]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - kernel/events/core.c
Merge tag 'efi-urgent-for-v5.15' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-jammy-kernel.git] / kernel / events / core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Performance events core code:
4 *
5 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9 */
10
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/idr.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/tick.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/hugetlb.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53 #include <linux/min_heap.h>
54 #include <linux/highmem.h>
55 #include <linux/pgtable.h>
56 #include <linux/buildid.h>
57
58 #include "internal.h"
59
60 #include <asm/irq_regs.h>
61
62 typedef int (*remote_function_f)(void *);
63
64 struct remote_function_call {
65 struct task_struct *p;
66 remote_function_f func;
67 void *info;
68 int ret;
69 };
70
71 static void remote_function(void *data)
72 {
73 struct remote_function_call *tfc = data;
74 struct task_struct *p = tfc->p;
75
76 if (p) {
77 /* -EAGAIN */
78 if (task_cpu(p) != smp_processor_id())
79 return;
80
81 /*
82 * Now that we're on right CPU with IRQs disabled, we can test
83 * if we hit the right task without races.
84 */
85
86 tfc->ret = -ESRCH; /* No such (running) process */
87 if (p != current)
88 return;
89 }
90
91 tfc->ret = tfc->func(tfc->info);
92 }
93
94 /**
95 * task_function_call - call a function on the cpu on which a task runs
96 * @p: the task to evaluate
97 * @func: the function to be called
98 * @info: the function call argument
99 *
100 * Calls the function @func when the task is currently running. This might
101 * be on the current CPU, which just calls the function directly. This will
102 * retry due to any failures in smp_call_function_single(), such as if the
103 * task_cpu() goes offline concurrently.
104 *
105 * returns @func return value or -ESRCH or -ENXIO when the process isn't running
106 */
107 static int
108 task_function_call(struct task_struct *p, remote_function_f func, void *info)
109 {
110 struct remote_function_call data = {
111 .p = p,
112 .func = func,
113 .info = info,
114 .ret = -EAGAIN,
115 };
116 int ret;
117
118 for (;;) {
119 ret = smp_call_function_single(task_cpu(p), remote_function,
120 &data, 1);
121 if (!ret)
122 ret = data.ret;
123
124 if (ret != -EAGAIN)
125 break;
126
127 cond_resched();
128 }
129
130 return ret;
131 }
132
133 /**
134 * cpu_function_call - call a function on the cpu
135 * @cpu: target cpu to queue this function
136 * @func: the function to be called
137 * @info: the function call argument
138 *
139 * Calls the function @func on the remote cpu.
140 *
141 * returns: @func return value or -ENXIO when the cpu is offline
142 */
143 static int cpu_function_call(int cpu, remote_function_f func, void *info)
144 {
145 struct remote_function_call data = {
146 .p = NULL,
147 .func = func,
148 .info = info,
149 .ret = -ENXIO, /* No such CPU */
150 };
151
152 smp_call_function_single(cpu, remote_function, &data, 1);
153
154 return data.ret;
155 }
156
157 static inline struct perf_cpu_context *
158 __get_cpu_context(struct perf_event_context *ctx)
159 {
160 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
161 }
162
163 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
164 struct perf_event_context *ctx)
165 {
166 raw_spin_lock(&cpuctx->ctx.lock);
167 if (ctx)
168 raw_spin_lock(&ctx->lock);
169 }
170
171 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
172 struct perf_event_context *ctx)
173 {
174 if (ctx)
175 raw_spin_unlock(&ctx->lock);
176 raw_spin_unlock(&cpuctx->ctx.lock);
177 }
178
179 #define TASK_TOMBSTONE ((void *)-1L)
180
181 static bool is_kernel_event(struct perf_event *event)
182 {
183 return READ_ONCE(event->owner) == TASK_TOMBSTONE;
184 }
185
186 /*
187 * On task ctx scheduling...
188 *
189 * When !ctx->nr_events a task context will not be scheduled. This means
190 * we can disable the scheduler hooks (for performance) without leaving
191 * pending task ctx state.
192 *
193 * This however results in two special cases:
194 *
195 * - removing the last event from a task ctx; this is relatively straight
196 * forward and is done in __perf_remove_from_context.
197 *
198 * - adding the first event to a task ctx; this is tricky because we cannot
199 * rely on ctx->is_active and therefore cannot use event_function_call().
200 * See perf_install_in_context().
201 *
202 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
203 */
204
205 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
206 struct perf_event_context *, void *);
207
208 struct event_function_struct {
209 struct perf_event *event;
210 event_f func;
211 void *data;
212 };
213
214 static int event_function(void *info)
215 {
216 struct event_function_struct *efs = info;
217 struct perf_event *event = efs->event;
218 struct perf_event_context *ctx = event->ctx;
219 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
220 struct perf_event_context *task_ctx = cpuctx->task_ctx;
221 int ret = 0;
222
223 lockdep_assert_irqs_disabled();
224
225 perf_ctx_lock(cpuctx, task_ctx);
226 /*
227 * Since we do the IPI call without holding ctx->lock things can have
228 * changed, double check we hit the task we set out to hit.
229 */
230 if (ctx->task) {
231 if (ctx->task != current) {
232 ret = -ESRCH;
233 goto unlock;
234 }
235
236 /*
237 * We only use event_function_call() on established contexts,
238 * and event_function() is only ever called when active (or
239 * rather, we'll have bailed in task_function_call() or the
240 * above ctx->task != current test), therefore we must have
241 * ctx->is_active here.
242 */
243 WARN_ON_ONCE(!ctx->is_active);
244 /*
245 * And since we have ctx->is_active, cpuctx->task_ctx must
246 * match.
247 */
248 WARN_ON_ONCE(task_ctx != ctx);
249 } else {
250 WARN_ON_ONCE(&cpuctx->ctx != ctx);
251 }
252
253 efs->func(event, cpuctx, ctx, efs->data);
254 unlock:
255 perf_ctx_unlock(cpuctx, task_ctx);
256
257 return ret;
258 }
259
260 static void event_function_call(struct perf_event *event, event_f func, void *data)
261 {
262 struct perf_event_context *ctx = event->ctx;
263 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
264 struct event_function_struct efs = {
265 .event = event,
266 .func = func,
267 .data = data,
268 };
269
270 if (!event->parent) {
271 /*
272 * If this is a !child event, we must hold ctx::mutex to
273 * stabilize the event->ctx relation. See
274 * perf_event_ctx_lock().
275 */
276 lockdep_assert_held(&ctx->mutex);
277 }
278
279 if (!task) {
280 cpu_function_call(event->cpu, event_function, &efs);
281 return;
282 }
283
284 if (task == TASK_TOMBSTONE)
285 return;
286
287 again:
288 if (!task_function_call(task, event_function, &efs))
289 return;
290
291 raw_spin_lock_irq(&ctx->lock);
292 /*
293 * Reload the task pointer, it might have been changed by
294 * a concurrent perf_event_context_sched_out().
295 */
296 task = ctx->task;
297 if (task == TASK_TOMBSTONE) {
298 raw_spin_unlock_irq(&ctx->lock);
299 return;
300 }
301 if (ctx->is_active) {
302 raw_spin_unlock_irq(&ctx->lock);
303 goto again;
304 }
305 func(event, NULL, ctx, data);
306 raw_spin_unlock_irq(&ctx->lock);
307 }
308
309 /*
310 * Similar to event_function_call() + event_function(), but hard assumes IRQs
311 * are already disabled and we're on the right CPU.
312 */
313 static void event_function_local(struct perf_event *event, event_f func, void *data)
314 {
315 struct perf_event_context *ctx = event->ctx;
316 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
317 struct task_struct *task = READ_ONCE(ctx->task);
318 struct perf_event_context *task_ctx = NULL;
319
320 lockdep_assert_irqs_disabled();
321
322 if (task) {
323 if (task == TASK_TOMBSTONE)
324 return;
325
326 task_ctx = ctx;
327 }
328
329 perf_ctx_lock(cpuctx, task_ctx);
330
331 task = ctx->task;
332 if (task == TASK_TOMBSTONE)
333 goto unlock;
334
335 if (task) {
336 /*
337 * We must be either inactive or active and the right task,
338 * otherwise we're screwed, since we cannot IPI to somewhere
339 * else.
340 */
341 if (ctx->is_active) {
342 if (WARN_ON_ONCE(task != current))
343 goto unlock;
344
345 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
346 goto unlock;
347 }
348 } else {
349 WARN_ON_ONCE(&cpuctx->ctx != ctx);
350 }
351
352 func(event, cpuctx, ctx, data);
353 unlock:
354 perf_ctx_unlock(cpuctx, task_ctx);
355 }
356
357 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
358 PERF_FLAG_FD_OUTPUT |\
359 PERF_FLAG_PID_CGROUP |\
360 PERF_FLAG_FD_CLOEXEC)
361
362 /*
363 * branch priv levels that need permission checks
364 */
365 #define PERF_SAMPLE_BRANCH_PERM_PLM \
366 (PERF_SAMPLE_BRANCH_KERNEL |\
367 PERF_SAMPLE_BRANCH_HV)
368
369 enum event_type_t {
370 EVENT_FLEXIBLE = 0x1,
371 EVENT_PINNED = 0x2,
372 EVENT_TIME = 0x4,
373 /* see ctx_resched() for details */
374 EVENT_CPU = 0x8,
375 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
376 };
377
378 /*
379 * perf_sched_events : >0 events exist
380 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
381 */
382
383 static void perf_sched_delayed(struct work_struct *work);
384 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
385 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
386 static DEFINE_MUTEX(perf_sched_mutex);
387 static atomic_t perf_sched_count;
388
389 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
390 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
391 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
392
393 static atomic_t nr_mmap_events __read_mostly;
394 static atomic_t nr_comm_events __read_mostly;
395 static atomic_t nr_namespaces_events __read_mostly;
396 static atomic_t nr_task_events __read_mostly;
397 static atomic_t nr_freq_events __read_mostly;
398 static atomic_t nr_switch_events __read_mostly;
399 static atomic_t nr_ksymbol_events __read_mostly;
400 static atomic_t nr_bpf_events __read_mostly;
401 static atomic_t nr_cgroup_events __read_mostly;
402 static atomic_t nr_text_poke_events __read_mostly;
403 static atomic_t nr_build_id_events __read_mostly;
404
405 static LIST_HEAD(pmus);
406 static DEFINE_MUTEX(pmus_lock);
407 static struct srcu_struct pmus_srcu;
408 static cpumask_var_t perf_online_mask;
409 static struct kmem_cache *perf_event_cache;
410
411 /*
412 * perf event paranoia level:
413 * -1 - not paranoid at all
414 * 0 - disallow raw tracepoint access for unpriv
415 * 1 - disallow cpu events for unpriv
416 * 2 - disallow kernel profiling for unpriv
417 */
418 int sysctl_perf_event_paranoid __read_mostly = 2;
419
420 /* Minimum for 512 kiB + 1 user control page */
421 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
422
423 /*
424 * max perf event sample rate
425 */
426 #define DEFAULT_MAX_SAMPLE_RATE 100000
427 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
428 #define DEFAULT_CPU_TIME_MAX_PERCENT 25
429
430 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
431
432 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
433 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
434
435 static int perf_sample_allowed_ns __read_mostly =
436 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
437
438 static void update_perf_cpu_limits(void)
439 {
440 u64 tmp = perf_sample_period_ns;
441
442 tmp *= sysctl_perf_cpu_time_max_percent;
443 tmp = div_u64(tmp, 100);
444 if (!tmp)
445 tmp = 1;
446
447 WRITE_ONCE(perf_sample_allowed_ns, tmp);
448 }
449
450 static bool perf_rotate_context(struct perf_cpu_context *cpuctx);
451
452 int perf_proc_update_handler(struct ctl_table *table, int write,
453 void *buffer, size_t *lenp, loff_t *ppos)
454 {
455 int ret;
456 int perf_cpu = sysctl_perf_cpu_time_max_percent;
457 /*
458 * If throttling is disabled don't allow the write:
459 */
460 if (write && (perf_cpu == 100 || perf_cpu == 0))
461 return -EINVAL;
462
463 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
464 if (ret || !write)
465 return ret;
466
467 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
468 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
469 update_perf_cpu_limits();
470
471 return 0;
472 }
473
474 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
475
476 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
477 void *buffer, size_t *lenp, loff_t *ppos)
478 {
479 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
480
481 if (ret || !write)
482 return ret;
483
484 if (sysctl_perf_cpu_time_max_percent == 100 ||
485 sysctl_perf_cpu_time_max_percent == 0) {
486 printk(KERN_WARNING
487 "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
488 WRITE_ONCE(perf_sample_allowed_ns, 0);
489 } else {
490 update_perf_cpu_limits();
491 }
492
493 return 0;
494 }
495
496 /*
497 * perf samples are done in some very critical code paths (NMIs).
498 * If they take too much CPU time, the system can lock up and not
499 * get any real work done. This will drop the sample rate when
500 * we detect that events are taking too long.
501 */
502 #define NR_ACCUMULATED_SAMPLES 128
503 static DEFINE_PER_CPU(u64, running_sample_length);
504
505 static u64 __report_avg;
506 static u64 __report_allowed;
507
508 static void perf_duration_warn(struct irq_work *w)
509 {
510 printk_ratelimited(KERN_INFO
511 "perf: interrupt took too long (%lld > %lld), lowering "
512 "kernel.perf_event_max_sample_rate to %d\n",
513 __report_avg, __report_allowed,
514 sysctl_perf_event_sample_rate);
515 }
516
517 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
518
519 void perf_sample_event_took(u64 sample_len_ns)
520 {
521 u64 max_len = READ_ONCE(perf_sample_allowed_ns);
522 u64 running_len;
523 u64 avg_len;
524 u32 max;
525
526 if (max_len == 0)
527 return;
528
529 /* Decay the counter by 1 average sample. */
530 running_len = __this_cpu_read(running_sample_length);
531 running_len -= running_len/NR_ACCUMULATED_SAMPLES;
532 running_len += sample_len_ns;
533 __this_cpu_write(running_sample_length, running_len);
534
535 /*
536 * Note: this will be biased artifically low until we have
537 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
538 * from having to maintain a count.
539 */
540 avg_len = running_len/NR_ACCUMULATED_SAMPLES;
541 if (avg_len <= max_len)
542 return;
543
544 __report_avg = avg_len;
545 __report_allowed = max_len;
546
547 /*
548 * Compute a throttle threshold 25% below the current duration.
549 */
550 avg_len += avg_len / 4;
551 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
552 if (avg_len < max)
553 max /= (u32)avg_len;
554 else
555 max = 1;
556
557 WRITE_ONCE(perf_sample_allowed_ns, avg_len);
558 WRITE_ONCE(max_samples_per_tick, max);
559
560 sysctl_perf_event_sample_rate = max * HZ;
561 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
562
563 if (!irq_work_queue(&perf_duration_work)) {
564 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
565 "kernel.perf_event_max_sample_rate to %d\n",
566 __report_avg, __report_allowed,
567 sysctl_perf_event_sample_rate);
568 }
569 }
570
571 static atomic64_t perf_event_id;
572
573 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
574 enum event_type_t event_type);
575
576 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
577 enum event_type_t event_type,
578 struct task_struct *task);
579
580 static void update_context_time(struct perf_event_context *ctx);
581 static u64 perf_event_time(struct perf_event *event);
582
583 void __weak perf_event_print_debug(void) { }
584
585 static inline u64 perf_clock(void)
586 {
587 return local_clock();
588 }
589
590 static inline u64 perf_event_clock(struct perf_event *event)
591 {
592 return event->clock();
593 }
594
595 /*
596 * State based event timekeeping...
597 *
598 * The basic idea is to use event->state to determine which (if any) time
599 * fields to increment with the current delta. This means we only need to
600 * update timestamps when we change state or when they are explicitly requested
601 * (read).
602 *
603 * Event groups make things a little more complicated, but not terribly so. The
604 * rules for a group are that if the group leader is OFF the entire group is
605 * OFF, irrespecive of what the group member states are. This results in
606 * __perf_effective_state().
607 *
608 * A futher ramification is that when a group leader flips between OFF and
609 * !OFF, we need to update all group member times.
610 *
611 *
612 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
613 * need to make sure the relevant context time is updated before we try and
614 * update our timestamps.
615 */
616
617 static __always_inline enum perf_event_state
618 __perf_effective_state(struct perf_event *event)
619 {
620 struct perf_event *leader = event->group_leader;
621
622 if (leader->state <= PERF_EVENT_STATE_OFF)
623 return leader->state;
624
625 return event->state;
626 }
627
628 static __always_inline void
629 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
630 {
631 enum perf_event_state state = __perf_effective_state(event);
632 u64 delta = now - event->tstamp;
633
634 *enabled = event->total_time_enabled;
635 if (state >= PERF_EVENT_STATE_INACTIVE)
636 *enabled += delta;
637
638 *running = event->total_time_running;
639 if (state >= PERF_EVENT_STATE_ACTIVE)
640 *running += delta;
641 }
642
643 static void perf_event_update_time(struct perf_event *event)
644 {
645 u64 now = perf_event_time(event);
646
647 __perf_update_times(event, now, &event->total_time_enabled,
648 &event->total_time_running);
649 event->tstamp = now;
650 }
651
652 static void perf_event_update_sibling_time(struct perf_event *leader)
653 {
654 struct perf_event *sibling;
655
656 for_each_sibling_event(sibling, leader)
657 perf_event_update_time(sibling);
658 }
659
660 static void
661 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
662 {
663 if (event->state == state)
664 return;
665
666 perf_event_update_time(event);
667 /*
668 * If a group leader gets enabled/disabled all its siblings
669 * are affected too.
670 */
671 if ((event->state < 0) ^ (state < 0))
672 perf_event_update_sibling_time(event);
673
674 WRITE_ONCE(event->state, state);
675 }
676
677 #ifdef CONFIG_CGROUP_PERF
678
679 static inline bool
680 perf_cgroup_match(struct perf_event *event)
681 {
682 struct perf_event_context *ctx = event->ctx;
683 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
684
685 /* @event doesn't care about cgroup */
686 if (!event->cgrp)
687 return true;
688
689 /* wants specific cgroup scope but @cpuctx isn't associated with any */
690 if (!cpuctx->cgrp)
691 return false;
692
693 /*
694 * Cgroup scoping is recursive. An event enabled for a cgroup is
695 * also enabled for all its descendant cgroups. If @cpuctx's
696 * cgroup is a descendant of @event's (the test covers identity
697 * case), it's a match.
698 */
699 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
700 event->cgrp->css.cgroup);
701 }
702
703 static inline void perf_detach_cgroup(struct perf_event *event)
704 {
705 css_put(&event->cgrp->css);
706 event->cgrp = NULL;
707 }
708
709 static inline int is_cgroup_event(struct perf_event *event)
710 {
711 return event->cgrp != NULL;
712 }
713
714 static inline u64 perf_cgroup_event_time(struct perf_event *event)
715 {
716 struct perf_cgroup_info *t;
717
718 t = per_cpu_ptr(event->cgrp->info, event->cpu);
719 return t->time;
720 }
721
722 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
723 {
724 struct perf_cgroup_info *info;
725 u64 now;
726
727 now = perf_clock();
728
729 info = this_cpu_ptr(cgrp->info);
730
731 info->time += now - info->timestamp;
732 info->timestamp = now;
733 }
734
735 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
736 {
737 struct perf_cgroup *cgrp = cpuctx->cgrp;
738 struct cgroup_subsys_state *css;
739
740 if (cgrp) {
741 for (css = &cgrp->css; css; css = css->parent) {
742 cgrp = container_of(css, struct perf_cgroup, css);
743 __update_cgrp_time(cgrp);
744 }
745 }
746 }
747
748 static inline void update_cgrp_time_from_event(struct perf_event *event)
749 {
750 struct perf_cgroup *cgrp;
751
752 /*
753 * ensure we access cgroup data only when needed and
754 * when we know the cgroup is pinned (css_get)
755 */
756 if (!is_cgroup_event(event))
757 return;
758
759 cgrp = perf_cgroup_from_task(current, event->ctx);
760 /*
761 * Do not update time when cgroup is not active
762 */
763 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
764 __update_cgrp_time(event->cgrp);
765 }
766
767 static inline void
768 perf_cgroup_set_timestamp(struct task_struct *task,
769 struct perf_event_context *ctx)
770 {
771 struct perf_cgroup *cgrp;
772 struct perf_cgroup_info *info;
773 struct cgroup_subsys_state *css;
774
775 /*
776 * ctx->lock held by caller
777 * ensure we do not access cgroup data
778 * unless we have the cgroup pinned (css_get)
779 */
780 if (!task || !ctx->nr_cgroups)
781 return;
782
783 cgrp = perf_cgroup_from_task(task, ctx);
784
785 for (css = &cgrp->css; css; css = css->parent) {
786 cgrp = container_of(css, struct perf_cgroup, css);
787 info = this_cpu_ptr(cgrp->info);
788 info->timestamp = ctx->timestamp;
789 }
790 }
791
792 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
793
794 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
795 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
796
797 /*
798 * reschedule events based on the cgroup constraint of task.
799 *
800 * mode SWOUT : schedule out everything
801 * mode SWIN : schedule in based on cgroup for next
802 */
803 static void perf_cgroup_switch(struct task_struct *task, int mode)
804 {
805 struct perf_cpu_context *cpuctx;
806 struct list_head *list;
807 unsigned long flags;
808
809 /*
810 * Disable interrupts and preemption to avoid this CPU's
811 * cgrp_cpuctx_entry to change under us.
812 */
813 local_irq_save(flags);
814
815 list = this_cpu_ptr(&cgrp_cpuctx_list);
816 list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
817 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
818
819 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
820 perf_pmu_disable(cpuctx->ctx.pmu);
821
822 if (mode & PERF_CGROUP_SWOUT) {
823 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
824 /*
825 * must not be done before ctxswout due
826 * to event_filter_match() in event_sched_out()
827 */
828 cpuctx->cgrp = NULL;
829 }
830
831 if (mode & PERF_CGROUP_SWIN) {
832 WARN_ON_ONCE(cpuctx->cgrp);
833 /*
834 * set cgrp before ctxsw in to allow
835 * event_filter_match() to not have to pass
836 * task around
837 * we pass the cpuctx->ctx to perf_cgroup_from_task()
838 * because cgorup events are only per-cpu
839 */
840 cpuctx->cgrp = perf_cgroup_from_task(task,
841 &cpuctx->ctx);
842 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
843 }
844 perf_pmu_enable(cpuctx->ctx.pmu);
845 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
846 }
847
848 local_irq_restore(flags);
849 }
850
851 static inline void perf_cgroup_sched_out(struct task_struct *task,
852 struct task_struct *next)
853 {
854 struct perf_cgroup *cgrp1;
855 struct perf_cgroup *cgrp2 = NULL;
856
857 rcu_read_lock();
858 /*
859 * we come here when we know perf_cgroup_events > 0
860 * we do not need to pass the ctx here because we know
861 * we are holding the rcu lock
862 */
863 cgrp1 = perf_cgroup_from_task(task, NULL);
864 cgrp2 = perf_cgroup_from_task(next, NULL);
865
866 /*
867 * only schedule out current cgroup events if we know
868 * that we are switching to a different cgroup. Otherwise,
869 * do no touch the cgroup events.
870 */
871 if (cgrp1 != cgrp2)
872 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
873
874 rcu_read_unlock();
875 }
876
877 static inline void perf_cgroup_sched_in(struct task_struct *prev,
878 struct task_struct *task)
879 {
880 struct perf_cgroup *cgrp1;
881 struct perf_cgroup *cgrp2 = NULL;
882
883 rcu_read_lock();
884 /*
885 * we come here when we know perf_cgroup_events > 0
886 * we do not need to pass the ctx here because we know
887 * we are holding the rcu lock
888 */
889 cgrp1 = perf_cgroup_from_task(task, NULL);
890 cgrp2 = perf_cgroup_from_task(prev, NULL);
891
892 /*
893 * only need to schedule in cgroup events if we are changing
894 * cgroup during ctxsw. Cgroup events were not scheduled
895 * out of ctxsw out if that was not the case.
896 */
897 if (cgrp1 != cgrp2)
898 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
899
900 rcu_read_unlock();
901 }
902
903 static int perf_cgroup_ensure_storage(struct perf_event *event,
904 struct cgroup_subsys_state *css)
905 {
906 struct perf_cpu_context *cpuctx;
907 struct perf_event **storage;
908 int cpu, heap_size, ret = 0;
909
910 /*
911 * Allow storage to have sufficent space for an iterator for each
912 * possibly nested cgroup plus an iterator for events with no cgroup.
913 */
914 for (heap_size = 1; css; css = css->parent)
915 heap_size++;
916
917 for_each_possible_cpu(cpu) {
918 cpuctx = per_cpu_ptr(event->pmu->pmu_cpu_context, cpu);
919 if (heap_size <= cpuctx->heap_size)
920 continue;
921
922 storage = kmalloc_node(heap_size * sizeof(struct perf_event *),
923 GFP_KERNEL, cpu_to_node(cpu));
924 if (!storage) {
925 ret = -ENOMEM;
926 break;
927 }
928
929 raw_spin_lock_irq(&cpuctx->ctx.lock);
930 if (cpuctx->heap_size < heap_size) {
931 swap(cpuctx->heap, storage);
932 if (storage == cpuctx->heap_default)
933 storage = NULL;
934 cpuctx->heap_size = heap_size;
935 }
936 raw_spin_unlock_irq(&cpuctx->ctx.lock);
937
938 kfree(storage);
939 }
940
941 return ret;
942 }
943
944 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
945 struct perf_event_attr *attr,
946 struct perf_event *group_leader)
947 {
948 struct perf_cgroup *cgrp;
949 struct cgroup_subsys_state *css;
950 struct fd f = fdget(fd);
951 int ret = 0;
952
953 if (!f.file)
954 return -EBADF;
955
956 css = css_tryget_online_from_dir(f.file->f_path.dentry,
957 &perf_event_cgrp_subsys);
958 if (IS_ERR(css)) {
959 ret = PTR_ERR(css);
960 goto out;
961 }
962
963 ret = perf_cgroup_ensure_storage(event, css);
964 if (ret)
965 goto out;
966
967 cgrp = container_of(css, struct perf_cgroup, css);
968 event->cgrp = cgrp;
969
970 /*
971 * all events in a group must monitor
972 * the same cgroup because a task belongs
973 * to only one perf cgroup at a time
974 */
975 if (group_leader && group_leader->cgrp != cgrp) {
976 perf_detach_cgroup(event);
977 ret = -EINVAL;
978 }
979 out:
980 fdput(f);
981 return ret;
982 }
983
984 static inline void
985 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
986 {
987 struct perf_cgroup_info *t;
988 t = per_cpu_ptr(event->cgrp->info, event->cpu);
989 event->shadow_ctx_time = now - t->timestamp;
990 }
991
992 static inline void
993 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
994 {
995 struct perf_cpu_context *cpuctx;
996
997 if (!is_cgroup_event(event))
998 return;
999
1000 /*
1001 * Because cgroup events are always per-cpu events,
1002 * @ctx == &cpuctx->ctx.
1003 */
1004 cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1005
1006 /*
1007 * Since setting cpuctx->cgrp is conditional on the current @cgrp
1008 * matching the event's cgroup, we must do this for every new event,
1009 * because if the first would mismatch, the second would not try again
1010 * and we would leave cpuctx->cgrp unset.
1011 */
1012 if (ctx->is_active && !cpuctx->cgrp) {
1013 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
1014
1015 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
1016 cpuctx->cgrp = cgrp;
1017 }
1018
1019 if (ctx->nr_cgroups++)
1020 return;
1021
1022 list_add(&cpuctx->cgrp_cpuctx_entry,
1023 per_cpu_ptr(&cgrp_cpuctx_list, event->cpu));
1024 }
1025
1026 static inline void
1027 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1028 {
1029 struct perf_cpu_context *cpuctx;
1030
1031 if (!is_cgroup_event(event))
1032 return;
1033
1034 /*
1035 * Because cgroup events are always per-cpu events,
1036 * @ctx == &cpuctx->ctx.
1037 */
1038 cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1039
1040 if (--ctx->nr_cgroups)
1041 return;
1042
1043 if (ctx->is_active && cpuctx->cgrp)
1044 cpuctx->cgrp = NULL;
1045
1046 list_del(&cpuctx->cgrp_cpuctx_entry);
1047 }
1048
1049 #else /* !CONFIG_CGROUP_PERF */
1050
1051 static inline bool
1052 perf_cgroup_match(struct perf_event *event)
1053 {
1054 return true;
1055 }
1056
1057 static inline void perf_detach_cgroup(struct perf_event *event)
1058 {}
1059
1060 static inline int is_cgroup_event(struct perf_event *event)
1061 {
1062 return 0;
1063 }
1064
1065 static inline void update_cgrp_time_from_event(struct perf_event *event)
1066 {
1067 }
1068
1069 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
1070 {
1071 }
1072
1073 static inline void perf_cgroup_sched_out(struct task_struct *task,
1074 struct task_struct *next)
1075 {
1076 }
1077
1078 static inline void perf_cgroup_sched_in(struct task_struct *prev,
1079 struct task_struct *task)
1080 {
1081 }
1082
1083 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1084 struct perf_event_attr *attr,
1085 struct perf_event *group_leader)
1086 {
1087 return -EINVAL;
1088 }
1089
1090 static inline void
1091 perf_cgroup_set_timestamp(struct task_struct *task,
1092 struct perf_event_context *ctx)
1093 {
1094 }
1095
1096 static inline void
1097 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
1098 {
1099 }
1100
1101 static inline void
1102 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
1103 {
1104 }
1105
1106 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1107 {
1108 return 0;
1109 }
1110
1111 static inline void
1112 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
1113 {
1114 }
1115
1116 static inline void
1117 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1118 {
1119 }
1120 #endif
1121
1122 /*
1123 * set default to be dependent on timer tick just
1124 * like original code
1125 */
1126 #define PERF_CPU_HRTIMER (1000 / HZ)
1127 /*
1128 * function must be called with interrupts disabled
1129 */
1130 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1131 {
1132 struct perf_cpu_context *cpuctx;
1133 bool rotations;
1134
1135 lockdep_assert_irqs_disabled();
1136
1137 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1138 rotations = perf_rotate_context(cpuctx);
1139
1140 raw_spin_lock(&cpuctx->hrtimer_lock);
1141 if (rotations)
1142 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1143 else
1144 cpuctx->hrtimer_active = 0;
1145 raw_spin_unlock(&cpuctx->hrtimer_lock);
1146
1147 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1148 }
1149
1150 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1151 {
1152 struct hrtimer *timer = &cpuctx->hrtimer;
1153 struct pmu *pmu = cpuctx->ctx.pmu;
1154 u64 interval;
1155
1156 /* no multiplexing needed for SW PMU */
1157 if (pmu->task_ctx_nr == perf_sw_context)
1158 return;
1159
1160 /*
1161 * check default is sane, if not set then force to
1162 * default interval (1/tick)
1163 */
1164 interval = pmu->hrtimer_interval_ms;
1165 if (interval < 1)
1166 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1167
1168 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1169
1170 raw_spin_lock_init(&cpuctx->hrtimer_lock);
1171 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD);
1172 timer->function = perf_mux_hrtimer_handler;
1173 }
1174
1175 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1176 {
1177 struct hrtimer *timer = &cpuctx->hrtimer;
1178 struct pmu *pmu = cpuctx->ctx.pmu;
1179 unsigned long flags;
1180
1181 /* not for SW PMU */
1182 if (pmu->task_ctx_nr == perf_sw_context)
1183 return 0;
1184
1185 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1186 if (!cpuctx->hrtimer_active) {
1187 cpuctx->hrtimer_active = 1;
1188 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1189 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
1190 }
1191 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1192
1193 return 0;
1194 }
1195
1196 void perf_pmu_disable(struct pmu *pmu)
1197 {
1198 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1199 if (!(*count)++)
1200 pmu->pmu_disable(pmu);
1201 }
1202
1203 void perf_pmu_enable(struct pmu *pmu)
1204 {
1205 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1206 if (!--(*count))
1207 pmu->pmu_enable(pmu);
1208 }
1209
1210 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1211
1212 /*
1213 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1214 * perf_event_task_tick() are fully serialized because they're strictly cpu
1215 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1216 * disabled, while perf_event_task_tick is called from IRQ context.
1217 */
1218 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1219 {
1220 struct list_head *head = this_cpu_ptr(&active_ctx_list);
1221
1222 lockdep_assert_irqs_disabled();
1223
1224 WARN_ON(!list_empty(&ctx->active_ctx_list));
1225
1226 list_add(&ctx->active_ctx_list, head);
1227 }
1228
1229 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1230 {
1231 lockdep_assert_irqs_disabled();
1232
1233 WARN_ON(list_empty(&ctx->active_ctx_list));
1234
1235 list_del_init(&ctx->active_ctx_list);
1236 }
1237
1238 static void get_ctx(struct perf_event_context *ctx)
1239 {
1240 refcount_inc(&ctx->refcount);
1241 }
1242
1243 static void *alloc_task_ctx_data(struct pmu *pmu)
1244 {
1245 if (pmu->task_ctx_cache)
1246 return kmem_cache_zalloc(pmu->task_ctx_cache, GFP_KERNEL);
1247
1248 return NULL;
1249 }
1250
1251 static void free_task_ctx_data(struct pmu *pmu, void *task_ctx_data)
1252 {
1253 if (pmu->task_ctx_cache && task_ctx_data)
1254 kmem_cache_free(pmu->task_ctx_cache, task_ctx_data);
1255 }
1256
1257 static void free_ctx(struct rcu_head *head)
1258 {
1259 struct perf_event_context *ctx;
1260
1261 ctx = container_of(head, struct perf_event_context, rcu_head);
1262 free_task_ctx_data(ctx->pmu, ctx->task_ctx_data);
1263 kfree(ctx);
1264 }
1265
1266 static void put_ctx(struct perf_event_context *ctx)
1267 {
1268 if (refcount_dec_and_test(&ctx->refcount)) {
1269 if (ctx->parent_ctx)
1270 put_ctx(ctx->parent_ctx);
1271 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1272 put_task_struct(ctx->task);
1273 call_rcu(&ctx->rcu_head, free_ctx);
1274 }
1275 }
1276
1277 /*
1278 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1279 * perf_pmu_migrate_context() we need some magic.
1280 *
1281 * Those places that change perf_event::ctx will hold both
1282 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1283 *
1284 * Lock ordering is by mutex address. There are two other sites where
1285 * perf_event_context::mutex nests and those are:
1286 *
1287 * - perf_event_exit_task_context() [ child , 0 ]
1288 * perf_event_exit_event()
1289 * put_event() [ parent, 1 ]
1290 *
1291 * - perf_event_init_context() [ parent, 0 ]
1292 * inherit_task_group()
1293 * inherit_group()
1294 * inherit_event()
1295 * perf_event_alloc()
1296 * perf_init_event()
1297 * perf_try_init_event() [ child , 1 ]
1298 *
1299 * While it appears there is an obvious deadlock here -- the parent and child
1300 * nesting levels are inverted between the two. This is in fact safe because
1301 * life-time rules separate them. That is an exiting task cannot fork, and a
1302 * spawning task cannot (yet) exit.
1303 *
1304 * But remember that these are parent<->child context relations, and
1305 * migration does not affect children, therefore these two orderings should not
1306 * interact.
1307 *
1308 * The change in perf_event::ctx does not affect children (as claimed above)
1309 * because the sys_perf_event_open() case will install a new event and break
1310 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1311 * concerned with cpuctx and that doesn't have children.
1312 *
1313 * The places that change perf_event::ctx will issue:
1314 *
1315 * perf_remove_from_context();
1316 * synchronize_rcu();
1317 * perf_install_in_context();
1318 *
1319 * to affect the change. The remove_from_context() + synchronize_rcu() should
1320 * quiesce the event, after which we can install it in the new location. This
1321 * means that only external vectors (perf_fops, prctl) can perturb the event
1322 * while in transit. Therefore all such accessors should also acquire
1323 * perf_event_context::mutex to serialize against this.
1324 *
1325 * However; because event->ctx can change while we're waiting to acquire
1326 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1327 * function.
1328 *
1329 * Lock order:
1330 * exec_update_lock
1331 * task_struct::perf_event_mutex
1332 * perf_event_context::mutex
1333 * perf_event::child_mutex;
1334 * perf_event_context::lock
1335 * perf_event::mmap_mutex
1336 * mmap_lock
1337 * perf_addr_filters_head::lock
1338 *
1339 * cpu_hotplug_lock
1340 * pmus_lock
1341 * cpuctx->mutex / perf_event_context::mutex
1342 */
1343 static struct perf_event_context *
1344 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1345 {
1346 struct perf_event_context *ctx;
1347
1348 again:
1349 rcu_read_lock();
1350 ctx = READ_ONCE(event->ctx);
1351 if (!refcount_inc_not_zero(&ctx->refcount)) {
1352 rcu_read_unlock();
1353 goto again;
1354 }
1355 rcu_read_unlock();
1356
1357 mutex_lock_nested(&ctx->mutex, nesting);
1358 if (event->ctx != ctx) {
1359 mutex_unlock(&ctx->mutex);
1360 put_ctx(ctx);
1361 goto again;
1362 }
1363
1364 return ctx;
1365 }
1366
1367 static inline struct perf_event_context *
1368 perf_event_ctx_lock(struct perf_event *event)
1369 {
1370 return perf_event_ctx_lock_nested(event, 0);
1371 }
1372
1373 static void perf_event_ctx_unlock(struct perf_event *event,
1374 struct perf_event_context *ctx)
1375 {
1376 mutex_unlock(&ctx->mutex);
1377 put_ctx(ctx);
1378 }
1379
1380 /*
1381 * This must be done under the ctx->lock, such as to serialize against
1382 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1383 * calling scheduler related locks and ctx->lock nests inside those.
1384 */
1385 static __must_check struct perf_event_context *
1386 unclone_ctx(struct perf_event_context *ctx)
1387 {
1388 struct perf_event_context *parent_ctx = ctx->parent_ctx;
1389
1390 lockdep_assert_held(&ctx->lock);
1391
1392 if (parent_ctx)
1393 ctx->parent_ctx = NULL;
1394 ctx->generation++;
1395
1396 return parent_ctx;
1397 }
1398
1399 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1400 enum pid_type type)
1401 {
1402 u32 nr;
1403 /*
1404 * only top level events have the pid namespace they were created in
1405 */
1406 if (event->parent)
1407 event = event->parent;
1408
1409 nr = __task_pid_nr_ns(p, type, event->ns);
1410 /* avoid -1 if it is idle thread or runs in another ns */
1411 if (!nr && !pid_alive(p))
1412 nr = -1;
1413 return nr;
1414 }
1415
1416 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1417 {
1418 return perf_event_pid_type(event, p, PIDTYPE_TGID);
1419 }
1420
1421 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1422 {
1423 return perf_event_pid_type(event, p, PIDTYPE_PID);
1424 }
1425
1426 /*
1427 * If we inherit events we want to return the parent event id
1428 * to userspace.
1429 */
1430 static u64 primary_event_id(struct perf_event *event)
1431 {
1432 u64 id = event->id;
1433
1434 if (event->parent)
1435 id = event->parent->id;
1436
1437 return id;
1438 }
1439
1440 /*
1441 * Get the perf_event_context for a task and lock it.
1442 *
1443 * This has to cope with the fact that until it is locked,
1444 * the context could get moved to another task.
1445 */
1446 static struct perf_event_context *
1447 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1448 {
1449 struct perf_event_context *ctx;
1450
1451 retry:
1452 /*
1453 * One of the few rules of preemptible RCU is that one cannot do
1454 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1455 * part of the read side critical section was irqs-enabled -- see
1456 * rcu_read_unlock_special().
1457 *
1458 * Since ctx->lock nests under rq->lock we must ensure the entire read
1459 * side critical section has interrupts disabled.
1460 */
1461 local_irq_save(*flags);
1462 rcu_read_lock();
1463 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1464 if (ctx) {
1465 /*
1466 * If this context is a clone of another, it might
1467 * get swapped for another underneath us by
1468 * perf_event_task_sched_out, though the
1469 * rcu_read_lock() protects us from any context
1470 * getting freed. Lock the context and check if it
1471 * got swapped before we could get the lock, and retry
1472 * if so. If we locked the right context, then it
1473 * can't get swapped on us any more.
1474 */
1475 raw_spin_lock(&ctx->lock);
1476 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1477 raw_spin_unlock(&ctx->lock);
1478 rcu_read_unlock();
1479 local_irq_restore(*flags);
1480 goto retry;
1481 }
1482
1483 if (ctx->task == TASK_TOMBSTONE ||
1484 !refcount_inc_not_zero(&ctx->refcount)) {
1485 raw_spin_unlock(&ctx->lock);
1486 ctx = NULL;
1487 } else {
1488 WARN_ON_ONCE(ctx->task != task);
1489 }
1490 }
1491 rcu_read_unlock();
1492 if (!ctx)
1493 local_irq_restore(*flags);
1494 return ctx;
1495 }
1496
1497 /*
1498 * Get the context for a task and increment its pin_count so it
1499 * can't get swapped to another task. This also increments its
1500 * reference count so that the context can't get freed.
1501 */
1502 static struct perf_event_context *
1503 perf_pin_task_context(struct task_struct *task, int ctxn)
1504 {
1505 struct perf_event_context *ctx;
1506 unsigned long flags;
1507
1508 ctx = perf_lock_task_context(task, ctxn, &flags);
1509 if (ctx) {
1510 ++ctx->pin_count;
1511 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1512 }
1513 return ctx;
1514 }
1515
1516 static void perf_unpin_context(struct perf_event_context *ctx)
1517 {
1518 unsigned long flags;
1519
1520 raw_spin_lock_irqsave(&ctx->lock, flags);
1521 --ctx->pin_count;
1522 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1523 }
1524
1525 /*
1526 * Update the record of the current time in a context.
1527 */
1528 static void update_context_time(struct perf_event_context *ctx)
1529 {
1530 u64 now = perf_clock();
1531
1532 ctx->time += now - ctx->timestamp;
1533 ctx->timestamp = now;
1534 }
1535
1536 static u64 perf_event_time(struct perf_event *event)
1537 {
1538 struct perf_event_context *ctx = event->ctx;
1539
1540 if (is_cgroup_event(event))
1541 return perf_cgroup_event_time(event);
1542
1543 return ctx ? ctx->time : 0;
1544 }
1545
1546 static enum event_type_t get_event_type(struct perf_event *event)
1547 {
1548 struct perf_event_context *ctx = event->ctx;
1549 enum event_type_t event_type;
1550
1551 lockdep_assert_held(&ctx->lock);
1552
1553 /*
1554 * It's 'group type', really, because if our group leader is
1555 * pinned, so are we.
1556 */
1557 if (event->group_leader != event)
1558 event = event->group_leader;
1559
1560 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1561 if (!ctx->task)
1562 event_type |= EVENT_CPU;
1563
1564 return event_type;
1565 }
1566
1567 /*
1568 * Helper function to initialize event group nodes.
1569 */
1570 static void init_event_group(struct perf_event *event)
1571 {
1572 RB_CLEAR_NODE(&event->group_node);
1573 event->group_index = 0;
1574 }
1575
1576 /*
1577 * Extract pinned or flexible groups from the context
1578 * based on event attrs bits.
1579 */
1580 static struct perf_event_groups *
1581 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1582 {
1583 if (event->attr.pinned)
1584 return &ctx->pinned_groups;
1585 else
1586 return &ctx->flexible_groups;
1587 }
1588
1589 /*
1590 * Helper function to initializes perf_event_group trees.
1591 */
1592 static void perf_event_groups_init(struct perf_event_groups *groups)
1593 {
1594 groups->tree = RB_ROOT;
1595 groups->index = 0;
1596 }
1597
1598 static inline struct cgroup *event_cgroup(const struct perf_event *event)
1599 {
1600 struct cgroup *cgroup = NULL;
1601
1602 #ifdef CONFIG_CGROUP_PERF
1603 if (event->cgrp)
1604 cgroup = event->cgrp->css.cgroup;
1605 #endif
1606
1607 return cgroup;
1608 }
1609
1610 /*
1611 * Compare function for event groups;
1612 *
1613 * Implements complex key that first sorts by CPU and then by virtual index
1614 * which provides ordering when rotating groups for the same CPU.
1615 */
1616 static __always_inline int
1617 perf_event_groups_cmp(const int left_cpu, const struct cgroup *left_cgroup,
1618 const u64 left_group_index, const struct perf_event *right)
1619 {
1620 if (left_cpu < right->cpu)
1621 return -1;
1622 if (left_cpu > right->cpu)
1623 return 1;
1624
1625 #ifdef CONFIG_CGROUP_PERF
1626 {
1627 const struct cgroup *right_cgroup = event_cgroup(right);
1628
1629 if (left_cgroup != right_cgroup) {
1630 if (!left_cgroup) {
1631 /*
1632 * Left has no cgroup but right does, no
1633 * cgroups come first.
1634 */
1635 return -1;
1636 }
1637 if (!right_cgroup) {
1638 /*
1639 * Right has no cgroup but left does, no
1640 * cgroups come first.
1641 */
1642 return 1;
1643 }
1644 /* Two dissimilar cgroups, order by id. */
1645 if (cgroup_id(left_cgroup) < cgroup_id(right_cgroup))
1646 return -1;
1647
1648 return 1;
1649 }
1650 }
1651 #endif
1652
1653 if (left_group_index < right->group_index)
1654 return -1;
1655 if (left_group_index > right->group_index)
1656 return 1;
1657
1658 return 0;
1659 }
1660
1661 #define __node_2_pe(node) \
1662 rb_entry((node), struct perf_event, group_node)
1663
1664 static inline bool __group_less(struct rb_node *a, const struct rb_node *b)
1665 {
1666 struct perf_event *e = __node_2_pe(a);
1667 return perf_event_groups_cmp(e->cpu, event_cgroup(e), e->group_index,
1668 __node_2_pe(b)) < 0;
1669 }
1670
1671 struct __group_key {
1672 int cpu;
1673 struct cgroup *cgroup;
1674 };
1675
1676 static inline int __group_cmp(const void *key, const struct rb_node *node)
1677 {
1678 const struct __group_key *a = key;
1679 const struct perf_event *b = __node_2_pe(node);
1680
1681 /* partial/subtree match: @cpu, @cgroup; ignore: @group_index */
1682 return perf_event_groups_cmp(a->cpu, a->cgroup, b->group_index, b);
1683 }
1684
1685 /*
1686 * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for
1687 * key (see perf_event_groups_less). This places it last inside the CPU
1688 * subtree.
1689 */
1690 static void
1691 perf_event_groups_insert(struct perf_event_groups *groups,
1692 struct perf_event *event)
1693 {
1694 event->group_index = ++groups->index;
1695
1696 rb_add(&event->group_node, &groups->tree, __group_less);
1697 }
1698
1699 /*
1700 * Helper function to insert event into the pinned or flexible groups.
1701 */
1702 static void
1703 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1704 {
1705 struct perf_event_groups *groups;
1706
1707 groups = get_event_groups(event, ctx);
1708 perf_event_groups_insert(groups, event);
1709 }
1710
1711 /*
1712 * Delete a group from a tree.
1713 */
1714 static void
1715 perf_event_groups_delete(struct perf_event_groups *groups,
1716 struct perf_event *event)
1717 {
1718 WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1719 RB_EMPTY_ROOT(&groups->tree));
1720
1721 rb_erase(&event->group_node, &groups->tree);
1722 init_event_group(event);
1723 }
1724
1725 /*
1726 * Helper function to delete event from its groups.
1727 */
1728 static void
1729 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1730 {
1731 struct perf_event_groups *groups;
1732
1733 groups = get_event_groups(event, ctx);
1734 perf_event_groups_delete(groups, event);
1735 }
1736
1737 /*
1738 * Get the leftmost event in the cpu/cgroup subtree.
1739 */
1740 static struct perf_event *
1741 perf_event_groups_first(struct perf_event_groups *groups, int cpu,
1742 struct cgroup *cgrp)
1743 {
1744 struct __group_key key = {
1745 .cpu = cpu,
1746 .cgroup = cgrp,
1747 };
1748 struct rb_node *node;
1749
1750 node = rb_find_first(&key, &groups->tree, __group_cmp);
1751 if (node)
1752 return __node_2_pe(node);
1753
1754 return NULL;
1755 }
1756
1757 /*
1758 * Like rb_entry_next_safe() for the @cpu subtree.
1759 */
1760 static struct perf_event *
1761 perf_event_groups_next(struct perf_event *event)
1762 {
1763 struct __group_key key = {
1764 .cpu = event->cpu,
1765 .cgroup = event_cgroup(event),
1766 };
1767 struct rb_node *next;
1768
1769 next = rb_next_match(&key, &event->group_node, __group_cmp);
1770 if (next)
1771 return __node_2_pe(next);
1772
1773 return NULL;
1774 }
1775
1776 /*
1777 * Iterate through the whole groups tree.
1778 */
1779 #define perf_event_groups_for_each(event, groups) \
1780 for (event = rb_entry_safe(rb_first(&((groups)->tree)), \
1781 typeof(*event), group_node); event; \
1782 event = rb_entry_safe(rb_next(&event->group_node), \
1783 typeof(*event), group_node))
1784
1785 /*
1786 * Add an event from the lists for its context.
1787 * Must be called with ctx->mutex and ctx->lock held.
1788 */
1789 static void
1790 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1791 {
1792 lockdep_assert_held(&ctx->lock);
1793
1794 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1795 event->attach_state |= PERF_ATTACH_CONTEXT;
1796
1797 event->tstamp = perf_event_time(event);
1798
1799 /*
1800 * If we're a stand alone event or group leader, we go to the context
1801 * list, group events are kept attached to the group so that
1802 * perf_group_detach can, at all times, locate all siblings.
1803 */
1804 if (event->group_leader == event) {
1805 event->group_caps = event->event_caps;
1806 add_event_to_groups(event, ctx);
1807 }
1808
1809 list_add_rcu(&event->event_entry, &ctx->event_list);
1810 ctx->nr_events++;
1811 if (event->attr.inherit_stat)
1812 ctx->nr_stat++;
1813
1814 if (event->state > PERF_EVENT_STATE_OFF)
1815 perf_cgroup_event_enable(event, ctx);
1816
1817 ctx->generation++;
1818 }
1819
1820 /*
1821 * Initialize event state based on the perf_event_attr::disabled.
