]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - kernel/events/core.c
Merge tag 'omap-for-v5.0/fixes-rc4' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-eoan-kernel.git] / kernel / events / core.c
1 /*
2 * Performance events core code:
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53
54 #include "internal.h"
55
56 #include <asm/irq_regs.h>
57
58 typedef int (*remote_function_f)(void *);
59
60 struct remote_function_call {
61 struct task_struct *p;
62 remote_function_f func;
63 void *info;
64 int ret;
65 };
66
67 static void remote_function(void *data)
68 {
69 struct remote_function_call *tfc = data;
70 struct task_struct *p = tfc->p;
71
72 if (p) {
73 /* -EAGAIN */
74 if (task_cpu(p) != smp_processor_id())
75 return;
76
77 /*
78 * Now that we're on right CPU with IRQs disabled, we can test
79 * if we hit the right task without races.
80 */
81
82 tfc->ret = -ESRCH; /* No such (running) process */
83 if (p != current)
84 return;
85 }
86
87 tfc->ret = tfc->func(tfc->info);
88 }
89
90 /**
91 * task_function_call - call a function on the cpu on which a task runs
92 * @p: the task to evaluate
93 * @func: the function to be called
94 * @info: the function call argument
95 *
96 * Calls the function @func when the task is currently running. This might
97 * be on the current CPU, which just calls the function directly
98 *
99 * returns: @func return value, or
100 * -ESRCH - when the process isn't running
101 * -EAGAIN - when the process moved away
102 */
103 static int
104 task_function_call(struct task_struct *p, remote_function_f func, void *info)
105 {
106 struct remote_function_call data = {
107 .p = p,
108 .func = func,
109 .info = info,
110 .ret = -EAGAIN,
111 };
112 int ret;
113
114 do {
115 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
116 if (!ret)
117 ret = data.ret;
118 } while (ret == -EAGAIN);
119
120 return ret;
121 }
122
123 /**
124 * cpu_function_call - call a function on the cpu
125 * @func: the function to be called
126 * @info: the function call argument
127 *
128 * Calls the function @func on the remote cpu.
129 *
130 * returns: @func return value or -ENXIO when the cpu is offline
131 */
132 static int cpu_function_call(int cpu, remote_function_f func, void *info)
133 {
134 struct remote_function_call data = {
135 .p = NULL,
136 .func = func,
137 .info = info,
138 .ret = -ENXIO, /* No such CPU */
139 };
140
141 smp_call_function_single(cpu, remote_function, &data, 1);
142
143 return data.ret;
144 }
145
146 static inline struct perf_cpu_context *
147 __get_cpu_context(struct perf_event_context *ctx)
148 {
149 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
150 }
151
152 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
153 struct perf_event_context *ctx)
154 {
155 raw_spin_lock(&cpuctx->ctx.lock);
156 if (ctx)
157 raw_spin_lock(&ctx->lock);
158 }
159
160 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
161 struct perf_event_context *ctx)
162 {
163 if (ctx)
164 raw_spin_unlock(&ctx->lock);
165 raw_spin_unlock(&cpuctx->ctx.lock);
166 }
167
168 #define TASK_TOMBSTONE ((void *)-1L)
169
170 static bool is_kernel_event(struct perf_event *event)
171 {
172 return READ_ONCE(event->owner) == TASK_TOMBSTONE;
173 }
174
175 /*
176 * On task ctx scheduling...
177 *
178 * When !ctx->nr_events a task context will not be scheduled. This means
179 * we can disable the scheduler hooks (for performance) without leaving
180 * pending task ctx state.
181 *
182 * This however results in two special cases:
183 *
184 * - removing the last event from a task ctx; this is relatively straight
185 * forward and is done in __perf_remove_from_context.
186 *
187 * - adding the first event to a task ctx; this is tricky because we cannot
188 * rely on ctx->is_active and therefore cannot use event_function_call().
189 * See perf_install_in_context().
190 *
191 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
192 */
193
194 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
195 struct perf_event_context *, void *);
196
197 struct event_function_struct {
198 struct perf_event *event;
199 event_f func;
200 void *data;
201 };
202
203 static int event_function(void *info)
204 {
205 struct event_function_struct *efs = info;
206 struct perf_event *event = efs->event;
207 struct perf_event_context *ctx = event->ctx;
208 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
209 struct perf_event_context *task_ctx = cpuctx->task_ctx;
210 int ret = 0;
211
212 lockdep_assert_irqs_disabled();
213
214 perf_ctx_lock(cpuctx, task_ctx);
215 /*
216 * Since we do the IPI call without holding ctx->lock things can have
217 * changed, double check we hit the task we set out to hit.
218 */
219 if (ctx->task) {
220 if (ctx->task != current) {
221 ret = -ESRCH;
222 goto unlock;
223 }
224
225 /*
226 * We only use event_function_call() on established contexts,
227 * and event_function() is only ever called when active (or
228 * rather, we'll have bailed in task_function_call() or the
229 * above ctx->task != current test), therefore we must have
230 * ctx->is_active here.
231 */
232 WARN_ON_ONCE(!ctx->is_active);
233 /*
234 * And since we have ctx->is_active, cpuctx->task_ctx must
235 * match.
236 */
237 WARN_ON_ONCE(task_ctx != ctx);
238 } else {
239 WARN_ON_ONCE(&cpuctx->ctx != ctx);
240 }
241
242 efs->func(event, cpuctx, ctx, efs->data);
243 unlock:
244 perf_ctx_unlock(cpuctx, task_ctx);
245
246 return ret;
247 }
248
249 static void event_function_call(struct perf_event *event, event_f func, void *data)
250 {
251 struct perf_event_context *ctx = event->ctx;
252 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
253 struct event_function_struct efs = {
254 .event = event,
255 .func = func,
256 .data = data,
257 };
258
259 if (!event->parent) {
260 /*
261 * If this is a !child event, we must hold ctx::mutex to
262 * stabilize the the event->ctx relation. See
263 * perf_event_ctx_lock().
264 */
265 lockdep_assert_held(&ctx->mutex);
266 }
267
268 if (!task) {
269 cpu_function_call(event->cpu, event_function, &efs);
270 return;
271 }
272
273 if (task == TASK_TOMBSTONE)
274 return;
275
276 again:
277 if (!task_function_call(task, event_function, &efs))
278 return;
279
280 raw_spin_lock_irq(&ctx->lock);
281 /*
282 * Reload the task pointer, it might have been changed by
283 * a concurrent perf_event_context_sched_out().
284 */
285 task = ctx->task;
286 if (task == TASK_TOMBSTONE) {
287 raw_spin_unlock_irq(&ctx->lock);
288 return;
289 }
290 if (ctx->is_active) {
291 raw_spin_unlock_irq(&ctx->lock);
292 goto again;
293 }
294 func(event, NULL, ctx, data);
295 raw_spin_unlock_irq(&ctx->lock);
296 }
297
298 /*
299 * Similar to event_function_call() + event_function(), but hard assumes IRQs
300 * are already disabled and we're on the right CPU.
301 */
302 static void event_function_local(struct perf_event *event, event_f func, void *data)
303 {
304 struct perf_event_context *ctx = event->ctx;
305 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
306 struct task_struct *task = READ_ONCE(ctx->task);
307 struct perf_event_context *task_ctx = NULL;
308
309 lockdep_assert_irqs_disabled();
310
311 if (task) {
312 if (task == TASK_TOMBSTONE)
313 return;
314
315 task_ctx = ctx;
316 }
317
318 perf_ctx_lock(cpuctx, task_ctx);
319
320 task = ctx->task;
321 if (task == TASK_TOMBSTONE)
322 goto unlock;
323
324 if (task) {
325 /*
326 * We must be either inactive or active and the right task,
327 * otherwise we're screwed, since we cannot IPI to somewhere
328 * else.
329 */
330 if (ctx->is_active) {
331 if (WARN_ON_ONCE(task != current))
332 goto unlock;
333
334 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
335 goto unlock;
336 }
337 } else {
338 WARN_ON_ONCE(&cpuctx->ctx != ctx);
339 }
340
341 func(event, cpuctx, ctx, data);
342 unlock:
343 perf_ctx_unlock(cpuctx, task_ctx);
344 }
345
346 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
347 PERF_FLAG_FD_OUTPUT |\
348 PERF_FLAG_PID_CGROUP |\
349 PERF_FLAG_FD_CLOEXEC)
350
351 /*
352 * branch priv levels that need permission checks
353 */
354 #define PERF_SAMPLE_BRANCH_PERM_PLM \
355 (PERF_SAMPLE_BRANCH_KERNEL |\
356 PERF_SAMPLE_BRANCH_HV)
357
358 enum event_type_t {
359 EVENT_FLEXIBLE = 0x1,
360 EVENT_PINNED = 0x2,
361 EVENT_TIME = 0x4,
362 /* see ctx_resched() for details */
363 EVENT_CPU = 0x8,
364 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
365 };
366
367 /*
368 * perf_sched_events : >0 events exist
369 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
370 */
371
372 static void perf_sched_delayed(struct work_struct *work);
373 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
374 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
375 static DEFINE_MUTEX(perf_sched_mutex);
376 static atomic_t perf_sched_count;
377
378 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
379 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
380 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
381
382 static atomic_t nr_mmap_events __read_mostly;
383 static atomic_t nr_comm_events __read_mostly;
384 static atomic_t nr_namespaces_events __read_mostly;
385 static atomic_t nr_task_events __read_mostly;
386 static atomic_t nr_freq_events __read_mostly;
387 static atomic_t nr_switch_events __read_mostly;
388
389 static LIST_HEAD(pmus);
390 static DEFINE_MUTEX(pmus_lock);
391 static struct srcu_struct pmus_srcu;
392 static cpumask_var_t perf_online_mask;
393
394 /*
395 * perf event paranoia level:
396 * -1 - not paranoid at all
397 * 0 - disallow raw tracepoint access for unpriv
398 * 1 - disallow cpu events for unpriv
399 * 2 - disallow kernel profiling for unpriv
400 */
401 int sysctl_perf_event_paranoid __read_mostly = 2;
402
403 /* Minimum for 512 kiB + 1 user control page */
404 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
405
406 /*
407 * max perf event sample rate
408 */
409 #define DEFAULT_MAX_SAMPLE_RATE 100000
410 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
411 #define DEFAULT_CPU_TIME_MAX_PERCENT 25
412
413 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
414
415 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
416 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
417
418 static int perf_sample_allowed_ns __read_mostly =
419 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
420
421 static void update_perf_cpu_limits(void)
422 {
423 u64 tmp = perf_sample_period_ns;
424
425 tmp *= sysctl_perf_cpu_time_max_percent;
426 tmp = div_u64(tmp, 100);
427 if (!tmp)
428 tmp = 1;
429
430 WRITE_ONCE(perf_sample_allowed_ns, tmp);
431 }
432
433 static bool perf_rotate_context(struct perf_cpu_context *cpuctx);
434
435 int perf_proc_update_handler(struct ctl_table *table, int write,
436 void __user *buffer, size_t *lenp,
437 loff_t *ppos)
438 {
439 int ret;
440 int perf_cpu = sysctl_perf_cpu_time_max_percent;
441 /*
442 * If throttling is disabled don't allow the write:
443 */
444 if (write && (perf_cpu == 100 || perf_cpu == 0))
445 return -EINVAL;
446
447 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
448 if (ret || !write)
449 return ret;
450
451 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
452 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
453 update_perf_cpu_limits();
454
455 return 0;
456 }
457
458 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
459
460 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
461 void __user *buffer, size_t *lenp,
462 loff_t *ppos)
463 {
464 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
465
466 if (ret || !write)
467 return ret;
468
469 if (sysctl_perf_cpu_time_max_percent == 100 ||
470 sysctl_perf_cpu_time_max_percent == 0) {
471 printk(KERN_WARNING
472 "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
473 WRITE_ONCE(perf_sample_allowed_ns, 0);
474 } else {
475 update_perf_cpu_limits();
476 }
477
478 return 0;
479 }
480
481 /*
482 * perf samples are done in some very critical code paths (NMIs).
483 * If they take too much CPU time, the system can lock up and not
484 * get any real work done. This will drop the sample rate when
485 * we detect that events are taking too long.
486 */
487 #define NR_ACCUMULATED_SAMPLES 128
488 static DEFINE_PER_CPU(u64, running_sample_length);
489
490 static u64 __report_avg;
491 static u64 __report_allowed;
492
493 static void perf_duration_warn(struct irq_work *w)
494 {
495 printk_ratelimited(KERN_INFO
496 "perf: interrupt took too long (%lld > %lld), lowering "
497 "kernel.perf_event_max_sample_rate to %d\n",
498 __report_avg, __report_allowed,
499 sysctl_perf_event_sample_rate);
500 }
501
502 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
503
504 void perf_sample_event_took(u64 sample_len_ns)
505 {
506 u64 max_len = READ_ONCE(perf_sample_allowed_ns);
507 u64 running_len;
508 u64 avg_len;
509 u32 max;
510
511 if (max_len == 0)
512 return;
513
514 /* Decay the counter by 1 average sample. */
515 running_len = __this_cpu_read(running_sample_length);
516 running_len -= running_len/NR_ACCUMULATED_SAMPLES;
517 running_len += sample_len_ns;
518 __this_cpu_write(running_sample_length, running_len);
519
520 /*
521 * Note: this will be biased artifically low until we have
522 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
523 * from having to maintain a count.
524 */
525 avg_len = running_len/NR_ACCUMULATED_SAMPLES;
526 if (avg_len <= max_len)
527 return;
528
529 __report_avg = avg_len;
530 __report_allowed = max_len;
531
532 /*
533 * Compute a throttle threshold 25% below the current duration.
534 */
535 avg_len += avg_len / 4;
536 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
537 if (avg_len < max)
538 max /= (u32)avg_len;
539 else
540 max = 1;
541
542 WRITE_ONCE(perf_sample_allowed_ns, avg_len);
543 WRITE_ONCE(max_samples_per_tick, max);
544
545 sysctl_perf_event_sample_rate = max * HZ;
546 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
547
548 if (!irq_work_queue(&perf_duration_work)) {
549 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
550 "kernel.perf_event_max_sample_rate to %d\n",
551 __report_avg, __report_allowed,
552 sysctl_perf_event_sample_rate);
553 }
554 }
555
556 static atomic64_t perf_event_id;
557
558 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
559 enum event_type_t event_type);
560
561 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
562 enum event_type_t event_type,
563 struct task_struct *task);
564
565 static void update_context_time(struct perf_event_context *ctx);
566 static u64 perf_event_time(struct perf_event *event);
567
568 void __weak perf_event_print_debug(void) { }
569
570 extern __weak const char *perf_pmu_name(void)
571 {
572 return "pmu";
573 }
574
575 static inline u64 perf_clock(void)
576 {
577 return local_clock();
578 }
579
580 static inline u64 perf_event_clock(struct perf_event *event)
581 {
582 return event->clock();
583 }
584
585 /*
586 * State based event timekeeping...
587 *
588 * The basic idea is to use event->state to determine which (if any) time
589 * fields to increment with the current delta. This means we only need to
590 * update timestamps when we change state or when they are explicitly requested
591 * (read).
592 *
593 * Event groups make things a little more complicated, but not terribly so. The
594 * rules for a group are that if the group leader is OFF the entire group is
595 * OFF, irrespecive of what the group member states are. This results in
596 * __perf_effective_state().
597 *
598 * A futher ramification is that when a group leader flips between OFF and
599 * !OFF, we need to update all group member times.
600 *
601 *
602 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
603 * need to make sure the relevant context time is updated before we try and
604 * update our timestamps.
605 */
606
607 static __always_inline enum perf_event_state
608 __perf_effective_state(struct perf_event *event)
609 {
610 struct perf_event *leader = event->group_leader;
611
612 if (leader->state <= PERF_EVENT_STATE_OFF)
613 return leader->state;
614
615 return event->state;
616 }
617
618 static __always_inline void
619 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
620 {
621 enum perf_event_state state = __perf_effective_state(event);
622 u64 delta = now - event->tstamp;
623
624 *enabled = event->total_time_enabled;
625 if (state >= PERF_EVENT_STATE_INACTIVE)
626 *enabled += delta;
627
628 *running = event->total_time_running;
629 if (state >= PERF_EVENT_STATE_ACTIVE)
630 *running += delta;
631 }
632
633 static void perf_event_update_time(struct perf_event *event)
634 {
635 u64 now = perf_event_time(event);
636
637 __perf_update_times(event, now, &event->total_time_enabled,
638 &event->total_time_running);
639 event->tstamp = now;
640 }
641
642 static void perf_event_update_sibling_time(struct perf_event *leader)
643 {
644 struct perf_event *sibling;
645
646 for_each_sibling_event(sibling, leader)
647 perf_event_update_time(sibling);
648 }
649
650 static void
651 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
652 {
653 if (event->state == state)
654 return;
655
656 perf_event_update_time(event);
657 /*
658 * If a group leader gets enabled/disabled all its siblings
659 * are affected too.
660 */
661 if ((event->state < 0) ^ (state < 0))
662 perf_event_update_sibling_time(event);
663
664 WRITE_ONCE(event->state, state);
665 }
666
667 #ifdef CONFIG_CGROUP_PERF
668
669 static inline bool
670 perf_cgroup_match(struct perf_event *event)
671 {
672 struct perf_event_context *ctx = event->ctx;
673 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
674
675 /* @event doesn't care about cgroup */
676 if (!event->cgrp)
677 return true;
678
679 /* wants specific cgroup scope but @cpuctx isn't associated with any */
680 if (!cpuctx->cgrp)
681 return false;
682
683 /*
684 * Cgroup scoping is recursive. An event enabled for a cgroup is
685 * also enabled for all its descendant cgroups. If @cpuctx's
686 * cgroup is a descendant of @event's (the test covers identity
687 * case), it's a match.
688 */
689 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
690 event->cgrp->css.cgroup);
691 }
692
693 static inline void perf_detach_cgroup(struct perf_event *event)
694 {
695 css_put(&event->cgrp->css);
696 event->cgrp = NULL;
697 }
698
699 static inline int is_cgroup_event(struct perf_event *event)
700 {
701 return event->cgrp != NULL;
702 }
703
704 static inline u64 perf_cgroup_event_time(struct perf_event *event)
705 {
706 struct perf_cgroup_info *t;
707
708 t = per_cpu_ptr(event->cgrp->info, event->cpu);
709 return t->time;
710 }
711
712 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
713 {
714 struct perf_cgroup_info *info;
715 u64 now;
716
717 now = perf_clock();
718
719 info = this_cpu_ptr(cgrp->info);
720
721 info->time += now - info->timestamp;
722 info->timestamp = now;
723 }
724
725 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
726 {
727 struct perf_cgroup *cgrp = cpuctx->cgrp;
728 struct cgroup_subsys_state *css;
729
730 if (cgrp) {
731 for (css = &cgrp->css; css; css = css->parent) {
732 cgrp = container_of(css, struct perf_cgroup, css);
733 __update_cgrp_time(cgrp);
734 }
735 }
736 }
737
738 static inline void update_cgrp_time_from_event(struct perf_event *event)
739 {
740 struct perf_cgroup *cgrp;
741
742 /*
743 * ensure we access cgroup data only when needed and
744 * when we know the cgroup is pinned (css_get)
745 */
746 if (!is_cgroup_event(event))
747 return;
748
749 cgrp = perf_cgroup_from_task(current, event->ctx);
750 /*
751 * Do not update time when cgroup is not active
752 */
753 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
754 __update_cgrp_time(event->cgrp);
755 }
756
757 static inline void
758 perf_cgroup_set_timestamp(struct task_struct *task,
759 struct perf_event_context *ctx)
760 {
761 struct perf_cgroup *cgrp;
762 struct perf_cgroup_info *info;
763 struct cgroup_subsys_state *css;
764
765 /*
766 * ctx->lock held by caller
767 * ensure we do not access cgroup data
768 * unless we have the cgroup pinned (css_get)
769 */
770 if (!task || !ctx->nr_cgroups)
771 return;
772
773 cgrp = perf_cgroup_from_task(task, ctx);
774
775 for (css = &cgrp->css; css; css = css->parent) {
776 cgrp = container_of(css, struct perf_cgroup, css);
777 info = this_cpu_ptr(cgrp->info);
778 info->timestamp = ctx->timestamp;
779 }
780 }
781
782 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
783
784 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
785 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
786
787 /*
788 * reschedule events based on the cgroup constraint of task.
789 *
790 * mode SWOUT : schedule out everything
791 * mode SWIN : schedule in based on cgroup for next
792 */
793 static void perf_cgroup_switch(struct task_struct *task, int mode)
794 {
795 struct perf_cpu_context *cpuctx;
796 struct list_head *list;
797 unsigned long flags;
798
799 /*
800 * Disable interrupts and preemption to avoid this CPU's
801 * cgrp_cpuctx_entry to change under us.
802 */
803 local_irq_save(flags);
804
805 list = this_cpu_ptr(&cgrp_cpuctx_list);
806 list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
807 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
808
809 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
810 perf_pmu_disable(cpuctx->ctx.pmu);
811
812 if (mode & PERF_CGROUP_SWOUT) {
813 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
814 /*
815 * must not be done before ctxswout due
816 * to event_filter_match() in event_sched_out()
817 */
818 cpuctx->cgrp = NULL;
819 }
820
821 if (mode & PERF_CGROUP_SWIN) {
822 WARN_ON_ONCE(cpuctx->cgrp);
823 /*
824 * set cgrp before ctxsw in to allow
825 * event_filter_match() to not have to pass
826 * task around
827 * we pass the cpuctx->ctx to perf_cgroup_from_task()
828 * because cgorup events are only per-cpu
829 */
830 cpuctx->cgrp = perf_cgroup_from_task(task,
831 &cpuctx->ctx);
832 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
833 }
834 perf_pmu_enable(cpuctx->ctx.pmu);
835 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
836 }
837
838 local_irq_restore(flags);
839 }
840
841 static inline void perf_cgroup_sched_out(struct task_struct *task,
842 struct task_struct *next)
843 {
844 struct perf_cgroup *cgrp1;
845 struct perf_cgroup *cgrp2 = NULL;
846
847 rcu_read_lock();
848 /*
849 * we come here when we know perf_cgroup_events > 0
850 * we do not need to pass the ctx here because we know
851 * we are holding the rcu lock
852 */
853 cgrp1 = perf_cgroup_from_task(task, NULL);
854 cgrp2 = perf_cgroup_from_task(next, NULL);
855
856 /*
857 * only schedule out current cgroup events if we know
858 * that we are switching to a different cgroup. Otherwise,
859 * do no touch the cgroup events.
860 */
861 if (cgrp1 != cgrp2)
862 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
863
864 rcu_read_unlock();
865 }
866
867 static inline void perf_cgroup_sched_in(struct task_struct *prev,
868 struct task_struct *task)
869 {
870 struct perf_cgroup *cgrp1;
871 struct perf_cgroup *cgrp2 = NULL;
872
873 rcu_read_lock();
874 /*
875 * we come here when we know perf_cgroup_events > 0
876 * we do not need to pass the ctx here because we know
877 * we are holding the rcu lock
878 */
879 cgrp1 = perf_cgroup_from_task(task, NULL);
880 cgrp2 = perf_cgroup_from_task(prev, NULL);
881
882 /*
883 * only need to schedule in cgroup events if we are changing
884 * cgroup during ctxsw. Cgroup events were not scheduled
885 * out of ctxsw out if that was not the case.
886 */
887 if (cgrp1 != cgrp2)
888 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
889
890 rcu_read_unlock();
891 }
892
893 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
894 struct perf_event_attr *attr,
895 struct perf_event *group_leader)
896 {
897 struct perf_cgroup *cgrp;
898 struct cgroup_subsys_state *css;
899 struct fd f = fdget(fd);
900 int ret = 0;
901
902 if (!f.file)
903 return -EBADF;
904
905 css = css_tryget_online_from_dir(f.file->f_path.dentry,
906 &perf_event_cgrp_subsys);
907 if (IS_ERR(css)) {
908 ret = PTR_ERR(css);
909 goto out;
910 }
911
912 cgrp = container_of(css, struct perf_cgroup, css);
913 event->cgrp = cgrp;
914
915 /*
916 * all events in a group must monitor
917 * the same cgroup because a task belongs
918 * to only one perf cgroup at a time
919 */
920 if (group_leader && group_leader->cgrp != cgrp) {
921 perf_detach_cgroup(event);
922 ret = -EINVAL;
923 }
924 out:
925 fdput(f);
926 return ret;
927 }
928
929 static inline void
930 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
931 {
932 struct perf_cgroup_info *t;
933 t = per_cpu_ptr(event->cgrp->info, event->cpu);
934 event->shadow_ctx_time = now - t->timestamp;
935 }
936
937 /*
938 * Update cpuctx->cgrp so that it is set when first cgroup event is added and
939 * cleared when last cgroup event is removed.
940 */
941 static inline void
942 list_update_cgroup_event(struct perf_event *event,
943 struct perf_event_context *ctx, bool add)
944 {
945 struct perf_cpu_context *cpuctx;
946 struct list_head *cpuctx_entry;
947
948 if (!is_cgroup_event(event))
949 return;
950
951 /*
952 * Because cgroup events are always per-cpu events,
953 * this will always be called from the right CPU.
954 */
955 cpuctx = __get_cpu_context(ctx);
956
957 /*
958 * Since setting cpuctx->cgrp is conditional on the current @cgrp
959 * matching the event's cgroup, we must do this for every new event,
960 * because if the first would mismatch, the second would not try again
961 * and we would leave cpuctx->cgrp unset.
962 */
963 if (add && !cpuctx->cgrp) {
964 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
965
966 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
967 cpuctx->cgrp = cgrp;
968 }
969
970 if (add && ctx->nr_cgroups++)
971 return;
972 else if (!add && --ctx->nr_cgroups)
973 return;
974
975 /* no cgroup running */
976 if (!add)
977 cpuctx->cgrp = NULL;
978
979 cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
980 if (add)
981 list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list));
982 else
983 list_del(cpuctx_entry);
984 }
985
986 #else /* !CONFIG_CGROUP_PERF */
987
988 static inline bool
989 perf_cgroup_match(struct perf_event *event)
990 {
991 return true;
992 }
993
994 static inline void perf_detach_cgroup(struct perf_event *event)
995 {}
996
997 static inline int is_cgroup_event(struct perf_event *event)
998 {
999 return 0;
1000 }
1001
1002 static inline void update_cgrp_time_from_event(struct perf_event *event)
1003 {
1004 }
1005
1006 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
1007 {
1008 }
1009
1010 static inline void perf_cgroup_sched_out(struct task_struct *task,
1011 struct task_struct *next)
1012 {
1013 }
1014
1015 static inline void perf_cgroup_sched_in(struct task_struct *prev,
1016 struct task_struct *task)
1017 {
1018 }
1019
1020 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1021 struct perf_event_attr *attr,
1022 struct perf_event *group_leader)
1023 {
1024 return -EINVAL;
1025 }
1026
1027 static inline void
1028 perf_cgroup_set_timestamp(struct task_struct *task,
1029 struct perf_event_context *ctx)
1030 {
1031 }
1032
1033 void
1034 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
1035 {
1036 }
1037
1038 static inline void
1039 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
1040 {
1041 }
1042
1043 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1044 {
1045 return 0;
1046 }
1047
1048 static inline void
1049 list_update_cgroup_event(struct perf_event *event,
1050 struct perf_event_context *ctx, bool add)
1051 {
1052 }
1053
1054 #endif
1055
1056 /*
1057 * set default to be dependent on timer tick just
1058 * like original code
1059 */
1060 #define PERF_CPU_HRTIMER (1000 / HZ)
1061 /*
1062 * function must be called with interrupts disabled
1063 */
1064 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1065 {
1066 struct perf_cpu_context *cpuctx;
1067 bool rotations;
1068
1069 lockdep_assert_irqs_disabled();
1070
1071 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1072 rotations = perf_rotate_context(cpuctx);
1073
1074 raw_spin_lock(&cpuctx->hrtimer_lock);
1075 if (rotations)
1076 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1077 else
1078 cpuctx->hrtimer_active = 0;
1079 raw_spin_unlock(&cpuctx->hrtimer_lock);
1080
1081 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1082 }
1083
1084 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1085 {
1086 struct hrtimer *timer = &cpuctx->hrtimer;
1087 struct pmu *pmu = cpuctx->ctx.pmu;
1088 u64 interval;
1089
1090 /* no multiplexing needed for SW PMU */
1091 if (pmu->task_ctx_nr == perf_sw_context)
1092 return;
1093
1094 /*
1095 * check default is sane, if not set then force to
1096 * default interval (1/tick)
1097 */
1098 interval = pmu->hrtimer_interval_ms;
1099 if (interval < 1)
1100 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1101
1102 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1103
1104 raw_spin_lock_init(&cpuctx->hrtimer_lock);
1105 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
1106 timer->function = perf_mux_hrtimer_handler;
1107 }
1108
1109 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1110 {
1111 struct hrtimer *timer = &cpuctx->hrtimer;
1112 struct pmu *pmu = cpuctx->ctx.pmu;
1113 unsigned long flags;
1114
1115 /* not for SW PMU */
1116 if (pmu->task_ctx_nr == perf_sw_context)
1117 return 0;
1118
1119 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1120 if (!cpuctx->hrtimer_active) {
1121 cpuctx->hrtimer_active = 1;
1122 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1123 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1124 }
1125 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1126
1127 return 0;
1128 }
1129
1130 void perf_pmu_disable(struct pmu *pmu)
1131 {
1132 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1133 if (!(*count)++)
1134 pmu->pmu_disable(pmu);
1135 }
1136
1137 void perf_pmu_enable(struct pmu *pmu)
1138 {
1139 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1140 if (!--(*count))
1141 pmu->pmu_enable(pmu);
1142 }
1143
1144 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1145
1146 /*
1147 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1148 * perf_event_task_tick() are fully serialized because they're strictly cpu
1149 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1150 * disabled, while perf_event_task_tick is called from IRQ context.
1151 */
1152 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1153 {
1154 struct list_head *head = this_cpu_ptr(&active_ctx_list);
1155
1156 lockdep_assert_irqs_disabled();
1157
1158 WARN_ON(!list_empty(&ctx->active_ctx_list));
1159
1160 list_add(&ctx->active_ctx_list, head);
1161 }
1162
1163 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1164 {
1165 lockdep_assert_irqs_disabled();
1166
1167 WARN_ON(list_empty(&ctx->active_ctx_list));
1168
1169 list_del_init(&ctx->active_ctx_list);
1170 }
1171
1172 static void get_ctx(struct perf_event_context *ctx)
1173 {
1174 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1175 }
1176
1177 static void free_ctx(struct rcu_head *head)
1178 {
1179 struct perf_event_context *ctx;
1180
1181 ctx = container_of(head, struct perf_event_context, rcu_head);
1182 kfree(ctx->task_ctx_data);
1183 kfree(ctx);
1184 }
1185
1186 static void put_ctx(struct perf_event_context *ctx)
1187 {
1188 if (atomic_dec_and_test(&ctx->refcount)) {
1189 if (ctx->parent_ctx)
1190 put_ctx(ctx->parent_ctx);
1191 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1192 put_task_struct(ctx->task);
1193 call_rcu(&ctx->rcu_head, free_ctx);
1194 }
1195 }
1196
1197 /*
1198 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1199 * perf_pmu_migrate_context() we need some magic.
1200 *
1201 * Those places that change perf_event::ctx will hold both
1202 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1203 *
1204 * Lock ordering is by mutex address. There are two other sites where
1205 * perf_event_context::mutex nests and those are:
1206 *
1207 * - perf_event_exit_task_context() [ child , 0 ]
1208 * perf_event_exit_event()
1209 * put_event() [ parent, 1 ]
1210 *
1211 * - perf_event_init_context() [ parent, 0 ]
1212 * inherit_task_group()
1213 * inherit_group()
1214 * inherit_event()
1215 * perf_event_alloc()
1216 * perf_init_event()
1217 * perf_try_init_event() [ child , 1 ]
1218 *
1219 * While it appears there is an obvious deadlock here -- the parent and child
1220 * nesting levels are inverted between the two. This is in fact safe because
1221 * life-time rules separate them. That is an exiting task cannot fork, and a
1222 * spawning task cannot (yet) exit.
1223 *
1224 * But remember that that these are parent<->child context relations, and
1225 * migration does not affect children, therefore these two orderings should not
1226 * interact.
1227 *
1228 * The change in perf_event::ctx does not affect children (as claimed above)
1229 * because the sys_perf_event_open() case will install a new event and break
1230 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1231 * concerned with cpuctx and that doesn't have children.
1232 *
1233 * The places that change perf_event::ctx will issue:
1234 *
1235 * perf_remove_from_context();
1236 * synchronize_rcu();
1237 * perf_install_in_context();
1238 *
1239 * to affect the change. The remove_from_context() + synchronize_rcu() should
1240 * quiesce the event, after which we can install it in the new location. This
1241 * means that only external vectors (perf_fops, prctl) can perturb the event
1242 * while in transit. Therefore all such accessors should also acquire
1243 * perf_event_context::mutex to serialize against this.
1244 *
1245 * However; because event->ctx can change while we're waiting to acquire
1246 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1247 * function.
1248 *
1249 * Lock order:
1250 * cred_guard_mutex
1251 * task_struct::perf_event_mutex
1252 * perf_event_context::mutex
1253 * perf_event::child_mutex;
1254 * perf_event_context::lock
1255 * perf_event::mmap_mutex
1256 * mmap_sem
1257 *
1258 * cpu_hotplug_lock
1259 * pmus_lock
1260 * cpuctx->mutex / perf_event_context::mutex
1261 */
1262 static struct perf_event_context *
1263 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1264 {
1265 struct perf_event_context *ctx;
1266
1267 again:
1268 rcu_read_lock();
1269 ctx = READ_ONCE(event->ctx);
1270 if (!atomic_inc_not_zero(&ctx->refcount)) {
1271 rcu_read_unlock();
1272 goto again;
1273 }
1274 rcu_read_unlock();
1275
1276 mutex_lock_nested(&ctx->mutex, nesting);
1277 if (event->ctx != ctx) {
1278 mutex_unlock(&ctx->mutex);
1279 put_ctx(ctx);
1280 goto again;
1281 }
1282
1283 return ctx;
1284 }
1285
1286 static inline struct perf_event_context *
1287 perf_event_ctx_lock(struct perf_event *event)
1288 {
1289 return perf_event_ctx_lock_nested(event, 0);
1290 }
1291
1292 static void perf_event_ctx_unlock(struct perf_event *event,
1293 struct perf_event_context *ctx)
1294 {
1295 mutex_unlock(&ctx->mutex);
1296 put_ctx(ctx);
1297 }
1298
1299 /*
1300 * This must be done under the ctx->lock, such as to serialize against
1301 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1302 * calling scheduler related locks and ctx->lock nests inside those.
1303 */
1304 static __must_check struct perf_event_context *
1305 unclone_ctx(struct perf_event_context *ctx)
1306 {
1307 struct perf_event_context *parent_ctx = ctx->parent_ctx;
1308
1309 lockdep_assert_held(&ctx->lock);
1310
1311 if (parent_ctx)
1312 ctx->parent_ctx = NULL;
1313 ctx->generation++;
1314
1315 return parent_ctx;
1316 }
1317
1318 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1319 enum pid_type type)
1320 {
1321 u32 nr;
1322 /*
1323 * only top level events have the pid namespace they were created in
1324 */
1325 if (event->parent)
1326 event = event->parent;
1327
1328 nr = __task_pid_nr_ns(p, type, event->ns);
1329 /* avoid -1 if it is idle thread or runs in another ns */
1330 if (!nr && !pid_alive(p))
1331 nr = -1;
1332 return nr;
1333 }
1334
1335 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1336 {
1337 return perf_event_pid_type(event, p, PIDTYPE_TGID);
1338 }
1339
1340 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1341 {
1342 return perf_event_pid_type(event, p, PIDTYPE_PID);
1343 }
1344
1345 /*
1346 * If we inherit events we want to return the parent event id
1347 * to userspace.
1348 */
1349 static u64 primary_event_id(struct perf_event *event)
1350 {
1351 u64 id = event->id;
1352
1353 if (event->parent)
1354 id = event->parent->id;
1355
1356 return id;
1357 }
1358
1359 /*
1360 * Get the perf_event_context for a task and lock it.
1361 *
1362 * This has to cope with with the fact that until it is locked,
1363 * the context could get moved to another task.
1364 */
1365 static struct perf_event_context *
1366 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1367 {
1368 struct perf_event_context *ctx;
1369
1370 retry:
1371 /*
1372 * One of the few rules of preemptible RCU is that one cannot do
1373 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1374 * part of the read side critical section was irqs-enabled -- see
1375 * rcu_read_unlock_special().
1376 *
1377 * Since ctx->lock nests under rq->lock we must ensure the entire read
1378 * side critical section has interrupts disabled.
1379 */
1380 local_irq_save(*flags);
1381 rcu_read_lock();
1382 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1383 if (ctx) {
1384 /*
1385 * If this context is a clone of another, it might
1386 * get swapped for another underneath us by
1387 * perf_event_task_sched_out, though the
1388 * rcu_read_lock() protects us from any context
1389 * getting freed. Lock the context and check if it
1390 * got swapped before we could get the lock, and retry
1391 * if so. If we locked the right context, then it
1392 * can't get swapped on us any more.
1393 */
1394 raw_spin_lock(&ctx->lock);
1395 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1396 raw_spin_unlock(&ctx->lock);
1397 rcu_read_unlock();
1398 local_irq_restore(*flags);
1399 goto retry;
1400 }
1401
1402 if (ctx->task == TASK_TOMBSTONE ||
1403 !atomic_inc_not_zero(&ctx->refcount)) {
1404 raw_spin_unlock(&ctx->lock);
1405 ctx = NULL;
1406 } else {
1407 WARN_ON_ONCE(ctx->task != task);
1408 }
1409 }
1410 rcu_read_unlock();
1411 if (!ctx)
1412 local_irq_restore(*flags);
1413 return ctx;
1414 }
1415
1416 /*
1417 * Get the context for a task and increment its pin_count so it
1418 * can't get swapped to another task. This also increments its
1419 * reference count so that the context can't get freed.
1420 */
1421 static struct perf_event_context *
1422 perf_pin_task_context(struct task_struct *task, int ctxn)
1423 {
1424 struct perf_event_context *ctx;
1425 unsigned long flags;
1426
1427 ctx = perf_lock_task_context(task, ctxn, &flags);
1428 if (ctx) {
1429 ++ctx->pin_count;
1430 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1431 }
1432 return ctx;
1433 }
1434
1435 static void perf_unpin_context(struct perf_event_context *ctx)
1436 {
1437 unsigned long flags;
1438
1439 raw_spin_lock_irqsave(&ctx->lock, flags);
1440 --ctx->pin_count;
1441 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1442 }
1443
1444 /*
1445 * Update the record of the current time in a context.
1446 */
1447 static void update_context_time(struct perf_event_context *ctx)
1448 {
1449 u64 now = perf_clock();
1450
1451 ctx->time += now - ctx->timestamp;
1452 ctx->timestamp = now;
1453 }
1454
1455 static u64 perf_event_time(struct perf_event *event)
1456 {
1457 struct perf_event_context *ctx = event->ctx;
1458
1459 if (is_cgroup_event(event))
1460 return perf_cgroup_event_time(event);
1461
1462 return ctx ? ctx->time : 0;
1463 }
1464
1465 static enum event_type_t get_event_type(struct perf_event *event)
1466 {
1467 struct perf_event_context *ctx = event->ctx;
1468 enum event_type_t event_type;
1469
1470 lockdep_assert_held(&ctx->lock);
1471
1472 /*
1473 * It's 'group type', really, because if our group leader is
1474 * pinned, so are we.
1475 */
1476 if (event->group_leader != event)
1477 event = event->group_leader;
1478
1479 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1480 if (!ctx->task)
1481 event_type |= EVENT_CPU;
1482
1483 return event_type;
1484 }
1485
1486 /*
1487 * Helper function to initialize event group nodes.
1488 */
1489 static void init_event_group(struct perf_event *event)
1490 {
1491 RB_CLEAR_NODE(&event->group_node);
1492 event->group_index = 0;
1493 }
1494
1495 /*
1496 * Extract pinned or flexible groups from the context
1497 * based on event attrs bits.
1498 */
1499 static struct perf_event_groups *
1500 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1501 {
1502 if (event->attr.pinned)
1503 return &ctx->pinned_groups;
1504 else
1505 return &ctx->flexible_groups;
1506 }
1507
1508 /*
1509 * Helper function to initializes perf_event_group trees.
1510 */
1511 static void perf_event_groups_init(struct perf_event_groups *groups)
1512 {
1513 groups->tree = RB_ROOT;
1514 groups->index = 0;
1515 }
1516
1517 /*
1518 * Compare function for event groups;
1519 *
1520 * Implements complex key that first sorts by CPU and then by virtual index
1521 * which provides ordering when rotating groups for the same CPU.
1522 */
1523 static bool
1524 perf_event_groups_less(struct perf_event *left, struct perf_event *right)
1525 {
1526 if (left->cpu < right->cpu)
1527 return true;
1528 if (left->cpu > right->cpu)
1529 return false;
1530
1531 if (left->group_index < right->group_index)
1532 return true;
1533 if (left->group_index > right->group_index)
1534 return false;
1535
1536 return false;
1537 }
1538
1539 /*
1540 * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for
1541 * key (see perf_event_groups_less). This places it last inside the CPU
1542 * subtree.
1543 */
1544 static void
1545 perf_event_groups_insert(struct perf_event_groups *groups,
1546 struct perf_event *event)
1547 {
1548 struct perf_event *node_event;
1549 struct rb_node *parent;
1550 struct rb_node **node;
1551
1552 event->group_index = ++groups->index;
1553
1554 node = &groups->tree.rb_node;
1555 parent = *node;
1556
1557 while (*node) {
1558 parent = *node;
1559 node_event = container_of(*node, struct perf_event, group_node);
1560
1561 if (perf_event_groups_less(event, node_event))
1562 node = &parent->rb_left;
1563 else
1564 node = &parent->rb_right;
1565 }
1566
1567 rb_link_node(&event->group_node, parent, node);
1568 rb_insert_color(&event->group_node, &groups->tree);
1569 }
1570
1571 /*
1572 * Helper function to insert event into the pinned or flexible groups.
1573 */
1574 static void
1575 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1576 {
1577 struct perf_event_groups *groups;
1578
1579 groups = get_event_groups(event, ctx);
1580 perf_event_groups_insert(groups, event);
1581 }
1582
1583 /*
1584 * Delete a group from a tree.
1585 */
1586 static void
1587 perf_event_groups_delete(struct perf_event_groups *groups,
1588 struct perf_event *event)
1589 {
1590 WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1591 RB_EMPTY_ROOT(&groups->tree));
1592
1593 rb_erase(&event->group_node, &groups->tree);
1594 init_event_group(event);
1595 }
1596
1597 /*
1598 * Helper function to delete event from its groups.
1599 */
1600 static void
1601 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1602 {
1603 struct perf_event_groups *groups;
1604
1605 groups = get_event_groups(event, ctx);
1606 perf_event_groups_delete(groups, event);
1607 }
1608
1609 /*
1610 * Get the leftmost event in the @cpu subtree.
