]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/events/core.c
Merge branch 'for-3.2/drivers' of git://git.kernel.dk/linux-block
[mirror_ubuntu-bionic-kernel.git] / kernel / events / core.c
1 /*
2 * Performance events core code:
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/vmalloc.h>
29 #include <linux/hardirq.h>
30 #include <linux/rculist.h>
31 #include <linux/uaccess.h>
32 #include <linux/syscalls.h>
33 #include <linux/anon_inodes.h>
34 #include <linux/kernel_stat.h>
35 #include <linux/perf_event.h>
36 #include <linux/ftrace_event.h>
37 #include <linux/hw_breakpoint.h>
38
39 #include "internal.h"
40
41 #include <asm/irq_regs.h>
42
43 struct remote_function_call {
44 struct task_struct *p;
45 int (*func)(void *info);
46 void *info;
47 int ret;
48 };
49
50 static void remote_function(void *data)
51 {
52 struct remote_function_call *tfc = data;
53 struct task_struct *p = tfc->p;
54
55 if (p) {
56 tfc->ret = -EAGAIN;
57 if (task_cpu(p) != smp_processor_id() || !task_curr(p))
58 return;
59 }
60
61 tfc->ret = tfc->func(tfc->info);
62 }
63
64 /**
65 * task_function_call - call a function on the cpu on which a task runs
66 * @p: the task to evaluate
67 * @func: the function to be called
68 * @info: the function call argument
69 *
70 * Calls the function @func when the task is currently running. This might
71 * be on the current CPU, which just calls the function directly
72 *
73 * returns: @func return value, or
74 * -ESRCH - when the process isn't running
75 * -EAGAIN - when the process moved away
76 */
77 static int
78 task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
79 {
80 struct remote_function_call data = {
81 .p = p,
82 .func = func,
83 .info = info,
84 .ret = -ESRCH, /* No such (running) process */
85 };
86
87 if (task_curr(p))
88 smp_call_function_single(task_cpu(p), remote_function, &data, 1);
89
90 return data.ret;
91 }
92
93 /**
94 * cpu_function_call - call a function on the cpu
95 * @func: the function to be called
96 * @info: the function call argument
97 *
98 * Calls the function @func on the remote cpu.
99 *
100 * returns: @func return value or -ENXIO when the cpu is offline
101 */
102 static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
103 {
104 struct remote_function_call data = {
105 .p = NULL,
106 .func = func,
107 .info = info,
108 .ret = -ENXIO, /* No such CPU */
109 };
110
111 smp_call_function_single(cpu, remote_function, &data, 1);
112
113 return data.ret;
114 }
115
116 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
117 PERF_FLAG_FD_OUTPUT |\
118 PERF_FLAG_PID_CGROUP)
119
120 enum event_type_t {
121 EVENT_FLEXIBLE = 0x1,
122 EVENT_PINNED = 0x2,
123 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
124 };
125
126 /*
127 * perf_sched_events : >0 events exist
128 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
129 */
130 struct jump_label_key perf_sched_events __read_mostly;
131 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
132
133 static atomic_t nr_mmap_events __read_mostly;
134 static atomic_t nr_comm_events __read_mostly;
135 static atomic_t nr_task_events __read_mostly;
136
137 static LIST_HEAD(pmus);
138 static DEFINE_MUTEX(pmus_lock);
139 static struct srcu_struct pmus_srcu;
140
141 /*
142 * perf event paranoia level:
143 * -1 - not paranoid at all
144 * 0 - disallow raw tracepoint access for unpriv
145 * 1 - disallow cpu events for unpriv
146 * 2 - disallow kernel profiling for unpriv
147 */
148 int sysctl_perf_event_paranoid __read_mostly = 1;
149
150 /* Minimum for 512 kiB + 1 user control page */
151 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
152
153 /*
154 * max perf event sample rate
155 */
156 #define DEFAULT_MAX_SAMPLE_RATE 100000
157 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
158 static int max_samples_per_tick __read_mostly =
159 DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
160
161 int perf_proc_update_handler(struct ctl_table *table, int write,
162 void __user *buffer, size_t *lenp,
163 loff_t *ppos)
164 {
165 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
166
167 if (ret || !write)
168 return ret;
169
170 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
171
172 return 0;
173 }
174
175 static atomic64_t perf_event_id;
176
177 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
178 enum event_type_t event_type);
179
180 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
181 enum event_type_t event_type,
182 struct task_struct *task);
183
184 static void update_context_time(struct perf_event_context *ctx);
185 static u64 perf_event_time(struct perf_event *event);
186
187 void __weak perf_event_print_debug(void) { }
188
189 extern __weak const char *perf_pmu_name(void)
190 {
191 return "pmu";
192 }
193
194 static inline u64 perf_clock(void)
195 {
196 return local_clock();
197 }
198
199 static inline struct perf_cpu_context *
200 __get_cpu_context(struct perf_event_context *ctx)
201 {
202 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
203 }
204
205 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
206 struct perf_event_context *ctx)
207 {
208 raw_spin_lock(&cpuctx->ctx.lock);
209 if (ctx)
210 raw_spin_lock(&ctx->lock);
211 }
212
213 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
214 struct perf_event_context *ctx)
215 {
216 if (ctx)
217 raw_spin_unlock(&ctx->lock);
218 raw_spin_unlock(&cpuctx->ctx.lock);
219 }
220
221 #ifdef CONFIG_CGROUP_PERF
222
223 /*
224 * Must ensure cgroup is pinned (css_get) before calling
225 * this function. In other words, we cannot call this function
226 * if there is no cgroup event for the current CPU context.
227 */
228 static inline struct perf_cgroup *
229 perf_cgroup_from_task(struct task_struct *task)
230 {
231 return container_of(task_subsys_state(task, perf_subsys_id),
232 struct perf_cgroup, css);
233 }
234
235 static inline bool
236 perf_cgroup_match(struct perf_event *event)
237 {
238 struct perf_event_context *ctx = event->ctx;
239 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
240
241 return !event->cgrp || event->cgrp == cpuctx->cgrp;
242 }
243
244 static inline void perf_get_cgroup(struct perf_event *event)
245 {
246 css_get(&event->cgrp->css);
247 }
248
249 static inline void perf_put_cgroup(struct perf_event *event)
250 {
251 css_put(&event->cgrp->css);
252 }
253
254 static inline void perf_detach_cgroup(struct perf_event *event)
255 {
256 perf_put_cgroup(event);
257 event->cgrp = NULL;
258 }
259
260 static inline int is_cgroup_event(struct perf_event *event)
261 {
262 return event->cgrp != NULL;
263 }
264
265 static inline u64 perf_cgroup_event_time(struct perf_event *event)
266 {
267 struct perf_cgroup_info *t;
268
269 t = per_cpu_ptr(event->cgrp->info, event->cpu);
270 return t->time;
271 }
272
273 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
274 {
275 struct perf_cgroup_info *info;
276 u64 now;
277
278 now = perf_clock();
279
280 info = this_cpu_ptr(cgrp->info);
281
282 info->time += now - info->timestamp;
283 info->timestamp = now;
284 }
285
286 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
287 {
288 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
289 if (cgrp_out)
290 __update_cgrp_time(cgrp_out);
291 }
292
293 static inline void update_cgrp_time_from_event(struct perf_event *event)
294 {
295 struct perf_cgroup *cgrp;
296
297 /*
298 * ensure we access cgroup data only when needed and
299 * when we know the cgroup is pinned (css_get)
300 */
301 if (!is_cgroup_event(event))
302 return;
303
304 cgrp = perf_cgroup_from_task(current);
305 /*
306 * Do not update time when cgroup is not active
307 */
308 if (cgrp == event->cgrp)
309 __update_cgrp_time(event->cgrp);
310 }
311
312 static inline void
313 perf_cgroup_set_timestamp(struct task_struct *task,
314 struct perf_event_context *ctx)
315 {
316 struct perf_cgroup *cgrp;
317 struct perf_cgroup_info *info;
318
319 /*
320 * ctx->lock held by caller
321 * ensure we do not access cgroup data
322 * unless we have the cgroup pinned (css_get)
323 */
324 if (!task || !ctx->nr_cgroups)
325 return;
326
327 cgrp = perf_cgroup_from_task(task);
328 info = this_cpu_ptr(cgrp->info);
329 info->timestamp = ctx->timestamp;
330 }
331
332 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
333 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
334
335 /*
336 * reschedule events based on the cgroup constraint of task.
337 *
338 * mode SWOUT : schedule out everything
339 * mode SWIN : schedule in based on cgroup for next
340 */
341 void perf_cgroup_switch(struct task_struct *task, int mode)
342 {
343 struct perf_cpu_context *cpuctx;
344 struct pmu *pmu;
345 unsigned long flags;
346
347 /*
348 * disable interrupts to avoid geting nr_cgroup
349 * changes via __perf_event_disable(). Also
350 * avoids preemption.
351 */
352 local_irq_save(flags);
353
354 /*
355 * we reschedule only in the presence of cgroup
356 * constrained events.
357 */
358 rcu_read_lock();
359
360 list_for_each_entry_rcu(pmu, &pmus, entry) {
361 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
362
363 /*
364 * perf_cgroup_events says at least one
365 * context on this CPU has cgroup events.
366 *
367 * ctx->nr_cgroups reports the number of cgroup
368 * events for a context.
369 */
370 if (cpuctx->ctx.nr_cgroups > 0) {
371 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
372 perf_pmu_disable(cpuctx->ctx.pmu);
373
374 if (mode & PERF_CGROUP_SWOUT) {
375 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
376 /*
377 * must not be done before ctxswout due
378 * to event_filter_match() in event_sched_out()
379 */
380 cpuctx->cgrp = NULL;
381 }
382
383 if (mode & PERF_CGROUP_SWIN) {
384 WARN_ON_ONCE(cpuctx->cgrp);
385 /* set cgrp before ctxsw in to
386 * allow event_filter_match() to not
387 * have to pass task around
388 */
389 cpuctx->cgrp = perf_cgroup_from_task(task);
390 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
391 }
392 perf_pmu_enable(cpuctx->ctx.pmu);
393 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
394 }
395 }
396
397 rcu_read_unlock();
398
399 local_irq_restore(flags);
400 }
401
402 static inline void perf_cgroup_sched_out(struct task_struct *task,
403 struct task_struct *next)
404 {
405 struct perf_cgroup *cgrp1;
406 struct perf_cgroup *cgrp2 = NULL;
407
408 /*
409 * we come here when we know perf_cgroup_events > 0
410 */
411 cgrp1 = perf_cgroup_from_task(task);
412
413 /*
414 * next is NULL when called from perf_event_enable_on_exec()
415 * that will systematically cause a cgroup_switch()
416 */
417 if (next)
418 cgrp2 = perf_cgroup_from_task(next);
419
420 /*
421 * only schedule out current cgroup events if we know
422 * that we are switching to a different cgroup. Otherwise,
423 * do no touch the cgroup events.
424 */
425 if (cgrp1 != cgrp2)
426 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
427 }
428
429 static inline void perf_cgroup_sched_in(struct task_struct *prev,
430 struct task_struct *task)
431 {
432 struct perf_cgroup *cgrp1;
433 struct perf_cgroup *cgrp2 = NULL;
434
435 /*
436 * we come here when we know perf_cgroup_events > 0
437 */
438 cgrp1 = perf_cgroup_from_task(task);
439
440 /* prev can never be NULL */
441 cgrp2 = perf_cgroup_from_task(prev);
442
443 /*
444 * only need to schedule in cgroup events if we are changing
445 * cgroup during ctxsw. Cgroup events were not scheduled
446 * out of ctxsw out if that was not the case.
447 */
448 if (cgrp1 != cgrp2)
449 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
450 }
451
452 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
453 struct perf_event_attr *attr,
454 struct perf_event *group_leader)
455 {
456 struct perf_cgroup *cgrp;
457 struct cgroup_subsys_state *css;
458 struct file *file;
459 int ret = 0, fput_needed;
460
461 file = fget_light(fd, &fput_needed);
462 if (!file)
463 return -EBADF;
464
465 css = cgroup_css_from_dir(file, perf_subsys_id);
466 if (IS_ERR(css)) {
467 ret = PTR_ERR(css);
468 goto out;
469 }
470
471 cgrp = container_of(css, struct perf_cgroup, css);
472 event->cgrp = cgrp;
473
474 /* must be done before we fput() the file */
475 perf_get_cgroup(event);
476
477 /*
478 * all events in a group must monitor
479 * the same cgroup because a task belongs
480 * to only one perf cgroup at a time
481 */
482 if (group_leader && group_leader->cgrp != cgrp) {
483 perf_detach_cgroup(event);
484 ret = -EINVAL;
485 }
486 out:
487 fput_light(file, fput_needed);
488 return ret;
489 }
490
491 static inline void
492 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
493 {
494 struct perf_cgroup_info *t;
495 t = per_cpu_ptr(event->cgrp->info, event->cpu);
496 event->shadow_ctx_time = now - t->timestamp;
497 }
498
499 static inline void
500 perf_cgroup_defer_enabled(struct perf_event *event)
501 {
502 /*
503 * when the current task's perf cgroup does not match
504 * the event's, we need to remember to call the
505 * perf_mark_enable() function the first time a task with
506 * a matching perf cgroup is scheduled in.
507 */
508 if (is_cgroup_event(event) && !perf_cgroup_match(event))
509 event->cgrp_defer_enabled = 1;
510 }
511
512 static inline void
513 perf_cgroup_mark_enabled(struct perf_event *event,
514 struct perf_event_context *ctx)
515 {
516 struct perf_event *sub;
517 u64 tstamp = perf_event_time(event);
518
519 if (!event->cgrp_defer_enabled)
520 return;
521
522 event->cgrp_defer_enabled = 0;
523
524 event->tstamp_enabled = tstamp - event->total_time_enabled;
525 list_for_each_entry(sub, &event->sibling_list, group_entry) {
526 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
527 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
528 sub->cgrp_defer_enabled = 0;
529 }
530 }
531 }
532 #else /* !CONFIG_CGROUP_PERF */
533
534 static inline bool
535 perf_cgroup_match(struct perf_event *event)
536 {
537 return true;
538 }
539
540 static inline void perf_detach_cgroup(struct perf_event *event)
541 {}
542
543 static inline int is_cgroup_event(struct perf_event *event)
544 {
545 return 0;
546 }
547
548 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
549 {
550 return 0;
551 }
552
553 static inline void update_cgrp_time_from_event(struct perf_event *event)
554 {
555 }
556
557 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
558 {
559 }
560
561 static inline void perf_cgroup_sched_out(struct task_struct *task,
562 struct task_struct *next)
563 {
564 }
565
566 static inline void perf_cgroup_sched_in(struct task_struct *prev,
567 struct task_struct *task)
568 {
569 }
570
571 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
572 struct perf_event_attr *attr,
573 struct perf_event *group_leader)
574 {
575 return -EINVAL;
576 }
577
578 static inline void
579 perf_cgroup_set_timestamp(struct task_struct *task,
580 struct perf_event_context *ctx)
581 {
582 }
583
584 void
585 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
586 {
587 }
588
589 static inline void
590 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
591 {
592 }
593
594 static inline u64 perf_cgroup_event_time(struct perf_event *event)
595 {
596 return 0;
597 }
598
599 static inline void
600 perf_cgroup_defer_enabled(struct perf_event *event)
601 {
602 }
603
604 static inline void
605 perf_cgroup_mark_enabled(struct perf_event *event,
606 struct perf_event_context *ctx)
607 {
608 }
609 #endif
610
611 void perf_pmu_disable(struct pmu *pmu)
612 {
613 int *count = this_cpu_ptr(pmu->pmu_disable_count);
614 if (!(*count)++)
615 pmu->pmu_disable(pmu);
616 }
617
618 void perf_pmu_enable(struct pmu *pmu)
619 {
620 int *count = this_cpu_ptr(pmu->pmu_disable_count);
621 if (!--(*count))
622 pmu->pmu_enable(pmu);
623 }
624
625 static DEFINE_PER_CPU(struct list_head, rotation_list);
626
627 /*
628 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
629 * because they're strictly cpu affine and rotate_start is called with IRQs
630 * disabled, while rotate_context is called from IRQ context.
631 */
632 static void perf_pmu_rotate_start(struct pmu *pmu)
633 {
634 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
635 struct list_head *head = &__get_cpu_var(rotation_list);
636
637 WARN_ON(!irqs_disabled());
638
639 if (list_empty(&cpuctx->rotation_list))
640 list_add(&cpuctx->rotation_list, head);
641 }
642
643 static void get_ctx(struct perf_event_context *ctx)
644 {
645 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
646 }
647
648 static void put_ctx(struct perf_event_context *ctx)
649 {
650 if (atomic_dec_and_test(&ctx->refcount)) {
651 if (ctx->parent_ctx)
652 put_ctx(ctx->parent_ctx);
653 if (ctx->task)
654 put_task_struct(ctx->task);
655 kfree_rcu(ctx, rcu_head);
656 }
657 }
658
659 static void unclone_ctx(struct perf_event_context *ctx)
660 {
661 if (ctx->parent_ctx) {
662 put_ctx(ctx->parent_ctx);
663 ctx->parent_ctx = NULL;
664 }
665 }
666
667 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
668 {
669 /*
670 * only top level events have the pid namespace they were created in
671 */
672 if (event->parent)
673 event = event->parent;
674
675 return task_tgid_nr_ns(p, event->ns);
676 }
677
678 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
679 {
680 /*
681 * only top level events have the pid namespace they were created in
682 */
683 if (event->parent)
684 event = event->parent;
685
686 return task_pid_nr_ns(p, event->ns);
687 }
688
689 /*
690 * If we inherit events we want to return the parent event id
691 * to userspace.
692 */
693 static u64 primary_event_id(struct perf_event *event)
694 {
695 u64 id = event->id;
696
697 if (event->parent)
698 id = event->parent->id;
699
700 return id;
701 }
702
703 /*
704 * Get the perf_event_context for a task and lock it.
705 * This has to cope with with the fact that until it is locked,
706 * the context could get moved to another task.
707 */
708 static struct perf_event_context *
709 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
710 {
711 struct perf_event_context *ctx;
712
713 rcu_read_lock();
714 retry:
715 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
716 if (ctx) {
717 /*
718 * If this context is a clone of another, it might
719 * get swapped for another underneath us by
720 * perf_event_task_sched_out, though the
721 * rcu_read_lock() protects us from any context
722 * getting freed. Lock the context and check if it
723 * got swapped before we could get the lock, and retry
724 * if so. If we locked the right context, then it
725 * can't get swapped on us any more.
726 */
727 raw_spin_lock_irqsave(&ctx->lock, *flags);
728 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
729 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
730 goto retry;
731 }
732
733 if (!atomic_inc_not_zero(&ctx->refcount)) {
734 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
735 ctx = NULL;
736 }
737 }
738 rcu_read_unlock();
739 return ctx;
740 }
741
742 /*
743 * Get the context for a task and increment its pin_count so it
744 * can't get swapped to another task. This also increments its
745 * reference count so that the context can't get freed.
746 */
747 static struct perf_event_context *
748 perf_pin_task_context(struct task_struct *task, int ctxn)
749 {
750 struct perf_event_context *ctx;
751 unsigned long flags;
752
753 ctx = perf_lock_task_context(task, ctxn, &flags);
754 if (ctx) {
755 ++ctx->pin_count;
756 raw_spin_unlock_irqrestore(&ctx->lock, flags);
757 }
758 return ctx;
759 }
760
761 static void perf_unpin_context(struct perf_event_context *ctx)
762 {
763 unsigned long flags;
764
765 raw_spin_lock_irqsave(&ctx->lock, flags);
766 --ctx->pin_count;
767 raw_spin_unlock_irqrestore(&ctx->lock, flags);
768 }
769
770 /*
771 * Update the record of the current time in a context.
772 */
773 static void update_context_time(struct perf_event_context *ctx)
774 {
775 u64 now = perf_clock();
776
777 ctx->time += now - ctx->timestamp;
778 ctx->timestamp = now;
779 }
780
781 static u64 perf_event_time(struct perf_event *event)
782 {
783 struct perf_event_context *ctx = event->ctx;
784
785 if (is_cgroup_event(event))
786 return perf_cgroup_event_time(event);
787
788 return ctx ? ctx->time : 0;
789 }
790
791 /*
792 * Update the total_time_enabled and total_time_running fields for a event.
793 * The caller of this function needs to hold the ctx->lock.
794 */
795 static void update_event_times(struct perf_event *event)
796 {
797 struct perf_event_context *ctx = event->ctx;
798 u64 run_end;
799
800 if (event->state < PERF_EVENT_STATE_INACTIVE ||
801 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
802 return;
803 /*
804 * in cgroup mode, time_enabled represents
805 * the time the event was enabled AND active
806 * tasks were in the monitored cgroup. This is
807 * independent of the activity of the context as
808 * there may be a mix of cgroup and non-cgroup events.
809 *
810 * That is why we treat cgroup events differently
811 * here.
812 */
813 if (is_cgroup_event(event))
814 run_end = perf_event_time(event);
815 else if (ctx->is_active)
816 run_end = ctx->time;
817 else
818 run_end = event->tstamp_stopped;
819
820 event->total_time_enabled = run_end - event->tstamp_enabled;
821
822 if (event->state == PERF_EVENT_STATE_INACTIVE)
823 run_end = event->tstamp_stopped;
824 else
825 run_end = perf_event_time(event);
826
827 event->total_time_running = run_end - event->tstamp_running;
828
829 }
830
831 /*
832 * Update total_time_enabled and total_time_running for all events in a group.
833 */
834 static void update_group_times(struct perf_event *leader)
835 {
836 struct perf_event *event;
837
838 update_event_times(leader);
839 list_for_each_entry(event, &leader->sibling_list, group_entry)
840 update_event_times(event);
841 }
842
843 static struct list_head *
844 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
845 {
846 if (event->attr.pinned)
847 return &ctx->pinned_groups;
848 else
849 return &ctx->flexible_groups;
850 }
851
852 /*
853 * Add a event from the lists for its context.
854 * Must be called with ctx->mutex and ctx->lock held.
855 */
856 static void
857 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
858 {
859 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
860 event->attach_state |= PERF_ATTACH_CONTEXT;
861
862 /*
863 * If we're a stand alone event or group leader, we go to the context
864 * list, group events are kept attached to the group so that
865 * perf_group_detach can, at all times, locate all siblings.
866 */
867 if (event->group_leader == event) {
868 struct list_head *list;
869
870 if (is_software_event(event))
871 event->group_flags |= PERF_GROUP_SOFTWARE;
872
873 list = ctx_group_list(event, ctx);
874 list_add_tail(&event->group_entry, list);
875 }
876
877 if (is_cgroup_event(event))
878 ctx->nr_cgroups++;
879
880 list_add_rcu(&event->event_entry, &ctx->event_list);
881 if (!ctx->nr_events)
882 perf_pmu_rotate_start(ctx->pmu);
883 ctx->nr_events++;
884 if (event->attr.inherit_stat)
885 ctx->nr_stat++;
886 }
887
888 /*
889 * Called at perf_event creation and when events are attached/detached from a
890 * group.
891 */
892 static void perf_event__read_size(struct perf_event *event)
893 {
894 int entry = sizeof(u64); /* value */
895 int size = 0;
896 int nr = 1;
897
898 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
899 size += sizeof(u64);
900
901 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
902 size += sizeof(u64);
903
904 if (event->attr.read_format & PERF_FORMAT_ID)
905 entry += sizeof(u64);
906
907 if (event->attr.read_format & PERF_FORMAT_GROUP) {
908 nr += event->group_leader->nr_siblings;
909 size += sizeof(u64);
910 }
911
912 size += entry * nr;
913 event->read_size = size;
914 }
915
916 static void perf_event__header_size(struct perf_event *event)
917 {
918 struct perf_sample_data *data;
919 u64 sample_type = event->attr.sample_type;
920 u16 size = 0;
921
922 perf_event__read_size(event);
923
924 if (sample_type & PERF_SAMPLE_IP)
925 size += sizeof(data->ip);
926
927 if (sample_type & PERF_SAMPLE_ADDR)
928 size += sizeof(data->addr);
929
930 if (sample_type & PERF_SAMPLE_PERIOD)
931 size += sizeof(data->period);
932
933 if (sample_type & PERF_SAMPLE_READ)
934 size += event->read_size;
935
936 event->header_size = size;
937 }
938
939 static void perf_event__id_header_size(struct perf_event *event)
940 {
941 struct perf_sample_data *data;
942 u64 sample_type = event->attr.sample_type;
943 u16 size = 0;
944
945 if (sample_type & PERF_SAMPLE_TID)
946 size += sizeof(data->tid_entry);
947
948 if (sample_type & PERF_SAMPLE_TIME)
949 size += sizeof(data->time);
950
951 if (sample_type & PERF_SAMPLE_ID)
952 size += sizeof(data->id);
953
954 if (sample_type & PERF_SAMPLE_STREAM_ID)
955 size += sizeof(data->stream_id);
956
957 if (sample_type & PERF_SAMPLE_CPU)
958 size += sizeof(data->cpu_entry);
959
960 event->id_header_size = size;
961 }
962
963 static void perf_group_attach(struct perf_event *event)
964 {
965 struct perf_event *group_leader = event->group_leader, *pos;
966
967 /*
968 * We can have double attach due to group movement in perf_event_open.
969 */
970 if (event->attach_state & PERF_ATTACH_GROUP)
971 return;
972
973 event->attach_state |= PERF_ATTACH_GROUP;
974
975 if (group_leader == event)
976 return;
977
978 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
979 !is_software_event(event))
980 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
981
982 list_add_tail(&event->group_entry, &group_leader->sibling_list);
983 group_leader->nr_siblings++;
984
985 perf_event__header_size(group_leader);
986
987 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
988 perf_event__header_size(pos);
989 }
990
991 /*
992 * Remove a event from the lists for its context.
993 * Must be called with ctx->mutex and ctx->lock held.
