]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - kernel/events/core.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[mirror_ubuntu-jammy-kernel.git] / kernel / events / core.c
1 /*
2 * Performance events core code:
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/rculist.h>
32 #include <linux/uaccess.h>
33 #include <linux/syscalls.h>
34 #include <linux/anon_inodes.h>
35 #include <linux/kernel_stat.h>
36 #include <linux/perf_event.h>
37 #include <linux/ftrace_event.h>
38 #include <linux/hw_breakpoint.h>
39
40 #include "internal.h"
41
42 #include <asm/irq_regs.h>
43
44 struct remote_function_call {
45 struct task_struct *p;
46 int (*func)(void *info);
47 void *info;
48 int ret;
49 };
50
51 static void remote_function(void *data)
52 {
53 struct remote_function_call *tfc = data;
54 struct task_struct *p = tfc->p;
55
56 if (p) {
57 tfc->ret = -EAGAIN;
58 if (task_cpu(p) != smp_processor_id() || !task_curr(p))
59 return;
60 }
61
62 tfc->ret = tfc->func(tfc->info);
63 }
64
65 /**
66 * task_function_call - call a function on the cpu on which a task runs
67 * @p: the task to evaluate
68 * @func: the function to be called
69 * @info: the function call argument
70 *
71 * Calls the function @func when the task is currently running. This might
72 * be on the current CPU, which just calls the function directly
73 *
74 * returns: @func return value, or
75 * -ESRCH - when the process isn't running
76 * -EAGAIN - when the process moved away
77 */
78 static int
79 task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
80 {
81 struct remote_function_call data = {
82 .p = p,
83 .func = func,
84 .info = info,
85 .ret = -ESRCH, /* No such (running) process */
86 };
87
88 if (task_curr(p))
89 smp_call_function_single(task_cpu(p), remote_function, &data, 1);
90
91 return data.ret;
92 }
93
94 /**
95 * cpu_function_call - call a function on the cpu
96 * @func: the function to be called
97 * @info: the function call argument
98 *
99 * Calls the function @func on the remote cpu.
100 *
101 * returns: @func return value or -ENXIO when the cpu is offline
102 */
103 static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
104 {
105 struct remote_function_call data = {
106 .p = NULL,
107 .func = func,
108 .info = info,
109 .ret = -ENXIO, /* No such CPU */
110 };
111
112 smp_call_function_single(cpu, remote_function, &data, 1);
113
114 return data.ret;
115 }
116
117 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
118 PERF_FLAG_FD_OUTPUT |\
119 PERF_FLAG_PID_CGROUP)
120
121 /*
122 * branch priv levels that need permission checks
123 */
124 #define PERF_SAMPLE_BRANCH_PERM_PLM \
125 (PERF_SAMPLE_BRANCH_KERNEL |\
126 PERF_SAMPLE_BRANCH_HV)
127
128 enum event_type_t {
129 EVENT_FLEXIBLE = 0x1,
130 EVENT_PINNED = 0x2,
131 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
132 };
133
134 /*
135 * perf_sched_events : >0 events exist
136 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
137 */
138 struct static_key_deferred perf_sched_events __read_mostly;
139 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
140 static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events);
141
142 static atomic_t nr_mmap_events __read_mostly;
143 static atomic_t nr_comm_events __read_mostly;
144 static atomic_t nr_task_events __read_mostly;
145
146 static LIST_HEAD(pmus);
147 static DEFINE_MUTEX(pmus_lock);
148 static struct srcu_struct pmus_srcu;
149
150 /*
151 * perf event paranoia level:
152 * -1 - not paranoid at all
153 * 0 - disallow raw tracepoint access for unpriv
154 * 1 - disallow cpu events for unpriv
155 * 2 - disallow kernel profiling for unpriv
156 */
157 int sysctl_perf_event_paranoid __read_mostly = 1;
158
159 /* Minimum for 512 kiB + 1 user control page */
160 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
161
162 /*
163 * max perf event sample rate
164 */
165 #define DEFAULT_MAX_SAMPLE_RATE 100000
166 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
167 static int max_samples_per_tick __read_mostly =
168 DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
169
170 int perf_proc_update_handler(struct ctl_table *table, int write,
171 void __user *buffer, size_t *lenp,
172 loff_t *ppos)
173 {
174 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
175
176 if (ret || !write)
177 return ret;
178
179 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
180
181 return 0;
182 }
183
184 static atomic64_t perf_event_id;
185
186 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
187 enum event_type_t event_type);
188
189 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
190 enum event_type_t event_type,
191 struct task_struct *task);
192
193 static void update_context_time(struct perf_event_context *ctx);
194 static u64 perf_event_time(struct perf_event *event);
195
196 static void ring_buffer_attach(struct perf_event *event,
197 struct ring_buffer *rb);
198
199 void __weak perf_event_print_debug(void) { }
200
201 extern __weak const char *perf_pmu_name(void)
202 {
203 return "pmu";
204 }
205
206 static inline u64 perf_clock(void)
207 {
208 return local_clock();
209 }
210
211 static inline struct perf_cpu_context *
212 __get_cpu_context(struct perf_event_context *ctx)
213 {
214 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
215 }
216
217 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
218 struct perf_event_context *ctx)
219 {
220 raw_spin_lock(&cpuctx->ctx.lock);
221 if (ctx)
222 raw_spin_lock(&ctx->lock);
223 }
224
225 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
226 struct perf_event_context *ctx)
227 {
228 if (ctx)
229 raw_spin_unlock(&ctx->lock);
230 raw_spin_unlock(&cpuctx->ctx.lock);
231 }
232
233 #ifdef CONFIG_CGROUP_PERF
234
235 /*
236 * Must ensure cgroup is pinned (css_get) before calling
237 * this function. In other words, we cannot call this function
238 * if there is no cgroup event for the current CPU context.
239 */
240 static inline struct perf_cgroup *
241 perf_cgroup_from_task(struct task_struct *task)
242 {
243 return container_of(task_subsys_state(task, perf_subsys_id),
244 struct perf_cgroup, css);
245 }
246
247 static inline bool
248 perf_cgroup_match(struct perf_event *event)
249 {
250 struct perf_event_context *ctx = event->ctx;
251 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
252
253 return !event->cgrp || event->cgrp == cpuctx->cgrp;
254 }
255
256 static inline void perf_get_cgroup(struct perf_event *event)
257 {
258 css_get(&event->cgrp->css);
259 }
260
261 static inline void perf_put_cgroup(struct perf_event *event)
262 {
263 css_put(&event->cgrp->css);
264 }
265
266 static inline void perf_detach_cgroup(struct perf_event *event)
267 {
268 perf_put_cgroup(event);
269 event->cgrp = NULL;
270 }
271
272 static inline int is_cgroup_event(struct perf_event *event)
273 {
274 return event->cgrp != NULL;
275 }
276
277 static inline u64 perf_cgroup_event_time(struct perf_event *event)
278 {
279 struct perf_cgroup_info *t;
280
281 t = per_cpu_ptr(event->cgrp->info, event->cpu);
282 return t->time;
283 }
284
285 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
286 {
287 struct perf_cgroup_info *info;
288 u64 now;
289
290 now = perf_clock();
291
292 info = this_cpu_ptr(cgrp->info);
293
294 info->time += now - info->timestamp;
295 info->timestamp = now;
296 }
297
298 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
299 {
300 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
301 if (cgrp_out)
302 __update_cgrp_time(cgrp_out);
303 }
304
305 static inline void update_cgrp_time_from_event(struct perf_event *event)
306 {
307 struct perf_cgroup *cgrp;
308
309 /*
310 * ensure we access cgroup data only when needed and
311 * when we know the cgroup is pinned (css_get)
312 */
313 if (!is_cgroup_event(event))
314 return;
315
316 cgrp = perf_cgroup_from_task(current);
317 /*
318 * Do not update time when cgroup is not active
319 */
320 if (cgrp == event->cgrp)
321 __update_cgrp_time(event->cgrp);
322 }
323
324 static inline void
325 perf_cgroup_set_timestamp(struct task_struct *task,
326 struct perf_event_context *ctx)
327 {
328 struct perf_cgroup *cgrp;
329 struct perf_cgroup_info *info;
330
331 /*
332 * ctx->lock held by caller
333 * ensure we do not access cgroup data
334 * unless we have the cgroup pinned (css_get)
335 */
336 if (!task || !ctx->nr_cgroups)
337 return;
338
339 cgrp = perf_cgroup_from_task(task);
340 info = this_cpu_ptr(cgrp->info);
341 info->timestamp = ctx->timestamp;
342 }
343
344 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
345 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
346
347 /*
348 * reschedule events based on the cgroup constraint of task.
349 *
350 * mode SWOUT : schedule out everything
351 * mode SWIN : schedule in based on cgroup for next
352 */
353 void perf_cgroup_switch(struct task_struct *task, int mode)
354 {
355 struct perf_cpu_context *cpuctx;
356 struct pmu *pmu;
357 unsigned long flags;
358
359 /*
360 * disable interrupts to avoid geting nr_cgroup
361 * changes via __perf_event_disable(). Also
362 * avoids preemption.
363 */
364 local_irq_save(flags);
365
366 /*
367 * we reschedule only in the presence of cgroup
368 * constrained events.
369 */
370 rcu_read_lock();
371
372 list_for_each_entry_rcu(pmu, &pmus, entry) {
373 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
374
375 /*
376 * perf_cgroup_events says at least one
377 * context on this CPU has cgroup events.
378 *
379 * ctx->nr_cgroups reports the number of cgroup
380 * events for a context.
381 */
382 if (cpuctx->ctx.nr_cgroups > 0) {
383 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
384 perf_pmu_disable(cpuctx->ctx.pmu);
385
386 if (mode & PERF_CGROUP_SWOUT) {
387 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
388 /*
389 * must not be done before ctxswout due
390 * to event_filter_match() in event_sched_out()
391 */
392 cpuctx->cgrp = NULL;
393 }
394
395 if (mode & PERF_CGROUP_SWIN) {
396 WARN_ON_ONCE(cpuctx->cgrp);
397 /* set cgrp before ctxsw in to
398 * allow event_filter_match() to not
399 * have to pass task around
400 */
401 cpuctx->cgrp = perf_cgroup_from_task(task);
402 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
403 }
404 perf_pmu_enable(cpuctx->ctx.pmu);
405 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
406 }
407 }
408
409 rcu_read_unlock();
410
411 local_irq_restore(flags);
412 }
413
414 static inline void perf_cgroup_sched_out(struct task_struct *task,
415 struct task_struct *next)
416 {
417 struct perf_cgroup *cgrp1;
418 struct perf_cgroup *cgrp2 = NULL;
419
420 /*
421 * we come here when we know perf_cgroup_events > 0
422 */
423 cgrp1 = perf_cgroup_from_task(task);
424
425 /*
426 * next is NULL when called from perf_event_enable_on_exec()
427 * that will systematically cause a cgroup_switch()
428 */
429 if (next)
430 cgrp2 = perf_cgroup_from_task(next);
431
432 /*
433 * only schedule out current cgroup events if we know
434 * that we are switching to a different cgroup. Otherwise,
435 * do no touch the cgroup events.
436 */
437 if (cgrp1 != cgrp2)
438 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
439 }
440
441 static inline void perf_cgroup_sched_in(struct task_struct *prev,
442 struct task_struct *task)
443 {
444 struct perf_cgroup *cgrp1;
445 struct perf_cgroup *cgrp2 = NULL;
446
447 /*
448 * we come here when we know perf_cgroup_events > 0
449 */
450 cgrp1 = perf_cgroup_from_task(task);
451
452 /* prev can never be NULL */
453 cgrp2 = perf_cgroup_from_task(prev);
454
455 /*
456 * only need to schedule in cgroup events if we are changing
457 * cgroup during ctxsw. Cgroup events were not scheduled
458 * out of ctxsw out if that was not the case.
459 */
460 if (cgrp1 != cgrp2)
461 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
462 }
463
464 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
465 struct perf_event_attr *attr,
466 struct perf_event *group_leader)
467 {
468 struct perf_cgroup *cgrp;
469 struct cgroup_subsys_state *css;
470 struct file *file;
471 int ret = 0, fput_needed;
472
473 file = fget_light(fd, &fput_needed);
474 if (!file)
475 return -EBADF;
476
477 css = cgroup_css_from_dir(file, perf_subsys_id);
478 if (IS_ERR(css)) {
479 ret = PTR_ERR(css);
480 goto out;
481 }
482
483 cgrp = container_of(css, struct perf_cgroup, css);
484 event->cgrp = cgrp;
485
486 /* must be done before we fput() the file */
487 perf_get_cgroup(event);
488
489 /*
490 * all events in a group must monitor
491 * the same cgroup because a task belongs
492 * to only one perf cgroup at a time
493 */
494 if (group_leader && group_leader->cgrp != cgrp) {
495 perf_detach_cgroup(event);
496 ret = -EINVAL;
497 }
498 out:
499 fput_light(file, fput_needed);
500 return ret;
501 }
502
503 static inline void
504 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
505 {
506 struct perf_cgroup_info *t;
507 t = per_cpu_ptr(event->cgrp->info, event->cpu);
508 event->shadow_ctx_time = now - t->timestamp;
509 }
510
511 static inline void
512 perf_cgroup_defer_enabled(struct perf_event *event)
513 {
514 /*
515 * when the current task's perf cgroup does not match
516 * the event's, we need to remember to call the
517 * perf_mark_enable() function the first time a task with
518 * a matching perf cgroup is scheduled in.
519 */
520 if (is_cgroup_event(event) && !perf_cgroup_match(event))
521 event->cgrp_defer_enabled = 1;
522 }
523
524 static inline void
525 perf_cgroup_mark_enabled(struct perf_event *event,
526 struct perf_event_context *ctx)
527 {
528 struct perf_event *sub;
529 u64 tstamp = perf_event_time(event);
530
531 if (!event->cgrp_defer_enabled)
532 return;
533
534 event->cgrp_defer_enabled = 0;
535
536 event->tstamp_enabled = tstamp - event->total_time_enabled;
537 list_for_each_entry(sub, &event->sibling_list, group_entry) {
538 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
539 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
540 sub->cgrp_defer_enabled = 0;
541 }
542 }
543 }
544 #else /* !CONFIG_CGROUP_PERF */
545
546 static inline bool
547 perf_cgroup_match(struct perf_event *event)
548 {
549 return true;
550 }
551
552 static inline void perf_detach_cgroup(struct perf_event *event)
553 {}
554
555 static inline int is_cgroup_event(struct perf_event *event)
556 {
557 return 0;
558 }
559
560 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
561 {
562 return 0;
563 }
564
565 static inline void update_cgrp_time_from_event(struct perf_event *event)
566 {
567 }
568
569 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
570 {
571 }
572
573 static inline void perf_cgroup_sched_out(struct task_struct *task,
574 struct task_struct *next)
575 {
576 }
577
578 static inline void perf_cgroup_sched_in(struct task_struct *prev,
579 struct task_struct *task)
580 {
581 }
582
583 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
584 struct perf_event_attr *attr,
585 struct perf_event *group_leader)
586 {
587 return -EINVAL;
588 }
589
590 static inline void
591 perf_cgroup_set_timestamp(struct task_struct *task,
592 struct perf_event_context *ctx)
593 {
594 }
595
596 void
597 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
598 {
599 }
600
601 static inline void
602 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
603 {
604 }
605
606 static inline u64 perf_cgroup_event_time(struct perf_event *event)
607 {
608 return 0;
609 }
610
611 static inline void
612 perf_cgroup_defer_enabled(struct perf_event *event)
613 {
614 }
615
616 static inline void
617 perf_cgroup_mark_enabled(struct perf_event *event,
618 struct perf_event_context *ctx)
619 {
620 }
621 #endif
622
623 void perf_pmu_disable(struct pmu *pmu)
624 {
625 int *count = this_cpu_ptr(pmu->pmu_disable_count);
626 if (!(*count)++)
627 pmu->pmu_disable(pmu);
628 }
629
630 void perf_pmu_enable(struct pmu *pmu)
631 {
632 int *count = this_cpu_ptr(pmu->pmu_disable_count);
633 if (!--(*count))
634 pmu->pmu_enable(pmu);
635 }
636
637 static DEFINE_PER_CPU(struct list_head, rotation_list);
638
639 /*
640 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
641 * because they're strictly cpu affine and rotate_start is called with IRQs
642 * disabled, while rotate_context is called from IRQ context.
643 */
644 static void perf_pmu_rotate_start(struct pmu *pmu)
645 {
646 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
647 struct list_head *head = &__get_cpu_var(rotation_list);
648
649 WARN_ON(!irqs_disabled());
650
651 if (list_empty(&cpuctx->rotation_list))
652 list_add(&cpuctx->rotation_list, head);
653 }
654
655 static void get_ctx(struct perf_event_context *ctx)
656 {
657 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
658 }
659
660 static void put_ctx(struct perf_event_context *ctx)
661 {
662 if (atomic_dec_and_test(&ctx->refcount)) {
663 if (ctx->parent_ctx)
664 put_ctx(ctx->parent_ctx);
665 if (ctx->task)
666 put_task_struct(ctx->task);
667 kfree_rcu(ctx, rcu_head);
668 }
669 }
670
671 static void unclone_ctx(struct perf_event_context *ctx)
672 {
673 if (ctx->parent_ctx) {
674 put_ctx(ctx->parent_ctx);
675 ctx->parent_ctx = NULL;
676 }
677 }
678
679 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
680 {
681 /*
682 * only top level events have the pid namespace they were created in
683 */
684 if (event->parent)
685 event = event->parent;
686
687 return task_tgid_nr_ns(p, event->ns);
688 }
689
690 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
691 {
692 /*
693 * only top level events have the pid namespace they were created in
694 */
695 if (event->parent)
696 event = event->parent;
697
698 return task_pid_nr_ns(p, event->ns);
699 }
700
701 /*
702 * If we inherit events we want to return the parent event id
703 * to userspace.
704 */
705 static u64 primary_event_id(struct perf_event *event)
706 {
707 u64 id = event->id;
708
709 if (event->parent)
710 id = event->parent->id;
711
712 return id;
713 }
714
715 /*
716 * Get the perf_event_context for a task and lock it.
717 * This has to cope with with the fact that until it is locked,
718 * the context could get moved to another task.
719 */
720 static struct perf_event_context *
721 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
722 {
723 struct perf_event_context *ctx;
724
725 rcu_read_lock();
726 retry:
727 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
728 if (ctx) {
729 /*
730 * If this context is a clone of another, it might
731 * get swapped for another underneath us by
732 * perf_event_task_sched_out, though the
733 * rcu_read_lock() protects us from any context
734 * getting freed. Lock the context and check if it
735 * got swapped before we could get the lock, and retry
736 * if so. If we locked the right context, then it
737 * can't get swapped on us any more.
738 */
739 raw_spin_lock_irqsave(&ctx->lock, *flags);
740 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
741 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
742 goto retry;
743 }
744
745 if (!atomic_inc_not_zero(&ctx->refcount)) {
746 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
747 ctx = NULL;
748 }
749 }
750 rcu_read_unlock();
751 return ctx;
752 }
753
754 /*
755 * Get the context for a task and increment its pin_count so it
756 * can't get swapped to another task. This also increments its
757 * reference count so that the context can't get freed.
758 */
759 static struct perf_event_context *
760 perf_pin_task_context(struct task_struct *task, int ctxn)
761 {
762 struct perf_event_context *ctx;
763 unsigned long flags;
764
765 ctx = perf_lock_task_context(task, ctxn, &flags);
766 if (ctx) {
767 ++ctx->pin_count;
768 raw_spin_unlock_irqrestore(&ctx->lock, flags);
769 }
770 return ctx;
771 }
772
773 static void perf_unpin_context(struct perf_event_context *ctx)
774 {
775 unsigned long flags;
776
777 raw_spin_lock_irqsave(&ctx->lock, flags);
778 --ctx->pin_count;
779 raw_spin_unlock_irqrestore(&ctx->lock, flags);
780 }
781
782 /*
783 * Update the record of the current time in a context.
784 */
785 static void update_context_time(struct perf_event_context *ctx)
786 {
787 u64 now = perf_clock();
788
789 ctx->time += now - ctx->timestamp;
790 ctx->timestamp = now;
791 }
792
793 static u64 perf_event_time(struct perf_event *event)
794 {
795 struct perf_event_context *ctx = event->ctx;
796
797 if (is_cgroup_event(event))
798 return perf_cgroup_event_time(event);
799
800 return ctx ? ctx->time : 0;
801 }
802
803 /*
804 * Update the total_time_enabled and total_time_running fields for a event.
805 * The caller of this function needs to hold the ctx->lock.
806 */
807 static void update_event_times(struct perf_event *event)
808 {
809 struct perf_event_context *ctx = event->ctx;
810 u64 run_end;
811
812 if (event->state < PERF_EVENT_STATE_INACTIVE ||
813 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
814 return;
815 /*
816 * in cgroup mode, time_enabled represents
817 * the time the event was enabled AND active
818 * tasks were in the monitored cgroup. This is
819 * independent of the activity of the context as
820 * there may be a mix of cgroup and non-cgroup events.
821 *
822 * That is why we treat cgroup events differently
823 * here.
824 */
825 if (is_cgroup_event(event))
826 run_end = perf_cgroup_event_time(event);
827 else if (ctx->is_active)
828 run_end = ctx->time;
829 else
830 run_end = event->tstamp_stopped;
831
832 event->total_time_enabled = run_end - event->tstamp_enabled;
833
834 if (event->state == PERF_EVENT_STATE_INACTIVE)
835 run_end = event->tstamp_stopped;
836 else
837 run_end = perf_event_time(event);
838
839 event->total_time_running = run_end - event->tstamp_running;
840
841 }
842
843 /*
844 * Update total_time_enabled and total_time_running for all events in a group.
845 */
846 static void update_group_times(struct perf_event *leader)
847 {
848 struct perf_event *event;
849
850 update_event_times(leader);
851 list_for_each_entry(event, &leader->sibling_list, group_entry)
852 update_event_times(event);
853 }
854
855 static struct list_head *
856 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
857 {
858 if (event->attr.pinned)
859 return &ctx->pinned_groups;
860 else
861 return &ctx->flexible_groups;
862 }
863
864 /*
865 * Add a event from the lists for its context.
866 * Must be called with ctx->mutex and ctx->lock held.
867 */
868 static void
869 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
870 {
871 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
872 event->attach_state |= PERF_ATTACH_CONTEXT;
873
874 /*
875 * If we're a stand alone event or group leader, we go to the context
876 * list, group events are kept attached to the group so that
877 * perf_group_detach can, at all times, locate all siblings.
878 */
879 if (event->group_leader == event) {
880 struct list_head *list;
881
882 if (is_software_event(event))
883 event->group_flags |= PERF_GROUP_SOFTWARE;
884
885 list = ctx_group_list(event, ctx);
886 list_add_tail(&event->group_entry, list);
887 }
888
889 if (is_cgroup_event(event))
890 ctx->nr_cgroups++;
891
892 if (has_branch_stack(event))
893 ctx->nr_branch_stack++;
894
895 list_add_rcu(&event->event_entry, &ctx->event_list);
896 if (!ctx->nr_events)
897 perf_pmu_rotate_start(ctx->pmu);
898 ctx->nr_events++;
899 if (event->attr.inherit_stat)
900 ctx->nr_stat++;
901 }
902
903 /*
904 * Called at perf_event creation and when events are attached/detached from a
905 * group.
906 */
907 static void perf_event__read_size(struct perf_event *event)
908 {
909 int entry = sizeof(u64); /* value */
910 int size = 0;
911 int nr = 1;
912
913 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
914 size += sizeof(u64);
915
916 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
917 size += sizeof(u64);
918
919 if (event->attr.read_format & PERF_FORMAT_ID)
920 entry += sizeof(u64);
921
922 if (event->attr.read_format & PERF_FORMAT_GROUP) {
923 nr += event->group_leader->nr_siblings;
924 size += sizeof(u64);
925 }
926
927 size += entry * nr;
928 event->read_size = size;
929 }
930
931 static void perf_event__header_size(struct perf_event *event)
932 {
933 struct perf_sample_data *data;
934 u64 sample_type = event->attr.sample_type;
935 u16 size = 0;
936
937 perf_event__read_size(event);
938
939 if (sample_type & PERF_SAMPLE_IP)
940 size += sizeof(data->ip);
941
942 if (sample_type & PERF_SAMPLE_ADDR)
943 size += sizeof(data->addr);
944
945 if (sample_type & PERF_SAMPLE_PERIOD)
946 size += sizeof(data->period);
947
948 if (sample_type & PERF_SAMPLE_READ)
949 size += event->read_size;
950
951 event->header_size = size;
952 }
953
954 static void perf_event__id_header_size(struct perf_event *event)
955 {
956 struct perf_sample_data *data;
957 u64 sample_type = event->attr.sample_type;
958 u16 size = 0;
959
960 if (sample_type & PERF_SAMPLE_TID)
961 size += sizeof(data->tid_entry);
962
963 if (sample_type & PERF_SAMPLE_TIME)
964 size += sizeof(data->time);
965
966 if (sample_type & PERF_SAMPLE_ID)
967 size += sizeof(data->id);
968
969 if (sample_type & PERF_SAMPLE_STREAM_ID)
970 size += sizeof(data->stream_id);
971
972 if (sample_type & PERF_SAMPLE_CPU)
973 size += sizeof(data->cpu_entry);
974
975 event->id_header_size = size;
976 }
977
978 static void perf_group_attach(struct perf_event *event)
979 {
980 struct perf_event *group_leader = event->group_leader, *pos;
981
982 /*
983 * We can have double attach due to group movement in perf_event_open.
984 */
985 if (event->attach_state & PERF_ATTACH_GROUP)
986 return;
987
988 event->attach_state |= PERF_ATTACH_GROUP;
989
990 if (group_leader == event)
991 return;
992
993 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
994 !is_software_event(event))
995 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
996
997 list_add_tail(&event->group_entry, &group_leader->sibling_list);
998 group_leader->nr_siblings++;
999
1000 perf_event__header_size(group_leader);
1001
1002 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1003 perf_event__header_size(pos);
1004 }
1005
1006 /*
1007 * Remove a event from the lists for its context.
1008 * Must be called with ctx->mutex and ctx->lock held.
1009 */
1010 static void
1011 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1012 {
1013 struct perf_cpu_context *cpuctx;
1014 /*
1015 * We can have double detach due to exit/hot-unplug + close.