1611 */
1612 static struct perf_event *
1613 perf_event_groups_first(struct perf_event_groups *groups, int cpu)
1614 {
1615 struct perf_event *node_event = NULL, *match = NULL;
1616 struct rb_node *node = groups->tree.rb_node;
1617
1618 while (node) {
1619 node_event = container_of(node, struct perf_event, group_node);
1620
1621 if (cpu < node_event->cpu) {
1622 node = node->rb_left;
1623 } else if (cpu > node_event->cpu) {
1624 node = node->rb_right;
1625 } else {
1626 match = node_event;
1627 node = node->rb_left;
1628 }
1629 }
1630
1631 return match;
1632 }
1633
1634 /*
1635 * Like rb_entry_next_safe() for the @cpu subtree.
1636 */
1637 static struct perf_event *
1638 perf_event_groups_next(struct perf_event *event)
1639 {
1640 struct perf_event *next;
1641
1642 next = rb_entry_safe(rb_next(&event->group_node), typeof(*event), group_node);
1643 if (next && next->cpu == event->cpu)
1644 return next;
1645
1646 return NULL;
1647 }
1648
1649 /*
1650 * Iterate through the whole groups tree.
1651 */
1652 #define perf_event_groups_for_each(event, groups) \
1653 for (event = rb_entry_safe(rb_first(&((groups)->tree)), \
1654 typeof(*event), group_node); event; \
1655 event = rb_entry_safe(rb_next(&event->group_node), \
1656 typeof(*event), group_node))
1657
1658 /*
1659 * Add an event from the lists for its context.
1660 * Must be called with ctx->mutex and ctx->lock held.
1661 */
1662 static void
1663 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1664 {
1665 lockdep_assert_held(&ctx->lock);
1666
1667 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1668 event->attach_state |= PERF_ATTACH_CONTEXT;
1669
1670 event->tstamp = perf_event_time(event);
1671
1672 /*
1673 * If we're a stand alone event or group leader, we go to the context
1674 * list, group events are kept attached to the group so that
1675 * perf_group_detach can, at all times, locate all siblings.
1676 */
1677 if (event->group_leader == event) {
1678 event->group_caps = event->event_caps;
1679 add_event_to_groups(event, ctx);
1680 }
1681
1682 list_update_cgroup_event(event, ctx, true);
1683
1684 list_add_rcu(&event->event_entry, &ctx->event_list);
1685 ctx->nr_events++;
1686 if (event->attr.inherit_stat)
1687 ctx->nr_stat++;
1688
1689 ctx->generation++;
1690 }
1691
1692 /*
1693 * Initialize event state based on the perf_event_attr::disabled.
1694 */
1695 static inline void perf_event__state_init(struct perf_event *event)
1696 {
1697 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1698 PERF_EVENT_STATE_INACTIVE;
1699 }
1700
1701 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1702 {
1703 int entry = sizeof(u64); /* value */
1704 int size = 0;
1705 int nr = 1;
1706
1707 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1708 size += sizeof(u64);
1709
1710 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1711 size += sizeof(u64);
1712
1713 if (event->attr.read_format & PERF_FORMAT_ID)
1714 entry += sizeof(u64);
1715
1716 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1717 nr += nr_siblings;
1718 size += sizeof(u64);
1719 }
1720
1721 size += entry * nr;
1722 event->read_size = size;
1723 }
1724
1725 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1726 {
1727 struct perf_sample_data *data;
1728 u16 size = 0;
1729
1730 if (sample_type & PERF_SAMPLE_IP)
1731 size += sizeof(data->ip);
1732
1733 if (sample_type & PERF_SAMPLE_ADDR)
1734 size += sizeof(data->addr);
1735
1736 if (sample_type & PERF_SAMPLE_PERIOD)
1737 size += sizeof(data->period);
1738
1739 if (sample_type & PERF_SAMPLE_WEIGHT)
1740 size += sizeof(data->weight);
1741
1742 if (sample_type & PERF_SAMPLE_READ)
1743 size += event->read_size;
1744
1745 if (sample_type & PERF_SAMPLE_DATA_SRC)
1746 size += sizeof(data->data_src.val);
1747
1748 if (sample_type & PERF_SAMPLE_TRANSACTION)
1749 size += sizeof(data->txn);
1750
1751 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1752 size += sizeof(data->phys_addr);
1753
1754 event->header_size = size;
1755 }
1756
1757 /*
1758 * Called at perf_event creation and when events are attached/detached from a
1759 * group.
1760 */
1761 static void perf_event__header_size(struct perf_event *event)
1762 {
1763 __perf_event_read_size(event,
1764 event->group_leader->nr_siblings);
1765 __perf_event_header_size(event, event->attr.sample_type);
1766 }
1767
1768 static void perf_event__id_header_size(struct perf_event *event)
1769 {
1770 struct perf_sample_data *data;
1771 u64 sample_type = event->attr.sample_type;
1772 u16 size = 0;
1773
1774 if (sample_type & PERF_SAMPLE_TID)
1775 size += sizeof(data->tid_entry);
1776
1777 if (sample_type & PERF_SAMPLE_TIME)
1778 size += sizeof(data->time);
1779
1780 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1781 size += sizeof(data->id);
1782
1783 if (sample_type & PERF_SAMPLE_ID)
1784 size += sizeof(data->id);
1785
1786 if (sample_type & PERF_SAMPLE_STREAM_ID)
1787 size += sizeof(data->stream_id);
1788
1789 if (sample_type & PERF_SAMPLE_CPU)
1790 size += sizeof(data->cpu_entry);
1791
1792 event->id_header_size = size;
1793 }
1794
1795 static bool perf_event_validate_size(struct perf_event *event)
1796 {
1797 /*
1798 * The values computed here will be over-written when we actually
1799 * attach the event.
1800 */
1801 __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1802 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1803 perf_event__id_header_size(event);
1804
1805 /*
1806 * Sum the lot; should not exceed the 64k limit we have on records.
1807 * Conservative limit to allow for callchains and other variable fields.
1808 */
1809 if (event->read_size + event->header_size +
1810 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1811 return false;
1812
1813 return true;
1814 }
1815
1816 static void perf_group_attach(struct perf_event *event)
1817 {
1818 struct perf_event *group_leader = event->group_leader, *pos;
1819
1820 lockdep_assert_held(&event->ctx->lock);
1821
1822 /*
1823 * We can have double attach due to group movement in perf_event_open.
1824 */
1825 if (event->attach_state & PERF_ATTACH_GROUP)
1826 return;
1827
1828 event->attach_state |= PERF_ATTACH_GROUP;
1829
1830 if (group_leader == event)
1831 return;
1832
1833 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1834
1835 group_leader->group_caps &= event->event_caps;
1836
1837 list_add_tail(&event->sibling_list, &group_leader->sibling_list);
1838 group_leader->nr_siblings++;
1839
1840 perf_event__header_size(group_leader);
1841
1842 for_each_sibling_event(pos, group_leader)
1843 perf_event__header_size(pos);
1844 }
1845
1846 /*
1847 * Remove an event from the lists for its context.
1848 * Must be called with ctx->mutex and ctx->lock held.
1849 */
1850 static void
1851 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1852 {
1853 WARN_ON_ONCE(event->ctx != ctx);
1854 lockdep_assert_held(&ctx->lock);
1855
1856 /*
1857 * We can have double detach due to exit/hot-unplug + close.
1858 */
1859 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1860 return;
1861
1862 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1863
1864 list_update_cgroup_event(event, ctx, false);
1865
1866 ctx->nr_events--;
1867 if (event->attr.inherit_stat)
1868 ctx->nr_stat--;
1869
1870 list_del_rcu(&event->event_entry);
1871
1872 if (event->group_leader == event)
1873 del_event_from_groups(event, ctx);
1874
1875 /*
1876 * If event was in error state, then keep it
1877 * that way, otherwise bogus counts will be
1878 * returned on read(). The only way to get out
1879 * of error state is by explicit re-enabling
1880 * of the event
1881 */
1882 if (event->state > PERF_EVENT_STATE_OFF)
1883 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
1884
1885 ctx->generation++;
1886 }
1887
1888 static void perf_group_detach(struct perf_event *event)
1889 {
1890 struct perf_event *sibling, *tmp;
1891 struct perf_event_context *ctx = event->ctx;
1892
1893 lockdep_assert_held(&ctx->lock);
1894
1895 /*
1896 * We can have double detach due to exit/hot-unplug + close.
1897 */
1898 if (!(event->attach_state & PERF_ATTACH_GROUP))
1899 return;
1900
1901 event->attach_state &= ~PERF_ATTACH_GROUP;
1902
1903 /*
1904 * If this is a sibling, remove it from its group.
1905 */
1906 if (event->group_leader != event) {
1907 list_del_init(&event->sibling_list);
1908 event->group_leader->nr_siblings--;
1909 goto out;
1910 }
1911
1912 /*
1913 * If this was a group event with sibling events then
1914 * upgrade the siblings to singleton events by adding them
1915 * to whatever list we are on.
1916 */
1917 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
1918
1919 sibling->group_leader = sibling;
1920 list_del_init(&sibling->sibling_list);
1921
1922 /* Inherit group flags from the previous leader */
1923 sibling->group_caps = event->group_caps;
1924
1925 if (!RB_EMPTY_NODE(&event->group_node)) {
1926 add_event_to_groups(sibling, event->ctx);
1927
1928 if (sibling->state == PERF_EVENT_STATE_ACTIVE) {
1929 struct list_head *list = sibling->attr.pinned ?
1930 &ctx->pinned_active : &ctx->flexible_active;
1931
1932 list_add_tail(&sibling->active_list, list);
1933 }
1934 }
1935
1936 WARN_ON_ONCE(sibling->ctx != event->ctx);
1937 }
1938
1939 out:
1940 perf_event__header_size(event->group_leader);
1941
1942 for_each_sibling_event(tmp, event->group_leader)
1943 perf_event__header_size(tmp);
1944 }
1945
1946 static bool is_orphaned_event(struct perf_event *event)
1947 {
1948 return event->state == PERF_EVENT_STATE_DEAD;
1949 }
1950
1951 static inline int __pmu_filter_match(struct perf_event *event)
1952 {
1953 struct pmu *pmu = event->pmu;
1954 return pmu->filter_match ? pmu->filter_match(event) : 1;
1955 }
1956
1957 /*
1958 * Check whether we should attempt to schedule an event group based on
1959 * PMU-specific filtering. An event group can consist of HW and SW events,
1960 * potentially with a SW leader, so we must check all the filters, to
1961 * determine whether a group is schedulable:
1962 */
1963 static inline int pmu_filter_match(struct perf_event *event)
1964 {
1965 struct perf_event *sibling;
1966
1967 if (!__pmu_filter_match(event))
1968 return 0;
1969
1970 for_each_sibling_event(sibling, event) {
1971 if (!__pmu_filter_match(sibling))
1972 return 0;
1973 }
1974
1975 return 1;
1976 }
1977
1978 static inline int
1979 event_filter_match(struct perf_event *event)
1980 {
1981 return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1982 perf_cgroup_match(event) && pmu_filter_match(event);
1983 }
1984
1985 static void
1986 event_sched_out(struct perf_event *event,
1987 struct perf_cpu_context *cpuctx,
1988 struct perf_event_context *ctx)
1989 {
1990 enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
1991
1992 WARN_ON_ONCE(event->ctx != ctx);
1993 lockdep_assert_held(&ctx->lock);
1994
1995 if (event->state != PERF_EVENT_STATE_ACTIVE)
1996 return;
1997
1998 /*
1999 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2000 * we can schedule events _OUT_ individually through things like
2001 * __perf_remove_from_context().
2002 */
2003 list_del_init(&event->active_list);
2004
2005 perf_pmu_disable(event->pmu);
2006
2007 event->pmu->del(event, 0);
2008 event->oncpu = -1;
2009
2010 if (event->pending_disable) {
2011 event->pending_disable = 0;
2012 state = PERF_EVENT_STATE_OFF;
2013 }
2014 perf_event_set_state(event, state);
2015
2016 if (!is_software_event(event))
2017 cpuctx->active_oncpu--;
2018 if (!--ctx->nr_active)
2019 perf_event_ctx_deactivate(ctx);
2020 if (event->attr.freq && event->attr.sample_freq)
2021 ctx->nr_freq--;
2022 if (event->attr.exclusive || !cpuctx->active_oncpu)
2023 cpuctx->exclusive = 0;
2024
2025 perf_pmu_enable(event->pmu);
2026 }
2027
2028 static void
2029 group_sched_out(struct perf_event *group_event,
2030 struct perf_cpu_context *cpuctx,
2031 struct perf_event_context *ctx)
2032 {
2033 struct perf_event *event;
2034
2035 if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2036 return;
2037
2038 perf_pmu_disable(ctx->pmu);
2039
2040 event_sched_out(group_event, cpuctx, ctx);
2041
2042 /*
2043 * Schedule out siblings (if any):
2044 */
2045 for_each_sibling_event(event, group_event)
2046 event_sched_out(event, cpuctx, ctx);
2047
2048 perf_pmu_enable(ctx->pmu);
2049
2050 if (group_event->attr.exclusive)
2051 cpuctx->exclusive = 0;
2052 }
2053
2054 #define DETACH_GROUP 0x01UL
2055
2056 /*
2057 * Cross CPU call to remove a performance event
2058 *
2059 * We disable the event on the hardware level first. After that we
2060 * remove it from the context list.
2061 */
2062 static void
2063 __perf_remove_from_context(struct perf_event *event,
2064 struct perf_cpu_context *cpuctx,
2065 struct perf_event_context *ctx,
2066 void *info)
2067 {
2068 unsigned long flags = (unsigned long)info;
2069
2070 if (ctx->is_active & EVENT_TIME) {
2071 update_context_time(ctx);
2072 update_cgrp_time_from_cpuctx(cpuctx);
2073 }
2074
2075 event_sched_out(event, cpuctx, ctx);
2076 if (flags & DETACH_GROUP)
2077 perf_group_detach(event);
2078 list_del_event(event, ctx);
2079
2080 if (!ctx->nr_events && ctx->is_active) {
2081 ctx->is_active = 0;
2082 if (ctx->task) {
2083 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2084 cpuctx->task_ctx = NULL;
2085 }
2086 }
2087 }
2088
2089 /*
2090 * Remove the event from a task's (or a CPU's) list of events.
2091 *
2092 * If event->ctx is a cloned context, callers must make sure that
2093 * every task struct that event->ctx->task could possibly point to
2094 * remains valid. This is OK when called from perf_release since
2095 * that only calls us on the top-level context, which can't be a clone.
2096 * When called from perf_event_exit_task, it's OK because the
2097 * context has been detached from its task.
2098 */
2099 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2100 {
2101 struct perf_event_context *ctx = event->ctx;
2102
2103 lockdep_assert_held(&ctx->mutex);
2104
2105 event_function_call(event, __perf_remove_from_context, (void *)flags);
2106
2107 /*
2108 * The above event_function_call() can NO-OP when it hits
2109 * TASK_TOMBSTONE. In that case we must already have been detached
2110 * from the context (by perf_event_exit_event()) but the grouping
2111 * might still be in-tact.
2112 */
2113 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
2114 if ((flags & DETACH_GROUP) &&
2115 (event->attach_state & PERF_ATTACH_GROUP)) {
2116 /*
2117 * Since in that case we cannot possibly be scheduled, simply
2118 * detach now.
2119 */
2120 raw_spin_lock_irq(&ctx->lock);
2121 perf_group_detach(event);
2122 raw_spin_unlock_irq(&ctx->lock);
2123 }
2124 }
2125
2126 /*
2127 * Cross CPU call to disable a performance event
2128 */
2129 static void __perf_event_disable(struct perf_event *event,
2130 struct perf_cpu_context *cpuctx,
2131 struct perf_event_context *ctx,
2132 void *info)
2133 {
2134 if (event->state < PERF_EVENT_STATE_INACTIVE)
2135 return;
2136
2137 if (ctx->is_active & EVENT_TIME) {
2138 update_context_time(ctx);
2139 update_cgrp_time_from_event(event);
2140 }
2141
2142 if (event == event->group_leader)
2143 group_sched_out(event, cpuctx, ctx);
2144 else
2145 event_sched_out(event, cpuctx, ctx);
2146
2147 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2148 }
2149
2150 /*
2151 * Disable an event.
2152 *
2153 * If event->ctx is a cloned context, callers must make sure that
2154 * every task struct that event->ctx->task could possibly point to
2155 * remains valid. This condition is satisifed when called through
2156 * perf_event_for_each_child or perf_event_for_each because they
2157 * hold the top-level event's child_mutex, so any descendant that
2158 * goes to exit will block in perf_event_exit_event().
2159 *
2160 * When called from perf_pending_event it's OK because event->ctx
2161 * is the current context on this CPU and preemption is disabled,
2162 * hence we can't get into perf_event_task_sched_out for this context.
2163 */
2164 static void _perf_event_disable(struct perf_event *event)
2165 {
2166 struct perf_event_context *ctx = event->ctx;
2167
2168 raw_spin_lock_irq(&ctx->lock);
2169 if (event->state <= PERF_EVENT_STATE_OFF) {
2170 raw_spin_unlock_irq(&ctx->lock);
2171 return;
2172 }
2173 raw_spin_unlock_irq(&ctx->lock);
2174
2175 event_function_call(event, __perf_event_disable, NULL);
2176 }
2177
2178 void perf_event_disable_local(struct perf_event *event)
2179 {
2180 event_function_local(event, __perf_event_disable, NULL);
2181 }
2182
2183 /*
2184 * Strictly speaking kernel users cannot create groups and therefore this
2185 * interface does not need the perf_event_ctx_lock() magic.
2186 */
2187 void perf_event_disable(struct perf_event *event)
2188 {
2189 struct perf_event_context *ctx;
2190
2191 ctx = perf_event_ctx_lock(event);
2192 _perf_event_disable(event);
2193 perf_event_ctx_unlock(event, ctx);
2194 }
2195 EXPORT_SYMBOL_GPL(perf_event_disable);
2196
2197 void perf_event_disable_inatomic(struct perf_event *event)
2198 {
2199 event->pending_disable = 1;
2200 irq_work_queue(&event->pending);
2201 }
2202
2203 static void perf_set_shadow_time(struct perf_event *event,
2204 struct perf_event_context *ctx)
2205 {
2206 /*
2207 * use the correct time source for the time snapshot
2208 *
2209 * We could get by without this by leveraging the
2210 * fact that to get to this function, the caller
2211 * has most likely already called update_context_time()
2212 * and update_cgrp_time_xx() and thus both timestamp
2213 * are identical (or very close). Given that tstamp is,
2214 * already adjusted for cgroup, we could say that:
2215 * tstamp - ctx->timestamp
2216 * is equivalent to
2217 * tstamp - cgrp->timestamp.
2218 *
2219 * Then, in perf_output_read(), the calculation would
2220 * work with no changes because:
2221 * - event is guaranteed scheduled in
2222 * - no scheduled out in between
2223 * - thus the timestamp would be the same
2224 *
2225 * But this is a bit hairy.
2226 *
2227 * So instead, we have an explicit cgroup call to remain
2228 * within the time time source all along. We believe it
2229 * is cleaner and simpler to understand.
2230 */
2231 if (is_cgroup_event(event))
2232 perf_cgroup_set_shadow_time(event, event->tstamp);
2233 else
2234 event->shadow_ctx_time = event->tstamp - ctx->timestamp;
2235 }
2236
2237 #define MAX_INTERRUPTS (~0ULL)
2238
2239 static void perf_log_throttle(struct perf_event *event, int enable);
2240 static void perf_log_itrace_start(struct perf_event *event);
2241
2242 static int
2243 event_sched_in(struct perf_event *event,
2244 struct perf_cpu_context *cpuctx,
2245 struct perf_event_context *ctx)
2246 {
2247 int ret = 0;
2248
2249 lockdep_assert_held(&ctx->lock);
2250
2251 if (event->state <= PERF_EVENT_STATE_OFF)
2252 return 0;
2253
2254 WRITE_ONCE(event->oncpu, smp_processor_id());
2255 /*
2256 * Order event::oncpu write to happen before the ACTIVE state is
2257 * visible. This allows perf_event_{stop,read}() to observe the correct
2258 * ->oncpu if it sees ACTIVE.
2259 */
2260 smp_wmb();
2261 perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2262
2263 /*
2264 * Unthrottle events, since we scheduled we might have missed several
2265 * ticks already, also for a heavily scheduling task there is little
2266 * guarantee it'll get a tick in a timely manner.
2267 */
2268 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2269 perf_log_throttle(event, 1);
2270 event->hw.interrupts = 0;
2271 }
2272
2273 perf_pmu_disable(event->pmu);
2274
2275 perf_set_shadow_time(event, ctx);
2276
2277 perf_log_itrace_start(event);
2278
2279 if (event->pmu->add(event, PERF_EF_START)) {
2280 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2281 event->oncpu = -1;
2282 ret = -EAGAIN;
2283 goto out;
2284 }
2285
2286 if (!is_software_event(event))
2287 cpuctx->active_oncpu++;
2288 if (!ctx->nr_active++)
2289 perf_event_ctx_activate(ctx);
2290 if (event->attr.freq && event->attr.sample_freq)
2291 ctx->nr_freq++;
2292
2293 if (event->attr.exclusive)
2294 cpuctx->exclusive = 1;
2295
2296 out:
2297 perf_pmu_enable(event->pmu);
2298
2299 return ret;
2300 }
2301
2302 static int
2303 group_sched_in(struct perf_event *group_event,
2304 struct perf_cpu_context *cpuctx,
2305 struct perf_event_context *ctx)
2306 {
2307 struct perf_event *event, *partial_group = NULL;
2308 struct pmu *pmu = ctx->pmu;
2309
2310 if (group_event->state == PERF_EVENT_STATE_OFF)
2311 return 0;
2312
2313 pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2314
2315 if (event_sched_in(group_event, cpuctx, ctx)) {
2316 pmu->cancel_txn(pmu);
2317 perf_mux_hrtimer_restart(cpuctx);
2318 return -EAGAIN;
2319 }
2320
2321 /*
2322 * Schedule in siblings as one group (if any):
2323 */
2324 for_each_sibling_event(event, group_event) {
2325 if (event_sched_in(event, cpuctx, ctx)) {
2326 partial_group = event;
2327 goto group_error;
2328 }
2329 }
2330
2331 if (!pmu->commit_txn(pmu))
2332 return 0;
2333
2334 group_error:
2335 /*
2336 * Groups can be scheduled in as one unit only, so undo any
2337 * partial group before returning:
2338 * The events up to the failed event are scheduled out normally.
2339 */
2340 for_each_sibling_event(event, group_event) {
2341 if (event == partial_group)
2342 break;
2343
2344 event_sched_out(event, cpuctx, ctx);
2345 }
2346 event_sched_out(group_event, cpuctx, ctx);
2347
2348 pmu->cancel_txn(pmu);
2349
2350 perf_mux_hrtimer_restart(cpuctx);
2351
2352 return -EAGAIN;
2353 }
2354
2355 /*
2356 * Work out whether we can put this event group on the CPU now.
2357 */
2358 static int group_can_go_on(struct perf_event *event,
2359 struct perf_cpu_context *cpuctx,
2360 int can_add_hw)
2361 {
2362 /*
2363 * Groups consisting entirely of software events can always go on.
2364 */
2365 if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2366 return 1;
2367 /*
2368 * If an exclusive group is already on, no other hardware
2369 * events can go on.
2370 */
2371 if (cpuctx->exclusive)
2372 return 0;
2373 /*
2374 * If this group is exclusive and there are already
2375 * events on the CPU, it can't go on.
2376 */
2377 if (event->attr.exclusive && cpuctx->active_oncpu)
2378 return 0;
2379 /*
2380 * Otherwise, try to add it if all previous groups were able
2381 * to go on.
2382 */
2383 return can_add_hw;
2384 }
2385
2386 static void add_event_to_ctx(struct perf_event *event,
2387 struct perf_event_context *ctx)
2388 {
2389 list_add_event(event, ctx);
2390 perf_group_attach(event);
2391 }
2392
2393 static void ctx_sched_out(struct perf_event_context *ctx,
2394 struct perf_cpu_context *cpuctx,
2395 enum event_type_t event_type);
2396 static void
2397 ctx_sched_in(struct perf_event_context *ctx,
2398 struct perf_cpu_context *cpuctx,
2399 enum event_type_t event_type,
2400 struct task_struct *task);
2401
2402 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2403 struct perf_event_context *ctx,
2404 enum event_type_t event_type)
2405 {
2406 if (!cpuctx->task_ctx)
2407 return;
2408
2409 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2410 return;
2411
2412 ctx_sched_out(ctx, cpuctx, event_type);
2413 }
2414
2415 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2416 struct perf_event_context *ctx,
2417 struct task_struct *task)
2418 {
2419 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2420 if (ctx)
2421 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2422 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2423 if (ctx)
2424 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2425 }
2426
2427 /*
2428 * We want to maintain the following priority of scheduling:
2429 * - CPU pinned (EVENT_CPU | EVENT_PINNED)
2430 * - task pinned (EVENT_PINNED)
2431 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2432 * - task flexible (EVENT_FLEXIBLE).
2433 *
2434 * In order to avoid unscheduling and scheduling back in everything every
2435 * time an event is added, only do it for the groups of equal priority and
2436 * below.
2437 *
2438 * This can be called after a batch operation on task events, in which case
2439 * event_type is a bit mask of the types of events involved. For CPU events,
2440 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2441 */
2442 static void ctx_resched(struct perf_cpu_context *cpuctx,
2443 struct perf_event_context *task_ctx,
2444 enum event_type_t event_type)
2445 {
2446 enum event_type_t ctx_event_type;
2447 bool cpu_event = !!(event_type & EVENT_CPU);
2448
2449 /*
2450 * If pinned groups are involved, flexible groups also need to be
2451 * scheduled out.
2452 */
2453 if (event_type & EVENT_PINNED)
2454 event_type |= EVENT_FLEXIBLE;
2455
2456 ctx_event_type = event_type & EVENT_ALL;
2457
2458 perf_pmu_disable(cpuctx->ctx.pmu);
2459 if (task_ctx)
2460 task_ctx_sched_out(cpuctx, task_ctx, event_type);
2461
2462 /*
2463 * Decide which cpu ctx groups to schedule out based on the types
2464 * of events that caused rescheduling:
2465 * - EVENT_CPU: schedule out corresponding groups;
2466 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2467 * - otherwise, do nothing more.
2468 */
2469 if (cpu_event)
2470 cpu_ctx_sched_out(cpuctx, ctx_event_type);
2471 else if (ctx_event_type & EVENT_PINNED)
2472 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2473
2474 perf_event_sched_in(cpuctx, task_ctx, current);
2475 perf_pmu_enable(cpuctx->ctx.pmu);
2476 }
2477
2478 /*
2479 * Cross CPU call to install and enable a performance event
2480 *
2481 * Very similar to remote_function() + event_function() but cannot assume that
2482 * things like ctx->is_active and cpuctx->task_ctx are set.
2483 */
2484 static int __perf_install_in_context(void *info)
2485 {
2486 struct perf_event *event = info;
2487 struct perf_event_context *ctx = event->ctx;
2488 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2489 struct perf_event_context *task_ctx = cpuctx->task_ctx;
2490 bool reprogram = true;
2491 int ret = 0;
2492
2493 raw_spin_lock(&cpuctx->ctx.lock);
2494 if (ctx->task) {
2495 raw_spin_lock(&ctx->lock);
2496 task_ctx = ctx;
2497
2498 reprogram = (ctx->task == current);
2499
2500 /*
2501 * If the task is running, it must be running on this CPU,
2502 * otherwise we cannot reprogram things.
2503 *
2504 * If its not running, we don't care, ctx->lock will
2505 * serialize against it becoming runnable.
2506 */
2507 if (task_curr(ctx->task) && !reprogram) {
2508 ret = -ESRCH;
2509 goto unlock;
2510 }
2511
2512 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2513 } else if (task_ctx) {
2514 raw_spin_lock(&task_ctx->lock);
2515 }
2516
2517 #ifdef CONFIG_CGROUP_PERF
2518 if (is_cgroup_event(event)) {
2519 /*
2520 * If the current cgroup doesn't match the event's
2521 * cgroup, we should not try to schedule it.
2522 */
2523 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2524 reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2525 event->cgrp->css.cgroup);
2526 }
2527 #endif
2528
2529 if (reprogram) {
2530 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2531 add_event_to_ctx(event, ctx);
2532 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2533 } else {
2534 add_event_to_ctx(event, ctx);
2535 }
2536
2537 unlock:
2538 perf_ctx_unlock(cpuctx, task_ctx);
2539
2540 return ret;
2541 }
2542
2543 /*
2544 * Attach a performance event to a context.
2545 *
2546 * Very similar to event_function_call, see comment there.
2547 */
2548 static void
2549 perf_install_in_context(struct perf_event_context *ctx,
2550 struct perf_event *event,
2551 int cpu)
2552 {
2553 struct task_struct *task = READ_ONCE(ctx->task);
2554
2555 lockdep_assert_held(&ctx->mutex);
2556
2557 if (event->cpu != -1)
2558 event->cpu = cpu;
2559
2560 /*
2561 * Ensures that if we can observe event->ctx, both the event and ctx
2562 * will be 'complete'. See perf_iterate_sb_cpu().
2563 */
2564 smp_store_release(&event->ctx, ctx);
2565
2566 if (!task) {
2567 cpu_function_call(cpu, __perf_install_in_context, event);
2568 return;
2569 }
2570
2571 /*
2572 * Should not happen, we validate the ctx is still alive before calling.
2573 */
2574 if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2575 return;
2576
2577 /*
2578 * Installing events is tricky because we cannot rely on ctx->is_active
2579 * to be set in case this is the nr_events 0 -> 1 transition.
2580 *
2581 * Instead we use task_curr(), which tells us if the task is running.
2582 * However, since we use task_curr() outside of rq::lock, we can race
2583 * against the actual state. This means the result can be wrong.
2584 *
2585 * If we get a false positive, we retry, this is harmless.
2586 *
2587 * If we get a false negative, things are complicated. If we are after
2588 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2589 * value must be correct. If we're before, it doesn't matter since
2590 * perf_event_context_sched_in() will program the counter.
2591 *
2592 * However, this hinges on the remote context switch having observed
2593 * our task->perf_event_ctxp[] store, such that it will in fact take
2594 * ctx::lock in perf_event_context_sched_in().
2595 *
2596 * We do this by task_function_call(), if the IPI fails to hit the task
2597 * we know any future context switch of task must see the
2598 * perf_event_ctpx[] store.
2599 */
2600
2601 /*
2602 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2603 * task_cpu() load, such that if the IPI then does not find the task
2604 * running, a future context switch of that task must observe the
2605 * store.
2606 */
2607 smp_mb();
2608 again:
2609 if (!task_function_call(task, __perf_install_in_context, event))
2610 return;
2611
2612 raw_spin_lock_irq(&ctx->lock);
2613 task = ctx->task;
2614 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2615 /*
2616 * Cannot happen because we already checked above (which also
2617 * cannot happen), and we hold ctx->mutex, which serializes us
2618 * against perf_event_exit_task_context().
2619 */
2620 raw_spin_unlock_irq(&ctx->lock);
2621 return;
2622 }
2623 /*
2624 * If the task is not running, ctx->lock will avoid it becoming so,
2625 * thus we can safely install the event.
2626 */
2627 if (task_curr(task)) {
2628 raw_spin_unlock_irq(&ctx->lock);
2629 goto again;
2630 }
2631 add_event_to_ctx(event, ctx);
2632 raw_spin_unlock_irq(&ctx->lock);
2633 }
2634
2635 /*
2636 * Cross CPU call to enable a performance event
2637 */
2638 static void __perf_event_enable(struct perf_event *event,
2639 struct perf_cpu_context *cpuctx,
2640 struct perf_event_context *ctx,
2641 void *info)
2642 {
2643 struct perf_event *leader = event->group_leader;
2644 struct perf_event_context *task_ctx;
2645
2646 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2647 event->state <= PERF_EVENT_STATE_ERROR)
2648 return;
2649
2650 if (ctx->is_active)
2651 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2652
2653 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2654
2655 if (!ctx->is_active)
2656 return;
2657
2658 if (!event_filter_match(event)) {
2659 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2660 return;
2661 }
2662
2663 /*
2664 * If the event is in a group and isn't the group leader,
2665 * then don't put it on unless the group is on.
2666 */
2667 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2668 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2669 return;
2670 }
2671
2672 task_ctx = cpuctx->task_ctx;
2673 if (ctx->task)
2674 WARN_ON_ONCE(task_ctx != ctx);
2675
2676 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2677 }
2678
2679 /*
2680 * Enable an event.
2681 *
2682 * If event->ctx is a cloned context, callers must make sure that
2683 * every task struct that event->ctx->task could possibly point to
2684 * remains valid. This condition is satisfied when called through
2685 * perf_event_for_each_child or perf_event_for_each as described
2686 * for perf_event_disable.
2687 */
2688 static void _perf_event_enable(struct perf_event *event)
2689 {
2690 struct perf_event_context *ctx = event->ctx;
2691
2692 raw_spin_lock_irq(&ctx->lock);
2693 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2694 event->state < PERF_EVENT_STATE_ERROR) {
2695 raw_spin_unlock_irq(&ctx->lock);
2696 return;
2697 }
2698
2699 /*
2700 * If the event is in error state, clear that first.
2701 *
2702 * That way, if we see the event in error state below, we know that it
2703 * has gone back into error state, as distinct from the task having
2704 * been scheduled away before the cross-call arrived.
2705 */
2706 if (event->state == PERF_EVENT_STATE_ERROR)
2707 event->state = PERF_EVENT_STATE_OFF;
2708 raw_spin_unlock_irq(&ctx->lock);
2709
2710 event_function_call(event, __perf_event_enable, NULL);
2711 }
2712
2713 /*
2714 * See perf_event_disable();
2715 */
2716 void perf_event_enable(struct perf_event *event)
2717 {
2718 struct perf_event_context *ctx;
2719
2720 ctx = perf_event_ctx_lock(event);
2721 _perf_event_enable(event);
2722 perf_event_ctx_unlock(event, ctx);
2723 }
2724 EXPORT_SYMBOL_GPL(perf_event_enable);
2725
2726 struct stop_event_data {
2727 struct perf_event *event;
2728 unsigned int restart;
2729 };
2730
2731 static int __perf_event_stop(void *info)
2732 {
2733 struct stop_event_data *sd = info;
2734 struct perf_event *event = sd->event;
2735
2736 /* if it's already INACTIVE, do nothing */
2737 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2738 return 0;
2739
2740 /* matches smp_wmb() in event_sched_in() */
2741 smp_rmb();
2742
2743 /*
2744 * There is a window with interrupts enabled before we get here,
2745 * so we need to check again lest we try to stop another CPU's event.
2746 */
2747 if (READ_ONCE(event->oncpu) != smp_processor_id())
2748 return -EAGAIN;
2749
2750 event->pmu->stop(event, PERF_EF_UPDATE);
2751
2752 /*
2753 * May race with the actual stop (through perf_pmu_output_stop()),
2754 * but it is only used for events with AUX ring buffer, and such
2755 * events will refuse to restart because of rb::aux_mmap_count==0,
2756 * see comments in perf_aux_output_begin().
2757 *
2758 * Since this is happening on an event-local CPU, no trace is lost
2759 * while restarting.
2760 */
2761 if (sd->restart)
2762 event->pmu->start(event, 0);
2763
2764 return 0;
2765 }
2766
2767 static int perf_event_stop(struct perf_event *event, int restart)
2768 {
2769 struct stop_event_data sd = {
2770 .event = event,
2771 .restart = restart,
2772 };
2773 int ret = 0;
2774
2775 do {
2776 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2777 return 0;
2778
2779 /* matches smp_wmb() in event_sched_in() */
2780 smp_rmb();
2781
2782 /*
2783 * We only want to restart ACTIVE events, so if the event goes
2784 * inactive here (event->oncpu==-1), there's nothing more to do;
2785 * fall through with ret==-ENXIO.
2786 */
2787 ret = cpu_function_call(READ_ONCE(event->oncpu),
2788 __perf_event_stop, &sd);
2789 } while (ret == -EAGAIN);
2790
2791 return ret;
2792 }
2793
2794 /*
2795 * In order to contain the amount of racy and tricky in the address filter
2796 * configuration management, it is a two part process:
2797 *
2798 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2799 * we update the addresses of corresponding vmas in
2800 * event::addr_filters_offs array and bump the event::addr_filters_gen;
2801 * (p2) when an event is scheduled in (pmu::add), it calls
2802 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2803 * if the generation has changed since the previous call.
2804 *
2805 * If (p1) happens while the event is active, we restart it to force (p2).
2806 *
2807 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2808 * pre-existing mappings, called once when new filters arrive via SET_FILTER
2809 * ioctl;
2810 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2811 * registered mapping, called for every new mmap(), with mm::mmap_sem down
2812 * for reading;
2813 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2814 * of exec.
2815 */
2816 void perf_event_addr_filters_sync(struct perf_event *event)
2817 {
2818 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2819
2820 if (!has_addr_filter(event))
2821 return;
2822
2823 raw_spin_lock(&ifh->lock);
2824 if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2825 event->pmu->addr_filters_sync(event);
2826 event->hw.addr_filters_gen = event->addr_filters_gen;
2827 }
2828 raw_spin_unlock(&ifh->lock);
2829 }
2830 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2831
2832 static int _perf_event_refresh(struct perf_event *event, int refresh)
2833 {
2834 /*
2835 * not supported on inherited events
2836 */
2837 if (event->attr.inherit || !is_sampling_event(event))
2838 return -EINVAL;
2839
2840 atomic_add(refresh, &event->event_limit);
2841 _perf_event_enable(event);
2842
2843 return 0;
2844 }
2845
2846 /*
2847 * See perf_event_disable()
2848 */
2849 int perf_event_refresh(struct perf_event *event, int refresh)
2850 {
2851 struct perf_event_context *ctx;
2852 int ret;
2853
2854 ctx = perf_event_ctx_lock(event);
2855 ret = _perf_event_refresh(event, refresh);
2856 perf_event_ctx_unlock(event, ctx);
2857
2858 return ret;
2859 }
2860 EXPORT_SYMBOL_GPL(perf_event_refresh);
2861
2862 static int perf_event_modify_breakpoint(struct perf_event *bp,
2863 struct perf_event_attr *attr)
2864 {
2865 int err;
2866
2867 _perf_event_disable(bp);
2868
2869 err = modify_user_hw_breakpoint_check(bp, attr, true);
2870
2871 if (!bp->attr.disabled)
2872 _perf_event_enable(bp);
2873
2874 return err;
2875 }
2876
2877 static int perf_event_modify_attr(struct perf_event *event,
2878 struct perf_event_attr *attr)
2879 {
2880 if (event->attr.type != attr->type)
2881 return -EINVAL;
2882
2883 switch (event->attr.type) {
2884 case PERF_TYPE_BREAKPOINT:
2885 return perf_event_modify_breakpoint(event, attr);
2886 default:
2887 /* Place holder for future additions. */
2888 return -EOPNOTSUPP;
2889 }
2890 }
2891
2892 static void ctx_sched_out(struct perf_event_context *ctx,
2893 struct perf_cpu_context *cpuctx,
2894 enum event_type_t event_type)
2895 {
2896 struct perf_event *event, *tmp;
2897 int is_active = ctx->is_active;
2898
2899 lockdep_assert_held(&ctx->lock);
2900
2901 if (likely(!ctx->nr_events)) {
2902 /*
2903 * See __perf_remove_from_context().
2904 */
2905 WARN_ON_ONCE(ctx->is_active);
2906 if (ctx->task)
2907 WARN_ON_ONCE(cpuctx->task_ctx);
2908 return;
2909 }
2910
2911 ctx->is_active &= ~event_type;
2912 if (!(ctx->is_active & EVENT_ALL))
2913 ctx->is_active = 0;
2914
2915 if (ctx->task) {
2916 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2917 if (!ctx->is_active)
2918 cpuctx->task_ctx = NULL;
2919 }
2920
2921 /*
2922 * Always update time if it was set; not only when it changes.
2923 * Otherwise we can 'forget' to update time for any but the last
2924 * context we sched out. For example:
2925 *
2926 * ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2927 * ctx_sched_out(.event_type = EVENT_PINNED)
2928 *
2929 * would only update time for the pinned events.
2930 */
2931 if (is_active & EVENT_TIME) {
2932 /* update (and stop) ctx time */
2933 update_context_time(ctx);
2934 update_cgrp_time_from_cpuctx(cpuctx);
2935 }
2936
2937 is_active ^= ctx->is_active; /* changed bits */
2938
2939 if (!ctx->nr_active || !(is_active & EVENT_ALL))
2940 return;
2941
2942 perf_pmu_disable(ctx->pmu);
2943 if (is_active & EVENT_PINNED) {
2944 list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list)
2945 group_sched_out(event, cpuctx, ctx);
2946 }
2947
2948 if (is_active & EVENT_FLEXIBLE) {
2949 list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list)
2950 group_sched_out(event, cpuctx, ctx);
2951 }
2952 perf_pmu_enable(ctx->pmu);
2953 }
2954
2955 /*
2956 * Test whether two contexts are equivalent, i.e. whether they have both been
2957 * cloned from the same version of the same context.
2958 *
2959 * Equivalence is measured using a generation number in the context that is
2960 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2961 * and list_del_event().
2962 */
2963 static int context_equiv(struct perf_event_context *ctx1,
2964 struct perf_event_context *ctx2)
2965 {
2966 lockdep_assert_held(&ctx1->lock);
2967 lockdep_assert_held(&ctx2->lock);
2968
2969 /* Pinning disables the swap optimization */
2970 if (ctx1->pin_count || ctx2->pin_count)
2971 return 0;
2972
2973 /* If ctx1 is the parent of ctx2 */
2974 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2975 return 1;
2976
2977 /* If ctx2 is the parent of ctx1 */
2978 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2979 return 1;
2980
2981 /*
2982 * If ctx1 and ctx2 have the same parent; we flatten the parent
2983 * hierarchy, see perf_event_init_context().
2984 */
2985 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2986 ctx1->parent_gen == ctx2->parent_gen)
2987 return 1;
2988
2989 /* Unmatched */
2990 return 0;
2991 }
2992
2993 static void __perf_event_sync_stat(struct perf_event *event,
2994 struct perf_event *next_event)
2995 {
2996 u64 value;
2997
2998 if (!event->attr.inherit_stat)
2999 return;
3000
3001 /*
3002 * Update the event value, we cannot use perf_event_read()
3003 * because we're in the middle of a context switch and have IRQs
3004 * disabled, which upsets smp_call_function_single(), however
3005 * we know the event must be on the current CPU, therefore we
3006 * don't need to use it.
3007 */
3008 if (event->state == PERF_EVENT_STATE_ACTIVE)
3009 event->pmu->read(event);
3010
3011 perf_event_update_time(event);
3012
3013 /*
3014 * In order to keep per-task stats reliable we need to flip the event
3015 * values when we flip the contexts.
3016 */
3017 value = local64_read(&next_event->count);
3018 value = local64_xchg(&event->count, value);
3019 local64_set(&next_event->count, value);
3020
3021 swap(event->total_time_enabled, next_event->total_time_enabled);
3022 swap(event->total_time_running, next_event->total_time_running);
3023
3024 /*
3025 * Since we swizzled the values, update the user visible data too.