994 */
995 static void
996 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
997 {
998 struct perf_cpu_context *cpuctx;
999 /*
1000 * We can have double detach due to exit/hot-unplug + close.
1001 */
1002 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1003 return;
1004
1005 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1006
1007 if (is_cgroup_event(event)) {
1008 ctx->nr_cgroups--;
1009 cpuctx = __get_cpu_context(ctx);
1010 /*
1011 * if there are no more cgroup events
1012 * then cler cgrp to avoid stale pointer
1013 * in update_cgrp_time_from_cpuctx()
1014 */
1015 if (!ctx->nr_cgroups)
1016 cpuctx->cgrp = NULL;
1017 }
1018
1019 ctx->nr_events--;
1020 if (event->attr.inherit_stat)
1021 ctx->nr_stat--;
1022
1023 list_del_rcu(&event->event_entry);
1024
1025 if (event->group_leader == event)
1026 list_del_init(&event->group_entry);
1027
1028 update_group_times(event);
1029
1030 /*
1031 * If event was in error state, then keep it
1032 * that way, otherwise bogus counts will be
1033 * returned on read(). The only way to get out
1034 * of error state is by explicit re-enabling
1035 * of the event
1036 */
1037 if (event->state > PERF_EVENT_STATE_OFF)
1038 event->state = PERF_EVENT_STATE_OFF;
1039 }
1040
1041 static void perf_group_detach(struct perf_event *event)
1042 {
1043 struct perf_event *sibling, *tmp;
1044 struct list_head *list = NULL;
1045
1046 /*
1047 * We can have double detach due to exit/hot-unplug + close.
1048 */
1049 if (!(event->attach_state & PERF_ATTACH_GROUP))
1050 return;
1051
1052 event->attach_state &= ~PERF_ATTACH_GROUP;
1053
1054 /*
1055 * If this is a sibling, remove it from its group.
1056 */
1057 if (event->group_leader != event) {
1058 list_del_init(&event->group_entry);
1059 event->group_leader->nr_siblings--;
1060 goto out;
1061 }
1062
1063 if (!list_empty(&event->group_entry))
1064 list = &event->group_entry;
1065
1066 /*
1067 * If this was a group event with sibling events then
1068 * upgrade the siblings to singleton events by adding them
1069 * to whatever list we are on.
1070 */
1071 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1072 if (list)
1073 list_move_tail(&sibling->group_entry, list);
1074 sibling->group_leader = sibling;
1075
1076 /* Inherit group flags from the previous leader */
1077 sibling->group_flags = event->group_flags;
1078 }
1079
1080 out:
1081 perf_event__header_size(event->group_leader);
1082
1083 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1084 perf_event__header_size(tmp);
1085 }
1086
1087 static inline int
1088 event_filter_match(struct perf_event *event)
1089 {
1090 return (event->cpu == -1 || event->cpu == smp_processor_id())
1091 && perf_cgroup_match(event);
1092 }
1093
1094 static void
1095 event_sched_out(struct perf_event *event,
1096 struct perf_cpu_context *cpuctx,
1097 struct perf_event_context *ctx)
1098 {
1099 u64 tstamp = perf_event_time(event);
1100 u64 delta;
1101 /*
1102 * An event which could not be activated because of
1103 * filter mismatch still needs to have its timings
1104 * maintained, otherwise bogus information is return
1105 * via read() for time_enabled, time_running:
1106 */
1107 if (event->state == PERF_EVENT_STATE_INACTIVE
1108 && !event_filter_match(event)) {
1109 delta = tstamp - event->tstamp_stopped;
1110 event->tstamp_running += delta;
1111 event->tstamp_stopped = tstamp;
1112 }
1113
1114 if (event->state != PERF_EVENT_STATE_ACTIVE)
1115 return;
1116
1117 event->state = PERF_EVENT_STATE_INACTIVE;
1118 if (event->pending_disable) {
1119 event->pending_disable = 0;
1120 event->state = PERF_EVENT_STATE_OFF;
1121 }
1122 event->tstamp_stopped = tstamp;
1123 event->pmu->del(event, 0);
1124 event->oncpu = -1;
1125
1126 if (!is_software_event(event))
1127 cpuctx->active_oncpu--;
1128 ctx->nr_active--;
1129 if (event->attr.exclusive || !cpuctx->active_oncpu)
1130 cpuctx->exclusive = 0;
1131 }
1132
1133 static void
1134 group_sched_out(struct perf_event *group_event,
1135 struct perf_cpu_context *cpuctx,
1136 struct perf_event_context *ctx)
1137 {
1138 struct perf_event *event;
1139 int state = group_event->state;
1140
1141 event_sched_out(group_event, cpuctx, ctx);
1142
1143 /*
1144 * Schedule out siblings (if any):
1145 */
1146 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1147 event_sched_out(event, cpuctx, ctx);
1148
1149 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1150 cpuctx->exclusive = 0;
1151 }
1152
1153 /*
1154 * Cross CPU call to remove a performance event
1155 *
1156 * We disable the event on the hardware level first. After that we
1157 * remove it from the context list.
1158 */
1159 static int __perf_remove_from_context(void *info)
1160 {
1161 struct perf_event *event = info;
1162 struct perf_event_context *ctx = event->ctx;
1163 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1164
1165 raw_spin_lock(&ctx->lock);
1166 event_sched_out(event, cpuctx, ctx);
1167 list_del_event(event, ctx);
1168 if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1169 ctx->is_active = 0;
1170 cpuctx->task_ctx = NULL;
1171 }
1172 raw_spin_unlock(&ctx->lock);
1173
1174 return 0;
1175 }
1176
1177
1178 /*
1179 * Remove the event from a task's (or a CPU's) list of events.
1180 *
1181 * CPU events are removed with a smp call. For task events we only
1182 * call when the task is on a CPU.
1183 *
1184 * If event->ctx is a cloned context, callers must make sure that
1185 * every task struct that event->ctx->task could possibly point to
1186 * remains valid. This is OK when called from perf_release since
1187 * that only calls us on the top-level context, which can't be a clone.
1188 * When called from perf_event_exit_task, it's OK because the
1189 * context has been detached from its task.
1190 */
1191 static void perf_remove_from_context(struct perf_event *event)
1192 {
1193 struct perf_event_context *ctx = event->ctx;
1194 struct task_struct *task = ctx->task;
1195
1196 lockdep_assert_held(&ctx->mutex);
1197
1198 if (!task) {
1199 /*
1200 * Per cpu events are removed via an smp call and
1201 * the removal is always successful.
1202 */
1203 cpu_function_call(event->cpu, __perf_remove_from_context, event);
1204 return;
1205 }
1206
1207 retry:
1208 if (!task_function_call(task, __perf_remove_from_context, event))
1209 return;
1210
1211 raw_spin_lock_irq(&ctx->lock);
1212 /*
1213 * If we failed to find a running task, but find the context active now
1214 * that we've acquired the ctx->lock, retry.
1215 */
1216 if (ctx->is_active) {
1217 raw_spin_unlock_irq(&ctx->lock);
1218 goto retry;
1219 }
1220
1221 /*
1222 * Since the task isn't running, its safe to remove the event, us
1223 * holding the ctx->lock ensures the task won't get scheduled in.
1224 */
1225 list_del_event(event, ctx);
1226 raw_spin_unlock_irq(&ctx->lock);
1227 }
1228
1229 /*
1230 * Cross CPU call to disable a performance event
1231 */
1232 static int __perf_event_disable(void *info)
1233 {
1234 struct perf_event *event = info;
1235 struct perf_event_context *ctx = event->ctx;
1236 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1237
1238 /*
1239 * If this is a per-task event, need to check whether this
1240 * event's task is the current task on this cpu.
1241 *
1242 * Can trigger due to concurrent perf_event_context_sched_out()
1243 * flipping contexts around.
1244 */
1245 if (ctx->task && cpuctx->task_ctx != ctx)
1246 return -EINVAL;
1247
1248 raw_spin_lock(&ctx->lock);
1249
1250 /*
1251 * If the event is on, turn it off.
1252 * If it is in error state, leave it in error state.
1253 */
1254 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1255 update_context_time(ctx);
1256 update_cgrp_time_from_event(event);
1257 update_group_times(event);
1258 if (event == event->group_leader)
1259 group_sched_out(event, cpuctx, ctx);
1260 else
1261 event_sched_out(event, cpuctx, ctx);
1262 event->state = PERF_EVENT_STATE_OFF;
1263 }
1264
1265 raw_spin_unlock(&ctx->lock);
1266
1267 return 0;
1268 }
1269
1270 /*
1271 * Disable a event.
1272 *
1273 * If event->ctx is a cloned context, callers must make sure that
1274 * every task struct that event->ctx->task could possibly point to
1275 * remains valid. This condition is satisifed when called through
1276 * perf_event_for_each_child or perf_event_for_each because they
1277 * hold the top-level event's child_mutex, so any descendant that
1278 * goes to exit will block in sync_child_event.
1279 * When called from perf_pending_event it's OK because event->ctx
1280 * is the current context on this CPU and preemption is disabled,
1281 * hence we can't get into perf_event_task_sched_out for this context.
1282 */
1283 void perf_event_disable(struct perf_event *event)
1284 {
1285 struct perf_event_context *ctx = event->ctx;
1286 struct task_struct *task = ctx->task;
1287
1288 if (!task) {
1289 /*
1290 * Disable the event on the cpu that it's on
1291 */
1292 cpu_function_call(event->cpu, __perf_event_disable, event);
1293 return;
1294 }
1295
1296 retry:
1297 if (!task_function_call(task, __perf_event_disable, event))
1298 return;
1299
1300 raw_spin_lock_irq(&ctx->lock);
1301 /*
1302 * If the event is still active, we need to retry the cross-call.
1303 */
1304 if (event->state == PERF_EVENT_STATE_ACTIVE) {
1305 raw_spin_unlock_irq(&ctx->lock);
1306 /*
1307 * Reload the task pointer, it might have been changed by
1308 * a concurrent perf_event_context_sched_out().
1309 */
1310 task = ctx->task;
1311 goto retry;
1312 }
1313
1314 /*
1315 * Since we have the lock this context can't be scheduled
1316 * in, so we can change the state safely.
1317 */
1318 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1319 update_group_times(event);
1320 event->state = PERF_EVENT_STATE_OFF;
1321 }
1322 raw_spin_unlock_irq(&ctx->lock);
1323 }
1324
1325 static void perf_set_shadow_time(struct perf_event *event,
1326 struct perf_event_context *ctx,
1327 u64 tstamp)
1328 {
1329 /*
1330 * use the correct time source for the time snapshot
1331 *
1332 * We could get by without this by leveraging the
1333 * fact that to get to this function, the caller
1334 * has most likely already called update_context_time()
1335 * and update_cgrp_time_xx() and thus both timestamp
1336 * are identical (or very close). Given that tstamp is,
1337 * already adjusted for cgroup, we could say that:
1338 * tstamp - ctx->timestamp
1339 * is equivalent to
1340 * tstamp - cgrp->timestamp.
1341 *
1342 * Then, in perf_output_read(), the calculation would
1343 * work with no changes because:
1344 * - event is guaranteed scheduled in
1345 * - no scheduled out in between
1346 * - thus the timestamp would be the same
1347 *
1348 * But this is a bit hairy.
1349 *
1350 * So instead, we have an explicit cgroup call to remain
1351 * within the time time source all along. We believe it
1352 * is cleaner and simpler to understand.
1353 */
1354 if (is_cgroup_event(event))
1355 perf_cgroup_set_shadow_time(event, tstamp);
1356 else
1357 event->shadow_ctx_time = tstamp - ctx->timestamp;
1358 }
1359
1360 #define MAX_INTERRUPTS (~0ULL)
1361
1362 static void perf_log_throttle(struct perf_event *event, int enable);
1363
1364 static int
1365 event_sched_in(struct perf_event *event,
1366 struct perf_cpu_context *cpuctx,
1367 struct perf_event_context *ctx)
1368 {
1369 u64 tstamp = perf_event_time(event);
1370
1371 if (event->state <= PERF_EVENT_STATE_OFF)
1372 return 0;
1373
1374 event->state = PERF_EVENT_STATE_ACTIVE;
1375 event->oncpu = smp_processor_id();
1376
1377 /*
1378 * Unthrottle events, since we scheduled we might have missed several
1379 * ticks already, also for a heavily scheduling task there is little
1380 * guarantee it'll get a tick in a timely manner.
1381 */
1382 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1383 perf_log_throttle(event, 1);
1384 event->hw.interrupts = 0;
1385 }
1386
1387 /*
1388 * The new state must be visible before we turn it on in the hardware:
1389 */
1390 smp_wmb();
1391
1392 if (event->pmu->add(event, PERF_EF_START)) {
1393 event->state = PERF_EVENT_STATE_INACTIVE;
1394 event->oncpu = -1;
1395 return -EAGAIN;
1396 }
1397
1398 event->tstamp_running += tstamp - event->tstamp_stopped;
1399
1400 perf_set_shadow_time(event, ctx, tstamp);
1401
1402 if (!is_software_event(event))
1403 cpuctx->active_oncpu++;
1404 ctx->nr_active++;
1405
1406 if (event->attr.exclusive)
1407 cpuctx->exclusive = 1;
1408
1409 return 0;
1410 }
1411
1412 static int
1413 group_sched_in(struct perf_event *group_event,
1414 struct perf_cpu_context *cpuctx,
1415 struct perf_event_context *ctx)
1416 {
1417 struct perf_event *event, *partial_group = NULL;
1418 struct pmu *pmu = group_event->pmu;
1419 u64 now = ctx->time;
1420 bool simulate = false;
1421
1422 if (group_event->state == PERF_EVENT_STATE_OFF)
1423 return 0;
1424
1425 pmu->start_txn(pmu);
1426
1427 if (event_sched_in(group_event, cpuctx, ctx)) {
1428 pmu->cancel_txn(pmu);
1429 return -EAGAIN;
1430 }
1431
1432 /*
1433 * Schedule in siblings as one group (if any):
1434 */
1435 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1436 if (event_sched_in(event, cpuctx, ctx)) {
1437 partial_group = event;
1438 goto group_error;
1439 }
1440 }
1441
1442 if (!pmu->commit_txn(pmu))
1443 return 0;
1444
1445 group_error:
1446 /*
1447 * Groups can be scheduled in as one unit only, so undo any
1448 * partial group before returning:
1449 * The events up to the failed event are scheduled out normally,
1450 * tstamp_stopped will be updated.
1451 *
1452 * The failed events and the remaining siblings need to have
1453 * their timings updated as if they had gone thru event_sched_in()
1454 * and event_sched_out(). This is required to get consistent timings
1455 * across the group. This also takes care of the case where the group
1456 * could never be scheduled by ensuring tstamp_stopped is set to mark
1457 * the time the event was actually stopped, such that time delta
1458 * calculation in update_event_times() is correct.
1459 */
1460 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1461 if (event == partial_group)
1462 simulate = true;
1463
1464 if (simulate) {
1465 event->tstamp_running += now - event->tstamp_stopped;
1466 event->tstamp_stopped = now;
1467 } else {
1468 event_sched_out(event, cpuctx, ctx);
1469 }
1470 }
1471 event_sched_out(group_event, cpuctx, ctx);
1472
1473 pmu->cancel_txn(pmu);
1474
1475 return -EAGAIN;
1476 }
1477
1478 /*
1479 * Work out whether we can put this event group on the CPU now.
1480 */
1481 static int group_can_go_on(struct perf_event *event,
1482 struct perf_cpu_context *cpuctx,
1483 int can_add_hw)
1484 {
1485 /*
1486 * Groups consisting entirely of software events can always go on.
1487 */
1488 if (event->group_flags & PERF_GROUP_SOFTWARE)
1489 return 1;
1490 /*
1491 * If an exclusive group is already on, no other hardware
1492 * events can go on.
1493 */
1494 if (cpuctx->exclusive)
1495 return 0;
1496 /*
1497 * If this group is exclusive and there are already
1498 * events on the CPU, it can't go on.
1499 */
1500 if (event->attr.exclusive && cpuctx->active_oncpu)
1501 return 0;
1502 /*
1503 * Otherwise, try to add it if all previous groups were able
1504 * to go on.
1505 */
1506 return can_add_hw;
1507 }
1508
1509 static void add_event_to_ctx(struct perf_event *event,
1510 struct perf_event_context *ctx)
1511 {
1512 u64 tstamp = perf_event_time(event);
1513
1514 list_add_event(event, ctx);
1515 perf_group_attach(event);
1516 event->tstamp_enabled = tstamp;
1517 event->tstamp_running = tstamp;
1518 event->tstamp_stopped = tstamp;
1519 }
1520
1521 static void task_ctx_sched_out(struct perf_event_context *ctx);
1522 static void
1523 ctx_sched_in(struct perf_event_context *ctx,
1524 struct perf_cpu_context *cpuctx,
1525 enum event_type_t event_type,
1526 struct task_struct *task);
1527
1528 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
1529 struct perf_event_context *ctx,
1530 struct task_struct *task)
1531 {
1532 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
1533 if (ctx)
1534 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
1535 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
1536 if (ctx)
1537 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
1538 }
1539
1540 /*
1541 * Cross CPU call to install and enable a performance event
1542 *
1543 * Must be called with ctx->mutex held
1544 */
1545 static int __perf_install_in_context(void *info)
1546 {
1547 struct perf_event *event = info;
1548 struct perf_event_context *ctx = event->ctx;
1549 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1550 struct perf_event_context *task_ctx = cpuctx->task_ctx;
1551 struct task_struct *task = current;
1552
1553 perf_ctx_lock(cpuctx, task_ctx);
1554 perf_pmu_disable(cpuctx->ctx.pmu);
1555
1556 /*
1557 * If there was an active task_ctx schedule it out.
1558 */
1559 if (task_ctx)
1560 task_ctx_sched_out(task_ctx);
1561
1562 /*
1563 * If the context we're installing events in is not the
1564 * active task_ctx, flip them.
1565 */
1566 if (ctx->task && task_ctx != ctx) {
1567 if (task_ctx)
1568 raw_spin_unlock(&task_ctx->lock);
1569 raw_spin_lock(&ctx->lock);
1570 task_ctx = ctx;
1571 }
1572
1573 if (task_ctx) {
1574 cpuctx->task_ctx = task_ctx;
1575 task = task_ctx->task;
1576 }
1577
1578 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
1579
1580 update_context_time(ctx);
1581 /*
1582 * update cgrp time only if current cgrp
1583 * matches event->cgrp. Must be done before
1584 * calling add_event_to_ctx()
1585 */
1586 update_cgrp_time_from_event(event);
1587
1588 add_event_to_ctx(event, ctx);
1589
1590 /*
1591 * Schedule everything back in
1592 */
1593 perf_event_sched_in(cpuctx, task_ctx, task);
1594
1595 perf_pmu_enable(cpuctx->ctx.pmu);
1596 perf_ctx_unlock(cpuctx, task_ctx);
1597
1598 return 0;
1599 }
1600
1601 /*
1602 * Attach a performance event to a context
1603 *
1604 * First we add the event to the list with the hardware enable bit
1605 * in event->hw_config cleared.
1606 *
1607 * If the event is attached to a task which is on a CPU we use a smp
1608 * call to enable it in the task context. The task might have been
1609 * scheduled away, but we check this in the smp call again.
1610 */
1611 static void
1612 perf_install_in_context(struct perf_event_context *ctx,
1613 struct perf_event *event,
1614 int cpu)
1615 {
1616 struct task_struct *task = ctx->task;
1617
1618 lockdep_assert_held(&ctx->mutex);
1619
1620 event->ctx = ctx;
1621
1622 if (!task) {
1623 /*
1624 * Per cpu events are installed via an smp call and
1625 * the install is always successful.
1626 */
1627 cpu_function_call(cpu, __perf_install_in_context, event);
1628 return;
1629 }
1630
1631 retry:
1632 if (!task_function_call(task, __perf_install_in_context, event))
1633 return;
1634
1635 raw_spin_lock_irq(&ctx->lock);
1636 /*
1637 * If we failed to find a running task, but find the context active now
1638 * that we've acquired the ctx->lock, retry.
1639 */
1640 if (ctx->is_active) {
1641 raw_spin_unlock_irq(&ctx->lock);
1642 goto retry;
1643 }
1644
1645 /*
1646 * Since the task isn't running, its safe to add the event, us holding
1647 * the ctx->lock ensures the task won't get scheduled in.
1648 */
1649 add_event_to_ctx(event, ctx);
1650 raw_spin_unlock_irq(&ctx->lock);
1651 }
1652
1653 /*
1654 * Put a event into inactive state and update time fields.
1655 * Enabling the leader of a group effectively enables all
1656 * the group members that aren't explicitly disabled, so we
1657 * have to update their ->tstamp_enabled also.
1658 * Note: this works for group members as well as group leaders
1659 * since the non-leader members' sibling_lists will be empty.
1660 */
1661 static void __perf_event_mark_enabled(struct perf_event *event,
1662 struct perf_event_context *ctx)
1663 {
1664 struct perf_event *sub;
1665 u64 tstamp = perf_event_time(event);
1666
1667 event->state = PERF_EVENT_STATE_INACTIVE;
1668 event->tstamp_enabled = tstamp - event->total_time_enabled;
1669 list_for_each_entry(sub, &event->sibling_list, group_entry) {
1670 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
1671 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
1672 }
1673 }
1674
1675 /*
1676 * Cross CPU call to enable a performance event
1677 */
1678 static int __perf_event_enable(void *info)
1679 {
1680 struct perf_event *event = info;
1681 struct perf_event_context *ctx = event->ctx;
1682 struct perf_event *leader = event->group_leader;
1683 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1684 int err;
1685
1686 if (WARN_ON_ONCE(!ctx->is_active))
1687 return -EINVAL;
1688
1689 raw_spin_lock(&ctx->lock);
1690 update_context_time(ctx);
1691
1692 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1693 goto unlock;
1694
1695 /*
1696 * set current task's cgroup time reference point
1697 */
1698 perf_cgroup_set_timestamp(current, ctx);
1699
1700 __perf_event_mark_enabled(event, ctx);
1701
1702 if (!event_filter_match(event)) {
1703 if (is_cgroup_event(event))
1704 perf_cgroup_defer_enabled(event);
1705 goto unlock;
1706 }
1707
1708 /*
1709 * If the event is in a group and isn't the group leader,
1710 * then don't put it on unless the group is on.
1711 */
1712 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
1713 goto unlock;
1714
1715 if (!group_can_go_on(event, cpuctx, 1)) {
1716 err = -EEXIST;
1717 } else {
1718 if (event == leader)
1719 err = group_sched_in(event, cpuctx, ctx);
1720 else
1721 err = event_sched_in(event, cpuctx, ctx);
1722 }
1723
1724 if (err) {
1725 /*
1726 * If this event can't go on and it's part of a
1727 * group, then the whole group has to come off.
1728 */
1729 if (leader != event)
1730 group_sched_out(leader, cpuctx, ctx);
1731 if (leader->attr.pinned) {
1732 update_group_times(leader);
1733 leader->state = PERF_EVENT_STATE_ERROR;
1734 }
1735 }
1736
1737 unlock:
1738 raw_spin_unlock(&ctx->lock);
1739
1740 return 0;
1741 }
1742
1743 /*
1744 * Enable a event.
1745 *
1746 * If event->ctx is a cloned context, callers must make sure that
1747 * every task struct that event->ctx->task could possibly point to
1748 * remains valid. This condition is satisfied when called through
1749 * perf_event_for_each_child or perf_event_for_each as described
1750 * for perf_event_disable.
1751 */
1752 void perf_event_enable(struct perf_event *event)
1753 {
1754 struct perf_event_context *ctx = event->ctx;
1755 struct task_struct *task = ctx->task;
1756
1757 if (!task) {
1758 /*
1759 * Enable the event on the cpu that it's on
1760 */
1761 cpu_function_call(event->cpu, __perf_event_enable, event);
1762 return;
1763 }
1764
1765 raw_spin_lock_irq(&ctx->lock);
1766 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1767 goto out;
1768
1769 /*
1770 * If the event is in error state, clear that first.
1771 * That way, if we see the event in error state below, we
1772 * know that it has gone back into error state, as distinct
1773 * from the task having been scheduled away before the
1774 * cross-call arrived.
1775 */
1776 if (event->state == PERF_EVENT_STATE_ERROR)
1777 event->state = PERF_EVENT_STATE_OFF;
1778
1779 retry:
1780 if (!ctx->is_active) {
1781 __perf_event_mark_enabled(event, ctx);
1782 goto out;
1783 }
1784
1785 raw_spin_unlock_irq(&ctx->lock);
1786
1787 if (!task_function_call(task, __perf_event_enable, event))
1788 return;
1789
1790 raw_spin_lock_irq(&ctx->lock);
1791
1792 /*
1793 * If the context is active and the event is still off,
1794 * we need to retry the cross-call.
1795 */
1796 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
1797 /*
1798 * task could have been flipped by a concurrent
1799 * perf_event_context_sched_out()
1800 */
1801 task = ctx->task;
1802 goto retry;
1803 }
1804
1805 out:
1806 raw_spin_unlock_irq(&ctx->lock);
1807 }
1808
1809 int perf_event_refresh(struct perf_event *event, int refresh)
1810 {
1811 /*
1812 * not supported on inherited events
1813 */
1814 if (event->attr.inherit || !is_sampling_event(event))
1815 return -EINVAL;
1816
1817 atomic_add(refresh, &event->event_limit);
1818 perf_event_enable(event);
1819
1820 return 0;
1821 }
1822 EXPORT_SYMBOL_GPL(perf_event_refresh);
1823
1824 static void ctx_sched_out(struct perf_event_context *ctx,
1825 struct perf_cpu_context *cpuctx,
1826 enum event_type_t event_type)
1827 {
1828 struct perf_event *event;
1829 int is_active = ctx->is_active;
1830
1831 ctx->is_active &= ~event_type;
1832 if (likely(!ctx->nr_events))
1833 return;
1834
1835 update_context_time(ctx);
1836 update_cgrp_time_from_cpuctx(cpuctx);
1837 if (!ctx->nr_active)
1838 return;
1839
1840 perf_pmu_disable(ctx->pmu);
1841 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
1842 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1843 group_sched_out(event, cpuctx, ctx);
1844 }
1845
1846 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
1847 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1848 group_sched_out(event, cpuctx, ctx);
1849 }
1850 perf_pmu_enable(ctx->pmu);
1851 }
1852
1853 /*
1854 * Test whether two contexts are equivalent, i.e. whether they
1855 * have both been cloned from the same version of the same context
1856 * and they both have the same number of enabled events.