1822 */
1823 static inline void perf_event__state_init(struct perf_event *event)
1824 {
1825 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1826 PERF_EVENT_STATE_INACTIVE;
1827 }
1828
1829 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1830 {
1831 int entry = sizeof(u64); /* value */
1832 int size = 0;
1833 int nr = 1;
1834
1835 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1836 size += sizeof(u64);
1837
1838 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1839 size += sizeof(u64);
1840
1841 if (event->attr.read_format & PERF_FORMAT_ID)
1842 entry += sizeof(u64);
1843
1844 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1845 nr += nr_siblings;
1846 size += sizeof(u64);
1847 }
1848
1849 size += entry * nr;
1850 event->read_size = size;
1851 }
1852
1853 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1854 {
1855 struct perf_sample_data *data;
1856 u16 size = 0;
1857
1858 if (sample_type & PERF_SAMPLE_IP)
1859 size += sizeof(data->ip);
1860
1861 if (sample_type & PERF_SAMPLE_ADDR)
1862 size += sizeof(data->addr);
1863
1864 if (sample_type & PERF_SAMPLE_PERIOD)
1865 size += sizeof(data->period);
1866
1867 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
1868 size += sizeof(data->weight.full);
1869
1870 if (sample_type & PERF_SAMPLE_READ)
1871 size += event->read_size;
1872
1873 if (sample_type & PERF_SAMPLE_DATA_SRC)
1874 size += sizeof(data->data_src.val);
1875
1876 if (sample_type & PERF_SAMPLE_TRANSACTION)
1877 size += sizeof(data->txn);
1878
1879 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1880 size += sizeof(data->phys_addr);
1881
1882 if (sample_type & PERF_SAMPLE_CGROUP)
1883 size += sizeof(data->cgroup);
1884
1885 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
1886 size += sizeof(data->data_page_size);
1887
1888 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
1889 size += sizeof(data->code_page_size);
1890
1891 event->header_size = size;
1892 }
1893
1894 /*
1895 * Called at perf_event creation and when events are attached/detached from a
1896 * group.
1897 */
1898 static void perf_event__header_size(struct perf_event *event)
1899 {
1900 __perf_event_read_size(event,
1901 event->group_leader->nr_siblings);
1902 __perf_event_header_size(event, event->attr.sample_type);
1903 }
1904
1905 static void perf_event__id_header_size(struct perf_event *event)
1906 {
1907 struct perf_sample_data *data;
1908 u64 sample_type = event->attr.sample_type;
1909 u16 size = 0;
1910
1911 if (sample_type & PERF_SAMPLE_TID)
1912 size += sizeof(data->tid_entry);
1913
1914 if (sample_type & PERF_SAMPLE_TIME)
1915 size += sizeof(data->time);
1916
1917 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1918 size += sizeof(data->id);
1919
1920 if (sample_type & PERF_SAMPLE_ID)
1921 size += sizeof(data->id);
1922
1923 if (sample_type & PERF_SAMPLE_STREAM_ID)
1924 size += sizeof(data->stream_id);
1925
1926 if (sample_type & PERF_SAMPLE_CPU)
1927 size += sizeof(data->cpu_entry);
1928
1929 event->id_header_size = size;
1930 }
1931
1932 static bool perf_event_validate_size(struct perf_event *event)
1933 {
1934 /*
1935 * The values computed here will be over-written when we actually
1936 * attach the event.
1937 */
1938 __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1939 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1940 perf_event__id_header_size(event);
1941
1942 /*
1943 * Sum the lot; should not exceed the 64k limit we have on records.
1944 * Conservative limit to allow for callchains and other variable fields.
1945 */
1946 if (event->read_size + event->header_size +
1947 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1948 return false;
1949
1950 return true;
1951 }
1952
1953 static void perf_group_attach(struct perf_event *event)
1954 {
1955 struct perf_event *group_leader = event->group_leader, *pos;
1956
1957 lockdep_assert_held(&event->ctx->lock);
1958
1959 /*
1960 * We can have double attach due to group movement in perf_event_open.
1961 */
1962 if (event->attach_state & PERF_ATTACH_GROUP)
1963 return;
1964
1965 event->attach_state |= PERF_ATTACH_GROUP;
1966
1967 if (group_leader == event)
1968 return;
1969
1970 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1971
1972 group_leader->group_caps &= event->event_caps;
1973
1974 list_add_tail(&event->sibling_list, &group_leader->sibling_list);
1975 group_leader->nr_siblings++;
1976
1977 perf_event__header_size(group_leader);
1978
1979 for_each_sibling_event(pos, group_leader)
1980 perf_event__header_size(pos);
1981 }
1982
1983 /*
1984 * Remove an event from the lists for its context.
1985 * Must be called with ctx->mutex and ctx->lock held.
1986 */
1987 static void
1988 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1989 {
1990 WARN_ON_ONCE(event->ctx != ctx);
1991 lockdep_assert_held(&ctx->lock);
1992
1993 /*
1994 * We can have double detach due to exit/hot-unplug + close.
1995 */
1996 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1997 return;
1998
1999 event->attach_state &= ~PERF_ATTACH_CONTEXT;
2000
2001 ctx->nr_events--;
2002 if (event->attr.inherit_stat)
2003 ctx->nr_stat--;
2004
2005 list_del_rcu(&event->event_entry);
2006
2007 if (event->group_leader == event)
2008 del_event_from_groups(event, ctx);
2009
2010 /*
2011 * If event was in error state, then keep it
2012 * that way, otherwise bogus counts will be
2013 * returned on read(). The only way to get out
2014 * of error state is by explicit re-enabling
2015 * of the event
2016 */
2017 if (event->state > PERF_EVENT_STATE_OFF) {
2018 perf_cgroup_event_disable(event, ctx);
2019 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2020 }
2021
2022 ctx->generation++;
2023 }
2024
2025 static int
2026 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event)
2027 {
2028 if (!has_aux(aux_event))
2029 return 0;
2030
2031 if (!event->pmu->aux_output_match)
2032 return 0;
2033
2034 return event->pmu->aux_output_match(aux_event);
2035 }
2036
2037 static void put_event(struct perf_event *event);
2038 static void event_sched_out(struct perf_event *event,
2039 struct perf_cpu_context *cpuctx,
2040 struct perf_event_context *ctx);
2041
2042 static void perf_put_aux_event(struct perf_event *event)
2043 {
2044 struct perf_event_context *ctx = event->ctx;
2045 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2046 struct perf_event *iter;
2047
2048 /*
2049 * If event uses aux_event tear down the link
2050 */
2051 if (event->aux_event) {
2052 iter = event->aux_event;
2053 event->aux_event = NULL;
2054 put_event(iter);
2055 return;
2056 }
2057
2058 /*
2059 * If the event is an aux_event, tear down all links to
2060 * it from other events.
2061 */
2062 for_each_sibling_event(iter, event->group_leader) {
2063 if (iter->aux_event != event)
2064 continue;
2065
2066 iter->aux_event = NULL;
2067 put_event(event);
2068
2069 /*
2070 * If it's ACTIVE, schedule it out and put it into ERROR
2071 * state so that we don't try to schedule it again. Note
2072 * that perf_event_enable() will clear the ERROR status.
2073 */
2074 event_sched_out(iter, cpuctx, ctx);
2075 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2076 }
2077 }
2078
2079 static bool perf_need_aux_event(struct perf_event *event)
2080 {
2081 return !!event->attr.aux_output || !!event->attr.aux_sample_size;
2082 }
2083
2084 static int perf_get_aux_event(struct perf_event *event,
2085 struct perf_event *group_leader)
2086 {
2087 /*
2088 * Our group leader must be an aux event if we want to be
2089 * an aux_output. This way, the aux event will precede its
2090 * aux_output events in the group, and therefore will always
2091 * schedule first.
2092 */
2093 if (!group_leader)
2094 return 0;
2095
2096 /*
2097 * aux_output and aux_sample_size are mutually exclusive.
2098 */
2099 if (event->attr.aux_output && event->attr.aux_sample_size)
2100 return 0;
2101
2102 if (event->attr.aux_output &&
2103 !perf_aux_output_match(event, group_leader))
2104 return 0;
2105
2106 if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux)
2107 return 0;
2108
2109 if (!atomic_long_inc_not_zero(&group_leader->refcount))
2110 return 0;
2111
2112 /*
2113 * Link aux_outputs to their aux event; this is undone in
2114 * perf_group_detach() by perf_put_aux_event(). When the
2115 * group in torn down, the aux_output events loose their
2116 * link to the aux_event and can't schedule any more.
2117 */
2118 event->aux_event = group_leader;
2119
2120 return 1;
2121 }
2122
2123 static inline struct list_head *get_event_list(struct perf_event *event)
2124 {
2125 struct perf_event_context *ctx = event->ctx;
2126 return event->attr.pinned ? &ctx->pinned_active : &ctx->flexible_active;
2127 }
2128
2129 /*
2130 * Events that have PERF_EV_CAP_SIBLING require being part of a group and
2131 * cannot exist on their own, schedule them out and move them into the ERROR
2132 * state. Also see _perf_event_enable(), it will not be able to recover
2133 * this ERROR state.
2134 */
2135 static inline void perf_remove_sibling_event(struct perf_event *event)
2136 {
2137 struct perf_event_context *ctx = event->ctx;
2138 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2139
2140 event_sched_out(event, cpuctx, ctx);
2141 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2142 }
2143
2144 static void perf_group_detach(struct perf_event *event)
2145 {
2146 struct perf_event *leader = event->group_leader;
2147 struct perf_event *sibling, *tmp;
2148 struct perf_event_context *ctx = event->ctx;
2149
2150 lockdep_assert_held(&ctx->lock);
2151
2152 /*
2153 * We can have double detach due to exit/hot-unplug + close.
2154 */
2155 if (!(event->attach_state & PERF_ATTACH_GROUP))
2156 return;
2157
2158 event->attach_state &= ~PERF_ATTACH_GROUP;
2159
2160 perf_put_aux_event(event);
2161
2162 /*
2163 * If this is a sibling, remove it from its group.
2164 */
2165 if (leader != event) {
2166 list_del_init(&event->sibling_list);
2167 event->group_leader->nr_siblings--;
2168 goto out;
2169 }
2170
2171 /*
2172 * If this was a group event with sibling events then
2173 * upgrade the siblings to singleton events by adding them
2174 * to whatever list we are on.
2175 */
2176 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
2177
2178 if (sibling->event_caps & PERF_EV_CAP_SIBLING)
2179 perf_remove_sibling_event(sibling);
2180
2181 sibling->group_leader = sibling;
2182 list_del_init(&sibling->sibling_list);
2183
2184 /* Inherit group flags from the previous leader */
2185 sibling->group_caps = event->group_caps;
2186
2187 if (!RB_EMPTY_NODE(&event->group_node)) {
2188 add_event_to_groups(sibling, event->ctx);
2189
2190 if (sibling->state == PERF_EVENT_STATE_ACTIVE)
2191 list_add_tail(&sibling->active_list, get_event_list(sibling));
2192 }
2193
2194 WARN_ON_ONCE(sibling->ctx != event->ctx);
2195 }
2196
2197 out:
2198 for_each_sibling_event(tmp, leader)
2199 perf_event__header_size(tmp);
2200
2201 perf_event__header_size(leader);
2202 }
2203
2204 static void sync_child_event(struct perf_event *child_event);
2205
2206 static void perf_child_detach(struct perf_event *event)
2207 {
2208 struct perf_event *parent_event = event->parent;
2209
2210 if (!(event->attach_state & PERF_ATTACH_CHILD))
2211 return;
2212
2213 event->attach_state &= ~PERF_ATTACH_CHILD;
2214
2215 if (WARN_ON_ONCE(!parent_event))
2216 return;
2217
2218 lockdep_assert_held(&parent_event->child_mutex);
2219
2220 sync_child_event(event);
2221 list_del_init(&event->child_list);
2222 }
2223
2224 static bool is_orphaned_event(struct perf_event *event)
2225 {
2226 return event->state == PERF_EVENT_STATE_DEAD;
2227 }
2228
2229 static inline int __pmu_filter_match(struct perf_event *event)
2230 {
2231 struct pmu *pmu = event->pmu;
2232 return pmu->filter_match ? pmu->filter_match(event) : 1;
2233 }
2234
2235 /*
2236 * Check whether we should attempt to schedule an event group based on
2237 * PMU-specific filtering. An event group can consist of HW and SW events,
2238 * potentially with a SW leader, so we must check all the filters, to
2239 * determine whether a group is schedulable:
2240 */
2241 static inline int pmu_filter_match(struct perf_event *event)
2242 {
2243 struct perf_event *sibling;
2244
2245 if (!__pmu_filter_match(event))
2246 return 0;
2247
2248 for_each_sibling_event(sibling, event) {
2249 if (!__pmu_filter_match(sibling))
2250 return 0;
2251 }
2252
2253 return 1;
2254 }
2255
2256 static inline int
2257 event_filter_match(struct perf_event *event)
2258 {
2259 return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
2260 perf_cgroup_match(event) && pmu_filter_match(event);
2261 }
2262
2263 static void
2264 event_sched_out(struct perf_event *event,
2265 struct perf_cpu_context *cpuctx,
2266 struct perf_event_context *ctx)
2267 {
2268 enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
2269
2270 WARN_ON_ONCE(event->ctx != ctx);
2271 lockdep_assert_held(&ctx->lock);
2272
2273 if (event->state != PERF_EVENT_STATE_ACTIVE)
2274 return;
2275
2276 /*
2277 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2278 * we can schedule events _OUT_ individually through things like
2279 * __perf_remove_from_context().
2280 */
2281 list_del_init(&event->active_list);
2282
2283 perf_pmu_disable(event->pmu);
2284
2285 event->pmu->del(event, 0);
2286 event->oncpu = -1;
2287
2288 if (READ_ONCE(event->pending_disable) >= 0) {
2289 WRITE_ONCE(event->pending_disable, -1);
2290 perf_cgroup_event_disable(event, ctx);
2291 state = PERF_EVENT_STATE_OFF;
2292 }
2293 perf_event_set_state(event, state);
2294
2295 if (!is_software_event(event))
2296 cpuctx->active_oncpu--;
2297 if (!--ctx->nr_active)
2298 perf_event_ctx_deactivate(ctx);
2299 if (event->attr.freq && event->attr.sample_freq)
2300 ctx->nr_freq--;
2301 if (event->attr.exclusive || !cpuctx->active_oncpu)
2302 cpuctx->exclusive = 0;
2303
2304 perf_pmu_enable(event->pmu);
2305 }
2306
2307 static void
2308 group_sched_out(struct perf_event *group_event,
2309 struct perf_cpu_context *cpuctx,
2310 struct perf_event_context *ctx)
2311 {
2312 struct perf_event *event;
2313
2314 if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2315 return;
2316
2317 perf_pmu_disable(ctx->pmu);
2318
2319 event_sched_out(group_event, cpuctx, ctx);
2320
2321 /*
2322 * Schedule out siblings (if any):
2323 */
2324 for_each_sibling_event(event, group_event)
2325 event_sched_out(event, cpuctx, ctx);
2326
2327 perf_pmu_enable(ctx->pmu);
2328 }
2329
2330 #define DETACH_GROUP 0x01UL
2331 #define DETACH_CHILD 0x02UL
2332
2333 /*
2334 * Cross CPU call to remove a performance event
2335 *
2336 * We disable the event on the hardware level first. After that we
2337 * remove it from the context list.
2338 */
2339 static void
2340 __perf_remove_from_context(struct perf_event *event,
2341 struct perf_cpu_context *cpuctx,
2342 struct perf_event_context *ctx,
2343 void *info)
2344 {
2345 unsigned long flags = (unsigned long)info;
2346
2347 if (ctx->is_active & EVENT_TIME) {
2348 update_context_time(ctx);
2349 update_cgrp_time_from_cpuctx(cpuctx);
2350 }
2351
2352 event_sched_out(event, cpuctx, ctx);
2353 if (flags & DETACH_GROUP)
2354 perf_group_detach(event);
2355 if (flags & DETACH_CHILD)
2356 perf_child_detach(event);
2357 list_del_event(event, ctx);
2358
2359 if (!ctx->nr_events && ctx->is_active) {
2360 ctx->is_active = 0;
2361 ctx->rotate_necessary = 0;
2362 if (ctx->task) {
2363 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2364 cpuctx->task_ctx = NULL;
2365 }
2366 }
2367 }
2368
2369 /*
2370 * Remove the event from a task's (or a CPU's) list of events.
2371 *
2372 * If event->ctx is a cloned context, callers must make sure that
2373 * every task struct that event->ctx->task could possibly point to
2374 * remains valid. This is OK when called from perf_release since
2375 * that only calls us on the top-level context, which can't be a clone.
2376 * When called from perf_event_exit_task, it's OK because the
2377 * context has been detached from its task.
2378 */
2379 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2380 {
2381 struct perf_event_context *ctx = event->ctx;
2382
2383 lockdep_assert_held(&ctx->mutex);
2384
2385 /*
2386 * Because of perf_event_exit_task(), perf_remove_from_context() ought
2387 * to work in the face of TASK_TOMBSTONE, unlike every other
2388 * event_function_call() user.
2389 */
2390 raw_spin_lock_irq(&ctx->lock);
2391 if (!ctx->is_active) {
2392 __perf_remove_from_context(event, __get_cpu_context(ctx),
2393 ctx, (void *)flags);
2394 raw_spin_unlock_irq(&ctx->lock);
2395 return;
2396 }
2397 raw_spin_unlock_irq(&ctx->lock);
2398
2399 event_function_call(event, __perf_remove_from_context, (void *)flags);
2400 }
2401
2402 /*
2403 * Cross CPU call to disable a performance event
2404 */
2405 static void __perf_event_disable(struct perf_event *event,
2406 struct perf_cpu_context *cpuctx,
2407 struct perf_event_context *ctx,
2408 void *info)
2409 {
2410 if (event->state < PERF_EVENT_STATE_INACTIVE)
2411 return;
2412
2413 if (ctx->is_active & EVENT_TIME) {
2414 update_context_time(ctx);
2415 update_cgrp_time_from_event(event);
2416 }
2417
2418 if (event == event->group_leader)
2419 group_sched_out(event, cpuctx, ctx);
2420 else
2421 event_sched_out(event, cpuctx, ctx);
2422
2423 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2424 perf_cgroup_event_disable(event, ctx);
2425 }
2426
2427 /*
2428 * Disable an event.
2429 *
2430 * If event->ctx is a cloned context, callers must make sure that
2431 * every task struct that event->ctx->task could possibly point to
2432 * remains valid. This condition is satisfied when called through
2433 * perf_event_for_each_child or perf_event_for_each because they
2434 * hold the top-level event's child_mutex, so any descendant that
2435 * goes to exit will block in perf_event_exit_event().
2436 *
2437 * When called from perf_pending_event it's OK because event->ctx
2438 * is the current context on this CPU and preemption is disabled,
2439 * hence we can't get into perf_event_task_sched_out for this context.
2440 */
2441 static void _perf_event_disable(struct perf_event *event)
2442 {
2443 struct perf_event_context *ctx = event->ctx;
2444
2445 raw_spin_lock_irq(&ctx->lock);
2446 if (event->state <= PERF_EVENT_STATE_OFF) {
2447 raw_spin_unlock_irq(&ctx->lock);
2448 return;
2449 }
2450 raw_spin_unlock_irq(&ctx->lock);
2451
2452 event_function_call(event, __perf_event_disable, NULL);
2453 }
2454
2455 void perf_event_disable_local(struct perf_event *event)
2456 {
2457 event_function_local(event, __perf_event_disable, NULL);
2458 }
2459
2460 /*
2461 * Strictly speaking kernel users cannot create groups and therefore this
2462 * interface does not need the perf_event_ctx_lock() magic.
2463 */
2464 void perf_event_disable(struct perf_event *event)
2465 {
2466 struct perf_event_context *ctx;
2467
2468 ctx = perf_event_ctx_lock(event);
2469 _perf_event_disable(event);
2470 perf_event_ctx_unlock(event, ctx);
2471 }
2472 EXPORT_SYMBOL_GPL(perf_event_disable);
2473
2474 void perf_event_disable_inatomic(struct perf_event *event)
2475 {
2476 WRITE_ONCE(event->pending_disable, smp_processor_id());
2477 /* can fail, see perf_pending_event_disable() */
2478 irq_work_queue(&event->pending);
2479 }
2480
2481 static void perf_set_shadow_time(struct perf_event *event,
2482 struct perf_event_context *ctx)
2483 {
2484 /*
2485 * use the correct time source for the time snapshot
2486 *
2487 * We could get by without this by leveraging the
2488 * fact that to get to this function, the caller
2489 * has most likely already called update_context_time()
2490 * and update_cgrp_time_xx() and thus both timestamp
2491 * are identical (or very close). Given that tstamp is,
2492 * already adjusted for cgroup, we could say that:
2493 * tstamp - ctx->timestamp
2494 * is equivalent to
2495 * tstamp - cgrp->timestamp.
2496 *
2497 * Then, in perf_output_read(), the calculation would
2498 * work with no changes because:
2499 * - event is guaranteed scheduled in
2500 * - no scheduled out in between
2501 * - thus the timestamp would be the same
2502 *
2503 * But this is a bit hairy.
2504 *
2505 * So instead, we have an explicit cgroup call to remain
2506 * within the time source all along. We believe it
2507 * is cleaner and simpler to understand.
2508 */
2509 if (is_cgroup_event(event))
2510 perf_cgroup_set_shadow_time(event, event->tstamp);
2511 else
2512 event->shadow_ctx_time = event->tstamp - ctx->timestamp;
2513 }
2514
2515 #define MAX_INTERRUPTS (~0ULL)
2516
2517 static void perf_log_throttle(struct perf_event *event, int enable);
2518 static void perf_log_itrace_start(struct perf_event *event);
2519
2520 static int
2521 event_sched_in(struct perf_event *event,
2522 struct perf_cpu_context *cpuctx,
2523 struct perf_event_context *ctx)
2524 {
2525 int ret = 0;
2526
2527 WARN_ON_ONCE(event->ctx != ctx);
2528
2529 lockdep_assert_held(&ctx->lock);
2530
2531 if (event->state <= PERF_EVENT_STATE_OFF)
2532 return 0;
2533
2534 WRITE_ONCE(event->oncpu, smp_processor_id());
2535 /*
2536 * Order event::oncpu write to happen before the ACTIVE state is
2537 * visible. This allows perf_event_{stop,read}() to observe the correct
2538 * ->oncpu if it sees ACTIVE.
2539 */
2540 smp_wmb();
2541 perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2542
2543 /*
2544 * Unthrottle events, since we scheduled we might have missed several
2545 * ticks already, also for a heavily scheduling task there is little
2546 * guarantee it'll get a tick in a timely manner.
2547 */
2548 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2549 perf_log_throttle(event, 1);
2550 event->hw.interrupts = 0;
2551 }
2552
2553 perf_pmu_disable(event->pmu);
2554
2555 perf_set_shadow_time(event, ctx);
2556
2557 perf_log_itrace_start(event);
2558
2559 if (event->pmu->add(event, PERF_EF_START)) {
2560 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2561 event->oncpu = -1;
2562 ret = -EAGAIN;
2563 goto out;
2564 }
2565
2566 if (!is_software_event(event))
2567 cpuctx->active_oncpu++;
2568 if (!ctx->nr_active++)
2569 perf_event_ctx_activate(ctx);
2570 if (event->attr.freq && event->attr.sample_freq)
2571 ctx->nr_freq++;
2572
2573 if (event->attr.exclusive)
2574 cpuctx->exclusive = 1;
2575
2576 out:
2577 perf_pmu_enable(event->pmu);
2578
2579 return ret;
2580 }
2581
2582 static int
2583 group_sched_in(struct perf_event *group_event,
2584 struct perf_cpu_context *cpuctx,
2585 struct perf_event_context *ctx)
2586 {
2587 struct perf_event *event, *partial_group = NULL;
2588 struct pmu *pmu = ctx->pmu;
2589
2590 if (group_event->state == PERF_EVENT_STATE_OFF)
2591 return 0;
2592
2593 pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2594
2595 if (event_sched_in(group_event, cpuctx, ctx))
2596 goto error;
2597
2598 /*
2599 * Schedule in siblings as one group (if any):
2600 */
2601 for_each_sibling_event(event, group_event) {
2602 if (event_sched_in(event, cpuctx, ctx)) {
2603 partial_group = event;
2604 goto group_error;
2605 }
2606 }
2607
2608 if (!pmu->commit_txn(pmu))
2609 return 0;
2610
2611 group_error:
2612 /*
2613 * Groups can be scheduled in as one unit only, so undo any
2614 * partial group before returning:
2615 * The events up to the failed event are scheduled out normally.
2616 */
2617 for_each_sibling_event(event, group_event) {
2618 if (event == partial_group)
2619 break;
2620
2621 event_sched_out(event, cpuctx, ctx);
2622 }
2623 event_sched_out(group_event, cpuctx, ctx);
2624
2625 error:
2626 pmu->cancel_txn(pmu);
2627 return -EAGAIN;
2628 }
2629
2630 /*
2631 * Work out whether we can put this event group on the CPU now.
2632 */
2633 static int group_can_go_on(struct perf_event *event,
2634 struct perf_cpu_context *cpuctx,
2635 int can_add_hw)
2636 {
2637 /*
2638 * Groups consisting entirely of software events can always go on.
2639 */
2640 if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2641 return 1;
2642 /*
2643 * If an exclusive group is already on, no other hardware
2644 * events can go on.
2645 */
2646 if (cpuctx->exclusive)
2647 return 0;
2648 /*
2649 * If this group is exclusive and there are already
2650 * events on the CPU, it can't go on.
2651 */
2652 if (event->attr.exclusive && !list_empty(get_event_list(event)))
2653 return 0;
2654 /*
2655 * Otherwise, try to add it if all previous groups were able
2656 * to go on.
2657 */
2658 return can_add_hw;
2659 }
2660
2661 static void add_event_to_ctx(struct perf_event *event,
2662 struct perf_event_context *ctx)
2663 {
2664 list_add_event(event, ctx);
2665 perf_group_attach(event);
2666 }
2667
2668 static void ctx_sched_out(struct perf_event_context *ctx,
2669 struct perf_cpu_context *cpuctx,
2670 enum event_type_t event_type);
2671 static void
2672 ctx_sched_in(struct perf_event_context *ctx,
2673 struct perf_cpu_context *cpuctx,
2674 enum event_type_t event_type,
2675 struct task_struct *task);
2676
2677 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2678 struct perf_event_context *ctx,
2679 enum event_type_t event_type)
2680 {
2681 if (!cpuctx->task_ctx)
2682 return;
2683
2684 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2685 return;
2686
2687 ctx_sched_out(ctx, cpuctx, event_type);
2688 }
2689
2690 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2691 struct perf_event_context *ctx,
2692 struct task_struct *task)
2693 {
2694 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2695 if (ctx)
2696 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2697 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2698 if (ctx)
2699 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2700 }
2701
2702 /*
2703 * We want to maintain the following priority of scheduling:
2704 * - CPU pinned (EVENT_CPU | EVENT_PINNED)
2705 * - task pinned (EVENT_PINNED)
2706 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2707 * - task flexible (EVENT_FLEXIBLE).
2708 *
2709 * In order to avoid unscheduling and scheduling back in everything every
2710 * time an event is added, only do it for the groups of equal priority and
2711 * below.
2712 *
2713 * This can be called after a batch operation on task events, in which case
2714 * event_type is a bit mask of the types of events involved. For CPU events,
2715 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2716 */
2717 static void ctx_resched(struct perf_cpu_context *cpuctx,
2718 struct perf_event_context *task_ctx,
2719 enum event_type_t event_type)
2720 {
2721 enum event_type_t ctx_event_type;
2722 bool cpu_event = !!(event_type & EVENT_CPU);
2723
2724 /*
2725 * If pinned groups are involved, flexible groups also need to be
2726 * scheduled out.
2727 */
2728 if (event_type & EVENT_PINNED)
2729 event_type |= EVENT_FLEXIBLE;
2730
2731 ctx_event_type = event_type & EVENT_ALL;
2732
2733 perf_pmu_disable(cpuctx->ctx.pmu);
2734 if (task_ctx)
2735 task_ctx_sched_out(cpuctx, task_ctx, event_type);
2736
2737 /*
2738 * Decide which cpu ctx groups to schedule out based on the types
2739 * of events that caused rescheduling:
2740 * - EVENT_CPU: schedule out corresponding groups;
2741 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2742 * - otherwise, do nothing more.
2743 */
2744 if (cpu_event)
2745 cpu_ctx_sched_out(cpuctx, ctx_event_type);
2746 else if (ctx_event_type & EVENT_PINNED)
2747 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2748
2749 perf_event_sched_in(cpuctx, task_ctx, current);
2750 perf_pmu_enable(cpuctx->ctx.pmu);
2751 }
2752
2753 void perf_pmu_resched(struct pmu *pmu)
2754 {
2755 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2756 struct perf_event_context *task_ctx = cpuctx->task_ctx;
2757
2758 perf_ctx_lock(cpuctx, task_ctx);
2759 ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU);
2760 perf_ctx_unlock(cpuctx, task_ctx);
2761 }
2762
2763 /*
2764 * Cross CPU call to install and enable a performance event
2765 *
2766 * Very similar to remote_function() + event_function() but cannot assume that
2767 * things like ctx->is_active and cpuctx->task_ctx are set.
2768 */
2769 static int __perf_install_in_context(void *info)
2770 {
2771 struct perf_event *event = info;
2772 struct perf_event_context *ctx = event->ctx;
2773 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2774 struct perf_event_context *task_ctx = cpuctx->task_ctx;
2775 bool reprogram = true;
2776 int ret = 0;
2777
2778 raw_spin_lock(&cpuctx->ctx.lock);
2779 if (ctx->task) {
2780 raw_spin_lock(&ctx->lock);
2781 task_ctx = ctx;
2782
2783 reprogram = (ctx->task == current);
2784
2785 /*
2786 * If the task is running, it must be running on this CPU,
2787 * otherwise we cannot reprogram things.
2788 *
2789 * If its not running, we don't care, ctx->lock will
2790 * serialize against it becoming runnable.
2791 */
2792 if (task_curr(ctx->task) && !reprogram) {
2793 ret = -ESRCH;
2794 goto unlock;
2795 }
2796
2797 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2798 } else if (task_ctx) {
2799 raw_spin_lock(&task_ctx->lock);
2800 }
2801
2802 #ifdef CONFIG_CGROUP_PERF
2803 if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) {
2804 /*
2805 * If the current cgroup doesn't match the event's
2806 * cgroup, we should not try to schedule it.
2807 */
2808 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2809 reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2810 event->cgrp->css.cgroup);
2811 }
2812 #endif
2813
2814 if (reprogram) {
2815 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2816 add_event_to_ctx(event, ctx);
2817 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2818 } else {
2819 add_event_to_ctx(event, ctx);
2820 }
2821
2822 unlock:
2823 perf_ctx_unlock(cpuctx, task_ctx);
2824
2825 return ret;
2826 }
2827
2828 static bool exclusive_event_installable(struct perf_event *event,
2829 struct perf_event_context *ctx);
2830
2831 /*
2832 * Attach a performance event to a context.
2833 *
2834 * Very similar to event_function_call, see comment there.
2835 */
2836 static void
2837 perf_install_in_context(struct perf_event_context *ctx,
2838 struct perf_event *event,
2839 int cpu)
2840 {
2841 struct task_struct *task = READ_ONCE(ctx->task);
2842
2843 lockdep_assert_held(&ctx->mutex);
2844
2845 WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
2846
2847 if (event->cpu != -1)
2848 event->cpu = cpu;
2849
2850 /*
2851 * Ensures that if we can observe event->ctx, both the event and ctx
2852 * will be 'complete'. See perf_iterate_sb_cpu().
2853 */
2854 smp_store_release(&event->ctx, ctx);
2855
2856 /*
2857 * perf_event_attr::disabled events will not run and can be initialized
2858 * without IPI. Except when this is the first event for the context, in
2859 * that case we need the magic of the IPI to set ctx->is_active.
2860 *
2861 * The IOC_ENABLE that is sure to follow the creation of a disabled
2862 * event will issue the IPI and reprogram the hardware.
2863 */
2864 if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF && ctx->nr_events) {
2865 raw_spin_lock_irq(&ctx->lock);
2866 if (ctx->task == TASK_TOMBSTONE) {
2867 raw_spin_unlock_irq(&ctx->lock);
2868 return;
2869 }
2870 add_event_to_ctx(event, ctx);
2871 raw_spin_unlock_irq(&ctx->lock);
2872 return;
2873 }
2874
2875 if (!task) {
2876 cpu_function_call(cpu, __perf_install_in_context, event);
2877 return;
2878 }
2879
2880 /*
2881 * Should not happen, we validate the ctx is still alive before calling.
2882 */
2883 if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2884 return;
2885
2886 /*
2887 * Installing events is tricky because we cannot rely on ctx->is_active
2888 * to be set in case this is the nr_events 0 -> 1 transition.
2889 *
2890 * Instead we use task_curr(), which tells us if the task is running.
2891 * However, since we use task_curr() outside of rq::lock, we can race
2892 * against the actual state. This means the result can be wrong.
2893 *
2894 * If we get a false positive, we retry, this is harmless.
2895 *
2896 * If we get a false negative, things are complicated. If we are after
2897 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2898 * value must be correct. If we're before, it doesn't matter since
2899 * perf_event_context_sched_in() will program the counter.
2900 *
2901 * However, this hinges on the remote context switch having observed
2902 * our task->perf_event_ctxp[] store, such that it will in fact take
2903 * ctx::lock in perf_event_context_sched_in().
2904 *
2905 * We do this by task_function_call(), if the IPI fails to hit the task
2906 * we know any future context switch of task must see the
2907 * perf_event_ctpx[] store.
2908 */
2909
2910 /*
2911 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2912 * task_cpu() load, such that if the IPI then does not find the task
2913 * running, a future context switch of that task must observe the
2914 * store.
2915 */
2916 smp_mb();
2917 again:
2918 if (!task_function_call(task, __perf_install_in_context, event))
2919 return;
2920
2921 raw_spin_lock_irq(&ctx->lock);
2922 task = ctx->task;
2923 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2924 /*
2925 * Cannot happen because we already checked above (which also
2926 * cannot happen), and we hold ctx->mutex, which serializes us
2927 * against perf_event_exit_task_context().
2928 */
2929 raw_spin_unlock_irq(&ctx->lock);
2930 return;
2931 }
2932 /*
2933 * If the task is not running, ctx->lock will avoid it becoming so,
2934 * thus we can safely install the event.
2935 */
2936 if (task_curr(task)) {
2937 raw_spin_unlock_irq(&ctx->lock);
2938 goto again;
2939 }
2940 add_event_to_ctx(event, ctx);
2941 raw_spin_unlock_irq(&ctx->lock);
2942 }
2943
2944 /*
2945 * Cross CPU call to enable a performance event
2946 */
2947 static void __perf_event_enable(struct perf_event *event,
2948 struct perf_cpu_context *cpuctx,
2949 struct perf_event_context *ctx,
2950 void *info)
2951 {
2952 struct perf_event *leader = event->group_leader;
2953 struct perf_event_context *task_ctx;
2954
2955 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2956 event->state <= PERF_EVENT_STATE_ERROR)
2957 return;
2958
2959 if (ctx->is_active)
2960 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2961
2962 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2963 perf_cgroup_event_enable(event, ctx);
2964
2965 if (!ctx->is_active)
2966 return;
2967
2968 if (!event_filter_match(event)) {
2969 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2970 return;
2971 }
2972
2973 /*
2974 * If the event is in a group and isn't the group leader,
2975 * then don't put it on unless the group is on.
2976 */
2977 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2978 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2979 return;
2980 }
2981
2982 task_ctx = cpuctx->task_ctx;
2983 if (ctx->task)
2984 WARN_ON_ONCE(task_ctx != ctx);
2985
2986 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2987 }
2988
2989 /*
2990 * Enable an event.
2991 *
2992 * If event->ctx is a cloned context, callers must make sure that
2993 * every task struct that event->ctx->task could possibly point to
2994 * remains valid. This condition is satisfied when called through
2995 * perf_event_for_each_child or perf_event_for_each as described
2996 * for perf_event_disable.
2997 */
2998 static void _perf_event_enable(struct perf_event *event)
2999 {
3000 struct perf_event_context *ctx = event->ctx;
3001
3002 raw_spin_lock_irq(&ctx->lock);
3003 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
3004 event->state < PERF_EVENT_STATE_ERROR) {
3005 out:
3006 raw_spin_unlock_irq(&ctx->lock);
3007 return;
3008 }
3009
3010 /*
3011 * If the event is in error state, clear that first.
3012 *
3013 * That way, if we see the event in error state below, we know that it
3014 * has gone back into error state, as distinct from the task having
3015 * been scheduled away before the cross-call arrived.
3016 */
3017 if (event->state == PERF_EVENT_STATE_ERROR) {
3018 /*
3019 * Detached SIBLING events cannot leave ERROR state.
3020 */
3021 if (event->event_caps & PERF_EV_CAP_SIBLING &&
3022 event->group_leader == event)
3023 goto out;
3024
3025 event->state = PERF_EVENT_STATE_OFF;
3026 }
3027 raw_spin_unlock_irq(&ctx->lock);
3028
3029 event_function_call(event, __perf_event_enable, NULL);
3030 }
3031
3032 /*
3033 * See perf_event_disable();
3034 */
3035 void perf_event_enable(struct perf_event *event)
3036 {
3037 struct perf_event_context *ctx;
3038
3039 ctx = perf_event_ctx_lock(event);
3040 _perf_event_enable(event);
3041 perf_event_ctx_unlock(event, ctx);
3042 }
3043 EXPORT_SYMBOL_GPL(perf_event_enable);
3044
3045 struct stop_event_data {
3046 struct perf_event *event;
3047 unsigned int restart;
3048 };
3049
3050 static int __perf_event_stop(void *info)
3051 {
3052 struct stop_event_data *sd = info;
3053 struct perf_event *event = sd->event;
3054
3055 /* if it's already INACTIVE, do nothing */
3056 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3057 return 0;
3058
3059 /* matches smp_wmb() in event_sched_in() */
3060 smp_rmb();
3061
3062 /*
3063 * There is a window with interrupts enabled before we get here,
3064 * so we need to check again lest we try to stop another CPU's event.
3065 */
3066 if (READ_ONCE(event->oncpu) != smp_processor_id())
3067 return -EAGAIN;
3068
3069 event->pmu->stop(event, PERF_EF_UPDATE);
3070
3071 /*
3072 * May race with the actual stop (through perf_pmu_output_stop()),
3073 * but it is only used for events with AUX ring buffer, and such
3074 * events will refuse to restart because of rb::aux_mmap_count==0,
3075 * see comments in perf_aux_output_begin().
3076 *
3077 * Since this is happening on an event-local CPU, no trace is lost
3078 * while restarting.
3079 */
3080 if (sd->restart)
3081 event->pmu->start(event, 0);
3082
3083 return 0;
3084 }
3085
3086 static int perf_event_stop(struct perf_event *event, int restart)
3087 {
3088 struct stop_event_data sd = {
3089 .event = event,
3090 .restart = restart,
3091 };
3092 int ret = 0;
3093
3094 do {
3095 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3096 return 0;
3097
3098 /* matches smp_wmb() in event_sched_in() */
3099 smp_rmb();
3100
3101 /*
3102 * We only want to restart ACTIVE events, so if the event goes
3103 * inactive here (event->oncpu==-1), there's nothing more to do;
3104 * fall through with ret==-ENXIO.
3105 */
3106 ret = cpu_function_call(READ_ONCE(event->oncpu),
3107 __perf_event_stop, &sd);
3108 } while (ret == -EAGAIN);
3109
3110 return ret;
3111 }
3112
3113 /*
3114 * In order to contain the amount of racy and tricky in the address filter
3115 * configuration management, it is a two part process:
3116 *
3117 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
3118 * we update the addresses of corresponding vmas in
3119 * event::addr_filter_ranges array and bump the event::addr_filters_gen;
3120 * (p2) when an event is scheduled in (pmu::add), it calls
3121 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
3122 * if the generation has changed since the previous call.
3123 *
3124 * If (p1) happens while the event is active, we restart it to force (p2).
3125 *
3126 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
3127 * pre-existing mappings, called once when new filters arrive via SET_FILTER
3128 * ioctl;
3129 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
3130 * registered mapping, called for every new mmap(), with mm::mmap_lock down
3131 * for reading;
3132 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
3133 * of exec.
3134 */
3135 void perf_event_addr_filters_sync(struct perf_event *event)
3136 {
3137 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
3138
3139 if (!has_addr_filter(event))
3140 return;
3141
3142 raw_spin_lock(&ifh->lock);
3143 if (event->addr_filters_gen != event->hw.addr_filters_gen) {
3144 event->pmu->addr_filters_sync(event);
3145 event->hw.addr_filters_gen = event->addr_filters_gen;
3146 }
3147 raw_spin_unlock(&ifh->lock);
3148 }
3149 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
3150
3151 static int _perf_event_refresh(struct perf_event *event, int refresh)
3152 {
3153 /*
3154 * not supported on inherited events
3155 */
3156 if (event->attr.inherit || !is_sampling_event(event))
3157 return -EINVAL;
3158
3159 atomic_add(refresh, &event->event_limit);
3160 _perf_event_enable(event);
3161
3162 return 0;
3163 }
3164
3165 /*
3166 * See perf_event_disable()
3167 */
3168 int perf_event_refresh(struct perf_event *event, int refresh)
3169 {
3170 struct perf_event_context *ctx;
3171 int ret;
3172
3173 ctx = perf_event_ctx_lock(event);
3174 ret = _perf_event_refresh(event, refresh);
3175 perf_event_ctx_unlock(event, ctx);
3176
3177 return ret;
3178 }
3179 EXPORT_SYMBOL_GPL(perf_event_refresh);
3180
3181 static int perf_event_modify_breakpoint(struct perf_event *bp,
3182 struct perf_event_attr *attr)
3183 {
3184 int err;
3185
3186 _perf_event_disable(bp);
3187
3188 err = modify_user_hw_breakpoint_check(bp, attr, true);
3189
3190 if (!bp->attr.disabled)
3191 _perf_event_enable(bp);
3192
3193 return err;
3194 }
3195
3196 static int perf_event_modify_attr(struct perf_event *event,
3197 struct perf_event_attr *attr)
3198 {
3199 int (*func)(struct perf_event *, struct perf_event_attr *);
3200 struct perf_event *child;
3201 int err;
3202
3203 if (event->attr.type != attr->type)
3204 return -EINVAL;
3205
3206 switch (event->attr.type) {
3207 case PERF_TYPE_BREAKPOINT:
3208 func = perf_event_modify_breakpoint;
3209 break;
3210 default:
3211 /* Place holder for future additions. */
3212 return -EOPNOTSUPP;
3213 }
3214
3215 WARN_ON_ONCE(event->ctx->parent_ctx);
3216
3217 mutex_lock(&event->child_mutex);
3218 err = func(event, attr);
3219 if (err)
3220 goto out;
3221 list_for_each_entry(child, &event->child_list, child_list) {
3222 err = func(child, attr);
3223 if (err)
3224 goto out;
3225 }
3226 out:
3227 mutex_unlock(&event->child_mutex);
3228 return err;
3229 }
3230
3231 static void ctx_sched_out(struct perf_event_context *ctx,
3232 struct perf_cpu_context *cpuctx,
3233 enum event_type_t event_type)
3234 {
3235 struct perf_event *event, *tmp;
3236 int is_active = ctx->is_active;
3237
3238 lockdep_assert_held(&ctx->lock);
3239
3240 if (likely(!ctx->nr_events)) {
3241 /*
3242 * See __perf_remove_from_context().
3243 */
3244 WARN_ON_ONCE(ctx->is_active);
3245 if (ctx->task)
3246 WARN_ON_ONCE(cpuctx->task_ctx);
3247 return;
3248 }
3249
3250 ctx->is_active &= ~event_type;
3251 if (!(ctx->is_active & EVENT_ALL))
3252 ctx->is_active = 0;
3253
3254 if (ctx->task) {
3255 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3256 if (!ctx->is_active)
3257 cpuctx->task_ctx = NULL;
3258 }
3259
3260 /*
3261 * Always update time if it was set; not only when it changes.
3262 * Otherwise we can 'forget' to update time for any but the last
3263 * context we sched out. For example:
3264 *
3265 * ctx_sched_out(.event_type = EVENT_FLEXIBLE)
3266 * ctx_sched_out(.event_type = EVENT_PINNED)
3267 *
3268 * would only update time for the pinned events.
3269 */
3270 if (is_active & EVENT_TIME) {
3271 /* update (and stop) ctx time */
3272 update_context_time(ctx);
3273 update_cgrp_time_from_cpuctx(cpuctx);
3274 }
3275
3276 is_active ^= ctx->is_active; /* changed bits */
3277
3278 if (!ctx->nr_active || !(is_active & EVENT_ALL))
3279 return;
3280
3281 perf_pmu_disable(ctx->pmu);
3282 if (is_active & EVENT_PINNED) {
3283 list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list)
3284 group_sched_out(event, cpuctx, ctx);
3285 }
3286
3287 if (is_active & EVENT_FLEXIBLE) {
3288 list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list)
3289 group_sched_out(event, cpuctx, ctx);
3290
3291 /*
3292 * Since we cleared EVENT_FLEXIBLE, also clear
3293 * rotate_necessary, is will be reset by
3294 * ctx_flexible_sched_in() when needed.
3295 */
3296 ctx->rotate_necessary = 0;
3297 }
3298 perf_pmu_enable(ctx->pmu);
3299 }
3300
3301 /*
3302 * Test whether two contexts are equivalent, i.e. whether they have both been
3303 * cloned from the same version of the same context.
3304 *
3305 * Equivalence is measured using a generation number in the context that is
3306 * incremented on each modification to it; see unclone_ctx(), list_add_event()
3307 * and list_del_event().
3308 */
3309 static int context_equiv(struct perf_event_context *ctx1,
3310 struct perf_event_context *ctx2)
3311 {
3312 lockdep_assert_held(&ctx1->lock);
3313 lockdep_assert_held(&ctx2->lock);
3314
3315 /* Pinning disables the swap optimization */
3316 if (ctx1->pin_count || ctx2->pin_count)
3317 return 0;
3318
3319 /* If ctx1 is the parent of ctx2 */
3320 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
3321 return 1;
3322
3323 /* If ctx2 is the parent of ctx1 */
3324 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3325 return 1;
3326
3327 /*
3328 * If ctx1 and ctx2 have the same parent; we flatten the parent
3329 * hierarchy, see perf_event_init_context().
3330 */
3331 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3332 ctx1->parent_gen == ctx2->parent_gen)
3333 return 1;
3334
3335 /* Unmatched */
3336 return 0;
3337 }
3338
3339 static void __perf_event_sync_stat(struct perf_event *event,
3340 struct perf_event *next_event)
3341 {
3342 u64 value;
3343
3344 if (!event->attr.inherit_stat)
3345 return;
3346
3347 /*
3348 * Update the event value, we cannot use perf_event_read()
3349 * because we're in the middle of a context switch and have IRQs
3350 * disabled, which upsets smp_call_function_single(), however
3351 * we know the event must be on the current CPU, therefore we
3352 * don't need to use it.
3353 */
3354 if (event->state == PERF_EVENT_STATE_ACTIVE)
3355 event->pmu->read(event);
3356
3357 perf_event_update_time(event);
3358
3359 /*
3360 * In order to keep per-task stats reliable we need to flip the event
3361 * values when we flip the contexts.
3362 */
3363 value = local64_read(&next_event->count);
3364 value = local64_xchg(&event->count, value);
3365 local64_set(&next_event->count, value);
3366
3367 swap(event->total_time_enabled, next_event->total_time_enabled);
3368 swap(event->total_time_running, next_event->total_time_running);
3369
3370 /*
3371 * Since we swizzled the values, update the user visible data too.
3372 */
3373 perf_event_update_userpage(event);
3374 perf_event_update_userpage(next_event);
3375 }
3376
3377 static void perf_event_sync_stat(struct perf_event_context *ctx,
3378 struct perf_event_context *next_ctx)
3379 {
3380 struct perf_event *event, *next_event;
3381
3382 if (!ctx->nr_stat)
3383 return;
3384
3385 update_context_time(ctx);
3386
3387 event = list_first_entry(&ctx->event_list,
3388 struct perf_event, event_entry);
3389
3390 next_event = list_first_entry(&next_ctx->event_list,
3391 struct perf_event, event_entry);
3392
3393 while (&event->event_entry != &ctx->event_list &&
3394 &next_event->event_entry != &next_ctx->event_list) {
3395
3396 __perf_event_sync_stat(event, next_event);
3397
3398 event = list_next_entry(event, event_entry);
3399 next_event = list_next_entry(next_event, event_entry);
3400 }
3401 }
3402
3403 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
3404 struct task_struct *next)
3405 {
3406 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
3407 struct perf_event_context *next_ctx;
3408 struct perf_event_context *parent, *next_parent;
3409 struct perf_cpu_context *cpuctx;
3410 int do_switch = 1;
3411 struct pmu *pmu;
3412
3413 if (likely(!ctx))
3414 return;
3415
3416 pmu = ctx->pmu;
3417 cpuctx = __get_cpu_context(ctx);
3418 if (!cpuctx->task_ctx)
3419 return;
3420
3421 rcu_read_lock();
3422 next_ctx = next->perf_event_ctxp[ctxn];
3423 if (!next_ctx)
3424 goto unlock;
3425
3426 parent = rcu_dereference(ctx->parent_ctx);
3427 next_parent = rcu_dereference(next_ctx->parent_ctx);
3428
3429 /* If neither context have a parent context; they cannot be clones. */
3430 if (!parent && !next_parent)
3431 goto unlock;
3432
3433 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3434 /*
3435 * Looks like the two contexts are clones, so we might be
3436 * able to optimize the context switch. We lock both
3437 * contexts and check that they are clones under the
3438 * lock (including re-checking that neither has been
3439 * uncloned in the meantime). It doesn't matter which
3440 * order we take the locks because no other cpu could
3441 * be trying to lock both of these tasks.