1016 */
1017 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1018 return;
1019
1020 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1021
1022 if (is_cgroup_event(event)) {
1023 ctx->nr_cgroups--;
1024 cpuctx = __get_cpu_context(ctx);
1025 /*
1026 * if there are no more cgroup events
1027 * then cler cgrp to avoid stale pointer
1028 * in update_cgrp_time_from_cpuctx()
1029 */
1030 if (!ctx->nr_cgroups)
1031 cpuctx->cgrp = NULL;
1032 }
1033
1034 if (has_branch_stack(event))
1035 ctx->nr_branch_stack--;
1036
1037 ctx->nr_events--;
1038 if (event->attr.inherit_stat)
1039 ctx->nr_stat--;
1040
1041 list_del_rcu(&event->event_entry);
1042
1043 if (event->group_leader == event)
1044 list_del_init(&event->group_entry);
1045
1046 update_group_times(event);
1047
1048 /*
1049 * If event was in error state, then keep it
1050 * that way, otherwise bogus counts will be
1051 * returned on read(). The only way to get out
1052 * of error state is by explicit re-enabling
1053 * of the event
1054 */
1055 if (event->state > PERF_EVENT_STATE_OFF)
1056 event->state = PERF_EVENT_STATE_OFF;
1057 }
1058
1059 static void perf_group_detach(struct perf_event *event)
1060 {
1061 struct perf_event *sibling, *tmp;
1062 struct list_head *list = NULL;
1063
1064 /*
1065 * We can have double detach due to exit/hot-unplug + close.
1066 */
1067 if (!(event->attach_state & PERF_ATTACH_GROUP))
1068 return;
1069
1070 event->attach_state &= ~PERF_ATTACH_GROUP;
1071
1072 /*
1073 * If this is a sibling, remove it from its group.
1074 */
1075 if (event->group_leader != event) {
1076 list_del_init(&event->group_entry);
1077 event->group_leader->nr_siblings--;
1078 goto out;
1079 }
1080
1081 if (!list_empty(&event->group_entry))
1082 list = &event->group_entry;
1083
1084 /*
1085 * If this was a group event with sibling events then
1086 * upgrade the siblings to singleton events by adding them
1087 * to whatever list we are on.
1088 */
1089 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1090 if (list)
1091 list_move_tail(&sibling->group_entry, list);
1092 sibling->group_leader = sibling;
1093
1094 /* Inherit group flags from the previous leader */
1095 sibling->group_flags = event->group_flags;
1096 }
1097
1098 out:
1099 perf_event__header_size(event->group_leader);
1100
1101 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1102 perf_event__header_size(tmp);
1103 }
1104
1105 static inline int
1106 event_filter_match(struct perf_event *event)
1107 {
1108 return (event->cpu == -1 || event->cpu == smp_processor_id())
1109 && perf_cgroup_match(event);
1110 }
1111
1112 static void
1113 event_sched_out(struct perf_event *event,
1114 struct perf_cpu_context *cpuctx,
1115 struct perf_event_context *ctx)
1116 {
1117 u64 tstamp = perf_event_time(event);
1118 u64 delta;
1119 /*
1120 * An event which could not be activated because of
1121 * filter mismatch still needs to have its timings
1122 * maintained, otherwise bogus information is return
1123 * via read() for time_enabled, time_running:
1124 */
1125 if (event->state == PERF_EVENT_STATE_INACTIVE
1126 && !event_filter_match(event)) {
1127 delta = tstamp - event->tstamp_stopped;
1128 event->tstamp_running += delta;
1129 event->tstamp_stopped = tstamp;
1130 }
1131
1132 if (event->state != PERF_EVENT_STATE_ACTIVE)
1133 return;
1134
1135 event->state = PERF_EVENT_STATE_INACTIVE;
1136 if (event->pending_disable) {
1137 event->pending_disable = 0;
1138 event->state = PERF_EVENT_STATE_OFF;
1139 }
1140 event->tstamp_stopped = tstamp;
1141 event->pmu->del(event, 0);
1142 event->oncpu = -1;
1143
1144 if (!is_software_event(event))
1145 cpuctx->active_oncpu--;
1146 ctx->nr_active--;
1147 if (event->attr.freq && event->attr.sample_freq)
1148 ctx->nr_freq--;
1149 if (event->attr.exclusive || !cpuctx->active_oncpu)
1150 cpuctx->exclusive = 0;
1151 }
1152
1153 static void
1154 group_sched_out(struct perf_event *group_event,
1155 struct perf_cpu_context *cpuctx,
1156 struct perf_event_context *ctx)
1157 {
1158 struct perf_event *event;
1159 int state = group_event->state;
1160
1161 event_sched_out(group_event, cpuctx, ctx);
1162
1163 /*
1164 * Schedule out siblings (if any):
1165 */
1166 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1167 event_sched_out(event, cpuctx, ctx);
1168
1169 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1170 cpuctx->exclusive = 0;
1171 }
1172
1173 /*
1174 * Cross CPU call to remove a performance event
1175 *
1176 * We disable the event on the hardware level first. After that we
1177 * remove it from the context list.
1178 */
1179 static int __perf_remove_from_context(void *info)
1180 {
1181 struct perf_event *event = info;
1182 struct perf_event_context *ctx = event->ctx;
1183 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1184
1185 raw_spin_lock(&ctx->lock);
1186 event_sched_out(event, cpuctx, ctx);
1187 list_del_event(event, ctx);
1188 if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1189 ctx->is_active = 0;
1190 cpuctx->task_ctx = NULL;
1191 }
1192 raw_spin_unlock(&ctx->lock);
1193
1194 return 0;
1195 }
1196
1197
1198 /*
1199 * Remove the event from a task's (or a CPU's) list of events.
1200 *
1201 * CPU events are removed with a smp call. For task events we only
1202 * call when the task is on a CPU.
1203 *
1204 * If event->ctx is a cloned context, callers must make sure that
1205 * every task struct that event->ctx->task could possibly point to
1206 * remains valid. This is OK when called from perf_release since
1207 * that only calls us on the top-level context, which can't be a clone.
1208 * When called from perf_event_exit_task, it's OK because the
1209 * context has been detached from its task.
1210 */
1211 static void perf_remove_from_context(struct perf_event *event)
1212 {
1213 struct perf_event_context *ctx = event->ctx;
1214 struct task_struct *task = ctx->task;
1215
1216 lockdep_assert_held(&ctx->mutex);
1217
1218 if (!task) {
1219 /*
1220 * Per cpu events are removed via an smp call and
1221 * the removal is always successful.
1222 */
1223 cpu_function_call(event->cpu, __perf_remove_from_context, event);
1224 return;
1225 }
1226
1227 retry:
1228 if (!task_function_call(task, __perf_remove_from_context, event))
1229 return;
1230
1231 raw_spin_lock_irq(&ctx->lock);
1232 /*
1233 * If we failed to find a running task, but find the context active now
1234 * that we've acquired the ctx->lock, retry.
1235 */
1236 if (ctx->is_active) {
1237 raw_spin_unlock_irq(&ctx->lock);
1238 goto retry;
1239 }
1240
1241 /*
1242 * Since the task isn't running, its safe to remove the event, us
1243 * holding the ctx->lock ensures the task won't get scheduled in.
1244 */
1245 list_del_event(event, ctx);
1246 raw_spin_unlock_irq(&ctx->lock);
1247 }
1248
1249 /*
1250 * Cross CPU call to disable a performance event
1251 */
1252 static int __perf_event_disable(void *info)
1253 {
1254 struct perf_event *event = info;
1255 struct perf_event_context *ctx = event->ctx;
1256 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1257
1258 /*
1259 * If this is a per-task event, need to check whether this
1260 * event's task is the current task on this cpu.
1261 *
1262 * Can trigger due to concurrent perf_event_context_sched_out()
1263 * flipping contexts around.
1264 */
1265 if (ctx->task && cpuctx->task_ctx != ctx)
1266 return -EINVAL;
1267
1268 raw_spin_lock(&ctx->lock);
1269
1270 /*
1271 * If the event is on, turn it off.
1272 * If it is in error state, leave it in error state.
1273 */
1274 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1275 update_context_time(ctx);
1276 update_cgrp_time_from_event(event);
1277 update_group_times(event);
1278 if (event == event->group_leader)
1279 group_sched_out(event, cpuctx, ctx);
1280 else
1281 event_sched_out(event, cpuctx, ctx);
1282 event->state = PERF_EVENT_STATE_OFF;
1283 }
1284
1285 raw_spin_unlock(&ctx->lock);
1286
1287 return 0;
1288 }
1289
1290 /*
1291 * Disable a event.
1292 *
1293 * If event->ctx is a cloned context, callers must make sure that
1294 * every task struct that event->ctx->task could possibly point to
1295 * remains valid. This condition is satisifed when called through
1296 * perf_event_for_each_child or perf_event_for_each because they
1297 * hold the top-level event's child_mutex, so any descendant that
1298 * goes to exit will block in sync_child_event.
1299 * When called from perf_pending_event it's OK because event->ctx
1300 * is the current context on this CPU and preemption is disabled,
1301 * hence we can't get into perf_event_task_sched_out for this context.
1302 */
1303 void perf_event_disable(struct perf_event *event)
1304 {
1305 struct perf_event_context *ctx = event->ctx;
1306 struct task_struct *task = ctx->task;
1307
1308 if (!task) {
1309 /*
1310 * Disable the event on the cpu that it's on
1311 */
1312 cpu_function_call(event->cpu, __perf_event_disable, event);
1313 return;
1314 }
1315
1316 retry:
1317 if (!task_function_call(task, __perf_event_disable, event))
1318 return;
1319
1320 raw_spin_lock_irq(&ctx->lock);
1321 /*
1322 * If the event is still active, we need to retry the cross-call.
1323 */
1324 if (event->state == PERF_EVENT_STATE_ACTIVE) {
1325 raw_spin_unlock_irq(&ctx->lock);
1326 /*
1327 * Reload the task pointer, it might have been changed by
1328 * a concurrent perf_event_context_sched_out().
1329 */
1330 task = ctx->task;
1331 goto retry;
1332 }
1333
1334 /*
1335 * Since we have the lock this context can't be scheduled
1336 * in, so we can change the state safely.
1337 */
1338 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1339 update_group_times(event);
1340 event->state = PERF_EVENT_STATE_OFF;
1341 }
1342 raw_spin_unlock_irq(&ctx->lock);
1343 }
1344 EXPORT_SYMBOL_GPL(perf_event_disable);
1345
1346 static void perf_set_shadow_time(struct perf_event *event,
1347 struct perf_event_context *ctx,
1348 u64 tstamp)
1349 {
1350 /*
1351 * use the correct time source for the time snapshot
1352 *
1353 * We could get by without this by leveraging the
1354 * fact that to get to this function, the caller
1355 * has most likely already called update_context_time()
1356 * and update_cgrp_time_xx() and thus both timestamp
1357 * are identical (or very close). Given that tstamp is,
1358 * already adjusted for cgroup, we could say that:
1359 * tstamp - ctx->timestamp
1360 * is equivalent to
1361 * tstamp - cgrp->timestamp.
1362 *
1363 * Then, in perf_output_read(), the calculation would
1364 * work with no changes because:
1365 * - event is guaranteed scheduled in
1366 * - no scheduled out in between
1367 * - thus the timestamp would be the same
1368 *
1369 * But this is a bit hairy.
1370 *
1371 * So instead, we have an explicit cgroup call to remain
1372 * within the time time source all along. We believe it
1373 * is cleaner and simpler to understand.
1374 */
1375 if (is_cgroup_event(event))
1376 perf_cgroup_set_shadow_time(event, tstamp);
1377 else
1378 event->shadow_ctx_time = tstamp - ctx->timestamp;
1379 }
1380
1381 #define MAX_INTERRUPTS (~0ULL)
1382
1383 static void perf_log_throttle(struct perf_event *event, int enable);
1384
1385 static int
1386 event_sched_in(struct perf_event *event,
1387 struct perf_cpu_context *cpuctx,
1388 struct perf_event_context *ctx)
1389 {
1390 u64 tstamp = perf_event_time(event);
1391
1392 if (event->state <= PERF_EVENT_STATE_OFF)
1393 return 0;
1394
1395 event->state = PERF_EVENT_STATE_ACTIVE;
1396 event->oncpu = smp_processor_id();
1397
1398 /*
1399 * Unthrottle events, since we scheduled we might have missed several
1400 * ticks already, also for a heavily scheduling task there is little
1401 * guarantee it'll get a tick in a timely manner.
1402 */
1403 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1404 perf_log_throttle(event, 1);
1405 event->hw.interrupts = 0;
1406 }
1407
1408 /*
1409 * The new state must be visible before we turn it on in the hardware:
1410 */
1411 smp_wmb();
1412
1413 if (event->pmu->add(event, PERF_EF_START)) {
1414 event->state = PERF_EVENT_STATE_INACTIVE;
1415 event->oncpu = -1;
1416 return -EAGAIN;
1417 }
1418
1419 event->tstamp_running += tstamp - event->tstamp_stopped;
1420
1421 perf_set_shadow_time(event, ctx, tstamp);
1422
1423 if (!is_software_event(event))
1424 cpuctx->active_oncpu++;
1425 ctx->nr_active++;
1426 if (event->attr.freq && event->attr.sample_freq)
1427 ctx->nr_freq++;
1428
1429 if (event->attr.exclusive)
1430 cpuctx->exclusive = 1;
1431
1432 return 0;
1433 }
1434
1435 static int
1436 group_sched_in(struct perf_event *group_event,
1437 struct perf_cpu_context *cpuctx,
1438 struct perf_event_context *ctx)
1439 {
1440 struct perf_event *event, *partial_group = NULL;
1441 struct pmu *pmu = group_event->pmu;
1442 u64 now = ctx->time;
1443 bool simulate = false;
1444
1445 if (group_event->state == PERF_EVENT_STATE_OFF)
1446 return 0;
1447
1448 pmu->start_txn(pmu);
1449
1450 if (event_sched_in(group_event, cpuctx, ctx)) {
1451 pmu->cancel_txn(pmu);
1452 return -EAGAIN;
1453 }
1454
1455 /*
1456 * Schedule in siblings as one group (if any):
1457 */
1458 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1459 if (event_sched_in(event, cpuctx, ctx)) {
1460 partial_group = event;
1461 goto group_error;
1462 }
1463 }
1464
1465 if (!pmu->commit_txn(pmu))
1466 return 0;
1467
1468 group_error:
1469 /*
1470 * Groups can be scheduled in as one unit only, so undo any
1471 * partial group before returning:
1472 * The events up to the failed event are scheduled out normally,
1473 * tstamp_stopped will be updated.
1474 *
1475 * The failed events and the remaining siblings need to have
1476 * their timings updated as if they had gone thru event_sched_in()
1477 * and event_sched_out(). This is required to get consistent timings
1478 * across the group. This also takes care of the case where the group
1479 * could never be scheduled by ensuring tstamp_stopped is set to mark
1480 * the time the event was actually stopped, such that time delta
1481 * calculation in update_event_times() is correct.
1482 */
1483 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1484 if (event == partial_group)
1485 simulate = true;
1486
1487 if (simulate) {
1488 event->tstamp_running += now - event->tstamp_stopped;
1489 event->tstamp_stopped = now;
1490 } else {
1491 event_sched_out(event, cpuctx, ctx);
1492 }
1493 }
1494 event_sched_out(group_event, cpuctx, ctx);
1495
1496 pmu->cancel_txn(pmu);
1497
1498 return -EAGAIN;
1499 }
1500
1501 /*
1502 * Work out whether we can put this event group on the CPU now.
1503 */
1504 static int group_can_go_on(struct perf_event *event,
1505 struct perf_cpu_context *cpuctx,
1506 int can_add_hw)
1507 {
1508 /*
1509 * Groups consisting entirely of software events can always go on.
1510 */
1511 if (event->group_flags & PERF_GROUP_SOFTWARE)
1512 return 1;
1513 /*
1514 * If an exclusive group is already on, no other hardware
1515 * events can go on.
1516 */
1517 if (cpuctx->exclusive)
1518 return 0;
1519 /*
1520 * If this group is exclusive and there are already
1521 * events on the CPU, it can't go on.
1522 */
1523 if (event->attr.exclusive && cpuctx->active_oncpu)
1524 return 0;
1525 /*
1526 * Otherwise, try to add it if all previous groups were able
1527 * to go on.
1528 */
1529 return can_add_hw;
1530 }
1531
1532 static void add_event_to_ctx(struct perf_event *event,
1533 struct perf_event_context *ctx)
1534 {
1535 u64 tstamp = perf_event_time(event);
1536
1537 list_add_event(event, ctx);
1538 perf_group_attach(event);
1539 event->tstamp_enabled = tstamp;
1540 event->tstamp_running = tstamp;
1541 event->tstamp_stopped = tstamp;
1542 }
1543
1544 static void task_ctx_sched_out(struct perf_event_context *ctx);
1545 static void
1546 ctx_sched_in(struct perf_event_context *ctx,
1547 struct perf_cpu_context *cpuctx,
1548 enum event_type_t event_type,
1549 struct task_struct *task);
1550
1551 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
1552 struct perf_event_context *ctx,
1553 struct task_struct *task)
1554 {
1555 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
1556 if (ctx)
1557 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
1558 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
1559 if (ctx)
1560 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
1561 }
1562
1563 /*
1564 * Cross CPU call to install and enable a performance event
1565 *
1566 * Must be called with ctx->mutex held
1567 */
1568 static int __perf_install_in_context(void *info)
1569 {
1570 struct perf_event *event = info;
1571 struct perf_event_context *ctx = event->ctx;
1572 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1573 struct perf_event_context *task_ctx = cpuctx->task_ctx;
1574 struct task_struct *task = current;
1575
1576 perf_ctx_lock(cpuctx, task_ctx);
1577 perf_pmu_disable(cpuctx->ctx.pmu);
1578
1579 /*
1580 * If there was an active task_ctx schedule it out.
1581 */
1582 if (task_ctx)
1583 task_ctx_sched_out(task_ctx);
1584
1585 /*
1586 * If the context we're installing events in is not the
1587 * active task_ctx, flip them.
1588 */
1589 if (ctx->task && task_ctx != ctx) {
1590 if (task_ctx)
1591 raw_spin_unlock(&task_ctx->lock);
1592 raw_spin_lock(&ctx->lock);
1593 task_ctx = ctx;
1594 }
1595
1596 if (task_ctx) {
1597 cpuctx->task_ctx = task_ctx;
1598 task = task_ctx->task;
1599 }
1600
1601 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
1602
1603 update_context_time(ctx);
1604 /*
1605 * update cgrp time only if current cgrp
1606 * matches event->cgrp. Must be done before
1607 * calling add_event_to_ctx()
1608 */
1609 update_cgrp_time_from_event(event);
1610
1611 add_event_to_ctx(event, ctx);
1612
1613 /*
1614 * Schedule everything back in
1615 */
1616 perf_event_sched_in(cpuctx, task_ctx, task);
1617
1618 perf_pmu_enable(cpuctx->ctx.pmu);
1619 perf_ctx_unlock(cpuctx, task_ctx);
1620
1621 return 0;
1622 }
1623
1624 /*
1625 * Attach a performance event to a context
1626 *
1627 * First we add the event to the list with the hardware enable bit
1628 * in event->hw_config cleared.
1629 *
1630 * If the event is attached to a task which is on a CPU we use a smp
1631 * call to enable it in the task context. The task might have been
1632 * scheduled away, but we check this in the smp call again.
1633 */
1634 static void
1635 perf_install_in_context(struct perf_event_context *ctx,
1636 struct perf_event *event,
1637 int cpu)
1638 {
1639 struct task_struct *task = ctx->task;
1640
1641 lockdep_assert_held(&ctx->mutex);
1642
1643 event->ctx = ctx;
1644
1645 if (!task) {
1646 /*
1647 * Per cpu events are installed via an smp call and
1648 * the install is always successful.
1649 */
1650 cpu_function_call(cpu, __perf_install_in_context, event);
1651 return;
1652 }
1653
1654 retry:
1655 if (!task_function_call(task, __perf_install_in_context, event))
1656 return;
1657
1658 raw_spin_lock_irq(&ctx->lock);
1659 /*
1660 * If we failed to find a running task, but find the context active now
1661 * that we've acquired the ctx->lock, retry.
1662 */
1663 if (ctx->is_active) {
1664 raw_spin_unlock_irq(&ctx->lock);
1665 goto retry;
1666 }
1667
1668 /*
1669 * Since the task isn't running, its safe to add the event, us holding
1670 * the ctx->lock ensures the task won't get scheduled in.
1671 */
1672 add_event_to_ctx(event, ctx);
1673 raw_spin_unlock_irq(&ctx->lock);
1674 }
1675
1676 /*
1677 * Put a event into inactive state and update time fields.
1678 * Enabling the leader of a group effectively enables all
1679 * the group members that aren't explicitly disabled, so we
1680 * have to update their ->tstamp_enabled also.
1681 * Note: this works for group members as well as group leaders
1682 * since the non-leader members' sibling_lists will be empty.
1683 */
1684 static void __perf_event_mark_enabled(struct perf_event *event)
1685 {
1686 struct perf_event *sub;
1687 u64 tstamp = perf_event_time(event);
1688
1689 event->state = PERF_EVENT_STATE_INACTIVE;
1690 event->tstamp_enabled = tstamp - event->total_time_enabled;
1691 list_for_each_entry(sub, &event->sibling_list, group_entry) {
1692 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
1693 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
1694 }
1695 }
1696
1697 /*
1698 * Cross CPU call to enable a performance event
1699 */
1700 static int __perf_event_enable(void *info)
1701 {
1702 struct perf_event *event = info;
1703 struct perf_event_context *ctx = event->ctx;
1704 struct perf_event *leader = event->group_leader;
1705 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1706 int err;
1707
1708 if (WARN_ON_ONCE(!ctx->is_active))
1709 return -EINVAL;
1710
1711 raw_spin_lock(&ctx->lock);
1712 update_context_time(ctx);
1713
1714 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1715 goto unlock;
1716
1717 /*
1718 * set current task's cgroup time reference point
1719 */
1720 perf_cgroup_set_timestamp(current, ctx);
1721
1722 __perf_event_mark_enabled(event);
1723
1724 if (!event_filter_match(event)) {
1725 if (is_cgroup_event(event))
1726 perf_cgroup_defer_enabled(event);
1727 goto unlock;
1728 }
1729
1730 /*
1731 * If the event is in a group and isn't the group leader,
1732 * then don't put it on unless the group is on.
1733 */
1734 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
1735 goto unlock;
1736
1737 if (!group_can_go_on(event, cpuctx, 1)) {
1738 err = -EEXIST;
1739 } else {
1740 if (event == leader)
1741 err = group_sched_in(event, cpuctx, ctx);
1742 else
1743 err = event_sched_in(event, cpuctx, ctx);
1744 }
1745
1746 if (err) {
1747 /*
1748 * If this event can't go on and it's part of a
1749 * group, then the whole group has to come off.
1750 */
1751 if (leader != event)
1752 group_sched_out(leader, cpuctx, ctx);
1753 if (leader->attr.pinned) {
1754 update_group_times(leader);
1755 leader->state = PERF_EVENT_STATE_ERROR;
1756 }
1757 }
1758
1759 unlock:
1760 raw_spin_unlock(&ctx->lock);
1761
1762 return 0;
1763 }
1764
1765 /*
1766 * Enable a event.
1767 *
1768 * If event->ctx is a cloned context, callers must make sure that
1769 * every task struct that event->ctx->task could possibly point to
1770 * remains valid. This condition is satisfied when called through
1771 * perf_event_for_each_child or perf_event_for_each as described
1772 * for perf_event_disable.
1773 */
1774 void perf_event_enable(struct perf_event *event)
1775 {
1776 struct perf_event_context *ctx = event->ctx;
1777 struct task_struct *task = ctx->task;
1778
1779 if (!task) {
1780 /*
1781 * Enable the event on the cpu that it's on
1782 */
1783 cpu_function_call(event->cpu, __perf_event_enable, event);
1784 return;
1785 }
1786
1787 raw_spin_lock_irq(&ctx->lock);
1788 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1789 goto out;
1790
1791 /*
1792 * If the event is in error state, clear that first.
1793 * That way, if we see the event in error state below, we
1794 * know that it has gone back into error state, as distinct
1795 * from the task having been scheduled away before the
1796 * cross-call arrived.
1797 */
1798 if (event->state == PERF_EVENT_STATE_ERROR)
1799 event->state = PERF_EVENT_STATE_OFF;
1800
1801 retry:
1802 if (!ctx->is_active) {
1803 __perf_event_mark_enabled(event);
1804 goto out;
1805 }
1806
1807 raw_spin_unlock_irq(&ctx->lock);
1808
1809 if (!task_function_call(task, __perf_event_enable, event))
1810 return;
1811
1812 raw_spin_lock_irq(&ctx->lock);
1813
1814 /*
1815 * If the context is active and the event is still off,
1816 * we need to retry the cross-call.
1817 */
1818 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
1819 /*
1820 * task could have been flipped by a concurrent
1821 * perf_event_context_sched_out()
1822 */
1823 task = ctx->task;
1824 goto retry;
1825 }
1826
1827 out:
1828 raw_spin_unlock_irq(&ctx->lock);
1829 }
1830 EXPORT_SYMBOL_GPL(perf_event_enable);
1831
1832 int perf_event_refresh(struct perf_event *event, int refresh)
1833 {
1834 /*
1835 * not supported on inherited events
1836 */
1837 if (event->attr.inherit || !is_sampling_event(event))
1838 return -EINVAL;
1839
1840 atomic_add(refresh, &event->event_limit);
1841 perf_event_enable(event);
1842
1843 return 0;
1844 }
1845 EXPORT_SYMBOL_GPL(perf_event_refresh);
1846
1847 static void ctx_sched_out(struct perf_event_context *ctx,
1848 struct perf_cpu_context *cpuctx,
1849 enum event_type_t event_type)
1850 {
1851 struct perf_event *event;
1852 int is_active = ctx->is_active;
1853
1854 ctx->is_active &= ~event_type;
1855 if (likely(!ctx->nr_events))
1856 return;
1857
1858 update_context_time(ctx);
1859 update_cgrp_time_from_cpuctx(cpuctx);
1860 if (!ctx->nr_active)
1861 return;
1862
1863 perf_pmu_disable(ctx->pmu);
1864 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
1865 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1866 group_sched_out(event, cpuctx, ctx);
1867 }
1868
1869 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
1870 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1871 group_sched_out(event, cpuctx, ctx);
1872 }
1873 perf_pmu_enable(ctx->pmu);
1874 }
1875
1876 /*
1877 * Test whether two contexts are equivalent, i.e. whether they
1878 * have both been cloned from the same version of the same context
1879 * and they both have the same number of enabled events.
