]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/events/core.c
Merge remote-tracking branches 'asoc/topic/adsp', 'asoc/topic/ak4613', 'asoc/topic...
[mirror_ubuntu-bionic-kernel.git] / kernel / events / core.c
1 /*
2 * Performance events core code:
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51
52 #include "internal.h"
53
54 #include <asm/irq_regs.h>
55
56 typedef int (*remote_function_f)(void *);
57
58 struct remote_function_call {
59 struct task_struct *p;
60 remote_function_f func;
61 void *info;
62 int ret;
63 };
64
65 static void remote_function(void *data)
66 {
67 struct remote_function_call *tfc = data;
68 struct task_struct *p = tfc->p;
69
70 if (p) {
71 /* -EAGAIN */
72 if (task_cpu(p) != smp_processor_id())
73 return;
74
75 /*
76 * Now that we're on right CPU with IRQs disabled, we can test
77 * if we hit the right task without races.
78 */
79
80 tfc->ret = -ESRCH; /* No such (running) process */
81 if (p != current)
82 return;
83 }
84
85 tfc->ret = tfc->func(tfc->info);
86 }
87
88 /**
89 * task_function_call - call a function on the cpu on which a task runs
90 * @p: the task to evaluate
91 * @func: the function to be called
92 * @info: the function call argument
93 *
94 * Calls the function @func when the task is currently running. This might
95 * be on the current CPU, which just calls the function directly
96 *
97 * returns: @func return value, or
98 * -ESRCH - when the process isn't running
99 * -EAGAIN - when the process moved away
100 */
101 static int
102 task_function_call(struct task_struct *p, remote_function_f func, void *info)
103 {
104 struct remote_function_call data = {
105 .p = p,
106 .func = func,
107 .info = info,
108 .ret = -EAGAIN,
109 };
110 int ret;
111
112 do {
113 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
114 if (!ret)
115 ret = data.ret;
116 } while (ret == -EAGAIN);
117
118 return ret;
119 }
120
121 /**
122 * cpu_function_call - call a function on the cpu
123 * @func: the function to be called
124 * @info: the function call argument
125 *
126 * Calls the function @func on the remote cpu.
127 *
128 * returns: @func return value or -ENXIO when the cpu is offline
129 */
130 static int cpu_function_call(int cpu, remote_function_f func, void *info)
131 {
132 struct remote_function_call data = {
133 .p = NULL,
134 .func = func,
135 .info = info,
136 .ret = -ENXIO, /* No such CPU */
137 };
138
139 smp_call_function_single(cpu, remote_function, &data, 1);
140
141 return data.ret;
142 }
143
144 static inline struct perf_cpu_context *
145 __get_cpu_context(struct perf_event_context *ctx)
146 {
147 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
148 }
149
150 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
151 struct perf_event_context *ctx)
152 {
153 raw_spin_lock(&cpuctx->ctx.lock);
154 if (ctx)
155 raw_spin_lock(&ctx->lock);
156 }
157
158 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
159 struct perf_event_context *ctx)
160 {
161 if (ctx)
162 raw_spin_unlock(&ctx->lock);
163 raw_spin_unlock(&cpuctx->ctx.lock);
164 }
165
166 #define TASK_TOMBSTONE ((void *)-1L)
167
168 static bool is_kernel_event(struct perf_event *event)
169 {
170 return READ_ONCE(event->owner) == TASK_TOMBSTONE;
171 }
172
173 /*
174 * On task ctx scheduling...
175 *
176 * When !ctx->nr_events a task context will not be scheduled. This means
177 * we can disable the scheduler hooks (for performance) without leaving
178 * pending task ctx state.
179 *
180 * This however results in two special cases:
181 *
182 * - removing the last event from a task ctx; this is relatively straight
183 * forward and is done in __perf_remove_from_context.
184 *
185 * - adding the first event to a task ctx; this is tricky because we cannot
186 * rely on ctx->is_active and therefore cannot use event_function_call().
187 * See perf_install_in_context().
188 *
189 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
190 */
191
192 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
193 struct perf_event_context *, void *);
194
195 struct event_function_struct {
196 struct perf_event *event;
197 event_f func;
198 void *data;
199 };
200
201 static int event_function(void *info)
202 {
203 struct event_function_struct *efs = info;
204 struct perf_event *event = efs->event;
205 struct perf_event_context *ctx = event->ctx;
206 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
207 struct perf_event_context *task_ctx = cpuctx->task_ctx;
208 int ret = 0;
209
210 WARN_ON_ONCE(!irqs_disabled());
211
212 perf_ctx_lock(cpuctx, task_ctx);
213 /*
214 * Since we do the IPI call without holding ctx->lock things can have
215 * changed, double check we hit the task we set out to hit.
216 */
217 if (ctx->task) {
218 if (ctx->task != current) {
219 ret = -ESRCH;
220 goto unlock;
221 }
222
223 /*
224 * We only use event_function_call() on established contexts,
225 * and event_function() is only ever called when active (or
226 * rather, we'll have bailed in task_function_call() or the
227 * above ctx->task != current test), therefore we must have
228 * ctx->is_active here.
229 */
230 WARN_ON_ONCE(!ctx->is_active);
231 /*
232 * And since we have ctx->is_active, cpuctx->task_ctx must
233 * match.
234 */
235 WARN_ON_ONCE(task_ctx != ctx);
236 } else {
237 WARN_ON_ONCE(&cpuctx->ctx != ctx);
238 }
239
240 efs->func(event, cpuctx, ctx, efs->data);
241 unlock:
242 perf_ctx_unlock(cpuctx, task_ctx);
243
244 return ret;
245 }
246
247 static void event_function_call(struct perf_event *event, event_f func, void *data)
248 {
249 struct perf_event_context *ctx = event->ctx;
250 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
251 struct event_function_struct efs = {
252 .event = event,
253 .func = func,
254 .data = data,
255 };
256
257 if (!event->parent) {
258 /*
259 * If this is a !child event, we must hold ctx::mutex to
260 * stabilize the the event->ctx relation. See
261 * perf_event_ctx_lock().
262 */
263 lockdep_assert_held(&ctx->mutex);
264 }
265
266 if (!task) {
267 cpu_function_call(event->cpu, event_function, &efs);
268 return;
269 }
270
271 if (task == TASK_TOMBSTONE)
272 return;
273
274 again:
275 if (!task_function_call(task, event_function, &efs))
276 return;
277
278 raw_spin_lock_irq(&ctx->lock);
279 /*
280 * Reload the task pointer, it might have been changed by
281 * a concurrent perf_event_context_sched_out().
282 */
283 task = ctx->task;
284 if (task == TASK_TOMBSTONE) {
285 raw_spin_unlock_irq(&ctx->lock);
286 return;
287 }
288 if (ctx->is_active) {
289 raw_spin_unlock_irq(&ctx->lock);
290 goto again;
291 }
292 func(event, NULL, ctx, data);
293 raw_spin_unlock_irq(&ctx->lock);
294 }
295
296 /*
297 * Similar to event_function_call() + event_function(), but hard assumes IRQs
298 * are already disabled and we're on the right CPU.
299 */
300 static void event_function_local(struct perf_event *event, event_f func, void *data)
301 {
302 struct perf_event_context *ctx = event->ctx;
303 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
304 struct task_struct *task = READ_ONCE(ctx->task);
305 struct perf_event_context *task_ctx = NULL;
306
307 WARN_ON_ONCE(!irqs_disabled());
308
309 if (task) {
310 if (task == TASK_TOMBSTONE)
311 return;
312
313 task_ctx = ctx;
314 }
315
316 perf_ctx_lock(cpuctx, task_ctx);
317
318 task = ctx->task;
319 if (task == TASK_TOMBSTONE)
320 goto unlock;
321
322 if (task) {
323 /*
324 * We must be either inactive or active and the right task,
325 * otherwise we're screwed, since we cannot IPI to somewhere
326 * else.
327 */
328 if (ctx->is_active) {
329 if (WARN_ON_ONCE(task != current))
330 goto unlock;
331
332 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
333 goto unlock;
334 }
335 } else {
336 WARN_ON_ONCE(&cpuctx->ctx != ctx);
337 }
338
339 func(event, cpuctx, ctx, data);
340 unlock:
341 perf_ctx_unlock(cpuctx, task_ctx);
342 }
343
344 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
345 PERF_FLAG_FD_OUTPUT |\
346 PERF_FLAG_PID_CGROUP |\
347 PERF_FLAG_FD_CLOEXEC)
348
349 /*
350 * branch priv levels that need permission checks
351 */
352 #define PERF_SAMPLE_BRANCH_PERM_PLM \
353 (PERF_SAMPLE_BRANCH_KERNEL |\
354 PERF_SAMPLE_BRANCH_HV)
355
356 enum event_type_t {
357 EVENT_FLEXIBLE = 0x1,
358 EVENT_PINNED = 0x2,
359 EVENT_TIME = 0x4,
360 /* see ctx_resched() for details */
361 EVENT_CPU = 0x8,
362 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
363 };
364
365 /*
366 * perf_sched_events : >0 events exist
367 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
368 */
369
370 static void perf_sched_delayed(struct work_struct *work);
371 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
372 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
373 static DEFINE_MUTEX(perf_sched_mutex);
374 static atomic_t perf_sched_count;
375
376 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
377 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
378 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
379
380 static atomic_t nr_mmap_events __read_mostly;
381 static atomic_t nr_comm_events __read_mostly;
382 static atomic_t nr_task_events __read_mostly;
383 static atomic_t nr_freq_events __read_mostly;
384 static atomic_t nr_switch_events __read_mostly;
385
386 static LIST_HEAD(pmus);
387 static DEFINE_MUTEX(pmus_lock);
388 static struct srcu_struct pmus_srcu;
389
390 /*
391 * perf event paranoia level:
392 * -1 - not paranoid at all
393 * 0 - disallow raw tracepoint access for unpriv
394 * 1 - disallow cpu events for unpriv
395 * 2 - disallow kernel profiling for unpriv
396 */
397 int sysctl_perf_event_paranoid __read_mostly = 2;
398
399 /* Minimum for 512 kiB + 1 user control page */
400 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
401
402 /*
403 * max perf event sample rate
404 */
405 #define DEFAULT_MAX_SAMPLE_RATE 100000
406 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
407 #define DEFAULT_CPU_TIME_MAX_PERCENT 25
408
409 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
410
411 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
412 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
413
414 static int perf_sample_allowed_ns __read_mostly =
415 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
416
417 static void update_perf_cpu_limits(void)
418 {
419 u64 tmp = perf_sample_period_ns;
420
421 tmp *= sysctl_perf_cpu_time_max_percent;
422 tmp = div_u64(tmp, 100);
423 if (!tmp)
424 tmp = 1;
425
426 WRITE_ONCE(perf_sample_allowed_ns, tmp);
427 }
428
429 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
430
431 int perf_proc_update_handler(struct ctl_table *table, int write,
432 void __user *buffer, size_t *lenp,
433 loff_t *ppos)
434 {
435 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
436
437 if (ret || !write)
438 return ret;
439
440 /*
441 * If throttling is disabled don't allow the write:
442 */
443 if (sysctl_perf_cpu_time_max_percent == 100 ||
444 sysctl_perf_cpu_time_max_percent == 0)
445 return -EINVAL;
446
447 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
448 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
449 update_perf_cpu_limits();
450
451 return 0;
452 }
453
454 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
455
456 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
457 void __user *buffer, size_t *lenp,
458 loff_t *ppos)
459 {
460 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
461
462 if (ret || !write)
463 return ret;
464
465 if (sysctl_perf_cpu_time_max_percent == 100 ||
466 sysctl_perf_cpu_time_max_percent == 0) {
467 printk(KERN_WARNING
468 "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
469 WRITE_ONCE(perf_sample_allowed_ns, 0);
470 } else {
471 update_perf_cpu_limits();
472 }
473
474 return 0;
475 }
476
477 /*
478 * perf samples are done in some very critical code paths (NMIs).
479 * If they take too much CPU time, the system can lock up and not
480 * get any real work done. This will drop the sample rate when
481 * we detect that events are taking too long.
482 */
483 #define NR_ACCUMULATED_SAMPLES 128
484 static DEFINE_PER_CPU(u64, running_sample_length);
485
486 static u64 __report_avg;
487 static u64 __report_allowed;
488
489 static void perf_duration_warn(struct irq_work *w)
490 {
491 printk_ratelimited(KERN_INFO
492 "perf: interrupt took too long (%lld > %lld), lowering "
493 "kernel.perf_event_max_sample_rate to %d\n",
494 __report_avg, __report_allowed,
495 sysctl_perf_event_sample_rate);
496 }
497
498 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
499
500 void perf_sample_event_took(u64 sample_len_ns)
501 {
502 u64 max_len = READ_ONCE(perf_sample_allowed_ns);
503 u64 running_len;
504 u64 avg_len;
505 u32 max;
506
507 if (max_len == 0)
508 return;
509
510 /* Decay the counter by 1 average sample. */
511 running_len = __this_cpu_read(running_sample_length);
512 running_len -= running_len/NR_ACCUMULATED_SAMPLES;
513 running_len += sample_len_ns;
514 __this_cpu_write(running_sample_length, running_len);
515
516 /*
517 * Note: this will be biased artifically low until we have
518 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
519 * from having to maintain a count.
520 */
521 avg_len = running_len/NR_ACCUMULATED_SAMPLES;
522 if (avg_len <= max_len)
523 return;
524
525 __report_avg = avg_len;
526 __report_allowed = max_len;
527
528 /*
529 * Compute a throttle threshold 25% below the current duration.
530 */
531 avg_len += avg_len / 4;
532 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
533 if (avg_len < max)
534 max /= (u32)avg_len;
535 else
536 max = 1;
537
538 WRITE_ONCE(perf_sample_allowed_ns, avg_len);
539 WRITE_ONCE(max_samples_per_tick, max);
540
541 sysctl_perf_event_sample_rate = max * HZ;
542 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
543
544 if (!irq_work_queue(&perf_duration_work)) {
545 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
546 "kernel.perf_event_max_sample_rate to %d\n",
547 __report_avg, __report_allowed,
548 sysctl_perf_event_sample_rate);
549 }
550 }
551
552 static atomic64_t perf_event_id;
553
554 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
555 enum event_type_t event_type);
556
557 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
558 enum event_type_t event_type,
559 struct task_struct *task);
560
561 static void update_context_time(struct perf_event_context *ctx);
562 static u64 perf_event_time(struct perf_event *event);
563
564 void __weak perf_event_print_debug(void) { }
565
566 extern __weak const char *perf_pmu_name(void)
567 {
568 return "pmu";
569 }
570
571 static inline u64 perf_clock(void)
572 {
573 return local_clock();
574 }
575
576 static inline u64 perf_event_clock(struct perf_event *event)
577 {
578 return event->clock();
579 }
580
581 #ifdef CONFIG_CGROUP_PERF
582
583 static inline bool
584 perf_cgroup_match(struct perf_event *event)
585 {
586 struct perf_event_context *ctx = event->ctx;
587 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
588
589 /* @event doesn't care about cgroup */
590 if (!event->cgrp)
591 return true;
592
593 /* wants specific cgroup scope but @cpuctx isn't associated with any */
594 if (!cpuctx->cgrp)
595 return false;
596
597 /*
598 * Cgroup scoping is recursive. An event enabled for a cgroup is
599 * also enabled for all its descendant cgroups. If @cpuctx's
600 * cgroup is a descendant of @event's (the test covers identity
601 * case), it's a match.
602 */
603 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
604 event->cgrp->css.cgroup);
605 }
606
607 static inline void perf_detach_cgroup(struct perf_event *event)
608 {
609 css_put(&event->cgrp->css);
610 event->cgrp = NULL;
611 }
612
613 static inline int is_cgroup_event(struct perf_event *event)
614 {
615 return event->cgrp != NULL;
616 }
617
618 static inline u64 perf_cgroup_event_time(struct perf_event *event)
619 {
620 struct perf_cgroup_info *t;
621
622 t = per_cpu_ptr(event->cgrp->info, event->cpu);
623 return t->time;
624 }
625
626 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
627 {
628 struct perf_cgroup_info *info;
629 u64 now;
630
631 now = perf_clock();
632
633 info = this_cpu_ptr(cgrp->info);
634
635 info->time += now - info->timestamp;
636 info->timestamp = now;
637 }
638
639 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
640 {
641 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
642 if (cgrp_out)
643 __update_cgrp_time(cgrp_out);
644 }
645
646 static inline void update_cgrp_time_from_event(struct perf_event *event)
647 {
648 struct perf_cgroup *cgrp;
649
650 /*
651 * ensure we access cgroup data only when needed and
652 * when we know the cgroup is pinned (css_get)
653 */
654 if (!is_cgroup_event(event))
655 return;
656
657 cgrp = perf_cgroup_from_task(current, event->ctx);
658 /*
659 * Do not update time when cgroup is not active
660 */
661 if (cgrp == event->cgrp)
662 __update_cgrp_time(event->cgrp);
663 }
664
665 static inline void
666 perf_cgroup_set_timestamp(struct task_struct *task,
667 struct perf_event_context *ctx)
668 {
669 struct perf_cgroup *cgrp;
670 struct perf_cgroup_info *info;
671
672 /*
673 * ctx->lock held by caller
674 * ensure we do not access cgroup data
675 * unless we have the cgroup pinned (css_get)
676 */
677 if (!task || !ctx->nr_cgroups)
678 return;
679
680 cgrp = perf_cgroup_from_task(task, ctx);
681 info = this_cpu_ptr(cgrp->info);
682 info->timestamp = ctx->timestamp;
683 }
684
685 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
686
687 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
688 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
689
690 /*
691 * reschedule events based on the cgroup constraint of task.
692 *
693 * mode SWOUT : schedule out everything
694 * mode SWIN : schedule in based on cgroup for next
695 */
696 static void perf_cgroup_switch(struct task_struct *task, int mode)
697 {
698 struct perf_cpu_context *cpuctx;
699 struct list_head *list;
700 unsigned long flags;
701
702 /*
703 * Disable interrupts and preemption to avoid this CPU's
704 * cgrp_cpuctx_entry to change under us.
705 */
706 local_irq_save(flags);
707
708 list = this_cpu_ptr(&cgrp_cpuctx_list);
709 list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
710 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
711
712 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
713 perf_pmu_disable(cpuctx->ctx.pmu);
714
715 if (mode & PERF_CGROUP_SWOUT) {
716 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
717 /*
718 * must not be done before ctxswout due
719 * to event_filter_match() in event_sched_out()
720 */
721 cpuctx->cgrp = NULL;
722 }
723
724 if (mode & PERF_CGROUP_SWIN) {
725 WARN_ON_ONCE(cpuctx->cgrp);
726 /*
727 * set cgrp before ctxsw in to allow
728 * event_filter_match() to not have to pass
729 * task around
730 * we pass the cpuctx->ctx to perf_cgroup_from_task()
731 * because cgorup events are only per-cpu
732 */
733 cpuctx->cgrp = perf_cgroup_from_task(task,
734 &cpuctx->ctx);
735 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
736 }
737 perf_pmu_enable(cpuctx->ctx.pmu);
738 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
739 }
740
741 local_irq_restore(flags);
742 }
743
744 static inline void perf_cgroup_sched_out(struct task_struct *task,
745 struct task_struct *next)
746 {
747 struct perf_cgroup *cgrp1;
748 struct perf_cgroup *cgrp2 = NULL;
749
750 rcu_read_lock();
751 /*
752 * we come here when we know perf_cgroup_events > 0
753 * we do not need to pass the ctx here because we know
754 * we are holding the rcu lock
755 */
756 cgrp1 = perf_cgroup_from_task(task, NULL);
757 cgrp2 = perf_cgroup_from_task(next, NULL);
758
759 /*
760 * only schedule out current cgroup events if we know
761 * that we are switching to a different cgroup. Otherwise,
762 * do no touch the cgroup events.
763 */
764 if (cgrp1 != cgrp2)
765 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
766
767 rcu_read_unlock();
768 }
769
770 static inline void perf_cgroup_sched_in(struct task_struct *prev,
771 struct task_struct *task)
772 {
773 struct perf_cgroup *cgrp1;
774 struct perf_cgroup *cgrp2 = NULL;
775
776 rcu_read_lock();
777 /*
778 * we come here when we know perf_cgroup_events > 0
779 * we do not need to pass the ctx here because we know
780 * we are holding the rcu lock
781 */
782 cgrp1 = perf_cgroup_from_task(task, NULL);
783 cgrp2 = perf_cgroup_from_task(prev, NULL);
784
785 /*
786 * only need to schedule in cgroup events if we are changing
787 * cgroup during ctxsw. Cgroup events were not scheduled
788 * out of ctxsw out if that was not the case.
789 */
790 if (cgrp1 != cgrp2)
791 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
792
793 rcu_read_unlock();
794 }
795
796 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
797 struct perf_event_attr *attr,
798 struct perf_event *group_leader)
799 {
800 struct perf_cgroup *cgrp;
801 struct cgroup_subsys_state *css;
802 struct fd f = fdget(fd);
803 int ret = 0;
804
805 if (!f.file)
806 return -EBADF;
807
808 css = css_tryget_online_from_dir(f.file->f_path.dentry,
809 &perf_event_cgrp_subsys);
810 if (IS_ERR(css)) {
811 ret = PTR_ERR(css);
812 goto out;
813 }
814
815 cgrp = container_of(css, struct perf_cgroup, css);
816 event->cgrp = cgrp;
817
818 /*
819 * all events in a group must monitor
820 * the same cgroup because a task belongs
821 * to only one perf cgroup at a time
822 */
823 if (group_leader && group_leader->cgrp != cgrp) {
824 perf_detach_cgroup(event);
825 ret = -EINVAL;
826 }
827 out:
828 fdput(f);
829 return ret;
830 }
831
832 static inline void
833 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
834 {
835 struct perf_cgroup_info *t;
836 t = per_cpu_ptr(event->cgrp->info, event->cpu);
837 event->shadow_ctx_time = now - t->timestamp;
838 }
839
840 static inline void
841 perf_cgroup_defer_enabled(struct perf_event *event)
842 {
843 /*
844 * when the current task's perf cgroup does not match
845 * the event's, we need to remember to call the
846 * perf_mark_enable() function the first time a task with
847 * a matching perf cgroup is scheduled in.
848 */
849 if (is_cgroup_event(event) && !perf_cgroup_match(event))
850 event->cgrp_defer_enabled = 1;
851 }
852
853 static inline void
854 perf_cgroup_mark_enabled(struct perf_event *event,
855 struct perf_event_context *ctx)
856 {
857 struct perf_event *sub;
858 u64 tstamp = perf_event_time(event);
859
860 if (!event->cgrp_defer_enabled)
861 return;
862
863 event->cgrp_defer_enabled = 0;
864
865 event->tstamp_enabled = tstamp - event->total_time_enabled;
866 list_for_each_entry(sub, &event->sibling_list, group_entry) {
867 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
868 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
869 sub->cgrp_defer_enabled = 0;
870 }
871 }
872 }
873
874 /*
875 * Update cpuctx->cgrp so that it is set when first cgroup event is added and
876 * cleared when last cgroup event is removed.
877 */
878 static inline void
879 list_update_cgroup_event(struct perf_event *event,
880 struct perf_event_context *ctx, bool add)
881 {
882 struct perf_cpu_context *cpuctx;
883 struct list_head *cpuctx_entry;
884
885 if (!is_cgroup_event(event))
886 return;
887
888 if (add && ctx->nr_cgroups++)
889 return;
890 else if (!add && --ctx->nr_cgroups)
891 return;
892 /*
893 * Because cgroup events are always per-cpu events,
894 * this will always be called from the right CPU.
895 */
896 cpuctx = __get_cpu_context(ctx);
897 cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
898 /* cpuctx->cgrp is NULL unless a cgroup event is active in this CPU .*/
899 if (add) {
900 list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list));
901 if (perf_cgroup_from_task(current, ctx) == event->cgrp)
902 cpuctx->cgrp = event->cgrp;
903 } else {
904 list_del(cpuctx_entry);
905 cpuctx->cgrp = NULL;
906 }
907 }
908
909 #else /* !CONFIG_CGROUP_PERF */
910
911 static inline bool
912 perf_cgroup_match(struct perf_event *event)
913 {
914 return true;
915 }
916
917 static inline void perf_detach_cgroup(struct perf_event *event)
918 {}
919
920 static inline int is_cgroup_event(struct perf_event *event)
921 {
922 return 0;
923 }
924
925 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
926 {
927 return 0;
928 }
929
930 static inline void update_cgrp_time_from_event(struct perf_event *event)
931 {
932 }
933
934 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
935 {
936 }
937
938 static inline void perf_cgroup_sched_out(struct task_struct *task,
939 struct task_struct *next)
940 {
941 }
942
943 static inline void perf_cgroup_sched_in(struct task_struct *prev,
944 struct task_struct *task)
945 {
946 }
947
948 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
949 struct perf_event_attr *attr,
950 struct perf_event *group_leader)
951 {
952 return -EINVAL;
953 }
954
955 static inline void
956 perf_cgroup_set_timestamp(struct task_struct *task,
957 struct perf_event_context *ctx)
958 {
959 }
960
961 void
962 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
963 {
964 }
965
966 static inline void
967 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
968 {
969 }
970
971 static inline u64 perf_cgroup_event_time(struct perf_event *event)
972 {
973 return 0;
974 }
975
976 static inline void
977 perf_cgroup_defer_enabled(struct perf_event *event)
978 {
979 }
980
981 static inline void
982 perf_cgroup_mark_enabled(struct perf_event *event,
983 struct perf_event_context *ctx)
984 {
985 }
986
987 static inline void
988 list_update_cgroup_event(struct perf_event *event,
989 struct perf_event_context *ctx, bool add)
990 {
991 }
992
993 #endif
994
995 /*
996 * set default to be dependent on timer tick just
997 * like original code
998 */
999 #define PERF_CPU_HRTIMER (1000 / HZ)
1000 /*
1001 * function must be called with interrupts disabled
1002 */
1003 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1004 {
1005 struct perf_cpu_context *cpuctx;
1006 int rotations = 0;
1007
1008 WARN_ON(!irqs_disabled());
1009
1010 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1011 rotations = perf_rotate_context(cpuctx);
1012
1013 raw_spin_lock(&cpuctx->hrtimer_lock);
1014 if (rotations)
1015 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1016 else
1017 cpuctx->hrtimer_active = 0;
1018 raw_spin_unlock(&cpuctx->hrtimer_lock);
1019
1020 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1021 }
1022
1023 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1024 {
1025 struct hrtimer *timer = &cpuctx->hrtimer;
1026 struct pmu *pmu = cpuctx->ctx.pmu;
1027 u64 interval;
1028
1029 /* no multiplexing needed for SW PMU */
1030 if (pmu->task_ctx_nr == perf_sw_context)
1031 return;
1032
1033 /*
1034 * check default is sane, if not set then force to
1035 * default interval (1/tick)
1036 */
1037 interval = pmu->hrtimer_interval_ms;
1038 if (interval < 1)
1039 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1040
1041 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1042
1043 raw_spin_lock_init(&cpuctx->hrtimer_lock);
1044 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
1045 timer->function = perf_mux_hrtimer_handler;
1046 }
1047
1048 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1049 {
1050 struct hrtimer *timer = &cpuctx->hrtimer;
1051 struct pmu *pmu = cpuctx->ctx.pmu;
1052 unsigned long flags;
1053
1054 /* not for SW PMU */
1055 if (pmu->task_ctx_nr == perf_sw_context)
1056 return 0;
1057
1058 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1059 if (!cpuctx->hrtimer_active) {
1060 cpuctx->hrtimer_active = 1;
1061 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1062 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1063 }
1064 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1065
1066 return 0;
1067 }
1068
1069 void perf_pmu_disable(struct pmu *pmu)
1070 {
1071 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1072 if (!(*count)++)
1073 pmu->pmu_disable(pmu);
1074 }
1075
1076 void perf_pmu_enable(struct pmu *pmu)
1077 {
1078 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1079 if (!--(*count))
1080 pmu->pmu_enable(pmu);
1081 }
1082
1083 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1084
1085 /*
1086 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1087 * perf_event_task_tick() are fully serialized because they're strictly cpu
1088 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1089 * disabled, while perf_event_task_tick is called from IRQ context.
1090 */
1091 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1092 {
1093 struct list_head *head = this_cpu_ptr(&active_ctx_list);
1094
1095 WARN_ON(!irqs_disabled());
1096
1097 WARN_ON(!list_empty(&ctx->active_ctx_list));
1098
1099 list_add(&ctx->active_ctx_list, head);
1100 }
1101
1102 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1103 {
1104 WARN_ON(!irqs_disabled());
1105
1106 WARN_ON(list_empty(&ctx->active_ctx_list));
1107
1108 list_del_init(&ctx->active_ctx_list);
1109 }
1110
1111 static void get_ctx(struct perf_event_context *ctx)
1112 {
1113 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1114 }
1115
1116 static void free_ctx(struct rcu_head *head)
1117 {
1118 struct perf_event_context *ctx;
1119
1120 ctx = container_of(head, struct perf_event_context, rcu_head);
1121 kfree(ctx->task_ctx_data);
1122 kfree(ctx);
1123 }
1124
1125 static void put_ctx(struct perf_event_context *ctx)
1126 {
1127 if (atomic_dec_and_test(&ctx->refcount)) {
1128 if (ctx->parent_ctx)
1129 put_ctx(ctx->parent_ctx);
1130 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1131 put_task_struct(ctx->task);
1132 call_rcu(&ctx->rcu_head, free_ctx);
1133 }
1134 }
1135
1136 /*
1137 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1138 * perf_pmu_migrate_context() we need some magic.
1139 *
1140 * Those places that change perf_event::ctx will hold both
1141 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1142 *
1143 * Lock ordering is by mutex address. There are two other sites where
1144 * perf_event_context::mutex nests and those are:
1145 *
1146 * - perf_event_exit_task_context() [ child , 0 ]
1147 * perf_event_exit_event()
1148 * put_event() [ parent, 1 ]
1149 *
1150 * - perf_event_init_context() [ parent, 0 ]
1151 * inherit_task_group()
1152 * inherit_group()
1153 * inherit_event()
1154 * perf_event_alloc()
1155 * perf_init_event()
1156 * perf_try_init_event() [ child , 1 ]
1157 *
1158 * While it appears there is an obvious deadlock here -- the parent and child
1159 * nesting levels are inverted between the two. This is in fact safe because
1160 * life-time rules separate them. That is an exiting task cannot fork, and a
1161 * spawning task cannot (yet) exit.
1162 *
1163 * But remember that that these are parent<->child context relations, and
1164 * migration does not affect children, therefore these two orderings should not
1165 * interact.
1166 *
1167 * The change in perf_event::ctx does not affect children (as claimed above)
1168 * because the sys_perf_event_open() case will install a new event and break
1169 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1170 * concerned with cpuctx and that doesn't have children.
1171 *
1172 * The places that change perf_event::ctx will issue:
1173 *
1174 * perf_remove_from_context();
1175 * synchronize_rcu();
1176 * perf_install_in_context();
1177 *
1178 * to affect the change. The remove_from_context() + synchronize_rcu() should
1179 * quiesce the event, after which we can install it in the new location. This
1180 * means that only external vectors (perf_fops, prctl) can perturb the event
1181 * while in transit. Therefore all such accessors should also acquire
1182 * perf_event_context::mutex to serialize against this.
1183 *
1184 * However; because event->ctx can change while we're waiting to acquire
1185 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1186 * function.
1187 *
1188 * Lock order:
1189 * cred_guard_mutex
1190 * task_struct::perf_event_mutex
1191 * perf_event_context::mutex
1192 * perf_event::child_mutex;
1193 * perf_event_context::lock
1194 * perf_event::mmap_mutex
1195 * mmap_sem
1196 */
1197 static struct perf_event_context *
1198 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1199 {
1200 struct perf_event_context *ctx;
1201
1202 again:
1203 rcu_read_lock();
1204 ctx = ACCESS_ONCE(event->ctx);
1205 if (!atomic_inc_not_zero(&ctx->refcount)) {
1206 rcu_read_unlock();
1207 goto again;
1208 }
1209 rcu_read_unlock();
1210
1211 mutex_lock_nested(&ctx->mutex, nesting);
1212 if (event->ctx != ctx) {
1213 mutex_unlock(&ctx->mutex);
1214 put_ctx(ctx);
1215 goto again;
1216 }
1217
1218 return ctx;
1219 }
1220
1221 static inline struct perf_event_context *
1222 perf_event_ctx_lock(struct perf_event *event)
1223 {
1224 return perf_event_ctx_lock_nested(event, 0);
1225 }
1226
1227 static void perf_event_ctx_unlock(struct perf_event *event,
1228 struct perf_event_context *ctx)
1229 {
1230 mutex_unlock(&ctx->mutex);
1231 put_ctx(ctx);
1232 }
1233
1234 /*
1235 * This must be done under the ctx->lock, such as to serialize against
1236 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1237 * calling scheduler related locks and ctx->lock nests inside those.
1238 */
1239 static __must_check struct perf_event_context *
1240 unclone_ctx(struct perf_event_context *ctx)
1241 {
1242 struct perf_event_context *parent_ctx = ctx->parent_ctx;
1243
1244 lockdep_assert_held(&ctx->lock);
1245
1246 if (parent_ctx)
1247 ctx->parent_ctx = NULL;
1248 ctx->generation++;
1249
1250 return parent_ctx;
1251 }
1252
1253 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1254 {
1255 /*
1256 * only top level events have the pid namespace they were created in
1257 */
1258 if (event->parent)
1259 event = event->parent;
1260
1261 return task_tgid_nr_ns(p, event->ns);
1262 }
1263
1264 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1265 {
1266 /*
1267 * only top level events have the pid namespace they were created in
1268 */
1269 if (event->parent)
1270 event = event->parent;
1271
1272 return task_pid_nr_ns(p, event->ns);
1273 }
1274
1275 /*
1276 * If we inherit events we want to return the parent event id
1277 * to userspace.
1278 */
1279 static u64 primary_event_id(struct perf_event *event)
1280 {
1281 u64 id = event->id;
1282
1283 if (event->parent)
1284 id = event->parent->id;
1285
1286 return id;
1287 }
1288
1289 /*
1290 * Get the perf_event_context for a task and lock it.
1291 *
1292 * This has to cope with with the fact that until it is locked,
1293 * the context could get moved to another task.
1294 */
1295 static struct perf_event_context *
1296 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1297 {
1298 struct perf_event_context *ctx;
1299
1300 retry:
1301 /*
1302 * One of the few rules of preemptible RCU is that one cannot do
1303 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1304 * part of the read side critical section was irqs-enabled -- see
1305 * rcu_read_unlock_special().
1306 *
1307 * Since ctx->lock nests under rq->lock we must ensure the entire read
1308 * side critical section has interrupts disabled.
1309 */
1310 local_irq_save(*flags);
1311 rcu_read_lock();
1312 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1313 if (ctx) {
1314 /*
1315 * If this context is a clone of another, it might
1316 * get swapped for another underneath us by
1317 * perf_event_task_sched_out, though the
1318 * rcu_read_lock() protects us from any context
1319 * getting freed. Lock the context and check if it
1320 * got swapped before we could get the lock, and retry
1321 * if so. If we locked the right context, then it
1322 * can't get swapped on us any more.
1323 */
1324 raw_spin_lock(&ctx->lock);
1325 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1326 raw_spin_unlock(&ctx->lock);
1327 rcu_read_unlock();
1328 local_irq_restore(*flags);
1329 goto retry;
1330 }
1331
1332 if (ctx->task == TASK_TOMBSTONE ||
1333 !atomic_inc_not_zero(&ctx->refcount)) {
1334 raw_spin_unlock(&ctx->lock);
1335 ctx = NULL;
1336 } else {
1337 WARN_ON_ONCE(ctx->task != task);
1338 }
1339 }
1340 rcu_read_unlock();
1341 if (!ctx)
1342 local_irq_restore(*flags);
1343 return ctx;
1344 }
1345
1346 /*
1347 * Get the context for a task and increment its pin_count so it
1348 * can't get swapped to another task. This also increments its
1349 * reference count so that the context can't get freed.
1350 */
1351 static struct perf_event_context *
1352 perf_pin_task_context(struct task_struct *task, int ctxn)
1353 {
1354 struct perf_event_context *ctx;
1355 unsigned long flags;
1356
1357 ctx = perf_lock_task_context(task, ctxn, &flags);
1358 if (ctx) {
1359 ++ctx->pin_count;
1360 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1361 }
1362 return ctx;
1363 }
1364
1365 static void perf_unpin_context(struct perf_event_context *ctx)
1366 {
1367 unsigned long flags;
1368
1369 raw_spin_lock_irqsave(&ctx->lock, flags);
1370 --ctx->pin_count;
1371 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1372 }
1373
1374 /*
1375 * Update the record of the current time in a context.
1376 */
1377 static void update_context_time(struct perf_event_context *ctx)
1378 {
1379 u64 now = perf_clock();
1380
1381 ctx->time += now - ctx->timestamp;
1382 ctx->timestamp = now;
1383 }
1384
1385 static u64 perf_event_time(struct perf_event *event)
1386 {
1387 struct perf_event_context *ctx = event->ctx;
1388
1389 if (is_cgroup_event(event))
1390 return perf_cgroup_event_time(event);
1391
1392 return ctx ? ctx->time : 0;
1393 }
1394
1395 /*
1396 * Update the total_time_enabled and total_time_running fields for a event.
1397 */
1398 static void update_event_times(struct perf_event *event)
1399 {
1400 struct perf_event_context *ctx = event->ctx;
1401 u64 run_end;
1402
1403 lockdep_assert_held(&ctx->lock);
1404
1405 if (event->state < PERF_EVENT_STATE_INACTIVE ||
1406 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1407 return;
1408
1409 /*
1410 * in cgroup mode, time_enabled represents
1411 * the time the event was enabled AND active
1412 * tasks were in the monitored cgroup. This is
1413 * independent of the activity of the context as
1414 * there may be a mix of cgroup and non-cgroup events.
1415 *
1416 * That is why we treat cgroup events differently
1417 * here.
1418 */
1419 if (is_cgroup_event(event))
1420 run_end = perf_cgroup_event_time(event);
1421 else if (ctx->is_active)
1422 run_end = ctx->time;
1423 else
1424 run_end = event->tstamp_stopped;
1425
1426 event->total_time_enabled = run_end - event->tstamp_enabled;
1427
1428 if (event->state == PERF_EVENT_STATE_INACTIVE)
1429 run_end = event->tstamp_stopped;
1430 else
1431 run_end = perf_event_time(event);
1432
1433 event->total_time_running = run_end - event->tstamp_running;
1434
1435 }
1436
1437 /*
1438 * Update total_time_enabled and total_time_running for all events in a group.
1439 */
1440 static void update_group_times(struct perf_event *leader)
1441 {
1442 struct perf_event *event;
1443
1444 update_event_times(leader);
1445 list_for_each_entry(event, &leader->sibling_list, group_entry)
1446 update_event_times(event);
1447 }
1448
1449 static enum event_type_t get_event_type(struct perf_event *event)
1450 {
1451 struct perf_event_context *ctx = event->ctx;
1452 enum event_type_t event_type;
1453
1454 lockdep_assert_held(&ctx->lock);
1455
1456 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1457 if (!ctx->task)
1458 event_type |= EVENT_CPU;
1459
1460 return event_type;
1461 }
1462
1463 static struct list_head *
1464 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1465 {
1466 if (event->attr.pinned)
1467 return &ctx->pinned_groups;
1468 else
1469 return &ctx->flexible_groups;
1470 }
1471
1472 /*
1473 * Add a event from the lists for its context.
1474 * Must be called with ctx->mutex and ctx->lock held.
1475 */
1476 static void
1477 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1478 {
1479 lockdep_assert_held(&ctx->lock);
1480
1481 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1482 event->attach_state |= PERF_ATTACH_CONTEXT;
1483
1484 /*
1485 * If we're a stand alone event or group leader, we go to the context
1486 * list, group events are kept attached to the group so that
1487 * perf_group_detach can, at all times, locate all siblings.