3026 */
3027 perf_event_update_userpage(event);
3028 perf_event_update_userpage(next_event);
3029 }
3030
3031 static void perf_event_sync_stat(struct perf_event_context *ctx,
3032 struct perf_event_context *next_ctx)
3033 {
3034 struct perf_event *event, *next_event;
3035
3036 if (!ctx->nr_stat)
3037 return;
3038
3039 update_context_time(ctx);
3040
3041 event = list_first_entry(&ctx->event_list,
3042 struct perf_event, event_entry);
3043
3044 next_event = list_first_entry(&next_ctx->event_list,
3045 struct perf_event, event_entry);
3046
3047 while (&event->event_entry != &ctx->event_list &&
3048 &next_event->event_entry != &next_ctx->event_list) {
3049
3050 __perf_event_sync_stat(event, next_event);
3051
3052 event = list_next_entry(event, event_entry);
3053 next_event = list_next_entry(next_event, event_entry);
3054 }
3055 }
3056
3057 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
3058 struct task_struct *next)
3059 {
3060 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
3061 struct perf_event_context *next_ctx;
3062 struct perf_event_context *parent, *next_parent;
3063 struct perf_cpu_context *cpuctx;
3064 int do_switch = 1;
3065
3066 if (likely(!ctx))
3067 return;
3068
3069 cpuctx = __get_cpu_context(ctx);
3070 if (!cpuctx->task_ctx)
3071 return;
3072
3073 rcu_read_lock();
3074 next_ctx = next->perf_event_ctxp[ctxn];
3075 if (!next_ctx)
3076 goto unlock;
3077
3078 parent = rcu_dereference(ctx->parent_ctx);
3079 next_parent = rcu_dereference(next_ctx->parent_ctx);
3080
3081 /* If neither context have a parent context; they cannot be clones. */
3082 if (!parent && !next_parent)
3083 goto unlock;
3084
3085 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3086 /*
3087 * Looks like the two contexts are clones, so we might be
3088 * able to optimize the context switch. We lock both
3089 * contexts and check that they are clones under the
3090 * lock (including re-checking that neither has been
3091 * uncloned in the meantime). It doesn't matter which
3092 * order we take the locks because no other cpu could
3093 * be trying to lock both of these tasks.
3094 */
3095 raw_spin_lock(&ctx->lock);
3096 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3097 if (context_equiv(ctx, next_ctx)) {
3098 WRITE_ONCE(ctx->task, next);
3099 WRITE_ONCE(next_ctx->task, task);
3100
3101 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
3102
3103 /*
3104 * RCU_INIT_POINTER here is safe because we've not
3105 * modified the ctx and the above modification of
3106 * ctx->task and ctx->task_ctx_data are immaterial
3107 * since those values are always verified under
3108 * ctx->lock which we're now holding.
3109 */
3110 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
3111 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
3112
3113 do_switch = 0;
3114
3115 perf_event_sync_stat(ctx, next_ctx);
3116 }
3117 raw_spin_unlock(&next_ctx->lock);
3118 raw_spin_unlock(&ctx->lock);
3119 }
3120 unlock:
3121 rcu_read_unlock();
3122
3123 if (do_switch) {
3124 raw_spin_lock(&ctx->lock);
3125 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
3126 raw_spin_unlock(&ctx->lock);
3127 }
3128 }
3129
3130 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3131
3132 void perf_sched_cb_dec(struct pmu *pmu)
3133 {
3134 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3135
3136 this_cpu_dec(perf_sched_cb_usages);
3137
3138 if (!--cpuctx->sched_cb_usage)
3139 list_del(&cpuctx->sched_cb_entry);
3140 }
3141
3142
3143 void perf_sched_cb_inc(struct pmu *pmu)
3144 {
3145 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3146
3147 if (!cpuctx->sched_cb_usage++)
3148 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3149
3150 this_cpu_inc(perf_sched_cb_usages);
3151 }
3152
3153 /*
3154 * This function provides the context switch callback to the lower code
3155 * layer. It is invoked ONLY when the context switch callback is enabled.
3156 *
3157 * This callback is relevant even to per-cpu events; for example multi event
3158 * PEBS requires this to provide PID/TID information. This requires we flush
3159 * all queued PEBS records before we context switch to a new task.
3160 */
3161 static void perf_pmu_sched_task(struct task_struct *prev,
3162 struct task_struct *next,
3163 bool sched_in)
3164 {
3165 struct perf_cpu_context *cpuctx;
3166 struct pmu *pmu;
3167
3168 if (prev == next)
3169 return;
3170
3171 list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
3172 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
3173
3174 if (WARN_ON_ONCE(!pmu->sched_task))
3175 continue;
3176
3177 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3178 perf_pmu_disable(pmu);
3179
3180 pmu->sched_task(cpuctx->task_ctx, sched_in);
3181
3182 perf_pmu_enable(pmu);
3183 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3184 }
3185 }
3186
3187 static void perf_event_switch(struct task_struct *task,
3188 struct task_struct *next_prev, bool sched_in);
3189
3190 #define for_each_task_context_nr(ctxn) \
3191 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3192
3193 /*
3194 * Called from scheduler to remove the events of the current task,
3195 * with interrupts disabled.
3196 *
3197 * We stop each event and update the event value in event->count.
3198 *
3199 * This does not protect us against NMI, but disable()
3200 * sets the disabled bit in the control field of event _before_
3201 * accessing the event control register. If a NMI hits, then it will
3202 * not restart the event.
3203 */
3204 void __perf_event_task_sched_out(struct task_struct *task,
3205 struct task_struct *next)
3206 {
3207 int ctxn;
3208
3209 if (__this_cpu_read(perf_sched_cb_usages))
3210 perf_pmu_sched_task(task, next, false);
3211
3212 if (atomic_read(&nr_switch_events))
3213 perf_event_switch(task, next, false);
3214
3215 for_each_task_context_nr(ctxn)
3216 perf_event_context_sched_out(task, ctxn, next);
3217
3218 /*
3219 * if cgroup events exist on this CPU, then we need
3220 * to check if we have to switch out PMU state.
3221 * cgroup event are system-wide mode only
3222 */
3223 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3224 perf_cgroup_sched_out(task, next);
3225 }
3226
3227 /*
3228 * Called with IRQs disabled
3229 */
3230 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3231 enum event_type_t event_type)
3232 {
3233 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3234 }
3235
3236 static int visit_groups_merge(struct perf_event_groups *groups, int cpu,
3237 int (*func)(struct perf_event *, void *), void *data)
3238 {
3239 struct perf_event **evt, *evt1, *evt2;
3240 int ret;
3241
3242 evt1 = perf_event_groups_first(groups, -1);
3243 evt2 = perf_event_groups_first(groups, cpu);
3244
3245 while (evt1 || evt2) {
3246 if (evt1 && evt2) {
3247 if (evt1->group_index < evt2->group_index)
3248 evt = &evt1;
3249 else
3250 evt = &evt2;
3251 } else if (evt1) {
3252 evt = &evt1;
3253 } else {
3254 evt = &evt2;
3255 }
3256
3257 ret = func(*evt, data);
3258 if (ret)
3259 return ret;
3260
3261 *evt = perf_event_groups_next(*evt);
3262 }
3263
3264 return 0;
3265 }
3266
3267 struct sched_in_data {
3268 struct perf_event_context *ctx;
3269 struct perf_cpu_context *cpuctx;
3270 int can_add_hw;
3271 };
3272
3273 static int pinned_sched_in(struct perf_event *event, void *data)
3274 {
3275 struct sched_in_data *sid = data;
3276
3277 if (event->state <= PERF_EVENT_STATE_OFF)
3278 return 0;
3279
3280 if (!event_filter_match(event))
3281 return 0;
3282
3283 if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) {
3284 if (!group_sched_in(event, sid->cpuctx, sid->ctx))
3285 list_add_tail(&event->active_list, &sid->ctx->pinned_active);
3286 }
3287
3288 /*
3289 * If this pinned group hasn't been scheduled,
3290 * put it in error state.
3291 */
3292 if (event->state == PERF_EVENT_STATE_INACTIVE)
3293 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3294
3295 return 0;
3296 }
3297
3298 static int flexible_sched_in(struct perf_event *event, void *data)
3299 {
3300 struct sched_in_data *sid = data;
3301
3302 if (event->state <= PERF_EVENT_STATE_OFF)
3303 return 0;
3304
3305 if (!event_filter_match(event))
3306 return 0;
3307
3308 if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) {
3309 if (!group_sched_in(event, sid->cpuctx, sid->ctx))
3310 list_add_tail(&event->active_list, &sid->ctx->flexible_active);
3311 else
3312 sid->can_add_hw = 0;
3313 }
3314
3315 return 0;
3316 }
3317
3318 static void
3319 ctx_pinned_sched_in(struct perf_event_context *ctx,
3320 struct perf_cpu_context *cpuctx)
3321 {
3322 struct sched_in_data sid = {
3323 .ctx = ctx,
3324 .cpuctx = cpuctx,
3325 .can_add_hw = 1,
3326 };
3327
3328 visit_groups_merge(&ctx->pinned_groups,
3329 smp_processor_id(),
3330 pinned_sched_in, &sid);
3331 }
3332
3333 static void
3334 ctx_flexible_sched_in(struct perf_event_context *ctx,
3335 struct perf_cpu_context *cpuctx)
3336 {
3337 struct sched_in_data sid = {
3338 .ctx = ctx,
3339 .cpuctx = cpuctx,
3340 .can_add_hw = 1,
3341 };
3342
3343 visit_groups_merge(&ctx->flexible_groups,
3344 smp_processor_id(),
3345 flexible_sched_in, &sid);
3346 }
3347
3348 static void
3349 ctx_sched_in(struct perf_event_context *ctx,
3350 struct perf_cpu_context *cpuctx,
3351 enum event_type_t event_type,
3352 struct task_struct *task)
3353 {
3354 int is_active = ctx->is_active;
3355 u64 now;
3356
3357 lockdep_assert_held(&ctx->lock);
3358
3359 if (likely(!ctx->nr_events))
3360 return;
3361
3362 ctx->is_active |= (event_type | EVENT_TIME);
3363 if (ctx->task) {
3364 if (!is_active)
3365 cpuctx->task_ctx = ctx;
3366 else
3367 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3368 }
3369
3370 is_active ^= ctx->is_active; /* changed bits */
3371
3372 if (is_active & EVENT_TIME) {
3373 /* start ctx time */
3374 now = perf_clock();
3375 ctx->timestamp = now;
3376 perf_cgroup_set_timestamp(task, ctx);
3377 }
3378
3379 /*
3380 * First go through the list and put on any pinned groups
3381 * in order to give them the best chance of going on.
3382 */
3383 if (is_active & EVENT_PINNED)
3384 ctx_pinned_sched_in(ctx, cpuctx);
3385
3386 /* Then walk through the lower prio flexible groups */
3387 if (is_active & EVENT_FLEXIBLE)
3388 ctx_flexible_sched_in(ctx, cpuctx);
3389 }
3390
3391 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3392 enum event_type_t event_type,
3393 struct task_struct *task)
3394 {
3395 struct perf_event_context *ctx = &cpuctx->ctx;
3396
3397 ctx_sched_in(ctx, cpuctx, event_type, task);
3398 }
3399
3400 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3401 struct task_struct *task)
3402 {
3403 struct perf_cpu_context *cpuctx;
3404
3405 cpuctx = __get_cpu_context(ctx);
3406 if (cpuctx->task_ctx == ctx)
3407 return;
3408
3409 perf_ctx_lock(cpuctx, ctx);
3410 /*
3411 * We must check ctx->nr_events while holding ctx->lock, such
3412 * that we serialize against perf_install_in_context().
3413 */
3414 if (!ctx->nr_events)
3415 goto unlock;
3416
3417 perf_pmu_disable(ctx->pmu);
3418 /*
3419 * We want to keep the following priority order:
3420 * cpu pinned (that don't need to move), task pinned,
3421 * cpu flexible, task flexible.
3422 *
3423 * However, if task's ctx is not carrying any pinned
3424 * events, no need to flip the cpuctx's events around.
3425 */
3426 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
3427 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3428 perf_event_sched_in(cpuctx, ctx, task);
3429 perf_pmu_enable(ctx->pmu);
3430
3431 unlock:
3432 perf_ctx_unlock(cpuctx, ctx);
3433 }
3434
3435 /*
3436 * Called from scheduler to add the events of the current task
3437 * with interrupts disabled.
3438 *
3439 * We restore the event value and then enable it.
3440 *
3441 * This does not protect us against NMI, but enable()
3442 * sets the enabled bit in the control field of event _before_
3443 * accessing the event control register. If a NMI hits, then it will
3444 * keep the event running.
3445 */
3446 void __perf_event_task_sched_in(struct task_struct *prev,
3447 struct task_struct *task)
3448 {
3449 struct perf_event_context *ctx;
3450 int ctxn;
3451
3452 /*
3453 * If cgroup events exist on this CPU, then we need to check if we have
3454 * to switch in PMU state; cgroup event are system-wide mode only.
3455 *
3456 * Since cgroup events are CPU events, we must schedule these in before
3457 * we schedule in the task events.
3458 */
3459 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3460 perf_cgroup_sched_in(prev, task);
3461
3462 for_each_task_context_nr(ctxn) {
3463 ctx = task->perf_event_ctxp[ctxn];
3464 if (likely(!ctx))
3465 continue;
3466
3467 perf_event_context_sched_in(ctx, task);
3468 }
3469
3470 if (atomic_read(&nr_switch_events))
3471 perf_event_switch(task, prev, true);
3472
3473 if (__this_cpu_read(perf_sched_cb_usages))
3474 perf_pmu_sched_task(prev, task, true);
3475 }
3476
3477 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3478 {
3479 u64 frequency = event->attr.sample_freq;
3480 u64 sec = NSEC_PER_SEC;
3481 u64 divisor, dividend;
3482
3483 int count_fls, nsec_fls, frequency_fls, sec_fls;
3484
3485 count_fls = fls64(count);
3486 nsec_fls = fls64(nsec);
3487 frequency_fls = fls64(frequency);
3488 sec_fls = 30;
3489
3490 /*
3491 * We got @count in @nsec, with a target of sample_freq HZ
3492 * the target period becomes:
3493 *
3494 * @count * 10^9
3495 * period = -------------------
3496 * @nsec * sample_freq
3497 *
3498 */
3499
3500 /*
3501 * Reduce accuracy by one bit such that @a and @b converge
3502 * to a similar magnitude.
3503 */
3504 #define REDUCE_FLS(a, b) \
3505 do { \
3506 if (a##_fls > b##_fls) { \
3507 a >>= 1; \
3508 a##_fls--; \
3509 } else { \
3510 b >>= 1; \
3511 b##_fls--; \
3512 } \
3513 } while (0)
3514
3515 /*
3516 * Reduce accuracy until either term fits in a u64, then proceed with
3517 * the other, so that finally we can do a u64/u64 division.
3518 */
3519 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3520 REDUCE_FLS(nsec, frequency);
3521 REDUCE_FLS(sec, count);
3522 }
3523
3524 if (count_fls + sec_fls > 64) {
3525 divisor = nsec * frequency;
3526
3527 while (count_fls + sec_fls > 64) {
3528 REDUCE_FLS(count, sec);
3529 divisor >>= 1;
3530 }
3531
3532 dividend = count * sec;
3533 } else {
3534 dividend = count * sec;
3535
3536 while (nsec_fls + frequency_fls > 64) {
3537 REDUCE_FLS(nsec, frequency);
3538 dividend >>= 1;
3539 }
3540
3541 divisor = nsec * frequency;
3542 }
3543
3544 if (!divisor)
3545 return dividend;
3546
3547 return div64_u64(dividend, divisor);
3548 }
3549
3550 static DEFINE_PER_CPU(int, perf_throttled_count);
3551 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3552
3553 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3554 {
3555 struct hw_perf_event *hwc = &event->hw;
3556 s64 period, sample_period;
3557 s64 delta;
3558
3559 period = perf_calculate_period(event, nsec, count);
3560
3561 delta = (s64)(period - hwc->sample_period);
3562 delta = (delta + 7) / 8; /* low pass filter */
3563
3564 sample_period = hwc->sample_period + delta;
3565
3566 if (!sample_period)
3567 sample_period = 1;
3568
3569 hwc->sample_period = sample_period;
3570
3571 if (local64_read(&hwc->period_left) > 8*sample_period) {
3572 if (disable)
3573 event->pmu->stop(event, PERF_EF_UPDATE);
3574
3575 local64_set(&hwc->period_left, 0);
3576
3577 if (disable)
3578 event->pmu->start(event, PERF_EF_RELOAD);
3579 }
3580 }
3581
3582 /*
3583 * combine freq adjustment with unthrottling to avoid two passes over the
3584 * events. At the same time, make sure, having freq events does not change
3585 * the rate of unthrottling as that would introduce bias.
3586 */
3587 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3588 int needs_unthr)
3589 {
3590 struct perf_event *event;
3591 struct hw_perf_event *hwc;
3592 u64 now, period = TICK_NSEC;
3593 s64 delta;
3594
3595 /*
3596 * only need to iterate over all events iff:
3597 * - context have events in frequency mode (needs freq adjust)
3598 * - there are events to unthrottle on this cpu
3599 */
3600 if (!(ctx->nr_freq || needs_unthr))
3601 return;
3602
3603 raw_spin_lock(&ctx->lock);
3604 perf_pmu_disable(ctx->pmu);
3605
3606 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3607 if (event->state != PERF_EVENT_STATE_ACTIVE)
3608 continue;
3609
3610 if (!event_filter_match(event))
3611 continue;
3612
3613 perf_pmu_disable(event->pmu);
3614
3615 hwc = &event->hw;
3616
3617 if (hwc->interrupts == MAX_INTERRUPTS) {
3618 hwc->interrupts = 0;
3619 perf_log_throttle(event, 1);
3620 event->pmu->start(event, 0);
3621 }
3622
3623 if (!event->attr.freq || !event->attr.sample_freq)
3624 goto next;
3625
3626 /*
3627 * stop the event and update event->count
3628 */
3629 event->pmu->stop(event, PERF_EF_UPDATE);
3630
3631 now = local64_read(&event->count);
3632 delta = now - hwc->freq_count_stamp;
3633 hwc->freq_count_stamp = now;
3634
3635 /*
3636 * restart the event
3637 * reload only if value has changed
3638 * we have stopped the event so tell that
3639 * to perf_adjust_period() to avoid stopping it
3640 * twice.
3641 */
3642 if (delta > 0)
3643 perf_adjust_period(event, period, delta, false);
3644
3645 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3646 next:
3647 perf_pmu_enable(event->pmu);
3648 }
3649
3650 perf_pmu_enable(ctx->pmu);
3651 raw_spin_unlock(&ctx->lock);
3652 }
3653
3654 /*
3655 * Move @event to the tail of the @ctx's elegible events.
3656 */
3657 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
3658 {
3659 /*
3660 * Rotate the first entry last of non-pinned groups. Rotation might be
3661 * disabled by the inheritance code.
3662 */
3663 if (ctx->rotate_disable)
3664 return;
3665
3666 perf_event_groups_delete(&ctx->flexible_groups, event);
3667 perf_event_groups_insert(&ctx->flexible_groups, event);
3668 }
3669
3670 static inline struct perf_event *
3671 ctx_first_active(struct perf_event_context *ctx)
3672 {
3673 return list_first_entry_or_null(&ctx->flexible_active,
3674 struct perf_event, active_list);
3675 }
3676
3677 static bool perf_rotate_context(struct perf_cpu_context *cpuctx)
3678 {
3679 struct perf_event *cpu_event = NULL, *task_event = NULL;
3680 bool cpu_rotate = false, task_rotate = false;
3681 struct perf_event_context *ctx = NULL;
3682
3683 /*
3684 * Since we run this from IRQ context, nobody can install new
3685 * events, thus the event count values are stable.
3686 */
3687
3688 if (cpuctx->ctx.nr_events) {
3689 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3690 cpu_rotate = true;
3691 }
3692
3693 ctx = cpuctx->task_ctx;
3694 if (ctx && ctx->nr_events) {
3695 if (ctx->nr_events != ctx->nr_active)
3696 task_rotate = true;
3697 }
3698
3699 if (!(cpu_rotate || task_rotate))
3700 return false;
3701
3702 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3703 perf_pmu_disable(cpuctx->ctx.pmu);
3704
3705 if (task_rotate)
3706 task_event = ctx_first_active(ctx);
3707 if (cpu_rotate)
3708 cpu_event = ctx_first_active(&cpuctx->ctx);
3709
3710 /*
3711 * As per the order given at ctx_resched() first 'pop' task flexible
3712 * and then, if needed CPU flexible.
3713 */
3714 if (task_event || (ctx && cpu_event))
3715 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3716 if (cpu_event)
3717 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3718
3719 if (task_event)
3720 rotate_ctx(ctx, task_event);
3721 if (cpu_event)
3722 rotate_ctx(&cpuctx->ctx, cpu_event);
3723
3724 perf_event_sched_in(cpuctx, ctx, current);
3725
3726 perf_pmu_enable(cpuctx->ctx.pmu);
3727 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3728
3729 return true;
3730 }
3731
3732 void perf_event_task_tick(void)
3733 {
3734 struct list_head *head = this_cpu_ptr(&active_ctx_list);
3735 struct perf_event_context *ctx, *tmp;
3736 int throttled;
3737
3738 lockdep_assert_irqs_disabled();
3739
3740 __this_cpu_inc(perf_throttled_seq);
3741 throttled = __this_cpu_xchg(perf_throttled_count, 0);
3742 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3743
3744 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3745 perf_adjust_freq_unthr_context(ctx, throttled);
3746 }
3747
3748 static int event_enable_on_exec(struct perf_event *event,
3749 struct perf_event_context *ctx)
3750 {
3751 if (!event->attr.enable_on_exec)
3752 return 0;
3753
3754 event->attr.enable_on_exec = 0;
3755 if (event->state >= PERF_EVENT_STATE_INACTIVE)
3756 return 0;
3757
3758 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
3759
3760 return 1;
3761 }
3762
3763 /*
3764 * Enable all of a task's events that have been marked enable-on-exec.
3765 * This expects task == current.
3766 */
3767 static void perf_event_enable_on_exec(int ctxn)
3768 {
3769 struct perf_event_context *ctx, *clone_ctx = NULL;
3770 enum event_type_t event_type = 0;
3771 struct perf_cpu_context *cpuctx;
3772 struct perf_event *event;
3773 unsigned long flags;
3774 int enabled = 0;
3775
3776 local_irq_save(flags);
3777 ctx = current->perf_event_ctxp[ctxn];
3778 if (!ctx || !ctx->nr_events)
3779 goto out;
3780
3781 cpuctx = __get_cpu_context(ctx);
3782 perf_ctx_lock(cpuctx, ctx);
3783 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3784 list_for_each_entry(event, &ctx->event_list, event_entry) {
3785 enabled |= event_enable_on_exec(event, ctx);
3786 event_type |= get_event_type(event);
3787 }
3788
3789 /*
3790 * Unclone and reschedule this context if we enabled any event.
3791 */
3792 if (enabled) {
3793 clone_ctx = unclone_ctx(ctx);
3794 ctx_resched(cpuctx, ctx, event_type);
3795 } else {
3796 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3797 }
3798 perf_ctx_unlock(cpuctx, ctx);
3799
3800 out:
3801 local_irq_restore(flags);
3802
3803 if (clone_ctx)
3804 put_ctx(clone_ctx);
3805 }
3806
3807 struct perf_read_data {
3808 struct perf_event *event;
3809 bool group;
3810 int ret;
3811 };
3812
3813 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
3814 {
3815 u16 local_pkg, event_pkg;
3816
3817 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
3818 int local_cpu = smp_processor_id();
3819
3820 event_pkg = topology_physical_package_id(event_cpu);
3821 local_pkg = topology_physical_package_id(local_cpu);
3822
3823 if (event_pkg == local_pkg)
3824 return local_cpu;
3825 }
3826
3827 return event_cpu;
3828 }
3829
3830 /*
3831 * Cross CPU call to read the hardware event
3832 */
3833 static void __perf_event_read(void *info)
3834 {
3835 struct perf_read_data *data = info;
3836 struct perf_event *sub, *event = data->event;
3837 struct perf_event_context *ctx = event->ctx;
3838 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3839 struct pmu *pmu = event->pmu;
3840
3841 /*
3842 * If this is a task context, we need to check whether it is
3843 * the current task context of this cpu. If not it has been
3844 * scheduled out before the smp call arrived. In that case
3845 * event->count would have been updated to a recent sample
3846 * when the event was scheduled out.
3847 */
3848 if (ctx->task && cpuctx->task_ctx != ctx)
3849 return;
3850
3851 raw_spin_lock(&ctx->lock);
3852 if (ctx->is_active & EVENT_TIME) {
3853 update_context_time(ctx);
3854 update_cgrp_time_from_event(event);
3855 }
3856
3857 perf_event_update_time(event);
3858 if (data->group)
3859 perf_event_update_sibling_time(event);
3860
3861 if (event->state != PERF_EVENT_STATE_ACTIVE)
3862 goto unlock;
3863
3864 if (!data->group) {
3865 pmu->read(event);
3866 data->ret = 0;
3867 goto unlock;
3868 }
3869
3870 pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3871
3872 pmu->read(event);
3873
3874 for_each_sibling_event(sub, event) {
3875 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3876 /*
3877 * Use sibling's PMU rather than @event's since
3878 * sibling could be on different (eg: software) PMU.
3879 */
3880 sub->pmu->read(sub);
3881 }
3882 }
3883
3884 data->ret = pmu->commit_txn(pmu);
3885
3886 unlock:
3887 raw_spin_unlock(&ctx->lock);
3888 }
3889
3890 static inline u64 perf_event_count(struct perf_event *event)
3891 {
3892 return local64_read(&event->count) + atomic64_read(&event->child_count);
3893 }
3894
3895 /*
3896 * NMI-safe method to read a local event, that is an event that
3897 * is:
3898 * - either for the current task, or for this CPU
3899 * - does not have inherit set, for inherited task events
3900 * will not be local and we cannot read them atomically
3901 * - must not have a pmu::count method
3902 */
3903 int perf_event_read_local(struct perf_event *event, u64 *value,
3904 u64 *enabled, u64 *running)
3905 {
3906 unsigned long flags;
3907 int ret = 0;
3908
3909 /*
3910 * Disabling interrupts avoids all counter scheduling (context
3911 * switches, timer based rotation and IPIs).
3912 */
3913 local_irq_save(flags);
3914
3915 /*
3916 * It must not be an event with inherit set, we cannot read
3917 * all child counters from atomic context.
3918 */
3919 if (event->attr.inherit) {
3920 ret = -EOPNOTSUPP;
3921 goto out;
3922 }
3923
3924 /* If this is a per-task event, it must be for current */
3925 if ((event->attach_state & PERF_ATTACH_TASK) &&
3926 event->hw.target != current) {
3927 ret = -EINVAL;
3928 goto out;
3929 }
3930
3931 /* If this is a per-CPU event, it must be for this CPU */
3932 if (!(event->attach_state & PERF_ATTACH_TASK) &&
3933 event->cpu != smp_processor_id()) {
3934 ret = -EINVAL;
3935 goto out;
3936 }
3937
3938 /* If this is a pinned event it must be running on this CPU */
3939 if (event->attr.pinned && event->oncpu != smp_processor_id()) {
3940 ret = -EBUSY;
3941 goto out;
3942 }
3943
3944 /*
3945 * If the event is currently on this CPU, its either a per-task event,
3946 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3947 * oncpu == -1).
3948 */
3949 if (event->oncpu == smp_processor_id())
3950 event->pmu->read(event);
3951
3952 *value = local64_read(&event->count);
3953 if (enabled || running) {
3954 u64 now = event->shadow_ctx_time + perf_clock();
3955 u64 __enabled, __running;
3956
3957 __perf_update_times(event, now, &__enabled, &__running);
3958 if (enabled)
3959 *enabled = __enabled;
3960 if (running)
3961 *running = __running;
3962 }
3963 out:
3964 local_irq_restore(flags);
3965
3966 return ret;
3967 }
3968
3969 static int perf_event_read(struct perf_event *event, bool group)
3970 {
3971 enum perf_event_state state = READ_ONCE(event->state);
3972 int event_cpu, ret = 0;
3973
3974 /*
3975 * If event is enabled and currently active on a CPU, update the
3976 * value in the event structure:
3977 */
3978 again:
3979 if (state == PERF_EVENT_STATE_ACTIVE) {
3980 struct perf_read_data data;
3981
3982 /*
3983 * Orders the ->state and ->oncpu loads such that if we see
3984 * ACTIVE we must also see the right ->oncpu.
3985 *
3986 * Matches the smp_wmb() from event_sched_in().
3987 */
3988 smp_rmb();
3989
3990 event_cpu = READ_ONCE(event->oncpu);
3991 if ((unsigned)event_cpu >= nr_cpu_ids)
3992 return 0;
3993
3994 data = (struct perf_read_data){
3995 .event = event,
3996 .group = group,
3997 .ret = 0,
3998 };
3999
4000 preempt_disable();
4001 event_cpu = __perf_event_read_cpu(event, event_cpu);
4002
4003 /*
4004 * Purposely ignore the smp_call_function_single() return
4005 * value.
4006 *
4007 * If event_cpu isn't a valid CPU it means the event got
4008 * scheduled out and that will have updated the event count.
4009 *
4010 * Therefore, either way, we'll have an up-to-date event count
4011 * after this.
4012 */
4013 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4014 preempt_enable();
4015 ret = data.ret;
4016
4017 } else if (state == PERF_EVENT_STATE_INACTIVE) {
4018 struct perf_event_context *ctx = event->ctx;
4019 unsigned long flags;
4020
4021 raw_spin_lock_irqsave(&ctx->lock, flags);
4022 state = event->state;
4023 if (state != PERF_EVENT_STATE_INACTIVE) {
4024 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4025 goto again;
4026 }
4027
4028 /*
4029 * May read while context is not active (e.g., thread is
4030 * blocked), in that case we cannot update context time
4031 */
4032 if (ctx->is_active & EVENT_TIME) {
4033 update_context_time(ctx);
4034 update_cgrp_time_from_event(event);
4035 }
4036
4037 perf_event_update_time(event);
4038 if (group)
4039 perf_event_update_sibling_time(event);
4040 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4041 }
4042
4043 return ret;
4044 }
4045
4046 /*
4047 * Initialize the perf_event context in a task_struct:
4048 */
4049 static void __perf_event_init_context(struct perf_event_context *ctx)
4050 {
4051 raw_spin_lock_init(&ctx->lock);
4052 mutex_init(&ctx->mutex);
4053 INIT_LIST_HEAD(&ctx->active_ctx_list);
4054 perf_event_groups_init(&ctx->pinned_groups);
4055 perf_event_groups_init(&ctx->flexible_groups);
4056 INIT_LIST_HEAD(&ctx->event_list);
4057 INIT_LIST_HEAD(&ctx->pinned_active);
4058 INIT_LIST_HEAD(&ctx->flexible_active);
4059 atomic_set(&ctx->refcount, 1);
4060 }
4061
4062 static struct perf_event_context *
4063 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
4064 {
4065 struct perf_event_context *ctx;
4066
4067 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4068 if (!ctx)
4069 return NULL;
4070
4071 __perf_event_init_context(ctx);
4072 if (task) {
4073 ctx->task = task;
4074 get_task_struct(task);
4075 }
4076 ctx->pmu = pmu;
4077
4078 return ctx;
4079 }
4080
4081 static struct task_struct *
4082 find_lively_task_by_vpid(pid_t vpid)
4083 {
4084 struct task_struct *task;
4085
4086 rcu_read_lock();
4087 if (!vpid)
4088 task = current;
4089 else
4090 task = find_task_by_vpid(vpid);
4091 if (task)
4092 get_task_struct(task);
4093 rcu_read_unlock();
4094
4095 if (!task)
4096 return ERR_PTR(-ESRCH);
4097
4098 return task;
4099 }
4100
4101 /*
4102 * Returns a matching context with refcount and pincount.
4103 */
4104 static struct perf_event_context *
4105 find_get_context(struct pmu *pmu, struct task_struct *task,
4106 struct perf_event *event)
4107 {
4108 struct perf_event_context *ctx, *clone_ctx = NULL;
4109 struct perf_cpu_context *cpuctx;
4110 void *task_ctx_data = NULL;
4111 unsigned long flags;
4112 int ctxn, err;
4113 int cpu = event->cpu;
4114
4115 if (!task) {
4116 /* Must be root to operate on a CPU event: */
4117 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
4118 return ERR_PTR(-EACCES);
4119
4120 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
4121 ctx = &cpuctx->ctx;
4122 get_ctx(ctx);
4123 ++ctx->pin_count;
4124
4125 return ctx;
4126 }
4127
4128 err = -EINVAL;
4129 ctxn = pmu->task_ctx_nr;
4130 if (ctxn < 0)
4131 goto errout;
4132
4133 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4134 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
4135 if (!task_ctx_data) {
4136 err = -ENOMEM;
4137 goto errout;
4138 }
4139 }
4140
4141 retry:
4142 ctx = perf_lock_task_context(task, ctxn, &flags);
4143 if (ctx) {
4144 clone_ctx = unclone_ctx(ctx);
4145 ++ctx->pin_count;
4146
4147 if (task_ctx_data && !ctx->task_ctx_data) {
4148 ctx->task_ctx_data = task_ctx_data;
4149 task_ctx_data = NULL;
4150 }
4151 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4152
4153 if (clone_ctx)
4154 put_ctx(clone_ctx);
4155 } else {
4156 ctx = alloc_perf_context(pmu, task);
4157 err = -ENOMEM;
4158 if (!ctx)
4159 goto errout;
4160
4161 if (task_ctx_data) {
4162 ctx->task_ctx_data = task_ctx_data;
4163 task_ctx_data = NULL;
4164 }
4165
4166 err = 0;
4167 mutex_lock(&task->perf_event_mutex);
4168 /*
4169 * If it has already passed perf_event_exit_task().
4170 * we must see PF_EXITING, it takes this mutex too.
4171 */
4172 if (task->flags & PF_EXITING)
4173 err = -ESRCH;
4174 else if (task->perf_event_ctxp[ctxn])
4175 err = -EAGAIN;
4176 else {
4177 get_ctx(ctx);
4178 ++ctx->pin_count;
4179 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
4180 }
4181 mutex_unlock(&task->perf_event_mutex);
4182
4183 if (unlikely(err)) {
4184 put_ctx(ctx);
4185
4186 if (err == -EAGAIN)
4187 goto retry;
4188 goto errout;
4189 }
4190 }
4191
4192 kfree(task_ctx_data);
4193 return ctx;
4194
4195 errout:
4196 kfree(task_ctx_data);
4197 return ERR_PTR(err);
4198 }
4199
4200 static void perf_event_free_filter(struct perf_event *event);
4201 static void perf_event_free_bpf_prog(struct perf_event *event);
4202
4203 static void free_event_rcu(struct rcu_head *head)
4204 {
4205 struct perf_event *event;
4206
4207 event = container_of(head, struct perf_event, rcu_head);
4208 if (event->ns)
4209 put_pid_ns(event->ns);
4210 perf_event_free_filter(event);
4211 kfree(event);
4212 }
4213
4214 static void ring_buffer_attach(struct perf_event *event,
4215 struct ring_buffer *rb);
4216
4217 static void detach_sb_event(struct perf_event *event)
4218 {
4219 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4220
4221 raw_spin_lock(&pel->lock);
4222 list_del_rcu(&event->sb_list);
4223 raw_spin_unlock(&pel->lock);
4224 }
4225
4226 static bool is_sb_event(struct perf_event *event)
4227 {
4228 struct perf_event_attr *attr = &event->attr;
4229
4230 if (event->parent)
4231 return false;
4232
4233 if (event->attach_state & PERF_ATTACH_TASK)
4234 return false;
4235
4236 if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4237 attr->comm || attr->comm_exec ||
4238 attr->task ||
4239 attr->context_switch)
4240 return true;
4241 return false;
4242 }
4243
4244 static void unaccount_pmu_sb_event(struct perf_event *event)
4245 {
4246 if (is_sb_event(event))
4247 detach_sb_event(event);
4248 }
4249
4250 static void unaccount_event_cpu(struct perf_event *event, int cpu)
4251 {
4252 if (event->parent)
4253 return;
4254
4255 if (is_cgroup_event(event))
4256 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4257 }
4258
4259 #ifdef CONFIG_NO_HZ_FULL
4260 static DEFINE_SPINLOCK(nr_freq_lock);
4261 #endif
4262
4263 static void unaccount_freq_event_nohz(void)
4264 {
4265 #ifdef CONFIG_NO_HZ_FULL
4266 spin_lock(&nr_freq_lock);
4267 if (atomic_dec_and_test(&nr_freq_events))
4268 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4269 spin_unlock(&nr_freq_lock);
4270 #endif
4271 }
4272
4273 static void unaccount_freq_event(void)
4274 {
4275 if (tick_nohz_full_enabled())
4276 unaccount_freq_event_nohz();
4277 else
4278 atomic_dec(&nr_freq_events);
4279 }
4280
4281 static void unaccount_event(struct perf_event *event)
4282 {
4283 bool dec = false;
4284
4285 if (event->parent)
4286 return;
4287
4288 if (event->attach_state & PERF_ATTACH_TASK)
4289 dec = true;
4290 if (event->attr.mmap || event->attr.mmap_data)
4291 atomic_dec(&nr_mmap_events);
4292 if (event->attr.comm)
4293 atomic_dec(&nr_comm_events);
4294 if (event->attr.namespaces)
4295 atomic_dec(&nr_namespaces_events);
4296 if (event->attr.task)
4297 atomic_dec(&nr_task_events);
4298 if (event->attr.freq)
4299 unaccount_freq_event();
4300 if (event->attr.context_switch) {
4301 dec = true;
4302 atomic_dec(&nr_switch_events);
4303 }
4304 if (is_cgroup_event(event))
4305 dec = true;
4306 if (has_branch_stack(event))
4307 dec = true;
4308
4309 if (dec) {
4310 if (!atomic_add_unless(&perf_sched_count, -1, 1))
4311 schedule_delayed_work(&perf_sched_work, HZ);
4312 }
4313
4314 unaccount_event_cpu(event, event->cpu);
4315
4316 unaccount_pmu_sb_event(event);
4317 }
4318
4319 static void perf_sched_delayed(struct work_struct *work)
4320 {
4321 mutex_lock(&perf_sched_mutex);
4322 if (atomic_dec_and_test(&perf_sched_count))
4323 static_branch_disable(&perf_sched_events);
4324 mutex_unlock(&perf_sched_mutex);
4325 }
4326
4327 /*
4328 * The following implement mutual exclusion of events on "exclusive" pmus
4329 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4330 * at a time, so we disallow creating events that might conflict, namely:
4331 *
4332 * 1) cpu-wide events in the presence of per-task events,
4333 * 2) per-task events in the presence of cpu-wide events,
4334 * 3) two matching events on the same context.
4335 *
4336 * The former two cases are handled in the allocation path (perf_event_alloc(),
4337 * _free_event()), the latter -- before the first perf_install_in_context().
4338 */
4339 static int exclusive_event_init(struct perf_event *event)
4340 {
4341 struct pmu *pmu = event->pmu;
4342
4343 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4344 return 0;
4345
4346 /*
4347 * Prevent co-existence of per-task and cpu-wide events on the
4348 * same exclusive pmu.
4349 *
4350 * Negative pmu::exclusive_cnt means there are cpu-wide
4351 * events on this "exclusive" pmu, positive means there are
4352 * per-task events.
4353 *
4354 * Since this is called in perf_event_alloc() path, event::ctx
4355 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4356 * to mean "per-task event", because unlike other attach states it
4357 * never gets cleared.
4358 */
4359 if (event->attach_state & PERF_ATTACH_TASK) {
4360 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4361 return -EBUSY;
4362 } else {
4363 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4364 return -EBUSY;
4365 }
4366
4367 return 0;
4368 }
4369
4370 static void exclusive_event_destroy(struct perf_event *event)
4371 {
4372 struct pmu *pmu = event->pmu;
4373
4374 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4375 return;
4376
4377 /* see comment in exclusive_event_init() */
4378 if (event->attach_state & PERF_ATTACH_TASK)
4379 atomic_dec(&pmu->exclusive_cnt);
4380 else
4381 atomic_inc(&pmu->exclusive_cnt);
4382 }
4383
4384 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4385 {
4386 if ((e1->pmu == e2->pmu) &&
4387 (e1->cpu == e2->cpu ||
4388 e1->cpu == -1 ||
4389 e2->cpu == -1))
4390 return true;
4391 return false;
4392 }
4393
4394 /* Called under the same ctx::mutex as perf_install_in_context() */
4395 static bool exclusive_event_installable(struct perf_event *event,
4396 struct perf_event_context *ctx)
4397 {
4398 struct perf_event *iter_event;
4399 struct pmu *pmu = event->pmu;
4400
4401 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4402 return true;
4403
4404 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4405 if (exclusive_event_match(iter_event, event))
4406 return false;
4407 }
4408
4409 return true;
4410 }
4411
4412 static void perf_addr_filters_splice(struct perf_event *event,
4413 struct list_head *head);
4414
4415 static void _free_event(struct perf_event *event)
4416 {
4417 irq_work_sync(&event->pending);
4418
4419 unaccount_event(event);
4420
4421 if (event->rb) {
4422 /*
4423 * Can happen when we close an event with re-directed output.
4424 *
4425 * Since we have a 0 refcount, perf_mmap_close() will skip
4426 * over us; possibly making our ring_buffer_put() the last.
4427 */
4428 mutex_lock(&event->mmap_mutex);
4429 ring_buffer_attach(event, NULL);
4430 mutex_unlock(&event->mmap_mutex);
4431 }
4432
4433 if (is_cgroup_event(event))
4434 perf_detach_cgroup(event);
4435
4436 if (!event->parent) {
4437 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4438 put_callchain_buffers();
4439 }
4440
4441 perf_event_free_bpf_prog(event);
4442 perf_addr_filters_splice(event, NULL);
4443 kfree(event->addr_filters_offs);
4444
4445 if (event->destroy)
4446 event->destroy(event);
4447
4448 if (event->ctx)
4449 put_ctx(event->ctx);
4450
4451 if (event->hw.target)
4452 put_task_struct(event->hw.target);
4453
4454 exclusive_event_destroy(event);
4455 module_put(event->pmu->module);
4456
4457 call_rcu(&event->rcu_head, free_event_rcu);
4458 }
4459
4460 /*
4461 * Used to free events which have a known refcount of 1, such as in error paths
4462 * where the event isn't exposed yet and inherited events.
4463 */
4464 static void free_event(struct perf_event *event)
4465 {
4466 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4467 "unexpected event refcount: %ld; ptr=%p\n",
4468 atomic_long_read(&event->refcount), event)) {
4469 /* leak to avoid use-after-free */
4470 return;
4471 }
4472
4473 _free_event(event);
4474 }
4475
4476 /*
4477 * Remove user event from the owner task.
4478 */
4479 static void perf_remove_from_owner(struct perf_event *event)
4480 {
4481 struct task_struct *owner;
4482
4483 rcu_read_lock();
4484 /*
4485 * Matches the smp_store_release() in perf_event_exit_task(). If we
4486 * observe !owner it means the list deletion is complete and we can
4487 * indeed free this event, otherwise we need to serialize on
4488 * owner->perf_event_mutex.
4489 */
4490 owner = READ_ONCE(event->owner);
4491 if (owner) {
4492 /*
4493 * Since delayed_put_task_struct() also drops the last
4494 * task reference we can safely take a new reference
4495 * while holding the rcu_read_lock().