1880 * If the number of enabled events is the same, then the set
1881 * of enabled events should be the same, because these are both
1882 * inherited contexts, therefore we can't access individual events
1883 * in them directly with an fd; we can only enable/disable all
1884 * events via prctl, or enable/disable all events in a family
1885 * via ioctl, which will have the same effect on both contexts.
1886 */
1887 static int context_equiv(struct perf_event_context *ctx1,
1888 struct perf_event_context *ctx2)
1889 {
1890 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1891 && ctx1->parent_gen == ctx2->parent_gen
1892 && !ctx1->pin_count && !ctx2->pin_count;
1893 }
1894
1895 static void __perf_event_sync_stat(struct perf_event *event,
1896 struct perf_event *next_event)
1897 {
1898 u64 value;
1899
1900 if (!event->attr.inherit_stat)
1901 return;
1902
1903 /*
1904 * Update the event value, we cannot use perf_event_read()
1905 * because we're in the middle of a context switch and have IRQs
1906 * disabled, which upsets smp_call_function_single(), however
1907 * we know the event must be on the current CPU, therefore we
1908 * don't need to use it.
1909 */
1910 switch (event->state) {
1911 case PERF_EVENT_STATE_ACTIVE:
1912 event->pmu->read(event);
1913 /* fall-through */
1914
1915 case PERF_EVENT_STATE_INACTIVE:
1916 update_event_times(event);
1917 break;
1918
1919 default:
1920 break;
1921 }
1922
1923 /*
1924 * In order to keep per-task stats reliable we need to flip the event
1925 * values when we flip the contexts.
1926 */
1927 value = local64_read(&next_event->count);
1928 value = local64_xchg(&event->count, value);
1929 local64_set(&next_event->count, value);
1930
1931 swap(event->total_time_enabled, next_event->total_time_enabled);
1932 swap(event->total_time_running, next_event->total_time_running);
1933
1934 /*
1935 * Since we swizzled the values, update the user visible data too.
1936 */
1937 perf_event_update_userpage(event);
1938 perf_event_update_userpage(next_event);
1939 }
1940
1941 #define list_next_entry(pos, member) \
1942 list_entry(pos->member.next, typeof(*pos), member)
1943
1944 static void perf_event_sync_stat(struct perf_event_context *ctx,
1945 struct perf_event_context *next_ctx)
1946 {
1947 struct perf_event *event, *next_event;
1948
1949 if (!ctx->nr_stat)
1950 return;
1951
1952 update_context_time(ctx);
1953
1954 event = list_first_entry(&ctx->event_list,
1955 struct perf_event, event_entry);
1956
1957 next_event = list_first_entry(&next_ctx->event_list,
1958 struct perf_event, event_entry);
1959
1960 while (&event->event_entry != &ctx->event_list &&
1961 &next_event->event_entry != &next_ctx->event_list) {
1962
1963 __perf_event_sync_stat(event, next_event);
1964
1965 event = list_next_entry(event, event_entry);
1966 next_event = list_next_entry(next_event, event_entry);
1967 }
1968 }
1969
1970 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
1971 struct task_struct *next)
1972 {
1973 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
1974 struct perf_event_context *next_ctx;
1975 struct perf_event_context *parent;
1976 struct perf_cpu_context *cpuctx;
1977 int do_switch = 1;
1978
1979 if (likely(!ctx))
1980 return;
1981
1982 cpuctx = __get_cpu_context(ctx);
1983 if (!cpuctx->task_ctx)
1984 return;
1985
1986 rcu_read_lock();
1987 parent = rcu_dereference(ctx->parent_ctx);
1988 next_ctx = next->perf_event_ctxp[ctxn];
1989 if (parent && next_ctx &&
1990 rcu_dereference(next_ctx->parent_ctx) == parent) {
1991 /*
1992 * Looks like the two contexts are clones, so we might be
1993 * able to optimize the context switch. We lock both
1994 * contexts and check that they are clones under the
1995 * lock (including re-checking that neither has been
1996 * uncloned in the meantime). It doesn't matter which
1997 * order we take the locks because no other cpu could
1998 * be trying to lock both of these tasks.
1999 */
2000 raw_spin_lock(&ctx->lock);
2001 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2002 if (context_equiv(ctx, next_ctx)) {
2003 /*
2004 * XXX do we need a memory barrier of sorts
2005 * wrt to rcu_dereference() of perf_event_ctxp
2006 */
2007 task->perf_event_ctxp[ctxn] = next_ctx;
2008 next->perf_event_ctxp[ctxn] = ctx;
2009 ctx->task = next;
2010 next_ctx->task = task;
2011 do_switch = 0;
2012
2013 perf_event_sync_stat(ctx, next_ctx);
2014 }
2015 raw_spin_unlock(&next_ctx->lock);
2016 raw_spin_unlock(&ctx->lock);
2017 }
2018 rcu_read_unlock();
2019
2020 if (do_switch) {
2021 raw_spin_lock(&ctx->lock);
2022 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2023 cpuctx->task_ctx = NULL;
2024 raw_spin_unlock(&ctx->lock);
2025 }
2026 }
2027
2028 #define for_each_task_context_nr(ctxn) \
2029 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2030
2031 /*
2032 * Called from scheduler to remove the events of the current task,
2033 * with interrupts disabled.
2034 *
2035 * We stop each event and update the event value in event->count.
2036 *
2037 * This does not protect us against NMI, but disable()
2038 * sets the disabled bit in the control field of event _before_
2039 * accessing the event control register. If a NMI hits, then it will
2040 * not restart the event.
2041 */
2042 void __perf_event_task_sched_out(struct task_struct *task,
2043 struct task_struct *next)
2044 {
2045 int ctxn;
2046
2047 for_each_task_context_nr(ctxn)
2048 perf_event_context_sched_out(task, ctxn, next);
2049
2050 /*
2051 * if cgroup events exist on this CPU, then we need
2052 * to check if we have to switch out PMU state.
2053 * cgroup event are system-wide mode only
2054 */
2055 if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2056 perf_cgroup_sched_out(task, next);
2057 }
2058
2059 static void task_ctx_sched_out(struct perf_event_context *ctx)
2060 {
2061 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2062
2063 if (!cpuctx->task_ctx)
2064 return;
2065
2066 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2067 return;
2068
2069 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2070 cpuctx->task_ctx = NULL;
2071 }
2072
2073 /*
2074 * Called with IRQs disabled
2075 */
2076 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2077 enum event_type_t event_type)
2078 {
2079 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2080 }
2081
2082 static void
2083 ctx_pinned_sched_in(struct perf_event_context *ctx,
2084 struct perf_cpu_context *cpuctx)
2085 {
2086 struct perf_event *event;
2087
2088 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2089 if (event->state <= PERF_EVENT_STATE_OFF)
2090 continue;
2091 if (!event_filter_match(event))
2092 continue;
2093
2094 /* may need to reset tstamp_enabled */
2095 if (is_cgroup_event(event))
2096 perf_cgroup_mark_enabled(event, ctx);
2097
2098 if (group_can_go_on(event, cpuctx, 1))
2099 group_sched_in(event, cpuctx, ctx);
2100
2101 /*
2102 * If this pinned group hasn't been scheduled,
2103 * put it in error state.
2104 */
2105 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2106 update_group_times(event);
2107 event->state = PERF_EVENT_STATE_ERROR;
2108 }
2109 }
2110 }
2111
2112 static void
2113 ctx_flexible_sched_in(struct perf_event_context *ctx,
2114 struct perf_cpu_context *cpuctx)
2115 {
2116 struct perf_event *event;
2117 int can_add_hw = 1;
2118
2119 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2120 /* Ignore events in OFF or ERROR state */
2121 if (event->state <= PERF_EVENT_STATE_OFF)
2122 continue;
2123 /*
2124 * Listen to the 'cpu' scheduling filter constraint
2125 * of events:
2126 */
2127 if (!event_filter_match(event))
2128 continue;
2129
2130 /* may need to reset tstamp_enabled */
2131 if (is_cgroup_event(event))
2132 perf_cgroup_mark_enabled(event, ctx);
2133
2134 if (group_can_go_on(event, cpuctx, can_add_hw)) {
2135 if (group_sched_in(event, cpuctx, ctx))
2136 can_add_hw = 0;
2137 }
2138 }
2139 }
2140
2141 static void
2142 ctx_sched_in(struct perf_event_context *ctx,
2143 struct perf_cpu_context *cpuctx,
2144 enum event_type_t event_type,
2145 struct task_struct *task)
2146 {
2147 u64 now;
2148 int is_active = ctx->is_active;
2149
2150 ctx->is_active |= event_type;
2151 if (likely(!ctx->nr_events))
2152 return;
2153
2154 now = perf_clock();
2155 ctx->timestamp = now;
2156 perf_cgroup_set_timestamp(task, ctx);
2157 /*
2158 * First go through the list and put on any pinned groups
2159 * in order to give them the best chance of going on.
2160 */
2161 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2162 ctx_pinned_sched_in(ctx, cpuctx);
2163
2164 /* Then walk through the lower prio flexible groups */
2165 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2166 ctx_flexible_sched_in(ctx, cpuctx);
2167 }
2168
2169 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
2170 enum event_type_t event_type,
2171 struct task_struct *task)
2172 {
2173 struct perf_event_context *ctx = &cpuctx->ctx;
2174
2175 ctx_sched_in(ctx, cpuctx, event_type, task);
2176 }
2177
2178 static void perf_event_context_sched_in(struct perf_event_context *ctx,
2179 struct task_struct *task)
2180 {
2181 struct perf_cpu_context *cpuctx;
2182
2183 cpuctx = __get_cpu_context(ctx);
2184 if (cpuctx->task_ctx == ctx)
2185 return;
2186
2187 perf_ctx_lock(cpuctx, ctx);
2188 perf_pmu_disable(ctx->pmu);
2189 /*
2190 * We want to keep the following priority order:
2191 * cpu pinned (that don't need to move), task pinned,
2192 * cpu flexible, task flexible.
2193 */
2194 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2195
2196 if (ctx->nr_events)
2197 cpuctx->task_ctx = ctx;
2198
2199 perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2200
2201 perf_pmu_enable(ctx->pmu);
2202 perf_ctx_unlock(cpuctx, ctx);
2203
2204 /*
2205 * Since these rotations are per-cpu, we need to ensure the
2206 * cpu-context we got scheduled on is actually rotating.
2207 */
2208 perf_pmu_rotate_start(ctx->pmu);
2209 }
2210
2211 /*
2212 * When sampling the branck stack in system-wide, it may be necessary
2213 * to flush the stack on context switch. This happens when the branch
2214 * stack does not tag its entries with the pid of the current task.
2215 * Otherwise it becomes impossible to associate a branch entry with a
2216 * task. This ambiguity is more likely to appear when the branch stack
2217 * supports priv level filtering and the user sets it to monitor only
2218 * at the user level (which could be a useful measurement in system-wide
2219 * mode). In that case, the risk is high of having a branch stack with
2220 * branch from multiple tasks. Flushing may mean dropping the existing
2221 * entries or stashing them somewhere in the PMU specific code layer.
2222 *
2223 * This function provides the context switch callback to the lower code
2224 * layer. It is invoked ONLY when there is at least one system-wide context
2225 * with at least one active event using taken branch sampling.
2226 */
2227 static void perf_branch_stack_sched_in(struct task_struct *prev,
2228 struct task_struct *task)
2229 {
2230 struct perf_cpu_context *cpuctx;
2231 struct pmu *pmu;
2232 unsigned long flags;
2233
2234 /* no need to flush branch stack if not changing task */
2235 if (prev == task)
2236 return;
2237
2238 local_irq_save(flags);
2239
2240 rcu_read_lock();
2241
2242 list_for_each_entry_rcu(pmu, &pmus, entry) {
2243 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2244
2245 /*
2246 * check if the context has at least one
2247 * event using PERF_SAMPLE_BRANCH_STACK
2248 */
2249 if (cpuctx->ctx.nr_branch_stack > 0
2250 && pmu->flush_branch_stack) {
2251
2252 pmu = cpuctx->ctx.pmu;
2253
2254 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2255
2256 perf_pmu_disable(pmu);
2257
2258 pmu->flush_branch_stack();
2259
2260 perf_pmu_enable(pmu);
2261
2262 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2263 }
2264 }
2265
2266 rcu_read_unlock();
2267
2268 local_irq_restore(flags);
2269 }
2270
2271 /*
2272 * Called from scheduler to add the events of the current task
2273 * with interrupts disabled.
2274 *
2275 * We restore the event value and then enable it.
2276 *
2277 * This does not protect us against NMI, but enable()
2278 * sets the enabled bit in the control field of event _before_
2279 * accessing the event control register. If a NMI hits, then it will
2280 * keep the event running.
2281 */
2282 void __perf_event_task_sched_in(struct task_struct *prev,
2283 struct task_struct *task)
2284 {
2285 struct perf_event_context *ctx;
2286 int ctxn;
2287
2288 for_each_task_context_nr(ctxn) {
2289 ctx = task->perf_event_ctxp[ctxn];
2290 if (likely(!ctx))
2291 continue;
2292
2293 perf_event_context_sched_in(ctx, task);
2294 }
2295 /*
2296 * if cgroup events exist on this CPU, then we need
2297 * to check if we have to switch in PMU state.
2298 * cgroup event are system-wide mode only
2299 */
2300 if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2301 perf_cgroup_sched_in(prev, task);
2302
2303 /* check for system-wide branch_stack events */
2304 if (atomic_read(&__get_cpu_var(perf_branch_stack_events)))
2305 perf_branch_stack_sched_in(prev, task);
2306 }
2307
2308 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2309 {
2310 u64 frequency = event->attr.sample_freq;
2311 u64 sec = NSEC_PER_SEC;
2312 u64 divisor, dividend;
2313
2314 int count_fls, nsec_fls, frequency_fls, sec_fls;
2315
2316 count_fls = fls64(count);
2317 nsec_fls = fls64(nsec);
2318 frequency_fls = fls64(frequency);
2319 sec_fls = 30;
2320
2321 /*
2322 * We got @count in @nsec, with a target of sample_freq HZ
2323 * the target period becomes:
2324 *
2325 * @count * 10^9
2326 * period = -------------------
2327 * @nsec * sample_freq
2328 *
2329 */
2330
2331 /*
2332 * Reduce accuracy by one bit such that @a and @b converge
2333 * to a similar magnitude.
2334 */
2335 #define REDUCE_FLS(a, b) \
2336 do { \
2337 if (a##_fls > b##_fls) { \
2338 a >>= 1; \
2339 a##_fls--; \
2340 } else { \
2341 b >>= 1; \
2342 b##_fls--; \
2343 } \
2344 } while (0)
2345
2346 /*
2347 * Reduce accuracy until either term fits in a u64, then proceed with
2348 * the other, so that finally we can do a u64/u64 division.
2349 */
2350 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2351 REDUCE_FLS(nsec, frequency);
2352 REDUCE_FLS(sec, count);
2353 }
2354
2355 if (count_fls + sec_fls > 64) {
2356 divisor = nsec * frequency;
2357
2358 while (count_fls + sec_fls > 64) {
2359 REDUCE_FLS(count, sec);
2360 divisor >>= 1;
2361 }
2362
2363 dividend = count * sec;
2364 } else {
2365 dividend = count * sec;
2366
2367 while (nsec_fls + frequency_fls > 64) {
2368 REDUCE_FLS(nsec, frequency);
2369 dividend >>= 1;
2370 }
2371
2372 divisor = nsec * frequency;
2373 }
2374
2375 if (!divisor)
2376 return dividend;
2377
2378 return div64_u64(dividend, divisor);
2379 }
2380
2381 static DEFINE_PER_CPU(int, perf_throttled_count);
2382 static DEFINE_PER_CPU(u64, perf_throttled_seq);
2383
2384 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2385 {
2386 struct hw_perf_event *hwc = &event->hw;
2387 s64 period, sample_period;
2388 s64 delta;
2389
2390 period = perf_calculate_period(event, nsec, count);
2391
2392 delta = (s64)(period - hwc->sample_period);
2393 delta = (delta + 7) / 8; /* low pass filter */
2394
2395 sample_period = hwc->sample_period + delta;
2396
2397 if (!sample_period)
2398 sample_period = 1;
2399
2400 hwc->sample_period = sample_period;
2401
2402 if (local64_read(&hwc->period_left) > 8*sample_period) {
2403 if (disable)
2404 event->pmu->stop(event, PERF_EF_UPDATE);
2405
2406 local64_set(&hwc->period_left, 0);
2407
2408 if (disable)
2409 event->pmu->start(event, PERF_EF_RELOAD);
2410 }
2411 }
2412
2413 /*
2414 * combine freq adjustment with unthrottling to avoid two passes over the
2415 * events. At the same time, make sure, having freq events does not change
2416 * the rate of unthrottling as that would introduce bias.
2417 */
2418 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2419 int needs_unthr)
2420 {
2421 struct perf_event *event;
2422 struct hw_perf_event *hwc;
2423 u64 now, period = TICK_NSEC;
2424 s64 delta;
2425
2426 /*
2427 * only need to iterate over all events iff:
2428 * - context have events in frequency mode (needs freq adjust)
2429 * - there are events to unthrottle on this cpu
2430 */
2431 if (!(ctx->nr_freq || needs_unthr))
2432 return;
2433
2434 raw_spin_lock(&ctx->lock);
2435 perf_pmu_disable(ctx->pmu);
2436
2437 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2438 if (event->state != PERF_EVENT_STATE_ACTIVE)
2439 continue;
2440
2441 if (!event_filter_match(event))
2442 continue;
2443
2444 hwc = &event->hw;
2445
2446 if (needs_unthr && hwc->interrupts == MAX_INTERRUPTS) {
2447 hwc->interrupts = 0;
2448 perf_log_throttle(event, 1);
2449 event->pmu->start(event, 0);
2450 }
2451
2452 if (!event->attr.freq || !event->attr.sample_freq)
2453 continue;
2454
2455 /*
2456 * stop the event and update event->count
2457 */
2458 event->pmu->stop(event, PERF_EF_UPDATE);
2459
2460 now = local64_read(&event->count);
2461 delta = now - hwc->freq_count_stamp;
2462 hwc->freq_count_stamp = now;
2463
2464 /*
2465 * restart the event
2466 * reload only if value has changed
2467 * we have stopped the event so tell that
2468 * to perf_adjust_period() to avoid stopping it
2469 * twice.
2470 */
2471 if (delta > 0)
2472 perf_adjust_period(event, period, delta, false);
2473
2474 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
2475 }
2476
2477 perf_pmu_enable(ctx->pmu);
2478 raw_spin_unlock(&ctx->lock);
2479 }
2480
2481 /*
2482 * Round-robin a context's events:
2483 */
2484 static void rotate_ctx(struct perf_event_context *ctx)
2485 {
2486 /*
2487 * Rotate the first entry last of non-pinned groups. Rotation might be
2488 * disabled by the inheritance code.
2489 */
2490 if (!ctx->rotate_disable)
2491 list_rotate_left(&ctx->flexible_groups);
2492 }
2493
2494 /*
2495 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
2496 * because they're strictly cpu affine and rotate_start is called with IRQs
2497 * disabled, while rotate_context is called from IRQ context.
2498 */
2499 static void perf_rotate_context(struct perf_cpu_context *cpuctx)
2500 {
2501 struct perf_event_context *ctx = NULL;
2502 int rotate = 0, remove = 1;
2503
2504 if (cpuctx->ctx.nr_events) {
2505 remove = 0;
2506 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
2507 rotate = 1;
2508 }
2509
2510 ctx = cpuctx->task_ctx;
2511 if (ctx && ctx->nr_events) {
2512 remove = 0;
2513 if (ctx->nr_events != ctx->nr_active)
2514 rotate = 1;
2515 }
2516
2517 if (!rotate)
2518 goto done;
2519
2520 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2521 perf_pmu_disable(cpuctx->ctx.pmu);
2522
2523 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2524 if (ctx)
2525 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
2526
2527 rotate_ctx(&cpuctx->ctx);
2528 if (ctx)
2529 rotate_ctx(ctx);
2530
2531 perf_event_sched_in(cpuctx, ctx, current);
2532
2533 perf_pmu_enable(cpuctx->ctx.pmu);
2534 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2535 done:
2536 if (remove)
2537 list_del_init(&cpuctx->rotation_list);
2538 }
2539
2540 void perf_event_task_tick(void)
2541 {
2542 struct list_head *head = &__get_cpu_var(rotation_list);
2543 struct perf_cpu_context *cpuctx, *tmp;
2544 struct perf_event_context *ctx;
2545 int throttled;
2546
2547 WARN_ON(!irqs_disabled());
2548
2549 __this_cpu_inc(perf_throttled_seq);
2550 throttled = __this_cpu_xchg(perf_throttled_count, 0);
2551
2552 list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
2553 ctx = &cpuctx->ctx;
2554 perf_adjust_freq_unthr_context(ctx, throttled);
2555
2556 ctx = cpuctx->task_ctx;
2557 if (ctx)
2558 perf_adjust_freq_unthr_context(ctx, throttled);
2559
2560 if (cpuctx->jiffies_interval == 1 ||
2561 !(jiffies % cpuctx->jiffies_interval))
2562 perf_rotate_context(cpuctx);
2563 }
2564 }
2565
2566 static int event_enable_on_exec(struct perf_event *event,
2567 struct perf_event_context *ctx)
2568 {
2569 if (!event->attr.enable_on_exec)
2570 return 0;
2571
2572 event->attr.enable_on_exec = 0;
2573 if (event->state >= PERF_EVENT_STATE_INACTIVE)
2574 return 0;
2575
2576 __perf_event_mark_enabled(event);
2577
2578 return 1;
2579 }
2580
2581 /*
2582 * Enable all of a task's events that have been marked enable-on-exec.
2583 * This expects task == current.
2584 */
2585 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
2586 {
2587 struct perf_event *event;
2588 unsigned long flags;
2589 int enabled = 0;
2590 int ret;
2591
2592 local_irq_save(flags);
2593 if (!ctx || !ctx->nr_events)
2594 goto out;
2595
2596 /*
2597 * We must ctxsw out cgroup events to avoid conflict
2598 * when invoking perf_task_event_sched_in() later on
2599 * in this function. Otherwise we end up trying to
2600 * ctxswin cgroup events which are already scheduled
2601 * in.
2602 */
2603 perf_cgroup_sched_out(current, NULL);
2604
2605 raw_spin_lock(&ctx->lock);
2606 task_ctx_sched_out(ctx);
2607
2608 list_for_each_entry(event, &ctx->event_list, event_entry) {
2609 ret = event_enable_on_exec(event, ctx);
2610 if (ret)
2611 enabled = 1;
2612 }
2613
2614 /*
2615 * Unclone this context if we enabled any event.
2616 */
2617 if (enabled)
2618 unclone_ctx(ctx);
2619
2620 raw_spin_unlock(&ctx->lock);
2621
2622 /*
2623 * Also calls ctxswin for cgroup events, if any:
2624 */
2625 perf_event_context_sched_in(ctx, ctx->task);
2626 out:
2627 local_irq_restore(flags);
2628 }
2629
2630 /*
2631 * Cross CPU call to read the hardware event
2632 */
2633 static void __perf_event_read(void *info)
2634 {
2635 struct perf_event *event = info;
2636 struct perf_event_context *ctx = event->ctx;
2637 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2638
2639 /*
2640 * If this is a task context, we need to check whether it is
2641 * the current task context of this cpu. If not it has been
2642 * scheduled out before the smp call arrived. In that case
2643 * event->count would have been updated to a recent sample
2644 * when the event was scheduled out.
2645 */
2646 if (ctx->task && cpuctx->task_ctx != ctx)
2647 return;
2648
2649 raw_spin_lock(&ctx->lock);
2650 if (ctx->is_active) {
2651 update_context_time(ctx);
2652 update_cgrp_time_from_event(event);
2653 }
2654 update_event_times(event);
2655 if (event->state == PERF_EVENT_STATE_ACTIVE)
2656 event->pmu->read(event);
2657 raw_spin_unlock(&ctx->lock);
2658 }
2659
2660 static inline u64 perf_event_count(struct perf_event *event)
2661 {
2662 return local64_read(&event->count) + atomic64_read(&event->child_count);
2663 }
2664
2665 static u64 perf_event_read(struct perf_event *event)
2666 {
2667 /*
2668 * If event is enabled and currently active on a CPU, update the
2669 * value in the event structure:
2670 */
2671 if (event->state == PERF_EVENT_STATE_ACTIVE) {
2672 smp_call_function_single(event->oncpu,
2673 __perf_event_read, event, 1);
2674 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2675 struct perf_event_context *ctx = event->ctx;
2676 unsigned long flags;
2677
2678 raw_spin_lock_irqsave(&ctx->lock, flags);
2679 /*
2680 * may read while context is not active
2681 * (e.g., thread is blocked), in that case
2682 * we cannot update context time
2683 */
2684 if (ctx->is_active) {
2685 update_context_time(ctx);
2686 update_cgrp_time_from_event(event);
2687 }
2688 update_event_times(event);
2689 raw_spin_unlock_irqrestore(&ctx->lock, flags);
2690 }
2691
2692 return perf_event_count(event);
2693 }
2694
2695 /*
2696 * Initialize the perf_event context in a task_struct:
2697 */
2698 static void __perf_event_init_context(struct perf_event_context *ctx)
2699 {
2700 raw_spin_lock_init(&ctx->lock);
2701 mutex_init(&ctx->mutex);
2702 INIT_LIST_HEAD(&ctx->pinned_groups);
2703 INIT_LIST_HEAD(&ctx->flexible_groups);
2704 INIT_LIST_HEAD(&ctx->event_list);
2705 atomic_set(&ctx->refcount, 1);
2706 }
2707
2708 static struct perf_event_context *
2709 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
2710 {
2711 struct perf_event_context *ctx;
2712
2713 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
2714 if (!ctx)
2715 return NULL;
2716
2717 __perf_event_init_context(ctx);
2718 if (task) {
2719 ctx->task = task;
2720 get_task_struct(task);
2721 }
2722 ctx->pmu = pmu;
2723
2724 return ctx;
2725 }
2726
2727 static struct task_struct *
2728 find_lively_task_by_vpid(pid_t vpid)
2729 {
2730 struct task_struct *task;
2731 int err;
2732
2733 rcu_read_lock();
2734 if (!vpid)
2735 task = current;
2736 else
2737 task = find_task_by_vpid(vpid);
2738 if (task)
2739 get_task_struct(task);
2740 rcu_read_unlock();
2741
2742 if (!task)
2743 return ERR_PTR(-ESRCH);
2744
2745 /* Reuse ptrace permission checks for now. */
2746 err = -EACCES;
2747 if (!ptrace_may_access(task, PTRACE_MODE_READ))
2748 goto errout;
2749
2750 return task;
2751 errout:
2752 put_task_struct(task);
2753 return ERR_PTR(err);
2754
2755 }
2756
2757 /*
2758 * Returns a matching context with refcount and pincount.