3442 */
3443 raw_spin_lock(&ctx->lock);
3444 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3445 if (context_equiv(ctx, next_ctx)) {
3446
3447 WRITE_ONCE(ctx->task, next);
3448 WRITE_ONCE(next_ctx->task, task);
3449
3450 perf_pmu_disable(pmu);
3451
3452 if (cpuctx->sched_cb_usage && pmu->sched_task)
3453 pmu->sched_task(ctx, false);
3454
3455 /*
3456 * PMU specific parts of task perf context can require
3457 * additional synchronization. As an example of such
3458 * synchronization see implementation details of Intel
3459 * LBR call stack data profiling;
3460 */
3461 if (pmu->swap_task_ctx)
3462 pmu->swap_task_ctx(ctx, next_ctx);
3463 else
3464 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
3465
3466 perf_pmu_enable(pmu);
3467
3468 /*
3469 * RCU_INIT_POINTER here is safe because we've not
3470 * modified the ctx and the above modification of
3471 * ctx->task and ctx->task_ctx_data are immaterial
3472 * since those values are always verified under
3473 * ctx->lock which we're now holding.
3474 */
3475 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
3476 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
3477
3478 do_switch = 0;
3479
3480 perf_event_sync_stat(ctx, next_ctx);
3481 }
3482 raw_spin_unlock(&next_ctx->lock);
3483 raw_spin_unlock(&ctx->lock);
3484 }
3485 unlock:
3486 rcu_read_unlock();
3487
3488 if (do_switch) {
3489 raw_spin_lock(&ctx->lock);
3490 perf_pmu_disable(pmu);
3491
3492 if (cpuctx->sched_cb_usage && pmu->sched_task)
3493 pmu->sched_task(ctx, false);
3494 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
3495
3496 perf_pmu_enable(pmu);
3497 raw_spin_unlock(&ctx->lock);
3498 }
3499 }
3500
3501 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3502
3503 void perf_sched_cb_dec(struct pmu *pmu)
3504 {
3505 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3506
3507 this_cpu_dec(perf_sched_cb_usages);
3508
3509 if (!--cpuctx->sched_cb_usage)
3510 list_del(&cpuctx->sched_cb_entry);
3511 }
3512
3513
3514 void perf_sched_cb_inc(struct pmu *pmu)
3515 {
3516 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3517
3518 if (!cpuctx->sched_cb_usage++)
3519 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3520
3521 this_cpu_inc(perf_sched_cb_usages);
3522 }
3523
3524 /*
3525 * This function provides the context switch callback to the lower code
3526 * layer. It is invoked ONLY when the context switch callback is enabled.
3527 *
3528 * This callback is relevant even to per-cpu events; for example multi event
3529 * PEBS requires this to provide PID/TID information. This requires we flush
3530 * all queued PEBS records before we context switch to a new task.
3531 */
3532 static void __perf_pmu_sched_task(struct perf_cpu_context *cpuctx, bool sched_in)
3533 {
3534 struct pmu *pmu;
3535
3536 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
3537
3538 if (WARN_ON_ONCE(!pmu->sched_task))
3539 return;
3540
3541 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3542 perf_pmu_disable(pmu);
3543
3544 pmu->sched_task(cpuctx->task_ctx, sched_in);
3545
3546 perf_pmu_enable(pmu);
3547 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3548 }
3549
3550 static void perf_pmu_sched_task(struct task_struct *prev,
3551 struct task_struct *next,
3552 bool sched_in)
3553 {
3554 struct perf_cpu_context *cpuctx;
3555
3556 if (prev == next)
3557 return;
3558
3559 list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
3560 /* will be handled in perf_event_context_sched_in/out */
3561 if (cpuctx->task_ctx)
3562 continue;
3563
3564 __perf_pmu_sched_task(cpuctx, sched_in);
3565 }
3566 }
3567
3568 static void perf_event_switch(struct task_struct *task,
3569 struct task_struct *next_prev, bool sched_in);
3570
3571 #define for_each_task_context_nr(ctxn) \
3572 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3573
3574 /*
3575 * Called from scheduler to remove the events of the current task,
3576 * with interrupts disabled.
3577 *
3578 * We stop each event and update the event value in event->count.
3579 *
3580 * This does not protect us against NMI, but disable()
3581 * sets the disabled bit in the control field of event _before_
3582 * accessing the event control register. If a NMI hits, then it will
3583 * not restart the event.
3584 */
3585 void __perf_event_task_sched_out(struct task_struct *task,
3586 struct task_struct *next)
3587 {
3588 int ctxn;
3589
3590 if (__this_cpu_read(perf_sched_cb_usages))
3591 perf_pmu_sched_task(task, next, false);
3592
3593 if (atomic_read(&nr_switch_events))
3594 perf_event_switch(task, next, false);
3595
3596 for_each_task_context_nr(ctxn)
3597 perf_event_context_sched_out(task, ctxn, next);
3598
3599 /*
3600 * if cgroup events exist on this CPU, then we need
3601 * to check if we have to switch out PMU state.
3602 * cgroup event are system-wide mode only
3603 */
3604 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3605 perf_cgroup_sched_out(task, next);
3606 }
3607
3608 /*
3609 * Called with IRQs disabled
3610 */
3611 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3612 enum event_type_t event_type)
3613 {
3614 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3615 }
3616
3617 static bool perf_less_group_idx(const void *l, const void *r)
3618 {
3619 const struct perf_event *le = *(const struct perf_event **)l;
3620 const struct perf_event *re = *(const struct perf_event **)r;
3621
3622 return le->group_index < re->group_index;
3623 }
3624
3625 static void swap_ptr(void *l, void *r)
3626 {
3627 void **lp = l, **rp = r;
3628
3629 swap(*lp, *rp);
3630 }
3631
3632 static const struct min_heap_callbacks perf_min_heap = {
3633 .elem_size = sizeof(struct perf_event *),
3634 .less = perf_less_group_idx,
3635 .swp = swap_ptr,
3636 };
3637
3638 static void __heap_add(struct min_heap *heap, struct perf_event *event)
3639 {
3640 struct perf_event **itrs = heap->data;
3641
3642 if (event) {
3643 itrs[heap->nr] = event;
3644 heap->nr++;
3645 }
3646 }
3647
3648 static noinline int visit_groups_merge(struct perf_cpu_context *cpuctx,
3649 struct perf_event_groups *groups, int cpu,
3650 int (*func)(struct perf_event *, void *),
3651 void *data)
3652 {
3653 #ifdef CONFIG_CGROUP_PERF
3654 struct cgroup_subsys_state *css = NULL;
3655 #endif
3656 /* Space for per CPU and/or any CPU event iterators. */
3657 struct perf_event *itrs[2];
3658 struct min_heap event_heap;
3659 struct perf_event **evt;
3660 int ret;
3661
3662 if (cpuctx) {
3663 event_heap = (struct min_heap){
3664 .data = cpuctx->heap,
3665 .nr = 0,
3666 .size = cpuctx->heap_size,
3667 };
3668
3669 lockdep_assert_held(&cpuctx->ctx.lock);
3670
3671 #ifdef CONFIG_CGROUP_PERF
3672 if (cpuctx->cgrp)
3673 css = &cpuctx->cgrp->css;
3674 #endif
3675 } else {
3676 event_heap = (struct min_heap){
3677 .data = itrs,
3678 .nr = 0,
3679 .size = ARRAY_SIZE(itrs),
3680 };
3681 /* Events not within a CPU context may be on any CPU. */
3682 __heap_add(&event_heap, perf_event_groups_first(groups, -1, NULL));
3683 }
3684 evt = event_heap.data;
3685
3686 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, NULL));
3687
3688 #ifdef CONFIG_CGROUP_PERF
3689 for (; css; css = css->parent)
3690 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, css->cgroup));
3691 #endif
3692
3693 min_heapify_all(&event_heap, &perf_min_heap);
3694
3695 while (event_heap.nr) {
3696 ret = func(*evt, data);
3697 if (ret)
3698 return ret;
3699
3700 *evt = perf_event_groups_next(*evt);
3701 if (*evt)
3702 min_heapify(&event_heap, 0, &perf_min_heap);
3703 else
3704 min_heap_pop(&event_heap, &perf_min_heap);
3705 }
3706
3707 return 0;
3708 }
3709
3710 static inline bool event_update_userpage(struct perf_event *event)
3711 {
3712 if (likely(!atomic_read(&event->mmap_count)))
3713 return false;
3714
3715 perf_event_update_time(event);
3716 perf_set_shadow_time(event, event->ctx);
3717 perf_event_update_userpage(event);
3718
3719 return true;
3720 }
3721
3722 static inline void group_update_userpage(struct perf_event *group_event)
3723 {
3724 struct perf_event *event;
3725
3726 if (!event_update_userpage(group_event))
3727 return;
3728
3729 for_each_sibling_event(event, group_event)
3730 event_update_userpage(event);
3731 }
3732
3733 static int merge_sched_in(struct perf_event *event, void *data)
3734 {
3735 struct perf_event_context *ctx = event->ctx;
3736 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3737 int *can_add_hw = data;
3738
3739 if (event->state <= PERF_EVENT_STATE_OFF)
3740 return 0;
3741
3742 if (!event_filter_match(event))
3743 return 0;
3744
3745 if (group_can_go_on(event, cpuctx, *can_add_hw)) {
3746 if (!group_sched_in(event, cpuctx, ctx))
3747 list_add_tail(&event->active_list, get_event_list(event));
3748 }
3749
3750 if (event->state == PERF_EVENT_STATE_INACTIVE) {
3751 *can_add_hw = 0;
3752 if (event->attr.pinned) {
3753 perf_cgroup_event_disable(event, ctx);
3754 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3755 } else {
3756 ctx->rotate_necessary = 1;
3757 perf_mux_hrtimer_restart(cpuctx);
3758 group_update_userpage(event);
3759 }
3760 }
3761
3762 return 0;
3763 }
3764
3765 static void
3766 ctx_pinned_sched_in(struct perf_event_context *ctx,
3767 struct perf_cpu_context *cpuctx)
3768 {
3769 int can_add_hw = 1;
3770
3771 if (ctx != &cpuctx->ctx)
3772 cpuctx = NULL;
3773
3774 visit_groups_merge(cpuctx, &ctx->pinned_groups,
3775 smp_processor_id(),
3776 merge_sched_in, &can_add_hw);
3777 }
3778
3779 static void
3780 ctx_flexible_sched_in(struct perf_event_context *ctx,
3781 struct perf_cpu_context *cpuctx)
3782 {
3783 int can_add_hw = 1;
3784
3785 if (ctx != &cpuctx->ctx)
3786 cpuctx = NULL;
3787
3788 visit_groups_merge(cpuctx, &ctx->flexible_groups,
3789 smp_processor_id(),
3790 merge_sched_in, &can_add_hw);
3791 }
3792
3793 static void
3794 ctx_sched_in(struct perf_event_context *ctx,
3795 struct perf_cpu_context *cpuctx,
3796 enum event_type_t event_type,
3797 struct task_struct *task)
3798 {
3799 int is_active = ctx->is_active;
3800 u64 now;
3801
3802 lockdep_assert_held(&ctx->lock);
3803
3804 if (likely(!ctx->nr_events))
3805 return;
3806
3807 ctx->is_active |= (event_type | EVENT_TIME);
3808 if (ctx->task) {
3809 if (!is_active)
3810 cpuctx->task_ctx = ctx;
3811 else
3812 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3813 }
3814
3815 is_active ^= ctx->is_active; /* changed bits */
3816
3817 if (is_active & EVENT_TIME) {
3818 /* start ctx time */
3819 now = perf_clock();
3820 ctx->timestamp = now;
3821 perf_cgroup_set_timestamp(task, ctx);
3822 }
3823
3824 /*
3825 * First go through the list and put on any pinned groups
3826 * in order to give them the best chance of going on.
3827 */
3828 if (is_active & EVENT_PINNED)
3829 ctx_pinned_sched_in(ctx, cpuctx);
3830
3831 /* Then walk through the lower prio flexible groups */
3832 if (is_active & EVENT_FLEXIBLE)
3833 ctx_flexible_sched_in(ctx, cpuctx);
3834 }
3835
3836 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3837 enum event_type_t event_type,
3838 struct task_struct *task)
3839 {
3840 struct perf_event_context *ctx = &cpuctx->ctx;
3841
3842 ctx_sched_in(ctx, cpuctx, event_type, task);
3843 }
3844
3845 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3846 struct task_struct *task)
3847 {
3848 struct perf_cpu_context *cpuctx;
3849 struct pmu *pmu;
3850
3851 cpuctx = __get_cpu_context(ctx);
3852
3853 /*
3854 * HACK: for HETEROGENEOUS the task context might have switched to a
3855 * different PMU, force (re)set the context,
3856 */
3857 pmu = ctx->pmu = cpuctx->ctx.pmu;
3858
3859 if (cpuctx->task_ctx == ctx) {
3860 if (cpuctx->sched_cb_usage)
3861 __perf_pmu_sched_task(cpuctx, true);
3862 return;
3863 }
3864
3865 perf_ctx_lock(cpuctx, ctx);
3866 /*
3867 * We must check ctx->nr_events while holding ctx->lock, such
3868 * that we serialize against perf_install_in_context().
3869 */
3870 if (!ctx->nr_events)
3871 goto unlock;
3872
3873 perf_pmu_disable(pmu);
3874 /*
3875 * We want to keep the following priority order:
3876 * cpu pinned (that don't need to move), task pinned,
3877 * cpu flexible, task flexible.
3878 *
3879 * However, if task's ctx is not carrying any pinned
3880 * events, no need to flip the cpuctx's events around.
3881 */
3882 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
3883 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3884 perf_event_sched_in(cpuctx, ctx, task);
3885
3886 if (cpuctx->sched_cb_usage && pmu->sched_task)
3887 pmu->sched_task(cpuctx->task_ctx, true);
3888
3889 perf_pmu_enable(pmu);
3890
3891 unlock:
3892 perf_ctx_unlock(cpuctx, ctx);
3893 }
3894
3895 /*
3896 * Called from scheduler to add the events of the current task
3897 * with interrupts disabled.
3898 *
3899 * We restore the event value and then enable it.
3900 *
3901 * This does not protect us against NMI, but enable()
3902 * sets the enabled bit in the control field of event _before_
3903 * accessing the event control register. If a NMI hits, then it will
3904 * keep the event running.
3905 */
3906 void __perf_event_task_sched_in(struct task_struct *prev,
3907 struct task_struct *task)
3908 {
3909 struct perf_event_context *ctx;
3910 int ctxn;
3911
3912 /*
3913 * If cgroup events exist on this CPU, then we need to check if we have
3914 * to switch in PMU state; cgroup event are system-wide mode only.
3915 *
3916 * Since cgroup events are CPU events, we must schedule these in before
3917 * we schedule in the task events.
3918 */
3919 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3920 perf_cgroup_sched_in(prev, task);
3921
3922 for_each_task_context_nr(ctxn) {
3923 ctx = task->perf_event_ctxp[ctxn];
3924 if (likely(!ctx))
3925 continue;
3926
3927 perf_event_context_sched_in(ctx, task);
3928 }
3929
3930 if (atomic_read(&nr_switch_events))
3931 perf_event_switch(task, prev, true);
3932
3933 if (__this_cpu_read(perf_sched_cb_usages))
3934 perf_pmu_sched_task(prev, task, true);
3935 }
3936
3937 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3938 {
3939 u64 frequency = event->attr.sample_freq;
3940 u64 sec = NSEC_PER_SEC;
3941 u64 divisor, dividend;
3942
3943 int count_fls, nsec_fls, frequency_fls, sec_fls;
3944
3945 count_fls = fls64(count);
3946 nsec_fls = fls64(nsec);
3947 frequency_fls = fls64(frequency);
3948 sec_fls = 30;
3949
3950 /*
3951 * We got @count in @nsec, with a target of sample_freq HZ
3952 * the target period becomes:
3953 *
3954 * @count * 10^9
3955 * period = -------------------
3956 * @nsec * sample_freq
3957 *
3958 */
3959
3960 /*
3961 * Reduce accuracy by one bit such that @a and @b converge
3962 * to a similar magnitude.
3963 */
3964 #define REDUCE_FLS(a, b) \
3965 do { \
3966 if (a##_fls > b##_fls) { \
3967 a >>= 1; \
3968 a##_fls--; \
3969 } else { \
3970 b >>= 1; \
3971 b##_fls--; \
3972 } \
3973 } while (0)
3974
3975 /*
3976 * Reduce accuracy until either term fits in a u64, then proceed with
3977 * the other, so that finally we can do a u64/u64 division.
3978 */
3979 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3980 REDUCE_FLS(nsec, frequency);
3981 REDUCE_FLS(sec, count);
3982 }
3983
3984 if (count_fls + sec_fls > 64) {
3985 divisor = nsec * frequency;
3986
3987 while (count_fls + sec_fls > 64) {
3988 REDUCE_FLS(count, sec);
3989 divisor >>= 1;
3990 }
3991
3992 dividend = count * sec;
3993 } else {
3994 dividend = count * sec;
3995
3996 while (nsec_fls + frequency_fls > 64) {
3997 REDUCE_FLS(nsec, frequency);
3998 dividend >>= 1;
3999 }
4000
4001 divisor = nsec * frequency;
4002 }
4003
4004 if (!divisor)
4005 return dividend;
4006
4007 return div64_u64(dividend, divisor);
4008 }
4009
4010 static DEFINE_PER_CPU(int, perf_throttled_count);
4011 static DEFINE_PER_CPU(u64, perf_throttled_seq);
4012
4013 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
4014 {
4015 struct hw_perf_event *hwc = &event->hw;
4016 s64 period, sample_period;
4017 s64 delta;
4018
4019 period = perf_calculate_period(event, nsec, count);
4020
4021 delta = (s64)(period - hwc->sample_period);
4022 delta = (delta + 7) / 8; /* low pass filter */
4023
4024 sample_period = hwc->sample_period + delta;
4025
4026 if (!sample_period)
4027 sample_period = 1;
4028
4029 hwc->sample_period = sample_period;
4030
4031 if (local64_read(&hwc->period_left) > 8*sample_period) {
4032 if (disable)
4033 event->pmu->stop(event, PERF_EF_UPDATE);
4034
4035 local64_set(&hwc->period_left, 0);
4036
4037 if (disable)
4038 event->pmu->start(event, PERF_EF_RELOAD);
4039 }
4040 }
4041
4042 /*
4043 * combine freq adjustment with unthrottling to avoid two passes over the
4044 * events. At the same time, make sure, having freq events does not change
4045 * the rate of unthrottling as that would introduce bias.
4046 */
4047 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
4048 int needs_unthr)
4049 {
4050 struct perf_event *event;
4051 struct hw_perf_event *hwc;
4052 u64 now, period = TICK_NSEC;
4053 s64 delta;
4054
4055 /*
4056 * only need to iterate over all events iff:
4057 * - context have events in frequency mode (needs freq adjust)
4058 * - there are events to unthrottle on this cpu
4059 */
4060 if (!(ctx->nr_freq || needs_unthr))
4061 return;
4062
4063 raw_spin_lock(&ctx->lock);
4064 perf_pmu_disable(ctx->pmu);
4065
4066 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4067 if (event->state != PERF_EVENT_STATE_ACTIVE)
4068 continue;
4069
4070 if (!event_filter_match(event))
4071 continue;
4072
4073 perf_pmu_disable(event->pmu);
4074
4075 hwc = &event->hw;
4076
4077 if (hwc->interrupts == MAX_INTERRUPTS) {
4078 hwc->interrupts = 0;
4079 perf_log_throttle(event, 1);
4080 event->pmu->start(event, 0);
4081 }
4082
4083 if (!event->attr.freq || !event->attr.sample_freq)
4084 goto next;
4085
4086 /*
4087 * stop the event and update event->count
4088 */
4089 event->pmu->stop(event, PERF_EF_UPDATE);
4090
4091 now = local64_read(&event->count);
4092 delta = now - hwc->freq_count_stamp;
4093 hwc->freq_count_stamp = now;
4094
4095 /*
4096 * restart the event
4097 * reload only if value has changed
4098 * we have stopped the event so tell that
4099 * to perf_adjust_period() to avoid stopping it
4100 * twice.
4101 */
4102 if (delta > 0)
4103 perf_adjust_period(event, period, delta, false);
4104
4105 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
4106 next:
4107 perf_pmu_enable(event->pmu);
4108 }
4109
4110 perf_pmu_enable(ctx->pmu);
4111 raw_spin_unlock(&ctx->lock);
4112 }
4113
4114 /*
4115 * Move @event to the tail of the @ctx's elegible events.
4116 */
4117 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
4118 {
4119 /*
4120 * Rotate the first entry last of non-pinned groups. Rotation might be
4121 * disabled by the inheritance code.
4122 */
4123 if (ctx->rotate_disable)
4124 return;
4125
4126 perf_event_groups_delete(&ctx->flexible_groups, event);
4127 perf_event_groups_insert(&ctx->flexible_groups, event);
4128 }
4129
4130 /* pick an event from the flexible_groups to rotate */
4131 static inline struct perf_event *
4132 ctx_event_to_rotate(struct perf_event_context *ctx)
4133 {
4134 struct perf_event *event;
4135
4136 /* pick the first active flexible event */
4137 event = list_first_entry_or_null(&ctx->flexible_active,
4138 struct perf_event, active_list);
4139
4140 /* if no active flexible event, pick the first event */
4141 if (!event) {
4142 event = rb_entry_safe(rb_first(&ctx->flexible_groups.tree),
4143 typeof(*event), group_node);
4144 }
4145
4146 /*
4147 * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in()
4148 * finds there are unschedulable events, it will set it again.
4149 */
4150 ctx->rotate_necessary = 0;
4151
4152 return event;
4153 }
4154
4155 static bool perf_rotate_context(struct perf_cpu_context *cpuctx)
4156 {
4157 struct perf_event *cpu_event = NULL, *task_event = NULL;
4158 struct perf_event_context *task_ctx = NULL;
4159 int cpu_rotate, task_rotate;
4160
4161 /*
4162 * Since we run this from IRQ context, nobody can install new
4163 * events, thus the event count values are stable.
4164 */
4165
4166 cpu_rotate = cpuctx->ctx.rotate_necessary;
4167 task_ctx = cpuctx->task_ctx;
4168 task_rotate = task_ctx ? task_ctx->rotate_necessary : 0;
4169
4170 if (!(cpu_rotate || task_rotate))
4171 return false;
4172
4173 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
4174 perf_pmu_disable(cpuctx->ctx.pmu);
4175
4176 if (task_rotate)
4177 task_event = ctx_event_to_rotate(task_ctx);
4178 if (cpu_rotate)
4179 cpu_event = ctx_event_to_rotate(&cpuctx->ctx);
4180
4181 /*
4182 * As per the order given at ctx_resched() first 'pop' task flexible
4183 * and then, if needed CPU flexible.
4184 */
4185 if (task_event || (task_ctx && cpu_event))
4186 ctx_sched_out(task_ctx, cpuctx, EVENT_FLEXIBLE);
4187 if (cpu_event)
4188 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
4189
4190 if (task_event)
4191 rotate_ctx(task_ctx, task_event);
4192 if (cpu_event)
4193 rotate_ctx(&cpuctx->ctx, cpu_event);
4194
4195 perf_event_sched_in(cpuctx, task_ctx, current);
4196
4197 perf_pmu_enable(cpuctx->ctx.pmu);
4198 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
4199
4200 return true;
4201 }
4202
4203 void perf_event_task_tick(void)
4204 {
4205 struct list_head *head = this_cpu_ptr(&active_ctx_list);
4206 struct perf_event_context *ctx, *tmp;
4207 int throttled;
4208
4209 lockdep_assert_irqs_disabled();
4210
4211 __this_cpu_inc(perf_throttled_seq);
4212 throttled = __this_cpu_xchg(perf_throttled_count, 0);
4213 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
4214
4215 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
4216 perf_adjust_freq_unthr_context(ctx, throttled);
4217 }
4218
4219 static int event_enable_on_exec(struct perf_event *event,
4220 struct perf_event_context *ctx)
4221 {
4222 if (!event->attr.enable_on_exec)
4223 return 0;
4224
4225 event->attr.enable_on_exec = 0;
4226 if (event->state >= PERF_EVENT_STATE_INACTIVE)
4227 return 0;
4228
4229 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
4230
4231 return 1;
4232 }
4233
4234 /*
4235 * Enable all of a task's events that have been marked enable-on-exec.
4236 * This expects task == current.
4237 */
4238 static void perf_event_enable_on_exec(int ctxn)
4239 {
4240 struct perf_event_context *ctx, *clone_ctx = NULL;
4241 enum event_type_t event_type = 0;
4242 struct perf_cpu_context *cpuctx;
4243 struct perf_event *event;
4244 unsigned long flags;
4245 int enabled = 0;
4246
4247 local_irq_save(flags);
4248 ctx = current->perf_event_ctxp[ctxn];
4249 if (!ctx || !ctx->nr_events)
4250 goto out;
4251
4252 cpuctx = __get_cpu_context(ctx);
4253 perf_ctx_lock(cpuctx, ctx);
4254 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
4255 list_for_each_entry(event, &ctx->event_list, event_entry) {
4256 enabled |= event_enable_on_exec(event, ctx);
4257 event_type |= get_event_type(event);
4258 }
4259
4260 /*
4261 * Unclone and reschedule this context if we enabled any event.
4262 */
4263 if (enabled) {
4264 clone_ctx = unclone_ctx(ctx);
4265 ctx_resched(cpuctx, ctx, event_type);
4266 } else {
4267 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
4268 }
4269 perf_ctx_unlock(cpuctx, ctx);
4270
4271 out:
4272 local_irq_restore(flags);
4273
4274 if (clone_ctx)
4275 put_ctx(clone_ctx);
4276 }
4277
4278 static void perf_remove_from_owner(struct perf_event *event);
4279 static void perf_event_exit_event(struct perf_event *event,
4280 struct perf_event_context *ctx);
4281
4282 /*
4283 * Removes all events from the current task that have been marked
4284 * remove-on-exec, and feeds their values back to parent events.
4285 */
4286 static void perf_event_remove_on_exec(int ctxn)
4287 {
4288 struct perf_event_context *ctx, *clone_ctx = NULL;
4289 struct perf_event *event, *next;
4290 LIST_HEAD(free_list);
4291 unsigned long flags;
4292 bool modified = false;
4293
4294 ctx = perf_pin_task_context(current, ctxn);
4295 if (!ctx)
4296 return;
4297
4298 mutex_lock(&ctx->mutex);
4299
4300 if (WARN_ON_ONCE(ctx->task != current))
4301 goto unlock;
4302
4303 list_for_each_entry_safe(event, next, &ctx->event_list, event_entry) {
4304 if (!event->attr.remove_on_exec)
4305 continue;
4306
4307 if (!is_kernel_event(event))
4308 perf_remove_from_owner(event);
4309
4310 modified = true;
4311
4312 perf_event_exit_event(event, ctx);
4313 }
4314
4315 raw_spin_lock_irqsave(&ctx->lock, flags);
4316 if (modified)
4317 clone_ctx = unclone_ctx(ctx);
4318 --ctx->pin_count;
4319 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4320
4321 unlock:
4322 mutex_unlock(&ctx->mutex);
4323
4324 put_ctx(ctx);
4325 if (clone_ctx)
4326 put_ctx(clone_ctx);
4327 }
4328
4329 struct perf_read_data {
4330 struct perf_event *event;
4331 bool group;
4332 int ret;
4333 };
4334
4335 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
4336 {
4337 u16 local_pkg, event_pkg;
4338
4339 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
4340 int local_cpu = smp_processor_id();
4341
4342 event_pkg = topology_physical_package_id(event_cpu);
4343 local_pkg = topology_physical_package_id(local_cpu);
4344
4345 if (event_pkg == local_pkg)
4346 return local_cpu;
4347 }
4348
4349 return event_cpu;
4350 }
4351
4352 /*
4353 * Cross CPU call to read the hardware event
4354 */
4355 static void __perf_event_read(void *info)
4356 {
4357 struct perf_read_data *data = info;
4358 struct perf_event *sub, *event = data->event;
4359 struct perf_event_context *ctx = event->ctx;
4360 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
4361 struct pmu *pmu = event->pmu;
4362
4363 /*
4364 * If this is a task context, we need to check whether it is
4365 * the current task context of this cpu. If not it has been
4366 * scheduled out before the smp call arrived. In that case
4367 * event->count would have been updated to a recent sample
4368 * when the event was scheduled out.
4369 */
4370 if (ctx->task && cpuctx->task_ctx != ctx)
4371 return;
4372
4373 raw_spin_lock(&ctx->lock);
4374 if (ctx->is_active & EVENT_TIME) {
4375 update_context_time(ctx);
4376 update_cgrp_time_from_event(event);
4377 }
4378
4379 perf_event_update_time(event);
4380 if (data->group)
4381 perf_event_update_sibling_time(event);
4382
4383 if (event->state != PERF_EVENT_STATE_ACTIVE)
4384 goto unlock;
4385
4386 if (!data->group) {
4387 pmu->read(event);
4388 data->ret = 0;
4389 goto unlock;
4390 }
4391
4392 pmu->start_txn(pmu, PERF_PMU_TXN_READ);
4393
4394 pmu->read(event);
4395
4396 for_each_sibling_event(sub, event) {
4397 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
4398 /*
4399 * Use sibling's PMU rather than @event's since
4400 * sibling could be on different (eg: software) PMU.
4401 */
4402 sub->pmu->read(sub);
4403 }
4404 }
4405
4406 data->ret = pmu->commit_txn(pmu);
4407
4408 unlock:
4409 raw_spin_unlock(&ctx->lock);
4410 }
4411
4412 static inline u64 perf_event_count(struct perf_event *event)
4413 {
4414 return local64_read(&event->count) + atomic64_read(&event->child_count);
4415 }
4416
4417 /*
4418 * NMI-safe method to read a local event, that is an event that
4419 * is:
4420 * - either for the current task, or for this CPU
4421 * - does not have inherit set, for inherited task events
4422 * will not be local and we cannot read them atomically
4423 * - must not have a pmu::count method
4424 */
4425 int perf_event_read_local(struct perf_event *event, u64 *value,
4426 u64 *enabled, u64 *running)
4427 {
4428 unsigned long flags;
4429 int ret = 0;
4430
4431 /*
4432 * Disabling interrupts avoids all counter scheduling (context
4433 * switches, timer based rotation and IPIs).
4434 */
4435 local_irq_save(flags);
4436
4437 /*
4438 * It must not be an event with inherit set, we cannot read
4439 * all child counters from atomic context.
4440 */
4441 if (event->attr.inherit) {
4442 ret = -EOPNOTSUPP;
4443 goto out;
4444 }
4445
4446 /* If this is a per-task event, it must be for current */
4447 if ((event->attach_state & PERF_ATTACH_TASK) &&
4448 event->hw.target != current) {
4449 ret = -EINVAL;
4450 goto out;
4451 }
4452
4453 /* If this is a per-CPU event, it must be for this CPU */
4454 if (!(event->attach_state & PERF_ATTACH_TASK) &&
4455 event->cpu != smp_processor_id()) {
4456 ret = -EINVAL;
4457 goto out;
4458 }
4459
4460 /* If this is a pinned event it must be running on this CPU */
4461 if (event->attr.pinned && event->oncpu != smp_processor_id()) {
4462 ret = -EBUSY;
4463 goto out;
4464 }
4465
4466 /*
4467 * If the event is currently on this CPU, its either a per-task event,
4468 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4469 * oncpu == -1).
4470 */
4471 if (event->oncpu == smp_processor_id())
4472 event->pmu->read(event);
4473
4474 *value = local64_read(&event->count);
4475 if (enabled || running) {
4476 u64 now = event->shadow_ctx_time + perf_clock();
4477 u64 __enabled, __running;
4478
4479 __perf_update_times(event, now, &__enabled, &__running);
4480 if (enabled)
4481 *enabled = __enabled;
4482 if (running)
4483 *running = __running;
4484 }
4485 out:
4486 local_irq_restore(flags);
4487
4488 return ret;
4489 }
4490
4491 static int perf_event_read(struct perf_event *event, bool group)
4492 {
4493 enum perf_event_state state = READ_ONCE(event->state);
4494 int event_cpu, ret = 0;
4495
4496 /*
4497 * If event is enabled and currently active on a CPU, update the
4498 * value in the event structure:
4499 */
4500 again:
4501 if (state == PERF_EVENT_STATE_ACTIVE) {
4502 struct perf_read_data data;
4503
4504 /*
4505 * Orders the ->state and ->oncpu loads such that if we see
4506 * ACTIVE we must also see the right ->oncpu.
4507 *
4508 * Matches the smp_wmb() from event_sched_in().
4509 */
4510 smp_rmb();
4511
4512 event_cpu = READ_ONCE(event->oncpu);
4513 if ((unsigned)event_cpu >= nr_cpu_ids)
4514 return 0;
4515
4516 data = (struct perf_read_data){
4517 .event = event,
4518 .group = group,
4519 .ret = 0,
4520 };
4521
4522 preempt_disable();
4523 event_cpu = __perf_event_read_cpu(event, event_cpu);
4524
4525 /*
4526 * Purposely ignore the smp_call_function_single() return
4527 * value.
4528 *
4529 * If event_cpu isn't a valid CPU it means the event got
4530 * scheduled out and that will have updated the event count.
4531 *
4532 * Therefore, either way, we'll have an up-to-date event count
4533 * after this.
4534 */
4535 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4536 preempt_enable();
4537 ret = data.ret;
4538
4539 } else if (state == PERF_EVENT_STATE_INACTIVE) {
4540 struct perf_event_context *ctx = event->ctx;
4541 unsigned long flags;
4542
4543 raw_spin_lock_irqsave(&ctx->lock, flags);
4544 state = event->state;
4545 if (state != PERF_EVENT_STATE_INACTIVE) {
4546 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4547 goto again;
4548 }
4549
4550 /*
4551 * May read while context is not active (e.g., thread is
4552 * blocked), in that case we cannot update context time
4553 */
4554 if (ctx->is_active & EVENT_TIME) {
4555 update_context_time(ctx);
4556 update_cgrp_time_from_event(event);
4557 }
4558
4559 perf_event_update_time(event);
4560 if (group)
4561 perf_event_update_sibling_time(event);
4562 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4563 }
4564
4565 return ret;
4566 }
4567
4568 /*
4569 * Initialize the perf_event context in a task_struct:
4570 */
4571 static void __perf_event_init_context(struct perf_event_context *ctx)
4572 {
4573 raw_spin_lock_init(&ctx->lock);
4574 mutex_init(&ctx->mutex);
4575 INIT_LIST_HEAD(&ctx->active_ctx_list);
4576 perf_event_groups_init(&ctx->pinned_groups);
4577 perf_event_groups_init(&ctx->flexible_groups);
4578 INIT_LIST_HEAD(&ctx->event_list);
4579 INIT_LIST_HEAD(&ctx->pinned_active);
4580 INIT_LIST_HEAD(&ctx->flexible_active);
4581 refcount_set(&ctx->refcount, 1);
4582 }
4583
4584 static struct perf_event_context *
4585 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
4586 {
4587 struct perf_event_context *ctx;
4588
4589 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4590 if (!ctx)
4591 return NULL;
4592
4593 __perf_event_init_context(ctx);
4594 if (task)
4595 ctx->task = get_task_struct(task);
4596 ctx->pmu = pmu;
4597
4598 return ctx;
4599 }
4600
4601 static struct task_struct *
4602 find_lively_task_by_vpid(pid_t vpid)
4603 {
4604 struct task_struct *task;
4605
4606 rcu_read_lock();
4607 if (!vpid)
4608 task = current;
4609 else
4610 task = find_task_by_vpid(vpid);
4611 if (task)
4612 get_task_struct(task);
4613 rcu_read_unlock();
4614
4615 if (!task)
4616 return ERR_PTR(-ESRCH);
4617
4618 return task;
4619 }
4620
4621 /*
4622 * Returns a matching context with refcount and pincount.
4623 */
4624 static struct perf_event_context *
4625 find_get_context(struct pmu *pmu, struct task_struct *task,
4626 struct perf_event *event)
4627 {
4628 struct perf_event_context *ctx, *clone_ctx = NULL;
4629 struct perf_cpu_context *cpuctx;
4630 void *task_ctx_data = NULL;
4631 unsigned long flags;
4632 int ctxn, err;
4633 int cpu = event->cpu;
4634
4635 if (!task) {
4636 /* Must be root to operate on a CPU event: */
4637 err = perf_allow_cpu(&event->attr);
4638 if (err)
4639 return ERR_PTR(err);
4640
4641 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
4642 ctx = &cpuctx->ctx;
4643 get_ctx(ctx);
4644 raw_spin_lock_irqsave(&ctx->lock, flags);
4645 ++ctx->pin_count;
4646 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4647
4648 return ctx;
4649 }
4650
4651 err = -EINVAL;
4652 ctxn = pmu->task_ctx_nr;
4653 if (ctxn < 0)
4654 goto errout;
4655
4656 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4657 task_ctx_data = alloc_task_ctx_data(pmu);
4658 if (!task_ctx_data) {
4659 err = -ENOMEM;
4660 goto errout;
4661 }
4662 }
4663
4664 retry:
4665 ctx = perf_lock_task_context(task, ctxn, &flags);
4666 if (ctx) {
4667 clone_ctx = unclone_ctx(ctx);
4668 ++ctx->pin_count;
4669
4670 if (task_ctx_data && !ctx->task_ctx_data) {
4671 ctx->task_ctx_data = task_ctx_data;
4672 task_ctx_data = NULL;
4673 }
4674 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4675
4676 if (clone_ctx)
4677 put_ctx(clone_ctx);
4678 } else {
4679 ctx = alloc_perf_context(pmu, task);
4680 err = -ENOMEM;
4681 if (!ctx)
4682 goto errout;
4683
4684 if (task_ctx_data) {
4685 ctx->task_ctx_data = task_ctx_data;
4686 task_ctx_data = NULL;
4687 }
4688
4689 err = 0;
4690 mutex_lock(&task->perf_event_mutex);
4691 /*
4692 * If it has already passed perf_event_exit_task().
4693 * we must see PF_EXITING, it takes this mutex too.
4694 */
4695 if (task->flags & PF_EXITING)
4696 err = -ESRCH;
4697 else if (task->perf_event_ctxp[ctxn])
4698 err = -EAGAIN;
4699 else {
4700 get_ctx(ctx);
4701 ++ctx->pin_count;
4702 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
4703 }
4704 mutex_unlock(&task->perf_event_mutex);
4705
4706 if (unlikely(err)) {
4707 put_ctx(ctx);
4708
4709 if (err == -EAGAIN)
4710 goto retry;
4711 goto errout;
4712 }
4713 }
4714
4715 free_task_ctx_data(pmu, task_ctx_data);
4716 return ctx;
4717
4718 errout:
4719 free_task_ctx_data(pmu, task_ctx_data);
4720 return ERR_PTR(err);
4721 }
4722
4723 static void perf_event_free_filter(struct perf_event *event);
4724
4725 static void free_event_rcu(struct rcu_head *head)
4726 {
4727 struct perf_event *event;
4728
4729 event = container_of(head, struct perf_event, rcu_head);
4730 if (event->ns)
4731 put_pid_ns(event->ns);
4732 perf_event_free_filter(event);
4733 kmem_cache_free(perf_event_cache, event);
4734 }
4735
4736 static void ring_buffer_attach(struct perf_event *event,
4737 struct perf_buffer *rb);
4738
4739 static void detach_sb_event(struct perf_event *event)
4740 {
4741 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4742
4743 raw_spin_lock(&pel->lock);
4744 list_del_rcu(&event->sb_list);
4745 raw_spin_unlock(&pel->lock);
4746 }
4747
4748 static bool is_sb_event(struct perf_event *event)
4749 {
4750 struct perf_event_attr *attr = &event->attr;
4751
4752 if (event->parent)
4753 return false;
4754
4755 if (event->attach_state & PERF_ATTACH_TASK)
4756 return false;
4757
4758 if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4759 attr->comm || attr->comm_exec ||
4760 attr->task || attr->ksymbol ||
4761 attr->context_switch || attr->text_poke ||
4762 attr->bpf_event)
4763 return true;
4764 return false;
4765 }
4766
4767 static void unaccount_pmu_sb_event(struct perf_event *event)
4768 {
4769 if (is_sb_event(event))
4770 detach_sb_event(event);
4771 }
4772
4773 static void unaccount_event_cpu(struct perf_event *event, int cpu)
4774 {
4775 if (event->parent)
4776 return;
4777
4778 if (is_cgroup_event(event))
4779 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4780 }
4781
4782 #ifdef CONFIG_NO_HZ_FULL
4783 static DEFINE_SPINLOCK(nr_freq_lock);
4784 #endif
4785
4786 static void unaccount_freq_event_nohz(void)
4787 {
4788 #ifdef CONFIG_NO_HZ_FULL
4789 spin_lock(&nr_freq_lock);
4790 if (atomic_dec_and_test(&nr_freq_events))
4791 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4792 spin_unlock(&nr_freq_lock);
4793 #endif
4794 }
4795
4796 static void unaccount_freq_event(void)
4797 {
4798 if (tick_nohz_full_enabled())
4799 unaccount_freq_event_nohz();
4800 else
4801 atomic_dec(&nr_freq_events);
4802 }
4803
4804 static void unaccount_event(struct perf_event *event)
4805 {
4806 bool dec = false;
4807
4808 if (event->parent)
4809 return;
4810
4811 if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
4812 dec = true;
4813 if (event->attr.mmap || event->attr.mmap_data)
4814 atomic_dec(&nr_mmap_events);
4815 if (event->attr.build_id)
4816 atomic_dec(&nr_build_id_events);
4817 if (event->attr.comm)
4818 atomic_dec(&nr_comm_events);
4819 if (event->attr.namespaces)
4820 atomic_dec(&nr_namespaces_events);
4821 if (event->attr.cgroup)
4822 atomic_dec(&nr_cgroup_events);
4823 if (event->attr.task)
4824 atomic_dec(&nr_task_events);
4825 if (event->attr.freq)
4826 unaccount_freq_event();
4827 if (event->attr.context_switch) {
4828 dec = true;
4829 atomic_dec(&nr_switch_events);
4830 }
4831 if (is_cgroup_event(event))
4832 dec = true;
4833 if (has_branch_stack(event))
4834 dec = true;
4835 if (event->attr.ksymbol)
4836 atomic_dec(&nr_ksymbol_events);
4837 if (event->attr.bpf_event)
4838 atomic_dec(&nr_bpf_events);
4839 if (event->attr.text_poke)
4840 atomic_dec(&nr_text_poke_events);
4841
4842 if (dec) {
4843 if (!atomic_add_unless(&perf_sched_count, -1, 1))
4844 schedule_delayed_work(&perf_sched_work, HZ);
4845 }
4846
4847 unaccount_event_cpu(event, event->cpu);
4848
4849 unaccount_pmu_sb_event(event);
4850 }
4851
4852 static void perf_sched_delayed(struct work_struct *work)
4853 {
4854 mutex_lock(&perf_sched_mutex);
4855 if (atomic_dec_and_test(&perf_sched_count))
4856 static_branch_disable(&perf_sched_events);
4857 mutex_unlock(&perf_sched_mutex);
4858 }
4859
4860 /*
4861 * The following implement mutual exclusion of events on "exclusive" pmus
4862 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4863 * at a time, so we disallow creating events that might conflict, namely:
4864 *
4865 * 1) cpu-wide events in the presence of per-task events,
4866 * 2) per-task events in the presence of cpu-wide events,
4867 * 3) two matching events on the same context.
4868 *
4869 * The former two cases are handled in the allocation path (perf_event_alloc(),
4870 * _free_event()), the latter -- before the first perf_install_in_context().
4871 */
4872 static int exclusive_event_init(struct perf_event *event)
4873 {
4874 struct pmu *pmu = event->pmu;
4875
4876 if (!is_exclusive_pmu(pmu))
4877 return 0;
4878
4879 /*
4880 * Prevent co-existence of per-task and cpu-wide events on the
4881 * same exclusive pmu.
4882 *
4883 * Negative pmu::exclusive_cnt means there are cpu-wide
4884 * events on this "exclusive" pmu, positive means there are
4885 * per-task events.
4886 *
4887 * Since this is called in perf_event_alloc() path, event::ctx
4888 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4889 * to mean "per-task event", because unlike other attach states it
4890 * never gets cleared.
4891 */
4892 if (event->attach_state & PERF_ATTACH_TASK) {
4893 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4894 return -EBUSY;
4895 } else {
4896 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4897 return -EBUSY;
4898 }
4899
4900 return 0;
4901 }
4902
4903 static void exclusive_event_destroy(struct perf_event *event)
4904 {
4905 struct pmu *pmu = event->pmu;
4906
4907 if (!is_exclusive_pmu(pmu))
4908 return;
4909
4910 /* see comment in exclusive_event_init() */
4911 if (event->attach_state & PERF_ATTACH_TASK)
4912 atomic_dec(&pmu->exclusive_cnt);
4913 else
4914 atomic_inc(&pmu->exclusive_cnt);
4915 }
4916
4917 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4918 {
4919 if ((e1->pmu == e2->pmu) &&
4920 (e1->cpu == e2->cpu ||
4921 e1->cpu == -1 ||
4922 e2->cpu == -1))
4923 return true;
4924 return false;
4925 }
4926
4927 static bool exclusive_event_installable(struct perf_event *event,
4928 struct perf_event_context *ctx)
4929 {
4930 struct perf_event *iter_event;
4931 struct pmu *pmu = event->pmu;
4932
4933 lockdep_assert_held(&ctx->mutex);
4934
4935 if (!is_exclusive_pmu(pmu))
4936 return true;
4937
4938 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4939 if (exclusive_event_match(iter_event, event))
4940 return false;
4941 }
4942
4943 return true;
4944 }
4945
4946 static void perf_addr_filters_splice(struct perf_event *event,
4947 struct list_head *head);
4948
4949 static void _free_event(struct perf_event *event)
4950 {
4951 irq_work_sync(&event->pending);
4952
4953 unaccount_event(event);
4954
4955 security_perf_event_free(event);
4956
4957 if (event->rb) {
4958 /*
4959 * Can happen when we close an event with re-directed output.
4960 *
4961 * Since we have a 0 refcount, perf_mmap_close() will skip
4962 * over us; possibly making our ring_buffer_put() the last.
4963 */
4964 mutex_lock(&event->mmap_mutex);
4965 ring_buffer_attach(event, NULL);
4966 mutex_unlock(&event->mmap_mutex);
4967 }
4968
4969 if (is_cgroup_event(event))
4970 perf_detach_cgroup(event);
4971
4972 if (!event->parent) {
4973 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4974 put_callchain_buffers();
4975 }
4976
4977 perf_event_free_bpf_prog(event);
4978 perf_addr_filters_splice(event, NULL);
4979 kfree(event->addr_filter_ranges);
4980
4981 if (event->destroy)
4982 event->destroy(event);
4983
4984 /*
4985 * Must be after ->destroy(), due to uprobe_perf_close() using
4986 * hw.target.
4987 */
4988 if (event->hw.target)
4989 put_task_struct(event->hw.target);
4990
4991 /*
4992 * perf_event_free_task() relies on put_ctx() being 'last', in particular
4993 * all task references must be cleaned up.
4994 */
4995 if (event->ctx)
4996 put_ctx(event->ctx);
4997
4998 exclusive_event_destroy(event);
4999 module_put(event->pmu->module);
5000
5001 call_rcu(&event->rcu_head, free_event_rcu);
5002 }
5003
5004 /*
5005 * Used to free events which have a known refcount of 1, such as in error paths
5006 * where the event isn't exposed yet and inherited events.
5007 */
5008 static void free_event(struct perf_event *event)
5009 {
5010 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
5011 "unexpected event refcount: %ld; ptr=%p\n",
5012 atomic_long_read(&event->refcount), event)) {
5013 /* leak to avoid use-after-free */
5014 return;
5015 }
5016
5017 _free_event(event);
5018 }
5019
5020 /*
5021 * Remove user event from the owner task.
5022 */
5023 static void perf_remove_from_owner(struct perf_event *event)
5024 {
5025 struct task_struct *owner;
5026
5027 rcu_read_lock();
5028 /*
5029 * Matches the smp_store_release() in perf_event_exit_task(). If we
5030 * observe !owner it means the list deletion is complete and we can
5031 * indeed free this event, otherwise we need to serialize on
5032 * owner->perf_event_mutex.
5033 */
5034 owner = READ_ONCE(event->owner);
5035 if (owner) {
5036 /*
5037 * Since delayed_put_task_struct() also drops the last
5038 * task reference we can safely take a new reference
5039 * while holding the rcu_read_lock().
5040 */
5041 get_task_struct(owner);
5042 }
5043 rcu_read_unlock();
5044
5045 if (owner) {
5046 /*
5047 * If we're here through perf_event_exit_task() we're already
5048 * holding ctx->mutex which would be an inversion wrt. the
5049 * normal lock order.
5050 *
5051 * However we can safely take this lock because its the child
5052 * ctx->mutex.
5053 */
5054 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
5055
5056 /*
5057 * We have to re-check the event->owner field, if it is cleared
5058 * we raced with perf_event_exit_task(), acquiring the mutex
5059 * ensured they're done, and we can proceed with freeing the
5060 * event.
5061 */
5062 if (event->owner) {
5063 list_del_init(&event->owner_entry);
5064 smp_store_release(&event->owner, NULL);
5065 }
5066 mutex_unlock(&owner->perf_event_mutex);
5067 put_task_struct(owner);
5068 }
5069 }
5070
5071 static void put_event(struct perf_event *event)
5072 {
5073 if (!atomic_long_dec_and_test(&event->refcount))
5074 return;
5075
5076 _free_event(event);
5077 }
5078
5079 /*
5080 * Kill an event dead; while event:refcount will preserve the event
5081 * object, it will not preserve its functionality. Once the last 'user'
5082 * gives up the object, we'll destroy the thing.