1488 */
1489 if (event->group_leader == event) {
1490 struct list_head *list;
1491
1492 event->group_caps = event->event_caps;
1493
1494 list = ctx_group_list(event, ctx);
1495 list_add_tail(&event->group_entry, list);
1496 }
1497
1498 list_update_cgroup_event(event, ctx, true);
1499
1500 list_add_rcu(&event->event_entry, &ctx->event_list);
1501 ctx->nr_events++;
1502 if (event->attr.inherit_stat)
1503 ctx->nr_stat++;
1504
1505 ctx->generation++;
1506 }
1507
1508 /*
1509 * Initialize event state based on the perf_event_attr::disabled.
1510 */
1511 static inline void perf_event__state_init(struct perf_event *event)
1512 {
1513 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1514 PERF_EVENT_STATE_INACTIVE;
1515 }
1516
1517 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1518 {
1519 int entry = sizeof(u64); /* value */
1520 int size = 0;
1521 int nr = 1;
1522
1523 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1524 size += sizeof(u64);
1525
1526 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1527 size += sizeof(u64);
1528
1529 if (event->attr.read_format & PERF_FORMAT_ID)
1530 entry += sizeof(u64);
1531
1532 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1533 nr += nr_siblings;
1534 size += sizeof(u64);
1535 }
1536
1537 size += entry * nr;
1538 event->read_size = size;
1539 }
1540
1541 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1542 {
1543 struct perf_sample_data *data;
1544 u16 size = 0;
1545
1546 if (sample_type & PERF_SAMPLE_IP)
1547 size += sizeof(data->ip);
1548
1549 if (sample_type & PERF_SAMPLE_ADDR)
1550 size += sizeof(data->addr);
1551
1552 if (sample_type & PERF_SAMPLE_PERIOD)
1553 size += sizeof(data->period);
1554
1555 if (sample_type & PERF_SAMPLE_WEIGHT)
1556 size += sizeof(data->weight);
1557
1558 if (sample_type & PERF_SAMPLE_READ)
1559 size += event->read_size;
1560
1561 if (sample_type & PERF_SAMPLE_DATA_SRC)
1562 size += sizeof(data->data_src.val);
1563
1564 if (sample_type & PERF_SAMPLE_TRANSACTION)
1565 size += sizeof(data->txn);
1566
1567 event->header_size = size;
1568 }
1569
1570 /*
1571 * Called at perf_event creation and when events are attached/detached from a
1572 * group.
1573 */
1574 static void perf_event__header_size(struct perf_event *event)
1575 {
1576 __perf_event_read_size(event,
1577 event->group_leader->nr_siblings);
1578 __perf_event_header_size(event, event->attr.sample_type);
1579 }
1580
1581 static void perf_event__id_header_size(struct perf_event *event)
1582 {
1583 struct perf_sample_data *data;
1584 u64 sample_type = event->attr.sample_type;
1585 u16 size = 0;
1586
1587 if (sample_type & PERF_SAMPLE_TID)
1588 size += sizeof(data->tid_entry);
1589
1590 if (sample_type & PERF_SAMPLE_TIME)
1591 size += sizeof(data->time);
1592
1593 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1594 size += sizeof(data->id);
1595
1596 if (sample_type & PERF_SAMPLE_ID)
1597 size += sizeof(data->id);
1598
1599 if (sample_type & PERF_SAMPLE_STREAM_ID)
1600 size += sizeof(data->stream_id);
1601
1602 if (sample_type & PERF_SAMPLE_CPU)
1603 size += sizeof(data->cpu_entry);
1604
1605 event->id_header_size = size;
1606 }
1607
1608 static bool perf_event_validate_size(struct perf_event *event)
1609 {
1610 /*
1611 * The values computed here will be over-written when we actually
1612 * attach the event.
1613 */
1614 __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1615 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1616 perf_event__id_header_size(event);
1617
1618 /*
1619 * Sum the lot; should not exceed the 64k limit we have on records.
1620 * Conservative limit to allow for callchains and other variable fields.
1621 */
1622 if (event->read_size + event->header_size +
1623 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1624 return false;
1625
1626 return true;
1627 }
1628
1629 static void perf_group_attach(struct perf_event *event)
1630 {
1631 struct perf_event *group_leader = event->group_leader, *pos;
1632
1633 lockdep_assert_held(&event->ctx->lock);
1634
1635 /*
1636 * We can have double attach due to group movement in perf_event_open.
1637 */
1638 if (event->attach_state & PERF_ATTACH_GROUP)
1639 return;
1640
1641 event->attach_state |= PERF_ATTACH_GROUP;
1642
1643 if (group_leader == event)
1644 return;
1645
1646 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1647
1648 group_leader->group_caps &= event->event_caps;
1649
1650 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1651 group_leader->nr_siblings++;
1652
1653 perf_event__header_size(group_leader);
1654
1655 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1656 perf_event__header_size(pos);
1657 }
1658
1659 /*
1660 * Remove a event from the lists for its context.
1661 * Must be called with ctx->mutex and ctx->lock held.
1662 */
1663 static void
1664 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1665 {
1666 WARN_ON_ONCE(event->ctx != ctx);
1667 lockdep_assert_held(&ctx->lock);
1668
1669 /*
1670 * We can have double detach due to exit/hot-unplug + close.
1671 */
1672 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1673 return;
1674
1675 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1676
1677 list_update_cgroup_event(event, ctx, false);
1678
1679 ctx->nr_events--;
1680 if (event->attr.inherit_stat)
1681 ctx->nr_stat--;
1682
1683 list_del_rcu(&event->event_entry);
1684
1685 if (event->group_leader == event)
1686 list_del_init(&event->group_entry);
1687
1688 update_group_times(event);
1689
1690 /*
1691 * If event was in error state, then keep it
1692 * that way, otherwise bogus counts will be
1693 * returned on read(). The only way to get out
1694 * of error state is by explicit re-enabling
1695 * of the event
1696 */
1697 if (event->state > PERF_EVENT_STATE_OFF)
1698 event->state = PERF_EVENT_STATE_OFF;
1699
1700 ctx->generation++;
1701 }
1702
1703 static void perf_group_detach(struct perf_event *event)
1704 {
1705 struct perf_event *sibling, *tmp;
1706 struct list_head *list = NULL;
1707
1708 lockdep_assert_held(&event->ctx->lock);
1709
1710 /*
1711 * We can have double detach due to exit/hot-unplug + close.
1712 */
1713 if (!(event->attach_state & PERF_ATTACH_GROUP))
1714 return;
1715
1716 event->attach_state &= ~PERF_ATTACH_GROUP;
1717
1718 /*
1719 * If this is a sibling, remove it from its group.
1720 */
1721 if (event->group_leader != event) {
1722 list_del_init(&event->group_entry);
1723 event->group_leader->nr_siblings--;
1724 goto out;
1725 }
1726
1727 if (!list_empty(&event->group_entry))
1728 list = &event->group_entry;
1729
1730 /*
1731 * If this was a group event with sibling events then
1732 * upgrade the siblings to singleton events by adding them
1733 * to whatever list we are on.
1734 */
1735 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1736 if (list)
1737 list_move_tail(&sibling->group_entry, list);
1738 sibling->group_leader = sibling;
1739
1740 /* Inherit group flags from the previous leader */
1741 sibling->group_caps = event->group_caps;
1742
1743 WARN_ON_ONCE(sibling->ctx != event->ctx);
1744 }
1745
1746 out:
1747 perf_event__header_size(event->group_leader);
1748
1749 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1750 perf_event__header_size(tmp);
1751 }
1752
1753 static bool is_orphaned_event(struct perf_event *event)
1754 {
1755 return event->state == PERF_EVENT_STATE_DEAD;
1756 }
1757
1758 static inline int __pmu_filter_match(struct perf_event *event)
1759 {
1760 struct pmu *pmu = event->pmu;
1761 return pmu->filter_match ? pmu->filter_match(event) : 1;
1762 }
1763
1764 /*
1765 * Check whether we should attempt to schedule an event group based on
1766 * PMU-specific filtering. An event group can consist of HW and SW events,
1767 * potentially with a SW leader, so we must check all the filters, to
1768 * determine whether a group is schedulable:
1769 */
1770 static inline int pmu_filter_match(struct perf_event *event)
1771 {
1772 struct perf_event *child;
1773
1774 if (!__pmu_filter_match(event))
1775 return 0;
1776
1777 list_for_each_entry(child, &event->sibling_list, group_entry) {
1778 if (!__pmu_filter_match(child))
1779 return 0;
1780 }
1781
1782 return 1;
1783 }
1784
1785 static inline int
1786 event_filter_match(struct perf_event *event)
1787 {
1788 return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1789 perf_cgroup_match(event) && pmu_filter_match(event);
1790 }
1791
1792 static void
1793 event_sched_out(struct perf_event *event,
1794 struct perf_cpu_context *cpuctx,
1795 struct perf_event_context *ctx)
1796 {
1797 u64 tstamp = perf_event_time(event);
1798 u64 delta;
1799
1800 WARN_ON_ONCE(event->ctx != ctx);
1801 lockdep_assert_held(&ctx->lock);
1802
1803 /*
1804 * An event which could not be activated because of
1805 * filter mismatch still needs to have its timings
1806 * maintained, otherwise bogus information is return
1807 * via read() for time_enabled, time_running:
1808 */
1809 if (event->state == PERF_EVENT_STATE_INACTIVE &&
1810 !event_filter_match(event)) {
1811 delta = tstamp - event->tstamp_stopped;
1812 event->tstamp_running += delta;
1813 event->tstamp_stopped = tstamp;
1814 }
1815
1816 if (event->state != PERF_EVENT_STATE_ACTIVE)
1817 return;
1818
1819 perf_pmu_disable(event->pmu);
1820
1821 event->tstamp_stopped = tstamp;
1822 event->pmu->del(event, 0);
1823 event->oncpu = -1;
1824 event->state = PERF_EVENT_STATE_INACTIVE;
1825 if (event->pending_disable) {
1826 event->pending_disable = 0;
1827 event->state = PERF_EVENT_STATE_OFF;
1828 }
1829
1830 if (!is_software_event(event))
1831 cpuctx->active_oncpu--;
1832 if (!--ctx->nr_active)
1833 perf_event_ctx_deactivate(ctx);
1834 if (event->attr.freq && event->attr.sample_freq)
1835 ctx->nr_freq--;
1836 if (event->attr.exclusive || !cpuctx->active_oncpu)
1837 cpuctx->exclusive = 0;
1838
1839 perf_pmu_enable(event->pmu);
1840 }
1841
1842 static void
1843 group_sched_out(struct perf_event *group_event,
1844 struct perf_cpu_context *cpuctx,
1845 struct perf_event_context *ctx)
1846 {
1847 struct perf_event *event;
1848 int state = group_event->state;
1849
1850 perf_pmu_disable(ctx->pmu);
1851
1852 event_sched_out(group_event, cpuctx, ctx);
1853
1854 /*
1855 * Schedule out siblings (if any):
1856 */
1857 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1858 event_sched_out(event, cpuctx, ctx);
1859
1860 perf_pmu_enable(ctx->pmu);
1861
1862 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1863 cpuctx->exclusive = 0;
1864 }
1865
1866 #define DETACH_GROUP 0x01UL
1867
1868 /*
1869 * Cross CPU call to remove a performance event
1870 *
1871 * We disable the event on the hardware level first. After that we
1872 * remove it from the context list.
1873 */
1874 static void
1875 __perf_remove_from_context(struct perf_event *event,
1876 struct perf_cpu_context *cpuctx,
1877 struct perf_event_context *ctx,
1878 void *info)
1879 {
1880 unsigned long flags = (unsigned long)info;
1881
1882 event_sched_out(event, cpuctx, ctx);
1883 if (flags & DETACH_GROUP)
1884 perf_group_detach(event);
1885 list_del_event(event, ctx);
1886
1887 if (!ctx->nr_events && ctx->is_active) {
1888 ctx->is_active = 0;
1889 if (ctx->task) {
1890 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1891 cpuctx->task_ctx = NULL;
1892 }
1893 }
1894 }
1895
1896 /*
1897 * Remove the event from a task's (or a CPU's) list of events.
1898 *
1899 * If event->ctx is a cloned context, callers must make sure that
1900 * every task struct that event->ctx->task could possibly point to
1901 * remains valid. This is OK when called from perf_release since
1902 * that only calls us on the top-level context, which can't be a clone.
1903 * When called from perf_event_exit_task, it's OK because the
1904 * context has been detached from its task.
1905 */
1906 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
1907 {
1908 struct perf_event_context *ctx = event->ctx;
1909
1910 lockdep_assert_held(&ctx->mutex);
1911
1912 event_function_call(event, __perf_remove_from_context, (void *)flags);
1913
1914 /*
1915 * The above event_function_call() can NO-OP when it hits
1916 * TASK_TOMBSTONE. In that case we must already have been detached
1917 * from the context (by perf_event_exit_event()) but the grouping
1918 * might still be in-tact.
1919 */
1920 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1921 if ((flags & DETACH_GROUP) &&
1922 (event->attach_state & PERF_ATTACH_GROUP)) {
1923 /*
1924 * Since in that case we cannot possibly be scheduled, simply
1925 * detach now.
1926 */
1927 raw_spin_lock_irq(&ctx->lock);
1928 perf_group_detach(event);
1929 raw_spin_unlock_irq(&ctx->lock);
1930 }
1931 }
1932
1933 /*
1934 * Cross CPU call to disable a performance event
1935 */
1936 static void __perf_event_disable(struct perf_event *event,
1937 struct perf_cpu_context *cpuctx,
1938 struct perf_event_context *ctx,
1939 void *info)
1940 {
1941 if (event->state < PERF_EVENT_STATE_INACTIVE)
1942 return;
1943
1944 update_context_time(ctx);
1945 update_cgrp_time_from_event(event);
1946 update_group_times(event);
1947 if (event == event->group_leader)
1948 group_sched_out(event, cpuctx, ctx);
1949 else
1950 event_sched_out(event, cpuctx, ctx);
1951 event->state = PERF_EVENT_STATE_OFF;
1952 }
1953
1954 /*
1955 * Disable a event.
1956 *
1957 * If event->ctx is a cloned context, callers must make sure that
1958 * every task struct that event->ctx->task could possibly point to
1959 * remains valid. This condition is satisifed when called through
1960 * perf_event_for_each_child or perf_event_for_each because they
1961 * hold the top-level event's child_mutex, so any descendant that
1962 * goes to exit will block in perf_event_exit_event().
1963 *
1964 * When called from perf_pending_event it's OK because event->ctx
1965 * is the current context on this CPU and preemption is disabled,
1966 * hence we can't get into perf_event_task_sched_out for this context.
1967 */
1968 static void _perf_event_disable(struct perf_event *event)
1969 {
1970 struct perf_event_context *ctx = event->ctx;
1971
1972 raw_spin_lock_irq(&ctx->lock);
1973 if (event->state <= PERF_EVENT_STATE_OFF) {
1974 raw_spin_unlock_irq(&ctx->lock);
1975 return;
1976 }
1977 raw_spin_unlock_irq(&ctx->lock);
1978
1979 event_function_call(event, __perf_event_disable, NULL);
1980 }
1981
1982 void perf_event_disable_local(struct perf_event *event)
1983 {
1984 event_function_local(event, __perf_event_disable, NULL);
1985 }
1986
1987 /*
1988 * Strictly speaking kernel users cannot create groups and therefore this
1989 * interface does not need the perf_event_ctx_lock() magic.
1990 */
1991 void perf_event_disable(struct perf_event *event)
1992 {
1993 struct perf_event_context *ctx;
1994
1995 ctx = perf_event_ctx_lock(event);
1996 _perf_event_disable(event);
1997 perf_event_ctx_unlock(event, ctx);
1998 }
1999 EXPORT_SYMBOL_GPL(perf_event_disable);
2000
2001 void perf_event_disable_inatomic(struct perf_event *event)
2002 {
2003 event->pending_disable = 1;
2004 irq_work_queue(&event->pending);
2005 }
2006
2007 static void perf_set_shadow_time(struct perf_event *event,
2008 struct perf_event_context *ctx,
2009 u64 tstamp)
2010 {
2011 /*
2012 * use the correct time source for the time snapshot
2013 *
2014 * We could get by without this by leveraging the
2015 * fact that to get to this function, the caller
2016 * has most likely already called update_context_time()
2017 * and update_cgrp_time_xx() and thus both timestamp
2018 * are identical (or very close). Given that tstamp is,
2019 * already adjusted for cgroup, we could say that:
2020 * tstamp - ctx->timestamp
2021 * is equivalent to
2022 * tstamp - cgrp->timestamp.
2023 *
2024 * Then, in perf_output_read(), the calculation would
2025 * work with no changes because:
2026 * - event is guaranteed scheduled in
2027 * - no scheduled out in between
2028 * - thus the timestamp would be the same
2029 *
2030 * But this is a bit hairy.
2031 *
2032 * So instead, we have an explicit cgroup call to remain
2033 * within the time time source all along. We believe it
2034 * is cleaner and simpler to understand.
2035 */
2036 if (is_cgroup_event(event))
2037 perf_cgroup_set_shadow_time(event, tstamp);
2038 else
2039 event->shadow_ctx_time = tstamp - ctx->timestamp;
2040 }
2041
2042 #define MAX_INTERRUPTS (~0ULL)
2043
2044 static void perf_log_throttle(struct perf_event *event, int enable);
2045 static void perf_log_itrace_start(struct perf_event *event);
2046
2047 static int
2048 event_sched_in(struct perf_event *event,
2049 struct perf_cpu_context *cpuctx,
2050 struct perf_event_context *ctx)
2051 {
2052 u64 tstamp = perf_event_time(event);
2053 int ret = 0;
2054
2055 lockdep_assert_held(&ctx->lock);
2056
2057 if (event->state <= PERF_EVENT_STATE_OFF)
2058 return 0;
2059
2060 WRITE_ONCE(event->oncpu, smp_processor_id());
2061 /*
2062 * Order event::oncpu write to happen before the ACTIVE state
2063 * is visible.
2064 */
2065 smp_wmb();
2066 WRITE_ONCE(event->state, PERF_EVENT_STATE_ACTIVE);
2067
2068 /*
2069 * Unthrottle events, since we scheduled we might have missed several
2070 * ticks already, also for a heavily scheduling task there is little
2071 * guarantee it'll get a tick in a timely manner.
2072 */
2073 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2074 perf_log_throttle(event, 1);
2075 event->hw.interrupts = 0;
2076 }
2077
2078 /*
2079 * The new state must be visible before we turn it on in the hardware:
2080 */
2081 smp_wmb();
2082
2083 perf_pmu_disable(event->pmu);
2084
2085 perf_set_shadow_time(event, ctx, tstamp);
2086
2087 perf_log_itrace_start(event);
2088
2089 if (event->pmu->add(event, PERF_EF_START)) {
2090 event->state = PERF_EVENT_STATE_INACTIVE;
2091 event->oncpu = -1;
2092 ret = -EAGAIN;
2093 goto out;
2094 }
2095
2096 event->tstamp_running += tstamp - event->tstamp_stopped;
2097
2098 if (!is_software_event(event))
2099 cpuctx->active_oncpu++;
2100 if (!ctx->nr_active++)
2101 perf_event_ctx_activate(ctx);
2102 if (event->attr.freq && event->attr.sample_freq)
2103 ctx->nr_freq++;
2104
2105 if (event->attr.exclusive)
2106 cpuctx->exclusive = 1;
2107
2108 out:
2109 perf_pmu_enable(event->pmu);
2110
2111 return ret;
2112 }
2113
2114 static int
2115 group_sched_in(struct perf_event *group_event,
2116 struct perf_cpu_context *cpuctx,
2117 struct perf_event_context *ctx)
2118 {
2119 struct perf_event *event, *partial_group = NULL;
2120 struct pmu *pmu = ctx->pmu;
2121 u64 now = ctx->time;
2122 bool simulate = false;
2123
2124 if (group_event->state == PERF_EVENT_STATE_OFF)
2125 return 0;
2126
2127 pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2128
2129 if (event_sched_in(group_event, cpuctx, ctx)) {
2130 pmu->cancel_txn(pmu);
2131 perf_mux_hrtimer_restart(cpuctx);
2132 return -EAGAIN;
2133 }
2134
2135 /*
2136 * Schedule in siblings as one group (if any):
2137 */
2138 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2139 if (event_sched_in(event, cpuctx, ctx)) {
2140 partial_group = event;
2141 goto group_error;
2142 }
2143 }
2144
2145 if (!pmu->commit_txn(pmu))
2146 return 0;
2147
2148 group_error:
2149 /*
2150 * Groups can be scheduled in as one unit only, so undo any
2151 * partial group before returning:
2152 * The events up to the failed event are scheduled out normally,
2153 * tstamp_stopped will be updated.
2154 *
2155 * The failed events and the remaining siblings need to have
2156 * their timings updated as if they had gone thru event_sched_in()
2157 * and event_sched_out(). This is required to get consistent timings
2158 * across the group. This also takes care of the case where the group
2159 * could never be scheduled by ensuring tstamp_stopped is set to mark
2160 * the time the event was actually stopped, such that time delta
2161 * calculation in update_event_times() is correct.
2162 */
2163 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2164 if (event == partial_group)
2165 simulate = true;
2166
2167 if (simulate) {
2168 event->tstamp_running += now - event->tstamp_stopped;
2169 event->tstamp_stopped = now;
2170 } else {
2171 event_sched_out(event, cpuctx, ctx);
2172 }
2173 }
2174 event_sched_out(group_event, cpuctx, ctx);
2175
2176 pmu->cancel_txn(pmu);
2177
2178 perf_mux_hrtimer_restart(cpuctx);
2179
2180 return -EAGAIN;
2181 }
2182
2183 /*
2184 * Work out whether we can put this event group on the CPU now.
2185 */
2186 static int group_can_go_on(struct perf_event *event,
2187 struct perf_cpu_context *cpuctx,
2188 int can_add_hw)
2189 {
2190 /*
2191 * Groups consisting entirely of software events can always go on.
2192 */
2193 if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2194 return 1;
2195 /*
2196 * If an exclusive group is already on, no other hardware
2197 * events can go on.
2198 */
2199 if (cpuctx->exclusive)
2200 return 0;
2201 /*
2202 * If this group is exclusive and there are already
2203 * events on the CPU, it can't go on.
2204 */
2205 if (event->attr.exclusive && cpuctx->active_oncpu)
2206 return 0;
2207 /*
2208 * Otherwise, try to add it if all previous groups were able
2209 * to go on.
2210 */
2211 return can_add_hw;
2212 }
2213
2214 static void add_event_to_ctx(struct perf_event *event,
2215 struct perf_event_context *ctx)
2216 {
2217 u64 tstamp = perf_event_time(event);
2218
2219 list_add_event(event, ctx);
2220 perf_group_attach(event);
2221 event->tstamp_enabled = tstamp;
2222 event->tstamp_running = tstamp;
2223 event->tstamp_stopped = tstamp;
2224 }
2225
2226 static void ctx_sched_out(struct perf_event_context *ctx,
2227 struct perf_cpu_context *cpuctx,
2228 enum event_type_t event_type);
2229 static void
2230 ctx_sched_in(struct perf_event_context *ctx,
2231 struct perf_cpu_context *cpuctx,
2232 enum event_type_t event_type,
2233 struct task_struct *task);
2234
2235 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2236 struct perf_event_context *ctx,
2237 enum event_type_t event_type)
2238 {
2239 if (!cpuctx->task_ctx)
2240 return;
2241
2242 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2243 return;
2244
2245 ctx_sched_out(ctx, cpuctx, event_type);
2246 }
2247
2248 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2249 struct perf_event_context *ctx,
2250 struct task_struct *task)
2251 {
2252 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2253 if (ctx)
2254 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2255 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2256 if (ctx)
2257 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2258 }
2259
2260 /*
2261 * We want to maintain the following priority of scheduling:
2262 * - CPU pinned (EVENT_CPU | EVENT_PINNED)
2263 * - task pinned (EVENT_PINNED)
2264 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2265 * - task flexible (EVENT_FLEXIBLE).
2266 *
2267 * In order to avoid unscheduling and scheduling back in everything every
2268 * time an event is added, only do it for the groups of equal priority and
2269 * below.
2270 *
2271 * This can be called after a batch operation on task events, in which case
2272 * event_type is a bit mask of the types of events involved. For CPU events,
2273 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2274 */
2275 static void ctx_resched(struct perf_cpu_context *cpuctx,
2276 struct perf_event_context *task_ctx,
2277 enum event_type_t event_type)
2278 {
2279 enum event_type_t ctx_event_type = event_type & EVENT_ALL;
2280 bool cpu_event = !!(event_type & EVENT_CPU);
2281
2282 /*
2283 * If pinned groups are involved, flexible groups also need to be
2284 * scheduled out.
2285 */
2286 if (event_type & EVENT_PINNED)
2287 event_type |= EVENT_FLEXIBLE;
2288
2289 perf_pmu_disable(cpuctx->ctx.pmu);
2290 if (task_ctx)
2291 task_ctx_sched_out(cpuctx, task_ctx, event_type);
2292
2293 /*
2294 * Decide which cpu ctx groups to schedule out based on the types
2295 * of events that caused rescheduling:
2296 * - EVENT_CPU: schedule out corresponding groups;
2297 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2298 * - otherwise, do nothing more.
2299 */
2300 if (cpu_event)
2301 cpu_ctx_sched_out(cpuctx, ctx_event_type);
2302 else if (ctx_event_type & EVENT_PINNED)
2303 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2304
2305 perf_event_sched_in(cpuctx, task_ctx, current);
2306 perf_pmu_enable(cpuctx->ctx.pmu);
2307 }
2308
2309 /*
2310 * Cross CPU call to install and enable a performance event
2311 *
2312 * Very similar to remote_function() + event_function() but cannot assume that
2313 * things like ctx->is_active and cpuctx->task_ctx are set.
2314 */
2315 static int __perf_install_in_context(void *info)
2316 {
2317 struct perf_event *event = info;
2318 struct perf_event_context *ctx = event->ctx;
2319 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2320 struct perf_event_context *task_ctx = cpuctx->task_ctx;
2321 bool reprogram = true;
2322 int ret = 0;
2323
2324 raw_spin_lock(&cpuctx->ctx.lock);
2325 if (ctx->task) {
2326 raw_spin_lock(&ctx->lock);
2327 task_ctx = ctx;
2328
2329 reprogram = (ctx->task == current);
2330
2331 /*
2332 * If the task is running, it must be running on this CPU,
2333 * otherwise we cannot reprogram things.
2334 *
2335 * If its not running, we don't care, ctx->lock will
2336 * serialize against it becoming runnable.
2337 */
2338 if (task_curr(ctx->task) && !reprogram) {
2339 ret = -ESRCH;
2340 goto unlock;
2341 }
2342
2343 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2344 } else if (task_ctx) {
2345 raw_spin_lock(&task_ctx->lock);
2346 }
2347
2348 if (reprogram) {
2349 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2350 add_event_to_ctx(event, ctx);
2351 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2352 } else {
2353 add_event_to_ctx(event, ctx);
2354 }
2355
2356 unlock:
2357 perf_ctx_unlock(cpuctx, task_ctx);
2358
2359 return ret;
2360 }
2361
2362 /*
2363 * Attach a performance event to a context.
2364 *
2365 * Very similar to event_function_call, see comment there.
2366 */
2367 static void
2368 perf_install_in_context(struct perf_event_context *ctx,
2369 struct perf_event *event,
2370 int cpu)
2371 {
2372 struct task_struct *task = READ_ONCE(ctx->task);
2373
2374 lockdep_assert_held(&ctx->mutex);
2375
2376 if (event->cpu != -1)
2377 event->cpu = cpu;
2378
2379 /*
2380 * Ensures that if we can observe event->ctx, both the event and ctx
2381 * will be 'complete'. See perf_iterate_sb_cpu().
2382 */
2383 smp_store_release(&event->ctx, ctx);
2384
2385 if (!task) {
2386 cpu_function_call(cpu, __perf_install_in_context, event);
2387 return;
2388 }
2389
2390 /*
2391 * Should not happen, we validate the ctx is still alive before calling.
2392 */
2393 if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2394 return;
2395
2396 /*
2397 * Installing events is tricky because we cannot rely on ctx->is_active
2398 * to be set in case this is the nr_events 0 -> 1 transition.
2399 *
2400 * Instead we use task_curr(), which tells us if the task is running.
2401 * However, since we use task_curr() outside of rq::lock, we can race
2402 * against the actual state. This means the result can be wrong.
2403 *
2404 * If we get a false positive, we retry, this is harmless.
2405 *
2406 * If we get a false negative, things are complicated. If we are after
2407 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2408 * value must be correct. If we're before, it doesn't matter since
2409 * perf_event_context_sched_in() will program the counter.
2410 *
2411 * However, this hinges on the remote context switch having observed
2412 * our task->perf_event_ctxp[] store, such that it will in fact take
2413 * ctx::lock in perf_event_context_sched_in().
2414 *
2415 * We do this by task_function_call(), if the IPI fails to hit the task
2416 * we know any future context switch of task must see the
2417 * perf_event_ctpx[] store.
2418 */
2419
2420 /*
2421 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2422 * task_cpu() load, such that if the IPI then does not find the task
2423 * running, a future context switch of that task must observe the
2424 * store.
2425 */
2426 smp_mb();
2427 again:
2428 if (!task_function_call(task, __perf_install_in_context, event))
2429 return;
2430
2431 raw_spin_lock_irq(&ctx->lock);
2432 task = ctx->task;
2433 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2434 /*
2435 * Cannot happen because we already checked above (which also
2436 * cannot happen), and we hold ctx->mutex, which serializes us
2437 * against perf_event_exit_task_context().
2438 */
2439 raw_spin_unlock_irq(&ctx->lock);
2440 return;
2441 }
2442 /*
2443 * If the task is not running, ctx->lock will avoid it becoming so,
2444 * thus we can safely install the event.
2445 */
2446 if (task_curr(task)) {
2447 raw_spin_unlock_irq(&ctx->lock);
2448 goto again;
2449 }
2450 add_event_to_ctx(event, ctx);
2451 raw_spin_unlock_irq(&ctx->lock);
2452 }
2453
2454 /*
2455 * Put a event into inactive state and update time fields.
2456 * Enabling the leader of a group effectively enables all
2457 * the group members that aren't explicitly disabled, so we
2458 * have to update their ->tstamp_enabled also.
2459 * Note: this works for group members as well as group leaders
2460 * since the non-leader members' sibling_lists will be empty.
2461 */
2462 static void __perf_event_mark_enabled(struct perf_event *event)
2463 {
2464 struct perf_event *sub;
2465 u64 tstamp = perf_event_time(event);
2466
2467 event->state = PERF_EVENT_STATE_INACTIVE;
2468 event->tstamp_enabled = tstamp - event->total_time_enabled;
2469 list_for_each_entry(sub, &event->sibling_list, group_entry) {
2470 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2471 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
2472 }
2473 }
2474
2475 /*
2476 * Cross CPU call to enable a performance event
2477 */
2478 static void __perf_event_enable(struct perf_event *event,
2479 struct perf_cpu_context *cpuctx,
2480 struct perf_event_context *ctx,
2481 void *info)
2482 {
2483 struct perf_event *leader = event->group_leader;
2484 struct perf_event_context *task_ctx;
2485
2486 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2487 event->state <= PERF_EVENT_STATE_ERROR)
2488 return;
2489
2490 if (ctx->is_active)
2491 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2492
2493 __perf_event_mark_enabled(event);
2494
2495 if (!ctx->is_active)
2496 return;
2497
2498 if (!event_filter_match(event)) {
2499 if (is_cgroup_event(event))
2500 perf_cgroup_defer_enabled(event);
2501 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2502 return;
2503 }
2504
2505 /*
2506 * If the event is in a group and isn't the group leader,
2507 * then don't put it on unless the group is on.
2508 */
2509 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2510 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2511 return;
2512 }
2513
2514 task_ctx = cpuctx->task_ctx;
2515 if (ctx->task)
2516 WARN_ON_ONCE(task_ctx != ctx);
2517
2518 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2519 }
2520
2521 /*
2522 * Enable a event.
2523 *
2524 * If event->ctx is a cloned context, callers must make sure that
2525 * every task struct that event->ctx->task could possibly point to
2526 * remains valid. This condition is satisfied when called through
2527 * perf_event_for_each_child or perf_event_for_each as described
2528 * for perf_event_disable.
2529 */
2530 static void _perf_event_enable(struct perf_event *event)
2531 {
2532 struct perf_event_context *ctx = event->ctx;
2533
2534 raw_spin_lock_irq(&ctx->lock);
2535 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2536 event->state < PERF_EVENT_STATE_ERROR) {
2537 raw_spin_unlock_irq(&ctx->lock);
2538 return;
2539 }
2540
2541 /*
2542 * If the event is in error state, clear that first.
2543 *
2544 * That way, if we see the event in error state below, we know that it
2545 * has gone back into error state, as distinct from the task having
2546 * been scheduled away before the cross-call arrived.
2547 */
2548 if (event->state == PERF_EVENT_STATE_ERROR)
2549 event->state = PERF_EVENT_STATE_OFF;
2550 raw_spin_unlock_irq(&ctx->lock);
2551
2552 event_function_call(event, __perf_event_enable, NULL);
2553 }
2554
2555 /*
2556 * See perf_event_disable();
2557 */
2558 void perf_event_enable(struct perf_event *event)
2559 {
2560 struct perf_event_context *ctx;
2561
2562 ctx = perf_event_ctx_lock(event);
2563 _perf_event_enable(event);
2564 perf_event_ctx_unlock(event, ctx);
2565 }
2566 EXPORT_SYMBOL_GPL(perf_event_enable);
2567
2568 struct stop_event_data {
2569 struct perf_event *event;
2570 unsigned int restart;
2571 };
2572
2573 static int __perf_event_stop(void *info)
2574 {
2575 struct stop_event_data *sd = info;
2576 struct perf_event *event = sd->event;
2577
2578 /* if it's already INACTIVE, do nothing */
2579 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2580 return 0;
2581
2582 /* matches smp_wmb() in event_sched_in() */
2583 smp_rmb();
2584
2585 /*
2586 * There is a window with interrupts enabled before we get here,
2587 * so we need to check again lest we try to stop another CPU's event.
2588 */
2589 if (READ_ONCE(event->oncpu) != smp_processor_id())
2590 return -EAGAIN;
2591
2592 event->pmu->stop(event, PERF_EF_UPDATE);
2593
2594 /*
2595 * May race with the actual stop (through perf_pmu_output_stop()),
2596 * but it is only used for events with AUX ring buffer, and such
2597 * events will refuse to restart because of rb::aux_mmap_count==0,
2598 * see comments in perf_aux_output_begin().
2599 *
2600 * Since this is happening on a event-local CPU, no trace is lost
2601 * while restarting.
2602 */
2603 if (sd->restart)
2604 event->pmu->start(event, 0);
2605
2606 return 0;
2607 }
2608
2609 static int perf_event_stop(struct perf_event *event, int restart)
2610 {
2611 struct stop_event_data sd = {
2612 .event = event,
2613 .restart = restart,
2614 };
2615 int ret = 0;
2616
2617 do {
2618 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2619 return 0;
2620
2621 /* matches smp_wmb() in event_sched_in() */
2622 smp_rmb();
2623
2624 /*
2625 * We only want to restart ACTIVE events, so if the event goes
2626 * inactive here (event->oncpu==-1), there's nothing more to do;
2627 * fall through with ret==-ENXIO.
2628 */
2629 ret = cpu_function_call(READ_ONCE(event->oncpu),
2630 __perf_event_stop, &sd);
2631 } while (ret == -EAGAIN);
2632
2633 return ret;
2634 }
2635
2636 /*
2637 * In order to contain the amount of racy and tricky in the address filter
2638 * configuration management, it is a two part process:
2639 *
2640 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2641 * we update the addresses of corresponding vmas in
2642 * event::addr_filters_offs array and bump the event::addr_filters_gen;
2643 * (p2) when an event is scheduled in (pmu::add), it calls
2644 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2645 * if the generation has changed since the previous call.
2646 *
2647 * If (p1) happens while the event is active, we restart it to force (p2).
2648 *
2649 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2650 * pre-existing mappings, called once when new filters arrive via SET_FILTER
2651 * ioctl;
2652 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2653 * registered mapping, called for every new mmap(), with mm::mmap_sem down
2654 * for reading;
2655 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2656 * of exec.
2657 */
2658 void perf_event_addr_filters_sync(struct perf_event *event)
2659 {
2660 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2661
2662 if (!has_addr_filter(event))
2663 return;
2664
2665 raw_spin_lock(&ifh->lock);
2666 if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2667 event->pmu->addr_filters_sync(event);
2668 event->hw.addr_filters_gen = event->addr_filters_gen;
2669 }
2670 raw_spin_unlock(&ifh->lock);
2671 }
2672 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2673
2674 static int _perf_event_refresh(struct perf_event *event, int refresh)
2675 {
2676 /*
2677 * not supported on inherited events
2678 */
2679 if (event->attr.inherit || !is_sampling_event(event))
2680 return -EINVAL;
2681
2682 atomic_add(refresh, &event->event_limit);
2683 _perf_event_enable(event);
2684
2685 return 0;
2686 }
2687
2688 /*
2689 * See perf_event_disable()
2690 */
2691 int perf_event_refresh(struct perf_event *event, int refresh)
2692 {
2693 struct perf_event_context *ctx;
2694 int ret;
2695
2696 ctx = perf_event_ctx_lock(event);
2697 ret = _perf_event_refresh(event, refresh);
2698 perf_event_ctx_unlock(event, ctx);
2699
2700 return ret;
2701 }
2702 EXPORT_SYMBOL_GPL(perf_event_refresh);
2703
2704 static void ctx_sched_out(struct perf_event_context *ctx,
2705 struct perf_cpu_context *cpuctx,
2706 enum event_type_t event_type)
2707 {
2708 int is_active = ctx->is_active;
2709 struct perf_event *event;
2710
2711 lockdep_assert_held(&ctx->lock);
2712
2713 if (likely(!ctx->nr_events)) {
2714 /*
2715 * See __perf_remove_from_context().
2716 */
2717 WARN_ON_ONCE(ctx->is_active);
2718 if (ctx->task)
2719 WARN_ON_ONCE(cpuctx->task_ctx);
2720 return;
2721 }
2722
2723 ctx->is_active &= ~event_type;
2724 if (!(ctx->is_active & EVENT_ALL))
2725 ctx->is_active = 0;
2726
2727 if (ctx->task) {
2728 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2729 if (!ctx->is_active)
2730 cpuctx->task_ctx = NULL;
2731 }
2732
2733 /*
2734 * Always update time if it was set; not only when it changes.
2735 * Otherwise we can 'forget' to update time for any but the last
2736 * context we sched out. For example:
2737 *
2738 * ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2739 * ctx_sched_out(.event_type = EVENT_PINNED)
2740 *
2741 * would only update time for the pinned events.
2742 */
2743 if (is_active & EVENT_TIME) {
2744 /* update (and stop) ctx time */
2745 update_context_time(ctx);
2746 update_cgrp_time_from_cpuctx(cpuctx);
2747 }
2748
2749 is_active ^= ctx->is_active; /* changed bits */
2750
2751 if (!ctx->nr_active || !(is_active & EVENT_ALL))
2752 return;
2753
2754 perf_pmu_disable(ctx->pmu);
2755 if (is_active & EVENT_PINNED) {
2756 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2757 group_sched_out(event, cpuctx, ctx);
2758 }
2759
2760 if (is_active & EVENT_FLEXIBLE) {
2761 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2762 group_sched_out(event, cpuctx, ctx);
2763 }
2764 perf_pmu_enable(ctx->pmu);
2765 }
2766
2767 /*
2768 * Test whether two contexts are equivalent, i.e. whether they have both been
2769 * cloned from the same version of the same context.
2770 *
2771 * Equivalence is measured using a generation number in the context that is
2772 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2773 * and list_del_event().
2774 */
2775 static int context_equiv(struct perf_event_context *ctx1,
2776 struct perf_event_context *ctx2)
2777 {
2778 lockdep_assert_held(&ctx1->lock);
2779 lockdep_assert_held(&ctx2->lock);
2780
2781 /* Pinning disables the swap optimization */
2782 if (ctx1->pin_count || ctx2->pin_count)
2783 return 0;
2784
2785 /* If ctx1 is the parent of ctx2 */
2786 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2787 return 1;
2788
2789 /* If ctx2 is the parent of ctx1 */
2790 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2791 return 1;
2792
2793 /*
2794 * If ctx1 and ctx2 have the same parent; we flatten the parent
2795 * hierarchy, see perf_event_init_context().