1857 * If the number of enabled events is the same, then the set
1858 * of enabled events should be the same, because these are both
1859 * inherited contexts, therefore we can't access individual events
1860 * in them directly with an fd; we can only enable/disable all
1861 * events via prctl, or enable/disable all events in a family
1862 * via ioctl, which will have the same effect on both contexts.
1863 */
1864 static int context_equiv(struct perf_event_context *ctx1,
1865 struct perf_event_context *ctx2)
1866 {
1867 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1868 && ctx1->parent_gen == ctx2->parent_gen
1869 && !ctx1->pin_count && !ctx2->pin_count;
1870 }
1871
1872 static void __perf_event_sync_stat(struct perf_event *event,
1873 struct perf_event *next_event)
1874 {
1875 u64 value;
1876
1877 if (!event->attr.inherit_stat)
1878 return;
1879
1880 /*
1881 * Update the event value, we cannot use perf_event_read()
1882 * because we're in the middle of a context switch and have IRQs
1883 * disabled, which upsets smp_call_function_single(), however
1884 * we know the event must be on the current CPU, therefore we
1885 * don't need to use it.
1886 */
1887 switch (event->state) {
1888 case PERF_EVENT_STATE_ACTIVE:
1889 event->pmu->read(event);
1890 /* fall-through */
1891
1892 case PERF_EVENT_STATE_INACTIVE:
1893 update_event_times(event);
1894 break;
1895
1896 default:
1897 break;
1898 }
1899
1900 /*
1901 * In order to keep per-task stats reliable we need to flip the event
1902 * values when we flip the contexts.
1903 */
1904 value = local64_read(&next_event->count);
1905 value = local64_xchg(&event->count, value);
1906 local64_set(&next_event->count, value);
1907
1908 swap(event->total_time_enabled, next_event->total_time_enabled);
1909 swap(event->total_time_running, next_event->total_time_running);
1910
1911 /*
1912 * Since we swizzled the values, update the user visible data too.
1913 */
1914 perf_event_update_userpage(event);
1915 perf_event_update_userpage(next_event);
1916 }
1917
1918 #define list_next_entry(pos, member) \
1919 list_entry(pos->member.next, typeof(*pos), member)
1920
1921 static void perf_event_sync_stat(struct perf_event_context *ctx,
1922 struct perf_event_context *next_ctx)
1923 {
1924 struct perf_event *event, *next_event;
1925
1926 if (!ctx->nr_stat)
1927 return;
1928
1929 update_context_time(ctx);
1930
1931 event = list_first_entry(&ctx->event_list,
1932 struct perf_event, event_entry);
1933
1934 next_event = list_first_entry(&next_ctx->event_list,
1935 struct perf_event, event_entry);
1936
1937 while (&event->event_entry != &ctx->event_list &&
1938 &next_event->event_entry != &next_ctx->event_list) {
1939
1940 __perf_event_sync_stat(event, next_event);
1941
1942 event = list_next_entry(event, event_entry);
1943 next_event = list_next_entry(next_event, event_entry);
1944 }
1945 }
1946
1947 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
1948 struct task_struct *next)
1949 {
1950 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
1951 struct perf_event_context *next_ctx;
1952 struct perf_event_context *parent;
1953 struct perf_cpu_context *cpuctx;
1954 int do_switch = 1;
1955
1956 if (likely(!ctx))
1957 return;
1958
1959 cpuctx = __get_cpu_context(ctx);
1960 if (!cpuctx->task_ctx)
1961 return;
1962
1963 rcu_read_lock();
1964 parent = rcu_dereference(ctx->parent_ctx);
1965 next_ctx = next->perf_event_ctxp[ctxn];
1966 if (parent && next_ctx &&
1967 rcu_dereference(next_ctx->parent_ctx) == parent) {
1968 /*
1969 * Looks like the two contexts are clones, so we might be
1970 * able to optimize the context switch. We lock both
1971 * contexts and check that they are clones under the
1972 * lock (including re-checking that neither has been
1973 * uncloned in the meantime). It doesn't matter which
1974 * order we take the locks because no other cpu could
1975 * be trying to lock both of these tasks.
1976 */
1977 raw_spin_lock(&ctx->lock);
1978 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1979 if (context_equiv(ctx, next_ctx)) {
1980 /*
1981 * XXX do we need a memory barrier of sorts
1982 * wrt to rcu_dereference() of perf_event_ctxp
1983 */
1984 task->perf_event_ctxp[ctxn] = next_ctx;
1985 next->perf_event_ctxp[ctxn] = ctx;
1986 ctx->task = next;
1987 next_ctx->task = task;
1988 do_switch = 0;
1989
1990 perf_event_sync_stat(ctx, next_ctx);
1991 }
1992 raw_spin_unlock(&next_ctx->lock);
1993 raw_spin_unlock(&ctx->lock);
1994 }
1995 rcu_read_unlock();
1996
1997 if (do_switch) {
1998 raw_spin_lock(&ctx->lock);
1999 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2000 cpuctx->task_ctx = NULL;
2001 raw_spin_unlock(&ctx->lock);
2002 }
2003 }
2004
2005 #define for_each_task_context_nr(ctxn) \
2006 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2007
2008 /*
2009 * Called from scheduler to remove the events of the current task,
2010 * with interrupts disabled.
2011 *
2012 * We stop each event and update the event value in event->count.
2013 *
2014 * This does not protect us against NMI, but disable()
2015 * sets the disabled bit in the control field of event _before_
2016 * accessing the event control register. If a NMI hits, then it will
2017 * not restart the event.
2018 */
2019 void __perf_event_task_sched_out(struct task_struct *task,
2020 struct task_struct *next)
2021 {
2022 int ctxn;
2023
2024 for_each_task_context_nr(ctxn)
2025 perf_event_context_sched_out(task, ctxn, next);
2026
2027 /*
2028 * if cgroup events exist on this CPU, then we need
2029 * to check if we have to switch out PMU state.
2030 * cgroup event are system-wide mode only
2031 */
2032 if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2033 perf_cgroup_sched_out(task, next);
2034 }
2035
2036 static void task_ctx_sched_out(struct perf_event_context *ctx)
2037 {
2038 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2039
2040 if (!cpuctx->task_ctx)
2041 return;
2042
2043 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2044 return;
2045
2046 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2047 cpuctx->task_ctx = NULL;
2048 }
2049
2050 /*
2051 * Called with IRQs disabled
2052 */
2053 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2054 enum event_type_t event_type)
2055 {
2056 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2057 }
2058
2059 static void
2060 ctx_pinned_sched_in(struct perf_event_context *ctx,
2061 struct perf_cpu_context *cpuctx)
2062 {
2063 struct perf_event *event;
2064
2065 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2066 if (event->state <= PERF_EVENT_STATE_OFF)
2067 continue;
2068 if (!event_filter_match(event))
2069 continue;
2070
2071 /* may need to reset tstamp_enabled */
2072 if (is_cgroup_event(event))
2073 perf_cgroup_mark_enabled(event, ctx);
2074
2075 if (group_can_go_on(event, cpuctx, 1))
2076 group_sched_in(event, cpuctx, ctx);
2077
2078 /*
2079 * If this pinned group hasn't been scheduled,
2080 * put it in error state.
2081 */
2082 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2083 update_group_times(event);
2084 event->state = PERF_EVENT_STATE_ERROR;
2085 }
2086 }
2087 }
2088
2089 static void
2090 ctx_flexible_sched_in(struct perf_event_context *ctx,
2091 struct perf_cpu_context *cpuctx)
2092 {
2093 struct perf_event *event;
2094 int can_add_hw = 1;
2095
2096 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2097 /* Ignore events in OFF or ERROR state */
2098 if (event->state <= PERF_EVENT_STATE_OFF)
2099 continue;
2100 /*
2101 * Listen to the 'cpu' scheduling filter constraint
2102 * of events:
2103 */
2104 if (!event_filter_match(event))
2105 continue;
2106
2107 /* may need to reset tstamp_enabled */
2108 if (is_cgroup_event(event))
2109 perf_cgroup_mark_enabled(event, ctx);
2110
2111 if (group_can_go_on(event, cpuctx, can_add_hw)) {
2112 if (group_sched_in(event, cpuctx, ctx))
2113 can_add_hw = 0;
2114 }
2115 }
2116 }
2117
2118 static void
2119 ctx_sched_in(struct perf_event_context *ctx,
2120 struct perf_cpu_context *cpuctx,
2121 enum event_type_t event_type,
2122 struct task_struct *task)
2123 {
2124 u64 now;
2125 int is_active = ctx->is_active;
2126
2127 ctx->is_active |= event_type;
2128 if (likely(!ctx->nr_events))
2129 return;
2130
2131 now = perf_clock();
2132 ctx->timestamp = now;
2133 perf_cgroup_set_timestamp(task, ctx);
2134 /*
2135 * First go through the list and put on any pinned groups
2136 * in order to give them the best chance of going on.
2137 */
2138 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2139 ctx_pinned_sched_in(ctx, cpuctx);
2140
2141 /* Then walk through the lower prio flexible groups */
2142 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2143 ctx_flexible_sched_in(ctx, cpuctx);
2144 }
2145
2146 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
2147 enum event_type_t event_type,
2148 struct task_struct *task)
2149 {
2150 struct perf_event_context *ctx = &cpuctx->ctx;
2151
2152 ctx_sched_in(ctx, cpuctx, event_type, task);
2153 }
2154
2155 static void perf_event_context_sched_in(struct perf_event_context *ctx,
2156 struct task_struct *task)
2157 {
2158 struct perf_cpu_context *cpuctx;
2159
2160 cpuctx = __get_cpu_context(ctx);
2161 if (cpuctx->task_ctx == ctx)
2162 return;
2163
2164 perf_ctx_lock(cpuctx, ctx);
2165 perf_pmu_disable(ctx->pmu);
2166 /*
2167 * We want to keep the following priority order:
2168 * cpu pinned (that don't need to move), task pinned,
2169 * cpu flexible, task flexible.
2170 */
2171 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2172
2173 perf_event_sched_in(cpuctx, ctx, task);
2174
2175 cpuctx->task_ctx = ctx;
2176
2177 perf_pmu_enable(ctx->pmu);
2178 perf_ctx_unlock(cpuctx, ctx);
2179
2180 /*
2181 * Since these rotations are per-cpu, we need to ensure the
2182 * cpu-context we got scheduled on is actually rotating.
2183 */
2184 perf_pmu_rotate_start(ctx->pmu);
2185 }
2186
2187 /*
2188 * Called from scheduler to add the events of the current task
2189 * with interrupts disabled.
2190 *
2191 * We restore the event value and then enable it.
2192 *
2193 * This does not protect us against NMI, but enable()
2194 * sets the enabled bit in the control field of event _before_
2195 * accessing the event control register. If a NMI hits, then it will
2196 * keep the event running.
2197 */
2198 void __perf_event_task_sched_in(struct task_struct *prev,
2199 struct task_struct *task)
2200 {
2201 struct perf_event_context *ctx;
2202 int ctxn;
2203
2204 for_each_task_context_nr(ctxn) {
2205 ctx = task->perf_event_ctxp[ctxn];
2206 if (likely(!ctx))
2207 continue;
2208
2209 perf_event_context_sched_in(ctx, task);
2210 }
2211 /*
2212 * if cgroup events exist on this CPU, then we need
2213 * to check if we have to switch in PMU state.
2214 * cgroup event are system-wide mode only
2215 */
2216 if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2217 perf_cgroup_sched_in(prev, task);
2218 }
2219
2220 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2221 {
2222 u64 frequency = event->attr.sample_freq;
2223 u64 sec = NSEC_PER_SEC;
2224 u64 divisor, dividend;
2225
2226 int count_fls, nsec_fls, frequency_fls, sec_fls;
2227
2228 count_fls = fls64(count);
2229 nsec_fls = fls64(nsec);
2230 frequency_fls = fls64(frequency);
2231 sec_fls = 30;
2232
2233 /*
2234 * We got @count in @nsec, with a target of sample_freq HZ
2235 * the target period becomes:
2236 *
2237 * @count * 10^9
2238 * period = -------------------
2239 * @nsec * sample_freq
2240 *
2241 */
2242
2243 /*
2244 * Reduce accuracy by one bit such that @a and @b converge
2245 * to a similar magnitude.
2246 */
2247 #define REDUCE_FLS(a, b) \
2248 do { \
2249 if (a##_fls > b##_fls) { \
2250 a >>= 1; \
2251 a##_fls--; \
2252 } else { \
2253 b >>= 1; \
2254 b##_fls--; \
2255 } \
2256 } while (0)
2257
2258 /*
2259 * Reduce accuracy until either term fits in a u64, then proceed with
2260 * the other, so that finally we can do a u64/u64 division.
2261 */
2262 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2263 REDUCE_FLS(nsec, frequency);
2264 REDUCE_FLS(sec, count);
2265 }
2266
2267 if (count_fls + sec_fls > 64) {
2268 divisor = nsec * frequency;
2269
2270 while (count_fls + sec_fls > 64) {
2271 REDUCE_FLS(count, sec);
2272 divisor >>= 1;
2273 }
2274
2275 dividend = count * sec;
2276 } else {
2277 dividend = count * sec;
2278
2279 while (nsec_fls + frequency_fls > 64) {
2280 REDUCE_FLS(nsec, frequency);
2281 dividend >>= 1;
2282 }
2283
2284 divisor = nsec * frequency;
2285 }
2286
2287 if (!divisor)
2288 return dividend;
2289
2290 return div64_u64(dividend, divisor);
2291 }
2292
2293 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
2294 {
2295 struct hw_perf_event *hwc = &event->hw;
2296 s64 period, sample_period;
2297 s64 delta;
2298
2299 period = perf_calculate_period(event, nsec, count);
2300
2301 delta = (s64)(period - hwc->sample_period);
2302 delta = (delta + 7) / 8; /* low pass filter */
2303
2304 sample_period = hwc->sample_period + delta;
2305
2306 if (!sample_period)
2307 sample_period = 1;
2308
2309 hwc->sample_period = sample_period;
2310
2311 if (local64_read(&hwc->period_left) > 8*sample_period) {
2312 event->pmu->stop(event, PERF_EF_UPDATE);
2313 local64_set(&hwc->period_left, 0);
2314 event->pmu->start(event, PERF_EF_RELOAD);
2315 }
2316 }
2317
2318 static void perf_ctx_adjust_freq(struct perf_event_context *ctx, u64 period)
2319 {
2320 struct perf_event *event;
2321 struct hw_perf_event *hwc;
2322 u64 interrupts, now;
2323 s64 delta;
2324
2325 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2326 if (event->state != PERF_EVENT_STATE_ACTIVE)
2327 continue;
2328
2329 if (!event_filter_match(event))
2330 continue;
2331
2332 hwc = &event->hw;
2333
2334 interrupts = hwc->interrupts;
2335 hwc->interrupts = 0;
2336
2337 /*
2338 * unthrottle events on the tick
2339 */
2340 if (interrupts == MAX_INTERRUPTS) {
2341 perf_log_throttle(event, 1);
2342 event->pmu->start(event, 0);
2343 }
2344
2345 if (!event->attr.freq || !event->attr.sample_freq)
2346 continue;
2347
2348 event->pmu->read(event);
2349 now = local64_read(&event->count);
2350 delta = now - hwc->freq_count_stamp;
2351 hwc->freq_count_stamp = now;
2352
2353 if (delta > 0)
2354 perf_adjust_period(event, period, delta);
2355 }
2356 }
2357
2358 /*
2359 * Round-robin a context's events:
2360 */
2361 static void rotate_ctx(struct perf_event_context *ctx)
2362 {
2363 /*
2364 * Rotate the first entry last of non-pinned groups. Rotation might be
2365 * disabled by the inheritance code.
2366 */
2367 if (!ctx->rotate_disable)
2368 list_rotate_left(&ctx->flexible_groups);
2369 }
2370
2371 /*
2372 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
2373 * because they're strictly cpu affine and rotate_start is called with IRQs
2374 * disabled, while rotate_context is called from IRQ context.
2375 */
2376 static void perf_rotate_context(struct perf_cpu_context *cpuctx)
2377 {
2378 u64 interval = (u64)cpuctx->jiffies_interval * TICK_NSEC;
2379 struct perf_event_context *ctx = NULL;
2380 int rotate = 0, remove = 1;
2381
2382 if (cpuctx->ctx.nr_events) {
2383 remove = 0;
2384 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
2385 rotate = 1;
2386 }
2387
2388 ctx = cpuctx->task_ctx;
2389 if (ctx && ctx->nr_events) {
2390 remove = 0;
2391 if (ctx->nr_events != ctx->nr_active)
2392 rotate = 1;
2393 }
2394
2395 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2396 perf_pmu_disable(cpuctx->ctx.pmu);
2397 perf_ctx_adjust_freq(&cpuctx->ctx, interval);
2398 if (ctx)
2399 perf_ctx_adjust_freq(ctx, interval);
2400
2401 if (!rotate)
2402 goto done;
2403
2404 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2405 if (ctx)
2406 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
2407
2408 rotate_ctx(&cpuctx->ctx);
2409 if (ctx)
2410 rotate_ctx(ctx);
2411
2412 perf_event_sched_in(cpuctx, ctx, current);
2413
2414 done:
2415 if (remove)
2416 list_del_init(&cpuctx->rotation_list);
2417
2418 perf_pmu_enable(cpuctx->ctx.pmu);
2419 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2420 }
2421
2422 void perf_event_task_tick(void)
2423 {
2424 struct list_head *head = &__get_cpu_var(rotation_list);
2425 struct perf_cpu_context *cpuctx, *tmp;
2426
2427 WARN_ON(!irqs_disabled());
2428
2429 list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
2430 if (cpuctx->jiffies_interval == 1 ||
2431 !(jiffies % cpuctx->jiffies_interval))
2432 perf_rotate_context(cpuctx);
2433 }
2434 }
2435
2436 static int event_enable_on_exec(struct perf_event *event,
2437 struct perf_event_context *ctx)
2438 {
2439 if (!event->attr.enable_on_exec)
2440 return 0;
2441
2442 event->attr.enable_on_exec = 0;
2443 if (event->state >= PERF_EVENT_STATE_INACTIVE)
2444 return 0;
2445
2446 __perf_event_mark_enabled(event, ctx);
2447
2448 return 1;
2449 }
2450
2451 /*
2452 * Enable all of a task's events that have been marked enable-on-exec.
2453 * This expects task == current.
2454 */
2455 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
2456 {
2457 struct perf_event *event;
2458 unsigned long flags;
2459 int enabled = 0;
2460 int ret;
2461
2462 local_irq_save(flags);
2463 if (!ctx || !ctx->nr_events)
2464 goto out;
2465
2466 /*
2467 * We must ctxsw out cgroup events to avoid conflict
2468 * when invoking perf_task_event_sched_in() later on
2469 * in this function. Otherwise we end up trying to
2470 * ctxswin cgroup events which are already scheduled
2471 * in.
2472 */
2473 perf_cgroup_sched_out(current, NULL);
2474
2475 raw_spin_lock(&ctx->lock);
2476 task_ctx_sched_out(ctx);
2477
2478 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2479 ret = event_enable_on_exec(event, ctx);
2480 if (ret)
2481 enabled = 1;
2482 }
2483
2484 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2485 ret = event_enable_on_exec(event, ctx);
2486 if (ret)
2487 enabled = 1;
2488 }
2489
2490 /*
2491 * Unclone this context if we enabled any event.
2492 */
2493 if (enabled)
2494 unclone_ctx(ctx);
2495
2496 raw_spin_unlock(&ctx->lock);
2497
2498 /*
2499 * Also calls ctxswin for cgroup events, if any:
2500 */
2501 perf_event_context_sched_in(ctx, ctx->task);
2502 out:
2503 local_irq_restore(flags);
2504 }
2505
2506 /*
2507 * Cross CPU call to read the hardware event
2508 */
2509 static void __perf_event_read(void *info)
2510 {
2511 struct perf_event *event = info;
2512 struct perf_event_context *ctx = event->ctx;
2513 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2514
2515 /*
2516 * If this is a task context, we need to check whether it is
2517 * the current task context of this cpu. If not it has been
2518 * scheduled out before the smp call arrived. In that case
2519 * event->count would have been updated to a recent sample
2520 * when the event was scheduled out.
2521 */
2522 if (ctx->task && cpuctx->task_ctx != ctx)
2523 return;
2524
2525 raw_spin_lock(&ctx->lock);
2526 if (ctx->is_active) {
2527 update_context_time(ctx);
2528 update_cgrp_time_from_event(event);
2529 }
2530 update_event_times(event);
2531 if (event->state == PERF_EVENT_STATE_ACTIVE)
2532 event->pmu->read(event);
2533 raw_spin_unlock(&ctx->lock);
2534 }
2535
2536 static inline u64 perf_event_count(struct perf_event *event)
2537 {
2538 return local64_read(&event->count) + atomic64_read(&event->child_count);
2539 }
2540
2541 static u64 perf_event_read(struct perf_event *event)
2542 {
2543 /*
2544 * If event is enabled and currently active on a CPU, update the
2545 * value in the event structure:
2546 */
2547 if (event->state == PERF_EVENT_STATE_ACTIVE) {
2548 smp_call_function_single(event->oncpu,
2549 __perf_event_read, event, 1);
2550 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2551 struct perf_event_context *ctx = event->ctx;
2552 unsigned long flags;
2553
2554 raw_spin_lock_irqsave(&ctx->lock, flags);
2555 /*
2556 * may read while context is not active
2557 * (e.g., thread is blocked), in that case
2558 * we cannot update context time
2559 */
2560 if (ctx->is_active) {
2561 update_context_time(ctx);
2562 update_cgrp_time_from_event(event);
2563 }
2564 update_event_times(event);
2565 raw_spin_unlock_irqrestore(&ctx->lock, flags);
2566 }
2567
2568 return perf_event_count(event);
2569 }
2570
2571 /*
2572 * Callchain support
2573 */
2574
2575 struct callchain_cpus_entries {
2576 struct rcu_head rcu_head;
2577 struct perf_callchain_entry *cpu_entries[0];
2578 };
2579
2580 static DEFINE_PER_CPU(int, callchain_recursion[PERF_NR_CONTEXTS]);
2581 static atomic_t nr_callchain_events;
2582 static DEFINE_MUTEX(callchain_mutex);
2583 struct callchain_cpus_entries *callchain_cpus_entries;
2584
2585
2586 __weak void perf_callchain_kernel(struct perf_callchain_entry *entry,
2587 struct pt_regs *regs)
2588 {
2589 }
2590
2591 __weak void perf_callchain_user(struct perf_callchain_entry *entry,
2592 struct pt_regs *regs)
2593 {
2594 }
2595
2596 static void release_callchain_buffers_rcu(struct rcu_head *head)
2597 {
2598 struct callchain_cpus_entries *entries;
2599 int cpu;
2600
2601 entries = container_of(head, struct callchain_cpus_entries, rcu_head);
2602
2603 for_each_possible_cpu(cpu)
2604 kfree(entries->cpu_entries[cpu]);
2605
2606 kfree(entries);
2607 }
2608
2609 static void release_callchain_buffers(void)
2610 {
2611 struct callchain_cpus_entries *entries;
2612
2613 entries = callchain_cpus_entries;
2614 rcu_assign_pointer(callchain_cpus_entries, NULL);
2615 call_rcu(&entries->rcu_head, release_callchain_buffers_rcu);
2616 }
2617
2618 static int alloc_callchain_buffers(void)
2619 {
2620 int cpu;
2621 int size;
2622 struct callchain_cpus_entries *entries;
2623
2624 /*
2625 * We can't use the percpu allocation API for data that can be
2626 * accessed from NMI. Use a temporary manual per cpu allocation
2627 * until that gets sorted out.
