
2574 unsigned long flags;
2575
2576 raw_spin_lock_irqsave(&ctx->lock, flags);
2577 /*
2578 * may read while context is not active
2579 * (e.g., thread is blocked), in that case
2580 * we cannot update context time
2581 */
2582 if (ctx->is_active) {
2583 update_context_time(ctx);
2584 update_cgrp_time_from_event(event);
2585 }
2586 update_event_times(event);
2587 raw_spin_unlock_irqrestore(&ctx->lock, flags);
2588 }
2589
2590 return perf_event_count(event);
2591 }
2592
2593 /*
2594 * Initialize the perf_event context in a task_struct:
2595 */
2596 static void __perf_event_init_context(struct perf_event_context *ctx)
2597 {
2598 raw_spin_lock_init(&ctx->lock);
2599 mutex_init(&ctx->mutex);
2600 INIT_LIST_HEAD(&ctx->pinned_groups);
2601 INIT_LIST_HEAD(&ctx->flexible_groups);
2602 INIT_LIST_HEAD(&ctx->event_list);
2603 atomic_set(&ctx->refcount, 1);
2604 }
2605
2606 static struct perf_event_context *
2607 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
2608 {
2609 struct perf_event_context *ctx;
2610
2611 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
2612 if (!ctx)
2613 return NULL;
2614
2615 __perf_event_init_context(ctx);
2616 if (task) {
2617 ctx->task = task;
2618 get_task_struct(task);
2619 }
2620 ctx->pmu = pmu;
2621
2622 return ctx;
2623 }
2624
2625 static struct task_struct *
2626 find_lively_task_by_vpid(pid_t vpid)
2627 {
2628 struct task_struct *task;
2629 int err;
2630
2631 rcu_read_lock();
2632 if (!vpid)
2633 task = current;
2634 else
2635 task = find_task_by_vpid(vpid);
2636 if (task)
2637 get_task_struct(task);
2638 rcu_read_unlock();
2639
2640 if (!task)
2641 return ERR_PTR(-ESRCH);
2642
2643 /* Reuse ptrace permission checks for now. */
2644 err = -EACCES;
2645 if (!ptrace_may_access(task, PTRACE_MODE_READ))
2646 goto errout;
2647
2648 return task;
2649 errout:
2650 put_task_struct(task);
2651 return ERR_PTR(err);
2652
2653 }
2654
2655 /*
2656 * Returns a matching context with refcount and pincount.
2657 */
2658 static struct perf_event_context *
2659 find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
2660 {
2661 struct perf_event_context *ctx;
2662 struct perf_cpu_context *cpuctx;
2663 unsigned long flags;
2664 int ctxn, err;
2665
2666 if (!task) {
2667 /* Must be root to operate on a CPU event: */
2668 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
2669 return ERR_PTR(-EACCES);
2670
2671 /*
2672 * We could be clever and allow to attach a event to an
2673 * offline CPU and activate it when the CPU comes up, but
2674 * that's for later.
2675 */
2676 if (!cpu_online(cpu))
2677 return ERR_PTR(-ENODEV);
2678
2679 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
2680 ctx = &cpuctx->ctx;
2681 get_ctx(ctx);
2682 ++ctx->pin_count;
2683
2684 return ctx;
2685 }
2686
2687 err = -EINVAL;
2688 ctxn = pmu->task_ctx_nr;
2689 if (ctxn < 0)
2690 goto errout;
2691
2692 retry:
2693 ctx = perf_lock_task_context(task, ctxn, &flags);
2694 if (ctx) {
2695 unclone_ctx(ctx);
2696 ++ctx->pin_count;
2697 raw_spin_unlock_irqrestore(&ctx->lock, flags);
2698 } else {
2699 ctx = alloc_perf_context(pmu, task);
2700 err = -ENOMEM;
2701 if (!ctx)
2702 goto errout;
2703
2704 err = 0;
2705 mutex_lock(&task->perf_event_mutex);
2706 /*
2707 * If it has already passed perf_event_exit_task().
2708 * we must see PF_EXITING, it takes this mutex too.
2709 */
2710 if (task->flags & PF_EXITING)
2711 err = -ESRCH;
2712 else if (task->perf_event_ctxp[ctxn])
2713 err = -EAGAIN;
2714 else {
2715 get_ctx(ctx);
2716 ++ctx->pin_count;
2717 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
2718 }
2719 mutex_unlock(&task->perf_event_mutex);
2720
2721 if (unlikely(err)) {
2722 put_ctx(ctx);
2723
2724 if (err == -EAGAIN)
2725 goto retry;
2726 goto errout;
2727 }
2728 }
2729
2730 return ctx;
2731
2732 errout:
2733 return ERR_PTR(err);
2734 }
2735
2736 static void perf_event_free_filter(struct perf_event *event);
2737
2738 static void free_event_rcu(struct rcu_head *head)
2739 {
2740 struct perf_event *event;
2741
2742 event = container_of(head, struct perf_event, rcu_head);
2743 if (event->ns)
2744 put_pid_ns(event->ns);
2745 perf_event_free_filter(event);
2746 kfree(event);
2747 }
2748
2749 static void ring_buffer_put(struct ring_buffer *rb);
2750
2751 static void free_event(struct perf_event *event)
2752 {
2753 irq_work_sync(&event->pending);
2754
2755 if (!event->parent) {
2756 if (event->attach_state & PERF_ATTACH_TASK)
2757 jump_label_dec(&perf_sched_events);
2758 if (event->attr.mmap || event->attr.mmap_data)
2759 atomic_dec(&nr_mmap_events);
2760 if (event->attr.comm)
2761 atomic_dec(&nr_comm_events);
2762 if (event->attr.task)
2763 atomic_dec(&nr_task_events);
2764 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
2765 put_callchain_buffers();
2766 if (is_cgroup_event(event)) {
2767 atomic_dec(&per_cpu(perf_cgroup_events, event->cpu));
2768 jump_label_dec(&perf_sched_events);
2769 }
2770 }
2771
2772 if (event->rb) {
2773 ring_buffer_put(event->rb);
2774 event->rb = NULL;
2775 }
2776
2777 if (is_cgroup_event(event))
2778 perf_detach_cgroup(event);
2779
2780 if (event->destroy)
2781 event->destroy(event);
2782
2783 if (event->ctx)
2784 put_ctx(event->ctx);
2785
2786 call_rcu(&event->rcu_head, free_event_rcu);
2787 }
2788
2789 int perf_event_release_kernel(struct perf_event *event)
2790 {
2791 struct perf_event_context *ctx = event->ctx;
2792
2793 WARN_ON_ONCE(ctx->parent_ctx);
2794 /*
2795 * There are two ways this annotation is useful:
2796 *
2797 * 1) there is a lock recursion from perf_event_exit_task
2798 * see the comment there.
2799 *
2800 * 2) there is a lock-inversion with mmap_sem through
2801 * perf_event_read_group(), which takes faults while
2802 * holding ctx->mutex, however this is called after
2803 * the last filedesc died, so there is no possibility
2804 * to trigger the AB-BA case.
2805 */
2806 mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
2807 raw_spin_lock_irq(&ctx->lock);
2808 perf_group_detach(event);
2809 raw_spin_unlock_irq(&ctx->lock);
2810 perf_remove_from_context(event);
2811 mutex_unlock(&ctx->mutex);
2812
2813 free_event(event);
2814
2815 return 0;
2816 }
2817 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
2818
2819 /*
2820 * Called when the last reference to the file is gone.
2821 */
2822 static int perf_release(struct inode *inode, struct file *file)
2823 {
2824 struct perf_event *event = file->private_data;
2825 struct task_struct *owner;
2826
2827 file->private_data = NULL;
2828
2829 rcu_read_lock();
2830 owner = ACCESS_ONCE(event->owner);
2831 /*
2832 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
2833 * !owner it means the list deletion is complete and we can indeed
2834 * free this event, otherwise we need to serialize on
2835 * owner->perf_event_mutex.
2836 */
2837 smp_read_barrier_depends();
2838 if (owner) {
2839 /*
2840 * Since delayed_put_task_struct() also drops the last
2841 * task reference we can safely take a new reference
2842 * while holding the rcu_read_lock().
2843 */
2844 get_task_struct(owner);
2845 }
2846 rcu_read_unlock();
2847
2848 if (owner) {
2849 mutex_lock(&owner->perf_event_mutex);
2850 /*
2851 * We have to re-check the event->owner field, if it is cleared
2852 * we raced with perf_event_exit_task(), acquiring the mutex
2853 * ensured they're done, and we can proceed with freeing the
2854 * event.
2855 */
2856 if (event->owner)
2857 list_del_init(&event->owner_entry);
2858 mutex_unlock(&owner->perf_event_mutex);
2859 put_task_struct(owner);
2860 }
2861
2862 return perf_event_release_kernel(event);
2863 }
2864
2865 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
2866 {
2867 struct perf_event *child;
2868 u64 total = 0;
2869
2870 *enabled = 0;
2871 *running = 0;
2872
2873 mutex_lock(&event->child_mutex);
2874 total += perf_event_read(event);
2875 *enabled += event->total_time_enabled +
2876 atomic64_read(&event->child_total_time_enabled);
2877 *running += event->total_time_running +
2878 atomic64_read(&event->child_total_time_running);
2879
2880 list_for_each_entry(child, &event->child_list, child_list) {
2881 total += perf_event_read(child);
2882 *enabled += child->total_time_enabled;
2883 *running += child->total_time_running;
2884 }
2885 mutex_unlock(&event->child_mutex);
2886
2887 return total;
2888 }
2889 EXPORT_SYMBOL_GPL(perf_event_read_value);
2890
2891 static int perf_event_read_group(struct perf_event *event,
2892 u64 read_format, char __user *buf)
2893 {
2894 struct perf_event *leader = event->group_leader, *sub;
2895 int n = 0, size = 0, ret = -EFAULT;
2896 struct perf_event_context *ctx = leader->ctx;
2897 u64 values[5];
2898 u64 count, enabled, running;
2899
2900 mutex_lock(&ctx->mutex);
2901 count = perf_event_read_value(leader, &enabled, &running);
2902
2903 values[n++] = 1 + leader->nr_siblings;
2904 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2905 values[n++] = enabled;
2906 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2907 values[n++] = running;
2908 values[n++] = count;
2909 if (read_format & PERF_FORMAT_ID)
2910 values[n++] = primary_event_id(leader);
2911
2912 size = n * sizeof(u64);
2913
2914 if (copy_to_user(buf, values, size))
2915 goto unlock;
2916
2917 ret = size;
2918
2919 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
2920 n = 0;
2921
2922 values[n++] = perf_event_read_value(sub, &enabled, &running);
2923 if (read_format & PERF_FORMAT_ID)
2924 values[n++] = primary_event_id(sub);
2925
2926 size = n * sizeof(u64);
2927
2928 if (copy_to_user(buf + ret, values, size)) {
2929 ret = -EFAULT;
2930 goto unlock;
2931 }
2932
2933 ret += size;
2934 }
2935 unlock:
2936 mutex_unlock(&ctx->mutex);
2937
2938 return ret;
2939 }
2940
2941 static int perf_event_read_one(struct perf_event *event,
2942 u64 read_format, char __user *buf)
2943 {
2944 u64 enabled, running;
2945 u64 values[4];
2946 int n = 0;
2947
2948 values[n++] = perf_event_read_value(event, &enabled, &running);
2949 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2950 values[n++] = enabled;
2951 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2952 values[n++] = running;
2953 if (read_format & PERF_FORMAT_ID)
2954 values[n++] = primary_event_id(event);
2955
2956 if (copy_to_user(buf, values, n * sizeof(u64)))
2957 return -EFAULT;
2958
2959 return n * sizeof(u64);
2960 }
2961
2962 /*
2963 * Read the performance event - simple non blocking version for now
2964 */
2965 static ssize_t
2966 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
2967 {
2968 u64 read_format = event->attr.read_format;
2969 int ret;
2970
2971 /*
2972 * Return end-of-file for a read on a event that is in
2973 * error state (i.e. because it was pinned but it couldn't be
2974 * scheduled on to the CPU at some point).
2975 */
2976 if (event->state == PERF_EVENT_STATE_ERROR)
2977 return 0;
2978
2979 if (count < event->read_size)
2980 return -ENOSPC;
2981
2982 WARN_ON_ONCE(event->ctx->parent_ctx);
2983 if (read_format & PERF_FORMAT_GROUP)
2984 ret = perf_event_read_group(event, read_format, buf);
2985 else
2986 ret = perf_event_read_one(event, read_format, buf);
2987
2988 return ret;
2989 }
2990
2991 static ssize_t
2992 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
2993 {
2994 struct perf_event *event = file->private_data;
2995
2996 return perf_read_hw(event, buf, count);
2997 }
2998
2999 static unsigned int perf_poll(struct file *file, poll_table *wait)
3000 {
3001 struct perf_event *event = file->private_data;
3002 struct ring_buffer *rb;
3003 unsigned int events = POLL_HUP;
3004
3005 /*
3006 * Race between perf_event_set_output() and perf_poll(): perf_poll()
3007 * grabs the rb reference but perf_event_set_output() overrides it.
3008 * Here is the timeline for two threads T1, T2:
3009 * t0: T1, rb = rcu_dereference(event->rb)
3010 * t1: T2, old_rb = event->rb
3011 * t2: T2, event->rb = new rb
3012 * t3: T2, ring_buffer_detach(old_rb)
3013 * t4: T1, ring_buffer_attach(rb1)
3014 * t5: T1, poll_wait(event->waitq)
3015 *
3016 * To avoid this problem, we grab mmap_mutex in perf_poll()
3017 * thereby ensuring that the assignment of the new ring buffer
3018 * and the detachment of the old buffer appear atomic to perf_poll()
3019 */
3020 mutex_lock(&event->mmap_mutex);
3021
3022 rcu_read_lock();
3023 rb = rcu_dereference(event->rb);
3024 if (rb) {
3025 ring_buffer_attach(event, rb);
3026 events = atomic_xchg(&rb->poll, 0);
3027 }
3028 rcu_read_unlock();
3029
3030 mutex_unlock(&event->mmap_mutex);
3031
3032 poll_wait(file, &event->waitq, wait);
3033
3034 return events;
3035 }
3036
3037 static void perf_event_reset(struct perf_event *event)
3038 {
3039 (void)perf_event_read(event);
3040 local64_set(&event->count, 0);
3041 perf_event_update_userpage(event);
3042 }
3043
3044 /*
3045 * Holding the top-level event's child_mutex means that any
3046 * descendant process that has inherited this event will block
3047 * in sync_child_event if it goes to exit, thus satisfying the
3048 * task existence requirements of perf_event_enable/disable.