2796 */
2797 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2798 ctx1->parent_gen == ctx2->parent_gen)
2799 return 1;
2800
2801 /* Unmatched */
2802 return 0;
2803 }
2804
2805 static void __perf_event_sync_stat(struct perf_event *event,
2806 struct perf_event *next_event)
2807 {
2808 u64 value;
2809
2810 if (!event->attr.inherit_stat)
2811 return;
2812
2813 /*
2814 * Update the event value, we cannot use perf_event_read()
2815 * because we're in the middle of a context switch and have IRQs
2816 * disabled, which upsets smp_call_function_single(), however
2817 * we know the event must be on the current CPU, therefore we
2818 * don't need to use it.
2819 */
2820 switch (event->state) {
2821 case PERF_EVENT_STATE_ACTIVE:
2822 event->pmu->read(event);
2823 /* fall-through */
2824
2825 case PERF_EVENT_STATE_INACTIVE:
2826 update_event_times(event);
2827 break;
2828
2829 default:
2830 break;
2831 }
2832
2833 /*
2834 * In order to keep per-task stats reliable we need to flip the event
2835 * values when we flip the contexts.
2836 */
2837 value = local64_read(&next_event->count);
2838 value = local64_xchg(&event->count, value);
2839 local64_set(&next_event->count, value);
2840
2841 swap(event->total_time_enabled, next_event->total_time_enabled);
2842 swap(event->total_time_running, next_event->total_time_running);
2843
2844 /*
2845 * Since we swizzled the values, update the user visible data too.
2846 */
2847 perf_event_update_userpage(event);
2848 perf_event_update_userpage(next_event);
2849 }
2850
2851 static void perf_event_sync_stat(struct perf_event_context *ctx,
2852 struct perf_event_context *next_ctx)
2853 {
2854 struct perf_event *event, *next_event;
2855
2856 if (!ctx->nr_stat)
2857 return;
2858
2859 update_context_time(ctx);
2860
2861 event = list_first_entry(&ctx->event_list,
2862 struct perf_event, event_entry);
2863
2864 next_event = list_first_entry(&next_ctx->event_list,
2865 struct perf_event, event_entry);
2866
2867 while (&event->event_entry != &ctx->event_list &&
2868 &next_event->event_entry != &next_ctx->event_list) {
2869
2870 __perf_event_sync_stat(event, next_event);
2871
2872 event = list_next_entry(event, event_entry);
2873 next_event = list_next_entry(next_event, event_entry);
2874 }
2875 }
2876
2877 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2878 struct task_struct *next)
2879 {
2880 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2881 struct perf_event_context *next_ctx;
2882 struct perf_event_context *parent, *next_parent;
2883 struct perf_cpu_context *cpuctx;
2884 int do_switch = 1;
2885
2886 if (likely(!ctx))
2887 return;
2888
2889 cpuctx = __get_cpu_context(ctx);
2890 if (!cpuctx->task_ctx)
2891 return;
2892
2893 rcu_read_lock();
2894 next_ctx = next->perf_event_ctxp[ctxn];
2895 if (!next_ctx)
2896 goto unlock;
2897
2898 parent = rcu_dereference(ctx->parent_ctx);
2899 next_parent = rcu_dereference(next_ctx->parent_ctx);
2900
2901 /* If neither context have a parent context; they cannot be clones. */
2902 if (!parent && !next_parent)
2903 goto unlock;
2904
2905 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2906 /*
2907 * Looks like the two contexts are clones, so we might be
2908 * able to optimize the context switch. We lock both
2909 * contexts and check that they are clones under the
2910 * lock (including re-checking that neither has been
2911 * uncloned in the meantime). It doesn't matter which
2912 * order we take the locks because no other cpu could
2913 * be trying to lock both of these tasks.
2914 */
2915 raw_spin_lock(&ctx->lock);
2916 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2917 if (context_equiv(ctx, next_ctx)) {
2918 WRITE_ONCE(ctx->task, next);
2919 WRITE_ONCE(next_ctx->task, task);
2920
2921 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2922
2923 /*
2924 * RCU_INIT_POINTER here is safe because we've not
2925 * modified the ctx and the above modification of
2926 * ctx->task and ctx->task_ctx_data are immaterial
2927 * since those values are always verified under
2928 * ctx->lock which we're now holding.
2929 */
2930 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
2931 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
2932
2933 do_switch = 0;
2934
2935 perf_event_sync_stat(ctx, next_ctx);
2936 }
2937 raw_spin_unlock(&next_ctx->lock);
2938 raw_spin_unlock(&ctx->lock);
2939 }
2940 unlock:
2941 rcu_read_unlock();
2942
2943 if (do_switch) {
2944 raw_spin_lock(&ctx->lock);
2945 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
2946 raw_spin_unlock(&ctx->lock);
2947 }
2948 }
2949
2950 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
2951
2952 void perf_sched_cb_dec(struct pmu *pmu)
2953 {
2954 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2955
2956 this_cpu_dec(perf_sched_cb_usages);
2957
2958 if (!--cpuctx->sched_cb_usage)
2959 list_del(&cpuctx->sched_cb_entry);
2960 }
2961
2962
2963 void perf_sched_cb_inc(struct pmu *pmu)
2964 {
2965 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2966
2967 if (!cpuctx->sched_cb_usage++)
2968 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
2969
2970 this_cpu_inc(perf_sched_cb_usages);
2971 }
2972
2973 /*
2974 * This function provides the context switch callback to the lower code
2975 * layer. It is invoked ONLY when the context switch callback is enabled.
2976 *
2977 * This callback is relevant even to per-cpu events; for example multi event
2978 * PEBS requires this to provide PID/TID information. This requires we flush
2979 * all queued PEBS records before we context switch to a new task.
2980 */
2981 static void perf_pmu_sched_task(struct task_struct *prev,
2982 struct task_struct *next,
2983 bool sched_in)
2984 {
2985 struct perf_cpu_context *cpuctx;
2986 struct pmu *pmu;
2987
2988 if (prev == next)
2989 return;
2990
2991 list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
2992 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
2993
2994 if (WARN_ON_ONCE(!pmu->sched_task))
2995 continue;
2996
2997 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2998 perf_pmu_disable(pmu);
2999
3000 pmu->sched_task(cpuctx->task_ctx, sched_in);
3001
3002 perf_pmu_enable(pmu);
3003 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3004 }
3005 }
3006
3007 static void perf_event_switch(struct task_struct *task,
3008 struct task_struct *next_prev, bool sched_in);
3009
3010 #define for_each_task_context_nr(ctxn) \
3011 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3012
3013 /*
3014 * Called from scheduler to remove the events of the current task,
3015 * with interrupts disabled.
3016 *
3017 * We stop each event and update the event value in event->count.
3018 *
3019 * This does not protect us against NMI, but disable()
3020 * sets the disabled bit in the control field of event _before_
3021 * accessing the event control register. If a NMI hits, then it will
3022 * not restart the event.
3023 */
3024 void __perf_event_task_sched_out(struct task_struct *task,
3025 struct task_struct *next)
3026 {
3027 int ctxn;
3028
3029 if (__this_cpu_read(perf_sched_cb_usages))
3030 perf_pmu_sched_task(task, next, false);
3031
3032 if (atomic_read(&nr_switch_events))
3033 perf_event_switch(task, next, false);
3034
3035 for_each_task_context_nr(ctxn)
3036 perf_event_context_sched_out(task, ctxn, next);
3037
3038 /*
3039 * if cgroup events exist on this CPU, then we need
3040 * to check if we have to switch out PMU state.
3041 * cgroup event are system-wide mode only
3042 */
3043 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3044 perf_cgroup_sched_out(task, next);
3045 }
3046
3047 /*
3048 * Called with IRQs disabled
3049 */
3050 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3051 enum event_type_t event_type)
3052 {
3053 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3054 }
3055
3056 static void
3057 ctx_pinned_sched_in(struct perf_event_context *ctx,
3058 struct perf_cpu_context *cpuctx)
3059 {
3060 struct perf_event *event;
3061
3062 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
3063 if (event->state <= PERF_EVENT_STATE_OFF)
3064 continue;
3065 if (!event_filter_match(event))
3066 continue;
3067
3068 /* may need to reset tstamp_enabled */
3069 if (is_cgroup_event(event))
3070 perf_cgroup_mark_enabled(event, ctx);
3071
3072 if (group_can_go_on(event, cpuctx, 1))
3073 group_sched_in(event, cpuctx, ctx);
3074
3075 /*
3076 * If this pinned group hasn't been scheduled,
3077 * put it in error state.
3078 */
3079 if (event->state == PERF_EVENT_STATE_INACTIVE) {
3080 update_group_times(event);
3081 event->state = PERF_EVENT_STATE_ERROR;
3082 }
3083 }
3084 }
3085
3086 static void
3087 ctx_flexible_sched_in(struct perf_event_context *ctx,
3088 struct perf_cpu_context *cpuctx)
3089 {
3090 struct perf_event *event;
3091 int can_add_hw = 1;
3092
3093 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
3094 /* Ignore events in OFF or ERROR state */
3095 if (event->state <= PERF_EVENT_STATE_OFF)
3096 continue;
3097 /*
3098 * Listen to the 'cpu' scheduling filter constraint
3099 * of events:
3100 */
3101 if (!event_filter_match(event))
3102 continue;
3103
3104 /* may need to reset tstamp_enabled */
3105 if (is_cgroup_event(event))
3106 perf_cgroup_mark_enabled(event, ctx);
3107
3108 if (group_can_go_on(event, cpuctx, can_add_hw)) {
3109 if (group_sched_in(event, cpuctx, ctx))
3110 can_add_hw = 0;
3111 }
3112 }
3113 }
3114
3115 static void
3116 ctx_sched_in(struct perf_event_context *ctx,
3117 struct perf_cpu_context *cpuctx,
3118 enum event_type_t event_type,
3119 struct task_struct *task)
3120 {
3121 int is_active = ctx->is_active;
3122 u64 now;
3123
3124 lockdep_assert_held(&ctx->lock);
3125
3126 if (likely(!ctx->nr_events))
3127 return;
3128
3129 ctx->is_active |= (event_type | EVENT_TIME);
3130 if (ctx->task) {
3131 if (!is_active)
3132 cpuctx->task_ctx = ctx;
3133 else
3134 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3135 }
3136
3137 is_active ^= ctx->is_active; /* changed bits */
3138
3139 if (is_active & EVENT_TIME) {
3140 /* start ctx time */
3141 now = perf_clock();
3142 ctx->timestamp = now;
3143 perf_cgroup_set_timestamp(task, ctx);
3144 }
3145
3146 /*
3147 * First go through the list and put on any pinned groups
3148 * in order to give them the best chance of going on.
3149 */
3150 if (is_active & EVENT_PINNED)
3151 ctx_pinned_sched_in(ctx, cpuctx);
3152
3153 /* Then walk through the lower prio flexible groups */
3154 if (is_active & EVENT_FLEXIBLE)
3155 ctx_flexible_sched_in(ctx, cpuctx);
3156 }
3157
3158 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3159 enum event_type_t event_type,
3160 struct task_struct *task)
3161 {
3162 struct perf_event_context *ctx = &cpuctx->ctx;
3163
3164 ctx_sched_in(ctx, cpuctx, event_type, task);
3165 }
3166
3167 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3168 struct task_struct *task)
3169 {
3170 struct perf_cpu_context *cpuctx;
3171
3172 cpuctx = __get_cpu_context(ctx);
3173 if (cpuctx->task_ctx == ctx)
3174 return;
3175
3176 perf_ctx_lock(cpuctx, ctx);
3177 perf_pmu_disable(ctx->pmu);
3178 /*
3179 * We want to keep the following priority order:
3180 * cpu pinned (that don't need to move), task pinned,
3181 * cpu flexible, task flexible.
3182 *
3183 * However, if task's ctx is not carrying any pinned
3184 * events, no need to flip the cpuctx's events around.
3185 */
3186 if (!list_empty(&ctx->pinned_groups))
3187 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3188 perf_event_sched_in(cpuctx, ctx, task);
3189 perf_pmu_enable(ctx->pmu);
3190 perf_ctx_unlock(cpuctx, ctx);
3191 }
3192
3193 /*
3194 * Called from scheduler to add the events of the current task
3195 * with interrupts disabled.
3196 *
3197 * We restore the event value and then enable it.
3198 *
3199 * This does not protect us against NMI, but enable()
3200 * sets the enabled bit in the control field of event _before_
3201 * accessing the event control register. If a NMI hits, then it will
3202 * keep the event running.
3203 */
3204 void __perf_event_task_sched_in(struct task_struct *prev,
3205 struct task_struct *task)
3206 {
3207 struct perf_event_context *ctx;
3208 int ctxn;
3209
3210 /*
3211 * If cgroup events exist on this CPU, then we need to check if we have
3212 * to switch in PMU state; cgroup event are system-wide mode only.
3213 *
3214 * Since cgroup events are CPU events, we must schedule these in before
3215 * we schedule in the task events.
3216 */
3217 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3218 perf_cgroup_sched_in(prev, task);
3219
3220 for_each_task_context_nr(ctxn) {
3221 ctx = task->perf_event_ctxp[ctxn];
3222 if (likely(!ctx))
3223 continue;
3224
3225 perf_event_context_sched_in(ctx, task);
3226 }
3227
3228 if (atomic_read(&nr_switch_events))
3229 perf_event_switch(task, prev, true);
3230
3231 if (__this_cpu_read(perf_sched_cb_usages))
3232 perf_pmu_sched_task(prev, task, true);
3233 }
3234
3235 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3236 {
3237 u64 frequency = event->attr.sample_freq;
3238 u64 sec = NSEC_PER_SEC;
3239 u64 divisor, dividend;
3240
3241 int count_fls, nsec_fls, frequency_fls, sec_fls;
3242
3243 count_fls = fls64(count);
3244 nsec_fls = fls64(nsec);
3245 frequency_fls = fls64(frequency);
3246 sec_fls = 30;
3247
3248 /*
3249 * We got @count in @nsec, with a target of sample_freq HZ
3250 * the target period becomes:
3251 *
3252 * @count * 10^9
3253 * period = -------------------
3254 * @nsec * sample_freq
3255 *
3256 */
3257
3258 /*
3259 * Reduce accuracy by one bit such that @a and @b converge
3260 * to a similar magnitude.
3261 */
3262 #define REDUCE_FLS(a, b) \
3263 do { \
3264 if (a##_fls > b##_fls) { \
3265 a >>= 1; \
3266 a##_fls--; \
3267 } else { \
3268 b >>= 1; \
3269 b##_fls--; \
3270 } \
3271 } while (0)
3272
3273 /*
3274 * Reduce accuracy until either term fits in a u64, then proceed with
3275 * the other, so that finally we can do a u64/u64 division.
3276 */
3277 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3278 REDUCE_FLS(nsec, frequency);
3279 REDUCE_FLS(sec, count);
3280 }
3281
3282 if (count_fls + sec_fls > 64) {
3283 divisor = nsec * frequency;
3284
3285 while (count_fls + sec_fls > 64) {
3286 REDUCE_FLS(count, sec);
3287 divisor >>= 1;
3288 }
3289
3290 dividend = count * sec;
3291 } else {
3292 dividend = count * sec;
3293
3294 while (nsec_fls + frequency_fls > 64) {
3295 REDUCE_FLS(nsec, frequency);
3296 dividend >>= 1;
3297 }
3298
3299 divisor = nsec * frequency;
3300 }
3301
3302 if (!divisor)
3303 return dividend;
3304
3305 return div64_u64(dividend, divisor);
3306 }
3307
3308 static DEFINE_PER_CPU(int, perf_throttled_count);
3309 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3310
3311 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3312 {
3313 struct hw_perf_event *hwc = &event->hw;
3314 s64 period, sample_period;
3315 s64 delta;
3316
3317 period = perf_calculate_period(event, nsec, count);
3318
3319 delta = (s64)(period - hwc->sample_period);
3320 delta = (delta + 7) / 8; /* low pass filter */
3321
3322 sample_period = hwc->sample_period + delta;
3323
3324 if (!sample_period)
3325 sample_period = 1;
3326
3327 hwc->sample_period = sample_period;
3328
3329 if (local64_read(&hwc->period_left) > 8*sample_period) {
3330 if (disable)
3331 event->pmu->stop(event, PERF_EF_UPDATE);
3332
3333 local64_set(&hwc->period_left, 0);
3334
3335 if (disable)
3336 event->pmu->start(event, PERF_EF_RELOAD);
3337 }
3338 }
3339
3340 /*
3341 * combine freq adjustment with unthrottling to avoid two passes over the
3342 * events. At the same time, make sure, having freq events does not change
3343 * the rate of unthrottling as that would introduce bias.
3344 */
3345 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3346 int needs_unthr)
3347 {
3348 struct perf_event *event;
3349 struct hw_perf_event *hwc;
3350 u64 now, period = TICK_NSEC;
3351 s64 delta;
3352
3353 /*
3354 * only need to iterate over all events iff:
3355 * - context have events in frequency mode (needs freq adjust)
3356 * - there are events to unthrottle on this cpu
3357 */
3358 if (!(ctx->nr_freq || needs_unthr))
3359 return;
3360
3361 raw_spin_lock(&ctx->lock);
3362 perf_pmu_disable(ctx->pmu);
3363
3364 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3365 if (event->state != PERF_EVENT_STATE_ACTIVE)
3366 continue;
3367
3368 if (!event_filter_match(event))
3369 continue;
3370
3371 perf_pmu_disable(event->pmu);
3372
3373 hwc = &event->hw;
3374
3375 if (hwc->interrupts == MAX_INTERRUPTS) {
3376 hwc->interrupts = 0;
3377 perf_log_throttle(event, 1);
3378 event->pmu->start(event, 0);
3379 }
3380
3381 if (!event->attr.freq || !event->attr.sample_freq)
3382 goto next;
3383
3384 /*
3385 * stop the event and update event->count
3386 */
3387 event->pmu->stop(event, PERF_EF_UPDATE);
3388
3389 now = local64_read(&event->count);
3390 delta = now - hwc->freq_count_stamp;
3391 hwc->freq_count_stamp = now;
3392
3393 /*
3394 * restart the event
3395 * reload only if value has changed
3396 * we have stopped the event so tell that
3397 * to perf_adjust_period() to avoid stopping it
3398 * twice.
3399 */
3400 if (delta > 0)
3401 perf_adjust_period(event, period, delta, false);
3402
3403 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3404 next:
3405 perf_pmu_enable(event->pmu);
3406 }
3407
3408 perf_pmu_enable(ctx->pmu);
3409 raw_spin_unlock(&ctx->lock);
3410 }
3411
3412 /*
3413 * Round-robin a context's events:
3414 */
3415 static void rotate_ctx(struct perf_event_context *ctx)
3416 {
3417 /*
3418 * Rotate the first entry last of non-pinned groups. Rotation might be
3419 * disabled by the inheritance code.
3420 */
3421 if (!ctx->rotate_disable)
3422 list_rotate_left(&ctx->flexible_groups);
3423 }
3424
3425 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3426 {
3427 struct perf_event_context *ctx = NULL;
3428 int rotate = 0;
3429
3430 if (cpuctx->ctx.nr_events) {
3431 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3432 rotate = 1;
3433 }
3434
3435 ctx = cpuctx->task_ctx;
3436 if (ctx && ctx->nr_events) {
3437 if (ctx->nr_events != ctx->nr_active)
3438 rotate = 1;
3439 }
3440
3441 if (!rotate)
3442 goto done;
3443
3444 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3445 perf_pmu_disable(cpuctx->ctx.pmu);
3446
3447 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3448 if (ctx)
3449 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3450
3451 rotate_ctx(&cpuctx->ctx);
3452 if (ctx)
3453 rotate_ctx(ctx);
3454
3455 perf_event_sched_in(cpuctx, ctx, current);
3456
3457 perf_pmu_enable(cpuctx->ctx.pmu);
3458 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3459 done:
3460
3461 return rotate;
3462 }
3463
3464 void perf_event_task_tick(void)
3465 {
3466 struct list_head *head = this_cpu_ptr(&active_ctx_list);
3467 struct perf_event_context *ctx, *tmp;
3468 int throttled;
3469
3470 WARN_ON(!irqs_disabled());
3471
3472 __this_cpu_inc(perf_throttled_seq);
3473 throttled = __this_cpu_xchg(perf_throttled_count, 0);
3474 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3475
3476 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3477 perf_adjust_freq_unthr_context(ctx, throttled);
3478 }
3479
3480 static int event_enable_on_exec(struct perf_event *event,
3481 struct perf_event_context *ctx)
3482 {
3483 if (!event->attr.enable_on_exec)
3484 return 0;
3485
3486 event->attr.enable_on_exec = 0;
3487 if (event->state >= PERF_EVENT_STATE_INACTIVE)
3488 return 0;
3489
3490 __perf_event_mark_enabled(event);
3491
3492 return 1;
3493 }
3494
3495 /*
3496 * Enable all of a task's events that have been marked enable-on-exec.
3497 * This expects task == current.
3498 */
3499 static void perf_event_enable_on_exec(int ctxn)
3500 {
3501 struct perf_event_context *ctx, *clone_ctx = NULL;
3502 enum event_type_t event_type = 0;
3503 struct perf_cpu_context *cpuctx;
3504 struct perf_event *event;
3505 unsigned long flags;
3506 int enabled = 0;
3507
3508 local_irq_save(flags);
3509 ctx = current->perf_event_ctxp[ctxn];
3510 if (!ctx || !ctx->nr_events)
3511 goto out;
3512
3513 cpuctx = __get_cpu_context(ctx);
3514 perf_ctx_lock(cpuctx, ctx);
3515 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3516 list_for_each_entry(event, &ctx->event_list, event_entry) {
3517 enabled |= event_enable_on_exec(event, ctx);
3518 event_type |= get_event_type(event);
3519 }
3520
3521 /*
3522 * Unclone and reschedule this context if we enabled any event.
3523 */
3524 if (enabled) {
3525 clone_ctx = unclone_ctx(ctx);
3526 ctx_resched(cpuctx, ctx, event_type);
3527 } else {
3528 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3529 }
3530 perf_ctx_unlock(cpuctx, ctx);
3531
3532 out:
3533 local_irq_restore(flags);
3534
3535 if (clone_ctx)
3536 put_ctx(clone_ctx);
3537 }
3538
3539 struct perf_read_data {
3540 struct perf_event *event;
3541 bool group;
3542 int ret;
3543 };
3544
3545 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
3546 {
3547 u16 local_pkg, event_pkg;
3548
3549 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
3550 int local_cpu = smp_processor_id();
3551
3552 event_pkg = topology_physical_package_id(event_cpu);
3553 local_pkg = topology_physical_package_id(local_cpu);
3554
3555 if (event_pkg == local_pkg)
3556 return local_cpu;
3557 }
3558
3559 return event_cpu;
3560 }
3561
3562 /*
3563 * Cross CPU call to read the hardware event
3564 */
3565 static void __perf_event_read(void *info)
3566 {
3567 struct perf_read_data *data = info;
3568 struct perf_event *sub, *event = data->event;
3569 struct perf_event_context *ctx = event->ctx;
3570 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3571 struct pmu *pmu = event->pmu;
3572
3573 /*
3574 * If this is a task context, we need to check whether it is
3575 * the current task context of this cpu. If not it has been
3576 * scheduled out before the smp call arrived. In that case
3577 * event->count would have been updated to a recent sample
3578 * when the event was scheduled out.
3579 */
3580 if (ctx->task && cpuctx->task_ctx != ctx)
3581 return;
3582
3583 raw_spin_lock(&ctx->lock);
3584 if (ctx->is_active) {
3585 update_context_time(ctx);
3586 update_cgrp_time_from_event(event);
3587 }
3588
3589 update_event_times(event);
3590 if (event->state != PERF_EVENT_STATE_ACTIVE)
3591 goto unlock;
3592
3593 if (!data->group) {
3594 pmu->read(event);
3595 data->ret = 0;
3596 goto unlock;
3597 }
3598
3599 pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3600
3601 pmu->read(event);
3602
3603 list_for_each_entry(sub, &event->sibling_list, group_entry) {
3604 update_event_times(sub);
3605 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3606 /*
3607 * Use sibling's PMU rather than @event's since
3608 * sibling could be on different (eg: software) PMU.
3609 */
3610 sub->pmu->read(sub);
3611 }
3612 }
3613
3614 data->ret = pmu->commit_txn(pmu);
3615
3616 unlock:
3617 raw_spin_unlock(&ctx->lock);
3618 }
3619
3620 static inline u64 perf_event_count(struct perf_event *event)
3621 {
3622 if (event->pmu->count)
3623 return event->pmu->count(event);
3624
3625 return __perf_event_count(event);
3626 }
3627
3628 /*
3629 * NMI-safe method to read a local event, that is an event that
3630 * is:
3631 * - either for the current task, or for this CPU
3632 * - does not have inherit set, for inherited task events
3633 * will not be local and we cannot read them atomically
3634 * - must not have a pmu::count method
3635 */
3636 u64 perf_event_read_local(struct perf_event *event)
3637 {
3638 unsigned long flags;
3639 u64 val;
3640
3641 /*
3642 * Disabling interrupts avoids all counter scheduling (context
3643 * switches, timer based rotation and IPIs).
3644 */
3645 local_irq_save(flags);
3646
3647 /* If this is a per-task event, it must be for current */
3648 WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
3649 event->hw.target != current);
3650
3651 /* If this is a per-CPU event, it must be for this CPU */
3652 WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
3653 event->cpu != smp_processor_id());
3654
3655 /*
3656 * It must not be an event with inherit set, we cannot read
3657 * all child counters from atomic context.
3658 */
3659 WARN_ON_ONCE(event->attr.inherit);
3660
3661 /*
3662 * It must not have a pmu::count method, those are not
3663 * NMI safe.
3664 */
3665 WARN_ON_ONCE(event->pmu->count);
3666
3667 /*
3668 * If the event is currently on this CPU, its either a per-task event,
3669 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3670 * oncpu == -1).
3671 */
3672 if (event->oncpu == smp_processor_id())
3673 event->pmu->read(event);
3674
3675 val = local64_read(&event->count);
3676 local_irq_restore(flags);
3677
3678 return val;
3679 }
3680
3681 static int perf_event_read(struct perf_event *event, bool group)
3682 {
3683 int event_cpu, ret = 0;
3684
3685 /*
3686 * If event is enabled and currently active on a CPU, update the
3687 * value in the event structure:
3688 */
3689 if (event->state == PERF_EVENT_STATE_ACTIVE) {
3690 struct perf_read_data data = {
3691 .event = event,
3692 .group = group,
3693 .ret = 0,
3694 };
3695
3696 event_cpu = READ_ONCE(event->oncpu);
3697 if ((unsigned)event_cpu >= nr_cpu_ids)
3698 return 0;
3699
3700 preempt_disable();
3701 event_cpu = __perf_event_read_cpu(event, event_cpu);
3702
3703 /*
3704 * Purposely ignore the smp_call_function_single() return
3705 * value.
3706 *
3707 * If event_cpu isn't a valid CPU it means the event got
3708 * scheduled out and that will have updated the event count.
3709 *
3710 * Therefore, either way, we'll have an up-to-date event count
3711 * after this.
3712 */
3713 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
3714 preempt_enable();
3715 ret = data.ret;
3716 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
3717 struct perf_event_context *ctx = event->ctx;
3718 unsigned long flags;
3719
3720 raw_spin_lock_irqsave(&ctx->lock, flags);
3721 /*
3722 * may read while context is not active
3723 * (e.g., thread is blocked), in that case
3724 * we cannot update context time
3725 */
3726 if (ctx->is_active) {
3727 update_context_time(ctx);
3728 update_cgrp_time_from_event(event);
3729 }
3730 if (group)
3731 update_group_times(event);
3732 else
3733 update_event_times(event);
3734 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3735 }
3736
3737 return ret;
3738 }
3739
3740 /*
3741 * Initialize the perf_event context in a task_struct:
3742 */
3743 static void __perf_event_init_context(struct perf_event_context *ctx)
3744 {
3745 raw_spin_lock_init(&ctx->lock);
3746 mutex_init(&ctx->mutex);
3747 INIT_LIST_HEAD(&ctx->active_ctx_list);
3748 INIT_LIST_HEAD(&ctx->pinned_groups);
3749 INIT_LIST_HEAD(&ctx->flexible_groups);
3750 INIT_LIST_HEAD(&ctx->event_list);
3751 atomic_set(&ctx->refcount, 1);
3752 }
3753
3754 static struct perf_event_context *
3755 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3756 {
3757 struct perf_event_context *ctx;
3758
3759 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3760 if (!ctx)
3761 return NULL;
3762
3763 __perf_event_init_context(ctx);
3764 if (task) {
3765 ctx->task = task;
3766 get_task_struct(task);
3767 }
3768 ctx->pmu = pmu;
3769
3770 return ctx;
3771 }
3772
3773 static struct task_struct *
3774 find_lively_task_by_vpid(pid_t vpid)
3775 {
3776 struct task_struct *task;
3777
3778 rcu_read_lock();
3779 if (!vpid)
3780 task = current;
3781 else
3782 task = find_task_by_vpid(vpid);
3783 if (task)
3784 get_task_struct(task);
3785 rcu_read_unlock();
3786
3787 if (!task)
3788 return ERR_PTR(-ESRCH);
3789
3790 return task;
3791 }
3792
3793 /*
3794 * Returns a matching context with refcount and pincount.
3795 */
3796 static struct perf_event_context *
3797 find_get_context(struct pmu *pmu, struct task_struct *task,
3798 struct perf_event *event)
3799 {
3800 struct perf_event_context *ctx, *clone_ctx = NULL;
3801 struct perf_cpu_context *cpuctx;
3802 void *task_ctx_data = NULL;
3803 unsigned long flags;
3804 int ctxn, err;
3805 int cpu = event->cpu;
3806
3807 if (!task) {
3808 /* Must be root to operate on a CPU event: */
3809 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3810 return ERR_PTR(-EACCES);
3811
3812 /*
3813 * We could be clever and allow to attach a event to an
3814 * offline CPU and activate it when the CPU comes up, but
3815 * that's for later.
3816 */
3817 if (!cpu_online(cpu))
3818 return ERR_PTR(-ENODEV);
3819
3820 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3821 ctx = &cpuctx->ctx;
3822 get_ctx(ctx);
3823 ++ctx->pin_count;
3824
3825 return ctx;
3826 }
3827
3828 err = -EINVAL;
3829 ctxn = pmu->task_ctx_nr;
3830 if (ctxn < 0)
3831 goto errout;
3832
3833 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3834 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3835 if (!task_ctx_data) {
3836 err = -ENOMEM;
3837 goto errout;
3838 }
3839 }
3840
3841 retry:
3842 ctx = perf_lock_task_context(task, ctxn, &flags);
3843 if (ctx) {
3844 clone_ctx = unclone_ctx(ctx);
3845 ++ctx->pin_count;
3846
3847 if (task_ctx_data && !ctx->task_ctx_data) {
3848 ctx->task_ctx_data = task_ctx_data;
3849 task_ctx_data = NULL;
3850 }
3851 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3852
3853 if (clone_ctx)
3854 put_ctx(clone_ctx);
3855 } else {
3856 ctx = alloc_perf_context(pmu, task);
3857 err = -ENOMEM;
3858 if (!ctx)
3859 goto errout;
3860
3861 if (task_ctx_data) {
3862 ctx->task_ctx_data = task_ctx_data;
3863 task_ctx_data = NULL;
3864 }
3865
3866 err = 0;
3867 mutex_lock(&task->perf_event_mutex);
3868 /*
3869 * If it has already passed perf_event_exit_task().
3870 * we must see PF_EXITING, it takes this mutex too.
3871 */
3872 if (task->flags & PF_EXITING)
3873 err = -ESRCH;
3874 else if (task->perf_event_ctxp[ctxn])
3875 err = -EAGAIN;
3876 else {
3877 get_ctx(ctx);
3878 ++ctx->pin_count;
3879 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3880 }
3881 mutex_unlock(&task->perf_event_mutex);
3882
3883 if (unlikely(err)) {
3884 put_ctx(ctx);
3885
3886 if (err == -EAGAIN)
3887 goto retry;
3888 goto errout;
3889 }
3890 }
3891
3892 kfree(task_ctx_data);
3893 return ctx;
3894
3895 errout:
3896 kfree(task_ctx_data);
3897 return ERR_PTR(err);
3898 }
3899
3900 static void perf_event_free_filter(struct perf_event *event);
3901 static void perf_event_free_bpf_prog(struct perf_event *event);
3902
3903 static void free_event_rcu(struct rcu_head *head)
3904 {
3905 struct perf_event *event;
3906
3907 event = container_of(head, struct perf_event, rcu_head);
3908 if (event->ns)
3909 put_pid_ns(event->ns);
3910 perf_event_free_filter(event);
3911 kfree(event);
3912 }
3913
3914 static void ring_buffer_attach(struct perf_event *event,
3915 struct ring_buffer *rb);
3916
3917 static void detach_sb_event(struct perf_event *event)
3918 {
3919 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
3920
3921 raw_spin_lock(&pel->lock);
3922 list_del_rcu(&event->sb_list);
3923 raw_spin_unlock(&pel->lock);
3924 }
3925
3926 static bool is_sb_event(struct perf_event *event)
3927 {
3928 struct perf_event_attr *attr = &event->attr;
3929
3930 if (event->parent)
3931 return false;
3932
3933 if (event->attach_state & PERF_ATTACH_TASK)
3934 return false;
3935
3936 if (attr->mmap || attr->mmap_data || attr->mmap2 ||
3937 attr->comm || attr->comm_exec ||
3938 attr->task ||
3939 attr->context_switch)
3940 return true;
3941 return false;
3942 }
3943
3944 static void unaccount_pmu_sb_event(struct perf_event *event)
3945 {
3946 if (is_sb_event(event))
3947 detach_sb_event(event);
3948 }
3949
3950 static void unaccount_event_cpu(struct perf_event *event, int cpu)
3951 {
3952 if (event->parent)
3953 return;
3954
3955 if (is_cgroup_event(event))
3956 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3957 }
3958
3959 #ifdef CONFIG_NO_HZ_FULL
3960 static DEFINE_SPINLOCK(nr_freq_lock);
3961 #endif
3962
3963 static void unaccount_freq_event_nohz(void)
3964 {
3965 #ifdef CONFIG_NO_HZ_FULL
3966 spin_lock(&nr_freq_lock);
3967 if (atomic_dec_and_test(&nr_freq_events))
3968 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
3969 spin_unlock(&nr_freq_lock);
3970 #endif
3971 }
3972
3973 static void unaccount_freq_event(void)
3974 {
3975 if (tick_nohz_full_enabled())
3976 unaccount_freq_event_nohz();
3977 else
3978 atomic_dec(&nr_freq_events);
3979 }
3980
3981 static void unaccount_event(struct perf_event *event)
3982 {
3983 bool dec = false;
3984
3985 if (event->parent)
3986 return;
3987
3988 if (event->attach_state & PERF_ATTACH_TASK)
3989 dec = true;
3990 if (event->attr.mmap || event->attr.mmap_data)
3991 atomic_dec(&nr_mmap_events);
3992 if (event->attr.comm)
3993 atomic_dec(&nr_comm_events);
3994 if (event->attr.task)
3995 atomic_dec(&nr_task_events);
3996 if (event->attr.freq)
3997 unaccount_freq_event();
3998 if (event->attr.context_switch) {
3999 dec = true;
4000 atomic_dec(&nr_switch_events);
4001 }
4002 if (is_cgroup_event(event))
4003 dec = true;
4004 if (has_branch_stack(event))
4005 dec = true;
4006
4007 if (dec) {
4008 if (!atomic_add_unless(&perf_sched_count, -1, 1))
4009 schedule_delayed_work(&perf_sched_work, HZ);
4010 }
4011
4012 unaccount_event_cpu(event, event->cpu);
4013
4014 unaccount_pmu_sb_event(event);
4015 }
4016
4017 static void perf_sched_delayed(struct work_struct *work)
4018 {
4019 mutex_lock(&perf_sched_mutex);
4020 if (atomic_dec_and_test(&perf_sched_count))
4021 static_branch_disable(&perf_sched_events);
4022 mutex_unlock(&perf_sched_mutex);
4023 }
4024
4025 /*
4026 * The following implement mutual exclusion of events on "exclusive" pmus
4027 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4028 * at a time, so we disallow creating events that might conflict, namely:
4029 *
4030 * 1) cpu-wide events in the presence of per-task events,
4031 * 2) per-task events in the presence of cpu-wide events,
4032 * 3) two matching events on the same context.
4033 *
4034 * The former two cases are handled in the allocation path (perf_event_alloc(),
4035 * _free_event()), the latter -- before the first perf_install_in_context().
4036 */
4037 static int exclusive_event_init(struct perf_event *event)
4038 {
4039 struct pmu *pmu = event->pmu;
4040
4041 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4042 return 0;
4043
4044 /*
4045 * Prevent co-existence of per-task and cpu-wide events on the
4046 * same exclusive pmu.
4047 *
4048 * Negative pmu::exclusive_cnt means there are cpu-wide
4049 * events on this "exclusive" pmu, positive means there are
4050 * per-task events.
4051 *
4052 * Since this is called in perf_event_alloc() path, event::ctx
4053 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4054 * to mean "per-task event", because unlike other attach states it
4055 * never gets cleared.
4056 */
4057 if (event->attach_state & PERF_ATTACH_TASK) {
4058 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4059 return -EBUSY;
4060 } else {
4061 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4062 return -EBUSY;
4063 }
4064
4065 return 0;
4066 }
4067
4068 static void exclusive_event_destroy(struct perf_event *event)
4069 {
4070 struct pmu *pmu = event->pmu;
4071
4072 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4073 return;
4074
4075 /* see comment in exclusive_event_init() */
4076 if (event->attach_state & PERF_ATTACH_TASK)
4077 atomic_dec(&pmu->exclusive_cnt);
4078 else
4079 atomic_inc(&pmu->exclusive_cnt);
4080 }
4081
4082 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4083 {
4084 if ((e1->pmu == e2->pmu) &&
4085 (e1->cpu == e2->cpu ||
4086 e1->cpu == -1 ||
4087 e2->cpu == -1))
4088 return true;
4089 return false;
4090 }
4091
4092 /* Called under the same ctx::mutex as perf_install_in_context() */
4093 static bool exclusive_event_installable(struct perf_event *event,
4094 struct perf_event_context *ctx)
4095 {
4096 struct perf_event *iter_event;
4097 struct pmu *pmu = event->pmu;
4098
4099 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4100 return true;
4101
4102 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4103 if (exclusive_event_match(iter_event, event))
4104 return false;
4105 }
4106
4107 return true;
4108 }
4109
4110 static void perf_addr_filters_splice(struct perf_event *event,
4111 struct list_head *head);
4112
4113 static void _free_event(struct perf_event *event)
4114 {
4115 irq_work_sync(&event->pending);
4116
4117 unaccount_event(event);
4118
4119 if (event->rb) {
4120 /*
4121 * Can happen when we close an event with re-directed output.
4122 *
4123 * Since we have a 0 refcount, perf_mmap_close() will skip
4124 * over us; possibly making our ring_buffer_put() the last.
4125 */
4126 mutex_lock(&event->mmap_mutex);
4127 ring_buffer_attach(event, NULL);
4128 mutex_unlock(&event->mmap_mutex);
4129 }
4130
4131 if (is_cgroup_event(event))
4132 perf_detach_cgroup(event);
4133
4134 if (!event->parent) {
4135 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4136 put_callchain_buffers();
4137 }
4138
4139 perf_event_free_bpf_prog(event);
4140 perf_addr_filters_splice(event, NULL);
4141 kfree(event->addr_filters_offs);
4142
4143 if (event->destroy)
4144 event->destroy(event);
4145
4146 if (event->ctx)
4147 put_ctx(event->ctx);
4148
4149 exclusive_event_destroy(event);
4150 module_put(event->pmu->module);
4151
4152 call_rcu(&event->rcu_head, free_event_rcu);
4153 }
4154
4155 /*
4156 * Used to free events which have a known refcount of 1, such as in error paths
4157 * where the event isn't exposed yet and inherited events.