5083 */
5084 int perf_event_release_kernel(struct perf_event *event)
5085 {
5086 struct perf_event_context *ctx = event->ctx;
5087 struct perf_event *child, *tmp;
5088 LIST_HEAD(free_list);
5089
5090 /*
5091 * If we got here through err_file: fput(event_file); we will not have
5092 * attached to a context yet.
5093 */
5094 if (!ctx) {
5095 WARN_ON_ONCE(event->attach_state &
5096 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
5097 goto no_ctx;
5098 }
5099
5100 if (!is_kernel_event(event))
5101 perf_remove_from_owner(event);
5102
5103 ctx = perf_event_ctx_lock(event);
5104 WARN_ON_ONCE(ctx->parent_ctx);
5105 perf_remove_from_context(event, DETACH_GROUP);
5106
5107 raw_spin_lock_irq(&ctx->lock);
5108 /*
5109 * Mark this event as STATE_DEAD, there is no external reference to it
5110 * anymore.
5111 *
5112 * Anybody acquiring event->child_mutex after the below loop _must_
5113 * also see this, most importantly inherit_event() which will avoid
5114 * placing more children on the list.
5115 *
5116 * Thus this guarantees that we will in fact observe and kill _ALL_
5117 * child events.
5118 */
5119 event->state = PERF_EVENT_STATE_DEAD;
5120 raw_spin_unlock_irq(&ctx->lock);
5121
5122 perf_event_ctx_unlock(event, ctx);
5123
5124 again:
5125 mutex_lock(&event->child_mutex);
5126 list_for_each_entry(child, &event->child_list, child_list) {
5127
5128 /*
5129 * Cannot change, child events are not migrated, see the
5130 * comment with perf_event_ctx_lock_nested().
5131 */
5132 ctx = READ_ONCE(child->ctx);
5133 /*
5134 * Since child_mutex nests inside ctx::mutex, we must jump
5135 * through hoops. We start by grabbing a reference on the ctx.
5136 *
5137 * Since the event cannot get freed while we hold the
5138 * child_mutex, the context must also exist and have a !0
5139 * reference count.
5140 */
5141 get_ctx(ctx);
5142
5143 /*
5144 * Now that we have a ctx ref, we can drop child_mutex, and
5145 * acquire ctx::mutex without fear of it going away. Then we
5146 * can re-acquire child_mutex.
5147 */
5148 mutex_unlock(&event->child_mutex);
5149 mutex_lock(&ctx->mutex);
5150 mutex_lock(&event->child_mutex);
5151
5152 /*
5153 * Now that we hold ctx::mutex and child_mutex, revalidate our
5154 * state, if child is still the first entry, it didn't get freed
5155 * and we can continue doing so.
5156 */
5157 tmp = list_first_entry_or_null(&event->child_list,
5158 struct perf_event, child_list);
5159 if (tmp == child) {
5160 perf_remove_from_context(child, DETACH_GROUP);
5161 list_move(&child->child_list, &free_list);
5162 /*
5163 * This matches the refcount bump in inherit_event();
5164 * this can't be the last reference.
5165 */
5166 put_event(event);
5167 }
5168
5169 mutex_unlock(&event->child_mutex);
5170 mutex_unlock(&ctx->mutex);
5171 put_ctx(ctx);
5172 goto again;
5173 }
5174 mutex_unlock(&event->child_mutex);
5175
5176 list_for_each_entry_safe(child, tmp, &free_list, child_list) {
5177 void *var = &child->ctx->refcount;
5178
5179 list_del(&child->child_list);
5180 free_event(child);
5181
5182 /*
5183 * Wake any perf_event_free_task() waiting for this event to be
5184 * freed.
5185 */
5186 smp_mb(); /* pairs with wait_var_event() */
5187 wake_up_var(var);
5188 }
5189
5190 no_ctx:
5191 put_event(event); /* Must be the 'last' reference */
5192 return 0;
5193 }
5194 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
5195
5196 /*
5197 * Called when the last reference to the file is gone.
5198 */
5199 static int perf_release(struct inode *inode, struct file *file)
5200 {
5201 perf_event_release_kernel(file->private_data);
5202 return 0;
5203 }
5204
5205 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5206 {
5207 struct perf_event *child;
5208 u64 total = 0;
5209
5210 *enabled = 0;
5211 *running = 0;
5212
5213 mutex_lock(&event->child_mutex);
5214
5215 (void)perf_event_read(event, false);
5216 total += perf_event_count(event);
5217
5218 *enabled += event->total_time_enabled +
5219 atomic64_read(&event->child_total_time_enabled);
5220 *running += event->total_time_running +
5221 atomic64_read(&event->child_total_time_running);
5222
5223 list_for_each_entry(child, &event->child_list, child_list) {
5224 (void)perf_event_read(child, false);
5225 total += perf_event_count(child);
5226 *enabled += child->total_time_enabled;
5227 *running += child->total_time_running;
5228 }
5229 mutex_unlock(&event->child_mutex);
5230
5231 return total;
5232 }
5233
5234 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5235 {
5236 struct perf_event_context *ctx;
5237 u64 count;
5238
5239 ctx = perf_event_ctx_lock(event);
5240 count = __perf_event_read_value(event, enabled, running);
5241 perf_event_ctx_unlock(event, ctx);
5242
5243 return count;
5244 }
5245 EXPORT_SYMBOL_GPL(perf_event_read_value);
5246
5247 static int __perf_read_group_add(struct perf_event *leader,
5248 u64 read_format, u64 *values)
5249 {
5250 struct perf_event_context *ctx = leader->ctx;
5251 struct perf_event *sub;
5252 unsigned long flags;
5253 int n = 1; /* skip @nr */
5254 int ret;
5255
5256 ret = perf_event_read(leader, true);
5257 if (ret)
5258 return ret;
5259
5260 raw_spin_lock_irqsave(&ctx->lock, flags);
5261
5262 /*
5263 * Since we co-schedule groups, {enabled,running} times of siblings
5264 * will be identical to those of the leader, so we only publish one
5265 * set.
5266 */
5267 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5268 values[n++] += leader->total_time_enabled +
5269 atomic64_read(&leader->child_total_time_enabled);
5270 }
5271
5272 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5273 values[n++] += leader->total_time_running +
5274 atomic64_read(&leader->child_total_time_running);
5275 }
5276
5277 /*
5278 * Write {count,id} tuples for every sibling.
5279 */
5280 values[n++] += perf_event_count(leader);
5281 if (read_format & PERF_FORMAT_ID)
5282 values[n++] = primary_event_id(leader);
5283
5284 for_each_sibling_event(sub, leader) {
5285 values[n++] += perf_event_count(sub);
5286 if (read_format & PERF_FORMAT_ID)
5287 values[n++] = primary_event_id(sub);
5288 }
5289
5290 raw_spin_unlock_irqrestore(&ctx->lock, flags);
5291 return 0;
5292 }
5293
5294 static int perf_read_group(struct perf_event *event,
5295 u64 read_format, char __user *buf)
5296 {
5297 struct perf_event *leader = event->group_leader, *child;
5298 struct perf_event_context *ctx = leader->ctx;
5299 int ret;
5300 u64 *values;
5301
5302 lockdep_assert_held(&ctx->mutex);
5303
5304 values = kzalloc(event->read_size, GFP_KERNEL);
5305 if (!values)
5306 return -ENOMEM;
5307
5308 values[0] = 1 + leader->nr_siblings;
5309
5310 /*
5311 * By locking the child_mutex of the leader we effectively
5312 * lock the child list of all siblings.. XXX explain how.
5313 */
5314 mutex_lock(&leader->child_mutex);
5315
5316 ret = __perf_read_group_add(leader, read_format, values);
5317 if (ret)
5318 goto unlock;
5319
5320 list_for_each_entry(child, &leader->child_list, child_list) {
5321 ret = __perf_read_group_add(child, read_format, values);
5322 if (ret)
5323 goto unlock;
5324 }
5325
5326 mutex_unlock(&leader->child_mutex);
5327
5328 ret = event->read_size;
5329 if (copy_to_user(buf, values, event->read_size))
5330 ret = -EFAULT;
5331 goto out;
5332
5333 unlock:
5334 mutex_unlock(&leader->child_mutex);
5335 out:
5336 kfree(values);
5337 return ret;
5338 }
5339
5340 static int perf_read_one(struct perf_event *event,
5341 u64 read_format, char __user *buf)
5342 {
5343 u64 enabled, running;
5344 u64 values[4];
5345 int n = 0;
5346
5347 values[n++] = __perf_event_read_value(event, &enabled, &running);
5348 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5349 values[n++] = enabled;
5350 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5351 values[n++] = running;
5352 if (read_format & PERF_FORMAT_ID)
5353 values[n++] = primary_event_id(event);
5354
5355 if (copy_to_user(buf, values, n * sizeof(u64)))
5356 return -EFAULT;
5357
5358 return n * sizeof(u64);
5359 }
5360
5361 static bool is_event_hup(struct perf_event *event)
5362 {
5363 bool no_children;
5364
5365 if (event->state > PERF_EVENT_STATE_EXIT)
5366 return false;
5367
5368 mutex_lock(&event->child_mutex);
5369 no_children = list_empty(&event->child_list);
5370 mutex_unlock(&event->child_mutex);
5371 return no_children;
5372 }
5373
5374 /*
5375 * Read the performance event - simple non blocking version for now
5376 */
5377 static ssize_t
5378 __perf_read(struct perf_event *event, char __user *buf, size_t count)
5379 {
5380 u64 read_format = event->attr.read_format;
5381 int ret;
5382
5383 /*
5384 * Return end-of-file for a read on an event that is in
5385 * error state (i.e. because it was pinned but it couldn't be
5386 * scheduled on to the CPU at some point).
5387 */
5388 if (event->state == PERF_EVENT_STATE_ERROR)
5389 return 0;
5390
5391 if (count < event->read_size)
5392 return -ENOSPC;
5393
5394 WARN_ON_ONCE(event->ctx->parent_ctx);
5395 if (read_format & PERF_FORMAT_GROUP)
5396 ret = perf_read_group(event, read_format, buf);
5397 else
5398 ret = perf_read_one(event, read_format, buf);
5399
5400 return ret;
5401 }
5402
5403 static ssize_t
5404 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
5405 {
5406 struct perf_event *event = file->private_data;
5407 struct perf_event_context *ctx;
5408 int ret;
5409
5410 ret = security_perf_event_read(event);
5411 if (ret)
5412 return ret;
5413
5414 ctx = perf_event_ctx_lock(event);
5415 ret = __perf_read(event, buf, count);
5416 perf_event_ctx_unlock(event, ctx);
5417
5418 return ret;
5419 }
5420
5421 static __poll_t perf_poll(struct file *file, poll_table *wait)
5422 {
5423 struct perf_event *event = file->private_data;
5424 struct perf_buffer *rb;
5425 __poll_t events = EPOLLHUP;
5426
5427 poll_wait(file, &event->waitq, wait);
5428
5429 if (is_event_hup(event))
5430 return events;
5431
5432 /*
5433 * Pin the event->rb by taking event->mmap_mutex; otherwise
5434 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
5435 */
5436 mutex_lock(&event->mmap_mutex);
5437 rb = event->rb;
5438 if (rb)
5439 events = atomic_xchg(&rb->poll, 0);
5440 mutex_unlock(&event->mmap_mutex);
5441 return events;
5442 }
5443
5444 static void _perf_event_reset(struct perf_event *event)
5445 {
5446 (void)perf_event_read(event, false);
5447 local64_set(&event->count, 0);
5448 perf_event_update_userpage(event);
5449 }
5450
5451 /* Assume it's not an event with inherit set. */
5452 u64 perf_event_pause(struct perf_event *event, bool reset)
5453 {
5454 struct perf_event_context *ctx;
5455 u64 count;
5456
5457 ctx = perf_event_ctx_lock(event);
5458 WARN_ON_ONCE(event->attr.inherit);
5459 _perf_event_disable(event);
5460 count = local64_read(&event->count);
5461 if (reset)
5462 local64_set(&event->count, 0);
5463 perf_event_ctx_unlock(event, ctx);
5464
5465 return count;
5466 }
5467 EXPORT_SYMBOL_GPL(perf_event_pause);
5468
5469 /*
5470 * Holding the top-level event's child_mutex means that any
5471 * descendant process that has inherited this event will block
5472 * in perf_event_exit_event() if it goes to exit, thus satisfying the
5473 * task existence requirements of perf_event_enable/disable.
5474 */
5475 static void perf_event_for_each_child(struct perf_event *event,
5476 void (*func)(struct perf_event *))
5477 {
5478 struct perf_event *child;
5479
5480 WARN_ON_ONCE(event->ctx->parent_ctx);
5481
5482 mutex_lock(&event->child_mutex);
5483 func(event);
5484 list_for_each_entry(child, &event->child_list, child_list)
5485 func(child);
5486 mutex_unlock(&event->child_mutex);
5487 }
5488
5489 static void perf_event_for_each(struct perf_event *event,
5490 void (*func)(struct perf_event *))
5491 {
5492 struct perf_event_context *ctx = event->ctx;
5493 struct perf_event *sibling;
5494
5495 lockdep_assert_held(&ctx->mutex);
5496
5497 event = event->group_leader;
5498
5499 perf_event_for_each_child(event, func);
5500 for_each_sibling_event(sibling, event)
5501 perf_event_for_each_child(sibling, func);
5502 }
5503
5504 static void __perf_event_period(struct perf_event *event,
5505 struct perf_cpu_context *cpuctx,
5506 struct perf_event_context *ctx,
5507 void *info)
5508 {
5509 u64 value = *((u64 *)info);
5510 bool active;
5511
5512 if (event->attr.freq) {
5513 event->attr.sample_freq = value;
5514 } else {
5515 event->attr.sample_period = value;
5516 event->hw.sample_period = value;
5517 }
5518
5519 active = (event->state == PERF_EVENT_STATE_ACTIVE);
5520 if (active) {
5521 perf_pmu_disable(ctx->pmu);
5522 /*
5523 * We could be throttled; unthrottle now to avoid the tick
5524 * trying to unthrottle while we already re-started the event.
5525 */
5526 if (event->hw.interrupts == MAX_INTERRUPTS) {
5527 event->hw.interrupts = 0;
5528 perf_log_throttle(event, 1);
5529 }
5530 event->pmu->stop(event, PERF_EF_UPDATE);
5531 }
5532
5533 local64_set(&event->hw.period_left, 0);
5534
5535 if (active) {
5536 event->pmu->start(event, PERF_EF_RELOAD);
5537 perf_pmu_enable(ctx->pmu);
5538 }
5539 }
5540
5541 static int perf_event_check_period(struct perf_event *event, u64 value)
5542 {
5543 return event->pmu->check_period(event, value);
5544 }
5545
5546 static int _perf_event_period(struct perf_event *event, u64 value)
5547 {
5548 if (!is_sampling_event(event))
5549 return -EINVAL;
5550
5551 if (!value)
5552 return -EINVAL;
5553
5554 if (event->attr.freq && value > sysctl_perf_event_sample_rate)
5555 return -EINVAL;
5556
5557 if (perf_event_check_period(event, value))
5558 return -EINVAL;
5559
5560 if (!event->attr.freq && (value & (1ULL << 63)))
5561 return -EINVAL;
5562
5563 event_function_call(event, __perf_event_period, &value);
5564
5565 return 0;
5566 }
5567
5568 int perf_event_period(struct perf_event *event, u64 value)
5569 {
5570 struct perf_event_context *ctx;
5571 int ret;
5572
5573 ctx = perf_event_ctx_lock(event);
5574 ret = _perf_event_period(event, value);
5575 perf_event_ctx_unlock(event, ctx);
5576
5577 return ret;
5578 }
5579 EXPORT_SYMBOL_GPL(perf_event_period);
5580
5581 static const struct file_operations perf_fops;
5582
5583 static inline int perf_fget_light(int fd, struct fd *p)
5584 {
5585 struct fd f = fdget(fd);
5586 if (!f.file)
5587 return -EBADF;
5588
5589 if (f.file->f_op != &perf_fops) {
5590 fdput(f);
5591 return -EBADF;
5592 }
5593 *p = f;
5594 return 0;
5595 }
5596
5597 static int perf_event_set_output(struct perf_event *event,
5598 struct perf_event *output_event);
5599 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
5600 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5601 struct perf_event_attr *attr);
5602
5603 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
5604 {
5605 void (*func)(struct perf_event *);
5606 u32 flags = arg;
5607
5608 switch (cmd) {
5609 case PERF_EVENT_IOC_ENABLE:
5610 func = _perf_event_enable;
5611 break;
5612 case PERF_EVENT_IOC_DISABLE:
5613 func = _perf_event_disable;
5614 break;
5615 case PERF_EVENT_IOC_RESET:
5616 func = _perf_event_reset;
5617 break;
5618
5619 case PERF_EVENT_IOC_REFRESH:
5620 return _perf_event_refresh(event, arg);
5621
5622 case PERF_EVENT_IOC_PERIOD:
5623 {
5624 u64 value;
5625
5626 if (copy_from_user(&value, (u64 __user *)arg, sizeof(value)))
5627 return -EFAULT;
5628
5629 return _perf_event_period(event, value);
5630 }
5631 case PERF_EVENT_IOC_ID:
5632 {
5633 u64 id = primary_event_id(event);
5634
5635 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5636 return -EFAULT;
5637 return 0;
5638 }
5639
5640 case PERF_EVENT_IOC_SET_OUTPUT:
5641 {
5642 int ret;
5643 if (arg != -1) {
5644 struct perf_event *output_event;
5645 struct fd output;
5646 ret = perf_fget_light(arg, &output);
5647 if (ret)
5648 return ret;
5649 output_event = output.file->private_data;
5650 ret = perf_event_set_output(event, output_event);
5651 fdput(output);
5652 } else {
5653 ret = perf_event_set_output(event, NULL);
5654 }
5655 return ret;
5656 }
5657
5658 case PERF_EVENT_IOC_SET_FILTER:
5659 return perf_event_set_filter(event, (void __user *)arg);
5660
5661 case PERF_EVENT_IOC_SET_BPF:
5662 {
5663 struct bpf_prog *prog;
5664 int err;
5665
5666 prog = bpf_prog_get(arg);
5667 if (IS_ERR(prog))
5668 return PTR_ERR(prog);
5669
5670 err = perf_event_set_bpf_prog(event, prog, 0);
5671 if (err) {
5672 bpf_prog_put(prog);
5673 return err;
5674 }
5675
5676 return 0;
5677 }
5678
5679 case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5680 struct perf_buffer *rb;
5681
5682 rcu_read_lock();
5683 rb = rcu_dereference(event->rb);
5684 if (!rb || !rb->nr_pages) {
5685 rcu_read_unlock();
5686 return -EINVAL;
5687 }
5688 rb_toggle_paused(rb, !!arg);
5689 rcu_read_unlock();
5690 return 0;
5691 }
5692
5693 case PERF_EVENT_IOC_QUERY_BPF:
5694 return perf_event_query_prog_array(event, (void __user *)arg);
5695
5696 case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5697 struct perf_event_attr new_attr;
5698 int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5699 &new_attr);
5700
5701 if (err)
5702 return err;
5703
5704 return perf_event_modify_attr(event, &new_attr);
5705 }
5706 default:
5707 return -ENOTTY;
5708 }
5709
5710 if (flags & PERF_IOC_FLAG_GROUP)
5711 perf_event_for_each(event, func);
5712 else
5713 perf_event_for_each_child(event, func);
5714
5715 return 0;
5716 }
5717
5718 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5719 {
5720 struct perf_event *event = file->private_data;
5721 struct perf_event_context *ctx;
5722 long ret;
5723
5724 /* Treat ioctl like writes as it is likely a mutating operation. */
5725 ret = security_perf_event_write(event);
5726 if (ret)
5727 return ret;
5728
5729 ctx = perf_event_ctx_lock(event);
5730 ret = _perf_ioctl(event, cmd, arg);
5731 perf_event_ctx_unlock(event, ctx);
5732
5733 return ret;
5734 }
5735
5736 #ifdef CONFIG_COMPAT
5737 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
5738 unsigned long arg)
5739 {
5740 switch (_IOC_NR(cmd)) {
5741 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
5742 case _IOC_NR(PERF_EVENT_IOC_ID):
5743 case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
5744 case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
5745 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
5746 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
5747 cmd &= ~IOCSIZE_MASK;
5748 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
5749 }
5750 break;
5751 }
5752 return perf_ioctl(file, cmd, arg);
5753 }
5754 #else
5755 # define perf_compat_ioctl NULL
5756 #endif
5757
5758 int perf_event_task_enable(void)
5759 {
5760 struct perf_event_context *ctx;
5761 struct perf_event *event;
5762
5763 mutex_lock(&current->perf_event_mutex);
5764 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5765 ctx = perf_event_ctx_lock(event);
5766 perf_event_for_each_child(event, _perf_event_enable);
5767 perf_event_ctx_unlock(event, ctx);
5768 }
5769 mutex_unlock(&current->perf_event_mutex);
5770
5771 return 0;
5772 }
5773
5774 int perf_event_task_disable(void)
5775 {
5776 struct perf_event_context *ctx;
5777 struct perf_event *event;
5778
5779 mutex_lock(&current->perf_event_mutex);
5780 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5781 ctx = perf_event_ctx_lock(event);
5782 perf_event_for_each_child(event, _perf_event_disable);
5783 perf_event_ctx_unlock(event, ctx);
5784 }
5785 mutex_unlock(&current->perf_event_mutex);
5786
5787 return 0;
5788 }
5789
5790 static int perf_event_index(struct perf_event *event)
5791 {
5792 if (event->hw.state & PERF_HES_STOPPED)
5793 return 0;
5794
5795 if (event->state != PERF_EVENT_STATE_ACTIVE)
5796 return 0;
5797
5798 return event->pmu->event_idx(event);
5799 }
5800
5801 static void calc_timer_values(struct perf_event *event,
5802 u64 *now,
5803 u64 *enabled,
5804 u64 *running)
5805 {
5806 u64 ctx_time;
5807
5808 *now = perf_clock();
5809 ctx_time = event->shadow_ctx_time + *now;
5810 __perf_update_times(event, ctx_time, enabled, running);
5811 }
5812
5813 static void perf_event_init_userpage(struct perf_event *event)
5814 {
5815 struct perf_event_mmap_page *userpg;
5816 struct perf_buffer *rb;
5817
5818 rcu_read_lock();
5819 rb = rcu_dereference(event->rb);
5820 if (!rb)
5821 goto unlock;
5822
5823 userpg = rb->user_page;
5824
5825 /* Allow new userspace to detect that bit 0 is deprecated */
5826 userpg->cap_bit0_is_deprecated = 1;
5827 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
5828 userpg->data_offset = PAGE_SIZE;
5829 userpg->data_size = perf_data_size(rb);
5830
5831 unlock:
5832 rcu_read_unlock();
5833 }
5834
5835 void __weak arch_perf_update_userpage(
5836 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
5837 {
5838 }
5839
5840 /*
5841 * Callers need to ensure there can be no nesting of this function, otherwise
5842 * the seqlock logic goes bad. We can not serialize this because the arch
5843 * code calls this from NMI context.
5844 */
5845 void perf_event_update_userpage(struct perf_event *event)
5846 {
5847 struct perf_event_mmap_page *userpg;
5848 struct perf_buffer *rb;
5849 u64 enabled, running, now;
5850
5851 rcu_read_lock();
5852 rb = rcu_dereference(event->rb);
5853 if (!rb)
5854 goto unlock;
5855
5856 /*
5857 * compute total_time_enabled, total_time_running
5858 * based on snapshot values taken when the event
5859 * was last scheduled in.
5860 *
5861 * we cannot simply called update_context_time()
5862 * because of locking issue as we can be called in
5863 * NMI context
5864 */
5865 calc_timer_values(event, &now, &enabled, &running);
5866
5867 userpg = rb->user_page;
5868 /*
5869 * Disable preemption to guarantee consistent time stamps are stored to
5870 * the user page.
5871 */
5872 preempt_disable();
5873 ++userpg->lock;
5874 barrier();
5875 userpg->index = perf_event_index(event);
5876 userpg->offset = perf_event_count(event);
5877 if (userpg->index)
5878 userpg->offset -= local64_read(&event->hw.prev_count);
5879
5880 userpg->time_enabled = enabled +
5881 atomic64_read(&event->child_total_time_enabled);
5882
5883 userpg->time_running = running +
5884 atomic64_read(&event->child_total_time_running);
5885
5886 arch_perf_update_userpage(event, userpg, now);
5887
5888 barrier();
5889 ++userpg->lock;
5890 preempt_enable();
5891 unlock:
5892 rcu_read_unlock();
5893 }
5894 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
5895
5896 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
5897 {
5898 struct perf_event *event = vmf->vma->vm_file->private_data;
5899 struct perf_buffer *rb;
5900 vm_fault_t ret = VM_FAULT_SIGBUS;
5901
5902 if (vmf->flags & FAULT_FLAG_MKWRITE) {
5903 if (vmf->pgoff == 0)
5904 ret = 0;
5905 return ret;
5906 }
5907
5908 rcu_read_lock();
5909 rb = rcu_dereference(event->rb);
5910 if (!rb)
5911 goto unlock;
5912
5913 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5914 goto unlock;
5915
5916 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
5917 if (!vmf->page)
5918 goto unlock;
5919
5920 get_page(vmf->page);
5921 vmf->page->mapping = vmf->vma->vm_file->f_mapping;
5922 vmf->page->index = vmf->pgoff;
5923
5924 ret = 0;
5925 unlock:
5926 rcu_read_unlock();
5927
5928 return ret;
5929 }
5930
5931 static void ring_buffer_attach(struct perf_event *event,
5932 struct perf_buffer *rb)
5933 {
5934 struct perf_buffer *old_rb = NULL;
5935 unsigned long flags;
5936
5937 if (event->rb) {
5938 /*
5939 * Should be impossible, we set this when removing
5940 * event->rb_entry and wait/clear when adding event->rb_entry.
5941 */
5942 WARN_ON_ONCE(event->rcu_pending);
5943
5944 old_rb = event->rb;
5945 spin_lock_irqsave(&old_rb->event_lock, flags);
5946 list_del_rcu(&event->rb_entry);
5947 spin_unlock_irqrestore(&old_rb->event_lock, flags);
5948
5949 event->rcu_batches = get_state_synchronize_rcu();
5950 event->rcu_pending = 1;
5951 }
5952
5953 if (rb) {
5954 if (event->rcu_pending) {
5955 cond_synchronize_rcu(event->rcu_batches);
5956 event->rcu_pending = 0;
5957 }
5958
5959 spin_lock_irqsave(&rb->event_lock, flags);
5960 list_add_rcu(&event->rb_entry, &rb->event_list);
5961 spin_unlock_irqrestore(&rb->event_lock, flags);
5962 }
5963
5964 /*
5965 * Avoid racing with perf_mmap_close(AUX): stop the event
5966 * before swizzling the event::rb pointer; if it's getting
5967 * unmapped, its aux_mmap_count will be 0 and it won't
5968 * restart. See the comment in __perf_pmu_output_stop().
5969 *
5970 * Data will inevitably be lost when set_output is done in
5971 * mid-air, but then again, whoever does it like this is
5972 * not in for the data anyway.
5973 */
5974 if (has_aux(event))
5975 perf_event_stop(event, 0);
5976
5977 rcu_assign_pointer(event->rb, rb);
5978
5979 if (old_rb) {
5980 ring_buffer_put(old_rb);
5981 /*
5982 * Since we detached before setting the new rb, so that we
5983 * could attach the new rb, we could have missed a wakeup.
5984 * Provide it now.
5985 */
5986 wake_up_all(&event->waitq);
5987 }
5988 }
5989
5990 static void ring_buffer_wakeup(struct perf_event *event)
5991 {
5992 struct perf_buffer *rb;
5993
5994 rcu_read_lock();
5995 rb = rcu_dereference(event->rb);
5996 if (rb) {
5997 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5998 wake_up_all(&event->waitq);
5999 }
6000 rcu_read_unlock();
6001 }
6002
6003 struct perf_buffer *ring_buffer_get(struct perf_event *event)
6004 {
6005 struct perf_buffer *rb;
6006
6007 rcu_read_lock();
6008 rb = rcu_dereference(event->rb);
6009 if (rb) {
6010 if (!refcount_inc_not_zero(&rb->refcount))
6011 rb = NULL;
6012 }
6013 rcu_read_unlock();
6014
6015 return rb;
6016 }
6017
6018 void ring_buffer_put(struct perf_buffer *rb)
6019 {
6020 if (!refcount_dec_and_test(&rb->refcount))
6021 return;
6022
6023 WARN_ON_ONCE(!list_empty(&rb->event_list));
6024
6025 call_rcu(&rb->rcu_head, rb_free_rcu);
6026 }
6027
6028 static void perf_mmap_open(struct vm_area_struct *vma)
6029 {
6030 struct perf_event *event = vma->vm_file->private_data;
6031
6032 atomic_inc(&event->mmap_count);
6033 atomic_inc(&event->rb->mmap_count);
6034
6035 if (vma->vm_pgoff)
6036 atomic_inc(&event->rb->aux_mmap_count);
6037
6038 if (event->pmu->event_mapped)
6039 event->pmu->event_mapped(event, vma->vm_mm);
6040 }
6041
6042 static void perf_pmu_output_stop(struct perf_event *event);
6043
6044 /*
6045 * A buffer can be mmap()ed multiple times; either directly through the same
6046 * event, or through other events by use of perf_event_set_output().
6047 *
6048 * In order to undo the VM accounting done by perf_mmap() we need to destroy
6049 * the buffer here, where we still have a VM context. This means we need
6050 * to detach all events redirecting to us.
6051 */
6052 static void perf_mmap_close(struct vm_area_struct *vma)
6053 {
6054 struct perf_event *event = vma->vm_file->private_data;
6055 struct perf_buffer *rb = ring_buffer_get(event);
6056 struct user_struct *mmap_user = rb->mmap_user;
6057 int mmap_locked = rb->mmap_locked;
6058 unsigned long size = perf_data_size(rb);
6059 bool detach_rest = false;
6060
6061 if (event->pmu->event_unmapped)
6062 event->pmu->event_unmapped(event, vma->vm_mm);
6063
6064 /*
6065 * rb->aux_mmap_count will always drop before rb->mmap_count and
6066 * event->mmap_count, so it is ok to use event->mmap_mutex to
6067 * serialize with perf_mmap here.
6068 */
6069 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
6070 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
6071 /*
6072 * Stop all AUX events that are writing to this buffer,
6073 * so that we can free its AUX pages and corresponding PMU
6074 * data. Note that after rb::aux_mmap_count dropped to zero,
6075 * they won't start any more (see perf_aux_output_begin()).
6076 */
6077 perf_pmu_output_stop(event);
6078
6079 /* now it's safe to free the pages */
6080 atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm);
6081 atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
6082
6083 /* this has to be the last one */
6084 rb_free_aux(rb);
6085 WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
6086
6087 mutex_unlock(&event->mmap_mutex);
6088 }
6089
6090 if (atomic_dec_and_test(&rb->mmap_count))
6091 detach_rest = true;
6092
6093 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
6094 goto out_put;
6095
6096 ring_buffer_attach(event, NULL);
6097 mutex_unlock(&event->mmap_mutex);
6098
6099 /* If there's still other mmap()s of this buffer, we're done. */
6100 if (!detach_rest)
6101 goto out_put;
6102
6103 /*
6104 * No other mmap()s, detach from all other events that might redirect
6105 * into the now unreachable buffer. Somewhat complicated by the
6106 * fact that rb::event_lock otherwise nests inside mmap_mutex.
6107 */
6108 again:
6109 rcu_read_lock();
6110 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
6111 if (!atomic_long_inc_not_zero(&event->refcount)) {
6112 /*
6113 * This event is en-route to free_event() which will
6114 * detach it and remove it from the list.
6115 */
6116 continue;
6117 }
6118 rcu_read_unlock();
6119
6120 mutex_lock(&event->mmap_mutex);
6121 /*
6122 * Check we didn't race with perf_event_set_output() which can
6123 * swizzle the rb from under us while we were waiting to
6124 * acquire mmap_mutex.
6125 *
6126 * If we find a different rb; ignore this event, a next
6127 * iteration will no longer find it on the list. We have to
6128 * still restart the iteration to make sure we're not now
6129 * iterating the wrong list.
6130 */
6131 if (event->rb == rb)
6132 ring_buffer_attach(event, NULL);
6133
6134 mutex_unlock(&event->mmap_mutex);
6135 put_event(event);
6136
6137 /*
6138 * Restart the iteration; either we're on the wrong list or
6139 * destroyed its integrity by doing a deletion.
6140 */
6141 goto again;
6142 }
6143 rcu_read_unlock();
6144
6145 /*
6146 * It could be there's still a few 0-ref events on the list; they'll
6147 * get cleaned up by free_event() -- they'll also still have their
6148 * ref on the rb and will free it whenever they are done with it.
6149 *
6150 * Aside from that, this buffer is 'fully' detached and unmapped,
6151 * undo the VM accounting.
6152 */
6153
6154 atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked,
6155 &mmap_user->locked_vm);
6156 atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
6157 free_uid(mmap_user);
6158
6159 out_put:
6160 ring_buffer_put(rb); /* could be last */
6161 }
6162
6163 static const struct vm_operations_struct perf_mmap_vmops = {
6164 .open = perf_mmap_open,
6165 .close = perf_mmap_close, /* non mergeable */
6166 .fault = perf_mmap_fault,
6167 .page_mkwrite = perf_mmap_fault,
6168 };
6169
6170 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
6171 {
6172 struct perf_event *event = file->private_data;
6173 unsigned long user_locked, user_lock_limit;
6174 struct user_struct *user = current_user();
6175 struct perf_buffer *rb = NULL;
6176 unsigned long locked, lock_limit;
6177 unsigned long vma_size;
6178 unsigned long nr_pages;
6179 long user_extra = 0, extra = 0;
6180 int ret = 0, flags = 0;
6181
6182 /*
6183 * Don't allow mmap() of inherited per-task counters. This would
6184 * create a performance issue due to all children writing to the
6185 * same rb.
6186 */
6187 if (event->cpu == -1 && event->attr.inherit)
6188 return -EINVAL;
6189
6190 if (!(vma->vm_flags & VM_SHARED))
6191 return -EINVAL;
6192
6193 ret = security_perf_event_read(event);
6194 if (ret)
6195 return ret;
6196
6197 vma_size = vma->vm_end - vma->vm_start;
6198
6199 if (vma->vm_pgoff == 0) {
6200 nr_pages = (vma_size / PAGE_SIZE) - 1;
6201 } else {
6202 /*
6203 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
6204 * mapped, all subsequent mappings should have the same size
6205 * and offset. Must be above the normal perf buffer.
6206 */
6207 u64 aux_offset, aux_size;
6208
6209 if (!event->rb)
6210 return -EINVAL;
6211
6212 nr_pages = vma_size / PAGE_SIZE;
6213
6214 mutex_lock(&event->mmap_mutex);
6215 ret = -EINVAL;
6216
6217 rb = event->rb;
6218 if (!rb)
6219 goto aux_unlock;
6220
6221 aux_offset = READ_ONCE(rb->user_page->aux_offset);
6222 aux_size = READ_ONCE(rb->user_page->aux_size);
6223
6224 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
6225 goto aux_unlock;
6226
6227 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
6228 goto aux_unlock;
6229
6230 /* already mapped with a different offset */
6231 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
6232 goto aux_unlock;
6233
6234 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
6235 goto aux_unlock;
6236
6237 /* already mapped with a different size */
6238 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
6239 goto aux_unlock;
6240
6241 if (!is_power_of_2(nr_pages))
6242 goto aux_unlock;
6243
6244 if (!atomic_inc_not_zero(&rb->mmap_count))
6245 goto aux_unlock;
6246
6247 if (rb_has_aux(rb)) {
6248 atomic_inc(&rb->aux_mmap_count);
6249 ret = 0;
6250 goto unlock;
6251 }
6252
6253 atomic_set(&rb->aux_mmap_count, 1);
6254 user_extra = nr_pages;
6255
6256 goto accounting;
6257 }
6258
6259 /*
6260 * If we have rb pages ensure they're a power-of-two number, so we
6261 * can do bitmasks instead of modulo.
6262 */
6263 if (nr_pages != 0 && !is_power_of_2(nr_pages))
6264 return -EINVAL;
6265
6266 if (vma_size != PAGE_SIZE * (1 + nr_pages))
6267 return -EINVAL;
6268
6269 WARN_ON_ONCE(event->ctx->parent_ctx);
6270 again:
6271 mutex_lock(&event->mmap_mutex);
6272 if (event->rb) {
6273 if (event->rb->nr_pages != nr_pages) {
6274 ret = -EINVAL;
6275 goto unlock;
6276 }
6277
6278 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
6279 /*
6280 * Raced against perf_mmap_close() through
6281 * perf_event_set_output(). Try again, hope for better
6282 * luck.
6283 */
6284 mutex_unlock(&event->mmap_mutex);
6285 goto again;
6286 }
6287
6288 goto unlock;
6289 }
6290
6291 user_extra = nr_pages + 1;
6292
6293 accounting:
6294 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
6295
6296 /*
6297 * Increase the limit linearly with more CPUs:
6298 */
6299 user_lock_limit *= num_online_cpus();
6300
6301 user_locked = atomic_long_read(&user->locked_vm);
6302
6303 /*
6304 * sysctl_perf_event_mlock may have changed, so that
6305 * user->locked_vm > user_lock_limit
6306 */
6307 if (user_locked > user_lock_limit)
6308 user_locked = user_lock_limit;
6309 user_locked += user_extra;
6310
6311 if (user_locked > user_lock_limit) {
6312 /*
6313 * charge locked_vm until it hits user_lock_limit;
6314 * charge the rest from pinned_vm
6315 */
6316 extra = user_locked - user_lock_limit;
6317 user_extra -= extra;
6318 }
6319
6320 lock_limit = rlimit(RLIMIT_MEMLOCK);
6321 lock_limit >>= PAGE_SHIFT;
6322 locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
6323
6324 if ((locked > lock_limit) && perf_is_paranoid() &&
6325 !capable(CAP_IPC_LOCK)) {
6326 ret = -EPERM;
6327 goto unlock;
6328 }
6329
6330 WARN_ON(!rb && event->rb);
6331
6332 if (vma->vm_flags & VM_WRITE)
6333 flags |= RING_BUFFER_WRITABLE;
6334
6335 if (!rb) {
6336 rb = rb_alloc(nr_pages,
6337 event->attr.watermark ? event->attr.wakeup_watermark : 0,
6338 event->cpu, flags);
6339
6340 if (!rb) {
6341 ret = -ENOMEM;
6342 goto unlock;
6343 }
6344
6345 atomic_set(&rb->mmap_count, 1);
6346 rb->mmap_user = get_current_user();
6347 rb->mmap_locked = extra;
6348
6349 ring_buffer_attach(event, rb);
6350
6351 perf_event_update_time(event);
6352 perf_set_shadow_time(event, event->ctx);
6353 perf_event_init_userpage(event);
6354 perf_event_update_userpage(event);
6355 } else {
6356 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
6357 event->attr.aux_watermark, flags);
6358 if (!ret)
6359 rb->aux_mmap_locked = extra;
6360 }
6361
6362 unlock:
6363 if (!ret) {
6364 atomic_long_add(user_extra, &user->locked_vm);
6365 atomic64_add(extra, &vma->vm_mm->pinned_vm);
6366
6367 atomic_inc(&event->mmap_count);
6368 } else if (rb) {
6369 atomic_dec(&rb->mmap_count);
6370 }
6371 aux_unlock:
6372 mutex_unlock(&event->mmap_mutex);
6373
6374 /*
6375 * Since pinned accounting is per vm we cannot allow fork() to copy our
6376 * vma.
6377 */
6378 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
6379 vma->vm_ops = &perf_mmap_vmops;
6380
6381 if (event->pmu->event_mapped)
6382 event->pmu->event_mapped(event, vma->vm_mm);
6383
6384 return ret;
6385 }
6386
6387 static int perf_fasync(int fd, struct file *filp, int on)
6388 {
6389 struct inode *inode = file_inode(filp);
6390 struct perf_event *event = filp->private_data;
6391 int retval;
6392
6393 inode_lock(inode);
6394 retval = fasync_helper(fd, filp, on, &event->fasync);
6395 inode_unlock(inode);
6396
6397 if (retval < 0)
6398 return retval;
6399
6400 return 0;
6401 }
6402
6403 static const struct file_operations perf_fops = {
6404 .llseek = no_llseek,
6405 .release = perf_release,
6406 .read = perf_read,
6407 .poll = perf_poll,
6408 .unlocked_ioctl = perf_ioctl,
6409 .compat_ioctl = perf_compat_ioctl,
6410 .mmap = perf_mmap,
6411 .fasync = perf_fasync,
6412 };
6413
6414 /*
6415 * Perf event wakeup
6416 *
6417 * If there's data, ensure we set the poll() state and publish everything
6418 * to user-space before waking everybody up.
6419 */
6420
6421 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
6422 {
6423 /* only the parent has fasync state */
6424 if (event->parent)
6425 event = event->parent;
6426 return &event->fasync;
6427 }
6428
6429 void perf_event_wakeup(struct perf_event *event)
6430 {
6431 ring_buffer_wakeup(event);
6432
6433 if (event->pending_kill) {
6434 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
6435 event->pending_kill = 0;
6436 }
6437 }
6438
6439 static void perf_sigtrap(struct perf_event *event)
6440 {
6441 /*
6442 * We'd expect this to only occur if the irq_work is delayed and either
6443 * ctx->task or current has changed in the meantime. This can be the
6444 * case on architectures that do not implement arch_irq_work_raise().
6445 */
6446 if (WARN_ON_ONCE(event->ctx->task != current))
6447 return;
6448
6449 /*
6450 * perf_pending_event() can race with the task exiting.
6451 */
6452 if (current->flags & PF_EXITING)
6453 return;
6454
6455 force_sig_perf((void __user *)event->pending_addr,
6456 event->attr.type, event->attr.sig_data);
6457 }
6458
6459 static void perf_pending_event_disable(struct perf_event *event)
6460 {
6461 int cpu = READ_ONCE(event->pending_disable);
6462
6463 if (cpu < 0)
6464 return;
6465
6466 if (cpu == smp_processor_id()) {
6467 WRITE_ONCE(event->pending_disable, -1);
6468
6469 if (event->attr.sigtrap) {
6470 perf_sigtrap(event);
6471 atomic_set_release(&event->event_limit, 1); /* rearm event */
6472 return;
6473 }
6474
6475 perf_event_disable_local(event);
6476 return;
6477 }
6478
6479 /*
6480 * CPU-A CPU-B
6481 *
6482 * perf_event_disable_inatomic()
6483 * @pending_disable = CPU-A;
6484 * irq_work_queue();
6485 *
6486 * sched-out
6487 * @pending_disable = -1;
6488 *
6489 * sched-in
6490 * perf_event_disable_inatomic()
6491 * @pending_disable = CPU-B;
6492 * irq_work_queue(); // FAILS
6493 *
6494 * irq_work_run()
6495 * perf_pending_event()
6496 *
6497 * But the event runs on CPU-B and wants disabling there.
6498 */
6499 irq_work_queue_on(&event->pending, cpu);
6500 }
6501
6502 static void perf_pending_event(struct irq_work *entry)
6503 {
6504 struct perf_event *event = container_of(entry, struct perf_event, pending);
6505 int rctx;
6506
6507 rctx = perf_swevent_get_recursion_context();
6508 /*
6509 * If we 'fail' here, that's OK, it means recursion is already disabled
6510 * and we won't recurse 'further'.
6511 */
6512
6513 perf_pending_event_disable(event);
6514
6515 if (event->pending_wakeup) {
6516 event->pending_wakeup = 0;
6517 perf_event_wakeup(event);
6518 }
6519
6520 if (rctx >= 0)
6521 perf_swevent_put_recursion_context(rctx);
6522 }
6523
6524 /*
6525 * We assume there is only KVM supporting the callbacks.
6526 * Later on, we might change it to a list if there is
6527 * another virtualization implementation supporting the callbacks.
6528 */
6529 struct perf_guest_info_callbacks *perf_guest_cbs;
6530
6531 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6532 {
6533 perf_guest_cbs = cbs;
6534 return 0;
6535 }
6536 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
6537
6538 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6539 {
6540 perf_guest_cbs = NULL;
6541 return 0;
6542 }
6543 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
6544
6545 static void
6546 perf_output_sample_regs(struct perf_output_handle *handle,
6547 struct pt_regs *regs, u64 mask)
6548 {
6549 int bit;
6550 DECLARE_BITMAP(_mask, 64);
6551
6552 bitmap_from_u64(_mask, mask);
6553 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
6554 u64 val;
6555
6556 val = perf_reg_value(regs, bit);
6557 perf_output_put(handle, val);
6558 }
6559 }
6560
6561 static void perf_sample_regs_user(struct perf_regs *regs_user,
6562 struct pt_regs *regs)
6563 {
6564 if (user_mode(regs)) {
6565 regs_user->abi = perf_reg_abi(current);
6566 regs_user->regs = regs;
6567 } else if (!(current->flags & PF_KTHREAD)) {
6568 perf_get_regs_user(regs_user, regs);
6569 } else {
6570 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
6571 regs_user->regs = NULL;
6572 }
6573 }
6574
6575 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
6576 struct pt_regs *regs)
6577 {
6578 regs_intr->regs = regs;
6579 regs_intr->abi = perf_reg_abi(current);
6580 }
6581
6582
6583 /*
6584 * Get remaining task size from user stack pointer.
6585 *
6586 * It'd be better to take stack vma map and limit this more
6587 * precisely, but there's no way to get it safely under interrupt,
6588 * so using TASK_SIZE as limit.
6589 */
6590 static u64 perf_ustack_task_size(struct pt_regs *regs)
6591 {
6592 unsigned long addr = perf_user_stack_pointer(regs);
6593
6594 if (!addr || addr >= TASK_SIZE)
6595 return 0;
6596
6597 return TASK_SIZE - addr;
6598 }
6599
6600 static u16
6601 perf_sample_ustack_size(u16 stack_size, u16 header_size,
6602 struct pt_regs *regs)
6603 {
6604 u64 task_size;
6605
6606 /* No regs, no stack pointer, no dump. */
6607 if (!regs)
6608 return 0;
6609
6610 /*
6611 * Check if we fit in with the requested stack size into the:
6612 * - TASK_SIZE
6613 * If we don't, we limit the size to the TASK_SIZE.
6614 *
6615 * - remaining sample size
6616 * If we don't, we customize the stack size to
6617 * fit in to the remaining sample size.
6618 */
6619
6620 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
6621 stack_size = min(stack_size, (u16) task_size);
6622
6623 /* Current header size plus static size and dynamic size. */
6624 header_size += 2 * sizeof(u64);
6625
6626 /* Do we fit in with the current stack dump size? */
6627 if ((u16) (header_size + stack_size) < header_size) {
6628 /*
6629 * If we overflow the maximum size for the sample,
6630 * we customize the stack dump size to fit in.
6631 */
6632 stack_size = USHRT_MAX - header_size - sizeof(u64);
6633 stack_size = round_up(stack_size, sizeof(u64));
6634 }
6635
6636 return stack_size;
6637 }
6638
6639 static void
6640 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
6641 struct pt_regs *regs)
6642 {
6643 /* Case of a kernel thread, nothing to dump */
6644 if (!regs) {
6645 u64 size = 0;
6646 perf_output_put(handle, size);
6647 } else {
6648 unsigned long sp;
6649 unsigned int rem;
6650 u64 dyn_size;
6651 mm_segment_t fs;
6652
6653 /*
6654 * We dump:
6655 * static size
6656 * - the size requested by user or the best one we can fit
6657 * in to the sample max size
6658 * data
6659 * - user stack dump data
6660 * dynamic size
6661 * - the actual dumped size
6662 */
6663
6664 /* Static size. */
6665 perf_output_put(handle, dump_size);
6666
6667 /* Data. */
6668 sp = perf_user_stack_pointer(regs);
6669 fs = force_uaccess_begin();
6670 rem = __output_copy_user(handle, (void *) sp, dump_size);
6671 force_uaccess_end(fs);
6672 dyn_size = dump_size - rem;
6673
6674 perf_output_skip(handle, rem);
6675
6676 /* Dynamic size. */
6677 perf_output_put(handle, dyn_size);
6678 }
6679 }
6680
6681 static unsigned long perf_prepare_sample_aux(struct perf_event *event,
6682 struct perf_sample_data *data,
6683 size_t size)
6684 {
6685 struct perf_event *sampler = event->aux_event;
6686 struct perf_buffer *rb;
6687
6688 data->aux_size = 0;
6689
6690 if (!sampler)
6691 goto out;
6692
6693 if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE))
6694 goto out;
6695
6696 if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id()))
6697 goto out;
6698
6699 rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler);
6700 if (!rb)
6701 goto out;
6702
6703 /*
6704 * If this is an NMI hit inside sampling code, don't take
6705 * the sample. See also perf_aux_sample_output().
6706 */
6707 if (READ_ONCE(rb->aux_in_sampling)) {
6708 data->aux_size = 0;
6709 } else {
6710 size = min_t(size_t, size, perf_aux_size(rb));
6711 data->aux_size = ALIGN(size, sizeof(u64));
6712 }
6713 ring_buffer_put(rb);
6714
6715 out:
6716 return data->aux_size;
6717 }
6718
6719 static long perf_pmu_snapshot_aux(struct perf_buffer *rb,
6720 struct perf_event *event,
6721 struct perf_output_handle *handle,
6722 unsigned long size)
6723 {
6724 unsigned long flags;
6725 long ret;
6726
6727 /*
6728 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler
6729 * paths. If we start calling them in NMI context, they may race with
6730 * the IRQ ones, that is, for example, re-starting an event that's just
6731 * been stopped, which is why we're using a separate callback that
6732 * doesn't change the event state.
6733 *
6734 * IRQs need to be disabled to prevent IPIs from racing with us.
6735 */
6736 local_irq_save(flags);
6737 /*
6738 * Guard against NMI hits inside the critical section;
6739 * see also perf_prepare_sample_aux().