3049 */
3050 static void perf_event_for_each_child(struct perf_event *event,
3051 void (*func)(struct perf_event *))
3052 {
3053 struct perf_event *child;
3054
3055 WARN_ON_ONCE(event->ctx->parent_ctx);
3056 mutex_lock(&event->child_mutex);
3057 func(event);
3058 list_for_each_entry(child, &event->child_list, child_list)
3059 func(child);
3060 mutex_unlock(&event->child_mutex);
3061 }
3062
3063 static void perf_event_for_each(struct perf_event *event,
3064 void (*func)(struct perf_event *))
3065 {
3066 struct perf_event_context *ctx = event->ctx;
3067 struct perf_event *sibling;
3068
3069 WARN_ON_ONCE(ctx->parent_ctx);
3070 mutex_lock(&ctx->mutex);
3071 event = event->group_leader;
3072
3073 perf_event_for_each_child(event, func);
3074 func(event);
3075 list_for_each_entry(sibling, &event->sibling_list, group_entry)
3076 perf_event_for_each_child(event, func);
3077 mutex_unlock(&ctx->mutex);
3078 }
3079
3080 static int perf_event_period(struct perf_event *event, u64 __user *arg)
3081 {
3082 struct perf_event_context *ctx = event->ctx;
3083 int ret = 0;
3084 u64 value;
3085
3086 if (!is_sampling_event(event))
3087 return -EINVAL;
3088
3089 if (copy_from_user(&value, arg, sizeof(value)))
3090 return -EFAULT;
3091
3092 if (!value)
3093 return -EINVAL;
3094
3095 raw_spin_lock_irq(&ctx->lock);
3096 if (event->attr.freq) {
3097 if (value > sysctl_perf_event_sample_rate) {
3098 ret = -EINVAL;
3099 goto unlock;
3100 }
3101
3102 event->attr.sample_freq = value;
3103 } else {
3104 event->attr.sample_period = value;
3105 event->hw.sample_period = value;
3106 }
3107 unlock:
3108 raw_spin_unlock_irq(&ctx->lock);
3109
3110 return ret;
3111 }
3112
3113 static const struct file_operations perf_fops;
3114
3115 static struct perf_event *perf_fget_light(int fd, int *fput_needed)
3116 {
3117 struct file *file;
3118
3119 file = fget_light(fd, fput_needed);
3120 if (!file)
3121 return ERR_PTR(-EBADF);
3122
3123 if (file->f_op != &perf_fops) {
3124 fput_light(file, *fput_needed);
3125 *fput_needed = 0;
3126 return ERR_PTR(-EBADF);
3127 }
3128
3129 return file->private_data;
3130 }
3131
3132 static int perf_event_set_output(struct perf_event *event,
3133 struct perf_event *output_event);
3134 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3135
3136 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3137 {
3138 struct perf_event *event = file->private_data;
3139 void (*func)(struct perf_event *);
3140 u32 flags = arg;
3141
3142 switch (cmd) {
3143 case PERF_EVENT_IOC_ENABLE:
3144 func = perf_event_enable;
3145 break;
3146 case PERF_EVENT_IOC_DISABLE:
3147 func = perf_event_disable;
3148 break;
3149 case PERF_EVENT_IOC_RESET:
3150 func = perf_event_reset;
3151 break;
3152
3153 case PERF_EVENT_IOC_REFRESH:
3154 return perf_event_refresh(event, arg);
3155
3156 case PERF_EVENT_IOC_PERIOD:
3157 return perf_event_period(event, (u64 __user *)arg);
3158
3159 case PERF_EVENT_IOC_SET_OUTPUT:
3160 {
3161 struct perf_event *output_event = NULL;
3162 int fput_needed = 0;
3163 int ret;
3164
3165 if (arg != -1) {
3166 output_event = perf_fget_light(arg, &fput_needed);
3167 if (IS_ERR(output_event))
3168 return PTR_ERR(output_event);
3169 }
3170
3171 ret = perf_event_set_output(event, output_event);
3172 if (output_event)
3173 fput_light(output_event->filp, fput_needed);
3174
3175 return ret;
3176 }
3177
3178 case PERF_EVENT_IOC_SET_FILTER:
3179 return perf_event_set_filter(event, (void __user *)arg);
3180
3181 default:
3182 return -ENOTTY;
3183 }
3184
3185 if (flags & PERF_IOC_FLAG_GROUP)
3186 perf_event_for_each(event, func);
3187 else
3188 perf_event_for_each_child(event, func);
3189
3190 return 0;
3191 }
3192
3193 int perf_event_task_enable(void)
3194 {
3195 struct perf_event *event;
3196
3197 mutex_lock(&current->perf_event_mutex);
3198 list_for_each_entry(event, &current->perf_event_list, owner_entry)
3199 perf_event_for_each_child(event, perf_event_enable);
3200 mutex_unlock(&current->perf_event_mutex);
3201
3202 return 0;
3203 }
3204
3205 int perf_event_task_disable(void)
3206 {
3207 struct perf_event *event;
3208
3209 mutex_lock(&current->perf_event_mutex);
3210 list_for_each_entry(event, &current->perf_event_list, owner_entry)
3211 perf_event_for_each_child(event, perf_event_disable);
3212 mutex_unlock(&current->perf_event_mutex);
3213
3214 return 0;
3215 }
3216
3217 #ifndef PERF_EVENT_INDEX_OFFSET
3218 # define PERF_EVENT_INDEX_OFFSET 0
3219 #endif
3220
3221 static int perf_event_index(struct perf_event *event)
3222 {
3223 if (event->hw.state & PERF_HES_STOPPED)
3224 return 0;
3225
3226 if (event->state != PERF_EVENT_STATE_ACTIVE)
3227 return 0;
3228
3229 return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
3230 }
3231
3232 static void calc_timer_values(struct perf_event *event,
3233 u64 *enabled,
3234 u64 *running)
3235 {
3236 u64 now, ctx_time;
3237
3238 now = perf_clock();
3239 ctx_time = event->shadow_ctx_time + now;
3240 *enabled = ctx_time - event->tstamp_enabled;
3241 *running = ctx_time - event->tstamp_running;
3242 }
3243
3244 /*
3245 * Callers need to ensure there can be no nesting of this function, otherwise
3246 * the seqlock logic goes bad. We can not serialize this because the arch
3247 * code calls this from NMI context.
3248 */
3249 void perf_event_update_userpage(struct perf_event *event)
3250 {
3251 struct perf_event_mmap_page *userpg;
3252 struct ring_buffer *rb;
3253 u64 enabled, running;
3254
3255 rcu_read_lock();
3256 /*
3257 * compute total_time_enabled, total_time_running
3258 * based on snapshot values taken when the event
3259 * was last scheduled in.
3260 *
3261 * we cannot simply called update_context_time()
3262 * because of locking issue as we can be called in
3263 * NMI context
3264 */
3265 calc_timer_values(event, &enabled, &running);
3266 rb = rcu_dereference(event->rb);
3267 if (!rb)
3268 goto unlock;
3269
3270 userpg = rb->user_page;
3271
3272 /*
3273 * Disable preemption so as to not let the corresponding user-space
3274 * spin too long if we get preempted.
3275 */
3276 preempt_disable();
3277 ++userpg->lock;
3278 barrier();
3279 userpg->index = perf_event_index(event);
3280 userpg->offset = perf_event_count(event);
3281 if (event->state == PERF_EVENT_STATE_ACTIVE)
3282 userpg->offset -= local64_read(&event->hw.prev_count);
3283
3284 userpg->time_enabled = enabled +
3285 atomic64_read(&event->child_total_time_enabled);
3286
3287 userpg->time_running = running +
3288 atomic64_read(&event->child_total_time_running);
3289
3290 barrier();
3291 ++userpg->lock;
3292 preempt_enable();
3293 unlock:
3294 rcu_read_unlock();
3295 }
3296
3297 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
3298 {
3299 struct perf_event *event = vma->vm_file->private_data;
3300 struct ring_buffer *rb;
3301 int ret = VM_FAULT_SIGBUS;
3302
3303 if (vmf->flags & FAULT_FLAG_MKWRITE) {
3304 if (vmf->pgoff == 0)
3305 ret = 0;
3306 return ret;
3307 }
3308
3309 rcu_read_lock();
3310 rb = rcu_dereference(event->rb);
3311 if (!rb)
3312 goto unlock;
3313
3314 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
3315 goto unlock;
3316
3317 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
3318 if (!vmf->page)
3319 goto unlock;
3320
3321 get_page(vmf->page);
3322 vmf->page->mapping = vma->vm_file->f_mapping;
3323 vmf->page->index = vmf->pgoff;
3324
3325 ret = 0;
3326 unlock:
3327 rcu_read_unlock();
3328
3329 return ret;
3330 }
3331
3332 static void ring_buffer_attach(struct perf_event *event,
3333 struct ring_buffer *rb)
3334 {
3335 unsigned long flags;
3336
3337 if (!list_empty(&event->rb_entry))
3338 return;
3339
3340 spin_lock_irqsave(&rb->event_lock, flags);
3341 if (!list_empty(&event->rb_entry))
3342 goto unlock;
3343
3344 list_add(&event->rb_entry, &rb->event_list);
3345 unlock:
3346 spin_unlock_irqrestore(&rb->event_lock, flags);
3347 }
3348
3349 static void ring_buffer_detach(struct perf_event *event,
3350 struct ring_buffer *rb)
3351 {
3352 unsigned long flags;
3353
3354 if (list_empty(&event->rb_entry))
3355 return;
3356
3357 spin_lock_irqsave(&rb->event_lock, flags);
3358 list_del_init(&event->rb_entry);
3359 wake_up_all(&event->waitq);
3360 spin_unlock_irqrestore(&rb->event_lock, flags);
3361 }
3362
3363 static void ring_buffer_wakeup(struct perf_event *event)
3364 {
3365 struct ring_buffer *rb;
3366
3367 rcu_read_lock();
3368 rb = rcu_dereference(event->rb);
3369 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
3370 wake_up_all(&event->waitq);
3371 }
3372 rcu_read_unlock();
3373 }
3374
3375 static void rb_free_rcu(struct rcu_head *rcu_head)
3376 {
3377 struct ring_buffer *rb;
3378
3379 rb = container_of(rcu_head, struct ring_buffer, rcu_head);
3380 rb_free(rb);
3381 }
3382
3383 static struct ring_buffer *ring_buffer_get(struct perf_event *event)
3384 {
3385 struct ring_buffer *rb;
3386
3387 rcu_read_lock();
3388 rb = rcu_dereference(event->rb);
3389 if (rb) {
3390 if (!atomic_inc_not_zero(&rb->refcount))
3391 rb = NULL;
3392 }
3393 rcu_read_unlock();
3394
3395 return rb;
3396 }
3397
3398 static void ring_buffer_put(struct ring_buffer *rb)
3399 {
3400 struct perf_event *event, *n;
3401 unsigned long flags;
3402
3403 if (!atomic_dec_and_test(&rb->refcount))
3404 return;
3405
3406 spin_lock_irqsave(&rb->event_lock, flags);
3407 list_for_each_entry_safe(event, n, &rb->event_list, rb_entry) {
3408 list_del_init(&event->rb_entry);
3409 wake_up_all(&event->waitq);
3410 }
3411 spin_unlock_irqrestore(&rb->event_lock, flags);
3412
3413 call_rcu(&rb->rcu_head, rb_free_rcu);
3414 }
3415
3416 static void perf_mmap_open(struct vm_area_struct *vma)
3417 {
3418 struct perf_event *event = vma->vm_file->private_data;
3419
3420 atomic_inc(&event->mmap_count);
3421 }
3422
3423 static void perf_mmap_close(struct vm_area_struct *vma)
3424 {
3425 struct perf_event *event = vma->vm_file->private_data;
3426
3427 if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
3428 unsigned long size = perf_data_size(event->rb);
3429 struct user_struct *user = event->mmap_user;
3430 struct ring_buffer *rb = event->rb;
3431
3432 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
3433 vma->vm_mm->pinned_vm -= event->mmap_locked;
3434 rcu_assign_pointer(event->rb, NULL);
3435 ring_buffer_detach(event, rb);
3436 mutex_unlock(&event->mmap_mutex);
3437
3438 ring_buffer_put(rb);
3439 free_uid(user);
3440 }
3441 }
3442
3443 static const struct vm_operations_struct perf_mmap_vmops = {
3444 .open = perf_mmap_open,
3445 .close = perf_mmap_close,
3446 .fault = perf_mmap_fault,
3447 .page_mkwrite = perf_mmap_fault,
3448 };
3449
3450 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
3451 {
3452 struct perf_event *event = file->private_data;
3453 unsigned long user_locked, user_lock_limit;
3454 struct user_struct *user = current_user();
3455 unsigned long locked, lock_limit;
3456 struct ring_buffer *rb;
3457 unsigned long vma_size;
3458 unsigned long nr_pages;
3459 long user_extra, extra;
3460 int ret = 0, flags = 0;
3461
3462 /*
3463 * Don't allow mmap() of inherited per-task counters. This would
3464 * create a performance issue due to all children writing to the
3465 * same rb.
3466 */
3467 if (event->cpu == -1 && event->attr.inherit)
3468 return -EINVAL;
3469
3470 if (!(vma->vm_flags & VM_SHARED))
3471 return -EINVAL;
3472
3473 vma_size = vma->vm_end - vma->vm_start;
3474 nr_pages = (vma_size / PAGE_SIZE) - 1;
3475
3476 /*
3477 * If we have rb pages ensure they're a power-of-two number, so we
3478 * can do bitmasks instead of modulo.
3479 */
3480 if (nr_pages != 0 && !is_power_of_2(nr_pages))
3481 return -EINVAL;
3482
3483 if (vma_size != PAGE_SIZE * (1 + nr_pages))
3484 return -EINVAL;
3485
3486 if (vma->vm_pgoff != 0)
3487 return -EINVAL;
3488
3489 WARN_ON_ONCE(event->ctx->parent_ctx);
3490 mutex_lock(&event->mmap_mutex);
3491 if (event->rb) {
3492 if (event->rb->nr_pages == nr_pages)
3493 atomic_inc(&event->rb->refcount);
3494 else
3495 ret = -EINVAL;
3496 goto unlock;
3497 }
3498
3499 user_extra = nr_pages + 1;
3500 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
3501
3502 /*
3503 * Increase the limit linearly with more CPUs:
3504 */
3505 user_lock_limit *= num_online_cpus();
3506
3507 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
3508
3509 extra = 0;
3510 if (user_locked > user_lock_limit)
3511 extra = user_locked - user_lock_limit;
3512
3513 lock_limit = rlimit(RLIMIT_MEMLOCK);
3514 lock_limit >>= PAGE_SHIFT;
3515 locked = vma->vm_mm->pinned_vm + extra;
3516
3517 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
3518 !capable(CAP_IPC_LOCK)) {
3519 ret = -EPERM;
3520 goto unlock;
3521 }
3522
3523 WARN_ON(event->rb);
3524
3525 if (vma->vm_flags & VM_WRITE)
3526 flags |= RING_BUFFER_WRITABLE;
3527
3528 rb = rb_alloc(nr_pages,
3529 event->attr.watermark ? event->attr.wakeup_watermark : 0,
3530 event->cpu, flags);
3531
3532 if (!rb) {
3533 ret = -ENOMEM;
3534 goto unlock;
3535 }
3536 rcu_assign_pointer(event->rb, rb);
3537
3538 atomic_long_add(user_extra, &user->locked_vm);
3539 event->mmap_locked = extra;
3540 event->mmap_user = get_current_user();
3541 vma->vm_mm->pinned_vm += event->mmap_locked;
3542
3543 unlock:
3544 if (!ret)
3545 atomic_inc(&event->mmap_count);
3546 mutex_unlock(&event->mmap_mutex);
3547
3548 vma->vm_flags |= VM_RESERVED;
3549 vma->vm_ops = &perf_mmap_vmops;
3550
3551 return ret;
3552 }
3553
3554 static int perf_fasync(int fd, struct file *filp, int on)
3555 {
3556 struct inode *inode = filp->f_path.dentry->d_inode;
3557 struct perf_event *event = filp->private_data;
3558 int retval;
3559
3560 mutex_lock(&inode->i_mutex);
3561 retval = fasync_helper(fd, filp, on, &event->fasync);
3562 mutex_unlock(&inode->i_mutex);
3563
3564 if (retval < 0)
3565 return retval;
3566
3567 return 0;
3568 }
3569
3570 static const struct file_operations perf_fops = {
3571 .llseek = no_llseek,
3572 .release = perf_release,
3573 .read = perf_read,
3574 .poll = perf_poll,
3575 .unlocked_ioctl = perf_ioctl,
3576 .compat_ioctl = perf_ioctl,
3577 .mmap = perf_mmap,
3578 .fasync = perf_fasync,
3579 };
3580
3581 /*
3582 * Perf event wakeup
3583 *
3584 * If there's data, ensure we set the poll() state and publish everything
3585 * to user-space before waking everybody up.
3586 */
3587
3588 void perf_event_wakeup(struct perf_event *event)
3589 {
3590 ring_buffer_wakeup(event);
3591
3592 if (event->pending_kill) {
3593 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
3594 event->pending_kill = 0;
3595 }
3596 }
3597
3598 static void perf_pending_event(struct irq_work *entry)
3599 {
3600 struct perf_event *event = container_of(entry,
3601 struct perf_event, pending);
3602
3603 if (event->pending_disable) {
3604 event->pending_disable = 0;
3605 __perf_event_disable(event);
3606 }
3607
3608 if (event->pending_wakeup) {
3609 event->pending_wakeup = 0;
3610 perf_event_wakeup(event);
3611 }
3612 }
3613
3614 /*
3615 * We assume there is only KVM supporting the callbacks.
3616 * Later on, we might change it to a list if there is
3617 * another virtualization implementation supporting the callbacks.