4158 */
4159 static void free_event(struct perf_event *event)
4160 {
4161 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4162 "unexpected event refcount: %ld; ptr=%p\n",
4163 atomic_long_read(&event->refcount), event)) {
4164 /* leak to avoid use-after-free */
4165 return;
4166 }
4167
4168 _free_event(event);
4169 }
4170
4171 /*
4172 * Remove user event from the owner task.
4173 */
4174 static void perf_remove_from_owner(struct perf_event *event)
4175 {
4176 struct task_struct *owner;
4177
4178 rcu_read_lock();
4179 /*
4180 * Matches the smp_store_release() in perf_event_exit_task(). If we
4181 * observe !owner it means the list deletion is complete and we can
4182 * indeed free this event, otherwise we need to serialize on
4183 * owner->perf_event_mutex.
4184 */
4185 owner = lockless_dereference(event->owner);
4186 if (owner) {
4187 /*
4188 * Since delayed_put_task_struct() also drops the last
4189 * task reference we can safely take a new reference
4190 * while holding the rcu_read_lock().
4191 */
4192 get_task_struct(owner);
4193 }
4194 rcu_read_unlock();
4195
4196 if (owner) {
4197 /*
4198 * If we're here through perf_event_exit_task() we're already
4199 * holding ctx->mutex which would be an inversion wrt. the
4200 * normal lock order.
4201 *
4202 * However we can safely take this lock because its the child
4203 * ctx->mutex.
4204 */
4205 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4206
4207 /*
4208 * We have to re-check the event->owner field, if it is cleared
4209 * we raced with perf_event_exit_task(), acquiring the mutex
4210 * ensured they're done, and we can proceed with freeing the
4211 * event.
4212 */
4213 if (event->owner) {
4214 list_del_init(&event->owner_entry);
4215 smp_store_release(&event->owner, NULL);
4216 }
4217 mutex_unlock(&owner->perf_event_mutex);
4218 put_task_struct(owner);
4219 }
4220 }
4221
4222 static void put_event(struct perf_event *event)
4223 {
4224 if (!atomic_long_dec_and_test(&event->refcount))
4225 return;
4226
4227 _free_event(event);
4228 }
4229
4230 /*
4231 * Kill an event dead; while event:refcount will preserve the event
4232 * object, it will not preserve its functionality. Once the last 'user'
4233 * gives up the object, we'll destroy the thing.
4234 */
4235 int perf_event_release_kernel(struct perf_event *event)
4236 {
4237 struct perf_event_context *ctx = event->ctx;
4238 struct perf_event *child, *tmp;
4239
4240 /*
4241 * If we got here through err_file: fput(event_file); we will not have
4242 * attached to a context yet.
4243 */
4244 if (!ctx) {
4245 WARN_ON_ONCE(event->attach_state &
4246 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4247 goto no_ctx;
4248 }
4249
4250 if (!is_kernel_event(event))
4251 perf_remove_from_owner(event);
4252
4253 ctx = perf_event_ctx_lock(event);
4254 WARN_ON_ONCE(ctx->parent_ctx);
4255 perf_remove_from_context(event, DETACH_GROUP);
4256
4257 raw_spin_lock_irq(&ctx->lock);
4258 /*
4259 * Mark this event as STATE_DEAD, there is no external reference to it
4260 * anymore.
4261 *
4262 * Anybody acquiring event->child_mutex after the below loop _must_
4263 * also see this, most importantly inherit_event() which will avoid
4264 * placing more children on the list.
4265 *
4266 * Thus this guarantees that we will in fact observe and kill _ALL_
4267 * child events.
4268 */
4269 event->state = PERF_EVENT_STATE_DEAD;
4270 raw_spin_unlock_irq(&ctx->lock);
4271
4272 perf_event_ctx_unlock(event, ctx);
4273
4274 again:
4275 mutex_lock(&event->child_mutex);
4276 list_for_each_entry(child, &event->child_list, child_list) {
4277
4278 /*
4279 * Cannot change, child events are not migrated, see the
4280 * comment with perf_event_ctx_lock_nested().
4281 */
4282 ctx = lockless_dereference(child->ctx);
4283 /*
4284 * Since child_mutex nests inside ctx::mutex, we must jump
4285 * through hoops. We start by grabbing a reference on the ctx.
4286 *
4287 * Since the event cannot get freed while we hold the
4288 * child_mutex, the context must also exist and have a !0
4289 * reference count.
4290 */
4291 get_ctx(ctx);
4292
4293 /*
4294 * Now that we have a ctx ref, we can drop child_mutex, and
4295 * acquire ctx::mutex without fear of it going away. Then we
4296 * can re-acquire child_mutex.
4297 */
4298 mutex_unlock(&event->child_mutex);
4299 mutex_lock(&ctx->mutex);
4300 mutex_lock(&event->child_mutex);
4301
4302 /*
4303 * Now that we hold ctx::mutex and child_mutex, revalidate our
4304 * state, if child is still the first entry, it didn't get freed
4305 * and we can continue doing so.
4306 */
4307 tmp = list_first_entry_or_null(&event->child_list,
4308 struct perf_event, child_list);
4309 if (tmp == child) {
4310 perf_remove_from_context(child, DETACH_GROUP);
4311 list_del(&child->child_list);
4312 free_event(child);
4313 /*
4314 * This matches the refcount bump in inherit_event();
4315 * this can't be the last reference.
4316 */
4317 put_event(event);
4318 }
4319
4320 mutex_unlock(&event->child_mutex);
4321 mutex_unlock(&ctx->mutex);
4322 put_ctx(ctx);
4323 goto again;
4324 }
4325 mutex_unlock(&event->child_mutex);
4326
4327 no_ctx:
4328 put_event(event); /* Must be the 'last' reference */
4329 return 0;
4330 }
4331 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4332
4333 /*
4334 * Called when the last reference to the file is gone.
4335 */
4336 static int perf_release(struct inode *inode, struct file *file)
4337 {
4338 perf_event_release_kernel(file->private_data);
4339 return 0;
4340 }
4341
4342 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4343 {
4344 struct perf_event *child;
4345 u64 total = 0;
4346
4347 *enabled = 0;
4348 *running = 0;
4349
4350 mutex_lock(&event->child_mutex);
4351
4352 (void)perf_event_read(event, false);
4353 total += perf_event_count(event);
4354
4355 *enabled += event->total_time_enabled +
4356 atomic64_read(&event->child_total_time_enabled);
4357 *running += event->total_time_running +
4358 atomic64_read(&event->child_total_time_running);
4359
4360 list_for_each_entry(child, &event->child_list, child_list) {
4361 (void)perf_event_read(child, false);
4362 total += perf_event_count(child);
4363 *enabled += child->total_time_enabled;
4364 *running += child->total_time_running;
4365 }
4366 mutex_unlock(&event->child_mutex);
4367
4368 return total;
4369 }
4370 EXPORT_SYMBOL_GPL(perf_event_read_value);
4371
4372 static int __perf_read_group_add(struct perf_event *leader,
4373 u64 read_format, u64 *values)
4374 {
4375 struct perf_event *sub;
4376 int n = 1; /* skip @nr */
4377 int ret;
4378
4379 ret = perf_event_read(leader, true);
4380 if (ret)
4381 return ret;
4382
4383 /*
4384 * Since we co-schedule groups, {enabled,running} times of siblings
4385 * will be identical to those of the leader, so we only publish one
4386 * set.
4387 */
4388 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4389 values[n++] += leader->total_time_enabled +
4390 atomic64_read(&leader->child_total_time_enabled);
4391 }
4392
4393 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4394 values[n++] += leader->total_time_running +
4395 atomic64_read(&leader->child_total_time_running);
4396 }
4397
4398 /*
4399 * Write {count,id} tuples for every sibling.
4400 */
4401 values[n++] += perf_event_count(leader);
4402 if (read_format & PERF_FORMAT_ID)
4403 values[n++] = primary_event_id(leader);
4404
4405 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4406 values[n++] += perf_event_count(sub);
4407 if (read_format & PERF_FORMAT_ID)
4408 values[n++] = primary_event_id(sub);
4409 }
4410
4411 return 0;
4412 }
4413
4414 static int perf_read_group(struct perf_event *event,
4415 u64 read_format, char __user *buf)
4416 {
4417 struct perf_event *leader = event->group_leader, *child;
4418 struct perf_event_context *ctx = leader->ctx;
4419 int ret;
4420 u64 *values;
4421
4422 lockdep_assert_held(&ctx->mutex);
4423
4424 values = kzalloc(event->read_size, GFP_KERNEL);
4425 if (!values)
4426 return -ENOMEM;
4427
4428 values[0] = 1 + leader->nr_siblings;
4429
4430 /*
4431 * By locking the child_mutex of the leader we effectively
4432 * lock the child list of all siblings.. XXX explain how.
4433 */
4434 mutex_lock(&leader->child_mutex);
4435
4436 ret = __perf_read_group_add(leader, read_format, values);
4437 if (ret)
4438 goto unlock;
4439
4440 list_for_each_entry(child, &leader->child_list, child_list) {
4441 ret = __perf_read_group_add(child, read_format, values);
4442 if (ret)
4443 goto unlock;
4444 }
4445
4446 mutex_unlock(&leader->child_mutex);
4447
4448 ret = event->read_size;
4449 if (copy_to_user(buf, values, event->read_size))
4450 ret = -EFAULT;
4451 goto out;
4452
4453 unlock:
4454 mutex_unlock(&leader->child_mutex);
4455 out:
4456 kfree(values);
4457 return ret;
4458 }
4459
4460 static int perf_read_one(struct perf_event *event,
4461 u64 read_format, char __user *buf)
4462 {
4463 u64 enabled, running;
4464 u64 values[4];
4465 int n = 0;
4466
4467 values[n++] = perf_event_read_value(event, &enabled, &running);
4468 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4469 values[n++] = enabled;
4470 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4471 values[n++] = running;
4472 if (read_format & PERF_FORMAT_ID)
4473 values[n++] = primary_event_id(event);
4474
4475 if (copy_to_user(buf, values, n * sizeof(u64)))
4476 return -EFAULT;
4477
4478 return n * sizeof(u64);
4479 }
4480
4481 static bool is_event_hup(struct perf_event *event)
4482 {
4483 bool no_children;
4484
4485 if (event->state > PERF_EVENT_STATE_EXIT)
4486 return false;
4487
4488 mutex_lock(&event->child_mutex);
4489 no_children = list_empty(&event->child_list);
4490 mutex_unlock(&event->child_mutex);
4491 return no_children;
4492 }
4493
4494 /*
4495 * Read the performance event - simple non blocking version for now
4496 */
4497 static ssize_t
4498 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4499 {
4500 u64 read_format = event->attr.read_format;
4501 int ret;
4502
4503 /*
4504 * Return end-of-file for a read on a event that is in
4505 * error state (i.e. because it was pinned but it couldn't be
4506 * scheduled on to the CPU at some point).
4507 */
4508 if (event->state == PERF_EVENT_STATE_ERROR)
4509 return 0;
4510
4511 if (count < event->read_size)
4512 return -ENOSPC;
4513
4514 WARN_ON_ONCE(event->ctx->parent_ctx);
4515 if (read_format & PERF_FORMAT_GROUP)
4516 ret = perf_read_group(event, read_format, buf);
4517 else
4518 ret = perf_read_one(event, read_format, buf);
4519
4520 return ret;
4521 }
4522
4523 static ssize_t
4524 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4525 {
4526 struct perf_event *event = file->private_data;
4527 struct perf_event_context *ctx;
4528 int ret;
4529
4530 ctx = perf_event_ctx_lock(event);
4531 ret = __perf_read(event, buf, count);
4532 perf_event_ctx_unlock(event, ctx);
4533
4534 return ret;
4535 }
4536
4537 static unsigned int perf_poll(struct file *file, poll_table *wait)
4538 {
4539 struct perf_event *event = file->private_data;
4540 struct ring_buffer *rb;
4541 unsigned int events = POLLHUP;
4542
4543 poll_wait(file, &event->waitq, wait);
4544
4545 if (is_event_hup(event))
4546 return events;
4547
4548 /*
4549 * Pin the event->rb by taking event->mmap_mutex; otherwise
4550 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4551 */
4552 mutex_lock(&event->mmap_mutex);
4553 rb = event->rb;
4554 if (rb)
4555 events = atomic_xchg(&rb->poll, 0);
4556 mutex_unlock(&event->mmap_mutex);
4557 return events;
4558 }
4559
4560 static void _perf_event_reset(struct perf_event *event)
4561 {
4562 (void)perf_event_read(event, false);
4563 local64_set(&event->count, 0);
4564 perf_event_update_userpage(event);
4565 }
4566
4567 /*
4568 * Holding the top-level event's child_mutex means that any
4569 * descendant process that has inherited this event will block
4570 * in perf_event_exit_event() if it goes to exit, thus satisfying the
4571 * task existence requirements of perf_event_enable/disable.
4572 */
4573 static void perf_event_for_each_child(struct perf_event *event,
4574 void (*func)(struct perf_event *))
4575 {
4576 struct perf_event *child;
4577
4578 WARN_ON_ONCE(event->ctx->parent_ctx);
4579
4580 mutex_lock(&event->child_mutex);
4581 func(event);
4582 list_for_each_entry(child, &event->child_list, child_list)
4583 func(child);
4584 mutex_unlock(&event->child_mutex);
4585 }
4586
4587 static void perf_event_for_each(struct perf_event *event,
4588 void (*func)(struct perf_event *))
4589 {
4590 struct perf_event_context *ctx = event->ctx;
4591 struct perf_event *sibling;
4592
4593 lockdep_assert_held(&ctx->mutex);
4594
4595 event = event->group_leader;
4596
4597 perf_event_for_each_child(event, func);
4598 list_for_each_entry(sibling, &event->sibling_list, group_entry)
4599 perf_event_for_each_child(sibling, func);
4600 }
4601
4602 static void __perf_event_period(struct perf_event *event,
4603 struct perf_cpu_context *cpuctx,
4604 struct perf_event_context *ctx,
4605 void *info)
4606 {
4607 u64 value = *((u64 *)info);
4608 bool active;
4609
4610 if (event->attr.freq) {
4611 event->attr.sample_freq = value;
4612 } else {
4613 event->attr.sample_period = value;
4614 event->hw.sample_period = value;
4615 }
4616
4617 active = (event->state == PERF_EVENT_STATE_ACTIVE);
4618 if (active) {
4619 perf_pmu_disable(ctx->pmu);
4620 /*
4621 * We could be throttled; unthrottle now to avoid the tick
4622 * trying to unthrottle while we already re-started the event.
4623 */
4624 if (event->hw.interrupts == MAX_INTERRUPTS) {
4625 event->hw.interrupts = 0;
4626 perf_log_throttle(event, 1);
4627 }
4628 event->pmu->stop(event, PERF_EF_UPDATE);
4629 }
4630
4631 local64_set(&event->hw.period_left, 0);
4632
4633 if (active) {
4634 event->pmu->start(event, PERF_EF_RELOAD);
4635 perf_pmu_enable(ctx->pmu);
4636 }
4637 }
4638
4639 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4640 {
4641 u64 value;
4642
4643 if (!is_sampling_event(event))
4644 return -EINVAL;
4645
4646 if (copy_from_user(&value, arg, sizeof(value)))
4647 return -EFAULT;
4648
4649 if (!value)
4650 return -EINVAL;
4651
4652 if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4653 return -EINVAL;
4654
4655 event_function_call(event, __perf_event_period, &value);
4656
4657 return 0;
4658 }
4659
4660 static const struct file_operations perf_fops;
4661
4662 static inline int perf_fget_light(int fd, struct fd *p)
4663 {
4664 struct fd f = fdget(fd);
4665 if (!f.file)
4666 return -EBADF;
4667
4668 if (f.file->f_op != &perf_fops) {
4669 fdput(f);
4670 return -EBADF;
4671 }
4672 *p = f;
4673 return 0;
4674 }
4675
4676 static int perf_event_set_output(struct perf_event *event,
4677 struct perf_event *output_event);
4678 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4679 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4680
4681 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4682 {
4683 void (*func)(struct perf_event *);
4684 u32 flags = arg;
4685
4686 switch (cmd) {
4687 case PERF_EVENT_IOC_ENABLE:
4688 func = _perf_event_enable;
4689 break;
4690 case PERF_EVENT_IOC_DISABLE:
4691 func = _perf_event_disable;
4692 break;
4693 case PERF_EVENT_IOC_RESET:
4694 func = _perf_event_reset;
4695 break;
4696
4697 case PERF_EVENT_IOC_REFRESH:
4698 return _perf_event_refresh(event, arg);
4699
4700 case PERF_EVENT_IOC_PERIOD:
4701 return perf_event_period(event, (u64 __user *)arg);
4702
4703 case PERF_EVENT_IOC_ID:
4704 {
4705 u64 id = primary_event_id(event);
4706
4707 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4708 return -EFAULT;
4709 return 0;
4710 }
4711
4712 case PERF_EVENT_IOC_SET_OUTPUT:
4713 {
4714 int ret;
4715 if (arg != -1) {
4716 struct perf_event *output_event;
4717 struct fd output;
4718 ret = perf_fget_light(arg, &output);
4719 if (ret)
4720 return ret;
4721 output_event = output.file->private_data;
4722 ret = perf_event_set_output(event, output_event);
4723 fdput(output);
4724 } else {
4725 ret = perf_event_set_output(event, NULL);
4726 }
4727 return ret;
4728 }
4729
4730 case PERF_EVENT_IOC_SET_FILTER:
4731 return perf_event_set_filter(event, (void __user *)arg);
4732
4733 case PERF_EVENT_IOC_SET_BPF:
4734 return perf_event_set_bpf_prog(event, arg);
4735
4736 case PERF_EVENT_IOC_PAUSE_OUTPUT: {
4737 struct ring_buffer *rb;
4738
4739 rcu_read_lock();
4740 rb = rcu_dereference(event->rb);
4741 if (!rb || !rb->nr_pages) {
4742 rcu_read_unlock();
4743 return -EINVAL;
4744 }
4745 rb_toggle_paused(rb, !!arg);
4746 rcu_read_unlock();
4747 return 0;
4748 }
4749 default:
4750 return -ENOTTY;
4751 }
4752
4753 if (flags & PERF_IOC_FLAG_GROUP)
4754 perf_event_for_each(event, func);
4755 else
4756 perf_event_for_each_child(event, func);
4757
4758 return 0;
4759 }
4760
4761 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4762 {
4763 struct perf_event *event = file->private_data;
4764 struct perf_event_context *ctx;
4765 long ret;
4766
4767 ctx = perf_event_ctx_lock(event);
4768 ret = _perf_ioctl(event, cmd, arg);
4769 perf_event_ctx_unlock(event, ctx);
4770
4771 return ret;
4772 }
4773
4774 #ifdef CONFIG_COMPAT
4775 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4776 unsigned long arg)
4777 {
4778 switch (_IOC_NR(cmd)) {
4779 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4780 case _IOC_NR(PERF_EVENT_IOC_ID):
4781 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4782 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4783 cmd &= ~IOCSIZE_MASK;
4784 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4785 }
4786 break;
4787 }
4788 return perf_ioctl(file, cmd, arg);
4789 }
4790 #else
4791 # define perf_compat_ioctl NULL
4792 #endif
4793
4794 int perf_event_task_enable(void)
4795 {
4796 struct perf_event_context *ctx;
4797 struct perf_event *event;
4798
4799 mutex_lock(&current->perf_event_mutex);
4800 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4801 ctx = perf_event_ctx_lock(event);
4802 perf_event_for_each_child(event, _perf_event_enable);
4803 perf_event_ctx_unlock(event, ctx);
4804 }
4805 mutex_unlock(&current->perf_event_mutex);
4806
4807 return 0;
4808 }
4809
4810 int perf_event_task_disable(void)
4811 {
4812 struct perf_event_context *ctx;
4813 struct perf_event *event;
4814
4815 mutex_lock(&current->perf_event_mutex);
4816 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4817 ctx = perf_event_ctx_lock(event);
4818 perf_event_for_each_child(event, _perf_event_disable);
4819 perf_event_ctx_unlock(event, ctx);
4820 }
4821 mutex_unlock(&current->perf_event_mutex);
4822
4823 return 0;
4824 }
4825
4826 static int perf_event_index(struct perf_event *event)
4827 {
4828 if (event->hw.state & PERF_HES_STOPPED)
4829 return 0;
4830
4831 if (event->state != PERF_EVENT_STATE_ACTIVE)
4832 return 0;
4833
4834 return event->pmu->event_idx(event);
4835 }
4836
4837 static void calc_timer_values(struct perf_event *event,
4838 u64 *now,
4839 u64 *enabled,
4840 u64 *running)
4841 {
4842 u64 ctx_time;
4843
4844 *now = perf_clock();
4845 ctx_time = event->shadow_ctx_time + *now;
4846 *enabled = ctx_time - event->tstamp_enabled;
4847 *running = ctx_time - event->tstamp_running;
4848 }
4849
4850 static void perf_event_init_userpage(struct perf_event *event)
4851 {
4852 struct perf_event_mmap_page *userpg;
4853 struct ring_buffer *rb;
4854
4855 rcu_read_lock();
4856 rb = rcu_dereference(event->rb);
4857 if (!rb)
4858 goto unlock;
4859
4860 userpg = rb->user_page;
4861
4862 /* Allow new userspace to detect that bit 0 is deprecated */
4863 userpg->cap_bit0_is_deprecated = 1;
4864 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4865 userpg->data_offset = PAGE_SIZE;
4866 userpg->data_size = perf_data_size(rb);
4867
4868 unlock:
4869 rcu_read_unlock();
4870 }
4871
4872 void __weak arch_perf_update_userpage(
4873 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4874 {
4875 }
4876
4877 /*
4878 * Callers need to ensure there can be no nesting of this function, otherwise
4879 * the seqlock logic goes bad. We can not serialize this because the arch
4880 * code calls this from NMI context.
4881 */
4882 void perf_event_update_userpage(struct perf_event *event)
4883 {
4884 struct perf_event_mmap_page *userpg;
4885 struct ring_buffer *rb;
4886 u64 enabled, running, now;
4887
4888 rcu_read_lock();
4889 rb = rcu_dereference(event->rb);
4890 if (!rb)
4891 goto unlock;
4892
4893 /*
4894 * compute total_time_enabled, total_time_running
4895 * based on snapshot values taken when the event
4896 * was last scheduled in.
4897 *
4898 * we cannot simply called update_context_time()
4899 * because of locking issue as we can be called in
4900 * NMI context
4901 */
4902 calc_timer_values(event, &now, &enabled, &running);
4903
4904 userpg = rb->user_page;
4905 /*
4906 * Disable preemption so as to not let the corresponding user-space
4907 * spin too long if we get preempted.
4908 */
4909 preempt_disable();
4910 ++userpg->lock;
4911 barrier();
4912 userpg->index = perf_event_index(event);
4913 userpg->offset = perf_event_count(event);
4914 if (userpg->index)
4915 userpg->offset -= local64_read(&event->hw.prev_count);
4916
4917 userpg->time_enabled = enabled +
4918 atomic64_read(&event->child_total_time_enabled);
4919
4920 userpg->time_running = running +
4921 atomic64_read(&event->child_total_time_running);
4922
4923 arch_perf_update_userpage(event, userpg, now);
4924
4925 barrier();
4926 ++userpg->lock;
4927 preempt_enable();
4928 unlock:
4929 rcu_read_unlock();
4930 }
4931
4932 static int perf_mmap_fault(struct vm_fault *vmf)
4933 {
4934 struct perf_event *event = vmf->vma->vm_file->private_data;
4935 struct ring_buffer *rb;
4936 int ret = VM_FAULT_SIGBUS;
4937
4938 if (vmf->flags & FAULT_FLAG_MKWRITE) {
4939 if (vmf->pgoff == 0)
4940 ret = 0;
4941 return ret;
4942 }
4943
4944 rcu_read_lock();
4945 rb = rcu_dereference(event->rb);
4946 if (!rb)
4947 goto unlock;
4948
4949 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4950 goto unlock;
4951
4952 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4953 if (!vmf->page)
4954 goto unlock;
4955
4956 get_page(vmf->page);
4957 vmf->page->mapping = vmf->vma->vm_file->f_mapping;
4958 vmf->page->index = vmf->pgoff;
4959
4960 ret = 0;
4961 unlock:
4962 rcu_read_unlock();
4963
4964 return ret;
4965 }
4966
4967 static void ring_buffer_attach(struct perf_event *event,
4968 struct ring_buffer *rb)
4969 {
4970 struct ring_buffer *old_rb = NULL;
4971 unsigned long flags;
4972
4973 if (event->rb) {
4974 /*
4975 * Should be impossible, we set this when removing
4976 * event->rb_entry and wait/clear when adding event->rb_entry.
4977 */
4978 WARN_ON_ONCE(event->rcu_pending);
4979
4980 old_rb = event->rb;
4981 spin_lock_irqsave(&old_rb->event_lock, flags);
4982 list_del_rcu(&event->rb_entry);
4983 spin_unlock_irqrestore(&old_rb->event_lock, flags);
4984
4985 event->rcu_batches = get_state_synchronize_rcu();
4986 event->rcu_pending = 1;
4987 }
4988
4989 if (rb) {
4990 if (event->rcu_pending) {
4991 cond_synchronize_rcu(event->rcu_batches);
4992 event->rcu_pending = 0;
4993 }
4994
4995 spin_lock_irqsave(&rb->event_lock, flags);
4996 list_add_rcu(&event->rb_entry, &rb->event_list);
4997 spin_unlock_irqrestore(&rb->event_lock, flags);
4998 }
4999
5000 /*
5001 * Avoid racing with perf_mmap_close(AUX): stop the event
5002 * before swizzling the event::rb pointer; if it's getting
5003 * unmapped, its aux_mmap_count will be 0 and it won't
5004 * restart. See the comment in __perf_pmu_output_stop().
5005 *
5006 * Data will inevitably be lost when set_output is done in
5007 * mid-air, but then again, whoever does it like this is
5008 * not in for the data anyway.
5009 */
5010 if (has_aux(event))
5011 perf_event_stop(event, 0);
5012
5013 rcu_assign_pointer(event->rb, rb);
5014
5015 if (old_rb) {
5016 ring_buffer_put(old_rb);
5017 /*
5018 * Since we detached before setting the new rb, so that we
5019 * could attach the new rb, we could have missed a wakeup.
5020 * Provide it now.
5021 */
5022 wake_up_all(&event->waitq);
5023 }
5024 }
5025
5026 static void ring_buffer_wakeup(struct perf_event *event)
5027 {
5028 struct ring_buffer *rb;
5029
5030 rcu_read_lock();
5031 rb = rcu_dereference(event->rb);
5032 if (rb) {
5033 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5034 wake_up_all(&event->waitq);
5035 }
5036 rcu_read_unlock();
5037 }
5038
5039 struct ring_buffer *ring_buffer_get(struct perf_event *event)
5040 {
5041 struct ring_buffer *rb;
5042
5043 rcu_read_lock();
5044 rb = rcu_dereference(event->rb);
5045 if (rb) {
5046 if (!atomic_inc_not_zero(&rb->refcount))
5047 rb = NULL;
5048 }
5049 rcu_read_unlock();
5050
5051 return rb;
5052 }
5053
5054 void ring_buffer_put(struct ring_buffer *rb)
5055 {
5056 if (!atomic_dec_and_test(&rb->refcount))
5057 return;
5058
5059 WARN_ON_ONCE(!list_empty(&rb->event_list));
5060
5061 call_rcu(&rb->rcu_head, rb_free_rcu);
5062 }
5063
5064 static void perf_mmap_open(struct vm_area_struct *vma)
5065 {
5066 struct perf_event *event = vma->vm_file->private_data;
5067
5068 atomic_inc(&event->mmap_count);
5069 atomic_inc(&event->rb->mmap_count);
5070
5071 if (vma->vm_pgoff)
5072 atomic_inc(&event->rb->aux_mmap_count);
5073
5074 if (event->pmu->event_mapped)
5075 event->pmu->event_mapped(event);
5076 }
5077
5078 static void perf_pmu_output_stop(struct perf_event *event);
5079
5080 /*
5081 * A buffer can be mmap()ed multiple times; either directly through the same
5082 * event, or through other events by use of perf_event_set_output().
5083 *
5084 * In order to undo the VM accounting done by perf_mmap() we need to destroy
5085 * the buffer here, where we still have a VM context. This means we need
5086 * to detach all events redirecting to us.
5087 */
5088 static void perf_mmap_close(struct vm_area_struct *vma)
5089 {
5090 struct perf_event *event = vma->vm_file->private_data;
5091
5092 struct ring_buffer *rb = ring_buffer_get(event);
5093 struct user_struct *mmap_user = rb->mmap_user;
5094 int mmap_locked = rb->mmap_locked;
5095 unsigned long size = perf_data_size(rb);
5096
5097 if (event->pmu->event_unmapped)
5098 event->pmu->event_unmapped(event);
5099
5100 /*
5101 * rb->aux_mmap_count will always drop before rb->mmap_count and
5102 * event->mmap_count, so it is ok to use event->mmap_mutex to
5103 * serialize with perf_mmap here.
5104 */
5105 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5106 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
5107 /*
5108 * Stop all AUX events that are writing to this buffer,
5109 * so that we can free its AUX pages and corresponding PMU
5110 * data. Note that after rb::aux_mmap_count dropped to zero,
5111 * they won't start any more (see perf_aux_output_begin()).
5112 */
5113 perf_pmu_output_stop(event);
5114
5115 /* now it's safe to free the pages */
5116 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
5117 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
5118
5119 /* this has to be the last one */
5120 rb_free_aux(rb);
5121 WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
5122
5123 mutex_unlock(&event->mmap_mutex);
5124 }
5125
5126 atomic_dec(&rb->mmap_count);
5127
5128 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5129 goto out_put;
5130
5131 ring_buffer_attach(event, NULL);
5132 mutex_unlock(&event->mmap_mutex);
5133
5134 /* If there's still other mmap()s of this buffer, we're done. */
5135 if (atomic_read(&rb->mmap_count))
5136 goto out_put;
5137
5138 /*
5139 * No other mmap()s, detach from all other events that might redirect
5140 * into the now unreachable buffer. Somewhat complicated by the
5141 * fact that rb::event_lock otherwise nests inside mmap_mutex.
5142 */
5143 again:
5144 rcu_read_lock();
5145 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5146 if (!atomic_long_inc_not_zero(&event->refcount)) {
5147 /*
5148 * This event is en-route to free_event() which will
5149 * detach it and remove it from the list.
5150 */
5151 continue;
5152 }
5153 rcu_read_unlock();
5154
5155 mutex_lock(&event->mmap_mutex);
5156 /*
5157 * Check we didn't race with perf_event_set_output() which can
5158 * swizzle the rb from under us while we were waiting to
5159 * acquire mmap_mutex.
5160 *
5161 * If we find a different rb; ignore this event, a next
5162 * iteration will no longer find it on the list. We have to
5163 * still restart the iteration to make sure we're not now
5164 * iterating the wrong list.
5165 */
5166 if (event->rb == rb)
5167 ring_buffer_attach(event, NULL);
5168
5169 mutex_unlock(&event->mmap_mutex);
5170 put_event(event);
5171
5172 /*
5173 * Restart the iteration; either we're on the wrong list or
5174 * destroyed its integrity by doing a deletion.
5175 */
5176 goto again;
5177 }
5178 rcu_read_unlock();
5179
5180 /*
5181 * It could be there's still a few 0-ref events on the list; they'll
5182 * get cleaned up by free_event() -- they'll also still have their
5183 * ref on the rb and will free it whenever they are done with it.
5184 *
5185 * Aside from that, this buffer is 'fully' detached and unmapped,
5186 * undo the VM accounting.
5187 */
5188
5189 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
5190 vma->vm_mm->pinned_vm -= mmap_locked;
5191 free_uid(mmap_user);
5192
5193 out_put:
5194 ring_buffer_put(rb); /* could be last */
5195 }
5196
5197 static const struct vm_operations_struct perf_mmap_vmops = {
5198 .open = perf_mmap_open,
5199 .close = perf_mmap_close, /* non mergable */
5200 .fault = perf_mmap_fault,
5201 .page_mkwrite = perf_mmap_fault,
5202 };
5203
5204 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5205 {
5206 struct perf_event *event = file->private_data;
5207 unsigned long user_locked, user_lock_limit;
5208 struct user_struct *user = current_user();
5209 unsigned long locked, lock_limit;
5210 struct ring_buffer *rb = NULL;
5211 unsigned long vma_size;
5212 unsigned long nr_pages;
5213 long user_extra = 0, extra = 0;
5214 int ret = 0, flags = 0;
5215
5216 /*
5217 * Don't allow mmap() of inherited per-task counters. This would
5218 * create a performance issue due to all children writing to the
5219 * same rb.
5220 */
5221 if (event->cpu == -1 && event->attr.inherit)
5222 return -EINVAL;
5223
5224 if (!(vma->vm_flags & VM_SHARED))
5225 return -EINVAL;
5226
5227 vma_size = vma->vm_end - vma->vm_start;
5228
5229 if (vma->vm_pgoff == 0) {
5230 nr_pages = (vma_size / PAGE_SIZE) - 1;
5231 } else {
5232 /*
5233 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5234 * mapped, all subsequent mappings should have the same size
5235 * and offset. Must be above the normal perf buffer.
5236 */
5237 u64 aux_offset, aux_size;
5238
5239 if (!event->rb)
5240 return -EINVAL;
5241
5242 nr_pages = vma_size / PAGE_SIZE;
5243
5244 mutex_lock(&event->mmap_mutex);
5245 ret = -EINVAL;
5246
5247 rb = event->rb;
5248 if (!rb)
5249 goto aux_unlock;
5250
5251 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
5252 aux_size = ACCESS_ONCE(rb->user_page->aux_size);
5253
5254 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5255 goto aux_unlock;
5256
5257 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5258 goto aux_unlock;
5259
5260 /* already mapped with a different offset */
5261 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5262 goto aux_unlock;
5263
5264 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5265 goto aux_unlock;
5266
5267 /* already mapped with a different size */
5268 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5269 goto aux_unlock;
5270
5271 if (!is_power_of_2(nr_pages))
5272 goto aux_unlock;
5273
5274 if (!atomic_inc_not_zero(&rb->mmap_count))
5275 goto aux_unlock;
5276
5277 if (rb_has_aux(rb)) {
5278 atomic_inc(&rb->aux_mmap_count);
5279 ret = 0;
5280 goto unlock;
5281 }
5282
5283 atomic_set(&rb->aux_mmap_count, 1);
5284 user_extra = nr_pages;
5285
5286 goto accounting;
5287 }
5288
5289 /*
5290 * If we have rb pages ensure they're a power-of-two number, so we
5291 * can do bitmasks instead of modulo.
5292 */
5293 if (nr_pages != 0 && !is_power_of_2(nr_pages))
5294 return -EINVAL;
5295
5296 if (vma_size != PAGE_SIZE * (1 + nr_pages))
5297 return -EINVAL;
5298
5299 WARN_ON_ONCE(event->ctx->parent_ctx);
5300 again:
5301 mutex_lock(&event->mmap_mutex);
5302 if (event->rb) {
5303 if (event->rb->nr_pages != nr_pages) {
5304 ret = -EINVAL;
5305 goto unlock;
5306 }
5307
5308 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5309 /*
5310 * Raced against perf_mmap_close() through
5311 * perf_event_set_output(). Try again, hope for better
5312 * luck.
5313 */
5314 mutex_unlock(&event->mmap_mutex);
5315 goto again;
5316 }
5317
5318 goto unlock;
5319 }
5320
5321 user_extra = nr_pages + 1;
5322
5323 accounting:
5324 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
5325
5326 /*
5327 * Increase the limit linearly with more CPUs:
5328 */
5329 user_lock_limit *= num_online_cpus();
5330
5331 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
5332
5333 if (user_locked > user_lock_limit)
5334 extra = user_locked - user_lock_limit;
5335
5336 lock_limit = rlimit(RLIMIT_MEMLOCK);
5337 lock_limit >>= PAGE_SHIFT;
5338 locked = vma->vm_mm->pinned_vm + extra;
5339
5340 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5341 !capable(CAP_IPC_LOCK)) {
5342 ret = -EPERM;
5343 goto unlock;
5344 }
5345
5346 WARN_ON(!rb && event->rb);
5347
5348 if (vma->vm_flags & VM_WRITE)
5349 flags |= RING_BUFFER_WRITABLE;
5350
5351 if (!rb) {
5352 rb = rb_alloc(nr_pages,
5353 event->attr.watermark ? event->attr.wakeup_watermark : 0,
5354 event->cpu, flags);
5355
5356 if (!rb) {
5357 ret = -ENOMEM;
5358 goto unlock;
5359 }
5360
5361 atomic_set(&rb->mmap_count, 1);
5362 rb->mmap_user = get_current_user();
5363 rb->mmap_locked = extra;
5364
5365 ring_buffer_attach(event, rb);
5366
5367 perf_event_init_userpage(event);
5368 perf_event_update_userpage(event);
5369 } else {
5370 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5371 event->attr.aux_watermark, flags);
5372 if (!ret)
5373 rb->aux_mmap_locked = extra;
5374 }
5375
5376 unlock:
5377 if (!ret) {
5378 atomic_long_add(user_extra, &user->locked_vm);
5379 vma->vm_mm->pinned_vm += extra;
5380
5381 atomic_inc(&event->mmap_count);
5382 } else if (rb) {
5383 atomic_dec(&rb->mmap_count);
5384 }
5385 aux_unlock:
5386 mutex_unlock(&event->mmap_mutex);
5387
5388 /*
5389 * Since pinned accounting is per vm we cannot allow fork() to copy our
5390 * vma.
5391 */
5392 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5393 vma->vm_ops = &perf_mmap_vmops;
5394
5395 if (event->pmu->event_mapped)
5396 event->pmu->event_mapped(event);
5397
5398 return ret;
5399 }
5400
5401 static int perf_fasync(int fd, struct file *filp, int on)
5402 {
5403 struct inode *inode = file_inode(filp);
5404 struct perf_event *event = filp->private_data;
5405 int retval;
5406
5407 inode_lock(inode);
5408 retval = fasync_helper(fd, filp, on, &event->fasync);
5409 inode_unlock(inode);
5410
5411 if (retval < 0)
5412 return retval;
5413
5414 return 0;
5415 }
5416
5417 static const struct file_operations perf_fops = {
5418 .llseek = no_llseek,
5419 .release = perf_release,
5420 .read = perf_read,
5421 .poll = perf_poll,
5422 .unlocked_ioctl = perf_ioctl,
5423 .compat_ioctl = perf_compat_ioctl,
5424 .mmap = perf_mmap,
5425 .fasync = perf_fasync,
5426 };
5427
5428 /*
5429 * Perf event wakeup
5430 *
5431 * If there's data, ensure we set the poll() state and publish everything
5432 * to user-space before waking everybody up.
5433 */
5434
5435 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5436 {
5437 /* only the parent has fasync state */
5438 if (event->parent)
5439 event = event->parent;
5440 return &event->fasync;
5441 }
5442
5443 void perf_event_wakeup(struct perf_event *event)
5444 {
5445 ring_buffer_wakeup(event);
5446
5447 if (event->pending_kill) {
5448 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5449 event->pending_kill = 0;
5450 }
5451 }
5452
5453 static void perf_pending_event(struct irq_work *entry)
5454 {
5455 struct perf_event *event = container_of(entry,
5456 struct perf_event, pending);
5457 int rctx;
5458
5459 rctx = perf_swevent_get_recursion_context();
5460 /*
5461 * If we 'fail' here, that's OK, it means recursion is already disabled
5462 * and we won't recurse 'further'.
5463 */
5464
5465 if (event->pending_disable) {
5466 event->pending_disable = 0;
5467 perf_event_disable_local(event);
5468 }
5469
5470 if (event->pending_wakeup) {
5471 event->pending_wakeup = 0;
5472 perf_event_wakeup(event);
5473 }
5474
5475 if (rctx >= 0)
5476 perf_swevent_put_recursion_context(rctx);
5477 }
5478
5479 /*
5480 * We assume there is only KVM supporting the callbacks.