6740 */
6741 WRITE_ONCE(rb->aux_in_sampling, 1);
6742 barrier();
6743
6744 ret = event->pmu->snapshot_aux(event, handle, size);
6745
6746 barrier();
6747 WRITE_ONCE(rb->aux_in_sampling, 0);
6748 local_irq_restore(flags);
6749
6750 return ret;
6751 }
6752
6753 static void perf_aux_sample_output(struct perf_event *event,
6754 struct perf_output_handle *handle,
6755 struct perf_sample_data *data)
6756 {
6757 struct perf_event *sampler = event->aux_event;
6758 struct perf_buffer *rb;
6759 unsigned long pad;
6760 long size;
6761
6762 if (WARN_ON_ONCE(!sampler || !data->aux_size))
6763 return;
6764
6765 rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler);
6766 if (!rb)
6767 return;
6768
6769 size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size);
6770
6771 /*
6772 * An error here means that perf_output_copy() failed (returned a
6773 * non-zero surplus that it didn't copy), which in its current
6774 * enlightened implementation is not possible. If that changes, we'd
6775 * like to know.
6776 */
6777 if (WARN_ON_ONCE(size < 0))
6778 goto out_put;
6779
6780 /*
6781 * The pad comes from ALIGN()ing data->aux_size up to u64 in
6782 * perf_prepare_sample_aux(), so should not be more than that.
6783 */
6784 pad = data->aux_size - size;
6785 if (WARN_ON_ONCE(pad >= sizeof(u64)))
6786 pad = 8;
6787
6788 if (pad) {
6789 u64 zero = 0;
6790 perf_output_copy(handle, &zero, pad);
6791 }
6792
6793 out_put:
6794 ring_buffer_put(rb);
6795 }
6796
6797 static void __perf_event_header__init_id(struct perf_event_header *header,
6798 struct perf_sample_data *data,
6799 struct perf_event *event)
6800 {
6801 u64 sample_type = event->attr.sample_type;
6802
6803 data->type = sample_type;
6804 header->size += event->id_header_size;
6805
6806 if (sample_type & PERF_SAMPLE_TID) {
6807 /* namespace issues */
6808 data->tid_entry.pid = perf_event_pid(event, current);
6809 data->tid_entry.tid = perf_event_tid(event, current);
6810 }
6811
6812 if (sample_type & PERF_SAMPLE_TIME)
6813 data->time = perf_event_clock(event);
6814
6815 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6816 data->id = primary_event_id(event);
6817
6818 if (sample_type & PERF_SAMPLE_STREAM_ID)
6819 data->stream_id = event->id;
6820
6821 if (sample_type & PERF_SAMPLE_CPU) {
6822 data->cpu_entry.cpu = raw_smp_processor_id();
6823 data->cpu_entry.reserved = 0;
6824 }
6825 }
6826
6827 void perf_event_header__init_id(struct perf_event_header *header,
6828 struct perf_sample_data *data,
6829 struct perf_event *event)
6830 {
6831 if (event->attr.sample_id_all)
6832 __perf_event_header__init_id(header, data, event);
6833 }
6834
6835 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
6836 struct perf_sample_data *data)
6837 {
6838 u64 sample_type = data->type;
6839
6840 if (sample_type & PERF_SAMPLE_TID)
6841 perf_output_put(handle, data->tid_entry);
6842
6843 if (sample_type & PERF_SAMPLE_TIME)
6844 perf_output_put(handle, data->time);
6845
6846 if (sample_type & PERF_SAMPLE_ID)
6847 perf_output_put(handle, data->id);
6848
6849 if (sample_type & PERF_SAMPLE_STREAM_ID)
6850 perf_output_put(handle, data->stream_id);
6851
6852 if (sample_type & PERF_SAMPLE_CPU)
6853 perf_output_put(handle, data->cpu_entry);
6854
6855 if (sample_type & PERF_SAMPLE_IDENTIFIER)
6856 perf_output_put(handle, data->id);
6857 }
6858
6859 void perf_event__output_id_sample(struct perf_event *event,
6860 struct perf_output_handle *handle,
6861 struct perf_sample_data *sample)
6862 {
6863 if (event->attr.sample_id_all)
6864 __perf_event__output_id_sample(handle, sample);
6865 }
6866
6867 static void perf_output_read_one(struct perf_output_handle *handle,
6868 struct perf_event *event,
6869 u64 enabled, u64 running)
6870 {
6871 u64 read_format = event->attr.read_format;
6872 u64 values[4];
6873 int n = 0;
6874
6875 values[n++] = perf_event_count(event);
6876 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
6877 values[n++] = enabled +
6878 atomic64_read(&event->child_total_time_enabled);
6879 }
6880 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
6881 values[n++] = running +
6882 atomic64_read(&event->child_total_time_running);
6883 }
6884 if (read_format & PERF_FORMAT_ID)
6885 values[n++] = primary_event_id(event);
6886
6887 __output_copy(handle, values, n * sizeof(u64));
6888 }
6889
6890 static void perf_output_read_group(struct perf_output_handle *handle,
6891 struct perf_event *event,
6892 u64 enabled, u64 running)
6893 {
6894 struct perf_event *leader = event->group_leader, *sub;
6895 u64 read_format = event->attr.read_format;
6896 u64 values[5];
6897 int n = 0;
6898
6899 values[n++] = 1 + leader->nr_siblings;
6900
6901 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
6902 values[n++] = enabled;
6903
6904 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
6905 values[n++] = running;
6906
6907 if ((leader != event) &&
6908 (leader->state == PERF_EVENT_STATE_ACTIVE))
6909 leader->pmu->read(leader);
6910
6911 values[n++] = perf_event_count(leader);
6912 if (read_format & PERF_FORMAT_ID)
6913 values[n++] = primary_event_id(leader);
6914
6915 __output_copy(handle, values, n * sizeof(u64));
6916
6917 for_each_sibling_event(sub, leader) {
6918 n = 0;
6919
6920 if ((sub != event) &&
6921 (sub->state == PERF_EVENT_STATE_ACTIVE))
6922 sub->pmu->read(sub);
6923
6924 values[n++] = perf_event_count(sub);
6925 if (read_format & PERF_FORMAT_ID)
6926 values[n++] = primary_event_id(sub);
6927
6928 __output_copy(handle, values, n * sizeof(u64));
6929 }
6930 }
6931
6932 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
6933 PERF_FORMAT_TOTAL_TIME_RUNNING)
6934
6935 /*
6936 * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
6937 *
6938 * The problem is that its both hard and excessively expensive to iterate the
6939 * child list, not to mention that its impossible to IPI the children running
6940 * on another CPU, from interrupt/NMI context.
6941 */
6942 static void perf_output_read(struct perf_output_handle *handle,
6943 struct perf_event *event)
6944 {
6945 u64 enabled = 0, running = 0, now;
6946 u64 read_format = event->attr.read_format;
6947
6948 /*
6949 * compute total_time_enabled, total_time_running
6950 * based on snapshot values taken when the event
6951 * was last scheduled in.
6952 *
6953 * we cannot simply called update_context_time()
6954 * because of locking issue as we are called in
6955 * NMI context
6956 */
6957 if (read_format & PERF_FORMAT_TOTAL_TIMES)
6958 calc_timer_values(event, &now, &enabled, &running);
6959
6960 if (event->attr.read_format & PERF_FORMAT_GROUP)
6961 perf_output_read_group(handle, event, enabled, running);
6962 else
6963 perf_output_read_one(handle, event, enabled, running);
6964 }
6965
6966 static inline bool perf_sample_save_hw_index(struct perf_event *event)
6967 {
6968 return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_HW_INDEX;
6969 }
6970
6971 void perf_output_sample(struct perf_output_handle *handle,
6972 struct perf_event_header *header,
6973 struct perf_sample_data *data,
6974 struct perf_event *event)
6975 {
6976 u64 sample_type = data->type;
6977
6978 perf_output_put(handle, *header);
6979
6980 if (sample_type & PERF_SAMPLE_IDENTIFIER)
6981 perf_output_put(handle, data->id);
6982
6983 if (sample_type & PERF_SAMPLE_IP)
6984 perf_output_put(handle, data->ip);
6985
6986 if (sample_type & PERF_SAMPLE_TID)
6987 perf_output_put(handle, data->tid_entry);
6988
6989 if (sample_type & PERF_SAMPLE_TIME)
6990 perf_output_put(handle, data->time);
6991
6992 if (sample_type & PERF_SAMPLE_ADDR)
6993 perf_output_put(handle, data->addr);
6994
6995 if (sample_type & PERF_SAMPLE_ID)
6996 perf_output_put(handle, data->id);
6997
6998 if (sample_type & PERF_SAMPLE_STREAM_ID)
6999 perf_output_put(handle, data->stream_id);
7000
7001 if (sample_type & PERF_SAMPLE_CPU)
7002 perf_output_put(handle, data->cpu_entry);
7003
7004 if (sample_type & PERF_SAMPLE_PERIOD)
7005 perf_output_put(handle, data->period);
7006
7007 if (sample_type & PERF_SAMPLE_READ)
7008 perf_output_read(handle, event);
7009
7010 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
7011 int size = 1;
7012
7013 size += data->callchain->nr;
7014 size *= sizeof(u64);
7015 __output_copy(handle, data->callchain, size);
7016 }
7017
7018 if (sample_type & PERF_SAMPLE_RAW) {
7019 struct perf_raw_record *raw = data->raw;
7020
7021 if (raw) {
7022 struct perf_raw_frag *frag = &raw->frag;
7023
7024 perf_output_put(handle, raw->size);
7025 do {
7026 if (frag->copy) {
7027 __output_custom(handle, frag->copy,
7028 frag->data, frag->size);
7029 } else {
7030 __output_copy(handle, frag->data,
7031 frag->size);
7032 }
7033 if (perf_raw_frag_last(frag))
7034 break;
7035 frag = frag->next;
7036 } while (1);
7037 if (frag->pad)
7038 __output_skip(handle, NULL, frag->pad);
7039 } else {
7040 struct {
7041 u32 size;
7042 u32 data;
7043 } raw = {
7044 .size = sizeof(u32),
7045 .data = 0,
7046 };
7047 perf_output_put(handle, raw);
7048 }
7049 }
7050
7051 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7052 if (data->br_stack) {
7053 size_t size;
7054
7055 size = data->br_stack->nr
7056 * sizeof(struct perf_branch_entry);
7057
7058 perf_output_put(handle, data->br_stack->nr);
7059 if (perf_sample_save_hw_index(event))
7060 perf_output_put(handle, data->br_stack->hw_idx);
7061 perf_output_copy(handle, data->br_stack->entries, size);
7062 } else {
7063 /*
7064 * we always store at least the value of nr
7065 */
7066 u64 nr = 0;
7067 perf_output_put(handle, nr);
7068 }
7069 }
7070
7071 if (sample_type & PERF_SAMPLE_REGS_USER) {
7072 u64 abi = data->regs_user.abi;
7073
7074 /*
7075 * If there are no regs to dump, notice it through
7076 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7077 */
7078 perf_output_put(handle, abi);
7079
7080 if (abi) {
7081 u64 mask = event->attr.sample_regs_user;
7082 perf_output_sample_regs(handle,
7083 data->regs_user.regs,
7084 mask);
7085 }
7086 }
7087
7088 if (sample_type & PERF_SAMPLE_STACK_USER) {
7089 perf_output_sample_ustack(handle,
7090 data->stack_user_size,
7091 data->regs_user.regs);
7092 }
7093
7094 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
7095 perf_output_put(handle, data->weight.full);
7096
7097 if (sample_type & PERF_SAMPLE_DATA_SRC)
7098 perf_output_put(handle, data->data_src.val);
7099
7100 if (sample_type & PERF_SAMPLE_TRANSACTION)
7101 perf_output_put(handle, data->txn);
7102
7103 if (sample_type & PERF_SAMPLE_REGS_INTR) {
7104 u64 abi = data->regs_intr.abi;
7105 /*
7106 * If there are no regs to dump, notice it through
7107 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7108 */
7109 perf_output_put(handle, abi);
7110
7111 if (abi) {
7112 u64 mask = event->attr.sample_regs_intr;
7113
7114 perf_output_sample_regs(handle,
7115 data->regs_intr.regs,
7116 mask);
7117 }
7118 }
7119
7120 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7121 perf_output_put(handle, data->phys_addr);
7122
7123 if (sample_type & PERF_SAMPLE_CGROUP)
7124 perf_output_put(handle, data->cgroup);
7125
7126 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
7127 perf_output_put(handle, data->data_page_size);
7128
7129 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
7130 perf_output_put(handle, data->code_page_size);
7131
7132 if (sample_type & PERF_SAMPLE_AUX) {
7133 perf_output_put(handle, data->aux_size);
7134
7135 if (data->aux_size)
7136 perf_aux_sample_output(event, handle, data);
7137 }
7138
7139 if (!event->attr.watermark) {
7140 int wakeup_events = event->attr.wakeup_events;
7141
7142 if (wakeup_events) {
7143 struct perf_buffer *rb = handle->rb;
7144 int events = local_inc_return(&rb->events);
7145
7146 if (events >= wakeup_events) {
7147 local_sub(wakeup_events, &rb->events);
7148 local_inc(&rb->wakeup);
7149 }
7150 }
7151 }
7152 }
7153
7154 static u64 perf_virt_to_phys(u64 virt)
7155 {
7156 u64 phys_addr = 0;
7157 struct page *p = NULL;
7158
7159 if (!virt)
7160 return 0;
7161
7162 if (virt >= TASK_SIZE) {
7163 /* If it's vmalloc()d memory, leave phys_addr as 0 */
7164 if (virt_addr_valid((void *)(uintptr_t)virt) &&
7165 !(virt >= VMALLOC_START && virt < VMALLOC_END))
7166 phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
7167 } else {
7168 /*
7169 * Walking the pages tables for user address.
7170 * Interrupts are disabled, so it prevents any tear down
7171 * of the page tables.
7172 * Try IRQ-safe get_user_page_fast_only first.
7173 * If failed, leave phys_addr as 0.
7174 */
7175 if (current->mm != NULL) {
7176 pagefault_disable();
7177 if (get_user_page_fast_only(virt, 0, &p))
7178 phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
7179 pagefault_enable();
7180 }
7181
7182 if (p)
7183 put_page(p);
7184 }
7185
7186 return phys_addr;
7187 }
7188
7189 /*
7190 * Return the pagetable size of a given virtual address.
7191 */
7192 static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr)
7193 {
7194 u64 size = 0;
7195
7196 #ifdef CONFIG_HAVE_FAST_GUP
7197 pgd_t *pgdp, pgd;
7198 p4d_t *p4dp, p4d;
7199 pud_t *pudp, pud;
7200 pmd_t *pmdp, pmd;
7201 pte_t *ptep, pte;
7202
7203 pgdp = pgd_offset(mm, addr);
7204 pgd = READ_ONCE(*pgdp);
7205 if (pgd_none(pgd))
7206 return 0;
7207
7208 if (pgd_leaf(pgd))
7209 return pgd_leaf_size(pgd);
7210
7211 p4dp = p4d_offset_lockless(pgdp, pgd, addr);
7212 p4d = READ_ONCE(*p4dp);
7213 if (!p4d_present(p4d))
7214 return 0;
7215
7216 if (p4d_leaf(p4d))
7217 return p4d_leaf_size(p4d);
7218
7219 pudp = pud_offset_lockless(p4dp, p4d, addr);
7220 pud = READ_ONCE(*pudp);
7221 if (!pud_present(pud))
7222 return 0;
7223
7224 if (pud_leaf(pud))
7225 return pud_leaf_size(pud);
7226
7227 pmdp = pmd_offset_lockless(pudp, pud, addr);
7228 pmd = READ_ONCE(*pmdp);
7229 if (!pmd_present(pmd))
7230 return 0;
7231
7232 if (pmd_leaf(pmd))
7233 return pmd_leaf_size(pmd);
7234
7235 ptep = pte_offset_map(&pmd, addr);
7236 pte = ptep_get_lockless(ptep);
7237 if (pte_present(pte))
7238 size = pte_leaf_size(pte);
7239 pte_unmap(ptep);
7240 #endif /* CONFIG_HAVE_FAST_GUP */
7241
7242 return size;
7243 }
7244
7245 static u64 perf_get_page_size(unsigned long addr)
7246 {
7247 struct mm_struct *mm;
7248 unsigned long flags;
7249 u64 size;
7250
7251 if (!addr)
7252 return 0;
7253
7254 /*
7255 * Software page-table walkers must disable IRQs,
7256 * which prevents any tear down of the page tables.
7257 */
7258 local_irq_save(flags);
7259
7260 mm = current->mm;
7261 if (!mm) {
7262 /*
7263 * For kernel threads and the like, use init_mm so that
7264 * we can find kernel memory.
7265 */
7266 mm = &init_mm;
7267 }
7268
7269 size = perf_get_pgtable_size(mm, addr);
7270
7271 local_irq_restore(flags);
7272
7273 return size;
7274 }
7275
7276 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
7277
7278 struct perf_callchain_entry *
7279 perf_callchain(struct perf_event *event, struct pt_regs *regs)
7280 {
7281 bool kernel = !event->attr.exclude_callchain_kernel;
7282 bool user = !event->attr.exclude_callchain_user;
7283 /* Disallow cross-task user callchains. */
7284 bool crosstask = event->ctx->task && event->ctx->task != current;
7285 const u32 max_stack = event->attr.sample_max_stack;
7286 struct perf_callchain_entry *callchain;
7287
7288 if (!kernel && !user)
7289 return &__empty_callchain;
7290
7291 callchain = get_perf_callchain(regs, 0, kernel, user,
7292 max_stack, crosstask, true);
7293 return callchain ?: &__empty_callchain;
7294 }
7295
7296 void perf_prepare_sample(struct perf_event_header *header,
7297 struct perf_sample_data *data,
7298 struct perf_event *event,
7299 struct pt_regs *regs)
7300 {
7301 u64 sample_type = event->attr.sample_type;
7302
7303 header->type = PERF_RECORD_SAMPLE;
7304 header->size = sizeof(*header) + event->header_size;
7305
7306 header->misc = 0;
7307 header->misc |= perf_misc_flags(regs);
7308
7309 __perf_event_header__init_id(header, data, event);
7310
7311 if (sample_type & (PERF_SAMPLE_IP | PERF_SAMPLE_CODE_PAGE_SIZE))
7312 data->ip = perf_instruction_pointer(regs);
7313
7314 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
7315 int size = 1;
7316
7317 if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY))
7318 data->callchain = perf_callchain(event, regs);
7319
7320 size += data->callchain->nr;
7321
7322 header->size += size * sizeof(u64);
7323 }
7324
7325 if (sample_type & PERF_SAMPLE_RAW) {
7326 struct perf_raw_record *raw = data->raw;
7327 int size;
7328
7329 if (raw) {
7330 struct perf_raw_frag *frag = &raw->frag;
7331 u32 sum = 0;
7332
7333 do {
7334 sum += frag->size;
7335 if (perf_raw_frag_last(frag))
7336 break;
7337 frag = frag->next;
7338 } while (1);
7339
7340 size = round_up(sum + sizeof(u32), sizeof(u64));
7341 raw->size = size - sizeof(u32);
7342 frag->pad = raw->size - sum;
7343 } else {
7344 size = sizeof(u64);
7345 }
7346
7347 header->size += size;
7348 }
7349
7350 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7351 int size = sizeof(u64); /* nr */
7352 if (data->br_stack) {
7353 if (perf_sample_save_hw_index(event))
7354 size += sizeof(u64);
7355
7356 size += data->br_stack->nr
7357 * sizeof(struct perf_branch_entry);
7358 }
7359 header->size += size;
7360 }
7361
7362 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
7363 perf_sample_regs_user(&data->regs_user, regs);
7364
7365 if (sample_type & PERF_SAMPLE_REGS_USER) {
7366 /* regs dump ABI info */
7367 int size = sizeof(u64);
7368
7369 if (data->regs_user.regs) {
7370 u64 mask = event->attr.sample_regs_user;
7371 size += hweight64(mask) * sizeof(u64);
7372 }
7373
7374 header->size += size;
7375 }
7376
7377 if (sample_type & PERF_SAMPLE_STACK_USER) {
7378 /*
7379 * Either we need PERF_SAMPLE_STACK_USER bit to be always
7380 * processed as the last one or have additional check added
7381 * in case new sample type is added, because we could eat
7382 * up the rest of the sample size.
7383 */
7384 u16 stack_size = event->attr.sample_stack_user;
7385 u16 size = sizeof(u64);
7386
7387 stack_size = perf_sample_ustack_size(stack_size, header->size,
7388 data->regs_user.regs);
7389
7390 /*
7391 * If there is something to dump, add space for the dump
7392 * itself and for the field that tells the dynamic size,
7393 * which is how many have been actually dumped.
7394 */
7395 if (stack_size)
7396 size += sizeof(u64) + stack_size;
7397
7398 data->stack_user_size = stack_size;
7399 header->size += size;
7400 }
7401
7402 if (sample_type & PERF_SAMPLE_REGS_INTR) {
7403 /* regs dump ABI info */
7404 int size = sizeof(u64);
7405
7406 perf_sample_regs_intr(&data->regs_intr, regs);
7407
7408 if (data->regs_intr.regs) {
7409 u64 mask = event->attr.sample_regs_intr;
7410
7411 size += hweight64(mask) * sizeof(u64);
7412 }
7413
7414 header->size += size;
7415 }
7416
7417 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7418 data->phys_addr = perf_virt_to_phys(data->addr);
7419
7420 #ifdef CONFIG_CGROUP_PERF
7421 if (sample_type & PERF_SAMPLE_CGROUP) {
7422 struct cgroup *cgrp;
7423
7424 /* protected by RCU */
7425 cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup;
7426 data->cgroup = cgroup_id(cgrp);
7427 }
7428 #endif
7429
7430 /*
7431 * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't
7432 * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr,
7433 * but the value will not dump to the userspace.
7434 */
7435 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
7436 data->data_page_size = perf_get_page_size(data->addr);
7437
7438 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
7439 data->code_page_size = perf_get_page_size(data->ip);
7440
7441 if (sample_type & PERF_SAMPLE_AUX) {
7442 u64 size;
7443
7444 header->size += sizeof(u64); /* size */
7445
7446 /*
7447 * Given the 16bit nature of header::size, an AUX sample can
7448 * easily overflow it, what with all the preceding sample bits.
7449 * Make sure this doesn't happen by using up to U16_MAX bytes
7450 * per sample in total (rounded down to 8 byte boundary).
7451 */
7452 size = min_t(size_t, U16_MAX - header->size,
7453 event->attr.aux_sample_size);
7454 size = rounddown(size, 8);
7455 size = perf_prepare_sample_aux(event, data, size);
7456
7457 WARN_ON_ONCE(size + header->size > U16_MAX);
7458 header->size += size;
7459 }
7460 /*
7461 * If you're adding more sample types here, you likely need to do
7462 * something about the overflowing header::size, like repurpose the
7463 * lowest 3 bits of size, which should be always zero at the moment.
7464 * This raises a more important question, do we really need 512k sized
7465 * samples and why, so good argumentation is in order for whatever you
7466 * do here next.
7467 */
7468 WARN_ON_ONCE(header->size & 7);
7469 }
7470
7471 static __always_inline int
7472 __perf_event_output(struct perf_event *event,
7473 struct perf_sample_data *data,
7474 struct pt_regs *regs,
7475 int (*output_begin)(struct perf_output_handle *,
7476 struct perf_sample_data *,
7477 struct perf_event *,
7478 unsigned int))
7479 {
7480 struct perf_output_handle handle;
7481 struct perf_event_header header;
7482 int err;
7483
7484 /* protect the callchain buffers */
7485 rcu_read_lock();
7486
7487 perf_prepare_sample(&header, data, event, regs);
7488
7489 err = output_begin(&handle, data, event, header.size);
7490 if (err)
7491 goto exit;
7492
7493 perf_output_sample(&handle, &header, data, event);
7494
7495 perf_output_end(&handle);
7496
7497 exit:
7498 rcu_read_unlock();
7499 return err;
7500 }
7501
7502 void
7503 perf_event_output_forward(struct perf_event *event,
7504 struct perf_sample_data *data,
7505 struct pt_regs *regs)
7506 {
7507 __perf_event_output(event, data, regs, perf_output_begin_forward);
7508 }
7509
7510 void
7511 perf_event_output_backward(struct perf_event *event,
7512 struct perf_sample_data *data,
7513 struct pt_regs *regs)
7514 {
7515 __perf_event_output(event, data, regs, perf_output_begin_backward);
7516 }
7517
7518 int
7519 perf_event_output(struct perf_event *event,
7520 struct perf_sample_data *data,
7521 struct pt_regs *regs)
7522 {
7523 return __perf_event_output(event, data, regs, perf_output_begin);
7524 }
7525
7526 /*
7527 * read event_id
7528 */
7529
7530 struct perf_read_event {
7531 struct perf_event_header header;
7532
7533 u32 pid;
7534 u32 tid;
7535 };
7536
7537 static void
7538 perf_event_read_event(struct perf_event *event,
7539 struct task_struct *task)
7540 {
7541 struct perf_output_handle handle;
7542 struct perf_sample_data sample;
7543 struct perf_read_event read_event = {
7544 .header = {
7545 .type = PERF_RECORD_READ,
7546 .misc = 0,
7547 .size = sizeof(read_event) + event->read_size,
7548 },
7549 .pid = perf_event_pid(event, task),
7550 .tid = perf_event_tid(event, task),
7551 };
7552 int ret;
7553
7554 perf_event_header__init_id(&read_event.header, &sample, event);
7555 ret = perf_output_begin(&handle, &sample, event, read_event.header.size);
7556 if (ret)
7557 return;
7558
7559 perf_output_put(&handle, read_event);
7560 perf_output_read(&handle, event);
7561 perf_event__output_id_sample(event, &handle, &sample);
7562
7563 perf_output_end(&handle);
7564 }
7565
7566 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
7567
7568 static void
7569 perf_iterate_ctx(struct perf_event_context *ctx,
7570 perf_iterate_f output,
7571 void *data, bool all)
7572 {
7573 struct perf_event *event;
7574
7575 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7576 if (!all) {
7577 if (event->state < PERF_EVENT_STATE_INACTIVE)
7578 continue;
7579 if (!event_filter_match(event))
7580 continue;
7581 }
7582
7583 output(event, data);
7584 }
7585 }
7586
7587 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
7588 {
7589 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
7590 struct perf_event *event;
7591
7592 list_for_each_entry_rcu(event, &pel->list, sb_list) {
7593 /*
7594 * Skip events that are not fully formed yet; ensure that
7595 * if we observe event->ctx, both event and ctx will be
7596 * complete enough. See perf_install_in_context().
7597 */
7598 if (!smp_load_acquire(&event->ctx))
7599 continue;
7600
7601 if (event->state < PERF_EVENT_STATE_INACTIVE)
7602 continue;
7603 if (!event_filter_match(event))
7604 continue;
7605 output(event, data);
7606 }
7607 }
7608
7609 /*
7610 * Iterate all events that need to receive side-band events.
7611 *
7612 * For new callers; ensure that account_pmu_sb_event() includes
7613 * your event, otherwise it might not get delivered.
7614 */
7615 static void
7616 perf_iterate_sb(perf_iterate_f output, void *data,
7617 struct perf_event_context *task_ctx)
7618 {
7619 struct perf_event_context *ctx;
7620 int ctxn;
7621
7622 rcu_read_lock();
7623 preempt_disable();
7624
7625 /*
7626 * If we have task_ctx != NULL we only notify the task context itself.
7627 * The task_ctx is set only for EXIT events before releasing task
7628 * context.
7629 */
7630 if (task_ctx) {
7631 perf_iterate_ctx(task_ctx, output, data, false);
7632 goto done;
7633 }
7634
7635 perf_iterate_sb_cpu(output, data);
7636
7637 for_each_task_context_nr(ctxn) {
7638 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7639 if (ctx)
7640 perf_iterate_ctx(ctx, output, data, false);
7641 }
7642 done:
7643 preempt_enable();
7644 rcu_read_unlock();
7645 }
7646
7647 /*
7648 * Clear all file-based filters at exec, they'll have to be
7649 * re-instated when/if these objects are mmapped again.
7650 */
7651 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
7652 {
7653 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7654 struct perf_addr_filter *filter;
7655 unsigned int restart = 0, count = 0;
7656 unsigned long flags;
7657
7658 if (!has_addr_filter(event))
7659 return;
7660
7661 raw_spin_lock_irqsave(&ifh->lock, flags);
7662 list_for_each_entry(filter, &ifh->list, entry) {
7663 if (filter->path.dentry) {
7664 event->addr_filter_ranges[count].start = 0;
7665 event->addr_filter_ranges[count].size = 0;
7666 restart++;
7667 }
7668
7669 count++;
7670 }
7671
7672 if (restart)
7673 event->addr_filters_gen++;
7674 raw_spin_unlock_irqrestore(&ifh->lock, flags);
7675
7676 if (restart)
7677 perf_event_stop(event, 1);
7678 }
7679
7680 void perf_event_exec(void)
7681 {
7682 struct perf_event_context *ctx;
7683 int ctxn;
7684
7685 for_each_task_context_nr(ctxn) {
7686 perf_event_enable_on_exec(ctxn);
7687 perf_event_remove_on_exec(ctxn);
7688
7689 rcu_read_lock();
7690 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7691 if (ctx) {
7692 perf_iterate_ctx(ctx, perf_event_addr_filters_exec,
7693 NULL, true);
7694 }
7695 rcu_read_unlock();
7696 }
7697 }
7698
7699 struct remote_output {
7700 struct perf_buffer *rb;
7701 int err;
7702 };
7703
7704 static void __perf_event_output_stop(struct perf_event *event, void *data)
7705 {
7706 struct perf_event *parent = event->parent;
7707 struct remote_output *ro = data;
7708 struct perf_buffer *rb = ro->rb;
7709 struct stop_event_data sd = {
7710 .event = event,
7711 };
7712
7713 if (!has_aux(event))
7714 return;
7715
7716 if (!parent)
7717 parent = event;
7718
7719 /*
7720 * In case of inheritance, it will be the parent that links to the
7721 * ring-buffer, but it will be the child that's actually using it.
7722 *
7723 * We are using event::rb to determine if the event should be stopped,
7724 * however this may race with ring_buffer_attach() (through set_output),
7725 * which will make us skip the event that actually needs to be stopped.
7726 * So ring_buffer_attach() has to stop an aux event before re-assigning
7727 * its rb pointer.
7728 */
7729 if (rcu_dereference(parent->rb) == rb)
7730 ro->err = __perf_event_stop(&sd);
7731 }
7732
7733 static int __perf_pmu_output_stop(void *info)
7734 {
7735 struct perf_event *event = info;
7736 struct pmu *pmu = event->ctx->pmu;
7737 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7738 struct remote_output ro = {
7739 .rb = event->rb,
7740 };
7741
7742 rcu_read_lock();
7743 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
7744 if (cpuctx->task_ctx)
7745 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
7746 &ro, false);
7747 rcu_read_unlock();
7748
7749 return ro.err;
7750 }
7751
7752 static void perf_pmu_output_stop(struct perf_event *event)
7753 {
7754 struct perf_event *iter;
7755 int err, cpu;
7756
7757 restart:
7758 rcu_read_lock();
7759 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
7760 /*
7761 * For per-CPU events, we need to make sure that neither they
7762 * nor their children are running; for cpu==-1 events it's
7763 * sufficient to stop the event itself if it's active, since
7764 * it can't have children.
7765 */
7766 cpu = iter->cpu;
7767 if (cpu == -1)
7768 cpu = READ_ONCE(iter->oncpu);
7769
7770 if (cpu == -1)
7771 continue;
7772
7773 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
7774 if (err == -EAGAIN) {
7775 rcu_read_unlock();
7776 goto restart;
7777 }
7778 }
7779 rcu_read_unlock();
7780 }
7781
7782 /*
7783 * task tracking -- fork/exit
7784 *
7785 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
7786 */
7787
7788 struct perf_task_event {
7789 struct task_struct *task;
7790 struct perf_event_context *task_ctx;
7791
7792 struct {
7793 struct perf_event_header header;
7794
7795 u32 pid;
7796 u32 ppid;
7797 u32 tid;
7798 u32 ptid;
7799 u64 time;
7800 } event_id;
7801 };
7802
7803 static int perf_event_task_match(struct perf_event *event)
7804 {
7805 return event->attr.comm || event->attr.mmap ||
7806 event->attr.mmap2 || event->attr.mmap_data ||
7807 event->attr.task;
7808 }
7809
7810 static void perf_event_task_output(struct perf_event *event,
7811 void *data)
7812 {
7813 struct perf_task_event *task_event = data;
7814 struct perf_output_handle handle;
7815 struct perf_sample_data sample;
7816 struct task_struct *task = task_event->task;
7817 int ret, size = task_event->event_id.header.size;
7818
7819 if (!perf_event_task_match(event))
7820 return;
7821
7822 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
7823
7824 ret = perf_output_begin(&handle, &sample, event,
7825 task_event->event_id.header.size);
7826 if (ret)
7827 goto out;
7828
7829 task_event->event_id.pid = perf_event_pid(event, task);
7830 task_event->event_id.tid = perf_event_tid(event, task);
7831
7832 if (task_event->event_id.header.type == PERF_RECORD_EXIT) {
7833 task_event->event_id.ppid = perf_event_pid(event,
7834 task->real_parent);
7835 task_event->event_id.ptid = perf_event_pid(event,
7836 task->real_parent);
7837 } else { /* PERF_RECORD_FORK */
7838 task_event->event_id.ppid = perf_event_pid(event, current);
7839 task_event->event_id.ptid = perf_event_tid(event, current);
7840 }
7841
7842 task_event->event_id.time = perf_event_clock(event);
7843
7844 perf_output_put(&handle, task_event->event_id);
7845
7846 perf_event__output_id_sample(event, &handle, &sample);
7847
7848 perf_output_end(&handle);
7849 out:
7850 task_event->event_id.header.size = size;
7851 }
7852
7853 static void perf_event_task(struct task_struct *task,
7854 struct perf_event_context *task_ctx,
7855 int new)
7856 {
7857 struct perf_task_event task_event;
7858
7859 if (!atomic_read(&nr_comm_events) &&
7860 !atomic_read(&nr_mmap_events) &&
7861 !atomic_read(&nr_task_events))
7862 return;
7863
7864 task_event = (struct perf_task_event){
7865 .task = task,
7866 .task_ctx = task_ctx,
7867 .event_id = {
7868 .header = {
7869 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
7870 .misc = 0,
7871 .size = sizeof(task_event.event_id),
7872 },
7873 /* .pid */
7874 /* .ppid */
7875 /* .tid */
7876 /* .ptid */
7877 /* .time */
7878 },
7879 };
7880
7881 perf_iterate_sb(perf_event_task_output,
7882 &task_event,
7883 task_ctx);
7884 }
7885
7886 void perf_event_fork(struct task_struct *task)
7887 {
7888 perf_event_task(task, NULL, 1);
7889 perf_event_namespaces(task);
7890 }
7891
7892 /*
7893 * comm tracking
7894 */
7895
7896 struct perf_comm_event {
7897 struct task_struct *task;
7898 char *comm;
7899 int comm_size;
7900
7901 struct {
7902 struct perf_event_header header;
7903
7904 u32 pid;
7905 u32 tid;
7906 } event_id;
7907 };
7908
7909 static int perf_event_comm_match(struct perf_event *event)
7910 {
7911 return event->attr.comm;
7912 }
7913
7914 static void perf_event_comm_output(struct perf_event *event,
7915 void *data)
7916 {
7917 struct perf_comm_event *comm_event = data;
7918 struct perf_output_handle handle;
7919 struct perf_sample_data sample;
7920 int size = comm_event->event_id.header.size;
7921 int ret;
7922
7923 if (!perf_event_comm_match(event))
7924 return;
7925
7926 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
7927 ret = perf_output_begin(&handle, &sample, event,
7928 comm_event->event_id.header.size);
7929
7930 if (ret)
7931 goto out;
7932
7933 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
7934 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
7935
7936 perf_output_put(&handle, comm_event->event_id);
7937 __output_copy(&handle, comm_event->comm,
7938 comm_event->comm_size);
7939
7940 perf_event__output_id_sample(event, &handle, &sample);
7941
7942 perf_output_end(&handle);
7943 out:
7944 comm_event->event_id.header.size = size;
7945 }
7946
7947 static void perf_event_comm_event(struct perf_comm_event *comm_event)
7948 {
7949 char comm[TASK_COMM_LEN];
7950 unsigned int size;
7951
7952 memset(comm, 0, sizeof(comm));
7953 strlcpy(comm, comm_event->task->comm, sizeof(comm));
7954 size = ALIGN(strlen(comm)+1, sizeof(u64));
7955
7956 comm_event->comm = comm;
7957 comm_event->comm_size = size;
7958
7959 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
7960
7961 perf_iterate_sb(perf_event_comm_output,
7962 comm_event,
7963 NULL);
7964 }
7965
7966 void perf_event_comm(struct task_struct *task, bool exec)
7967 {
7968 struct perf_comm_event comm_event;
7969
7970 if (!atomic_read(&nr_comm_events))
7971 return;
7972
7973 comm_event = (struct perf_comm_event){
7974 .task = task,
7975 /* .comm */
7976 /* .comm_size */
7977 .event_id = {
7978 .header = {
7979 .type = PERF_RECORD_COMM,
7980 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
7981 /* .size */
7982 },
7983 /* .pid */
7984 /* .tid */
7985 },
7986 };
7987
7988 perf_event_comm_event(&comm_event);
7989 }
7990
7991 /*
7992 * namespaces tracking
7993 */
7994
7995 struct perf_namespaces_event {
7996 struct task_struct *task;
7997
7998 struct {
7999 struct perf_event_header header;
8000
8001 u32 pid;
8002 u32 tid;
8003 u64 nr_namespaces;
8004 struct perf_ns_link_info link_info[NR_NAMESPACES];
8005 } event_id;
8006 };
8007
8008 static int perf_event_namespaces_match(struct perf_event *event)
8009 {
8010 return event->attr.namespaces;
8011 }
8012
8013 static void perf_event_namespaces_output(struct perf_event *event,
8014 void *data)
8015 {
8016 struct perf_namespaces_event *namespaces_event = data;
8017 struct perf_output_handle handle;
8018 struct perf_sample_data sample;
8019 u16 header_size = namespaces_event->event_id.header.size;
8020 int ret;
8021
8022 if (!perf_event_namespaces_match(event))
8023 return;
8024
8025 perf_event_header__init_id(&namespaces_event->event_id.header,
8026 &sample, event);
8027 ret = perf_output_begin(&handle, &sample, event,
8028 namespaces_event->event_id.header.size);
8029 if (ret)
8030 goto out;
8031
8032 namespaces_event->event_id.pid = perf_event_pid(event,
8033 namespaces_event->task);
8034 namespaces_event->event_id.tid = perf_event_tid(event,
8035 namespaces_event->task);
8036
8037 perf_output_put(&handle, namespaces_event->event_id);
8038
8039 perf_event__output_id_sample(event, &handle, &sample);
8040
8041 perf_output_end(&handle);
8042 out:
8043 namespaces_event->event_id.header.size = header_size;
8044 }
8045
8046 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
8047 struct task_struct *task,
8048 const struct proc_ns_operations *ns_ops)
8049 {
8050 struct path ns_path;
8051 struct inode *ns_inode;
8052 int error;
8053
8054 error = ns_get_path(&ns_path, task, ns_ops);
8055 if (!error) {
8056 ns_inode = ns_path.dentry->d_inode;
8057 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
8058 ns_link_info->ino = ns_inode->i_ino;
8059 path_put(&ns_path);
8060 }
8061 }
8062
8063 void perf_event_namespaces(struct task_struct *task)
8064 {
8065 struct perf_namespaces_event namespaces_event;
8066 struct perf_ns_link_info *ns_link_info;
8067
8068 if (!atomic_read(&nr_namespaces_events))
8069 return;
8070
8071 namespaces_event = (struct perf_namespaces_event){
8072 .task = task,
8073 .event_id = {
8074 .header = {
8075 .type = PERF_RECORD_NAMESPACES,
8076 .misc = 0,
8077 .size = sizeof(namespaces_event.event_id),
8078 },
8079 /* .pid */
8080 /* .tid */
8081 .nr_namespaces = NR_NAMESPACES,
8082 /* .link_info[NR_NAMESPACES] */
8083 },
8084 };
8085
8086 ns_link_info = namespaces_event.event_id.link_info;
8087
8088 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
8089 task, &mntns_operations);
8090
8091 #ifdef CONFIG_USER_NS
8092 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
8093 task, &userns_operations);
8094 #endif
8095 #ifdef CONFIG_NET_NS
8096 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
8097 task, &netns_operations);
8098 #endif
8099 #ifdef CONFIG_UTS_NS
8100 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
8101 task, &utsns_operations);
8102 #endif
8103 #ifdef CONFIG_IPC_NS
8104 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
8105 task, &ipcns_operations);
8106 #endif
8107 #ifdef CONFIG_PID_NS
8108 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
8109 task, &pidns_operations);
8110 #endif
8111 #ifdef CONFIG_CGROUPS
8112 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
8113 task, &cgroupns_operations);
8114 #endif
8115
8116 perf_iterate_sb(perf_event_namespaces_output,
8117 &namespaces_event,
8118 NULL);
8119 }
8120
8121 /*
8122 * cgroup tracking
8123 */
8124 #ifdef CONFIG_CGROUP_PERF
8125
8126 struct perf_cgroup_event {
8127 char *path;
8128 int path_size;
8129 struct {
8130 struct perf_event_header header;
8131 u64 id;
8132 char path[];
8133 } event_id;
8134 };
8135
8136 static int perf_event_cgroup_match(struct perf_event *event)
8137 {
8138 return event->attr.cgroup;
8139 }
8140
8141 static void perf_event_cgroup_output(struct perf_event *event, void *data)
8142 {
8143 struct perf_cgroup_event *cgroup_event = data;
8144 struct perf_output_handle handle;
8145 struct perf_sample_data sample;
8146 u16 header_size = cgroup_event->event_id.header.size;
8147 int ret;
8148
8149 if (!perf_event_cgroup_match(event))
8150 return;
8151
8152 perf_event_header__init_id(&cgroup_event->event_id.header,
8153 &sample, event);
8154 ret = perf_output_begin(&handle, &sample, event,
8155 cgroup_event->event_id.header.size);
8156 if (ret)
8157 goto out;
8158
8159 perf_output_put(&handle, cgroup_event->event_id);
8160 __output_copy(&handle, cgroup_event->path, cgroup_event->path_size);
8161
8162 perf_event__output_id_sample(event, &handle, &sample);
8163
8164 perf_output_end(&handle);
8165 out:
8166 cgroup_event->event_id.header.size = header_size;
8167 }
8168
8169 static void perf_event_cgroup(struct cgroup *cgrp)
8170 {
8171 struct perf_cgroup_event cgroup_event;
8172 char path_enomem[16] = "//enomem";
8173 char *pathname;
8174 size_t size;
8175
8176 if (!atomic_read(&nr_cgroup_events))
8177 return;
8178
8179 cgroup_event = (struct perf_cgroup_event){
8180 .event_id = {
8181 .header = {
8182 .type = PERF_RECORD_CGROUP,
8183 .misc = 0,
8184 .size = sizeof(cgroup_event.event_id),
8185 },
8186 .id = cgroup_id(cgrp),
8187 },
8188 };
8189
8190 pathname = kmalloc(PATH_MAX, GFP_KERNEL);
8191 if (pathname == NULL) {
8192 cgroup_event.path = path_enomem;
8193 } else {
8194 /* just to be sure to have enough space for alignment */
8195 cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64));
8196 cgroup_event.path = pathname;
8197 }
8198
8199 /*
8200 * Since our buffer works in 8 byte units we need to align our string
8201 * size to a multiple of 8. However, we must guarantee the tail end is
8202 * zero'd out to avoid leaking random bits to userspace.
8203 */
8204 size = strlen(cgroup_event.path) + 1;
8205 while (!IS_ALIGNED(size, sizeof(u64)))
8206 cgroup_event.path[size++] = '\0';
8207
8208 cgroup_event.event_id.header.size += size;
8209 cgroup_event.path_size = size;
8210
8211 perf_iterate_sb(perf_event_cgroup_output,
8212 &cgroup_event,
8213 NULL);
8214
8215 kfree(pathname);
8216 }
8217
8218 #endif
8219
8220 /*
8221 * mmap tracking
8222 */
8223
8224 struct perf_mmap_event {
8225 struct vm_area_struct *vma;
8226
8227 const char *file_name;
8228 int file_size;
8229 int maj, min;
8230 u64 ino;
8231 u64 ino_generation;
8232 u32 prot, flags;
8233 u8 build_id[BUILD_ID_SIZE_MAX];
8234 u32 build_id_size;
8235
8236 struct {
8237 struct perf_event_header header;
8238
8239 u32 pid;
8240 u32 tid;
8241 u64 start;
8242 u64 len;
8243 u64 pgoff;
8244 } event_id;
8245 };
8246
8247 static int perf_event_mmap_match(struct perf_event *event,
8248 void *data)
8249 {
8250 struct perf_mmap_event *mmap_event = data;
8251 struct vm_area_struct *vma = mmap_event->vma;
8252 int executable = vma->vm_flags & VM_EXEC;
8253
8254 return (!executable && event->attr.mmap_data) ||
8255 (executable && (event->attr.mmap || event->attr.mmap2));
8256 }
8257
8258 static void perf_event_mmap_output(struct perf_event *event,
8259 void *data)
8260 {
8261 struct perf_mmap_event *mmap_event = data;
8262 struct perf_output_handle handle;
8263 struct perf_sample_data sample;
8264 int size = mmap_event->event_id.header.size;
8265 u32 type = mmap_event->event_id.header.type;
8266 bool use_build_id;
8267 int ret;
8268
8269 if (!perf_event_mmap_match(event, data))
8270 return;
8271
8272 if (event->attr.mmap2) {
8273 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
8274 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
8275 mmap_event->event_id.header.size += sizeof(mmap_event->min);
8276 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
8277 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
8278 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
8279 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
8280 }
8281
8282 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
8283 ret = perf_output_begin(&handle, &sample, event,
8284 mmap_event->event_id.header.size);
8285 if (ret)
8286 goto out;
8287
8288 mmap_event->event_id.pid = perf_event_pid(event, current);
8289 mmap_event->event_id.tid = perf_event_tid(event, current);
8290
8291 use_build_id = event->attr.build_id && mmap_event->build_id_size;
8292
8293 if (event->attr.mmap2 && use_build_id)
8294 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_BUILD_ID;
8295
8296 perf_output_put(&handle, mmap_event->event_id);
8297
8298 if (event->attr.mmap2) {
8299 if (use_build_id) {
8300 u8 size[4] = { (u8) mmap_event->build_id_size, 0, 0, 0 };
8301
8302 __output_copy(&handle, size, 4);
8303 __output_copy(&handle, mmap_event->build_id, BUILD_ID_SIZE_MAX);
8304 } else {
8305 perf_output_put(&handle, mmap_event->maj);
8306 perf_output_put(&handle, mmap_event->min);
8307 perf_output_put(&handle, mmap_event->ino);
8308 perf_output_put(&handle, mmap_event->ino_generation);
8309 }
8310 perf_output_put(&handle, mmap_event->prot);
8311 perf_output_put(&handle, mmap_event->flags);
8312 }
8313
8314 __output_copy(&handle, mmap_event->file_name,
8315 mmap_event->file_size);
8316
8317 perf_event__output_id_sample(event, &handle, &sample);
8318
8319 perf_output_end(&handle);
8320 out:
8321 mmap_event->event_id.header.size = size;
8322 mmap_event->event_id.header.type = type;
8323 }
8324
8325 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
8326 {
8327 struct vm_area_struct *vma = mmap_event->vma;
8328 struct file *file = vma->vm_file;
8329 int maj = 0, min = 0;
8330 u64 ino = 0, gen = 0;
8331 u32 prot = 0, flags = 0;
8332 unsigned int size;
8333 char tmp[16];
8334 char *buf = NULL;
8335 char *name;
8336
8337 if (vma->vm_flags & VM_READ)
8338 prot |= PROT_READ;
8339 if (vma->vm_flags & VM_WRITE)
8340 prot |= PROT_WRITE;
8341 if (vma->vm_flags & VM_EXEC)
8342 prot |= PROT_EXEC;
8343
8344 if (vma->vm_flags & VM_MAYSHARE)
8345 flags = MAP_SHARED;
8346 else
8347 flags = MAP_PRIVATE;
8348
8349 if (vma->vm_flags & VM_LOCKED)
8350 flags |= MAP_LOCKED;
8351 if (is_vm_hugetlb_page(vma))
8352 flags |= MAP_HUGETLB;
8353
8354 if (file) {
8355 struct inode *inode;
8356 dev_t dev;
8357
8358 buf = kmalloc(PATH_MAX, GFP_KERNEL);
8359 if (!buf) {
8360 name = "//enomem";
8361 goto cpy_name;
8362 }
8363 /*
8364 * d_path() works from the end of the rb backwards, so we
8365 * need to add enough zero bytes after the string to handle
8366 * the 64bit alignment we do later.
8367 */
8368 name = file_path(file, buf, PATH_MAX - sizeof(u64));
8369 if (IS_ERR(name)) {
8370 name = "//toolong";
8371 goto cpy_name;
8372 }
8373 inode = file_inode(vma->vm_file);
8374 dev = inode->i_sb->s_dev;
8375 ino = inode->i_ino;
8376 gen = inode->i_generation;
8377 maj = MAJOR(dev);
8378 min = MINOR(dev);
8379
8380 goto got_name;
8381 } else {
8382 if (vma->vm_ops && vma->vm_ops->name) {
8383 name = (char *) vma->vm_ops->name(vma);
8384 if (name)
8385 goto cpy_name;
8386 }
8387
8388 name = (char *)arch_vma_name(vma);
8389 if (name)
8390 goto cpy_name;
8391
8392 if (vma->vm_start <= vma->vm_mm->start_brk &&
8393 vma->vm_end >= vma->vm_mm->brk) {
8394 name = "[heap]";
8395 goto cpy_name;
8396 }
8397 if (vma->vm_start <= vma->vm_mm->start_stack &&
8398 vma->vm_end >= vma->vm_mm->start_stack) {
8399 name = "[stack]";
8400 goto cpy_name;
8401 }
8402
8403 name = "//anon";
8404 goto cpy_name;
8405 }
8406
8407 cpy_name:
8408 strlcpy(tmp, name, sizeof(tmp));
8409 name = tmp;
8410 got_name:
8411 /*
8412 * Since our buffer works in 8 byte units we need to align our string
8413 * size to a multiple of 8. However, we must guarantee the tail end is
8414 * zero'd out to avoid leaking random bits to userspace.