3618 */
3619 struct perf_guest_info_callbacks *perf_guest_cbs;
3620
3621 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3622 {
3623 perf_guest_cbs = cbs;
3624 return 0;
3625 }
3626 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
3627
3628 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3629 {
3630 perf_guest_cbs = NULL;
3631 return 0;
3632 }
3633 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
3634
3635 static void __perf_event_header__init_id(struct perf_event_header *header,
3636 struct perf_sample_data *data,
3637 struct perf_event *event)
3638 {
3639 u64 sample_type = event->attr.sample_type;
3640
3641 data->type = sample_type;
3642 header->size += event->id_header_size;
3643
3644 if (sample_type & PERF_SAMPLE_TID) {
3645 /* namespace issues */
3646 data->tid_entry.pid = perf_event_pid(event, current);
3647 data->tid_entry.tid = perf_event_tid(event, current);
3648 }
3649
3650 if (sample_type & PERF_SAMPLE_TIME)
3651 data->time = perf_clock();
3652
3653 if (sample_type & PERF_SAMPLE_ID)
3654 data->id = primary_event_id(event);
3655
3656 if (sample_type & PERF_SAMPLE_STREAM_ID)
3657 data->stream_id = event->id;
3658
3659 if (sample_type & PERF_SAMPLE_CPU) {
3660 data->cpu_entry.cpu = raw_smp_processor_id();
3661 data->cpu_entry.reserved = 0;
3662 }
3663 }
3664
3665 void perf_event_header__init_id(struct perf_event_header *header,
3666 struct perf_sample_data *data,
3667 struct perf_event *event)
3668 {
3669 if (event->attr.sample_id_all)
3670 __perf_event_header__init_id(header, data, event);
3671 }
3672
3673 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
3674 struct perf_sample_data *data)
3675 {
3676 u64 sample_type = data->type;
3677
3678 if (sample_type & PERF_SAMPLE_TID)
3679 perf_output_put(handle, data->tid_entry);
3680
3681 if (sample_type & PERF_SAMPLE_TIME)
3682 perf_output_put(handle, data->time);
3683
3684 if (sample_type & PERF_SAMPLE_ID)
3685 perf_output_put(handle, data->id);
3686
3687 if (sample_type & PERF_SAMPLE_STREAM_ID)
3688 perf_output_put(handle, data->stream_id);
3689
3690 if (sample_type & PERF_SAMPLE_CPU)
3691 perf_output_put(handle, data->cpu_entry);
3692 }
3693
3694 void perf_event__output_id_sample(struct perf_event *event,
3695 struct perf_output_handle *handle,
3696 struct perf_sample_data *sample)
3697 {
3698 if (event->attr.sample_id_all)
3699 __perf_event__output_id_sample(handle, sample);
3700 }
3701
3702 static void perf_output_read_one(struct perf_output_handle *handle,
3703 struct perf_event *event,
3704 u64 enabled, u64 running)
3705 {
3706 u64 read_format = event->attr.read_format;
3707 u64 values[4];
3708 int n = 0;
3709
3710 values[n++] = perf_event_count(event);
3711 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3712 values[n++] = enabled +
3713 atomic64_read(&event->child_total_time_enabled);
3714 }
3715 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3716 values[n++] = running +
3717 atomic64_read(&event->child_total_time_running);
3718 }
3719 if (read_format & PERF_FORMAT_ID)
3720 values[n++] = primary_event_id(event);
3721
3722 __output_copy(handle, values, n * sizeof(u64));
3723 }
3724
3725 /*
3726 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3727 */
3728 static void perf_output_read_group(struct perf_output_handle *handle,
3729 struct perf_event *event,
3730 u64 enabled, u64 running)
3731 {
3732 struct perf_event *leader = event->group_leader, *sub;
3733 u64 read_format = event->attr.read_format;
3734 u64 values[5];
3735 int n = 0;
3736
3737 values[n++] = 1 + leader->nr_siblings;
3738
3739 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3740 values[n++] = enabled;
3741
3742 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3743 values[n++] = running;
3744
3745 if (leader != event)
3746 leader->pmu->read(leader);
3747
3748 values[n++] = perf_event_count(leader);
3749 if (read_format & PERF_FORMAT_ID)
3750 values[n++] = primary_event_id(leader);
3751
3752 __output_copy(handle, values, n * sizeof(u64));
3753
3754 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3755 n = 0;
3756
3757 if (sub != event)
3758 sub->pmu->read(sub);
3759
3760 values[n++] = perf_event_count(sub);
3761 if (read_format & PERF_FORMAT_ID)
3762 values[n++] = primary_event_id(sub);
3763
3764 __output_copy(handle, values, n * sizeof(u64));
3765 }
3766 }
3767
3768 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
3769 PERF_FORMAT_TOTAL_TIME_RUNNING)
3770
3771 static void perf_output_read(struct perf_output_handle *handle,
3772 struct perf_event *event)
3773 {
3774 u64 enabled = 0, running = 0;
3775 u64 read_format = event->attr.read_format;
3776
3777 /*
3778 * compute total_time_enabled, total_time_running
3779 * based on snapshot values taken when the event
3780 * was last scheduled in.
3781 *
3782 * we cannot simply called update_context_time()
3783 * because of locking issue as we are called in
3784 * NMI context
3785 */
3786 if (read_format & PERF_FORMAT_TOTAL_TIMES)
3787 calc_timer_values(event, &enabled, &running);
3788
3789 if (event->attr.read_format & PERF_FORMAT_GROUP)
3790 perf_output_read_group(handle, event, enabled, running);
3791 else
3792 perf_output_read_one(handle, event, enabled, running);
3793 }
3794
3795 void perf_output_sample(struct perf_output_handle *handle,
3796 struct perf_event_header *header,
3797 struct perf_sample_data *data,
3798 struct perf_event *event)
3799 {
3800 u64 sample_type = data->type;
3801
3802 perf_output_put(handle, *header);
3803
3804 if (sample_type & PERF_SAMPLE_IP)
3805 perf_output_put(handle, data->ip);
3806
3807 if (sample_type & PERF_SAMPLE_TID)
3808 perf_output_put(handle, data->tid_entry);
3809
3810 if (sample_type & PERF_SAMPLE_TIME)
3811 perf_output_put(handle, data->time);
3812
3813 if (sample_type & PERF_SAMPLE_ADDR)
3814 perf_output_put(handle, data->addr);
3815
3816 if (sample_type & PERF_SAMPLE_ID)
3817 perf_output_put(handle, data->id);
3818
3819 if (sample_type & PERF_SAMPLE_STREAM_ID)
3820 perf_output_put(handle, data->stream_id);
3821
3822 if (sample_type & PERF_SAMPLE_CPU)
3823 perf_output_put(handle, data->cpu_entry);
3824
3825 if (sample_type & PERF_SAMPLE_PERIOD)
3826 perf_output_put(handle, data->period);
3827
3828 if (sample_type & PERF_SAMPLE_READ)
3829 perf_output_read(handle, event);
3830
3831 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3832 if (data->callchain) {
3833 int size = 1;
3834
3835 if (data->callchain)
3836 size += data->callchain->nr;
3837
3838 size *= sizeof(u64);
3839
3840 __output_copy(handle, data->callchain, size);
3841 } else {
3842 u64 nr = 0;
3843 perf_output_put(handle, nr);
3844 }
3845 }
3846
3847 if (sample_type & PERF_SAMPLE_RAW) {
3848 if (data->raw) {
3849 perf_output_put(handle, data->raw->size);
3850 __output_copy(handle, data->raw->data,
3851 data->raw->size);
3852 } else {
3853 struct {
3854 u32 size;
3855 u32 data;
3856 } raw = {
3857 .size = sizeof(u32),
3858 .data = 0,
3859 };
3860 perf_output_put(handle, raw);
3861 }
3862 }
3863
3864 if (!event->attr.watermark) {
3865 int wakeup_events = event->attr.wakeup_events;
3866
3867 if (wakeup_events) {
3868 struct ring_buffer *rb = handle->rb;
3869 int events = local_inc_return(&rb->events);
3870
3871 if (events >= wakeup_events) {
3872 local_sub(wakeup_events, &rb->events);
3873 local_inc(&rb->wakeup);
3874 }
3875 }
3876 }
3877 }
3878
3879 void perf_prepare_sample(struct perf_event_header *header,
3880 struct perf_sample_data *data,
3881 struct perf_event *event,
3882 struct pt_regs *regs)
3883 {
3884 u64 sample_type = event->attr.sample_type;
3885
3886 header->type = PERF_RECORD_SAMPLE;
3887 header->size = sizeof(*header) + event->header_size;
3888
3889 header->misc = 0;
3890 header->misc |= perf_misc_flags(regs);
3891
3892 __perf_event_header__init_id(header, data, event);
3893
3894 if (sample_type & PERF_SAMPLE_IP)
3895 data->ip = perf_instruction_pointer(regs);
3896
3897 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3898 int size = 1;
3899
3900 data->callchain = perf_callchain(regs);
3901
3902 if (data->callchain)
3903 size += data->callchain->nr;
3904
3905 header->size += size * sizeof(u64);
3906 }
3907
3908 if (sample_type & PERF_SAMPLE_RAW) {
3909 int size = sizeof(u32);
3910
3911 if (data->raw)
3912 size += data->raw->size;
3913 else
3914 size += sizeof(u32);
3915
3916 WARN_ON_ONCE(size & (sizeof(u64)-1));
3917 header->size += size;
3918 }
3919 }
3920
3921 static void perf_event_output(struct perf_event *event,
3922 struct perf_sample_data *data,
3923 struct pt_regs *regs)
3924 {
3925 struct perf_output_handle handle;
3926 struct perf_event_header header;
3927
3928 /* protect the callchain buffers */
3929 rcu_read_lock();
3930
3931 perf_prepare_sample(&header, data, event, regs);
3932
3933 if (perf_output_begin(&handle, event, header.size))
3934 goto exit;
3935
3936 perf_output_sample(&handle, &header, data, event);
3937
3938 perf_output_end(&handle);
3939
3940 exit:
3941 rcu_read_unlock();
3942 }
3943
3944 /*
3945 * read event_id
3946 */
3947
3948 struct perf_read_event {
3949 struct perf_event_header header;
3950
3951 u32 pid;
3952 u32 tid;
3953 };
3954
3955 static void
3956 perf_event_read_event(struct perf_event *event,
3957 struct task_struct *task)
3958 {
3959 struct perf_output_handle handle;
3960 struct perf_sample_data sample;
3961 struct perf_read_event read_event = {
3962 .header = {
3963 .type = PERF_RECORD_READ,
3964 .misc = 0,
3965 .size = sizeof(read_event) + event->read_size,
3966 },
3967 .pid = perf_event_pid(event, task),
3968 .tid = perf_event_tid(event, task),
3969 };
3970 int ret;
3971
3972 perf_event_header__init_id(&read_event.header, &sample, event);
3973 ret = perf_output_begin(&handle, event, read_event.header.size);
3974 if (ret)
3975 return;
3976
3977 perf_output_put(&handle, read_event);
3978 perf_output_read(&handle, event);
3979 perf_event__output_id_sample(event, &handle, &sample);
3980
3981 perf_output_end(&handle);
3982 }
3983
3984 /*
3985 * task tracking -- fork/exit
3986 *
3987 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
3988 */
3989
3990 struct perf_task_event {
3991 struct task_struct *task;
3992 struct perf_event_context *task_ctx;
3993
3994 struct {
3995 struct perf_event_header header;
3996
3997 u32 pid;
3998 u32 ppid;
3999 u32 tid;
4000 u32 ptid;
4001 u64 time;
4002 } event_id;
4003 };
4004
4005 static void perf_event_task_output(struct perf_event *event,
4006 struct perf_task_event *task_event)
4007 {
4008 struct perf_output_handle handle;
4009 struct perf_sample_data sample;
4010 struct task_struct *task = task_event->task;
4011 int ret, size = task_event->event_id.header.size;
4012
4013 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
4014
4015 ret = perf_output_begin(&handle, event,
4016 task_event->event_id.header.size);
4017 if (ret)
4018 goto out;
4019
4020 task_event->event_id.pid = perf_event_pid(event, task);
4021 task_event->event_id.ppid = perf_event_pid(event, current);
4022
4023 task_event->event_id.tid = perf_event_tid(event, task);
4024 task_event->event_id.ptid = perf_event_tid(event, current);
4025
4026 perf_output_put(&handle, task_event->event_id);
4027
4028 perf_event__output_id_sample(event, &handle, &sample);
4029
4030 perf_output_end(&handle);
4031 out:
4032 task_event->event_id.header.size = size;
4033 }
4034
4035 static int perf_event_task_match(struct perf_event *event)
4036 {
4037 if (event->state < PERF_EVENT_STATE_INACTIVE)
4038 return 0;
4039
4040 if (!event_filter_match(event))
4041 return 0;
4042
4043 if (event->attr.comm || event->attr.mmap ||
4044 event->attr.mmap_data || event->attr.task)
4045 return 1;
4046
4047 return 0;
4048 }
4049
4050 static void perf_event_task_ctx(struct perf_event_context *ctx,
4051 struct perf_task_event *task_event)
4052 {
4053 struct perf_event *event;
4054
4055 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4056 if (perf_event_task_match(event))
4057 perf_event_task_output(event, task_event);
4058 }
4059 }
4060
4061 static void perf_event_task_event(struct perf_task_event *task_event)
4062 {
4063 struct perf_cpu_context *cpuctx;
4064 struct perf_event_context *ctx;
4065 struct pmu *pmu;
4066 int ctxn;
4067
4068 rcu_read_lock();
4069 list_for_each_entry_rcu(pmu, &pmus, entry) {
4070 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4071 if (cpuctx->active_pmu != pmu)
4072 goto next;
4073 perf_event_task_ctx(&cpuctx->ctx, task_event);
4074
4075 ctx = task_event->task_ctx;
4076 if (!ctx) {
4077 ctxn = pmu->task_ctx_nr;
4078 if (ctxn < 0)
4079 goto next;
4080 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4081 }
4082 if (ctx)
4083 perf_event_task_ctx(ctx, task_event);
4084 next:
4085 put_cpu_ptr(pmu->pmu_cpu_context);
4086 }
4087 rcu_read_unlock();
4088 }
4089
4090 static void perf_event_task(struct task_struct *task,
4091 struct perf_event_context *task_ctx,
4092 int new)
4093 {
4094 struct perf_task_event task_event;
4095
4096 if (!atomic_read(&nr_comm_events) &&
4097 !atomic_read(&nr_mmap_events) &&
4098 !atomic_read(&nr_task_events))
4099 return;
4100
4101 task_event = (struct perf_task_event){
4102 .task = task,
4103 .task_ctx = task_ctx,
4104 .event_id = {
4105 .header = {
4106 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
4107 .misc = 0,
4108 .size = sizeof(task_event.event_id),
4109 },
4110 /* .pid */
4111 /* .ppid */
4112 /* .tid */
4113 /* .ptid */
4114 .time = perf_clock(),
4115 },
4116 };
4117
4118 perf_event_task_event(&task_event);
4119 }
4120
4121 void perf_event_fork(struct task_struct *task)
4122 {
4123 perf_event_task(task, NULL, 1);
4124 }
4125
4126 /*
4127 * comm tracking
4128 */
4129
4130 struct perf_comm_event {
4131 struct task_struct *task;
4132 char *comm;
4133 int comm_size;
4134
4135 struct {
4136 struct perf_event_header header;
4137
4138 u32 pid;
4139 u32 tid;
4140 } event_id;
4141 };
4142
4143 static void perf_event_comm_output(struct perf_event *event,
4144 struct perf_comm_event *comm_event)
4145 {
4146 struct perf_output_handle handle;
4147 struct perf_sample_data sample;
4148 int size = comm_event->event_id.header.size;
4149 int ret;
4150
4151 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
4152 ret = perf_output_begin(&handle, event,
4153 comm_event->event_id.header.size);
4154
4155 if (ret)
4156 goto out;
4157
4158 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
4159 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
4160
4161 perf_output_put(&handle, comm_event->event_id);
4162 __output_copy(&handle, comm_event->comm,
4163 comm_event->comm_size);
4164
4165 perf_event__output_id_sample(event, &handle, &sample);
4166
4167 perf_output_end(&handle);
4168 out:
4169 comm_event->event_id.header.size = size;
4170 }
4171