5481 * Later on, we might change it to a list if there is
5482 * another virtualization implementation supporting the callbacks.
5483 */
5484 struct perf_guest_info_callbacks *perf_guest_cbs;
5485
5486 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5487 {
5488 perf_guest_cbs = cbs;
5489 return 0;
5490 }
5491 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5492
5493 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5494 {
5495 perf_guest_cbs = NULL;
5496 return 0;
5497 }
5498 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5499
5500 static void
5501 perf_output_sample_regs(struct perf_output_handle *handle,
5502 struct pt_regs *regs, u64 mask)
5503 {
5504 int bit;
5505 DECLARE_BITMAP(_mask, 64);
5506
5507 bitmap_from_u64(_mask, mask);
5508 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
5509 u64 val;
5510
5511 val = perf_reg_value(regs, bit);
5512 perf_output_put(handle, val);
5513 }
5514 }
5515
5516 static void perf_sample_regs_user(struct perf_regs *regs_user,
5517 struct pt_regs *regs,
5518 struct pt_regs *regs_user_copy)
5519 {
5520 if (user_mode(regs)) {
5521 regs_user->abi = perf_reg_abi(current);
5522 regs_user->regs = regs;
5523 } else if (current->mm) {
5524 perf_get_regs_user(regs_user, regs, regs_user_copy);
5525 } else {
5526 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5527 regs_user->regs = NULL;
5528 }
5529 }
5530
5531 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5532 struct pt_regs *regs)
5533 {
5534 regs_intr->regs = regs;
5535 regs_intr->abi = perf_reg_abi(current);
5536 }
5537
5538
5539 /*
5540 * Get remaining task size from user stack pointer.
5541 *
5542 * It'd be better to take stack vma map and limit this more
5543 * precisly, but there's no way to get it safely under interrupt,
5544 * so using TASK_SIZE as limit.
5545 */
5546 static u64 perf_ustack_task_size(struct pt_regs *regs)
5547 {
5548 unsigned long addr = perf_user_stack_pointer(regs);
5549
5550 if (!addr || addr >= TASK_SIZE)
5551 return 0;
5552
5553 return TASK_SIZE - addr;
5554 }
5555
5556 static u16
5557 perf_sample_ustack_size(u16 stack_size, u16 header_size,
5558 struct pt_regs *regs)
5559 {
5560 u64 task_size;
5561
5562 /* No regs, no stack pointer, no dump. */
5563 if (!regs)
5564 return 0;
5565
5566 /*
5567 * Check if we fit in with the requested stack size into the:
5568 * - TASK_SIZE
5569 * If we don't, we limit the size to the TASK_SIZE.
5570 *
5571 * - remaining sample size
5572 * If we don't, we customize the stack size to
5573 * fit in to the remaining sample size.
5574 */
5575
5576 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5577 stack_size = min(stack_size, (u16) task_size);
5578
5579 /* Current header size plus static size and dynamic size. */
5580 header_size += 2 * sizeof(u64);
5581
5582 /* Do we fit in with the current stack dump size? */
5583 if ((u16) (header_size + stack_size) < header_size) {
5584 /*
5585 * If we overflow the maximum size for the sample,
5586 * we customize the stack dump size to fit in.
5587 */
5588 stack_size = USHRT_MAX - header_size - sizeof(u64);
5589 stack_size = round_up(stack_size, sizeof(u64));
5590 }
5591
5592 return stack_size;
5593 }
5594
5595 static void
5596 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5597 struct pt_regs *regs)
5598 {
5599 /* Case of a kernel thread, nothing to dump */
5600 if (!regs) {
5601 u64 size = 0;
5602 perf_output_put(handle, size);
5603 } else {
5604 unsigned long sp;
5605 unsigned int rem;
5606 u64 dyn_size;
5607
5608 /*
5609 * We dump:
5610 * static size
5611 * - the size requested by user or the best one we can fit
5612 * in to the sample max size
5613 * data
5614 * - user stack dump data
5615 * dynamic size
5616 * - the actual dumped size
5617 */
5618
5619 /* Static size. */
5620 perf_output_put(handle, dump_size);
5621
5622 /* Data. */
5623 sp = perf_user_stack_pointer(regs);
5624 rem = __output_copy_user(handle, (void *) sp, dump_size);
5625 dyn_size = dump_size - rem;
5626
5627 perf_output_skip(handle, rem);
5628
5629 /* Dynamic size. */
5630 perf_output_put(handle, dyn_size);
5631 }
5632 }
5633
5634 static void __perf_event_header__init_id(struct perf_event_header *header,
5635 struct perf_sample_data *data,
5636 struct perf_event *event)
5637 {
5638 u64 sample_type = event->attr.sample_type;
5639
5640 data->type = sample_type;
5641 header->size += event->id_header_size;
5642
5643 if (sample_type & PERF_SAMPLE_TID) {
5644 /* namespace issues */
5645 data->tid_entry.pid = perf_event_pid(event, current);
5646 data->tid_entry.tid = perf_event_tid(event, current);
5647 }
5648
5649 if (sample_type & PERF_SAMPLE_TIME)
5650 data->time = perf_event_clock(event);
5651
5652 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5653 data->id = primary_event_id(event);
5654
5655 if (sample_type & PERF_SAMPLE_STREAM_ID)
5656 data->stream_id = event->id;
5657
5658 if (sample_type & PERF_SAMPLE_CPU) {
5659 data->cpu_entry.cpu = raw_smp_processor_id();
5660 data->cpu_entry.reserved = 0;
5661 }
5662 }
5663
5664 void perf_event_header__init_id(struct perf_event_header *header,
5665 struct perf_sample_data *data,
5666 struct perf_event *event)
5667 {
5668 if (event->attr.sample_id_all)
5669 __perf_event_header__init_id(header, data, event);
5670 }
5671
5672 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5673 struct perf_sample_data *data)
5674 {
5675 u64 sample_type = data->type;
5676
5677 if (sample_type & PERF_SAMPLE_TID)
5678 perf_output_put(handle, data->tid_entry);
5679
5680 if (sample_type & PERF_SAMPLE_TIME)
5681 perf_output_put(handle, data->time);
5682
5683 if (sample_type & PERF_SAMPLE_ID)
5684 perf_output_put(handle, data->id);
5685
5686 if (sample_type & PERF_SAMPLE_STREAM_ID)
5687 perf_output_put(handle, data->stream_id);
5688
5689 if (sample_type & PERF_SAMPLE_CPU)
5690 perf_output_put(handle, data->cpu_entry);
5691
5692 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5693 perf_output_put(handle, data->id);
5694 }
5695
5696 void perf_event__output_id_sample(struct perf_event *event,
5697 struct perf_output_handle *handle,
5698 struct perf_sample_data *sample)
5699 {
5700 if (event->attr.sample_id_all)
5701 __perf_event__output_id_sample(handle, sample);
5702 }
5703
5704 static void perf_output_read_one(struct perf_output_handle *handle,
5705 struct perf_event *event,
5706 u64 enabled, u64 running)
5707 {
5708 u64 read_format = event->attr.read_format;
5709 u64 values[4];
5710 int n = 0;
5711
5712 values[n++] = perf_event_count(event);
5713 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5714 values[n++] = enabled +
5715 atomic64_read(&event->child_total_time_enabled);
5716 }
5717 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5718 values[n++] = running +
5719 atomic64_read(&event->child_total_time_running);
5720 }
5721 if (read_format & PERF_FORMAT_ID)
5722 values[n++] = primary_event_id(event);
5723
5724 __output_copy(handle, values, n * sizeof(u64));
5725 }
5726
5727 /*
5728 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
5729 */
5730 static void perf_output_read_group(struct perf_output_handle *handle,
5731 struct perf_event *event,
5732 u64 enabled, u64 running)
5733 {
5734 struct perf_event *leader = event->group_leader, *sub;
5735 u64 read_format = event->attr.read_format;
5736 u64 values[5];
5737 int n = 0;
5738
5739 values[n++] = 1 + leader->nr_siblings;
5740
5741 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5742 values[n++] = enabled;
5743
5744 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5745 values[n++] = running;
5746
5747 if (leader != event)
5748 leader->pmu->read(leader);
5749
5750 values[n++] = perf_event_count(leader);
5751 if (read_format & PERF_FORMAT_ID)
5752 values[n++] = primary_event_id(leader);
5753
5754 __output_copy(handle, values, n * sizeof(u64));
5755
5756 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5757 n = 0;
5758
5759 if ((sub != event) &&
5760 (sub->state == PERF_EVENT_STATE_ACTIVE))
5761 sub->pmu->read(sub);
5762
5763 values[n++] = perf_event_count(sub);
5764 if (read_format & PERF_FORMAT_ID)
5765 values[n++] = primary_event_id(sub);
5766
5767 __output_copy(handle, values, n * sizeof(u64));
5768 }
5769 }
5770
5771 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5772 PERF_FORMAT_TOTAL_TIME_RUNNING)
5773
5774 static void perf_output_read(struct perf_output_handle *handle,
5775 struct perf_event *event)
5776 {
5777 u64 enabled = 0, running = 0, now;
5778 u64 read_format = event->attr.read_format;
5779
5780 /*
5781 * compute total_time_enabled, total_time_running
5782 * based on snapshot values taken when the event
5783 * was last scheduled in.
5784 *
5785 * we cannot simply called update_context_time()
5786 * because of locking issue as we are called in
5787 * NMI context
5788 */
5789 if (read_format & PERF_FORMAT_TOTAL_TIMES)
5790 calc_timer_values(event, &now, &enabled, &running);
5791
5792 if (event->attr.read_format & PERF_FORMAT_GROUP)
5793 perf_output_read_group(handle, event, enabled, running);
5794 else
5795 perf_output_read_one(handle, event, enabled, running);
5796 }
5797
5798 void perf_output_sample(struct perf_output_handle *handle,
5799 struct perf_event_header *header,
5800 struct perf_sample_data *data,
5801 struct perf_event *event)
5802 {
5803 u64 sample_type = data->type;
5804
5805 perf_output_put(handle, *header);
5806
5807 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5808 perf_output_put(handle, data->id);
5809
5810 if (sample_type & PERF_SAMPLE_IP)
5811 perf_output_put(handle, data->ip);
5812
5813 if (sample_type & PERF_SAMPLE_TID)
5814 perf_output_put(handle, data->tid_entry);
5815
5816 if (sample_type & PERF_SAMPLE_TIME)
5817 perf_output_put(handle, data->time);
5818
5819 if (sample_type & PERF_SAMPLE_ADDR)
5820 perf_output_put(handle, data->addr);
5821
5822 if (sample_type & PERF_SAMPLE_ID)
5823 perf_output_put(handle, data->id);
5824
5825 if (sample_type & PERF_SAMPLE_STREAM_ID)
5826 perf_output_put(handle, data->stream_id);
5827
5828 if (sample_type & PERF_SAMPLE_CPU)
5829 perf_output_put(handle, data->cpu_entry);
5830
5831 if (sample_type & PERF_SAMPLE_PERIOD)
5832 perf_output_put(handle, data->period);
5833
5834 if (sample_type & PERF_SAMPLE_READ)
5835 perf_output_read(handle, event);
5836
5837 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5838 if (data->callchain) {
5839 int size = 1;
5840
5841 if (data->callchain)
5842 size += data->callchain->nr;
5843
5844 size *= sizeof(u64);
5845
5846 __output_copy(handle, data->callchain, size);
5847 } else {
5848 u64 nr = 0;
5849 perf_output_put(handle, nr);
5850 }
5851 }
5852
5853 if (sample_type & PERF_SAMPLE_RAW) {
5854 struct perf_raw_record *raw = data->raw;
5855
5856 if (raw) {
5857 struct perf_raw_frag *frag = &raw->frag;
5858
5859 perf_output_put(handle, raw->size);
5860 do {
5861 if (frag->copy) {
5862 __output_custom(handle, frag->copy,
5863 frag->data, frag->size);
5864 } else {
5865 __output_copy(handle, frag->data,
5866 frag->size);
5867 }
5868 if (perf_raw_frag_last(frag))
5869 break;
5870 frag = frag->next;
5871 } while (1);
5872 if (frag->pad)
5873 __output_skip(handle, NULL, frag->pad);
5874 } else {
5875 struct {
5876 u32 size;
5877 u32 data;
5878 } raw = {
5879 .size = sizeof(u32),
5880 .data = 0,
5881 };
5882 perf_output_put(handle, raw);
5883 }
5884 }
5885
5886 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5887 if (data->br_stack) {
5888 size_t size;
5889
5890 size = data->br_stack->nr
5891 * sizeof(struct perf_branch_entry);
5892
5893 perf_output_put(handle, data->br_stack->nr);
5894 perf_output_copy(handle, data->br_stack->entries, size);
5895 } else {
5896 /*
5897 * we always store at least the value of nr
5898 */
5899 u64 nr = 0;
5900 perf_output_put(handle, nr);
5901 }
5902 }
5903
5904 if (sample_type & PERF_SAMPLE_REGS_USER) {
5905 u64 abi = data->regs_user.abi;
5906
5907 /*
5908 * If there are no regs to dump, notice it through
5909 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5910 */
5911 perf_output_put(handle, abi);
5912
5913 if (abi) {
5914 u64 mask = event->attr.sample_regs_user;
5915 perf_output_sample_regs(handle,
5916 data->regs_user.regs,
5917 mask);
5918 }
5919 }
5920
5921 if (sample_type & PERF_SAMPLE_STACK_USER) {
5922 perf_output_sample_ustack(handle,
5923 data->stack_user_size,
5924 data->regs_user.regs);
5925 }
5926
5927 if (sample_type & PERF_SAMPLE_WEIGHT)
5928 perf_output_put(handle, data->weight);
5929
5930 if (sample_type & PERF_SAMPLE_DATA_SRC)
5931 perf_output_put(handle, data->data_src.val);
5932
5933 if (sample_type & PERF_SAMPLE_TRANSACTION)
5934 perf_output_put(handle, data->txn);
5935
5936 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5937 u64 abi = data->regs_intr.abi;
5938 /*
5939 * If there are no regs to dump, notice it through
5940 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5941 */
5942 perf_output_put(handle, abi);
5943
5944 if (abi) {
5945 u64 mask = event->attr.sample_regs_intr;
5946
5947 perf_output_sample_regs(handle,
5948 data->regs_intr.regs,
5949 mask);
5950 }
5951 }
5952
5953 if (!event->attr.watermark) {
5954 int wakeup_events = event->attr.wakeup_events;
5955
5956 if (wakeup_events) {
5957 struct ring_buffer *rb = handle->rb;
5958 int events = local_inc_return(&rb->events);
5959
5960 if (events >= wakeup_events) {
5961 local_sub(wakeup_events, &rb->events);
5962 local_inc(&rb->wakeup);
5963 }
5964 }
5965 }
5966 }
5967
5968 void perf_prepare_sample(struct perf_event_header *header,
5969 struct perf_sample_data *data,
5970 struct perf_event *event,
5971 struct pt_regs *regs)
5972 {
5973 u64 sample_type = event->attr.sample_type;
5974
5975 header->type = PERF_RECORD_SAMPLE;
5976 header->size = sizeof(*header) + event->header_size;
5977
5978 header->misc = 0;
5979 header->misc |= perf_misc_flags(regs);
5980
5981 __perf_event_header__init_id(header, data, event);
5982
5983 if (sample_type & PERF_SAMPLE_IP)
5984 data->ip = perf_instruction_pointer(regs);
5985
5986 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5987 int size = 1;
5988
5989 data->callchain = perf_callchain(event, regs);
5990
5991 if (data->callchain)
5992 size += data->callchain->nr;
5993
5994 header->size += size * sizeof(u64);
5995 }
5996
5997 if (sample_type & PERF_SAMPLE_RAW) {
5998 struct perf_raw_record *raw = data->raw;
5999 int size;
6000
6001 if (raw) {
6002 struct perf_raw_frag *frag = &raw->frag;
6003 u32 sum = 0;
6004
6005 do {
6006 sum += frag->size;
6007 if (perf_raw_frag_last(frag))
6008 break;
6009 frag = frag->next;
6010 } while (1);
6011
6012 size = round_up(sum + sizeof(u32), sizeof(u64));
6013 raw->size = size - sizeof(u32);
6014 frag->pad = raw->size - sum;
6015 } else {
6016 size = sizeof(u64);
6017 }
6018
6019 header->size += size;
6020 }
6021
6022 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6023 int size = sizeof(u64); /* nr */
6024 if (data->br_stack) {
6025 size += data->br_stack->nr
6026 * sizeof(struct perf_branch_entry);
6027 }
6028 header->size += size;
6029 }
6030
6031 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
6032 perf_sample_regs_user(&data->regs_user, regs,
6033 &data->regs_user_copy);
6034
6035 if (sample_type & PERF_SAMPLE_REGS_USER) {
6036 /* regs dump ABI info */
6037 int size = sizeof(u64);
6038
6039 if (data->regs_user.regs) {
6040 u64 mask = event->attr.sample_regs_user;
6041 size += hweight64(mask) * sizeof(u64);
6042 }
6043
6044 header->size += size;
6045 }
6046
6047 if (sample_type & PERF_SAMPLE_STACK_USER) {
6048 /*
6049 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
6050 * processed as the last one or have additional check added
6051 * in case new sample type is added, because we could eat
6052 * up the rest of the sample size.
6053 */
6054 u16 stack_size = event->attr.sample_stack_user;
6055 u16 size = sizeof(u64);
6056
6057 stack_size = perf_sample_ustack_size(stack_size, header->size,
6058 data->regs_user.regs);
6059
6060 /*
6061 * If there is something to dump, add space for the dump
6062 * itself and for the field that tells the dynamic size,
6063 * which is how many have been actually dumped.
6064 */
6065 if (stack_size)
6066 size += sizeof(u64) + stack_size;
6067
6068 data->stack_user_size = stack_size;
6069 header->size += size;
6070 }
6071
6072 if (sample_type & PERF_SAMPLE_REGS_INTR) {
6073 /* regs dump ABI info */
6074 int size = sizeof(u64);
6075
6076 perf_sample_regs_intr(&data->regs_intr, regs);
6077
6078 if (data->regs_intr.regs) {
6079 u64 mask = event->attr.sample_regs_intr;
6080
6081 size += hweight64(mask) * sizeof(u64);
6082 }
6083
6084 header->size += size;
6085 }
6086 }
6087
6088 static void __always_inline
6089 __perf_event_output(struct perf_event *event,
6090 struct perf_sample_data *data,
6091 struct pt_regs *regs,
6092 int (*output_begin)(struct perf_output_handle *,
6093 struct perf_event *,
6094 unsigned int))
6095 {
6096 struct perf_output_handle handle;
6097 struct perf_event_header header;
6098
6099 /* protect the callchain buffers */
6100 rcu_read_lock();
6101
6102 perf_prepare_sample(&header, data, event, regs);
6103
6104 if (output_begin(&handle, event, header.size))
6105 goto exit;
6106
6107 perf_output_sample(&handle, &header, data, event);
6108
6109 perf_output_end(&handle);
6110
6111 exit:
6112 rcu_read_unlock();
6113 }
6114
6115 void
6116 perf_event_output_forward(struct perf_event *event,
6117 struct perf_sample_data *data,
6118 struct pt_regs *regs)
6119 {
6120 __perf_event_output(event, data, regs, perf_output_begin_forward);
6121 }
6122
6123 void
6124 perf_event_output_backward(struct perf_event *event,
6125 struct perf_sample_data *data,
6126 struct pt_regs *regs)
6127 {
6128 __perf_event_output(event, data, regs, perf_output_begin_backward);
6129 }
6130
6131 void
6132 perf_event_output(struct perf_event *event,
6133 struct perf_sample_data *data,
6134 struct pt_regs *regs)
6135 {
6136 __perf_event_output(event, data, regs, perf_output_begin);
6137 }
6138
6139 /*
6140 * read event_id
6141 */
6142
6143 struct perf_read_event {
6144 struct perf_event_header header;
6145
6146 u32 pid;
6147 u32 tid;
6148 };
6149
6150 static void
6151 perf_event_read_event(struct perf_event *event,
6152 struct task_struct *task)
6153 {
6154 struct perf_output_handle handle;
6155 struct perf_sample_data sample;
6156 struct perf_read_event read_event = {
6157 .header = {
6158 .type = PERF_RECORD_READ,
6159 .misc = 0,
6160 .size = sizeof(read_event) + event->read_size,
6161 },
6162 .pid = perf_event_pid(event, task),
6163 .tid = perf_event_tid(event, task),
6164 };
6165 int ret;
6166
6167 perf_event_header__init_id(&read_event.header, &sample, event);
6168 ret = perf_output_begin(&handle, event, read_event.header.size);
6169 if (ret)
6170 return;
6171
6172 perf_output_put(&handle, read_event);
6173 perf_output_read(&handle, event);
6174 perf_event__output_id_sample(event, &handle, &sample);
6175
6176 perf_output_end(&handle);
6177 }
6178
6179 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
6180
6181 static void
6182 perf_iterate_ctx(struct perf_event_context *ctx,
6183 perf_iterate_f output,
6184 void *data, bool all)
6185 {
6186 struct perf_event *event;
6187
6188 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6189 if (!all) {
6190 if (event->state < PERF_EVENT_STATE_INACTIVE)
6191 continue;
6192 if (!event_filter_match(event))
6193 continue;
6194 }
6195
6196 output(event, data);
6197 }
6198 }
6199
6200 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
6201 {
6202 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6203 struct perf_event *event;
6204
6205 list_for_each_entry_rcu(event, &pel->list, sb_list) {
6206 /*
6207 * Skip events that are not fully formed yet; ensure that
6208 * if we observe event->ctx, both event and ctx will be
6209 * complete enough. See perf_install_in_context().
6210 */
6211 if (!smp_load_acquire(&event->ctx))
6212 continue;
6213
6214 if (event->state < PERF_EVENT_STATE_INACTIVE)
6215 continue;
6216 if (!event_filter_match(event))
6217 continue;
6218 output(event, data);
6219 }
6220 }
6221
6222 /*
6223 * Iterate all events that need to receive side-band events.
6224 *
6225 * For new callers; ensure that account_pmu_sb_event() includes
6226 * your event, otherwise it might not get delivered.
6227 */
6228 static void
6229 perf_iterate_sb(perf_iterate_f output, void *data,
6230 struct perf_event_context *task_ctx)
6231 {
6232 struct perf_event_context *ctx;
6233 int ctxn;
6234
6235 rcu_read_lock();
6236 preempt_disable();
6237
6238 /*
6239 * If we have task_ctx != NULL we only notify the task context itself.
6240 * The task_ctx is set only for EXIT events before releasing task
6241 * context.
6242 */
6243 if (task_ctx) {
6244 perf_iterate_ctx(task_ctx, output, data, false);
6245 goto done;
6246 }
6247
6248 perf_iterate_sb_cpu(output, data);
6249
6250 for_each_task_context_nr(ctxn) {
6251 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6252 if (ctx)
6253 perf_iterate_ctx(ctx, output, data, false);
6254 }
6255 done:
6256 preempt_enable();
6257 rcu_read_unlock();
6258 }
6259
6260 /*
6261 * Clear all file-based filters at exec, they'll have to be
6262 * re-instated when/if these objects are mmapped again.
6263 */
6264 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6265 {
6266 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6267 struct perf_addr_filter *filter;
6268 unsigned int restart = 0, count = 0;
6269 unsigned long flags;
6270
6271 if (!has_addr_filter(event))
6272 return;
6273
6274 raw_spin_lock_irqsave(&ifh->lock, flags);
6275 list_for_each_entry(filter, &ifh->list, entry) {
6276 if (filter->inode) {
6277 event->addr_filters_offs[count] = 0;
6278 restart++;
6279 }
6280
6281 count++;
6282 }
6283
6284 if (restart)
6285 event->addr_filters_gen++;
6286 raw_spin_unlock_irqrestore(&ifh->lock, flags);
6287
6288 if (restart)
6289 perf_event_stop(event, 1);
6290 }
6291
6292 void perf_event_exec(void)
6293 {
6294 struct perf_event_context *ctx;
6295 int ctxn;
6296
6297 rcu_read_lock();
6298 for_each_task_context_nr(ctxn) {
6299 ctx = current->perf_event_ctxp[ctxn];
6300 if (!ctx)
6301 continue;
6302
6303 perf_event_enable_on_exec(ctxn);
6304
6305 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
6306 true);
6307 }
6308 rcu_read_unlock();
6309 }
6310
6311 struct remote_output {
6312 struct ring_buffer *rb;
6313 int err;
6314 };
6315
6316 static void __perf_event_output_stop(struct perf_event *event, void *data)
6317 {
6318 struct perf_event *parent = event->parent;
6319 struct remote_output *ro = data;
6320 struct ring_buffer *rb = ro->rb;
6321 struct stop_event_data sd = {
6322 .event = event,
6323 };
6324
6325 if (!has_aux(event))
6326 return;
6327
6328 if (!parent)
6329 parent = event;
6330
6331 /*
6332 * In case of inheritance, it will be the parent that links to the
6333 * ring-buffer, but it will be the child that's actually using it.
6334 *
6335 * We are using event::rb to determine if the event should be stopped,
6336 * however this may race with ring_buffer_attach() (through set_output),
6337 * which will make us skip the event that actually needs to be stopped.
6338 * So ring_buffer_attach() has to stop an aux event before re-assigning
6339 * its rb pointer.
6340 */
6341 if (rcu_dereference(parent->rb) == rb)
6342 ro->err = __perf_event_stop(&sd);
6343 }
6344
6345 static int __perf_pmu_output_stop(void *info)
6346 {
6347 struct perf_event *event = info;
6348 struct pmu *pmu = event->pmu;
6349 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6350 struct remote_output ro = {
6351 .rb = event->rb,
6352 };
6353
6354 rcu_read_lock();
6355 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6356 if (cpuctx->task_ctx)
6357 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6358 &ro, false);
6359 rcu_read_unlock();
6360
6361 return ro.err;
6362 }
6363
6364 static void perf_pmu_output_stop(struct perf_event *event)
6365 {
6366 struct perf_event *iter;
6367 int err, cpu;
6368
6369 restart:
6370 rcu_read_lock();
6371 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6372 /*
6373 * For per-CPU events, we need to make sure that neither they
6374 * nor their children are running; for cpu==-1 events it's
6375 * sufficient to stop the event itself if it's active, since
6376 * it can't have children.
6377 */
6378 cpu = iter->cpu;
6379 if (cpu == -1)
6380 cpu = READ_ONCE(iter->oncpu);
6381
6382 if (cpu == -1)
6383 continue;
6384
6385 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6386 if (err == -EAGAIN) {
6387 rcu_read_unlock();
6388 goto restart;
6389 }
6390 }
6391 rcu_read_unlock();
6392 }
6393
6394 /*
6395 * task tracking -- fork/exit
6396 *
6397 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
6398 */
6399
6400 struct perf_task_event {
6401 struct task_struct *task;
6402 struct perf_event_context *task_ctx;
6403
6404 struct {
6405 struct perf_event_header header;
6406
6407 u32 pid;
6408 u32 ppid;
6409 u32 tid;
6410 u32 ptid;
6411 u64 time;
6412 } event_id;
6413 };
6414
6415 static int perf_event_task_match(struct perf_event *event)
6416 {
6417 return event->attr.comm || event->attr.mmap ||
6418 event->attr.mmap2 || event->attr.mmap_data ||
6419 event->attr.task;
6420 }
6421
6422 static void perf_event_task_output(struct perf_event *event,
6423 void *data)
6424 {
6425 struct perf_task_event *task_event = data;
6426 struct perf_output_handle handle;
6427 struct perf_sample_data sample;
6428 struct task_struct *task = task_event->task;
6429 int ret, size = task_event->event_id.header.size;
6430
6431 if (!perf_event_task_match(event))
6432 return;
6433
6434 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
6435
6436 ret = perf_output_begin(&handle, event,
6437 task_event->event_id.header.size);
6438 if (ret)
6439 goto out;
6440
6441 task_event->event_id.pid = perf_event_pid(event, task);
6442 task_event->event_id.ppid = perf_event_pid(event, current);
6443
6444 task_event->event_id.tid = perf_event_tid(event, task);
6445 task_event->event_id.ptid = perf_event_tid(event, current);
6446
6447 task_event->event_id.time = perf_event_clock(event);
6448
6449 perf_output_put(&handle, task_event->event_id);
6450
6451 perf_event__output_id_sample(event, &handle, &sample);
6452
6453 perf_output_end(&handle);
6454 out:
6455 task_event->event_id.header.size = size;
6456 }
6457
6458 static void perf_event_task(struct task_struct *task,
6459 struct perf_event_context *task_ctx,
6460 int new)
6461 {
6462 struct perf_task_event task_event;
6463
6464 if (!atomic_read(&nr_comm_events) &&
6465 !atomic_read(&nr_mmap_events) &&
6466 !atomic_read(&nr_task_events))
6467 return;
6468
6469 task_event = (struct perf_task_event){
6470 .task = task,
6471 .task_ctx = task_ctx,
6472 .event_id = {
6473 .header = {
6474 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
6475 .misc = 0,
6476 .size = sizeof(task_event.event_id),
6477 },
6478 /* .pid */
6479 /* .ppid */
6480 /* .tid */
6481 /* .ptid */
6482 /* .time */
6483 },
6484 };
6485
6486 perf_iterate_sb(perf_event_task_output,
6487 &task_event,
6488 task_ctx);
6489 }
6490
6491 void perf_event_fork(struct task_struct *task)
6492 {
6493 perf_event_task(task, NULL, 1);
6494 }
6495
6496 /*
6497 * comm tracking
6498 */
6499
6500 struct perf_comm_event {
6501 struct task_struct *task;
6502 char *comm;
6503 int comm_size;
6504
6505 struct {
6506 struct perf_event_header header;
6507
6508 u32 pid;
6509 u32 tid;
6510 } event_id;
6511 };
6512
6513 static int perf_event_comm_match(struct perf_event *event)
6514 {
6515 return event->attr.comm;
6516 }
6517
6518 static void perf_event_comm_output(struct perf_event *event,
6519 void *data)
6520 {
6521 struct perf_comm_event *comm_event = data;
6522 struct perf_output_handle handle;
6523 struct perf_sample_data sample;
6524 int size = comm_event->event_id.header.size;
6525 int ret;
6526
6527 if (!perf_event_comm_match(event))
6528 return;
6529
6530 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6531 ret = perf_output_begin(&handle, event,
6532 comm_event->event_id.header.size);
6533
6534 if (ret)
6535 goto out;
6536
6537 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6538 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
6539
6540 perf_output_put(&handle, comm_event->event_id);
6541 __output_copy(&handle, comm_event->comm,
6542 comm_event->comm_size);
6543
6544 perf_event__output_id_sample(event, &handle, &sample);
6545
6546 perf_output_end(&handle);
6547 out:
6548 comm_event->event_id.header.size = size;
6549 }
6550
6551 static void perf_event_comm_event(struct perf_comm_event *comm_event)
6552 {
6553 char comm[TASK_COMM_LEN];
6554 unsigned int size;
6555
6556 memset(comm, 0, sizeof(comm));
6557 strlcpy(comm, comm_event->task->comm, sizeof(comm));
6558 size = ALIGN(strlen(comm)+1, sizeof(u64));
6559
6560 comm_event->comm = comm;
6561 comm_event->comm_size = size;
6562
6563 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
6564
6565 perf_iterate_sb(perf_event_comm_output,
6566 comm_event,
6567 NULL);
6568 }
6569
6570 void perf_event_comm(struct task_struct *task, bool exec)
6571 {
6572 struct perf_comm_event comm_event;
6573
6574 if (!atomic_read(&nr_comm_events))
6575 return;
6576
6577 comm_event = (struct perf_comm_event){
6578 .task = task,
6579 /* .comm */
6580 /* .comm_size */
6581 .event_id = {
6582 .header = {
6583 .type = PERF_RECORD_COMM,
6584 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
6585 /* .size */
6586 },
6587 /* .pid */
6588 /* .tid */
6589 },
6590 };
6591
6592 perf_event_comm_event(&comm_event);
6593 }
6594
6595 /*
6596 * mmap tracking
6597 */
6598
6599 struct perf_mmap_event {
6600 struct vm_area_struct *vma;
6601
6602 const char *file_name;
6603 int file_size;
6604 int maj, min;
6605 u64 ino;
6606 u64 ino_generation;
6607 u32 prot, flags;
6608
6609 struct {
6610 struct perf_event_header header;
6611
6612 u32 pid;
6613 u32 tid;
6614 u64 start;
6615 u64 len;
6616 u64 pgoff;
6617 } event_id;
6618 };
6619
6620 static int perf_event_mmap_match(struct perf_event *event,
6621 void *data)
6622 {
6623 struct perf_mmap_event *mmap_event = data;
6624 struct vm_area_struct *vma = mmap_event->vma;
6625 int executable = vma->vm_flags & VM_EXEC;
6626
6627 return (!executable && event->attr.mmap_data) ||
6628 (executable && (event->attr.mmap || event->attr.mmap2));
6629 }
6630
6631 static void perf_event_mmap_output(struct perf_event *event,
6632 void *data)
6633 {
6634 struct perf_mmap_event *mmap_event = data;
6635 struct perf_output_handle handle;
6636 struct perf_sample_data sample;
6637 int size = mmap_event->event_id.header.size;
6638 int ret;
6639
6640 if (!perf_event_mmap_match(event, data))
6641 return;
6642
6643 if (event->attr.mmap2) {
6644 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
6645 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
6646 mmap_event->event_id.header.size += sizeof(mmap_event->min);
6647 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
6648 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
6649 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
6650 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
6651 }
6652
6653 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
6654 ret = perf_output_begin(&handle, event,
6655 mmap_event->event_id.header.size);
6656 if (ret)
6657 goto out;
6658
6659 mmap_event->event_id.pid = perf_event_pid(event, current);
6660 mmap_event->event_id.tid = perf_event_tid(event, current);
6661
6662 perf_output_put(&handle, mmap_event->event_id);
6663
6664 if (event->attr.mmap2) {
6665 perf_output_put(&handle, mmap_event->maj);
6666 perf_output_put(&handle, mmap_event->min);
6667 perf_output_put(&handle, mmap_event->ino);
6668 perf_output_put(&handle, mmap_event->ino_generation);
6669 perf_output_put(&handle, mmap_event->prot);
6670 perf_output_put(&handle, mmap_event->flags);
6671 }
6672
6673 __output_copy(&handle, mmap_event->file_name,
6674 mmap_event->file_size);
6675
6676 perf_event__output_id_sample(event, &handle, &sample);
6677
6678 perf_output_end(&handle);
6679 out:
6680 mmap_event->event_id.header.size = size;
6681 }
6682
6683 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
6684 {
6685 struct vm_area_struct *vma = mmap_event->vma;
6686 struct file *file = vma->vm_file;
6687 int maj = 0, min = 0;
6688 u64 ino = 0, gen = 0;
6689 u32 prot = 0, flags = 0;
6690 unsigned int size;
6691 char tmp[16];
6692 char *buf = NULL;
6693 char *name;
6694
6695 if (vma->vm_flags & VM_READ)
6696 prot |= PROT_READ;
6697 if (vma->vm_flags & VM_WRITE)
6698 prot |= PROT_WRITE;
6699 if (vma->vm_flags & VM_EXEC)
6700 prot |= PROT_EXEC;
6701
6702 if (vma->vm_flags & VM_MAYSHARE)
6703 flags = MAP_SHARED;
6704 else
6705 flags = MAP_PRIVATE;
6706
6707 if (vma->vm_flags & VM_DENYWRITE)
6708 flags |= MAP_DENYWRITE;
6709 if (vma->vm_flags & VM_MAYEXEC)
6710 flags |= MAP_EXECUTABLE;
6711 if (vma->vm_flags & VM_LOCKED)
6712 flags |= MAP_LOCKED;
6713 if (vma->vm_flags & VM_HUGETLB)
6714 flags |= MAP_HUGETLB;
6715
6716 if (file) {
6717 struct inode *inode;
6718 dev_t dev;
6719
6720 buf = kmalloc(PATH_MAX, GFP_KERNEL);
6721 if (!buf) {
6722 name = "//enomem";
6723 goto cpy_name;
6724 }
6725 /*
6726 * d_path() works from the end of the rb backwards, so we
6727 * need to add enough zero bytes after the string to handle
6728 * the 64bit alignment we do later.
6729 */
6730 name = file_path(file, buf, PATH_MAX - sizeof(u64));
6731 if (IS_ERR(name)) {
6732 name = "//toolong";
6733 goto cpy_name;
6734 }
6735 inode = file_inode(vma->vm_file);
6736 dev = inode->i_sb->s_dev;
6737 ino = inode->i_ino;
6738 gen = inode->i_generation;
6739 maj = MAJOR(dev);
6740 min = MINOR(dev);
6741
6742 goto got_name;
6743 } else {
6744 if (vma->vm_ops && vma->vm_ops->name) {
6745 name = (char *) vma->vm_ops->name(vma);
6746 if (name)
6747 goto cpy_name;
6748 }
6749
6750 name = (char *)arch_vma_name(vma);
6751 if (name)
6752 goto cpy_name;
6753
6754 if (vma->vm_start <= vma->vm_mm->start_brk &&
6755 vma->vm_end >= vma->vm_mm->brk) {
6756 name = "[heap]";
6757 goto cpy_name;
6758 }
6759 if (vma->vm_start <= vma->vm_mm->start_stack &&
6760 vma->vm_end >= vma->vm_mm->start_stack) {
6761 name = "[stack]";
6762 goto cpy_name;
6763 }
6764
6765 name = "//anon";
6766 goto cpy_name;
6767 }
6768
6769 cpy_name:
6770 strlcpy(tmp, name, sizeof(tmp));
6771 name = tmp;
6772 got_name:
6773 /*
6774 * Since our buffer works in 8 byte units we need to align our string
6775 * size to a multiple of 8. However, we must guarantee the tail end is
6776 * zero'd out to avoid leaking random bits to userspace.
6777 */
6778 size = strlen(name)+1;
6779 while (!IS_ALIGNED(size, sizeof(u64)))
6780 name[size++] = '\0';
6781
6782 mmap_event->file_name = name;
6783 mmap_event->file_size = size;
6784 mmap_event->maj = maj;
6785 mmap_event->min = min;
6786 mmap_event->ino = ino;
6787 mmap_event->ino_generation = gen;
6788 mmap_event->prot = prot;
6789 mmap_event->flags = flags;
6790
6791 if (!(vma->vm_flags & VM_EXEC))
6792 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6793
6794 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
6795
6796 perf_iterate_sb(perf_event_mmap_output,
6797 mmap_event,
6798 NULL);
6799
6800 kfree(buf);
6801 }
6802
6803 /*
6804 * Check whether inode and address range match filter criteria.