2628 */
2629 size = offsetof(struct callchain_cpus_entries, cpu_entries[nr_cpu_ids]);
2630
2631 entries = kzalloc(size, GFP_KERNEL);
2632 if (!entries)
2633 return -ENOMEM;
2634
2635 size = sizeof(struct perf_callchain_entry) * PERF_NR_CONTEXTS;
2636
2637 for_each_possible_cpu(cpu) {
2638 entries->cpu_entries[cpu] = kmalloc_node(size, GFP_KERNEL,
2639 cpu_to_node(cpu));
2640 if (!entries->cpu_entries[cpu])
2641 goto fail;
2642 }
2643
2644 rcu_assign_pointer(callchain_cpus_entries, entries);
2645
2646 return 0;
2647
2648 fail:
2649 for_each_possible_cpu(cpu)
2650 kfree(entries->cpu_entries[cpu]);
2651 kfree(entries);
2652
2653 return -ENOMEM;
2654 }
2655
2656 static int get_callchain_buffers(void)
2657 {
2658 int err = 0;
2659 int count;
2660
2661 mutex_lock(&callchain_mutex);
2662
2663 count = atomic_inc_return(&nr_callchain_events);
2664 if (WARN_ON_ONCE(count < 1)) {
2665 err = -EINVAL;
2666 goto exit;
2667 }
2668
2669 if (count > 1) {
2670 /* If the allocation failed, give up */
2671 if (!callchain_cpus_entries)
2672 err = -ENOMEM;
2673 goto exit;
2674 }
2675
2676 err = alloc_callchain_buffers();
2677 if (err)
2678 release_callchain_buffers();
2679 exit:
2680 mutex_unlock(&callchain_mutex);
2681
2682 return err;
2683 }
2684
2685 static void put_callchain_buffers(void)
2686 {
2687 if (atomic_dec_and_mutex_lock(&nr_callchain_events, &callchain_mutex)) {
2688 release_callchain_buffers();
2689 mutex_unlock(&callchain_mutex);
2690 }
2691 }
2692
2693 static int get_recursion_context(int *recursion)
2694 {
2695 int rctx;
2696
2697 if (in_nmi())
2698 rctx = 3;
2699 else if (in_irq())
2700 rctx = 2;
2701 else if (in_softirq())
2702 rctx = 1;
2703 else
2704 rctx = 0;
2705
2706 if (recursion[rctx])
2707 return -1;
2708
2709 recursion[rctx]++;
2710 barrier();
2711
2712 return rctx;
2713 }
2714
2715 static inline void put_recursion_context(int *recursion, int rctx)
2716 {
2717 barrier();
2718 recursion[rctx]--;
2719 }
2720
2721 static struct perf_callchain_entry *get_callchain_entry(int *rctx)
2722 {
2723 int cpu;
2724 struct callchain_cpus_entries *entries;
2725
2726 *rctx = get_recursion_context(__get_cpu_var(callchain_recursion));
2727 if (*rctx == -1)
2728 return NULL;
2729
2730 entries = rcu_dereference(callchain_cpus_entries);
2731 if (!entries)
2732 return NULL;
2733
2734 cpu = smp_processor_id();
2735
2736 return &entries->cpu_entries[cpu][*rctx];
2737 }
2738
2739 static void
2740 put_callchain_entry(int rctx)
2741 {
2742 put_recursion_context(__get_cpu_var(callchain_recursion), rctx);
2743 }
2744
2745 static struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2746 {
2747 int rctx;
2748 struct perf_callchain_entry *entry;
2749
2750
2751 entry = get_callchain_entry(&rctx);
2752 if (rctx == -1)
2753 return NULL;
2754
2755 if (!entry)
2756 goto exit_put;
2757
2758 entry->nr = 0;
2759
2760 if (!user_mode(regs)) {
2761 perf_callchain_store(entry, PERF_CONTEXT_KERNEL);
2762 perf_callchain_kernel(entry, regs);
2763 if (current->mm)
2764 regs = task_pt_regs(current);
2765 else
2766 regs = NULL;
2767 }
2768
2769 if (regs) {
2770 perf_callchain_store(entry, PERF_CONTEXT_USER);
2771 perf_callchain_user(entry, regs);
2772 }
2773
2774 exit_put:
2775 put_callchain_entry(rctx);
2776
2777 return entry;
2778 }
2779
2780 /*
2781 * Initialize the perf_event context in a task_struct:
2782 */
2783 static void __perf_event_init_context(struct perf_event_context *ctx)
2784 {
2785 raw_spin_lock_init(&ctx->lock);
2786 mutex_init(&ctx->mutex);
2787 INIT_LIST_HEAD(&ctx->pinned_groups);
2788 INIT_LIST_HEAD(&ctx->flexible_groups);
2789 INIT_LIST_HEAD(&ctx->event_list);
2790 atomic_set(&ctx->refcount, 1);
2791 }
2792
2793 static struct perf_event_context *
2794 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
2795 {
2796 struct perf_event_context *ctx;
2797
2798 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
2799 if (!ctx)
2800 return NULL;
2801
2802 __perf_event_init_context(ctx);
2803 if (task) {
2804 ctx->task = task;
2805 get_task_struct(task);
2806 }
2807 ctx->pmu = pmu;
2808
2809 return ctx;
2810 }
2811
2812 static struct task_struct *
2813 find_lively_task_by_vpid(pid_t vpid)
2814 {
2815 struct task_struct *task;
2816 int err;
2817
2818 rcu_read_lock();
2819 if (!vpid)
2820 task = current;
2821 else
2822 task = find_task_by_vpid(vpid);
2823 if (task)
2824 get_task_struct(task);
2825 rcu_read_unlock();
2826
2827 if (!task)
2828 return ERR_PTR(-ESRCH);
2829
2830 /* Reuse ptrace permission checks for now. */
2831 err = -EACCES;
2832 if (!ptrace_may_access(task, PTRACE_MODE_READ))
2833 goto errout;
2834
2835 return task;
2836 errout:
2837 put_task_struct(task);
2838 return ERR_PTR(err);
2839
2840 }
2841
2842 /*
2843 * Returns a matching context with refcount and pincount.
2844 */
2845 static struct perf_event_context *
2846 find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
2847 {
2848 struct perf_event_context *ctx;
2849 struct perf_cpu_context *cpuctx;
2850 unsigned long flags;
2851 int ctxn, err;
2852
2853 if (!task) {
2854 /* Must be root to operate on a CPU event: */
2855 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
2856 return ERR_PTR(-EACCES);
2857
2858 /*
2859 * We could be clever and allow to attach a event to an
2860 * offline CPU and activate it when the CPU comes up, but
2861 * that's for later.
2862 */
2863 if (!cpu_online(cpu))
2864 return ERR_PTR(-ENODEV);
2865
2866 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
2867 ctx = &cpuctx->ctx;
2868 get_ctx(ctx);
2869 ++ctx->pin_count;
2870
2871 return ctx;
2872 }
2873
2874 err = -EINVAL;
2875 ctxn = pmu->task_ctx_nr;
2876 if (ctxn < 0)
2877 goto errout;
2878
2879 retry:
2880 ctx = perf_lock_task_context(task, ctxn, &flags);
2881 if (ctx) {
2882 unclone_ctx(ctx);
2883 ++ctx->pin_count;
2884 raw_spin_unlock_irqrestore(&ctx->lock, flags);
2885 } else {
2886 ctx = alloc_perf_context(pmu, task);
2887 err = -ENOMEM;
2888 if (!ctx)
2889 goto errout;
2890
2891 err = 0;
2892 mutex_lock(&task->perf_event_mutex);
2893 /*
2894 * If it has already passed perf_event_exit_task().
2895 * we must see PF_EXITING, it takes this mutex too.
2896 */
2897 if (task->flags & PF_EXITING)
2898 err = -ESRCH;
2899 else if (task->perf_event_ctxp[ctxn])
2900 err = -EAGAIN;
2901 else {
2902 get_ctx(ctx);
2903 ++ctx->pin_count;
2904 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
2905 }
2906 mutex_unlock(&task->perf_event_mutex);
2907
2908 if (unlikely(err)) {
2909 put_ctx(ctx);
2910
2911 if (err == -EAGAIN)
2912 goto retry;
2913 goto errout;
2914 }
2915 }
2916
2917 return ctx;
2918
2919 errout:
2920 return ERR_PTR(err);
2921 }
2922
2923 static void perf_event_free_filter(struct perf_event *event);
2924
2925 static void free_event_rcu(struct rcu_head *head)
2926 {
2927 struct perf_event *event;
2928
2929 event = container_of(head, struct perf_event, rcu_head);
2930 if (event->ns)
2931 put_pid_ns(event->ns);
2932 perf_event_free_filter(event);
2933 kfree(event);
2934 }
2935
2936 static void ring_buffer_put(struct ring_buffer *rb);
2937
2938 static void free_event(struct perf_event *event)
2939 {
2940 irq_work_sync(&event->pending);
2941
2942 if (!event->parent) {
2943 if (event->attach_state & PERF_ATTACH_TASK)
2944 jump_label_dec(&perf_sched_events);
2945 if (event->attr.mmap || event->attr.mmap_data)
2946 atomic_dec(&nr_mmap_events);
2947 if (event->attr.comm)
2948 atomic_dec(&nr_comm_events);
2949 if (event->attr.task)
2950 atomic_dec(&nr_task_events);
2951 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
2952 put_callchain_buffers();
2953 if (is_cgroup_event(event)) {
2954 atomic_dec(&per_cpu(perf_cgroup_events, event->cpu));
2955 jump_label_dec(&perf_sched_events);
2956 }
2957 }
2958
2959 if (event->rb) {
2960 ring_buffer_put(event->rb);
2961 event->rb = NULL;
2962 }
2963
2964 if (is_cgroup_event(event))
2965 perf_detach_cgroup(event);
2966
2967 if (event->destroy)
2968 event->destroy(event);
2969
2970 if (event->ctx)
2971 put_ctx(event->ctx);
2972
2973 call_rcu(&event->rcu_head, free_event_rcu);
2974 }
2975
2976 int perf_event_release_kernel(struct perf_event *event)
2977 {
2978 struct perf_event_context *ctx = event->ctx;
2979
2980 WARN_ON_ONCE(ctx->parent_ctx);
2981 /*
2982 * There are two ways this annotation is useful:
2983 *
2984 * 1) there is a lock recursion from perf_event_exit_task
2985 * see the comment there.
2986 *
2987 * 2) there is a lock-inversion with mmap_sem through
2988 * perf_event_read_group(), which takes faults while
2989 * holding ctx->mutex, however this is called after
2990 * the last filedesc died, so there is no possibility
2991 * to trigger the AB-BA case.
2992 */
2993 mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
2994 raw_spin_lock_irq(&ctx->lock);
2995 perf_group_detach(event);
2996 raw_spin_unlock_irq(&ctx->lock);
2997 perf_remove_from_context(event);
2998 mutex_unlock(&ctx->mutex);
2999
3000 free_event(event);
3001
3002 return 0;
3003 }
3004 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
3005
3006 /*
3007 * Called when the last reference to the file is gone.
3008 */
3009 static int perf_release(struct inode *inode, struct file *file)
3010 {
3011 struct perf_event *event = file->private_data;
3012 struct task_struct *owner;
3013
3014 file->private_data = NULL;
3015
3016 rcu_read_lock();
3017 owner = ACCESS_ONCE(event->owner);
3018 /*
3019 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
3020 * !owner it means the list deletion is complete and we can indeed
3021 * free this event, otherwise we need to serialize on
3022 * owner->perf_event_mutex.
3023 */
3024 smp_read_barrier_depends();
3025 if (owner) {
3026 /*
3027 * Since delayed_put_task_struct() also drops the last
3028 * task reference we can safely take a new reference
3029 * while holding the rcu_read_lock().
3030 */
3031 get_task_struct(owner);
3032 }
3033 rcu_read_unlock();
3034
3035 if (owner) {
3036 mutex_lock(&owner->perf_event_mutex);
3037 /*
3038 * We have to re-check the event->owner field, if it is cleared
3039 * we raced with perf_event_exit_task(), acquiring the mutex
3040 * ensured they're done, and we can proceed with freeing the
3041 * event.
3042 */
3043 if (event->owner)
3044 list_del_init(&event->owner_entry);
3045 mutex_unlock(&owner->perf_event_mutex);
3046 put_task_struct(owner);
3047 }
3048
3049 return perf_event_release_kernel(event);
3050 }
3051
3052 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3053 {
3054 struct perf_event *child;
3055 u64 total = 0;
3056
3057 *enabled = 0;
3058 *running = 0;
3059
3060 mutex_lock(&event->child_mutex);
3061 total += perf_event_read(event);
3062 *enabled += event->total_time_enabled +
3063 atomic64_read(&event->child_total_time_enabled);
3064 *running += event->total_time_running +
3065 atomic64_read(&event->child_total_time_running);
3066
3067 list_for_each_entry(child, &event->child_list, child_list) {
3068 total += perf_event_read(child);
3069 *enabled += child->total_time_enabled;
3070 *running += child->total_time_running;
3071 }
3072 mutex_unlock(&event->child_mutex);
3073
3074 return total;
3075 }
3076 EXPORT_SYMBOL_GPL(perf_event_read_value);
3077
3078 static int perf_event_read_group(struct perf_event *event,
3079 u64 read_format, char __user *buf)
3080 {
3081 struct perf_event *leader = event->group_leader, *sub;
3082 int n = 0, size = 0, ret = -EFAULT;
3083 struct perf_event_context *ctx = leader->ctx;
3084 u64 values[5];
3085 u64 count, enabled, running;
3086
3087 mutex_lock(&ctx->mutex);
3088 count = perf_event_read_value(leader, &enabled, &running);
3089
3090 values[n++] = 1 + leader->nr_siblings;
3091 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3092 values[n++] = enabled;
3093 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3094 values[n++] = running;
3095 values[n++] = count;
3096 if (read_format & PERF_FORMAT_ID)
3097 values[n++] = primary_event_id(leader);
3098
3099 size = n * sizeof(u64);
3100
3101 if (copy_to_user(buf, values, size))
3102 goto unlock;
3103
3104 ret = size;
3105
3106 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3107 n = 0;
3108
3109 values[n++] = perf_event_read_value(sub, &enabled, &running);
3110 if (read_format & PERF_FORMAT_ID)
3111 values[n++] = primary_event_id(sub);
3112
3113 size = n * sizeof(u64);
3114
3115 if (copy_to_user(buf + ret, values, size)) {
3116 ret = -EFAULT;
3117 goto unlock;
3118 }
3119
3120 ret += size;
3121 }
3122 unlock:
3123 mutex_unlock(&ctx->mutex);
3124
3125 return ret;
3126 }
3127
3128 static int perf_event_read_one(struct perf_event *event,
3129 u64 read_format, char __user *buf)
3130 {
3131 u64 enabled, running;
3132 u64 values[4];
3133 int n = 0;
3134
3135 values[n++] = perf_event_read_value(event, &enabled, &running);
3136 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3137 values[n++] = enabled;
3138 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3139 values[n++] = running;
3140 if (read_format & PERF_FORMAT_ID)
3141 values[n++] = primary_event_id(event);
3142
3143 if (copy_to_user(buf, values, n * sizeof(u64)))
3144 return -EFAULT;
3145
3146 return n * sizeof(u64);
3147 }
3148
3149 /*
3150 * Read the performance event - simple non blocking version for now
3151 */
3152 static ssize_t
3153 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
3154 {
3155 u64 read_format = event->attr.read_format;
3156 int ret;
3157
3158 /*
3159 * Return end-of-file for a read on a event that is in
3160 * error state (i.e. because it was pinned but it couldn't be
3161 * scheduled on to the CPU at some point).
3162 */
3163 if (event->state == PERF_EVENT_STATE_ERROR)
3164 return 0;
3165
3166 if (count < event->read_size)
3167 return -ENOSPC;
3168
3169 WARN_ON_ONCE(event->ctx->parent_ctx);
3170 if (read_format & PERF_FORMAT_GROUP)
3171 ret = perf_event_read_group(event, read_format, buf);
3172 else
3173 ret = perf_event_read_one(event, read_format, buf);
3174
3175 return ret;
3176 }
3177
3178 static ssize_t
3179 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
3180 {
3181 struct perf_event *event = file->private_data;
3182
3183 return perf_read_hw(event, buf, count);
3184 }
3185
3186 static unsigned int perf_poll(struct file *file, poll_table *wait)
3187 {
3188 struct perf_event *event = file->private_data;
3189 struct ring_buffer *rb;
3190 unsigned int events = POLL_HUP;
3191
3192 rcu_read_lock();
3193 rb = rcu_dereference(event->rb);
3194 if (rb)
3195 events = atomic_xchg(&rb->poll, 0);
3196 rcu_read_unlock();
3197
3198 poll_wait(file, &event->waitq, wait);
3199
3200 return events;
3201 }
3202
3203 static void perf_event_reset(struct perf_event *event)
3204 {
3205 (void)perf_event_read(event);
3206 local64_set(&event->count, 0);
3207 perf_event_update_userpage(event);
3208 }
3209
3210 /*
3211 * Holding the top-level event's child_mutex means that any
3212 * descendant process that has inherited this event will block
3213 * in sync_child_event if it goes to exit, thus satisfying the
3214 * task existence requirements of perf_event_enable/disable.
3215 */
3216 static void perf_event_for_each_child(struct perf_event *event,
3217 void (*func)(struct perf_event *))
3218 {
3219 struct perf_event *child;
3220
3221 WARN_ON_ONCE(event->ctx->parent_ctx);
3222 mutex_lock(&event->child_mutex);
3223 func(event);
3224 list_for_each_entry(child, &event->child_list, child_list)
3225 func(child);
3226 mutex_unlock(&event->child_mutex);
3227 }
3228
3229 static void perf_event_for_each(struct perf_event *event,
3230 void (*func)(struct perf_event *))
3231 {
3232 struct perf_event_context *ctx = event->ctx;
3233 struct perf_event *sibling;
3234
3235 WARN_ON_ONCE(ctx->parent_ctx);
3236 mutex_lock(&ctx->mutex);
3237 event = event->group_leader;
3238
3239 perf_event_for_each_child(event, func);
3240 func(event);
3241 list_for_each_entry(sibling, &event->sibling_list, group_entry)
3242 perf_event_for_each_child(event, func);
3243 mutex_unlock(&ctx->mutex);
3244 }
3245
3246 static int perf_event_period(struct perf_event *event, u64 __user *arg)
3247 {
3248 struct perf_event_context *ctx = event->ctx;
3249 int ret = 0;
3250 u64 value;
3251
3252 if (!is_sampling_event(event))
3253 return -EINVAL;
3254
3255 if (copy_from_user(&value, arg, sizeof(value)))
3256 return -EFAULT;
3257
3258 if (!value)
3259 return -EINVAL;
3260
3261 raw_spin_lock_irq(&ctx->lock);
3262 if (event->attr.freq) {
3263 if (value > sysctl_perf_event_sample_rate) {
3264 ret = -EINVAL;
3265 goto unlock;
3266 }
3267
3268 event->attr.sample_freq = value;
3269 } else {
3270 event->attr.sample_period = value;
3271 event->hw.sample_period = value;
3272 }
3273 unlock:
3274 raw_spin_unlock_irq(&ctx->lock);
3275
3276 return ret;
3277 }
3278
3279 static const struct file_operations perf_fops;
3280
3281 static struct perf_event *perf_fget_light(int fd, int *fput_needed)
3282 {
3283 struct file *file;
3284
3285 file = fget_light(fd, fput_needed);
3286 if (!file)
3287 return ERR_PTR(-EBADF);
3288
3289 if (file->f_op != &perf_fops) {
3290 fput_light(file, *fput_needed);
3291 *fput_needed = 0;
3292 return ERR_PTR(-EBADF);
3293 }
3294
3295 return file->private_data;
3296 }
3297
3298 static int perf_event_set_output(struct perf_event *event,
3299 struct perf_event *output_event);
3300 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3301
3302 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3303 {
3304 struct perf_event *event = file->private_data;
3305 void (*func)(struct perf_event *);
3306 u32 flags = arg;
3307
3308 switch (cmd) {
3309 case PERF_EVENT_IOC_ENABLE:
3310 func = perf_event_enable;
3311 break;
3312 case PERF_EVENT_IOC_DISABLE:
3313 func = perf_event_disable;
3314 break;
3315 case PERF_EVENT_IOC_RESET:
3316 func = perf_event_reset;
3317 break;
3318
3319 case PERF_EVENT_IOC_REFRESH:
3320 return perf_event_refresh(event, arg);
3321
3322 case PERF_EVENT_IOC_PERIOD:
3323 return perf_event_period(event, (u64 __user *)arg);
3324
3325 case PERF_EVENT_IOC_SET_OUTPUT:
3326 {
3327 struct perf_event *output_event = NULL;
3328 int fput_needed = 0;
3329 int ret;
3330
3331 if (arg != -1) {
3332 output_event = perf_fget_light(arg, &fput_needed);
3333 if (IS_ERR(output_event))
3334 return PTR_ERR(output_event);
3335 }
3336
3337 ret = perf_event_set_output(event, output_event);
3338 if (output_event)
3339 fput_light(output_event->filp, fput_needed);
3340
3341 return ret;
3342 }
3343
3344 case PERF_EVENT_IOC_SET_FILTER:
3345 return perf_event_set_filter(event, (void __user *)arg);
3346
3347 default:
3348 return -ENOTTY;
3349 }
3350
3351 if (flags & PERF_IOC_FLAG_GROUP)
3352 perf_event_for_each(event, func);
3353 else
3354 perf_event_for_each_child(event, func);
3355
3356 return 0;
3357 }
3358
3359 int perf_event_task_enable(void)
3360 {
3361 struct perf_event *event;
3362
3363 mutex_lock(&current->perf_event_mutex);
3364 list_for_each_entry(event, &current->perf_event_list, owner_entry)
3365 perf_event_for_each_child(event, perf_event_enable);
3366 mutex_unlock(&current->perf_event_mutex);
3367
3368 return 0;
3369 }
3370
3371 int perf_event_task_disable(void)
3372 {
3373 struct perf_event *event;
3374
3375 mutex_lock(&current->perf_event_mutex);
3376 list_for_each_entry(event, &current->perf_event_list, owner_entry)
3377 perf_event_for_each_child(event, perf_event_disable);
3378 mutex_unlock(&current->perf_event_mutex);
3379
3380 return 0;
3381 }
3382
3383 #ifndef PERF_EVENT_INDEX_OFFSET
3384 # define PERF_EVENT_INDEX_OFFSET 0
3385 #endif
3386
3387 static int perf_event_index(struct perf_event *event)
3388 {
3389 if (event->hw.state & PERF_HES_STOPPED)
3390 return 0;
3391
3392 if (event->state != PERF_EVENT_STATE_ACTIVE)
3393 return 0;
3394
3395 return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
3396 }
3397
3398 static void calc_timer_values(struct perf_event *event,
3399 u64 *enabled,
3400 u64 *running)
3401 {
3402 u64 now, ctx_time;
3403
3404 now = perf_clock();
3405 ctx_time = event->shadow_ctx_time + now;
3406 *enabled = ctx_time - event->tstamp_enabled;
3407 *running = ctx_time - event->tstamp_running;
3408 }
3409
3410 /*
3411 * Callers need to ensure there can be no nesting of this function, otherwise
3412 * the seqlock logic goes bad. We can not serialize this because the arch
3413 * code calls this from NMI context.
3414 */
3415 void perf_event_update_userpage(struct perf_event *event)
3416 {
3417 struct perf_event_mmap_page *userpg;
3418 struct ring_buffer *rb;
3419 u64 enabled, running;
3420
3421 rcu_read_lock();
3422 /*
3423 * compute total_time_enabled, total_time_running
3424 * based on snapshot values taken when the event
3425 * was last scheduled in.
3426 *
3427 * we cannot simply called update_context_time()
3428 * because of locking issue as we can be called in
3429 * NMI context
3430 */
3431 calc_timer_values(event, &enabled, &running);
3432 rb = rcu_dereference(event->rb);
3433 if (!rb)
3434 goto unlock;
3435
3436 userpg = rb->user_page;
3437
3438 /*
3439 * Disable preemption so as to not let the corresponding user-space
3440 * spin too long if we get preempted.
3441 */
3442 preempt_disable();
3443 ++userpg->lock;
3444 barrier();
3445 userpg->index = perf_event_index(event);
3446 userpg->offset = perf_event_count(event);
3447 if (event->state == PERF_EVENT_STATE_ACTIVE)
3448 userpg->offset -= local64_read(&event->hw.prev_count);
3449
3450 userpg->time_enabled = enabled +
3451 atomic64_read(&event->child_total_time_enabled);
3452
3453 userpg->time_running = running +
3454 atomic64_read(&event->child_total_time_running);
3455
3456 barrier();
3457 ++userpg->lock;
3458 preempt_enable();
3459 unlock:
3460 rcu_read_unlock();
3461 }
3462
3463 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
3464 {
3465 struct perf_event *event = vma->vm_file->private_data;
3466 struct ring_buffer *rb;
3467 int ret = VM_FAULT_SIGBUS;
3468
3469 if (vmf->flags & FAULT_FLAG_MKWRITE) {
3470 if (vmf->pgoff == 0)
3471 ret = 0;
3472 return ret;
3473 }
3474
3475 rcu_read_lock();
3476 rb = rcu_dereference(event->rb);
3477 if (!rb)
3478 goto unlock;
3479
3480 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
3481 goto unlock;
3482
3483 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
3484 if (!vmf->page)
3485 goto unlock;
3486
3487 get_page(vmf->page);
3488 vmf->page->mapping = vma->vm_file->f_mapping;
3489 vmf->page->index = vmf->pgoff;
3490
3491 ret = 0;
3492 unlock:
3493 rcu_read_unlock();
3494
3495 return ret;
3496 }
3497
3498 static void rb_free_rcu(struct rcu_head *rcu_head)
3499 {
3500 struct ring_buffer *rb;
3501
3502 rb = container_of(rcu_head, struct ring_buffer, rcu_head);
3503 rb_free(rb);
3504 }
3505
3506 static struct ring_buffer *ring_buffer_get(struct perf_event *event)
3507 {
3508 struct ring_buffer *rb;
3509
3510 rcu_read_lock();
3511 rb = rcu_dereference(event->rb);
3512 if (rb) {
3513 if (!atomic_inc_not_zero(&rb->refcount))
3514 rb = NULL;
3515 }
3516 rcu_read_unlock();
3517
3518 return rb;
3519 }
3520
3521 static void ring_buffer_put(struct ring_buffer *rb)
3522 {
3523 if (!atomic_dec_and_test(&rb->refcount))
3524 return;
3525
3526 call_rcu(&rb->rcu_head, rb_free_rcu);
3527 }
3528
3529 static void perf_mmap_open(struct vm_area_struct *vma)
3530 {
3531 struct perf_event *event = vma->vm_file->private_data;
3532
3533 atomic_inc(&event->mmap_count);
3534 }
3535
3536 static void perf_mmap_close(struct vm_area_struct *vma)
3537 {
3538 struct perf_event *event = vma->vm_file->private_data;
3539
3540 if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
3541 unsigned long size = perf_data_size(event->rb);
3542 struct user_struct *user = event->mmap_user;
3543 struct ring_buffer *rb = event->rb;
3544
3545 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
3546 vma->vm_mm->pinned_vm -= event->mmap_locked;
3547 rcu_assign_pointer(event->rb, NULL);
3548 mutex_unlock(&event->mmap_mutex);
3549
3550 ring_buffer_put(rb);
3551 free_uid(user);
3552 }
3553 }
3554
3555 static const struct vm_operations_struct perf_mmap_vmops = {
3556 .open = perf_mmap_open,
3557 .close = perf_mmap_close,
3558 .fault = perf_mmap_fault,
3559 .page_mkwrite = perf_mmap_fault,
3560 };
3561
3562 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
3563 {
3564 struct perf_event *event = file->private_data;
3565 unsigned long user_locked, user_lock_limit;
3566 struct user_struct *user = current_user();
3567 unsigned long locked, lock_limit;
3568 struct ring_buffer *rb;
3569 unsigned long vma_size;
3570 unsigned long nr_pages;
3571 long user_extra, extra;
3572 int ret = 0, flags = 0;
3573
3574 /*
3575 * Don't allow mmap() of inherited per-task counters. This would
3576 * create a performance issue due to all children writing to the
3577 * same rb.