4496 */
4497 get_task_struct(owner);
4498 }
4499 rcu_read_unlock();
4500
4501 if (owner) {
4502 /*
4503 * If we're here through perf_event_exit_task() we're already
4504 * holding ctx->mutex which would be an inversion wrt. the
4505 * normal lock order.
4506 *
4507 * However we can safely take this lock because its the child
4508 * ctx->mutex.
4509 */
4510 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4511
4512 /*
4513 * We have to re-check the event->owner field, if it is cleared
4514 * we raced with perf_event_exit_task(), acquiring the mutex
4515 * ensured they're done, and we can proceed with freeing the
4516 * event.
4517 */
4518 if (event->owner) {
4519 list_del_init(&event->owner_entry);
4520 smp_store_release(&event->owner, NULL);
4521 }
4522 mutex_unlock(&owner->perf_event_mutex);
4523 put_task_struct(owner);
4524 }
4525 }
4526
4527 static void put_event(struct perf_event *event)
4528 {
4529 if (!atomic_long_dec_and_test(&event->refcount))
4530 return;
4531
4532 _free_event(event);
4533 }
4534
4535 /*
4536 * Kill an event dead; while event:refcount will preserve the event
4537 * object, it will not preserve its functionality. Once the last 'user'
4538 * gives up the object, we'll destroy the thing.
4539 */
4540 int perf_event_release_kernel(struct perf_event *event)
4541 {
4542 struct perf_event_context *ctx = event->ctx;
4543 struct perf_event *child, *tmp;
4544 LIST_HEAD(free_list);
4545
4546 /*
4547 * If we got here through err_file: fput(event_file); we will not have
4548 * attached to a context yet.
4549 */
4550 if (!ctx) {
4551 WARN_ON_ONCE(event->attach_state &
4552 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4553 goto no_ctx;
4554 }
4555
4556 if (!is_kernel_event(event))
4557 perf_remove_from_owner(event);
4558
4559 ctx = perf_event_ctx_lock(event);
4560 WARN_ON_ONCE(ctx->parent_ctx);
4561 perf_remove_from_context(event, DETACH_GROUP);
4562
4563 raw_spin_lock_irq(&ctx->lock);
4564 /*
4565 * Mark this event as STATE_DEAD, there is no external reference to it
4566 * anymore.
4567 *
4568 * Anybody acquiring event->child_mutex after the below loop _must_
4569 * also see this, most importantly inherit_event() which will avoid
4570 * placing more children on the list.
4571 *
4572 * Thus this guarantees that we will in fact observe and kill _ALL_
4573 * child events.
4574 */
4575 event->state = PERF_EVENT_STATE_DEAD;
4576 raw_spin_unlock_irq(&ctx->lock);
4577
4578 perf_event_ctx_unlock(event, ctx);
4579
4580 again:
4581 mutex_lock(&event->child_mutex);
4582 list_for_each_entry(child, &event->child_list, child_list) {
4583
4584 /*
4585 * Cannot change, child events are not migrated, see the
4586 * comment with perf_event_ctx_lock_nested().
4587 */
4588 ctx = READ_ONCE(child->ctx);
4589 /*
4590 * Since child_mutex nests inside ctx::mutex, we must jump
4591 * through hoops. We start by grabbing a reference on the ctx.
4592 *
4593 * Since the event cannot get freed while we hold the
4594 * child_mutex, the context must also exist and have a !0
4595 * reference count.
4596 */
4597 get_ctx(ctx);
4598
4599 /*
4600 * Now that we have a ctx ref, we can drop child_mutex, and
4601 * acquire ctx::mutex without fear of it going away. Then we
4602 * can re-acquire child_mutex.
4603 */
4604 mutex_unlock(&event->child_mutex);
4605 mutex_lock(&ctx->mutex);
4606 mutex_lock(&event->child_mutex);
4607
4608 /*
4609 * Now that we hold ctx::mutex and child_mutex, revalidate our
4610 * state, if child is still the first entry, it didn't get freed
4611 * and we can continue doing so.
4612 */
4613 tmp = list_first_entry_or_null(&event->child_list,
4614 struct perf_event, child_list);
4615 if (tmp == child) {
4616 perf_remove_from_context(child, DETACH_GROUP);
4617 list_move(&child->child_list, &free_list);
4618 /*
4619 * This matches the refcount bump in inherit_event();
4620 * this can't be the last reference.
4621 */
4622 put_event(event);
4623 }
4624
4625 mutex_unlock(&event->child_mutex);
4626 mutex_unlock(&ctx->mutex);
4627 put_ctx(ctx);
4628 goto again;
4629 }
4630 mutex_unlock(&event->child_mutex);
4631
4632 list_for_each_entry_safe(child, tmp, &free_list, child_list) {
4633 list_del(&child->child_list);
4634 free_event(child);
4635 }
4636
4637 no_ctx:
4638 put_event(event); /* Must be the 'last' reference */
4639 return 0;
4640 }
4641 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4642
4643 /*
4644 * Called when the last reference to the file is gone.
4645 */
4646 static int perf_release(struct inode *inode, struct file *file)
4647 {
4648 perf_event_release_kernel(file->private_data);
4649 return 0;
4650 }
4651
4652 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4653 {
4654 struct perf_event *child;
4655 u64 total = 0;
4656
4657 *enabled = 0;
4658 *running = 0;
4659
4660 mutex_lock(&event->child_mutex);
4661
4662 (void)perf_event_read(event, false);
4663 total += perf_event_count(event);
4664
4665 *enabled += event->total_time_enabled +
4666 atomic64_read(&event->child_total_time_enabled);
4667 *running += event->total_time_running +
4668 atomic64_read(&event->child_total_time_running);
4669
4670 list_for_each_entry(child, &event->child_list, child_list) {
4671 (void)perf_event_read(child, false);
4672 total += perf_event_count(child);
4673 *enabled += child->total_time_enabled;
4674 *running += child->total_time_running;
4675 }
4676 mutex_unlock(&event->child_mutex);
4677
4678 return total;
4679 }
4680
4681 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4682 {
4683 struct perf_event_context *ctx;
4684 u64 count;
4685
4686 ctx = perf_event_ctx_lock(event);
4687 count = __perf_event_read_value(event, enabled, running);
4688 perf_event_ctx_unlock(event, ctx);
4689
4690 return count;
4691 }
4692 EXPORT_SYMBOL_GPL(perf_event_read_value);
4693
4694 static int __perf_read_group_add(struct perf_event *leader,
4695 u64 read_format, u64 *values)
4696 {
4697 struct perf_event_context *ctx = leader->ctx;
4698 struct perf_event *sub;
4699 unsigned long flags;
4700 int n = 1; /* skip @nr */
4701 int ret;
4702
4703 ret = perf_event_read(leader, true);
4704 if (ret)
4705 return ret;
4706
4707 raw_spin_lock_irqsave(&ctx->lock, flags);
4708
4709 /*
4710 * Since we co-schedule groups, {enabled,running} times of siblings
4711 * will be identical to those of the leader, so we only publish one
4712 * set.
4713 */
4714 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4715 values[n++] += leader->total_time_enabled +
4716 atomic64_read(&leader->child_total_time_enabled);
4717 }
4718
4719 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4720 values[n++] += leader->total_time_running +
4721 atomic64_read(&leader->child_total_time_running);
4722 }
4723
4724 /*
4725 * Write {count,id} tuples for every sibling.
4726 */
4727 values[n++] += perf_event_count(leader);
4728 if (read_format & PERF_FORMAT_ID)
4729 values[n++] = primary_event_id(leader);
4730
4731 for_each_sibling_event(sub, leader) {
4732 values[n++] += perf_event_count(sub);
4733 if (read_format & PERF_FORMAT_ID)
4734 values[n++] = primary_event_id(sub);
4735 }
4736
4737 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4738 return 0;
4739 }
4740
4741 static int perf_read_group(struct perf_event *event,
4742 u64 read_format, char __user *buf)
4743 {
4744 struct perf_event *leader = event->group_leader, *child;
4745 struct perf_event_context *ctx = leader->ctx;
4746 int ret;
4747 u64 *values;
4748
4749 lockdep_assert_held(&ctx->mutex);
4750
4751 values = kzalloc(event->read_size, GFP_KERNEL);
4752 if (!values)
4753 return -ENOMEM;
4754
4755 values[0] = 1 + leader->nr_siblings;
4756
4757 /*
4758 * By locking the child_mutex of the leader we effectively
4759 * lock the child list of all siblings.. XXX explain how.
4760 */
4761 mutex_lock(&leader->child_mutex);
4762
4763 ret = __perf_read_group_add(leader, read_format, values);
4764 if (ret)
4765 goto unlock;
4766
4767 list_for_each_entry(child, &leader->child_list, child_list) {
4768 ret = __perf_read_group_add(child, read_format, values);
4769 if (ret)
4770 goto unlock;
4771 }
4772
4773 mutex_unlock(&leader->child_mutex);
4774
4775 ret = event->read_size;
4776 if (copy_to_user(buf, values, event->read_size))
4777 ret = -EFAULT;
4778 goto out;
4779
4780 unlock:
4781 mutex_unlock(&leader->child_mutex);
4782 out:
4783 kfree(values);
4784 return ret;
4785 }
4786
4787 static int perf_read_one(struct perf_event *event,
4788 u64 read_format, char __user *buf)
4789 {
4790 u64 enabled, running;
4791 u64 values[4];
4792 int n = 0;
4793
4794 values[n++] = __perf_event_read_value(event, &enabled, &running);
4795 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4796 values[n++] = enabled;
4797 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4798 values[n++] = running;
4799 if (read_format & PERF_FORMAT_ID)
4800 values[n++] = primary_event_id(event);
4801
4802 if (copy_to_user(buf, values, n * sizeof(u64)))
4803 return -EFAULT;
4804
4805 return n * sizeof(u64);
4806 }
4807
4808 static bool is_event_hup(struct perf_event *event)
4809 {
4810 bool no_children;
4811
4812 if (event->state > PERF_EVENT_STATE_EXIT)
4813 return false;
4814
4815 mutex_lock(&event->child_mutex);
4816 no_children = list_empty(&event->child_list);
4817 mutex_unlock(&event->child_mutex);
4818 return no_children;
4819 }
4820
4821 /*
4822 * Read the performance event - simple non blocking version for now
4823 */
4824 static ssize_t
4825 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4826 {
4827 u64 read_format = event->attr.read_format;
4828 int ret;
4829
4830 /*
4831 * Return end-of-file for a read on an event that is in
4832 * error state (i.e. because it was pinned but it couldn't be
4833 * scheduled on to the CPU at some point).
4834 */
4835 if (event->state == PERF_EVENT_STATE_ERROR)
4836 return 0;
4837
4838 if (count < event->read_size)
4839 return -ENOSPC;
4840
4841 WARN_ON_ONCE(event->ctx->parent_ctx);
4842 if (read_format & PERF_FORMAT_GROUP)
4843 ret = perf_read_group(event, read_format, buf);
4844 else
4845 ret = perf_read_one(event, read_format, buf);
4846
4847 return ret;
4848 }
4849
4850 static ssize_t
4851 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4852 {
4853 struct perf_event *event = file->private_data;
4854 struct perf_event_context *ctx;
4855 int ret;
4856
4857 ctx = perf_event_ctx_lock(event);
4858 ret = __perf_read(event, buf, count);
4859 perf_event_ctx_unlock(event, ctx);
4860
4861 return ret;
4862 }
4863
4864 static __poll_t perf_poll(struct file *file, poll_table *wait)
4865 {
4866 struct perf_event *event = file->private_data;
4867 struct ring_buffer *rb;
4868 __poll_t events = EPOLLHUP;
4869
4870 poll_wait(file, &event->waitq, wait);
4871
4872 if (is_event_hup(event))
4873 return events;
4874
4875 /*
4876 * Pin the event->rb by taking event->mmap_mutex; otherwise
4877 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4878 */
4879 mutex_lock(&event->mmap_mutex);
4880 rb = event->rb;
4881 if (rb)
4882 events = atomic_xchg(&rb->poll, 0);
4883 mutex_unlock(&event->mmap_mutex);
4884 return events;
4885 }
4886
4887 static void _perf_event_reset(struct perf_event *event)
4888 {
4889 (void)perf_event_read(event, false);
4890 local64_set(&event->count, 0);
4891 perf_event_update_userpage(event);
4892 }
4893
4894 /*
4895 * Holding the top-level event's child_mutex means that any
4896 * descendant process that has inherited this event will block
4897 * in perf_event_exit_event() if it goes to exit, thus satisfying the
4898 * task existence requirements of perf_event_enable/disable.
4899 */
4900 static void perf_event_for_each_child(struct perf_event *event,
4901 void (*func)(struct perf_event *))
4902 {
4903 struct perf_event *child;
4904
4905 WARN_ON_ONCE(event->ctx->parent_ctx);
4906
4907 mutex_lock(&event->child_mutex);
4908 func(event);
4909 list_for_each_entry(child, &event->child_list, child_list)
4910 func(child);
4911 mutex_unlock(&event->child_mutex);
4912 }
4913
4914 static void perf_event_for_each(struct perf_event *event,
4915 void (*func)(struct perf_event *))
4916 {
4917 struct perf_event_context *ctx = event->ctx;
4918 struct perf_event *sibling;
4919
4920 lockdep_assert_held(&ctx->mutex);
4921
4922 event = event->group_leader;
4923
4924 perf_event_for_each_child(event, func);
4925 for_each_sibling_event(sibling, event)
4926 perf_event_for_each_child(sibling, func);
4927 }
4928
4929 static void __perf_event_period(struct perf_event *event,
4930 struct perf_cpu_context *cpuctx,
4931 struct perf_event_context *ctx,
4932 void *info)
4933 {
4934 u64 value = *((u64 *)info);
4935 bool active;
4936
4937 if (event->attr.freq) {
4938 event->attr.sample_freq = value;
4939 } else {
4940 event->attr.sample_period = value;
4941 event->hw.sample_period = value;
4942 }
4943
4944 active = (event->state == PERF_EVENT_STATE_ACTIVE);
4945 if (active) {
4946 perf_pmu_disable(ctx->pmu);
4947 /*
4948 * We could be throttled; unthrottle now to avoid the tick
4949 * trying to unthrottle while we already re-started the event.
4950 */
4951 if (event->hw.interrupts == MAX_INTERRUPTS) {
4952 event->hw.interrupts = 0;
4953 perf_log_throttle(event, 1);
4954 }
4955 event->pmu->stop(event, PERF_EF_UPDATE);
4956 }
4957
4958 local64_set(&event->hw.period_left, 0);
4959
4960 if (active) {
4961 event->pmu->start(event, PERF_EF_RELOAD);
4962 perf_pmu_enable(ctx->pmu);
4963 }
4964 }
4965
4966 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4967 {
4968 u64 value;
4969
4970 if (!is_sampling_event(event))
4971 return -EINVAL;
4972
4973 if (copy_from_user(&value, arg, sizeof(value)))
4974 return -EFAULT;
4975
4976 if (!value)
4977 return -EINVAL;
4978
4979 if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4980 return -EINVAL;
4981
4982 event_function_call(event, __perf_event_period, &value);
4983
4984 return 0;
4985 }
4986
4987 static const struct file_operations perf_fops;
4988
4989 static inline int perf_fget_light(int fd, struct fd *p)
4990 {
4991 struct fd f = fdget(fd);
4992 if (!f.file)
4993 return -EBADF;
4994
4995 if (f.file->f_op != &perf_fops) {
4996 fdput(f);
4997 return -EBADF;
4998 }
4999 *p = f;
5000 return 0;
5001 }
5002
5003 static int perf_event_set_output(struct perf_event *event,
5004 struct perf_event *output_event);
5005 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
5006 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
5007 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5008 struct perf_event_attr *attr);
5009
5010 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
5011 {
5012 void (*func)(struct perf_event *);
5013 u32 flags = arg;
5014
5015 switch (cmd) {
5016 case PERF_EVENT_IOC_ENABLE:
5017 func = _perf_event_enable;
5018 break;
5019 case PERF_EVENT_IOC_DISABLE:
5020 func = _perf_event_disable;
5021 break;
5022 case PERF_EVENT_IOC_RESET:
5023 func = _perf_event_reset;
5024 break;
5025
5026 case PERF_EVENT_IOC_REFRESH:
5027 return _perf_event_refresh(event, arg);
5028
5029 case PERF_EVENT_IOC_PERIOD:
5030 return perf_event_period(event, (u64 __user *)arg);
5031
5032 case PERF_EVENT_IOC_ID:
5033 {
5034 u64 id = primary_event_id(event);
5035
5036 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5037 return -EFAULT;
5038 return 0;
5039 }
5040
5041 case PERF_EVENT_IOC_SET_OUTPUT:
5042 {
5043 int ret;
5044 if (arg != -1) {
5045 struct perf_event *output_event;
5046 struct fd output;
5047 ret = perf_fget_light(arg, &output);
5048 if (ret)
5049 return ret;
5050 output_event = output.file->private_data;
5051 ret = perf_event_set_output(event, output_event);
5052 fdput(output);
5053 } else {
5054 ret = perf_event_set_output(event, NULL);
5055 }
5056 return ret;
5057 }
5058
5059 case PERF_EVENT_IOC_SET_FILTER:
5060 return perf_event_set_filter(event, (void __user *)arg);
5061
5062 case PERF_EVENT_IOC_SET_BPF:
5063 return perf_event_set_bpf_prog(event, arg);
5064
5065 case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5066 struct ring_buffer *rb;
5067
5068 rcu_read_lock();
5069 rb = rcu_dereference(event->rb);
5070 if (!rb || !rb->nr_pages) {
5071 rcu_read_unlock();
5072 return -EINVAL;
5073 }
5074 rb_toggle_paused(rb, !!arg);
5075 rcu_read_unlock();
5076 return 0;
5077 }
5078
5079 case PERF_EVENT_IOC_QUERY_BPF:
5080 return perf_event_query_prog_array(event, (void __user *)arg);
5081
5082 case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5083 struct perf_event_attr new_attr;
5084 int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5085 &new_attr);
5086
5087 if (err)
5088 return err;
5089
5090 return perf_event_modify_attr(event, &new_attr);
5091 }
5092 default:
5093 return -ENOTTY;
5094 }
5095
5096 if (flags & PERF_IOC_FLAG_GROUP)
5097 perf_event_for_each(event, func);
5098 else
5099 perf_event_for_each_child(event, func);
5100
5101 return 0;
5102 }
5103
5104 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5105 {
5106 struct perf_event *event = file->private_data;
5107 struct perf_event_context *ctx;
5108 long ret;
5109
5110 ctx = perf_event_ctx_lock(event);
5111 ret = _perf_ioctl(event, cmd, arg);
5112 perf_event_ctx_unlock(event, ctx);
5113
5114 return ret;
5115 }
5116
5117 #ifdef CONFIG_COMPAT
5118 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
5119 unsigned long arg)
5120 {
5121 switch (_IOC_NR(cmd)) {
5122 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
5123 case _IOC_NR(PERF_EVENT_IOC_ID):
5124 case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
5125 case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
5126 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
5127 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
5128 cmd &= ~IOCSIZE_MASK;
5129 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
5130 }
5131 break;
5132 }
5133 return perf_ioctl(file, cmd, arg);
5134 }
5135 #else
5136 # define perf_compat_ioctl NULL
5137 #endif
5138
5139 int perf_event_task_enable(void)
5140 {
5141 struct perf_event_context *ctx;
5142 struct perf_event *event;
5143
5144 mutex_lock(&current->perf_event_mutex);
5145 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5146 ctx = perf_event_ctx_lock(event);
5147 perf_event_for_each_child(event, _perf_event_enable);
5148 perf_event_ctx_unlock(event, ctx);
5149 }
5150 mutex_unlock(&current->perf_event_mutex);
5151
5152 return 0;
5153 }
5154
5155 int perf_event_task_disable(void)
5156 {
5157 struct perf_event_context *ctx;
5158 struct perf_event *event;
5159
5160 mutex_lock(&current->perf_event_mutex);
5161 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5162 ctx = perf_event_ctx_lock(event);
5163 perf_event_for_each_child(event, _perf_event_disable);
5164 perf_event_ctx_unlock(event, ctx);
5165 }
5166 mutex_unlock(&current->perf_event_mutex);
5167
5168 return 0;
5169 }
5170
5171 static int perf_event_index(struct perf_event *event)
5172 {
5173 if (event->hw.state & PERF_HES_STOPPED)
5174 return 0;
5175
5176 if (event->state != PERF_EVENT_STATE_ACTIVE)
5177 return 0;
5178
5179 return event->pmu->event_idx(event);
5180 }
5181
5182 static void calc_timer_values(struct perf_event *event,
5183 u64 *now,
5184 u64 *enabled,
5185 u64 *running)
5186 {
5187 u64 ctx_time;
5188
5189 *now = perf_clock();
5190 ctx_time = event->shadow_ctx_time + *now;
5191 __perf_update_times(event, ctx_time, enabled, running);
5192 }
5193
5194 static void perf_event_init_userpage(struct perf_event *event)
5195 {
5196 struct perf_event_mmap_page *userpg;
5197 struct ring_buffer *rb;
5198
5199 rcu_read_lock();
5200 rb = rcu_dereference(event->rb);
5201 if (!rb)
5202 goto unlock;
5203
5204 userpg = rb->user_page;
5205
5206 /* Allow new userspace to detect that bit 0 is deprecated */
5207 userpg->cap_bit0_is_deprecated = 1;
5208 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
5209 userpg->data_offset = PAGE_SIZE;
5210 userpg->data_size = perf_data_size(rb);
5211
5212 unlock:
5213 rcu_read_unlock();
5214 }
5215
5216 void __weak arch_perf_update_userpage(
5217 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
5218 {
5219 }
5220
5221 /*
5222 * Callers need to ensure there can be no nesting of this function, otherwise
5223 * the seqlock logic goes bad. We can not serialize this because the arch
5224 * code calls this from NMI context.
5225 */
5226 void perf_event_update_userpage(struct perf_event *event)
5227 {
5228 struct perf_event_mmap_page *userpg;
5229 struct ring_buffer *rb;
5230 u64 enabled, running, now;
5231
5232 rcu_read_lock();
5233 rb = rcu_dereference(event->rb);
5234 if (!rb)
5235 goto unlock;
5236
5237 /*
5238 * compute total_time_enabled, total_time_running
5239 * based on snapshot values taken when the event
5240 * was last scheduled in.
5241 *
5242 * we cannot simply called update_context_time()
5243 * because of locking issue as we can be called in
5244 * NMI context
5245 */
5246 calc_timer_values(event, &now, &enabled, &running);
5247
5248 userpg = rb->user_page;
5249 /*
5250 * Disable preemption to guarantee consistent time stamps are stored to
5251 * the user page.
5252 */
5253 preempt_disable();
5254 ++userpg->lock;
5255 barrier();
5256 userpg->index = perf_event_index(event);
5257 userpg->offset = perf_event_count(event);
5258 if (userpg->index)
5259 userpg->offset -= local64_read(&event->hw.prev_count);
5260
5261 userpg->time_enabled = enabled +
5262 atomic64_read(&event->child_total_time_enabled);
5263
5264 userpg->time_running = running +
5265 atomic64_read(&event->child_total_time_running);
5266
5267 arch_perf_update_userpage(event, userpg, now);
5268
5269 barrier();
5270 ++userpg->lock;
5271 preempt_enable();
5272 unlock:
5273 rcu_read_unlock();
5274 }
5275 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
5276
5277 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
5278 {
5279 struct perf_event *event = vmf->vma->vm_file->private_data;
5280 struct ring_buffer *rb;
5281 vm_fault_t ret = VM_FAULT_SIGBUS;
5282
5283 if (vmf->flags & FAULT_FLAG_MKWRITE) {
5284 if (vmf->pgoff == 0)
5285 ret = 0;
5286 return ret;
5287 }
5288
5289 rcu_read_lock();
5290 rb = rcu_dereference(event->rb);
5291 if (!rb)
5292 goto unlock;
5293
5294 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5295 goto unlock;
5296
5297 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
5298 if (!vmf->page)
5299 goto unlock;
5300
5301 get_page(vmf->page);
5302 vmf->page->mapping = vmf->vma->vm_file->f_mapping;
5303 vmf->page->index = vmf->pgoff;
5304
5305 ret = 0;
5306 unlock:
5307 rcu_read_unlock();
5308
5309 return ret;
5310 }
5311
5312 static void ring_buffer_attach(struct perf_event *event,
5313 struct ring_buffer *rb)
5314 {
5315 struct ring_buffer *old_rb = NULL;
5316 unsigned long flags;
5317
5318 if (event->rb) {
5319 /*
5320 * Should be impossible, we set this when removing
5321 * event->rb_entry and wait/clear when adding event->rb_entry.
5322 */
5323 WARN_ON_ONCE(event->rcu_pending);
5324
5325 old_rb = event->rb;
5326 spin_lock_irqsave(&old_rb->event_lock, flags);
5327 list_del_rcu(&event->rb_entry);
5328 spin_unlock_irqrestore(&old_rb->event_lock, flags);
5329
5330 event->rcu_batches = get_state_synchronize_rcu();
5331 event->rcu_pending = 1;
5332 }
5333
5334 if (rb) {
5335 if (event->rcu_pending) {
5336 cond_synchronize_rcu(event->rcu_batches);
5337 event->rcu_pending = 0;
5338 }
5339
5340 spin_lock_irqsave(&rb->event_lock, flags);
5341 list_add_rcu(&event->rb_entry, &rb->event_list);
5342 spin_unlock_irqrestore(&rb->event_lock, flags);
5343 }
5344
5345 /*
5346 * Avoid racing with perf_mmap_close(AUX): stop the event
5347 * before swizzling the event::rb pointer; if it's getting
5348 * unmapped, its aux_mmap_count will be 0 and it won't
5349 * restart. See the comment in __perf_pmu_output_stop().
5350 *
5351 * Data will inevitably be lost when set_output is done in
5352 * mid-air, but then again, whoever does it like this is
5353 * not in for the data anyway.
5354 */
5355 if (has_aux(event))
5356 perf_event_stop(event, 0);
5357
5358 rcu_assign_pointer(event->rb, rb);
5359
5360 if (old_rb) {
5361 ring_buffer_put(old_rb);
5362 /*
5363 * Since we detached before setting the new rb, so that we
5364 * could attach the new rb, we could have missed a wakeup.
5365 * Provide it now.
5366 */
5367 wake_up_all(&event->waitq);
5368 }
5369 }
5370
5371 static void ring_buffer_wakeup(struct perf_event *event)
5372 {
5373 struct ring_buffer *rb;
5374
5375 rcu_read_lock();
5376 rb = rcu_dereference(event->rb);
5377 if (rb) {
5378 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5379 wake_up_all(&event->waitq);
5380 }
5381 rcu_read_unlock();
5382 }
5383
5384 struct ring_buffer *ring_buffer_get(struct perf_event *event)
5385 {
5386 struct ring_buffer *rb;
5387
5388 rcu_read_lock();
5389 rb = rcu_dereference(event->rb);
5390 if (rb) {
5391 if (!atomic_inc_not_zero(&rb->refcount))
5392 rb = NULL;
5393 }
5394 rcu_read_unlock();
5395
5396 return rb;
5397 }
5398
5399 void ring_buffer_put(struct ring_buffer *rb)
5400 {
5401 if (!atomic_dec_and_test(&rb->refcount))
5402 return;
5403
5404 WARN_ON_ONCE(!list_empty(&rb->event_list));
5405
5406 call_rcu(&rb->rcu_head, rb_free_rcu);
5407 }
5408
5409 static void perf_mmap_open(struct vm_area_struct *vma)
5410 {
5411 struct perf_event *event = vma->vm_file->private_data;
5412
5413 atomic_inc(&event->mmap_count);
5414 atomic_inc(&event->rb->mmap_count);
5415
5416 if (vma->vm_pgoff)
5417 atomic_inc(&event->rb->aux_mmap_count);
5418
5419 if (event->pmu->event_mapped)
5420 event->pmu->event_mapped(event, vma->vm_mm);
5421 }
5422
5423 static void perf_pmu_output_stop(struct perf_event *event);
5424
5425 /*
5426 * A buffer can be mmap()ed multiple times; either directly through the same
5427 * event, or through other events by use of perf_event_set_output().
5428 *
5429 * In order to undo the VM accounting done by perf_mmap() we need to destroy
5430 * the buffer here, where we still have a VM context. This means we need
5431 * to detach all events redirecting to us.
5432 */
5433 static void perf_mmap_close(struct vm_area_struct *vma)
5434 {
5435 struct perf_event *event = vma->vm_file->private_data;
5436
5437 struct ring_buffer *rb = ring_buffer_get(event);
5438 struct user_struct *mmap_user = rb->mmap_user;
5439 int mmap_locked = rb->mmap_locked;
5440 unsigned long size = perf_data_size(rb);
5441
5442 if (event->pmu->event_unmapped)
5443 event->pmu->event_unmapped(event, vma->vm_mm);
5444
5445 /*
5446 * rb->aux_mmap_count will always drop before rb->mmap_count and
5447 * event->mmap_count, so it is ok to use event->mmap_mutex to
5448 * serialize with perf_mmap here.
5449 */
5450 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5451 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
5452 /*
5453 * Stop all AUX events that are writing to this buffer,
5454 * so that we can free its AUX pages and corresponding PMU
5455 * data. Note that after rb::aux_mmap_count dropped to zero,
5456 * they won't start any more (see perf_aux_output_begin()).
5457 */
5458 perf_pmu_output_stop(event);
5459
5460 /* now it's safe to free the pages */
5461 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
5462 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
5463
5464 /* this has to be the last one */
5465 rb_free_aux(rb);
5466 WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
5467
5468 mutex_unlock(&event->mmap_mutex);
5469 }
5470
5471 atomic_dec(&rb->mmap_count);
5472
5473 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5474 goto out_put;
5475
5476 ring_buffer_attach(event, NULL);
5477 mutex_unlock(&event->mmap_mutex);
5478
5479 /* If there's still other mmap()s of this buffer, we're done. */
5480 if (atomic_read(&rb->mmap_count))
5481 goto out_put;
5482
5483 /*
5484 * No other mmap()s, detach from all other events that might redirect
5485 * into the now unreachable buffer. Somewhat complicated by the
5486 * fact that rb::event_lock otherwise nests inside mmap_mutex.
5487 */
5488 again:
5489 rcu_read_lock();
5490 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5491 if (!atomic_long_inc_not_zero(&event->refcount)) {
5492 /*
5493 * This event is en-route to free_event() which will
5494 * detach it and remove it from the list.
5495 */
5496 continue;
5497 }
5498 rcu_read_unlock();
5499
5500 mutex_lock(&event->mmap_mutex);
5501 /*
5502 * Check we didn't race with perf_event_set_output() which can
5503 * swizzle the rb from under us while we were waiting to
5504 * acquire mmap_mutex.
5505 *
5506 * If we find a different rb; ignore this event, a next
5507 * iteration will no longer find it on the list. We have to
5508 * still restart the iteration to make sure we're not now
5509 * iterating the wrong list.
5510 */
5511 if (event->rb == rb)
5512 ring_buffer_attach(event, NULL);
5513
5514 mutex_unlock(&event->mmap_mutex);
5515 put_event(event);
5516
5517 /*
5518 * Restart the iteration; either we're on the wrong list or
5519 * destroyed its integrity by doing a deletion.
5520 */
5521 goto again;
5522 }
5523 rcu_read_unlock();
5524
5525 /*
5526 * It could be there's still a few 0-ref events on the list; they'll
5527 * get cleaned up by free_event() -- they'll also still have their
5528 * ref on the rb and will free it whenever they are done with it.
5529 *
5530 * Aside from that, this buffer is 'fully' detached and unmapped,
5531 * undo the VM accounting.
5532 */
5533
5534 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
5535 vma->vm_mm->pinned_vm -= mmap_locked;
5536 free_uid(mmap_user);
5537
5538 out_put:
5539 ring_buffer_put(rb); /* could be last */
5540 }
5541
5542 static const struct vm_operations_struct perf_mmap_vmops = {
5543 .open = perf_mmap_open,
5544 .close = perf_mmap_close, /* non mergeable */
5545 .fault = perf_mmap_fault,
5546 .page_mkwrite = perf_mmap_fault,
5547 };
5548
5549 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5550 {
5551 struct perf_event *event = file->private_data;
5552 unsigned long user_locked, user_lock_limit;
5553 struct user_struct *user = current_user();
5554 unsigned long locked, lock_limit;
5555 struct ring_buffer *rb = NULL;
5556 unsigned long vma_size;
5557 unsigned long nr_pages;
5558 long user_extra = 0, extra = 0;
5559 int ret = 0, flags = 0;
5560
5561 /*
5562 * Don't allow mmap() of inherited per-task counters. This would
5563 * create a performance issue due to all children writing to the
5564 * same rb.
5565 */
5566 if (event->cpu == -1 && event->attr.inherit)
5567 return -EINVAL;
5568
5569 if (!(vma->vm_flags & VM_SHARED))
5570 return -EINVAL;
5571
5572 vma_size = vma->vm_end - vma->vm_start;
5573
5574 if (vma->vm_pgoff == 0) {
5575 nr_pages = (vma_size / PAGE_SIZE) - 1;
5576 } else {
5577 /*
5578 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5579 * mapped, all subsequent mappings should have the same size
5580 * and offset. Must be above the normal perf buffer.
5581 */
5582 u64 aux_offset, aux_size;
5583
5584 if (!event->rb)
5585 return -EINVAL;
5586
5587 nr_pages = vma_size / PAGE_SIZE;
5588
5589 mutex_lock(&event->mmap_mutex);
5590 ret = -EINVAL;
5591
5592 rb = event->rb;
5593 if (!rb)
5594 goto aux_unlock;
5595
5596 aux_offset = READ_ONCE(rb->user_page->aux_offset);
5597 aux_size = READ_ONCE(rb->user_page->aux_size);
5598
5599 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5600 goto aux_unlock;
5601
5602 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5603 goto aux_unlock;
5604
5605 /* already mapped with a different offset */
5606 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5607 goto aux_unlock;
5608
5609 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5610 goto aux_unlock;
5611
5612 /* already mapped with a different size */
5613 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5614 goto aux_unlock;
5615
5616 if (!is_power_of_2(nr_pages))
5617 goto aux_unlock;
5618
5619 if (!atomic_inc_not_zero(&rb->mmap_count))
5620 goto aux_unlock;
5621
5622 if (rb_has_aux(rb)) {
5623 atomic_inc(&rb->aux_mmap_count);
5624 ret = 0;
5625 goto unlock;
5626 }
5627
5628 atomic_set(&rb->aux_mmap_count, 1);
5629 user_extra = nr_pages;
5630
5631 goto accounting;
5632 }
5633
5634 /*
5635 * If we have rb pages ensure they're a power-of-two number, so we
5636 * can do bitmasks instead of modulo.
5637 */
5638 if (nr_pages != 0 && !is_power_of_2(nr_pages))
5639 return -EINVAL;
5640
5641 if (vma_size != PAGE_SIZE * (1 + nr_pages))
5642 return -EINVAL;
5643
5644 WARN_ON_ONCE(event->ctx->parent_ctx);
5645 again:
5646 mutex_lock(&event->mmap_mutex);
5647 if (event->rb) {
5648 if (event->rb->nr_pages != nr_pages) {
5649 ret = -EINVAL;
5650 goto unlock;
5651 }
5652
5653 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5654 /*
5655 * Raced against perf_mmap_close() through
5656 * perf_event_set_output(). Try again, hope for better
5657 * luck.
5658 */
5659 mutex_unlock(&event->mmap_mutex);
5660 goto again;
5661 }
5662
5663 goto unlock;
5664 }
5665
5666 user_extra = nr_pages + 1;
5667
5668 accounting:
5669 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
5670
5671 /*
5672 * Increase the limit linearly with more CPUs:
5673 */
5674 user_lock_limit *= num_online_cpus();
5675
5676 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
5677
5678 if (user_locked > user_lock_limit)
5679 extra = user_locked - user_lock_limit;
5680
5681 lock_limit = rlimit(RLIMIT_MEMLOCK);
5682 lock_limit >>= PAGE_SHIFT;
5683 locked = vma->vm_mm->pinned_vm + extra;
5684
5685 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5686 !capable(CAP_IPC_LOCK)) {
5687 ret = -EPERM;
5688 goto unlock;
5689 }
5690
5691 WARN_ON(!rb && event->rb);
5692
5693 if (vma->vm_flags & VM_WRITE)
5694 flags |= RING_BUFFER_WRITABLE;
5695
5696 if (!rb) {
5697 rb = rb_alloc(nr_pages,
5698 event->attr.watermark ? event->attr.wakeup_watermark : 0,
5699 event->cpu, flags);
5700
5701 if (!rb) {
5702 ret = -ENOMEM;
5703 goto unlock;
5704 }
5705
5706 atomic_set(&rb->mmap_count, 1);
5707 rb->mmap_user = get_current_user();
5708 rb->mmap_locked = extra;
5709
5710 ring_buffer_attach(event, rb);
5711
5712 perf_event_init_userpage(event);
5713 perf_event_update_userpage(event);
5714 } else {
5715 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5716 event->attr.aux_watermark, flags);
5717 if (!ret)
5718 rb->aux_mmap_locked = extra;
5719 }
5720
5721 unlock:
5722 if (!ret) {
5723 atomic_long_add(user_extra, &user->locked_vm);
5724 vma->vm_mm->pinned_vm += extra;
5725
5726 atomic_inc(&event->mmap_count);
5727 } else if (rb) {
5728 atomic_dec(&rb->mmap_count);
5729 }
5730 aux_unlock:
5731 mutex_unlock(&event->mmap_mutex);
5732
5733 /*
5734 * Since pinned accounting is per vm we cannot allow fork() to copy our
5735 * vma.
5736 */
5737 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5738 vma->vm_ops = &perf_mmap_vmops;
5739
5740 if (event->pmu->event_mapped)
5741 event->pmu->event_mapped(event, vma->vm_mm);
5742
5743 return ret;
5744 }
5745
5746 static int perf_fasync(int fd, struct file *filp, int on)
5747 {
5748 struct inode *inode = file_inode(filp);
5749 struct perf_event *event = filp->private_data;
5750 int retval;
5751
5752 inode_lock(inode);
5753 retval = fasync_helper(fd, filp, on, &event->fasync);
5754 inode_unlock(inode);
5755
5756 if (retval < 0)
5757 return retval;
5758
5759 return 0;
5760 }
5761
5762 static const struct file_operations perf_fops = {
5763 .llseek = no_llseek,
5764 .release = perf_release,
5765 .read = perf_read,
5766 .poll = perf_poll,
5767 .unlocked_ioctl = perf_ioctl,
5768 .compat_ioctl = perf_compat_ioctl,
5769 .mmap = perf_mmap,
5770 .fasync = perf_fasync,
5771 };
5772
5773 /*
5774 * Perf event wakeup
5775 *
5776 * If there's data, ensure we set the poll() state and publish everything
5777 * to user-space before waking everybody up.
5778 */
5779
5780 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5781 {
5782 /* only the parent has fasync state */
5783 if (event->parent)
5784 event = event->parent;
5785 return &event->fasync;
5786 }
5787
5788 void perf_event_wakeup(struct perf_event *event)
5789 {
5790 ring_buffer_wakeup(event);
5791
5792 if (event->pending_kill) {
5793 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5794 event->pending_kill = 0;
5795 }
5796 }
5797
5798 static void perf_pending_event(struct irq_work *entry)
5799 {
5800 struct perf_event *event = container_of(entry,
5801 struct perf_event, pending);
5802 int rctx;
5803
5804 rctx = perf_swevent_get_recursion_context();
5805 /*
5806 * If we 'fail' here, that's OK, it means recursion is already disabled
5807 * and we won't recurse 'further'.
5808 */
5809
5810 if (event->pending_disable) {
5811 event->pending_disable = 0;
5812 perf_event_disable_local(event);
5813 }
5814
5815 if (event->pending_wakeup) {
5816 event->pending_wakeup = 0;
5817 perf_event_wakeup(event);
5818 }
5819
5820 if (rctx >= 0)
5821 perf_swevent_put_recursion_context(rctx);
5822 }
5823
5824 /*
5825 * We assume there is only KVM supporting the callbacks.
5826 * Later on, we might change it to a list if there is
5827 * another virtualization implementation supporting the callbacks.
5828 */
5829 struct perf_guest_info_callbacks *perf_guest_cbs;
5830
5831 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5832 {
5833 perf_guest_cbs = cbs;
5834 return 0;
5835 }
5836 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5837
5838 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5839 {
5840 perf_guest_cbs = NULL;
5841 return 0;
5842 }
5843 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5844
5845 static void
5846 perf_output_sample_regs(struct perf_output_handle *handle,
5847 struct pt_regs *regs, u64 mask)
5848 {
5849 int bit;
5850 DECLARE_BITMAP(_mask, 64);
5851
5852 bitmap_from_u64(_mask, mask);
5853 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
5854 u64 val;
5855
5856 val = perf_reg_value(regs, bit);
5857 perf_output_put(handle, val);
5858 }
5859 }
5860
5861 static void perf_sample_regs_user(struct perf_regs *regs_user,
5862 struct pt_regs *regs,
5863 struct pt_regs *regs_user_copy)
5864 {
5865 if (user_mode(regs)) {
5866 regs_user->abi = perf_reg_abi(current);
5867 regs_user->regs = regs;
5868 } else if (current->mm) {
5869 perf_get_regs_user(regs_user, regs, regs_user_copy);
5870 } else {
5871 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5872 regs_user->regs = NULL;
5873 }
5874 }
5875
5876 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5877 struct pt_regs *regs)
5878 {
5879 regs_intr->regs = regs;
5880 regs_intr->abi = perf_reg_abi(current);
5881 }
5882
5883
5884 /*
5885 * Get remaining task size from user stack pointer.
5886 *
5887 * It'd be better to take stack vma map and limit this more
5888 * precisly, but there's no way to get it safely under interrupt,
5889 * so using TASK_SIZE as limit.
5890 */
5891 static u64 perf_ustack_task_size(struct pt_regs *regs)
5892 {
5893 unsigned long addr = perf_user_stack_pointer(regs);
5894
5895 if (!addr || addr >= TASK_SIZE)
5896 return 0;
5897
5898 return TASK_SIZE - addr;
5899 }
5900
5901 static u16
5902 perf_sample_ustack_size(u16 stack_size, u16 header_size,
5903 struct pt_regs *regs)
5904 {
5905 u64 task_size;
5906
5907 /* No regs, no stack pointer, no dump. */
5908 if (!regs)
5909 return 0;
5910
5911 /*
5912 * Check if we fit in with the requested stack size into the:
5913 * - TASK_SIZE
5914 * If we don't, we limit the size to the TASK_SIZE.
5915 *
5916 * - remaining sample size
5917 * If we don't, we customize the stack size to
5918 * fit in to the remaining sample size.
5919 */
5920
5921 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5922 stack_size = min(stack_size, (u16) task_size);
5923
5924 /* Current header size plus static size and dynamic size. */
5925 header_size += 2 * sizeof(u64);
5926
5927 /* Do we fit in with the current stack dump size? */
5928 if ((u16) (header_size + stack_size) < header_size) {
5929 /*
5930 * If we overflow the maximum size for the sample,
5931 * we customize the stack dump size to fit in.