2759 */
2760 static struct perf_event_context *
2761 find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
2762 {
2763 struct perf_event_context *ctx;
2764 struct perf_cpu_context *cpuctx;
2765 unsigned long flags;
2766 int ctxn, err;
2767
2768 if (!task) {
2769 /* Must be root to operate on a CPU event: */
2770 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
2771 return ERR_PTR(-EACCES);
2772
2773 /*
2774 * We could be clever and allow to attach a event to an
2775 * offline CPU and activate it when the CPU comes up, but
2776 * that's for later.
2777 */
2778 if (!cpu_online(cpu))
2779 return ERR_PTR(-ENODEV);
2780
2781 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
2782 ctx = &cpuctx->ctx;
2783 get_ctx(ctx);
2784 ++ctx->pin_count;
2785
2786 return ctx;
2787 }
2788
2789 err = -EINVAL;
2790 ctxn = pmu->task_ctx_nr;
2791 if (ctxn < 0)
2792 goto errout;
2793
2794 retry:
2795 ctx = perf_lock_task_context(task, ctxn, &flags);
2796 if (ctx) {
2797 unclone_ctx(ctx);
2798 ++ctx->pin_count;
2799 raw_spin_unlock_irqrestore(&ctx->lock, flags);
2800 } else {
2801 ctx = alloc_perf_context(pmu, task);
2802 err = -ENOMEM;
2803 if (!ctx)
2804 goto errout;
2805
2806 err = 0;
2807 mutex_lock(&task->perf_event_mutex);
2808 /*
2809 * If it has already passed perf_event_exit_task().
2810 * we must see PF_EXITING, it takes this mutex too.
2811 */
2812 if (task->flags & PF_EXITING)
2813 err = -ESRCH;
2814 else if (task->perf_event_ctxp[ctxn])
2815 err = -EAGAIN;
2816 else {
2817 get_ctx(ctx);
2818 ++ctx->pin_count;
2819 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
2820 }
2821 mutex_unlock(&task->perf_event_mutex);
2822
2823 if (unlikely(err)) {
2824 put_ctx(ctx);
2825
2826 if (err == -EAGAIN)
2827 goto retry;
2828 goto errout;
2829 }
2830 }
2831
2832 return ctx;
2833
2834 errout:
2835 return ERR_PTR(err);
2836 }
2837
2838 static void perf_event_free_filter(struct perf_event *event);
2839
2840 static void free_event_rcu(struct rcu_head *head)
2841 {
2842 struct perf_event *event;
2843
2844 event = container_of(head, struct perf_event, rcu_head);
2845 if (event->ns)
2846 put_pid_ns(event->ns);
2847 perf_event_free_filter(event);
2848 kfree(event);
2849 }
2850
2851 static void ring_buffer_put(struct ring_buffer *rb);
2852
2853 static void free_event(struct perf_event *event)
2854 {
2855 irq_work_sync(&event->pending);
2856
2857 if (!event->parent) {
2858 if (event->attach_state & PERF_ATTACH_TASK)
2859 static_key_slow_dec_deferred(&perf_sched_events);
2860 if (event->attr.mmap || event->attr.mmap_data)
2861 atomic_dec(&nr_mmap_events);
2862 if (event->attr.comm)
2863 atomic_dec(&nr_comm_events);
2864 if (event->attr.task)
2865 atomic_dec(&nr_task_events);
2866 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
2867 put_callchain_buffers();
2868 if (is_cgroup_event(event)) {
2869 atomic_dec(&per_cpu(perf_cgroup_events, event->cpu));
2870 static_key_slow_dec_deferred(&perf_sched_events);
2871 }
2872
2873 if (has_branch_stack(event)) {
2874 static_key_slow_dec_deferred(&perf_sched_events);
2875 /* is system-wide event */
2876 if (!(event->attach_state & PERF_ATTACH_TASK))
2877 atomic_dec(&per_cpu(perf_branch_stack_events,
2878 event->cpu));
2879 }
2880 }
2881
2882 if (event->rb) {
2883 ring_buffer_put(event->rb);
2884 event->rb = NULL;
2885 }
2886
2887 if (is_cgroup_event(event))
2888 perf_detach_cgroup(event);
2889
2890 if (event->destroy)
2891 event->destroy(event);
2892
2893 if (event->ctx)
2894 put_ctx(event->ctx);
2895
2896 call_rcu(&event->rcu_head, free_event_rcu);
2897 }
2898
2899 int perf_event_release_kernel(struct perf_event *event)
2900 {
2901 struct perf_event_context *ctx = event->ctx;
2902
2903 WARN_ON_ONCE(ctx->parent_ctx);
2904 /*
2905 * There are two ways this annotation is useful:
2906 *
2907 * 1) there is a lock recursion from perf_event_exit_task
2908 * see the comment there.
2909 *
2910 * 2) there is a lock-inversion with mmap_sem through
2911 * perf_event_read_group(), which takes faults while
2912 * holding ctx->mutex, however this is called after
2913 * the last filedesc died, so there is no possibility
2914 * to trigger the AB-BA case.
2915 */
2916 mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
2917 raw_spin_lock_irq(&ctx->lock);
2918 perf_group_detach(event);
2919 raw_spin_unlock_irq(&ctx->lock);
2920 perf_remove_from_context(event);
2921 mutex_unlock(&ctx->mutex);
2922
2923 free_event(event);
2924
2925 return 0;
2926 }
2927 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
2928
2929 /*
2930 * Called when the last reference to the file is gone.
2931 */
2932 static int perf_release(struct inode *inode, struct file *file)
2933 {
2934 struct perf_event *event = file->private_data;
2935 struct task_struct *owner;
2936
2937 file->private_data = NULL;
2938
2939 rcu_read_lock();
2940 owner = ACCESS_ONCE(event->owner);
2941 /*
2942 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
2943 * !owner it means the list deletion is complete and we can indeed
2944 * free this event, otherwise we need to serialize on
2945 * owner->perf_event_mutex.
2946 */
2947 smp_read_barrier_depends();
2948 if (owner) {
2949 /*
2950 * Since delayed_put_task_struct() also drops the last
2951 * task reference we can safely take a new reference
2952 * while holding the rcu_read_lock().
2953 */
2954 get_task_struct(owner);
2955 }
2956 rcu_read_unlock();
2957
2958 if (owner) {
2959 mutex_lock(&owner->perf_event_mutex);
2960 /*
2961 * We have to re-check the event->owner field, if it is cleared
2962 * we raced with perf_event_exit_task(), acquiring the mutex
2963 * ensured they're done, and we can proceed with freeing the
2964 * event.
2965 */
2966 if (event->owner)
2967 list_del_init(&event->owner_entry);
2968 mutex_unlock(&owner->perf_event_mutex);
2969 put_task_struct(owner);
2970 }
2971
2972 return perf_event_release_kernel(event);
2973 }
2974
2975 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
2976 {
2977 struct perf_event *child;
2978 u64 total = 0;
2979
2980 *enabled = 0;
2981 *running = 0;
2982
2983 mutex_lock(&event->child_mutex);
2984 total += perf_event_read(event);
2985 *enabled += event->total_time_enabled +
2986 atomic64_read(&event->child_total_time_enabled);
2987 *running += event->total_time_running +
2988 atomic64_read(&event->child_total_time_running);
2989
2990 list_for_each_entry(child, &event->child_list, child_list) {
2991 total += perf_event_read(child);
2992 *enabled += child->total_time_enabled;
2993 *running += child->total_time_running;
2994 }
2995 mutex_unlock(&event->child_mutex);
2996
2997 return total;
2998 }
2999 EXPORT_SYMBOL_GPL(perf_event_read_value);
3000
3001 static int perf_event_read_group(struct perf_event *event,
3002 u64 read_format, char __user *buf)
3003 {
3004 struct perf_event *leader = event->group_leader, *sub;
3005 int n = 0, size = 0, ret = -EFAULT;
3006 struct perf_event_context *ctx = leader->ctx;
3007 u64 values[5];
3008 u64 count, enabled, running;
3009
3010 mutex_lock(&ctx->mutex);
3011 count = perf_event_read_value(leader, &enabled, &running);
3012
3013 values[n++] = 1 + leader->nr_siblings;
3014 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3015 values[n++] = enabled;
3016 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3017 values[n++] = running;
3018 values[n++] = count;
3019 if (read_format & PERF_FORMAT_ID)
3020 values[n++] = primary_event_id(leader);
3021
3022 size = n * sizeof(u64);
3023
3024 if (copy_to_user(buf, values, size))
3025 goto unlock;
3026
3027 ret = size;
3028
3029 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3030 n = 0;
3031
3032 values[n++] = perf_event_read_value(sub, &enabled, &running);
3033 if (read_format & PERF_FORMAT_ID)
3034 values[n++] = primary_event_id(sub);
3035
3036 size = n * sizeof(u64);
3037
3038 if (copy_to_user(buf + ret, values, size)) {
3039 ret = -EFAULT;
3040 goto unlock;
3041 }
3042
3043 ret += size;
3044 }
3045 unlock:
3046 mutex_unlock(&ctx->mutex);
3047
3048 return ret;
3049 }
3050
3051 static int perf_event_read_one(struct perf_event *event,
3052 u64 read_format, char __user *buf)
3053 {
3054 u64 enabled, running;
3055 u64 values[4];
3056 int n = 0;
3057
3058 values[n++] = perf_event_read_value(event, &enabled, &running);
3059 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3060 values[n++] = enabled;
3061 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3062 values[n++] = running;
3063 if (read_format & PERF_FORMAT_ID)
3064 values[n++] = primary_event_id(event);
3065
3066 if (copy_to_user(buf, values, n * sizeof(u64)))
3067 return -EFAULT;
3068
3069 return n * sizeof(u64);
3070 }
3071
3072 /*
3073 * Read the performance event - simple non blocking version for now
3074 */
3075 static ssize_t
3076 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
3077 {
3078 u64 read_format = event->attr.read_format;
3079 int ret;
3080
3081 /*
3082 * Return end-of-file for a read on a event that is in
3083 * error state (i.e. because it was pinned but it couldn't be
3084 * scheduled on to the CPU at some point).
3085 */
3086 if (event->state == PERF_EVENT_STATE_ERROR)
3087 return 0;
3088
3089 if (count < event->read_size)
3090 return -ENOSPC;
3091
3092 WARN_ON_ONCE(event->ctx->parent_ctx);
3093 if (read_format & PERF_FORMAT_GROUP)
3094 ret = perf_event_read_group(event, read_format, buf);
3095 else
3096 ret = perf_event_read_one(event, read_format, buf);
3097
3098 return ret;
3099 }
3100
3101 static ssize_t
3102 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
3103 {
3104 struct perf_event *event = file->private_data;
3105
3106 return perf_read_hw(event, buf, count);
3107 }
3108
3109 static unsigned int perf_poll(struct file *file, poll_table *wait)
3110 {
3111 struct perf_event *event = file->private_data;
3112 struct ring_buffer *rb;
3113 unsigned int events = POLL_HUP;
3114
3115 /*
3116 * Race between perf_event_set_output() and perf_poll(): perf_poll()
3117 * grabs the rb reference but perf_event_set_output() overrides it.
3118 * Here is the timeline for two threads T1, T2:
3119 * t0: T1, rb = rcu_dereference(event->rb)
3120 * t1: T2, old_rb = event->rb
3121 * t2: T2, event->rb = new rb
3122 * t3: T2, ring_buffer_detach(old_rb)
3123 * t4: T1, ring_buffer_attach(rb1)
3124 * t5: T1, poll_wait(event->waitq)
3125 *
3126 * To avoid this problem, we grab mmap_mutex in perf_poll()
3127 * thereby ensuring that the assignment of the new ring buffer
3128 * and the detachment of the old buffer appear atomic to perf_poll()
3129 */
3130 mutex_lock(&event->mmap_mutex);
3131
3132 rcu_read_lock();
3133 rb = rcu_dereference(event->rb);
3134 if (rb) {
3135 ring_buffer_attach(event, rb);
3136 events = atomic_xchg(&rb->poll, 0);
3137 }
3138 rcu_read_unlock();
3139
3140 mutex_unlock(&event->mmap_mutex);
3141
3142 poll_wait(file, &event->waitq, wait);
3143
3144 return events;
3145 }
3146
3147 static void perf_event_reset(struct perf_event *event)
3148 {
3149 (void)perf_event_read(event);
3150 local64_set(&event->count, 0);
3151 perf_event_update_userpage(event);
3152 }
3153
3154 /*
3155 * Holding the top-level event's child_mutex means that any
3156 * descendant process that has inherited this event will block
3157 * in sync_child_event if it goes to exit, thus satisfying the
3158 * task existence requirements of perf_event_enable/disable.
3159 */
3160 static void perf_event_for_each_child(struct perf_event *event,
3161 void (*func)(struct perf_event *))
3162 {
3163 struct perf_event *child;
3164
3165 WARN_ON_ONCE(event->ctx->parent_ctx);
3166 mutex_lock(&event->child_mutex);
3167 func(event);
3168 list_for_each_entry(child, &event->child_list, child_list)
3169 func(child);
3170 mutex_unlock(&event->child_mutex);
3171 }
3172
3173 static void perf_event_for_each(struct perf_event *event,
3174 void (*func)(struct perf_event *))
3175 {
3176 struct perf_event_context *ctx = event->ctx;
3177 struct perf_event *sibling;
3178
3179 WARN_ON_ONCE(ctx->parent_ctx);
3180 mutex_lock(&ctx->mutex);
3181 event = event->group_leader;
3182
3183 perf_event_for_each_child(event, func);
3184 func(event);
3185 list_for_each_entry(sibling, &event->sibling_list, group_entry)
3186 perf_event_for_each_child(event, func);
3187 mutex_unlock(&ctx->mutex);
3188 }
3189
3190 static int perf_event_period(struct perf_event *event, u64 __user *arg)
3191 {
3192 struct perf_event_context *ctx = event->ctx;
3193 int ret = 0;
3194 u64 value;
3195
3196 if (!is_sampling_event(event))
3197 return -EINVAL;
3198
3199 if (copy_from_user(&value, arg, sizeof(value)))
3200 return -EFAULT;
3201
3202 if (!value)
3203 return -EINVAL;
3204
3205 raw_spin_lock_irq(&ctx->lock);
3206 if (event->attr.freq) {
3207 if (value > sysctl_perf_event_sample_rate) {
3208 ret = -EINVAL;
3209 goto unlock;
3210 }
3211
3212 event->attr.sample_freq = value;
3213 } else {
3214 event->attr.sample_period = value;
3215 event->hw.sample_period = value;
3216 }
3217 unlock:
3218 raw_spin_unlock_irq(&ctx->lock);
3219
3220 return ret;
3221 }
3222
3223 static const struct file_operations perf_fops;
3224
3225 static struct perf_event *perf_fget_light(int fd, int *fput_needed)
3226 {
3227 struct file *file;
3228
3229 file = fget_light(fd, fput_needed);
3230 if (!file)
3231 return ERR_PTR(-EBADF);
3232
3233 if (file->f_op != &perf_fops) {
3234 fput_light(file, *fput_needed);
3235 *fput_needed = 0;
3236 return ERR_PTR(-EBADF);
3237 }
3238
3239 return file->private_data;
3240 }
3241
3242 static int perf_event_set_output(struct perf_event *event,
3243 struct perf_event *output_event);
3244 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3245
3246 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3247 {
3248 struct perf_event *event = file->private_data;
3249 void (*func)(struct perf_event *);
3250 u32 flags = arg;
3251
3252 switch (cmd) {
3253 case PERF_EVENT_IOC_ENABLE:
3254 func = perf_event_enable;
3255 break;
3256 case PERF_EVENT_IOC_DISABLE:
3257 func = perf_event_disable;
3258 break;
3259 case PERF_EVENT_IOC_RESET:
3260 func = perf_event_reset;
3261 break;
3262
3263 case PERF_EVENT_IOC_REFRESH:
3264 return perf_event_refresh(event, arg);
3265
3266 case PERF_EVENT_IOC_PERIOD:
3267 return perf_event_period(event, (u64 __user *)arg);
3268
3269 case PERF_EVENT_IOC_SET_OUTPUT:
3270 {
3271 struct perf_event *output_event = NULL;
3272 int fput_needed = 0;
3273 int ret;
3274
3275 if (arg != -1) {
3276 output_event = perf_fget_light(arg, &fput_needed);
3277 if (IS_ERR(output_event))
3278 return PTR_ERR(output_event);
3279 }
3280
3281 ret = perf_event_set_output(event, output_event);
3282 if (output_event)
3283 fput_light(output_event->filp, fput_needed);
3284
3285 return ret;
3286 }
3287
3288 case PERF_EVENT_IOC_SET_FILTER:
3289 return perf_event_set_filter(event, (void __user *)arg);
3290
3291 default:
3292 return -ENOTTY;
3293 }
3294
3295 if (flags & PERF_IOC_FLAG_GROUP)
3296 perf_event_for_each(event, func);
3297 else
3298 perf_event_for_each_child(event, func);
3299
3300 return 0;
3301 }
3302
3303 int perf_event_task_enable(void)
3304 {
3305 struct perf_event *event;
3306
3307 mutex_lock(&current->perf_event_mutex);
3308 list_for_each_entry(event, &current->perf_event_list, owner_entry)
3309 perf_event_for_each_child(event, perf_event_enable);
3310 mutex_unlock(&current->perf_event_mutex);
3311
3312 return 0;
3313 }
3314
3315 int perf_event_task_disable(void)
3316 {
3317 struct perf_event *event;
3318
3319 mutex_lock(&current->perf_event_mutex);
3320 list_for_each_entry(event, &current->perf_event_list, owner_entry)
3321 perf_event_for_each_child(event, perf_event_disable);
3322 mutex_unlock(&current->perf_event_mutex);
3323
3324 return 0;
3325 }
3326
3327 static int perf_event_index(struct perf_event *event)
3328 {
3329 if (event->hw.state & PERF_HES_STOPPED)
3330 return 0;
3331
3332 if (event->state != PERF_EVENT_STATE_ACTIVE)
3333 return 0;
3334
3335 return event->pmu->event_idx(event);
3336 }
3337
3338 static void calc_timer_values(struct perf_event *event,
3339 u64 *now,
3340 u64 *enabled,
3341 u64 *running)
3342 {
3343 u64 ctx_time;
3344
3345 *now = perf_clock();
3346 ctx_time = event->shadow_ctx_time + *now;
3347 *enabled = ctx_time - event->tstamp_enabled;
3348 *running = ctx_time - event->tstamp_running;
3349 }
3350
3351 void __weak perf_update_user_clock(struct perf_event_mmap_page *userpg, u64 now)
3352 {
3353 }
3354
3355 /*
3356 * Callers need to ensure there can be no nesting of this function, otherwise
3357 * the seqlock logic goes bad. We can not serialize this because the arch
3358 * code calls this from NMI context.
3359 */
3360 void perf_event_update_userpage(struct perf_event *event)
3361 {
3362 struct perf_event_mmap_page *userpg;
3363 struct ring_buffer *rb;
3364 u64 enabled, running, now;
3365
3366 rcu_read_lock();
3367 /*
3368 * compute total_time_enabled, total_time_running
3369 * based on snapshot values taken when the event
3370 * was last scheduled in.
3371 *
3372 * we cannot simply called update_context_time()
3373 * because of locking issue as we can be called in
3374 * NMI context
3375 */
3376 calc_timer_values(event, &now, &enabled, &running);
3377 rb = rcu_dereference(event->rb);
3378 if (!rb)
3379 goto unlock;
3380
3381 userpg = rb->user_page;
3382
3383 /*
3384 * Disable preemption so as to not let the corresponding user-space
3385 * spin too long if we get preempted.
3386 */
3387 preempt_disable();
3388 ++userpg->lock;
3389 barrier();
3390 userpg->index = perf_event_index(event);
3391 userpg->offset = perf_event_count(event);
3392 if (userpg->index)
3393 userpg->offset -= local64_read(&event->hw.prev_count);
3394
3395 userpg->time_enabled = enabled +
3396 atomic64_read(&event->child_total_time_enabled);
3397
3398 userpg->time_running = running +
3399 atomic64_read(&event->child_total_time_running);
3400
3401 perf_update_user_clock(userpg, now);
3402
3403 barrier();
3404 ++userpg->lock;
3405 preempt_enable();
3406 unlock:
3407 rcu_read_unlock();
3408 }
3409
3410 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
3411 {
3412 struct perf_event *event = vma->vm_file->private_data;
3413 struct ring_buffer *rb;
3414 int ret = VM_FAULT_SIGBUS;
3415
3416 if (vmf->flags & FAULT_FLAG_MKWRITE) {
3417 if (vmf->pgoff == 0)
3418 ret = 0;
3419 return ret;
3420 }
3421
3422 rcu_read_lock();
3423 rb = rcu_dereference(event->rb);
3424 if (!rb)
3425 goto unlock;
3426
3427 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
3428 goto unlock;
3429
3430 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
3431 if (!vmf->page)
3432 goto unlock;
3433
3434 get_page(vmf->page);
3435 vmf->page->mapping = vma->vm_file->f_mapping;
3436 vmf->page->index = vmf->pgoff;
3437
3438 ret = 0;
3439 unlock:
3440 rcu_read_unlock();
3441
3442 return ret;
3443 }
3444
3445 static void ring_buffer_attach(struct perf_event *event,
3446 struct ring_buffer *rb)
3447 {
3448 unsigned long flags;
3449
3450 if (!list_empty(&event->rb_entry))
3451 return;
3452
3453 spin_lock_irqsave(&rb->event_lock, flags);
3454 if (!list_empty(&event->rb_entry))
3455 goto unlock;
3456
3457 list_add(&event->rb_entry, &rb->event_list);
3458 unlock:
3459 spin_unlock_irqrestore(&rb->event_lock, flags);
3460 }
3461
3462 static void ring_buffer_detach(struct perf_event *event,
3463 struct ring_buffer *rb)
3464 {
3465 unsigned long flags;
3466
3467 if (list_empty(&event->rb_entry))
3468 return;
3469
3470 spin_lock_irqsave(&rb->event_lock, flags);
3471 list_del_init(&event->rb_entry);
3472 wake_up_all(&event->waitq);
3473 spin_unlock_irqrestore(&rb->event_lock, flags);
3474 }
3475
3476 static void ring_buffer_wakeup(struct perf_event *event)
3477 {
3478 struct ring_buffer *rb;
3479
3480 rcu_read_lock();
3481 rb = rcu_dereference(event->rb);
3482 if (!rb)
3483 goto unlock;
3484
3485 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
3486 wake_up_all(&event->waitq);
3487
3488 unlock:
3489 rcu_read_unlock();
3490 }
3491
3492 static void rb_free_rcu(struct rcu_head *rcu_head)
3493 {
3494 struct ring_buffer *rb;
3495
3496 rb = container_of(rcu_head, struct ring_buffer, rcu_head);
3497 rb_free(rb);
3498 }
3499
3500 static struct ring_buffer *ring_buffer_get(struct perf_event *event)
3501 {
3502 struct ring_buffer *rb;
3503
3504 rcu_read_lock();
3505 rb = rcu_dereference(event->rb);
3506 if (rb) {
3507 if (!atomic_inc_not_zero(&rb->refcount))
3508 rb = NULL;
3509 }
3510 rcu_read_unlock();
3511
3512 return rb;
3513 }
3514
3515 static void ring_buffer_put(struct ring_buffer *rb)
3516 {
3517 struct perf_event *event, *n;
3518 unsigned long flags;
3519
3520 if (!atomic_dec_and_test(&rb->refcount))
3521 return;
3522
3523 spin_lock_irqsave(&rb->event_lock, flags);
3524 list_for_each_entry_safe(event, n, &rb->event_list, rb_entry) {
3525 list_del_init(&event->rb_entry);
3526 wake_up_all(&event->waitq);
3527 }
3528 spin_unlock_irqrestore(&rb->event_lock, flags);
3529
3530 call_rcu(&rb->rcu_head, rb_free_rcu);
3531 }
3532
3533 static void perf_mmap_open(struct vm_area_struct *vma)
3534 {
3535 struct perf_event *event = vma->vm_file->private_data;
3536
3537 atomic_inc(&event->mmap_count);
3538 }
3539
3540 static void perf_mmap_close(struct vm_area_struct *vma)
3541 {
3542 struct perf_event *event = vma->vm_file->private_data;
3543
3544 if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
3545 unsigned long size = perf_data_size(event->rb);
3546 struct user_struct *user = event->mmap_user;
3547 struct ring_buffer *rb = event->rb;
3548
3549 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
3550 vma->vm_mm->pinned_vm -= event->mmap_locked;
3551 rcu_assign_pointer(event->rb, NULL);
3552 ring_buffer_detach(event, rb);
3553 mutex_unlock(&event->mmap_mutex);
3554
3555 ring_buffer_put(rb);
3556 free_uid(user);
3557 }
3558 }
3559
3560 static const struct vm_operations_struct perf_mmap_vmops = {
3561 .open = perf_mmap_open,
3562 .close = perf_mmap_close,
3563 .fault = perf_mmap_fault,
3564 .page_mkwrite = perf_mmap_fault,
3565 };
3566
3567 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
3568 {
3569 struct perf_event *event = file->private_data;
3570 unsigned long user_locked, user_lock_limit;
3571 struct user_struct *user = current_user();
3572 unsigned long locked, lock_limit;
3573 struct ring_buffer *rb;
3574 unsigned long vma_size;
3575 unsigned long nr_pages;
3576 long user_extra, extra;
3577 int ret = 0, flags = 0;
3578
3579 /*
3580 * Don't allow mmap() of inherited per-task counters. This would
3581 * create a performance issue due to all children writing to the
3582 * same rb.
3583 */
3584 if (event->cpu == -1 && event->attr.inherit)
3585 return -EINVAL;
3586
3587 if (!(vma->vm_flags & VM_SHARED))
3588 return -EINVAL;
3589
3590 vma_size = vma->vm_end - vma->vm_start;
3591 nr_pages = (vma_size / PAGE_SIZE) - 1;
3592
3593 /*
3594 * If we have rb pages ensure they're a power-of-two number, so we
3595 * can do bitmasks instead of modulo.