3578 */
3579 if (event->cpu == -1 && event->attr.inherit)
3580 return -EINVAL;
3581
3582 if (!(vma->vm_flags & VM_SHARED))
3583 return -EINVAL;
3584
3585 vma_size = vma->vm_end - vma->vm_start;
3586 nr_pages = (vma_size / PAGE_SIZE) - 1;
3587
3588 /*
3589 * If we have rb pages ensure they're a power-of-two number, so we
3590 * can do bitmasks instead of modulo.
3591 */
3592 if (nr_pages != 0 && !is_power_of_2(nr_pages))
3593 return -EINVAL;
3594
3595 if (vma_size != PAGE_SIZE * (1 + nr_pages))
3596 return -EINVAL;
3597
3598 if (vma->vm_pgoff != 0)
3599 return -EINVAL;
3600
3601 WARN_ON_ONCE(event->ctx->parent_ctx);
3602 mutex_lock(&event->mmap_mutex);
3603 if (event->rb) {
3604 if (event->rb->nr_pages == nr_pages)
3605 atomic_inc(&event->rb->refcount);
3606 else
3607 ret = -EINVAL;
3608 goto unlock;
3609 }
3610
3611 user_extra = nr_pages + 1;
3612 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
3613
3614 /*
3615 * Increase the limit linearly with more CPUs:
3616 */
3617 user_lock_limit *= num_online_cpus();
3618
3619 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
3620
3621 extra = 0;
3622 if (user_locked > user_lock_limit)
3623 extra = user_locked - user_lock_limit;
3624
3625 lock_limit = rlimit(RLIMIT_MEMLOCK);
3626 lock_limit >>= PAGE_SHIFT;
3627 locked = vma->vm_mm->pinned_vm + extra;
3628
3629 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
3630 !capable(CAP_IPC_LOCK)) {
3631 ret = -EPERM;
3632 goto unlock;
3633 }
3634
3635 WARN_ON(event->rb);
3636
3637 if (vma->vm_flags & VM_WRITE)
3638 flags |= RING_BUFFER_WRITABLE;
3639
3640 rb = rb_alloc(nr_pages,
3641 event->attr.watermark ? event->attr.wakeup_watermark : 0,
3642 event->cpu, flags);
3643
3644 if (!rb) {
3645 ret = -ENOMEM;
3646 goto unlock;
3647 }
3648 rcu_assign_pointer(event->rb, rb);
3649
3650 atomic_long_add(user_extra, &user->locked_vm);
3651 event->mmap_locked = extra;
3652 event->mmap_user = get_current_user();
3653 vma->vm_mm->pinned_vm += event->mmap_locked;
3654
3655 unlock:
3656 if (!ret)
3657 atomic_inc(&event->mmap_count);
3658 mutex_unlock(&event->mmap_mutex);
3659
3660 vma->vm_flags |= VM_RESERVED;
3661 vma->vm_ops = &perf_mmap_vmops;
3662
3663 return ret;
3664 }
3665
3666 static int perf_fasync(int fd, struct file *filp, int on)
3667 {
3668 struct inode *inode = filp->f_path.dentry->d_inode;
3669 struct perf_event *event = filp->private_data;
3670 int retval;
3671
3672 mutex_lock(&inode->i_mutex);
3673 retval = fasync_helper(fd, filp, on, &event->fasync);
3674 mutex_unlock(&inode->i_mutex);
3675
3676 if (retval < 0)
3677 return retval;
3678
3679 return 0;
3680 }
3681
3682 static const struct file_operations perf_fops = {
3683 .llseek = no_llseek,
3684 .release = perf_release,
3685 .read = perf_read,
3686 .poll = perf_poll,
3687 .unlocked_ioctl = perf_ioctl,
3688 .compat_ioctl = perf_ioctl,
3689 .mmap = perf_mmap,
3690 .fasync = perf_fasync,
3691 };
3692
3693 /*
3694 * Perf event wakeup
3695 *
3696 * If there's data, ensure we set the poll() state and publish everything
3697 * to user-space before waking everybody up.
3698 */
3699
3700 void perf_event_wakeup(struct perf_event *event)
3701 {
3702 wake_up_all(&event->waitq);
3703
3704 if (event->pending_kill) {
3705 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
3706 event->pending_kill = 0;
3707 }
3708 }
3709
3710 static void perf_pending_event(struct irq_work *entry)
3711 {
3712 struct perf_event *event = container_of(entry,
3713 struct perf_event, pending);
3714
3715 if (event->pending_disable) {
3716 event->pending_disable = 0;
3717 __perf_event_disable(event);
3718 }
3719
3720 if (event->pending_wakeup) {
3721 event->pending_wakeup = 0;
3722 perf_event_wakeup(event);
3723 }
3724 }
3725
3726 /*
3727 * We assume there is only KVM supporting the callbacks.
3728 * Later on, we might change it to a list if there is
3729 * another virtualization implementation supporting the callbacks.
3730 */
3731 struct perf_guest_info_callbacks *perf_guest_cbs;
3732
3733 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3734 {
3735 perf_guest_cbs = cbs;
3736 return 0;
3737 }
3738 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
3739
3740 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3741 {
3742 perf_guest_cbs = NULL;
3743 return 0;
3744 }
3745 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
3746
3747 static void __perf_event_header__init_id(struct perf_event_header *header,
3748 struct perf_sample_data *data,
3749 struct perf_event *event)
3750 {
3751 u64 sample_type = event->attr.sample_type;
3752
3753 data->type = sample_type;
3754 header->size += event->id_header_size;
3755
3756 if (sample_type & PERF_SAMPLE_TID) {
3757 /* namespace issues */
3758 data->tid_entry.pid = perf_event_pid(event, current);
3759 data->tid_entry.tid = perf_event_tid(event, current);
3760 }
3761
3762 if (sample_type & PERF_SAMPLE_TIME)
3763 data->time = perf_clock();
3764
3765 if (sample_type & PERF_SAMPLE_ID)
3766 data->id = primary_event_id(event);
3767
3768 if (sample_type & PERF_SAMPLE_STREAM_ID)
3769 data->stream_id = event->id;
3770
3771 if (sample_type & PERF_SAMPLE_CPU) {
3772 data->cpu_entry.cpu = raw_smp_processor_id();
3773 data->cpu_entry.reserved = 0;
3774 }
3775 }
3776
3777 void perf_event_header__init_id(struct perf_event_header *header,
3778 struct perf_sample_data *data,
3779 struct perf_event *event)
3780 {
3781 if (event->attr.sample_id_all)
3782 __perf_event_header__init_id(header, data, event);
3783 }
3784
3785 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
3786 struct perf_sample_data *data)
3787 {
3788 u64 sample_type = data->type;
3789
3790 if (sample_type & PERF_SAMPLE_TID)
3791 perf_output_put(handle, data->tid_entry);
3792
3793 if (sample_type & PERF_SAMPLE_TIME)
3794 perf_output_put(handle, data->time);
3795
3796 if (sample_type & PERF_SAMPLE_ID)
3797 perf_output_put(handle, data->id);
3798
3799 if (sample_type & PERF_SAMPLE_STREAM_ID)
3800 perf_output_put(handle, data->stream_id);
3801
3802 if (sample_type & PERF_SAMPLE_CPU)
3803 perf_output_put(handle, data->cpu_entry);
3804 }
3805
3806 void perf_event__output_id_sample(struct perf_event *event,
3807 struct perf_output_handle *handle,
3808 struct perf_sample_data *sample)
3809 {
3810 if (event->attr.sample_id_all)
3811 __perf_event__output_id_sample(handle, sample);
3812 }
3813
3814 static void perf_output_read_one(struct perf_output_handle *handle,
3815 struct perf_event *event,
3816 u64 enabled, u64 running)
3817 {
3818 u64 read_format = event->attr.read_format;
3819 u64 values[4];
3820 int n = 0;
3821
3822 values[n++] = perf_event_count(event);
3823 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3824 values[n++] = enabled +
3825 atomic64_read(&event->child_total_time_enabled);
3826 }
3827 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3828 values[n++] = running +
3829 atomic64_read(&event->child_total_time_running);
3830 }
3831 if (read_format & PERF_FORMAT_ID)
3832 values[n++] = primary_event_id(event);
3833
3834 __output_copy(handle, values, n * sizeof(u64));
3835 }
3836
3837 /*
3838 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3839 */
3840 static void perf_output_read_group(struct perf_output_handle *handle,
3841 struct perf_event *event,
3842 u64 enabled, u64 running)
3843 {
3844 struct perf_event *leader = event->group_leader, *sub;
3845 u64 read_format = event->attr.read_format;
3846 u64 values[5];
3847 int n = 0;
3848
3849 values[n++] = 1 + leader->nr_siblings;
3850
3851 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3852 values[n++] = enabled;
3853
3854 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3855 values[n++] = running;
3856
3857 if (leader != event)
3858 leader->pmu->read(leader);
3859
3860 values[n++] = perf_event_count(leader);
3861 if (read_format & PERF_FORMAT_ID)
3862 values[n++] = primary_event_id(leader);
3863
3864 __output_copy(handle, values, n * sizeof(u64));
3865
3866 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3867 n = 0;
3868
3869 if (sub != event)
3870 sub->pmu->read(sub);
3871
3872 values[n++] = perf_event_count(sub);
3873 if (read_format & PERF_FORMAT_ID)
3874 values[n++] = primary_event_id(sub);
3875
3876 __output_copy(handle, values, n * sizeof(u64));
3877 }
3878 }
3879
3880 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
3881 PERF_FORMAT_TOTAL_TIME_RUNNING)
3882
3883 static void perf_output_read(struct perf_output_handle *handle,
3884 struct perf_event *event)
3885 {
3886 u64 enabled = 0, running = 0;
3887 u64 read_format = event->attr.read_format;
3888
3889 /*
3890 * compute total_time_enabled, total_time_running
3891 * based on snapshot values taken when the event
3892 * was last scheduled in.
3893 *
3894 * we cannot simply called update_context_time()
3895 * because of locking issue as we are called in
3896 * NMI context
3897 */
3898 if (read_format & PERF_FORMAT_TOTAL_TIMES)
3899 calc_timer_values(event, &enabled, &running);
3900
3901 if (event->attr.read_format & PERF_FORMAT_GROUP)
3902 perf_output_read_group(handle, event, enabled, running);
3903 else
3904 perf_output_read_one(handle, event, enabled, running);
3905 }
3906
3907 void perf_output_sample(struct perf_output_handle *handle,
3908 struct perf_event_header *header,
3909 struct perf_sample_data *data,
3910 struct perf_event *event)
3911 {
3912 u64 sample_type = data->type;
3913
3914 perf_output_put(handle, *header);
3915
3916 if (sample_type & PERF_SAMPLE_IP)
3917 perf_output_put(handle, data->ip);
3918
3919 if (sample_type & PERF_SAMPLE_TID)
3920 perf_output_put(handle, data->tid_entry);
3921
3922 if (sample_type & PERF_SAMPLE_TIME)
3923 perf_output_put(handle, data->time);
3924
3925 if (sample_type & PERF_SAMPLE_ADDR)
3926 perf_output_put(handle, data->addr);
3927
3928 if (sample_type & PERF_SAMPLE_ID)
3929 perf_output_put(handle, data->id);
3930
3931 if (sample_type & PERF_SAMPLE_STREAM_ID)
3932 perf_output_put(handle, data->stream_id);
3933
3934 if (sample_type & PERF_SAMPLE_CPU)
3935 perf_output_put(handle, data->cpu_entry);
3936
3937 if (sample_type & PERF_SAMPLE_PERIOD)
3938 perf_output_put(handle, data->period);
3939
3940 if (sample_type & PERF_SAMPLE_READ)
3941 perf_output_read(handle, event);
3942
3943 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3944 if (data->callchain) {
3945 int size = 1;
3946
3947 if (data->callchain)
3948 size += data->callchain->nr;
3949
3950 size *= sizeof(u64);
3951
3952 __output_copy(handle, data->callchain, size);
3953 } else {
3954 u64 nr = 0;
3955 perf_output_put(handle, nr);
3956 }
3957 }
3958
3959 if (sample_type & PERF_SAMPLE_RAW) {
3960 if (data->raw) {
3961 perf_output_put(handle, data->raw->size);
3962 __output_copy(handle, data->raw->data,
3963 data->raw->size);
3964 } else {
3965 struct {
3966 u32 size;
3967 u32 data;
3968 } raw = {
3969 .size = sizeof(u32),
3970 .data = 0,
3971 };
3972 perf_output_put(handle, raw);
3973 }
3974 }
3975
3976 if (!event->attr.watermark) {
3977 int wakeup_events = event->attr.wakeup_events;
3978
3979 if (wakeup_events) {
3980 struct ring_buffer *rb = handle->rb;
3981 int events = local_inc_return(&rb->events);
3982
3983 if (events >= wakeup_events) {
3984 local_sub(wakeup_events, &rb->events);
3985 local_inc(&rb->wakeup);
3986 }
3987 }
3988 }
3989 }
3990
3991 void perf_prepare_sample(struct perf_event_header *header,
3992 struct perf_sample_data *data,
3993 struct perf_event *event,
3994 struct pt_regs *regs)
3995 {
3996 u64 sample_type = event->attr.sample_type;
3997
3998 header->type = PERF_RECORD_SAMPLE;
3999 header->size = sizeof(*header) + event->header_size;
4000
4001 header->misc = 0;
4002 header->misc |= perf_misc_flags(regs);
4003
4004 __perf_event_header__init_id(header, data, event);
4005
4006 if (sample_type & PERF_SAMPLE_IP)
4007 data->ip = perf_instruction_pointer(regs);
4008
4009 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4010 int size = 1;
4011
4012 data->callchain = perf_callchain(regs);
4013
4014 if (data->callchain)
4015 size += data->callchain->nr;
4016
4017 header->size += size * sizeof(u64);
4018 }
4019
4020 if (sample_type & PERF_SAMPLE_RAW) {
4021 int size = sizeof(u32);
4022
4023 if (data->raw)
4024 size += data->raw->size;
4025 else
4026 size += sizeof(u32);
4027
4028 WARN_ON_ONCE(size & (sizeof(u64)-1));
4029 header->size += size;
4030 }
4031 }
4032
4033 static void perf_event_output(struct perf_event *event,
4034 struct perf_sample_data *data,
4035 struct pt_regs *regs)
4036 {
4037 struct perf_output_handle handle;
4038 struct perf_event_header header;
4039
4040 /* protect the callchain buffers */
4041 rcu_read_lock();
4042
4043 perf_prepare_sample(&header, data, event, regs);
4044
4045 if (perf_output_begin(&handle, event, header.size))
4046 goto exit;
4047
4048 perf_output_sample(&handle, &header, data, event);
4049
4050 perf_output_end(&handle);
4051
4052 exit:
4053 rcu_read_unlock();
4054 }
4055
4056 /*
4057 * read event_id
4058 */
4059
4060 struct perf_read_event {
4061 struct perf_event_header header;
4062
4063 u32 pid;
4064 u32 tid;
4065 };
4066
4067 static void
4068 perf_event_read_event(struct perf_event *event,
4069 struct task_struct *task)
4070 {
4071 struct perf_output_handle handle;
4072 struct perf_sample_data sample;
4073 struct perf_read_event read_event = {
4074 .header = {
4075 .type = PERF_RECORD_READ,
4076 .misc = 0,
4077 .size = sizeof(read_event) + event->read_size,
4078 },
4079 .pid = perf_event_pid(event, task),
4080 .tid = perf_event_tid(event, task),
4081 };
4082 int ret;
4083
4084 perf_event_header__init_id(&read_event.header, &sample, event);
4085 ret = perf_output_begin(&handle, event, read_event.header.size);
4086 if (ret)
4087 return;
4088
4089 perf_output_put(&handle, read_event);
4090 perf_output_read(&handle, event);
4091 perf_event__output_id_sample(event, &handle, &sample);
4092
4093 perf_output_end(&handle);
4094 }
4095
4096 /*
4097 * task tracking -- fork/exit
4098 *
4099 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
4100 */
4101
4102 struct perf_task_event {
4103 struct task_struct *task;
4104 struct perf_event_context *task_ctx;
4105
4106 struct {
4107 struct perf_event_header header;
4108
4109 u32 pid;
4110 u32 ppid;
4111 u32 tid;
4112 u32 ptid;
4113 u64 time;
4114 } event_id;
4115 };
4116
4117 static void perf_event_task_output(struct perf_event *event,
4118 struct perf_task_event *task_event)
4119 {
4120 struct perf_output_handle handle;
4121 struct perf_sample_data sample;
4122 struct task_struct *task = task_event->task;
4123 int ret, size = task_event->event_id.header.size;
4124
4125 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
4126
4127 ret = perf_output_begin(&handle, event,
4128 task_event->event_id.header.size);
4129 if (ret)
4130 goto out;
4131
4132 task_event->event_id.pid = perf_event_pid(event, task);
4133 task_event->event_id.ppid = perf_event_pid(event, current);
4134
4135 task_event->event_id.tid = perf_event_tid(event, task);
4136 task_event->event_id.ptid = perf_event_tid(event, current);
4137
4138 perf_output_put(&handle, task_event->event_id);
4139
4140 perf_event__output_id_sample(event, &handle, &sample);
4141
4142 perf_output_end(&handle);
4143 out:
4144 task_event->event_id.header.size = size;
4145 }
4146
4147 static int perf_event_task_match(struct perf_event *event)
4148 {
4149 if (event->state < PERF_EVENT_STATE_INACTIVE)
4150 return 0;
4151
4152 if (!event_filter_match(event))
4153 return 0;
4154
4155 if (event->attr.comm || event->attr.mmap ||
4156 event->attr.mmap_data || event->attr.task)
4157 return 1;
4158
4159 return 0;
4160 }
4161
4162 static void perf_event_task_ctx(struct perf_event_context *ctx,
4163 struct perf_task_event *task_event)
4164 {
4165 struct perf_event *event;
4166
4167 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4168 if (perf_event_task_match(event))
4169 perf_event_task_output(event, task_event);
4170 }
4171 }
4172
4173 static void perf_event_task_event(struct perf_task_event *task_event)
4174 {
4175 struct perf_cpu_context *cpuctx;
4176 struct perf_event_context *ctx;
4177 struct pmu *pmu;
4178 int ctxn;
4179
4180 rcu_read_lock();
4181 list_for_each_entry_rcu(pmu, &pmus, entry) {
4182 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4183 if (cpuctx->active_pmu != pmu)
4184 goto next;
4185 perf_event_task_ctx(&cpuctx->ctx, task_event);
4186
4187 ctx = task_event->task_ctx;
4188 if (!ctx) {
4189 ctxn = pmu->task_ctx_nr;
4190 if (ctxn < 0)
4191 goto next;
4192 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4193 }
4194 if (ctx)
4195 perf_event_task_ctx(ctx, task_event);
4196 next:
4197 put_cpu_ptr(pmu->pmu_cpu_context);
4198 }
4199 rcu_read_unlock();
4200 }
4201
4202 static void perf_event_task(struct task_struct *task,
4203 struct perf_event_context *task_ctx,
4204 int new)
4205 {
4206 struct perf_task_event task_event;
4207
4208 if (!atomic_read(&nr_comm_events) &&
4209 !atomic_read(&nr_mmap_events) &&
4210 !atomic_read(&nr_task_events))
4211 return;
4212
4213 task_event = (struct perf_task_event){
4214 .task = task,
4215 .task_ctx = task_ctx,
4216 .event_id = {
4217 .header = {
4218 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
4219 .misc = 0,
4220 .size = sizeof(task_event.event_id),
4221 },
4222 /* .pid */
4223 /* .ppid */
4224 /* .tid */
4225 /* .ptid */
4226 .time = perf_clock(),
4227 },
4228 };
4229
4230 perf_event_task_event(&task_event);
4231 }
4232
4233 void perf_event_fork(struct task_struct *task)
4234 {
4235 perf_event_task(task, NULL, 1);
4236 }
4237
4238 /*
4239 * comm tracking
4240 */
4241
4242 struct perf_comm_event {
4243 struct task_struct *task;
4244 char *comm;
4245 int comm_size;
4246
4247 struct {
4248 struct perf_event_header header;
4249
4250 u32 pid;
4251 u32 tid;
4252 } event_id;
4253 };
4254
4255 static void perf_event_comm_output(struct perf_event *event,
4256 struct perf_comm_event *comm_event)
4257 {
4258 struct perf_output_handle handle;
4259 struct perf_sample_data sample;
4260 int size = comm_event->event_id.header.size;
4261 int ret;
4262
4263 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
4264 ret = perf_output_begin(&handle, event,
4265 comm_event->event_id.header.size);
4266
4267 if (ret)
4268 goto out;
4269
4270 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
4271 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
4272
4273 perf_output_put(&handle, comm_event->event_id);
4274 __output_copy(&handle, comm_event->comm,
4275 comm_event->comm_size);
4276
4277 perf_event__output_id_sample(event, &handle, &sample);
4278
4279 perf_output_end(&handle);
4280 out:
4281 comm_event->event_id.header.size = size;
4282 }
4283
4284 static int perf_event_comm_match(struct perf_event *event)
4285 {
4286 if (event->state < PERF_EVENT_STATE_INACTIVE)
4287 return 0;
4288
4289 if (!event_filter_match(event))
4290 return 0;
4291
4292 if (event->attr.comm)
4293 return 1;
4294
4295 return 0;
4296 }
4297
4298 static void perf_event_comm_ctx(struct perf_event_context *ctx,
4299 struct perf_comm_event *comm_event)
4300 {
4301 struct perf_event *event;
4302
4303 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4304 if (perf_event_comm_match(event))
4305 perf_event_comm_output(event, comm_event);
4306 }
4307 }
4308
4309 static void perf_event_comm_event(struct perf_comm_event *comm_event)
4310 {
4311 struct perf_cpu_context *cpuctx;
4312 struct perf_event_context *ctx;
4313 char comm[TASK_COMM_LEN];
4314 unsigned int size;
4315 struct pmu *pmu;
4316 int ctxn;
4317
4318 memset(comm, 0, sizeof(comm));
4319 strlcpy(comm, comm_event->task->comm, sizeof(comm));
4320 size = ALIGN(strlen(comm)+1, sizeof(u64));
4321
4322 comm_event->comm = comm;
4323 comm_event->comm_size = size;
4324
4325 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
4326 rcu_read_lock();
4327 list_for_each_entry_rcu(pmu, &pmus, entry) {
4328 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4329 if (cpuctx->active_pmu != pmu)
4330 goto next;
4331 perf_event_comm_ctx(&cpuctx->ctx, comm_event);
4332
4333 ctxn = pmu->task_ctx_nr;
4334 if (ctxn < 0)
4335 goto next;
4336
4337 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4338 if (ctx)
4339 perf_event_comm_ctx(ctx, comm_event);
4340 next:
4341 put_cpu_ptr(pmu->pmu_cpu_context);
4342 }
4343 rcu_read_unlock();
4344 }
4345
4346 void perf_event_comm(struct task_struct *task)
4347 {
4348 struct perf_comm_event comm_event;
4349 struct perf_event_context *ctx;
4350 int ctxn;
4351
4352 for_each_task_context_nr(ctxn) {
4353 ctx = task->perf_event_ctxp[ctxn];
4354 if (!ctx)
4355 continue;
4356
4357 perf_event_enable_on_exec(ctx);
4358 }
4359
4360 if (!atomic_read(&nr_comm_events))
4361 return;
4362
4363 comm_event = (struct perf_comm_event){
4364 .task = task,
4365 /* .comm */
4366 /* .comm_size */
4367 .event_id = {
4368 .header = {
4369 .type = PERF_RECORD_COMM,
4370 .misc = 0,
4371 /* .size */
4372 },
4373 /* .pid */
4374 /* .tid */
4375 },
4376 };
4377
4378 perf_event_comm_event(&comm_event);
4379 }
4380
4381 /*
4382 * mmap tracking
4383 */
4384
4385 struct perf_mmap_event {
4386 struct vm_area_struct *vma;
4387
4388 const char *file_name;
4389 int file_size;
4390
4391 struct {
4392 struct perf_event_header header;
4393
4394 u32 pid;
4395 u32 tid;
4396 u64 start;
4397 u64 len;
4398 u64 pgoff;
4399 } event_id;
4400 };
4401
4402 static void perf_event_mmap_output(struct perf_event *event,
4403 struct perf_mmap_event *mmap_event)
4404 {
4405 struct perf_output_handle handle;
4406 struct perf_sample_data sample;
4407 int size = mmap_event->event_id.header.size;
4408 int ret;
4409
4410 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
4411 ret = perf_output_begin(&handle, event,
4412 mmap_event->event_id.header.size);
4413 if (ret)
4414 goto out;
4415
4416 mmap_event->event_id.pid = perf_event_pid(event, current);
4417 mmap_event->event_id.tid = perf_event_tid(event, current);
4418
4419 perf_output_put(&handle, mmap_event->event_id);
4420 __output_copy(&handle, mmap_event->file_name,
4421 mmap_event->file_size);
4422
4423 perf_event__output_id_sample(event, &handle, &sample);
4424
4425 perf_output_end(&handle);
4426 out:
4427 mmap_event->event_id.header.size = size;
4428 }
4429
4430 static int perf_event_mmap_match(struct perf_event *event,
4431 struct perf_mmap_event *mmap_event,
4432 int executable)
4433 {
4434 if (event->state < PERF_EVENT_STATE_INACTIVE)
4435 return 0;
4436
4437 if (!event_filter_match(event))
4438 return 0;
4439
4440 if ((!executable && event->attr.mmap_data) ||
4441 (executable && event->attr.mmap))
4442 return 1;
4443
4444 return 0;
4445 }
4446
4447 static void perf_event_mmap_ctx(struct perf_event_context *ctx,
4448 struct perf_mmap_event *mmap_event,
4449 int executable)
4450 {
4451 struct perf_event *event;
4452
4453 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4454 if (perf_event_mmap_match(event, mmap_event, executable))
4455 perf_event_mmap_output(event, mmap_event);
4456 }
4457 }
4458
4459 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
4460 {
4461 struct perf_cpu_context *cpuctx;
4462 struct perf_event_context *ctx;
4463 struct vm_area_struct *vma = mmap_event->vma;
4464 struct file *file = vma->vm_file;
4465 unsigned int size;
4466 char tmp[16];
4467 char *buf = NULL;
4468 const char *name;
4469 struct pmu *pmu;
4470 int ctxn;
4471
4472 memset(tmp, 0, sizeof(tmp));
4473
4474 if (file) {
4475 /*
4476 * d_path works from the end of the rb backwards, so we
4477 * need to add enough zero bytes after the string to handle
4478 * the 64bit alignment we do later.