6805 */
6806 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
6807 struct file *file, unsigned long offset,
6808 unsigned long size)
6809 {
6810 if (filter->inode != file_inode(file))
6811 return false;
6812
6813 if (filter->offset > offset + size)
6814 return false;
6815
6816 if (filter->offset + filter->size < offset)
6817 return false;
6818
6819 return true;
6820 }
6821
6822 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
6823 {
6824 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6825 struct vm_area_struct *vma = data;
6826 unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
6827 struct file *file = vma->vm_file;
6828 struct perf_addr_filter *filter;
6829 unsigned int restart = 0, count = 0;
6830
6831 if (!has_addr_filter(event))
6832 return;
6833
6834 if (!file)
6835 return;
6836
6837 raw_spin_lock_irqsave(&ifh->lock, flags);
6838 list_for_each_entry(filter, &ifh->list, entry) {
6839 if (perf_addr_filter_match(filter, file, off,
6840 vma->vm_end - vma->vm_start)) {
6841 event->addr_filters_offs[count] = vma->vm_start;
6842 restart++;
6843 }
6844
6845 count++;
6846 }
6847
6848 if (restart)
6849 event->addr_filters_gen++;
6850 raw_spin_unlock_irqrestore(&ifh->lock, flags);
6851
6852 if (restart)
6853 perf_event_stop(event, 1);
6854 }
6855
6856 /*
6857 * Adjust all task's events' filters to the new vma
6858 */
6859 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
6860 {
6861 struct perf_event_context *ctx;
6862 int ctxn;
6863
6864 /*
6865 * Data tracing isn't supported yet and as such there is no need
6866 * to keep track of anything that isn't related to executable code:
6867 */
6868 if (!(vma->vm_flags & VM_EXEC))
6869 return;
6870
6871 rcu_read_lock();
6872 for_each_task_context_nr(ctxn) {
6873 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6874 if (!ctx)
6875 continue;
6876
6877 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
6878 }
6879 rcu_read_unlock();
6880 }
6881
6882 void perf_event_mmap(struct vm_area_struct *vma)
6883 {
6884 struct perf_mmap_event mmap_event;
6885
6886 if (!atomic_read(&nr_mmap_events))
6887 return;
6888
6889 mmap_event = (struct perf_mmap_event){
6890 .vma = vma,
6891 /* .file_name */
6892 /* .file_size */
6893 .event_id = {
6894 .header = {
6895 .type = PERF_RECORD_MMAP,
6896 .misc = PERF_RECORD_MISC_USER,
6897 /* .size */
6898 },
6899 /* .pid */
6900 /* .tid */
6901 .start = vma->vm_start,
6902 .len = vma->vm_end - vma->vm_start,
6903 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
6904 },
6905 /* .maj (attr_mmap2 only) */
6906 /* .min (attr_mmap2 only) */
6907 /* .ino (attr_mmap2 only) */
6908 /* .ino_generation (attr_mmap2 only) */
6909 /* .prot (attr_mmap2 only) */
6910 /* .flags (attr_mmap2 only) */
6911 };
6912
6913 perf_addr_filters_adjust(vma);
6914 perf_event_mmap_event(&mmap_event);
6915 }
6916
6917 void perf_event_aux_event(struct perf_event *event, unsigned long head,
6918 unsigned long size, u64 flags)
6919 {
6920 struct perf_output_handle handle;
6921 struct perf_sample_data sample;
6922 struct perf_aux_event {
6923 struct perf_event_header header;
6924 u64 offset;
6925 u64 size;
6926 u64 flags;
6927 } rec = {
6928 .header = {
6929 .type = PERF_RECORD_AUX,
6930 .misc = 0,
6931 .size = sizeof(rec),
6932 },
6933 .offset = head,
6934 .size = size,
6935 .flags = flags,
6936 };
6937 int ret;
6938
6939 perf_event_header__init_id(&rec.header, &sample, event);
6940 ret = perf_output_begin(&handle, event, rec.header.size);
6941
6942 if (ret)
6943 return;
6944
6945 perf_output_put(&handle, rec);
6946 perf_event__output_id_sample(event, &handle, &sample);
6947
6948 perf_output_end(&handle);
6949 }
6950
6951 /*
6952 * Lost/dropped samples logging
6953 */
6954 void perf_log_lost_samples(struct perf_event *event, u64 lost)
6955 {
6956 struct perf_output_handle handle;
6957 struct perf_sample_data sample;
6958 int ret;
6959
6960 struct {
6961 struct perf_event_header header;
6962 u64 lost;
6963 } lost_samples_event = {
6964 .header = {
6965 .type = PERF_RECORD_LOST_SAMPLES,
6966 .misc = 0,
6967 .size = sizeof(lost_samples_event),
6968 },
6969 .lost = lost,
6970 };
6971
6972 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
6973
6974 ret = perf_output_begin(&handle, event,
6975 lost_samples_event.header.size);
6976 if (ret)
6977 return;
6978
6979 perf_output_put(&handle, lost_samples_event);
6980 perf_event__output_id_sample(event, &handle, &sample);
6981 perf_output_end(&handle);
6982 }
6983
6984 /*
6985 * context_switch tracking
6986 */
6987
6988 struct perf_switch_event {
6989 struct task_struct *task;
6990 struct task_struct *next_prev;
6991
6992 struct {
6993 struct perf_event_header header;
6994 u32 next_prev_pid;
6995 u32 next_prev_tid;
6996 } event_id;
6997 };
6998
6999 static int perf_event_switch_match(struct perf_event *event)
7000 {
7001 return event->attr.context_switch;
7002 }
7003
7004 static void perf_event_switch_output(struct perf_event *event, void *data)
7005 {
7006 struct perf_switch_event *se = data;
7007 struct perf_output_handle handle;
7008 struct perf_sample_data sample;
7009 int ret;
7010
7011 if (!perf_event_switch_match(event))
7012 return;
7013
7014 /* Only CPU-wide events are allowed to see next/prev pid/tid */
7015 if (event->ctx->task) {
7016 se->event_id.header.type = PERF_RECORD_SWITCH;
7017 se->event_id.header.size = sizeof(se->event_id.header);
7018 } else {
7019 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
7020 se->event_id.header.size = sizeof(se->event_id);
7021 se->event_id.next_prev_pid =
7022 perf_event_pid(event, se->next_prev);
7023 se->event_id.next_prev_tid =
7024 perf_event_tid(event, se->next_prev);
7025 }
7026
7027 perf_event_header__init_id(&se->event_id.header, &sample, event);
7028
7029 ret = perf_output_begin(&handle, event, se->event_id.header.size);
7030 if (ret)
7031 return;
7032
7033 if (event->ctx->task)
7034 perf_output_put(&handle, se->event_id.header);
7035 else
7036 perf_output_put(&handle, se->event_id);
7037
7038 perf_event__output_id_sample(event, &handle, &sample);
7039
7040 perf_output_end(&handle);
7041 }
7042
7043 static void perf_event_switch(struct task_struct *task,
7044 struct task_struct *next_prev, bool sched_in)
7045 {
7046 struct perf_switch_event switch_event;
7047
7048 /* N.B. caller checks nr_switch_events != 0 */
7049
7050 switch_event = (struct perf_switch_event){
7051 .task = task,
7052 .next_prev = next_prev,
7053 .event_id = {
7054 .header = {
7055 /* .type */
7056 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
7057 /* .size */
7058 },
7059 /* .next_prev_pid */
7060 /* .next_prev_tid */
7061 },
7062 };
7063
7064 perf_iterate_sb(perf_event_switch_output,
7065 &switch_event,
7066 NULL);
7067 }
7068
7069 /*
7070 * IRQ throttle logging
7071 */
7072
7073 static void perf_log_throttle(struct perf_event *event, int enable)
7074 {
7075 struct perf_output_handle handle;
7076 struct perf_sample_data sample;
7077 int ret;
7078
7079 struct {
7080 struct perf_event_header header;
7081 u64 time;
7082 u64 id;
7083 u64 stream_id;
7084 } throttle_event = {
7085 .header = {
7086 .type = PERF_RECORD_THROTTLE,
7087 .misc = 0,
7088 .size = sizeof(throttle_event),
7089 },
7090 .time = perf_event_clock(event),
7091 .id = primary_event_id(event),
7092 .stream_id = event->id,
7093 };
7094
7095 if (enable)
7096 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
7097
7098 perf_event_header__init_id(&throttle_event.header, &sample, event);
7099
7100 ret = perf_output_begin(&handle, event,
7101 throttle_event.header.size);
7102 if (ret)
7103 return;
7104
7105 perf_output_put(&handle, throttle_event);
7106 perf_event__output_id_sample(event, &handle, &sample);
7107 perf_output_end(&handle);
7108 }
7109
7110 static void perf_log_itrace_start(struct perf_event *event)
7111 {
7112 struct perf_output_handle handle;
7113 struct perf_sample_data sample;
7114 struct perf_aux_event {
7115 struct perf_event_header header;
7116 u32 pid;
7117 u32 tid;
7118 } rec;
7119 int ret;
7120
7121 if (event->parent)
7122 event = event->parent;
7123
7124 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
7125 event->hw.itrace_started)
7126 return;
7127
7128 rec.header.type = PERF_RECORD_ITRACE_START;
7129 rec.header.misc = 0;
7130 rec.header.size = sizeof(rec);
7131 rec.pid = perf_event_pid(event, current);
7132 rec.tid = perf_event_tid(event, current);
7133
7134 perf_event_header__init_id(&rec.header, &sample, event);
7135 ret = perf_output_begin(&handle, event, rec.header.size);
7136
7137 if (ret)
7138 return;
7139
7140 perf_output_put(&handle, rec);
7141 perf_event__output_id_sample(event, &handle, &sample);
7142
7143 perf_output_end(&handle);
7144 }
7145
7146 static int
7147 __perf_event_account_interrupt(struct perf_event *event, int throttle)
7148 {
7149 struct hw_perf_event *hwc = &event->hw;
7150 int ret = 0;
7151 u64 seq;
7152
7153 seq = __this_cpu_read(perf_throttled_seq);
7154 if (seq != hwc->interrupts_seq) {
7155 hwc->interrupts_seq = seq;
7156 hwc->interrupts = 1;
7157 } else {
7158 hwc->interrupts++;
7159 if (unlikely(throttle
7160 && hwc->interrupts >= max_samples_per_tick)) {
7161 __this_cpu_inc(perf_throttled_count);
7162 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
7163 hwc->interrupts = MAX_INTERRUPTS;
7164 perf_log_throttle(event, 0);
7165 ret = 1;
7166 }
7167 }
7168
7169 if (event->attr.freq) {
7170 u64 now = perf_clock();
7171 s64 delta = now - hwc->freq_time_stamp;
7172
7173 hwc->freq_time_stamp = now;
7174
7175 if (delta > 0 && delta < 2*TICK_NSEC)
7176 perf_adjust_period(event, delta, hwc->last_period, true);
7177 }
7178
7179 return ret;
7180 }
7181
7182 int perf_event_account_interrupt(struct perf_event *event)
7183 {
7184 return __perf_event_account_interrupt(event, 1);
7185 }
7186
7187 /*
7188 * Generic event overflow handling, sampling.
7189 */
7190
7191 static int __perf_event_overflow(struct perf_event *event,
7192 int throttle, struct perf_sample_data *data,
7193 struct pt_regs *regs)
7194 {
7195 int events = atomic_read(&event->event_limit);
7196 int ret = 0;
7197
7198 /*
7199 * Non-sampling counters might still use the PMI to fold short
7200 * hardware counters, ignore those.
7201 */
7202 if (unlikely(!is_sampling_event(event)))
7203 return 0;
7204
7205 ret = __perf_event_account_interrupt(event, throttle);
7206
7207 /*
7208 * XXX event_limit might not quite work as expected on inherited
7209 * events
7210 */
7211
7212 event->pending_kill = POLL_IN;
7213 if (events && atomic_dec_and_test(&event->event_limit)) {
7214 ret = 1;
7215 event->pending_kill = POLL_HUP;
7216
7217 perf_event_disable_inatomic(event);
7218 }
7219
7220 READ_ONCE(event->overflow_handler)(event, data, regs);
7221
7222 if (*perf_event_fasync(event) && event->pending_kill) {
7223 event->pending_wakeup = 1;
7224 irq_work_queue(&event->pending);
7225 }
7226
7227 return ret;
7228 }
7229
7230 int perf_event_overflow(struct perf_event *event,
7231 struct perf_sample_data *data,
7232 struct pt_regs *regs)
7233 {
7234 return __perf_event_overflow(event, 1, data, regs);
7235 }
7236
7237 /*
7238 * Generic software event infrastructure
7239 */
7240
7241 struct swevent_htable {
7242 struct swevent_hlist *swevent_hlist;
7243 struct mutex hlist_mutex;
7244 int hlist_refcount;
7245
7246 /* Recursion avoidance in each contexts */
7247 int recursion[PERF_NR_CONTEXTS];
7248 };
7249
7250 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
7251
7252 /*
7253 * We directly increment event->count and keep a second value in
7254 * event->hw.period_left to count intervals. This period event
7255 * is kept in the range [-sample_period, 0] so that we can use the
7256 * sign as trigger.
7257 */
7258
7259 u64 perf_swevent_set_period(struct perf_event *event)
7260 {
7261 struct hw_perf_event *hwc = &event->hw;
7262 u64 period = hwc->last_period;
7263 u64 nr, offset;
7264 s64 old, val;
7265
7266 hwc->last_period = hwc->sample_period;
7267
7268 again:
7269 old = val = local64_read(&hwc->period_left);
7270 if (val < 0)
7271 return 0;
7272
7273 nr = div64_u64(period + val, period);
7274 offset = nr * period;
7275 val -= offset;
7276 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7277 goto again;
7278
7279 return nr;
7280 }
7281
7282 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
7283 struct perf_sample_data *data,
7284 struct pt_regs *regs)
7285 {
7286 struct hw_perf_event *hwc = &event->hw;
7287 int throttle = 0;
7288
7289 if (!overflow)
7290 overflow = perf_swevent_set_period(event);
7291
7292 if (hwc->interrupts == MAX_INTERRUPTS)
7293 return;
7294
7295 for (; overflow; overflow--) {
7296 if (__perf_event_overflow(event, throttle,
7297 data, regs)) {
7298 /*
7299 * We inhibit the overflow from happening when
7300 * hwc->interrupts == MAX_INTERRUPTS.
7301 */
7302 break;
7303 }
7304 throttle = 1;
7305 }
7306 }
7307
7308 static void perf_swevent_event(struct perf_event *event, u64 nr,
7309 struct perf_sample_data *data,
7310 struct pt_regs *regs)
7311 {
7312 struct hw_perf_event *hwc = &event->hw;
7313
7314 local64_add(nr, &event->count);
7315
7316 if (!regs)
7317 return;
7318
7319 if (!is_sampling_event(event))
7320 return;
7321
7322 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
7323 data->period = nr;
7324 return perf_swevent_overflow(event, 1, data, regs);
7325 } else
7326 data->period = event->hw.last_period;
7327
7328 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
7329 return perf_swevent_overflow(event, 1, data, regs);
7330
7331 if (local64_add_negative(nr, &hwc->period_left))
7332 return;
7333
7334 perf_swevent_overflow(event, 0, data, regs);
7335 }
7336
7337 static int perf_exclude_event(struct perf_event *event,
7338 struct pt_regs *regs)
7339 {
7340 if (event->hw.state & PERF_HES_STOPPED)
7341 return 1;
7342
7343 if (regs) {
7344 if (event->attr.exclude_user && user_mode(regs))
7345 return 1;
7346
7347 if (event->attr.exclude_kernel && !user_mode(regs))
7348 return 1;
7349 }
7350
7351 return 0;
7352 }
7353
7354 static int perf_swevent_match(struct perf_event *event,
7355 enum perf_type_id type,
7356 u32 event_id,
7357 struct perf_sample_data *data,
7358 struct pt_regs *regs)
7359 {
7360 if (event->attr.type != type)
7361 return 0;
7362
7363 if (event->attr.config != event_id)
7364 return 0;
7365
7366 if (perf_exclude_event(event, regs))
7367 return 0;
7368
7369 return 1;
7370 }
7371
7372 static inline u64 swevent_hash(u64 type, u32 event_id)
7373 {
7374 u64 val = event_id | (type << 32);
7375
7376 return hash_64(val, SWEVENT_HLIST_BITS);
7377 }
7378
7379 static inline struct hlist_head *
7380 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
7381 {
7382 u64 hash = swevent_hash(type, event_id);
7383
7384 return &hlist->heads[hash];
7385 }
7386
7387 /* For the read side: events when they trigger */
7388 static inline struct hlist_head *
7389 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
7390 {
7391 struct swevent_hlist *hlist;
7392
7393 hlist = rcu_dereference(swhash->swevent_hlist);
7394 if (!hlist)
7395 return NULL;
7396
7397 return __find_swevent_head(hlist, type, event_id);
7398 }
7399
7400 /* For the event head insertion and removal in the hlist */
7401 static inline struct hlist_head *
7402 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
7403 {
7404 struct swevent_hlist *hlist;
7405 u32 event_id = event->attr.config;
7406 u64 type = event->attr.type;
7407
7408 /*
7409 * Event scheduling is always serialized against hlist allocation
7410 * and release. Which makes the protected version suitable here.
7411 * The context lock guarantees that.
7412 */
7413 hlist = rcu_dereference_protected(swhash->swevent_hlist,
7414 lockdep_is_held(&event->ctx->lock));
7415 if (!hlist)
7416 return NULL;
7417
7418 return __find_swevent_head(hlist, type, event_id);
7419 }
7420
7421 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
7422 u64 nr,
7423 struct perf_sample_data *data,
7424 struct pt_regs *regs)
7425 {
7426 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7427 struct perf_event *event;
7428 struct hlist_head *head;
7429
7430 rcu_read_lock();
7431 head = find_swevent_head_rcu(swhash, type, event_id);
7432 if (!head)
7433 goto end;
7434
7435 hlist_for_each_entry_rcu(event, head, hlist_entry) {
7436 if (perf_swevent_match(event, type, event_id, data, regs))
7437 perf_swevent_event(event, nr, data, regs);
7438 }
7439 end:
7440 rcu_read_unlock();
7441 }
7442
7443 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
7444
7445 int perf_swevent_get_recursion_context(void)
7446 {
7447 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7448
7449 return get_recursion_context(swhash->recursion);
7450 }
7451 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
7452
7453 void perf_swevent_put_recursion_context(int rctx)
7454 {
7455 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7456
7457 put_recursion_context(swhash->recursion, rctx);
7458 }
7459
7460 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7461 {
7462 struct perf_sample_data data;
7463
7464 if (WARN_ON_ONCE(!regs))
7465 return;
7466
7467 perf_sample_data_init(&data, addr, 0);
7468 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
7469 }
7470
7471 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7472 {
7473 int rctx;
7474
7475 preempt_disable_notrace();
7476 rctx = perf_swevent_get_recursion_context();
7477 if (unlikely(rctx < 0))
7478 goto fail;
7479
7480 ___perf_sw_event(event_id, nr, regs, addr);
7481
7482 perf_swevent_put_recursion_context(rctx);
7483 fail:
7484 preempt_enable_notrace();
7485 }
7486
7487 static void perf_swevent_read(struct perf_event *event)
7488 {
7489 }
7490
7491 static int perf_swevent_add(struct perf_event *event, int flags)
7492 {
7493 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7494 struct hw_perf_event *hwc = &event->hw;
7495 struct hlist_head *head;
7496
7497 if (is_sampling_event(event)) {
7498 hwc->last_period = hwc->sample_period;
7499 perf_swevent_set_period(event);
7500 }
7501
7502 hwc->state = !(flags & PERF_EF_START);
7503
7504 head = find_swevent_head(swhash, event);
7505 if (WARN_ON_ONCE(!head))
7506 return -EINVAL;
7507
7508 hlist_add_head_rcu(&event->hlist_entry, head);
7509 perf_event_update_userpage(event);
7510
7511 return 0;
7512 }
7513
7514 static void perf_swevent_del(struct perf_event *event, int flags)
7515 {
7516 hlist_del_rcu(&event->hlist_entry);
7517 }
7518
7519 static void perf_swevent_start(struct perf_event *event, int flags)
7520 {
7521 event->hw.state = 0;
7522 }
7523
7524 static void perf_swevent_stop(struct perf_event *event, int flags)
7525 {
7526 event->hw.state = PERF_HES_STOPPED;
7527 }
7528
7529 /* Deref the hlist from the update side */
7530 static inline struct swevent_hlist *
7531 swevent_hlist_deref(struct swevent_htable *swhash)
7532 {
7533 return rcu_dereference_protected(swhash->swevent_hlist,
7534 lockdep_is_held(&swhash->hlist_mutex));
7535 }
7536
7537 static void swevent_hlist_release(struct swevent_htable *swhash)
7538 {
7539 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
7540
7541 if (!hlist)
7542 return;
7543
7544 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
7545 kfree_rcu(hlist, rcu_head);
7546 }
7547
7548 static void swevent_hlist_put_cpu(int cpu)
7549 {
7550 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7551
7552 mutex_lock(&swhash->hlist_mutex);
7553
7554 if (!--swhash->hlist_refcount)
7555 swevent_hlist_release(swhash);
7556
7557 mutex_unlock(&swhash->hlist_mutex);
7558 }
7559
7560 static void swevent_hlist_put(void)
7561 {
7562 int cpu;
7563
7564 for_each_possible_cpu(cpu)
7565 swevent_hlist_put_cpu(cpu);
7566 }
7567
7568 static int swevent_hlist_get_cpu(int cpu)
7569 {
7570 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7571 int err = 0;
7572
7573 mutex_lock(&swhash->hlist_mutex);
7574 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
7575 struct swevent_hlist *hlist;
7576
7577 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
7578 if (!hlist) {
7579 err = -ENOMEM;
7580 goto exit;
7581 }
7582 rcu_assign_pointer(swhash->swevent_hlist, hlist);
7583 }
7584 swhash->hlist_refcount++;
7585 exit:
7586 mutex_unlock(&swhash->hlist_mutex);
7587
7588 return err;
7589 }
7590
7591 static int swevent_hlist_get(void)
7592 {
7593 int err, cpu, failed_cpu;
7594
7595 get_online_cpus();
7596 for_each_possible_cpu(cpu) {
7597 err = swevent_hlist_get_cpu(cpu);
7598 if (err) {
7599 failed_cpu = cpu;
7600 goto fail;
7601 }
7602 }
7603 put_online_cpus();
7604
7605 return 0;
7606 fail:
7607 for_each_possible_cpu(cpu) {
7608 if (cpu == failed_cpu)
7609 break;
7610 swevent_hlist_put_cpu(cpu);
7611 }
7612
7613 put_online_cpus();
7614 return err;
7615 }
7616
7617 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
7618
7619 static void sw_perf_event_destroy(struct perf_event *event)
7620 {
7621 u64 event_id = event->attr.config;
7622
7623 WARN_ON(event->parent);
7624
7625 static_key_slow_dec(&perf_swevent_enabled[event_id]);
7626 swevent_hlist_put();
7627 }
7628
7629 static int perf_swevent_init(struct perf_event *event)
7630 {
7631 u64 event_id = event->attr.config;
7632
7633 if (event->attr.type != PERF_TYPE_SOFTWARE)
7634 return -ENOENT;
7635
7636 /*
7637 * no branch sampling for software events
7638 */
7639 if (has_branch_stack(event))
7640 return -EOPNOTSUPP;
7641
7642 switch (event_id) {
7643 case PERF_COUNT_SW_CPU_CLOCK:
7644 case PERF_COUNT_SW_TASK_CLOCK:
7645 return -ENOENT;
7646
7647 default:
7648 break;
7649 }
7650
7651 if (event_id >= PERF_COUNT_SW_MAX)
7652 return -ENOENT;
7653
7654 if (!event->parent) {
7655 int err;
7656
7657 err = swevent_hlist_get();
7658 if (err)
7659 return err;
7660
7661 static_key_slow_inc(&perf_swevent_enabled[event_id]);
7662 event->destroy = sw_perf_event_destroy;
7663 }
7664
7665 return 0;
7666 }
7667
7668 static struct pmu perf_swevent = {
7669 .task_ctx_nr = perf_sw_context,
7670
7671 .capabilities = PERF_PMU_CAP_NO_NMI,
7672
7673 .event_init = perf_swevent_init,
7674 .add = perf_swevent_add,
7675 .del = perf_swevent_del,
7676 .start = perf_swevent_start,
7677 .stop = perf_swevent_stop,
7678 .read = perf_swevent_read,
7679 };
7680
7681 #ifdef CONFIG_EVENT_TRACING
7682
7683 static int perf_tp_filter_match(struct perf_event *event,
7684 struct perf_sample_data *data)
7685 {
7686 void *record = data->raw->frag.data;
7687
7688 /* only top level events have filters set */
7689 if (event->parent)
7690 event = event->parent;
7691
7692 if (likely(!event->filter) || filter_match_preds(event->filter, record))
7693 return 1;
7694 return 0;
7695 }
7696
7697 static int perf_tp_event_match(struct perf_event *event,
7698 struct perf_sample_data *data,
7699 struct pt_regs *regs)
7700 {
7701 if (event->hw.state & PERF_HES_STOPPED)
7702 return 0;
7703 /*
7704 * All tracepoints are from kernel-space.
7705 */
7706 if (event->attr.exclude_kernel)
7707 return 0;
7708
7709 if (!perf_tp_filter_match(event, data))
7710 return 0;
7711
7712 return 1;
7713 }
7714
7715 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
7716 struct trace_event_call *call, u64 count,
7717 struct pt_regs *regs, struct hlist_head *head,
7718 struct task_struct *task)
7719 {
7720 struct bpf_prog *prog = call->prog;
7721
7722 if (prog) {
7723 *(struct pt_regs **)raw_data = regs;
7724 if (!trace_call_bpf(prog, raw_data) || hlist_empty(head)) {
7725 perf_swevent_put_recursion_context(rctx);
7726 return;
7727 }
7728 }
7729 perf_tp_event(call->event.type, count, raw_data, size, regs, head,
7730 rctx, task);
7731 }
7732 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
7733
7734 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
7735 struct pt_regs *regs, struct hlist_head *head, int rctx,
7736 struct task_struct *task)
7737 {
7738 struct perf_sample_data data;
7739 struct perf_event *event;
7740
7741 struct perf_raw_record raw = {
7742 .frag = {
7743 .size = entry_size,
7744 .data = record,
7745 },
7746 };
7747
7748 perf_sample_data_init(&data, 0, 0);
7749 data.raw = &raw;
7750
7751 perf_trace_buf_update(record, event_type);
7752
7753 hlist_for_each_entry_rcu(event, head, hlist_entry) {
7754 if (perf_tp_event_match(event, &data, regs))
7755 perf_swevent_event(event, count, &data, regs);
7756 }
7757
7758 /*
7759 * If we got specified a target task, also iterate its context and
7760 * deliver this event there too.
7761 */
7762 if (task && task != current) {
7763 struct perf_event_context *ctx;
7764 struct trace_entry *entry = record;
7765
7766 rcu_read_lock();
7767 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
7768 if (!ctx)
7769 goto unlock;
7770
7771 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7772 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7773 continue;
7774 if (event->attr.config != entry->type)
7775 continue;
7776 if (perf_tp_event_match(event, &data, regs))
7777 perf_swevent_event(event, count, &data, regs);
7778 }
7779 unlock:
7780 rcu_read_unlock();
7781 }
7782
7783 perf_swevent_put_recursion_context(rctx);
7784 }
7785 EXPORT_SYMBOL_GPL(perf_tp_event);
7786
7787 static void tp_perf_event_destroy(struct perf_event *event)
7788 {
7789 perf_trace_destroy(event);
7790 }
7791
7792 static int perf_tp_event_init(struct perf_event *event)
7793 {
7794 int err;
7795
7796 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7797 return -ENOENT;
7798
7799 /*
7800 * no branch sampling for tracepoint events
7801 */
7802 if (has_branch_stack(event))
7803 return -EOPNOTSUPP;
7804
7805 err = perf_trace_init(event);
7806 if (err)
7807 return err;
7808
7809 event->destroy = tp_perf_event_destroy;
7810
7811 return 0;
7812 }
7813
7814 static struct pmu perf_tracepoint = {
7815 .task_ctx_nr = perf_sw_context,
7816
7817 .event_init = perf_tp_event_init,
7818 .add = perf_trace_add,
7819 .del = perf_trace_del,
7820 .start = perf_swevent_start,
7821 .stop = perf_swevent_stop,
7822 .read = perf_swevent_read,
7823 };
7824
7825 static inline void perf_tp_register(void)
7826 {
7827 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
7828 }
7829
7830 static void perf_event_free_filter(struct perf_event *event)
7831 {
7832 ftrace_profile_free_filter(event);
7833 }
7834
7835 #ifdef CONFIG_BPF_SYSCALL
7836 static void bpf_overflow_handler(struct perf_event *event,
7837 struct perf_sample_data *data,
7838 struct pt_regs *regs)
7839 {
7840 struct bpf_perf_event_data_kern ctx = {
7841 .data = data,
7842 .regs = regs,
7843 };
7844 int ret = 0;
7845
7846 preempt_disable();
7847 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
7848 goto out;
7849 rcu_read_lock();
7850 ret = BPF_PROG_RUN(event->prog, &ctx);
7851 rcu_read_unlock();
7852 out:
7853 __this_cpu_dec(bpf_prog_active);
7854 preempt_enable();
7855 if (!ret)
7856 return;
7857
7858 event->orig_overflow_handler(event, data, regs);
7859 }
7860
7861 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
7862 {
7863 struct bpf_prog *prog;
7864
7865 if (event->overflow_handler_context)
7866 /* hw breakpoint or kernel counter */
7867 return -EINVAL;
7868
7869 if (event->prog)
7870 return -EEXIST;
7871
7872 prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
7873 if (IS_ERR(prog))
7874 return PTR_ERR(prog);
7875
7876 event->prog = prog;
7877 event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
7878 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
7879 return 0;
7880 }
7881
7882 static void perf_event_free_bpf_handler(struct perf_event *event)
7883 {
7884 struct bpf_prog *prog = event->prog;
7885
7886 if (!prog)
7887 return;
7888
7889 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
7890 event->prog = NULL;
7891 bpf_prog_put(prog);
7892 }
7893 #else
7894 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
7895 {
7896 return -EOPNOTSUPP;
7897 }
7898 static void perf_event_free_bpf_handler(struct perf_event *event)
7899 {
7900 }
7901 #endif
7902
7903 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7904 {
7905 bool is_kprobe, is_tracepoint;
7906 struct bpf_prog *prog;
7907
7908 if (event->attr.type == PERF_TYPE_HARDWARE ||
7909 event->attr.type == PERF_TYPE_SOFTWARE)
7910 return perf_event_set_bpf_handler(event, prog_fd);
7911
7912 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7913 return -EINVAL;
7914
7915 if (event->tp_event->prog)
7916 return -EEXIST;
7917
7918 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
7919 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
7920 if (!is_kprobe && !is_tracepoint)
7921 /* bpf programs can only be attached to u/kprobe or tracepoint */
7922 return -EINVAL;
7923
7924 prog = bpf_prog_get(prog_fd);
7925 if (IS_ERR(prog))
7926 return PTR_ERR(prog);
7927
7928 if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
7929 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
7930 /* valid fd, but invalid bpf program type */
7931 bpf_prog_put(prog);
7932 return -EINVAL;
7933 }
7934
7935 if (is_tracepoint) {
7936 int off = trace_event_get_offsets(event->tp_event);
7937
7938 if (prog->aux->max_ctx_offset > off) {
7939 bpf_prog_put(prog);
7940 return -EACCES;
7941 }
7942 }
7943 event->tp_event->prog = prog;
7944
7945 return 0;
7946 }
7947
7948 static void perf_event_free_bpf_prog(struct perf_event *event)
7949 {
7950 struct bpf_prog *prog;
7951
7952 perf_event_free_bpf_handler(event);
7953
7954 if (!event->tp_event)
7955 return;
7956
7957 prog = event->tp_event->prog;
7958 if (prog) {
7959 event->tp_event->prog = NULL;
7960 bpf_prog_put(prog);
7961 }
7962 }
7963
7964 #else
7965
7966 static inline void perf_tp_register(void)
7967 {
7968 }
7969
7970 static void perf_event_free_filter(struct perf_event *event)
7971 {
7972 }
7973
7974 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7975 {
7976 return -ENOENT;
7977 }
7978
7979 static void perf_event_free_bpf_prog(struct perf_event *event)
7980 {
7981 }
7982 #endif /* CONFIG_EVENT_TRACING */
7983
7984 #ifdef CONFIG_HAVE_HW_BREAKPOINT
7985 void perf_bp_event(struct perf_event *bp, void *data)
7986 {
7987 struct perf_sample_data sample;
7988 struct pt_regs *regs = data;
7989
7990 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
7991
7992 if (!bp->hw.state && !perf_exclude_event(bp, regs))
7993 perf_swevent_event(bp, 1, &sample, regs);
7994 }
7995 #endif
7996
7997 /*
7998 * Allocate a new address filter
7999 */
8000 static struct perf_addr_filter *
8001 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
8002 {
8003 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
8004 struct perf_addr_filter *filter;
8005
8006 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
8007 if (!filter)
8008 return NULL;
8009
8010 INIT_LIST_HEAD(&filter->entry);
8011 list_add_tail(&filter->entry, filters);
8012
8013 return filter;
8014 }
8015
8016 static void free_filters_list(struct list_head *filters)
8017 {
8018 struct perf_addr_filter *filter, *iter;
8019
8020 list_for_each_entry_safe(filter, iter, filters, entry) {
8021 if (filter->inode)
8022 iput(filter->inode);
8023 list_del(&filter->entry);
8024 kfree(filter);
8025 }
8026 }
8027
8028 /*
8029 * Free existing address filters and optionally install new ones
8030 */
8031 static void perf_addr_filters_splice(struct perf_event *event,
8032 struct list_head *head)
8033 {
8034 unsigned long flags;
8035 LIST_HEAD(list);
8036
8037 if (!has_addr_filter(event))
8038 return;
8039
8040 /* don't bother with children, they don't have their own filters */
8041 if (event->parent)
8042 return;
8043
8044 raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
8045
8046 list_splice_init(&event->addr_filters.list, &list);
8047 if (head)
8048 list_splice(head, &event->addr_filters.list);
8049
8050 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
8051
8052 free_filters_list(&list);
8053 }
8054
8055 /*
8056 * Scan through mm's vmas and see if one of them matches the
8057 * @filter; if so, adjust filter's address range.
8058 * Called with mm::mmap_sem down for reading.
8059 */
8060 static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
8061 struct mm_struct *mm)
8062 {
8063 struct vm_area_struct *vma;
8064
8065 for (vma = mm->mmap; vma; vma = vma->vm_next) {
8066 struct file *file = vma->vm_file;
8067 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8068 unsigned long vma_size = vma->vm_end - vma->vm_start;
8069
8070 if (!file)
8071 continue;
8072
8073 if (!perf_addr_filter_match(filter, file, off, vma_size))
8074 continue;
8075
8076 return vma->vm_start;
8077 }
8078
8079 return 0;
8080 }
8081
8082 /*
8083 * Update event's address range filters based on the
8084 * task's existing mappings, if any.
8085 */
8086 static void perf_event_addr_filters_apply(struct perf_event *event)
8087 {
8088 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8089 struct task_struct *task = READ_ONCE(event->ctx->task);
8090 struct perf_addr_filter *filter;
8091 struct mm_struct *mm = NULL;
8092 unsigned int count = 0;
8093 unsigned long flags;
8094
8095 /*
8096 * We may observe TASK_TOMBSTONE, which means that the event tear-down
8097 * will stop on the parent's child_mutex that our caller is also holding
8098 */
8099 if (task == TASK_TOMBSTONE)
8100 return;
8101
8102 if (!ifh->nr_file_filters)
8103 return;
8104
8105 mm = get_task_mm(event->ctx->task);
8106 if (!mm)
8107 goto restart;
8108
8109 down_read(&mm->mmap_sem);
8110
8111 raw_spin_lock_irqsave(&ifh->lock, flags);
8112 list_for_each_entry(filter, &ifh->list, entry) {
8113 event->addr_filters_offs[count] = 0;
8114
8115 /*
8116 * Adjust base offset if the filter is associated to a binary
8117 * that needs to be mapped:
8118 */
8119 if (filter->inode)
8120 event->addr_filters_offs[count] =
8121 perf_addr_filter_apply(filter, mm);
8122
8123 count++;
8124 }
8125
8126 event->addr_filters_gen++;
8127 raw_spin_unlock_irqrestore(&ifh->lock, flags);
8128
8129 up_read(&mm->mmap_sem);
8130
8131 mmput(mm);
8132
8133 restart:
8134 perf_event_stop(event, 1);
8135 }
8136
8137 /*
8138 * Address range filtering: limiting the data to certain
8139 * instruction address ranges. Filters are ioctl()ed to us from
8140 * userspace as ascii strings.
8141 *
8142 * Filter string format:
8143 *
8144 * ACTION RANGE_SPEC
8145 * where ACTION is one of the
8146 * * "filter": limit the trace to this region
8147 * * "start": start tracing from this address
8148 * * "stop": stop tracing at this address/region;
8149 * RANGE_SPEC is
8150 * * for kernel addresses: <start address>[/<size>]
8151 * * for object files: <start address>[/<size>]@</path/to/object/file>
8152 *
8153 * if <size> is not specified, the range is treated as a single address.
8154 */
8155 enum {
8156 IF_ACT_NONE = -1,
8157 IF_ACT_FILTER,
8158 IF_ACT_START,
8159 IF_ACT_STOP,
8160 IF_SRC_FILE,
8161 IF_SRC_KERNEL,
8162 IF_SRC_FILEADDR,
8163 IF_SRC_KERNELADDR,
8164 };
8165
8166 enum {
8167 IF_STATE_ACTION = 0,
8168 IF_STATE_SOURCE,
8169 IF_STATE_END,
8170 };
8171
8172 static const match_table_t if_tokens = {
8173 { IF_ACT_FILTER, "filter" },
8174 { IF_ACT_START, "start" },
8175 { IF_ACT_STOP, "stop" },
8176 { IF_SRC_FILE, "%u/%u@%s" },
8177 { IF_SRC_KERNEL, "%u/%u" },
8178 { IF_SRC_FILEADDR, "%u@%s" },
8179 { IF_SRC_KERNELADDR, "%u" },
8180 { IF_ACT_NONE, NULL },
8181 };
8182
8183 /*
8184 * Address filter string parser
8185 */
8186 static int
8187 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
8188 struct list_head *filters)
8189 {
8190 struct perf_addr_filter *filter = NULL;
8191 char *start, *orig, *filename = NULL;
8192 struct path path;
8193 substring_t args[MAX_OPT_ARGS];
8194 int state = IF_STATE_ACTION, token;
8195 unsigned int kernel = 0;
8196 int ret = -EINVAL;
8197
8198 orig = fstr = kstrdup(fstr, GFP_KERNEL);
8199 if (!fstr)
8200 return -ENOMEM;
8201
8202 while ((start = strsep(&fstr, " ,\n")) != NULL) {
8203 ret = -EINVAL;
8204
8205 if (!*start)
8206 continue;
8207
8208 /* filter definition begins */
8209 if (state == IF_STATE_ACTION) {
8210 filter = perf_addr_filter_new(event, filters);
8211 if (!filter)
8212 goto fail;
8213 }
8214
8215 token = match_token(start, if_tokens, args);
8216 switch (token) {
8217 case IF_ACT_FILTER:
8218 case IF_ACT_START:
8219 filter->filter = 1;
8220
8221 case IF_ACT_STOP:
8222 if (state != IF_STATE_ACTION)
8223 goto fail;
8224
8225 state = IF_STATE_SOURCE;
8226 break;
8227
8228 case IF_SRC_KERNELADDR:
8229 case IF_SRC_KERNEL:
8230 kernel = 1;
8231
8232 case IF_SRC_FILEADDR:
8233 case IF_SRC_FILE:
8234 if (state != IF_STATE_SOURCE)
8235 goto fail;
8236
8237 if (token == IF_SRC_FILE || token == IF_SRC_KERNEL)
8238 filter->range = 1;
8239
8240 *args[0].to = 0;
8241 ret = kstrtoul(args[0].from, 0, &filter->offset);
8242 if (ret)
8243 goto fail;
8244
8245 if (filter->range) {
8246 *args[1].to = 0;
8247 ret = kstrtoul(args[1].from, 0, &filter->size);
8248 if (ret)
8249 goto fail;
8250 }
8251
8252 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
8253 int fpos = filter->range ? 2 : 1;
8254
8255 filename = match_strdup(&args[fpos]);
8256 if (!filename) {
8257 ret = -ENOMEM;
8258 goto fail;
8259 }
8260 }
8261
8262 state = IF_STATE_END;
8263 break;
8264
8265 default:
8266 goto fail;
8267 }
8268
8269 /*
8270 * Filter definition is fully parsed, validate and install it.
8271 * Make sure that it doesn't contradict itself or the event's
8272 * attribute.
8273 */
8274 if (state == IF_STATE_END) {
8275 ret = -EINVAL;
8276 if (kernel && event->attr.exclude_kernel)
8277 goto fail;
8278
8279 if (!kernel) {
8280 if (!filename)
8281 goto fail;
8282
8283 /*
8284 * For now, we only support file-based filters
8285 * in per-task events; doing so for CPU-wide
8286 * events requires additional context switching
8287 * trickery, since same object code will be
8288 * mapped at different virtual addresses in
8289 * different processes.