4172 static int perf_event_comm_match(struct perf_event *event)
4173 {
4174 if (event->state < PERF_EVENT_STATE_INACTIVE)
4175 return 0;
4176
4177 if (!event_filter_match(event))
4178 return 0;
4179
4180 if (event->attr.comm)
4181 return 1;
4182
4183 return 0;
4184 }
4185
4186 static void perf_event_comm_ctx(struct perf_event_context *ctx,
4187 struct perf_comm_event *comm_event)
4188 {
4189 struct perf_event *event;
4190
4191 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4192 if (perf_event_comm_match(event))
4193 perf_event_comm_output(event, comm_event);
4194 }
4195 }
4196
4197 static void perf_event_comm_event(struct perf_comm_event *comm_event)
4198 {
4199 struct perf_cpu_context *cpuctx;
4200 struct perf_event_context *ctx;
4201 char comm[TASK_COMM_LEN];
4202 unsigned int size;
4203 struct pmu *pmu;
4204 int ctxn;
4205
4206 memset(comm, 0, sizeof(comm));
4207 strlcpy(comm, comm_event->task->comm, sizeof(comm));
4208 size = ALIGN(strlen(comm)+1, sizeof(u64));
4209
4210 comm_event->comm = comm;
4211 comm_event->comm_size = size;
4212
4213 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
4214 rcu_read_lock();
4215 list_for_each_entry_rcu(pmu, &pmus, entry) {
4216 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4217 if (cpuctx->active_pmu != pmu)
4218 goto next;
4219 perf_event_comm_ctx(&cpuctx->ctx, comm_event);
4220
4221 ctxn = pmu->task_ctx_nr;
4222 if (ctxn < 0)
4223 goto next;
4224
4225 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4226 if (ctx)
4227 perf_event_comm_ctx(ctx, comm_event);
4228 next:
4229 put_cpu_ptr(pmu->pmu_cpu_context);
4230 }
4231 rcu_read_unlock();
4232 }
4233
4234 void perf_event_comm(struct task_struct *task)
4235 {
4236 struct perf_comm_event comm_event;
4237 struct perf_event_context *ctx;
4238 int ctxn;
4239
4240 for_each_task_context_nr(ctxn) {
4241 ctx = task->perf_event_ctxp[ctxn];
4242 if (!ctx)
4243 continue;
4244
4245 perf_event_enable_on_exec(ctx);
4246 }
4247
4248 if (!atomic_read(&nr_comm_events))
4249 return;
4250
4251 comm_event = (struct perf_comm_event){
4252 .task = task,
4253 /* .comm */
4254 /* .comm_size */
4255 .event_id = {
4256 .header = {
4257 .type = PERF_RECORD_COMM,
4258 .misc = 0,
4259 /* .size */
4260 },
4261 /* .pid */
4262 /* .tid */
4263 },
4264 };
4265
4266 perf_event_comm_event(&comm_event);
4267 }
4268
4269 /*
4270 * mmap tracking
4271 */
4272
4273 struct perf_mmap_event {
4274 struct vm_area_struct *vma;
4275
4276 const char *file_name;
4277 int file_size;
4278
4279 struct {
4280 struct perf_event_header header;
4281
4282 u32 pid;
4283 u32 tid;
4284 u64 start;
4285 u64 len;
4286 u64 pgoff;
4287 } event_id;
4288 };
4289
4290 static void perf_event_mmap_output(struct perf_event *event,
4291 struct perf_mmap_event *mmap_event)
4292 {
4293 struct perf_output_handle handle;
4294 struct perf_sample_data sample;
4295 int size = mmap_event->event_id.header.size;
4296 int ret;
4297
4298 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
4299 ret = perf_output_begin(&handle, event,
4300 mmap_event->event_id.header.size);
4301 if (ret)
4302 goto out;
4303
4304 mmap_event->event_id.pid = perf_event_pid(event, current);
4305 mmap_event->event_id.tid = perf_event_tid(event, current);
4306
4307 perf_output_put(&handle, mmap_event->event_id);
4308 __output_copy(&handle, mmap_event->file_name,
4309 mmap_event->file_size);
4310
4311 perf_event__output_id_sample(event, &handle, &sample);
4312
4313 perf_output_end(&handle);
4314 out:
4315 mmap_event->event_id.header.size = size;
4316 }
4317
4318 static int perf_event_mmap_match(struct perf_event *event,
4319 struct perf_mmap_event *mmap_event,
4320 int executable)
4321 {
4322 if (event->state < PERF_EVENT_STATE_INACTIVE)
4323 return 0;
4324
4325 if (!event_filter_match(event))
4326 return 0;
4327
4328 if ((!executable && event->attr.mmap_data) ||
4329 (executable && event->attr.mmap))
4330 return 1;
4331
4332 return 0;
4333 }
4334
4335 static void perf_event_mmap_ctx(struct perf_event_context *ctx,
4336 struct perf_mmap_event *mmap_event,
4337 int executable)
4338 {
4339 struct perf_event *event;
4340
4341 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4342 if (perf_event_mmap_match(event, mmap_event, executable))
4343 perf_event_mmap_output(event, mmap_event);
4344 }
4345 }
4346
4347 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
4348 {
4349 struct perf_cpu_context *cpuctx;
4350 struct perf_event_context *ctx;
4351 struct vm_area_struct *vma = mmap_event->vma;
4352 struct file *file = vma->vm_file;
4353 unsigned int size;
4354 char tmp[16];
4355 char *buf = NULL;
4356 const char *name;
4357 struct pmu *pmu;
4358 int ctxn;
4359
4360 memset(tmp, 0, sizeof(tmp));
4361
4362 if (file) {
4363 /*
4364 * d_path works from the end of the rb backwards, so we
4365 * need to add enough zero bytes after the string to handle
4366 * the 64bit alignment we do later.
4367 */
4368 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
4369 if (!buf) {
4370 name = strncpy(tmp, "//enomem", sizeof(tmp));
4371 goto got_name;
4372 }
4373 name = d_path(&file->f_path, buf, PATH_MAX);
4374 if (IS_ERR(name)) {
4375 name = strncpy(tmp, "//toolong", sizeof(tmp));
4376 goto got_name;
4377 }
4378 } else {
4379 if (arch_vma_name(mmap_event->vma)) {
4380 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
4381 sizeof(tmp));
4382 goto got_name;
4383 }
4384
4385 if (!vma->vm_mm) {
4386 name = strncpy(tmp, "[vdso]", sizeof(tmp));
4387 goto got_name;
4388 } else if (vma->vm_start <= vma->vm_mm->start_brk &&
4389 vma->vm_end >= vma->vm_mm->brk) {
4390 name = strncpy(tmp, "[heap]", sizeof(tmp));
4391 goto got_name;
4392 } else if (vma->vm_start <= vma->vm_mm->start_stack &&
4393 vma->vm_end >= vma->vm_mm->start_stack) {
4394 name = strncpy(tmp, "[stack]", sizeof(tmp));
4395 goto got_name;
4396 }
4397
4398 name = strncpy(tmp, "//anon", sizeof(tmp));
4399 goto got_name;
4400 }
4401
4402 got_name:
4403 size = ALIGN(strlen(name)+1, sizeof(u64));
4404
4405 mmap_event->file_name = name;
4406 mmap_event->file_size = size;
4407
4408 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
4409
4410 rcu_read_lock();
4411 list_for_each_entry_rcu(pmu, &pmus, entry) {
4412 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4413 if (cpuctx->active_pmu != pmu)
4414 goto next;
4415 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event,
4416 vma->vm_flags & VM_EXEC);
4417
4418 ctxn = pmu->task_ctx_nr;
4419 if (ctxn < 0)
4420 goto next;
4421
4422 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4423 if (ctx) {
4424 perf_event_mmap_ctx(ctx, mmap_event,
4425 vma->vm_flags & VM_EXEC);
4426 }
4427 next:
4428 put_cpu_ptr(pmu->pmu_cpu_context);
4429 }
4430 rcu_read_unlock();
4431
4432 kfree(buf);
4433 }
4434
4435 void perf_event_mmap(struct vm_area_struct *vma)
4436 {
4437 struct perf_mmap_event mmap_event;
4438
4439 if (!atomic_read(&nr_mmap_events))
4440 return;
4441
4442 mmap_event = (struct perf_mmap_event){
4443 .vma = vma,
4444 /* .file_name */
4445 /* .file_size */
4446 .event_id = {
4447 .header = {
4448 .type = PERF_RECORD_MMAP,
4449 .misc = PERF_RECORD_MISC_USER,
4450 /* .size */
4451 },
4452 /* .pid */
4453 /* .tid */
4454 .start = vma->vm_start,
4455 .len = vma->vm_end - vma->vm_start,
4456 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
4457 },
4458 };
4459
4460 perf_event_mmap_event(&mmap_event);
4461 }
4462
4463 /*
4464 * IRQ throttle logging
4465 */
4466
4467 static void perf_log_throttle(struct perf_event *event, int enable)
4468 {
4469 struct perf_output_handle handle;
4470 struct perf_sample_data sample;
4471 int ret;
4472
4473 struct {
4474 struct perf_event_header header;
4475 u64 time;
4476 u64 id;
4477 u64 stream_id;
4478 } throttle_event = {
4479 .header = {
4480 .type = PERF_RECORD_THROTTLE,
4481 .misc = 0,
4482 .size = sizeof(throttle_event),
4483 },
4484 .time = perf_clock(),
4485 .id = primary_event_id(event),
4486 .stream_id = event->id,
4487 };
4488
4489 if (enable)
4490 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
4491
4492 perf_event_header__init_id(&throttle_event.header, &sample, event);
4493
4494 ret = perf_output_begin(&handle, event,
4495 throttle_event.header.size);
4496 if (ret)
4497 return;
4498
4499 perf_output_put(&handle, throttle_event);
4500 perf_event__output_id_sample(event, &handle, &sample);
4501 perf_output_end(&handle);
4502 }
4503
4504 /*
4505 * Generic event overflow handling, sampling.
4506 */
4507
4508 static int __perf_event_overflow(struct perf_event *event,
4509 int throttle, struct perf_sample_data *data,
4510 struct pt_regs *regs)
4511 {
4512 int events = atomic_read(&event->event_limit);
4513 struct hw_perf_event *hwc = &event->hw;
4514 int ret = 0;
4515
4516 /*
4517 * Non-sampling counters might still use the PMI to fold short
4518 * hardware counters, ignore those.
4519 */
4520 if (unlikely(!is_sampling_event(event)))
4521 return 0;
4522
4523 if (unlikely(hwc->interrupts >= max_samples_per_tick)) {
4524 if (throttle) {
4525 hwc->interrupts = MAX_INTERRUPTS;
4526 perf_log_throttle(event, 0);
4527 ret = 1;
4528 }
4529 } else
4530 hwc->interrupts++;
4531
4532 if (event->attr.freq) {
4533 u64 now = perf_clock();
4534 s64 delta = now - hwc->freq_time_stamp;
4535
4536 hwc->freq_time_stamp = now;
4537
4538 if (delta > 0 && delta < 2*TICK_NSEC)
4539 perf_adjust_period(event, delta, hwc->last_period);
4540 }
4541
4542 /*
4543 * XXX event_limit might not quite work as expected on inherited
4544 * events
4545 */
4546
4547 event->pending_kill = POLL_IN;
4548 if (events && atomic_dec_and_test(&event->event_limit)) {
4549 ret = 1;
4550 event->pending_kill = POLL_HUP;
4551 event->pending_disable = 1;
4552 irq_work_queue(&event->pending);
4553 }
4554
4555 if (event->overflow_handler)
4556 event->overflow_handler(event, data, regs);
4557 else
4558 perf_event_output(event, data, regs);
4559
4560 if (event->fasync && event->pending_kill) {
4561 event->pending_wakeup = 1;
4562 irq_work_queue(&event->pending);
4563 }
4564
4565 return ret;
4566 }
4567
4568 int perf_event_overflow(struct perf_event *event,
4569 struct perf_sample_data *data,
4570 struct pt_regs *regs)
4571 {
4572 return __perf_event_overflow(event, 1, data, regs);
4573 }
4574
4575 /*
4576 * Generic software event infrastructure
4577 */
4578
4579 struct swevent_htable {
4580 struct swevent_hlist *swevent_hlist;
4581 struct mutex hlist_mutex;
4582 int hlist_refcount;
4583
4584 /* Recursion avoidance in each contexts */
4585 int recursion[PERF_NR_CONTEXTS];
4586 };
4587
4588 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
4589
4590 /*
4591 * We directly increment event->count and keep a second value in
4592 * event->hw.period_left to count intervals. This period event
4593 * is kept in the range [-sample_period, 0] so that we can use the
4594 * sign as trigger.
4595 */
4596
4597 static u64 perf_swevent_set_period(struct perf_event *event)
4598 {
4599 struct hw_perf_event *hwc = &event->hw;
4600 u64 period = hwc->last_period;
4601 u64 nr, offset;
4602 s64 old, val;
4603
4604 hwc->last_period = hwc->sample_period;
4605
4606 again:
4607 old = val = local64_read(&hwc->period_left);
4608 if (val < 0)
4609 return 0;
4610
4611 nr = div64_u64(period + val, period);
4612 offset = nr * period;
4613 val -= offset;
4614 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
4615 goto again;
4616
4617 return nr;
4618 }
4619
4620 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
4621 struct perf_sample_data *data,
4622 struct pt_regs *regs)
4623 {
4624 struct hw_perf_event *hwc = &event->hw;
4625 int throttle = 0;
4626
4627 if (!overflow)
4628 overflow = perf_swevent_set_period(event);
4629
4630 if (hwc->interrupts == MAX_INTERRUPTS)
4631 return;
4632
4633 for (; overflow; overflow--) {
4634 if (__perf_event_overflow(event, throttle,
4635 data, regs)) {
4636 /*
4637 * We inhibit the overflow from happening when
4638 * hwc->interrupts == MAX_INTERRUPTS.
4639 */
4640 break;
4641 }
4642 throttle = 1;
4643 }
4644 }
4645
4646 static void perf_swevent_event(struct perf_event *event, u64 nr,
4647 struct perf_sample_data *data,
4648 struct pt_regs *regs)
4649 {
4650 struct hw_perf_event *hwc = &event->hw;
4651
4652 local64_add(nr, &event->count);
4653
4654 if (!regs)
4655 return;
4656
4657 if (!is_sampling_event(event))
4658 return;
4659
4660 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
4661 data->period = nr;
4662 return perf_swevent_overflow(event, 1, data, regs);
4663 } else
4664 data->period = event->hw.last_period;
4665
4666 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
4667 return perf_swevent_overflow(event, 1, data, regs);
4668
4669 if (local64_add_negative(nr, &hwc->period_left))
4670 return;
4671
4672 perf_swevent_overflow(event, 0, data, regs);
4673 }
4674
4675 static int perf_exclude_event(struct perf_event *event,
4676 struct pt_regs *regs)
4677 {
4678 if (event->hw.state & PERF_HES_STOPPED)
4679 return 1;
4680
4681 if (regs) {
4682 if (event->attr.exclude_user && user_mode(regs))
4683 return 1;
4684
4685 if (event->attr.exclude_kernel && !user_mode(regs))
4686 return 1;
4687 }
4688
4689 return 0;
4690 }
4691
4692 static int perf_swevent_match(struct perf_event *event,
4693 enum perf_type_id type,
4694 u32 event_id,
4695 struct perf_sample_data *data,
4696 struct pt_regs *regs)
4697 {
4698 if (event->attr.type != type)
4699 return 0;
4700
4701 if (event->attr.config != event_id)
4702 return 0;
4703
4704 if (perf_exclude_event(event, regs))
4705 return 0;
4706
4707 return 1;
4708 }
4709
4710 static inline u64 swevent_hash(u64 type, u32 event_id)
4711 {
4712 u64 val = event_id | (type << 32);
4713
4714 return hash_64(val, SWEVENT_HLIST_BITS);
4715 }
4716
4717 static inline struct hlist_head *
4718 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
4719 {
4720 u64 hash = swevent_hash(type, event_id);
4721
4722 return &hlist->heads[hash];
4723 }
4724
4725 /* For the read side: events when they trigger */
4726 static inline struct hlist_head *
4727 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
4728 {
4729 struct swevent_hlist *hlist;
4730
4731 hlist = rcu_dereference(swhash->swevent_hlist);
4732 if (!hlist)
4733 return NULL;
4734
4735 return __find_swevent_head(hlist, type, event_id);
4736 }
4737
4738 /* For the event head insertion and removal in the hlist */
4739 static inline struct hlist_head *
4740 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
4741 {
4742 struct swevent_hlist *hlist;
4743 u32 event_id = event->attr.config;
4744 u64 type = event->attr.type;
4745
4746 /*
4747 * Event scheduling is always serialized against hlist allocation
4748 * and release. Which makes the protected version suitable here.
4749 * The context lock guarantees that.