8415 */
8416 size = strlen(name)+1;
8417 while (!IS_ALIGNED(size, sizeof(u64)))
8418 name[size++] = '\0';
8419
8420 mmap_event->file_name = name;
8421 mmap_event->file_size = size;
8422 mmap_event->maj = maj;
8423 mmap_event->min = min;
8424 mmap_event->ino = ino;
8425 mmap_event->ino_generation = gen;
8426 mmap_event->prot = prot;
8427 mmap_event->flags = flags;
8428
8429 if (!(vma->vm_flags & VM_EXEC))
8430 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
8431
8432 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
8433
8434 if (atomic_read(&nr_build_id_events))
8435 build_id_parse(vma, mmap_event->build_id, &mmap_event->build_id_size);
8436
8437 perf_iterate_sb(perf_event_mmap_output,
8438 mmap_event,
8439 NULL);
8440
8441 kfree(buf);
8442 }
8443
8444 /*
8445 * Check whether inode and address range match filter criteria.
8446 */
8447 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
8448 struct file *file, unsigned long offset,
8449 unsigned long size)
8450 {
8451 /* d_inode(NULL) won't be equal to any mapped user-space file */
8452 if (!filter->path.dentry)
8453 return false;
8454
8455 if (d_inode(filter->path.dentry) != file_inode(file))
8456 return false;
8457
8458 if (filter->offset > offset + size)
8459 return false;
8460
8461 if (filter->offset + filter->size < offset)
8462 return false;
8463
8464 return true;
8465 }
8466
8467 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
8468 struct vm_area_struct *vma,
8469 struct perf_addr_filter_range *fr)
8470 {
8471 unsigned long vma_size = vma->vm_end - vma->vm_start;
8472 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8473 struct file *file = vma->vm_file;
8474
8475 if (!perf_addr_filter_match(filter, file, off, vma_size))
8476 return false;
8477
8478 if (filter->offset < off) {
8479 fr->start = vma->vm_start;
8480 fr->size = min(vma_size, filter->size - (off - filter->offset));
8481 } else {
8482 fr->start = vma->vm_start + filter->offset - off;
8483 fr->size = min(vma->vm_end - fr->start, filter->size);
8484 }
8485
8486 return true;
8487 }
8488
8489 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
8490 {
8491 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8492 struct vm_area_struct *vma = data;
8493 struct perf_addr_filter *filter;
8494 unsigned int restart = 0, count = 0;
8495 unsigned long flags;
8496
8497 if (!has_addr_filter(event))
8498 return;
8499
8500 if (!vma->vm_file)
8501 return;
8502
8503 raw_spin_lock_irqsave(&ifh->lock, flags);
8504 list_for_each_entry(filter, &ifh->list, entry) {
8505 if (perf_addr_filter_vma_adjust(filter, vma,
8506 &event->addr_filter_ranges[count]))
8507 restart++;
8508
8509 count++;
8510 }
8511
8512 if (restart)
8513 event->addr_filters_gen++;
8514 raw_spin_unlock_irqrestore(&ifh->lock, flags);
8515
8516 if (restart)
8517 perf_event_stop(event, 1);
8518 }
8519
8520 /*
8521 * Adjust all task's events' filters to the new vma
8522 */
8523 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
8524 {
8525 struct perf_event_context *ctx;
8526 int ctxn;
8527
8528 /*
8529 * Data tracing isn't supported yet and as such there is no need
8530 * to keep track of anything that isn't related to executable code:
8531 */
8532 if (!(vma->vm_flags & VM_EXEC))
8533 return;
8534
8535 rcu_read_lock();
8536 for_each_task_context_nr(ctxn) {
8537 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
8538 if (!ctx)
8539 continue;
8540
8541 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
8542 }
8543 rcu_read_unlock();
8544 }
8545
8546 void perf_event_mmap(struct vm_area_struct *vma)
8547 {
8548 struct perf_mmap_event mmap_event;
8549
8550 if (!atomic_read(&nr_mmap_events))
8551 return;
8552
8553 mmap_event = (struct perf_mmap_event){
8554 .vma = vma,
8555 /* .file_name */
8556 /* .file_size */
8557 .event_id = {
8558 .header = {
8559 .type = PERF_RECORD_MMAP,
8560 .misc = PERF_RECORD_MISC_USER,
8561 /* .size */
8562 },
8563 /* .pid */
8564 /* .tid */
8565 .start = vma->vm_start,
8566 .len = vma->vm_end - vma->vm_start,
8567 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
8568 },
8569 /* .maj (attr_mmap2 only) */
8570 /* .min (attr_mmap2 only) */
8571 /* .ino (attr_mmap2 only) */
8572 /* .ino_generation (attr_mmap2 only) */
8573 /* .prot (attr_mmap2 only) */
8574 /* .flags (attr_mmap2 only) */
8575 };
8576
8577 perf_addr_filters_adjust(vma);
8578 perf_event_mmap_event(&mmap_event);
8579 }
8580
8581 void perf_event_aux_event(struct perf_event *event, unsigned long head,
8582 unsigned long size, u64 flags)
8583 {
8584 struct perf_output_handle handle;
8585 struct perf_sample_data sample;
8586 struct perf_aux_event {
8587 struct perf_event_header header;
8588 u64 offset;
8589 u64 size;
8590 u64 flags;
8591 } rec = {
8592 .header = {
8593 .type = PERF_RECORD_AUX,
8594 .misc = 0,
8595 .size = sizeof(rec),
8596 },
8597 .offset = head,
8598 .size = size,
8599 .flags = flags,
8600 };
8601 int ret;
8602
8603 perf_event_header__init_id(&rec.header, &sample, event);
8604 ret = perf_output_begin(&handle, &sample, event, rec.header.size);
8605
8606 if (ret)
8607 return;
8608
8609 perf_output_put(&handle, rec);
8610 perf_event__output_id_sample(event, &handle, &sample);
8611
8612 perf_output_end(&handle);
8613 }
8614
8615 /*
8616 * Lost/dropped samples logging
8617 */
8618 void perf_log_lost_samples(struct perf_event *event, u64 lost)
8619 {
8620 struct perf_output_handle handle;
8621 struct perf_sample_data sample;
8622 int ret;
8623
8624 struct {
8625 struct perf_event_header header;
8626 u64 lost;
8627 } lost_samples_event = {
8628 .header = {
8629 .type = PERF_RECORD_LOST_SAMPLES,
8630 .misc = 0,
8631 .size = sizeof(lost_samples_event),
8632 },
8633 .lost = lost,
8634 };
8635
8636 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
8637
8638 ret = perf_output_begin(&handle, &sample, event,
8639 lost_samples_event.header.size);
8640 if (ret)
8641 return;
8642
8643 perf_output_put(&handle, lost_samples_event);
8644 perf_event__output_id_sample(event, &handle, &sample);
8645 perf_output_end(&handle);
8646 }
8647
8648 /*
8649 * context_switch tracking
8650 */
8651
8652 struct perf_switch_event {
8653 struct task_struct *task;
8654 struct task_struct *next_prev;
8655
8656 struct {
8657 struct perf_event_header header;
8658 u32 next_prev_pid;
8659 u32 next_prev_tid;
8660 } event_id;
8661 };
8662
8663 static int perf_event_switch_match(struct perf_event *event)
8664 {
8665 return event->attr.context_switch;
8666 }
8667
8668 static void perf_event_switch_output(struct perf_event *event, void *data)
8669 {
8670 struct perf_switch_event *se = data;
8671 struct perf_output_handle handle;
8672 struct perf_sample_data sample;
8673 int ret;
8674
8675 if (!perf_event_switch_match(event))
8676 return;
8677
8678 /* Only CPU-wide events are allowed to see next/prev pid/tid */
8679 if (event->ctx->task) {
8680 se->event_id.header.type = PERF_RECORD_SWITCH;
8681 se->event_id.header.size = sizeof(se->event_id.header);
8682 } else {
8683 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
8684 se->event_id.header.size = sizeof(se->event_id);
8685 se->event_id.next_prev_pid =
8686 perf_event_pid(event, se->next_prev);
8687 se->event_id.next_prev_tid =
8688 perf_event_tid(event, se->next_prev);
8689 }
8690
8691 perf_event_header__init_id(&se->event_id.header, &sample, event);
8692
8693 ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size);
8694 if (ret)
8695 return;
8696
8697 if (event->ctx->task)
8698 perf_output_put(&handle, se->event_id.header);
8699 else
8700 perf_output_put(&handle, se->event_id);
8701
8702 perf_event__output_id_sample(event, &handle, &sample);
8703
8704 perf_output_end(&handle);
8705 }
8706
8707 static void perf_event_switch(struct task_struct *task,
8708 struct task_struct *next_prev, bool sched_in)
8709 {
8710 struct perf_switch_event switch_event;
8711
8712 /* N.B. caller checks nr_switch_events != 0 */
8713
8714 switch_event = (struct perf_switch_event){
8715 .task = task,
8716 .next_prev = next_prev,
8717 .event_id = {
8718 .header = {
8719 /* .type */
8720 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
8721 /* .size */
8722 },
8723 /* .next_prev_pid */
8724 /* .next_prev_tid */
8725 },
8726 };
8727
8728 if (!sched_in && task->on_rq) {
8729 switch_event.event_id.header.misc |=
8730 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
8731 }
8732
8733 perf_iterate_sb(perf_event_switch_output, &switch_event, NULL);
8734 }
8735
8736 /*
8737 * IRQ throttle logging
8738 */
8739
8740 static void perf_log_throttle(struct perf_event *event, int enable)
8741 {
8742 struct perf_output_handle handle;
8743 struct perf_sample_data sample;
8744 int ret;
8745
8746 struct {
8747 struct perf_event_header header;
8748 u64 time;
8749 u64 id;
8750 u64 stream_id;
8751 } throttle_event = {
8752 .header = {
8753 .type = PERF_RECORD_THROTTLE,
8754 .misc = 0,
8755 .size = sizeof(throttle_event),
8756 },
8757 .time = perf_event_clock(event),
8758 .id = primary_event_id(event),
8759 .stream_id = event->id,
8760 };
8761
8762 if (enable)
8763 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
8764
8765 perf_event_header__init_id(&throttle_event.header, &sample, event);
8766
8767 ret = perf_output_begin(&handle, &sample, event,
8768 throttle_event.header.size);
8769 if (ret)
8770 return;
8771
8772 perf_output_put(&handle, throttle_event);
8773 perf_event__output_id_sample(event, &handle, &sample);
8774 perf_output_end(&handle);
8775 }
8776
8777 /*
8778 * ksymbol register/unregister tracking
8779 */
8780
8781 struct perf_ksymbol_event {
8782 const char *name;
8783 int name_len;
8784 struct {
8785 struct perf_event_header header;
8786 u64 addr;
8787 u32 len;
8788 u16 ksym_type;
8789 u16 flags;
8790 } event_id;
8791 };
8792
8793 static int perf_event_ksymbol_match(struct perf_event *event)
8794 {
8795 return event->attr.ksymbol;
8796 }
8797
8798 static void perf_event_ksymbol_output(struct perf_event *event, void *data)
8799 {
8800 struct perf_ksymbol_event *ksymbol_event = data;
8801 struct perf_output_handle handle;
8802 struct perf_sample_data sample;
8803 int ret;
8804
8805 if (!perf_event_ksymbol_match(event))
8806 return;
8807
8808 perf_event_header__init_id(&ksymbol_event->event_id.header,
8809 &sample, event);
8810 ret = perf_output_begin(&handle, &sample, event,
8811 ksymbol_event->event_id.header.size);
8812 if (ret)
8813 return;
8814
8815 perf_output_put(&handle, ksymbol_event->event_id);
8816 __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
8817 perf_event__output_id_sample(event, &handle, &sample);
8818
8819 perf_output_end(&handle);
8820 }
8821
8822 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
8823 const char *sym)
8824 {
8825 struct perf_ksymbol_event ksymbol_event;
8826 char name[KSYM_NAME_LEN];
8827 u16 flags = 0;
8828 int name_len;
8829
8830 if (!atomic_read(&nr_ksymbol_events))
8831 return;
8832
8833 if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
8834 ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
8835 goto err;
8836
8837 strlcpy(name, sym, KSYM_NAME_LEN);
8838 name_len = strlen(name) + 1;
8839 while (!IS_ALIGNED(name_len, sizeof(u64)))
8840 name[name_len++] = '\0';
8841 BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
8842
8843 if (unregister)
8844 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
8845
8846 ksymbol_event = (struct perf_ksymbol_event){
8847 .name = name,
8848 .name_len = name_len,
8849 .event_id = {
8850 .header = {
8851 .type = PERF_RECORD_KSYMBOL,
8852 .size = sizeof(ksymbol_event.event_id) +
8853 name_len,
8854 },
8855 .addr = addr,
8856 .len = len,
8857 .ksym_type = ksym_type,
8858 .flags = flags,
8859 },
8860 };
8861
8862 perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
8863 return;
8864 err:
8865 WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
8866 }
8867
8868 /*
8869 * bpf program load/unload tracking
8870 */
8871
8872 struct perf_bpf_event {
8873 struct bpf_prog *prog;
8874 struct {
8875 struct perf_event_header header;
8876 u16 type;
8877 u16 flags;
8878 u32 id;
8879 u8 tag[BPF_TAG_SIZE];
8880 } event_id;
8881 };
8882
8883 static int perf_event_bpf_match(struct perf_event *event)
8884 {
8885 return event->attr.bpf_event;
8886 }
8887
8888 static void perf_event_bpf_output(struct perf_event *event, void *data)
8889 {
8890 struct perf_bpf_event *bpf_event = data;
8891 struct perf_output_handle handle;
8892 struct perf_sample_data sample;
8893 int ret;
8894
8895 if (!perf_event_bpf_match(event))
8896 return;
8897
8898 perf_event_header__init_id(&bpf_event->event_id.header,
8899 &sample, event);
8900 ret = perf_output_begin(&handle, data, event,
8901 bpf_event->event_id.header.size);
8902 if (ret)
8903 return;
8904
8905 perf_output_put(&handle, bpf_event->event_id);
8906 perf_event__output_id_sample(event, &handle, &sample);
8907
8908 perf_output_end(&handle);
8909 }
8910
8911 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
8912 enum perf_bpf_event_type type)
8913 {
8914 bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
8915 int i;
8916
8917 if (prog->aux->func_cnt == 0) {
8918 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
8919 (u64)(unsigned long)prog->bpf_func,
8920 prog->jited_len, unregister,
8921 prog->aux->ksym.name);
8922 } else {
8923 for (i = 0; i < prog->aux->func_cnt; i++) {
8924 struct bpf_prog *subprog = prog->aux->func[i];
8925
8926 perf_event_ksymbol(
8927 PERF_RECORD_KSYMBOL_TYPE_BPF,
8928 (u64)(unsigned long)subprog->bpf_func,
8929 subprog->jited_len, unregister,
8930 prog->aux->ksym.name);
8931 }
8932 }
8933 }
8934
8935 void perf_event_bpf_event(struct bpf_prog *prog,
8936 enum perf_bpf_event_type type,
8937 u16 flags)
8938 {
8939 struct perf_bpf_event bpf_event;
8940
8941 if (type <= PERF_BPF_EVENT_UNKNOWN ||
8942 type >= PERF_BPF_EVENT_MAX)
8943 return;
8944
8945 switch (type) {
8946 case PERF_BPF_EVENT_PROG_LOAD:
8947 case PERF_BPF_EVENT_PROG_UNLOAD:
8948 if (atomic_read(&nr_ksymbol_events))
8949 perf_event_bpf_emit_ksymbols(prog, type);
8950 break;
8951 default:
8952 break;
8953 }
8954
8955 if (!atomic_read(&nr_bpf_events))
8956 return;
8957
8958 bpf_event = (struct perf_bpf_event){
8959 .prog = prog,
8960 .event_id = {
8961 .header = {
8962 .type = PERF_RECORD_BPF_EVENT,
8963 .size = sizeof(bpf_event.event_id),
8964 },
8965 .type = type,
8966 .flags = flags,
8967 .id = prog->aux->id,
8968 },
8969 };
8970
8971 BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
8972
8973 memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
8974 perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
8975 }
8976
8977 struct perf_text_poke_event {
8978 const void *old_bytes;
8979 const void *new_bytes;
8980 size_t pad;
8981 u16 old_len;
8982 u16 new_len;
8983
8984 struct {
8985 struct perf_event_header header;
8986
8987 u64 addr;
8988 } event_id;
8989 };
8990
8991 static int perf_event_text_poke_match(struct perf_event *event)
8992 {
8993 return event->attr.text_poke;
8994 }
8995
8996 static void perf_event_text_poke_output(struct perf_event *event, void *data)
8997 {
8998 struct perf_text_poke_event *text_poke_event = data;
8999 struct perf_output_handle handle;
9000 struct perf_sample_data sample;
9001 u64 padding = 0;
9002 int ret;
9003
9004 if (!perf_event_text_poke_match(event))
9005 return;
9006
9007 perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event);
9008
9009 ret = perf_output_begin(&handle, &sample, event,
9010 text_poke_event->event_id.header.size);
9011 if (ret)
9012 return;
9013
9014 perf_output_put(&handle, text_poke_event->event_id);
9015 perf_output_put(&handle, text_poke_event->old_len);
9016 perf_output_put(&handle, text_poke_event->new_len);
9017
9018 __output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len);
9019 __output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len);
9020
9021 if (text_poke_event->pad)
9022 __output_copy(&handle, &padding, text_poke_event->pad);
9023
9024 perf_event__output_id_sample(event, &handle, &sample);
9025
9026 perf_output_end(&handle);
9027 }
9028
9029 void perf_event_text_poke(const void *addr, const void *old_bytes,
9030 size_t old_len, const void *new_bytes, size_t new_len)
9031 {
9032 struct perf_text_poke_event text_poke_event;
9033 size_t tot, pad;
9034
9035 if (!atomic_read(&nr_text_poke_events))
9036 return;
9037
9038 tot = sizeof(text_poke_event.old_len) + old_len;
9039 tot += sizeof(text_poke_event.new_len) + new_len;
9040 pad = ALIGN(tot, sizeof(u64)) - tot;
9041
9042 text_poke_event = (struct perf_text_poke_event){
9043 .old_bytes = old_bytes,
9044 .new_bytes = new_bytes,
9045 .pad = pad,
9046 .old_len = old_len,
9047 .new_len = new_len,
9048 .event_id = {
9049 .header = {
9050 .type = PERF_RECORD_TEXT_POKE,
9051 .misc = PERF_RECORD_MISC_KERNEL,
9052 .size = sizeof(text_poke_event.event_id) + tot + pad,
9053 },
9054 .addr = (unsigned long)addr,
9055 },
9056 };
9057
9058 perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL);
9059 }
9060
9061 void perf_event_itrace_started(struct perf_event *event)
9062 {
9063 event->attach_state |= PERF_ATTACH_ITRACE;
9064 }
9065
9066 static void perf_log_itrace_start(struct perf_event *event)
9067 {
9068 struct perf_output_handle handle;
9069 struct perf_sample_data sample;
9070 struct perf_aux_event {
9071 struct perf_event_header header;
9072 u32 pid;
9073 u32 tid;
9074 } rec;
9075 int ret;
9076
9077 if (event->parent)
9078 event = event->parent;
9079
9080 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
9081 event->attach_state & PERF_ATTACH_ITRACE)
9082 return;
9083
9084 rec.header.type = PERF_RECORD_ITRACE_START;
9085 rec.header.misc = 0;
9086 rec.header.size = sizeof(rec);
9087 rec.pid = perf_event_pid(event, current);
9088 rec.tid = perf_event_tid(event, current);
9089
9090 perf_event_header__init_id(&rec.header, &sample, event);
9091 ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9092
9093 if (ret)
9094 return;
9095
9096 perf_output_put(&handle, rec);
9097 perf_event__output_id_sample(event, &handle, &sample);
9098
9099 perf_output_end(&handle);
9100 }
9101
9102 static int
9103 __perf_event_account_interrupt(struct perf_event *event, int throttle)
9104 {
9105 struct hw_perf_event *hwc = &event->hw;
9106 int ret = 0;
9107 u64 seq;
9108
9109 seq = __this_cpu_read(perf_throttled_seq);
9110 if (seq != hwc->interrupts_seq) {
9111 hwc->interrupts_seq = seq;
9112 hwc->interrupts = 1;
9113 } else {
9114 hwc->interrupts++;
9115 if (unlikely(throttle
9116 && hwc->interrupts >= max_samples_per_tick)) {
9117 __this_cpu_inc(perf_throttled_count);
9118 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
9119 hwc->interrupts = MAX_INTERRUPTS;
9120 perf_log_throttle(event, 0);
9121 ret = 1;
9122 }
9123 }
9124
9125 if (event->attr.freq) {
9126 u64 now = perf_clock();
9127 s64 delta = now - hwc->freq_time_stamp;
9128
9129 hwc->freq_time_stamp = now;
9130
9131 if (delta > 0 && delta < 2*TICK_NSEC)
9132 perf_adjust_period(event, delta, hwc->last_period, true);
9133 }
9134
9135 return ret;
9136 }
9137
9138 int perf_event_account_interrupt(struct perf_event *event)
9139 {
9140 return __perf_event_account_interrupt(event, 1);
9141 }
9142
9143 /*
9144 * Generic event overflow handling, sampling.
9145 */
9146
9147 static int __perf_event_overflow(struct perf_event *event,
9148 int throttle, struct perf_sample_data *data,
9149 struct pt_regs *regs)
9150 {
9151 int events = atomic_read(&event->event_limit);
9152 int ret = 0;
9153
9154 /*
9155 * Non-sampling counters might still use the PMI to fold short
9156 * hardware counters, ignore those.
9157 */
9158 if (unlikely(!is_sampling_event(event)))
9159 return 0;
9160
9161 ret = __perf_event_account_interrupt(event, throttle);
9162
9163 /*
9164 * XXX event_limit might not quite work as expected on inherited
9165 * events
9166 */
9167
9168 event->pending_kill = POLL_IN;
9169 if (events && atomic_dec_and_test(&event->event_limit)) {
9170 ret = 1;
9171 event->pending_kill = POLL_HUP;
9172 event->pending_addr = data->addr;
9173
9174 perf_event_disable_inatomic(event);
9175 }
9176
9177 READ_ONCE(event->overflow_handler)(event, data, regs);
9178
9179 if (*perf_event_fasync(event) && event->pending_kill) {
9180 event->pending_wakeup = 1;
9181 irq_work_queue(&event->pending);
9182 }
9183
9184 return ret;
9185 }
9186
9187 int perf_event_overflow(struct perf_event *event,
9188 struct perf_sample_data *data,
9189 struct pt_regs *regs)
9190 {
9191 return __perf_event_overflow(event, 1, data, regs);
9192 }
9193
9194 /*
9195 * Generic software event infrastructure
9196 */
9197
9198 struct swevent_htable {
9199 struct swevent_hlist *swevent_hlist;
9200 struct mutex hlist_mutex;
9201 int hlist_refcount;
9202
9203 /* Recursion avoidance in each contexts */
9204 int recursion[PERF_NR_CONTEXTS];
9205 };
9206
9207 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
9208
9209 /*
9210 * We directly increment event->count and keep a second value in
9211 * event->hw.period_left to count intervals. This period event
9212 * is kept in the range [-sample_period, 0] so that we can use the
9213 * sign as trigger.
9214 */
9215
9216 u64 perf_swevent_set_period(struct perf_event *event)
9217 {
9218 struct hw_perf_event *hwc = &event->hw;
9219 u64 period = hwc->last_period;
9220 u64 nr, offset;
9221 s64 old, val;
9222
9223 hwc->last_period = hwc->sample_period;
9224
9225 again:
9226 old = val = local64_read(&hwc->period_left);
9227 if (val < 0)
9228 return 0;
9229
9230 nr = div64_u64(period + val, period);
9231 offset = nr * period;
9232 val -= offset;
9233 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
9234 goto again;
9235
9236 return nr;
9237 }
9238
9239 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
9240 struct perf_sample_data *data,
9241 struct pt_regs *regs)
9242 {
9243 struct hw_perf_event *hwc = &event->hw;
9244 int throttle = 0;
9245
9246 if (!overflow)
9247 overflow = perf_swevent_set_period(event);
9248
9249 if (hwc->interrupts == MAX_INTERRUPTS)
9250 return;
9251
9252 for (; overflow; overflow--) {
9253 if (__perf_event_overflow(event, throttle,
9254 data, regs)) {
9255 /*
9256 * We inhibit the overflow from happening when
9257 * hwc->interrupts == MAX_INTERRUPTS.
9258 */
9259 break;
9260 }
9261 throttle = 1;
9262 }
9263 }
9264
9265 static void perf_swevent_event(struct perf_event *event, u64 nr,
9266 struct perf_sample_data *data,
9267 struct pt_regs *regs)
9268 {
9269 struct hw_perf_event *hwc = &event->hw;
9270
9271 local64_add(nr, &event->count);
9272
9273 if (!regs)
9274 return;
9275
9276 if (!is_sampling_event(event))
9277 return;
9278
9279 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
9280 data->period = nr;
9281 return perf_swevent_overflow(event, 1, data, regs);
9282 } else
9283 data->period = event->hw.last_period;
9284
9285 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
9286 return perf_swevent_overflow(event, 1, data, regs);
9287
9288 if (local64_add_negative(nr, &hwc->period_left))
9289 return;
9290
9291 perf_swevent_overflow(event, 0, data, regs);
9292 }
9293
9294 static int perf_exclude_event(struct perf_event *event,
9295 struct pt_regs *regs)
9296 {
9297 if (event->hw.state & PERF_HES_STOPPED)
9298 return 1;
9299
9300 if (regs) {
9301 if (event->attr.exclude_user && user_mode(regs))
9302 return 1;
9303
9304 if (event->attr.exclude_kernel && !user_mode(regs))
9305 return 1;
9306 }
9307
9308 return 0;
9309 }
9310
9311 static int perf_swevent_match(struct perf_event *event,
9312 enum perf_type_id type,
9313 u32 event_id,
9314 struct perf_sample_data *data,
9315 struct pt_regs *regs)
9316 {
9317 if (event->attr.type != type)
9318 return 0;
9319
9320 if (event->attr.config != event_id)
9321 return 0;
9322
9323 if (perf_exclude_event(event, regs))
9324 return 0;
9325
9326 return 1;
9327 }
9328
9329 static inline u64 swevent_hash(u64 type, u32 event_id)
9330 {
9331 u64 val = event_id | (type << 32);
9332
9333 return hash_64(val, SWEVENT_HLIST_BITS);
9334 }
9335
9336 static inline struct hlist_head *
9337 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
9338 {
9339 u64 hash = swevent_hash(type, event_id);
9340
9341 return &hlist->heads[hash];
9342 }
9343
9344 /* For the read side: events when they trigger */
9345 static inline struct hlist_head *
9346 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
9347 {
9348 struct swevent_hlist *hlist;
9349
9350 hlist = rcu_dereference(swhash->swevent_hlist);
9351 if (!hlist)
9352 return NULL;
9353
9354 return __find_swevent_head(hlist, type, event_id);
9355 }
9356
9357 /* For the event head insertion and removal in the hlist */
9358 static inline struct hlist_head *
9359 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
9360 {
9361 struct swevent_hlist *hlist;
9362 u32 event_id = event->attr.config;
9363 u64 type = event->attr.type;
9364
9365 /*
9366 * Event scheduling is always serialized against hlist allocation
9367 * and release. Which makes the protected version suitable here.
9368 * The context lock guarantees that.
9369 */
9370 hlist = rcu_dereference_protected(swhash->swevent_hlist,
9371 lockdep_is_held(&event->ctx->lock));
9372 if (!hlist)
9373 return NULL;
9374
9375 return __find_swevent_head(hlist, type, event_id);
9376 }
9377
9378 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
9379 u64 nr,
9380 struct perf_sample_data *data,
9381 struct pt_regs *regs)
9382 {
9383 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9384 struct perf_event *event;
9385 struct hlist_head *head;
9386
9387 rcu_read_lock();
9388 head = find_swevent_head_rcu(swhash, type, event_id);
9389 if (!head)
9390 goto end;
9391
9392 hlist_for_each_entry_rcu(event, head, hlist_entry) {
9393 if (perf_swevent_match(event, type, event_id, data, regs))
9394 perf_swevent_event(event, nr, data, regs);
9395 }
9396 end:
9397 rcu_read_unlock();
9398 }
9399
9400 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
9401
9402 int perf_swevent_get_recursion_context(void)
9403 {
9404 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9405
9406 return get_recursion_context(swhash->recursion);
9407 }
9408 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
9409
9410 void perf_swevent_put_recursion_context(int rctx)
9411 {
9412 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9413
9414 put_recursion_context(swhash->recursion, rctx);
9415 }
9416
9417 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9418 {
9419 struct perf_sample_data data;
9420
9421 if (WARN_ON_ONCE(!regs))
9422 return;
9423
9424 perf_sample_data_init(&data, addr, 0);
9425 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
9426 }
9427
9428 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9429 {
9430 int rctx;
9431
9432 preempt_disable_notrace();
9433 rctx = perf_swevent_get_recursion_context();
9434 if (unlikely(rctx < 0))
9435 goto fail;
9436
9437 ___perf_sw_event(event_id, nr, regs, addr);
9438
9439 perf_swevent_put_recursion_context(rctx);
9440 fail:
9441 preempt_enable_notrace();
9442 }
9443
9444 static void perf_swevent_read(struct perf_event *event)
9445 {
9446 }
9447
9448 static int perf_swevent_add(struct perf_event *event, int flags)
9449 {
9450 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9451 struct hw_perf_event *hwc = &event->hw;
9452 struct hlist_head *head;
9453
9454 if (is_sampling_event(event)) {
9455 hwc->last_period = hwc->sample_period;
9456 perf_swevent_set_period(event);
9457 }
9458
9459 hwc->state = !(flags & PERF_EF_START);
9460
9461 head = find_swevent_head(swhash, event);
9462 if (WARN_ON_ONCE(!head))
9463 return -EINVAL;
9464
9465 hlist_add_head_rcu(&event->hlist_entry, head);
9466 perf_event_update_userpage(event);
9467
9468 return 0;
9469 }
9470
9471 static void perf_swevent_del(struct perf_event *event, int flags)
9472 {
9473 hlist_del_rcu(&event->hlist_entry);
9474 }
9475
9476 static void perf_swevent_start(struct perf_event *event, int flags)
9477 {
9478 event->hw.state = 0;
9479 }
9480
9481 static void perf_swevent_stop(struct perf_event *event, int flags)
9482 {
9483 event->hw.state = PERF_HES_STOPPED;
9484 }
9485
9486 /* Deref the hlist from the update side */
9487 static inline struct swevent_hlist *
9488 swevent_hlist_deref(struct swevent_htable *swhash)
9489 {
9490 return rcu_dereference_protected(swhash->swevent_hlist,
9491 lockdep_is_held(&swhash->hlist_mutex));
9492 }
9493
9494 static void swevent_hlist_release(struct swevent_htable *swhash)
9495 {
9496 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
9497
9498 if (!hlist)
9499 return;
9500
9501 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
9502 kfree_rcu(hlist, rcu_head);
9503 }
9504
9505 static void swevent_hlist_put_cpu(int cpu)
9506 {
9507 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9508
9509 mutex_lock(&swhash->hlist_mutex);
9510
9511 if (!--swhash->hlist_refcount)
9512 swevent_hlist_release(swhash);
9513
9514 mutex_unlock(&swhash->hlist_mutex);
9515 }
9516
9517 static void swevent_hlist_put(void)
9518 {
9519 int cpu;
9520
9521 for_each_possible_cpu(cpu)
9522 swevent_hlist_put_cpu(cpu);
9523 }
9524
9525 static int swevent_hlist_get_cpu(int cpu)
9526 {
9527 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9528 int err = 0;
9529
9530 mutex_lock(&swhash->hlist_mutex);
9531 if (!swevent_hlist_deref(swhash) &&
9532 cpumask_test_cpu(cpu, perf_online_mask)) {
9533 struct swevent_hlist *hlist;
9534
9535 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
9536 if (!hlist) {
9537 err = -ENOMEM;
9538 goto exit;
9539 }
9540 rcu_assign_pointer(swhash->swevent_hlist, hlist);
9541 }
9542 swhash->hlist_refcount++;
9543 exit:
9544 mutex_unlock(&swhash->hlist_mutex);
9545
9546 return err;
9547 }
9548
9549 static int swevent_hlist_get(void)
9550 {
9551 int err, cpu, failed_cpu;
9552
9553 mutex_lock(&pmus_lock);
9554 for_each_possible_cpu(cpu) {
9555 err = swevent_hlist_get_cpu(cpu);
9556 if (err) {
9557 failed_cpu = cpu;
9558 goto fail;
9559 }
9560 }
9561 mutex_unlock(&pmus_lock);
9562 return 0;
9563 fail:
9564 for_each_possible_cpu(cpu) {
9565 if (cpu == failed_cpu)
9566 break;
9567 swevent_hlist_put_cpu(cpu);
9568 }
9569 mutex_unlock(&pmus_lock);
9570 return err;
9571 }
9572
9573 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
9574
9575 static void sw_perf_event_destroy(struct perf_event *event)
9576 {
9577 u64 event_id = event->attr.config;
9578
9579 WARN_ON(event->parent);
9580
9581 static_key_slow_dec(&perf_swevent_enabled[event_id]);
9582 swevent_hlist_put();
9583 }
9584
9585 static int perf_swevent_init(struct perf_event *event)
9586 {
9587 u64 event_id = event->attr.config;
9588
9589 if (event->attr.type != PERF_TYPE_SOFTWARE)
9590 return -ENOENT;
9591
9592 /*
9593 * no branch sampling for software events
9594 */
9595 if (has_branch_stack(event))
9596 return -EOPNOTSUPP;
9597
9598 switch (event_id) {
9599 case PERF_COUNT_SW_CPU_CLOCK:
9600 case PERF_COUNT_SW_TASK_CLOCK:
9601 return -ENOENT;
9602
9603 default:
9604 break;
9605 }
9606
9607 if (event_id >= PERF_COUNT_SW_MAX)
9608 return -ENOENT;
9609
9610 if (!event->parent) {
9611 int err;
9612
9613 err = swevent_hlist_get();
9614 if (err)
9615 return err;
9616
9617 static_key_slow_inc(&perf_swevent_enabled[event_id]);
9618 event->destroy = sw_perf_event_destroy;
9619 }
9620
9621 return 0;
9622 }
9623
9624 static struct pmu perf_swevent = {
9625 .task_ctx_nr = perf_sw_context,
9626
9627 .capabilities = PERF_PMU_CAP_NO_NMI,
9628
9629 .event_init = perf_swevent_init,
9630 .add = perf_swevent_add,
9631 .del = perf_swevent_del,
9632 .start = perf_swevent_start,
9633 .stop = perf_swevent_stop,
9634 .read = perf_swevent_read,
9635 };
9636
9637 #ifdef CONFIG_EVENT_TRACING
9638
9639 static int perf_tp_filter_match(struct perf_event *event,
9640 struct perf_sample_data *data)
9641 {
9642 void *record = data->raw->frag.data;
9643
9644 /* only top level events have filters set */
9645 if (event->parent)
9646 event = event->parent;
9647
9648 if (likely(!event->filter) || filter_match_preds(event->filter, record))
9649 return 1;
9650 return 0;
9651 }
9652
9653 static int perf_tp_event_match(struct perf_event *event,
9654 struct perf_sample_data *data,
9655 struct pt_regs *regs)
9656 {
9657 if (event->hw.state & PERF_HES_STOPPED)
9658 return 0;
9659 /*
9660 * If exclude_kernel, only trace user-space tracepoints (uprobes)
9661 */
9662 if (event->attr.exclude_kernel && !user_mode(regs))
9663 return 0;
9664
9665 if (!perf_tp_filter_match(event, data))
9666 return 0;
9667
9668 return 1;
9669 }
9670
9671 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
9672 struct trace_event_call *call, u64 count,
9673 struct pt_regs *regs, struct hlist_head *head,
9674 struct task_struct *task)
9675 {
9676 if (bpf_prog_array_valid(call)) {
9677 *(struct pt_regs **)raw_data = regs;
9678 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
9679 perf_swevent_put_recursion_context(rctx);
9680 return;
9681 }
9682 }
9683 perf_tp_event(call->event.type, count, raw_data, size, regs, head,
9684 rctx, task);
9685 }
9686 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
9687
9688 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
9689 struct pt_regs *regs, struct hlist_head *head, int rctx,
9690 struct task_struct *task)
9691 {
9692 struct perf_sample_data data;
9693 struct perf_event *event;
9694
9695 struct perf_raw_record raw = {
9696 .frag = {
9697 .size = entry_size,
9698 .data = record,
9699 },
9700 };
9701
9702 perf_sample_data_init(&data, 0, 0);
9703 data.raw = &raw;
9704
9705 perf_trace_buf_update(record, event_type);
9706
9707 hlist_for_each_entry_rcu(event, head, hlist_entry) {
9708 if (perf_tp_event_match(event, &data, regs))
9709 perf_swevent_event(event, count, &data, regs);
9710 }
9711
9712 /*
9713 * If we got specified a target task, also iterate its context and
9714 * deliver this event there too.
9715 */
9716 if (task && task != current) {
9717 struct perf_event_context *ctx;
9718 struct trace_entry *entry = record;
9719
9720 rcu_read_lock();
9721 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
9722 if (!ctx)
9723 goto unlock;
9724
9725 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
9726 if (event->cpu != smp_processor_id())
9727 continue;
9728 if (event->attr.type != PERF_TYPE_TRACEPOINT)
9729 continue;
9730 if (event->attr.config != entry->type)
9731 continue;
9732 if (perf_tp_event_match(event, &data, regs))
9733 perf_swevent_event(event, count, &data, regs);
9734 }
9735 unlock:
9736 rcu_read_unlock();
9737 }
9738
9739 perf_swevent_put_recursion_context(rctx);
9740 }
9741 EXPORT_SYMBOL_GPL(perf_tp_event);
9742
9743 static void tp_perf_event_destroy(struct perf_event *event)
9744 {
9745 perf_trace_destroy(event);
9746 }
9747
9748 static int perf_tp_event_init(struct perf_event *event)
9749 {
9750 int err;
9751
9752 if (event->attr.type != PERF_TYPE_TRACEPOINT)
9753 return -ENOENT;
9754
9755 /*
9756 * no branch sampling for tracepoint events
9757 */
9758 if (has_branch_stack(event))
9759 return -EOPNOTSUPP;
9760
9761 err = perf_trace_init(event);
9762 if (err)
9763 return err;
9764
9765 event->destroy = tp_perf_event_destroy;
9766
9767 return 0;
9768 }
9769
9770 static struct pmu perf_tracepoint = {
9771 .task_ctx_nr = perf_sw_context,
9772
9773 .event_init = perf_tp_event_init,
9774 .add = perf_trace_add,
9775 .del = perf_trace_del,
9776 .start = perf_swevent_start,
9777 .stop = perf_swevent_stop,
9778 .read = perf_swevent_read,
9779 };
9780
9781 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
9782 /*
9783 * Flags in config, used by dynamic PMU kprobe and uprobe
9784 * The flags should match following PMU_FORMAT_ATTR().
9785 *
9786 * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
9787 * if not set, create kprobe/uprobe
9788 *
9789 * The following values specify a reference counter (or semaphore in the
9790 * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
9791 * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
9792 *
9793 * PERF_UPROBE_REF_CTR_OFFSET_BITS # of bits in config as th offset
9794 * PERF_UPROBE_REF_CTR_OFFSET_SHIFT # of bits to shift left
9795 */
9796 enum perf_probe_config {
9797 PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0, /* [k,u]retprobe */
9798 PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
9799 PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
9800 };
9801
9802 PMU_FORMAT_ATTR(retprobe, "config:0");
9803 #endif
9804
9805 #ifdef CONFIG_KPROBE_EVENTS
9806 static struct attribute *kprobe_attrs[] = {
9807 &format_attr_retprobe.attr,
9808 NULL,
9809 };
9810
9811 static struct attribute_group kprobe_format_group = {
9812 .name = "format",
9813 .attrs = kprobe_attrs,
9814 };
9815
9816 static const struct attribute_group *kprobe_attr_groups[] = {
9817 &kprobe_format_group,
9818 NULL,
9819 };
9820
9821 static int perf_kprobe_event_init(struct perf_event *event);
9822 static struct pmu perf_kprobe = {
9823 .task_ctx_nr = perf_sw_context,
9824 .event_init = perf_kprobe_event_init,
9825 .add = perf_trace_add,
9826 .del = perf_trace_del,
9827 .start = perf_swevent_start,
9828 .stop = perf_swevent_stop,
9829 .read = perf_swevent_read,
9830 .attr_groups = kprobe_attr_groups,
9831 };
9832
9833 static int perf_kprobe_event_init(struct perf_event *event)
9834 {
9835 int err;
9836 bool is_retprobe;
9837
9838 if (event->attr.type != perf_kprobe.type)
9839 return -ENOENT;
9840
9841 if (!perfmon_capable())
9842 return -EACCES;
9843
9844 /*
9845 * no branch sampling for probe events
9846 */
9847 if (has_branch_stack(event))
9848 return -EOPNOTSUPP;
9849
9850 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
9851 err = perf_kprobe_init(event, is_retprobe);
9852 if (err)
9853 return err;
9854
9855 event->destroy = perf_kprobe_destroy;
9856
9857 return 0;
9858 }
9859 #endif /* CONFIG_KPROBE_EVENTS */
9860
9861 #ifdef CONFIG_UPROBE_EVENTS
9862 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
9863
9864 static struct attribute *uprobe_attrs[] = {
9865 &format_attr_retprobe.attr,
9866 &format_attr_ref_ctr_offset.attr,
9867 NULL,
9868 };
9869
9870 static struct attribute_group uprobe_format_group = {
9871 .name = "format",
9872 .attrs = uprobe_attrs,
9873 };
9874
9875 static const struct attribute_group *uprobe_attr_groups[] = {
9876 &uprobe_format_group,
9877 NULL,
9878 };
9879
9880 static int perf_uprobe_event_init(struct perf_event *event);
9881 static struct pmu perf_uprobe = {
9882 .task_ctx_nr = perf_sw_context,
9883 .event_init = perf_uprobe_event_init,
9884 .add = perf_trace_add,
9885 .del = perf_trace_del,
9886 .start = perf_swevent_start,
9887 .stop = perf_swevent_stop,
9888 .read = perf_swevent_read,
9889 .attr_groups = uprobe_attr_groups,
9890 };
9891
9892 static int perf_uprobe_event_init(struct perf_event *event)
9893 {
9894 int err;
9895 unsigned long ref_ctr_offset;
9896 bool is_retprobe;
9897
9898 if (event->attr.type != perf_uprobe.type)
9899 return -ENOENT;
9900
9901 if (!perfmon_capable())
9902 return -EACCES;
9903
9904 /*
9905 * no branch sampling for probe events
9906 */
9907 if (has_branch_stack(event))
9908 return -EOPNOTSUPP;
9909
9910 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
9911 ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
9912 err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
9913 if (err)
9914 return err;
9915
9916 event->destroy = perf_uprobe_destroy;
9917
9918 return 0;
9919 }
9920 #endif /* CONFIG_UPROBE_EVENTS */
9921
9922 static inline void perf_tp_register(void)
9923 {
9924 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
9925 #ifdef CONFIG_KPROBE_EVENTS
9926 perf_pmu_register(&perf_kprobe, "kprobe", -1);
9927 #endif
9928 #ifdef CONFIG_UPROBE_EVENTS
9929 perf_pmu_register(&perf_uprobe, "uprobe", -1);
9930 #endif
9931 }
9932
9933 static void perf_event_free_filter(struct perf_event *event)
9934 {
9935 ftrace_profile_free_filter(event);
9936 }
9937
9938 #ifdef CONFIG_BPF_SYSCALL
9939 static void bpf_overflow_handler(struct perf_event *event,
9940 struct perf_sample_data *data,
9941 struct pt_regs *regs)
9942 {
9943 struct bpf_perf_event_data_kern ctx = {
9944 .data = data,
9945 .event = event,
9946 };
9947 struct bpf_prog *prog;
9948 int ret = 0;
9949
9950 ctx.regs = perf_arch_bpf_user_pt_regs(regs);
9951 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
9952 goto out;
9953 rcu_read_lock();
9954 prog = READ_ONCE(event->prog);
9955 if (prog)
9956 ret = bpf_prog_run(prog, &ctx);
9957 rcu_read_unlock();
9958 out:
9959 __this_cpu_dec(bpf_prog_active);
9960 if (!ret)
9961 return;
9962
9963 event->orig_overflow_handler(event, data, regs);
9964 }
9965
9966 static int perf_event_set_bpf_handler(struct perf_event *event,
9967 struct bpf_prog *prog,
9968 u64 bpf_cookie)
9969 {
9970 if (event->overflow_handler_context)
9971 /* hw breakpoint or kernel counter */
9972 return -EINVAL;
9973
9974 if (event->prog)
9975 return -EEXIST;
9976
9977 if (prog->type != BPF_PROG_TYPE_PERF_EVENT)
9978 return -EINVAL;
9979
9980 if (event->attr.precise_ip &&
9981 prog->call_get_stack &&
9982 (!(event->attr.sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY) ||
9983 event->attr.exclude_callchain_kernel ||
9984 event->attr.exclude_callchain_user)) {
9985 /*
9986 * On perf_event with precise_ip, calling bpf_get_stack()
9987 * may trigger unwinder warnings and occasional crashes.
9988 * bpf_get_[stack|stackid] works around this issue by using
9989 * callchain attached to perf_sample_data. If the
9990 * perf_event does not full (kernel and user) callchain
9991 * attached to perf_sample_data, do not allow attaching BPF
9992 * program that calls bpf_get_[stack|stackid].
9993 */
9994 return -EPROTO;
9995 }
9996
9997 event->prog = prog;
9998 event->bpf_cookie = bpf_cookie;
9999 event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
10000 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
10001 return 0;
10002 }
10003
10004 static void perf_event_free_bpf_handler(struct perf_event *event)
10005 {
10006 struct bpf_prog *prog = event->prog;
10007
10008 if (!prog)
10009 return;
10010
10011 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
10012 event->prog = NULL;
10013 bpf_prog_put(prog);
10014 }
10015 #else
10016 static int perf_event_set_bpf_handler(struct perf_event *event,
10017 struct bpf_prog *prog,
10018 u64 bpf_cookie)
10019 {
10020 return -EOPNOTSUPP;
10021 }
10022 static void perf_event_free_bpf_handler(struct perf_event *event)
10023 {
10024 }
10025 #endif
10026
10027 /*
10028 * returns true if the event is a tracepoint, or a kprobe/upprobe created
10029 * with perf_event_open()
10030 */
10031 static inline bool perf_event_is_tracing(struct perf_event *event)
10032 {
10033 if (event->pmu == &perf_tracepoint)
10034 return true;
10035 #ifdef CONFIG_KPROBE_EVENTS
10036 if (event->pmu == &perf_kprobe)
10037 return true;
10038 #endif
10039 #ifdef CONFIG_UPROBE_EVENTS
10040 if (event->pmu == &perf_uprobe)
10041 return true;
10042 #endif
10043 return false;
10044 }
10045
10046 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog,
10047 u64 bpf_cookie)
10048 {
10049 bool is_kprobe, is_tracepoint, is_syscall_tp;
10050
10051 if (!perf_event_is_tracing(event))
10052 return perf_event_set_bpf_handler(event, prog, bpf_cookie);
10053
10054 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
10055 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
10056 is_syscall_tp = is_syscall_trace_event(event->tp_event);
10057 if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
10058 /* bpf programs can only be attached to u/kprobe or tracepoint */
10059 return -EINVAL;
10060
10061 if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
10062 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
10063 (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT))
10064 return -EINVAL;
10065
10066 /* Kprobe override only works for kprobes, not uprobes. */
10067 if (prog->kprobe_override &&
10068 !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE))
10069 return -EINVAL;
10070
10071 if (is_tracepoint || is_syscall_tp) {
10072 int off = trace_event_get_offsets(event->tp_event);
10073
10074 if (prog->aux->max_ctx_offset > off)
10075 return -EACCES;
10076 }
10077
10078 return perf_event_attach_bpf_prog(event, prog, bpf_cookie);
10079 }
10080
10081 void perf_event_free_bpf_prog(struct perf_event *event)
10082 {
10083 if (!perf_event_is_tracing(event)) {
10084 perf_event_free_bpf_handler(event);
10085 return;
10086 }
10087 perf_event_detach_bpf_prog(event);
10088 }
10089
10090 #else
10091
10092 static inline void perf_tp_register(void)
10093 {
10094 }
10095
10096 static void perf_event_free_filter(struct perf_event *event)
10097 {
10098 }
10099
10100 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog,
10101 u64 bpf_cookie)
10102 {
10103 return -ENOENT;
10104 }
10105
10106 void perf_event_free_bpf_prog(struct perf_event *event)
10107 {
10108 }
10109 #endif /* CONFIG_EVENT_TRACING */
10110
10111 #ifdef CONFIG_HAVE_HW_BREAKPOINT
10112 void perf_bp_event(struct perf_event *bp, void *data)
10113 {
10114 struct perf_sample_data sample;
10115 struct pt_regs *regs = data;
10116
10117 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
10118
10119 if (!bp->hw.state && !perf_exclude_event(bp, regs))
10120 perf_swevent_event(bp, 1, &sample, regs);
10121 }
10122 #endif
10123
10124 /*
10125 * Allocate a new address filter
10126 */
10127 static struct perf_addr_filter *
10128 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
10129 {
10130 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
10131 struct perf_addr_filter *filter;
10132
10133 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
10134 if (!filter)
10135 return NULL;
10136
10137 INIT_LIST_HEAD(&filter->entry);
10138 list_add_tail(&filter->entry, filters);
10139
10140 return filter;
10141 }
10142
10143 static void free_filters_list(struct list_head *filters)
10144 {
10145 struct perf_addr_filter *filter, *iter;
10146
10147 list_for_each_entry_safe(filter, iter, filters, entry) {
10148 path_put(&filter->path);
10149 list_del(&filter->entry);
10150 kfree(filter);
10151 }
10152 }
10153
10154 /*
10155 * Free existing address filters and optionally install new ones
10156 */
10157 static void perf_addr_filters_splice(struct perf_event *event,
10158 struct list_head *head)
10159 {
10160 unsigned long flags;
10161 LIST_HEAD(list);
10162
10163 if (!has_addr_filter(event))
10164 return;
10165
10166 /* don't bother with children, they don't have their own filters */
10167 if (event->parent)
10168 return;
10169
10170 raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
10171
10172 list_splice_init(&event->addr_filters.list, &list);
10173 if (head)
10174 list_splice(head, &event->addr_filters.list);
10175
10176 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
10177
10178 free_filters_list(&list);
10179 }
10180
10181 /*
10182 * Scan through mm's vmas and see if one of them matches the
10183 * @filter; if so, adjust filter's address range.