4479 */
4480 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
4481 if (!buf) {
4482 name = strncpy(tmp, "//enomem", sizeof(tmp));
4483 goto got_name;
4484 }
4485 name = d_path(&file->f_path, buf, PATH_MAX);
4486 if (IS_ERR(name)) {
4487 name = strncpy(tmp, "//toolong", sizeof(tmp));
4488 goto got_name;
4489 }
4490 } else {
4491 if (arch_vma_name(mmap_event->vma)) {
4492 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
4493 sizeof(tmp));
4494 goto got_name;
4495 }
4496
4497 if (!vma->vm_mm) {
4498 name = strncpy(tmp, "[vdso]", sizeof(tmp));
4499 goto got_name;
4500 } else if (vma->vm_start <= vma->vm_mm->start_brk &&
4501 vma->vm_end >= vma->vm_mm->brk) {
4502 name = strncpy(tmp, "[heap]", sizeof(tmp));
4503 goto got_name;
4504 } else if (vma->vm_start <= vma->vm_mm->start_stack &&
4505 vma->vm_end >= vma->vm_mm->start_stack) {
4506 name = strncpy(tmp, "[stack]", sizeof(tmp));
4507 goto got_name;
4508 }
4509
4510 name = strncpy(tmp, "//anon", sizeof(tmp));
4511 goto got_name;
4512 }
4513
4514 got_name:
4515 size = ALIGN(strlen(name)+1, sizeof(u64));
4516
4517 mmap_event->file_name = name;
4518 mmap_event->file_size = size;
4519
4520 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
4521
4522 rcu_read_lock();
4523 list_for_each_entry_rcu(pmu, &pmus, entry) {
4524 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4525 if (cpuctx->active_pmu != pmu)
4526 goto next;
4527 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event,
4528 vma->vm_flags & VM_EXEC);
4529
4530 ctxn = pmu->task_ctx_nr;
4531 if (ctxn < 0)
4532 goto next;
4533
4534 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4535 if (ctx) {
4536 perf_event_mmap_ctx(ctx, mmap_event,
4537 vma->vm_flags & VM_EXEC);
4538 }
4539 next:
4540 put_cpu_ptr(pmu->pmu_cpu_context);
4541 }
4542 rcu_read_unlock();
4543
4544 kfree(buf);
4545 }
4546
4547 void perf_event_mmap(struct vm_area_struct *vma)
4548 {
4549 struct perf_mmap_event mmap_event;
4550
4551 if (!atomic_read(&nr_mmap_events))
4552 return;
4553
4554 mmap_event = (struct perf_mmap_event){
4555 .vma = vma,
4556 /* .file_name */
4557 /* .file_size */
4558 .event_id = {
4559 .header = {
4560 .type = PERF_RECORD_MMAP,
4561 .misc = PERF_RECORD_MISC_USER,
4562 /* .size */
4563 },
4564 /* .pid */
4565 /* .tid */
4566 .start = vma->vm_start,
4567 .len = vma->vm_end - vma->vm_start,
4568 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
4569 },
4570 };
4571
4572 perf_event_mmap_event(&mmap_event);
4573 }
4574
4575 /*
4576 * IRQ throttle logging
4577 */
4578
4579 static void perf_log_throttle(struct perf_event *event, int enable)
4580 {
4581 struct perf_output_handle handle;
4582 struct perf_sample_data sample;
4583 int ret;
4584
4585 struct {
4586 struct perf_event_header header;
4587 u64 time;
4588 u64 id;
4589 u64 stream_id;
4590 } throttle_event = {
4591 .header = {
4592 .type = PERF_RECORD_THROTTLE,
4593 .misc = 0,
4594 .size = sizeof(throttle_event),
4595 },
4596 .time = perf_clock(),
4597 .id = primary_event_id(event),
4598 .stream_id = event->id,
4599 };
4600
4601 if (enable)
4602 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
4603
4604 perf_event_header__init_id(&throttle_event.header, &sample, event);
4605
4606 ret = perf_output_begin(&handle, event,
4607 throttle_event.header.size);
4608 if (ret)
4609 return;
4610
4611 perf_output_put(&handle, throttle_event);
4612 perf_event__output_id_sample(event, &handle, &sample);
4613 perf_output_end(&handle);
4614 }
4615
4616 /*
4617 * Generic event overflow handling, sampling.
4618 */
4619
4620 static int __perf_event_overflow(struct perf_event *event,
4621 int throttle, struct perf_sample_data *data,
4622 struct pt_regs *regs)
4623 {
4624 int events = atomic_read(&event->event_limit);
4625 struct hw_perf_event *hwc = &event->hw;
4626 int ret = 0;
4627
4628 /*
4629 * Non-sampling counters might still use the PMI to fold short
4630 * hardware counters, ignore those.
4631 */
4632 if (unlikely(!is_sampling_event(event)))
4633 return 0;
4634
4635 if (unlikely(hwc->interrupts >= max_samples_per_tick)) {
4636 if (throttle) {
4637 hwc->interrupts = MAX_INTERRUPTS;
4638 perf_log_throttle(event, 0);
4639 ret = 1;
4640 }
4641 } else
4642 hwc->interrupts++;
4643
4644 if (event->attr.freq) {
4645 u64 now = perf_clock();
4646 s64 delta = now - hwc->freq_time_stamp;
4647
4648 hwc->freq_time_stamp = now;
4649
4650 if (delta > 0 && delta < 2*TICK_NSEC)
4651 perf_adjust_period(event, delta, hwc->last_period);
4652 }
4653
4654 /*
4655 * XXX event_limit might not quite work as expected on inherited
4656 * events
4657 */
4658
4659 event->pending_kill = POLL_IN;
4660 if (events && atomic_dec_and_test(&event->event_limit)) {
4661 ret = 1;
4662 event->pending_kill = POLL_HUP;
4663 event->pending_disable = 1;
4664 irq_work_queue(&event->pending);
4665 }
4666
4667 if (event->overflow_handler)
4668 event->overflow_handler(event, data, regs);
4669 else
4670 perf_event_output(event, data, regs);
4671
4672 if (event->fasync && event->pending_kill) {
4673 event->pending_wakeup = 1;
4674 irq_work_queue(&event->pending);
4675 }
4676
4677 return ret;
4678 }
4679
4680 int perf_event_overflow(struct perf_event *event,
4681 struct perf_sample_data *data,
4682 struct pt_regs *regs)
4683 {
4684 return __perf_event_overflow(event, 1, data, regs);
4685 }
4686
4687 /*
4688 * Generic software event infrastructure
4689 */
4690
4691 struct swevent_htable {
4692 struct swevent_hlist *swevent_hlist;
4693 struct mutex hlist_mutex;
4694 int hlist_refcount;
4695
4696 /* Recursion avoidance in each contexts */
4697 int recursion[PERF_NR_CONTEXTS];
4698 };
4699
4700 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
4701
4702 /*
4703 * We directly increment event->count and keep a second value in
4704 * event->hw.period_left to count intervals. This period event
4705 * is kept in the range [-sample_period, 0] so that we can use the
4706 * sign as trigger.
4707 */
4708
4709 static u64 perf_swevent_set_period(struct perf_event *event)
4710 {
4711 struct hw_perf_event *hwc = &event->hw;
4712 u64 period = hwc->last_period;
4713 u64 nr, offset;
4714 s64 old, val;
4715
4716 hwc->last_period = hwc->sample_period;
4717
4718 again:
4719 old = val = local64_read(&hwc->period_left);
4720 if (val < 0)
4721 return 0;
4722
4723 nr = div64_u64(period + val, period);
4724 offset = nr * period;
4725 val -= offset;
4726 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
4727 goto again;
4728
4729 return nr;
4730 }
4731
4732 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
4733 struct perf_sample_data *data,
4734 struct pt_regs *regs)
4735 {
4736 struct hw_perf_event *hwc = &event->hw;
4737 int throttle = 0;
4738
4739 data->period = event->hw.last_period;
4740 if (!overflow)
4741 overflow = perf_swevent_set_period(event);
4742
4743 if (hwc->interrupts == MAX_INTERRUPTS)
4744 return;
4745
4746 for (; overflow; overflow--) {
4747 if (__perf_event_overflow(event, throttle,
4748 data, regs)) {
4749 /*
4750 * We inhibit the overflow from happening when
4751 * hwc->interrupts == MAX_INTERRUPTS.
4752 */
4753 break;
4754 }
4755 throttle = 1;
4756 }
4757 }
4758
4759 static void perf_swevent_event(struct perf_event *event, u64 nr,
4760 struct perf_sample_data *data,
4761 struct pt_regs *regs)
4762 {
4763 struct hw_perf_event *hwc = &event->hw;
4764
4765 local64_add(nr, &event->count);
4766
4767 if (!regs)
4768 return;
4769
4770 if (!is_sampling_event(event))
4771 return;
4772
4773 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
4774 return perf_swevent_overflow(event, 1, data, regs);
4775
4776 if (local64_add_negative(nr, &hwc->period_left))
4777 return;
4778
4779 perf_swevent_overflow(event, 0, data, regs);
4780 }
4781
4782 static int perf_exclude_event(struct perf_event *event,
4783 struct pt_regs *regs)
4784 {
4785 if (event->hw.state & PERF_HES_STOPPED)
4786 return 1;
4787
4788 if (regs) {
4789 if (event->attr.exclude_user && user_mode(regs))
4790 return 1;
4791
4792 if (event->attr.exclude_kernel && !user_mode(regs))
4793 return 1;
4794 }
4795
4796 return 0;
4797 }
4798
4799 static int perf_swevent_match(struct perf_event *event,
4800 enum perf_type_id type,
4801 u32 event_id,
4802 struct perf_sample_data *data,
4803 struct pt_regs *regs)
4804 {
4805 if (event->attr.type != type)
4806 return 0;
4807
4808 if (event->attr.config != event_id)
4809 return 0;
4810
4811 if (perf_exclude_event(event, regs))
4812 return 0;
4813
4814 return 1;
4815 }
4816
4817 static inline u64 swevent_hash(u64 type, u32 event_id)
4818 {
4819 u64 val = event_id | (type << 32);
4820
4821 return hash_64(val, SWEVENT_HLIST_BITS);
4822 }
4823
4824 static inline struct hlist_head *
4825 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
4826 {
4827 u64 hash = swevent_hash(type, event_id);
4828
4829 return &hlist->heads[hash];
4830 }
4831
4832 /* For the read side: events when they trigger */
4833 static inline struct hlist_head *
4834 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
4835 {
4836 struct swevent_hlist *hlist;
4837
4838 hlist = rcu_dereference(swhash->swevent_hlist);
4839 if (!hlist)
4840 return NULL;
4841
4842 return __find_swevent_head(hlist, type, event_id);
4843 }
4844
4845 /* For the event head insertion and removal in the hlist */
4846 static inline struct hlist_head *
4847 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
4848 {
4849 struct swevent_hlist *hlist;
4850 u32 event_id = event->attr.config;
4851 u64 type = event->attr.type;
4852
4853 /*
4854 * Event scheduling is always serialized against hlist allocation
4855 * and release. Which makes the protected version suitable here.
4856 * The context lock guarantees that.
4857 */
4858 hlist = rcu_dereference_protected(swhash->swevent_hlist,
4859 lockdep_is_held(&event->ctx->lock));
4860 if (!hlist)
4861 return NULL;
4862
4863 return __find_swevent_head(hlist, type, event_id);
4864 }
4865
4866 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
4867 u64 nr,
4868 struct perf_sample_data *data,
4869 struct pt_regs *regs)
4870 {
4871 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4872 struct perf_event *event;
4873 struct hlist_node *node;
4874 struct hlist_head *head;
4875
4876 rcu_read_lock();
4877 head = find_swevent_head_rcu(swhash, type, event_id);
4878 if (!head)
4879 goto end;
4880
4881 hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4882 if (perf_swevent_match(event, type, event_id, data, regs))
4883 perf_swevent_event(event, nr, data, regs);
4884 }
4885 end:
4886 rcu_read_unlock();
4887 }
4888
4889 int perf_swevent_get_recursion_context(void)
4890 {
4891 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4892
4893 return get_recursion_context(swhash->recursion);
4894 }
4895 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
4896
4897 inline void perf_swevent_put_recursion_context(int rctx)
4898 {
4899 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4900
4901 put_recursion_context(swhash->recursion, rctx);
4902 }
4903
4904 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
4905 {
4906 struct perf_sample_data data;
4907 int rctx;
4908
4909 preempt_disable_notrace();
4910 rctx = perf_swevent_get_recursion_context();
4911 if (rctx < 0)
4912 return;
4913
4914 perf_sample_data_init(&data, addr);
4915
4916 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
4917
4918 perf_swevent_put_recursion_context(rctx);
4919 preempt_enable_notrace();
4920 }
4921
4922 static void perf_swevent_read(struct perf_event *event)
4923 {
4924 }
4925
4926 static int perf_swevent_add(struct perf_event *event, int flags)
4927 {
4928 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4929 struct hw_perf_event *hwc = &event->hw;
4930 struct hlist_head *head;
4931
4932 if (is_sampling_event(event)) {
4933 hwc->last_period = hwc->sample_period;
4934 perf_swevent_set_period(event);
4935 }
4936
4937 hwc->state = !(flags & PERF_EF_START);
4938
4939 head = find_swevent_head(swhash, event);
4940 if (WARN_ON_ONCE(!head))
4941 return -EINVAL;
4942
4943 hlist_add_head_rcu(&event->hlist_entry, head);
4944
4945 return 0;
4946 }
4947
4948 static void perf_swevent_del(struct perf_event *event, int flags)
4949 {
4950 hlist_del_rcu(&event->hlist_entry);
4951 }
4952
4953 static void perf_swevent_start(struct perf_event *event, int flags)
4954 {
4955 event->hw.state = 0;
4956 }
4957
4958 static void perf_swevent_stop(struct perf_event *event, int flags)
4959 {
4960 event->hw.state = PERF_HES_STOPPED;
4961 }
4962
4963 /* Deref the hlist from the update side */
4964 static inline struct swevent_hlist *
4965 swevent_hlist_deref(struct swevent_htable *swhash)
4966 {
4967 return rcu_dereference_protected(swhash->swevent_hlist,
4968 lockdep_is_held(&swhash->hlist_mutex));
4969 }
4970
4971 static void swevent_hlist_release(struct swevent_htable *swhash)
4972 {
4973 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
4974
4975 if (!hlist)
4976 return;
4977
4978 rcu_assign_pointer(swhash->swevent_hlist, NULL);
4979 kfree_rcu(hlist, rcu_head);
4980 }
4981
4982 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
4983 {
4984 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4985
4986 mutex_lock(&swhash->hlist_mutex);
4987
4988 if (!--swhash->hlist_refcount)
4989 swevent_hlist_release(swhash);
4990
4991 mutex_unlock(&swhash->hlist_mutex);
4992 }
4993
4994 static void swevent_hlist_put(struct perf_event *event)
4995 {
4996 int cpu;
4997
4998 if (event->cpu != -1) {
4999 swevent_hlist_put_cpu(event, event->cpu);
5000 return;
5001 }
5002
5003 for_each_possible_cpu(cpu)
5004 swevent_hlist_put_cpu(event, cpu);
5005 }
5006
5007 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
5008 {
5009 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5010 int err = 0;
5011
5012 mutex_lock(&swhash->hlist_mutex);
5013
5014 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
5015 struct swevent_hlist *hlist;
5016
5017 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
5018 if (!hlist) {
5019 err = -ENOMEM;
5020 goto exit;
5021 }
5022 rcu_assign_pointer(swhash->swevent_hlist, hlist);
5023 }
5024 swhash->hlist_refcount++;
5025 exit:
5026 mutex_unlock(&swhash->hlist_mutex);
5027
5028 return err;
5029 }
5030
5031 static int swevent_hlist_get(struct perf_event *event)
5032 {
5033 int err;
5034 int cpu, failed_cpu;
5035
5036 if (event->cpu != -1)
5037 return swevent_hlist_get_cpu(event, event->cpu);
5038
5039 get_online_cpus();
5040 for_each_possible_cpu(cpu) {
5041 err = swevent_hlist_get_cpu(event, cpu);
5042 if (err) {
5043 failed_cpu = cpu;
5044 goto fail;
5045 }
5046 }
5047 put_online_cpus();
5048
5049 return 0;
5050 fail:
5051 for_each_possible_cpu(cpu) {
5052 if (cpu == failed_cpu)
5053 break;
5054 swevent_hlist_put_cpu(event, cpu);
5055 }
5056
5057 put_online_cpus();
5058 return err;
5059 }
5060
5061 struct jump_label_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
5062
5063 static void sw_perf_event_destroy(struct perf_event *event)
5064 {
5065 u64 event_id = event->attr.config;
5066
5067 WARN_ON(event->parent);
5068
5069 jump_label_dec(&perf_swevent_enabled[event_id]);
5070 swevent_hlist_put(event);
5071 }
5072
5073 static int perf_swevent_init(struct perf_event *event)
5074 {
5075 int event_id = event->attr.config;
5076
5077 if (event->attr.type != PERF_TYPE_SOFTWARE)
5078 return -ENOENT;
5079
5080 switch (event_id) {
5081 case PERF_COUNT_SW_CPU_CLOCK:
5082 case PERF_COUNT_SW_TASK_CLOCK:
5083 return -ENOENT;
5084
5085 default:
5086 break;
5087 }
5088
5089 if (event_id >= PERF_COUNT_SW_MAX)
5090 return -ENOENT;
5091
5092 if (!event->parent) {
5093 int err;
5094
5095 err = swevent_hlist_get(event);
5096 if (err)
5097 return err;
5098
5099 jump_label_inc(&perf_swevent_enabled[event_id]);
5100 event->destroy = sw_perf_event_destroy;
5101 }
5102
5103 return 0;
5104 }
5105
5106 static struct pmu perf_swevent = {
5107 .task_ctx_nr = perf_sw_context,
5108
5109 .event_init = perf_swevent_init,
5110 .add = perf_swevent_add,
5111 .del = perf_swevent_del,
5112 .start = perf_swevent_start,
5113 .stop = perf_swevent_stop,
5114 .read = perf_swevent_read,
5115 };
5116
5117 #ifdef CONFIG_EVENT_TRACING
5118
5119 static int perf_tp_filter_match(struct perf_event *event,
5120 struct perf_sample_data *data)
5121 {
5122 void *record = data->raw->data;
5123
5124 if (likely(!event->filter) || filter_match_preds(event->filter, record))
5125 return 1;
5126 return 0;
5127 }
5128
5129 static int perf_tp_event_match(struct perf_event *event,
5130 struct perf_sample_data *data,
5131 struct pt_regs *regs)
5132 {
5133 if (event->hw.state & PERF_HES_STOPPED)
5134 return 0;
5135 /*
5136 * All tracepoints are from kernel-space.
5137 */
5138 if (event->attr.exclude_kernel)
5139 return 0;
5140
5141 if (!perf_tp_filter_match(event, data))
5142 return 0;
5143
5144 return 1;
5145 }
5146
5147 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
5148 struct pt_regs *regs, struct hlist_head *head, int rctx)
5149 {
5150 struct perf_sample_data data;
5151 struct perf_event *event;
5152 struct hlist_node *node;
5153
5154 struct perf_raw_record raw = {
5155 .size = entry_size,
5156 .data = record,
5157 };
5158
5159 perf_sample_data_init(&data, addr);
5160 data.raw = &raw;
5161
5162 hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
5163 if (perf_tp_event_match(event, &data, regs))
5164 perf_swevent_event(event, count, &data, regs);
5165 }
5166
5167 perf_swevent_put_recursion_context(rctx);
5168 }
5169 EXPORT_SYMBOL_GPL(perf_tp_event);
5170
5171 static void tp_perf_event_destroy(struct perf_event *event)
5172 {
5173 perf_trace_destroy(event);
5174 }
5175
5176 static int perf_tp_event_init(struct perf_event *event)
5177 {
5178 int err;
5179
5180 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5181 return -ENOENT;
5182
5183 err = perf_trace_init(event);
5184 if (err)
5185 return err;
5186
5187 event->destroy = tp_perf_event_destroy;
5188
5189 return 0;
5190 }
5191
5192 static struct pmu perf_tracepoint = {
5193 .task_ctx_nr = perf_sw_context,
5194
5195 .event_init = perf_tp_event_init,
5196 .add = perf_trace_add,
5197 .del = perf_trace_del,
5198 .start = perf_swevent_start,
5199 .stop = perf_swevent_stop,
5200 .read = perf_swevent_read,
5201 };
5202
5203 static inline void perf_tp_register(void)
5204 {
5205 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
5206 }
5207
5208 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5209 {
5210 char *filter_str;
5211 int ret;
5212
5213 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5214 return -EINVAL;
5215
5216 filter_str = strndup_user(arg, PAGE_SIZE);
5217 if (IS_ERR(filter_str))
5218 return PTR_ERR(filter_str);
5219
5220 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
5221
5222 kfree(filter_str);
5223 return ret;
5224 }
5225
5226 static void perf_event_free_filter(struct perf_event *event)
5227 {
5228 ftrace_profile_free_filter(event);
5229 }
5230
5231 #else
5232
5233 static inline void perf_tp_register(void)
5234 {
5235 }
5236
5237 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5238 {
5239 return -ENOENT;
5240 }
5241
5242 static void perf_event_free_filter(struct perf_event *event)
5243 {
5244 }
5245
5246 #endif /* CONFIG_EVENT_TRACING */
5247
5248 #ifdef CONFIG_HAVE_HW_BREAKPOINT
5249 void perf_bp_event(struct perf_event *bp, void *data)
5250 {
5251 struct perf_sample_data sample;
5252 struct pt_regs *regs = data;
5253
5254 perf_sample_data_init(&sample, bp->attr.bp_addr);
5255
5256 if (!bp->hw.state && !perf_exclude_event(bp, regs))
5257 perf_swevent_event(bp, 1, &sample, regs);
5258 }
5259 #endif
5260
5261 /*
5262 * hrtimer based swevent callback
5263 */
5264
5265 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
5266 {
5267 enum hrtimer_restart ret = HRTIMER_RESTART;
5268 struct perf_sample_data data;
5269 struct pt_regs *regs;
5270 struct perf_event *event;
5271 u64 period;
5272
5273 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
5274
5275 if (event->state != PERF_EVENT_STATE_ACTIVE)
5276 return HRTIMER_NORESTART;
5277
5278 event->pmu->read(event);
5279
5280 perf_sample_data_init(&data, 0);
5281 data.period = event->hw.last_period;
5282 regs = get_irq_regs();
5283
5284 if (regs && !perf_exclude_event(event, regs)) {
5285 if (!(event->attr.exclude_idle && current->pid == 0))
5286 if (perf_event_overflow(event, &data, regs))
5287 ret = HRTIMER_NORESTART;
5288 }
5289
5290 period = max_t(u64, 10000, event->hw.sample_period);
5291 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
5292
5293 return ret;
5294 }
5295
5296 static void perf_swevent_start_hrtimer(struct perf_event *event)
5297 {
5298 struct hw_perf_event *hwc = &event->hw;
5299 s64 period;
5300
5301 if (!is_sampling_event(event))
5302 return;
5303
5304 period = local64_read(&hwc->period_left);
5305 if (period) {
5306 if (period < 0)
5307 period = 10000;
5308
5309 local64_set(&hwc->period_left, 0);
5310 } else {
5311 period = max_t(u64, 10000, hwc->sample_period);
5312 }
5313 __hrtimer_start_range_ns(&hwc->hrtimer,
5314 ns_to_ktime(period), 0,
5315 HRTIMER_MODE_REL_PINNED, 0);
5316 }
5317
5318 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
5319 {
5320 struct hw_perf_event *hwc = &event->hw;
5321
5322 if (is_sampling_event(event)) {
5323 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
5324 local64_set(&hwc->period_left, ktime_to_ns(remaining));
5325
5326 hrtimer_cancel(&hwc->hrtimer);
5327 }
5328 }
5329
5330 static void perf_swevent_init_hrtimer(struct perf_event *event)
5331 {
5332 struct hw_perf_event *hwc = &event->hw;
5333
5334 if (!is_sampling_event(event))
5335 return;
5336
5337 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5338 hwc->hrtimer.function = perf_swevent_hrtimer;
5339
5340 /*
5341 * Since hrtimers have a fixed rate, we can do a static freq->period
5342 * mapping and avoid the whole period adjust feedback stuff.