4750 */
4751 hlist = rcu_dereference_protected(swhash->swevent_hlist,
4752 lockdep_is_held(&event->ctx->lock));
4753 if (!hlist)
4754 return NULL;
4755
4756 return __find_swevent_head(hlist, type, event_id);
4757 }
4758
4759 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
4760 u64 nr,
4761 struct perf_sample_data *data,
4762 struct pt_regs *regs)
4763 {
4764 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4765 struct perf_event *event;
4766 struct hlist_node *node;
4767 struct hlist_head *head;
4768
4769 rcu_read_lock();
4770 head = find_swevent_head_rcu(swhash, type, event_id);
4771 if (!head)
4772 goto end;
4773
4774 hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4775 if (perf_swevent_match(event, type, event_id, data, regs))
4776 perf_swevent_event(event, nr, data, regs);
4777 }
4778 end:
4779 rcu_read_unlock();
4780 }
4781
4782 int perf_swevent_get_recursion_context(void)
4783 {
4784 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4785
4786 return get_recursion_context(swhash->recursion);
4787 }
4788 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
4789
4790 inline void perf_swevent_put_recursion_context(int rctx)
4791 {
4792 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4793
4794 put_recursion_context(swhash->recursion, rctx);
4795 }
4796
4797 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
4798 {
4799 struct perf_sample_data data;
4800 int rctx;
4801
4802 preempt_disable_notrace();
4803 rctx = perf_swevent_get_recursion_context();
4804 if (rctx < 0)
4805 return;
4806
4807 perf_sample_data_init(&data, addr);
4808
4809 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
4810
4811 perf_swevent_put_recursion_context(rctx);
4812 preempt_enable_notrace();
4813 }
4814
4815 static void perf_swevent_read(struct perf_event *event)
4816 {
4817 }
4818
4819 static int perf_swevent_add(struct perf_event *event, int flags)
4820 {
4821 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4822 struct hw_perf_event *hwc = &event->hw;
4823 struct hlist_head *head;
4824
4825 if (is_sampling_event(event)) {
4826 hwc->last_period = hwc->sample_period;
4827 perf_swevent_set_period(event);
4828 }
4829
4830 hwc->state = !(flags & PERF_EF_START);
4831
4832 head = find_swevent_head(swhash, event);
4833 if (WARN_ON_ONCE(!head))
4834 return -EINVAL;
4835
4836 hlist_add_head_rcu(&event->hlist_entry, head);
4837
4838 return 0;
4839 }
4840
4841 static void perf_swevent_del(struct perf_event *event, int flags)
4842 {
4843 hlist_del_rcu(&event->hlist_entry);
4844 }
4845
4846 static void perf_swevent_start(struct perf_event *event, int flags)
4847 {
4848 event->hw.state = 0;
4849 }
4850
4851 static void perf_swevent_stop(struct perf_event *event, int flags)
4852 {
4853 event->hw.state = PERF_HES_STOPPED;
4854 }
4855
4856 /* Deref the hlist from the update side */
4857 static inline struct swevent_hlist *
4858 swevent_hlist_deref(struct swevent_htable *swhash)
4859 {
4860 return rcu_dereference_protected(swhash->swevent_hlist,
4861 lockdep_is_held(&swhash->hlist_mutex));
4862 }
4863
4864 static void swevent_hlist_release(struct swevent_htable *swhash)
4865 {
4866 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
4867
4868 if (!hlist)
4869 return;
4870
4871 rcu_assign_pointer(swhash->swevent_hlist, NULL);
4872 kfree_rcu(hlist, rcu_head);
4873 }
4874
4875 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
4876 {
4877 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4878
4879 mutex_lock(&swhash->hlist_mutex);
4880
4881 if (!--swhash->hlist_refcount)
4882 swevent_hlist_release(swhash);
4883
4884 mutex_unlock(&swhash->hlist_mutex);
4885 }
4886
4887 static void swevent_hlist_put(struct perf_event *event)
4888 {
4889 int cpu;
4890
4891 if (event->cpu != -1) {
4892 swevent_hlist_put_cpu(event, event->cpu);
4893 return;
4894 }
4895
4896 for_each_possible_cpu(cpu)
4897 swevent_hlist_put_cpu(event, cpu);
4898 }
4899
4900 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
4901 {
4902 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4903 int err = 0;
4904
4905 mutex_lock(&swhash->hlist_mutex);
4906
4907 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
4908 struct swevent_hlist *hlist;
4909
4910 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
4911 if (!hlist) {
4912 err = -ENOMEM;
4913 goto exit;
4914 }
4915 rcu_assign_pointer(swhash->swevent_hlist, hlist);
4916 }
4917 swhash->hlist_refcount++;
4918 exit:
4919 mutex_unlock(&swhash->hlist_mutex);
4920
4921 return err;
4922 }
4923
4924 static int swevent_hlist_get(struct perf_event *event)
4925 {
4926 int err;
4927 int cpu, failed_cpu;
4928
4929 if (event->cpu != -1)
4930 return swevent_hlist_get_cpu(event, event->cpu);
4931
4932 get_online_cpus();
4933 for_each_possible_cpu(cpu) {
4934 err = swevent_hlist_get_cpu(event, cpu);
4935 if (err) {
4936 failed_cpu = cpu;
4937 goto fail;
4938 }
4939 }
4940 put_online_cpus();
4941
4942 return 0;
4943 fail:
4944 for_each_possible_cpu(cpu) {
4945 if (cpu == failed_cpu)
4946 break;
4947 swevent_hlist_put_cpu(event, cpu);
4948 }
4949
4950 put_online_cpus();
4951 return err;
4952 }
4953
4954 struct jump_label_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
4955
4956 static void sw_perf_event_destroy(struct perf_event *event)
4957 {
4958 u64 event_id = event->attr.config;
4959
4960 WARN_ON(event->parent);
4961
4962 jump_label_dec(&perf_swevent_enabled[event_id]);
4963 swevent_hlist_put(event);
4964 }
4965
4966 static int perf_swevent_init(struct perf_event *event)
4967 {
4968 int event_id = event->attr.config;
4969
4970 if (event->attr.type != PERF_TYPE_SOFTWARE)
4971 return -ENOENT;
4972
4973 switch (event_id) {
4974 case PERF_COUNT_SW_CPU_CLOCK:
4975 case PERF_COUNT_SW_TASK_CLOCK:
4976 return -ENOENT;
4977
4978 default:
4979 break;
4980 }
4981
4982 if (event_id >= PERF_COUNT_SW_MAX)
4983 return -ENOENT;
4984
4985 if (!event->parent) {
4986 int err;
4987
4988 err = swevent_hlist_get(event);
4989 if (err)
4990 return err;
4991
4992 jump_label_inc(&perf_swevent_enabled[event_id]);
4993 event->destroy = sw_perf_event_destroy;
4994 }
4995
4996 return 0;
4997 }
4998
4999 static struct pmu perf_swevent = {
5000 .task_ctx_nr = perf_sw_context,
5001
5002 .event_init = perf_swevent_init,
5003 .add = perf_swevent_add,
5004 .del = perf_swevent_del,
5005 .start = perf_swevent_start,
5006 .stop = perf_swevent_stop,
5007 .read = perf_swevent_read,
5008 };
5009
5010 #ifdef CONFIG_EVENT_TRACING
5011
5012 static int perf_tp_filter_match(struct perf_event *event,
5013 struct perf_sample_data *data)
5014 {
5015 void *record = data->raw->data;
5016
5017 if (likely(!event->filter) || filter_match_preds(event->filter, record))
5018 return 1;
5019 return 0;
5020 }
5021
5022 static int perf_tp_event_match(struct perf_event *event,
5023 struct perf_sample_data *data,
5024 struct pt_regs *regs)
5025 {
5026 if (event->hw.state & PERF_HES_STOPPED)
5027 return 0;
5028 /*
5029 * All tracepoints are from kernel-space.
5030 */
5031 if (event->attr.exclude_kernel)
5032 return 0;
5033
5034 if (!perf_tp_filter_match(event, data))
5035 return 0;
5036
5037 return 1;
5038 }
5039
5040 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
5041 struct pt_regs *regs, struct hlist_head *head, int rctx)
5042 {
5043 struct perf_sample_data data;
5044 struct perf_event *event;
5045 struct hlist_node *node;
5046
5047 struct perf_raw_record raw = {
5048 .size = entry_size,
5049 .data = record,
5050 };
5051
5052 perf_sample_data_init(&data, addr);
5053 data.raw = &raw;
5054
5055 hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
5056 if (perf_tp_event_match(event, &data, regs))
5057 perf_swevent_event(event, count, &data, regs);
5058 }
5059
5060 perf_swevent_put_recursion_context(rctx);
5061 }
5062 EXPORT_SYMBOL_GPL(perf_tp_event);
5063
5064 static void tp_perf_event_destroy(struct perf_event *event)
5065 {
5066 perf_trace_destroy(event);
5067 }
5068
5069 static int perf_tp_event_init(struct perf_event *event)
5070 {
5071 int err;
5072
5073 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5074 return -ENOENT;
5075
5076 err = perf_trace_init(event);
5077 if (err)
5078 return err;
5079
5080 event->destroy = tp_perf_event_destroy;
5081
5082 return 0;
5083 }
5084
5085 static struct pmu perf_tracepoint = {
5086 .task_ctx_nr = perf_sw_context,
5087
5088 .event_init = perf_tp_event_init,
5089 .add = perf_trace_add,
5090 .del = perf_trace_del,
5091 .start = perf_swevent_start,
5092 .stop = perf_swevent_stop,
5093 .read = perf_swevent_read,
5094 };
5095
5096 static inline void perf_tp_register(void)
5097 {
5098 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
5099 }
5100
5101 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5102 {
5103 char *filter_str;
5104 int ret;
5105
5106 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5107 return -EINVAL;
5108
5109 filter_str = strndup_user(arg, PAGE_SIZE);
5110 if (IS_ERR(filter_str))
5111 return PTR_ERR(filter_str);
5112
5113 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
5114
5115 kfree(filter_str);
5116 return ret;
5117 }
5118
5119 static void perf_event_free_filter(struct perf_event *event)
5120 {
5121 ftrace_profile_free_filter(event);
5122 }
5123
5124 #else
5125
5126 static inline void perf_tp_register(void)
5127 {
5128 }
5129
5130 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5131 {
5132 return -ENOENT;
5133 }
5134
5135 static void perf_event_free_filter(struct perf_event *event)
5136 {
5137 }
5138
5139 #endif /* CONFIG_EVENT_TRACING */
5140
5141 #ifdef CONFIG_HAVE_HW_BREAKPOINT
5142 void perf_bp_event(struct perf_event *bp, void *data)
5143 {
5144 struct perf_sample_data sample;
5145 struct pt_regs *regs = data;
5146
5147 perf_sample_data_init(&sample, bp->attr.bp_addr);
5148
5149 if (!bp->hw.state && !perf_exclude_event(bp, regs))
5150 perf_swevent_event(bp, 1, &sample, regs);
5151 }
5152 #endif
5153
5154 /*
5155 * hrtimer based swevent callback
5156 */
5157
5158 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
5159 {
5160 enum hrtimer_restart ret = HRTIMER_RESTART;
5161 struct perf_sample_data data;
5162 struct pt_regs *regs;
5163 struct perf_event *event;
5164 u64 period;
5165
5166 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
5167
5168 if (event->state != PERF_EVENT_STATE_ACTIVE)
5169 return HRTIMER_NORESTART;
5170
5171 event->pmu->read(event);
5172
5173 perf_sample_data_init(&data, 0);
5174 data.period = event->hw.last_period;
5175 regs = get_irq_regs();
5176
5177 if (regs && !perf_exclude_event(event, regs)) {
5178 if (!(event->attr.exclude_idle && current->pid == 0))
5179 if (perf_event_overflow(event, &data, regs))
5180 ret = HRTIMER_NORESTART;
5181 }
5182
5183 period = max_t(u64, 10000, event->hw.sample_period);
5184 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
5185
5186 return ret;
5187 }
5188
5189 static void perf_swevent_start_hrtimer(struct perf_event *event)
5190 {
5191 struct hw_perf_event *hwc = &event->hw;
5192 s64 period;
5193
5194 if (!is_sampling_event(event))
5195 return;
5196
5197 period = local64_read(&hwc->period_left);
5198 if (period) {
5199 if (period < 0)
5200 period = 10000;
5201
5202 local64_set(&hwc->period_left, 0);
5203 } else {
5204 period = max_t(u64, 10000, hwc->sample_period);
5205 }
5206 __hrtimer_start_range_ns(&hwc->hrtimer,
5207 ns_to_ktime(period), 0,
5208 HRTIMER_MODE_REL_PINNED, 0);
5209 }
5210
5211 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
5212 {
5213 struct hw_perf_event *hwc = &event->hw;
5214
5215 if (is_sampling_event(event)) {
5216 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
5217 local64_set(&hwc->period_left, ktime_to_ns(remaining));
5218
5219 hrtimer_cancel(&hwc->hrtimer);
5220 }
5221 }
5222
5223 static void perf_swevent_init_hrtimer(struct perf_event *event)
5224 {
5225 struct hw_perf_event *hwc = &event->hw;
5226
5227 if (!is_sampling_event(event))
5228 return;
5229
5230 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5231 hwc->hrtimer.function = perf_swevent_hrtimer;
5232
5233 /*
5234 * Since hrtimers have a fixed rate, we can do a static freq->period
5235 * mapping and avoid the whole period adjust feedback stuff.
5236 */
5237 if (event->attr.freq) {
5238 long freq = event->attr.sample_freq;
5239
5240 event->attr.sample_period = NSEC_PER_SEC / freq;
5241 hwc->sample_period = event->attr.sample_period;
5242 local64_set(&hwc->period_left, hwc->sample_period);
5243 event->attr.freq = 0;
5244 }
5245 }
5246
5247 /*
5248 * Software event: cpu wall time clock
5249 */
5250
5251 static void cpu_clock_event_update(struct perf_event *event)
5252 {
5253 s64 prev;
5254 u64 now;
5255
5256 now = local_clock();
5257 prev = local64_xchg(&event->hw.prev_count, now);
5258 local64_add(now - prev, &event->count);
5259 }
5260
5261 static void cpu_clock_event_start(struct perf_event *event, int flags)
5262 {
5263 local64_set(&event->hw.prev_count, local_clock());
5264 perf_swevent_start_hrtimer(event);
5265 }
5266
5267 static void cpu_clock_event_stop(struct perf_event *event, int flags)
5268 {
5269 perf_swevent_cancel_hrtimer(event);
5270 cpu_clock_event_update(event);
5271 }
5272
5273 static int cpu_clock_event_add(struct perf_event *event, int flags)
5274 {
5275 if (flags & PERF_EF_START)
5276 cpu_clock_event_start(event, flags);
5277
5278 return 0;
5279 }
5280
5281 static void cpu_clock_event_del(struct perf_event *event, int flags)
5282 {
5283 cpu_clock_event_stop(event, flags);
5284 }
5285
5286 static void cpu_clock_event_read(struct perf_event *event)
5287 {
5288 cpu_clock_event_update(event);
5289 }
5290
5291 static int cpu_clock_event_init(struct perf_event *event)
5292 {
5293 if (event->attr.type != PERF_TYPE_SOFTWARE)
5294 return -ENOENT;
5295
5296 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
5297 return -ENOENT;
5298
5299 perf_swevent_init_hrtimer(event);
5300
5301 return 0;
5302 }
5303
5304 static struct pmu perf_cpu_clock = {
5305 .task_ctx_nr = perf_sw_context,
5306
5307 .event_init = cpu_clock_event_init,
5308 .add = cpu_clock_event_add,
5309 .del = cpu_clock_event_del,
5310 .start = cpu_clock_event_start,
5311 .stop = cpu_clock_event_stop,
5312 .read = cpu_clock_event_read,
5313 };
5314
5315 /*
5316 * Software event: task time clock
5317 */
5318
5319 static void task_clock_event_update(struct perf_event *event, u64 now)
5320 {
5321 u64 prev;
5322 s64 delta;
5323
5324 prev = local64_xchg(&event->hw.prev_count, now);
5325 delta = now - prev;
5326 local64_add(delta, &event->count);
5327 }
5328
5329 static void task_clock_event_start(struct perf_event *event, int flags)
5330 {
5331 local64_set(&event->hw.prev_count, event->ctx->time);
5332 perf_swevent_start_hrtimer(event);
5333 }
5334
5335 static void task_clock_event_stop(struct perf_event *event, int flags)
5336 {
5337 perf_swevent_cancel_hrtimer(event);
5338 task_clock_event_update(event, event->ctx->time);
5339 }
5340
5341 static int task_clock_event_add(struct perf_event *event, int flags)
5342 {
5343 if (flags & PERF_EF_START)
5344 task_clock_event_start(event, flags);
5345
5346 return 0;
5347 }
5348
5349 static void task_clock_event_del(struct perf_event *event, int flags)
5350 {
5351 task_clock_event_stop(event, PERF_EF_UPDATE);
5352 }
5353
5354 static void task_clock_event_read(struct perf_event *event)
5355 {
5356 u64 now = perf_clock();
5357 u64 delta = now - event->ctx->timestamp;
5358 u64 time = event->ctx->time + delta;
5359
5360 task_clock_event_update(event, time);
5361 }
5362
5363 static int task_clock_event_init(struct perf_event *event)
5364 {
5365 if (event->attr.type != PERF_TYPE_SOFTWARE)
5366 return -ENOENT;
5367
5368 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
5369 return -ENOENT;
5370
5371 perf_swevent_init_hrtimer(event);
5372
5373 return 0;
5374 }
5375
5376 static struct pmu perf_task_clock = {
5377 .task_ctx_nr = perf_sw_context,
5378
5379 .event_init = task_clock_event_init,
5380 .add = task_clock_event_add,
5381 .del = task_clock_event_del,
5382 .start = task_clock_event_start,
5383 .stop = task_clock_event_stop,
5384 .read = task_clock_event_read,
5385 };
5386
5387 static void perf_pmu_nop_void(struct pmu *pmu)
5388 {
5389 }
5390
5391 static int perf_pmu_nop_int(struct pmu *pmu)
5392 {
5393 return 0;
5394 }
5395
5396 static void perf_pmu_start_txn(struct pmu *pmu)
5397 {
5398 perf_pmu_disable(pmu);
5399 }
5400
5401 static int perf_pmu_commit_txn(struct pmu *pmu)
5402 {
5403 perf_pmu_enable(pmu);
5404 return 0;
5405 }
5406
5407 static void perf_pmu_cancel_txn(struct pmu *pmu)
5408 {
5409 perf_pmu_enable(pmu);
5410 }
5411
5412 /*
5413 * Ensures all contexts with the same task_ctx_nr have the same
5414 * pmu_cpu_context too.