10184 * Called with mm::mmap_lock down for reading.
10185 */
10186 static void perf_addr_filter_apply(struct perf_addr_filter *filter,
10187 struct mm_struct *mm,
10188 struct perf_addr_filter_range *fr)
10189 {
10190 struct vm_area_struct *vma;
10191
10192 for (vma = mm->mmap; vma; vma = vma->vm_next) {
10193 if (!vma->vm_file)
10194 continue;
10195
10196 if (perf_addr_filter_vma_adjust(filter, vma, fr))
10197 return;
10198 }
10199 }
10200
10201 /*
10202 * Update event's address range filters based on the
10203 * task's existing mappings, if any.
10204 */
10205 static void perf_event_addr_filters_apply(struct perf_event *event)
10206 {
10207 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
10208 struct task_struct *task = READ_ONCE(event->ctx->task);
10209 struct perf_addr_filter *filter;
10210 struct mm_struct *mm = NULL;
10211 unsigned int count = 0;
10212 unsigned long flags;
10213
10214 /*
10215 * We may observe TASK_TOMBSTONE, which means that the event tear-down
10216 * will stop on the parent's child_mutex that our caller is also holding
10217 */
10218 if (task == TASK_TOMBSTONE)
10219 return;
10220
10221 if (ifh->nr_file_filters) {
10222 mm = get_task_mm(task);
10223 if (!mm)
10224 goto restart;
10225
10226 mmap_read_lock(mm);
10227 }
10228
10229 raw_spin_lock_irqsave(&ifh->lock, flags);
10230 list_for_each_entry(filter, &ifh->list, entry) {
10231 if (filter->path.dentry) {
10232 /*
10233 * Adjust base offset if the filter is associated to a
10234 * binary that needs to be mapped:
10235 */
10236 event->addr_filter_ranges[count].start = 0;
10237 event->addr_filter_ranges[count].size = 0;
10238
10239 perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
10240 } else {
10241 event->addr_filter_ranges[count].start = filter->offset;
10242 event->addr_filter_ranges[count].size = filter->size;
10243 }
10244
10245 count++;
10246 }
10247
10248 event->addr_filters_gen++;
10249 raw_spin_unlock_irqrestore(&ifh->lock, flags);
10250
10251 if (ifh->nr_file_filters) {
10252 mmap_read_unlock(mm);
10253
10254 mmput(mm);
10255 }
10256
10257 restart:
10258 perf_event_stop(event, 1);
10259 }
10260
10261 /*
10262 * Address range filtering: limiting the data to certain
10263 * instruction address ranges. Filters are ioctl()ed to us from
10264 * userspace as ascii strings.
10265 *
10266 * Filter string format:
10267 *
10268 * ACTION RANGE_SPEC
10269 * where ACTION is one of the
10270 * * "filter": limit the trace to this region
10271 * * "start": start tracing from this address
10272 * * "stop": stop tracing at this address/region;
10273 * RANGE_SPEC is
10274 * * for kernel addresses: <start address>[/<size>]
10275 * * for object files: <start address>[/<size>]@</path/to/object/file>
10276 *
10277 * if <size> is not specified or is zero, the range is treated as a single
10278 * address; not valid for ACTION=="filter".
10279 */
10280 enum {
10281 IF_ACT_NONE = -1,
10282 IF_ACT_FILTER,
10283 IF_ACT_START,
10284 IF_ACT_STOP,
10285 IF_SRC_FILE,
10286 IF_SRC_KERNEL,
10287 IF_SRC_FILEADDR,
10288 IF_SRC_KERNELADDR,
10289 };
10290
10291 enum {
10292 IF_STATE_ACTION = 0,
10293 IF_STATE_SOURCE,
10294 IF_STATE_END,
10295 };
10296
10297 static const match_table_t if_tokens = {
10298 { IF_ACT_FILTER, "filter" },
10299 { IF_ACT_START, "start" },
10300 { IF_ACT_STOP, "stop" },
10301 { IF_SRC_FILE, "%u/%u@%s" },
10302 { IF_SRC_KERNEL, "%u/%u" },
10303 { IF_SRC_FILEADDR, "%u@%s" },
10304 { IF_SRC_KERNELADDR, "%u" },
10305 { IF_ACT_NONE, NULL },
10306 };
10307
10308 /*
10309 * Address filter string parser
10310 */
10311 static int
10312 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
10313 struct list_head *filters)
10314 {
10315 struct perf_addr_filter *filter = NULL;
10316 char *start, *orig, *filename = NULL;
10317 substring_t args[MAX_OPT_ARGS];
10318 int state = IF_STATE_ACTION, token;
10319 unsigned int kernel = 0;
10320 int ret = -EINVAL;
10321
10322 orig = fstr = kstrdup(fstr, GFP_KERNEL);
10323 if (!fstr)
10324 return -ENOMEM;
10325
10326 while ((start = strsep(&fstr, " ,\n")) != NULL) {
10327 static const enum perf_addr_filter_action_t actions[] = {
10328 [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER,
10329 [IF_ACT_START] = PERF_ADDR_FILTER_ACTION_START,
10330 [IF_ACT_STOP] = PERF_ADDR_FILTER_ACTION_STOP,
10331 };
10332 ret = -EINVAL;
10333
10334 if (!*start)
10335 continue;
10336
10337 /* filter definition begins */
10338 if (state == IF_STATE_ACTION) {
10339 filter = perf_addr_filter_new(event, filters);
10340 if (!filter)
10341 goto fail;
10342 }
10343
10344 token = match_token(start, if_tokens, args);
10345 switch (token) {
10346 case IF_ACT_FILTER:
10347 case IF_ACT_START:
10348 case IF_ACT_STOP:
10349 if (state != IF_STATE_ACTION)
10350 goto fail;
10351
10352 filter->action = actions[token];
10353 state = IF_STATE_SOURCE;
10354 break;
10355
10356 case IF_SRC_KERNELADDR:
10357 case IF_SRC_KERNEL:
10358 kernel = 1;
10359 fallthrough;
10360
10361 case IF_SRC_FILEADDR:
10362 case IF_SRC_FILE:
10363 if (state != IF_STATE_SOURCE)
10364 goto fail;
10365
10366 *args[0].to = 0;
10367 ret = kstrtoul(args[0].from, 0, &filter->offset);
10368 if (ret)
10369 goto fail;
10370
10371 if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
10372 *args[1].to = 0;
10373 ret = kstrtoul(args[1].from, 0, &filter->size);
10374 if (ret)
10375 goto fail;
10376 }
10377
10378 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
10379 int fpos = token == IF_SRC_FILE ? 2 : 1;
10380
10381 kfree(filename);
10382 filename = match_strdup(&args[fpos]);
10383 if (!filename) {
10384 ret = -ENOMEM;
10385 goto fail;
10386 }
10387 }
10388
10389 state = IF_STATE_END;
10390 break;
10391
10392 default:
10393 goto fail;
10394 }
10395
10396 /*
10397 * Filter definition is fully parsed, validate and install it.
10398 * Make sure that it doesn't contradict itself or the event's
10399 * attribute.
10400 */
10401 if (state == IF_STATE_END) {
10402 ret = -EINVAL;
10403 if (kernel && event->attr.exclude_kernel)
10404 goto fail;
10405
10406 /*
10407 * ACTION "filter" must have a non-zero length region
10408 * specified.
10409 */
10410 if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
10411 !filter->size)
10412 goto fail;
10413
10414 if (!kernel) {
10415 if (!filename)
10416 goto fail;
10417
10418 /*
10419 * For now, we only support file-based filters
10420 * in per-task events; doing so for CPU-wide
10421 * events requires additional context switching
10422 * trickery, since same object code will be
10423 * mapped at different virtual addresses in
10424 * different processes.
10425 */
10426 ret = -EOPNOTSUPP;
10427 if (!event->ctx->task)
10428 goto fail;
10429
10430 /* look up the path and grab its inode */
10431 ret = kern_path(filename, LOOKUP_FOLLOW,
10432 &filter->path);
10433 if (ret)
10434 goto fail;
10435
10436 ret = -EINVAL;
10437 if (!filter->path.dentry ||
10438 !S_ISREG(d_inode(filter->path.dentry)
10439 ->i_mode))
10440 goto fail;
10441
10442 event->addr_filters.nr_file_filters++;
10443 }
10444
10445 /* ready to consume more filters */
10446 state = IF_STATE_ACTION;
10447 filter = NULL;
10448 }
10449 }
10450
10451 if (state != IF_STATE_ACTION)
10452 goto fail;
10453
10454 kfree(filename);
10455 kfree(orig);
10456
10457 return 0;
10458
10459 fail:
10460 kfree(filename);
10461 free_filters_list(filters);
10462 kfree(orig);
10463
10464 return ret;
10465 }
10466
10467 static int
10468 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
10469 {
10470 LIST_HEAD(filters);
10471 int ret;
10472
10473 /*
10474 * Since this is called in perf_ioctl() path, we're already holding
10475 * ctx::mutex.
10476 */
10477 lockdep_assert_held(&event->ctx->mutex);
10478
10479 if (WARN_ON_ONCE(event->parent))
10480 return -EINVAL;
10481
10482 ret = perf_event_parse_addr_filter(event, filter_str, &filters);
10483 if (ret)
10484 goto fail_clear_files;
10485
10486 ret = event->pmu->addr_filters_validate(&filters);
10487 if (ret)
10488 goto fail_free_filters;
10489
10490 /* remove existing filters, if any */
10491 perf_addr_filters_splice(event, &filters);
10492
10493 /* install new filters */
10494 perf_event_for_each_child(event, perf_event_addr_filters_apply);
10495
10496 return ret;
10497
10498 fail_free_filters:
10499 free_filters_list(&filters);
10500
10501 fail_clear_files:
10502 event->addr_filters.nr_file_filters = 0;
10503
10504 return ret;
10505 }
10506
10507 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
10508 {
10509 int ret = -EINVAL;
10510 char *filter_str;
10511
10512 filter_str = strndup_user(arg, PAGE_SIZE);
10513 if (IS_ERR(filter_str))
10514 return PTR_ERR(filter_str);
10515
10516 #ifdef CONFIG_EVENT_TRACING
10517 if (perf_event_is_tracing(event)) {
10518 struct perf_event_context *ctx = event->ctx;
10519
10520 /*
10521 * Beware, here be dragons!!
10522 *
10523 * the tracepoint muck will deadlock against ctx->mutex, but
10524 * the tracepoint stuff does not actually need it. So
10525 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
10526 * already have a reference on ctx.
10527 *
10528 * This can result in event getting moved to a different ctx,
10529 * but that does not affect the tracepoint state.
10530 */
10531 mutex_unlock(&ctx->mutex);
10532 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
10533 mutex_lock(&ctx->mutex);
10534 } else
10535 #endif
10536 if (has_addr_filter(event))
10537 ret = perf_event_set_addr_filter(event, filter_str);
10538
10539 kfree(filter_str);
10540 return ret;
10541 }
10542
10543 /*
10544 * hrtimer based swevent callback
10545 */
10546
10547 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
10548 {
10549 enum hrtimer_restart ret = HRTIMER_RESTART;
10550 struct perf_sample_data data;
10551 struct pt_regs *regs;
10552 struct perf_event *event;
10553 u64 period;
10554
10555 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
10556
10557 if (event->state != PERF_EVENT_STATE_ACTIVE)
10558 return HRTIMER_NORESTART;
10559
10560 event->pmu->read(event);
10561
10562 perf_sample_data_init(&data, 0, event->hw.last_period);
10563 regs = get_irq_regs();
10564
10565 if (regs && !perf_exclude_event(event, regs)) {
10566 if (!(event->attr.exclude_idle && is_idle_task(current)))
10567 if (__perf_event_overflow(event, 1, &data, regs))
10568 ret = HRTIMER_NORESTART;
10569 }
10570
10571 period = max_t(u64, 10000, event->hw.sample_period);
10572 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
10573
10574 return ret;
10575 }
10576
10577 static void perf_swevent_start_hrtimer(struct perf_event *event)
10578 {
10579 struct hw_perf_event *hwc = &event->hw;
10580 s64 period;
10581
10582 if (!is_sampling_event(event))
10583 return;
10584
10585 period = local64_read(&hwc->period_left);
10586 if (period) {
10587 if (period < 0)
10588 period = 10000;
10589
10590 local64_set(&hwc->period_left, 0);
10591 } else {
10592 period = max_t(u64, 10000, hwc->sample_period);
10593 }
10594 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
10595 HRTIMER_MODE_REL_PINNED_HARD);
10596 }
10597
10598 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
10599 {
10600 struct hw_perf_event *hwc = &event->hw;
10601
10602 if (is_sampling_event(event)) {
10603 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
10604 local64_set(&hwc->period_left, ktime_to_ns(remaining));
10605
10606 hrtimer_cancel(&hwc->hrtimer);
10607 }
10608 }
10609
10610 static void perf_swevent_init_hrtimer(struct perf_event *event)
10611 {
10612 struct hw_perf_event *hwc = &event->hw;
10613
10614 if (!is_sampling_event(event))
10615 return;
10616
10617 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
10618 hwc->hrtimer.function = perf_swevent_hrtimer;
10619
10620 /*
10621 * Since hrtimers have a fixed rate, we can do a static freq->period
10622 * mapping and avoid the whole period adjust feedback stuff.
10623 */
10624 if (event->attr.freq) {
10625 long freq = event->attr.sample_freq;
10626
10627 event->attr.sample_period = NSEC_PER_SEC / freq;
10628 hwc->sample_period = event->attr.sample_period;
10629 local64_set(&hwc->period_left, hwc->sample_period);
10630 hwc->last_period = hwc->sample_period;
10631 event->attr.freq = 0;
10632 }
10633 }
10634
10635 /*
10636 * Software event: cpu wall time clock
10637 */
10638
10639 static void cpu_clock_event_update(struct perf_event *event)
10640 {
10641 s64 prev;
10642 u64 now;
10643
10644 now = local_clock();
10645 prev = local64_xchg(&event->hw.prev_count, now);
10646 local64_add(now - prev, &event->count);
10647 }
10648
10649 static void cpu_clock_event_start(struct perf_event *event, int flags)
10650 {
10651 local64_set(&event->hw.prev_count, local_clock());
10652 perf_swevent_start_hrtimer(event);
10653 }
10654
10655 static void cpu_clock_event_stop(struct perf_event *event, int flags)
10656 {
10657 perf_swevent_cancel_hrtimer(event);
10658 cpu_clock_event_update(event);
10659 }
10660
10661 static int cpu_clock_event_add(struct perf_event *event, int flags)
10662 {
10663 if (flags & PERF_EF_START)
10664 cpu_clock_event_start(event, flags);
10665 perf_event_update_userpage(event);
10666
10667 return 0;
10668 }
10669
10670 static void cpu_clock_event_del(struct perf_event *event, int flags)
10671 {
10672 cpu_clock_event_stop(event, flags);
10673 }
10674
10675 static void cpu_clock_event_read(struct perf_event *event)
10676 {
10677 cpu_clock_event_update(event);
10678 }
10679
10680 static int cpu_clock_event_init(struct perf_event *event)
10681 {
10682 if (event->attr.type != PERF_TYPE_SOFTWARE)
10683 return -ENOENT;
10684
10685 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
10686 return -ENOENT;
10687
10688 /*
10689 * no branch sampling for software events
10690 */
10691 if (has_branch_stack(event))
10692 return -EOPNOTSUPP;
10693
10694 perf_swevent_init_hrtimer(event);
10695
10696 return 0;
10697 }
10698
10699 static struct pmu perf_cpu_clock = {
10700 .task_ctx_nr = perf_sw_context,
10701
10702 .capabilities = PERF_PMU_CAP_NO_NMI,
10703
10704 .event_init = cpu_clock_event_init,
10705 .add = cpu_clock_event_add,
10706 .del = cpu_clock_event_del,
10707 .start = cpu_clock_event_start,
10708 .stop = cpu_clock_event_stop,
10709 .read = cpu_clock_event_read,
10710 };
10711
10712 /*
10713 * Software event: task time clock
10714 */
10715
10716 static void task_clock_event_update(struct perf_event *event, u64 now)
10717 {
10718 u64 prev;
10719 s64 delta;
10720
10721 prev = local64_xchg(&event->hw.prev_count, now);
10722 delta = now - prev;
10723 local64_add(delta, &event->count);
10724 }
10725
10726 static void task_clock_event_start(struct perf_event *event, int flags)
10727 {
10728 local64_set(&event->hw.prev_count, event->ctx->time);
10729 perf_swevent_start_hrtimer(event);
10730 }
10731
10732 static void task_clock_event_stop(struct perf_event *event, int flags)
10733 {
10734 perf_swevent_cancel_hrtimer(event);
10735 task_clock_event_update(event, event->ctx->time);
10736 }
10737
10738 static int task_clock_event_add(struct perf_event *event, int flags)
10739 {
10740 if (flags & PERF_EF_START)
10741 task_clock_event_start(event, flags);
10742 perf_event_update_userpage(event);
10743
10744 return 0;
10745 }
10746
10747 static void task_clock_event_del(struct perf_event *event, int flags)
10748 {
10749 task_clock_event_stop(event, PERF_EF_UPDATE);
10750 }
10751
10752 static void task_clock_event_read(struct perf_event *event)
10753 {
10754 u64 now = perf_clock();
10755 u64 delta = now - event->ctx->timestamp;
10756 u64 time = event->ctx->time + delta;
10757
10758 task_clock_event_update(event, time);
10759 }
10760
10761 static int task_clock_event_init(struct perf_event *event)
10762 {
10763 if (event->attr.type != PERF_TYPE_SOFTWARE)
10764 return -ENOENT;
10765
10766 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
10767 return -ENOENT;
10768
10769 /*
10770 * no branch sampling for software events
10771 */
10772 if (has_branch_stack(event))
10773 return -EOPNOTSUPP;
10774
10775 perf_swevent_init_hrtimer(event);
10776
10777 return 0;
10778 }
10779
10780 static struct pmu perf_task_clock = {
10781 .task_ctx_nr = perf_sw_context,
10782
10783 .capabilities = PERF_PMU_CAP_NO_NMI,
10784
10785 .event_init = task_clock_event_init,
10786 .add = task_clock_event_add,
10787 .del = task_clock_event_del,
10788 .start = task_clock_event_start,
10789 .stop = task_clock_event_stop,
10790 .read = task_clock_event_read,
10791 };
10792
10793 static void perf_pmu_nop_void(struct pmu *pmu)
10794 {
10795 }
10796
10797 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
10798 {
10799 }
10800
10801 static int perf_pmu_nop_int(struct pmu *pmu)
10802 {
10803 return 0;
10804 }
10805
10806 static int perf_event_nop_int(struct perf_event *event, u64 value)
10807 {
10808 return 0;
10809 }
10810
10811 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
10812
10813 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
10814 {
10815 __this_cpu_write(nop_txn_flags, flags);
10816
10817 if (flags & ~PERF_PMU_TXN_ADD)
10818 return;
10819
10820 perf_pmu_disable(pmu);
10821 }
10822
10823 static int perf_pmu_commit_txn(struct pmu *pmu)
10824 {
10825 unsigned int flags = __this_cpu_read(nop_txn_flags);
10826
10827 __this_cpu_write(nop_txn_flags, 0);
10828
10829 if (flags & ~PERF_PMU_TXN_ADD)
10830 return 0;
10831
10832 perf_pmu_enable(pmu);
10833 return 0;
10834 }
10835
10836 static void perf_pmu_cancel_txn(struct pmu *pmu)
10837 {
10838 unsigned int flags = __this_cpu_read(nop_txn_flags);
10839
10840 __this_cpu_write(nop_txn_flags, 0);
10841
10842 if (flags & ~PERF_PMU_TXN_ADD)
10843 return;
10844
10845 perf_pmu_enable(pmu);
10846 }
10847
10848 static int perf_event_idx_default(struct perf_event *event)
10849 {
10850 return 0;
10851 }
10852
10853 /*
10854 * Ensures all contexts with the same task_ctx_nr have the same
10855 * pmu_cpu_context too.
10856 */
10857 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
10858 {
10859 struct pmu *pmu;
10860
10861 if (ctxn < 0)
10862 return NULL;
10863
10864 list_for_each_entry(pmu, &pmus, entry) {
10865 if (pmu->task_ctx_nr == ctxn)
10866 return pmu->pmu_cpu_context;
10867 }
10868
10869 return NULL;
10870 }
10871
10872 static void free_pmu_context(struct pmu *pmu)
10873 {
10874 /*
10875 * Static contexts such as perf_sw_context have a global lifetime
10876 * and may be shared between different PMUs. Avoid freeing them
10877 * when a single PMU is going away.
10878 */
10879 if (pmu->task_ctx_nr > perf_invalid_context)
10880 return;
10881
10882 free_percpu(pmu->pmu_cpu_context);
10883 }
10884
10885 /*
10886 * Let userspace know that this PMU supports address range filtering:
10887 */
10888 static ssize_t nr_addr_filters_show(struct device *dev,
10889 struct device_attribute *attr,
10890 char *page)
10891 {
10892 struct pmu *pmu = dev_get_drvdata(dev);
10893
10894 return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
10895 }
10896 DEVICE_ATTR_RO(nr_addr_filters);
10897
10898 static struct idr pmu_idr;
10899
10900 static ssize_t
10901 type_show(struct device *dev, struct device_attribute *attr, char *page)
10902 {
10903 struct pmu *pmu = dev_get_drvdata(dev);
10904
10905 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
10906 }
10907 static DEVICE_ATTR_RO(type);
10908
10909 static ssize_t
10910 perf_event_mux_interval_ms_show(struct device *dev,
10911 struct device_attribute *attr,
10912 char *page)
10913 {
10914 struct pmu *pmu = dev_get_drvdata(dev);
10915
10916 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
10917 }
10918
10919 static DEFINE_MUTEX(mux_interval_mutex);
10920
10921 static ssize_t
10922 perf_event_mux_interval_ms_store(struct device *dev,
10923 struct device_attribute *attr,
10924 const char *buf, size_t count)
10925 {
10926 struct pmu *pmu = dev_get_drvdata(dev);
10927 int timer, cpu, ret;
10928
10929 ret = kstrtoint(buf, 0, &timer);
10930 if (ret)
10931 return ret;
10932
10933 if (timer < 1)
10934 return -EINVAL;
10935
10936 /* same value, noting to do */
10937 if (timer == pmu->hrtimer_interval_ms)
10938 return count;
10939
10940 mutex_lock(&mux_interval_mutex);
10941 pmu->hrtimer_interval_ms = timer;
10942
10943 /* update all cpuctx for this PMU */
10944 cpus_read_lock();
10945 for_each_online_cpu(cpu) {
10946 struct perf_cpu_context *cpuctx;
10947 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
10948 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
10949
10950 cpu_function_call(cpu,
10951 (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
10952 }
10953 cpus_read_unlock();
10954 mutex_unlock(&mux_interval_mutex);
10955
10956 return count;
10957 }
10958 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
10959
10960 static struct attribute *pmu_dev_attrs[] = {
10961 &dev_attr_type.attr,
10962 &dev_attr_perf_event_mux_interval_ms.attr,
10963 NULL,
10964 };
10965 ATTRIBUTE_GROUPS(pmu_dev);
10966
10967 static int pmu_bus_running;
10968 static struct bus_type pmu_bus = {
10969 .name = "event_source",
10970 .dev_groups = pmu_dev_groups,
10971 };
10972
10973 static void pmu_dev_release(struct device *dev)
10974 {
10975 kfree(dev);
10976 }
10977
10978 static int pmu_dev_alloc(struct pmu *pmu)
10979 {
10980 int ret = -ENOMEM;
10981
10982 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
10983 if (!pmu->dev)
10984 goto out;
10985
10986 pmu->dev->groups = pmu->attr_groups;
10987 device_initialize(pmu->dev);
10988 ret = dev_set_name(pmu->dev, "%s", pmu->name);
10989 if (ret)
10990 goto free_dev;
10991
10992 dev_set_drvdata(pmu->dev, pmu);
10993 pmu->dev->bus = &pmu_bus;
10994 pmu->dev->release = pmu_dev_release;
10995 ret = device_add(pmu->dev);
10996 if (ret)
10997 goto free_dev;
10998
10999 /* For PMUs with address filters, throw in an extra attribute: */
11000 if (pmu->nr_addr_filters)
11001 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
11002
11003 if (ret)
11004 goto del_dev;
11005
11006 if (pmu->attr_update)
11007 ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
11008
11009 if (ret)
11010 goto del_dev;
11011
11012 out:
11013 return ret;
11014
11015 del_dev:
11016 device_del(pmu->dev);
11017
11018 free_dev:
11019 put_device(pmu->dev);
11020 goto out;
11021 }
11022
11023 static struct lock_class_key cpuctx_mutex;
11024 static struct lock_class_key cpuctx_lock;
11025
11026 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
11027 {
11028 int cpu, ret, max = PERF_TYPE_MAX;
11029
11030 mutex_lock(&pmus_lock);
11031 ret = -ENOMEM;
11032 pmu->pmu_disable_count = alloc_percpu(int);
11033 if (!pmu->pmu_disable_count)
11034 goto unlock;
11035
11036 pmu->type = -1;
11037 if (!name)
11038 goto skip_type;
11039 pmu->name = name;
11040
11041 if (type != PERF_TYPE_SOFTWARE) {
11042 if (type >= 0)
11043 max = type;
11044
11045 ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL);
11046 if (ret < 0)
11047 goto free_pdc;
11048
11049 WARN_ON(type >= 0 && ret != type);
11050
11051 type = ret;
11052 }
11053 pmu->type = type;
11054
11055 if (pmu_bus_running) {
11056 ret = pmu_dev_alloc(pmu);
11057 if (ret)
11058 goto free_idr;
11059 }
11060
11061 skip_type:
11062 if (pmu->task_ctx_nr == perf_hw_context) {
11063 static int hw_context_taken = 0;
11064
11065 /*
11066 * Other than systems with heterogeneous CPUs, it never makes
11067 * sense for two PMUs to share perf_hw_context. PMUs which are
11068 * uncore must use perf_invalid_context.
11069 */
11070 if (WARN_ON_ONCE(hw_context_taken &&
11071 !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
11072 pmu->task_ctx_nr = perf_invalid_context;
11073
11074 hw_context_taken = 1;
11075 }
11076
11077 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
11078 if (pmu->pmu_cpu_context)
11079 goto got_cpu_context;
11080
11081 ret = -ENOMEM;
11082 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
11083 if (!pmu->pmu_cpu_context)
11084 goto free_dev;
11085
11086 for_each_possible_cpu(cpu) {
11087 struct perf_cpu_context *cpuctx;
11088
11089 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11090 __perf_event_init_context(&cpuctx->ctx);
11091 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
11092 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
11093 cpuctx->ctx.pmu = pmu;
11094 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
11095
11096 __perf_mux_hrtimer_init(cpuctx, cpu);
11097
11098 cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default);
11099 cpuctx->heap = cpuctx->heap_default;
11100 }
11101
11102 got_cpu_context:
11103 if (!pmu->start_txn) {
11104 if (pmu->pmu_enable) {
11105 /*
11106 * If we have pmu_enable/pmu_disable calls, install
11107 * transaction stubs that use that to try and batch
11108 * hardware accesses.
11109 */
11110 pmu->start_txn = perf_pmu_start_txn;
11111 pmu->commit_txn = perf_pmu_commit_txn;
11112 pmu->cancel_txn = perf_pmu_cancel_txn;
11113 } else {
11114 pmu->start_txn = perf_pmu_nop_txn;
11115 pmu->commit_txn = perf_pmu_nop_int;
11116 pmu->cancel_txn = perf_pmu_nop_void;
11117 }
11118 }
11119
11120 if (!pmu->pmu_enable) {
11121 pmu->pmu_enable = perf_pmu_nop_void;
11122 pmu->pmu_disable = perf_pmu_nop_void;
11123 }
11124
11125 if (!pmu->check_period)
11126 pmu->check_period = perf_event_nop_int;
11127
11128 if (!pmu->event_idx)
11129 pmu->event_idx = perf_event_idx_default;
11130
11131 /*
11132 * Ensure the TYPE_SOFTWARE PMUs are at the head of the list,
11133 * since these cannot be in the IDR. This way the linear search
11134 * is fast, provided a valid software event is provided.
11135 */
11136 if (type == PERF_TYPE_SOFTWARE || !name)
11137 list_add_rcu(&pmu->entry, &pmus);
11138 else
11139 list_add_tail_rcu(&pmu->entry, &pmus);
11140
11141 atomic_set(&pmu->exclusive_cnt, 0);
11142 ret = 0;
11143 unlock:
11144 mutex_unlock(&pmus_lock);
11145
11146 return ret;
11147
11148 free_dev:
11149 device_del(pmu->dev);
11150 put_device(pmu->dev);
11151
11152 free_idr:
11153 if (pmu->type != PERF_TYPE_SOFTWARE)
11154 idr_remove(&pmu_idr, pmu->type);
11155
11156 free_pdc:
11157 free_percpu(pmu->pmu_disable_count);
11158 goto unlock;
11159 }
11160 EXPORT_SYMBOL_GPL(perf_pmu_register);
11161
11162 void perf_pmu_unregister(struct pmu *pmu)
11163 {
11164 mutex_lock(&pmus_lock);
11165 list_del_rcu(&pmu->entry);
11166
11167 /*
11168 * We dereference the pmu list under both SRCU and regular RCU, so
11169 * synchronize against both of those.
11170 */
11171 synchronize_srcu(&pmus_srcu);
11172 synchronize_rcu();
11173
11174 free_percpu(pmu->pmu_disable_count);
11175 if (pmu->type != PERF_TYPE_SOFTWARE)
11176 idr_remove(&pmu_idr, pmu->type);
11177 if (pmu_bus_running) {
11178 if (pmu->nr_addr_filters)
11179 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
11180 device_del(pmu->dev);
11181 put_device(pmu->dev);
11182 }
11183 free_pmu_context(pmu);
11184 mutex_unlock(&pmus_lock);
11185 }
11186 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
11187
11188 static inline bool has_extended_regs(struct perf_event *event)
11189 {
11190 return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
11191 (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
11192 }
11193
11194 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
11195 {
11196 struct perf_event_context *ctx = NULL;
11197 int ret;
11198
11199 if (!try_module_get(pmu->module))
11200 return -ENODEV;
11201
11202 /*
11203 * A number of pmu->event_init() methods iterate the sibling_list to,
11204 * for example, validate if the group fits on the PMU. Therefore,
11205 * if this is a sibling event, acquire the ctx->mutex to protect
11206 * the sibling_list.
11207 */
11208 if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
11209 /*
11210 * This ctx->mutex can nest when we're called through
11211 * inheritance. See the perf_event_ctx_lock_nested() comment.
11212 */
11213 ctx = perf_event_ctx_lock_nested(event->group_leader,
11214 SINGLE_DEPTH_NESTING);
11215 BUG_ON(!ctx);
11216 }
11217
11218 event->pmu = pmu;
11219 ret = pmu->event_init(event);
11220
11221 if (ctx)
11222 perf_event_ctx_unlock(event->group_leader, ctx);
11223
11224 if (!ret) {
11225 if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
11226 has_extended_regs(event))
11227 ret = -EOPNOTSUPP;
11228
11229 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
11230 event_has_any_exclude_flag(event))
11231 ret = -EINVAL;
11232
11233 if (ret && event->destroy)
11234 event->destroy(event);
11235 }
11236
11237 if (ret)
11238 module_put(pmu->module);
11239
11240 return ret;
11241 }
11242
11243 static struct pmu *perf_init_event(struct perf_event *event)
11244 {
11245 bool extended_type = false;
11246 int idx, type, ret;
11247 struct pmu *pmu;
11248
11249 idx = srcu_read_lock(&pmus_srcu);
11250
11251 /* Try parent's PMU first: */
11252 if (event->parent && event->parent->pmu) {
11253 pmu = event->parent->pmu;
11254 ret = perf_try_init_event(pmu, event);
11255 if (!ret)
11256 goto unlock;
11257 }
11258
11259 /*
11260 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
11261 * are often aliases for PERF_TYPE_RAW.
11262 */
11263 type = event->attr.type;
11264 if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) {
11265 type = event->attr.config >> PERF_PMU_TYPE_SHIFT;
11266 if (!type) {
11267 type = PERF_TYPE_RAW;
11268 } else {
11269 extended_type = true;
11270 event->attr.config &= PERF_HW_EVENT_MASK;
11271 }
11272 }
11273
11274 again:
11275 rcu_read_lock();
11276 pmu = idr_find(&pmu_idr, type);
11277 rcu_read_unlock();
11278 if (pmu) {
11279 if (event->attr.type != type && type != PERF_TYPE_RAW &&
11280 !(pmu->capabilities & PERF_PMU_CAP_EXTENDED_HW_TYPE))
11281 goto fail;
11282
11283 ret = perf_try_init_event(pmu, event);
11284 if (ret == -ENOENT && event->attr.type != type && !extended_type) {
11285 type = event->attr.type;
11286 goto again;
11287 }
11288
11289 if (ret)
11290 pmu = ERR_PTR(ret);
11291
11292 goto unlock;
11293 }
11294
11295 list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) {
11296 ret = perf_try_init_event(pmu, event);
11297 if (!ret)
11298 goto unlock;
11299
11300 if (ret != -ENOENT) {
11301 pmu = ERR_PTR(ret);
11302 goto unlock;
11303 }
11304 }
11305 fail:
11306 pmu = ERR_PTR(-ENOENT);
11307 unlock:
11308 srcu_read_unlock(&pmus_srcu, idx);
11309
11310 return pmu;
11311 }
11312
11313 static void attach_sb_event(struct perf_event *event)
11314 {
11315 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
11316
11317 raw_spin_lock(&pel->lock);
11318 list_add_rcu(&event->sb_list, &pel->list);
11319 raw_spin_unlock(&pel->lock);
11320 }
11321
11322 /*
11323 * We keep a list of all !task (and therefore per-cpu) events
11324 * that need to receive side-band records.
11325 *
11326 * This avoids having to scan all the various PMU per-cpu contexts
11327 * looking for them.
11328 */
11329 static void account_pmu_sb_event(struct perf_event *event)
11330 {
11331 if (is_sb_event(event))
11332 attach_sb_event(event);
11333 }
11334
11335 static void account_event_cpu(struct perf_event *event, int cpu)
11336 {
11337 if (event->parent)
11338 return;
11339
11340 if (is_cgroup_event(event))
11341 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
11342 }
11343
11344 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
11345 static void account_freq_event_nohz(void)
11346 {
11347 #ifdef CONFIG_NO_HZ_FULL
11348 /* Lock so we don't race with concurrent unaccount */
11349 spin_lock(&nr_freq_lock);
11350 if (atomic_inc_return(&nr_freq_events) == 1)
11351 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
11352 spin_unlock(&nr_freq_lock);
11353 #endif
11354 }
11355
11356 static void account_freq_event(void)
11357 {
11358 if (tick_nohz_full_enabled())
11359 account_freq_event_nohz();
11360 else
11361 atomic_inc(&nr_freq_events);
11362 }
11363
11364
11365 static void account_event(struct perf_event *event)
11366 {
11367 bool inc = false;
11368
11369 if (event->parent)
11370 return;
11371
11372 if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
11373 inc = true;
11374 if (event->attr.mmap || event->attr.mmap_data)
11375 atomic_inc(&nr_mmap_events);
11376 if (event->attr.build_id)
11377 atomic_inc(&nr_build_id_events);
11378 if (event->attr.comm)
11379 atomic_inc(&nr_comm_events);
11380 if (event->attr.namespaces)
11381 atomic_inc(&nr_namespaces_events);
11382 if (event->attr.cgroup)
11383 atomic_inc(&nr_cgroup_events);
11384 if (event->attr.task)
11385 atomic_inc(&nr_task_events);
11386 if (event->attr.freq)
11387 account_freq_event();
11388 if (event->attr.context_switch) {
11389 atomic_inc(&nr_switch_events);
11390 inc = true;
11391 }
11392 if (has_branch_stack(event))
11393 inc = true;
11394 if (is_cgroup_event(event))
11395 inc = true;
11396 if (event->attr.ksymbol)
11397 atomic_inc(&nr_ksymbol_events);
11398 if (event->attr.bpf_event)
11399 atomic_inc(&nr_bpf_events);
11400 if (event->attr.text_poke)
11401 atomic_inc(&nr_text_poke_events);
11402
11403 if (inc) {
11404 /*
11405 * We need the mutex here because static_branch_enable()
11406 * must complete *before* the perf_sched_count increment
11407 * becomes visible.
11408 */
11409 if (atomic_inc_not_zero(&perf_sched_count))
11410 goto enabled;
11411
11412 mutex_lock(&perf_sched_mutex);
11413 if (!atomic_read(&perf_sched_count)) {
11414 static_branch_enable(&perf_sched_events);
11415 /*
11416 * Guarantee that all CPUs observe they key change and
11417 * call the perf scheduling hooks before proceeding to
11418 * install events that need them.
11419 */
11420 synchronize_rcu();
11421 }
11422 /*
11423 * Now that we have waited for the sync_sched(), allow further
11424 * increments to by-pass the mutex.
11425 */
11426 atomic_inc(&perf_sched_count);
11427 mutex_unlock(&perf_sched_mutex);
11428 }
11429 enabled:
11430
11431 account_event_cpu(event, event->cpu);
11432
11433 account_pmu_sb_event(event);
11434 }
11435
11436 /*
11437 * Allocate and initialize an event structure
11438 */
11439 static struct perf_event *
11440 perf_event_alloc(struct perf_event_attr *attr, int cpu,
11441 struct task_struct *task,
11442 struct perf_event *group_leader,
11443 struct perf_event *parent_event,
11444 perf_overflow_handler_t overflow_handler,
11445 void *context, int cgroup_fd)
11446 {
11447 struct pmu *pmu;
11448 struct perf_event *event;
11449 struct hw_perf_event *hwc;
11450 long err = -EINVAL;
11451 int node;
11452
11453 if ((unsigned)cpu >= nr_cpu_ids) {
11454 if (!task || cpu != -1)
11455 return ERR_PTR(-EINVAL);
11456 }
11457 if (attr->sigtrap && !task) {
11458 /* Requires a task: avoid signalling random tasks. */
11459 return ERR_PTR(-EINVAL);
11460 }
11461
11462 node = (cpu >= 0) ? cpu_to_node(cpu) : -1;
11463 event = kmem_cache_alloc_node(perf_event_cache, GFP_KERNEL | __GFP_ZERO,
11464 node);
11465 if (!event)
11466 return ERR_PTR(-ENOMEM);
11467
11468 /*
11469 * Single events are their own group leaders, with an
11470 * empty sibling list:
11471 */
11472 if (!group_leader)
11473 group_leader = event;
11474
11475 mutex_init(&event->child_mutex);
11476 INIT_LIST_HEAD(&event->child_list);
11477
11478 INIT_LIST_HEAD(&event->event_entry);
11479 INIT_LIST_HEAD(&event->sibling_list);
11480 INIT_LIST_HEAD(&event->active_list);
11481 init_event_group(event);
11482 INIT_LIST_HEAD(&event->rb_entry);
11483 INIT_LIST_HEAD(&event->active_entry);
11484 INIT_LIST_HEAD(&event->addr_filters.list);
11485 INIT_HLIST_NODE(&event->hlist_entry);
11486
11487
11488 init_waitqueue_head(&event->waitq);
11489 event->pending_disable = -1;
11490 init_irq_work(&event->pending, perf_pending_event);
11491
11492 mutex_init(&event->mmap_mutex);
11493 raw_spin_lock_init(&event->addr_filters.lock);
11494
11495 atomic_long_set(&event->refcount, 1);
11496 event->cpu = cpu;
11497 event->attr = *attr;
11498 event->group_leader = group_leader;
11499 event->pmu = NULL;
11500 event->oncpu = -1;
11501
11502 event->parent = parent_event;
11503
11504 event->ns = get_pid_ns(task_active_pid_ns(current));
11505 event->id = atomic64_inc_return(&perf_event_id);
11506
11507 event->state = PERF_EVENT_STATE_INACTIVE;
11508
11509 if (event->attr.sigtrap)
11510 atomic_set(&event->event_limit, 1);
11511
11512 if (task) {
11513 event->attach_state = PERF_ATTACH_TASK;
11514 /*
11515 * XXX pmu::event_init needs to know what task to account to
11516 * and we cannot use the ctx information because we need the
11517 * pmu before we get a ctx.
11518 */
11519 event->hw.target = get_task_struct(task);
11520 }
11521
11522 event->clock = &local_clock;
11523 if (parent_event)
11524 event->clock = parent_event->clock;
11525
11526 if (!overflow_handler && parent_event) {
11527 overflow_handler = parent_event->overflow_handler;
11528 context = parent_event->overflow_handler_context;
11529 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
11530 if (overflow_handler == bpf_overflow_handler) {
11531 struct bpf_prog *prog = parent_event->prog;
11532
11533 bpf_prog_inc(prog);
11534 event->prog = prog;
11535 event->orig_overflow_handler =
11536 parent_event->orig_overflow_handler;
11537 }
11538 #endif
11539 }
11540
11541 if (overflow_handler) {
11542 event->overflow_handler = overflow_handler;
11543 event->overflow_handler_context = context;
11544 } else if (is_write_backward(event)){
11545 event->overflow_handler = perf_event_output_backward;
11546 event->overflow_handler_context = NULL;
11547 } else {
11548 event->overflow_handler = perf_event_output_forward;
11549 event->overflow_handler_context = NULL;
11550 }
11551
11552 perf_event__state_init(event);
11553
11554 pmu = NULL;
11555
11556 hwc = &event->hw;
11557 hwc->sample_period = attr->sample_period;
11558 if (attr->freq && attr->sample_freq)
11559 hwc->sample_period = 1;
11560 hwc->last_period = hwc->sample_period;
11561
11562 local64_set(&hwc->period_left, hwc->sample_period);
11563
11564 /*
11565 * We currently do not support PERF_SAMPLE_READ on inherited events.
11566 * See perf_output_read().
11567 */
11568 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
11569 goto err_ns;
11570
11571 if (!has_branch_stack(event))
11572 event->attr.branch_sample_type = 0;
11573
11574 pmu = perf_init_event(event);
11575 if (IS_ERR(pmu)) {
11576 err = PTR_ERR(pmu);
11577 goto err_ns;
11578 }
11579
11580 /*
11581 * Disallow uncore-cgroup events, they don't make sense as the cgroup will
11582 * be different on other CPUs in the uncore mask.
11583 */
11584 if (pmu->task_ctx_nr == perf_invalid_context && cgroup_fd != -1) {
11585 err = -EINVAL;
11586 goto err_pmu;
11587 }
11588
11589 if (event->attr.aux_output &&
11590 !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) {
11591 err = -EOPNOTSUPP;
11592 goto err_pmu;
11593 }
11594
11595 if (cgroup_fd != -1) {
11596 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
11597 if (err)
11598 goto err_pmu;
11599 }
11600
11601 err = exclusive_event_init(event);
11602 if (err)
11603 goto err_pmu;
11604
11605 if (has_addr_filter(event)) {
11606 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
11607 sizeof(struct perf_addr_filter_range),
11608 GFP_KERNEL);
11609 if (!event->addr_filter_ranges) {
11610 err = -ENOMEM;
11611 goto err_per_task;
11612 }
11613
11614 /*
11615 * Clone the parent's vma offsets: they are valid until exec()
11616 * even if the mm is not shared with the parent.
11617 */
11618 if (event->parent) {
11619 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
11620
11621 raw_spin_lock_irq(&ifh->lock);
11622 memcpy(event->addr_filter_ranges,
11623 event->parent->addr_filter_ranges,
11624 pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
11625 raw_spin_unlock_irq(&ifh->lock);
11626 }
11627
11628 /* force hw sync on the address filters */
11629 event->addr_filters_gen = 1;
11630 }
11631
11632 if (!event->parent) {
11633 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
11634 err = get_callchain_buffers(attr->sample_max_stack);
11635 if (err)
11636 goto err_addr_filters;
11637 }
11638 }
11639
11640 err = security_perf_event_alloc(event);
11641 if (err)
11642 goto err_callchain_buffer;
11643
11644 /* symmetric to unaccount_event() in _free_event() */
11645 account_event(event);
11646
11647 return event;
11648
11649 err_callchain_buffer:
11650 if (!event->parent) {
11651 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
11652 put_callchain_buffers();
11653 }
11654 err_addr_filters:
11655 kfree(event->addr_filter_ranges);
11656
11657 err_per_task:
11658 exclusive_event_destroy(event);
11659
11660 err_pmu:
11661 if (is_cgroup_event(event))
11662 perf_detach_cgroup(event);
11663 if (event->destroy)
11664 event->destroy(event);
11665 module_put(pmu->module);
11666 err_ns:
11667 if (event->ns)
11668 put_pid_ns(event->ns);
11669 if (event->hw.target)
11670 put_task_struct(event->hw.target);
11671 kmem_cache_free(perf_event_cache, event);
11672
11673 return ERR_PTR(err);
11674 }
11675
11676 static int perf_copy_attr(struct perf_event_attr __user *uattr,
11677 struct perf_event_attr *attr)
11678 {
11679 u32 size;
11680 int ret;
11681
11682 /* Zero the full structure, so that a short copy will be nice. */
11683 memset(attr, 0, sizeof(*attr));
11684
11685 ret = get_user(size, &uattr->size);
11686 if (ret)
11687 return ret;
11688
11689 /* ABI compatibility quirk: */
11690 if (!size)
11691 size = PERF_ATTR_SIZE_VER0;
11692 if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE)
11693 goto err_size;
11694
11695 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
11696 if (ret) {
11697 if (ret == -E2BIG)
11698 goto err_size;
11699 return ret;
11700 }
11701
11702 attr->size = size;
11703
11704 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
11705 return -EINVAL;
11706
11707 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
11708 return -EINVAL;
11709
11710 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
11711 return -EINVAL;
11712
11713 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
11714 u64 mask = attr->branch_sample_type;
11715
11716 /* only using defined bits */
11717 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
11718 return -EINVAL;
11719
11720 /* at least one branch bit must be set */
11721 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
11722 return -EINVAL;
11723
11724 /* propagate priv level, when not set for branch */
11725 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
11726
11727 /* exclude_kernel checked on syscall entry */
11728 if (!attr->exclude_kernel)
11729 mask |= PERF_SAMPLE_BRANCH_KERNEL;
11730
11731 if (!attr->exclude_user)
11732 mask |= PERF_SAMPLE_BRANCH_USER;
11733
11734 if (!attr->exclude_hv)
11735 mask |= PERF_SAMPLE_BRANCH_HV;
11736 /*
11737 * adjust user setting (for HW filter setup)
11738 */
11739 attr->branch_sample_type = mask;
11740 }
11741 /* privileged levels capture (kernel, hv): check permissions */
11742 if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) {
11743 ret = perf_allow_kernel(attr);
11744 if (ret)
11745 return ret;
11746 }
11747 }
11748
11749 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
11750 ret = perf_reg_validate(attr->sample_regs_user);
11751 if (ret)
11752 return ret;
11753 }
11754
11755 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
11756 if (!arch_perf_have_user_stack_dump())
11757 return -ENOSYS;
11758
11759 /*
11760 * We have __u32 type for the size, but so far
11761 * we can only use __u16 as maximum due to the
11762 * __u16 sample size limit.
11763 */
11764 if (attr->sample_stack_user >= USHRT_MAX)
11765 return -EINVAL;
11766 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
11767 return -EINVAL;
11768 }
11769
11770 if (!attr->sample_max_stack)
11771 attr->sample_max_stack = sysctl_perf_event_max_stack;
11772
11773 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
11774 ret = perf_reg_validate(attr->sample_regs_intr);
11775
11776 #ifndef CONFIG_CGROUP_PERF
11777 if (attr->sample_type & PERF_SAMPLE_CGROUP)
11778 return -EINVAL;
11779 #endif
11780 if ((attr->sample_type & PERF_SAMPLE_WEIGHT) &&
11781 (attr->sample_type & PERF_SAMPLE_WEIGHT_STRUCT))
11782 return -EINVAL;
11783
11784 if (!attr->inherit && attr->inherit_thread)
11785 return -EINVAL;
11786
11787 if (attr->remove_on_exec && attr->enable_on_exec)
11788 return -EINVAL;
11789
11790 if (attr->sigtrap && !attr->remove_on_exec)
11791 return -EINVAL;
11792
11793 out:
11794 return ret;
11795
11796 err_size:
11797 put_user(sizeof(*attr), &uattr->size);
11798 ret = -E2BIG;
11799 goto out;
11800 }
11801
11802 static int
11803 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
11804 {
11805 struct perf_buffer *rb = NULL;
11806 int ret = -EINVAL;
11807
11808 if (!output_event)
11809 goto set;
11810
11811 /* don't allow circular references */
11812 if (event == output_event)
11813 goto out;
11814
11815 /*
11816 * Don't allow cross-cpu buffers
11817 */
11818 if (output_event->cpu != event->cpu)
11819 goto out;
11820
11821 /*
11822 * If its not a per-cpu rb, it must be the same task.