5932 */
5933 stack_size = USHRT_MAX - header_size - sizeof(u64);
5934 stack_size = round_up(stack_size, sizeof(u64));
5935 }
5936
5937 return stack_size;
5938 }
5939
5940 static void
5941 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5942 struct pt_regs *regs)
5943 {
5944 /* Case of a kernel thread, nothing to dump */
5945 if (!regs) {
5946 u64 size = 0;
5947 perf_output_put(handle, size);
5948 } else {
5949 unsigned long sp;
5950 unsigned int rem;
5951 u64 dyn_size;
5952 mm_segment_t fs;
5953
5954 /*
5955 * We dump:
5956 * static size
5957 * - the size requested by user or the best one we can fit
5958 * in to the sample max size
5959 * data
5960 * - user stack dump data
5961 * dynamic size
5962 * - the actual dumped size
5963 */
5964
5965 /* Static size. */
5966 perf_output_put(handle, dump_size);
5967
5968 /* Data. */
5969 sp = perf_user_stack_pointer(regs);
5970 fs = get_fs();
5971 set_fs(USER_DS);
5972 rem = __output_copy_user(handle, (void *) sp, dump_size);
5973 set_fs(fs);
5974 dyn_size = dump_size - rem;
5975
5976 perf_output_skip(handle, rem);
5977
5978 /* Dynamic size. */
5979 perf_output_put(handle, dyn_size);
5980 }
5981 }
5982
5983 static void __perf_event_header__init_id(struct perf_event_header *header,
5984 struct perf_sample_data *data,
5985 struct perf_event *event)
5986 {
5987 u64 sample_type = event->attr.sample_type;
5988
5989 data->type = sample_type;
5990 header->size += event->id_header_size;
5991
5992 if (sample_type & PERF_SAMPLE_TID) {
5993 /* namespace issues */
5994 data->tid_entry.pid = perf_event_pid(event, current);
5995 data->tid_entry.tid = perf_event_tid(event, current);
5996 }
5997
5998 if (sample_type & PERF_SAMPLE_TIME)
5999 data->time = perf_event_clock(event);
6000
6001 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6002 data->id = primary_event_id(event);
6003
6004 if (sample_type & PERF_SAMPLE_STREAM_ID)
6005 data->stream_id = event->id;
6006
6007 if (sample_type & PERF_SAMPLE_CPU) {
6008 data->cpu_entry.cpu = raw_smp_processor_id();
6009 data->cpu_entry.reserved = 0;
6010 }
6011 }
6012
6013 void perf_event_header__init_id(struct perf_event_header *header,
6014 struct perf_sample_data *data,
6015 struct perf_event *event)
6016 {
6017 if (event->attr.sample_id_all)
6018 __perf_event_header__init_id(header, data, event);
6019 }
6020
6021 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
6022 struct perf_sample_data *data)
6023 {
6024 u64 sample_type = data->type;
6025
6026 if (sample_type & PERF_SAMPLE_TID)
6027 perf_output_put(handle, data->tid_entry);
6028
6029 if (sample_type & PERF_SAMPLE_TIME)
6030 perf_output_put(handle, data->time);
6031
6032 if (sample_type & PERF_SAMPLE_ID)
6033 perf_output_put(handle, data->id);
6034
6035 if (sample_type & PERF_SAMPLE_STREAM_ID)
6036 perf_output_put(handle, data->stream_id);
6037
6038 if (sample_type & PERF_SAMPLE_CPU)
6039 perf_output_put(handle, data->cpu_entry);
6040
6041 if (sample_type & PERF_SAMPLE_IDENTIFIER)
6042 perf_output_put(handle, data->id);
6043 }
6044
6045 void perf_event__output_id_sample(struct perf_event *event,
6046 struct perf_output_handle *handle,
6047 struct perf_sample_data *sample)
6048 {
6049 if (event->attr.sample_id_all)
6050 __perf_event__output_id_sample(handle, sample);
6051 }
6052
6053 static void perf_output_read_one(struct perf_output_handle *handle,
6054 struct perf_event *event,
6055 u64 enabled, u64 running)
6056 {
6057 u64 read_format = event->attr.read_format;
6058 u64 values[4];
6059 int n = 0;
6060
6061 values[n++] = perf_event_count(event);
6062 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
6063 values[n++] = enabled +
6064 atomic64_read(&event->child_total_time_enabled);
6065 }
6066 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
6067 values[n++] = running +
6068 atomic64_read(&event->child_total_time_running);
6069 }
6070 if (read_format & PERF_FORMAT_ID)
6071 values[n++] = primary_event_id(event);
6072
6073 __output_copy(handle, values, n * sizeof(u64));
6074 }
6075
6076 static void perf_output_read_group(struct perf_output_handle *handle,
6077 struct perf_event *event,
6078 u64 enabled, u64 running)
6079 {
6080 struct perf_event *leader = event->group_leader, *sub;
6081 u64 read_format = event->attr.read_format;
6082 u64 values[5];
6083 int n = 0;
6084
6085 values[n++] = 1 + leader->nr_siblings;
6086
6087 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
6088 values[n++] = enabled;
6089
6090 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
6091 values[n++] = running;
6092
6093 if ((leader != event) &&
6094 (leader->state == PERF_EVENT_STATE_ACTIVE))
6095 leader->pmu->read(leader);
6096
6097 values[n++] = perf_event_count(leader);
6098 if (read_format & PERF_FORMAT_ID)
6099 values[n++] = primary_event_id(leader);
6100
6101 __output_copy(handle, values, n * sizeof(u64));
6102
6103 for_each_sibling_event(sub, leader) {
6104 n = 0;
6105
6106 if ((sub != event) &&
6107 (sub->state == PERF_EVENT_STATE_ACTIVE))
6108 sub->pmu->read(sub);
6109
6110 values[n++] = perf_event_count(sub);
6111 if (read_format & PERF_FORMAT_ID)
6112 values[n++] = primary_event_id(sub);
6113
6114 __output_copy(handle, values, n * sizeof(u64));
6115 }
6116 }
6117
6118 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
6119 PERF_FORMAT_TOTAL_TIME_RUNNING)
6120
6121 /*
6122 * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
6123 *
6124 * The problem is that its both hard and excessively expensive to iterate the
6125 * child list, not to mention that its impossible to IPI the children running
6126 * on another CPU, from interrupt/NMI context.
6127 */
6128 static void perf_output_read(struct perf_output_handle *handle,
6129 struct perf_event *event)
6130 {
6131 u64 enabled = 0, running = 0, now;
6132 u64 read_format = event->attr.read_format;
6133
6134 /*
6135 * compute total_time_enabled, total_time_running
6136 * based on snapshot values taken when the event
6137 * was last scheduled in.
6138 *
6139 * we cannot simply called update_context_time()
6140 * because of locking issue as we are called in
6141 * NMI context
6142 */
6143 if (read_format & PERF_FORMAT_TOTAL_TIMES)
6144 calc_timer_values(event, &now, &enabled, &running);
6145
6146 if (event->attr.read_format & PERF_FORMAT_GROUP)
6147 perf_output_read_group(handle, event, enabled, running);
6148 else
6149 perf_output_read_one(handle, event, enabled, running);
6150 }
6151
6152 void perf_output_sample(struct perf_output_handle *handle,
6153 struct perf_event_header *header,
6154 struct perf_sample_data *data,
6155 struct perf_event *event)
6156 {
6157 u64 sample_type = data->type;
6158
6159 perf_output_put(handle, *header);
6160
6161 if (sample_type & PERF_SAMPLE_IDENTIFIER)
6162 perf_output_put(handle, data->id);
6163
6164 if (sample_type & PERF_SAMPLE_IP)
6165 perf_output_put(handle, data->ip);
6166
6167 if (sample_type & PERF_SAMPLE_TID)
6168 perf_output_put(handle, data->tid_entry);
6169
6170 if (sample_type & PERF_SAMPLE_TIME)
6171 perf_output_put(handle, data->time);
6172
6173 if (sample_type & PERF_SAMPLE_ADDR)
6174 perf_output_put(handle, data->addr);
6175
6176 if (sample_type & PERF_SAMPLE_ID)
6177 perf_output_put(handle, data->id);
6178
6179 if (sample_type & PERF_SAMPLE_STREAM_ID)
6180 perf_output_put(handle, data->stream_id);
6181
6182 if (sample_type & PERF_SAMPLE_CPU)
6183 perf_output_put(handle, data->cpu_entry);
6184
6185 if (sample_type & PERF_SAMPLE_PERIOD)
6186 perf_output_put(handle, data->period);
6187
6188 if (sample_type & PERF_SAMPLE_READ)
6189 perf_output_read(handle, event);
6190
6191 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6192 int size = 1;
6193
6194 size += data->callchain->nr;
6195 size *= sizeof(u64);
6196 __output_copy(handle, data->callchain, size);
6197 }
6198
6199 if (sample_type & PERF_SAMPLE_RAW) {
6200 struct perf_raw_record *raw = data->raw;
6201
6202 if (raw) {
6203 struct perf_raw_frag *frag = &raw->frag;
6204
6205 perf_output_put(handle, raw->size);
6206 do {
6207 if (frag->copy) {
6208 __output_custom(handle, frag->copy,
6209 frag->data, frag->size);
6210 } else {
6211 __output_copy(handle, frag->data,
6212 frag->size);
6213 }
6214 if (perf_raw_frag_last(frag))
6215 break;
6216 frag = frag->next;
6217 } while (1);
6218 if (frag->pad)
6219 __output_skip(handle, NULL, frag->pad);
6220 } else {
6221 struct {
6222 u32 size;
6223 u32 data;
6224 } raw = {
6225 .size = sizeof(u32),
6226 .data = 0,
6227 };
6228 perf_output_put(handle, raw);
6229 }
6230 }
6231
6232 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6233 if (data->br_stack) {
6234 size_t size;
6235
6236 size = data->br_stack->nr
6237 * sizeof(struct perf_branch_entry);
6238
6239 perf_output_put(handle, data->br_stack->nr);
6240 perf_output_copy(handle, data->br_stack->entries, size);
6241 } else {
6242 /*
6243 * we always store at least the value of nr
6244 */
6245 u64 nr = 0;
6246 perf_output_put(handle, nr);
6247 }
6248 }
6249
6250 if (sample_type & PERF_SAMPLE_REGS_USER) {
6251 u64 abi = data->regs_user.abi;
6252
6253 /*
6254 * If there are no regs to dump, notice it through
6255 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6256 */
6257 perf_output_put(handle, abi);
6258
6259 if (abi) {
6260 u64 mask = event->attr.sample_regs_user;
6261 perf_output_sample_regs(handle,
6262 data->regs_user.regs,
6263 mask);
6264 }
6265 }
6266
6267 if (sample_type & PERF_SAMPLE_STACK_USER) {
6268 perf_output_sample_ustack(handle,
6269 data->stack_user_size,
6270 data->regs_user.regs);
6271 }
6272
6273 if (sample_type & PERF_SAMPLE_WEIGHT)
6274 perf_output_put(handle, data->weight);
6275
6276 if (sample_type & PERF_SAMPLE_DATA_SRC)
6277 perf_output_put(handle, data->data_src.val);
6278
6279 if (sample_type & PERF_SAMPLE_TRANSACTION)
6280 perf_output_put(handle, data->txn);
6281
6282 if (sample_type & PERF_SAMPLE_REGS_INTR) {
6283 u64 abi = data->regs_intr.abi;
6284 /*
6285 * If there are no regs to dump, notice it through
6286 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6287 */
6288 perf_output_put(handle, abi);
6289
6290 if (abi) {
6291 u64 mask = event->attr.sample_regs_intr;
6292
6293 perf_output_sample_regs(handle,
6294 data->regs_intr.regs,
6295 mask);
6296 }
6297 }
6298
6299 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6300 perf_output_put(handle, data->phys_addr);
6301
6302 if (!event->attr.watermark) {
6303 int wakeup_events = event->attr.wakeup_events;
6304
6305 if (wakeup_events) {
6306 struct ring_buffer *rb = handle->rb;
6307 int events = local_inc_return(&rb->events);
6308
6309 if (events >= wakeup_events) {
6310 local_sub(wakeup_events, &rb->events);
6311 local_inc(&rb->wakeup);
6312 }
6313 }
6314 }
6315 }
6316
6317 static u64 perf_virt_to_phys(u64 virt)
6318 {
6319 u64 phys_addr = 0;
6320 struct page *p = NULL;
6321
6322 if (!virt)
6323 return 0;
6324
6325 if (virt >= TASK_SIZE) {
6326 /* If it's vmalloc()d memory, leave phys_addr as 0 */
6327 if (virt_addr_valid((void *)(uintptr_t)virt) &&
6328 !(virt >= VMALLOC_START && virt < VMALLOC_END))
6329 phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
6330 } else {
6331 /*
6332 * Walking the pages tables for user address.
6333 * Interrupts are disabled, so it prevents any tear down
6334 * of the page tables.
6335 * Try IRQ-safe __get_user_pages_fast first.
6336 * If failed, leave phys_addr as 0.
6337 */
6338 if ((current->mm != NULL) &&
6339 (__get_user_pages_fast(virt, 1, 0, &p) == 1))
6340 phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
6341
6342 if (p)
6343 put_page(p);
6344 }
6345
6346 return phys_addr;
6347 }
6348
6349 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
6350
6351 struct perf_callchain_entry *
6352 perf_callchain(struct perf_event *event, struct pt_regs *regs)
6353 {
6354 bool kernel = !event->attr.exclude_callchain_kernel;
6355 bool user = !event->attr.exclude_callchain_user;
6356 /* Disallow cross-task user callchains. */
6357 bool crosstask = event->ctx->task && event->ctx->task != current;
6358 const u32 max_stack = event->attr.sample_max_stack;
6359 struct perf_callchain_entry *callchain;
6360
6361 if (!kernel && !user)
6362 return &__empty_callchain;
6363
6364 callchain = get_perf_callchain(regs, 0, kernel, user,
6365 max_stack, crosstask, true);
6366 return callchain ?: &__empty_callchain;
6367 }
6368
6369 void perf_prepare_sample(struct perf_event_header *header,
6370 struct perf_sample_data *data,
6371 struct perf_event *event,
6372 struct pt_regs *regs)
6373 {
6374 u64 sample_type = event->attr.sample_type;
6375
6376 header->type = PERF_RECORD_SAMPLE;
6377 header->size = sizeof(*header) + event->header_size;
6378
6379 header->misc = 0;
6380 header->misc |= perf_misc_flags(regs);
6381
6382 __perf_event_header__init_id(header, data, event);
6383
6384 if (sample_type & PERF_SAMPLE_IP)
6385 data->ip = perf_instruction_pointer(regs);
6386
6387 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6388 int size = 1;
6389
6390 if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY))
6391 data->callchain = perf_callchain(event, regs);
6392
6393 size += data->callchain->nr;
6394
6395 header->size += size * sizeof(u64);
6396 }
6397
6398 if (sample_type & PERF_SAMPLE_RAW) {
6399 struct perf_raw_record *raw = data->raw;
6400 int size;
6401
6402 if (raw) {
6403 struct perf_raw_frag *frag = &raw->frag;
6404 u32 sum = 0;
6405
6406 do {
6407 sum += frag->size;
6408 if (perf_raw_frag_last(frag))
6409 break;
6410 frag = frag->next;
6411 } while (1);
6412
6413 size = round_up(sum + sizeof(u32), sizeof(u64));
6414 raw->size = size - sizeof(u32);
6415 frag->pad = raw->size - sum;
6416 } else {
6417 size = sizeof(u64);
6418 }
6419
6420 header->size += size;
6421 }
6422
6423 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6424 int size = sizeof(u64); /* nr */
6425 if (data->br_stack) {
6426 size += data->br_stack->nr
6427 * sizeof(struct perf_branch_entry);
6428 }
6429 header->size += size;
6430 }
6431
6432 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
6433 perf_sample_regs_user(&data->regs_user, regs,
6434 &data->regs_user_copy);
6435
6436 if (sample_type & PERF_SAMPLE_REGS_USER) {
6437 /* regs dump ABI info */
6438 int size = sizeof(u64);
6439
6440 if (data->regs_user.regs) {
6441 u64 mask = event->attr.sample_regs_user;
6442 size += hweight64(mask) * sizeof(u64);
6443 }
6444
6445 header->size += size;
6446 }
6447
6448 if (sample_type & PERF_SAMPLE_STACK_USER) {
6449 /*
6450 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
6451 * processed as the last one or have additional check added
6452 * in case new sample type is added, because we could eat
6453 * up the rest of the sample size.
6454 */
6455 u16 stack_size = event->attr.sample_stack_user;
6456 u16 size = sizeof(u64);
6457
6458 stack_size = perf_sample_ustack_size(stack_size, header->size,
6459 data->regs_user.regs);
6460
6461 /*
6462 * If there is something to dump, add space for the dump
6463 * itself and for the field that tells the dynamic size,
6464 * which is how many have been actually dumped.
6465 */
6466 if (stack_size)
6467 size += sizeof(u64) + stack_size;
6468
6469 data->stack_user_size = stack_size;
6470 header->size += size;
6471 }
6472
6473 if (sample_type & PERF_SAMPLE_REGS_INTR) {
6474 /* regs dump ABI info */
6475 int size = sizeof(u64);
6476
6477 perf_sample_regs_intr(&data->regs_intr, regs);
6478
6479 if (data->regs_intr.regs) {
6480 u64 mask = event->attr.sample_regs_intr;
6481
6482 size += hweight64(mask) * sizeof(u64);
6483 }
6484
6485 header->size += size;
6486 }
6487
6488 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6489 data->phys_addr = perf_virt_to_phys(data->addr);
6490 }
6491
6492 static __always_inline void
6493 __perf_event_output(struct perf_event *event,
6494 struct perf_sample_data *data,
6495 struct pt_regs *regs,
6496 int (*output_begin)(struct perf_output_handle *,
6497 struct perf_event *,
6498 unsigned int))
6499 {
6500 struct perf_output_handle handle;
6501 struct perf_event_header header;
6502
6503 /* protect the callchain buffers */
6504 rcu_read_lock();
6505
6506 perf_prepare_sample(&header, data, event, regs);
6507
6508 if (output_begin(&handle, event, header.size))
6509 goto exit;
6510
6511 perf_output_sample(&handle, &header, data, event);
6512
6513 perf_output_end(&handle);
6514
6515 exit:
6516 rcu_read_unlock();
6517 }
6518
6519 void
6520 perf_event_output_forward(struct perf_event *event,
6521 struct perf_sample_data *data,
6522 struct pt_regs *regs)
6523 {
6524 __perf_event_output(event, data, regs, perf_output_begin_forward);
6525 }
6526
6527 void
6528 perf_event_output_backward(struct perf_event *event,
6529 struct perf_sample_data *data,
6530 struct pt_regs *regs)
6531 {
6532 __perf_event_output(event, data, regs, perf_output_begin_backward);
6533 }
6534
6535 void
6536 perf_event_output(struct perf_event *event,
6537 struct perf_sample_data *data,
6538 struct pt_regs *regs)
6539 {
6540 __perf_event_output(event, data, regs, perf_output_begin);
6541 }
6542
6543 /*
6544 * read event_id
6545 */
6546
6547 struct perf_read_event {
6548 struct perf_event_header header;
6549
6550 u32 pid;
6551 u32 tid;
6552 };
6553
6554 static void
6555 perf_event_read_event(struct perf_event *event,
6556 struct task_struct *task)
6557 {
6558 struct perf_output_handle handle;
6559 struct perf_sample_data sample;
6560 struct perf_read_event read_event = {
6561 .header = {
6562 .type = PERF_RECORD_READ,
6563 .misc = 0,
6564 .size = sizeof(read_event) + event->read_size,
6565 },
6566 .pid = perf_event_pid(event, task),
6567 .tid = perf_event_tid(event, task),
6568 };
6569 int ret;
6570
6571 perf_event_header__init_id(&read_event.header, &sample, event);
6572 ret = perf_output_begin(&handle, event, read_event.header.size);
6573 if (ret)
6574 return;
6575
6576 perf_output_put(&handle, read_event);
6577 perf_output_read(&handle, event);
6578 perf_event__output_id_sample(event, &handle, &sample);
6579
6580 perf_output_end(&handle);
6581 }
6582
6583 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
6584
6585 static void
6586 perf_iterate_ctx(struct perf_event_context *ctx,
6587 perf_iterate_f output,
6588 void *data, bool all)
6589 {
6590 struct perf_event *event;
6591
6592 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6593 if (!all) {
6594 if (event->state < PERF_EVENT_STATE_INACTIVE)
6595 continue;
6596 if (!event_filter_match(event))
6597 continue;
6598 }
6599
6600 output(event, data);
6601 }
6602 }
6603
6604 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
6605 {
6606 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6607 struct perf_event *event;
6608
6609 list_for_each_entry_rcu(event, &pel->list, sb_list) {
6610 /*
6611 * Skip events that are not fully formed yet; ensure that
6612 * if we observe event->ctx, both event and ctx will be
6613 * complete enough. See perf_install_in_context().
6614 */
6615 if (!smp_load_acquire(&event->ctx))
6616 continue;
6617
6618 if (event->state < PERF_EVENT_STATE_INACTIVE)
6619 continue;
6620 if (!event_filter_match(event))
6621 continue;
6622 output(event, data);
6623 }
6624 }
6625
6626 /*
6627 * Iterate all events that need to receive side-band events.
6628 *
6629 * For new callers; ensure that account_pmu_sb_event() includes
6630 * your event, otherwise it might not get delivered.
6631 */
6632 static void
6633 perf_iterate_sb(perf_iterate_f output, void *data,
6634 struct perf_event_context *task_ctx)
6635 {
6636 struct perf_event_context *ctx;
6637 int ctxn;
6638
6639 rcu_read_lock();
6640 preempt_disable();
6641
6642 /*
6643 * If we have task_ctx != NULL we only notify the task context itself.
6644 * The task_ctx is set only for EXIT events before releasing task
6645 * context.
6646 */
6647 if (task_ctx) {
6648 perf_iterate_ctx(task_ctx, output, data, false);
6649 goto done;
6650 }
6651
6652 perf_iterate_sb_cpu(output, data);
6653
6654 for_each_task_context_nr(ctxn) {
6655 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6656 if (ctx)
6657 perf_iterate_ctx(ctx, output, data, false);
6658 }
6659 done:
6660 preempt_enable();
6661 rcu_read_unlock();
6662 }
6663
6664 /*
6665 * Clear all file-based filters at exec, they'll have to be
6666 * re-instated when/if these objects are mmapped again.
6667 */
6668 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6669 {
6670 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6671 struct perf_addr_filter *filter;
6672 unsigned int restart = 0, count = 0;
6673 unsigned long flags;
6674
6675 if (!has_addr_filter(event))
6676 return;
6677
6678 raw_spin_lock_irqsave(&ifh->lock, flags);
6679 list_for_each_entry(filter, &ifh->list, entry) {
6680 if (filter->path.dentry) {
6681 event->addr_filters_offs[count] = 0;
6682 restart++;
6683 }
6684
6685 count++;
6686 }
6687
6688 if (restart)
6689 event->addr_filters_gen++;
6690 raw_spin_unlock_irqrestore(&ifh->lock, flags);
6691
6692 if (restart)
6693 perf_event_stop(event, 1);
6694 }
6695
6696 void perf_event_exec(void)
6697 {
6698 struct perf_event_context *ctx;
6699 int ctxn;
6700
6701 rcu_read_lock();
6702 for_each_task_context_nr(ctxn) {
6703 ctx = current->perf_event_ctxp[ctxn];
6704 if (!ctx)
6705 continue;
6706
6707 perf_event_enable_on_exec(ctxn);
6708
6709 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
6710 true);
6711 }
6712 rcu_read_unlock();
6713 }
6714
6715 struct remote_output {
6716 struct ring_buffer *rb;
6717 int err;
6718 };
6719
6720 static void __perf_event_output_stop(struct perf_event *event, void *data)
6721 {
6722 struct perf_event *parent = event->parent;
6723 struct remote_output *ro = data;
6724 struct ring_buffer *rb = ro->rb;
6725 struct stop_event_data sd = {
6726 .event = event,
6727 };
6728
6729 if (!has_aux(event))
6730 return;
6731
6732 if (!parent)
6733 parent = event;
6734
6735 /*
6736 * In case of inheritance, it will be the parent that links to the
6737 * ring-buffer, but it will be the child that's actually using it.
6738 *
6739 * We are using event::rb to determine if the event should be stopped,
6740 * however this may race with ring_buffer_attach() (through set_output),
6741 * which will make us skip the event that actually needs to be stopped.
6742 * So ring_buffer_attach() has to stop an aux event before re-assigning
6743 * its rb pointer.
6744 */
6745 if (rcu_dereference(parent->rb) == rb)
6746 ro->err = __perf_event_stop(&sd);
6747 }
6748
6749 static int __perf_pmu_output_stop(void *info)
6750 {
6751 struct perf_event *event = info;
6752 struct pmu *pmu = event->pmu;
6753 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6754 struct remote_output ro = {
6755 .rb = event->rb,
6756 };
6757
6758 rcu_read_lock();
6759 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6760 if (cpuctx->task_ctx)
6761 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6762 &ro, false);
6763 rcu_read_unlock();
6764
6765 return ro.err;
6766 }
6767
6768 static void perf_pmu_output_stop(struct perf_event *event)
6769 {
6770 struct perf_event *iter;
6771 int err, cpu;
6772
6773 restart:
6774 rcu_read_lock();
6775 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6776 /*
6777 * For per-CPU events, we need to make sure that neither they
6778 * nor their children are running; for cpu==-1 events it's
6779 * sufficient to stop the event itself if it's active, since
6780 * it can't have children.
6781 */
6782 cpu = iter->cpu;
6783 if (cpu == -1)
6784 cpu = READ_ONCE(iter->oncpu);
6785
6786 if (cpu == -1)
6787 continue;
6788
6789 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6790 if (err == -EAGAIN) {
6791 rcu_read_unlock();
6792 goto restart;
6793 }
6794 }
6795 rcu_read_unlock();
6796 }
6797
6798 /*
6799 * task tracking -- fork/exit
6800 *
6801 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
6802 */
6803
6804 struct perf_task_event {
6805 struct task_struct *task;
6806 struct perf_event_context *task_ctx;
6807
6808 struct {
6809 struct perf_event_header header;
6810
6811 u32 pid;
6812 u32 ppid;
6813 u32 tid;
6814 u32 ptid;
6815 u64 time;
6816 } event_id;
6817 };
6818
6819 static int perf_event_task_match(struct perf_event *event)
6820 {
6821 return event->attr.comm || event->attr.mmap ||
6822 event->attr.mmap2 || event->attr.mmap_data ||
6823 event->attr.task;
6824 }
6825
6826 static void perf_event_task_output(struct perf_event *event,
6827 void *data)
6828 {
6829 struct perf_task_event *task_event = data;
6830 struct perf_output_handle handle;
6831 struct perf_sample_data sample;
6832 struct task_struct *task = task_event->task;
6833 int ret, size = task_event->event_id.header.size;
6834
6835 if (!perf_event_task_match(event))
6836 return;
6837
6838 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
6839
6840 ret = perf_output_begin(&handle, event,
6841 task_event->event_id.header.size);
6842 if (ret)
6843 goto out;
6844
6845 task_event->event_id.pid = perf_event_pid(event, task);
6846 task_event->event_id.ppid = perf_event_pid(event, current);
6847
6848 task_event->event_id.tid = perf_event_tid(event, task);
6849 task_event->event_id.ptid = perf_event_tid(event, current);
6850
6851 task_event->event_id.time = perf_event_clock(event);
6852
6853 perf_output_put(&handle, task_event->event_id);
6854
6855 perf_event__output_id_sample(event, &handle, &sample);
6856
6857 perf_output_end(&handle);
6858 out:
6859 task_event->event_id.header.size = size;
6860 }
6861
6862 static void perf_event_task(struct task_struct *task,
6863 struct perf_event_context *task_ctx,
6864 int new)
6865 {
6866 struct perf_task_event task_event;
6867
6868 if (!atomic_read(&nr_comm_events) &&
6869 !atomic_read(&nr_mmap_events) &&
6870 !atomic_read(&nr_task_events))
6871 return;
6872
6873 task_event = (struct perf_task_event){
6874 .task = task,
6875 .task_ctx = task_ctx,
6876 .event_id = {
6877 .header = {
6878 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
6879 .misc = 0,
6880 .size = sizeof(task_event.event_id),
6881 },
6882 /* .pid */
6883 /* .ppid */
6884 /* .tid */
6885 /* .ptid */
6886 /* .time */
6887 },
6888 };
6889
6890 perf_iterate_sb(perf_event_task_output,
6891 &task_event,
6892 task_ctx);
6893 }
6894
6895 void perf_event_fork(struct task_struct *task)
6896 {
6897 perf_event_task(task, NULL, 1);
6898 perf_event_namespaces(task);
6899 }
6900
6901 /*
6902 * comm tracking
6903 */
6904
6905 struct perf_comm_event {
6906 struct task_struct *task;
6907 char *comm;
6908 int comm_size;
6909
6910 struct {
6911 struct perf_event_header header;
6912
6913 u32 pid;
6914 u32 tid;
6915 } event_id;
6916 };
6917
6918 static int perf_event_comm_match(struct perf_event *event)
6919 {
6920 return event->attr.comm;
6921 }
6922
6923 static void perf_event_comm_output(struct perf_event *event,
6924 void *data)
6925 {
6926 struct perf_comm_event *comm_event = data;
6927 struct perf_output_handle handle;
6928 struct perf_sample_data sample;
6929 int size = comm_event->event_id.header.size;
6930 int ret;
6931
6932 if (!perf_event_comm_match(event))
6933 return;
6934
6935 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6936 ret = perf_output_begin(&handle, event,
6937 comm_event->event_id.header.size);
6938
6939 if (ret)
6940 goto out;
6941
6942 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6943 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
6944
6945 perf_output_put(&handle, comm_event->event_id);
6946 __output_copy(&handle, comm_event->comm,
6947 comm_event->comm_size);
6948
6949 perf_event__output_id_sample(event, &handle, &sample);
6950
6951 perf_output_end(&handle);
6952 out:
6953 comm_event->event_id.header.size = size;
6954 }
6955
6956 static void perf_event_comm_event(struct perf_comm_event *comm_event)
6957 {
6958 char comm[TASK_COMM_LEN];
6959 unsigned int size;
6960
6961 memset(comm, 0, sizeof(comm));
6962 strlcpy(comm, comm_event->task->comm, sizeof(comm));
6963 size = ALIGN(strlen(comm)+1, sizeof(u64));
6964
6965 comm_event->comm = comm;
6966 comm_event->comm_size = size;
6967
6968 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
6969
6970 perf_iterate_sb(perf_event_comm_output,
6971 comm_event,
6972 NULL);
6973 }
6974
6975 void perf_event_comm(struct task_struct *task, bool exec)
6976 {
6977 struct perf_comm_event comm_event;
6978
6979 if (!atomic_read(&nr_comm_events))
6980 return;
6981
6982 comm_event = (struct perf_comm_event){
6983 .task = task,
6984 /* .comm */
6985 /* .comm_size */
6986 .event_id = {
6987 .header = {
6988 .type = PERF_RECORD_COMM,
6989 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
6990 /* .size */
6991 },
6992 /* .pid */
6993 /* .tid */
6994 },
6995 };
6996
6997 perf_event_comm_event(&comm_event);
6998 }
6999
7000 /*
7001 * namespaces tracking
7002 */
7003
7004 struct perf_namespaces_event {
7005 struct task_struct *task;
7006
7007 struct {
7008 struct perf_event_header header;
7009
7010 u32 pid;
7011 u32 tid;
7012 u64 nr_namespaces;
7013 struct perf_ns_link_info link_info[NR_NAMESPACES];
7014 } event_id;
7015 };
7016
7017 static int perf_event_namespaces_match(struct perf_event *event)
7018 {
7019 return event->attr.namespaces;
7020 }
7021
7022 static void perf_event_namespaces_output(struct perf_event *event,
7023 void *data)
7024 {
7025 struct perf_namespaces_event *namespaces_event = data;
7026 struct perf_output_handle handle;
7027 struct perf_sample_data sample;
7028 u16 header_size = namespaces_event->event_id.header.size;
7029 int ret;
7030
7031 if (!perf_event_namespaces_match(event))
7032 return;
7033
7034 perf_event_header__init_id(&namespaces_event->event_id.header,
7035 &sample, event);
7036 ret = perf_output_begin(&handle, event,
7037 namespaces_event->event_id.header.size);
7038 if (ret)
7039 goto out;
7040
7041 namespaces_event->event_id.pid = perf_event_pid(event,
7042 namespaces_event->task);
7043 namespaces_event->event_id.tid = perf_event_tid(event,
7044 namespaces_event->task);
7045
7046 perf_output_put(&handle, namespaces_event->event_id);
7047
7048 perf_event__output_id_sample(event, &handle, &sample);
7049
7050 perf_output_end(&handle);
7051 out:
7052 namespaces_event->event_id.header.size = header_size;
7053 }
7054
7055 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
7056 struct task_struct *task,
7057 const struct proc_ns_operations *ns_ops)
7058 {
7059 struct path ns_path;
7060 struct inode *ns_inode;
7061 void *error;
7062
7063 error = ns_get_path(&ns_path, task, ns_ops);
7064 if (!error) {
7065 ns_inode = ns_path.dentry->d_inode;
7066 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
7067 ns_link_info->ino = ns_inode->i_ino;
7068 path_put(&ns_path);
7069 }
7070 }
7071
7072 void perf_event_namespaces(struct task_struct *task)
7073 {
7074 struct perf_namespaces_event namespaces_event;
7075 struct perf_ns_link_info *ns_link_info;
7076
7077 if (!atomic_read(&nr_namespaces_events))
7078 return;
7079
7080 namespaces_event = (struct perf_namespaces_event){
7081 .task = task,
7082 .event_id = {
7083 .header = {
7084 .type = PERF_RECORD_NAMESPACES,
7085 .misc = 0,
7086 .size = sizeof(namespaces_event.event_id),
7087 },
7088 /* .pid */
7089 /* .tid */
7090 .nr_namespaces = NR_NAMESPACES,
7091 /* .link_info[NR_NAMESPACES] */
7092 },
7093 };
7094
7095 ns_link_info = namespaces_event.event_id.link_info;
7096
7097 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
7098 task, &mntns_operations);
7099
7100 #ifdef CONFIG_USER_NS
7101 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
7102 task, &userns_operations);
7103 #endif
7104 #ifdef CONFIG_NET_NS
7105 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
7106 task, &netns_operations);
7107 #endif
7108 #ifdef CONFIG_UTS_NS
7109 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
7110 task, &utsns_operations);
7111 #endif
7112 #ifdef CONFIG_IPC_NS
7113 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
7114 task, &ipcns_operations);
7115 #endif
7116 #ifdef CONFIG_PID_NS
7117 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
7118 task, &pidns_operations);
7119 #endif
7120 #ifdef CONFIG_CGROUPS
7121 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
7122 task, &cgroupns_operations);
7123 #endif
7124
7125 perf_iterate_sb(perf_event_namespaces_output,
7126 &namespaces_event,
7127 NULL);
7128 }
7129
7130 /*
7131 * mmap tracking
7132 */
7133
7134 struct perf_mmap_event {
7135 struct vm_area_struct *vma;
7136
7137 const char *file_name;
7138 int file_size;
7139 int maj, min;
7140 u64 ino;
7141 u64 ino_generation;
7142 u32 prot, flags;
7143
7144 struct {
7145 struct perf_event_header header;
7146
7147 u32 pid;
7148 u32 tid;
7149 u64 start;
7150 u64 len;
7151 u64 pgoff;
7152 } event_id;
7153 };
7154
7155 static int perf_event_mmap_match(struct perf_event *event,
7156 void *data)
7157 {
7158 struct perf_mmap_event *mmap_event = data;
7159 struct vm_area_struct *vma = mmap_event->vma;
7160 int executable = vma->vm_flags & VM_EXEC;
7161
7162 return (!executable && event->attr.mmap_data) ||
7163 (executable && (event->attr.mmap || event->attr.mmap2));
7164 }
7165
7166 static void perf_event_mmap_output(struct perf_event *event,
7167 void *data)
7168 {
7169 struct perf_mmap_event *mmap_event = data;
7170 struct perf_output_handle handle;
7171 struct perf_sample_data sample;
7172 int size = mmap_event->event_id.header.size;
7173 int ret;
7174
7175 if (!perf_event_mmap_match(event, data))
7176 return;
7177
7178 if (event->attr.mmap2) {
7179 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
7180 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
7181 mmap_event->event_id.header.size += sizeof(mmap_event->min);
7182 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
7183 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
7184 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
7185 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
7186 }
7187
7188 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
7189 ret = perf_output_begin(&handle, event,
7190 mmap_event->event_id.header.size);
7191 if (ret)
7192 goto out;
7193
7194 mmap_event->event_id.pid = perf_event_pid(event, current);
7195 mmap_event->event_id.tid = perf_event_tid(event, current);
7196
7197 perf_output_put(&handle, mmap_event->event_id);
7198
7199 if (event->attr.mmap2) {
7200 perf_output_put(&handle, mmap_event->maj);
7201 perf_output_put(&handle, mmap_event->min);
7202 perf_output_put(&handle, mmap_event->ino);
7203 perf_output_put(&handle, mmap_event->ino_generation);
7204 perf_output_put(&handle, mmap_event->prot);
7205 perf_output_put(&handle, mmap_event->flags);
7206 }
7207
7208 __output_copy(&handle, mmap_event->file_name,
7209 mmap_event->file_size);
7210
7211 perf_event__output_id_sample(event, &handle, &sample);
7212
7213 perf_output_end(&handle);
7214 out:
7215 mmap_event->event_id.header.size = size;
7216 }
7217
7218 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
7219 {
7220 struct vm_area_struct *vma = mmap_event->vma;
7221 struct file *file = vma->vm_file;
7222 int maj = 0, min = 0;
7223 u64 ino = 0, gen = 0;
7224 u32 prot = 0, flags = 0;
7225 unsigned int size;
7226 char tmp[16];
7227 char *buf = NULL;
7228 char *name;
7229
7230 if (vma->vm_flags & VM_READ)
7231 prot |= PROT_READ;
7232 if (vma->vm_flags & VM_WRITE)
7233 prot |= PROT_WRITE;
7234 if (vma->vm_flags & VM_EXEC)
7235 prot |= PROT_EXEC;
7236
7237 if (vma->vm_flags & VM_MAYSHARE)
7238 flags = MAP_SHARED;
7239 else
7240 flags = MAP_PRIVATE;
7241
7242 if (vma->vm_flags & VM_DENYWRITE)
7243 flags |= MAP_DENYWRITE;
7244 if (vma->vm_flags & VM_MAYEXEC)
7245 flags |= MAP_EXECUTABLE;
7246 if (vma->vm_flags & VM_LOCKED)
7247 flags |= MAP_LOCKED;
7248 if (vma->vm_flags & VM_HUGETLB)
7249 flags |= MAP_HUGETLB;
7250
7251 if (file) {
7252 struct inode *inode;
7253 dev_t dev;
7254
7255 buf = kmalloc(PATH_MAX, GFP_KERNEL);
7256 if (!buf) {
7257 name = "//enomem";
7258 goto cpy_name;
7259 }
7260 /*
7261 * d_path() works from the end of the rb backwards, so we
7262 * need to add enough zero bytes after the string to handle
7263 * the 64bit alignment we do later.
7264 */
7265 name = file_path(file, buf, PATH_MAX - sizeof(u64));
7266 if (IS_ERR(name)) {
7267 name = "//toolong";
7268 goto cpy_name;
7269 }
7270 inode = file_inode(vma->vm_file);
7271 dev = inode->i_sb->s_dev;
7272 ino = inode->i_ino;
7273 gen = inode->i_generation;
7274 maj = MAJOR(dev);
7275 min = MINOR(dev);
7276
7277 goto got_name;
7278 } else {
7279 if (vma->vm_ops && vma->vm_ops->name) {
7280 name = (char *) vma->vm_ops->name(vma);
7281 if (name)
7282 goto cpy_name;
7283 }
7284
7285 name = (char *)arch_vma_name(vma);
7286 if (name)
7287 goto cpy_name;
7288
7289 if (vma->vm_start <= vma->vm_mm->start_brk &&
7290 vma->vm_end >= vma->vm_mm->brk) {
7291 name = "[heap]";
7292 goto cpy_name;
7293 }
7294 if (vma->vm_start <= vma->vm_mm->start_stack &&
7295 vma->vm_end >= vma->vm_mm->start_stack) {
7296 name = "[stack]";
7297 goto cpy_name;
7298 }
7299
7300 name = "//anon";
7301 goto cpy_name;
7302 }
7303
7304 cpy_name:
7305 strlcpy(tmp, name, sizeof(tmp));
7306 name = tmp;
7307 got_name:
7308 /*
7309 * Since our buffer works in 8 byte units we need to align our string
7310 * size to a multiple of 8. However, we must guarantee the tail end is
7311 * zero'd out to avoid leaking random bits to userspace.
7312 */
7313 size = strlen(name)+1;
7314 while (!IS_ALIGNED(size, sizeof(u64)))
7315 name[size++] = '\0';
7316
7317 mmap_event->file_name = name;
7318 mmap_event->file_size = size;
7319 mmap_event->maj = maj;
7320 mmap_event->min = min;
7321 mmap_event->ino = ino;
7322 mmap_event->ino_generation = gen;
7323 mmap_event->prot = prot;
7324 mmap_event->flags = flags;
7325
7326 if (!(vma->vm_flags & VM_EXEC))
7327 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
7328
7329 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
7330
7331 perf_iterate_sb(perf_event_mmap_output,
7332 mmap_event,
7333 NULL);
7334
7335 kfree(buf);
7336 }
7337
7338 /*
7339 * Check whether inode and address range match filter criteria.