5415 */
5416 static void *find_pmu_context(int ctxn)
5417 {
5418 struct pmu *pmu;
5419
5420 if (ctxn < 0)
5421 return NULL;
5422
5423 list_for_each_entry(pmu, &pmus, entry) {
5424 if (pmu->task_ctx_nr == ctxn)
5425 return pmu->pmu_cpu_context;
5426 }
5427
5428 return NULL;
5429 }
5430
5431 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
5432 {
5433 int cpu;
5434
5435 for_each_possible_cpu(cpu) {
5436 struct perf_cpu_context *cpuctx;
5437
5438 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5439
5440 if (cpuctx->active_pmu == old_pmu)
5441 cpuctx->active_pmu = pmu;
5442 }
5443 }
5444
5445 static void free_pmu_context(struct pmu *pmu)
5446 {
5447 struct pmu *i;
5448
5449 mutex_lock(&pmus_lock);
5450 /*
5451 * Like a real lame refcount.
5452 */
5453 list_for_each_entry(i, &pmus, entry) {
5454 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
5455 update_pmu_context(i, pmu);
5456 goto out;
5457 }
5458 }
5459
5460 free_percpu(pmu->pmu_cpu_context);
5461 out:
5462 mutex_unlock(&pmus_lock);
5463 }
5464 static struct idr pmu_idr;
5465
5466 static ssize_t
5467 type_show(struct device *dev, struct device_attribute *attr, char *page)
5468 {
5469 struct pmu *pmu = dev_get_drvdata(dev);
5470
5471 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
5472 }
5473
5474 static struct device_attribute pmu_dev_attrs[] = {
5475 __ATTR_RO(type),
5476 __ATTR_NULL,
5477 };
5478
5479 static int pmu_bus_running;
5480 static struct bus_type pmu_bus = {
5481 .name = "event_source",
5482 .dev_attrs = pmu_dev_attrs,
5483 };
5484
5485 static void pmu_dev_release(struct device *dev)
5486 {
5487 kfree(dev);
5488 }
5489
5490 static int pmu_dev_alloc(struct pmu *pmu)
5491 {
5492 int ret = -ENOMEM;
5493
5494 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
5495 if (!pmu->dev)
5496 goto out;
5497
5498 device_initialize(pmu->dev);
5499 ret = dev_set_name(pmu->dev, "%s", pmu->name);
5500 if (ret)
5501 goto free_dev;
5502
5503 dev_set_drvdata(pmu->dev, pmu);
5504 pmu->dev->bus = &pmu_bus;
5505 pmu->dev->release = pmu_dev_release;
5506 ret = device_add(pmu->dev);
5507 if (ret)
5508 goto free_dev;
5509
5510 out:
5511 return ret;
5512
5513 free_dev:
5514 put_device(pmu->dev);
5515 goto out;
5516 }
5517
5518 static struct lock_class_key cpuctx_mutex;
5519 static struct lock_class_key cpuctx_lock;
5520
5521 int perf_pmu_register(struct pmu *pmu, char *name, int type)
5522 {
5523 int cpu, ret;
5524
5525 mutex_lock(&pmus_lock);
5526 ret = -ENOMEM;
5527 pmu->pmu_disable_count = alloc_percpu(int);
5528 if (!pmu->pmu_disable_count)
5529 goto unlock;
5530
5531 pmu->type = -1;
5532 if (!name)
5533 goto skip_type;
5534 pmu->name = name;
5535
5536 if (type < 0) {
5537 int err = idr_pre_get(&pmu_idr, GFP_KERNEL);
5538 if (!err)
5539 goto free_pdc;
5540
5541 err = idr_get_new_above(&pmu_idr, pmu, PERF_TYPE_MAX, &type);
5542 if (err) {
5543 ret = err;
5544 goto free_pdc;
5545 }
5546 }
5547 pmu->type = type;
5548
5549 if (pmu_bus_running) {
5550 ret = pmu_dev_alloc(pmu);
5551 if (ret)
5552 goto free_idr;
5553 }
5554
5555 skip_type:
5556 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
5557 if (pmu->pmu_cpu_context)
5558 goto got_cpu_context;
5559
5560 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
5561 if (!pmu->pmu_cpu_context)
5562 goto free_dev;
5563
5564 for_each_possible_cpu(cpu) {
5565 struct perf_cpu_context *cpuctx;
5566
5567 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5568 __perf_event_init_context(&cpuctx->ctx);
5569 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
5570 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
5571 cpuctx->ctx.type = cpu_context;
5572 cpuctx->ctx.pmu = pmu;
5573 cpuctx->jiffies_interval = 1;
5574 INIT_LIST_HEAD(&cpuctx->rotation_list);
5575 cpuctx->active_pmu = pmu;
5576 }
5577
5578 got_cpu_context:
5579 if (!pmu->start_txn) {
5580 if (pmu->pmu_enable) {
5581 /*
5582 * If we have pmu_enable/pmu_disable calls, install
5583 * transaction stubs that use that to try and batch
5584 * hardware accesses.
5585 */
5586 pmu->start_txn = perf_pmu_start_txn;
5587 pmu->commit_txn = perf_pmu_commit_txn;
5588 pmu->cancel_txn = perf_pmu_cancel_txn;
5589 } else {
5590 pmu->start_txn = perf_pmu_nop_void;
5591 pmu->commit_txn = perf_pmu_nop_int;
5592 pmu->cancel_txn = perf_pmu_nop_void;
5593 }
5594 }
5595
5596 if (!pmu->pmu_enable) {
5597 pmu->pmu_enable = perf_pmu_nop_void;
5598 pmu->pmu_disable = perf_pmu_nop_void;
5599 }
5600
5601 list_add_rcu(&pmu->entry, &pmus);
5602 ret = 0;
5603 unlock:
5604 mutex_unlock(&pmus_lock);
5605
5606 return ret;
5607
5608 free_dev:
5609 device_del(pmu->dev);
5610 put_device(pmu->dev);
5611
5612 free_idr:
5613 if (pmu->type >= PERF_TYPE_MAX)
5614 idr_remove(&pmu_idr, pmu->type);
5615
5616 free_pdc:
5617 free_percpu(pmu->pmu_disable_count);
5618 goto unlock;
5619 }
5620
5621 void perf_pmu_unregister(struct pmu *pmu)
5622 {
5623 mutex_lock(&pmus_lock);
5624 list_del_rcu(&pmu->entry);
5625 mutex_unlock(&pmus_lock);
5626
5627 /*
5628 * We dereference the pmu list under both SRCU and regular RCU, so
5629 * synchronize against both of those.
5630 */
5631 synchronize_srcu(&pmus_srcu);
5632 synchronize_rcu();
5633
5634 free_percpu(pmu->pmu_disable_count);
5635 if (pmu->type >= PERF_TYPE_MAX)
5636 idr_remove(&pmu_idr, pmu->type);
5637 device_del(pmu->dev);
5638 put_device(pmu->dev);
5639 free_pmu_context(pmu);
5640 }
5641
5642 struct pmu *perf_init_event(struct perf_event *event)
5643 {
5644 struct pmu *pmu = NULL;
5645 int idx;
5646 int ret;
5647
5648 idx = srcu_read_lock(&pmus_srcu);
5649
5650 rcu_read_lock();
5651 pmu = idr_find(&pmu_idr, event->attr.type);
5652 rcu_read_unlock();
5653 if (pmu) {
5654 event->pmu = pmu;
5655 ret = pmu->event_init(event);
5656 if (ret)
5657 pmu = ERR_PTR(ret);
5658 goto unlock;
5659 }
5660
5661 list_for_each_entry_rcu(pmu, &pmus, entry) {
5662 event->pmu = pmu;
5663 ret = pmu->event_init(event);
5664 if (!ret)
5665 goto unlock;
5666
5667 if (ret != -ENOENT) {
5668 pmu = ERR_PTR(ret);
5669 goto unlock;
5670 }
5671 }
5672 pmu = ERR_PTR(-ENOENT);
5673 unlock:
5674 srcu_read_unlock(&pmus_srcu, idx);
5675
5676 return pmu;
5677 }
5678
5679 /*
5680 * Allocate and initialize a event structure
5681 */
5682 static struct perf_event *
5683 perf_event_alloc(struct perf_event_attr *attr, int cpu,
5684 struct task_struct *task,
5685 struct perf_event *group_leader,
5686 struct perf_event *parent_event,
5687 perf_overflow_handler_t overflow_handler,
5688 void *context)
5689 {
5690 struct pmu *pmu;
5691 struct perf_event *event;
5692 struct hw_perf_event *hwc;
5693 long err;
5694
5695 if ((unsigned)cpu >= nr_cpu_ids) {
5696 if (!task || cpu != -1)
5697 return ERR_PTR(-EINVAL);
5698 }
5699
5700 event = kzalloc(sizeof(*event), GFP_KERNEL);
5701 if (!event)
5702 return ERR_PTR(-ENOMEM);
5703
5704 /*
5705 * Single events are their own group leaders, with an
5706 * empty sibling list:
5707 */
5708 if (!group_leader)
5709 group_leader = event;
5710
5711 mutex_init(&event->child_mutex);
5712 INIT_LIST_HEAD(&event->child_list);
5713
5714 INIT_LIST_HEAD(&event->group_entry);
5715 INIT_LIST_HEAD(&event->event_entry);
5716 INIT_LIST_HEAD(&event->sibling_list);
5717 INIT_LIST_HEAD(&event->rb_entry);
5718
5719 init_waitqueue_head(&event->waitq);
5720 init_irq_work(&event->pending, perf_pending_event);
5721
5722 mutex_init(&event->mmap_mutex);
5723
5724 event->cpu = cpu;
5725 event->attr = *attr;
5726 event->group_leader = group_leader;
5727 event->pmu = NULL;
5728 event->oncpu = -1;
5729
5730 event->parent = parent_event;
5731
5732 event->ns = get_pid_ns(current->nsproxy->pid_ns);
5733 event->id = atomic64_inc_return(&perf_event_id);
5734
5735 event->state = PERF_EVENT_STATE_INACTIVE;
5736
5737 if (task) {
5738 event->attach_state = PERF_ATTACH_TASK;
5739 #ifdef CONFIG_HAVE_HW_BREAKPOINT
5740 /*
5741 * hw_breakpoint is a bit difficult here..
5742 */
5743 if (attr->type == PERF_TYPE_BREAKPOINT)
5744 event->hw.bp_target = task;
5745 #endif
5746 }
5747
5748 if (!overflow_handler && parent_event) {
5749 overflow_handler = parent_event->overflow_handler;
5750 context = parent_event->overflow_handler_context;
5751 }
5752
5753 event->overflow_handler = overflow_handler;
5754 event->overflow_handler_context = context;
5755
5756 if (attr->disabled)
5757 event->state = PERF_EVENT_STATE_OFF;
5758
5759 pmu = NULL;
5760
5761 hwc = &event->hw;
5762 hwc->sample_period = attr->sample_period;
5763 if (attr->freq && attr->sample_freq)
5764 hwc->sample_period = 1;
5765 hwc->last_period = hwc->sample_period;
5766
5767 local64_set(&hwc->period_left, hwc->sample_period);
5768
5769 /*
5770 * we currently do not support PERF_FORMAT_GROUP on inherited events
5771 */
5772 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
5773 goto done;
5774
5775 pmu = perf_init_event(event);
5776
5777 done:
5778 err = 0;
5779 if (!pmu)
5780 err = -EINVAL;
5781 else if (IS_ERR(pmu))
5782 err = PTR_ERR(pmu);
5783
5784 if (err) {
5785 if (event->ns)
5786 put_pid_ns(event->ns);
5787 kfree(event);
5788 return ERR_PTR(err);
5789 }
5790
5791 if (!event->parent) {
5792 if (event->attach_state & PERF_ATTACH_TASK)
5793 jump_label_inc(&perf_sched_events);
5794 if (event->attr.mmap || event->attr.mmap_data)
5795 atomic_inc(&nr_mmap_events);
5796 if (event->attr.comm)
5797 atomic_inc(&nr_comm_events);
5798 if (event->attr.task)
5799 atomic_inc(&nr_task_events);
5800 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
5801 err = get_callchain_buffers();
5802 if (err) {
5803 free_event(event);
5804 return ERR_PTR(err);
5805 }
5806 }
5807 }
5808
5809 return event;
5810 }
5811
5812 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5813 struct perf_event_attr *attr)
5814 {
5815 u32 size;
5816 int ret;
5817
5818 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
5819 return -EFAULT;
5820
5821 /*
5822 * zero the full structure, so that a short copy will be nice.
5823 */
5824 memset(attr, 0, sizeof(*attr));
5825
5826 ret = get_user(size, &uattr->size);
5827 if (ret)
5828 return ret;
5829
5830 if (size > PAGE_SIZE) /* silly large */
5831 goto err_size;
5832
5833 if (!size) /* abi compat */
5834 size = PERF_ATTR_SIZE_VER0;
5835
5836 if (size < PERF_ATTR_SIZE_VER0)
5837 goto err_size;
5838
5839 /*
5840 * If we're handed a bigger struct than we know of,
5841 * ensure all the unknown bits are 0 - i.e. new
5842 * user-space does not rely on any kernel feature
5843 * extensions we dont know about yet.
5844 */
5845 if (size > sizeof(*attr)) {
5846 unsigned char __user *addr;
5847 unsigned char __user *end;
5848 unsigned char val;
5849
5850 addr = (void __user *)uattr + sizeof(*attr);
5851 end = (void __user *)uattr + size;
5852
5853 for (; addr < end; addr++) {
5854 ret = get_user(val, addr);
5855 if (ret)
5856 return ret;
5857 if (val)
5858 goto err_size;
5859 }
5860 size = sizeof(*attr);
5861 }
5862
5863 ret = copy_from_user(attr, uattr, size);
5864 if (ret)
5865 return -EFAULT;
5866
5867 if (attr->__reserved_1)
5868 return -EINVAL;
5869
5870 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
5871 return -EINVAL;
5872
5873 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
5874 return -EINVAL;
5875
5876 out:
5877 return ret;
5878
5879 err_size:
5880 put_user(sizeof(*attr), &uattr->size);
5881 ret = -E2BIG;
5882 goto out;
5883 }
5884
5885 static int
5886 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
5887 {
5888 struct ring_buffer *rb = NULL, *old_rb = NULL;
5889 int ret = -EINVAL;
5890
5891 if (!output_event)
5892 goto set;
5893
5894 /* don't allow circular references */
5895 if (event == output_event)
5896 goto out;
5897
5898 /*
5899 * Don't allow cross-cpu buffers
5900 */
5901 if (output_event->cpu != event->cpu)
5902 goto out;
5903
5904 /*
5905 * If its not a per-cpu rb, it must be the same task.