5343 */
5344 if (event->attr.freq) {
5345 long freq = event->attr.sample_freq;
5346
5347 event->attr.sample_period = NSEC_PER_SEC / freq;
5348 hwc->sample_period = event->attr.sample_period;
5349 local64_set(&hwc->period_left, hwc->sample_period);
5350 event->attr.freq = 0;
5351 }
5352 }
5353
5354 /*
5355 * Software event: cpu wall time clock
5356 */
5357
5358 static void cpu_clock_event_update(struct perf_event *event)
5359 {
5360 s64 prev;
5361 u64 now;
5362
5363 now = local_clock();
5364 prev = local64_xchg(&event->hw.prev_count, now);
5365 local64_add(now - prev, &event->count);
5366 }
5367
5368 static void cpu_clock_event_start(struct perf_event *event, int flags)
5369 {
5370 local64_set(&event->hw.prev_count, local_clock());
5371 perf_swevent_start_hrtimer(event);
5372 }
5373
5374 static void cpu_clock_event_stop(struct perf_event *event, int flags)
5375 {
5376 perf_swevent_cancel_hrtimer(event);
5377 cpu_clock_event_update(event);
5378 }
5379
5380 static int cpu_clock_event_add(struct perf_event *event, int flags)
5381 {
5382 if (flags & PERF_EF_START)
5383 cpu_clock_event_start(event, flags);
5384
5385 return 0;
5386 }
5387
5388 static void cpu_clock_event_del(struct perf_event *event, int flags)
5389 {
5390 cpu_clock_event_stop(event, flags);
5391 }
5392
5393 static void cpu_clock_event_read(struct perf_event *event)
5394 {
5395 cpu_clock_event_update(event);
5396 }
5397
5398 static int cpu_clock_event_init(struct perf_event *event)
5399 {
5400 if (event->attr.type != PERF_TYPE_SOFTWARE)
5401 return -ENOENT;
5402
5403 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
5404 return -ENOENT;
5405
5406 perf_swevent_init_hrtimer(event);
5407
5408 return 0;
5409 }
5410
5411 static struct pmu perf_cpu_clock = {
5412 .task_ctx_nr = perf_sw_context,
5413
5414 .event_init = cpu_clock_event_init,
5415 .add = cpu_clock_event_add,
5416 .del = cpu_clock_event_del,
5417 .start = cpu_clock_event_start,
5418 .stop = cpu_clock_event_stop,
5419 .read = cpu_clock_event_read,
5420 };
5421
5422 /*
5423 * Software event: task time clock
5424 */
5425
5426 static void task_clock_event_update(struct perf_event *event, u64 now)
5427 {
5428 u64 prev;
5429 s64 delta;
5430
5431 prev = local64_xchg(&event->hw.prev_count, now);
5432 delta = now - prev;
5433 local64_add(delta, &event->count);
5434 }
5435
5436 static void task_clock_event_start(struct perf_event *event, int flags)
5437 {
5438 local64_set(&event->hw.prev_count, event->ctx->time);
5439 perf_swevent_start_hrtimer(event);
5440 }
5441
5442 static void task_clock_event_stop(struct perf_event *event, int flags)
5443 {
5444 perf_swevent_cancel_hrtimer(event);
5445 task_clock_event_update(event, event->ctx->time);
5446 }
5447
5448 static int task_clock_event_add(struct perf_event *event, int flags)
5449 {
5450 if (flags & PERF_EF_START)
5451 task_clock_event_start(event, flags);
5452
5453 return 0;
5454 }
5455
5456 static void task_clock_event_del(struct perf_event *event, int flags)
5457 {
5458 task_clock_event_stop(event, PERF_EF_UPDATE);
5459 }
5460
5461 static void task_clock_event_read(struct perf_event *event)
5462 {
5463 u64 now = perf_clock();
5464 u64 delta = now - event->ctx->timestamp;
5465 u64 time = event->ctx->time + delta;
5466
5467 task_clock_event_update(event, time);
5468 }
5469
5470 static int task_clock_event_init(struct perf_event *event)
5471 {
5472 if (event->attr.type != PERF_TYPE_SOFTWARE)
5473 return -ENOENT;
5474
5475 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
5476 return -ENOENT;
5477
5478 perf_swevent_init_hrtimer(event);
5479
5480 return 0;
5481 }
5482
5483 static struct pmu perf_task_clock = {
5484 .task_ctx_nr = perf_sw_context,
5485
5486 .event_init = task_clock_event_init,
5487 .add = task_clock_event_add,
5488 .del = task_clock_event_del,
5489 .start = task_clock_event_start,
5490 .stop = task_clock_event_stop,
5491 .read = task_clock_event_read,
5492 };
5493
5494 static void perf_pmu_nop_void(struct pmu *pmu)
5495 {
5496 }
5497
5498 static int perf_pmu_nop_int(struct pmu *pmu)
5499 {
5500 return 0;
5501 }
5502
5503 static void perf_pmu_start_txn(struct pmu *pmu)
5504 {
5505 perf_pmu_disable(pmu);
5506 }
5507
5508 static int perf_pmu_commit_txn(struct pmu *pmu)
5509 {
5510 perf_pmu_enable(pmu);
5511 return 0;
5512 }
5513
5514 static void perf_pmu_cancel_txn(struct pmu *pmu)
5515 {
5516 perf_pmu_enable(pmu);
5517 }
5518
5519 /*
5520 * Ensures all contexts with the same task_ctx_nr have the same
5521 * pmu_cpu_context too.
5522 */
5523 static void *find_pmu_context(int ctxn)
5524 {
5525 struct pmu *pmu;
5526
5527 if (ctxn < 0)
5528 return NULL;
5529
5530 list_for_each_entry(pmu, &pmus, entry) {
5531 if (pmu->task_ctx_nr == ctxn)
5532 return pmu->pmu_cpu_context;
5533 }
5534
5535 return NULL;
5536 }
5537
5538 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
5539 {
5540 int cpu;
5541
5542 for_each_possible_cpu(cpu) {
5543 struct perf_cpu_context *cpuctx;
5544
5545 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5546
5547 if (cpuctx->active_pmu == old_pmu)
5548 cpuctx->active_pmu = pmu;
5549 }
5550 }
5551
5552 static void free_pmu_context(struct pmu *pmu)
5553 {
5554 struct pmu *i;
5555
5556 mutex_lock(&pmus_lock);
5557 /*
5558 * Like a real lame refcount.
5559 */
5560 list_for_each_entry(i, &pmus, entry) {
5561 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
5562 update_pmu_context(i, pmu);
5563 goto out;
5564 }
5565 }
5566
5567 free_percpu(pmu->pmu_cpu_context);
5568 out:
5569 mutex_unlock(&pmus_lock);
5570 }
5571 static struct idr pmu_idr;
5572
5573 static ssize_t
5574 type_show(struct device *dev, struct device_attribute *attr, char *page)
5575 {
5576 struct pmu *pmu = dev_get_drvdata(dev);
5577
5578 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
5579 }
5580
5581 static struct device_attribute pmu_dev_attrs[] = {
5582 __ATTR_RO(type),
5583 __ATTR_NULL,
5584 };
5585
5586 static int pmu_bus_running;
5587 static struct bus_type pmu_bus = {
5588 .name = "event_source",
5589 .dev_attrs = pmu_dev_attrs,
5590 };
5591
5592 static void pmu_dev_release(struct device *dev)
5593 {
5594 kfree(dev);
5595 }
5596
5597 static int pmu_dev_alloc(struct pmu *pmu)
5598 {
5599 int ret = -ENOMEM;
5600
5601 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
5602 if (!pmu->dev)
5603 goto out;
5604
5605 device_initialize(pmu->dev);
5606 ret = dev_set_name(pmu->dev, "%s", pmu->name);
5607 if (ret)
5608 goto free_dev;
5609
5610 dev_set_drvdata(pmu->dev, pmu);
5611 pmu->dev->bus = &pmu_bus;
5612 pmu->dev->release = pmu_dev_release;
5613 ret = device_add(pmu->dev);
5614 if (ret)
5615 goto free_dev;
5616
5617 out:
5618 return ret;
5619
5620 free_dev:
5621 put_device(pmu->dev);
5622 goto out;
5623 }
5624
5625 static struct lock_class_key cpuctx_mutex;
5626 static struct lock_class_key cpuctx_lock;
5627
5628 int perf_pmu_register(struct pmu *pmu, char *name, int type)
5629 {
5630 int cpu, ret;
5631
5632 mutex_lock(&pmus_lock);
5633 ret = -ENOMEM;
5634 pmu->pmu_disable_count = alloc_percpu(int);
5635 if (!pmu->pmu_disable_count)
5636 goto unlock;
5637
5638 pmu->type = -1;
5639 if (!name)
5640 goto skip_type;
5641 pmu->name = name;
5642
5643 if (type < 0) {
5644 int err = idr_pre_get(&pmu_idr, GFP_KERNEL);
5645 if (!err)
5646 goto free_pdc;
5647
5648 err = idr_get_new_above(&pmu_idr, pmu, PERF_TYPE_MAX, &type);
5649 if (err) {
5650 ret = err;
5651 goto free_pdc;
5652 }
5653 }
5654 pmu->type = type;
5655
5656 if (pmu_bus_running) {
5657 ret = pmu_dev_alloc(pmu);
5658 if (ret)
5659 goto free_idr;
5660 }
5661
5662 skip_type:
5663 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
5664 if (pmu->pmu_cpu_context)
5665 goto got_cpu_context;
5666
5667 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
5668 if (!pmu->pmu_cpu_context)
5669 goto free_dev;
5670
5671 for_each_possible_cpu(cpu) {
5672 struct perf_cpu_context *cpuctx;
5673
5674 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5675 __perf_event_init_context(&cpuctx->ctx);
5676 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
5677 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
5678 cpuctx->ctx.type = cpu_context;
5679 cpuctx->ctx.pmu = pmu;
5680 cpuctx->jiffies_interval = 1;
5681 INIT_LIST_HEAD(&cpuctx->rotation_list);
5682 cpuctx->active_pmu = pmu;
5683 }
5684
5685 got_cpu_context:
5686 if (!pmu->start_txn) {
5687 if (pmu->pmu_enable) {
5688 /*
5689 * If we have pmu_enable/pmu_disable calls, install
5690 * transaction stubs that use that to try and batch
5691 * hardware accesses.
5692 */
5693 pmu->start_txn = perf_pmu_start_txn;
5694 pmu->commit_txn = perf_pmu_commit_txn;
5695 pmu->cancel_txn = perf_pmu_cancel_txn;
5696 } else {
5697 pmu->start_txn = perf_pmu_nop_void;
5698 pmu->commit_txn = perf_pmu_nop_int;
5699 pmu->cancel_txn = perf_pmu_nop_void;
5700 }
5701 }
5702
5703 if (!pmu->pmu_enable) {
5704 pmu->pmu_enable = perf_pmu_nop_void;
5705 pmu->pmu_disable = perf_pmu_nop_void;
5706 }
5707
5708 list_add_rcu(&pmu->entry, &pmus);
5709 ret = 0;
5710 unlock:
5711 mutex_unlock(&pmus_lock);
5712
5713 return ret;
5714
5715 free_dev:
5716 device_del(pmu->dev);
5717 put_device(pmu->dev);
5718
5719 free_idr:
5720 if (pmu->type >= PERF_TYPE_MAX)
5721 idr_remove(&pmu_idr, pmu->type);
5722
5723 free_pdc:
5724 free_percpu(pmu->pmu_disable_count);
5725 goto unlock;
5726 }
5727
5728 void perf_pmu_unregister(struct pmu *pmu)
5729 {
5730 mutex_lock(&pmus_lock);
5731 list_del_rcu(&pmu->entry);
5732 mutex_unlock(&pmus_lock);
5733
5734 /*
5735 * We dereference the pmu list under both SRCU and regular RCU, so
5736 * synchronize against both of those.
5737 */
5738 synchronize_srcu(&pmus_srcu);
5739 synchronize_rcu();
5740
5741 free_percpu(pmu->pmu_disable_count);
5742 if (pmu->type >= PERF_TYPE_MAX)
5743 idr_remove(&pmu_idr, pmu->type);
5744 device_del(pmu->dev);
5745 put_device(pmu->dev);
5746 free_pmu_context(pmu);
5747 }
5748
5749 struct pmu *perf_init_event(struct perf_event *event)
5750 {
5751 struct pmu *pmu = NULL;
5752 int idx;
5753 int ret;
5754
5755 idx = srcu_read_lock(&pmus_srcu);
5756
5757 rcu_read_lock();
5758 pmu = idr_find(&pmu_idr, event->attr.type);
5759 rcu_read_unlock();
5760 if (pmu) {
5761 event->pmu = pmu;
5762 ret = pmu->event_init(event);
5763 if (ret)
5764 pmu = ERR_PTR(ret);
5765 goto unlock;
5766 }
5767
5768 list_for_each_entry_rcu(pmu, &pmus, entry) {
5769 event->pmu = pmu;
5770 ret = pmu->event_init(event);
5771 if (!ret)
5772 goto unlock;
5773
5774 if (ret != -ENOENT) {
5775 pmu = ERR_PTR(ret);
5776 goto unlock;
5777 }
5778 }
5779 pmu = ERR_PTR(-ENOENT);
5780 unlock:
5781 srcu_read_unlock(&pmus_srcu, idx);
5782
5783 return pmu;
5784 }
5785
5786 /*
5787 * Allocate and initialize a event structure
5788 */
5789 static struct perf_event *
5790 perf_event_alloc(struct perf_event_attr *attr, int cpu,
5791 struct task_struct *task,
5792 struct perf_event *group_leader,
5793 struct perf_event *parent_event,
5794 perf_overflow_handler_t overflow_handler,
5795 void *context)
5796 {
5797 struct pmu *pmu;
5798 struct perf_event *event;
5799 struct hw_perf_event *hwc;
5800 long err;
5801
5802 if ((unsigned)cpu >= nr_cpu_ids) {
5803 if (!task || cpu != -1)
5804 return ERR_PTR(-EINVAL);
5805 }
5806
5807 event = kzalloc(sizeof(*event), GFP_KERNEL);
5808 if (!event)
5809 return ERR_PTR(-ENOMEM);
5810
5811 /*
5812 * Single events are their own group leaders, with an
5813 * empty sibling list:
5814 */
5815 if (!group_leader)
5816 group_leader = event;
5817
5818 mutex_init(&event->child_mutex);
5819 INIT_LIST_HEAD(&event->child_list);
5820
5821 INIT_LIST_HEAD(&event->group_entry);
5822 INIT_LIST_HEAD(&event->event_entry);
5823 INIT_LIST_HEAD(&event->sibling_list);
5824 init_waitqueue_head(&event->waitq);
5825 init_irq_work(&event->pending, perf_pending_event);
5826
5827 mutex_init(&event->mmap_mutex);
5828
5829 event->cpu = cpu;
5830 event->attr = *attr;
5831 event->group_leader = group_leader;
5832 event->pmu = NULL;
5833 event->oncpu = -1;
5834
5835 event->parent = parent_event;
5836
5837 event->ns = get_pid_ns(current->nsproxy->pid_ns);
5838 event->id = atomic64_inc_return(&perf_event_id);
5839
5840 event->state = PERF_EVENT_STATE_INACTIVE;
5841
5842 if (task) {
5843 event->attach_state = PERF_ATTACH_TASK;
5844 #ifdef CONFIG_HAVE_HW_BREAKPOINT
5845 /*
5846 * hw_breakpoint is a bit difficult here..
5847 */
5848 if (attr->type == PERF_TYPE_BREAKPOINT)
5849 event->hw.bp_target = task;
5850 #endif
5851 }
5852
5853 if (!overflow_handler && parent_event) {
5854 overflow_handler = parent_event->overflow_handler;
5855 context = parent_event->overflow_handler_context;
5856 }
5857
5858 event->overflow_handler = overflow_handler;
5859 event->overflow_handler_context = context;
5860
5861 if (attr->disabled)
5862 event->state = PERF_EVENT_STATE_OFF;
5863
5864 pmu = NULL;
5865
5866 hwc = &event->hw;
5867 hwc->sample_period = attr->sample_period;
5868 if (attr->freq && attr->sample_freq)
5869 hwc->sample_period = 1;
5870 hwc->last_period = hwc->sample_period;
5871
5872 local64_set(&hwc->period_left, hwc->sample_period);
5873
5874 /*
5875 * we currently do not support PERF_FORMAT_GROUP on inherited events
5876 */
5877 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
5878 goto done;
5879
5880 pmu = perf_init_event(event);
5881
5882 done:
5883 err = 0;
5884 if (!pmu)
5885 err = -EINVAL;
5886 else if (IS_ERR(pmu))
5887 err = PTR_ERR(pmu);
5888
5889 if (err) {
5890 if (event->ns)
5891 put_pid_ns(event->ns);
5892 kfree(event);
5893 return ERR_PTR(err);
5894 }
5895
5896 if (!event->parent) {
5897 if (event->attach_state & PERF_ATTACH_TASK)
5898 jump_label_inc(&perf_sched_events);
5899 if (event->attr.mmap || event->attr.mmap_data)
5900 atomic_inc(&nr_mmap_events);
5901 if (event->attr.comm)
5902 atomic_inc(&nr_comm_events);
5903 if (event->attr.task)
5904 atomic_inc(&nr_task_events);
5905 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
5906 err = get_callchain_buffers();
5907 if (err) {
5908 free_event(event);
5909 return ERR_PTR(err);
5910 }
5911 }
5912 }
5913
5914 return event;
5915 }
5916
5917 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5918 struct perf_event_attr *attr)
5919 {
5920 u32 size;
5921 int ret;
5922
5923 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
5924 return -EFAULT;
5925
5926 /*
5927 * zero the full structure, so that a short copy will be nice.
5928 */
5929 memset(attr, 0, sizeof(*attr));
5930
5931 ret = get_user(size, &uattr->size);
5932 if (ret)
5933 return ret;
5934
5935 if (size > PAGE_SIZE) /* silly large */
5936 goto err_size;
5937
5938 if (!size) /* abi compat */
5939 size = PERF_ATTR_SIZE_VER0;
5940
5941 if (size < PERF_ATTR_SIZE_VER0)
5942 goto err_size;
5943
5944 /*
5945 * If we're handed a bigger struct than we know of,
5946 * ensure all the unknown bits are 0 - i.e. new
5947 * user-space does not rely on any kernel feature
5948 * extensions we dont know about yet.
5949 */
5950 if (size > sizeof(*attr)) {
5951 unsigned char __user *addr;
5952 unsigned char __user *end;
5953 unsigned char val;
5954
5955 addr = (void __user *)uattr + sizeof(*attr);
5956 end = (void __user *)uattr + size;
5957
5958 for (; addr < end; addr++) {
5959 ret = get_user(val, addr);
5960 if (ret)
5961 return ret;
5962 if (val)
5963 goto err_size;
5964 }
5965 size = sizeof(*attr);
5966 }
5967
5968 ret = copy_from_user(attr, uattr, size);
5969 if (ret)
5970 return -EFAULT;
5971
5972 if (attr->__reserved_1)
5973 return -EINVAL;
5974
5975 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
5976 return -EINVAL;
5977
5978 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
5979 return -EINVAL;
5980
5981 out:
5982 return ret;
5983
5984 err_size:
5985 put_user(sizeof(*attr), &uattr->size);
5986 ret = -E2BIG;
5987 goto out;
5988 }
5989
5990 static int
5991 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
5992 {
5993 struct ring_buffer *rb = NULL, *old_rb = NULL;
5994 int ret = -EINVAL;
5995
5996 if (!output_event)
5997 goto set;
5998
5999 /* don't allow circular references */
6000 if (event == output_event)
6001 goto out;
6002
6003 /*
6004 * Don't allow cross-cpu buffers
6005 */
6006 if (output_event->cpu != event->cpu)
6007 goto out;
6008
6009 /*
6010 * If its not a per-cpu rb, it must be the same task.
6011 */
6012 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
6013 goto out;
6014
6015 set:
6016 mutex_lock(&event->mmap_mutex);
6017 /* Can't redirect output if we've got an active mmap() */
6018 if (atomic_read(&event->mmap_count))
6019 goto unlock;
6020
6021 if (output_event) {
6022 /* get the rb we want to redirect to */
6023 rb = ring_buffer_get(output_event);
6024 if (!rb)
6025 goto unlock;
6026 }
6027
6028 old_rb = event->rb;
6029 rcu_assign_pointer(event->rb, rb);
6030 ret = 0;
6031 unlock:
6032 mutex_unlock(&event->mmap_mutex);
6033
6034 if (old_rb)
6035 ring_buffer_put(old_rb);
6036 out:
6037 return ret;
6038 }
6039
6040 /**
6041 * sys_perf_event_open - open a performance event, associate it to a task/cpu
6042 *
6043 * @attr_uptr: event_id type attributes for monitoring/sampling
6044 * @pid: target pid
6045 * @cpu: target cpu
6046 * @group_fd: group leader event fd
6047 */
6048 SYSCALL_DEFINE5(perf_event_open,
6049 struct perf_event_attr __user *, attr_uptr,
6050 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
6051 {
6052 struct perf_event *group_leader = NULL, *output_event = NULL;
6053 struct perf_event *event, *sibling;
6054 struct perf_event_attr attr;
6055 struct perf_event_context *ctx;
6056 struct file *event_file = NULL;
6057 struct file *group_file = NULL;
6058 struct task_struct *task = NULL;
6059 struct pmu *pmu;
6060 int event_fd;
6061 int move_group = 0;
6062 int fput_needed = 0;
6063 int err;
6064
6065 /* for future expandability... */
6066 if (flags & ~PERF_FLAG_ALL)
6067 return -EINVAL;
6068
6069 err = perf_copy_attr(attr_uptr, &attr);
6070 if (err)
6071 return err;
6072
6073 if (!attr.exclude_kernel) {
6074 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6075 return -EACCES;
6076 }
6077
6078 if (attr.freq) {
6079 if (attr.sample_freq > sysctl_perf_event_sample_rate)
6080 return -EINVAL;
6081 }
6082
6083 /*
6084 * In cgroup mode, the pid argument is used to pass the fd
6085 * opened to the cgroup directory in cgroupfs. The cpu argument
6086 * designates the cpu on which to monitor threads from that
6087 * cgroup.
6088 */
6089 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
6090 return -EINVAL;
6091
6092 event_fd = get_unused_fd_flags(O_RDWR);
6093 if (event_fd < 0)
6094 return event_fd;
6095
6096 if (group_fd != -1) {
6097 group_leader = perf_fget_light(group_fd, &fput_needed);
6098 if (IS_ERR(group_leader)) {
6099 err = PTR_ERR(group_leader);
6100 goto err_fd;
6101 }
6102 group_file = group_leader->filp;
6103 if (flags & PERF_FLAG_FD_OUTPUT)
6104 output_event = group_leader;
6105 if (flags & PERF_FLAG_FD_NO_GROUP)
6106 group_leader = NULL;
6107 }
6108
6109 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
6110 task = find_lively_task_by_vpid(pid);
6111 if (IS_ERR(task)) {
6112 err = PTR_ERR(task);
6113 goto err_group_fd;
6114 }
6115 }
6116
6117 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
6118 NULL, NULL);
6119 if (IS_ERR(event)) {
6120 err = PTR_ERR(event);
6121 goto err_task;
6122 }
6123
6124 if (flags & PERF_FLAG_PID_CGROUP) {
6125 err = perf_cgroup_connect(pid, event, &attr, group_leader);
6126 if (err)
6127 goto err_alloc;
6128 /*
6129 * one more event:
6130 * - that has cgroup constraint on event->cpu
6131 * - that may need work on context switch
6132 */
6133 atomic_inc(&per_cpu(perf_cgroup_events, event->cpu));
6134 jump_label_inc(&perf_sched_events);
6135 }
6136
6137 /*
6138 * Special case software events and allow them to be part of
6139 * any hardware group.
6140 */
6141 pmu = event->pmu;
6142
6143 if (group_leader &&
6144 (is_software_event(event) != is_software_event(group_leader))) {
6145 if (is_software_event(event)) {
6146 /*
6147 * If event and group_leader are not both a software
6148 * event, and event is, then group leader is not.
6149 *
6150 * Allow the addition of software events to !software
6151 * groups, this is safe because software events never
6152 * fail to schedule.
6153 */
6154 pmu = group_leader->pmu;
6155 } else if (is_software_event(group_leader) &&
6156 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
6157 /*
6158 * In case the group is a pure software group, and we
6159 * try to add a hardware event, move the whole group to
6160 * the hardware context.