8290 */
8291 ret = -EOPNOTSUPP;
8292 if (!event->ctx->task)
8293 goto fail_free_name;
8294
8295 /* look up the path and grab its inode */
8296 ret = kern_path(filename, LOOKUP_FOLLOW, &path);
8297 if (ret)
8298 goto fail_free_name;
8299
8300 filter->inode = igrab(d_inode(path.dentry));
8301 path_put(&path);
8302 kfree(filename);
8303 filename = NULL;
8304
8305 ret = -EINVAL;
8306 if (!filter->inode ||
8307 !S_ISREG(filter->inode->i_mode))
8308 /* free_filters_list() will iput() */
8309 goto fail;
8310
8311 event->addr_filters.nr_file_filters++;
8312 }
8313
8314 /* ready to consume more filters */
8315 state = IF_STATE_ACTION;
8316 filter = NULL;
8317 }
8318 }
8319
8320 if (state != IF_STATE_ACTION)
8321 goto fail;
8322
8323 kfree(orig);
8324
8325 return 0;
8326
8327 fail_free_name:
8328 kfree(filename);
8329 fail:
8330 free_filters_list(filters);
8331 kfree(orig);
8332
8333 return ret;
8334 }
8335
8336 static int
8337 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
8338 {
8339 LIST_HEAD(filters);
8340 int ret;
8341
8342 /*
8343 * Since this is called in perf_ioctl() path, we're already holding
8344 * ctx::mutex.
8345 */
8346 lockdep_assert_held(&event->ctx->mutex);
8347
8348 if (WARN_ON_ONCE(event->parent))
8349 return -EINVAL;
8350
8351 ret = perf_event_parse_addr_filter(event, filter_str, &filters);
8352 if (ret)
8353 goto fail_clear_files;
8354
8355 ret = event->pmu->addr_filters_validate(&filters);
8356 if (ret)
8357 goto fail_free_filters;
8358
8359 /* remove existing filters, if any */
8360 perf_addr_filters_splice(event, &filters);
8361
8362 /* install new filters */
8363 perf_event_for_each_child(event, perf_event_addr_filters_apply);
8364
8365 return ret;
8366
8367 fail_free_filters:
8368 free_filters_list(&filters);
8369
8370 fail_clear_files:
8371 event->addr_filters.nr_file_filters = 0;
8372
8373 return ret;
8374 }
8375
8376 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
8377 {
8378 char *filter_str;
8379 int ret = -EINVAL;
8380
8381 if ((event->attr.type != PERF_TYPE_TRACEPOINT ||
8382 !IS_ENABLED(CONFIG_EVENT_TRACING)) &&
8383 !has_addr_filter(event))
8384 return -EINVAL;
8385
8386 filter_str = strndup_user(arg, PAGE_SIZE);
8387 if (IS_ERR(filter_str))
8388 return PTR_ERR(filter_str);
8389
8390 if (IS_ENABLED(CONFIG_EVENT_TRACING) &&
8391 event->attr.type == PERF_TYPE_TRACEPOINT)
8392 ret = ftrace_profile_set_filter(event, event->attr.config,
8393 filter_str);
8394 else if (has_addr_filter(event))
8395 ret = perf_event_set_addr_filter(event, filter_str);
8396
8397 kfree(filter_str);
8398 return ret;
8399 }
8400
8401 /*
8402 * hrtimer based swevent callback
8403 */
8404
8405 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
8406 {
8407 enum hrtimer_restart ret = HRTIMER_RESTART;
8408 struct perf_sample_data data;
8409 struct pt_regs *regs;
8410 struct perf_event *event;
8411 u64 period;
8412
8413 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
8414
8415 if (event->state != PERF_EVENT_STATE_ACTIVE)
8416 return HRTIMER_NORESTART;
8417
8418 event->pmu->read(event);
8419
8420 perf_sample_data_init(&data, 0, event->hw.last_period);
8421 regs = get_irq_regs();
8422
8423 if (regs && !perf_exclude_event(event, regs)) {
8424 if (!(event->attr.exclude_idle && is_idle_task(current)))
8425 if (__perf_event_overflow(event, 1, &data, regs))
8426 ret = HRTIMER_NORESTART;
8427 }
8428
8429 period = max_t(u64, 10000, event->hw.sample_period);
8430 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
8431
8432 return ret;
8433 }
8434
8435 static void perf_swevent_start_hrtimer(struct perf_event *event)
8436 {
8437 struct hw_perf_event *hwc = &event->hw;
8438 s64 period;
8439
8440 if (!is_sampling_event(event))
8441 return;
8442
8443 period = local64_read(&hwc->period_left);
8444 if (period) {
8445 if (period < 0)
8446 period = 10000;
8447
8448 local64_set(&hwc->period_left, 0);
8449 } else {
8450 period = max_t(u64, 10000, hwc->sample_period);
8451 }
8452 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
8453 HRTIMER_MODE_REL_PINNED);
8454 }
8455
8456 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
8457 {
8458 struct hw_perf_event *hwc = &event->hw;
8459
8460 if (is_sampling_event(event)) {
8461 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
8462 local64_set(&hwc->period_left, ktime_to_ns(remaining));
8463
8464 hrtimer_cancel(&hwc->hrtimer);
8465 }
8466 }
8467
8468 static void perf_swevent_init_hrtimer(struct perf_event *event)
8469 {
8470 struct hw_perf_event *hwc = &event->hw;
8471
8472 if (!is_sampling_event(event))
8473 return;
8474
8475 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
8476 hwc->hrtimer.function = perf_swevent_hrtimer;
8477
8478 /*
8479 * Since hrtimers have a fixed rate, we can do a static freq->period
8480 * mapping and avoid the whole period adjust feedback stuff.
8481 */
8482 if (event->attr.freq) {
8483 long freq = event->attr.sample_freq;
8484
8485 event->attr.sample_period = NSEC_PER_SEC / freq;
8486 hwc->sample_period = event->attr.sample_period;
8487 local64_set(&hwc->period_left, hwc->sample_period);
8488 hwc->last_period = hwc->sample_period;
8489 event->attr.freq = 0;
8490 }
8491 }
8492
8493 /*
8494 * Software event: cpu wall time clock
8495 */
8496
8497 static void cpu_clock_event_update(struct perf_event *event)
8498 {
8499 s64 prev;
8500 u64 now;
8501
8502 now = local_clock();
8503 prev = local64_xchg(&event->hw.prev_count, now);
8504 local64_add(now - prev, &event->count);
8505 }
8506
8507 static void cpu_clock_event_start(struct perf_event *event, int flags)
8508 {
8509 local64_set(&event->hw.prev_count, local_clock());
8510 perf_swevent_start_hrtimer(event);
8511 }
8512
8513 static void cpu_clock_event_stop(struct perf_event *event, int flags)
8514 {
8515 perf_swevent_cancel_hrtimer(event);
8516 cpu_clock_event_update(event);
8517 }
8518
8519 static int cpu_clock_event_add(struct perf_event *event, int flags)
8520 {
8521 if (flags & PERF_EF_START)
8522 cpu_clock_event_start(event, flags);
8523 perf_event_update_userpage(event);
8524
8525 return 0;
8526 }
8527
8528 static void cpu_clock_event_del(struct perf_event *event, int flags)
8529 {
8530 cpu_clock_event_stop(event, flags);
8531 }
8532
8533 static void cpu_clock_event_read(struct perf_event *event)
8534 {
8535 cpu_clock_event_update(event);
8536 }
8537
8538 static int cpu_clock_event_init(struct perf_event *event)
8539 {
8540 if (event->attr.type != PERF_TYPE_SOFTWARE)
8541 return -ENOENT;
8542
8543 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
8544 return -ENOENT;
8545
8546 /*
8547 * no branch sampling for software events
8548 */
8549 if (has_branch_stack(event))
8550 return -EOPNOTSUPP;
8551
8552 perf_swevent_init_hrtimer(event);
8553
8554 return 0;
8555 }
8556
8557 static struct pmu perf_cpu_clock = {
8558 .task_ctx_nr = perf_sw_context,
8559
8560 .capabilities = PERF_PMU_CAP_NO_NMI,
8561
8562 .event_init = cpu_clock_event_init,
8563 .add = cpu_clock_event_add,
8564 .del = cpu_clock_event_del,
8565 .start = cpu_clock_event_start,
8566 .stop = cpu_clock_event_stop,
8567 .read = cpu_clock_event_read,
8568 };
8569
8570 /*
8571 * Software event: task time clock
8572 */
8573
8574 static void task_clock_event_update(struct perf_event *event, u64 now)
8575 {
8576 u64 prev;
8577 s64 delta;
8578
8579 prev = local64_xchg(&event->hw.prev_count, now);
8580 delta = now - prev;
8581 local64_add(delta, &event->count);
8582 }
8583
8584 static void task_clock_event_start(struct perf_event *event, int flags)
8585 {
8586 local64_set(&event->hw.prev_count, event->ctx->time);
8587 perf_swevent_start_hrtimer(event);
8588 }
8589
8590 static void task_clock_event_stop(struct perf_event *event, int flags)
8591 {
8592 perf_swevent_cancel_hrtimer(event);
8593 task_clock_event_update(event, event->ctx->time);
8594 }
8595
8596 static int task_clock_event_add(struct perf_event *event, int flags)
8597 {
8598 if (flags & PERF_EF_START)
8599 task_clock_event_start(event, flags);
8600 perf_event_update_userpage(event);
8601
8602 return 0;
8603 }
8604
8605 static void task_clock_event_del(struct perf_event *event, int flags)
8606 {
8607 task_clock_event_stop(event, PERF_EF_UPDATE);
8608 }
8609
8610 static void task_clock_event_read(struct perf_event *event)
8611 {
8612 u64 now = perf_clock();
8613 u64 delta = now - event->ctx->timestamp;
8614 u64 time = event->ctx->time + delta;
8615
8616 task_clock_event_update(event, time);
8617 }
8618
8619 static int task_clock_event_init(struct perf_event *event)
8620 {
8621 if (event->attr.type != PERF_TYPE_SOFTWARE)
8622 return -ENOENT;
8623
8624 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
8625 return -ENOENT;
8626
8627 /*
8628 * no branch sampling for software events
8629 */
8630 if (has_branch_stack(event))
8631 return -EOPNOTSUPP;
8632
8633 perf_swevent_init_hrtimer(event);
8634
8635 return 0;
8636 }
8637
8638 static struct pmu perf_task_clock = {
8639 .task_ctx_nr = perf_sw_context,
8640
8641 .capabilities = PERF_PMU_CAP_NO_NMI,
8642
8643 .event_init = task_clock_event_init,
8644 .add = task_clock_event_add,
8645 .del = task_clock_event_del,
8646 .start = task_clock_event_start,
8647 .stop = task_clock_event_stop,
8648 .read = task_clock_event_read,
8649 };
8650
8651 static void perf_pmu_nop_void(struct pmu *pmu)
8652 {
8653 }
8654
8655 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
8656 {
8657 }
8658
8659 static int perf_pmu_nop_int(struct pmu *pmu)
8660 {
8661 return 0;
8662 }
8663
8664 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
8665
8666 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
8667 {
8668 __this_cpu_write(nop_txn_flags, flags);
8669
8670 if (flags & ~PERF_PMU_TXN_ADD)
8671 return;
8672
8673 perf_pmu_disable(pmu);
8674 }
8675
8676 static int perf_pmu_commit_txn(struct pmu *pmu)
8677 {
8678 unsigned int flags = __this_cpu_read(nop_txn_flags);
8679
8680 __this_cpu_write(nop_txn_flags, 0);
8681
8682 if (flags & ~PERF_PMU_TXN_ADD)
8683 return 0;
8684
8685 perf_pmu_enable(pmu);
8686 return 0;
8687 }
8688
8689 static void perf_pmu_cancel_txn(struct pmu *pmu)
8690 {
8691 unsigned int flags = __this_cpu_read(nop_txn_flags);
8692
8693 __this_cpu_write(nop_txn_flags, 0);
8694
8695 if (flags & ~PERF_PMU_TXN_ADD)
8696 return;
8697
8698 perf_pmu_enable(pmu);
8699 }
8700
8701 static int perf_event_idx_default(struct perf_event *event)
8702 {
8703 return 0;
8704 }
8705
8706 /*
8707 * Ensures all contexts with the same task_ctx_nr have the same
8708 * pmu_cpu_context too.
8709 */
8710 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
8711 {
8712 struct pmu *pmu;
8713
8714 if (ctxn < 0)
8715 return NULL;
8716
8717 list_for_each_entry(pmu, &pmus, entry) {
8718 if (pmu->task_ctx_nr == ctxn)
8719 return pmu->pmu_cpu_context;
8720 }
8721
8722 return NULL;
8723 }
8724
8725 static void free_pmu_context(struct pmu *pmu)
8726 {
8727 mutex_lock(&pmus_lock);
8728 free_percpu(pmu->pmu_cpu_context);
8729 mutex_unlock(&pmus_lock);
8730 }
8731
8732 /*
8733 * Let userspace know that this PMU supports address range filtering:
8734 */
8735 static ssize_t nr_addr_filters_show(struct device *dev,
8736 struct device_attribute *attr,
8737 char *page)
8738 {
8739 struct pmu *pmu = dev_get_drvdata(dev);
8740
8741 return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
8742 }
8743 DEVICE_ATTR_RO(nr_addr_filters);
8744
8745 static struct idr pmu_idr;
8746
8747 static ssize_t
8748 type_show(struct device *dev, struct device_attribute *attr, char *page)
8749 {
8750 struct pmu *pmu = dev_get_drvdata(dev);
8751
8752 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
8753 }
8754 static DEVICE_ATTR_RO(type);
8755
8756 static ssize_t
8757 perf_event_mux_interval_ms_show(struct device *dev,
8758 struct device_attribute *attr,
8759 char *page)
8760 {
8761 struct pmu *pmu = dev_get_drvdata(dev);
8762
8763 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
8764 }
8765
8766 static DEFINE_MUTEX(mux_interval_mutex);
8767
8768 static ssize_t
8769 perf_event_mux_interval_ms_store(struct device *dev,
8770 struct device_attribute *attr,
8771 const char *buf, size_t count)
8772 {
8773 struct pmu *pmu = dev_get_drvdata(dev);
8774 int timer, cpu, ret;
8775
8776 ret = kstrtoint(buf, 0, &timer);
8777 if (ret)
8778 return ret;
8779
8780 if (timer < 1)
8781 return -EINVAL;
8782
8783 /* same value, noting to do */
8784 if (timer == pmu->hrtimer_interval_ms)
8785 return count;
8786
8787 mutex_lock(&mux_interval_mutex);
8788 pmu->hrtimer_interval_ms = timer;
8789
8790 /* update all cpuctx for this PMU */
8791 get_online_cpus();
8792 for_each_online_cpu(cpu) {
8793 struct perf_cpu_context *cpuctx;
8794 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8795 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
8796
8797 cpu_function_call(cpu,
8798 (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
8799 }
8800 put_online_cpus();
8801 mutex_unlock(&mux_interval_mutex);
8802
8803 return count;
8804 }
8805 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
8806
8807 static struct attribute *pmu_dev_attrs[] = {
8808 &dev_attr_type.attr,
8809 &dev_attr_perf_event_mux_interval_ms.attr,
8810 NULL,
8811 };
8812 ATTRIBUTE_GROUPS(pmu_dev);
8813
8814 static int pmu_bus_running;
8815 static struct bus_type pmu_bus = {
8816 .name = "event_source",
8817 .dev_groups = pmu_dev_groups,
8818 };
8819
8820 static void pmu_dev_release(struct device *dev)
8821 {
8822 kfree(dev);
8823 }
8824
8825 static int pmu_dev_alloc(struct pmu *pmu)
8826 {
8827 int ret = -ENOMEM;
8828
8829 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
8830 if (!pmu->dev)
8831 goto out;
8832
8833 pmu->dev->groups = pmu->attr_groups;
8834 device_initialize(pmu->dev);
8835 ret = dev_set_name(pmu->dev, "%s", pmu->name);
8836 if (ret)
8837 goto free_dev;
8838
8839 dev_set_drvdata(pmu->dev, pmu);
8840 pmu->dev->bus = &pmu_bus;
8841 pmu->dev->release = pmu_dev_release;
8842 ret = device_add(pmu->dev);
8843 if (ret)
8844 goto free_dev;
8845
8846 /* For PMUs with address filters, throw in an extra attribute: */
8847 if (pmu->nr_addr_filters)
8848 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
8849
8850 if (ret)
8851 goto del_dev;
8852
8853 out:
8854 return ret;
8855
8856 del_dev:
8857 device_del(pmu->dev);
8858
8859 free_dev:
8860 put_device(pmu->dev);
8861 goto out;
8862 }
8863
8864 static struct lock_class_key cpuctx_mutex;
8865 static struct lock_class_key cpuctx_lock;
8866
8867 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
8868 {
8869 int cpu, ret;
8870
8871 mutex_lock(&pmus_lock);
8872 ret = -ENOMEM;
8873 pmu->pmu_disable_count = alloc_percpu(int);
8874 if (!pmu->pmu_disable_count)
8875 goto unlock;
8876
8877 pmu->type = -1;
8878 if (!name)
8879 goto skip_type;
8880 pmu->name = name;
8881
8882 if (type < 0) {
8883 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
8884 if (type < 0) {
8885 ret = type;
8886 goto free_pdc;
8887 }
8888 }
8889 pmu->type = type;
8890
8891 if (pmu_bus_running) {
8892 ret = pmu_dev_alloc(pmu);
8893 if (ret)
8894 goto free_idr;
8895 }
8896
8897 skip_type:
8898 if (pmu->task_ctx_nr == perf_hw_context) {
8899 static int hw_context_taken = 0;
8900
8901 /*
8902 * Other than systems with heterogeneous CPUs, it never makes
8903 * sense for two PMUs to share perf_hw_context. PMUs which are
8904 * uncore must use perf_invalid_context.
8905 */
8906 if (WARN_ON_ONCE(hw_context_taken &&
8907 !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
8908 pmu->task_ctx_nr = perf_invalid_context;
8909
8910 hw_context_taken = 1;
8911 }
8912
8913 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
8914 if (pmu->pmu_cpu_context)
8915 goto got_cpu_context;
8916
8917 ret = -ENOMEM;
8918 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
8919 if (!pmu->pmu_cpu_context)
8920 goto free_dev;
8921
8922 for_each_possible_cpu(cpu) {
8923 struct perf_cpu_context *cpuctx;
8924
8925 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8926 __perf_event_init_context(&cpuctx->ctx);
8927 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
8928 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
8929 cpuctx->ctx.pmu = pmu;
8930
8931 __perf_mux_hrtimer_init(cpuctx, cpu);
8932 }
8933
8934 got_cpu_context:
8935 if (!pmu->start_txn) {
8936 if (pmu->pmu_enable) {
8937 /*
8938 * If we have pmu_enable/pmu_disable calls, install
8939 * transaction stubs that use that to try and batch
8940 * hardware accesses.
8941 */
8942 pmu->start_txn = perf_pmu_start_txn;
8943 pmu->commit_txn = perf_pmu_commit_txn;
8944 pmu->cancel_txn = perf_pmu_cancel_txn;
8945 } else {
8946 pmu->start_txn = perf_pmu_nop_txn;
8947 pmu->commit_txn = perf_pmu_nop_int;
8948 pmu->cancel_txn = perf_pmu_nop_void;
8949 }
8950 }
8951
8952 if (!pmu->pmu_enable) {
8953 pmu->pmu_enable = perf_pmu_nop_void;
8954 pmu->pmu_disable = perf_pmu_nop_void;
8955 }
8956
8957 if (!pmu->event_idx)
8958 pmu->event_idx = perf_event_idx_default;
8959
8960 list_add_rcu(&pmu->entry, &pmus);
8961 atomic_set(&pmu->exclusive_cnt, 0);
8962 ret = 0;
8963 unlock:
8964 mutex_unlock(&pmus_lock);
8965
8966 return ret;
8967
8968 free_dev:
8969 device_del(pmu->dev);
8970 put_device(pmu->dev);
8971
8972 free_idr:
8973 if (pmu->type >= PERF_TYPE_MAX)
8974 idr_remove(&pmu_idr, pmu->type);
8975
8976 free_pdc:
8977 free_percpu(pmu->pmu_disable_count);
8978 goto unlock;
8979 }
8980 EXPORT_SYMBOL_GPL(perf_pmu_register);
8981
8982 void perf_pmu_unregister(struct pmu *pmu)
8983 {
8984 int remove_device;
8985
8986 mutex_lock(&pmus_lock);
8987 remove_device = pmu_bus_running;
8988 list_del_rcu(&pmu->entry);
8989 mutex_unlock(&pmus_lock);
8990
8991 /*
8992 * We dereference the pmu list under both SRCU and regular RCU, so
8993 * synchronize against both of those.
8994 */
8995 synchronize_srcu(&pmus_srcu);
8996 synchronize_rcu();
8997
8998 free_percpu(pmu->pmu_disable_count);
8999 if (pmu->type >= PERF_TYPE_MAX)
9000 idr_remove(&pmu_idr, pmu->type);
9001 if (remove_device) {
9002 if (pmu->nr_addr_filters)
9003 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
9004 device_del(pmu->dev);
9005 put_device(pmu->dev);
9006 }
9007 free_pmu_context(pmu);
9008 }
9009 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
9010
9011 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
9012 {
9013 struct perf_event_context *ctx = NULL;
9014 int ret;
9015
9016 if (!try_module_get(pmu->module))
9017 return -ENODEV;
9018
9019 if (event->group_leader != event) {
9020 /*
9021 * This ctx->mutex can nest when we're called through
9022 * inheritance. See the perf_event_ctx_lock_nested() comment.
9023 */
9024 ctx = perf_event_ctx_lock_nested(event->group_leader,
9025 SINGLE_DEPTH_NESTING);
9026 BUG_ON(!ctx);
9027 }
9028
9029 event->pmu = pmu;
9030 ret = pmu->event_init(event);
9031
9032 if (ctx)
9033 perf_event_ctx_unlock(event->group_leader, ctx);
9034
9035 if (ret)
9036 module_put(pmu->module);
9037
9038 return ret;
9039 }
9040
9041 static struct pmu *perf_init_event(struct perf_event *event)
9042 {
9043 struct pmu *pmu = NULL;
9044 int idx;
9045 int ret;
9046
9047 idx = srcu_read_lock(&pmus_srcu);
9048
9049 /* Try parent's PMU first: */
9050 if (event->parent && event->parent->pmu) {
9051 pmu = event->parent->pmu;
9052 ret = perf_try_init_event(pmu, event);
9053 if (!ret)
9054 goto unlock;
9055 }
9056
9057 rcu_read_lock();
9058 pmu = idr_find(&pmu_idr, event->attr.type);
9059 rcu_read_unlock();
9060 if (pmu) {
9061 ret = perf_try_init_event(pmu, event);
9062 if (ret)
9063 pmu = ERR_PTR(ret);
9064 goto unlock;
9065 }
9066
9067 list_for_each_entry_rcu(pmu, &pmus, entry) {
9068 ret = perf_try_init_event(pmu, event);
9069 if (!ret)
9070 goto unlock;
9071
9072 if (ret != -ENOENT) {
9073 pmu = ERR_PTR(ret);
9074 goto unlock;
9075 }
9076 }
9077 pmu = ERR_PTR(-ENOENT);
9078 unlock:
9079 srcu_read_unlock(&pmus_srcu, idx);
9080
9081 return pmu;
9082 }
9083
9084 static void attach_sb_event(struct perf_event *event)
9085 {
9086 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
9087
9088 raw_spin_lock(&pel->lock);
9089 list_add_rcu(&event->sb_list, &pel->list);
9090 raw_spin_unlock(&pel->lock);
9091 }
9092
9093 /*
9094 * We keep a list of all !task (and therefore per-cpu) events
9095 * that need to receive side-band records.
9096 *
9097 * This avoids having to scan all the various PMU per-cpu contexts
9098 * looking for them.
9099 */
9100 static void account_pmu_sb_event(struct perf_event *event)
9101 {
9102 if (is_sb_event(event))
9103 attach_sb_event(event);
9104 }
9105
9106 static void account_event_cpu(struct perf_event *event, int cpu)
9107 {
9108 if (event->parent)
9109 return;
9110
9111 if (is_cgroup_event(event))
9112 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
9113 }
9114
9115 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
9116 static void account_freq_event_nohz(void)
9117 {
9118 #ifdef CONFIG_NO_HZ_FULL
9119 /* Lock so we don't race with concurrent unaccount */
9120 spin_lock(&nr_freq_lock);
9121 if (atomic_inc_return(&nr_freq_events) == 1)
9122 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
9123 spin_unlock(&nr_freq_lock);
9124 #endif
9125 }
9126
9127 static void account_freq_event(void)
9128 {
9129 if (tick_nohz_full_enabled())
9130 account_freq_event_nohz();
9131 else
9132 atomic_inc(&nr_freq_events);
9133 }
9134
9135
9136 static void account_event(struct perf_event *event)
9137 {
9138 bool inc = false;
9139
9140 if (event->parent)
9141 return;
9142
9143 if (event->attach_state & PERF_ATTACH_TASK)
9144 inc = true;
9145 if (event->attr.mmap || event->attr.mmap_data)
9146 atomic_inc(&nr_mmap_events);
9147 if (event->attr.comm)
9148 atomic_inc(&nr_comm_events);
9149 if (event->attr.task)
9150 atomic_inc(&nr_task_events);
9151 if (event->attr.freq)
9152 account_freq_event();
9153 if (event->attr.context_switch) {
9154 atomic_inc(&nr_switch_events);
9155 inc = true;
9156 }
9157 if (has_branch_stack(event))
9158 inc = true;
9159 if (is_cgroup_event(event))
9160 inc = true;
9161
9162 if (inc) {
9163 if (atomic_inc_not_zero(&perf_sched_count))
9164 goto enabled;
9165
9166 mutex_lock(&perf_sched_mutex);
9167 if (!atomic_read(&perf_sched_count)) {
9168 static_branch_enable(&perf_sched_events);
9169 /*
9170 * Guarantee that all CPUs observe they key change and
9171 * call the perf scheduling hooks before proceeding to
9172 * install events that need them.
9173 */
9174 synchronize_sched();
9175 }
9176 /*
9177 * Now that we have waited for the sync_sched(), allow further
9178 * increments to by-pass the mutex.
9179 */
9180 atomic_inc(&perf_sched_count);
9181 mutex_unlock(&perf_sched_mutex);
9182 }
9183 enabled:
9184
9185 account_event_cpu(event, event->cpu);
9186
9187 account_pmu_sb_event(event);
9188 }
9189
9190 /*
9191 * Allocate and initialize a event structure
9192 */
9193 static struct perf_event *
9194 perf_event_alloc(struct perf_event_attr *attr, int cpu,
9195 struct task_struct *task,
9196 struct perf_event *group_leader,
9197 struct perf_event *parent_event,
9198 perf_overflow_handler_t overflow_handler,
9199 void *context, int cgroup_fd)
9200 {
9201 struct pmu *pmu;
9202 struct perf_event *event;
9203 struct hw_perf_event *hwc;
9204 long err = -EINVAL;
9205
9206 if ((unsigned)cpu >= nr_cpu_ids) {
9207 if (!task || cpu != -1)
9208 return ERR_PTR(-EINVAL);
9209 }
9210
9211 event = kzalloc(sizeof(*event), GFP_KERNEL);
9212 if (!event)
9213 return ERR_PTR(-ENOMEM);
9214
9215 /*
9216 * Single events are their own group leaders, with an
9217 * empty sibling list:
9218 */
9219 if (!group_leader)
9220 group_leader = event;
9221
9222 mutex_init(&event->child_mutex);
9223 INIT_LIST_HEAD(&event->child_list);
9224
9225 INIT_LIST_HEAD(&event->group_entry);
9226 INIT_LIST_HEAD(&event->event_entry);
9227 INIT_LIST_HEAD(&event->sibling_list);
9228 INIT_LIST_HEAD(&event->rb_entry);
9229 INIT_LIST_HEAD(&event->active_entry);
9230 INIT_LIST_HEAD(&event->addr_filters.list);
9231 INIT_HLIST_NODE(&event->hlist_entry);
9232
9233
9234 init_waitqueue_head(&event->waitq);
9235 init_irq_work(&event->pending, perf_pending_event);
9236
9237 mutex_init(&event->mmap_mutex);
9238 raw_spin_lock_init(&event->addr_filters.lock);
9239
9240 atomic_long_set(&event->refcount, 1);
9241 event->cpu = cpu;
9242 event->attr = *attr;
9243 event->group_leader = group_leader;
9244 event->pmu = NULL;
9245 event->oncpu = -1;
9246
9247 event->parent = parent_event;
9248
9249 event->ns = get_pid_ns(task_active_pid_ns(current));
9250 event->id = atomic64_inc_return(&perf_event_id);
9251
9252 event->state = PERF_EVENT_STATE_INACTIVE;
9253
9254 if (task) {
9255 event->attach_state = PERF_ATTACH_TASK;
9256 /*
9257 * XXX pmu::event_init needs to know what task to account to
9258 * and we cannot use the ctx information because we need the
9259 * pmu before we get a ctx.
9260 */
9261 event->hw.target = task;
9262 }
9263
9264 event->clock = &local_clock;
9265 if (parent_event)
9266 event->clock = parent_event->clock;
9267
9268 if (!overflow_handler && parent_event) {
9269 overflow_handler = parent_event->overflow_handler;
9270 context = parent_event->overflow_handler_context;
9271 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
9272 if (overflow_handler == bpf_overflow_handler) {
9273 struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
9274
9275 if (IS_ERR(prog)) {
9276 err = PTR_ERR(prog);
9277 goto err_ns;
9278 }
9279 event->prog = prog;
9280 event->orig_overflow_handler =
9281 parent_event->orig_overflow_handler;
9282 }
9283 #endif
9284 }
9285
9286 if (overflow_handler) {
9287 event->overflow_handler = overflow_handler;
9288 event->overflow_handler_context = context;
9289 } else if (is_write_backward(event)){
9290 event->overflow_handler = perf_event_output_backward;
9291 event->overflow_handler_context = NULL;
9292 } else {
9293 event->overflow_handler = perf_event_output_forward;
9294 event->overflow_handler_context = NULL;
9295 }
9296
9297 perf_event__state_init(event);
9298
9299 pmu = NULL;
9300
9301 hwc = &event->hw;
9302 hwc->sample_period = attr->sample_period;
9303 if (attr->freq && attr->sample_freq)
9304 hwc->sample_period = 1;
9305 hwc->last_period = hwc->sample_period;
9306
9307 local64_set(&hwc->period_left, hwc->sample_period);
9308
9309 /*
9310 * we currently do not support PERF_FORMAT_GROUP on inherited events
9311 */
9312 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
9313 goto err_ns;
9314
9315 if (!has_branch_stack(event))
9316 event->attr.branch_sample_type = 0;
9317
9318 if (cgroup_fd != -1) {
9319 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
9320 if (err)
9321 goto err_ns;
9322 }
9323
9324 pmu = perf_init_event(event);
9325 if (!pmu)
9326 goto err_ns;
9327 else if (IS_ERR(pmu)) {
9328 err = PTR_ERR(pmu);
9329 goto err_ns;
9330 }
9331
9332 err = exclusive_event_init(event);
9333 if (err)
9334 goto err_pmu;
9335
9336 if (has_addr_filter(event)) {
9337 event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
9338 sizeof(unsigned long),
9339 GFP_KERNEL);
9340 if (!event->addr_filters_offs)
9341 goto err_per_task;
9342
9343 /* force hw sync on the address filters */
9344 event->addr_filters_gen = 1;
9345 }
9346
9347 if (!event->parent) {
9348 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
9349 err = get_callchain_buffers(attr->sample_max_stack);
9350 if (err)
9351 goto err_addr_filters;
9352 }
9353 }
9354
9355 /* symmetric to unaccount_event() in _free_event() */
9356 account_event(event);
9357
9358 return event;
9359
9360 err_addr_filters:
9361 kfree(event->addr_filters_offs);
9362
9363 err_per_task:
9364 exclusive_event_destroy(event);
9365
9366 err_pmu:
9367 if (event->destroy)
9368 event->destroy(event);
9369 module_put(pmu->module);
9370 err_ns:
9371 if (is_cgroup_event(event))
9372 perf_detach_cgroup(event);
9373 if (event->ns)
9374 put_pid_ns(event->ns);
9375 kfree(event);
9376
9377 return ERR_PTR(err);
9378 }
9379
9380 static int perf_copy_attr(struct perf_event_attr __user *uattr,
9381 struct perf_event_attr *attr)
9382 {
9383 u32 size;
9384 int ret;
9385
9386 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
9387 return -EFAULT;
9388
9389 /*
9390 * zero the full structure, so that a short copy will be nice.
9391 */
9392 memset(attr, 0, sizeof(*attr));
9393
9394 ret = get_user(size, &uattr->size);
9395 if (ret)
9396 return ret;
9397
9398 if (size > PAGE_SIZE) /* silly large */
9399 goto err_size;
9400
9401 if (!size) /* abi compat */
9402 size = PERF_ATTR_SIZE_VER0;
9403
9404 if (size < PERF_ATTR_SIZE_VER0)
9405 goto err_size;
9406
9407 /*
9408 * If we're handed a bigger struct than we know of,
9409 * ensure all the unknown bits are 0 - i.e. new
9410 * user-space does not rely on any kernel feature
9411 * extensions we dont know about yet.
9412 */
9413 if (size > sizeof(*attr)) {
9414 unsigned char __user *addr;
9415 unsigned char __user *end;
9416 unsigned char val;
9417
9418 addr = (void __user *)uattr + sizeof(*attr);
9419 end = (void __user *)uattr + size;
9420
9421 for (; addr < end; addr++) {
9422 ret = get_user(val, addr);
9423 if (ret)
9424 return ret;
9425 if (val)
9426 goto err_size;
9427 }
9428 size = sizeof(*attr);
9429 }
9430
9431 ret = copy_from_user(attr, uattr, size);
9432 if (ret)
9433 return -EFAULT;
9434
9435 if (attr->__reserved_1)
9436 return -EINVAL;
9437
9438 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
9439 return -EINVAL;
9440
9441 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
9442 return -EINVAL;
9443
9444 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
9445 u64 mask = attr->branch_sample_type;
9446
9447 /* only using defined bits */
9448 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
9449 return -EINVAL;
9450
9451 /* at least one branch bit must be set */
9452 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
9453 return -EINVAL;
9454
9455 /* propagate priv level, when not set for branch */
9456 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
9457
9458 /* exclude_kernel checked on syscall entry */
9459 if (!attr->exclude_kernel)
9460 mask |= PERF_SAMPLE_BRANCH_KERNEL;
9461
9462 if (!attr->exclude_user)
9463 mask |= PERF_SAMPLE_BRANCH_USER;
9464
9465 if (!attr->exclude_hv)
9466 mask |= PERF_SAMPLE_BRANCH_HV;
9467 /*
9468 * adjust user setting (for HW filter setup)
9469 */
9470 attr->branch_sample_type = mask;
9471 }
9472 /* privileged levels capture (kernel, hv): check permissions */
9473 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
9474 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9475 return -EACCES;
9476 }
9477
9478 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
9479 ret = perf_reg_validate(attr->sample_regs_user);
9480 if (ret)
9481 return ret;
9482 }
9483
9484 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
9485 if (!arch_perf_have_user_stack_dump())
9486 return -ENOSYS;
9487
9488 /*
9489 * We have __u32 type for the size, but so far
9490 * we can only use __u16 as maximum due to the
9491 * __u16 sample size limit.
9492 */
9493 if (attr->sample_stack_user >= USHRT_MAX)
9494 ret = -EINVAL;
9495 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
9496 ret = -EINVAL;
9497 }
9498
9499 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
9500 ret = perf_reg_validate(attr->sample_regs_intr);
9501 out:
9502 return ret;
9503
9504 err_size:
9505 put_user(sizeof(*attr), &uattr->size);
9506 ret = -E2BIG;
9507 goto out;
9508 }
9509
9510 static int
9511 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
9512 {
9513 struct ring_buffer *rb = NULL;
9514 int ret = -EINVAL;
9515
9516 if (!output_event)
9517 goto set;
9518
9519 /* don't allow circular references */
9520 if (event == output_event)
9521 goto out;
9522
9523 /*
9524 * Don't allow cross-cpu buffers
9525 */
9526 if (output_event->cpu != event->cpu)
9527 goto out;
9528
9529 /*
9530 * If its not a per-cpu rb, it must be the same task.
9531 */
9532 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
9533 goto out;
9534
9535 /*
9536 * Mixing clocks in the same buffer is trouble you don't need.
9537 */
9538 if (output_event->clock != event->clock)
9539 goto out;
9540
9541 /*
9542 * Either writing ring buffer from beginning or from end.
9543 * Mixing is not allowed.
9544 */
9545 if (is_write_backward(output_event) != is_write_backward(event))
9546 goto out;
9547
9548 /*
9549 * If both events generate aux data, they must be on the same PMU
9550 */
9551 if (has_aux(event) && has_aux(output_event) &&
9552 event->pmu != output_event->pmu)
9553 goto out;
9554
9555 set:
9556 mutex_lock(&event->mmap_mutex);
9557 /* Can't redirect output if we've got an active mmap() */
9558 if (atomic_read(&event->mmap_count))
9559 goto unlock;
9560
9561 if (output_event) {
9562 /* get the rb we want to redirect to */
9563 rb = ring_buffer_get(output_event);
9564 if (!rb)
9565 goto unlock;
9566 }
9567
9568 ring_buffer_attach(event, rb);
9569
9570 ret = 0;
9571 unlock:
9572 mutex_unlock(&event->mmap_mutex);
9573
9574 out:
9575 return ret;
9576 }
9577
9578 static void mutex_lock_double(struct mutex *a, struct mutex *b)
9579 {
9580 if (b < a)
9581 swap(a, b);
9582
9583 mutex_lock(a);
9584 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
9585 }
9586
9587 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
9588 {
9589 bool nmi_safe = false;
9590
9591 switch (clk_id) {
9592 case CLOCK_MONOTONIC:
9593 event->clock = &ktime_get_mono_fast_ns;
9594 nmi_safe = true;
9595 break;
9596
9597 case CLOCK_MONOTONIC_RAW:
9598 event->clock = &ktime_get_raw_fast_ns;
9599 nmi_safe = true;
9600 break;
9601
9602 case CLOCK_REALTIME:
9603 event->clock = &ktime_get_real_ns;
9604 break;
9605
9606 case CLOCK_BOOTTIME:
9607 event->clock = &ktime_get_boot_ns;
9608 break;
9609
9610 case CLOCK_TAI:
9611 event->clock = &ktime_get_tai_ns;
9612 break;
9613
9614 default:
9615 return -EINVAL;
9616 }
9617
9618 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
9619 return -EINVAL;
9620
9621 return 0;
9622 }
9623
9624 /*
9625 * Variation on perf_event_ctx_lock_nested(), except we take two context
9626 * mutexes.