3596 */
3597 if (nr_pages != 0 && !is_power_of_2(nr_pages))
3598 return -EINVAL;
3599
3600 if (vma_size != PAGE_SIZE * (1 + nr_pages))
3601 return -EINVAL;
3602
3603 if (vma->vm_pgoff != 0)
3604 return -EINVAL;
3605
3606 WARN_ON_ONCE(event->ctx->parent_ctx);
3607 mutex_lock(&event->mmap_mutex);
3608 if (event->rb) {
3609 if (event->rb->nr_pages == nr_pages)
3610 atomic_inc(&event->rb->refcount);
3611 else
3612 ret = -EINVAL;
3613 goto unlock;
3614 }
3615
3616 user_extra = nr_pages + 1;
3617 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
3618
3619 /*
3620 * Increase the limit linearly with more CPUs:
3621 */
3622 user_lock_limit *= num_online_cpus();
3623
3624 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
3625
3626 extra = 0;
3627 if (user_locked > user_lock_limit)
3628 extra = user_locked - user_lock_limit;
3629
3630 lock_limit = rlimit(RLIMIT_MEMLOCK);
3631 lock_limit >>= PAGE_SHIFT;
3632 locked = vma->vm_mm->pinned_vm + extra;
3633
3634 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
3635 !capable(CAP_IPC_LOCK)) {
3636 ret = -EPERM;
3637 goto unlock;
3638 }
3639
3640 WARN_ON(event->rb);
3641
3642 if (vma->vm_flags & VM_WRITE)
3643 flags |= RING_BUFFER_WRITABLE;
3644
3645 rb = rb_alloc(nr_pages,
3646 event->attr.watermark ? event->attr.wakeup_watermark : 0,
3647 event->cpu, flags);
3648
3649 if (!rb) {
3650 ret = -ENOMEM;
3651 goto unlock;
3652 }
3653 rcu_assign_pointer(event->rb, rb);
3654
3655 atomic_long_add(user_extra, &user->locked_vm);
3656 event->mmap_locked = extra;
3657 event->mmap_user = get_current_user();
3658 vma->vm_mm->pinned_vm += event->mmap_locked;
3659
3660 perf_event_update_userpage(event);
3661
3662 unlock:
3663 if (!ret)
3664 atomic_inc(&event->mmap_count);
3665 mutex_unlock(&event->mmap_mutex);
3666
3667 vma->vm_flags |= VM_RESERVED;
3668 vma->vm_ops = &perf_mmap_vmops;
3669
3670 return ret;
3671 }
3672
3673 static int perf_fasync(int fd, struct file *filp, int on)
3674 {
3675 struct inode *inode = filp->f_path.dentry->d_inode;
3676 struct perf_event *event = filp->private_data;
3677 int retval;
3678
3679 mutex_lock(&inode->i_mutex);
3680 retval = fasync_helper(fd, filp, on, &event->fasync);
3681 mutex_unlock(&inode->i_mutex);
3682
3683 if (retval < 0)
3684 return retval;
3685
3686 return 0;
3687 }
3688
3689 static const struct file_operations perf_fops = {
3690 .llseek = no_llseek,
3691 .release = perf_release,
3692 .read = perf_read,
3693 .poll = perf_poll,
3694 .unlocked_ioctl = perf_ioctl,
3695 .compat_ioctl = perf_ioctl,
3696 .mmap = perf_mmap,
3697 .fasync = perf_fasync,
3698 };
3699
3700 /*
3701 * Perf event wakeup
3702 *
3703 * If there's data, ensure we set the poll() state and publish everything
3704 * to user-space before waking everybody up.
3705 */
3706
3707 void perf_event_wakeup(struct perf_event *event)
3708 {
3709 ring_buffer_wakeup(event);
3710
3711 if (event->pending_kill) {
3712 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
3713 event->pending_kill = 0;
3714 }
3715 }
3716
3717 static void perf_pending_event(struct irq_work *entry)
3718 {
3719 struct perf_event *event = container_of(entry,
3720 struct perf_event, pending);
3721
3722 if (event->pending_disable) {
3723 event->pending_disable = 0;
3724 __perf_event_disable(event);
3725 }
3726
3727 if (event->pending_wakeup) {
3728 event->pending_wakeup = 0;
3729 perf_event_wakeup(event);
3730 }
3731 }
3732
3733 /*
3734 * We assume there is only KVM supporting the callbacks.
3735 * Later on, we might change it to a list if there is
3736 * another virtualization implementation supporting the callbacks.
3737 */
3738 struct perf_guest_info_callbacks *perf_guest_cbs;
3739
3740 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3741 {
3742 perf_guest_cbs = cbs;
3743 return 0;
3744 }
3745 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
3746
3747 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3748 {
3749 perf_guest_cbs = NULL;
3750 return 0;
3751 }
3752 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
3753
3754 static void __perf_event_header__init_id(struct perf_event_header *header,
3755 struct perf_sample_data *data,
3756 struct perf_event *event)
3757 {
3758 u64 sample_type = event->attr.sample_type;
3759
3760 data->type = sample_type;
3761 header->size += event->id_header_size;
3762
3763 if (sample_type & PERF_SAMPLE_TID) {
3764 /* namespace issues */
3765 data->tid_entry.pid = perf_event_pid(event, current);
3766 data->tid_entry.tid = perf_event_tid(event, current);
3767 }
3768
3769 if (sample_type & PERF_SAMPLE_TIME)
3770 data->time = perf_clock();
3771
3772 if (sample_type & PERF_SAMPLE_ID)
3773 data->id = primary_event_id(event);
3774
3775 if (sample_type & PERF_SAMPLE_STREAM_ID)
3776 data->stream_id = event->id;
3777
3778 if (sample_type & PERF_SAMPLE_CPU) {
3779 data->cpu_entry.cpu = raw_smp_processor_id();
3780 data->cpu_entry.reserved = 0;
3781 }
3782 }
3783
3784 void perf_event_header__init_id(struct perf_event_header *header,
3785 struct perf_sample_data *data,
3786 struct perf_event *event)
3787 {
3788 if (event->attr.sample_id_all)
3789 __perf_event_header__init_id(header, data, event);
3790 }
3791
3792 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
3793 struct perf_sample_data *data)
3794 {
3795 u64 sample_type = data->type;
3796
3797 if (sample_type & PERF_SAMPLE_TID)
3798 perf_output_put(handle, data->tid_entry);
3799
3800 if (sample_type & PERF_SAMPLE_TIME)
3801 perf_output_put(handle, data->time);
3802
3803 if (sample_type & PERF_SAMPLE_ID)
3804 perf_output_put(handle, data->id);
3805
3806 if (sample_type & PERF_SAMPLE_STREAM_ID)
3807 perf_output_put(handle, data->stream_id);
3808
3809 if (sample_type & PERF_SAMPLE_CPU)
3810 perf_output_put(handle, data->cpu_entry);
3811 }
3812
3813 void perf_event__output_id_sample(struct perf_event *event,
3814 struct perf_output_handle *handle,
3815 struct perf_sample_data *sample)
3816 {
3817 if (event->attr.sample_id_all)
3818 __perf_event__output_id_sample(handle, sample);
3819 }
3820
3821 static void perf_output_read_one(struct perf_output_handle *handle,
3822 struct perf_event *event,
3823 u64 enabled, u64 running)
3824 {
3825 u64 read_format = event->attr.read_format;
3826 u64 values[4];
3827 int n = 0;
3828
3829 values[n++] = perf_event_count(event);
3830 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3831 values[n++] = enabled +
3832 atomic64_read(&event->child_total_time_enabled);
3833 }
3834 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3835 values[n++] = running +
3836 atomic64_read(&event->child_total_time_running);
3837 }
3838 if (read_format & PERF_FORMAT_ID)
3839 values[n++] = primary_event_id(event);
3840
3841 __output_copy(handle, values, n * sizeof(u64));
3842 }
3843
3844 /*
3845 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3846 */
3847 static void perf_output_read_group(struct perf_output_handle *handle,
3848 struct perf_event *event,
3849 u64 enabled, u64 running)
3850 {
3851 struct perf_event *leader = event->group_leader, *sub;
3852 u64 read_format = event->attr.read_format;
3853 u64 values[5];
3854 int n = 0;
3855
3856 values[n++] = 1 + leader->nr_siblings;
3857
3858 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3859 values[n++] = enabled;
3860
3861 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3862 values[n++] = running;
3863
3864 if (leader != event)
3865 leader->pmu->read(leader);
3866
3867 values[n++] = perf_event_count(leader);
3868 if (read_format & PERF_FORMAT_ID)
3869 values[n++] = primary_event_id(leader);
3870
3871 __output_copy(handle, values, n * sizeof(u64));
3872
3873 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3874 n = 0;
3875
3876 if (sub != event)
3877 sub->pmu->read(sub);
3878
3879 values[n++] = perf_event_count(sub);
3880 if (read_format & PERF_FORMAT_ID)
3881 values[n++] = primary_event_id(sub);
3882
3883 __output_copy(handle, values, n * sizeof(u64));
3884 }
3885 }
3886
3887 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
3888 PERF_FORMAT_TOTAL_TIME_RUNNING)
3889
3890 static void perf_output_read(struct perf_output_handle *handle,
3891 struct perf_event *event)
3892 {
3893 u64 enabled = 0, running = 0, now;
3894 u64 read_format = event->attr.read_format;
3895
3896 /*
3897 * compute total_time_enabled, total_time_running
3898 * based on snapshot values taken when the event
3899 * was last scheduled in.
3900 *
3901 * we cannot simply called update_context_time()
3902 * because of locking issue as we are called in
3903 * NMI context
3904 */
3905 if (read_format & PERF_FORMAT_TOTAL_TIMES)
3906 calc_timer_values(event, &now, &enabled, &running);
3907
3908 if (event->attr.read_format & PERF_FORMAT_GROUP)
3909 perf_output_read_group(handle, event, enabled, running);
3910 else
3911 perf_output_read_one(handle, event, enabled, running);
3912 }
3913
3914 void perf_output_sample(struct perf_output_handle *handle,
3915 struct perf_event_header *header,
3916 struct perf_sample_data *data,
3917 struct perf_event *event)
3918 {
3919 u64 sample_type = data->type;
3920
3921 perf_output_put(handle, *header);
3922
3923 if (sample_type & PERF_SAMPLE_IP)
3924 perf_output_put(handle, data->ip);
3925
3926 if (sample_type & PERF_SAMPLE_TID)
3927 perf_output_put(handle, data->tid_entry);
3928
3929 if (sample_type & PERF_SAMPLE_TIME)
3930 perf_output_put(handle, data->time);
3931
3932 if (sample_type & PERF_SAMPLE_ADDR)
3933 perf_output_put(handle, data->addr);
3934
3935 if (sample_type & PERF_SAMPLE_ID)
3936 perf_output_put(handle, data->id);
3937
3938 if (sample_type & PERF_SAMPLE_STREAM_ID)
3939 perf_output_put(handle, data->stream_id);
3940
3941 if (sample_type & PERF_SAMPLE_CPU)
3942 perf_output_put(handle, data->cpu_entry);
3943
3944 if (sample_type & PERF_SAMPLE_PERIOD)
3945 perf_output_put(handle, data->period);
3946
3947 if (sample_type & PERF_SAMPLE_READ)
3948 perf_output_read(handle, event);
3949
3950 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3951 if (data->callchain) {
3952 int size = 1;
3953
3954 if (data->callchain)
3955 size += data->callchain->nr;
3956
3957 size *= sizeof(u64);
3958
3959 __output_copy(handle, data->callchain, size);
3960 } else {
3961 u64 nr = 0;
3962 perf_output_put(handle, nr);
3963 }
3964 }
3965
3966 if (sample_type & PERF_SAMPLE_RAW) {
3967 if (data->raw) {
3968 perf_output_put(handle, data->raw->size);
3969 __output_copy(handle, data->raw->data,
3970 data->raw->size);
3971 } else {
3972 struct {
3973 u32 size;
3974 u32 data;
3975 } raw = {
3976 .size = sizeof(u32),
3977 .data = 0,
3978 };
3979 perf_output_put(handle, raw);
3980 }
3981 }
3982
3983 if (!event->attr.watermark) {
3984 int wakeup_events = event->attr.wakeup_events;
3985
3986 if (wakeup_events) {
3987 struct ring_buffer *rb = handle->rb;
3988 int events = local_inc_return(&rb->events);
3989
3990 if (events >= wakeup_events) {
3991 local_sub(wakeup_events, &rb->events);
3992 local_inc(&rb->wakeup);
3993 }
3994 }
3995 }
3996
3997 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
3998 if (data->br_stack) {
3999 size_t size;
4000
4001 size = data->br_stack->nr
4002 * sizeof(struct perf_branch_entry);
4003
4004 perf_output_put(handle, data->br_stack->nr);
4005 perf_output_copy(handle, data->br_stack->entries, size);
4006 } else {
4007 /*
4008 * we always store at least the value of nr
4009 */
4010 u64 nr = 0;
4011 perf_output_put(handle, nr);
4012 }
4013 }
4014 }
4015
4016 void perf_prepare_sample(struct perf_event_header *header,
4017 struct perf_sample_data *data,
4018 struct perf_event *event,
4019 struct pt_regs *regs)
4020 {
4021 u64 sample_type = event->attr.sample_type;
4022
4023 header->type = PERF_RECORD_SAMPLE;
4024 header->size = sizeof(*header) + event->header_size;
4025
4026 header->misc = 0;
4027 header->misc |= perf_misc_flags(regs);
4028
4029 __perf_event_header__init_id(header, data, event);
4030
4031 if (sample_type & PERF_SAMPLE_IP)
4032 data->ip = perf_instruction_pointer(regs);
4033
4034 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4035 int size = 1;
4036
4037 data->callchain = perf_callchain(regs);
4038
4039 if (data->callchain)
4040 size += data->callchain->nr;
4041
4042 header->size += size * sizeof(u64);
4043 }
4044
4045 if (sample_type & PERF_SAMPLE_RAW) {
4046 int size = sizeof(u32);
4047
4048 if (data->raw)
4049 size += data->raw->size;
4050 else
4051 size += sizeof(u32);
4052
4053 WARN_ON_ONCE(size & (sizeof(u64)-1));
4054 header->size += size;
4055 }
4056
4057 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4058 int size = sizeof(u64); /* nr */
4059 if (data->br_stack) {
4060 size += data->br_stack->nr
4061 * sizeof(struct perf_branch_entry);
4062 }
4063 header->size += size;
4064 }
4065 }
4066
4067 static void perf_event_output(struct perf_event *event,
4068 struct perf_sample_data *data,
4069 struct pt_regs *regs)
4070 {
4071 struct perf_output_handle handle;
4072 struct perf_event_header header;
4073
4074 /* protect the callchain buffers */
4075 rcu_read_lock();
4076
4077 perf_prepare_sample(&header, data, event, regs);
4078
4079 if (perf_output_begin(&handle, event, header.size))
4080 goto exit;
4081
4082 perf_output_sample(&handle, &header, data, event);
4083
4084 perf_output_end(&handle);
4085
4086 exit:
4087 rcu_read_unlock();
4088 }
4089
4090 /*
4091 * read event_id
4092 */
4093
4094 struct perf_read_event {
4095 struct perf_event_header header;
4096
4097 u32 pid;
4098 u32 tid;
4099 };
4100
4101 static void
4102 perf_event_read_event(struct perf_event *event,
4103 struct task_struct *task)
4104 {
4105 struct perf_output_handle handle;
4106 struct perf_sample_data sample;
4107 struct perf_read_event read_event = {
4108 .header = {
4109 .type = PERF_RECORD_READ,
4110 .misc = 0,
4111 .size = sizeof(read_event) + event->read_size,
4112 },
4113 .pid = perf_event_pid(event, task),
4114 .tid = perf_event_tid(event, task),
4115 };
4116 int ret;
4117
4118 perf_event_header__init_id(&read_event.header, &sample, event);
4119 ret = perf_output_begin(&handle, event, read_event.header.size);
4120 if (ret)
4121 return;
4122
4123 perf_output_put(&handle, read_event);
4124 perf_output_read(&handle, event);
4125 perf_event__output_id_sample(event, &handle, &sample);
4126
4127 perf_output_end(&handle);
4128 }
4129
4130 /*
4131 * task tracking -- fork/exit
4132 *
4133 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
4134 */
4135
4136 struct perf_task_event {
4137 struct task_struct *task;
4138 struct perf_event_context *task_ctx;
4139
4140 struct {
4141 struct perf_event_header header;
4142
4143 u32 pid;
4144 u32 ppid;
4145 u32 tid;
4146 u32 ptid;
4147 u64 time;
4148 } event_id;
4149 };
4150
4151 static void perf_event_task_output(struct perf_event *event,
4152 struct perf_task_event *task_event)
4153 {
4154 struct perf_output_handle handle;
4155 struct perf_sample_data sample;
4156 struct task_struct *task = task_event->task;
4157 int ret, size = task_event->event_id.header.size;
4158
4159 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
4160
4161 ret = perf_output_begin(&handle, event,
4162 task_event->event_id.header.size);
4163 if (ret)
4164 goto out;
4165
4166 task_event->event_id.pid = perf_event_pid(event, task);
4167 task_event->event_id.ppid = perf_event_pid(event, current);
4168
4169 task_event->event_id.tid = perf_event_tid(event, task);
4170 task_event->event_id.ptid = perf_event_tid(event, current);
4171
4172 perf_output_put(&handle, task_event->event_id);
4173
4174 perf_event__output_id_sample(event, &handle, &sample);
4175
4176 perf_output_end(&handle);
4177 out:
4178 task_event->event_id.header.size = size;
4179 }
4180
4181 static int perf_event_task_match(struct perf_event *event)
4182 {
4183 if (event->state < PERF_EVENT_STATE_INACTIVE)
4184 return 0;
4185
4186 if (!event_filter_match(event))
4187 return 0;
4188
4189 if (event->attr.comm || event->attr.mmap ||
4190 event->attr.mmap_data || event->attr.task)
4191 return 1;
4192
4193 return 0;
4194 }
4195
4196 static void perf_event_task_ctx(struct perf_event_context *ctx,
4197 struct perf_task_event *task_event)
4198 {
4199 struct perf_event *event;
4200
4201 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4202 if (perf_event_task_match(event))
4203 perf_event_task_output(event, task_event);
4204 }
4205 }
4206
4207 static void perf_event_task_event(struct perf_task_event *task_event)
4208 {
4209 struct perf_cpu_context *cpuctx;
4210 struct perf_event_context *ctx;
4211 struct pmu *pmu;
4212 int ctxn;
4213
4214 rcu_read_lock();
4215 list_for_each_entry_rcu(pmu, &pmus, entry) {
4216 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4217 if (cpuctx->active_pmu != pmu)
4218 goto next;
4219 perf_event_task_ctx(&cpuctx->ctx, task_event);
4220
4221 ctx = task_event->task_ctx;
4222 if (!ctx) {
4223 ctxn = pmu->task_ctx_nr;
4224 if (ctxn < 0)
4225 goto next;
4226 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4227 }
4228 if (ctx)
4229 perf_event_task_ctx(ctx, task_event);
4230 next:
4231 put_cpu_ptr(pmu->pmu_cpu_context);
4232 }
4233 rcu_read_unlock();
4234 }
4235
4236 static void perf_event_task(struct task_struct *task,
4237 struct perf_event_context *task_ctx,
4238 int new)
4239 {
4240 struct perf_task_event task_event;
4241
4242 if (!atomic_read(&nr_comm_events) &&
4243 !atomic_read(&nr_mmap_events) &&
4244 !atomic_read(&nr_task_events))
4245 return;
4246
4247 task_event = (struct perf_task_event){
4248 .task = task,
4249 .task_ctx = task_ctx,
4250 .event_id = {
4251 .header = {
4252 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
4253 .misc = 0,
4254 .size = sizeof(task_event.event_id),
4255 },
4256 /* .pid */
4257 /* .ppid */
4258 /* .tid */
4259 /* .ptid */
4260 .time = perf_clock(),
4261 },
4262 };
4263
4264 perf_event_task_event(&task_event);
4265 }
4266
4267 void perf_event_fork(struct task_struct *task)
4268 {
4269 perf_event_task(task, NULL, 1);
4270 }
4271
4272 /*
4273 * comm tracking
4274 */
4275
4276 struct perf_comm_event {
4277 struct task_struct *task;
4278 char *comm;
4279 int comm_size;
4280
4281 struct {
4282 struct perf_event_header header;
4283
4284 u32 pid;
4285 u32 tid;
4286 } event_id;
4287 };
4288
4289 static void perf_event_comm_output(struct perf_event *event,
4290 struct perf_comm_event *comm_event)
4291 {
4292 struct perf_output_handle handle;
4293 struct perf_sample_data sample;
4294 int size = comm_event->event_id.header.size;
4295 int ret;
4296
4297 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
4298 ret = perf_output_begin(&handle, event,
4299 comm_event->event_id.header.size);
4300
4301 if (ret)
4302 goto out;
4303
4304 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
4305 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
4306
4307 perf_output_put(&handle, comm_event->event_id);
4308 __output_copy(&handle, comm_event->comm,
4309 comm_event->comm_size);
4310
4311 perf_event__output_id_sample(event, &handle, &sample);
4312
4313 perf_output_end(&handle);
4314 out:
4315 comm_event->event_id.header.size = size;
4316 }
4317
4318 static int perf_event_comm_match(struct perf_event *event)
4319 {
4320 if (event->state < PERF_EVENT_STATE_INACTIVE)
4321 return 0;
4322
4323 if (!event_filter_match(event))
4324 return 0;
4325
4326 if (event->attr.comm)
4327 return 1;
4328
4329 return 0;
4330 }
4331
4332 static void perf_event_comm_ctx(struct perf_event_context *ctx,
4333 struct perf_comm_event *comm_event)
4334 {
4335 struct perf_event *event;
4336
4337 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4338 if (perf_event_comm_match(event))
4339 perf_event_comm_output(event, comm_event);
4340 }
4341 }
4342
4343 static void perf_event_comm_event(struct perf_comm_event *comm_event)
4344 {
4345 struct perf_cpu_context *cpuctx;
4346 struct perf_event_context *ctx;
4347 char comm[TASK_COMM_LEN];
4348 unsigned int size;
4349 struct pmu *pmu;
4350 int ctxn;
4351
4352 memset(comm, 0, sizeof(comm));
4353 strlcpy(comm, comm_event->task->comm, sizeof(comm));
4354 size = ALIGN(strlen(comm)+1, sizeof(u64));
4355
4356 comm_event->comm = comm;
4357 comm_event->comm_size = size;
4358
4359 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
4360 rcu_read_lock();
4361 list_for_each_entry_rcu(pmu, &pmus, entry) {
4362 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4363 if (cpuctx->active_pmu != pmu)
4364 goto next;
4365 perf_event_comm_ctx(&cpuctx->ctx, comm_event);
4366
4367 ctxn = pmu->task_ctx_nr;
4368 if (ctxn < 0)
4369 goto next;
4370
4371 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4372 if (ctx)
4373 perf_event_comm_ctx(ctx, comm_event);
4374 next:
4375 put_cpu_ptr(pmu->pmu_cpu_context);
4376 }
4377 rcu_read_unlock();
4378 }
4379
4380 void perf_event_comm(struct task_struct *task)
4381 {
4382 struct perf_comm_event comm_event;
4383 struct perf_event_context *ctx;
4384 int ctxn;
4385
4386 for_each_task_context_nr(ctxn) {
4387 ctx = task->perf_event_ctxp[ctxn];
4388 if (!ctx)
4389 continue;
4390
4391 perf_event_enable_on_exec(ctx);
4392 }
4393
4394 if (!atomic_read(&nr_comm_events))
4395 return;
4396
4397 comm_event = (struct perf_comm_event){
4398 .task = task,
4399 /* .comm */
4400 /* .comm_size */
4401 .event_id = {
4402 .header = {
4403 .type = PERF_RECORD_COMM,
4404 .misc = 0,
4405 /* .size */
4406 },
4407 /* .pid */
4408 /* .tid */
4409 },
4410 };
4411
4412 perf_event_comm_event(&comm_event);
4413 }
4414
4415 /*
4416 * mmap tracking
4417 */
4418
4419 struct perf_mmap_event {
4420 struct vm_area_struct *vma;
4421
4422 const char *file_name;
4423 int file_size;
4424
4425 struct {
4426 struct perf_event_header header;
4427
4428 u32 pid;
4429 u32 tid;
4430 u64 start;
4431 u64 len;
4432 u64 pgoff;
4433 } event_id;
4434 };
4435
4436 static void perf_event_mmap_output(struct perf_event *event,
4437 struct perf_mmap_event *mmap_event)
4438 {
4439 struct perf_output_handle handle;
4440 struct perf_sample_data sample;
4441 int size = mmap_event->event_id.header.size;
4442 int ret;
4443
4444 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
4445 ret = perf_output_begin(&handle, event,
4446 mmap_event->event_id.header.size);
4447 if (ret)
4448 goto out;
4449
4450 mmap_event->event_id.pid = perf_event_pid(event, current);
4451 mmap_event->event_id.tid = perf_event_tid(event, current);
4452
4453 perf_output_put(&handle, mmap_event->event_id);
4454 __output_copy(&handle, mmap_event->file_name,
4455 mmap_event->file_size);
4456
4457 perf_event__output_id_sample(event, &handle, &sample);
4458
4459 perf_output_end(&handle);
4460 out:
4461 mmap_event->event_id.header.size = size;
4462 }
4463
4464 static int perf_event_mmap_match(struct perf_event *event,
4465 struct perf_mmap_event *mmap_event,
4466 int executable)
4467 {
4468 if (event->state < PERF_EVENT_STATE_INACTIVE)
4469 return 0;
4470
4471 if (!event_filter_match(event))
4472 return 0;
4473
4474 if ((!executable && event->attr.mmap_data) ||
4475 (executable && event->attr.mmap))
4476 return 1;
4477
4478 return 0;
4479 }
4480
4481 static void perf_event_mmap_ctx(struct perf_event_context *ctx,
4482 struct perf_mmap_event *mmap_event,
4483 int executable)
4484 {
4485 struct perf_event *event;
4486
4487 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4488 if (perf_event_mmap_match(event, mmap_event, executable))
4489 perf_event_mmap_output(event, mmap_event);
4490 }
4491 }
4492
4493 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
4494 {
4495 struct perf_cpu_context *cpuctx;
4496 struct perf_event_context *ctx;
4497 struct vm_area_struct *vma = mmap_event->vma;
4498 struct file *file = vma->vm_file;
4499 unsigned int size;
4500 char tmp[16];
4501 char *buf = NULL;
4502 const char *name;
4503 struct pmu *pmu;
4504 int ctxn;
4505
4506 memset(tmp, 0, sizeof(tmp));
4507
4508 if (file) {
4509 /*
4510 * d_path works from the end of the rb backwards, so we
4511 * need to add enough zero bytes after the string to handle
4512 * the 64bit alignment we do later.