5906 */
5907 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
5908 goto out;
5909
5910 set:
5911 mutex_lock(&event->mmap_mutex);
5912 /* Can't redirect output if we've got an active mmap() */
5913 if (atomic_read(&event->mmap_count))
5914 goto unlock;
5915
5916 if (output_event) {
5917 /* get the rb we want to redirect to */
5918 rb = ring_buffer_get(output_event);
5919 if (!rb)
5920 goto unlock;
5921 }
5922
5923 old_rb = event->rb;
5924 rcu_assign_pointer(event->rb, rb);
5925 if (old_rb)
5926 ring_buffer_detach(event, old_rb);
5927 ret = 0;
5928 unlock:
5929 mutex_unlock(&event->mmap_mutex);
5930
5931 if (old_rb)
5932 ring_buffer_put(old_rb);
5933 out:
5934 return ret;
5935 }
5936
5937 /**
5938 * sys_perf_event_open - open a performance event, associate it to a task/cpu
5939 *
5940 * @attr_uptr: event_id type attributes for monitoring/sampling
5941 * @pid: target pid
5942 * @cpu: target cpu
5943 * @group_fd: group leader event fd
5944 */
5945 SYSCALL_DEFINE5(perf_event_open,
5946 struct perf_event_attr __user *, attr_uptr,
5947 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
5948 {
5949 struct perf_event *group_leader = NULL, *output_event = NULL;
5950 struct perf_event *event, *sibling;
5951 struct perf_event_attr attr;
5952 struct perf_event_context *ctx;
5953 struct file *event_file = NULL;
5954 struct file *group_file = NULL;
5955 struct task_struct *task = NULL;
5956 struct pmu *pmu;
5957 int event_fd;
5958 int move_group = 0;
5959 int fput_needed = 0;
5960 int err;
5961
5962 /* for future expandability... */
5963 if (flags & ~PERF_FLAG_ALL)
5964 return -EINVAL;
5965
5966 err = perf_copy_attr(attr_uptr, &attr);
5967 if (err)
5968 return err;
5969
5970 if (!attr.exclude_kernel) {
5971 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
5972 return -EACCES;
5973 }
5974
5975 if (attr.freq) {
5976 if (attr.sample_freq > sysctl_perf_event_sample_rate)
5977 return -EINVAL;
5978 }
5979
5980 /*
5981 * In cgroup mode, the pid argument is used to pass the fd
5982 * opened to the cgroup directory in cgroupfs. The cpu argument
5983 * designates the cpu on which to monitor threads from that
5984 * cgroup.
5985 */
5986 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
5987 return -EINVAL;
5988
5989 event_fd = get_unused_fd_flags(O_RDWR);
5990 if (event_fd < 0)
5991 return event_fd;
5992
5993 if (group_fd != -1) {
5994 group_leader = perf_fget_light(group_fd, &fput_needed);
5995 if (IS_ERR(group_leader)) {
5996 err = PTR_ERR(group_leader);
5997 goto err_fd;
5998 }
5999 group_file = group_leader->filp;
6000 if (flags & PERF_FLAG_FD_OUTPUT)
6001 output_event = group_leader;
6002 if (flags & PERF_FLAG_FD_NO_GROUP)
6003 group_leader = NULL;
6004 }
6005
6006 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
6007 task = find_lively_task_by_vpid(pid);
6008 if (IS_ERR(task)) {
6009 err = PTR_ERR(task);
6010 goto err_group_fd;
6011 }
6012 }
6013
6014 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
6015 NULL, NULL);
6016 if (IS_ERR(event)) {
6017 err = PTR_ERR(event);
6018 goto err_task;
6019 }
6020
6021 if (flags & PERF_FLAG_PID_CGROUP) {
6022 err = perf_cgroup_connect(pid, event, &attr, group_leader);
6023 if (err)
6024 goto err_alloc;
6025 /*
6026 * one more event:
6027 * - that has cgroup constraint on event->cpu
6028 * - that may need work on context switch
6029 */
6030 atomic_inc(&per_cpu(perf_cgroup_events, event->cpu));
6031 jump_label_inc(&perf_sched_events);
6032 }
6033
6034 /*
6035 * Special case software events and allow them to be part of
6036 * any hardware group.
6037 */
6038 pmu = event->pmu;
6039
6040 if (group_leader &&
6041 (is_software_event(event) != is_software_event(group_leader))) {
6042 if (is_software_event(event)) {
6043 /*
6044 * If event and group_leader are not both a software
6045 * event, and event is, then group leader is not.
6046 *
6047 * Allow the addition of software events to !software
6048 * groups, this is safe because software events never
6049 * fail to schedule.
6050 */
6051 pmu = group_leader->pmu;
6052 } else if (is_software_event(group_leader) &&
6053 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
6054 /*
6055 * In case the group is a pure software group, and we
6056 * try to add a hardware event, move the whole group to
6057 * the hardware context.
6058 */
6059 move_group = 1;
6060 }
6061 }
6062
6063 /*
6064 * Get the target context (task or percpu):
6065 */
6066 ctx = find_get_context(pmu, task, cpu);
6067 if (IS_ERR(ctx)) {
6068 err = PTR_ERR(ctx);
6069 goto err_alloc;
6070 }
6071
6072 if (task) {
6073 put_task_struct(task);
6074 task = NULL;
6075 }
6076
6077 /*
6078 * Look up the group leader (we will attach this event to it):
6079 */
6080 if (group_leader) {
6081 err = -EINVAL;
6082
6083 /*
6084 * Do not allow a recursive hierarchy (this new sibling
6085 * becoming part of another group-sibling):
6086 */
6087 if (group_leader->group_leader != group_leader)
6088 goto err_context;
6089 /*
6090 * Do not allow to attach to a group in a different
6091 * task or CPU context:
6092 */
6093 if (move_group) {
6094 if (group_leader->ctx->type != ctx->type)
6095 goto err_context;
6096 } else {
6097 if (group_leader->ctx != ctx)
6098 goto err_context;
6099 }
6100
6101 /*
6102 * Only a group leader can be exclusive or pinned
6103 */
6104 if (attr.exclusive || attr.pinned)
6105 goto err_context;
6106 }
6107
6108 if (output_event) {
6109 err = perf_event_set_output(event, output_event);
6110 if (err)
6111 goto err_context;
6112 }
6113
6114 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
6115 if (IS_ERR(event_file)) {
6116 err = PTR_ERR(event_file);
6117 goto err_context;
6118 }
6119
6120 if (move_group) {
6121 struct perf_event_context *gctx = group_leader->ctx;
6122
6123 mutex_lock(&gctx->mutex);
6124 perf_remove_from_context(group_leader);
6125 list_for_each_entry(sibling, &group_leader->sibling_list,
6126 group_entry) {
6127 perf_remove_from_context(sibling);
6128 put_ctx(gctx);
6129 }
6130 mutex_unlock(&gctx->mutex);
6131 put_ctx(gctx);
6132 }
6133
6134 event->filp = event_file;
6135 WARN_ON_ONCE(ctx->parent_ctx);
6136 mutex_lock(&ctx->mutex);
6137
6138 if (move_group) {
6139 perf_install_in_context(ctx, group_leader, cpu);
6140 get_ctx(ctx);
6141 list_for_each_entry(sibling, &group_leader->sibling_list,
6142 group_entry) {
6143 perf_install_in_context(ctx, sibling, cpu);
6144 get_ctx(ctx);
6145 }
6146 }
6147
6148 perf_install_in_context(ctx, event, cpu);
6149 ++ctx->generation;
6150 perf_unpin_context(ctx);
6151 mutex_unlock(&ctx->mutex);
6152
6153 event->owner = current;
6154
6155 mutex_lock(&current->perf_event_mutex);
6156 list_add_tail(&event->owner_entry, &current->perf_event_list);
6157 mutex_unlock(&current->perf_event_mutex);
6158
6159 /*
6160 * Precalculate sample_data sizes
6161 */
6162 perf_event__header_size(event);
6163 perf_event__id_header_size(event);
6164
6165 /*
6166 * Drop the reference on the group_event after placing the
6167 * new event on the sibling_list. This ensures destruction
6168 * of the group leader will find the pointer to itself in
6169 * perf_group_detach().
6170 */
6171 fput_light(group_file, fput_needed);
6172 fd_install(event_fd, event_file);
6173 return event_fd;
6174
6175 err_context:
6176 perf_unpin_context(ctx);
6177 put_ctx(ctx);
6178 err_alloc:
6179 free_event(event);
6180 err_task:
6181 if (task)
6182 put_task_struct(task);
6183 err_group_fd:
6184 fput_light(group_file, fput_needed);
6185 err_fd:
6186 put_unused_fd(event_fd);
6187 return err;
6188 }
6189
6190 /**
6191 * perf_event_create_kernel_counter
6192 *
6193 * @attr: attributes of the counter to create
6194 * @cpu: cpu in which the counter is bound
6195 * @task: task to profile (NULL for percpu)
6196 */
6197 struct perf_event *
6198 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
6199 struct task_struct *task,
6200 perf_overflow_handler_t overflow_handler,
6201 void *context)
6202 {
6203 struct perf_event_context *ctx;
6204 struct perf_event *event;
6205 int err;
6206
6207 /*
6208 * Get the target context (task or percpu):
6209 */
6210
6211 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
6212 overflow_handler, context);
6213 if (IS_ERR(event)) {
6214 err = PTR_ERR(event);
6215 goto err;
6216 }
6217
6218 ctx = find_get_context(event->pmu, task, cpu);
6219 if (IS_ERR(ctx)) {
6220 err = PTR_ERR(ctx);
6221 goto err_free;
6222 }
6223
6224 event->filp = NULL;
6225 WARN_ON_ONCE(ctx->parent_ctx);
6226 mutex_lock(&ctx->mutex);
6227 perf_install_in_context(ctx, event, cpu);
6228 ++ctx->generation;
6229 perf_unpin_context(ctx);
6230 mutex_unlock(&ctx->mutex);
6231
6232 return event;
6233
6234 err_free:
6235 free_event(event);
6236 err:
6237 return ERR_PTR(err);
6238 }
6239 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
6240
6241 static void sync_child_event(struct perf_event *child_event,
6242 struct task_struct *child)
6243 {
6244 struct perf_event *parent_event = child_event->parent;
6245 u64 child_val;
6246
6247 if (child_event->attr.inherit_stat)
6248 perf_event_read_event(child_event, child);
6249
6250 child_val = perf_event_count(child_event);
6251
6252 /*
6253 * Add back the child's count to the parent's count:
6254 */
6255 atomic64_add(child_val, &parent_event->child_count);
6256 atomic64_add(child_event->total_time_enabled,
6257 &parent_event->child_total_time_enabled);
6258 atomic64_add(child_event->total_time_running,
6259 &parent_event->child_total_time_running);
6260
6261 /*
6262 * Remove this event from the parent's list
6263 */
6264 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
6265 mutex_lock(&parent_event->child_mutex);
6266 list_del_init(&child_event->child_list);
6267 mutex_unlock(&parent_event->child_mutex);
6268
6269 /*
6270 * Release the parent event, if this was the last
6271 * reference to it.
6272 */
6273 fput(parent_event->filp);
6274 }
6275
6276 static void
6277 __perf_event_exit_task(struct perf_event *child_event,
6278 struct perf_event_context *child_ctx,
6279 struct task_struct *child)
6280 {
6281 if (child_event->parent) {
6282 raw_spin_lock_irq(&child_ctx->lock);
6283 perf_group_detach(child_event);
6284 raw_spin_unlock_irq(&child_ctx->lock);
6285 }
6286
6287 perf_remove_from_context(child_event);
6288
6289 /*
6290 * It can happen that the parent exits first, and has events
6291 * that are still around due to the child reference. These
6292 * events need to be zapped.
6293 */
6294 if (child_event->parent) {
6295 sync_child_event(child_event, child);
6296 free_event(child_event);
6297 }
6298 }
6299
6300 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
6301 {
6302 struct perf_event *child_event, *tmp;
6303 struct perf_event_context *child_ctx;
6304 unsigned long flags;
6305
6306 if (likely(!child->perf_event_ctxp[ctxn])) {
6307 perf_event_task(child, NULL, 0);
6308 return;
6309 }
6310
6311 local_irq_save(flags);
6312 /*
6313 * We can't reschedule here because interrupts are disabled,
6314 * and either child is current or it is a task that can't be
6315 * scheduled, so we are now safe from rescheduling changing
6316 * our context.
6317 */
6318 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
6319
6320 /*
6321 * Take the context lock here so that if find_get_context is
6322 * reading child->perf_event_ctxp, we wait until it has
6323 * incremented the context's refcount before we do put_ctx below.
6324 */
6325 raw_spin_lock(&child_ctx->lock);
6326 task_ctx_sched_out(child_ctx);
6327 child->perf_event_ctxp[ctxn] = NULL;
6328 /*
6329 * If this context is a clone; unclone it so it can't get
6330 * swapped to another process while we're removing all
6331 * the events from it.
6332 */
6333 unclone_ctx(child_ctx);
6334 update_context_time(child_ctx);
6335 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
6336
6337 /*
6338 * Report the task dead after unscheduling the events so that we
6339 * won't get any samples after PERF_RECORD_EXIT. We can however still
6340 * get a few PERF_RECORD_READ events.
6341 */
6342 perf_event_task(child, child_ctx, 0);
6343
6344 /*
6345 * We can recurse on the same lock type through:
6346 *
6347 * __perf_event_exit_task()
6348 * sync_child_event()
6349 * fput(parent_event->filp)
6350 * perf_release()
6351 * mutex_lock(&ctx->mutex)
6352 *
6353 * But since its the parent context it won't be the same instance.
6354 */
6355 mutex_lock(&child_ctx->mutex);
6356
6357 again:
6358 list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
6359 group_entry)
6360 __perf_event_exit_task(child_event, child_ctx, child);
6361
6362 list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
6363 group_entry)
6364 __perf_event_exit_task(child_event, child_ctx, child);
6365
6366 /*
6367 * If the last event was a group event, it will have appended all
6368 * its siblings to the list, but we obtained 'tmp' before that which
6369 * will still point to the list head terminating the iteration.
6370 */
6371 if (!list_empty(&child_ctx->pinned_groups) ||
6372 !list_empty(&child_ctx->flexible_groups))
6373 goto again;
6374
6375 mutex_unlock(&child_ctx->mutex);
6376
6377 put_ctx(child_ctx);
6378 }
6379
6380 /*
6381 * When a child task exits, feed back event values to parent events.
6382 */
6383 void perf_event_exit_task(struct task_struct *child)
6384 {
6385 struct perf_event *event, *tmp;
6386 int ctxn;
6387
6388 mutex_lock(&child->perf_event_mutex);
6389 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
6390 owner_entry) {
6391 list_del_init(&event->owner_entry);
6392
6393 /*
6394 * Ensure the list deletion is visible before we clear
6395 * the owner, closes a race against perf_release() where
6396 * we need to serialize on the owner->perf_event_mutex.
6397 */
6398 smp_wmb();
6399 event->owner = NULL;
6400 }
6401 mutex_unlock(&child->perf_event_mutex);
6402
6403 for_each_task_context_nr(ctxn)
6404 perf_event_exit_task_context(child, ctxn);
6405 }
6406
6407 static void perf_free_event(struct perf_event *event,
6408 struct perf_event_context *ctx)
6409 {
6410 struct perf_event *parent = event->parent;
6411
6412 if (WARN_ON_ONCE(!parent))
6413 return;
6414
6415 mutex_lock(&parent->child_mutex);
6416 list_del_init(&event->child_list);
6417 mutex_unlock(&parent->child_mutex);
6418
6419 fput(parent->filp);
6420
6421 perf_group_detach(event);
6422 list_del_event(event, ctx);
6423 free_event(event);
6424 }
6425
6426 /*
6427 * free an unexposed, unused context as created by inheritance by
6428 * perf_event_init_task below, used by fork() in case of fail.