7340 */
7341 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
7342 struct file *file, unsigned long offset,
7343 unsigned long size)
7344 {
7345 /* d_inode(NULL) won't be equal to any mapped user-space file */
7346 if (!filter->path.dentry)
7347 return false;
7348
7349 if (d_inode(filter->path.dentry) != file_inode(file))
7350 return false;
7351
7352 if (filter->offset > offset + size)
7353 return false;
7354
7355 if (filter->offset + filter->size < offset)
7356 return false;
7357
7358 return true;
7359 }
7360
7361 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
7362 {
7363 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7364 struct vm_area_struct *vma = data;
7365 unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
7366 struct file *file = vma->vm_file;
7367 struct perf_addr_filter *filter;
7368 unsigned int restart = 0, count = 0;
7369
7370 if (!has_addr_filter(event))
7371 return;
7372
7373 if (!file)
7374 return;
7375
7376 raw_spin_lock_irqsave(&ifh->lock, flags);
7377 list_for_each_entry(filter, &ifh->list, entry) {
7378 if (perf_addr_filter_match(filter, file, off,
7379 vma->vm_end - vma->vm_start)) {
7380 event->addr_filters_offs[count] = vma->vm_start;
7381 restart++;
7382 }
7383
7384 count++;
7385 }
7386
7387 if (restart)
7388 event->addr_filters_gen++;
7389 raw_spin_unlock_irqrestore(&ifh->lock, flags);
7390
7391 if (restart)
7392 perf_event_stop(event, 1);
7393 }
7394
7395 /*
7396 * Adjust all task's events' filters to the new vma
7397 */
7398 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
7399 {
7400 struct perf_event_context *ctx;
7401 int ctxn;
7402
7403 /*
7404 * Data tracing isn't supported yet and as such there is no need
7405 * to keep track of anything that isn't related to executable code:
7406 */
7407 if (!(vma->vm_flags & VM_EXEC))
7408 return;
7409
7410 rcu_read_lock();
7411 for_each_task_context_nr(ctxn) {
7412 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7413 if (!ctx)
7414 continue;
7415
7416 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
7417 }
7418 rcu_read_unlock();
7419 }
7420
7421 void perf_event_mmap(struct vm_area_struct *vma)
7422 {
7423 struct perf_mmap_event mmap_event;
7424
7425 if (!atomic_read(&nr_mmap_events))
7426 return;
7427
7428 mmap_event = (struct perf_mmap_event){
7429 .vma = vma,
7430 /* .file_name */
7431 /* .file_size */
7432 .event_id = {
7433 .header = {
7434 .type = PERF_RECORD_MMAP,
7435 .misc = PERF_RECORD_MISC_USER,
7436 /* .size */
7437 },
7438 /* .pid */
7439 /* .tid */
7440 .start = vma->vm_start,
7441 .len = vma->vm_end - vma->vm_start,
7442 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
7443 },
7444 /* .maj (attr_mmap2 only) */
7445 /* .min (attr_mmap2 only) */
7446 /* .ino (attr_mmap2 only) */
7447 /* .ino_generation (attr_mmap2 only) */
7448 /* .prot (attr_mmap2 only) */
7449 /* .flags (attr_mmap2 only) */
7450 };
7451
7452 perf_addr_filters_adjust(vma);
7453 perf_event_mmap_event(&mmap_event);
7454 }
7455
7456 void perf_event_aux_event(struct perf_event *event, unsigned long head,
7457 unsigned long size, u64 flags)
7458 {
7459 struct perf_output_handle handle;
7460 struct perf_sample_data sample;
7461 struct perf_aux_event {
7462 struct perf_event_header header;
7463 u64 offset;
7464 u64 size;
7465 u64 flags;
7466 } rec = {
7467 .header = {
7468 .type = PERF_RECORD_AUX,
7469 .misc = 0,
7470 .size = sizeof(rec),
7471 },
7472 .offset = head,
7473 .size = size,
7474 .flags = flags,
7475 };
7476 int ret;
7477
7478 perf_event_header__init_id(&rec.header, &sample, event);
7479 ret = perf_output_begin(&handle, event, rec.header.size);
7480
7481 if (ret)
7482 return;
7483
7484 perf_output_put(&handle, rec);
7485 perf_event__output_id_sample(event, &handle, &sample);
7486
7487 perf_output_end(&handle);
7488 }
7489
7490 /*
7491 * Lost/dropped samples logging
7492 */
7493 void perf_log_lost_samples(struct perf_event *event, u64 lost)
7494 {
7495 struct perf_output_handle handle;
7496 struct perf_sample_data sample;
7497 int ret;
7498
7499 struct {
7500 struct perf_event_header header;
7501 u64 lost;
7502 } lost_samples_event = {
7503 .header = {
7504 .type = PERF_RECORD_LOST_SAMPLES,
7505 .misc = 0,
7506 .size = sizeof(lost_samples_event),
7507 },
7508 .lost = lost,
7509 };
7510
7511 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
7512
7513 ret = perf_output_begin(&handle, event,
7514 lost_samples_event.header.size);
7515 if (ret)
7516 return;
7517
7518 perf_output_put(&handle, lost_samples_event);
7519 perf_event__output_id_sample(event, &handle, &sample);
7520 perf_output_end(&handle);
7521 }
7522
7523 /*
7524 * context_switch tracking
7525 */
7526
7527 struct perf_switch_event {
7528 struct task_struct *task;
7529 struct task_struct *next_prev;
7530
7531 struct {
7532 struct perf_event_header header;
7533 u32 next_prev_pid;
7534 u32 next_prev_tid;
7535 } event_id;
7536 };
7537
7538 static int perf_event_switch_match(struct perf_event *event)
7539 {
7540 return event->attr.context_switch;
7541 }
7542
7543 static void perf_event_switch_output(struct perf_event *event, void *data)
7544 {
7545 struct perf_switch_event *se = data;
7546 struct perf_output_handle handle;
7547 struct perf_sample_data sample;
7548 int ret;
7549
7550 if (!perf_event_switch_match(event))
7551 return;
7552
7553 /* Only CPU-wide events are allowed to see next/prev pid/tid */
7554 if (event->ctx->task) {
7555 se->event_id.header.type = PERF_RECORD_SWITCH;
7556 se->event_id.header.size = sizeof(se->event_id.header);
7557 } else {
7558 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
7559 se->event_id.header.size = sizeof(se->event_id);
7560 se->event_id.next_prev_pid =
7561 perf_event_pid(event, se->next_prev);
7562 se->event_id.next_prev_tid =
7563 perf_event_tid(event, se->next_prev);
7564 }
7565
7566 perf_event_header__init_id(&se->event_id.header, &sample, event);
7567
7568 ret = perf_output_begin(&handle, event, se->event_id.header.size);
7569 if (ret)
7570 return;
7571
7572 if (event->ctx->task)
7573 perf_output_put(&handle, se->event_id.header);
7574 else
7575 perf_output_put(&handle, se->event_id);
7576
7577 perf_event__output_id_sample(event, &handle, &sample);
7578
7579 perf_output_end(&handle);
7580 }
7581
7582 static void perf_event_switch(struct task_struct *task,
7583 struct task_struct *next_prev, bool sched_in)
7584 {
7585 struct perf_switch_event switch_event;
7586
7587 /* N.B. caller checks nr_switch_events != 0 */
7588
7589 switch_event = (struct perf_switch_event){
7590 .task = task,
7591 .next_prev = next_prev,
7592 .event_id = {
7593 .header = {
7594 /* .type */
7595 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
7596 /* .size */
7597 },
7598 /* .next_prev_pid */
7599 /* .next_prev_tid */
7600 },
7601 };
7602
7603 if (!sched_in && task->state == TASK_RUNNING)
7604 switch_event.event_id.header.misc |=
7605 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
7606
7607 perf_iterate_sb(perf_event_switch_output,
7608 &switch_event,
7609 NULL);
7610 }
7611
7612 /*
7613 * IRQ throttle logging
7614 */
7615
7616 static void perf_log_throttle(struct perf_event *event, int enable)
7617 {
7618 struct perf_output_handle handle;
7619 struct perf_sample_data sample;
7620 int ret;
7621
7622 struct {
7623 struct perf_event_header header;
7624 u64 time;
7625 u64 id;
7626 u64 stream_id;
7627 } throttle_event = {
7628 .header = {
7629 .type = PERF_RECORD_THROTTLE,
7630 .misc = 0,
7631 .size = sizeof(throttle_event),
7632 },
7633 .time = perf_event_clock(event),
7634 .id = primary_event_id(event),
7635 .stream_id = event->id,
7636 };
7637
7638 if (enable)
7639 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
7640
7641 perf_event_header__init_id(&throttle_event.header, &sample, event);
7642
7643 ret = perf_output_begin(&handle, event,
7644 throttle_event.header.size);
7645 if (ret)
7646 return;
7647
7648 perf_output_put(&handle, throttle_event);
7649 perf_event__output_id_sample(event, &handle, &sample);
7650 perf_output_end(&handle);
7651 }
7652
7653 void perf_event_itrace_started(struct perf_event *event)
7654 {
7655 event->attach_state |= PERF_ATTACH_ITRACE;
7656 }
7657
7658 static void perf_log_itrace_start(struct perf_event *event)
7659 {
7660 struct perf_output_handle handle;
7661 struct perf_sample_data sample;
7662 struct perf_aux_event {
7663 struct perf_event_header header;
7664 u32 pid;
7665 u32 tid;
7666 } rec;
7667 int ret;
7668
7669 if (event->parent)
7670 event = event->parent;
7671
7672 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
7673 event->attach_state & PERF_ATTACH_ITRACE)
7674 return;
7675
7676 rec.header.type = PERF_RECORD_ITRACE_START;
7677 rec.header.misc = 0;
7678 rec.header.size = sizeof(rec);
7679 rec.pid = perf_event_pid(event, current);
7680 rec.tid = perf_event_tid(event, current);
7681
7682 perf_event_header__init_id(&rec.header, &sample, event);
7683 ret = perf_output_begin(&handle, event, rec.header.size);
7684
7685 if (ret)
7686 return;
7687
7688 perf_output_put(&handle, rec);
7689 perf_event__output_id_sample(event, &handle, &sample);
7690
7691 perf_output_end(&handle);
7692 }
7693
7694 static int
7695 __perf_event_account_interrupt(struct perf_event *event, int throttle)
7696 {
7697 struct hw_perf_event *hwc = &event->hw;
7698 int ret = 0;
7699 u64 seq;
7700
7701 seq = __this_cpu_read(perf_throttled_seq);
7702 if (seq != hwc->interrupts_seq) {
7703 hwc->interrupts_seq = seq;
7704 hwc->interrupts = 1;
7705 } else {
7706 hwc->interrupts++;
7707 if (unlikely(throttle
7708 && hwc->interrupts >= max_samples_per_tick)) {
7709 __this_cpu_inc(perf_throttled_count);
7710 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
7711 hwc->interrupts = MAX_INTERRUPTS;
7712 perf_log_throttle(event, 0);
7713 ret = 1;
7714 }
7715 }
7716
7717 if (event->attr.freq) {
7718 u64 now = perf_clock();
7719 s64 delta = now - hwc->freq_time_stamp;
7720
7721 hwc->freq_time_stamp = now;
7722
7723 if (delta > 0 && delta < 2*TICK_NSEC)
7724 perf_adjust_period(event, delta, hwc->last_period, true);
7725 }
7726
7727 return ret;
7728 }
7729
7730 int perf_event_account_interrupt(struct perf_event *event)
7731 {
7732 return __perf_event_account_interrupt(event, 1);
7733 }
7734
7735 /*
7736 * Generic event overflow handling, sampling.
7737 */
7738
7739 static int __perf_event_overflow(struct perf_event *event,
7740 int throttle, struct perf_sample_data *data,
7741 struct pt_regs *regs)
7742 {
7743 int events = atomic_read(&event->event_limit);
7744 int ret = 0;
7745
7746 /*
7747 * Non-sampling counters might still use the PMI to fold short
7748 * hardware counters, ignore those.
7749 */
7750 if (unlikely(!is_sampling_event(event)))
7751 return 0;
7752
7753 ret = __perf_event_account_interrupt(event, throttle);
7754
7755 /*
7756 * XXX event_limit might not quite work as expected on inherited
7757 * events
7758 */
7759
7760 event->pending_kill = POLL_IN;
7761 if (events && atomic_dec_and_test(&event->event_limit)) {
7762 ret = 1;
7763 event->pending_kill = POLL_HUP;
7764
7765 perf_event_disable_inatomic(event);
7766 }
7767
7768 READ_ONCE(event->overflow_handler)(event, data, regs);
7769
7770 if (*perf_event_fasync(event) && event->pending_kill) {
7771 event->pending_wakeup = 1;
7772 irq_work_queue(&event->pending);
7773 }
7774
7775 return ret;
7776 }
7777
7778 int perf_event_overflow(struct perf_event *event,
7779 struct perf_sample_data *data,
7780 struct pt_regs *regs)
7781 {
7782 return __perf_event_overflow(event, 1, data, regs);
7783 }
7784
7785 /*
7786 * Generic software event infrastructure
7787 */
7788
7789 struct swevent_htable {
7790 struct swevent_hlist *swevent_hlist;
7791 struct mutex hlist_mutex;
7792 int hlist_refcount;
7793
7794 /* Recursion avoidance in each contexts */
7795 int recursion[PERF_NR_CONTEXTS];
7796 };
7797
7798 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
7799
7800 /*
7801 * We directly increment event->count and keep a second value in
7802 * event->hw.period_left to count intervals. This period event
7803 * is kept in the range [-sample_period, 0] so that we can use the
7804 * sign as trigger.
7805 */
7806
7807 u64 perf_swevent_set_period(struct perf_event *event)
7808 {
7809 struct hw_perf_event *hwc = &event->hw;
7810 u64 period = hwc->last_period;
7811 u64 nr, offset;
7812 s64 old, val;
7813
7814 hwc->last_period = hwc->sample_period;
7815
7816 again:
7817 old = val = local64_read(&hwc->period_left);
7818 if (val < 0)
7819 return 0;
7820
7821 nr = div64_u64(period + val, period);
7822 offset = nr * period;
7823 val -= offset;
7824 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7825 goto again;
7826
7827 return nr;
7828 }
7829
7830 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
7831 struct perf_sample_data *data,
7832 struct pt_regs *regs)
7833 {
7834 struct hw_perf_event *hwc = &event->hw;
7835 int throttle = 0;
7836
7837 if (!overflow)
7838 overflow = perf_swevent_set_period(event);
7839
7840 if (hwc->interrupts == MAX_INTERRUPTS)
7841 return;
7842
7843 for (; overflow; overflow--) {
7844 if (__perf_event_overflow(event, throttle,
7845 data, regs)) {
7846 /*
7847 * We inhibit the overflow from happening when
7848 * hwc->interrupts == MAX_INTERRUPTS.
7849 */
7850 break;
7851 }
7852 throttle = 1;
7853 }
7854 }
7855
7856 static void perf_swevent_event(struct perf_event *event, u64 nr,
7857 struct perf_sample_data *data,
7858 struct pt_regs *regs)
7859 {
7860 struct hw_perf_event *hwc = &event->hw;
7861
7862 local64_add(nr, &event->count);
7863
7864 if (!regs)
7865 return;
7866
7867 if (!is_sampling_event(event))
7868 return;
7869
7870 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
7871 data->period = nr;
7872 return perf_swevent_overflow(event, 1, data, regs);
7873 } else
7874 data->period = event->hw.last_period;
7875
7876 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
7877 return perf_swevent_overflow(event, 1, data, regs);
7878
7879 if (local64_add_negative(nr, &hwc->period_left))
7880 return;
7881
7882 perf_swevent_overflow(event, 0, data, regs);
7883 }
7884
7885 static int perf_exclude_event(struct perf_event *event,
7886 struct pt_regs *regs)
7887 {
7888 if (event->hw.state & PERF_HES_STOPPED)
7889 return 1;
7890
7891 if (regs) {
7892 if (event->attr.exclude_user && user_mode(regs))
7893 return 1;
7894
7895 if (event->attr.exclude_kernel && !user_mode(regs))
7896 return 1;
7897 }
7898
7899 return 0;
7900 }
7901
7902 static int perf_swevent_match(struct perf_event *event,
7903 enum perf_type_id type,
7904 u32 event_id,
7905 struct perf_sample_data *data,
7906 struct pt_regs *regs)
7907 {
7908 if (event->attr.type != type)
7909 return 0;
7910
7911 if (event->attr.config != event_id)
7912 return 0;
7913
7914 if (perf_exclude_event(event, regs))
7915 return 0;
7916
7917 return 1;
7918 }
7919
7920 static inline u64 swevent_hash(u64 type, u32 event_id)
7921 {
7922 u64 val = event_id | (type << 32);
7923
7924 return hash_64(val, SWEVENT_HLIST_BITS);
7925 }
7926
7927 static inline struct hlist_head *
7928 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
7929 {
7930 u64 hash = swevent_hash(type, event_id);
7931
7932 return &hlist->heads[hash];
7933 }
7934
7935 /* For the read side: events when they trigger */
7936 static inline struct hlist_head *
7937 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
7938 {
7939 struct swevent_hlist *hlist;
7940
7941 hlist = rcu_dereference(swhash->swevent_hlist);
7942 if (!hlist)
7943 return NULL;
7944
7945 return __find_swevent_head(hlist, type, event_id);
7946 }
7947
7948 /* For the event head insertion and removal in the hlist */
7949 static inline struct hlist_head *
7950 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
7951 {
7952 struct swevent_hlist *hlist;
7953 u32 event_id = event->attr.config;
7954 u64 type = event->attr.type;
7955
7956 /*
7957 * Event scheduling is always serialized against hlist allocation
7958 * and release. Which makes the protected version suitable here.
7959 * The context lock guarantees that.
7960 */
7961 hlist = rcu_dereference_protected(swhash->swevent_hlist,
7962 lockdep_is_held(&event->ctx->lock));
7963 if (!hlist)
7964 return NULL;
7965
7966 return __find_swevent_head(hlist, type, event_id);
7967 }
7968
7969 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
7970 u64 nr,
7971 struct perf_sample_data *data,
7972 struct pt_regs *regs)
7973 {
7974 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7975 struct perf_event *event;
7976 struct hlist_head *head;
7977
7978 rcu_read_lock();
7979 head = find_swevent_head_rcu(swhash, type, event_id);
7980 if (!head)
7981 goto end;
7982
7983 hlist_for_each_entry_rcu(event, head, hlist_entry) {
7984 if (perf_swevent_match(event, type, event_id, data, regs))
7985 perf_swevent_event(event, nr, data, regs);
7986 }
7987 end:
7988 rcu_read_unlock();
7989 }
7990
7991 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
7992
7993 int perf_swevent_get_recursion_context(void)
7994 {
7995 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7996
7997 return get_recursion_context(swhash->recursion);
7998 }
7999 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
8000
8001 void perf_swevent_put_recursion_context(int rctx)
8002 {
8003 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8004
8005 put_recursion_context(swhash->recursion, rctx);
8006 }
8007
8008 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
8009 {
8010 struct perf_sample_data data;
8011
8012 if (WARN_ON_ONCE(!regs))
8013 return;
8014
8015 perf_sample_data_init(&data, addr, 0);
8016 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
8017 }
8018
8019 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
8020 {
8021 int rctx;
8022
8023 preempt_disable_notrace();
8024 rctx = perf_swevent_get_recursion_context();
8025 if (unlikely(rctx < 0))
8026 goto fail;
8027
8028 ___perf_sw_event(event_id, nr, regs, addr);
8029
8030 perf_swevent_put_recursion_context(rctx);
8031 fail:
8032 preempt_enable_notrace();
8033 }
8034
8035 static void perf_swevent_read(struct perf_event *event)
8036 {
8037 }
8038
8039 static int perf_swevent_add(struct perf_event *event, int flags)
8040 {
8041 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8042 struct hw_perf_event *hwc = &event->hw;
8043 struct hlist_head *head;
8044
8045 if (is_sampling_event(event)) {
8046 hwc->last_period = hwc->sample_period;
8047 perf_swevent_set_period(event);
8048 }
8049
8050 hwc->state = !(flags & PERF_EF_START);
8051
8052 head = find_swevent_head(swhash, event);
8053 if (WARN_ON_ONCE(!head))
8054 return -EINVAL;
8055
8056 hlist_add_head_rcu(&event->hlist_entry, head);
8057 perf_event_update_userpage(event);
8058
8059 return 0;
8060 }
8061
8062 static void perf_swevent_del(struct perf_event *event, int flags)
8063 {
8064 hlist_del_rcu(&event->hlist_entry);
8065 }
8066
8067 static void perf_swevent_start(struct perf_event *event, int flags)
8068 {
8069 event->hw.state = 0;
8070 }
8071
8072 static void perf_swevent_stop(struct perf_event *event, int flags)
8073 {
8074 event->hw.state = PERF_HES_STOPPED;
8075 }
8076
8077 /* Deref the hlist from the update side */
8078 static inline struct swevent_hlist *
8079 swevent_hlist_deref(struct swevent_htable *swhash)
8080 {
8081 return rcu_dereference_protected(swhash->swevent_hlist,
8082 lockdep_is_held(&swhash->hlist_mutex));
8083 }
8084
8085 static void swevent_hlist_release(struct swevent_htable *swhash)
8086 {
8087 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
8088
8089 if (!hlist)
8090 return;
8091
8092 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
8093 kfree_rcu(hlist, rcu_head);
8094 }
8095
8096 static void swevent_hlist_put_cpu(int cpu)
8097 {
8098 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8099
8100 mutex_lock(&swhash->hlist_mutex);
8101
8102 if (!--swhash->hlist_refcount)
8103 swevent_hlist_release(swhash);
8104
8105 mutex_unlock(&swhash->hlist_mutex);
8106 }
8107
8108 static void swevent_hlist_put(void)
8109 {
8110 int cpu;
8111
8112 for_each_possible_cpu(cpu)
8113 swevent_hlist_put_cpu(cpu);
8114 }
8115
8116 static int swevent_hlist_get_cpu(int cpu)
8117 {
8118 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8119 int err = 0;
8120
8121 mutex_lock(&swhash->hlist_mutex);
8122 if (!swevent_hlist_deref(swhash) &&
8123 cpumask_test_cpu(cpu, perf_online_mask)) {
8124 struct swevent_hlist *hlist;
8125
8126 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
8127 if (!hlist) {
8128 err = -ENOMEM;
8129 goto exit;
8130 }
8131 rcu_assign_pointer(swhash->swevent_hlist, hlist);
8132 }
8133 swhash->hlist_refcount++;
8134 exit:
8135 mutex_unlock(&swhash->hlist_mutex);
8136
8137 return err;
8138 }
8139
8140 static int swevent_hlist_get(void)
8141 {
8142 int err, cpu, failed_cpu;
8143
8144 mutex_lock(&pmus_lock);
8145 for_each_possible_cpu(cpu) {
8146 err = swevent_hlist_get_cpu(cpu);
8147 if (err) {
8148 failed_cpu = cpu;
8149 goto fail;
8150 }
8151 }
8152 mutex_unlock(&pmus_lock);
8153 return 0;
8154 fail:
8155 for_each_possible_cpu(cpu) {
8156 if (cpu == failed_cpu)
8157 break;
8158 swevent_hlist_put_cpu(cpu);
8159 }
8160 mutex_unlock(&pmus_lock);
8161 return err;
8162 }
8163
8164 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
8165
8166 static void sw_perf_event_destroy(struct perf_event *event)
8167 {
8168 u64 event_id = event->attr.config;
8169
8170 WARN_ON(event->parent);
8171
8172 static_key_slow_dec(&perf_swevent_enabled[event_id]);
8173 swevent_hlist_put();
8174 }
8175
8176 static int perf_swevent_init(struct perf_event *event)
8177 {
8178 u64 event_id = event->attr.config;
8179
8180 if (event->attr.type != PERF_TYPE_SOFTWARE)
8181 return -ENOENT;
8182
8183 /*
8184 * no branch sampling for software events
8185 */
8186 if (has_branch_stack(event))
8187 return -EOPNOTSUPP;
8188
8189 switch (event_id) {
8190 case PERF_COUNT_SW_CPU_CLOCK:
8191 case PERF_COUNT_SW_TASK_CLOCK:
8192 return -ENOENT;
8193
8194 default:
8195 break;
8196 }
8197
8198 if (event_id >= PERF_COUNT_SW_MAX)
8199 return -ENOENT;
8200
8201 if (!event->parent) {
8202 int err;
8203
8204 err = swevent_hlist_get();
8205 if (err)
8206 return err;
8207
8208 static_key_slow_inc(&perf_swevent_enabled[event_id]);
8209 event->destroy = sw_perf_event_destroy;
8210 }
8211
8212 return 0;
8213 }
8214
8215 static struct pmu perf_swevent = {
8216 .task_ctx_nr = perf_sw_context,
8217
8218 .capabilities = PERF_PMU_CAP_NO_NMI,
8219
8220 .event_init = perf_swevent_init,
8221 .add = perf_swevent_add,
8222 .del = perf_swevent_del,
8223 .start = perf_swevent_start,
8224 .stop = perf_swevent_stop,
8225 .read = perf_swevent_read,
8226 };
8227
8228 #ifdef CONFIG_EVENT_TRACING
8229
8230 static int perf_tp_filter_match(struct perf_event *event,
8231 struct perf_sample_data *data)
8232 {
8233 void *record = data->raw->frag.data;
8234
8235 /* only top level events have filters set */
8236 if (event->parent)
8237 event = event->parent;
8238
8239 if (likely(!event->filter) || filter_match_preds(event->filter, record))
8240 return 1;
8241 return 0;
8242 }
8243
8244 static int perf_tp_event_match(struct perf_event *event,
8245 struct perf_sample_data *data,
8246 struct pt_regs *regs)
8247 {
8248 if (event->hw.state & PERF_HES_STOPPED)
8249 return 0;
8250 /*
8251 * All tracepoints are from kernel-space.
8252 */
8253 if (event->attr.exclude_kernel)
8254 return 0;
8255
8256 if (!perf_tp_filter_match(event, data))
8257 return 0;
8258
8259 return 1;
8260 }
8261
8262 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
8263 struct trace_event_call *call, u64 count,
8264 struct pt_regs *regs, struct hlist_head *head,
8265 struct task_struct *task)
8266 {
8267 if (bpf_prog_array_valid(call)) {
8268 *(struct pt_regs **)raw_data = regs;
8269 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
8270 perf_swevent_put_recursion_context(rctx);
8271 return;
8272 }
8273 }
8274 perf_tp_event(call->event.type, count, raw_data, size, regs, head,
8275 rctx, task);
8276 }
8277 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
8278
8279 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
8280 struct pt_regs *regs, struct hlist_head *head, int rctx,
8281 struct task_struct *task)
8282 {
8283 struct perf_sample_data data;
8284 struct perf_event *event;
8285
8286 struct perf_raw_record raw = {
8287 .frag = {
8288 .size = entry_size,
8289 .data = record,
8290 },
8291 };
8292
8293 perf_sample_data_init(&data, 0, 0);
8294 data.raw = &raw;
8295
8296 perf_trace_buf_update(record, event_type);
8297
8298 hlist_for_each_entry_rcu(event, head, hlist_entry) {
8299 if (perf_tp_event_match(event, &data, regs))
8300 perf_swevent_event(event, count, &data, regs);
8301 }
8302
8303 /*
8304 * If we got specified a target task, also iterate its context and
8305 * deliver this event there too.
8306 */
8307 if (task && task != current) {
8308 struct perf_event_context *ctx;
8309 struct trace_entry *entry = record;
8310
8311 rcu_read_lock();
8312 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
8313 if (!ctx)
8314 goto unlock;
8315
8316 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
8317 if (event->cpu != smp_processor_id())
8318 continue;
8319 if (event->attr.type != PERF_TYPE_TRACEPOINT)
8320 continue;
8321 if (event->attr.config != entry->type)
8322 continue;
8323 if (perf_tp_event_match(event, &data, regs))
8324 perf_swevent_event(event, count, &data, regs);
8325 }
8326 unlock:
8327 rcu_read_unlock();
8328 }
8329
8330 perf_swevent_put_recursion_context(rctx);
8331 }
8332 EXPORT_SYMBOL_GPL(perf_tp_event);
8333
8334 static void tp_perf_event_destroy(struct perf_event *event)
8335 {
8336 perf_trace_destroy(event);
8337 }
8338
8339 static int perf_tp_event_init(struct perf_event *event)
8340 {
8341 int err;
8342
8343 if (event->attr.type != PERF_TYPE_TRACEPOINT)
8344 return -ENOENT;
8345
8346 /*
8347 * no branch sampling for tracepoint events
8348 */
8349 if (has_branch_stack(event))
8350 return -EOPNOTSUPP;
8351
8352 err = perf_trace_init(event);
8353 if (err)
8354 return err;
8355
8356 event->destroy = tp_perf_event_destroy;
8357
8358 return 0;
8359 }
8360
8361 static struct pmu perf_tracepoint = {
8362 .task_ctx_nr = perf_sw_context,
8363
8364 .event_init = perf_tp_event_init,
8365 .add = perf_trace_add,
8366 .del = perf_trace_del,
8367 .start = perf_swevent_start,
8368 .stop = perf_swevent_stop,
8369 .read = perf_swevent_read,
8370 };
8371
8372 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
8373 /*
8374 * Flags in config, used by dynamic PMU kprobe and uprobe
8375 * The flags should match following PMU_FORMAT_ATTR().
8376 *
8377 * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
8378 * if not set, create kprobe/uprobe
8379 *
8380 * The following values specify a reference counter (or semaphore in the
8381 * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
8382 * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
8383 *
8384 * PERF_UPROBE_REF_CTR_OFFSET_BITS # of bits in config as th offset
8385 * PERF_UPROBE_REF_CTR_OFFSET_SHIFT # of bits to shift left
8386 */
8387 enum perf_probe_config {
8388 PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0, /* [k,u]retprobe */
8389 PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
8390 PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
8391 };
8392
8393 PMU_FORMAT_ATTR(retprobe, "config:0");
8394 #endif
8395
8396 #ifdef CONFIG_KPROBE_EVENTS
8397 static struct attribute *kprobe_attrs[] = {
8398 &format_attr_retprobe.attr,
8399 NULL,
8400 };
8401
8402 static struct attribute_group kprobe_format_group = {
8403 .name = "format",
8404 .attrs = kprobe_attrs,
8405 };
8406
8407 static const struct attribute_group *kprobe_attr_groups[] = {
8408 &kprobe_format_group,
8409 NULL,
8410 };
8411
8412 static int perf_kprobe_event_init(struct perf_event *event);
8413 static struct pmu perf_kprobe = {
8414 .task_ctx_nr = perf_sw_context,
8415 .event_init = perf_kprobe_event_init,
8416 .add = perf_trace_add,
8417 .del = perf_trace_del,
8418 .start = perf_swevent_start,
8419 .stop = perf_swevent_stop,
8420 .read = perf_swevent_read,
8421 .attr_groups = kprobe_attr_groups,
8422 };
8423
8424 static int perf_kprobe_event_init(struct perf_event *event)
8425 {
8426 int err;
8427 bool is_retprobe;
8428
8429 if (event->attr.type != perf_kprobe.type)
8430 return -ENOENT;
8431
8432 if (!capable(CAP_SYS_ADMIN))
8433 return -EACCES;
8434
8435 /*
8436 * no branch sampling for probe events
8437 */
8438 if (has_branch_stack(event))
8439 return -EOPNOTSUPP;
8440
8441 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
8442 err = perf_kprobe_init(event, is_retprobe);
8443 if (err)
8444 return err;
8445
8446 event->destroy = perf_kprobe_destroy;
8447
8448 return 0;
8449 }
8450 #endif /* CONFIG_KPROBE_EVENTS */
8451
8452 #ifdef CONFIG_UPROBE_EVENTS
8453 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
8454
8455 static struct attribute *uprobe_attrs[] = {
8456 &format_attr_retprobe.attr,
8457 &format_attr_ref_ctr_offset.attr,
8458 NULL,
8459 };
8460
8461 static struct attribute_group uprobe_format_group = {
8462 .name = "format",
8463 .attrs = uprobe_attrs,
8464 };
8465
8466 static const struct attribute_group *uprobe_attr_groups[] = {
8467 &uprobe_format_group,
8468 NULL,
8469 };
8470
8471 static int perf_uprobe_event_init(struct perf_event *event);
8472 static struct pmu perf_uprobe = {
8473 .task_ctx_nr = perf_sw_context,
8474 .event_init = perf_uprobe_event_init,
8475 .add = perf_trace_add,
8476 .del = perf_trace_del,
8477 .start = perf_swevent_start,
8478 .stop = perf_swevent_stop,
8479 .read = perf_swevent_read,
8480 .attr_groups = uprobe_attr_groups,
8481 };
8482
8483 static int perf_uprobe_event_init(struct perf_event *event)
8484 {
8485 int err;
8486 unsigned long ref_ctr_offset;
8487 bool is_retprobe;
8488
8489 if (event->attr.type != perf_uprobe.type)
8490 return -ENOENT;
8491
8492 if (!capable(CAP_SYS_ADMIN))
8493 return -EACCES;
8494
8495 /*
8496 * no branch sampling for probe events
8497 */
8498 if (has_branch_stack(event))
8499 return -EOPNOTSUPP;
8500
8501 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
8502 ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
8503 err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
8504 if (err)
8505 return err;
8506
8507 event->destroy = perf_uprobe_destroy;
8508
8509 return 0;
8510 }
8511 #endif /* CONFIG_UPROBE_EVENTS */
8512
8513 static inline void perf_tp_register(void)
8514 {
8515 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
8516 #ifdef CONFIG_KPROBE_EVENTS
8517 perf_pmu_register(&perf_kprobe, "kprobe", -1);
8518 #endif
8519 #ifdef CONFIG_UPROBE_EVENTS
8520 perf_pmu_register(&perf_uprobe, "uprobe", -1);
8521 #endif
8522 }
8523
8524 static void perf_event_free_filter(struct perf_event *event)
8525 {
8526 ftrace_profile_free_filter(event);
8527 }
8528
8529 #ifdef CONFIG_BPF_SYSCALL
8530 static void bpf_overflow_handler(struct perf_event *event,
8531 struct perf_sample_data *data,
8532 struct pt_regs *regs)
8533 {
8534 struct bpf_perf_event_data_kern ctx = {
8535 .data = data,
8536 .event = event,
8537 };
8538 int ret = 0;
8539
8540 ctx.regs = perf_arch_bpf_user_pt_regs(regs);
8541 preempt_disable();
8542 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
8543 goto out;
8544 rcu_read_lock();
8545 ret = BPF_PROG_RUN(event->prog, &ctx);
8546 rcu_read_unlock();
8547 out:
8548 __this_cpu_dec(bpf_prog_active);
8549 preempt_enable();
8550 if (!ret)
8551 return;
8552
8553 event->orig_overflow_handler(event, data, regs);
8554 }
8555
8556 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8557 {
8558 struct bpf_prog *prog;
8559
8560 if (event->overflow_handler_context)
8561 /* hw breakpoint or kernel counter */
8562 return -EINVAL;
8563
8564 if (event->prog)
8565 return -EEXIST;
8566
8567 prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
8568 if (IS_ERR(prog))
8569 return PTR_ERR(prog);
8570
8571 event->prog = prog;
8572 event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
8573 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
8574 return 0;
8575 }
8576
8577 static void perf_event_free_bpf_handler(struct perf_event *event)
8578 {
8579 struct bpf_prog *prog = event->prog;
8580
8581 if (!prog)
8582 return;
8583
8584 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
8585 event->prog = NULL;
8586 bpf_prog_put(prog);
8587 }
8588 #else
8589 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8590 {
8591 return -EOPNOTSUPP;
8592 }
8593 static void perf_event_free_bpf_handler(struct perf_event *event)
8594 {
8595 }
8596 #endif
8597
8598 /*
8599 * returns true if the event is a tracepoint, or a kprobe/upprobe created
8600 * with perf_event_open()
8601 */
8602 static inline bool perf_event_is_tracing(struct perf_event *event)
8603 {
8604 if (event->pmu == &perf_tracepoint)
8605 return true;
8606 #ifdef CONFIG_KPROBE_EVENTS
8607 if (event->pmu == &perf_kprobe)
8608 return true;
8609 #endif
8610 #ifdef CONFIG_UPROBE_EVENTS
8611 if (event->pmu == &perf_uprobe)
8612 return true;
8613 #endif
8614 return false;
8615 }
8616
8617 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8618 {
8619 bool is_kprobe, is_tracepoint, is_syscall_tp;
8620 struct bpf_prog *prog;
8621 int ret;
8622
8623 if (!perf_event_is_tracing(event))
8624 return perf_event_set_bpf_handler(event, prog_fd);
8625
8626 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
8627 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
8628 is_syscall_tp = is_syscall_trace_event(event->tp_event);
8629 if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
8630 /* bpf programs can only be attached to u/kprobe or tracepoint */
8631 return -EINVAL;
8632
8633 prog = bpf_prog_get(prog_fd);
8634 if (IS_ERR(prog))
8635 return PTR_ERR(prog);
8636
8637 if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
8638 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
8639 (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
8640 /* valid fd, but invalid bpf program type */
8641 bpf_prog_put(prog);
8642 return -EINVAL;
8643 }
8644
8645 /* Kprobe override only works for kprobes, not uprobes. */
8646 if (prog->kprobe_override &&
8647 !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) {
8648 bpf_prog_put(prog);
8649 return -EINVAL;
8650 }
8651
8652 if (is_tracepoint || is_syscall_tp) {
8653 int off = trace_event_get_offsets(event->tp_event);
8654
8655 if (prog->aux->max_ctx_offset > off) {
8656 bpf_prog_put(prog);
8657 return -EACCES;
8658 }
8659 }
8660
8661 ret = perf_event_attach_bpf_prog(event, prog);
8662 if (ret)
8663 bpf_prog_put(prog);
8664 return ret;
8665 }
8666
8667 static void perf_event_free_bpf_prog(struct perf_event *event)
8668 {
8669 if (!perf_event_is_tracing(event)) {
8670 perf_event_free_bpf_handler(event);
8671 return;
8672 }
8673 perf_event_detach_bpf_prog(event);
8674 }
8675
8676 #else
8677
8678 static inline void perf_tp_register(void)
8679 {
8680 }
8681
8682 static void perf_event_free_filter(struct perf_event *event)
8683 {
8684 }
8685
8686 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8687 {
8688 return -ENOENT;
8689 }
8690
8691 static void perf_event_free_bpf_prog(struct perf_event *event)
8692 {
8693 }
8694 #endif /* CONFIG_EVENT_TRACING */
8695
8696 #ifdef CONFIG_HAVE_HW_BREAKPOINT
8697 void perf_bp_event(struct perf_event *bp, void *data)
8698 {
8699 struct perf_sample_data sample;
8700 struct pt_regs *regs = data;
8701
8702 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
8703
8704 if (!bp->hw.state && !perf_exclude_event(bp, regs))
8705 perf_swevent_event(bp, 1, &sample, regs);
8706 }
8707 #endif
8708
8709 /*
8710 * Allocate a new address filter
8711 */
8712 static struct perf_addr_filter *
8713 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
8714 {
8715 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
8716 struct perf_addr_filter *filter;
8717
8718 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
8719 if (!filter)
8720 return NULL;
8721
8722 INIT_LIST_HEAD(&filter->entry);
8723 list_add_tail(&filter->entry, filters);
8724
8725 return filter;
8726 }
8727
8728 static void free_filters_list(struct list_head *filters)
8729 {
8730 struct perf_addr_filter *filter, *iter;
8731
8732 list_for_each_entry_safe(filter, iter, filters, entry) {
8733 path_put(&filter->path);
8734 list_del(&filter->entry);
8735 kfree(filter);
8736 }
8737 }
8738
8739 /*
8740 * Free existing address filters and optionally install new ones
8741 */
8742 static void perf_addr_filters_splice(struct perf_event *event,
8743 struct list_head *head)
8744 {
8745 unsigned long flags;
8746 LIST_HEAD(list);
8747
8748 if (!has_addr_filter(event))
8749 return;
8750
8751 /* don't bother with children, they don't have their own filters */
8752 if (event->parent)
8753 return;
8754
8755 raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
8756
8757 list_splice_init(&event->addr_filters.list, &list);
8758 if (head)
8759 list_splice(head, &event->addr_filters.list);
8760
8761 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
8762
8763 free_filters_list(&list);
8764 }
8765
8766 /*
8767 * Scan through mm's vmas and see if one of them matches the
8768 * @filter; if so, adjust filter's address range.
8769 * Called with mm::mmap_sem down for reading.
8770 */
8771 static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
8772 struct mm_struct *mm)
8773 {
8774 struct vm_area_struct *vma;
8775
8776 for (vma = mm->mmap; vma; vma = vma->vm_next) {
8777 struct file *file = vma->vm_file;
8778 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8779 unsigned long vma_size = vma->vm_end - vma->vm_start;
8780
8781 if (!file)
8782 continue;
8783
8784 if (!perf_addr_filter_match(filter, file, off, vma_size))
8785 continue;
8786
8787 return vma->vm_start;
8788 }
8789
8790 return 0;
8791 }
8792
8793 /*
8794 * Update event's address range filters based on the
8795 * task's existing mappings, if any.
8796 */
8797 static void perf_event_addr_filters_apply(struct perf_event *event)
8798 {
8799 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8800 struct task_struct *task = READ_ONCE(event->ctx->task);
8801 struct perf_addr_filter *filter;
8802 struct mm_struct *mm = NULL;
8803 unsigned int count = 0;
8804 unsigned long flags;
8805
8806 /*
8807 * We may observe TASK_TOMBSTONE, which means that the event tear-down
8808 * will stop on the parent's child_mutex that our caller is also holding
8809 */
8810 if (task == TASK_TOMBSTONE)
8811 return;
8812
8813 if (!ifh->nr_file_filters)
8814 return;
8815
8816 mm = get_task_mm(event->ctx->task);
8817 if (!mm)
8818 goto restart;
8819
8820 down_read(&mm->mmap_sem);
8821
8822 raw_spin_lock_irqsave(&ifh->lock, flags);
8823 list_for_each_entry(filter, &ifh->list, entry) {
8824 event->addr_filters_offs[count] = 0;
8825
8826 /*
8827 * Adjust base offset if the filter is associated to a binary
8828 * that needs to be mapped:
8829 */
8830 if (filter->path.dentry)
8831 event->addr_filters_offs[count] =
8832 perf_addr_filter_apply(filter, mm);
8833
8834 count++;
8835 }
8836
8837 event->addr_filters_gen++;
8838 raw_spin_unlock_irqrestore(&ifh->lock, flags);
8839
8840 up_read(&mm->mmap_sem);
8841
8842 mmput(mm);
8843
8844 restart:
8845 perf_event_stop(event, 1);
8846 }
8847
8848 /*
8849 * Address range filtering: limiting the data to certain
8850 * instruction address ranges. Filters are ioctl()ed to us from
8851 * userspace as ascii strings.
8852 *
8853 * Filter string format:
8854 *
8855 * ACTION RANGE_SPEC
8856 * where ACTION is one of the
8857 * * "filter": limit the trace to this region
8858 * * "start": start tracing from this address
8859 * * "stop": stop tracing at this address/region;
8860 * RANGE_SPEC is
8861 * * for kernel addresses: <start address>[/<size>]
8862 * * for object files: <start address>[/<size>]@</path/to/object/file>
8863 *
8864 * if <size> is not specified or is zero, the range is treated as a single
8865 * address; not valid for ACTION=="filter".