9627 */
9628 static struct perf_event_context *
9629 __perf_event_ctx_lock_double(struct perf_event *group_leader,
9630 struct perf_event_context *ctx)
9631 {
9632 struct perf_event_context *gctx;
9633
9634 again:
9635 rcu_read_lock();
9636 gctx = READ_ONCE(group_leader->ctx);
9637 if (!atomic_inc_not_zero(&gctx->refcount)) {
9638 rcu_read_unlock();
9639 goto again;
9640 }
9641 rcu_read_unlock();
9642
9643 mutex_lock_double(&gctx->mutex, &ctx->mutex);
9644
9645 if (group_leader->ctx != gctx) {
9646 mutex_unlock(&ctx->mutex);
9647 mutex_unlock(&gctx->mutex);
9648 put_ctx(gctx);
9649 goto again;
9650 }
9651
9652 return gctx;
9653 }
9654
9655 /**
9656 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9657 *
9658 * @attr_uptr: event_id type attributes for monitoring/sampling
9659 * @pid: target pid
9660 * @cpu: target cpu
9661 * @group_fd: group leader event fd
9662 */
9663 SYSCALL_DEFINE5(perf_event_open,
9664 struct perf_event_attr __user *, attr_uptr,
9665 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
9666 {
9667 struct perf_event *group_leader = NULL, *output_event = NULL;
9668 struct perf_event *event, *sibling;
9669 struct perf_event_attr attr;
9670 struct perf_event_context *ctx, *uninitialized_var(gctx);
9671 struct file *event_file = NULL;
9672 struct fd group = {NULL, 0};
9673 struct task_struct *task = NULL;
9674 struct pmu *pmu;
9675 int event_fd;
9676 int move_group = 0;
9677 int err;
9678 int f_flags = O_RDWR;
9679 int cgroup_fd = -1;
9680
9681 /* for future expandability... */
9682 if (flags & ~PERF_FLAG_ALL)
9683 return -EINVAL;
9684
9685 err = perf_copy_attr(attr_uptr, &attr);
9686 if (err)
9687 return err;
9688
9689 if (!attr.exclude_kernel) {
9690 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9691 return -EACCES;
9692 }
9693
9694 if (attr.freq) {
9695 if (attr.sample_freq > sysctl_perf_event_sample_rate)
9696 return -EINVAL;
9697 } else {
9698 if (attr.sample_period & (1ULL << 63))
9699 return -EINVAL;
9700 }
9701
9702 if (!attr.sample_max_stack)
9703 attr.sample_max_stack = sysctl_perf_event_max_stack;
9704
9705 /*
9706 * In cgroup mode, the pid argument is used to pass the fd
9707 * opened to the cgroup directory in cgroupfs. The cpu argument
9708 * designates the cpu on which to monitor threads from that
9709 * cgroup.
9710 */
9711 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
9712 return -EINVAL;
9713
9714 if (flags & PERF_FLAG_FD_CLOEXEC)
9715 f_flags |= O_CLOEXEC;
9716
9717 event_fd = get_unused_fd_flags(f_flags);
9718 if (event_fd < 0)
9719 return event_fd;
9720
9721 if (group_fd != -1) {
9722 err = perf_fget_light(group_fd, &group);
9723 if (err)
9724 goto err_fd;
9725 group_leader = group.file->private_data;
9726 if (flags & PERF_FLAG_FD_OUTPUT)
9727 output_event = group_leader;
9728 if (flags & PERF_FLAG_FD_NO_GROUP)
9729 group_leader = NULL;
9730 }
9731
9732 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
9733 task = find_lively_task_by_vpid(pid);
9734 if (IS_ERR(task)) {
9735 err = PTR_ERR(task);
9736 goto err_group_fd;
9737 }
9738 }
9739
9740 if (task && group_leader &&
9741 group_leader->attr.inherit != attr.inherit) {
9742 err = -EINVAL;
9743 goto err_task;
9744 }
9745
9746 get_online_cpus();
9747
9748 if (task) {
9749 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
9750 if (err)
9751 goto err_cpus;
9752
9753 /*
9754 * Reuse ptrace permission checks for now.
9755 *
9756 * We must hold cred_guard_mutex across this and any potential
9757 * perf_install_in_context() call for this new event to
9758 * serialize against exec() altering our credentials (and the
9759 * perf_event_exit_task() that could imply).
9760 */
9761 err = -EACCES;
9762 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
9763 goto err_cred;
9764 }
9765
9766 if (flags & PERF_FLAG_PID_CGROUP)
9767 cgroup_fd = pid;
9768
9769 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
9770 NULL, NULL, cgroup_fd);
9771 if (IS_ERR(event)) {
9772 err = PTR_ERR(event);
9773 goto err_cred;
9774 }
9775
9776 if (is_sampling_event(event)) {
9777 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
9778 err = -EOPNOTSUPP;
9779 goto err_alloc;
9780 }
9781 }
9782
9783 /*
9784 * Special case software events and allow them to be part of
9785 * any hardware group.
9786 */
9787 pmu = event->pmu;
9788
9789 if (attr.use_clockid) {
9790 err = perf_event_set_clock(event, attr.clockid);
9791 if (err)
9792 goto err_alloc;
9793 }
9794
9795 if (pmu->task_ctx_nr == perf_sw_context)
9796 event->event_caps |= PERF_EV_CAP_SOFTWARE;
9797
9798 if (group_leader &&
9799 (is_software_event(event) != is_software_event(group_leader))) {
9800 if (is_software_event(event)) {
9801 /*
9802 * If event and group_leader are not both a software
9803 * event, and event is, then group leader is not.
9804 *
9805 * Allow the addition of software events to !software
9806 * groups, this is safe because software events never
9807 * fail to schedule.
9808 */
9809 pmu = group_leader->pmu;
9810 } else if (is_software_event(group_leader) &&
9811 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
9812 /*
9813 * In case the group is a pure software group, and we
9814 * try to add a hardware event, move the whole group to
9815 * the hardware context.
9816 */
9817 move_group = 1;
9818 }
9819 }
9820
9821 /*
9822 * Get the target context (task or percpu):
9823 */
9824 ctx = find_get_context(pmu, task, event);
9825 if (IS_ERR(ctx)) {
9826 err = PTR_ERR(ctx);
9827 goto err_alloc;
9828 }
9829
9830 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
9831 err = -EBUSY;
9832 goto err_context;
9833 }
9834
9835 /*
9836 * Look up the group leader (we will attach this event to it):
9837 */
9838 if (group_leader) {
9839 err = -EINVAL;
9840
9841 /*
9842 * Do not allow a recursive hierarchy (this new sibling
9843 * becoming part of another group-sibling):
9844 */
9845 if (group_leader->group_leader != group_leader)
9846 goto err_context;
9847
9848 /* All events in a group should have the same clock */
9849 if (group_leader->clock != event->clock)
9850 goto err_context;
9851
9852 /*
9853 * Do not allow to attach to a group in a different
9854 * task or CPU context:
9855 */
9856 if (move_group) {
9857 /*
9858 * Make sure we're both on the same task, or both
9859 * per-cpu events.
9860 */
9861 if (group_leader->ctx->task != ctx->task)
9862 goto err_context;
9863
9864 /*
9865 * Make sure we're both events for the same CPU;
9866 * grouping events for different CPUs is broken; since
9867 * you can never concurrently schedule them anyhow.
9868 */
9869 if (group_leader->cpu != event->cpu)
9870 goto err_context;
9871 } else {
9872 if (group_leader->ctx != ctx)
9873 goto err_context;
9874 }
9875
9876 /*
9877 * Only a group leader can be exclusive or pinned
9878 */
9879 if (attr.exclusive || attr.pinned)
9880 goto err_context;
9881 }
9882
9883 if (output_event) {
9884 err = perf_event_set_output(event, output_event);
9885 if (err)
9886 goto err_context;
9887 }
9888
9889 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
9890 f_flags);
9891 if (IS_ERR(event_file)) {
9892 err = PTR_ERR(event_file);
9893 event_file = NULL;
9894 goto err_context;
9895 }
9896
9897 if (move_group) {
9898 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
9899
9900 if (gctx->task == TASK_TOMBSTONE) {
9901 err = -ESRCH;
9902 goto err_locked;
9903 }
9904
9905 /*
9906 * Check if we raced against another sys_perf_event_open() call
9907 * moving the software group underneath us.
9908 */
9909 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
9910 /*
9911 * If someone moved the group out from under us, check
9912 * if this new event wound up on the same ctx, if so
9913 * its the regular !move_group case, otherwise fail.
9914 */
9915 if (gctx != ctx) {
9916 err = -EINVAL;
9917 goto err_locked;
9918 } else {
9919 perf_event_ctx_unlock(group_leader, gctx);
9920 move_group = 0;
9921 }
9922 }
9923 } else {
9924 mutex_lock(&ctx->mutex);
9925 }
9926
9927 if (ctx->task == TASK_TOMBSTONE) {
9928 err = -ESRCH;
9929 goto err_locked;
9930 }
9931
9932 if (!perf_event_validate_size(event)) {
9933 err = -E2BIG;
9934 goto err_locked;
9935 }
9936
9937 /*
9938 * Must be under the same ctx::mutex as perf_install_in_context(),
9939 * because we need to serialize with concurrent event creation.
9940 */
9941 if (!exclusive_event_installable(event, ctx)) {
9942 /* exclusive and group stuff are assumed mutually exclusive */
9943 WARN_ON_ONCE(move_group);
9944
9945 err = -EBUSY;
9946 goto err_locked;
9947 }
9948
9949 WARN_ON_ONCE(ctx->parent_ctx);
9950
9951 /*
9952 * This is the point on no return; we cannot fail hereafter. This is
9953 * where we start modifying current state.
9954 */
9955
9956 if (move_group) {
9957 /*
9958 * See perf_event_ctx_lock() for comments on the details
9959 * of swizzling perf_event::ctx.
9960 */
9961 perf_remove_from_context(group_leader, 0);
9962 put_ctx(gctx);
9963
9964 list_for_each_entry(sibling, &group_leader->sibling_list,
9965 group_entry) {
9966 perf_remove_from_context(sibling, 0);
9967 put_ctx(gctx);
9968 }
9969
9970 /*
9971 * Wait for everybody to stop referencing the events through
9972 * the old lists, before installing it on new lists.
9973 */
9974 synchronize_rcu();
9975
9976 /*
9977 * Install the group siblings before the group leader.
9978 *
9979 * Because a group leader will try and install the entire group
9980 * (through the sibling list, which is still in-tact), we can
9981 * end up with siblings installed in the wrong context.
9982 *
9983 * By installing siblings first we NO-OP because they're not
9984 * reachable through the group lists.
9985 */
9986 list_for_each_entry(sibling, &group_leader->sibling_list,
9987 group_entry) {
9988 perf_event__state_init(sibling);
9989 perf_install_in_context(ctx, sibling, sibling->cpu);
9990 get_ctx(ctx);
9991 }
9992
9993 /*
9994 * Removing from the context ends up with disabled
9995 * event. What we want here is event in the initial
9996 * startup state, ready to be add into new context.
9997 */
9998 perf_event__state_init(group_leader);
9999 perf_install_in_context(ctx, group_leader, group_leader->cpu);
10000 get_ctx(ctx);
10001 }
10002
10003 /*
10004 * Precalculate sample_data sizes; do while holding ctx::mutex such
10005 * that we're serialized against further additions and before
10006 * perf_install_in_context() which is the point the event is active and
10007 * can use these values.
10008 */
10009 perf_event__header_size(event);
10010 perf_event__id_header_size(event);
10011
10012 event->owner = current;
10013
10014 perf_install_in_context(ctx, event, event->cpu);
10015 perf_unpin_context(ctx);
10016
10017 if (move_group)
10018 perf_event_ctx_unlock(group_leader, gctx);
10019 mutex_unlock(&ctx->mutex);
10020
10021 if (task) {
10022 mutex_unlock(&task->signal->cred_guard_mutex);
10023 put_task_struct(task);
10024 }
10025
10026 put_online_cpus();
10027
10028 mutex_lock(&current->perf_event_mutex);
10029 list_add_tail(&event->owner_entry, &current->perf_event_list);
10030 mutex_unlock(&current->perf_event_mutex);
10031
10032 /*
10033 * Drop the reference on the group_event after placing the
10034 * new event on the sibling_list. This ensures destruction
10035 * of the group leader will find the pointer to itself in
10036 * perf_group_detach().
10037 */
10038 fdput(group);
10039 fd_install(event_fd, event_file);
10040 return event_fd;
10041
10042 err_locked:
10043 if (move_group)
10044 perf_event_ctx_unlock(group_leader, gctx);
10045 mutex_unlock(&ctx->mutex);
10046 /* err_file: */
10047 fput(event_file);
10048 err_context:
10049 perf_unpin_context(ctx);
10050 put_ctx(ctx);
10051 err_alloc:
10052 /*
10053 * If event_file is set, the fput() above will have called ->release()
10054 * and that will take care of freeing the event.
10055 */
10056 if (!event_file)
10057 free_event(event);
10058 err_cred:
10059 if (task)
10060 mutex_unlock(&task->signal->cred_guard_mutex);
10061 err_cpus:
10062 put_online_cpus();
10063 err_task:
10064 if (task)
10065 put_task_struct(task);
10066 err_group_fd:
10067 fdput(group);
10068 err_fd:
10069 put_unused_fd(event_fd);
10070 return err;
10071 }
10072
10073 /**
10074 * perf_event_create_kernel_counter
10075 *
10076 * @attr: attributes of the counter to create
10077 * @cpu: cpu in which the counter is bound
10078 * @task: task to profile (NULL for percpu)
10079 */
10080 struct perf_event *
10081 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
10082 struct task_struct *task,
10083 perf_overflow_handler_t overflow_handler,
10084 void *context)
10085 {
10086 struct perf_event_context *ctx;
10087 struct perf_event *event;
10088 int err;
10089
10090 /*
10091 * Get the target context (task or percpu):
10092 */
10093
10094 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
10095 overflow_handler, context, -1);
10096 if (IS_ERR(event)) {
10097 err = PTR_ERR(event);
10098 goto err;
10099 }
10100
10101 /* Mark owner so we could distinguish it from user events. */
10102 event->owner = TASK_TOMBSTONE;
10103
10104 ctx = find_get_context(event->pmu, task, event);
10105 if (IS_ERR(ctx)) {
10106 err = PTR_ERR(ctx);
10107 goto err_free;
10108 }
10109
10110 WARN_ON_ONCE(ctx->parent_ctx);
10111 mutex_lock(&ctx->mutex);
10112 if (ctx->task == TASK_TOMBSTONE) {
10113 err = -ESRCH;
10114 goto err_unlock;
10115 }
10116
10117 if (!exclusive_event_installable(event, ctx)) {
10118 err = -EBUSY;
10119 goto err_unlock;
10120 }
10121
10122 perf_install_in_context(ctx, event, cpu);
10123 perf_unpin_context(ctx);
10124 mutex_unlock(&ctx->mutex);
10125
10126 return event;
10127
10128 err_unlock:
10129 mutex_unlock(&ctx->mutex);
10130 perf_unpin_context(ctx);
10131 put_ctx(ctx);
10132 err_free:
10133 free_event(event);
10134 err:
10135 return ERR_PTR(err);
10136 }
10137 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
10138
10139 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
10140 {
10141 struct perf_event_context *src_ctx;
10142 struct perf_event_context *dst_ctx;
10143 struct perf_event *event, *tmp;
10144 LIST_HEAD(events);
10145
10146 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
10147 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
10148
10149 /*
10150 * See perf_event_ctx_lock() for comments on the details
10151 * of swizzling perf_event::ctx.
10152 */
10153 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
10154 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
10155 event_entry) {
10156 perf_remove_from_context(event, 0);
10157 unaccount_event_cpu(event, src_cpu);
10158 put_ctx(src_ctx);
10159 list_add(&event->migrate_entry, &events);
10160 }
10161
10162 /*
10163 * Wait for the events to quiesce before re-instating them.
10164 */
10165 synchronize_rcu();
10166
10167 /*
10168 * Re-instate events in 2 passes.
10169 *
10170 * Skip over group leaders and only install siblings on this first
10171 * pass, siblings will not get enabled without a leader, however a
10172 * leader will enable its siblings, even if those are still on the old
10173 * context.
10174 */
10175 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10176 if (event->group_leader == event)
10177 continue;
10178
10179 list_del(&event->migrate_entry);
10180 if (event->state >= PERF_EVENT_STATE_OFF)
10181 event->state = PERF_EVENT_STATE_INACTIVE;
10182 account_event_cpu(event, dst_cpu);
10183 perf_install_in_context(dst_ctx, event, dst_cpu);
10184 get_ctx(dst_ctx);
10185 }
10186
10187 /*
10188 * Once all the siblings are setup properly, install the group leaders
10189 * to make it go.
10190 */
10191 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10192 list_del(&event->migrate_entry);
10193 if (event->state >= PERF_EVENT_STATE_OFF)
10194 event->state = PERF_EVENT_STATE_INACTIVE;
10195 account_event_cpu(event, dst_cpu);
10196 perf_install_in_context(dst_ctx, event, dst_cpu);
10197 get_ctx(dst_ctx);
10198 }
10199 mutex_unlock(&dst_ctx->mutex);
10200 mutex_unlock(&src_ctx->mutex);
10201 }
10202 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
10203
10204 static void sync_child_event(struct perf_event *child_event,
10205 struct task_struct *child)
10206 {
10207 struct perf_event *parent_event = child_event->parent;
10208 u64 child_val;
10209
10210 if (child_event->attr.inherit_stat)
10211 perf_event_read_event(child_event, child);
10212
10213 child_val = perf_event_count(child_event);
10214
10215 /*
10216 * Add back the child's count to the parent's count:
10217 */
10218 atomic64_add(child_val, &parent_event->child_count);
10219 atomic64_add(child_event->total_time_enabled,
10220 &parent_event->child_total_time_enabled);
10221 atomic64_add(child_event->total_time_running,
10222 &parent_event->child_total_time_running);
10223 }
10224
10225 static void
10226 perf_event_exit_event(struct perf_event *child_event,
10227 struct perf_event_context *child_ctx,
10228 struct task_struct *child)
10229 {
10230 struct perf_event *parent_event = child_event->parent;
10231
10232 /*
10233 * Do not destroy the 'original' grouping; because of the context
10234 * switch optimization the original events could've ended up in a
10235 * random child task.
10236 *
10237 * If we were to destroy the original group, all group related
10238 * operations would cease to function properly after this random
10239 * child dies.
10240 *
10241 * Do destroy all inherited groups, we don't care about those
10242 * and being thorough is better.
10243 */
10244 raw_spin_lock_irq(&child_ctx->lock);
10245 WARN_ON_ONCE(child_ctx->is_active);
10246
10247 if (parent_event)
10248 perf_group_detach(child_event);
10249 list_del_event(child_event, child_ctx);
10250 child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */
10251 raw_spin_unlock_irq(&child_ctx->lock);
10252
10253 /*
10254 * Parent events are governed by their filedesc, retain them.
10255 */
10256 if (!parent_event) {
10257 perf_event_wakeup(child_event);
10258 return;
10259 }
10260 /*
10261 * Child events can be cleaned up.
10262 */
10263
10264 sync_child_event(child_event, child);
10265
10266 /*
10267 * Remove this event from the parent's list
10268 */
10269 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
10270 mutex_lock(&parent_event->child_mutex);
10271 list_del_init(&child_event->child_list);
10272 mutex_unlock(&parent_event->child_mutex);
10273
10274 /*
10275 * Kick perf_poll() for is_event_hup().
10276 */
10277 perf_event_wakeup(parent_event);
10278 free_event(child_event);
10279 put_event(parent_event);
10280 }
10281
10282 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
10283 {
10284 struct perf_event_context *child_ctx, *clone_ctx = NULL;
10285 struct perf_event *child_event, *next;
10286
10287 WARN_ON_ONCE(child != current);
10288
10289 child_ctx = perf_pin_task_context(child, ctxn);
10290 if (!child_ctx)
10291 return;
10292
10293 /*
10294 * In order to reduce the amount of tricky in ctx tear-down, we hold
10295 * ctx::mutex over the entire thing. This serializes against almost
10296 * everything that wants to access the ctx.
10297 *
10298 * The exception is sys_perf_event_open() /
10299 * perf_event_create_kernel_count() which does find_get_context()
10300 * without ctx::mutex (it cannot because of the move_group double mutex
10301 * lock thing). See the comments in perf_install_in_context().
10302 */
10303 mutex_lock(&child_ctx->mutex);
10304
10305 /*
10306 * In a single ctx::lock section, de-schedule the events and detach the
10307 * context from the task such that we cannot ever get it scheduled back
10308 * in.
10309 */
10310 raw_spin_lock_irq(&child_ctx->lock);
10311 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
10312
10313 /*
10314 * Now that the context is inactive, destroy the task <-> ctx relation
10315 * and mark the context dead.
10316 */
10317 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
10318 put_ctx(child_ctx); /* cannot be last */
10319 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
10320 put_task_struct(current); /* cannot be last */
10321
10322 clone_ctx = unclone_ctx(child_ctx);
10323 raw_spin_unlock_irq(&child_ctx->lock);
10324
10325 if (clone_ctx)
10326 put_ctx(clone_ctx);
10327
10328 /*
10329 * Report the task dead after unscheduling the events so that we
10330 * won't get any samples after PERF_RECORD_EXIT. We can however still
10331 * get a few PERF_RECORD_READ events.
10332 */
10333 perf_event_task(child, child_ctx, 0);
10334
10335 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
10336 perf_event_exit_event(child_event, child_ctx, child);
10337
10338 mutex_unlock(&child_ctx->mutex);
10339
10340 put_ctx(child_ctx);
10341 }
10342
10343 /*
10344 * When a child task exits, feed back event values to parent events.
10345 *
10346 * Can be called with cred_guard_mutex held when called from
10347 * install_exec_creds().
10348 */
10349 void perf_event_exit_task(struct task_struct *child)
10350 {
10351 struct perf_event *event, *tmp;
10352 int ctxn;
10353
10354 mutex_lock(&child->perf_event_mutex);
10355 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
10356 owner_entry) {
10357 list_del_init(&event->owner_entry);
10358
10359 /*
10360 * Ensure the list deletion is visible before we clear
10361 * the owner, closes a race against perf_release() where
10362 * we need to serialize on the owner->perf_event_mutex.
10363 */
10364 smp_store_release(&event->owner, NULL);
10365 }
10366 mutex_unlock(&child->perf_event_mutex);
10367
10368 for_each_task_context_nr(ctxn)
10369 perf_event_exit_task_context(child, ctxn);
10370
10371 /*
10372 * The perf_event_exit_task_context calls perf_event_task
10373 * with child's task_ctx, which generates EXIT events for
10374 * child contexts and sets child->perf_event_ctxp[] to NULL.
10375 * At this point we need to send EXIT events to cpu contexts.
10376 */
10377 perf_event_task(child, NULL, 0);
10378 }
10379
10380 static void perf_free_event(struct perf_event *event,
10381 struct perf_event_context *ctx)
10382 {
10383 struct perf_event *parent = event->parent;
10384
10385 if (WARN_ON_ONCE(!parent))
10386 return;
10387
10388 mutex_lock(&parent->child_mutex);
10389 list_del_init(&event->child_list);
10390 mutex_unlock(&parent->child_mutex);
10391
10392 put_event(parent);
10393
10394 raw_spin_lock_irq(&ctx->lock);
10395 perf_group_detach(event);
10396 list_del_event(event, ctx);
10397 raw_spin_unlock_irq(&ctx->lock);
10398 free_event(event);
10399 }
10400
10401 /*
10402 * Free an unexposed, unused context as created by inheritance by
10403 * perf_event_init_task below, used by fork() in case of fail.
10404 *
10405 * Not all locks are strictly required, but take them anyway to be nice and
10406 * help out with the lockdep assertions.
10407 */
10408 void perf_event_free_task(struct task_struct *task)
10409 {
10410 struct perf_event_context *ctx;
10411 struct perf_event *event, *tmp;
10412 int ctxn;
10413
10414 for_each_task_context_nr(ctxn) {
10415 ctx = task->perf_event_ctxp[ctxn];
10416 if (!ctx)
10417 continue;
10418
10419 mutex_lock(&ctx->mutex);
10420 raw_spin_lock_irq(&ctx->lock);
10421 /*
10422 * Destroy the task <-> ctx relation and mark the context dead.
10423 *
10424 * This is important because even though the task hasn't been
10425 * exposed yet the context has been (through child_list).
10426 */
10427 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
10428 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
10429 put_task_struct(task); /* cannot be last */
10430 raw_spin_unlock_irq(&ctx->lock);
10431
10432 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
10433 perf_free_event(event, ctx);
10434
10435 mutex_unlock(&ctx->mutex);
10436 put_ctx(ctx);
10437 }
10438 }
10439
10440 void perf_event_delayed_put(struct task_struct *task)
10441 {
10442 int ctxn;
10443
10444 for_each_task_context_nr(ctxn)
10445 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
10446 }
10447
10448 struct file *perf_event_get(unsigned int fd)
10449 {
10450 struct file *file;
10451
10452 file = fget_raw(fd);
10453 if (!file)
10454 return ERR_PTR(-EBADF);
10455
10456 if (file->f_op != &perf_fops) {
10457 fput(file);
10458 return ERR_PTR(-EBADF);
10459 }
10460
10461 return file;
10462 }
10463
10464 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
10465 {
10466 if (!event)
10467 return ERR_PTR(-EINVAL);
10468
10469 return &event->attr;
10470 }
10471
10472 /*
10473 * Inherit a event from parent task to child task.
10474 *
10475 * Returns:
10476 * - valid pointer on success
10477 * - NULL for orphaned events
10478 * - IS_ERR() on error
10479 */
10480 static struct perf_event *
10481 inherit_event(struct perf_event *parent_event,
10482 struct task_struct *parent,
10483 struct perf_event_context *parent_ctx,
10484 struct task_struct *child,
10485 struct perf_event *group_leader,
10486 struct perf_event_context *child_ctx)
10487 {
10488 enum perf_event_active_state parent_state = parent_event->state;
10489 struct perf_event *child_event;
10490 unsigned long flags;
10491
10492 /*
10493 * Instead of creating recursive hierarchies of events,
10494 * we link inherited events back to the original parent,
10495 * which has a filp for sure, which we use as the reference
10496 * count:
10497 */
10498 if (parent_event->parent)
10499 parent_event = parent_event->parent;
10500
10501 child_event = perf_event_alloc(&parent_event->attr,
10502 parent_event->cpu,
10503 child,
10504 group_leader, parent_event,
10505 NULL, NULL, -1);
10506 if (IS_ERR(child_event))
10507 return child_event;
10508
10509 /*
10510 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
10511 * must be under the same lock in order to serialize against
10512 * perf_event_release_kernel(), such that either we must observe
10513 * is_orphaned_event() or they will observe us on the child_list.
10514 */
10515 mutex_lock(&parent_event->child_mutex);
10516 if (is_orphaned_event(parent_event) ||
10517 !atomic_long_inc_not_zero(&parent_event->refcount)) {
10518 mutex_unlock(&parent_event->child_mutex);
10519 free_event(child_event);
10520 return NULL;
10521 }
10522
10523 get_ctx(child_ctx);
10524
10525 /*
10526 * Make the child state follow the state of the parent event,
10527 * not its attr.disabled bit. We hold the parent's mutex,
10528 * so we won't race with perf_event_{en, dis}able_family.
10529 */
10530 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
10531 child_event->state = PERF_EVENT_STATE_INACTIVE;
10532 else
10533 child_event->state = PERF_EVENT_STATE_OFF;
10534
10535 if (parent_event->attr.freq) {
10536 u64 sample_period = parent_event->hw.sample_period;
10537 struct hw_perf_event *hwc = &child_event->hw;
10538
10539 hwc->sample_period = sample_period;
10540 hwc->last_period = sample_period;
10541
10542 local64_set(&hwc->period_left, sample_period);
10543 }
10544
10545 child_event->ctx = child_ctx;
10546 child_event->overflow_handler = parent_event->overflow_handler;
10547 child_event->overflow_handler_context
10548 = parent_event->overflow_handler_context;
10549
10550 /*
10551 * Precalculate sample_data sizes
10552 */
10553 perf_event__header_size(child_event);
10554 perf_event__id_header_size(child_event);
10555
10556 /*
10557 * Link it up in the child's context:
10558 */
10559 raw_spin_lock_irqsave(&child_ctx->lock, flags);
10560 add_event_to_ctx(child_event, child_ctx);
10561 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
10562
10563 /*
10564 * Link this into the parent event's child list
10565 */
10566 list_add_tail(&child_event->child_list, &parent_event->child_list);
10567 mutex_unlock(&parent_event->child_mutex);
10568
10569 return child_event;
10570 }
10571
10572 /*
10573 * Inherits an event group.
10574 *
10575 * This will quietly suppress orphaned events; !inherit_event() is not an error.
10576 * This matches with perf_event_release_kernel() removing all child events.
10577 *
10578 * Returns:
10579 * - 0 on success
10580 * - <0 on error
10581 */
10582 static int inherit_group(struct perf_event *parent_event,
10583 struct task_struct *parent,
10584 struct perf_event_context *parent_ctx,
10585 struct task_struct *child,
10586 struct perf_event_context *child_ctx)
10587 {
10588 struct perf_event *leader;
10589 struct perf_event *sub;
10590 struct perf_event *child_ctr;
10591
10592 leader = inherit_event(parent_event, parent, parent_ctx,
10593 child, NULL, child_ctx);
10594 if (IS_ERR(leader))
10595 return PTR_ERR(leader);
10596 /*
10597 * @leader can be NULL here because of is_orphaned_event(). In this
10598 * case inherit_event() will create individual events, similar to what
10599 * perf_group_detach() would do anyway.
10600 */
10601 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
10602 child_ctr = inherit_event(sub, parent, parent_ctx,
10603 child, leader, child_ctx);
10604 if (IS_ERR(child_ctr))
10605 return PTR_ERR(child_ctr);
10606 }
10607 return 0;
10608 }
10609
10610 /*
10611 * Creates the child task context and tries to inherit the event-group.
10612 *
10613 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
10614 * inherited_all set when we 'fail' to inherit an orphaned event; this is
10615 * consistent with perf_event_release_kernel() removing all child events.
10616 *
10617 * Returns:
10618 * - 0 on success
10619 * - <0 on error
10620 */
10621 static int
10622 inherit_task_group(struct perf_event *event, struct task_struct *parent,
10623 struct perf_event_context *parent_ctx,
10624 struct task_struct *child, int ctxn,
10625 int *inherited_all)
10626 {
10627 int ret;
10628 struct perf_event_context *child_ctx;
10629
10630 if (!event->attr.inherit) {
10631 *inherited_all = 0;
10632 return 0;
10633 }
10634
10635 child_ctx = child->perf_event_ctxp[ctxn];
10636 if (!child_ctx) {
10637 /*
10638 * This is executed from the parent task context, so
10639 * inherit events that have been marked for cloning.
10640 * First allocate and initialize a context for the
10641 * child.
10642 */
10643 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
10644 if (!child_ctx)
10645 return -ENOMEM;
10646
10647 child->perf_event_ctxp[ctxn] = child_ctx;
10648 }
10649
10650 ret = inherit_group(event, parent, parent_ctx,
10651 child, child_ctx);
10652
10653 if (ret)
10654 *inherited_all = 0;
10655
10656 return ret;
10657 }
10658
10659 /*
10660 * Initialize the perf_event context in task_struct
10661 */
10662 static int perf_event_init_context(struct task_struct *child, int ctxn)
10663 {
10664 struct perf_event_context *child_ctx, *parent_ctx;
10665 struct perf_event_context *cloned_ctx;
10666 struct perf_event *event;
10667 struct task_struct *parent = current;
10668 int inherited_all = 1;
10669 unsigned long flags;
10670 int ret = 0;
10671
10672 if (likely(!parent->perf_event_ctxp[ctxn]))
10673 return 0;
10674
10675 /*
10676 * If the parent's context is a clone, pin it so it won't get
10677 * swapped under us.
10678 */
10679 parent_ctx = perf_pin_task_context(parent, ctxn);
10680 if (!parent_ctx)
10681 return 0;
10682
10683 /*
10684 * No need to check if parent_ctx != NULL here; since we saw
10685 * it non-NULL earlier, the only reason for it to become NULL
10686 * is if we exit, and since we're currently in the middle of
10687 * a fork we can't be exiting at the same time.
10688 */
10689
10690 /*
10691 * Lock the parent list. No need to lock the child - not PID
10692 * hashed yet and not running, so nobody can access it.
10693 */
10694 mutex_lock(&parent_ctx->mutex);
10695
10696 /*
10697 * We dont have to disable NMIs - we are only looking at
10698 * the list, not manipulating it:
10699 */
10700 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
10701 ret = inherit_task_group(event, parent, parent_ctx,
10702 child, ctxn, &inherited_all);
10703 if (ret)
10704 goto out_unlock;
10705 }
10706
10707 /*
10708 * We can't hold ctx->lock when iterating the ->flexible_group list due
10709 * to allocations, but we need to prevent rotation because
10710 * rotate_ctx() will change the list from interrupt context.
10711 */
10712 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10713 parent_ctx->rotate_disable = 1;
10714 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10715
10716 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
10717 ret = inherit_task_group(event, parent, parent_ctx,
10718 child, ctxn, &inherited_all);
10719 if (ret)
10720 goto out_unlock;
10721 }
10722
10723 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10724 parent_ctx->rotate_disable = 0;
10725
10726 child_ctx = child->perf_event_ctxp[ctxn];
10727
10728 if (child_ctx && inherited_all) {
10729 /*
10730 * Mark the child context as a clone of the parent
10731 * context, or of whatever the parent is a clone of.
10732 *
10733 * Note that if the parent is a clone, the holding of
10734 * parent_ctx->lock avoids it from being uncloned.
10735 */
10736 cloned_ctx = parent_ctx->parent_ctx;
10737 if (cloned_ctx) {
10738 child_ctx->parent_ctx = cloned_ctx;
10739 child_ctx->parent_gen = parent_ctx->parent_gen;
10740 } else {
10741 child_ctx->parent_ctx = parent_ctx;
10742 child_ctx->parent_gen = parent_ctx->generation;
10743 }
10744 get_ctx(child_ctx->parent_ctx);
10745 }
10746
10747 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10748 out_unlock:
10749 mutex_unlock(&parent_ctx->mutex);
10750
10751 perf_unpin_context(parent_ctx);
10752 put_ctx(parent_ctx);
10753
10754 return ret;
10755 }
10756
10757 /*
10758 * Initialize the perf_event context in task_struct
10759 */
10760 int perf_event_init_task(struct task_struct *child)
10761 {
10762 int ctxn, ret;
10763
10764 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
10765 mutex_init(&child->perf_event_mutex);
10766 INIT_LIST_HEAD(&child->perf_event_list);
10767
10768 for_each_task_context_nr(ctxn) {
10769 ret = perf_event_init_context(child, ctxn);
10770 if (ret) {
10771 perf_event_free_task(child);
10772 return ret;
10773 }
10774 }
10775
10776 return 0;
10777 }
10778
10779 static void __init perf_event_init_all_cpus(void)
10780 {
10781 struct swevent_htable *swhash;
10782 int cpu;
10783
10784 for_each_possible_cpu(cpu) {
10785 swhash = &per_cpu(swevent_htable, cpu);
10786 mutex_init(&swhash->hlist_mutex);
10787 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
10788
10789 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
10790 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
10791
10792 #ifdef CONFIG_CGROUP_PERF
10793 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
10794 #endif
10795 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
10796 }
10797 }
10798
10799 int perf_event_init_cpu(unsigned int cpu)
10800 {
10801 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
10802
10803 mutex_lock(&swhash->hlist_mutex);
10804 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
10805 struct swevent_hlist *hlist;
10806
10807 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
10808 WARN_ON(!hlist);
10809 rcu_assign_pointer(swhash->swevent_hlist, hlist);
10810 }
10811 mutex_unlock(&swhash->hlist_mutex);
10812 return 0;
10813 }
10814
10815 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
10816 static void __perf_event_exit_context(void *__info)
10817 {
10818 struct perf_event_context *ctx = __info;
10819 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
10820 struct perf_event *event;
10821
10822 raw_spin_lock(&ctx->lock);
10823 list_for_each_entry(event, &ctx->event_list, event_entry)
10824 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
10825 raw_spin_unlock(&ctx->lock);
10826 }
10827
10828 static void perf_event_exit_cpu_context(int cpu)
10829 {
10830 struct perf_event_context *ctx;
10831 struct pmu *pmu;
10832 int idx;
10833
10834 idx = srcu_read_lock(&pmus_srcu);
10835 list_for_each_entry_rcu(pmu, &pmus, entry) {
10836 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
10837
10838 mutex_lock(&ctx->mutex);
10839 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
10840 mutex_unlock(&ctx->mutex);
10841 }
10842 srcu_read_unlock(&pmus_srcu, idx);
10843 }
10844 #else
10845
10846 static void perf_event_exit_cpu_context(int cpu) { }
10847
10848 #endif
10849
10850 int perf_event_exit_cpu(unsigned int cpu)
10851 {
10852 perf_event_exit_cpu_context(cpu);
10853 return 0;
10854 }
10855
10856 static int
10857 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
10858 {
10859 int cpu;
10860
10861 for_each_online_cpu(cpu)
10862 perf_event_exit_cpu(cpu);
10863
10864 return NOTIFY_OK;
10865 }
10866
10867 /*
10868 * Run the perf reboot notifier at the very last possible moment so that
10869 * the generic watchdog code runs as long as possible.
10870 */
10871 static struct notifier_block perf_reboot_notifier = {
10872 .notifier_call = perf_reboot,
10873 .priority = INT_MIN,
10874 };
10875
10876 void __init perf_event_init(void)
10877 {
10878 int ret;
10879
10880 idr_init(&pmu_idr);
10881
10882 perf_event_init_all_cpus();
10883 init_srcu_struct(&pmus_srcu);
10884 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
10885 perf_pmu_register(&perf_cpu_clock, NULL, -1);
10886 perf_pmu_register(&perf_task_clock, NULL, -1);
10887 perf_tp_register();
10888 perf_event_init_cpu(smp_processor_id());
10889 register_reboot_notifier(&perf_reboot_notifier);
10890
10891 ret = init_hw_breakpoint();
10892 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
10893
10894 /*
10895 * Build time assertion that we keep the data_head at the intended
10896 * location. IOW, validation we got the __reserved[] size right.
10897 */
10898 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
10899 != 1024);
10900 }
10901
10902 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
10903 char *page)
10904 {
10905 struct perf_pmu_events_attr *pmu_attr =
10906 container_of(attr, struct perf_pmu_events_attr, attr);
10907
10908 if (pmu_attr->event_str)
10909 return sprintf(page, "%s\n", pmu_attr->event_str);
10910
10911 return 0;
10912 }
10913 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
10914
10915 static int __init perf_event_sysfs_init(void)
10916 {
10917 struct pmu *pmu;
10918 int ret;
10919
10920 mutex_lock(&pmus_lock);
10921
10922 ret = bus_register(&pmu_bus);
10923 if (ret)
10924 goto unlock;
10925
10926 list_for_each_entry(pmu, &pmus, entry) {
10927 if (!pmu->name || pmu->type < 0)
10928 continue;
10929
10930 ret = pmu_dev_alloc(pmu);
10931 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
10932 }
10933 pmu_bus_running = 1;
10934 ret = 0;
10935
10936 unlock:
10937 mutex_unlock(&pmus_lock);
10938
10939 return ret;
10940 }
10941 device_initcall(perf_event_sysfs_init);
10942
10943 #ifdef CONFIG_CGROUP_PERF
10944 static struct cgroup_subsys_state *
10945 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
10946 {
10947 struct perf_cgroup *jc;
10948
10949 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
10950 if (!jc)
10951 return ERR_PTR(-ENOMEM);
10952
10953 jc->info = alloc_percpu(struct perf_cgroup_info);
10954 if (!jc->info) {
10955 kfree(jc);
10956 return ERR_PTR(-ENOMEM);
10957 }
10958
10959 return &jc->css;
10960 }
10961
10962 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
10963 {
10964 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
10965
10966 free_percpu(jc->info);
10967 kfree(jc);
10968 }
10969
10970 static int __perf_cgroup_move(void *info)
10971 {
10972 struct task_struct *task = info;
10973 rcu_read_lock();
10974 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
10975 rcu_read_unlock();
10976 return 0;
10977 }
10978
10979 static void perf_cgroup_attach(struct cgroup_taskset *tset)
10980 {
10981 struct task_struct *task;
10982 struct cgroup_subsys_state *css;
10983
10984 cgroup_taskset_for_each(task, css, tset)
10985 task_function_call(task, __perf_cgroup_move, task);
10986 }
10987
10988 struct cgroup_subsys perf_event_cgrp_subsys = {
10989 .css_alloc = perf_cgroup_css_alloc,
10990 .css_free = perf_cgroup_css_free,
10991 .attach = perf_cgroup_attach,
10992 /*
10993 * Implicitly enable on dfl hierarchy so that perf events can
10994 * always be filtered by cgroup2 path as long as perf_event
10995 * controller is not mounted on a legacy hierarchy.
10996 */
10997 .implicit_on_dfl = true,
10998 };
10999 #endif /* CONFIG_CGROUP_PERF */