4513 */
4514 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
4515 if (!buf) {
4516 name = strncpy(tmp, "//enomem", sizeof(tmp));
4517 goto got_name;
4518 }
4519 name = d_path(&file->f_path, buf, PATH_MAX);
4520 if (IS_ERR(name)) {
4521 name = strncpy(tmp, "//toolong", sizeof(tmp));
4522 goto got_name;
4523 }
4524 } else {
4525 if (arch_vma_name(mmap_event->vma)) {
4526 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
4527 sizeof(tmp));
4528 goto got_name;
4529 }
4530
4531 if (!vma->vm_mm) {
4532 name = strncpy(tmp, "[vdso]", sizeof(tmp));
4533 goto got_name;
4534 } else if (vma->vm_start <= vma->vm_mm->start_brk &&
4535 vma->vm_end >= vma->vm_mm->brk) {
4536 name = strncpy(tmp, "[heap]", sizeof(tmp));
4537 goto got_name;
4538 } else if (vma->vm_start <= vma->vm_mm->start_stack &&
4539 vma->vm_end >= vma->vm_mm->start_stack) {
4540 name = strncpy(tmp, "[stack]", sizeof(tmp));
4541 goto got_name;
4542 }
4543
4544 name = strncpy(tmp, "//anon", sizeof(tmp));
4545 goto got_name;
4546 }
4547
4548 got_name:
4549 size = ALIGN(strlen(name)+1, sizeof(u64));
4550
4551 mmap_event->file_name = name;
4552 mmap_event->file_size = size;
4553
4554 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
4555
4556 rcu_read_lock();
4557 list_for_each_entry_rcu(pmu, &pmus, entry) {
4558 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4559 if (cpuctx->active_pmu != pmu)
4560 goto next;
4561 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event,
4562 vma->vm_flags & VM_EXEC);
4563
4564 ctxn = pmu->task_ctx_nr;
4565 if (ctxn < 0)
4566 goto next;
4567
4568 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4569 if (ctx) {
4570 perf_event_mmap_ctx(ctx, mmap_event,
4571 vma->vm_flags & VM_EXEC);
4572 }
4573 next:
4574 put_cpu_ptr(pmu->pmu_cpu_context);
4575 }
4576 rcu_read_unlock();
4577
4578 kfree(buf);
4579 }
4580
4581 void perf_event_mmap(struct vm_area_struct *vma)
4582 {
4583 struct perf_mmap_event mmap_event;
4584
4585 if (!atomic_read(&nr_mmap_events))
4586 return;
4587
4588 mmap_event = (struct perf_mmap_event){
4589 .vma = vma,
4590 /* .file_name */
4591 /* .file_size */
4592 .event_id = {
4593 .header = {
4594 .type = PERF_RECORD_MMAP,
4595 .misc = PERF_RECORD_MISC_USER,
4596 /* .size */
4597 },
4598 /* .pid */
4599 /* .tid */
4600 .start = vma->vm_start,
4601 .len = vma->vm_end - vma->vm_start,
4602 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
4603 },
4604 };
4605
4606 perf_event_mmap_event(&mmap_event);
4607 }
4608
4609 /*
4610 * IRQ throttle logging
4611 */
4612
4613 static void perf_log_throttle(struct perf_event *event, int enable)
4614 {
4615 struct perf_output_handle handle;
4616 struct perf_sample_data sample;
4617 int ret;
4618
4619 struct {
4620 struct perf_event_header header;
4621 u64 time;
4622 u64 id;
4623 u64 stream_id;
4624 } throttle_event = {
4625 .header = {
4626 .type = PERF_RECORD_THROTTLE,
4627 .misc = 0,
4628 .size = sizeof(throttle_event),
4629 },
4630 .time = perf_clock(),
4631 .id = primary_event_id(event),
4632 .stream_id = event->id,
4633 };
4634
4635 if (enable)
4636 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
4637
4638 perf_event_header__init_id(&throttle_event.header, &sample, event);
4639
4640 ret = perf_output_begin(&handle, event,
4641 throttle_event.header.size);
4642 if (ret)
4643 return;
4644
4645 perf_output_put(&handle, throttle_event);
4646 perf_event__output_id_sample(event, &handle, &sample);
4647 perf_output_end(&handle);
4648 }
4649
4650 /*
4651 * Generic event overflow handling, sampling.
4652 */
4653
4654 static int __perf_event_overflow(struct perf_event *event,
4655 int throttle, struct perf_sample_data *data,
4656 struct pt_regs *regs)
4657 {
4658 int events = atomic_read(&event->event_limit);
4659 struct hw_perf_event *hwc = &event->hw;
4660 u64 seq;
4661 int ret = 0;
4662
4663 /*
4664 * Non-sampling counters might still use the PMI to fold short
4665 * hardware counters, ignore those.
4666 */
4667 if (unlikely(!is_sampling_event(event)))
4668 return 0;
4669
4670 seq = __this_cpu_read(perf_throttled_seq);
4671 if (seq != hwc->interrupts_seq) {
4672 hwc->interrupts_seq = seq;
4673 hwc->interrupts = 1;
4674 } else {
4675 hwc->interrupts++;
4676 if (unlikely(throttle
4677 && hwc->interrupts >= max_samples_per_tick)) {
4678 __this_cpu_inc(perf_throttled_count);
4679 hwc->interrupts = MAX_INTERRUPTS;
4680 perf_log_throttle(event, 0);
4681 ret = 1;
4682 }
4683 }
4684
4685 if (event->attr.freq) {
4686 u64 now = perf_clock();
4687 s64 delta = now - hwc->freq_time_stamp;
4688
4689 hwc->freq_time_stamp = now;
4690
4691 if (delta > 0 && delta < 2*TICK_NSEC)
4692 perf_adjust_period(event, delta, hwc->last_period, true);
4693 }
4694
4695 /*
4696 * XXX event_limit might not quite work as expected on inherited
4697 * events
4698 */
4699
4700 event->pending_kill = POLL_IN;
4701 if (events && atomic_dec_and_test(&event->event_limit)) {
4702 ret = 1;
4703 event->pending_kill = POLL_HUP;
4704 event->pending_disable = 1;
4705 irq_work_queue(&event->pending);
4706 }
4707
4708 if (event->overflow_handler)
4709 event->overflow_handler(event, data, regs);
4710 else
4711 perf_event_output(event, data, regs);
4712
4713 if (event->fasync && event->pending_kill) {
4714 event->pending_wakeup = 1;
4715 irq_work_queue(&event->pending);
4716 }
4717
4718 return ret;
4719 }
4720
4721 int perf_event_overflow(struct perf_event *event,
4722 struct perf_sample_data *data,
4723 struct pt_regs *regs)
4724 {
4725 return __perf_event_overflow(event, 1, data, regs);
4726 }
4727
4728 /*
4729 * Generic software event infrastructure
4730 */
4731
4732 struct swevent_htable {
4733 struct swevent_hlist *swevent_hlist;
4734 struct mutex hlist_mutex;
4735 int hlist_refcount;
4736
4737 /* Recursion avoidance in each contexts */
4738 int recursion[PERF_NR_CONTEXTS];
4739 };
4740
4741 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
4742
4743 /*
4744 * We directly increment event->count and keep a second value in
4745 * event->hw.period_left to count intervals. This period event
4746 * is kept in the range [-sample_period, 0] so that we can use the
4747 * sign as trigger.
4748 */
4749
4750 static u64 perf_swevent_set_period(struct perf_event *event)
4751 {
4752 struct hw_perf_event *hwc = &event->hw;
4753 u64 period = hwc->last_period;
4754 u64 nr, offset;
4755 s64 old, val;
4756
4757 hwc->last_period = hwc->sample_period;
4758
4759 again:
4760 old = val = local64_read(&hwc->period_left);
4761 if (val < 0)
4762 return 0;
4763
4764 nr = div64_u64(period + val, period);
4765 offset = nr * period;
4766 val -= offset;
4767 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
4768 goto again;
4769
4770 return nr;
4771 }
4772
4773 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
4774 struct perf_sample_data *data,
4775 struct pt_regs *regs)
4776 {
4777 struct hw_perf_event *hwc = &event->hw;
4778 int throttle = 0;
4779
4780 if (!overflow)
4781 overflow = perf_swevent_set_period(event);
4782
4783 if (hwc->interrupts == MAX_INTERRUPTS)
4784 return;
4785
4786 for (; overflow; overflow--) {
4787 if (__perf_event_overflow(event, throttle,
4788 data, regs)) {
4789 /*
4790 * We inhibit the overflow from happening when
4791 * hwc->interrupts == MAX_INTERRUPTS.
4792 */
4793 break;
4794 }
4795 throttle = 1;
4796 }
4797 }
4798
4799 static void perf_swevent_event(struct perf_event *event, u64 nr,
4800 struct perf_sample_data *data,
4801 struct pt_regs *regs)
4802 {
4803 struct hw_perf_event *hwc = &event->hw;
4804
4805 local64_add(nr, &event->count);
4806
4807 if (!regs)
4808 return;
4809
4810 if (!is_sampling_event(event))
4811 return;
4812
4813 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
4814 data->period = nr;
4815 return perf_swevent_overflow(event, 1, data, regs);
4816 } else
4817 data->period = event->hw.last_period;
4818
4819 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
4820 return perf_swevent_overflow(event, 1, data, regs);
4821
4822 if (local64_add_negative(nr, &hwc->period_left))
4823 return;
4824
4825 perf_swevent_overflow(event, 0, data, regs);
4826 }
4827
4828 static int perf_exclude_event(struct perf_event *event,
4829 struct pt_regs *regs)
4830 {
4831 if (event->hw.state & PERF_HES_STOPPED)
4832 return 1;
4833
4834 if (regs) {
4835 if (event->attr.exclude_user && user_mode(regs))
4836 return 1;
4837
4838 if (event->attr.exclude_kernel && !user_mode(regs))
4839 return 1;
4840 }
4841
4842 return 0;
4843 }
4844
4845 static int perf_swevent_match(struct perf_event *event,
4846 enum perf_type_id type,
4847 u32 event_id,
4848 struct perf_sample_data *data,
4849 struct pt_regs *regs)
4850 {
4851 if (event->attr.type != type)
4852 return 0;
4853
4854 if (event->attr.config != event_id)
4855 return 0;
4856
4857 if (perf_exclude_event(event, regs))
4858 return 0;
4859
4860 return 1;
4861 }
4862
4863 static inline u64 swevent_hash(u64 type, u32 event_id)
4864 {
4865 u64 val = event_id | (type << 32);
4866
4867 return hash_64(val, SWEVENT_HLIST_BITS);
4868 }
4869
4870 static inline struct hlist_head *
4871 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
4872 {
4873 u64 hash = swevent_hash(type, event_id);
4874
4875 return &hlist->heads[hash];
4876 }
4877
4878 /* For the read side: events when they trigger */
4879 static inline struct hlist_head *
4880 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
4881 {
4882 struct swevent_hlist *hlist;
4883
4884 hlist = rcu_dereference(swhash->swevent_hlist);
4885 if (!hlist)
4886 return NULL;
4887
4888 return __find_swevent_head(hlist, type, event_id);
4889 }
4890
4891 /* For the event head insertion and removal in the hlist */
4892 static inline struct hlist_head *
4893 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
4894 {
4895 struct swevent_hlist *hlist;
4896 u32 event_id = event->attr.config;
4897 u64 type = event->attr.type;
4898
4899 /*
4900 * Event scheduling is always serialized against hlist allocation
4901 * and release. Which makes the protected version suitable here.
4902 * The context lock guarantees that.
4903 */
4904 hlist = rcu_dereference_protected(swhash->swevent_hlist,
4905 lockdep_is_held(&event->ctx->lock));
4906 if (!hlist)
4907 return NULL;
4908
4909 return __find_swevent_head(hlist, type, event_id);
4910 }
4911
4912 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
4913 u64 nr,
4914 struct perf_sample_data *data,
4915 struct pt_regs *regs)
4916 {
4917 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4918 struct perf_event *event;
4919 struct hlist_node *node;
4920 struct hlist_head *head;
4921
4922 rcu_read_lock();
4923 head = find_swevent_head_rcu(swhash, type, event_id);
4924 if (!head)
4925 goto end;
4926
4927 hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4928 if (perf_swevent_match(event, type, event_id, data, regs))
4929 perf_swevent_event(event, nr, data, regs);
4930 }
4931 end:
4932 rcu_read_unlock();
4933 }
4934
4935 int perf_swevent_get_recursion_context(void)
4936 {
4937 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4938
4939 return get_recursion_context(swhash->recursion);
4940 }
4941 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
4942
4943 inline void perf_swevent_put_recursion_context(int rctx)
4944 {
4945 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4946
4947 put_recursion_context(swhash->recursion, rctx);
4948 }
4949
4950 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
4951 {
4952 struct perf_sample_data data;
4953 int rctx;
4954
4955 preempt_disable_notrace();
4956 rctx = perf_swevent_get_recursion_context();
4957 if (rctx < 0)
4958 return;
4959
4960 perf_sample_data_init(&data, addr);
4961
4962 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
4963
4964 perf_swevent_put_recursion_context(rctx);
4965 preempt_enable_notrace();
4966 }
4967
4968 static void perf_swevent_read(struct perf_event *event)
4969 {
4970 }
4971
4972 static int perf_swevent_add(struct perf_event *event, int flags)
4973 {
4974 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4975 struct hw_perf_event *hwc = &event->hw;
4976 struct hlist_head *head;
4977
4978 if (is_sampling_event(event)) {
4979 hwc->last_period = hwc->sample_period;
4980 perf_swevent_set_period(event);
4981 }
4982
4983 hwc->state = !(flags & PERF_EF_START);
4984
4985 head = find_swevent_head(swhash, event);
4986 if (WARN_ON_ONCE(!head))
4987 return -EINVAL;
4988
4989 hlist_add_head_rcu(&event->hlist_entry, head);
4990
4991 return 0;
4992 }
4993
4994 static void perf_swevent_del(struct perf_event *event, int flags)
4995 {
4996 hlist_del_rcu(&event->hlist_entry);
4997 }
4998
4999 static void perf_swevent_start(struct perf_event *event, int flags)
5000 {
5001 event->hw.state = 0;
5002 }
5003
5004 static void perf_swevent_stop(struct perf_event *event, int flags)
5005 {
5006 event->hw.state = PERF_HES_STOPPED;
5007 }
5008
5009 /* Deref the hlist from the update side */
5010 static inline struct swevent_hlist *
5011 swevent_hlist_deref(struct swevent_htable *swhash)
5012 {
5013 return rcu_dereference_protected(swhash->swevent_hlist,
5014 lockdep_is_held(&swhash->hlist_mutex));
5015 }
5016
5017 static void swevent_hlist_release(struct swevent_htable *swhash)
5018 {
5019 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
5020
5021 if (!hlist)
5022 return;
5023
5024 rcu_assign_pointer(swhash->swevent_hlist, NULL);
5025 kfree_rcu(hlist, rcu_head);
5026 }
5027
5028 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
5029 {
5030 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5031
5032 mutex_lock(&swhash->hlist_mutex);
5033
5034 if (!--swhash->hlist_refcount)
5035 swevent_hlist_release(swhash);
5036
5037 mutex_unlock(&swhash->hlist_mutex);
5038 }
5039
5040 static void swevent_hlist_put(struct perf_event *event)
5041 {
5042 int cpu;
5043
5044 if (event->cpu != -1) {
5045 swevent_hlist_put_cpu(event, event->cpu);
5046 return;
5047 }
5048
5049 for_each_possible_cpu(cpu)
5050 swevent_hlist_put_cpu(event, cpu);
5051 }
5052
5053 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
5054 {
5055 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5056 int err = 0;
5057
5058 mutex_lock(&swhash->hlist_mutex);
5059
5060 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
5061 struct swevent_hlist *hlist;
5062
5063 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
5064 if (!hlist) {
5065 err = -ENOMEM;
5066 goto exit;
5067 }
5068 rcu_assign_pointer(swhash->swevent_hlist, hlist);
5069 }
5070 swhash->hlist_refcount++;
5071 exit:
5072 mutex_unlock(&swhash->hlist_mutex);
5073
5074 return err;
5075 }
5076
5077 static int swevent_hlist_get(struct perf_event *event)
5078 {
5079 int err;
5080 int cpu, failed_cpu;
5081
5082 if (event->cpu != -1)
5083 return swevent_hlist_get_cpu(event, event->cpu);
5084
5085 get_online_cpus();
5086 for_each_possible_cpu(cpu) {
5087 err = swevent_hlist_get_cpu(event, cpu);
5088 if (err) {
5089 failed_cpu = cpu;
5090 goto fail;
5091 }
5092 }
5093 put_online_cpus();
5094
5095 return 0;
5096 fail:
5097 for_each_possible_cpu(cpu) {
5098 if (cpu == failed_cpu)
5099 break;
5100 swevent_hlist_put_cpu(event, cpu);
5101 }
5102
5103 put_online_cpus();
5104 return err;
5105 }
5106
5107 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
5108
5109 static void sw_perf_event_destroy(struct perf_event *event)
5110 {
5111 u64 event_id = event->attr.config;
5112
5113 WARN_ON(event->parent);
5114
5115 static_key_slow_dec(&perf_swevent_enabled[event_id]);
5116 swevent_hlist_put(event);
5117 }
5118
5119 static int perf_swevent_init(struct perf_event *event)
5120 {
5121 int event_id = event->attr.config;
5122
5123 if (event->attr.type != PERF_TYPE_SOFTWARE)
5124 return -ENOENT;
5125
5126 /*
5127 * no branch sampling for software events
5128 */
5129 if (has_branch_stack(event))
5130 return -EOPNOTSUPP;
5131
5132 switch (event_id) {
5133 case PERF_COUNT_SW_CPU_CLOCK:
5134 case PERF_COUNT_SW_TASK_CLOCK:
5135 return -ENOENT;
5136
5137 default:
5138 break;
5139 }
5140
5141 if (event_id >= PERF_COUNT_SW_MAX)
5142 return -ENOENT;
5143
5144 if (!event->parent) {
5145 int err;
5146
5147 err = swevent_hlist_get(event);
5148 if (err)
5149 return err;
5150
5151 static_key_slow_inc(&perf_swevent_enabled[event_id]);
5152 event->destroy = sw_perf_event_destroy;
5153 }
5154
5155 return 0;
5156 }
5157
5158 static int perf_swevent_event_idx(struct perf_event *event)
5159 {
5160 return 0;
5161 }
5162
5163 static struct pmu perf_swevent = {
5164 .task_ctx_nr = perf_sw_context,
5165
5166 .event_init = perf_swevent_init,
5167 .add = perf_swevent_add,
5168 .del = perf_swevent_del,
5169 .start = perf_swevent_start,
5170 .stop = perf_swevent_stop,
5171 .read = perf_swevent_read,
5172
5173 .event_idx = perf_swevent_event_idx,
5174 };
5175
5176 #ifdef CONFIG_EVENT_TRACING
5177
5178 static int perf_tp_filter_match(struct perf_event *event,
5179 struct perf_sample_data *data)
5180 {
5181 void *record = data->raw->data;
5182
5183 if (likely(!event->filter) || filter_match_preds(event->filter, record))
5184 return 1;
5185 return 0;
5186 }
5187
5188 static int perf_tp_event_match(struct perf_event *event,
5189 struct perf_sample_data *data,
5190 struct pt_regs *regs)
5191 {
5192 if (event->hw.state & PERF_HES_STOPPED)
5193 return 0;
5194 /*
5195 * All tracepoints are from kernel-space.
5196 */
5197 if (event->attr.exclude_kernel)
5198 return 0;
5199
5200 if (!perf_tp_filter_match(event, data))
5201 return 0;
5202
5203 return 1;
5204 }
5205
5206 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
5207 struct pt_regs *regs, struct hlist_head *head, int rctx)
5208 {
5209 struct perf_sample_data data;
5210 struct perf_event *event;
5211 struct hlist_node *node;
5212
5213 struct perf_raw_record raw = {
5214 .size = entry_size,
5215 .data = record,
5216 };
5217
5218 perf_sample_data_init(&data, addr);
5219 data.raw = &raw;
5220
5221 hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
5222 if (perf_tp_event_match(event, &data, regs))
5223 perf_swevent_event(event, count, &data, regs);
5224 }
5225
5226 perf_swevent_put_recursion_context(rctx);
5227 }
5228 EXPORT_SYMBOL_GPL(perf_tp_event);
5229
5230 static void tp_perf_event_destroy(struct perf_event *event)
5231 {
5232 perf_trace_destroy(event);
5233 }
5234
5235 static int perf_tp_event_init(struct perf_event *event)
5236 {
5237 int err;
5238
5239 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5240 return -ENOENT;
5241
5242 /*
5243 * no branch sampling for tracepoint events
5244 */
5245 if (has_branch_stack(event))
5246 return -EOPNOTSUPP;
5247
5248 err = perf_trace_init(event);
5249 if (err)
5250 return err;
5251
5252 event->destroy = tp_perf_event_destroy;
5253
5254 return 0;
5255 }
5256
5257 static struct pmu perf_tracepoint = {
5258 .task_ctx_nr = perf_sw_context,
5259
5260 .event_init = perf_tp_event_init,
5261 .add = perf_trace_add,
5262 .del = perf_trace_del,
5263 .start = perf_swevent_start,
5264 .stop = perf_swevent_stop,
5265 .read = perf_swevent_read,
5266
5267 .event_idx = perf_swevent_event_idx,
5268 };
5269
5270 static inline void perf_tp_register(void)
5271 {
5272 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
5273 }
5274
5275 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5276 {
5277 char *filter_str;
5278 int ret;
5279
5280 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5281 return -EINVAL;
5282
5283 filter_str = strndup_user(arg, PAGE_SIZE);
5284 if (IS_ERR(filter_str))
5285 return PTR_ERR(filter_str);
5286
5287 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
5288
5289 kfree(filter_str);
5290 return ret;
5291 }
5292
5293 static void perf_event_free_filter(struct perf_event *event)
5294 {
5295 ftrace_profile_free_filter(event);
5296 }
5297
5298 #else
5299
5300 static inline void perf_tp_register(void)
5301 {
5302 }
5303
5304 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5305 {
5306 return -ENOENT;
5307 }
5308
5309 static void perf_event_free_filter(struct perf_event *event)
5310 {
5311 }
5312
5313 #endif /* CONFIG_EVENT_TRACING */
5314
5315 #ifdef CONFIG_HAVE_HW_BREAKPOINT
5316 void perf_bp_event(struct perf_event *bp, void *data)
5317 {
5318 struct perf_sample_data sample;
5319 struct pt_regs *regs = data;
5320
5321 perf_sample_data_init(&sample, bp->attr.bp_addr);
5322
5323 if (!bp->hw.state && !perf_exclude_event(bp, regs))
5324 perf_swevent_event(bp, 1, &sample, regs);
5325 }
5326 #endif
5327
5328 /*
5329 * hrtimer based swevent callback
5330 */
5331
5332 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
5333 {
5334 enum hrtimer_restart ret = HRTIMER_RESTART;
5335 struct perf_sample_data data;
5336 struct pt_regs *regs;
5337 struct perf_event *event;
5338 u64 period;
5339
5340 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
5341
5342 if (event->state != PERF_EVENT_STATE_ACTIVE)
5343 return HRTIMER_NORESTART;
5344
5345 event->pmu->read(event);
5346
5347 perf_sample_data_init(&data, 0);
5348 data.period = event->hw.last_period;
5349 regs = get_irq_regs();
5350
5351 if (regs && !perf_exclude_event(event, regs)) {
5352 if (!(event->attr.exclude_idle && is_idle_task(current)))
5353 if (perf_event_overflow(event, &data, regs))
5354 ret = HRTIMER_NORESTART;
5355 }
5356
5357 period = max_t(u64, 10000, event->hw.sample_period);
5358 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
5359
5360 return ret;
5361 }
5362
5363 static void perf_swevent_start_hrtimer(struct perf_event *event)
5364 {
5365 struct hw_perf_event *hwc = &event->hw;
5366 s64 period;
5367
5368 if (!is_sampling_event(event))
5369 return;
5370
5371 period = local64_read(&hwc->period_left);
5372 if (period) {
5373 if (period < 0)
5374 period = 10000;
5375
5376 local64_set(&hwc->period_left, 0);
5377 } else {
5378 period = max_t(u64, 10000, hwc->sample_period);
5379 }
5380 __hrtimer_start_range_ns(&hwc->hrtimer,
5381 ns_to_ktime(period), 0,
5382 HRTIMER_MODE_REL_PINNED, 0);
5383 }
5384
5385 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
5386 {
5387 struct hw_perf_event *hwc = &event->hw;
5388
5389 if (is_sampling_event(event)) {
5390 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
5391 local64_set(&hwc->period_left, ktime_to_ns(remaining));
5392
5393 hrtimer_cancel(&hwc->hrtimer);
5394 }
5395 }
5396
5397 static void perf_swevent_init_hrtimer(struct perf_event *event)
5398 {
5399 struct hw_perf_event *hwc = &event->hw;
5400
5401 if (!is_sampling_event(event))
5402 return;
5403
5404 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5405 hwc->hrtimer.function = perf_swevent_hrtimer;
5406
5407 /*
5408 * Since hrtimers have a fixed rate, we can do a static freq->period
5409 * mapping and avoid the whole period adjust feedback stuff.