8866 */
8867 enum {
8868 IF_ACT_NONE = -1,
8869 IF_ACT_FILTER,
8870 IF_ACT_START,
8871 IF_ACT_STOP,
8872 IF_SRC_FILE,
8873 IF_SRC_KERNEL,
8874 IF_SRC_FILEADDR,
8875 IF_SRC_KERNELADDR,
8876 };
8877
8878 enum {
8879 IF_STATE_ACTION = 0,
8880 IF_STATE_SOURCE,
8881 IF_STATE_END,
8882 };
8883
8884 static const match_table_t if_tokens = {
8885 { IF_ACT_FILTER, "filter" },
8886 { IF_ACT_START, "start" },
8887 { IF_ACT_STOP, "stop" },
8888 { IF_SRC_FILE, "%u/%u@%s" },
8889 { IF_SRC_KERNEL, "%u/%u" },
8890 { IF_SRC_FILEADDR, "%u@%s" },
8891 { IF_SRC_KERNELADDR, "%u" },
8892 { IF_ACT_NONE, NULL },
8893 };
8894
8895 /*
8896 * Address filter string parser
8897 */
8898 static int
8899 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
8900 struct list_head *filters)
8901 {
8902 struct perf_addr_filter *filter = NULL;
8903 char *start, *orig, *filename = NULL;
8904 substring_t args[MAX_OPT_ARGS];
8905 int state = IF_STATE_ACTION, token;
8906 unsigned int kernel = 0;
8907 int ret = -EINVAL;
8908
8909 orig = fstr = kstrdup(fstr, GFP_KERNEL);
8910 if (!fstr)
8911 return -ENOMEM;
8912
8913 while ((start = strsep(&fstr, " ,\n")) != NULL) {
8914 static const enum perf_addr_filter_action_t actions[] = {
8915 [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER,
8916 [IF_ACT_START] = PERF_ADDR_FILTER_ACTION_START,
8917 [IF_ACT_STOP] = PERF_ADDR_FILTER_ACTION_STOP,
8918 };
8919 ret = -EINVAL;
8920
8921 if (!*start)
8922 continue;
8923
8924 /* filter definition begins */
8925 if (state == IF_STATE_ACTION) {
8926 filter = perf_addr_filter_new(event, filters);
8927 if (!filter)
8928 goto fail;
8929 }
8930
8931 token = match_token(start, if_tokens, args);
8932 switch (token) {
8933 case IF_ACT_FILTER:
8934 case IF_ACT_START:
8935 case IF_ACT_STOP:
8936 if (state != IF_STATE_ACTION)
8937 goto fail;
8938
8939 filter->action = actions[token];
8940 state = IF_STATE_SOURCE;
8941 break;
8942
8943 case IF_SRC_KERNELADDR:
8944 case IF_SRC_KERNEL:
8945 kernel = 1;
8946
8947 case IF_SRC_FILEADDR:
8948 case IF_SRC_FILE:
8949 if (state != IF_STATE_SOURCE)
8950 goto fail;
8951
8952 *args[0].to = 0;
8953 ret = kstrtoul(args[0].from, 0, &filter->offset);
8954 if (ret)
8955 goto fail;
8956
8957 if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
8958 *args[1].to = 0;
8959 ret = kstrtoul(args[1].from, 0, &filter->size);
8960 if (ret)
8961 goto fail;
8962 }
8963
8964 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
8965 int fpos = token == IF_SRC_FILE ? 2 : 1;
8966
8967 filename = match_strdup(&args[fpos]);
8968 if (!filename) {
8969 ret = -ENOMEM;
8970 goto fail;
8971 }
8972 }
8973
8974 state = IF_STATE_END;
8975 break;
8976
8977 default:
8978 goto fail;
8979 }
8980
8981 /*
8982 * Filter definition is fully parsed, validate and install it.
8983 * Make sure that it doesn't contradict itself or the event's
8984 * attribute.
8985 */
8986 if (state == IF_STATE_END) {
8987 ret = -EINVAL;
8988 if (kernel && event->attr.exclude_kernel)
8989 goto fail;
8990
8991 /*
8992 * ACTION "filter" must have a non-zero length region
8993 * specified.
8994 */
8995 if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
8996 !filter->size)
8997 goto fail;
8998
8999 if (!kernel) {
9000 if (!filename)
9001 goto fail;
9002
9003 /*
9004 * For now, we only support file-based filters
9005 * in per-task events; doing so for CPU-wide
9006 * events requires additional context switching
9007 * trickery, since same object code will be
9008 * mapped at different virtual addresses in
9009 * different processes.
9010 */
9011 ret = -EOPNOTSUPP;
9012 if (!event->ctx->task)
9013 goto fail_free_name;
9014
9015 /* look up the path and grab its inode */
9016 ret = kern_path(filename, LOOKUP_FOLLOW,
9017 &filter->path);
9018 if (ret)
9019 goto fail_free_name;
9020
9021 kfree(filename);
9022 filename = NULL;
9023
9024 ret = -EINVAL;
9025 if (!filter->path.dentry ||
9026 !S_ISREG(d_inode(filter->path.dentry)
9027 ->i_mode))
9028 goto fail;
9029
9030 event->addr_filters.nr_file_filters++;
9031 }
9032
9033 /* ready to consume more filters */
9034 state = IF_STATE_ACTION;
9035 filter = NULL;
9036 }
9037 }
9038
9039 if (state != IF_STATE_ACTION)
9040 goto fail;
9041
9042 kfree(orig);
9043
9044 return 0;
9045
9046 fail_free_name:
9047 kfree(filename);
9048 fail:
9049 free_filters_list(filters);
9050 kfree(orig);
9051
9052 return ret;
9053 }
9054
9055 static int
9056 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
9057 {
9058 LIST_HEAD(filters);
9059 int ret;
9060
9061 /*
9062 * Since this is called in perf_ioctl() path, we're already holding
9063 * ctx::mutex.
9064 */
9065 lockdep_assert_held(&event->ctx->mutex);
9066
9067 if (WARN_ON_ONCE(event->parent))
9068 return -EINVAL;
9069
9070 ret = perf_event_parse_addr_filter(event, filter_str, &filters);
9071 if (ret)
9072 goto fail_clear_files;
9073
9074 ret = event->pmu->addr_filters_validate(&filters);
9075 if (ret)
9076 goto fail_free_filters;
9077
9078 /* remove existing filters, if any */
9079 perf_addr_filters_splice(event, &filters);
9080
9081 /* install new filters */
9082 perf_event_for_each_child(event, perf_event_addr_filters_apply);
9083
9084 return ret;
9085
9086 fail_free_filters:
9087 free_filters_list(&filters);
9088
9089 fail_clear_files:
9090 event->addr_filters.nr_file_filters = 0;
9091
9092 return ret;
9093 }
9094
9095 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
9096 {
9097 int ret = -EINVAL;
9098 char *filter_str;
9099
9100 filter_str = strndup_user(arg, PAGE_SIZE);
9101 if (IS_ERR(filter_str))
9102 return PTR_ERR(filter_str);
9103
9104 #ifdef CONFIG_EVENT_TRACING
9105 if (perf_event_is_tracing(event)) {
9106 struct perf_event_context *ctx = event->ctx;
9107
9108 /*
9109 * Beware, here be dragons!!
9110 *
9111 * the tracepoint muck will deadlock against ctx->mutex, but
9112 * the tracepoint stuff does not actually need it. So
9113 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
9114 * already have a reference on ctx.
9115 *
9116 * This can result in event getting moved to a different ctx,
9117 * but that does not affect the tracepoint state.
9118 */
9119 mutex_unlock(&ctx->mutex);
9120 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
9121 mutex_lock(&ctx->mutex);
9122 } else
9123 #endif
9124 if (has_addr_filter(event))
9125 ret = perf_event_set_addr_filter(event, filter_str);
9126
9127 kfree(filter_str);
9128 return ret;
9129 }
9130
9131 /*
9132 * hrtimer based swevent callback
9133 */
9134
9135 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
9136 {
9137 enum hrtimer_restart ret = HRTIMER_RESTART;
9138 struct perf_sample_data data;
9139 struct pt_regs *regs;
9140 struct perf_event *event;
9141 u64 period;
9142
9143 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
9144
9145 if (event->state != PERF_EVENT_STATE_ACTIVE)
9146 return HRTIMER_NORESTART;
9147
9148 event->pmu->read(event);
9149
9150 perf_sample_data_init(&data, 0, event->hw.last_period);
9151 regs = get_irq_regs();
9152
9153 if (regs && !perf_exclude_event(event, regs)) {
9154 if (!(event->attr.exclude_idle && is_idle_task(current)))
9155 if (__perf_event_overflow(event, 1, &data, regs))
9156 ret = HRTIMER_NORESTART;
9157 }
9158
9159 period = max_t(u64, 10000, event->hw.sample_period);
9160 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
9161
9162 return ret;
9163 }
9164
9165 static void perf_swevent_start_hrtimer(struct perf_event *event)
9166 {
9167 struct hw_perf_event *hwc = &event->hw;
9168 s64 period;
9169
9170 if (!is_sampling_event(event))
9171 return;
9172
9173 period = local64_read(&hwc->period_left);
9174 if (period) {
9175 if (period < 0)
9176 period = 10000;
9177
9178 local64_set(&hwc->period_left, 0);
9179 } else {
9180 period = max_t(u64, 10000, hwc->sample_period);
9181 }
9182 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
9183 HRTIMER_MODE_REL_PINNED);
9184 }
9185
9186 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
9187 {
9188 struct hw_perf_event *hwc = &event->hw;
9189
9190 if (is_sampling_event(event)) {
9191 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
9192 local64_set(&hwc->period_left, ktime_to_ns(remaining));
9193
9194 hrtimer_cancel(&hwc->hrtimer);
9195 }
9196 }
9197
9198 static void perf_swevent_init_hrtimer(struct perf_event *event)
9199 {
9200 struct hw_perf_event *hwc = &event->hw;
9201
9202 if (!is_sampling_event(event))
9203 return;
9204
9205 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
9206 hwc->hrtimer.function = perf_swevent_hrtimer;
9207
9208 /*
9209 * Since hrtimers have a fixed rate, we can do a static freq->period
9210 * mapping and avoid the whole period adjust feedback stuff.
9211 */
9212 if (event->attr.freq) {
9213 long freq = event->attr.sample_freq;
9214
9215 event->attr.sample_period = NSEC_PER_SEC / freq;
9216 hwc->sample_period = event->attr.sample_period;
9217 local64_set(&hwc->period_left, hwc->sample_period);
9218 hwc->last_period = hwc->sample_period;
9219 event->attr.freq = 0;
9220 }
9221 }
9222
9223 /*
9224 * Software event: cpu wall time clock
9225 */
9226
9227 static void cpu_clock_event_update(struct perf_event *event)
9228 {
9229 s64 prev;
9230 u64 now;
9231
9232 now = local_clock();
9233 prev = local64_xchg(&event->hw.prev_count, now);
9234 local64_add(now - prev, &event->count);
9235 }
9236
9237 static void cpu_clock_event_start(struct perf_event *event, int flags)
9238 {
9239 local64_set(&event->hw.prev_count, local_clock());
9240 perf_swevent_start_hrtimer(event);
9241 }
9242
9243 static void cpu_clock_event_stop(struct perf_event *event, int flags)
9244 {
9245 perf_swevent_cancel_hrtimer(event);
9246 cpu_clock_event_update(event);
9247 }
9248
9249 static int cpu_clock_event_add(struct perf_event *event, int flags)
9250 {
9251 if (flags & PERF_EF_START)
9252 cpu_clock_event_start(event, flags);
9253 perf_event_update_userpage(event);
9254
9255 return 0;
9256 }
9257
9258 static void cpu_clock_event_del(struct perf_event *event, int flags)
9259 {
9260 cpu_clock_event_stop(event, flags);
9261 }
9262
9263 static void cpu_clock_event_read(struct perf_event *event)
9264 {
9265 cpu_clock_event_update(event);
9266 }
9267
9268 static int cpu_clock_event_init(struct perf_event *event)
9269 {
9270 if (event->attr.type != PERF_TYPE_SOFTWARE)
9271 return -ENOENT;
9272
9273 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
9274 return -ENOENT;
9275
9276 /*
9277 * no branch sampling for software events
9278 */
9279 if (has_branch_stack(event))
9280 return -EOPNOTSUPP;
9281
9282 perf_swevent_init_hrtimer(event);
9283
9284 return 0;
9285 }
9286
9287 static struct pmu perf_cpu_clock = {
9288 .task_ctx_nr = perf_sw_context,
9289
9290 .capabilities = PERF_PMU_CAP_NO_NMI,
9291
9292 .event_init = cpu_clock_event_init,
9293 .add = cpu_clock_event_add,
9294 .del = cpu_clock_event_del,
9295 .start = cpu_clock_event_start,
9296 .stop = cpu_clock_event_stop,
9297 .read = cpu_clock_event_read,
9298 };
9299
9300 /*
9301 * Software event: task time clock
9302 */
9303
9304 static void task_clock_event_update(struct perf_event *event, u64 now)
9305 {
9306 u64 prev;
9307 s64 delta;
9308
9309 prev = local64_xchg(&event->hw.prev_count, now);
9310 delta = now - prev;
9311 local64_add(delta, &event->count);
9312 }
9313
9314 static void task_clock_event_start(struct perf_event *event, int flags)
9315 {
9316 local64_set(&event->hw.prev_count, event->ctx->time);
9317 perf_swevent_start_hrtimer(event);
9318 }
9319
9320 static void task_clock_event_stop(struct perf_event *event, int flags)
9321 {
9322 perf_swevent_cancel_hrtimer(event);
9323 task_clock_event_update(event, event->ctx->time);
9324 }
9325
9326 static int task_clock_event_add(struct perf_event *event, int flags)
9327 {
9328 if (flags & PERF_EF_START)
9329 task_clock_event_start(event, flags);
9330 perf_event_update_userpage(event);
9331
9332 return 0;
9333 }
9334
9335 static void task_clock_event_del(struct perf_event *event, int flags)
9336 {
9337 task_clock_event_stop(event, PERF_EF_UPDATE);
9338 }
9339
9340 static void task_clock_event_read(struct perf_event *event)
9341 {
9342 u64 now = perf_clock();
9343 u64 delta = now - event->ctx->timestamp;
9344 u64 time = event->ctx->time + delta;
9345
9346 task_clock_event_update(event, time);
9347 }
9348
9349 static int task_clock_event_init(struct perf_event *event)
9350 {
9351 if (event->attr.type != PERF_TYPE_SOFTWARE)
9352 return -ENOENT;
9353
9354 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
9355 return -ENOENT;
9356
9357 /*
9358 * no branch sampling for software events
9359 */
9360 if (has_branch_stack(event))
9361 return -EOPNOTSUPP;
9362
9363 perf_swevent_init_hrtimer(event);
9364
9365 return 0;
9366 }
9367
9368 static struct pmu perf_task_clock = {
9369 .task_ctx_nr = perf_sw_context,
9370
9371 .capabilities = PERF_PMU_CAP_NO_NMI,
9372
9373 .event_init = task_clock_event_init,
9374 .add = task_clock_event_add,
9375 .del = task_clock_event_del,
9376 .start = task_clock_event_start,
9377 .stop = task_clock_event_stop,
9378 .read = task_clock_event_read,
9379 };
9380
9381 static void perf_pmu_nop_void(struct pmu *pmu)
9382 {
9383 }
9384
9385 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
9386 {
9387 }
9388
9389 static int perf_pmu_nop_int(struct pmu *pmu)
9390 {
9391 return 0;
9392 }
9393
9394 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
9395
9396 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
9397 {
9398 __this_cpu_write(nop_txn_flags, flags);
9399
9400 if (flags & ~PERF_PMU_TXN_ADD)
9401 return;
9402
9403 perf_pmu_disable(pmu);
9404 }
9405
9406 static int perf_pmu_commit_txn(struct pmu *pmu)
9407 {
9408 unsigned int flags = __this_cpu_read(nop_txn_flags);
9409
9410 __this_cpu_write(nop_txn_flags, 0);
9411
9412 if (flags & ~PERF_PMU_TXN_ADD)
9413 return 0;
9414
9415 perf_pmu_enable(pmu);
9416 return 0;
9417 }
9418
9419 static void perf_pmu_cancel_txn(struct pmu *pmu)
9420 {
9421 unsigned int flags = __this_cpu_read(nop_txn_flags);
9422
9423 __this_cpu_write(nop_txn_flags, 0);
9424
9425 if (flags & ~PERF_PMU_TXN_ADD)
9426 return;
9427
9428 perf_pmu_enable(pmu);
9429 }
9430
9431 static int perf_event_idx_default(struct perf_event *event)
9432 {
9433 return 0;
9434 }
9435
9436 /*
9437 * Ensures all contexts with the same task_ctx_nr have the same
9438 * pmu_cpu_context too.
9439 */
9440 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
9441 {
9442 struct pmu *pmu;
9443
9444 if (ctxn < 0)
9445 return NULL;
9446
9447 list_for_each_entry(pmu, &pmus, entry) {
9448 if (pmu->task_ctx_nr == ctxn)
9449 return pmu->pmu_cpu_context;
9450 }
9451
9452 return NULL;
9453 }
9454
9455 static void free_pmu_context(struct pmu *pmu)
9456 {
9457 /*
9458 * Static contexts such as perf_sw_context have a global lifetime
9459 * and may be shared between different PMUs. Avoid freeing them
9460 * when a single PMU is going away.
9461 */
9462 if (pmu->task_ctx_nr > perf_invalid_context)
9463 return;
9464
9465 free_percpu(pmu->pmu_cpu_context);
9466 }
9467
9468 /*
9469 * Let userspace know that this PMU supports address range filtering:
9470 */
9471 static ssize_t nr_addr_filters_show(struct device *dev,
9472 struct device_attribute *attr,
9473 char *page)
9474 {
9475 struct pmu *pmu = dev_get_drvdata(dev);
9476
9477 return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
9478 }
9479 DEVICE_ATTR_RO(nr_addr_filters);
9480
9481 static struct idr pmu_idr;
9482
9483 static ssize_t
9484 type_show(struct device *dev, struct device_attribute *attr, char *page)
9485 {
9486 struct pmu *pmu = dev_get_drvdata(dev);
9487
9488 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
9489 }
9490 static DEVICE_ATTR_RO(type);
9491
9492 static ssize_t
9493 perf_event_mux_interval_ms_show(struct device *dev,
9494 struct device_attribute *attr,
9495 char *page)
9496 {
9497 struct pmu *pmu = dev_get_drvdata(dev);
9498
9499 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
9500 }
9501
9502 static DEFINE_MUTEX(mux_interval_mutex);
9503
9504 static ssize_t
9505 perf_event_mux_interval_ms_store(struct device *dev,
9506 struct device_attribute *attr,
9507 const char *buf, size_t count)
9508 {
9509 struct pmu *pmu = dev_get_drvdata(dev);
9510 int timer, cpu, ret;
9511
9512 ret = kstrtoint(buf, 0, &timer);
9513 if (ret)
9514 return ret;
9515
9516 if (timer < 1)
9517 return -EINVAL;
9518
9519 /* same value, noting to do */
9520 if (timer == pmu->hrtimer_interval_ms)
9521 return count;
9522
9523 mutex_lock(&mux_interval_mutex);
9524 pmu->hrtimer_interval_ms = timer;
9525
9526 /* update all cpuctx for this PMU */
9527 cpus_read_lock();
9528 for_each_online_cpu(cpu) {
9529 struct perf_cpu_context *cpuctx;
9530 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9531 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
9532
9533 cpu_function_call(cpu,
9534 (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
9535 }
9536 cpus_read_unlock();
9537 mutex_unlock(&mux_interval_mutex);
9538
9539 return count;
9540 }
9541 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
9542
9543 static struct attribute *pmu_dev_attrs[] = {
9544 &dev_attr_type.attr,
9545 &dev_attr_perf_event_mux_interval_ms.attr,
9546 NULL,
9547 };
9548 ATTRIBUTE_GROUPS(pmu_dev);
9549
9550 static int pmu_bus_running;
9551 static struct bus_type pmu_bus = {
9552 .name = "event_source",
9553 .dev_groups = pmu_dev_groups,
9554 };
9555
9556 static void pmu_dev_release(struct device *dev)
9557 {
9558 kfree(dev);
9559 }
9560
9561 static int pmu_dev_alloc(struct pmu *pmu)
9562 {
9563 int ret = -ENOMEM;
9564
9565 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
9566 if (!pmu->dev)
9567 goto out;
9568
9569 pmu->dev->groups = pmu->attr_groups;
9570 device_initialize(pmu->dev);
9571 ret = dev_set_name(pmu->dev, "%s", pmu->name);
9572 if (ret)
9573 goto free_dev;
9574
9575 dev_set_drvdata(pmu->dev, pmu);
9576 pmu->dev->bus = &pmu_bus;
9577 pmu->dev->release = pmu_dev_release;
9578 ret = device_add(pmu->dev);
9579 if (ret)
9580 goto free_dev;
9581
9582 /* For PMUs with address filters, throw in an extra attribute: */
9583 if (pmu->nr_addr_filters)
9584 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
9585
9586 if (ret)
9587 goto del_dev;
9588
9589 out:
9590 return ret;
9591
9592 del_dev:
9593 device_del(pmu->dev);
9594
9595 free_dev:
9596 put_device(pmu->dev);
9597 goto out;
9598 }
9599
9600 static struct lock_class_key cpuctx_mutex;
9601 static struct lock_class_key cpuctx_lock;
9602
9603 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
9604 {
9605 int cpu, ret;
9606
9607 mutex_lock(&pmus_lock);
9608 ret = -ENOMEM;
9609 pmu->pmu_disable_count = alloc_percpu(int);
9610 if (!pmu->pmu_disable_count)
9611 goto unlock;
9612
9613 pmu->type = -1;
9614 if (!name)
9615 goto skip_type;
9616 pmu->name = name;
9617
9618 if (type < 0) {
9619 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
9620 if (type < 0) {
9621 ret = type;
9622 goto free_pdc;
9623 }
9624 }
9625 pmu->type = type;
9626
9627 if (pmu_bus_running) {
9628 ret = pmu_dev_alloc(pmu);
9629 if (ret)
9630 goto free_idr;
9631 }
9632
9633 skip_type:
9634 if (pmu->task_ctx_nr == perf_hw_context) {
9635 static int hw_context_taken = 0;
9636
9637 /*
9638 * Other than systems with heterogeneous CPUs, it never makes
9639 * sense for two PMUs to share perf_hw_context. PMUs which are
9640 * uncore must use perf_invalid_context.
9641 */
9642 if (WARN_ON_ONCE(hw_context_taken &&
9643 !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
9644 pmu->task_ctx_nr = perf_invalid_context;
9645
9646 hw_context_taken = 1;
9647 }
9648
9649 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
9650 if (pmu->pmu_cpu_context)
9651 goto got_cpu_context;
9652
9653 ret = -ENOMEM;
9654 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
9655 if (!pmu->pmu_cpu_context)
9656 goto free_dev;
9657
9658 for_each_possible_cpu(cpu) {
9659 struct perf_cpu_context *cpuctx;
9660
9661 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9662 __perf_event_init_context(&cpuctx->ctx);
9663 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
9664 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
9665 cpuctx->ctx.pmu = pmu;
9666 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
9667
9668 __perf_mux_hrtimer_init(cpuctx, cpu);
9669 }
9670
9671 got_cpu_context:
9672 if (!pmu->start_txn) {
9673 if (pmu->pmu_enable) {
9674 /*
9675 * If we have pmu_enable/pmu_disable calls, install
9676 * transaction stubs that use that to try and batch
9677 * hardware accesses.
9678 */
9679 pmu->start_txn = perf_pmu_start_txn;
9680 pmu->commit_txn = perf_pmu_commit_txn;
9681 pmu->cancel_txn = perf_pmu_cancel_txn;
9682 } else {
9683 pmu->start_txn = perf_pmu_nop_txn;
9684 pmu->commit_txn = perf_pmu_nop_int;
9685 pmu->cancel_txn = perf_pmu_nop_void;
9686 }
9687 }
9688
9689 if (!pmu->pmu_enable) {
9690 pmu->pmu_enable = perf_pmu_nop_void;
9691 pmu->pmu_disable = perf_pmu_nop_void;
9692 }
9693
9694 if (!pmu->event_idx)
9695 pmu->event_idx = perf_event_idx_default;
9696
9697 list_add_rcu(&pmu->entry, &pmus);
9698 atomic_set(&pmu->exclusive_cnt, 0);
9699 ret = 0;
9700 unlock:
9701 mutex_unlock(&pmus_lock);
9702
9703 return ret;
9704
9705 free_dev:
9706 device_del(pmu->dev);
9707 put_device(pmu->dev);
9708
9709 free_idr:
9710 if (pmu->type >= PERF_TYPE_MAX)
9711 idr_remove(&pmu_idr, pmu->type);
9712
9713 free_pdc:
9714 free_percpu(pmu->pmu_disable_count);
9715 goto unlock;
9716 }
9717 EXPORT_SYMBOL_GPL(perf_pmu_register);
9718
9719 void perf_pmu_unregister(struct pmu *pmu)
9720 {
9721 mutex_lock(&pmus_lock);
9722 list_del_rcu(&pmu->entry);
9723
9724 /*
9725 * We dereference the pmu list under both SRCU and regular RCU, so
9726 * synchronize against both of those.
9727 */
9728 synchronize_srcu(&pmus_srcu);
9729 synchronize_rcu();
9730
9731 free_percpu(pmu->pmu_disable_count);
9732 if (pmu->type >= PERF_TYPE_MAX)
9733 idr_remove(&pmu_idr, pmu->type);
9734 if (pmu_bus_running) {
9735 if (pmu->nr_addr_filters)
9736 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
9737 device_del(pmu->dev);
9738 put_device(pmu->dev);
9739 }
9740 free_pmu_context(pmu);
9741 mutex_unlock(&pmus_lock);
9742 }
9743 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
9744
9745 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
9746 {
9747 struct perf_event_context *ctx = NULL;
9748 int ret;
9749
9750 if (!try_module_get(pmu->module))
9751 return -ENODEV;
9752
9753 /*
9754 * A number of pmu->event_init() methods iterate the sibling_list to,
9755 * for example, validate if the group fits on the PMU. Therefore,
9756 * if this is a sibling event, acquire the ctx->mutex to protect
9757 * the sibling_list.
9758 */
9759 if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
9760 /*
9761 * This ctx->mutex can nest when we're called through
9762 * inheritance. See the perf_event_ctx_lock_nested() comment.
9763 */
9764 ctx = perf_event_ctx_lock_nested(event->group_leader,
9765 SINGLE_DEPTH_NESTING);
9766 BUG_ON(!ctx);
9767 }
9768
9769 event->pmu = pmu;
9770 ret = pmu->event_init(event);
9771
9772 if (ctx)
9773 perf_event_ctx_unlock(event->group_leader, ctx);
9774
9775 if (ret)
9776 module_put(pmu->module);
9777
9778 return ret;
9779 }
9780
9781 static struct pmu *perf_init_event(struct perf_event *event)
9782 {
9783 struct pmu *pmu;
9784 int idx;
9785 int ret;
9786
9787 idx = srcu_read_lock(&pmus_srcu);
9788
9789 /* Try parent's PMU first: */
9790 if (event->parent && event->parent->pmu) {
9791 pmu = event->parent->pmu;
9792 ret = perf_try_init_event(pmu, event);
9793 if (!ret)
9794 goto unlock;
9795 }
9796
9797 rcu_read_lock();
9798 pmu = idr_find(&pmu_idr, event->attr.type);
9799 rcu_read_unlock();
9800 if (pmu) {
9801 ret = perf_try_init_event(pmu, event);
9802 if (ret)
9803 pmu = ERR_PTR(ret);
9804 goto unlock;
9805 }
9806
9807 list_for_each_entry_rcu(pmu, &pmus, entry) {
9808 ret = perf_try_init_event(pmu, event);
9809 if (!ret)
9810 goto unlock;
9811
9812 if (ret != -ENOENT) {
9813 pmu = ERR_PTR(ret);
9814 goto unlock;
9815 }
9816 }
9817 pmu = ERR_PTR(-ENOENT);
9818 unlock:
9819 srcu_read_unlock(&pmus_srcu, idx);
9820
9821 return pmu;
9822 }
9823
9824 static void attach_sb_event(struct perf_event *event)
9825 {
9826 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
9827
9828 raw_spin_lock(&pel->lock);
9829 list_add_rcu(&event->sb_list, &pel->list);
9830 raw_spin_unlock(&pel->lock);
9831 }
9832
9833 /*
9834 * We keep a list of all !task (and therefore per-cpu) events
9835 * that need to receive side-band records.
9836 *
9837 * This avoids having to scan all the various PMU per-cpu contexts
9838 * looking for them.
9839 */
9840 static void account_pmu_sb_event(struct perf_event *event)
9841 {
9842 if (is_sb_event(event))
9843 attach_sb_event(event);
9844 }
9845
9846 static void account_event_cpu(struct perf_event *event, int cpu)
9847 {
9848 if (event->parent)
9849 return;
9850
9851 if (is_cgroup_event(event))
9852 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
9853 }
9854
9855 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
9856 static void account_freq_event_nohz(void)
9857 {
9858 #ifdef CONFIG_NO_HZ_FULL
9859 /* Lock so we don't race with concurrent unaccount */
9860 spin_lock(&nr_freq_lock);
9861 if (atomic_inc_return(&nr_freq_events) == 1)
9862 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
9863 spin_unlock(&nr_freq_lock);
9864 #endif
9865 }
9866
9867 static void account_freq_event(void)
9868 {
9869 if (tick_nohz_full_enabled())
9870 account_freq_event_nohz();
9871 else
9872 atomic_inc(&nr_freq_events);
9873 }
9874
9875
9876 static void account_event(struct perf_event *event)
9877 {
9878 bool inc = false;
9879
9880 if (event->parent)
9881 return;
9882
9883 if (event->attach_state & PERF_ATTACH_TASK)
9884 inc = true;
9885 if (event->attr.mmap || event->attr.mmap_data)
9886 atomic_inc(&nr_mmap_events);
9887 if (event->attr.comm)
9888 atomic_inc(&nr_comm_events);
9889 if (event->attr.namespaces)
9890 atomic_inc(&nr_namespaces_events);
9891 if (event->attr.task)
9892 atomic_inc(&nr_task_events);
9893 if (event->attr.freq)
9894 account_freq_event();
9895 if (event->attr.context_switch) {
9896 atomic_inc(&nr_switch_events);
9897 inc = true;
9898 }
9899 if (has_branch_stack(event))
9900 inc = true;
9901 if (is_cgroup_event(event))
9902 inc = true;
9903
9904 if (inc) {
9905 /*
9906 * We need the mutex here because static_branch_enable()
9907 * must complete *before* the perf_sched_count increment
9908 * becomes visible.
9909 */
9910 if (atomic_inc_not_zero(&perf_sched_count))
9911 goto enabled;
9912
9913 mutex_lock(&perf_sched_mutex);
9914 if (!atomic_read(&perf_sched_count)) {
9915 static_branch_enable(&perf_sched_events);
9916 /*
9917 * Guarantee that all CPUs observe they key change and
9918 * call the perf scheduling hooks before proceeding to
9919 * install events that need them.
9920 */
9921 synchronize_rcu();
9922 }
9923 /*
9924 * Now that we have waited for the sync_sched(), allow further
9925 * increments to by-pass the mutex.
9926 */
9927 atomic_inc(&perf_sched_count);
9928 mutex_unlock(&perf_sched_mutex);
9929 }
9930 enabled:
9931
9932 account_event_cpu(event, event->cpu);
9933
9934 account_pmu_sb_event(event);
9935 }
9936
9937 /*
9938 * Allocate and initialize an event structure
9939 */
9940 static struct perf_event *
9941 perf_event_alloc(struct perf_event_attr *attr, int cpu,
9942 struct task_struct *task,
9943 struct perf_event *group_leader,
9944 struct perf_event *parent_event,
9945 perf_overflow_handler_t overflow_handler,
9946 void *context, int cgroup_fd)
9947 {
9948 struct pmu *pmu;
9949 struct perf_event *event;
9950 struct hw_perf_event *hwc;
9951 long err = -EINVAL;
9952
9953 if ((unsigned)cpu >= nr_cpu_ids) {
9954 if (!task || cpu != -1)
9955 return ERR_PTR(-EINVAL);
9956 }
9957
9958 event = kzalloc(sizeof(*event), GFP_KERNEL);
9959 if (!event)
9960 return ERR_PTR(-ENOMEM);
9961
9962 /*
9963 * Single events are their own group leaders, with an
9964 * empty sibling list:
9965 */
9966 if (!group_leader)
9967 group_leader = event;
9968
9969 mutex_init(&event->child_mutex);
9970 INIT_LIST_HEAD(&event->child_list);
9971
9972 INIT_LIST_HEAD(&event->event_entry);
9973 INIT_LIST_HEAD(&event->sibling_list);
9974 INIT_LIST_HEAD(&event->active_list);
9975 init_event_group(event);
9976 INIT_LIST_HEAD(&event->rb_entry);
9977 INIT_LIST_HEAD(&event->active_entry);
9978 INIT_LIST_HEAD(&event->addr_filters.list);
9979 INIT_HLIST_NODE(&event->hlist_entry);
9980
9981
9982 init_waitqueue_head(&event->waitq);
9983 init_irq_work(&event->pending, perf_pending_event);
9984
9985 mutex_init(&event->mmap_mutex);
9986 raw_spin_lock_init(&event->addr_filters.lock);
9987
9988 atomic_long_set(&event->refcount, 1);
9989 event->cpu = cpu;
9990 event->attr = *attr;
9991 event->group_leader = group_leader;
9992 event->pmu = NULL;
9993 event->oncpu = -1;
9994
9995 event->parent = parent_event;
9996
9997 event->ns = get_pid_ns(task_active_pid_ns(current));
9998 event->id = atomic64_inc_return(&perf_event_id);
9999
10000 event->state = PERF_EVENT_STATE_INACTIVE;
10001
10002 if (task) {
10003 event->attach_state = PERF_ATTACH_TASK;
10004 /*
10005 * XXX pmu::event_init needs to know what task to account to
10006 * and we cannot use the ctx information because we need the
10007 * pmu before we get a ctx.
10008 */
10009 get_task_struct(task);
10010 event->hw.target = task;
10011 }
10012
10013 event->clock = &local_clock;
10014 if (parent_event)
10015 event->clock = parent_event->clock;
10016
10017 if (!overflow_handler && parent_event) {
10018 overflow_handler = parent_event->overflow_handler;
10019 context = parent_event->overflow_handler_context;
10020 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
10021 if (overflow_handler == bpf_overflow_handler) {
10022 struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
10023
10024 if (IS_ERR(prog)) {
10025 err = PTR_ERR(prog);
10026 goto err_ns;
10027 }
10028 event->prog = prog;
10029 event->orig_overflow_handler =
10030 parent_event->orig_overflow_handler;
10031 }
10032 #endif
10033 }
10034
10035 if (overflow_handler) {
10036 event->overflow_handler = overflow_handler;
10037 event->overflow_handler_context = context;
10038 } else if (is_write_backward(event)){
10039 event->overflow_handler = perf_event_output_backward;
10040 event->overflow_handler_context = NULL;
10041 } else {
10042 event->overflow_handler = perf_event_output_forward;
10043 event->overflow_handler_context = NULL;
10044 }
10045
10046 perf_event__state_init(event);
10047
10048 pmu = NULL;
10049
10050 hwc = &event->hw;
10051 hwc->sample_period = attr->sample_period;
10052 if (attr->freq && attr->sample_freq)
10053 hwc->sample_period = 1;
10054 hwc->last_period = hwc->sample_period;
10055
10056 local64_set(&hwc->period_left, hwc->sample_period);
10057
10058 /*
10059 * We currently do not support PERF_SAMPLE_READ on inherited events.
10060 * See perf_output_read().
10061 */
10062 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
10063 goto err_ns;
10064
10065 if (!has_branch_stack(event))
10066 event->attr.branch_sample_type = 0;
10067
10068 if (cgroup_fd != -1) {
10069 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
10070 if (err)
10071 goto err_ns;
10072 }
10073
10074 pmu = perf_init_event(event);
10075 if (IS_ERR(pmu)) {
10076 err = PTR_ERR(pmu);
10077 goto err_ns;
10078 }
10079
10080 err = exclusive_event_init(event);
10081 if (err)
10082 goto err_pmu;
10083
10084 if (has_addr_filter(event)) {
10085 event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
10086 sizeof(unsigned long),
10087 GFP_KERNEL);
10088 if (!event->addr_filters_offs) {
10089 err = -ENOMEM;
10090 goto err_per_task;
10091 }
10092
10093 /* force hw sync on the address filters */
10094 event->addr_filters_gen = 1;
10095 }
10096
10097 if (!event->parent) {
10098 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
10099 err = get_callchain_buffers(attr->sample_max_stack);
10100 if (err)
10101 goto err_addr_filters;
10102 }
10103 }
10104
10105 /* symmetric to unaccount_event() in _free_event() */
10106 account_event(event);
10107
10108 return event;
10109
10110 err_addr_filters:
10111 kfree(event->addr_filters_offs);
10112
10113 err_per_task:
10114 exclusive_event_destroy(event);
10115
10116 err_pmu:
10117 if (event->destroy)
10118 event->destroy(event);
10119 module_put(pmu->module);
10120 err_ns:
10121 if (is_cgroup_event(event))
10122 perf_detach_cgroup(event);
10123 if (event->ns)
10124 put_pid_ns(event->ns);
10125 if (event->hw.target)
10126 put_task_struct(event->hw.target);
10127 kfree(event);
10128
10129 return ERR_PTR(err);
10130 }
10131
10132 static int perf_copy_attr(struct perf_event_attr __user *uattr,
10133 struct perf_event_attr *attr)
10134 {
10135 u32 size;
10136 int ret;
10137
10138 if (!access_ok(uattr, PERF_ATTR_SIZE_VER0))
10139 return -EFAULT;
10140
10141 /*
10142 * zero the full structure, so that a short copy will be nice.
10143 */
10144 memset(attr, 0, sizeof(*attr));
10145
10146 ret = get_user(size, &uattr->size);
10147 if (ret)
10148 return ret;
10149
10150 if (size > PAGE_SIZE) /* silly large */
10151 goto err_size;
10152
10153 if (!size) /* abi compat */
10154 size = PERF_ATTR_SIZE_VER0;
10155
10156 if (size < PERF_ATTR_SIZE_VER0)
10157 goto err_size;
10158
10159 /*
10160 * If we're handed a bigger struct than we know of,
10161 * ensure all the unknown bits are 0 - i.e. new
10162 * user-space does not rely on any kernel feature
10163 * extensions we dont know about yet.
10164 */
10165 if (size > sizeof(*attr)) {
10166 unsigned char __user *addr;
10167 unsigned char __user *end;
10168 unsigned char val;
10169
10170 addr = (void __user *)uattr + sizeof(*attr);
10171 end = (void __user *)uattr + size;
10172
10173 for (; addr < end; addr++) {
10174 ret = get_user(val, addr);
10175 if (ret)
10176 return ret;
10177 if (val)
10178 goto err_size;
10179 }
10180 size = sizeof(*attr);
10181 }
10182
10183 ret = copy_from_user(attr, uattr, size);
10184 if (ret)
10185 return -EFAULT;
10186
10187 attr->size = size;
10188
10189 if (attr->__reserved_1)
10190 return -EINVAL;
10191
10192 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
10193 return -EINVAL;
10194
10195 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
10196 return -EINVAL;
10197
10198 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
10199 u64 mask = attr->branch_sample_type;
10200
10201 /* only using defined bits */
10202 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
10203 return -EINVAL;
10204
10205 /* at least one branch bit must be set */
10206 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
10207 return -EINVAL;
10208
10209 /* propagate priv level, when not set for branch */
10210 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
10211
10212 /* exclude_kernel checked on syscall entry */
10213 if (!attr->exclude_kernel)
10214 mask |= PERF_SAMPLE_BRANCH_KERNEL;
10215
10216 if (!attr->exclude_user)
10217 mask |= PERF_SAMPLE_BRANCH_USER;
10218
10219 if (!attr->exclude_hv)
10220 mask |= PERF_SAMPLE_BRANCH_HV;
10221 /*
10222 * adjust user setting (for HW filter setup)
10223 */
10224 attr->branch_sample_type = mask;
10225 }
10226 /* privileged levels capture (kernel, hv): check permissions */
10227 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
10228 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10229 return -EACCES;
10230 }
10231
10232 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
10233 ret = perf_reg_validate(attr->sample_regs_user);
10234 if (ret)
10235 return ret;
10236 }
10237
10238 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
10239 if (!arch_perf_have_user_stack_dump())
10240 return -ENOSYS;
10241
10242 /*
10243 * We have __u32 type for the size, but so far
10244 * we can only use __u16 as maximum due to the
10245 * __u16 sample size limit.
10246 */
10247 if (attr->sample_stack_user >= USHRT_MAX)
10248 return -EINVAL;
10249 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
10250 return -EINVAL;
10251 }
10252
10253 if (!attr->sample_max_stack)
10254 attr->sample_max_stack = sysctl_perf_event_max_stack;
10255
10256 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
10257 ret = perf_reg_validate(attr->sample_regs_intr);
10258 out:
10259 return ret;
10260
10261 err_size:
10262 put_user(sizeof(*attr), &uattr->size);
10263 ret = -E2BIG;
10264 goto out;
10265 }
10266
10267 static int
10268 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
10269 {
10270 struct ring_buffer *rb = NULL;
10271 int ret = -EINVAL;
10272
10273 if (!output_event)
10274 goto set;
10275
10276 /* don't allow circular references */
10277 if (event == output_event)
10278 goto out;
10279
10280 /*
10281 * Don't allow cross-cpu buffers
10282 */
10283 if (output_event->cpu != event->cpu)
10284 goto out;
10285
10286 /*
10287 * If its not a per-cpu rb, it must be the same task.
10288 */
10289 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
10290 goto out;
10291
10292 /*
10293 * Mixing clocks in the same buffer is trouble you don't need.
10294 */
10295 if (output_event->clock != event->clock)
10296 goto out;
10297
10298 /*
10299 * Either writing ring buffer from beginning or from end.
10300 * Mixing is not allowed.
10301 */
10302 if (is_write_backward(output_event) != is_write_backward(event))
10303 goto out;
10304
10305 /*
10306 * If both events generate aux data, they must be on the same PMU
10307 */
10308 if (has_aux(event) && has_aux(output_event) &&
10309 event->pmu != output_event->pmu)
10310 goto out;
10311
10312 set:
10313 mutex_lock(&event->mmap_mutex);
10314 /* Can't redirect output if we've got an active mmap() */
10315 if (atomic_read(&event->mmap_count))
10316 goto unlock;
10317
10318 if (output_event) {
10319 /* get the rb we want to redirect to */
10320 rb = ring_buffer_get(output_event);
10321 if (!rb)
10322 goto unlock;
10323 }
10324
10325 ring_buffer_attach(event, rb);
10326
10327 ret = 0;
10328 unlock:
10329 mutex_unlock(&event->mmap_mutex);
10330
10331 out:
10332 return ret;
10333 }
10334
10335 static void mutex_lock_double(struct mutex *a, struct mutex *b)
10336 {
10337 if (b < a)
10338 swap(a, b);
10339
10340 mutex_lock(a);
10341 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
10342 }
10343
10344 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
10345 {
10346 bool nmi_safe = false;
10347
10348 switch (clk_id) {
10349 case CLOCK_MONOTONIC:
10350 event->clock = &ktime_get_mono_fast_ns;
10351 nmi_safe = true;
10352 break;
10353
10354 case CLOCK_MONOTONIC_RAW:
10355 event->clock = &ktime_get_raw_fast_ns;
10356 nmi_safe = true;
10357 break;
10358
10359 case CLOCK_REALTIME:
10360 event->clock = &ktime_get_real_ns;
10361 break;
10362
10363 case CLOCK_BOOTTIME:
10364 event->clock = &ktime_get_boot_ns;
10365 break;
10366
10367 case CLOCK_TAI:
10368 event->clock = &ktime_get_tai_ns;
10369 break;
10370
10371 default:
10372 return -EINVAL;
10373 }
10374
10375 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
10376 return -EINVAL;
10377
10378 return 0;
10379 }
10380
10381 /*
10382 * Variation on perf_event_ctx_lock_nested(), except we take two context
10383 * mutexes.