11823 */
11824 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
11825 goto out;
11826
11827 /*
11828 * Mixing clocks in the same buffer is trouble you don't need.
11829 */
11830 if (output_event->clock != event->clock)
11831 goto out;
11832
11833 /*
11834 * Either writing ring buffer from beginning or from end.
11835 * Mixing is not allowed.
11836 */
11837 if (is_write_backward(output_event) != is_write_backward(event))
11838 goto out;
11839
11840 /*
11841 * If both events generate aux data, they must be on the same PMU
11842 */
11843 if (has_aux(event) && has_aux(output_event) &&
11844 event->pmu != output_event->pmu)
11845 goto out;
11846
11847 set:
11848 mutex_lock(&event->mmap_mutex);
11849 /* Can't redirect output if we've got an active mmap() */
11850 if (atomic_read(&event->mmap_count))
11851 goto unlock;
11852
11853 if (output_event) {
11854 /* get the rb we want to redirect to */
11855 rb = ring_buffer_get(output_event);
11856 if (!rb)
11857 goto unlock;
11858 }
11859
11860 ring_buffer_attach(event, rb);
11861
11862 ret = 0;
11863 unlock:
11864 mutex_unlock(&event->mmap_mutex);
11865
11866 out:
11867 return ret;
11868 }
11869
11870 static void mutex_lock_double(struct mutex *a, struct mutex *b)
11871 {
11872 if (b < a)
11873 swap(a, b);
11874
11875 mutex_lock(a);
11876 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
11877 }
11878
11879 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
11880 {
11881 bool nmi_safe = false;
11882
11883 switch (clk_id) {
11884 case CLOCK_MONOTONIC:
11885 event->clock = &ktime_get_mono_fast_ns;
11886 nmi_safe = true;
11887 break;
11888
11889 case CLOCK_MONOTONIC_RAW:
11890 event->clock = &ktime_get_raw_fast_ns;
11891 nmi_safe = true;
11892 break;
11893
11894 case CLOCK_REALTIME:
11895 event->clock = &ktime_get_real_ns;
11896 break;
11897
11898 case CLOCK_BOOTTIME:
11899 event->clock = &ktime_get_boottime_ns;
11900 break;
11901
11902 case CLOCK_TAI:
11903 event->clock = &ktime_get_clocktai_ns;
11904 break;
11905
11906 default:
11907 return -EINVAL;
11908 }
11909
11910 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
11911 return -EINVAL;
11912
11913 return 0;
11914 }
11915
11916 /*
11917 * Variation on perf_event_ctx_lock_nested(), except we take two context
11918 * mutexes.
11919 */
11920 static struct perf_event_context *
11921 __perf_event_ctx_lock_double(struct perf_event *group_leader,
11922 struct perf_event_context *ctx)
11923 {
11924 struct perf_event_context *gctx;
11925
11926 again:
11927 rcu_read_lock();
11928 gctx = READ_ONCE(group_leader->ctx);
11929 if (!refcount_inc_not_zero(&gctx->refcount)) {
11930 rcu_read_unlock();
11931 goto again;
11932 }
11933 rcu_read_unlock();
11934
11935 mutex_lock_double(&gctx->mutex, &ctx->mutex);
11936
11937 if (group_leader->ctx != gctx) {
11938 mutex_unlock(&ctx->mutex);
11939 mutex_unlock(&gctx->mutex);
11940 put_ctx(gctx);
11941 goto again;
11942 }
11943
11944 return gctx;
11945 }
11946
11947 static bool
11948 perf_check_permission(struct perf_event_attr *attr, struct task_struct *task)
11949 {
11950 unsigned int ptrace_mode = PTRACE_MODE_READ_REALCREDS;
11951 bool is_capable = perfmon_capable();
11952
11953 if (attr->sigtrap) {
11954 /*
11955 * perf_event_attr::sigtrap sends signals to the other task.
11956 * Require the current task to also have CAP_KILL.
11957 */
11958 rcu_read_lock();
11959 is_capable &= ns_capable(__task_cred(task)->user_ns, CAP_KILL);
11960 rcu_read_unlock();
11961
11962 /*
11963 * If the required capabilities aren't available, checks for
11964 * ptrace permissions: upgrade to ATTACH, since sending signals
11965 * can effectively change the target task.
11966 */
11967 ptrace_mode = PTRACE_MODE_ATTACH_REALCREDS;
11968 }
11969
11970 /*
11971 * Preserve ptrace permission check for backwards compatibility. The
11972 * ptrace check also includes checks that the current task and other
11973 * task have matching uids, and is therefore not done here explicitly.
11974 */
11975 return is_capable || ptrace_may_access(task, ptrace_mode);
11976 }
11977
11978 /**
11979 * sys_perf_event_open - open a performance event, associate it to a task/cpu
11980 *
11981 * @attr_uptr: event_id type attributes for monitoring/sampling
11982 * @pid: target pid
11983 * @cpu: target cpu
11984 * @group_fd: group leader event fd
11985 * @flags: perf event open flags
11986 */
11987 SYSCALL_DEFINE5(perf_event_open,
11988 struct perf_event_attr __user *, attr_uptr,
11989 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
11990 {
11991 struct perf_event *group_leader = NULL, *output_event = NULL;
11992 struct perf_event *event, *sibling;
11993 struct perf_event_attr attr;
11994 struct perf_event_context *ctx, *gctx;
11995 struct file *event_file = NULL;
11996 struct fd group = {NULL, 0};
11997 struct task_struct *task = NULL;
11998 struct pmu *pmu;
11999 int event_fd;
12000 int move_group = 0;
12001 int err;
12002 int f_flags = O_RDWR;
12003 int cgroup_fd = -1;
12004
12005 /* for future expandability... */
12006 if (flags & ~PERF_FLAG_ALL)
12007 return -EINVAL;
12008
12009 /* Do we allow access to perf_event_open(2) ? */
12010 err = security_perf_event_open(&attr, PERF_SECURITY_OPEN);
12011 if (err)
12012 return err;
12013
12014 err = perf_copy_attr(attr_uptr, &attr);
12015 if (err)
12016 return err;
12017
12018 if (!attr.exclude_kernel) {
12019 err = perf_allow_kernel(&attr);
12020 if (err)
12021 return err;
12022 }
12023
12024 if (attr.namespaces) {
12025 if (!perfmon_capable())
12026 return -EACCES;
12027 }
12028
12029 if (attr.freq) {
12030 if (attr.sample_freq > sysctl_perf_event_sample_rate)
12031 return -EINVAL;
12032 } else {
12033 if (attr.sample_period & (1ULL << 63))
12034 return -EINVAL;
12035 }
12036
12037 /* Only privileged users can get physical addresses */
12038 if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) {
12039 err = perf_allow_kernel(&attr);
12040 if (err)
12041 return err;
12042 }
12043
12044 /* REGS_INTR can leak data, lockdown must prevent this */
12045 if (attr.sample_type & PERF_SAMPLE_REGS_INTR) {
12046 err = security_locked_down(LOCKDOWN_PERF);
12047 if (err)
12048 return err;
12049 }
12050
12051 /*
12052 * In cgroup mode, the pid argument is used to pass the fd
12053 * opened to the cgroup directory in cgroupfs. The cpu argument
12054 * designates the cpu on which to monitor threads from that
12055 * cgroup.
12056 */
12057 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
12058 return -EINVAL;
12059
12060 if (flags & PERF_FLAG_FD_CLOEXEC)
12061 f_flags |= O_CLOEXEC;
12062
12063 event_fd = get_unused_fd_flags(f_flags);
12064 if (event_fd < 0)
12065 return event_fd;
12066
12067 if (group_fd != -1) {
12068 err = perf_fget_light(group_fd, &group);
12069 if (err)
12070 goto err_fd;
12071 group_leader = group.file->private_data;
12072 if (flags & PERF_FLAG_FD_OUTPUT)
12073 output_event = group_leader;
12074 if (flags & PERF_FLAG_FD_NO_GROUP)
12075 group_leader = NULL;
12076 }
12077
12078 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
12079 task = find_lively_task_by_vpid(pid);
12080 if (IS_ERR(task)) {
12081 err = PTR_ERR(task);
12082 goto err_group_fd;
12083 }
12084 }
12085
12086 if (task && group_leader &&
12087 group_leader->attr.inherit != attr.inherit) {
12088 err = -EINVAL;
12089 goto err_task;
12090 }
12091
12092 if (flags & PERF_FLAG_PID_CGROUP)
12093 cgroup_fd = pid;
12094
12095 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
12096 NULL, NULL, cgroup_fd);
12097 if (IS_ERR(event)) {
12098 err = PTR_ERR(event);
12099 goto err_task;
12100 }
12101
12102 if (is_sampling_event(event)) {
12103 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
12104 err = -EOPNOTSUPP;
12105 goto err_alloc;
12106 }
12107 }
12108
12109 /*
12110 * Special case software events and allow them to be part of
12111 * any hardware group.
12112 */
12113 pmu = event->pmu;
12114
12115 if (attr.use_clockid) {
12116 err = perf_event_set_clock(event, attr.clockid);
12117 if (err)
12118 goto err_alloc;
12119 }
12120
12121 if (pmu->task_ctx_nr == perf_sw_context)
12122 event->event_caps |= PERF_EV_CAP_SOFTWARE;
12123
12124 if (group_leader) {
12125 if (is_software_event(event) &&
12126 !in_software_context(group_leader)) {
12127 /*
12128 * If the event is a sw event, but the group_leader
12129 * is on hw context.
12130 *
12131 * Allow the addition of software events to hw
12132 * groups, this is safe because software events
12133 * never fail to schedule.
12134 */
12135 pmu = group_leader->ctx->pmu;
12136 } else if (!is_software_event(event) &&
12137 is_software_event(group_leader) &&
12138 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
12139 /*
12140 * In case the group is a pure software group, and we
12141 * try to add a hardware event, move the whole group to
12142 * the hardware context.
12143 */
12144 move_group = 1;
12145 }
12146 }
12147
12148 /*
12149 * Get the target context (task or percpu):
12150 */
12151 ctx = find_get_context(pmu, task, event);
12152 if (IS_ERR(ctx)) {
12153 err = PTR_ERR(ctx);
12154 goto err_alloc;
12155 }
12156
12157 /*
12158 * Look up the group leader (we will attach this event to it):
12159 */
12160 if (group_leader) {
12161 err = -EINVAL;
12162
12163 /*
12164 * Do not allow a recursive hierarchy (this new sibling
12165 * becoming part of another group-sibling):
12166 */
12167 if (group_leader->group_leader != group_leader)
12168 goto err_context;
12169
12170 /* All events in a group should have the same clock */
12171 if (group_leader->clock != event->clock)
12172 goto err_context;
12173
12174 /*
12175 * Make sure we're both events for the same CPU;
12176 * grouping events for different CPUs is broken; since
12177 * you can never concurrently schedule them anyhow.
12178 */
12179 if (group_leader->cpu != event->cpu)
12180 goto err_context;
12181
12182 /*
12183 * Make sure we're both on the same task, or both
12184 * per-CPU events.
12185 */
12186 if (group_leader->ctx->task != ctx->task)
12187 goto err_context;
12188
12189 /*
12190 * Do not allow to attach to a group in a different task
12191 * or CPU context. If we're moving SW events, we'll fix
12192 * this up later, so allow that.
12193 */
12194 if (!move_group && group_leader->ctx != ctx)
12195 goto err_context;
12196
12197 /*
12198 * Only a group leader can be exclusive or pinned
12199 */
12200 if (attr.exclusive || attr.pinned)
12201 goto err_context;
12202 }
12203
12204 if (output_event) {
12205 err = perf_event_set_output(event, output_event);
12206 if (err)
12207 goto err_context;
12208 }
12209
12210 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
12211 f_flags);
12212 if (IS_ERR(event_file)) {
12213 err = PTR_ERR(event_file);
12214 event_file = NULL;
12215 goto err_context;
12216 }
12217
12218 if (task) {
12219 err = down_read_interruptible(&task->signal->exec_update_lock);
12220 if (err)
12221 goto err_file;
12222
12223 /*
12224 * We must hold exec_update_lock across this and any potential
12225 * perf_install_in_context() call for this new event to
12226 * serialize against exec() altering our credentials (and the
12227 * perf_event_exit_task() that could imply).
12228 */
12229 err = -EACCES;
12230 if (!perf_check_permission(&attr, task))
12231 goto err_cred;
12232 }
12233
12234 if (move_group) {
12235 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
12236
12237 if (gctx->task == TASK_TOMBSTONE) {
12238 err = -ESRCH;
12239 goto err_locked;
12240 }
12241
12242 /*
12243 * Check if we raced against another sys_perf_event_open() call
12244 * moving the software group underneath us.
12245 */
12246 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
12247 /*
12248 * If someone moved the group out from under us, check
12249 * if this new event wound up on the same ctx, if so
12250 * its the regular !move_group case, otherwise fail.
12251 */
12252 if (gctx != ctx) {
12253 err = -EINVAL;
12254 goto err_locked;
12255 } else {
12256 perf_event_ctx_unlock(group_leader, gctx);
12257 move_group = 0;
12258 }
12259 }
12260
12261 /*
12262 * Failure to create exclusive events returns -EBUSY.
12263 */
12264 err = -EBUSY;
12265 if (!exclusive_event_installable(group_leader, ctx))
12266 goto err_locked;
12267
12268 for_each_sibling_event(sibling, group_leader) {
12269 if (!exclusive_event_installable(sibling, ctx))
12270 goto err_locked;
12271 }
12272 } else {
12273 mutex_lock(&ctx->mutex);
12274 }
12275
12276 if (ctx->task == TASK_TOMBSTONE) {
12277 err = -ESRCH;
12278 goto err_locked;
12279 }
12280
12281 if (!perf_event_validate_size(event)) {
12282 err = -E2BIG;
12283 goto err_locked;
12284 }
12285
12286 if (!task) {
12287 /*
12288 * Check if the @cpu we're creating an event for is online.
12289 *
12290 * We use the perf_cpu_context::ctx::mutex to serialize against
12291 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12292 */
12293 struct perf_cpu_context *cpuctx =
12294 container_of(ctx, struct perf_cpu_context, ctx);
12295
12296 if (!cpuctx->online) {
12297 err = -ENODEV;
12298 goto err_locked;
12299 }
12300 }
12301
12302 if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) {
12303 err = -EINVAL;
12304 goto err_locked;
12305 }
12306
12307 /*
12308 * Must be under the same ctx::mutex as perf_install_in_context(),
12309 * because we need to serialize with concurrent event creation.
12310 */
12311 if (!exclusive_event_installable(event, ctx)) {
12312 err = -EBUSY;
12313 goto err_locked;
12314 }
12315
12316 WARN_ON_ONCE(ctx->parent_ctx);
12317
12318 /*
12319 * This is the point on no return; we cannot fail hereafter. This is
12320 * where we start modifying current state.
12321 */
12322
12323 if (move_group) {
12324 /*
12325 * See perf_event_ctx_lock() for comments on the details
12326 * of swizzling perf_event::ctx.
12327 */
12328 perf_remove_from_context(group_leader, 0);
12329 put_ctx(gctx);
12330
12331 for_each_sibling_event(sibling, group_leader) {
12332 perf_remove_from_context(sibling, 0);
12333 put_ctx(gctx);
12334 }
12335
12336 /*
12337 * Wait for everybody to stop referencing the events through
12338 * the old lists, before installing it on new lists.
12339 */
12340 synchronize_rcu();
12341
12342 /*
12343 * Install the group siblings before the group leader.
12344 *
12345 * Because a group leader will try and install the entire group
12346 * (through the sibling list, which is still in-tact), we can
12347 * end up with siblings installed in the wrong context.
12348 *
12349 * By installing siblings first we NO-OP because they're not
12350 * reachable through the group lists.
12351 */
12352 for_each_sibling_event(sibling, group_leader) {
12353 perf_event__state_init(sibling);
12354 perf_install_in_context(ctx, sibling, sibling->cpu);
12355 get_ctx(ctx);
12356 }
12357
12358 /*
12359 * Removing from the context ends up with disabled
12360 * event. What we want here is event in the initial
12361 * startup state, ready to be add into new context.
12362 */
12363 perf_event__state_init(group_leader);
12364 perf_install_in_context(ctx, group_leader, group_leader->cpu);
12365 get_ctx(ctx);
12366 }
12367
12368 /*
12369 * Precalculate sample_data sizes; do while holding ctx::mutex such
12370 * that we're serialized against further additions and before
12371 * perf_install_in_context() which is the point the event is active and
12372 * can use these values.
12373 */
12374 perf_event__header_size(event);
12375 perf_event__id_header_size(event);
12376
12377 event->owner = current;
12378
12379 perf_install_in_context(ctx, event, event->cpu);
12380 perf_unpin_context(ctx);
12381
12382 if (move_group)
12383 perf_event_ctx_unlock(group_leader, gctx);
12384 mutex_unlock(&ctx->mutex);
12385
12386 if (task) {
12387 up_read(&task->signal->exec_update_lock);
12388 put_task_struct(task);
12389 }
12390
12391 mutex_lock(&current->perf_event_mutex);
12392 list_add_tail(&event->owner_entry, &current->perf_event_list);
12393 mutex_unlock(&current->perf_event_mutex);
12394
12395 /*
12396 * Drop the reference on the group_event after placing the
12397 * new event on the sibling_list. This ensures destruction
12398 * of the group leader will find the pointer to itself in
12399 * perf_group_detach().
12400 */
12401 fdput(group);
12402 fd_install(event_fd, event_file);
12403 return event_fd;
12404
12405 err_locked:
12406 if (move_group)
12407 perf_event_ctx_unlock(group_leader, gctx);
12408 mutex_unlock(&ctx->mutex);
12409 err_cred:
12410 if (task)
12411 up_read(&task->signal->exec_update_lock);
12412 err_file:
12413 fput(event_file);
12414 err_context:
12415 perf_unpin_context(ctx);
12416 put_ctx(ctx);
12417 err_alloc:
12418 /*
12419 * If event_file is set, the fput() above will have called ->release()
12420 * and that will take care of freeing the event.
12421 */
12422 if (!event_file)
12423 free_event(event);
12424 err_task:
12425 if (task)
12426 put_task_struct(task);
12427 err_group_fd:
12428 fdput(group);
12429 err_fd:
12430 put_unused_fd(event_fd);
12431 return err;
12432 }
12433
12434 /**
12435 * perf_event_create_kernel_counter
12436 *
12437 * @attr: attributes of the counter to create
12438 * @cpu: cpu in which the counter is bound
12439 * @task: task to profile (NULL for percpu)
12440 * @overflow_handler: callback to trigger when we hit the event
12441 * @context: context data could be used in overflow_handler callback
12442 */
12443 struct perf_event *
12444 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
12445 struct task_struct *task,
12446 perf_overflow_handler_t overflow_handler,
12447 void *context)
12448 {
12449 struct perf_event_context *ctx;
12450 struct perf_event *event;
12451 int err;
12452
12453 /*
12454 * Grouping is not supported for kernel events, neither is 'AUX',
12455 * make sure the caller's intentions are adjusted.
12456 */
12457 if (attr->aux_output)
12458 return ERR_PTR(-EINVAL);
12459
12460 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
12461 overflow_handler, context, -1);
12462 if (IS_ERR(event)) {
12463 err = PTR_ERR(event);
12464 goto err;
12465 }
12466
12467 /* Mark owner so we could distinguish it from user events. */
12468 event->owner = TASK_TOMBSTONE;
12469
12470 /*
12471 * Get the target context (task or percpu):
12472 */
12473 ctx = find_get_context(event->pmu, task, event);
12474 if (IS_ERR(ctx)) {
12475 err = PTR_ERR(ctx);
12476 goto err_free;
12477 }
12478
12479 WARN_ON_ONCE(ctx->parent_ctx);
12480 mutex_lock(&ctx->mutex);
12481 if (ctx->task == TASK_TOMBSTONE) {
12482 err = -ESRCH;
12483 goto err_unlock;
12484 }
12485
12486 if (!task) {
12487 /*
12488 * Check if the @cpu we're creating an event for is online.
12489 *
12490 * We use the perf_cpu_context::ctx::mutex to serialize against
12491 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12492 */
12493 struct perf_cpu_context *cpuctx =
12494 container_of(ctx, struct perf_cpu_context, ctx);
12495 if (!cpuctx->online) {
12496 err = -ENODEV;
12497 goto err_unlock;
12498 }
12499 }
12500
12501 if (!exclusive_event_installable(event, ctx)) {
12502 err = -EBUSY;
12503 goto err_unlock;
12504 }
12505
12506 perf_install_in_context(ctx, event, event->cpu);
12507 perf_unpin_context(ctx);
12508 mutex_unlock(&ctx->mutex);
12509
12510 return event;
12511
12512 err_unlock:
12513 mutex_unlock(&ctx->mutex);
12514 perf_unpin_context(ctx);
12515 put_ctx(ctx);
12516 err_free:
12517 free_event(event);
12518 err:
12519 return ERR_PTR(err);
12520 }
12521 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
12522
12523 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
12524 {
12525 struct perf_event_context *src_ctx;
12526 struct perf_event_context *dst_ctx;
12527 struct perf_event *event, *tmp;
12528 LIST_HEAD(events);
12529
12530 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
12531 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
12532
12533 /*
12534 * See perf_event_ctx_lock() for comments on the details
12535 * of swizzling perf_event::ctx.
12536 */
12537 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
12538 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
12539 event_entry) {
12540 perf_remove_from_context(event, 0);
12541 unaccount_event_cpu(event, src_cpu);
12542 put_ctx(src_ctx);
12543 list_add(&event->migrate_entry, &events);
12544 }
12545
12546 /*
12547 * Wait for the events to quiesce before re-instating them.
12548 */
12549 synchronize_rcu();
12550
12551 /*
12552 * Re-instate events in 2 passes.
12553 *
12554 * Skip over group leaders and only install siblings on this first
12555 * pass, siblings will not get enabled without a leader, however a
12556 * leader will enable its siblings, even if those are still on the old
12557 * context.
12558 */
12559 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
12560 if (event->group_leader == event)
12561 continue;
12562
12563 list_del(&event->migrate_entry);
12564 if (event->state >= PERF_EVENT_STATE_OFF)
12565 event->state = PERF_EVENT_STATE_INACTIVE;
12566 account_event_cpu(event, dst_cpu);
12567 perf_install_in_context(dst_ctx, event, dst_cpu);
12568 get_ctx(dst_ctx);
12569 }
12570
12571 /*
12572 * Once all the siblings are setup properly, install the group leaders
12573 * to make it go.
12574 */
12575 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
12576 list_del(&event->migrate_entry);
12577 if (event->state >= PERF_EVENT_STATE_OFF)
12578 event->state = PERF_EVENT_STATE_INACTIVE;
12579 account_event_cpu(event, dst_cpu);
12580 perf_install_in_context(dst_ctx, event, dst_cpu);
12581 get_ctx(dst_ctx);
12582 }
12583 mutex_unlock(&dst_ctx->mutex);
12584 mutex_unlock(&src_ctx->mutex);
12585 }
12586 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
12587
12588 static void sync_child_event(struct perf_event *child_event)
12589 {
12590 struct perf_event *parent_event = child_event->parent;
12591 u64 child_val;
12592
12593 if (child_event->attr.inherit_stat) {
12594 struct task_struct *task = child_event->ctx->task;
12595
12596 if (task && task != TASK_TOMBSTONE)
12597 perf_event_read_event(child_event, task);
12598 }
12599
12600 child_val = perf_event_count(child_event);
12601
12602 /*
12603 * Add back the child's count to the parent's count:
12604 */
12605 atomic64_add(child_val, &parent_event->child_count);
12606 atomic64_add(child_event->total_time_enabled,
12607 &parent_event->child_total_time_enabled);
12608 atomic64_add(child_event->total_time_running,
12609 &parent_event->child_total_time_running);
12610 }
12611
12612 static void
12613 perf_event_exit_event(struct perf_event *event, struct perf_event_context *ctx)
12614 {
12615 struct perf_event *parent_event = event->parent;
12616 unsigned long detach_flags = 0;
12617
12618 if (parent_event) {
12619 /*
12620 * Do not destroy the 'original' grouping; because of the
12621 * context switch optimization the original events could've
12622 * ended up in a random child task.
12623 *
12624 * If we were to destroy the original group, all group related
12625 * operations would cease to function properly after this
12626 * random child dies.
12627 *
12628 * Do destroy all inherited groups, we don't care about those
12629 * and being thorough is better.
12630 */
12631 detach_flags = DETACH_GROUP | DETACH_CHILD;
12632 mutex_lock(&parent_event->child_mutex);
12633 }
12634
12635 perf_remove_from_context(event, detach_flags);
12636
12637 raw_spin_lock_irq(&ctx->lock);
12638 if (event->state > PERF_EVENT_STATE_EXIT)
12639 perf_event_set_state(event, PERF_EVENT_STATE_EXIT);
12640 raw_spin_unlock_irq(&ctx->lock);
12641
12642 /*
12643 * Child events can be freed.
12644 */
12645 if (parent_event) {
12646 mutex_unlock(&parent_event->child_mutex);
12647 /*
12648 * Kick perf_poll() for is_event_hup();
12649 */
12650 perf_event_wakeup(parent_event);
12651 free_event(event);
12652 put_event(parent_event);
12653 return;
12654 }
12655
12656 /*
12657 * Parent events are governed by their filedesc, retain them.
12658 */
12659 perf_event_wakeup(event);
12660 }
12661
12662 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
12663 {
12664 struct perf_event_context *child_ctx, *clone_ctx = NULL;
12665 struct perf_event *child_event, *next;
12666
12667 WARN_ON_ONCE(child != current);
12668
12669 child_ctx = perf_pin_task_context(child, ctxn);
12670 if (!child_ctx)
12671 return;
12672
12673 /*
12674 * In order to reduce the amount of tricky in ctx tear-down, we hold
12675 * ctx::mutex over the entire thing. This serializes against almost
12676 * everything that wants to access the ctx.
12677 *
12678 * The exception is sys_perf_event_open() /
12679 * perf_event_create_kernel_count() which does find_get_context()
12680 * without ctx::mutex (it cannot because of the move_group double mutex
12681 * lock thing). See the comments in perf_install_in_context().
12682 */
12683 mutex_lock(&child_ctx->mutex);
12684
12685 /*
12686 * In a single ctx::lock section, de-schedule the events and detach the
12687 * context from the task such that we cannot ever get it scheduled back
12688 * in.
12689 */
12690 raw_spin_lock_irq(&child_ctx->lock);
12691 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
12692
12693 /*
12694 * Now that the context is inactive, destroy the task <-> ctx relation
12695 * and mark the context dead.
12696 */
12697 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
12698 put_ctx(child_ctx); /* cannot be last */
12699 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
12700 put_task_struct(current); /* cannot be last */
12701
12702 clone_ctx = unclone_ctx(child_ctx);
12703 raw_spin_unlock_irq(&child_ctx->lock);
12704
12705 if (clone_ctx)
12706 put_ctx(clone_ctx);
12707
12708 /*
12709 * Report the task dead after unscheduling the events so that we
12710 * won't get any samples after PERF_RECORD_EXIT. We can however still
12711 * get a few PERF_RECORD_READ events.
12712 */
12713 perf_event_task(child, child_ctx, 0);
12714
12715 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
12716 perf_event_exit_event(child_event, child_ctx);
12717
12718 mutex_unlock(&child_ctx->mutex);
12719
12720 put_ctx(child_ctx);
12721 }
12722
12723 /*
12724 * When a child task exits, feed back event values to parent events.
12725 *
12726 * Can be called with exec_update_lock held when called from
12727 * setup_new_exec().
12728 */
12729 void perf_event_exit_task(struct task_struct *child)
12730 {
12731 struct perf_event *event, *tmp;
12732 int ctxn;
12733
12734 mutex_lock(&child->perf_event_mutex);
12735 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
12736 owner_entry) {
12737 list_del_init(&event->owner_entry);
12738
12739 /*
12740 * Ensure the list deletion is visible before we clear
12741 * the owner, closes a race against perf_release() where
12742 * we need to serialize on the owner->perf_event_mutex.
12743 */
12744 smp_store_release(&event->owner, NULL);
12745 }
12746 mutex_unlock(&child->perf_event_mutex);
12747
12748 for_each_task_context_nr(ctxn)
12749 perf_event_exit_task_context(child, ctxn);
12750
12751 /*
12752 * The perf_event_exit_task_context calls perf_event_task
12753 * with child's task_ctx, which generates EXIT events for
12754 * child contexts and sets child->perf_event_ctxp[] to NULL.
12755 * At this point we need to send EXIT events to cpu contexts.
12756 */
12757 perf_event_task(child, NULL, 0);
12758 }
12759
12760 static void perf_free_event(struct perf_event *event,
12761 struct perf_event_context *ctx)
12762 {
12763 struct perf_event *parent = event->parent;
12764
12765 if (WARN_ON_ONCE(!parent))
12766 return;
12767
12768 mutex_lock(&parent->child_mutex);
12769 list_del_init(&event->child_list);
12770 mutex_unlock(&parent->child_mutex);
12771
12772 put_event(parent);
12773
12774 raw_spin_lock_irq(&ctx->lock);
12775 perf_group_detach(event);
12776 list_del_event(event, ctx);
12777 raw_spin_unlock_irq(&ctx->lock);
12778 free_event(event);
12779 }
12780
12781 /*
12782 * Free a context as created by inheritance by perf_event_init_task() below,
12783 * used by fork() in case of fail.
12784 *
12785 * Even though the task has never lived, the context and events have been
12786 * exposed through the child_list, so we must take care tearing it all down.
12787 */
12788 void perf_event_free_task(struct task_struct *task)
12789 {
12790 struct perf_event_context *ctx;
12791 struct perf_event *event, *tmp;
12792 int ctxn;
12793
12794 for_each_task_context_nr(ctxn) {
12795 ctx = task->perf_event_ctxp[ctxn];
12796 if (!ctx)
12797 continue;
12798
12799 mutex_lock(&ctx->mutex);
12800 raw_spin_lock_irq(&ctx->lock);
12801 /*
12802 * Destroy the task <-> ctx relation and mark the context dead.
12803 *
12804 * This is important because even though the task hasn't been
12805 * exposed yet the context has been (through child_list).
12806 */
12807 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
12808 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
12809 put_task_struct(task); /* cannot be last */
12810 raw_spin_unlock_irq(&ctx->lock);
12811
12812 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
12813 perf_free_event(event, ctx);
12814
12815 mutex_unlock(&ctx->mutex);
12816
12817 /*
12818 * perf_event_release_kernel() could've stolen some of our
12819 * child events and still have them on its free_list. In that
12820 * case we must wait for these events to have been freed (in
12821 * particular all their references to this task must've been
12822 * dropped).
12823 *
12824 * Without this copy_process() will unconditionally free this
12825 * task (irrespective of its reference count) and
12826 * _free_event()'s put_task_struct(event->hw.target) will be a
12827 * use-after-free.
12828 *
12829 * Wait for all events to drop their context reference.
12830 */
12831 wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1);
12832 put_ctx(ctx); /* must be last */
12833 }
12834 }
12835
12836 void perf_event_delayed_put(struct task_struct *task)
12837 {
12838 int ctxn;
12839
12840 for_each_task_context_nr(ctxn)
12841 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
12842 }
12843
12844 struct file *perf_event_get(unsigned int fd)
12845 {
12846 struct file *file = fget(fd);
12847 if (!file)
12848 return ERR_PTR(-EBADF);
12849
12850 if (file->f_op != &perf_fops) {
12851 fput(file);
12852 return ERR_PTR(-EBADF);
12853 }
12854
12855 return file;
12856 }
12857
12858 const struct perf_event *perf_get_event(struct file *file)
12859 {
12860 if (file->f_op != &perf_fops)
12861 return ERR_PTR(-EINVAL);
12862
12863 return file->private_data;
12864 }
12865
12866 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
12867 {
12868 if (!event)
12869 return ERR_PTR(-EINVAL);
12870
12871 return &event->attr;
12872 }
12873
12874 /*
12875 * Inherit an event from parent task to child task.
12876 *
12877 * Returns:
12878 * - valid pointer on success
12879 * - NULL for orphaned events
12880 * - IS_ERR() on error
12881 */
12882 static struct perf_event *
12883 inherit_event(struct perf_event *parent_event,
12884 struct task_struct *parent,
12885 struct perf_event_context *parent_ctx,
12886 struct task_struct *child,
12887 struct perf_event *group_leader,
12888 struct perf_event_context *child_ctx)
12889 {
12890 enum perf_event_state parent_state = parent_event->state;
12891 struct perf_event *child_event;
12892 unsigned long flags;
12893
12894 /*
12895 * Instead of creating recursive hierarchies of events,
12896 * we link inherited events back to the original parent,
12897 * which has a filp for sure, which we use as the reference
12898 * count:
12899 */
12900 if (parent_event->parent)
12901 parent_event = parent_event->parent;
12902
12903 child_event = perf_event_alloc(&parent_event->attr,
12904 parent_event->cpu,
12905 child,
12906 group_leader, parent_event,
12907 NULL, NULL, -1);
12908 if (IS_ERR(child_event))
12909 return child_event;
12910
12911
12912 if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) &&
12913 !child_ctx->task_ctx_data) {
12914 struct pmu *pmu = child_event->pmu;
12915
12916 child_ctx->task_ctx_data = alloc_task_ctx_data(pmu);
12917 if (!child_ctx->task_ctx_data) {
12918 free_event(child_event);
12919 return ERR_PTR(-ENOMEM);
12920 }
12921 }
12922
12923 /*
12924 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
12925 * must be under the same lock in order to serialize against
12926 * perf_event_release_kernel(), such that either we must observe
12927 * is_orphaned_event() or they will observe us on the child_list.
12928 */
12929 mutex_lock(&parent_event->child_mutex);
12930 if (is_orphaned_event(parent_event) ||
12931 !atomic_long_inc_not_zero(&parent_event->refcount)) {
12932 mutex_unlock(&parent_event->child_mutex);
12933 /* task_ctx_data is freed with child_ctx */
12934 free_event(child_event);
12935 return NULL;
12936 }
12937
12938 get_ctx(child_ctx);
12939
12940 /*
12941 * Make the child state follow the state of the parent event,
12942 * not its attr.disabled bit. We hold the parent's mutex,
12943 * so we won't race with perf_event_{en, dis}able_family.
12944 */
12945 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
12946 child_event->state = PERF_EVENT_STATE_INACTIVE;
12947 else
12948 child_event->state = PERF_EVENT_STATE_OFF;
12949
12950 if (parent_event->attr.freq) {
12951 u64 sample_period = parent_event->hw.sample_period;
12952 struct hw_perf_event *hwc = &child_event->hw;
12953
12954 hwc->sample_period = sample_period;
12955 hwc->last_period = sample_period;
12956
12957 local64_set(&hwc->period_left, sample_period);
12958 }
12959
12960 child_event->ctx = child_ctx;
12961 child_event->overflow_handler = parent_event->overflow_handler;
12962 child_event->overflow_handler_context
12963 = parent_event->overflow_handler_context;
12964
12965 /*
12966 * Precalculate sample_data sizes
12967 */
12968 perf_event__header_size(child_event);
12969 perf_event__id_header_size(child_event);
12970
12971 /*
12972 * Link it up in the child's context:
12973 */
12974 raw_spin_lock_irqsave(&child_ctx->lock, flags);
12975 add_event_to_ctx(child_event, child_ctx);
12976 child_event->attach_state |= PERF_ATTACH_CHILD;
12977 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
12978
12979 /*
12980 * Link this into the parent event's child list
12981 */
12982 list_add_tail(&child_event->child_list, &parent_event->child_list);
12983 mutex_unlock(&parent_event->child_mutex);
12984
12985 return child_event;
12986 }
12987
12988 /*
12989 * Inherits an event group.
12990 *
12991 * This will quietly suppress orphaned events; !inherit_event() is not an error.
12992 * This matches with perf_event_release_kernel() removing all child events.
12993 *
12994 * Returns:
12995 * - 0 on success
12996 * - <0 on error
12997 */
12998 static int inherit_group(struct perf_event *parent_event,
12999 struct task_struct *parent,
13000 struct perf_event_context *parent_ctx,
13001 struct task_struct *child,
13002 struct perf_event_context *child_ctx)
13003 {
13004 struct perf_event *leader;
13005 struct perf_event *sub;
13006 struct perf_event *child_ctr;
13007
13008 leader = inherit_event(parent_event, parent, parent_ctx,
13009 child, NULL, child_ctx);
13010 if (IS_ERR(leader))
13011 return PTR_ERR(leader);
13012 /*
13013 * @leader can be NULL here because of is_orphaned_event(). In this
13014 * case inherit_event() will create individual events, similar to what
13015 * perf_group_detach() would do anyway.
13016 */
13017 for_each_sibling_event(sub, parent_event) {
13018 child_ctr = inherit_event(sub, parent, parent_ctx,
13019 child, leader, child_ctx);
13020 if (IS_ERR(child_ctr))
13021 return PTR_ERR(child_ctr);
13022
13023 if (sub->aux_event == parent_event && child_ctr &&
13024 !perf_get_aux_event(child_ctr, leader))
13025 return -EINVAL;
13026 }
13027 return 0;
13028 }
13029
13030 /*
13031 * Creates the child task context and tries to inherit the event-group.
13032 *
13033 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
13034 * inherited_all set when we 'fail' to inherit an orphaned event; this is
13035 * consistent with perf_event_release_kernel() removing all child events.
13036 *
13037 * Returns:
13038 * - 0 on success
13039 * - <0 on error
13040 */
13041 static int
13042 inherit_task_group(struct perf_event *event, struct task_struct *parent,
13043 struct perf_event_context *parent_ctx,
13044 struct task_struct *child, int ctxn,
13045 u64 clone_flags, int *inherited_all)
13046 {
13047 int ret;
13048 struct perf_event_context *child_ctx;
13049
13050 if (!event->attr.inherit ||
13051 (event->attr.inherit_thread && !(clone_flags & CLONE_THREAD)) ||
13052 /* Do not inherit if sigtrap and signal handlers were cleared. */
13053 (event->attr.sigtrap && (clone_flags & CLONE_CLEAR_SIGHAND))) {
13054 *inherited_all = 0;
13055 return 0;
13056 }
13057
13058 child_ctx = child->perf_event_ctxp[ctxn];
13059 if (!child_ctx) {
13060 /*
13061 * This is executed from the parent task context, so
13062 * inherit events that have been marked for cloning.
13063 * First allocate and initialize a context for the
13064 * child.
13065 */
13066 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
13067 if (!child_ctx)
13068 return -ENOMEM;
13069
13070 child->perf_event_ctxp[ctxn] = child_ctx;
13071 }
13072
13073 ret = inherit_group(event, parent, parent_ctx,
13074 child, child_ctx);
13075
13076 if (ret)
13077 *inherited_all = 0;
13078
13079 return ret;
13080 }
13081
13082 /*
13083 * Initialize the perf_event context in task_struct
13084 */
13085 static int perf_event_init_context(struct task_struct *child, int ctxn,
13086 u64 clone_flags)
13087 {
13088 struct perf_event_context *child_ctx, *parent_ctx;
13089 struct perf_event_context *cloned_ctx;
13090 struct perf_event *event;
13091 struct task_struct *parent = current;
13092 int inherited_all = 1;
13093 unsigned long flags;
13094 int ret = 0;
13095
13096 if (likely(!parent->perf_event_ctxp[ctxn]))
13097 return 0;
13098
13099 /*
13100 * If the parent's context is a clone, pin it so it won't get
13101 * swapped under us.
13102 */
13103 parent_ctx = perf_pin_task_context(parent, ctxn);
13104 if (!parent_ctx)
13105 return 0;
13106
13107 /*
13108 * No need to check if parent_ctx != NULL here; since we saw
13109 * it non-NULL earlier, the only reason for it to become NULL
13110 * is if we exit, and since we're currently in the middle of
13111 * a fork we can't be exiting at the same time.
13112 */
13113
13114 /*
13115 * Lock the parent list. No need to lock the child - not PID
13116 * hashed yet and not running, so nobody can access it.
13117 */
13118 mutex_lock(&parent_ctx->mutex);
13119
13120 /*
13121 * We dont have to disable NMIs - we are only looking at
13122 * the list, not manipulating it:
13123 */
13124 perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
13125 ret = inherit_task_group(event, parent, parent_ctx,
13126 child, ctxn, clone_flags,
13127 &inherited_all);
13128 if (ret)
13129 goto out_unlock;
13130 }
13131
13132 /*
13133 * We can't hold ctx->lock when iterating the ->flexible_group list due
13134 * to allocations, but we need to prevent rotation because
13135 * rotate_ctx() will change the list from interrupt context.
13136 */
13137 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13138 parent_ctx->rotate_disable = 1;
13139 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13140
13141 perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
13142 ret = inherit_task_group(event, parent, parent_ctx,
13143 child, ctxn, clone_flags,
13144 &inherited_all);
13145 if (ret)
13146 goto out_unlock;
13147 }
13148
13149 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13150 parent_ctx->rotate_disable = 0;
13151
13152 child_ctx = child->perf_event_ctxp[ctxn];
13153
13154 if (child_ctx && inherited_all) {
13155 /*
13156 * Mark the child context as a clone of the parent
13157 * context, or of whatever the parent is a clone of.
13158 *
13159 * Note that if the parent is a clone, the holding of
13160 * parent_ctx->lock avoids it from being uncloned.
13161 */
13162 cloned_ctx = parent_ctx->parent_ctx;
13163 if (cloned_ctx) {
13164 child_ctx->parent_ctx = cloned_ctx;
13165 child_ctx->parent_gen = parent_ctx->parent_gen;
13166 } else {
13167 child_ctx->parent_ctx = parent_ctx;
13168 child_ctx->parent_gen = parent_ctx->generation;
13169 }
13170 get_ctx(child_ctx->parent_ctx);
13171 }
13172
13173 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13174 out_unlock:
13175 mutex_unlock(&parent_ctx->mutex);
13176
13177 perf_unpin_context(parent_ctx);
13178 put_ctx(parent_ctx);
13179
13180 return ret;
13181 }
13182
13183 /*
13184 * Initialize the perf_event context in task_struct
13185 */
13186 int perf_event_init_task(struct task_struct *child, u64 clone_flags)
13187 {
13188 int ctxn, ret;
13189
13190 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
13191 mutex_init(&child->perf_event_mutex);
13192 INIT_LIST_HEAD(&child->perf_event_list);
13193
13194 for_each_task_context_nr(ctxn) {
13195 ret = perf_event_init_context(child, ctxn, clone_flags);
13196 if (ret) {
13197 perf_event_free_task(child);
13198 return ret;
13199 }
13200 }
13201
13202 return 0;
13203 }
13204
13205 static void __init perf_event_init_all_cpus(void)
13206 {
13207 struct swevent_htable *swhash;
13208 int cpu;
13209
13210 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
13211
13212 for_each_possible_cpu(cpu) {
13213 swhash = &per_cpu(swevent_htable, cpu);
13214 mutex_init(&swhash->hlist_mutex);
13215 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
13216
13217 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
13218 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
13219
13220 #ifdef CONFIG_CGROUP_PERF
13221 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
13222 #endif
13223 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
13224 }
13225 }
13226
13227 static void perf_swevent_init_cpu(unsigned int cpu)
13228 {
13229 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
13230
13231 mutex_lock(&swhash->hlist_mutex);
13232 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
13233 struct swevent_hlist *hlist;
13234
13235 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
13236 WARN_ON(!hlist);
13237 rcu_assign_pointer(swhash->swevent_hlist, hlist);
13238 }
13239 mutex_unlock(&swhash->hlist_mutex);
13240 }
13241
13242 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
13243 static void __perf_event_exit_context(void *__info)
13244 {
13245 struct perf_event_context *ctx = __info;
13246 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
13247 struct perf_event *event;
13248
13249 raw_spin_lock(&ctx->lock);
13250 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
13251 list_for_each_entry(event, &ctx->event_list, event_entry)
13252 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
13253 raw_spin_unlock(&ctx->lock);
13254 }
13255
13256 static void perf_event_exit_cpu_context(int cpu)
13257 {
13258 struct perf_cpu_context *cpuctx;
13259 struct perf_event_context *ctx;
13260 struct pmu *pmu;
13261
13262 mutex_lock(&pmus_lock);
13263 list_for_each_entry(pmu, &pmus, entry) {
13264 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
13265 ctx = &cpuctx->ctx;
13266
13267 mutex_lock(&ctx->mutex);
13268 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
13269 cpuctx->online = 0;
13270 mutex_unlock(&ctx->mutex);
13271 }
13272 cpumask_clear_cpu(cpu, perf_online_mask);
13273 mutex_unlock(&pmus_lock);
13274 }
13275 #else
13276
13277 static void perf_event_exit_cpu_context(int cpu) { }
13278
13279 #endif
13280
13281 int perf_event_init_cpu(unsigned int cpu)
13282 {
13283 struct perf_cpu_context *cpuctx;
13284 struct perf_event_context *ctx;
13285 struct pmu *pmu;
13286
13287 perf_swevent_init_cpu(cpu);
13288
13289 mutex_lock(&pmus_lock);
13290 cpumask_set_cpu(cpu, perf_online_mask);
13291 list_for_each_entry(pmu, &pmus, entry) {
13292 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
13293 ctx = &cpuctx->ctx;
13294
13295 mutex_lock(&ctx->mutex);
13296 cpuctx->online = 1;
13297 mutex_unlock(&ctx->mutex);
13298 }
13299 mutex_unlock(&pmus_lock);
13300
13301 return 0;
13302 }
13303
13304 int perf_event_exit_cpu(unsigned int cpu)
13305 {
13306 perf_event_exit_cpu_context(cpu);
13307 return 0;
13308 }
13309
13310 static int
13311 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
13312 {
13313 int cpu;
13314
13315 for_each_online_cpu(cpu)
13316 perf_event_exit_cpu(cpu);
13317
13318 return NOTIFY_OK;
13319 }
13320
13321 /*
13322 * Run the perf reboot notifier at the very last possible moment so that
13323 * the generic watchdog code runs as long as possible.
13324 */
13325 static struct notifier_block perf_reboot_notifier = {
13326 .notifier_call = perf_reboot,
13327 .priority = INT_MIN,
13328 };
13329
13330 void __init perf_event_init(void)
13331 {
13332 int ret;
13333
13334 idr_init(&pmu_idr);
13335
13336 perf_event_init_all_cpus();
13337 init_srcu_struct(&pmus_srcu);
13338 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
13339 perf_pmu_register(&perf_cpu_clock, NULL, -1);
13340 perf_pmu_register(&perf_task_clock, NULL, -1);
13341 perf_tp_register();
13342 perf_event_init_cpu(smp_processor_id());
13343 register_reboot_notifier(&perf_reboot_notifier);
13344
13345 ret = init_hw_breakpoint();
13346 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
13347
13348 perf_event_cache = KMEM_CACHE(perf_event, SLAB_PANIC);
13349
13350 /*
13351 * Build time assertion that we keep the data_head at the intended
13352 * location. IOW, validation we got the __reserved[] size right.
13353 */
13354 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
13355 != 1024);
13356 }
13357
13358 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
13359 char *page)
13360 {
13361 struct perf_pmu_events_attr *pmu_attr =
13362 container_of(attr, struct perf_pmu_events_attr, attr);
13363
13364 if (pmu_attr->event_str)
13365 return sprintf(page, "%s\n", pmu_attr->event_str);
13366
13367 return 0;
13368 }
13369 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
13370
13371 static int __init perf_event_sysfs_init(void)
13372 {
13373 struct pmu *pmu;
13374 int ret;
13375
13376 mutex_lock(&pmus_lock);
13377
13378 ret = bus_register(&pmu_bus);
13379 if (ret)
13380 goto unlock;
13381
13382 list_for_each_entry(pmu, &pmus, entry) {
13383 if (!pmu->name || pmu->type < 0)
13384 continue;
13385
13386 ret = pmu_dev_alloc(pmu);
13387 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
13388 }
13389 pmu_bus_running = 1;
13390 ret = 0;
13391
13392 unlock:
13393 mutex_unlock(&pmus_lock);
13394
13395 return ret;
13396 }
13397 device_initcall(perf_event_sysfs_init);
13398
13399 #ifdef CONFIG_CGROUP_PERF
13400 static struct cgroup_subsys_state *
13401 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
13402 {
13403 struct perf_cgroup *jc;
13404
13405 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
13406 if (!jc)
13407 return ERR_PTR(-ENOMEM);
13408
13409 jc->info = alloc_percpu(struct perf_cgroup_info);
13410 if (!jc->info) {
13411 kfree(jc);
13412 return ERR_PTR(-ENOMEM);
13413 }
13414
13415 return &jc->css;
13416 }
13417
13418 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
13419 {
13420 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
13421
13422 free_percpu(jc->info);
13423 kfree(jc);
13424 }
13425
13426 static int perf_cgroup_css_online(struct cgroup_subsys_state *css)
13427 {
13428 perf_event_cgroup(css->cgroup);
13429 return 0;
13430 }
13431
13432 static int __perf_cgroup_move(void *info)
13433 {
13434 struct task_struct *task = info;
13435 rcu_read_lock();
13436 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
13437 rcu_read_unlock();
13438 return 0;
13439 }
13440
13441 static void perf_cgroup_attach(struct cgroup_taskset *tset)
13442 {
13443 struct task_struct *task;
13444 struct cgroup_subsys_state *css;
13445
13446 cgroup_taskset_for_each(task, css, tset)
13447 task_function_call(task, __perf_cgroup_move, task);
13448 }
13449
13450 struct cgroup_subsys perf_event_cgrp_subsys = {
13451 .css_alloc = perf_cgroup_css_alloc,
13452 .css_free = perf_cgroup_css_free,
13453 .css_online = perf_cgroup_css_online,
13454 .attach = perf_cgroup_attach,
13455 /*
13456 * Implicitly enable on dfl hierarchy so that perf events can
13457 * always be filtered by cgroup2 path as long as perf_event
13458 * controller is not mounted on a legacy hierarchy.
13459 */
13460 .implicit_on_dfl = true,
13461 .threaded = true,
13462 };
13463 #endif /* CONFIG_CGROUP_PERF */