5410 */
5411 if (event->attr.freq) {
5412 long freq = event->attr.sample_freq;
5413
5414 event->attr.sample_period = NSEC_PER_SEC / freq;
5415 hwc->sample_period = event->attr.sample_period;
5416 local64_set(&hwc->period_left, hwc->sample_period);
5417 event->attr.freq = 0;
5418 }
5419 }
5420
5421 /*
5422 * Software event: cpu wall time clock
5423 */
5424
5425 static void cpu_clock_event_update(struct perf_event *event)
5426 {
5427 s64 prev;
5428 u64 now;
5429
5430 now = local_clock();
5431 prev = local64_xchg(&event->hw.prev_count, now);
5432 local64_add(now - prev, &event->count);
5433 }
5434
5435 static void cpu_clock_event_start(struct perf_event *event, int flags)
5436 {
5437 local64_set(&event->hw.prev_count, local_clock());
5438 perf_swevent_start_hrtimer(event);
5439 }
5440
5441 static void cpu_clock_event_stop(struct perf_event *event, int flags)
5442 {
5443 perf_swevent_cancel_hrtimer(event);
5444 cpu_clock_event_update(event);
5445 }
5446
5447 static int cpu_clock_event_add(struct perf_event *event, int flags)
5448 {
5449 if (flags & PERF_EF_START)
5450 cpu_clock_event_start(event, flags);
5451
5452 return 0;
5453 }
5454
5455 static void cpu_clock_event_del(struct perf_event *event, int flags)
5456 {
5457 cpu_clock_event_stop(event, flags);
5458 }
5459
5460 static void cpu_clock_event_read(struct perf_event *event)
5461 {
5462 cpu_clock_event_update(event);
5463 }
5464
5465 static int cpu_clock_event_init(struct perf_event *event)
5466 {
5467 if (event->attr.type != PERF_TYPE_SOFTWARE)
5468 return -ENOENT;
5469
5470 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
5471 return -ENOENT;
5472
5473 /*
5474 * no branch sampling for software events
5475 */
5476 if (has_branch_stack(event))
5477 return -EOPNOTSUPP;
5478
5479 perf_swevent_init_hrtimer(event);
5480
5481 return 0;
5482 }
5483
5484 static struct pmu perf_cpu_clock = {
5485 .task_ctx_nr = perf_sw_context,
5486
5487 .event_init = cpu_clock_event_init,
5488 .add = cpu_clock_event_add,
5489 .del = cpu_clock_event_del,
5490 .start = cpu_clock_event_start,
5491 .stop = cpu_clock_event_stop,
5492 .read = cpu_clock_event_read,
5493
5494 .event_idx = perf_swevent_event_idx,
5495 };
5496
5497 /*
5498 * Software event: task time clock
5499 */
5500
5501 static void task_clock_event_update(struct perf_event *event, u64 now)
5502 {
5503 u64 prev;
5504 s64 delta;
5505
5506 prev = local64_xchg(&event->hw.prev_count, now);
5507 delta = now - prev;
5508 local64_add(delta, &event->count);
5509 }
5510
5511 static void task_clock_event_start(struct perf_event *event, int flags)
5512 {
5513 local64_set(&event->hw.prev_count, event->ctx->time);
5514 perf_swevent_start_hrtimer(event);
5515 }
5516
5517 static void task_clock_event_stop(struct perf_event *event, int flags)
5518 {
5519 perf_swevent_cancel_hrtimer(event);
5520 task_clock_event_update(event, event->ctx->time);
5521 }
5522
5523 static int task_clock_event_add(struct perf_event *event, int flags)
5524 {
5525 if (flags & PERF_EF_START)
5526 task_clock_event_start(event, flags);
5527
5528 return 0;
5529 }
5530
5531 static void task_clock_event_del(struct perf_event *event, int flags)
5532 {
5533 task_clock_event_stop(event, PERF_EF_UPDATE);
5534 }
5535
5536 static void task_clock_event_read(struct perf_event *event)
5537 {
5538 u64 now = perf_clock();
5539 u64 delta = now - event->ctx->timestamp;
5540 u64 time = event->ctx->time + delta;
5541
5542 task_clock_event_update(event, time);
5543 }
5544
5545 static int task_clock_event_init(struct perf_event *event)
5546 {
5547 if (event->attr.type != PERF_TYPE_SOFTWARE)
5548 return -ENOENT;
5549
5550 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
5551 return -ENOENT;
5552
5553 /*
5554 * no branch sampling for software events
5555 */
5556 if (has_branch_stack(event))
5557 return -EOPNOTSUPP;
5558
5559 perf_swevent_init_hrtimer(event);
5560
5561 return 0;
5562 }
5563
5564 static struct pmu perf_task_clock = {
5565 .task_ctx_nr = perf_sw_context,
5566
5567 .event_init = task_clock_event_init,
5568 .add = task_clock_event_add,
5569 .del = task_clock_event_del,
5570 .start = task_clock_event_start,
5571 .stop = task_clock_event_stop,
5572 .read = task_clock_event_read,
5573
5574 .event_idx = perf_swevent_event_idx,
5575 };
5576
5577 static void perf_pmu_nop_void(struct pmu *pmu)
5578 {
5579 }
5580
5581 static int perf_pmu_nop_int(struct pmu *pmu)
5582 {
5583 return 0;
5584 }
5585
5586 static void perf_pmu_start_txn(struct pmu *pmu)
5587 {
5588 perf_pmu_disable(pmu);
5589 }
5590
5591 static int perf_pmu_commit_txn(struct pmu *pmu)
5592 {
5593 perf_pmu_enable(pmu);
5594 return 0;
5595 }
5596
5597 static void perf_pmu_cancel_txn(struct pmu *pmu)
5598 {
5599 perf_pmu_enable(pmu);
5600 }
5601
5602 static int perf_event_idx_default(struct perf_event *event)
5603 {
5604 return event->hw.idx + 1;
5605 }
5606
5607 /*
5608 * Ensures all contexts with the same task_ctx_nr have the same
5609 * pmu_cpu_context too.
5610 */
5611 static void *find_pmu_context(int ctxn)
5612 {
5613 struct pmu *pmu;
5614
5615 if (ctxn < 0)
5616 return NULL;
5617
5618 list_for_each_entry(pmu, &pmus, entry) {
5619 if (pmu->task_ctx_nr == ctxn)
5620 return pmu->pmu_cpu_context;
5621 }
5622
5623 return NULL;
5624 }
5625
5626 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
5627 {
5628 int cpu;
5629
5630 for_each_possible_cpu(cpu) {
5631 struct perf_cpu_context *cpuctx;
5632
5633 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5634
5635 if (cpuctx->active_pmu == old_pmu)
5636 cpuctx->active_pmu = pmu;
5637 }
5638 }
5639
5640 static void free_pmu_context(struct pmu *pmu)
5641 {
5642 struct pmu *i;
5643
5644 mutex_lock(&pmus_lock);
5645 /*
5646 * Like a real lame refcount.
5647 */
5648 list_for_each_entry(i, &pmus, entry) {
5649 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
5650 update_pmu_context(i, pmu);
5651 goto out;
5652 }
5653 }
5654
5655 free_percpu(pmu->pmu_cpu_context);
5656 out:
5657 mutex_unlock(&pmus_lock);
5658 }
5659 static struct idr pmu_idr;
5660
5661 static ssize_t
5662 type_show(struct device *dev, struct device_attribute *attr, char *page)
5663 {
5664 struct pmu *pmu = dev_get_drvdata(dev);
5665
5666 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
5667 }
5668
5669 static struct device_attribute pmu_dev_attrs[] = {
5670 __ATTR_RO(type),
5671 __ATTR_NULL,
5672 };
5673
5674 static int pmu_bus_running;
5675 static struct bus_type pmu_bus = {
5676 .name = "event_source",
5677 .dev_attrs = pmu_dev_attrs,
5678 };
5679
5680 static void pmu_dev_release(struct device *dev)
5681 {
5682 kfree(dev);
5683 }
5684
5685 static int pmu_dev_alloc(struct pmu *pmu)
5686 {
5687 int ret = -ENOMEM;
5688
5689 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
5690 if (!pmu->dev)
5691 goto out;
5692
5693 pmu->dev->groups = pmu->attr_groups;
5694 device_initialize(pmu->dev);
5695 ret = dev_set_name(pmu->dev, "%s", pmu->name);
5696 if (ret)
5697 goto free_dev;
5698
5699 dev_set_drvdata(pmu->dev, pmu);
5700 pmu->dev->bus = &pmu_bus;
5701 pmu->dev->release = pmu_dev_release;
5702 ret = device_add(pmu->dev);
5703 if (ret)
5704 goto free_dev;
5705
5706 out:
5707 return ret;
5708
5709 free_dev:
5710 put_device(pmu->dev);
5711 goto out;
5712 }
5713
5714 static struct lock_class_key cpuctx_mutex;
5715 static struct lock_class_key cpuctx_lock;
5716
5717 int perf_pmu_register(struct pmu *pmu, char *name, int type)
5718 {
5719 int cpu, ret;
5720
5721 mutex_lock(&pmus_lock);
5722 ret = -ENOMEM;
5723 pmu->pmu_disable_count = alloc_percpu(int);
5724 if (!pmu->pmu_disable_count)
5725 goto unlock;
5726
5727 pmu->type = -1;
5728 if (!name)
5729 goto skip_type;
5730 pmu->name = name;
5731
5732 if (type < 0) {
5733 int err = idr_pre_get(&pmu_idr, GFP_KERNEL);
5734 if (!err)
5735 goto free_pdc;
5736
5737 err = idr_get_new_above(&pmu_idr, pmu, PERF_TYPE_MAX, &type);
5738 if (err) {
5739 ret = err;
5740 goto free_pdc;
5741 }
5742 }
5743 pmu->type = type;
5744
5745 if (pmu_bus_running) {
5746 ret = pmu_dev_alloc(pmu);
5747 if (ret)
5748 goto free_idr;
5749 }
5750
5751 skip_type:
5752 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
5753 if (pmu->pmu_cpu_context)
5754 goto got_cpu_context;
5755
5756 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
5757 if (!pmu->pmu_cpu_context)
5758 goto free_dev;
5759
5760 for_each_possible_cpu(cpu) {
5761 struct perf_cpu_context *cpuctx;
5762
5763 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5764 __perf_event_init_context(&cpuctx->ctx);
5765 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
5766 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
5767 cpuctx->ctx.type = cpu_context;
5768 cpuctx->ctx.pmu = pmu;
5769 cpuctx->jiffies_interval = 1;
5770 INIT_LIST_HEAD(&cpuctx->rotation_list);
5771 cpuctx->active_pmu = pmu;
5772 }
5773
5774 got_cpu_context:
5775 if (!pmu->start_txn) {
5776 if (pmu->pmu_enable) {
5777 /*
5778 * If we have pmu_enable/pmu_disable calls, install
5779 * transaction stubs that use that to try and batch
5780 * hardware accesses.
5781 */
5782 pmu->start_txn = perf_pmu_start_txn;
5783 pmu->commit_txn = perf_pmu_commit_txn;
5784 pmu->cancel_txn = perf_pmu_cancel_txn;
5785 } else {
5786 pmu->start_txn = perf_pmu_nop_void;
5787 pmu->commit_txn = perf_pmu_nop_int;
5788 pmu->cancel_txn = perf_pmu_nop_void;
5789 }
5790 }
5791
5792 if (!pmu->pmu_enable) {
5793 pmu->pmu_enable = perf_pmu_nop_void;
5794 pmu->pmu_disable = perf_pmu_nop_void;
5795 }
5796
5797 if (!pmu->event_idx)
5798 pmu->event_idx = perf_event_idx_default;
5799
5800 list_add_rcu(&pmu->entry, &pmus);
5801 ret = 0;
5802 unlock:
5803 mutex_unlock(&pmus_lock);
5804
5805 return ret;
5806
5807 free_dev:
5808 device_del(pmu->dev);
5809 put_device(pmu->dev);
5810
5811 free_idr:
5812 if (pmu->type >= PERF_TYPE_MAX)
5813 idr_remove(&pmu_idr, pmu->type);
5814
5815 free_pdc:
5816 free_percpu(pmu->pmu_disable_count);
5817 goto unlock;
5818 }
5819
5820 void perf_pmu_unregister(struct pmu *pmu)
5821 {
5822 mutex_lock(&pmus_lock);
5823 list_del_rcu(&pmu->entry);
5824 mutex_unlock(&pmus_lock);
5825
5826 /*
5827 * We dereference the pmu list under both SRCU and regular RCU, so
5828 * synchronize against both of those.
5829 */
5830 synchronize_srcu(&pmus_srcu);
5831 synchronize_rcu();
5832
5833 free_percpu(pmu->pmu_disable_count);
5834 if (pmu->type >= PERF_TYPE_MAX)
5835 idr_remove(&pmu_idr, pmu->type);
5836 device_del(pmu->dev);
5837 put_device(pmu->dev);
5838 free_pmu_context(pmu);
5839 }
5840
5841 struct pmu *perf_init_event(struct perf_event *event)
5842 {
5843 struct pmu *pmu = NULL;
5844 int idx;
5845 int ret;
5846
5847 idx = srcu_read_lock(&pmus_srcu);
5848
5849 rcu_read_lock();
5850 pmu = idr_find(&pmu_idr, event->attr.type);
5851 rcu_read_unlock();
5852 if (pmu) {
5853 event->pmu = pmu;
5854 ret = pmu->event_init(event);
5855 if (ret)
5856 pmu = ERR_PTR(ret);
5857 goto unlock;
5858 }
5859
5860 list_for_each_entry_rcu(pmu, &pmus, entry) {
5861 event->pmu = pmu;
5862 ret = pmu->event_init(event);
5863 if (!ret)
5864 goto unlock;
5865
5866 if (ret != -ENOENT) {
5867 pmu = ERR_PTR(ret);
5868 goto unlock;
5869 }
5870 }
5871 pmu = ERR_PTR(-ENOENT);
5872 unlock:
5873 srcu_read_unlock(&pmus_srcu, idx);
5874
5875 return pmu;
5876 }
5877
5878 /*
5879 * Allocate and initialize a event structure
5880 */
5881 static struct perf_event *
5882 perf_event_alloc(struct perf_event_attr *attr, int cpu,
5883 struct task_struct *task,
5884 struct perf_event *group_leader,
5885 struct perf_event *parent_event,
5886 perf_overflow_handler_t overflow_handler,
5887 void *context)
5888 {
5889 struct pmu *pmu;
5890 struct perf_event *event;
5891 struct hw_perf_event *hwc;
5892 long err;
5893
5894 if ((unsigned)cpu >= nr_cpu_ids) {
5895 if (!task || cpu != -1)
5896 return ERR_PTR(-EINVAL);
5897 }
5898
5899 event = kzalloc(sizeof(*event), GFP_KERNEL);
5900 if (!event)
5901 return ERR_PTR(-ENOMEM);
5902
5903 /*
5904 * Single events are their own group leaders, with an
5905 * empty sibling list:
5906 */
5907 if (!group_leader)
5908 group_leader = event;
5909
5910 mutex_init(&event->child_mutex);
5911 INIT_LIST_HEAD(&event->child_list);
5912
5913 INIT_LIST_HEAD(&event->group_entry);
5914 INIT_LIST_HEAD(&event->event_entry);
5915 INIT_LIST_HEAD(&event->sibling_list);
5916 INIT_LIST_HEAD(&event->rb_entry);
5917
5918 init_waitqueue_head(&event->waitq);
5919 init_irq_work(&event->pending, perf_pending_event);
5920
5921 mutex_init(&event->mmap_mutex);
5922
5923 event->cpu = cpu;
5924 event->attr = *attr;
5925 event->group_leader = group_leader;
5926 event->pmu = NULL;
5927 event->oncpu = -1;
5928
5929 event->parent = parent_event;
5930
5931 event->ns = get_pid_ns(current->nsproxy->pid_ns);
5932 event->id = atomic64_inc_return(&perf_event_id);
5933
5934 event->state = PERF_EVENT_STATE_INACTIVE;
5935
5936 if (task) {
5937 event->attach_state = PERF_ATTACH_TASK;
5938 #ifdef CONFIG_HAVE_HW_BREAKPOINT
5939 /*
5940 * hw_breakpoint is a bit difficult here..
5941 */
5942 if (attr->type == PERF_TYPE_BREAKPOINT)
5943 event->hw.bp_target = task;
5944 #endif
5945 }
5946
5947 if (!overflow_handler && parent_event) {
5948 overflow_handler = parent_event->overflow_handler;
5949 context = parent_event->overflow_handler_context;
5950 }
5951
5952 event->overflow_handler = overflow_handler;
5953 event->overflow_handler_context = context;
5954
5955 if (attr->disabled)
5956 event->state = PERF_EVENT_STATE_OFF;
5957
5958 pmu = NULL;
5959
5960 hwc = &event->hw;
5961 hwc->sample_period = attr->sample_period;
5962 if (attr->freq && attr->sample_freq)
5963 hwc->sample_period = 1;
5964 hwc->last_period = hwc->sample_period;
5965
5966 local64_set(&hwc->period_left, hwc->sample_period);
5967
5968 /*
5969 * we currently do not support PERF_FORMAT_GROUP on inherited events
5970 */
5971 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
5972 goto done;
5973
5974 pmu = perf_init_event(event);
5975
5976 done:
5977 err = 0;
5978 if (!pmu)
5979 err = -EINVAL;
5980 else if (IS_ERR(pmu))
5981 err = PTR_ERR(pmu);
5982
5983 if (err) {
5984 if (event->ns)
5985 put_pid_ns(event->ns);
5986 kfree(event);
5987 return ERR_PTR(err);
5988 }
5989
5990 if (!event->parent) {
5991 if (event->attach_state & PERF_ATTACH_TASK)
5992 static_key_slow_inc(&perf_sched_events.key);
5993 if (event->attr.mmap || event->attr.mmap_data)
5994 atomic_inc(&nr_mmap_events);
5995 if (event->attr.comm)
5996 atomic_inc(&nr_comm_events);
5997 if (event->attr.task)
5998 atomic_inc(&nr_task_events);
5999 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
6000 err = get_callchain_buffers();
6001 if (err) {
6002 free_event(event);
6003 return ERR_PTR(err);
6004 }
6005 }
6006 if (has_branch_stack(event)) {
6007 static_key_slow_inc(&perf_sched_events.key);
6008 if (!(event->attach_state & PERF_ATTACH_TASK))
6009 atomic_inc(&per_cpu(perf_branch_stack_events,
6010 event->cpu));
6011 }
6012 }
6013
6014 return event;
6015 }
6016
6017 static int perf_copy_attr(struct perf_event_attr __user *uattr,
6018 struct perf_event_attr *attr)
6019 {
6020 u32 size;
6021 int ret;
6022
6023 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
6024 return -EFAULT;
6025
6026 /*
6027 * zero the full structure, so that a short copy will be nice.
6028 */
6029 memset(attr, 0, sizeof(*attr));
6030
6031 ret = get_user(size, &uattr->size);
6032 if (ret)
6033 return ret;
6034
6035 if (size > PAGE_SIZE) /* silly large */
6036 goto err_size;
6037
6038 if (!size) /* abi compat */
6039 size = PERF_ATTR_SIZE_VER0;
6040
6041 if (size < PERF_ATTR_SIZE_VER0)
6042 goto err_size;
6043
6044 /*
6045 * If we're handed a bigger struct than we know of,
6046 * ensure all the unknown bits are 0 - i.e. new
6047 * user-space does not rely on any kernel feature
6048 * extensions we dont know about yet.
6049 */
6050 if (size > sizeof(*attr)) {
6051 unsigned char __user *addr;
6052 unsigned char __user *end;
6053 unsigned char val;
6054
6055 addr = (void __user *)uattr + sizeof(*attr);
6056 end = (void __user *)uattr + size;
6057
6058 for (; addr < end; addr++) {
6059 ret = get_user(val, addr);
6060 if (ret)
6061 return ret;
6062 if (val)
6063 goto err_size;
6064 }
6065 size = sizeof(*attr);
6066 }
6067
6068 ret = copy_from_user(attr, uattr, size);
6069 if (ret)
6070 return -EFAULT;
6071
6072 if (attr->__reserved_1)
6073 return -EINVAL;
6074
6075 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
6076 return -EINVAL;
6077
6078 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
6079 return -EINVAL;
6080
6081 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
6082 u64 mask = attr->branch_sample_type;
6083
6084 /* only using defined bits */
6085 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
6086 return -EINVAL;
6087
6088 /* at least one branch bit must be set */
6089 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
6090 return -EINVAL;
6091
6092 /* kernel level capture: check permissions */
6093 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
6094 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6095 return -EACCES;
6096
6097 /* propagate priv level, when not set for branch */
6098 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
6099
6100 /* exclude_kernel checked on syscall entry */
6101 if (!attr->exclude_kernel)
6102 mask |= PERF_SAMPLE_BRANCH_KERNEL;
6103
6104 if (!attr->exclude_user)
6105 mask |= PERF_SAMPLE_BRANCH_USER;
6106
6107 if (!attr->exclude_hv)
6108 mask |= PERF_SAMPLE_BRANCH_HV;
6109 /*
6110 * adjust user setting (for HW filter setup)
6111 */
6112 attr->branch_sample_type = mask;
6113 }
6114 }
6115 out:
6116 return ret;
6117
6118 err_size:
6119 put_user(sizeof(*attr), &uattr->size);
6120 ret = -E2BIG;
6121 goto out;
6122 }
6123
6124 static int
6125 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
6126 {
6127 struct ring_buffer *rb = NULL, *old_rb = NULL;
6128 int ret = -EINVAL;
6129
6130 if (!output_event)
6131 goto set;
6132
6133 /* don't allow circular references */
6134 if (event == output_event)
6135 goto out;
6136
6137 /*
6138 * Don't allow cross-cpu buffers
6139 */
6140 if (output_event->cpu != event->cpu)
6141 goto out;
6142
6143 /*
6144 * If its not a per-cpu rb, it must be the same task.
6145 */
6146 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
6147 goto out;
6148
6149 set:
6150 mutex_lock(&event->mmap_mutex);
6151 /* Can't redirect output if we've got an active mmap() */
6152 if (atomic_read(&event->mmap_count))
6153 goto unlock;
6154
6155 if (output_event) {
6156 /* get the rb we want to redirect to */
6157 rb = ring_buffer_get(output_event);
6158 if (!rb)
6159 goto unlock;
6160 }
6161
6162 old_rb = event->rb;
6163 rcu_assign_pointer(event->rb, rb);
6164 if (old_rb)
6165 ring_buffer_detach(event, old_rb);
6166 ret = 0;
6167 unlock:
6168 mutex_unlock(&event->mmap_mutex);
6169
6170 if (old_rb)
6171 ring_buffer_put(old_rb);
6172 out:
6173 return ret;
6174 }
6175
6176 /**
6177 * sys_perf_event_open - open a performance event, associate it to a task/cpu
6178 *
6179 * @attr_uptr: event_id type attributes for monitoring/sampling
6180 * @pid: target pid
6181 * @cpu: target cpu
6182 * @group_fd: group leader event fd
6183 */
6184 SYSCALL_DEFINE5(perf_event_open,
6185 struct perf_event_attr __user *, attr_uptr,
6186 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
6187 {
6188 struct perf_event *group_leader = NULL, *output_event = NULL;
6189 struct perf_event *event, *sibling;
6190 struct perf_event_attr attr;
6191 struct perf_event_context *ctx;
6192 struct file *event_file = NULL;
6193 struct file *group_file = NULL;
6194 struct task_struct *task = NULL;
6195 struct pmu *pmu;
6196 int event_fd;
6197 int move_group = 0;
6198 int fput_needed = 0;
6199 int err;
6200
6201 /* for future expandability... */
6202 if (flags & ~PERF_FLAG_ALL)
6203 return -EINVAL;
6204
6205 err = perf_copy_attr(attr_uptr, &attr);
6206 if (err)
6207 return err;
6208
6209 if (!attr.exclude_kernel) {
6210 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6211 return -EACCES;
6212 }
6213
6214 if (attr.freq) {
6215 if (attr.sample_freq > sysctl_perf_event_sample_rate)
6216 return -EINVAL;
6217 }
6218
6219 /*
6220 * In cgroup mode, the pid argument is used to pass the fd
6221 * opened to the cgroup directory in cgroupfs. The cpu argument
6222 * designates the cpu on which to monitor threads from that
6223 * cgroup.
6224 */
6225 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
6226 return -EINVAL;
6227
6228 event_fd = get_unused_fd_flags(O_RDWR);
6229 if (event_fd < 0)
6230 return event_fd;
6231
6232 if (group_fd != -1) {
6233 group_leader = perf_fget_light(group_fd, &fput_needed);
6234 if (IS_ERR(group_leader)) {
6235 err = PTR_ERR(group_leader);
6236 goto err_fd;
6237 }
6238 group_file = group_leader->filp;
6239 if (flags & PERF_FLAG_FD_OUTPUT)
6240 output_event = group_leader;
6241 if (flags & PERF_FLAG_FD_NO_GROUP)
6242 group_leader = NULL;
6243 }
6244
6245 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
6246 task = find_lively_task_by_vpid(pid);
6247 if (IS_ERR(task)) {
6248 err = PTR_ERR(task);
6249 goto err_group_fd;
6250 }
6251 }
6252
6253 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
6254 NULL, NULL);
6255 if (IS_ERR(event)) {
6256 err = PTR_ERR(event);
6257 goto err_task;
6258 }
6259
6260 if (flags & PERF_FLAG_PID_CGROUP) {
6261 err = perf_cgroup_connect(pid, event, &attr, group_leader);
6262 if (err)
6263 goto err_alloc;
6264 /*
6265 * one more event:
6266 * - that has cgroup constraint on event->cpu
6267 * - that may need work on context switch
6268 */
6269 atomic_inc(&per_cpu(perf_cgroup_events, event->cpu));
6270 static_key_slow_inc(&perf_sched_events.key);
6271 }
6272
6273 /*
6274 * Special case software events and allow them to be part of
6275 * any hardware group.
6276 */
6277 pmu = event->pmu;
6278
6279 if (group_leader &&
6280 (is_software_event(event) != is_software_event(group_leader))) {
6281 if (is_software_event(event)) {
6282 /*
6283 * If event and group_leader are not both a software
6284 * event, and event is, then group leader is not.
6285 *
6286 * Allow the addition of software events to !software
6287 * groups, this is safe because software events never
6288 * fail to schedule.
6289 */
6290 pmu = group_leader->pmu;
6291 } else if (is_software_event(group_leader) &&
6292 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
6293 /*
6294 * In case the group is a pure software group, and we
6295 * try to add a hardware event, move the whole group to
6296 * the hardware context.