10384 */
10385 static struct perf_event_context *
10386 __perf_event_ctx_lock_double(struct perf_event *group_leader,
10387 struct perf_event_context *ctx)
10388 {
10389 struct perf_event_context *gctx;
10390
10391 again:
10392 rcu_read_lock();
10393 gctx = READ_ONCE(group_leader->ctx);
10394 if (!atomic_inc_not_zero(&gctx->refcount)) {
10395 rcu_read_unlock();
10396 goto again;
10397 }
10398 rcu_read_unlock();
10399
10400 mutex_lock_double(&gctx->mutex, &ctx->mutex);
10401
10402 if (group_leader->ctx != gctx) {
10403 mutex_unlock(&ctx->mutex);
10404 mutex_unlock(&gctx->mutex);
10405 put_ctx(gctx);
10406 goto again;
10407 }
10408
10409 return gctx;
10410 }
10411
10412 /**
10413 * sys_perf_event_open - open a performance event, associate it to a task/cpu
10414 *
10415 * @attr_uptr: event_id type attributes for monitoring/sampling
10416 * @pid: target pid
10417 * @cpu: target cpu
10418 * @group_fd: group leader event fd
10419 */
10420 SYSCALL_DEFINE5(perf_event_open,
10421 struct perf_event_attr __user *, attr_uptr,
10422 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
10423 {
10424 struct perf_event *group_leader = NULL, *output_event = NULL;
10425 struct perf_event *event, *sibling;
10426 struct perf_event_attr attr;
10427 struct perf_event_context *ctx, *uninitialized_var(gctx);
10428 struct file *event_file = NULL;
10429 struct fd group = {NULL, 0};
10430 struct task_struct *task = NULL;
10431 struct pmu *pmu;
10432 int event_fd;
10433 int move_group = 0;
10434 int err;
10435 int f_flags = O_RDWR;
10436 int cgroup_fd = -1;
10437
10438 /* for future expandability... */
10439 if (flags & ~PERF_FLAG_ALL)
10440 return -EINVAL;
10441
10442 err = perf_copy_attr(attr_uptr, &attr);
10443 if (err)
10444 return err;
10445
10446 if (!attr.exclude_kernel) {
10447 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10448 return -EACCES;
10449 }
10450
10451 if (attr.namespaces) {
10452 if (!capable(CAP_SYS_ADMIN))
10453 return -EACCES;
10454 }
10455
10456 if (attr.freq) {
10457 if (attr.sample_freq > sysctl_perf_event_sample_rate)
10458 return -EINVAL;
10459 } else {
10460 if (attr.sample_period & (1ULL << 63))
10461 return -EINVAL;
10462 }
10463
10464 /* Only privileged users can get physical addresses */
10465 if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR) &&
10466 perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10467 return -EACCES;
10468
10469 /*
10470 * In cgroup mode, the pid argument is used to pass the fd
10471 * opened to the cgroup directory in cgroupfs. The cpu argument
10472 * designates the cpu on which to monitor threads from that
10473 * cgroup.
10474 */
10475 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
10476 return -EINVAL;
10477
10478 if (flags & PERF_FLAG_FD_CLOEXEC)
10479 f_flags |= O_CLOEXEC;
10480
10481 event_fd = get_unused_fd_flags(f_flags);
10482 if (event_fd < 0)
10483 return event_fd;
10484
10485 if (group_fd != -1) {
10486 err = perf_fget_light(group_fd, &group);
10487 if (err)
10488 goto err_fd;
10489 group_leader = group.file->private_data;
10490 if (flags & PERF_FLAG_FD_OUTPUT)
10491 output_event = group_leader;
10492 if (flags & PERF_FLAG_FD_NO_GROUP)
10493 group_leader = NULL;
10494 }
10495
10496 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
10497 task = find_lively_task_by_vpid(pid);
10498 if (IS_ERR(task)) {
10499 err = PTR_ERR(task);
10500 goto err_group_fd;
10501 }
10502 }
10503
10504 if (task && group_leader &&
10505 group_leader->attr.inherit != attr.inherit) {
10506 err = -EINVAL;
10507 goto err_task;
10508 }
10509
10510 if (task) {
10511 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
10512 if (err)
10513 goto err_task;
10514
10515 /*
10516 * Reuse ptrace permission checks for now.
10517 *
10518 * We must hold cred_guard_mutex across this and any potential
10519 * perf_install_in_context() call for this new event to
10520 * serialize against exec() altering our credentials (and the
10521 * perf_event_exit_task() that could imply).
10522 */
10523 err = -EACCES;
10524 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
10525 goto err_cred;
10526 }
10527
10528 if (flags & PERF_FLAG_PID_CGROUP)
10529 cgroup_fd = pid;
10530
10531 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
10532 NULL, NULL, cgroup_fd);
10533 if (IS_ERR(event)) {
10534 err = PTR_ERR(event);
10535 goto err_cred;
10536 }
10537
10538 if (is_sampling_event(event)) {
10539 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
10540 err = -EOPNOTSUPP;
10541 goto err_alloc;
10542 }
10543 }
10544
10545 /*
10546 * Special case software events and allow them to be part of
10547 * any hardware group.
10548 */
10549 pmu = event->pmu;
10550
10551 if (attr.use_clockid) {
10552 err = perf_event_set_clock(event, attr.clockid);
10553 if (err)
10554 goto err_alloc;
10555 }
10556
10557 if (pmu->task_ctx_nr == perf_sw_context)
10558 event->event_caps |= PERF_EV_CAP_SOFTWARE;
10559
10560 if (group_leader) {
10561 if (is_software_event(event) &&
10562 !in_software_context(group_leader)) {
10563 /*
10564 * If the event is a sw event, but the group_leader
10565 * is on hw context.
10566 *
10567 * Allow the addition of software events to hw
10568 * groups, this is safe because software events
10569 * never fail to schedule.
10570 */
10571 pmu = group_leader->ctx->pmu;
10572 } else if (!is_software_event(event) &&
10573 is_software_event(group_leader) &&
10574 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10575 /*
10576 * In case the group is a pure software group, and we
10577 * try to add a hardware event, move the whole group to
10578 * the hardware context.
10579 */
10580 move_group = 1;
10581 }
10582 }
10583
10584 /*
10585 * Get the target context (task or percpu):
10586 */
10587 ctx = find_get_context(pmu, task, event);
10588 if (IS_ERR(ctx)) {
10589 err = PTR_ERR(ctx);
10590 goto err_alloc;
10591 }
10592
10593 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
10594 err = -EBUSY;
10595 goto err_context;
10596 }
10597
10598 /*
10599 * Look up the group leader (we will attach this event to it):
10600 */
10601 if (group_leader) {
10602 err = -EINVAL;
10603
10604 /*
10605 * Do not allow a recursive hierarchy (this new sibling
10606 * becoming part of another group-sibling):
10607 */
10608 if (group_leader->group_leader != group_leader)
10609 goto err_context;
10610
10611 /* All events in a group should have the same clock */
10612 if (group_leader->clock != event->clock)
10613 goto err_context;
10614
10615 /*
10616 * Make sure we're both events for the same CPU;
10617 * grouping events for different CPUs is broken; since
10618 * you can never concurrently schedule them anyhow.
10619 */
10620 if (group_leader->cpu != event->cpu)
10621 goto err_context;
10622
10623 /*
10624 * Make sure we're both on the same task, or both
10625 * per-CPU events.
10626 */
10627 if (group_leader->ctx->task != ctx->task)
10628 goto err_context;
10629
10630 /*
10631 * Do not allow to attach to a group in a different task
10632 * or CPU context. If we're moving SW events, we'll fix
10633 * this up later, so allow that.
10634 */
10635 if (!move_group && group_leader->ctx != ctx)
10636 goto err_context;
10637
10638 /*
10639 * Only a group leader can be exclusive or pinned
10640 */
10641 if (attr.exclusive || attr.pinned)
10642 goto err_context;
10643 }
10644
10645 if (output_event) {
10646 err = perf_event_set_output(event, output_event);
10647 if (err)
10648 goto err_context;
10649 }
10650
10651 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
10652 f_flags);
10653 if (IS_ERR(event_file)) {
10654 err = PTR_ERR(event_file);
10655 event_file = NULL;
10656 goto err_context;
10657 }
10658
10659 if (move_group) {
10660 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
10661
10662 if (gctx->task == TASK_TOMBSTONE) {
10663 err = -ESRCH;
10664 goto err_locked;
10665 }
10666
10667 /*
10668 * Check if we raced against another sys_perf_event_open() call
10669 * moving the software group underneath us.
10670 */
10671 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10672 /*
10673 * If someone moved the group out from under us, check
10674 * if this new event wound up on the same ctx, if so
10675 * its the regular !move_group case, otherwise fail.
10676 */
10677 if (gctx != ctx) {
10678 err = -EINVAL;
10679 goto err_locked;
10680 } else {
10681 perf_event_ctx_unlock(group_leader, gctx);
10682 move_group = 0;
10683 }
10684 }
10685 } else {
10686 mutex_lock(&ctx->mutex);
10687 }
10688
10689 if (ctx->task == TASK_TOMBSTONE) {
10690 err = -ESRCH;
10691 goto err_locked;
10692 }
10693
10694 if (!perf_event_validate_size(event)) {
10695 err = -E2BIG;
10696 goto err_locked;
10697 }
10698
10699 if (!task) {
10700 /*
10701 * Check if the @cpu we're creating an event for is online.
10702 *
10703 * We use the perf_cpu_context::ctx::mutex to serialize against
10704 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10705 */
10706 struct perf_cpu_context *cpuctx =
10707 container_of(ctx, struct perf_cpu_context, ctx);
10708
10709 if (!cpuctx->online) {
10710 err = -ENODEV;
10711 goto err_locked;
10712 }
10713 }
10714
10715
10716 /*
10717 * Must be under the same ctx::mutex as perf_install_in_context(),
10718 * because we need to serialize with concurrent event creation.
10719 */
10720 if (!exclusive_event_installable(event, ctx)) {
10721 /* exclusive and group stuff are assumed mutually exclusive */
10722 WARN_ON_ONCE(move_group);
10723
10724 err = -EBUSY;
10725 goto err_locked;
10726 }
10727
10728 WARN_ON_ONCE(ctx->parent_ctx);
10729
10730 /*
10731 * This is the point on no return; we cannot fail hereafter. This is
10732 * where we start modifying current state.
10733 */
10734
10735 if (move_group) {
10736 /*
10737 * See perf_event_ctx_lock() for comments on the details
10738 * of swizzling perf_event::ctx.
10739 */
10740 perf_remove_from_context(group_leader, 0);
10741 put_ctx(gctx);
10742
10743 for_each_sibling_event(sibling, group_leader) {
10744 perf_remove_from_context(sibling, 0);
10745 put_ctx(gctx);
10746 }
10747
10748 /*
10749 * Wait for everybody to stop referencing the events through
10750 * the old lists, before installing it on new lists.
10751 */
10752 synchronize_rcu();
10753
10754 /*
10755 * Install the group siblings before the group leader.
10756 *
10757 * Because a group leader will try and install the entire group
10758 * (through the sibling list, which is still in-tact), we can
10759 * end up with siblings installed in the wrong context.
10760 *
10761 * By installing siblings first we NO-OP because they're not
10762 * reachable through the group lists.
10763 */
10764 for_each_sibling_event(sibling, group_leader) {
10765 perf_event__state_init(sibling);
10766 perf_install_in_context(ctx, sibling, sibling->cpu);
10767 get_ctx(ctx);
10768 }
10769
10770 /*
10771 * Removing from the context ends up with disabled
10772 * event. What we want here is event in the initial
10773 * startup state, ready to be add into new context.
10774 */
10775 perf_event__state_init(group_leader);
10776 perf_install_in_context(ctx, group_leader, group_leader->cpu);
10777 get_ctx(ctx);
10778 }
10779
10780 /*
10781 * Precalculate sample_data sizes; do while holding ctx::mutex such
10782 * that we're serialized against further additions and before
10783 * perf_install_in_context() which is the point the event is active and
10784 * can use these values.
10785 */
10786 perf_event__header_size(event);
10787 perf_event__id_header_size(event);
10788
10789 event->owner = current;
10790
10791 perf_install_in_context(ctx, event, event->cpu);
10792 perf_unpin_context(ctx);
10793
10794 if (move_group)
10795 perf_event_ctx_unlock(group_leader, gctx);
10796 mutex_unlock(&ctx->mutex);
10797
10798 if (task) {
10799 mutex_unlock(&task->signal->cred_guard_mutex);
10800 put_task_struct(task);
10801 }
10802
10803 mutex_lock(&current->perf_event_mutex);
10804 list_add_tail(&event->owner_entry, &current->perf_event_list);
10805 mutex_unlock(&current->perf_event_mutex);
10806
10807 /*
10808 * Drop the reference on the group_event after placing the
10809 * new event on the sibling_list. This ensures destruction
10810 * of the group leader will find the pointer to itself in
10811 * perf_group_detach().
10812 */
10813 fdput(group);
10814 fd_install(event_fd, event_file);
10815 return event_fd;
10816
10817 err_locked:
10818 if (move_group)
10819 perf_event_ctx_unlock(group_leader, gctx);
10820 mutex_unlock(&ctx->mutex);
10821 /* err_file: */
10822 fput(event_file);
10823 err_context:
10824 perf_unpin_context(ctx);
10825 put_ctx(ctx);
10826 err_alloc:
10827 /*
10828 * If event_file is set, the fput() above will have called ->release()
10829 * and that will take care of freeing the event.
10830 */
10831 if (!event_file)
10832 free_event(event);
10833 err_cred:
10834 if (task)
10835 mutex_unlock(&task->signal->cred_guard_mutex);
10836 err_task:
10837 if (task)
10838 put_task_struct(task);
10839 err_group_fd:
10840 fdput(group);
10841 err_fd:
10842 put_unused_fd(event_fd);
10843 return err;
10844 }
10845
10846 /**
10847 * perf_event_create_kernel_counter
10848 *
10849 * @attr: attributes of the counter to create
10850 * @cpu: cpu in which the counter is bound
10851 * @task: task to profile (NULL for percpu)
10852 */
10853 struct perf_event *
10854 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
10855 struct task_struct *task,
10856 perf_overflow_handler_t overflow_handler,
10857 void *context)
10858 {
10859 struct perf_event_context *ctx;
10860 struct perf_event *event;
10861 int err;
10862
10863 /*
10864 * Get the target context (task or percpu):
10865 */
10866
10867 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
10868 overflow_handler, context, -1);
10869 if (IS_ERR(event)) {
10870 err = PTR_ERR(event);
10871 goto err;
10872 }
10873
10874 /* Mark owner so we could distinguish it from user events. */
10875 event->owner = TASK_TOMBSTONE;
10876
10877 ctx = find_get_context(event->pmu, task, event);
10878 if (IS_ERR(ctx)) {
10879 err = PTR_ERR(ctx);
10880 goto err_free;
10881 }
10882
10883 WARN_ON_ONCE(ctx->parent_ctx);
10884 mutex_lock(&ctx->mutex);
10885 if (ctx->task == TASK_TOMBSTONE) {
10886 err = -ESRCH;
10887 goto err_unlock;
10888 }
10889
10890 if (!task) {
10891 /*
10892 * Check if the @cpu we're creating an event for is online.
10893 *
10894 * We use the perf_cpu_context::ctx::mutex to serialize against
10895 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10896 */
10897 struct perf_cpu_context *cpuctx =
10898 container_of(ctx, struct perf_cpu_context, ctx);
10899 if (!cpuctx->online) {
10900 err = -ENODEV;
10901 goto err_unlock;
10902 }
10903 }
10904
10905 if (!exclusive_event_installable(event, ctx)) {
10906 err = -EBUSY;
10907 goto err_unlock;
10908 }
10909
10910 perf_install_in_context(ctx, event, cpu);
10911 perf_unpin_context(ctx);
10912 mutex_unlock(&ctx->mutex);
10913
10914 return event;
10915
10916 err_unlock:
10917 mutex_unlock(&ctx->mutex);
10918 perf_unpin_context(ctx);
10919 put_ctx(ctx);
10920 err_free:
10921 free_event(event);
10922 err:
10923 return ERR_PTR(err);
10924 }
10925 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
10926
10927 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
10928 {
10929 struct perf_event_context *src_ctx;
10930 struct perf_event_context *dst_ctx;
10931 struct perf_event *event, *tmp;
10932 LIST_HEAD(events);
10933
10934 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
10935 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
10936
10937 /*
10938 * See perf_event_ctx_lock() for comments on the details
10939 * of swizzling perf_event::ctx.
10940 */
10941 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
10942 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
10943 event_entry) {
10944 perf_remove_from_context(event, 0);
10945 unaccount_event_cpu(event, src_cpu);
10946 put_ctx(src_ctx);
10947 list_add(&event->migrate_entry, &events);
10948 }
10949
10950 /*
10951 * Wait for the events to quiesce before re-instating them.
10952 */
10953 synchronize_rcu();
10954
10955 /*
10956 * Re-instate events in 2 passes.
10957 *
10958 * Skip over group leaders and only install siblings on this first
10959 * pass, siblings will not get enabled without a leader, however a
10960 * leader will enable its siblings, even if those are still on the old
10961 * context.
10962 */
10963 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10964 if (event->group_leader == event)
10965 continue;
10966
10967 list_del(&event->migrate_entry);
10968 if (event->state >= PERF_EVENT_STATE_OFF)
10969 event->state = PERF_EVENT_STATE_INACTIVE;
10970 account_event_cpu(event, dst_cpu);
10971 perf_install_in_context(dst_ctx, event, dst_cpu);
10972 get_ctx(dst_ctx);
10973 }
10974
10975 /*
10976 * Once all the siblings are setup properly, install the group leaders
10977 * to make it go.
10978 */
10979 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10980 list_del(&event->migrate_entry);
10981 if (event->state >= PERF_EVENT_STATE_OFF)
10982 event->state = PERF_EVENT_STATE_INACTIVE;
10983 account_event_cpu(event, dst_cpu);
10984 perf_install_in_context(dst_ctx, event, dst_cpu);
10985 get_ctx(dst_ctx);
10986 }
10987 mutex_unlock(&dst_ctx->mutex);
10988 mutex_unlock(&src_ctx->mutex);
10989 }
10990 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
10991
10992 static void sync_child_event(struct perf_event *child_event,
10993 struct task_struct *child)
10994 {
10995 struct perf_event *parent_event = child_event->parent;
10996 u64 child_val;
10997
10998 if (child_event->attr.inherit_stat)
10999 perf_event_read_event(child_event, child);
11000
11001 child_val = perf_event_count(child_event);
11002
11003 /*
11004 * Add back the child's count to the parent's count:
11005 */
11006 atomic64_add(child_val, &parent_event->child_count);
11007 atomic64_add(child_event->total_time_enabled,
11008 &parent_event->child_total_time_enabled);
11009 atomic64_add(child_event->total_time_running,
11010 &parent_event->child_total_time_running);
11011 }
11012
11013 static void
11014 perf_event_exit_event(struct perf_event *child_event,
11015 struct perf_event_context *child_ctx,
11016 struct task_struct *child)
11017 {
11018 struct perf_event *parent_event = child_event->parent;
11019
11020 /*
11021 * Do not destroy the 'original' grouping; because of the context
11022 * switch optimization the original events could've ended up in a
11023 * random child task.
11024 *
11025 * If we were to destroy the original group, all group related
11026 * operations would cease to function properly after this random
11027 * child dies.
11028 *
11029 * Do destroy all inherited groups, we don't care about those
11030 * and being thorough is better.
11031 */
11032 raw_spin_lock_irq(&child_ctx->lock);
11033 WARN_ON_ONCE(child_ctx->is_active);
11034
11035 if (parent_event)
11036 perf_group_detach(child_event);
11037 list_del_event(child_event, child_ctx);
11038 perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */
11039 raw_spin_unlock_irq(&child_ctx->lock);
11040
11041 /*
11042 * Parent events are governed by their filedesc, retain them.
11043 */
11044 if (!parent_event) {
11045 perf_event_wakeup(child_event);
11046 return;
11047 }
11048 /*
11049 * Child events can be cleaned up.
11050 */
11051
11052 sync_child_event(child_event, child);
11053
11054 /*
11055 * Remove this event from the parent's list
11056 */
11057 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
11058 mutex_lock(&parent_event->child_mutex);
11059 list_del_init(&child_event->child_list);
11060 mutex_unlock(&parent_event->child_mutex);
11061
11062 /*
11063 * Kick perf_poll() for is_event_hup().
11064 */
11065 perf_event_wakeup(parent_event);
11066 free_event(child_event);
11067 put_event(parent_event);
11068 }
11069
11070 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
11071 {
11072 struct perf_event_context *child_ctx, *clone_ctx = NULL;
11073 struct perf_event *child_event, *next;
11074
11075 WARN_ON_ONCE(child != current);
11076
11077 child_ctx = perf_pin_task_context(child, ctxn);
11078 if (!child_ctx)
11079 return;
11080
11081 /*
11082 * In order to reduce the amount of tricky in ctx tear-down, we hold
11083 * ctx::mutex over the entire thing. This serializes against almost
11084 * everything that wants to access the ctx.
11085 *
11086 * The exception is sys_perf_event_open() /
11087 * perf_event_create_kernel_count() which does find_get_context()
11088 * without ctx::mutex (it cannot because of the move_group double mutex
11089 * lock thing). See the comments in perf_install_in_context().
11090 */
11091 mutex_lock(&child_ctx->mutex);
11092
11093 /*
11094 * In a single ctx::lock section, de-schedule the events and detach the
11095 * context from the task such that we cannot ever get it scheduled back
11096 * in.
11097 */
11098 raw_spin_lock_irq(&child_ctx->lock);
11099 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
11100
11101 /*
11102 * Now that the context is inactive, destroy the task <-> ctx relation
11103 * and mark the context dead.
11104 */
11105 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
11106 put_ctx(child_ctx); /* cannot be last */
11107 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
11108 put_task_struct(current); /* cannot be last */
11109
11110 clone_ctx = unclone_ctx(child_ctx);
11111 raw_spin_unlock_irq(&child_ctx->lock);
11112
11113 if (clone_ctx)
11114 put_ctx(clone_ctx);
11115
11116 /*
11117 * Report the task dead after unscheduling the events so that we
11118 * won't get any samples after PERF_RECORD_EXIT. We can however still
11119 * get a few PERF_RECORD_READ events.
11120 */
11121 perf_event_task(child, child_ctx, 0);
11122
11123 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
11124 perf_event_exit_event(child_event, child_ctx, child);
11125
11126 mutex_unlock(&child_ctx->mutex);
11127
11128 put_ctx(child_ctx);
11129 }
11130
11131 /*
11132 * When a child task exits, feed back event values to parent events.
11133 *
11134 * Can be called with cred_guard_mutex held when called from
11135 * install_exec_creds().
11136 */
11137 void perf_event_exit_task(struct task_struct *child)
11138 {
11139 struct perf_event *event, *tmp;
11140 int ctxn;
11141
11142 mutex_lock(&child->perf_event_mutex);
11143 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
11144 owner_entry) {
11145 list_del_init(&event->owner_entry);
11146
11147 /*
11148 * Ensure the list deletion is visible before we clear
11149 * the owner, closes a race against perf_release() where
11150 * we need to serialize on the owner->perf_event_mutex.
11151 */
11152 smp_store_release(&event->owner, NULL);
11153 }
11154 mutex_unlock(&child->perf_event_mutex);
11155
11156 for_each_task_context_nr(ctxn)
11157 perf_event_exit_task_context(child, ctxn);
11158
11159 /*
11160 * The perf_event_exit_task_context calls perf_event_task
11161 * with child's task_ctx, which generates EXIT events for
11162 * child contexts and sets child->perf_event_ctxp[] to NULL.
11163 * At this point we need to send EXIT events to cpu contexts.
11164 */
11165 perf_event_task(child, NULL, 0);
11166 }
11167
11168 static void perf_free_event(struct perf_event *event,
11169 struct perf_event_context *ctx)
11170 {
11171 struct perf_event *parent = event->parent;
11172
11173 if (WARN_ON_ONCE(!parent))
11174 return;
11175
11176 mutex_lock(&parent->child_mutex);
11177 list_del_init(&event->child_list);
11178 mutex_unlock(&parent->child_mutex);
11179
11180 put_event(parent);
11181
11182 raw_spin_lock_irq(&ctx->lock);
11183 perf_group_detach(event);
11184 list_del_event(event, ctx);
11185 raw_spin_unlock_irq(&ctx->lock);
11186 free_event(event);
11187 }
11188
11189 /*
11190 * Free an unexposed, unused context as created by inheritance by
11191 * perf_event_init_task below, used by fork() in case of fail.
11192 *
11193 * Not all locks are strictly required, but take them anyway to be nice and
11194 * help out with the lockdep assertions.
11195 */
11196 void perf_event_free_task(struct task_struct *task)
11197 {
11198 struct perf_event_context *ctx;
11199 struct perf_event *event, *tmp;
11200 int ctxn;
11201
11202 for_each_task_context_nr(ctxn) {
11203 ctx = task->perf_event_ctxp[ctxn];
11204 if (!ctx)
11205 continue;
11206
11207 mutex_lock(&ctx->mutex);
11208 raw_spin_lock_irq(&ctx->lock);
11209 /*
11210 * Destroy the task <-> ctx relation and mark the context dead.
11211 *
11212 * This is important because even though the task hasn't been
11213 * exposed yet the context has been (through child_list).
11214 */
11215 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
11216 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
11217 put_task_struct(task); /* cannot be last */
11218 raw_spin_unlock_irq(&ctx->lock);
11219
11220 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
11221 perf_free_event(event, ctx);
11222
11223 mutex_unlock(&ctx->mutex);
11224 put_ctx(ctx);
11225 }
11226 }
11227
11228 void perf_event_delayed_put(struct task_struct *task)
11229 {
11230 int ctxn;
11231
11232 for_each_task_context_nr(ctxn)
11233 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
11234 }
11235
11236 struct file *perf_event_get(unsigned int fd)
11237 {
11238 struct file *file;
11239
11240 file = fget_raw(fd);
11241 if (!file)
11242 return ERR_PTR(-EBADF);
11243
11244 if (file->f_op != &perf_fops) {
11245 fput(file);
11246 return ERR_PTR(-EBADF);
11247 }
11248
11249 return file;
11250 }
11251
11252 const struct perf_event *perf_get_event(struct file *file)
11253 {
11254 if (file->f_op != &perf_fops)
11255 return ERR_PTR(-EINVAL);
11256
11257 return file->private_data;
11258 }
11259
11260 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
11261 {
11262 if (!event)
11263 return ERR_PTR(-EINVAL);
11264
11265 return &event->attr;
11266 }
11267
11268 /*
11269 * Inherit an event from parent task to child task.
11270 *
11271 * Returns:
11272 * - valid pointer on success
11273 * - NULL for orphaned events
11274 * - IS_ERR() on error
11275 */
11276 static struct perf_event *
11277 inherit_event(struct perf_event *parent_event,
11278 struct task_struct *parent,
11279 struct perf_event_context *parent_ctx,
11280 struct task_struct *child,
11281 struct perf_event *group_leader,
11282 struct perf_event_context *child_ctx)
11283 {
11284 enum perf_event_state parent_state = parent_event->state;
11285 struct perf_event *child_event;
11286 unsigned long flags;
11287
11288 /*
11289 * Instead of creating recursive hierarchies of events,
11290 * we link inherited events back to the original parent,
11291 * which has a filp for sure, which we use as the reference
11292 * count:
11293 */
11294 if (parent_event->parent)
11295 parent_event = parent_event->parent;
11296
11297 child_event = perf_event_alloc(&parent_event->attr,
11298 parent_event->cpu,
11299 child,
11300 group_leader, parent_event,
11301 NULL, NULL, -1);
11302 if (IS_ERR(child_event))
11303 return child_event;
11304
11305
11306 if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) &&
11307 !child_ctx->task_ctx_data) {
11308 struct pmu *pmu = child_event->pmu;
11309
11310 child_ctx->task_ctx_data = kzalloc(pmu->task_ctx_size,
11311 GFP_KERNEL);
11312 if (!child_ctx->task_ctx_data) {
11313 free_event(child_event);
11314 return NULL;
11315 }
11316 }
11317
11318 /*
11319 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
11320 * must be under the same lock in order to serialize against
11321 * perf_event_release_kernel(), such that either we must observe
11322 * is_orphaned_event() or they will observe us on the child_list.
11323 */
11324 mutex_lock(&parent_event->child_mutex);
11325 if (is_orphaned_event(parent_event) ||
11326 !atomic_long_inc_not_zero(&parent_event->refcount)) {
11327 mutex_unlock(&parent_event->child_mutex);
11328 /* task_ctx_data is freed with child_ctx */
11329 free_event(child_event);
11330 return NULL;
11331 }
11332
11333 get_ctx(child_ctx);
11334
11335 /*
11336 * Make the child state follow the state of the parent event,
11337 * not its attr.disabled bit. We hold the parent's mutex,
11338 * so we won't race with perf_event_{en, dis}able_family.
11339 */
11340 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
11341 child_event->state = PERF_EVENT_STATE_INACTIVE;
11342 else
11343 child_event->state = PERF_EVENT_STATE_OFF;
11344
11345 if (parent_event->attr.freq) {
11346 u64 sample_period = parent_event->hw.sample_period;
11347 struct hw_perf_event *hwc = &child_event->hw;
11348
11349 hwc->sample_period = sample_period;
11350 hwc->last_period = sample_period;
11351
11352 local64_set(&hwc->period_left, sample_period);
11353 }
11354
11355 child_event->ctx = child_ctx;
11356 child_event->overflow_handler = parent_event->overflow_handler;
11357 child_event->overflow_handler_context
11358 = parent_event->overflow_handler_context;
11359
11360 /*
11361 * Precalculate sample_data sizes
11362 */
11363 perf_event__header_size(child_event);
11364 perf_event__id_header_size(child_event);
11365
11366 /*
11367 * Link it up in the child's context:
11368 */
11369 raw_spin_lock_irqsave(&child_ctx->lock, flags);
11370 add_event_to_ctx(child_event, child_ctx);
11371 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
11372
11373 /*
11374 * Link this into the parent event's child list
11375 */
11376 list_add_tail(&child_event->child_list, &parent_event->child_list);
11377 mutex_unlock(&parent_event->child_mutex);
11378
11379 return child_event;
11380 }
11381
11382 /*
11383 * Inherits an event group.
11384 *
11385 * This will quietly suppress orphaned events; !inherit_event() is not an error.
11386 * This matches with perf_event_release_kernel() removing all child events.
11387 *
11388 * Returns:
11389 * - 0 on success
11390 * - <0 on error
11391 */
11392 static int inherit_group(struct perf_event *parent_event,
11393 struct task_struct *parent,
11394 struct perf_event_context *parent_ctx,
11395 struct task_struct *child,
11396 struct perf_event_context *child_ctx)
11397 {
11398 struct perf_event *leader;
11399 struct perf_event *sub;
11400 struct perf_event *child_ctr;
11401
11402 leader = inherit_event(parent_event, parent, parent_ctx,
11403 child, NULL, child_ctx);
11404 if (IS_ERR(leader))
11405 return PTR_ERR(leader);
11406 /*
11407 * @leader can be NULL here because of is_orphaned_event(). In this
11408 * case inherit_event() will create individual events, similar to what
11409 * perf_group_detach() would do anyway.
11410 */
11411 for_each_sibling_event(sub, parent_event) {
11412 child_ctr = inherit_event(sub, parent, parent_ctx,
11413 child, leader, child_ctx);
11414 if (IS_ERR(child_ctr))
11415 return PTR_ERR(child_ctr);
11416 }
11417 return 0;
11418 }
11419
11420 /*
11421 * Creates the child task context and tries to inherit the event-group.
11422 *
11423 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
11424 * inherited_all set when we 'fail' to inherit an orphaned event; this is
11425 * consistent with perf_event_release_kernel() removing all child events.
11426 *
11427 * Returns:
11428 * - 0 on success
11429 * - <0 on error
11430 */
11431 static int
11432 inherit_task_group(struct perf_event *event, struct task_struct *parent,
11433 struct perf_event_context *parent_ctx,
11434 struct task_struct *child, int ctxn,
11435 int *inherited_all)
11436 {
11437 int ret;
11438 struct perf_event_context *child_ctx;
11439
11440 if (!event->attr.inherit) {
11441 *inherited_all = 0;
11442 return 0;
11443 }
11444
11445 child_ctx = child->perf_event_ctxp[ctxn];
11446 if (!child_ctx) {
11447 /*
11448 * This is executed from the parent task context, so
11449 * inherit events that have been marked for cloning.
11450 * First allocate and initialize a context for the
11451 * child.
11452 */
11453 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
11454 if (!child_ctx)
11455 return -ENOMEM;
11456
11457 child->perf_event_ctxp[ctxn] = child_ctx;
11458 }
11459
11460 ret = inherit_group(event, parent, parent_ctx,
11461 child, child_ctx);
11462
11463 if (ret)
11464 *inherited_all = 0;
11465
11466 return ret;
11467 }
11468
11469 /*
11470 * Initialize the perf_event context in task_struct
11471 */
11472 static int perf_event_init_context(struct task_struct *child, int ctxn)
11473 {
11474 struct perf_event_context *child_ctx, *parent_ctx;
11475 struct perf_event_context *cloned_ctx;
11476 struct perf_event *event;
11477 struct task_struct *parent = current;
11478 int inherited_all = 1;
11479 unsigned long flags;
11480 int ret = 0;
11481
11482 if (likely(!parent->perf_event_ctxp[ctxn]))
11483 return 0;
11484
11485 /*
11486 * If the parent's context is a clone, pin it so it won't get
11487 * swapped under us.
11488 */
11489 parent_ctx = perf_pin_task_context(parent, ctxn);
11490 if (!parent_ctx)
11491 return 0;
11492
11493 /*
11494 * No need to check if parent_ctx != NULL here; since we saw
11495 * it non-NULL earlier, the only reason for it to become NULL
11496 * is if we exit, and since we're currently in the middle of
11497 * a fork we can't be exiting at the same time.
11498 */
11499
11500 /*
11501 * Lock the parent list. No need to lock the child - not PID
11502 * hashed yet and not running, so nobody can access it.
11503 */
11504 mutex_lock(&parent_ctx->mutex);
11505
11506 /*
11507 * We dont have to disable NMIs - we are only looking at
11508 * the list, not manipulating it:
11509 */
11510 perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
11511 ret = inherit_task_group(event, parent, parent_ctx,
11512 child, ctxn, &inherited_all);
11513 if (ret)
11514 goto out_unlock;
11515 }
11516
11517 /*
11518 * We can't hold ctx->lock when iterating the ->flexible_group list due
11519 * to allocations, but we need to prevent rotation because
11520 * rotate_ctx() will change the list from interrupt context.
11521 */
11522 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
11523 parent_ctx->rotate_disable = 1;
11524 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
11525
11526 perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
11527 ret = inherit_task_group(event, parent, parent_ctx,
11528 child, ctxn, &inherited_all);
11529 if (ret)
11530 goto out_unlock;
11531 }
11532
11533 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
11534 parent_ctx->rotate_disable = 0;
11535
11536 child_ctx = child->perf_event_ctxp[ctxn];
11537
11538 if (child_ctx && inherited_all) {
11539 /*
11540 * Mark the child context as a clone of the parent
11541 * context, or of whatever the parent is a clone of.
11542 *
11543 * Note that if the parent is a clone, the holding of
11544 * parent_ctx->lock avoids it from being uncloned.
11545 */
11546 cloned_ctx = parent_ctx->parent_ctx;
11547 if (cloned_ctx) {
11548 child_ctx->parent_ctx = cloned_ctx;
11549 child_ctx->parent_gen = parent_ctx->parent_gen;
11550 } else {
11551 child_ctx->parent_ctx = parent_ctx;
11552 child_ctx->parent_gen = parent_ctx->generation;
11553 }
11554 get_ctx(child_ctx->parent_ctx);
11555 }
11556
11557 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
11558 out_unlock:
11559 mutex_unlock(&parent_ctx->mutex);
11560
11561 perf_unpin_context(parent_ctx);
11562 put_ctx(parent_ctx);
11563
11564 return ret;
11565 }
11566
11567 /*
11568 * Initialize the perf_event context in task_struct
11569 */
11570 int perf_event_init_task(struct task_struct *child)
11571 {
11572 int ctxn, ret;
11573
11574 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
11575 mutex_init(&child->perf_event_mutex);
11576 INIT_LIST_HEAD(&child->perf_event_list);
11577
11578 for_each_task_context_nr(ctxn) {
11579 ret = perf_event_init_context(child, ctxn);
11580 if (ret) {
11581 perf_event_free_task(child);
11582 return ret;
11583 }
11584 }
11585
11586 return 0;
11587 }
11588
11589 static void __init perf_event_init_all_cpus(void)
11590 {
11591 struct swevent_htable *swhash;
11592 int cpu;
11593
11594 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
11595
11596 for_each_possible_cpu(cpu) {
11597 swhash = &per_cpu(swevent_htable, cpu);
11598 mutex_init(&swhash->hlist_mutex);
11599 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
11600
11601 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
11602 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
11603
11604 #ifdef CONFIG_CGROUP_PERF
11605 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
11606 #endif
11607 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
11608 }
11609 }
11610
11611 void perf_swevent_init_cpu(unsigned int cpu)
11612 {
11613 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
11614
11615 mutex_lock(&swhash->hlist_mutex);
11616 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
11617 struct swevent_hlist *hlist;
11618
11619 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
11620 WARN_ON(!hlist);
11621 rcu_assign_pointer(swhash->swevent_hlist, hlist);
11622 }
11623 mutex_unlock(&swhash->hlist_mutex);
11624 }
11625
11626 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
11627 static void __perf_event_exit_context(void *__info)
11628 {
11629 struct perf_event_context *ctx = __info;
11630 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
11631 struct perf_event *event;
11632
11633 raw_spin_lock(&ctx->lock);
11634 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
11635 list_for_each_entry(event, &ctx->event_list, event_entry)
11636 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
11637 raw_spin_unlock(&ctx->lock);
11638 }
11639
11640 static void perf_event_exit_cpu_context(int cpu)
11641 {
11642 struct perf_cpu_context *cpuctx;
11643 struct perf_event_context *ctx;
11644 struct pmu *pmu;
11645
11646 mutex_lock(&pmus_lock);
11647 list_for_each_entry(pmu, &pmus, entry) {
11648 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11649 ctx = &cpuctx->ctx;
11650
11651 mutex_lock(&ctx->mutex);
11652 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
11653 cpuctx->online = 0;
11654 mutex_unlock(&ctx->mutex);
11655 }
11656 cpumask_clear_cpu(cpu, perf_online_mask);
11657 mutex_unlock(&pmus_lock);
11658 }
11659 #else
11660
11661 static void perf_event_exit_cpu_context(int cpu) { }
11662
11663 #endif
11664
11665 int perf_event_init_cpu(unsigned int cpu)
11666 {
11667 struct perf_cpu_context *cpuctx;
11668 struct perf_event_context *ctx;
11669 struct pmu *pmu;
11670
11671 perf_swevent_init_cpu(cpu);
11672
11673 mutex_lock(&pmus_lock);
11674 cpumask_set_cpu(cpu, perf_online_mask);
11675 list_for_each_entry(pmu, &pmus, entry) {
11676 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11677 ctx = &cpuctx->ctx;
11678
11679 mutex_lock(&ctx->mutex);
11680 cpuctx->online = 1;
11681 mutex_unlock(&ctx->mutex);
11682 }
11683 mutex_unlock(&pmus_lock);
11684
11685 return 0;
11686 }
11687
11688 int perf_event_exit_cpu(unsigned int cpu)
11689 {
11690 perf_event_exit_cpu_context(cpu);
11691 return 0;
11692 }
11693
11694 static int
11695 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
11696 {
11697 int cpu;
11698
11699 for_each_online_cpu(cpu)
11700 perf_event_exit_cpu(cpu);
11701
11702 return NOTIFY_OK;
11703 }
11704
11705 /*
11706 * Run the perf reboot notifier at the very last possible moment so that
11707 * the generic watchdog code runs as long as possible.
11708 */
11709 static struct notifier_block perf_reboot_notifier = {
11710 .notifier_call = perf_reboot,
11711 .priority = INT_MIN,
11712 };
11713
11714 void __init perf_event_init(void)
11715 {
11716 int ret;
11717
11718 idr_init(&pmu_idr);
11719
11720 perf_event_init_all_cpus();
11721 init_srcu_struct(&pmus_srcu);
11722 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
11723 perf_pmu_register(&perf_cpu_clock, NULL, -1);
11724 perf_pmu_register(&perf_task_clock, NULL, -1);
11725 perf_tp_register();
11726 perf_event_init_cpu(smp_processor_id());
11727 register_reboot_notifier(&perf_reboot_notifier);
11728
11729 ret = init_hw_breakpoint();
11730 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
11731
11732 /*
11733 * Build time assertion that we keep the data_head at the intended
11734 * location. IOW, validation we got the __reserved[] size right.
11735 */
11736 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
11737 != 1024);
11738 }
11739
11740 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
11741 char *page)
11742 {
11743 struct perf_pmu_events_attr *pmu_attr =
11744 container_of(attr, struct perf_pmu_events_attr, attr);
11745
11746 if (pmu_attr->event_str)
11747 return sprintf(page, "%s\n", pmu_attr->event_str);
11748
11749 return 0;
11750 }
11751 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
11752
11753 static int __init perf_event_sysfs_init(void)
11754 {
11755 struct pmu *pmu;
11756 int ret;
11757
11758 mutex_lock(&pmus_lock);
11759
11760 ret = bus_register(&pmu_bus);
11761 if (ret)
11762 goto unlock;
11763
11764 list_for_each_entry(pmu, &pmus, entry) {
11765 if (!pmu->name || pmu->type < 0)
11766 continue;
11767
11768 ret = pmu_dev_alloc(pmu);
11769 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
11770 }
11771 pmu_bus_running = 1;
11772 ret = 0;
11773
11774 unlock:
11775 mutex_unlock(&pmus_lock);
11776
11777 return ret;
11778 }
11779 device_initcall(perf_event_sysfs_init);
11780
11781 #ifdef CONFIG_CGROUP_PERF
11782 static struct cgroup_subsys_state *
11783 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
11784 {
11785 struct perf_cgroup *jc;
11786
11787 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
11788 if (!jc)
11789 return ERR_PTR(-ENOMEM);
11790
11791 jc->info = alloc_percpu(struct perf_cgroup_info);
11792 if (!jc->info) {
11793 kfree(jc);
11794 return ERR_PTR(-ENOMEM);
11795 }
11796
11797 return &jc->css;
11798 }
11799
11800 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
11801 {
11802 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
11803
11804 free_percpu(jc->info);
11805 kfree(jc);
11806 }
11807
11808 static int __perf_cgroup_move(void *info)
11809 {
11810 struct task_struct *task = info;
11811 rcu_read_lock();
11812 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
11813 rcu_read_unlock();
11814 return 0;
11815 }
11816
11817 static void perf_cgroup_attach(struct cgroup_taskset *tset)
11818 {
11819 struct task_struct *task;
11820 struct cgroup_subsys_state *css;
11821
11822 cgroup_taskset_for_each(task, css, tset)
11823 task_function_call(task, __perf_cgroup_move, task);
11824 }
11825
11826 struct cgroup_subsys perf_event_cgrp_subsys = {
11827 .css_alloc = perf_cgroup_css_alloc,
11828 .css_free = perf_cgroup_css_free,
11829 .attach = perf_cgroup_attach,
11830 /*
11831 * Implicitly enable on dfl hierarchy so that perf events can
11832 * always be filtered by cgroup2 path as long as perf_event
11833 * controller is not mounted on a legacy hierarchy.
11834 */
11835 .implicit_on_dfl = true,
11836 .threaded = true,
11837 };
11838 #endif /* CONFIG_CGROUP_PERF */