6429 */
6430 void perf_event_free_task(struct task_struct *task)
6431 {
6432 struct perf_event_context *ctx;
6433 struct perf_event *event, *tmp;
6434 int ctxn;
6435
6436 for_each_task_context_nr(ctxn) {
6437 ctx = task->perf_event_ctxp[ctxn];
6438 if (!ctx)
6439 continue;
6440
6441 mutex_lock(&ctx->mutex);
6442 again:
6443 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
6444 group_entry)
6445 perf_free_event(event, ctx);
6446
6447 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
6448 group_entry)
6449 perf_free_event(event, ctx);
6450
6451 if (!list_empty(&ctx->pinned_groups) ||
6452 !list_empty(&ctx->flexible_groups))
6453 goto again;
6454
6455 mutex_unlock(&ctx->mutex);
6456
6457 put_ctx(ctx);
6458 }
6459 }
6460
6461 void perf_event_delayed_put(struct task_struct *task)
6462 {
6463 int ctxn;
6464
6465 for_each_task_context_nr(ctxn)
6466 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
6467 }
6468
6469 /*
6470 * inherit a event from parent task to child task:
6471 */
6472 static struct perf_event *
6473 inherit_event(struct perf_event *parent_event,
6474 struct task_struct *parent,
6475 struct perf_event_context *parent_ctx,
6476 struct task_struct *child,
6477 struct perf_event *group_leader,
6478 struct perf_event_context *child_ctx)
6479 {
6480 struct perf_event *child_event;
6481 unsigned long flags;
6482
6483 /*
6484 * Instead of creating recursive hierarchies of events,
6485 * we link inherited events back to the original parent,
6486 * which has a filp for sure, which we use as the reference
6487 * count:
6488 */
6489 if (parent_event->parent)
6490 parent_event = parent_event->parent;
6491
6492 child_event = perf_event_alloc(&parent_event->attr,
6493 parent_event->cpu,
6494 child,
6495 group_leader, parent_event,
6496 NULL, NULL);
6497 if (IS_ERR(child_event))
6498 return child_event;
6499 get_ctx(child_ctx);
6500
6501 /*
6502 * Make the child state follow the state of the parent event,
6503 * not its attr.disabled bit. We hold the parent's mutex,
6504 * so we won't race with perf_event_{en, dis}able_family.
6505 */
6506 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
6507 child_event->state = PERF_EVENT_STATE_INACTIVE;
6508 else
6509 child_event->state = PERF_EVENT_STATE_OFF;
6510
6511 if (parent_event->attr.freq) {
6512 u64 sample_period = parent_event->hw.sample_period;
6513 struct hw_perf_event *hwc = &child_event->hw;
6514
6515 hwc->sample_period = sample_period;
6516 hwc->last_period = sample_period;
6517
6518 local64_set(&hwc->period_left, sample_period);
6519 }
6520
6521 child_event->ctx = child_ctx;
6522 child_event->overflow_handler = parent_event->overflow_handler;
6523 child_event->overflow_handler_context
6524 = parent_event->overflow_handler_context;
6525
6526 /*
6527 * Precalculate sample_data sizes
6528 */
6529 perf_event__header_size(child_event);
6530 perf_event__id_header_size(child_event);
6531
6532 /*
6533 * Link it up in the child's context:
6534 */
6535 raw_spin_lock_irqsave(&child_ctx->lock, flags);
6536 add_event_to_ctx(child_event, child_ctx);
6537 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
6538
6539 /*
6540 * Get a reference to the parent filp - we will fput it
6541 * when the child event exits. This is safe to do because
6542 * we are in the parent and we know that the filp still
6543 * exists and has a nonzero count:
6544 */
6545 atomic_long_inc(&parent_event->filp->f_count);
6546
6547 /*
6548 * Link this into the parent event's child list
6549 */
6550 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
6551 mutex_lock(&parent_event->child_mutex);
6552 list_add_tail(&child_event->child_list, &parent_event->child_list);
6553 mutex_unlock(&parent_event->child_mutex);
6554
6555 return child_event;
6556 }
6557
6558 static int inherit_group(struct perf_event *parent_event,
6559 struct task_struct *parent,
6560 struct perf_event_context *parent_ctx,
6561 struct task_struct *child,
6562 struct perf_event_context *child_ctx)
6563 {
6564 struct perf_event *leader;
6565 struct perf_event *sub;
6566 struct perf_event *child_ctr;
6567
6568 leader = inherit_event(parent_event, parent, parent_ctx,
6569 child, NULL, child_ctx);
6570 if (IS_ERR(leader))
6571 return PTR_ERR(leader);
6572 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
6573 child_ctr = inherit_event(sub, parent, parent_ctx,
6574 child, leader, child_ctx);
6575 if (IS_ERR(child_ctr))
6576 return PTR_ERR(child_ctr);
6577 }
6578 return 0;
6579 }
6580
6581 static int
6582 inherit_task_group(struct perf_event *event, struct task_struct *parent,
6583 struct perf_event_context *parent_ctx,
6584 struct task_struct *child, int ctxn,
6585 int *inherited_all)
6586 {
6587 int ret;
6588 struct perf_event_context *child_ctx;
6589
6590 if (!event->attr.inherit) {
6591 *inherited_all = 0;
6592 return 0;
6593 }
6594
6595 child_ctx = child->perf_event_ctxp[ctxn];
6596 if (!child_ctx) {
6597 /*
6598 * This is executed from the parent task context, so
6599 * inherit events that have been marked for cloning.
6600 * First allocate and initialize a context for the
6601 * child.
6602 */
6603
6604 child_ctx = alloc_perf_context(event->pmu, child);
6605 if (!child_ctx)
6606 return -ENOMEM;
6607
6608 child->perf_event_ctxp[ctxn] = child_ctx;
6609 }
6610
6611 ret = inherit_group(event, parent, parent_ctx,
6612 child, child_ctx);
6613
6614 if (ret)
6615 *inherited_all = 0;
6616
6617 return ret;
6618 }
6619
6620 /*
6621 * Initialize the perf_event context in task_struct
6622 */
6623 int perf_event_init_context(struct task_struct *child, int ctxn)
6624 {
6625 struct perf_event_context *child_ctx, *parent_ctx;
6626 struct perf_event_context *cloned_ctx;
6627 struct perf_event *event;
6628 struct task_struct *parent = current;
6629 int inherited_all = 1;
6630 unsigned long flags;
6631 int ret = 0;
6632
6633 if (likely(!parent->perf_event_ctxp[ctxn]))
6634 return 0;
6635
6636 /*
6637 * If the parent's context is a clone, pin it so it won't get
6638 * swapped under us.
6639 */
6640 parent_ctx = perf_pin_task_context(parent, ctxn);
6641
6642 /*
6643 * No need to check if parent_ctx != NULL here; since we saw
6644 * it non-NULL earlier, the only reason for it to become NULL
6645 * is if we exit, and since we're currently in the middle of
6646 * a fork we can't be exiting at the same time.
6647 */
6648
6649 /*
6650 * Lock the parent list. No need to lock the child - not PID
6651 * hashed yet and not running, so nobody can access it.
6652 */
6653 mutex_lock(&parent_ctx->mutex);
6654
6655 /*
6656 * We dont have to disable NMIs - we are only looking at
6657 * the list, not manipulating it:
6658 */
6659 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
6660 ret = inherit_task_group(event, parent, parent_ctx,
6661 child, ctxn, &inherited_all);
6662 if (ret)
6663 break;
6664 }
6665
6666 /*
6667 * We can't hold ctx->lock when iterating the ->flexible_group list due
6668 * to allocations, but we need to prevent rotation because
6669 * rotate_ctx() will change the list from interrupt context.
6670 */
6671 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
6672 parent_ctx->rotate_disable = 1;
6673 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
6674
6675 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
6676 ret = inherit_task_group(event, parent, parent_ctx,
6677 child, ctxn, &inherited_all);
6678 if (ret)
6679 break;
6680 }
6681
6682 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
6683 parent_ctx->rotate_disable = 0;
6684
6685 child_ctx = child->perf_event_ctxp[ctxn];
6686
6687 if (child_ctx && inherited_all) {
6688 /*
6689 * Mark the child context as a clone of the parent
6690 * context, or of whatever the parent is a clone of.
6691 *
6692 * Note that if the parent is a clone, the holding of
6693 * parent_ctx->lock avoids it from being uncloned.
6694 */
6695 cloned_ctx = parent_ctx->parent_ctx;
6696 if (cloned_ctx) {
6697 child_ctx->parent_ctx = cloned_ctx;
6698 child_ctx->parent_gen = parent_ctx->parent_gen;
6699 } else {
6700 child_ctx->parent_ctx = parent_ctx;
6701 child_ctx->parent_gen = parent_ctx->generation;
6702 }
6703 get_ctx(child_ctx->parent_ctx);
6704 }
6705
6706 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
6707 mutex_unlock(&parent_ctx->mutex);
6708
6709 perf_unpin_context(parent_ctx);
6710 put_ctx(parent_ctx);
6711
6712 return ret;
6713 }
6714
6715 /*
6716 * Initialize the perf_event context in task_struct
6717 */
6718 int perf_event_init_task(struct task_struct *child)
6719 {
6720 int ctxn, ret;
6721
6722 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
6723 mutex_init(&child->perf_event_mutex);
6724 INIT_LIST_HEAD(&child->perf_event_list);
6725
6726 for_each_task_context_nr(ctxn) {
6727 ret = perf_event_init_context(child, ctxn);
6728 if (ret)
6729 return ret;
6730 }
6731
6732 return 0;
6733 }
6734
6735 static void __init perf_event_init_all_cpus(void)
6736 {
6737 struct swevent_htable *swhash;
6738 int cpu;
6739
6740 for_each_possible_cpu(cpu) {
6741 swhash = &per_cpu(swevent_htable, cpu);
6742 mutex_init(&swhash->hlist_mutex);
6743 INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
6744 }
6745 }
6746
6747 static void __cpuinit perf_event_init_cpu(int cpu)
6748 {
6749 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6750
6751 mutex_lock(&swhash->hlist_mutex);
6752 if (swhash->hlist_refcount > 0) {
6753 struct swevent_hlist *hlist;
6754
6755 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
6756 WARN_ON(!hlist);
6757 rcu_assign_pointer(swhash->swevent_hlist, hlist);
6758 }
6759 mutex_unlock(&swhash->hlist_mutex);
6760 }
6761
6762 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
6763 static void perf_pmu_rotate_stop(struct pmu *pmu)
6764 {
6765 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6766
6767 WARN_ON(!irqs_disabled());
6768
6769 list_del_init(&cpuctx->rotation_list);
6770 }
6771
6772 static void __perf_event_exit_context(void *__info)
6773 {
6774 struct perf_event_context *ctx = __info;
6775 struct perf_event *event, *tmp;
6776
6777 perf_pmu_rotate_stop(ctx->pmu);
6778
6779 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
6780 __perf_remove_from_context(event);
6781 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
6782 __perf_remove_from_context(event);
6783 }
6784
6785 static void perf_event_exit_cpu_context(int cpu)
6786 {
6787 struct perf_event_context *ctx;
6788 struct pmu *pmu;
6789 int idx;
6790
6791 idx = srcu_read_lock(&pmus_srcu);
6792 list_for_each_entry_rcu(pmu, &pmus, entry) {
6793 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
6794
6795 mutex_lock(&ctx->mutex);
6796 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
6797 mutex_unlock(&ctx->mutex);
6798 }
6799 srcu_read_unlock(&pmus_srcu, idx);
6800 }
6801
6802 static void perf_event_exit_cpu(int cpu)
6803 {
6804 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6805
6806 mutex_lock(&swhash->hlist_mutex);
6807 swevent_hlist_release(swhash);
6808 mutex_unlock(&swhash->hlist_mutex);
6809
6810 perf_event_exit_cpu_context(cpu);
6811 }
6812 #else
6813 static inline void perf_event_exit_cpu(int cpu) { }
6814 #endif
6815
6816 static int
6817 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
6818 {
6819 int cpu;
6820
6821 for_each_online_cpu(cpu)
6822 perf_event_exit_cpu(cpu);
6823
6824 return NOTIFY_OK;
6825 }
6826
6827 /*
6828 * Run the perf reboot notifier at the very last possible moment so that
6829 * the generic watchdog code runs as long as possible.
6830 */
6831 static struct notifier_block perf_reboot_notifier = {
6832 .notifier_call = perf_reboot,
6833 .priority = INT_MIN,
6834 };
6835
6836 static int __cpuinit
6837 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
6838 {
6839 unsigned int cpu = (long)hcpu;
6840
6841 switch (action & ~CPU_TASKS_FROZEN) {
6842
6843 case CPU_UP_PREPARE:
6844 case CPU_DOWN_FAILED:
6845 perf_event_init_cpu(cpu);
6846 break;
6847
6848 case CPU_UP_CANCELED:
6849 case CPU_DOWN_PREPARE:
6850 perf_event_exit_cpu(cpu);
6851 break;
6852
6853 default:
6854 break;
6855 }
6856
6857 return NOTIFY_OK;
6858 }
6859
6860 void __init perf_event_init(void)
6861 {
6862 int ret;
6863
6864 idr_init(&pmu_idr);
6865
6866 perf_event_init_all_cpus();
6867 init_srcu_struct(&pmus_srcu);
6868 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
6869 perf_pmu_register(&perf_cpu_clock, NULL, -1);
6870 perf_pmu_register(&perf_task_clock, NULL, -1);
6871 perf_tp_register();
6872 perf_cpu_notifier(perf_cpu_notify);
6873 register_reboot_notifier(&perf_reboot_notifier);
6874
6875 ret = init_hw_breakpoint();
6876 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
6877 }
6878
6879 static int __init perf_event_sysfs_init(void)
6880 {
6881 struct pmu *pmu;
6882 int ret;
6883
6884 mutex_lock(&pmus_lock);
6885
6886 ret = bus_register(&pmu_bus);
6887 if (ret)
6888 goto unlock;
6889
6890 list_for_each_entry(pmu, &pmus, entry) {
6891 if (!pmu->name || pmu->type < 0)
6892 continue;
6893
6894 ret = pmu_dev_alloc(pmu);
6895 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
6896 }
6897 pmu_bus_running = 1;
6898 ret = 0;
6899
6900 unlock:
6901 mutex_unlock(&pmus_lock);
6902
6903 return ret;
6904 }
6905 device_initcall(perf_event_sysfs_init);
6906
6907 #ifdef CONFIG_CGROUP_PERF
6908 static struct cgroup_subsys_state *perf_cgroup_create(
6909 struct cgroup_subsys *ss, struct cgroup *cont)
6910 {
6911 struct perf_cgroup *jc;
6912
6913 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
6914 if (!jc)
6915 return ERR_PTR(-ENOMEM);
6916
6917 jc->info = alloc_percpu(struct perf_cgroup_info);
6918 if (!jc->info) {
6919 kfree(jc);
6920 return ERR_PTR(-ENOMEM);
6921 }
6922
6923 return &jc->css;
6924 }
6925
6926 static void perf_cgroup_destroy(struct cgroup_subsys *ss,
6927 struct cgroup *cont)
6928 {
6929 struct perf_cgroup *jc;
6930 jc = container_of(cgroup_subsys_state(cont, perf_subsys_id),
6931 struct perf_cgroup, css);
6932 free_percpu(jc->info);
6933 kfree(jc);
6934 }
6935
6936 static int __perf_cgroup_move(void *info)
6937 {
6938 struct task_struct *task = info;
6939 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
6940 return 0;
6941 }
6942
6943 static void
6944 perf_cgroup_attach_task(struct cgroup *cgrp, struct task_struct *task)
6945 {
6946 task_function_call(task, __perf_cgroup_move, task);
6947 }
6948
6949 static void perf_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
6950 struct cgroup *old_cgrp, struct task_struct *task)
6951 {
6952 /*
6953 * cgroup_exit() is called in the copy_process() failure path.
6954 * Ignore this case since the task hasn't ran yet, this avoids
6955 * trying to poke a half freed task state from generic code.
6956 */
6957 if (!(task->flags & PF_EXITING))
6958 return;
6959
6960 perf_cgroup_attach_task(cgrp, task);
6961 }
6962
6963 struct cgroup_subsys perf_subsys = {
6964 .name = "perf_event",
6965 .subsys_id = perf_subsys_id,
6966 .create = perf_cgroup_create,
6967 .destroy = perf_cgroup_destroy,
6968 .exit = perf_cgroup_exit,
6969 .attach_task = perf_cgroup_attach_task,
6970 };
6971 #endif /* CONFIG_CGROUP_PERF */