6161 */
6162 move_group = 1;
6163 }
6164 }
6165
6166 /*
6167 * Get the target context (task or percpu):
6168 */
6169 ctx = find_get_context(pmu, task, cpu);
6170 if (IS_ERR(ctx)) {
6171 err = PTR_ERR(ctx);
6172 goto err_alloc;
6173 }
6174
6175 if (task) {
6176 put_task_struct(task);
6177 task = NULL;
6178 }
6179
6180 /*
6181 * Look up the group leader (we will attach this event to it):
6182 */
6183 if (group_leader) {
6184 err = -EINVAL;
6185
6186 /*
6187 * Do not allow a recursive hierarchy (this new sibling
6188 * becoming part of another group-sibling):
6189 */
6190 if (group_leader->group_leader != group_leader)
6191 goto err_context;
6192 /*
6193 * Do not allow to attach to a group in a different
6194 * task or CPU context:
6195 */
6196 if (move_group) {
6197 if (group_leader->ctx->type != ctx->type)
6198 goto err_context;
6199 } else {
6200 if (group_leader->ctx != ctx)
6201 goto err_context;
6202 }
6203
6204 /*
6205 * Only a group leader can be exclusive or pinned
6206 */
6207 if (attr.exclusive || attr.pinned)
6208 goto err_context;
6209 }
6210
6211 if (output_event) {
6212 err = perf_event_set_output(event, output_event);
6213 if (err)
6214 goto err_context;
6215 }
6216
6217 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
6218 if (IS_ERR(event_file)) {
6219 err = PTR_ERR(event_file);
6220 goto err_context;
6221 }
6222
6223 if (move_group) {
6224 struct perf_event_context *gctx = group_leader->ctx;
6225
6226 mutex_lock(&gctx->mutex);
6227 perf_remove_from_context(group_leader);
6228 list_for_each_entry(sibling, &group_leader->sibling_list,
6229 group_entry) {
6230 perf_remove_from_context(sibling);
6231 put_ctx(gctx);
6232 }
6233 mutex_unlock(&gctx->mutex);
6234 put_ctx(gctx);
6235 }
6236
6237 event->filp = event_file;
6238 WARN_ON_ONCE(ctx->parent_ctx);
6239 mutex_lock(&ctx->mutex);
6240
6241 if (move_group) {
6242 perf_install_in_context(ctx, group_leader, cpu);
6243 get_ctx(ctx);
6244 list_for_each_entry(sibling, &group_leader->sibling_list,
6245 group_entry) {
6246 perf_install_in_context(ctx, sibling, cpu);
6247 get_ctx(ctx);
6248 }
6249 }
6250
6251 perf_install_in_context(ctx, event, cpu);
6252 ++ctx->generation;
6253 perf_unpin_context(ctx);
6254 mutex_unlock(&ctx->mutex);
6255
6256 event->owner = current;
6257
6258 mutex_lock(&current->perf_event_mutex);
6259 list_add_tail(&event->owner_entry, &current->perf_event_list);
6260 mutex_unlock(&current->perf_event_mutex);
6261
6262 /*
6263 * Precalculate sample_data sizes
6264 */
6265 perf_event__header_size(event);
6266 perf_event__id_header_size(event);
6267
6268 /*
6269 * Drop the reference on the group_event after placing the
6270 * new event on the sibling_list. This ensures destruction
6271 * of the group leader will find the pointer to itself in
6272 * perf_group_detach().
6273 */
6274 fput_light(group_file, fput_needed);
6275 fd_install(event_fd, event_file);
6276 return event_fd;
6277
6278 err_context:
6279 perf_unpin_context(ctx);
6280 put_ctx(ctx);
6281 err_alloc:
6282 free_event(event);
6283 err_task:
6284 if (task)
6285 put_task_struct(task);
6286 err_group_fd:
6287 fput_light(group_file, fput_needed);
6288 err_fd:
6289 put_unused_fd(event_fd);
6290 return err;
6291 }
6292
6293 /**
6294 * perf_event_create_kernel_counter
6295 *
6296 * @attr: attributes of the counter to create
6297 * @cpu: cpu in which the counter is bound
6298 * @task: task to profile (NULL for percpu)
6299 */
6300 struct perf_event *
6301 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
6302 struct task_struct *task,
6303 perf_overflow_handler_t overflow_handler,
6304 void *context)
6305 {
6306 struct perf_event_context *ctx;
6307 struct perf_event *event;
6308 int err;
6309
6310 /*
6311 * Get the target context (task or percpu):
6312 */
6313
6314 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
6315 overflow_handler, context);
6316 if (IS_ERR(event)) {
6317 err = PTR_ERR(event);
6318 goto err;
6319 }
6320
6321 ctx = find_get_context(event->pmu, task, cpu);
6322 if (IS_ERR(ctx)) {
6323 err = PTR_ERR(ctx);
6324 goto err_free;
6325 }
6326
6327 event->filp = NULL;
6328 WARN_ON_ONCE(ctx->parent_ctx);
6329 mutex_lock(&ctx->mutex);
6330 perf_install_in_context(ctx, event, cpu);
6331 ++ctx->generation;
6332 perf_unpin_context(ctx);
6333 mutex_unlock(&ctx->mutex);
6334
6335 return event;
6336
6337 err_free:
6338 free_event(event);
6339 err:
6340 return ERR_PTR(err);
6341 }
6342 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
6343
6344 static void sync_child_event(struct perf_event *child_event,
6345 struct task_struct *child)
6346 {
6347 struct perf_event *parent_event = child_event->parent;
6348 u64 child_val;
6349
6350 if (child_event->attr.inherit_stat)
6351 perf_event_read_event(child_event, child);
6352
6353 child_val = perf_event_count(child_event);
6354
6355 /*
6356 * Add back the child's count to the parent's count:
6357 */
6358 atomic64_add(child_val, &parent_event->child_count);
6359 atomic64_add(child_event->total_time_enabled,
6360 &parent_event->child_total_time_enabled);
6361 atomic64_add(child_event->total_time_running,
6362 &parent_event->child_total_time_running);
6363
6364 /*
6365 * Remove this event from the parent's list
6366 */
6367 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
6368 mutex_lock(&parent_event->child_mutex);
6369 list_del_init(&child_event->child_list);
6370 mutex_unlock(&parent_event->child_mutex);
6371
6372 /*
6373 * Release the parent event, if this was the last
6374 * reference to it.
6375 */
6376 fput(parent_event->filp);
6377 }
6378
6379 static void
6380 __perf_event_exit_task(struct perf_event *child_event,
6381 struct perf_event_context *child_ctx,
6382 struct task_struct *child)
6383 {
6384 if (child_event->parent) {
6385 raw_spin_lock_irq(&child_ctx->lock);
6386 perf_group_detach(child_event);
6387 raw_spin_unlock_irq(&child_ctx->lock);
6388 }
6389
6390 perf_remove_from_context(child_event);
6391
6392 /*
6393 * It can happen that the parent exits first, and has events
6394 * that are still around due to the child reference. These
6395 * events need to be zapped.
6396 */
6397 if (child_event->parent) {
6398 sync_child_event(child_event, child);
6399 free_event(child_event);
6400 }
6401 }
6402
6403 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
6404 {
6405 struct perf_event *child_event, *tmp;
6406 struct perf_event_context *child_ctx;
6407 unsigned long flags;
6408
6409 if (likely(!child->perf_event_ctxp[ctxn])) {
6410 perf_event_task(child, NULL, 0);
6411 return;
6412 }
6413
6414 local_irq_save(flags);
6415 /*
6416 * We can't reschedule here because interrupts are disabled,
6417 * and either child is current or it is a task that can't be
6418 * scheduled, so we are now safe from rescheduling changing
6419 * our context.
6420 */
6421 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
6422
6423 /*
6424 * Take the context lock here so that if find_get_context is
6425 * reading child->perf_event_ctxp, we wait until it has
6426 * incremented the context's refcount before we do put_ctx below.
6427 */
6428 raw_spin_lock(&child_ctx->lock);
6429 task_ctx_sched_out(child_ctx);
6430 child->perf_event_ctxp[ctxn] = NULL;
6431 /*
6432 * If this context is a clone; unclone it so it can't get
6433 * swapped to another process while we're removing all
6434 * the events from it.
6435 */
6436 unclone_ctx(child_ctx);
6437 update_context_time(child_ctx);
6438 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
6439
6440 /*
6441 * Report the task dead after unscheduling the events so that we
6442 * won't get any samples after PERF_RECORD_EXIT. We can however still
6443 * get a few PERF_RECORD_READ events.
6444 */
6445 perf_event_task(child, child_ctx, 0);
6446
6447 /*
6448 * We can recurse on the same lock type through:
6449 *
6450 * __perf_event_exit_task()
6451 * sync_child_event()
6452 * fput(parent_event->filp)
6453 * perf_release()
6454 * mutex_lock(&ctx->mutex)
6455 *
6456 * But since its the parent context it won't be the same instance.
6457 */
6458 mutex_lock(&child_ctx->mutex);
6459
6460 again:
6461 list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
6462 group_entry)
6463 __perf_event_exit_task(child_event, child_ctx, child);
6464
6465 list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
6466 group_entry)
6467 __perf_event_exit_task(child_event, child_ctx, child);
6468
6469 /*
6470 * If the last event was a group event, it will have appended all
6471 * its siblings to the list, but we obtained 'tmp' before that which
6472 * will still point to the list head terminating the iteration.
6473 */
6474 if (!list_empty(&child_ctx->pinned_groups) ||
6475 !list_empty(&child_ctx->flexible_groups))
6476 goto again;
6477
6478 mutex_unlock(&child_ctx->mutex);
6479
6480 put_ctx(child_ctx);
6481 }
6482
6483 /*
6484 * When a child task exits, feed back event values to parent events.
6485 */
6486 void perf_event_exit_task(struct task_struct *child)
6487 {
6488 struct perf_event *event, *tmp;
6489 int ctxn;
6490
6491 mutex_lock(&child->perf_event_mutex);
6492 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
6493 owner_entry) {
6494 list_del_init(&event->owner_entry);
6495
6496 /*
6497 * Ensure the list deletion is visible before we clear
6498 * the owner, closes a race against perf_release() where
6499 * we need to serialize on the owner->perf_event_mutex.
6500 */
6501 smp_wmb();
6502 event->owner = NULL;
6503 }
6504 mutex_unlock(&child->perf_event_mutex);
6505
6506 for_each_task_context_nr(ctxn)
6507 perf_event_exit_task_context(child, ctxn);
6508 }
6509
6510 static void perf_free_event(struct perf_event *event,
6511 struct perf_event_context *ctx)
6512 {
6513 struct perf_event *parent = event->parent;
6514
6515 if (WARN_ON_ONCE(!parent))
6516 return;
6517
6518 mutex_lock(&parent->child_mutex);
6519 list_del_init(&event->child_list);
6520 mutex_unlock(&parent->child_mutex);
6521
6522 fput(parent->filp);
6523
6524 perf_group_detach(event);
6525 list_del_event(event, ctx);
6526 free_event(event);
6527 }
6528
6529 /*
6530 * free an unexposed, unused context as created by inheritance by
6531 * perf_event_init_task below, used by fork() in case of fail.
6532 */
6533 void perf_event_free_task(struct task_struct *task)
6534 {
6535 struct perf_event_context *ctx;
6536 struct perf_event *event, *tmp;
6537 int ctxn;
6538
6539 for_each_task_context_nr(ctxn) {
6540 ctx = task->perf_event_ctxp[ctxn];
6541 if (!ctx)
6542 continue;
6543
6544 mutex_lock(&ctx->mutex);
6545 again:
6546 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
6547 group_entry)
6548 perf_free_event(event, ctx);
6549
6550 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
6551 group_entry)
6552 perf_free_event(event, ctx);
6553
6554 if (!list_empty(&ctx->pinned_groups) ||
6555 !list_empty(&ctx->flexible_groups))
6556 goto again;
6557
6558 mutex_unlock(&ctx->mutex);
6559
6560 put_ctx(ctx);
6561 }
6562 }
6563
6564 void perf_event_delayed_put(struct task_struct *task)
6565 {
6566 int ctxn;
6567
6568 for_each_task_context_nr(ctxn)
6569 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
6570 }
6571
6572 /*
6573 * inherit a event from parent task to child task:
6574 */
6575 static struct perf_event *
6576 inherit_event(struct perf_event *parent_event,
6577 struct task_struct *parent,
6578 struct perf_event_context *parent_ctx,
6579 struct task_struct *child,
6580 struct perf_event *group_leader,
6581 struct perf_event_context *child_ctx)
6582 {
6583 struct perf_event *child_event;
6584 unsigned long flags;
6585
6586 /*
6587 * Instead of creating recursive hierarchies of events,
6588 * we link inherited events back to the original parent,
6589 * which has a filp for sure, which we use as the reference
6590 * count:
6591 */
6592 if (parent_event->parent)
6593 parent_event = parent_event->parent;
6594
6595 child_event = perf_event_alloc(&parent_event->attr,
6596 parent_event->cpu,
6597 child,
6598 group_leader, parent_event,
6599 NULL, NULL);
6600 if (IS_ERR(child_event))
6601 return child_event;
6602 get_ctx(child_ctx);
6603
6604 /*
6605 * Make the child state follow the state of the parent event,
6606 * not its attr.disabled bit. We hold the parent's mutex,
6607 * so we won't race with perf_event_{en, dis}able_family.
6608 */
6609 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
6610 child_event->state = PERF_EVENT_STATE_INACTIVE;
6611 else
6612 child_event->state = PERF_EVENT_STATE_OFF;
6613
6614 if (parent_event->attr.freq) {
6615 u64 sample_period = parent_event->hw.sample_period;
6616 struct hw_perf_event *hwc = &child_event->hw;
6617
6618 hwc->sample_period = sample_period;
6619 hwc->last_period = sample_period;
6620
6621 local64_set(&hwc->period_left, sample_period);
6622 }
6623
6624 child_event->ctx = child_ctx;
6625 child_event->overflow_handler = parent_event->overflow_handler;
6626 child_event->overflow_handler_context
6627 = parent_event->overflow_handler_context;
6628
6629 /*
6630 * Precalculate sample_data sizes
6631 */
6632 perf_event__header_size(child_event);
6633 perf_event__id_header_size(child_event);
6634
6635 /*
6636 * Link it up in the child's context:
6637 */
6638 raw_spin_lock_irqsave(&child_ctx->lock, flags);
6639 add_event_to_ctx(child_event, child_ctx);
6640 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
6641
6642 /*
6643 * Get a reference to the parent filp - we will fput it
6644 * when the child event exits. This is safe to do because
6645 * we are in the parent and we know that the filp still
6646 * exists and has a nonzero count:
6647 */
6648 atomic_long_inc(&parent_event->filp->f_count);
6649
6650 /*
6651 * Link this into the parent event's child list
6652 */
6653 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
6654 mutex_lock(&parent_event->child_mutex);
6655 list_add_tail(&child_event->child_list, &parent_event->child_list);
6656 mutex_unlock(&parent_event->child_mutex);
6657
6658 return child_event;
6659 }
6660
6661 static int inherit_group(struct perf_event *parent_event,
6662 struct task_struct *parent,
6663 struct perf_event_context *parent_ctx,
6664 struct task_struct *child,
6665 struct perf_event_context *child_ctx)
6666 {
6667 struct perf_event *leader;
6668 struct perf_event *sub;
6669 struct perf_event *child_ctr;
6670
6671 leader = inherit_event(parent_event, parent, parent_ctx,
6672 child, NULL, child_ctx);
6673 if (IS_ERR(leader))
6674 return PTR_ERR(leader);
6675 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
6676 child_ctr = inherit_event(sub, parent, parent_ctx,
6677 child, leader, child_ctx);
6678 if (IS_ERR(child_ctr))
6679 return PTR_ERR(child_ctr);
6680 }
6681 return 0;
6682 }
6683
6684 static int
6685 inherit_task_group(struct perf_event *event, struct task_struct *parent,
6686 struct perf_event_context *parent_ctx,
6687 struct task_struct *child, int ctxn,
6688 int *inherited_all)
6689 {
6690 int ret;
6691 struct perf_event_context *child_ctx;
6692
6693 if (!event->attr.inherit) {
6694 *inherited_all = 0;
6695 return 0;
6696 }
6697
6698 child_ctx = child->perf_event_ctxp[ctxn];
6699 if (!child_ctx) {
6700 /*
6701 * This is executed from the parent task context, so
6702 * inherit events that have been marked for cloning.
6703 * First allocate and initialize a context for the
6704 * child.
6705 */
6706
6707 child_ctx = alloc_perf_context(event->pmu, child);
6708 if (!child_ctx)
6709 return -ENOMEM;
6710
6711 child->perf_event_ctxp[ctxn] = child_ctx;
6712 }
6713
6714 ret = inherit_group(event, parent, parent_ctx,
6715 child, child_ctx);
6716
6717 if (ret)
6718 *inherited_all = 0;
6719
6720 return ret;
6721 }
6722
6723 /*
6724 * Initialize the perf_event context in task_struct
6725 */
6726 int perf_event_init_context(struct task_struct *child, int ctxn)
6727 {
6728 struct perf_event_context *child_ctx, *parent_ctx;
6729 struct perf_event_context *cloned_ctx;
6730 struct perf_event *event;
6731 struct task_struct *parent = current;
6732 int inherited_all = 1;
6733 unsigned long flags;
6734 int ret = 0;
6735
6736 if (likely(!parent->perf_event_ctxp[ctxn]))
6737 return 0;
6738
6739 /*
6740 * If the parent's context is a clone, pin it so it won't get
6741 * swapped under us.
6742 */
6743 parent_ctx = perf_pin_task_context(parent, ctxn);
6744
6745 /*
6746 * No need to check if parent_ctx != NULL here; since we saw
6747 * it non-NULL earlier, the only reason for it to become NULL
6748 * is if we exit, and since we're currently in the middle of
6749 * a fork we can't be exiting at the same time.
6750 */
6751
6752 /*
6753 * Lock the parent list. No need to lock the child - not PID
6754 * hashed yet and not running, so nobody can access it.
6755 */
6756 mutex_lock(&parent_ctx->mutex);
6757
6758 /*
6759 * We dont have to disable NMIs - we are only looking at
6760 * the list, not manipulating it:
6761 */
6762 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
6763 ret = inherit_task_group(event, parent, parent_ctx,
6764 child, ctxn, &inherited_all);
6765 if (ret)
6766 break;
6767 }
6768
6769 /*
6770 * We can't hold ctx->lock when iterating the ->flexible_group list due
6771 * to allocations, but we need to prevent rotation because
6772 * rotate_ctx() will change the list from interrupt context.
6773 */
6774 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
6775 parent_ctx->rotate_disable = 1;
6776 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
6777
6778 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
6779 ret = inherit_task_group(event, parent, parent_ctx,
6780 child, ctxn, &inherited_all);
6781 if (ret)
6782 break;
6783 }
6784
6785 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
6786 parent_ctx->rotate_disable = 0;
6787
6788 child_ctx = child->perf_event_ctxp[ctxn];
6789
6790 if (child_ctx && inherited_all) {
6791 /*
6792 * Mark the child context as a clone of the parent
6793 * context, or of whatever the parent is a clone of.
6794 *
6795 * Note that if the parent is a clone, the holding of
6796 * parent_ctx->lock avoids it from being uncloned.
6797 */
6798 cloned_ctx = parent_ctx->parent_ctx;
6799 if (cloned_ctx) {
6800 child_ctx->parent_ctx = cloned_ctx;
6801 child_ctx->parent_gen = parent_ctx->parent_gen;
6802 } else {
6803 child_ctx->parent_ctx = parent_ctx;
6804 child_ctx->parent_gen = parent_ctx->generation;
6805 }
6806 get_ctx(child_ctx->parent_ctx);
6807 }
6808
6809 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
6810 mutex_unlock(&parent_ctx->mutex);
6811
6812 perf_unpin_context(parent_ctx);
6813 put_ctx(parent_ctx);
6814
6815 return ret;
6816 }
6817
6818 /*
6819 * Initialize the perf_event context in task_struct
6820 */
6821 int perf_event_init_task(struct task_struct *child)
6822 {
6823 int ctxn, ret;
6824
6825 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
6826 mutex_init(&child->perf_event_mutex);
6827 INIT_LIST_HEAD(&child->perf_event_list);
6828
6829 for_each_task_context_nr(ctxn) {
6830 ret = perf_event_init_context(child, ctxn);
6831 if (ret)
6832 return ret;
6833 }
6834
6835 return 0;
6836 }
6837
6838 static void __init perf_event_init_all_cpus(void)
6839 {
6840 struct swevent_htable *swhash;
6841 int cpu;
6842
6843 for_each_possible_cpu(cpu) {
6844 swhash = &per_cpu(swevent_htable, cpu);
6845 mutex_init(&swhash->hlist_mutex);
6846 INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
6847 }
6848 }
6849
6850 static void __cpuinit perf_event_init_cpu(int cpu)
6851 {
6852 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6853
6854 mutex_lock(&swhash->hlist_mutex);
6855 if (swhash->hlist_refcount > 0) {
6856 struct swevent_hlist *hlist;
6857
6858 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
6859 WARN_ON(!hlist);
6860 rcu_assign_pointer(swhash->swevent_hlist, hlist);
6861 }
6862 mutex_unlock(&swhash->hlist_mutex);
6863 }
6864
6865 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
6866 static void perf_pmu_rotate_stop(struct pmu *pmu)
6867 {
6868 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6869
6870 WARN_ON(!irqs_disabled());
6871
6872 list_del_init(&cpuctx->rotation_list);
6873 }
6874
6875 static void __perf_event_exit_context(void *__info)
6876 {
6877 struct perf_event_context *ctx = __info;
6878 struct perf_event *event, *tmp;
6879
6880 perf_pmu_rotate_stop(ctx->pmu);
6881
6882 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
6883 __perf_remove_from_context(event);
6884 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
6885 __perf_remove_from_context(event);
6886 }
6887
6888 static void perf_event_exit_cpu_context(int cpu)
6889 {
6890 struct perf_event_context *ctx;
6891 struct pmu *pmu;
6892 int idx;
6893
6894 idx = srcu_read_lock(&pmus_srcu);
6895 list_for_each_entry_rcu(pmu, &pmus, entry) {
6896 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
6897
6898 mutex_lock(&ctx->mutex);
6899 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
6900 mutex_unlock(&ctx->mutex);
6901 }
6902 srcu_read_unlock(&pmus_srcu, idx);
6903 }
6904
6905 static void perf_event_exit_cpu(int cpu)
6906 {
6907 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6908
6909 mutex_lock(&swhash->hlist_mutex);
6910 swevent_hlist_release(swhash);
6911 mutex_unlock(&swhash->hlist_mutex);
6912
6913 perf_event_exit_cpu_context(cpu);
6914 }
6915 #else
6916 static inline void perf_event_exit_cpu(int cpu) { }
6917 #endif
6918
6919 static int
6920 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
6921 {
6922 int cpu;
6923
6924 for_each_online_cpu(cpu)
6925 perf_event_exit_cpu(cpu);
6926
6927 return NOTIFY_OK;
6928 }
6929
6930 /*
6931 * Run the perf reboot notifier at the very last possible moment so that
6932 * the generic watchdog code runs as long as possible.
6933 */
6934 static struct notifier_block perf_reboot_notifier = {
6935 .notifier_call = perf_reboot,
6936 .priority = INT_MIN,
6937 };
6938
6939 static int __cpuinit
6940 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
6941 {
6942 unsigned int cpu = (long)hcpu;
6943
6944 switch (action & ~CPU_TASKS_FROZEN) {
6945
6946 case CPU_UP_PREPARE:
6947 case CPU_DOWN_FAILED:
6948 perf_event_init_cpu(cpu);
6949 break;
6950
6951 case CPU_UP_CANCELED:
6952 case CPU_DOWN_PREPARE:
6953 perf_event_exit_cpu(cpu);
6954 break;
6955
6956 default:
6957 break;
6958 }
6959
6960 return NOTIFY_OK;
6961 }
6962
6963 void __init perf_event_init(void)
6964 {
6965 int ret;
6966
6967 idr_init(&pmu_idr);
6968
6969 perf_event_init_all_cpus();
6970 init_srcu_struct(&pmus_srcu);
6971 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
6972 perf_pmu_register(&perf_cpu_clock, NULL, -1);
6973 perf_pmu_register(&perf_task_clock, NULL, -1);
6974 perf_tp_register();
6975 perf_cpu_notifier(perf_cpu_notify);
6976 register_reboot_notifier(&perf_reboot_notifier);
6977
6978 ret = init_hw_breakpoint();
6979 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
6980 }
6981
6982 static int __init perf_event_sysfs_init(void)
6983 {
6984 struct pmu *pmu;
6985 int ret;
6986
6987 mutex_lock(&pmus_lock);
6988
6989 ret = bus_register(&pmu_bus);
6990 if (ret)
6991 goto unlock;
6992
6993 list_for_each_entry(pmu, &pmus, entry) {
6994 if (!pmu->name || pmu->type < 0)
6995 continue;
6996
6997 ret = pmu_dev_alloc(pmu);
6998 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
6999 }
7000 pmu_bus_running = 1;
7001 ret = 0;
7002
7003 unlock:
7004 mutex_unlock(&pmus_lock);
7005
7006 return ret;
7007 }
7008 device_initcall(perf_event_sysfs_init);
7009
7010 #ifdef CONFIG_CGROUP_PERF
7011 static struct cgroup_subsys_state *perf_cgroup_create(
7012 struct cgroup_subsys *ss, struct cgroup *cont)
7013 {
7014 struct perf_cgroup *jc;
7015
7016 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
7017 if (!jc)
7018 return ERR_PTR(-ENOMEM);
7019
7020 jc->info = alloc_percpu(struct perf_cgroup_info);
7021 if (!jc->info) {
7022 kfree(jc);
7023 return ERR_PTR(-ENOMEM);
7024 }
7025
7026 return &jc->css;
7027 }
7028
7029 static void perf_cgroup_destroy(struct cgroup_subsys *ss,
7030 struct cgroup *cont)
7031 {
7032 struct perf_cgroup *jc;
7033 jc = container_of(cgroup_subsys_state(cont, perf_subsys_id),
7034 struct perf_cgroup, css);
7035 free_percpu(jc->info);
7036 kfree(jc);
7037 }
7038
7039 static int __perf_cgroup_move(void *info)
7040 {
7041 struct task_struct *task = info;
7042 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
7043 return 0;
7044 }
7045
7046 static void
7047 perf_cgroup_attach_task(struct cgroup *cgrp, struct task_struct *task)
7048 {
7049 task_function_call(task, __perf_cgroup_move, task);
7050 }
7051
7052 static void perf_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
7053 struct cgroup *old_cgrp, struct task_struct *task)
7054 {
7055 /*
7056 * cgroup_exit() is called in the copy_process() failure path.
7057 * Ignore this case since the task hasn't ran yet, this avoids
7058 * trying to poke a half freed task state from generic code.
7059 */
7060 if (!(task->flags & PF_EXITING))
7061 return;
7062
7063 perf_cgroup_attach_task(cgrp, task);
7064 }
7065
7066 struct cgroup_subsys perf_subsys = {
7067 .name = "perf_event",
7068 .subsys_id = perf_subsys_id,
7069 .create = perf_cgroup_create,
7070 .destroy = perf_cgroup_destroy,
7071 .exit = perf_cgroup_exit,
7072 .attach_task = perf_cgroup_attach_task,
7073 };
7074 #endif /* CONFIG_CGROUP_PERF */