6297 */
6298 move_group = 1;
6299 }
6300 }
6301
6302 /*
6303 * Get the target context (task or percpu):
6304 */
6305 ctx = find_get_context(pmu, task, cpu);
6306 if (IS_ERR(ctx)) {
6307 err = PTR_ERR(ctx);
6308 goto err_alloc;
6309 }
6310
6311 if (task) {
6312 put_task_struct(task);
6313 task = NULL;
6314 }
6315
6316 /*
6317 * Look up the group leader (we will attach this event to it):
6318 */
6319 if (group_leader) {
6320 err = -EINVAL;
6321
6322 /*
6323 * Do not allow a recursive hierarchy (this new sibling
6324 * becoming part of another group-sibling):
6325 */
6326 if (group_leader->group_leader != group_leader)
6327 goto err_context;
6328 /*
6329 * Do not allow to attach to a group in a different
6330 * task or CPU context:
6331 */
6332 if (move_group) {
6333 if (group_leader->ctx->type != ctx->type)
6334 goto err_context;
6335 } else {
6336 if (group_leader->ctx != ctx)
6337 goto err_context;
6338 }
6339
6340 /*
6341 * Only a group leader can be exclusive or pinned
6342 */
6343 if (attr.exclusive || attr.pinned)
6344 goto err_context;
6345 }
6346
6347 if (output_event) {
6348 err = perf_event_set_output(event, output_event);
6349 if (err)
6350 goto err_context;
6351 }
6352
6353 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
6354 if (IS_ERR(event_file)) {
6355 err = PTR_ERR(event_file);
6356 goto err_context;
6357 }
6358
6359 if (move_group) {
6360 struct perf_event_context *gctx = group_leader->ctx;
6361
6362 mutex_lock(&gctx->mutex);
6363 perf_remove_from_context(group_leader);
6364 list_for_each_entry(sibling, &group_leader->sibling_list,
6365 group_entry) {
6366 perf_remove_from_context(sibling);
6367 put_ctx(gctx);
6368 }
6369 mutex_unlock(&gctx->mutex);
6370 put_ctx(gctx);
6371 }
6372
6373 event->filp = event_file;
6374 WARN_ON_ONCE(ctx->parent_ctx);
6375 mutex_lock(&ctx->mutex);
6376
6377 if (move_group) {
6378 perf_install_in_context(ctx, group_leader, cpu);
6379 get_ctx(ctx);
6380 list_for_each_entry(sibling, &group_leader->sibling_list,
6381 group_entry) {
6382 perf_install_in_context(ctx, sibling, cpu);
6383 get_ctx(ctx);
6384 }
6385 }
6386
6387 perf_install_in_context(ctx, event, cpu);
6388 ++ctx->generation;
6389 perf_unpin_context(ctx);
6390 mutex_unlock(&ctx->mutex);
6391
6392 event->owner = current;
6393
6394 mutex_lock(&current->perf_event_mutex);
6395 list_add_tail(&event->owner_entry, &current->perf_event_list);
6396 mutex_unlock(&current->perf_event_mutex);
6397
6398 /*
6399 * Precalculate sample_data sizes
6400 */
6401 perf_event__header_size(event);
6402 perf_event__id_header_size(event);
6403
6404 /*
6405 * Drop the reference on the group_event after placing the
6406 * new event on the sibling_list. This ensures destruction
6407 * of the group leader will find the pointer to itself in
6408 * perf_group_detach().
6409 */
6410 fput_light(group_file, fput_needed);
6411 fd_install(event_fd, event_file);
6412 return event_fd;
6413
6414 err_context:
6415 perf_unpin_context(ctx);
6416 put_ctx(ctx);
6417 err_alloc:
6418 free_event(event);
6419 err_task:
6420 if (task)
6421 put_task_struct(task);
6422 err_group_fd:
6423 fput_light(group_file, fput_needed);
6424 err_fd:
6425 put_unused_fd(event_fd);
6426 return err;
6427 }
6428
6429 /**
6430 * perf_event_create_kernel_counter
6431 *
6432 * @attr: attributes of the counter to create
6433 * @cpu: cpu in which the counter is bound
6434 * @task: task to profile (NULL for percpu)
6435 */
6436 struct perf_event *
6437 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
6438 struct task_struct *task,
6439 perf_overflow_handler_t overflow_handler,
6440 void *context)
6441 {
6442 struct perf_event_context *ctx;
6443 struct perf_event *event;
6444 int err;
6445
6446 /*
6447 * Get the target context (task or percpu):
6448 */
6449
6450 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
6451 overflow_handler, context);
6452 if (IS_ERR(event)) {
6453 err = PTR_ERR(event);
6454 goto err;
6455 }
6456
6457 ctx = find_get_context(event->pmu, task, cpu);
6458 if (IS_ERR(ctx)) {
6459 err = PTR_ERR(ctx);
6460 goto err_free;
6461 }
6462
6463 event->filp = NULL;
6464 WARN_ON_ONCE(ctx->parent_ctx);
6465 mutex_lock(&ctx->mutex);
6466 perf_install_in_context(ctx, event, cpu);
6467 ++ctx->generation;
6468 perf_unpin_context(ctx);
6469 mutex_unlock(&ctx->mutex);
6470
6471 return event;
6472
6473 err_free:
6474 free_event(event);
6475 err:
6476 return ERR_PTR(err);
6477 }
6478 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
6479
6480 static void sync_child_event(struct perf_event *child_event,
6481 struct task_struct *child)
6482 {
6483 struct perf_event *parent_event = child_event->parent;
6484 u64 child_val;
6485
6486 if (child_event->attr.inherit_stat)
6487 perf_event_read_event(child_event, child);
6488
6489 child_val = perf_event_count(child_event);
6490
6491 /*
6492 * Add back the child's count to the parent's count:
6493 */
6494 atomic64_add(child_val, &parent_event->child_count);
6495 atomic64_add(child_event->total_time_enabled,
6496 &parent_event->child_total_time_enabled);
6497 atomic64_add(child_event->total_time_running,
6498 &parent_event->child_total_time_running);
6499
6500 /*
6501 * Remove this event from the parent's list
6502 */
6503 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
6504 mutex_lock(&parent_event->child_mutex);
6505 list_del_init(&child_event->child_list);
6506 mutex_unlock(&parent_event->child_mutex);
6507
6508 /*
6509 * Release the parent event, if this was the last
6510 * reference to it.
6511 */
6512 fput(parent_event->filp);
6513 }
6514
6515 static void
6516 __perf_event_exit_task(struct perf_event *child_event,
6517 struct perf_event_context *child_ctx,
6518 struct task_struct *child)
6519 {
6520 if (child_event->parent) {
6521 raw_spin_lock_irq(&child_ctx->lock);
6522 perf_group_detach(child_event);
6523 raw_spin_unlock_irq(&child_ctx->lock);
6524 }
6525
6526 perf_remove_from_context(child_event);
6527
6528 /*
6529 * It can happen that the parent exits first, and has events
6530 * that are still around due to the child reference. These
6531 * events need to be zapped.
6532 */
6533 if (child_event->parent) {
6534 sync_child_event(child_event, child);
6535 free_event(child_event);
6536 }
6537 }
6538
6539 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
6540 {
6541 struct perf_event *child_event, *tmp;
6542 struct perf_event_context *child_ctx;
6543 unsigned long flags;
6544
6545 if (likely(!child->perf_event_ctxp[ctxn])) {
6546 perf_event_task(child, NULL, 0);
6547 return;
6548 }
6549
6550 local_irq_save(flags);
6551 /*
6552 * We can't reschedule here because interrupts are disabled,
6553 * and either child is current or it is a task that can't be
6554 * scheduled, so we are now safe from rescheduling changing
6555 * our context.
6556 */
6557 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
6558
6559 /*
6560 * Take the context lock here so that if find_get_context is
6561 * reading child->perf_event_ctxp, we wait until it has
6562 * incremented the context's refcount before we do put_ctx below.
6563 */
6564 raw_spin_lock(&child_ctx->lock);
6565 task_ctx_sched_out(child_ctx);
6566 child->perf_event_ctxp[ctxn] = NULL;
6567 /*
6568 * If this context is a clone; unclone it so it can't get
6569 * swapped to another process while we're removing all
6570 * the events from it.
6571 */
6572 unclone_ctx(child_ctx);
6573 update_context_time(child_ctx);
6574 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
6575
6576 /*
6577 * Report the task dead after unscheduling the events so that we
6578 * won't get any samples after PERF_RECORD_EXIT. We can however still
6579 * get a few PERF_RECORD_READ events.
6580 */
6581 perf_event_task(child, child_ctx, 0);
6582
6583 /*
6584 * We can recurse on the same lock type through:
6585 *
6586 * __perf_event_exit_task()
6587 * sync_child_event()
6588 * fput(parent_event->filp)
6589 * perf_release()
6590 * mutex_lock(&ctx->mutex)
6591 *
6592 * But since its the parent context it won't be the same instance.
6593 */
6594 mutex_lock(&child_ctx->mutex);
6595
6596 again:
6597 list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
6598 group_entry)
6599 __perf_event_exit_task(child_event, child_ctx, child);
6600
6601 list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
6602 group_entry)
6603 __perf_event_exit_task(child_event, child_ctx, child);
6604
6605 /*
6606 * If the last event was a group event, it will have appended all
6607 * its siblings to the list, but we obtained 'tmp' before that which
6608 * will still point to the list head terminating the iteration.
6609 */
6610 if (!list_empty(&child_ctx->pinned_groups) ||
6611 !list_empty(&child_ctx->flexible_groups))
6612 goto again;
6613
6614 mutex_unlock(&child_ctx->mutex);
6615
6616 put_ctx(child_ctx);
6617 }
6618
6619 /*
6620 * When a child task exits, feed back event values to parent events.
6621 */
6622 void perf_event_exit_task(struct task_struct *child)
6623 {
6624 struct perf_event *event, *tmp;
6625 int ctxn;
6626
6627 mutex_lock(&child->perf_event_mutex);
6628 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
6629 owner_entry) {
6630 list_del_init(&event->owner_entry);
6631
6632 /*
6633 * Ensure the list deletion is visible before we clear
6634 * the owner, closes a race against perf_release() where
6635 * we need to serialize on the owner->perf_event_mutex.
6636 */
6637 smp_wmb();
6638 event->owner = NULL;
6639 }
6640 mutex_unlock(&child->perf_event_mutex);
6641
6642 for_each_task_context_nr(ctxn)
6643 perf_event_exit_task_context(child, ctxn);
6644 }
6645
6646 static void perf_free_event(struct perf_event *event,
6647 struct perf_event_context *ctx)
6648 {
6649 struct perf_event *parent = event->parent;
6650
6651 if (WARN_ON_ONCE(!parent))
6652 return;
6653
6654 mutex_lock(&parent->child_mutex);
6655 list_del_init(&event->child_list);
6656 mutex_unlock(&parent->child_mutex);
6657
6658 fput(parent->filp);
6659
6660 perf_group_detach(event);
6661 list_del_event(event, ctx);
6662 free_event(event);
6663 }
6664
6665 /*
6666 * free an unexposed, unused context as created by inheritance by
6667 * perf_event_init_task below, used by fork() in case of fail.
6668 */
6669 void perf_event_free_task(struct task_struct *task)
6670 {
6671 struct perf_event_context *ctx;
6672 struct perf_event *event, *tmp;
6673 int ctxn;
6674
6675 for_each_task_context_nr(ctxn) {
6676 ctx = task->perf_event_ctxp[ctxn];
6677 if (!ctx)
6678 continue;
6679
6680 mutex_lock(&ctx->mutex);
6681 again:
6682 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
6683 group_entry)
6684 perf_free_event(event, ctx);
6685
6686 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
6687 group_entry)
6688 perf_free_event(event, ctx);
6689
6690 if (!list_empty(&ctx->pinned_groups) ||
6691 !list_empty(&ctx->flexible_groups))
6692 goto again;
6693
6694 mutex_unlock(&ctx->mutex);
6695
6696 put_ctx(ctx);
6697 }
6698 }
6699
6700 void perf_event_delayed_put(struct task_struct *task)
6701 {
6702 int ctxn;
6703
6704 for_each_task_context_nr(ctxn)
6705 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
6706 }
6707
6708 /*
6709 * inherit a event from parent task to child task:
6710 */
6711 static struct perf_event *
6712 inherit_event(struct perf_event *parent_event,
6713 struct task_struct *parent,
6714 struct perf_event_context *parent_ctx,
6715 struct task_struct *child,
6716 struct perf_event *group_leader,
6717 struct perf_event_context *child_ctx)
6718 {
6719 struct perf_event *child_event;
6720 unsigned long flags;
6721
6722 /*
6723 * Instead of creating recursive hierarchies of events,
6724 * we link inherited events back to the original parent,
6725 * which has a filp for sure, which we use as the reference
6726 * count:
6727 */
6728 if (parent_event->parent)
6729 parent_event = parent_event->parent;
6730
6731 child_event = perf_event_alloc(&parent_event->attr,
6732 parent_event->cpu,
6733 child,
6734 group_leader, parent_event,
6735 NULL, NULL);
6736 if (IS_ERR(child_event))
6737 return child_event;
6738 get_ctx(child_ctx);
6739
6740 /*
6741 * Make the child state follow the state of the parent event,
6742 * not its attr.disabled bit. We hold the parent's mutex,
6743 * so we won't race with perf_event_{en, dis}able_family.
6744 */
6745 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
6746 child_event->state = PERF_EVENT_STATE_INACTIVE;
6747 else
6748 child_event->state = PERF_EVENT_STATE_OFF;
6749
6750 if (parent_event->attr.freq) {
6751 u64 sample_period = parent_event->hw.sample_period;
6752 struct hw_perf_event *hwc = &child_event->hw;
6753
6754 hwc->sample_period = sample_period;
6755 hwc->last_period = sample_period;
6756
6757 local64_set(&hwc->period_left, sample_period);
6758 }
6759
6760 child_event->ctx = child_ctx;
6761 child_event->overflow_handler = parent_event->overflow_handler;
6762 child_event->overflow_handler_context
6763 = parent_event->overflow_handler_context;
6764
6765 /*
6766 * Precalculate sample_data sizes
6767 */
6768 perf_event__header_size(child_event);
6769 perf_event__id_header_size(child_event);
6770
6771 /*
6772 * Link it up in the child's context:
6773 */
6774 raw_spin_lock_irqsave(&child_ctx->lock, flags);
6775 add_event_to_ctx(child_event, child_ctx);
6776 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
6777
6778 /*
6779 * Get a reference to the parent filp - we will fput it
6780 * when the child event exits. This is safe to do because
6781 * we are in the parent and we know that the filp still
6782 * exists and has a nonzero count:
6783 */
6784 atomic_long_inc(&parent_event->filp->f_count);
6785
6786 /*
6787 * Link this into the parent event's child list
6788 */
6789 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
6790 mutex_lock(&parent_event->child_mutex);
6791 list_add_tail(&child_event->child_list, &parent_event->child_list);
6792 mutex_unlock(&parent_event->child_mutex);
6793
6794 return child_event;
6795 }
6796
6797 static int inherit_group(struct perf_event *parent_event,
6798 struct task_struct *parent,
6799 struct perf_event_context *parent_ctx,
6800 struct task_struct *child,
6801 struct perf_event_context *child_ctx)
6802 {
6803 struct perf_event *leader;
6804 struct perf_event *sub;
6805 struct perf_event *child_ctr;
6806
6807 leader = inherit_event(parent_event, parent, parent_ctx,
6808 child, NULL, child_ctx);
6809 if (IS_ERR(leader))
6810 return PTR_ERR(leader);
6811 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
6812 child_ctr = inherit_event(sub, parent, parent_ctx,
6813 child, leader, child_ctx);
6814 if (IS_ERR(child_ctr))
6815 return PTR_ERR(child_ctr);
6816 }
6817 return 0;
6818 }
6819
6820 static int
6821 inherit_task_group(struct perf_event *event, struct task_struct *parent,
6822 struct perf_event_context *parent_ctx,
6823 struct task_struct *child, int ctxn,
6824 int *inherited_all)
6825 {
6826 int ret;
6827 struct perf_event_context *child_ctx;
6828
6829 if (!event->attr.inherit) {
6830 *inherited_all = 0;
6831 return 0;
6832 }
6833
6834 child_ctx = child->perf_event_ctxp[ctxn];
6835 if (!child_ctx) {
6836 /*
6837 * This is executed from the parent task context, so
6838 * inherit events that have been marked for cloning.
6839 * First allocate and initialize a context for the
6840 * child.
6841 */
6842
6843 child_ctx = alloc_perf_context(event->pmu, child);
6844 if (!child_ctx)
6845 return -ENOMEM;
6846
6847 child->perf_event_ctxp[ctxn] = child_ctx;
6848 }
6849
6850 ret = inherit_group(event, parent, parent_ctx,
6851 child, child_ctx);
6852
6853 if (ret)
6854 *inherited_all = 0;
6855
6856 return ret;
6857 }
6858
6859 /*
6860 * Initialize the perf_event context in task_struct
6861 */
6862 int perf_event_init_context(struct task_struct *child, int ctxn)
6863 {
6864 struct perf_event_context *child_ctx, *parent_ctx;
6865 struct perf_event_context *cloned_ctx;
6866 struct perf_event *event;
6867 struct task_struct *parent = current;
6868 int inherited_all = 1;
6869 unsigned long flags;
6870 int ret = 0;
6871
6872 if (likely(!parent->perf_event_ctxp[ctxn]))
6873 return 0;
6874
6875 /*
6876 * If the parent's context is a clone, pin it so it won't get
6877 * swapped under us.
6878 */
6879 parent_ctx = perf_pin_task_context(parent, ctxn);
6880
6881 /*
6882 * No need to check if parent_ctx != NULL here; since we saw
6883 * it non-NULL earlier, the only reason for it to become NULL
6884 * is if we exit, and since we're currently in the middle of
6885 * a fork we can't be exiting at the same time.
6886 */
6887
6888 /*
6889 * Lock the parent list. No need to lock the child - not PID
6890 * hashed yet and not running, so nobody can access it.
6891 */
6892 mutex_lock(&parent_ctx->mutex);
6893
6894 /*
6895 * We dont have to disable NMIs - we are only looking at
6896 * the list, not manipulating it:
6897 */
6898 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
6899 ret = inherit_task_group(event, parent, parent_ctx,
6900 child, ctxn, &inherited_all);
6901 if (ret)
6902 break;
6903 }
6904
6905 /*
6906 * We can't hold ctx->lock when iterating the ->flexible_group list due
6907 * to allocations, but we need to prevent rotation because
6908 * rotate_ctx() will change the list from interrupt context.
6909 */
6910 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
6911 parent_ctx->rotate_disable = 1;
6912 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
6913
6914 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
6915 ret = inherit_task_group(event, parent, parent_ctx,
6916 child, ctxn, &inherited_all);
6917 if (ret)
6918 break;
6919 }
6920
6921 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
6922 parent_ctx->rotate_disable = 0;
6923
6924 child_ctx = child->perf_event_ctxp[ctxn];
6925
6926 if (child_ctx && inherited_all) {
6927 /*
6928 * Mark the child context as a clone of the parent
6929 * context, or of whatever the parent is a clone of.
6930 *
6931 * Note that if the parent is a clone, the holding of
6932 * parent_ctx->lock avoids it from being uncloned.
6933 */
6934 cloned_ctx = parent_ctx->parent_ctx;
6935 if (cloned_ctx) {
6936 child_ctx->parent_ctx = cloned_ctx;
6937 child_ctx->parent_gen = parent_ctx->parent_gen;
6938 } else {
6939 child_ctx->parent_ctx = parent_ctx;
6940 child_ctx->parent_gen = parent_ctx->generation;
6941 }
6942 get_ctx(child_ctx->parent_ctx);
6943 }
6944
6945 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
6946 mutex_unlock(&parent_ctx->mutex);
6947
6948 perf_unpin_context(parent_ctx);
6949 put_ctx(parent_ctx);
6950
6951 return ret;
6952 }
6953
6954 /*
6955 * Initialize the perf_event context in task_struct
6956 */
6957 int perf_event_init_task(struct task_struct *child)
6958 {
6959 int ctxn, ret;
6960
6961 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
6962 mutex_init(&child->perf_event_mutex);
6963 INIT_LIST_HEAD(&child->perf_event_list);
6964
6965 for_each_task_context_nr(ctxn) {
6966 ret = perf_event_init_context(child, ctxn);
6967 if (ret)
6968 return ret;
6969 }
6970
6971 return 0;
6972 }
6973
6974 static void __init perf_event_init_all_cpus(void)
6975 {
6976 struct swevent_htable *swhash;
6977 int cpu;
6978
6979 for_each_possible_cpu(cpu) {
6980 swhash = &per_cpu(swevent_htable, cpu);
6981 mutex_init(&swhash->hlist_mutex);
6982 INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
6983 }
6984 }
6985
6986 static void __cpuinit perf_event_init_cpu(int cpu)
6987 {
6988 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6989
6990 mutex_lock(&swhash->hlist_mutex);
6991 if (swhash->hlist_refcount > 0) {
6992 struct swevent_hlist *hlist;
6993
6994 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
6995 WARN_ON(!hlist);
6996 rcu_assign_pointer(swhash->swevent_hlist, hlist);
6997 }
6998 mutex_unlock(&swhash->hlist_mutex);
6999 }
7000
7001 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
7002 static void perf_pmu_rotate_stop(struct pmu *pmu)
7003 {
7004 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7005
7006 WARN_ON(!irqs_disabled());
7007
7008 list_del_init(&cpuctx->rotation_list);
7009 }
7010
7011 static void __perf_event_exit_context(void *__info)
7012 {
7013 struct perf_event_context *ctx = __info;
7014 struct perf_event *event, *tmp;
7015
7016 perf_pmu_rotate_stop(ctx->pmu);
7017
7018 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
7019 __perf_remove_from_context(event);
7020 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
7021 __perf_remove_from_context(event);
7022 }
7023
7024 static void perf_event_exit_cpu_context(int cpu)
7025 {
7026 struct perf_event_context *ctx;
7027 struct pmu *pmu;
7028 int idx;
7029
7030 idx = srcu_read_lock(&pmus_srcu);
7031 list_for_each_entry_rcu(pmu, &pmus, entry) {
7032 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
7033
7034 mutex_lock(&ctx->mutex);
7035 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
7036 mutex_unlock(&ctx->mutex);
7037 }
7038 srcu_read_unlock(&pmus_srcu, idx);
7039 }
7040
7041 static void perf_event_exit_cpu(int cpu)
7042 {
7043 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7044
7045 mutex_lock(&swhash->hlist_mutex);
7046 swevent_hlist_release(swhash);
7047 mutex_unlock(&swhash->hlist_mutex);
7048
7049 perf_event_exit_cpu_context(cpu);
7050 }
7051 #else
7052 static inline void perf_event_exit_cpu(int cpu) { }
7053 #endif
7054
7055 static int
7056 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
7057 {
7058 int cpu;
7059
7060 for_each_online_cpu(cpu)
7061 perf_event_exit_cpu(cpu);
7062
7063 return NOTIFY_OK;
7064 }
7065
7066 /*
7067 * Run the perf reboot notifier at the very last possible moment so that
7068 * the generic watchdog code runs as long as possible.
7069 */
7070 static struct notifier_block perf_reboot_notifier = {
7071 .notifier_call = perf_reboot,
7072 .priority = INT_MIN,
7073 };
7074
7075 static int __cpuinit
7076 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
7077 {
7078 unsigned int cpu = (long)hcpu;
7079
7080 switch (action & ~CPU_TASKS_FROZEN) {
7081
7082 case CPU_UP_PREPARE:
7083 case CPU_DOWN_FAILED:
7084 perf_event_init_cpu(cpu);
7085 break;
7086
7087 case CPU_UP_CANCELED:
7088 case CPU_DOWN_PREPARE:
7089 perf_event_exit_cpu(cpu);
7090 break;
7091
7092 default:
7093 break;
7094 }
7095
7096 return NOTIFY_OK;
7097 }
7098
7099 void __init perf_event_init(void)
7100 {
7101 int ret;
7102
7103 idr_init(&pmu_idr);
7104
7105 perf_event_init_all_cpus();
7106 init_srcu_struct(&pmus_srcu);
7107 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
7108 perf_pmu_register(&perf_cpu_clock, NULL, -1);
7109 perf_pmu_register(&perf_task_clock, NULL, -1);
7110 perf_tp_register();
7111 perf_cpu_notifier(perf_cpu_notify);
7112 register_reboot_notifier(&perf_reboot_notifier);
7113
7114 ret = init_hw_breakpoint();
7115 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
7116
7117 /* do not patch jump label more than once per second */
7118 jump_label_rate_limit(&perf_sched_events, HZ);
7119 }
7120
7121 static int __init perf_event_sysfs_init(void)
7122 {
7123 struct pmu *pmu;
7124 int ret;
7125
7126 mutex_lock(&pmus_lock);
7127
7128 ret = bus_register(&pmu_bus);
7129 if (ret)
7130 goto unlock;
7131
7132 list_for_each_entry(pmu, &pmus, entry) {
7133 if (!pmu->name || pmu->type < 0)
7134 continue;
7135
7136 ret = pmu_dev_alloc(pmu);
7137 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
7138 }
7139 pmu_bus_running = 1;
7140 ret = 0;
7141
7142 unlock:
7143 mutex_unlock(&pmus_lock);
7144
7145 return ret;
7146 }
7147 device_initcall(perf_event_sysfs_init);
7148
7149 #ifdef CONFIG_CGROUP_PERF
7150 static struct cgroup_subsys_state *perf_cgroup_create(struct cgroup *cont)
7151 {
7152 struct perf_cgroup *jc;
7153
7154 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
7155 if (!jc)
7156 return ERR_PTR(-ENOMEM);
7157
7158 jc->info = alloc_percpu(struct perf_cgroup_info);
7159 if (!jc->info) {
7160 kfree(jc);
7161 return ERR_PTR(-ENOMEM);
7162 }
7163
7164 return &jc->css;
7165 }
7166
7167 static void perf_cgroup_destroy(struct cgroup *cont)
7168 {
7169 struct perf_cgroup *jc;
7170 jc = container_of(cgroup_subsys_state(cont, perf_subsys_id),
7171 struct perf_cgroup, css);
7172 free_percpu(jc->info);
7173 kfree(jc);
7174 }
7175
7176 static int __perf_cgroup_move(void *info)
7177 {
7178 struct task_struct *task = info;
7179 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
7180 return 0;
7181 }
7182
7183 static void perf_cgroup_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
7184 {
7185 struct task_struct *task;
7186
7187 cgroup_taskset_for_each(task, cgrp, tset)
7188 task_function_call(task, __perf_cgroup_move, task);
7189 }
7190
7191 static void perf_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
7192 struct task_struct *task)
7193 {
7194 /*
7195 * cgroup_exit() is called in the copy_process() failure path.
7196 * Ignore this case since the task hasn't ran yet, this avoids
7197 * trying to poke a half freed task state from generic code.
7198 */
7199 if (!(task->flags & PF_EXITING))
7200 return;
7201
7202 task_function_call(task, __perf_cgroup_move, task);
7203 }
7204
7205 struct cgroup_subsys perf_subsys = {
7206 .name = "perf_event",
7207 .subsys_id = perf_subsys_id,
7208 .create = perf_cgroup_create,
7209 .destroy = perf_cgroup_destroy,
7210 .exit = perf_cgroup_exit,
7211 .attach = perf_cgroup_attach,
7212 };
7213 #endif /* CONFIG_CGROUP_PERF */