]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - kernel/events/core.c
Merge tag 'reset-for-4.10-fixes' of https://git.pengutronix.de/git/pza/linux into...
[mirror_ubuntu-zesty-kernel.git] / kernel / events / core.c
1 /*
2 * Performance events core code:
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49
50 #include "internal.h"
51
52 #include <asm/irq_regs.h>
53
54 typedef int (*remote_function_f)(void *);
55
56 struct remote_function_call {
57 struct task_struct *p;
58 remote_function_f func;
59 void *info;
60 int ret;
61 };
62
63 static void remote_function(void *data)
64 {
65 struct remote_function_call *tfc = data;
66 struct task_struct *p = tfc->p;
67
68 if (p) {
69 /* -EAGAIN */
70 if (task_cpu(p) != smp_processor_id())
71 return;
72
73 /*
74 * Now that we're on right CPU with IRQs disabled, we can test
75 * if we hit the right task without races.
76 */
77
78 tfc->ret = -ESRCH; /* No such (running) process */
79 if (p != current)
80 return;
81 }
82
83 tfc->ret = tfc->func(tfc->info);
84 }
85
86 /**
87 * task_function_call - call a function on the cpu on which a task runs
88 * @p: the task to evaluate
89 * @func: the function to be called
90 * @info: the function call argument
91 *
92 * Calls the function @func when the task is currently running. This might
93 * be on the current CPU, which just calls the function directly
94 *
95 * returns: @func return value, or
96 * -ESRCH - when the process isn't running
97 * -EAGAIN - when the process moved away
98 */
99 static int
100 task_function_call(struct task_struct *p, remote_function_f func, void *info)
101 {
102 struct remote_function_call data = {
103 .p = p,
104 .func = func,
105 .info = info,
106 .ret = -EAGAIN,
107 };
108 int ret;
109
110 do {
111 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
112 if (!ret)
113 ret = data.ret;
114 } while (ret == -EAGAIN);
115
116 return ret;
117 }
118
119 /**
120 * cpu_function_call - call a function on the cpu
121 * @func: the function to be called
122 * @info: the function call argument
123 *
124 * Calls the function @func on the remote cpu.
125 *
126 * returns: @func return value or -ENXIO when the cpu is offline
127 */
128 static int cpu_function_call(int cpu, remote_function_f func, void *info)
129 {
130 struct remote_function_call data = {
131 .p = NULL,
132 .func = func,
133 .info = info,
134 .ret = -ENXIO, /* No such CPU */
135 };
136
137 smp_call_function_single(cpu, remote_function, &data, 1);
138
139 return data.ret;
140 }
141
142 static inline struct perf_cpu_context *
143 __get_cpu_context(struct perf_event_context *ctx)
144 {
145 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
146 }
147
148 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
149 struct perf_event_context *ctx)
150 {
151 raw_spin_lock(&cpuctx->ctx.lock);
152 if (ctx)
153 raw_spin_lock(&ctx->lock);
154 }
155
156 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
157 struct perf_event_context *ctx)
158 {
159 if (ctx)
160 raw_spin_unlock(&ctx->lock);
161 raw_spin_unlock(&cpuctx->ctx.lock);
162 }
163
164 #define TASK_TOMBSTONE ((void *)-1L)
165
166 static bool is_kernel_event(struct perf_event *event)
167 {
168 return READ_ONCE(event->owner) == TASK_TOMBSTONE;
169 }
170
171 /*
172 * On task ctx scheduling...
173 *
174 * When !ctx->nr_events a task context will not be scheduled. This means
175 * we can disable the scheduler hooks (for performance) without leaving
176 * pending task ctx state.
177 *
178 * This however results in two special cases:
179 *
180 * - removing the last event from a task ctx; this is relatively straight
181 * forward and is done in __perf_remove_from_context.
182 *
183 * - adding the first event to a task ctx; this is tricky because we cannot
184 * rely on ctx->is_active and therefore cannot use event_function_call().
185 * See perf_install_in_context().
186 *
187 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
188 */
189
190 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
191 struct perf_event_context *, void *);
192
193 struct event_function_struct {
194 struct perf_event *event;
195 event_f func;
196 void *data;
197 };
198
199 static int event_function(void *info)
200 {
201 struct event_function_struct *efs = info;
202 struct perf_event *event = efs->event;
203 struct perf_event_context *ctx = event->ctx;
204 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
205 struct perf_event_context *task_ctx = cpuctx->task_ctx;
206 int ret = 0;
207
208 WARN_ON_ONCE(!irqs_disabled());
209
210 perf_ctx_lock(cpuctx, task_ctx);
211 /*
212 * Since we do the IPI call without holding ctx->lock things can have
213 * changed, double check we hit the task we set out to hit.
214 */
215 if (ctx->task) {
216 if (ctx->task != current) {
217 ret = -ESRCH;
218 goto unlock;
219 }
220
221 /*
222 * We only use event_function_call() on established contexts,
223 * and event_function() is only ever called when active (or
224 * rather, we'll have bailed in task_function_call() or the
225 * above ctx->task != current test), therefore we must have
226 * ctx->is_active here.
227 */
228 WARN_ON_ONCE(!ctx->is_active);
229 /*
230 * And since we have ctx->is_active, cpuctx->task_ctx must
231 * match.
232 */
233 WARN_ON_ONCE(task_ctx != ctx);
234 } else {
235 WARN_ON_ONCE(&cpuctx->ctx != ctx);
236 }
237
238 efs->func(event, cpuctx, ctx, efs->data);
239 unlock:
240 perf_ctx_unlock(cpuctx, task_ctx);
241
242 return ret;
243 }
244
245 static void event_function_call(struct perf_event *event, event_f func, void *data)
246 {
247 struct perf_event_context *ctx = event->ctx;
248 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
249 struct event_function_struct efs = {
250 .event = event,
251 .func = func,
252 .data = data,
253 };
254
255 if (!event->parent) {
256 /*
257 * If this is a !child event, we must hold ctx::mutex to
258 * stabilize the the event->ctx relation. See
259 * perf_event_ctx_lock().
260 */
261 lockdep_assert_held(&ctx->mutex);
262 }
263
264 if (!task) {
265 cpu_function_call(event->cpu, event_function, &efs);
266 return;
267 }
268
269 if (task == TASK_TOMBSTONE)
270 return;
271
272 again:
273 if (!task_function_call(task, event_function, &efs))
274 return;
275
276 raw_spin_lock_irq(&ctx->lock);
277 /*
278 * Reload the task pointer, it might have been changed by
279 * a concurrent perf_event_context_sched_out().
280 */
281 task = ctx->task;
282 if (task == TASK_TOMBSTONE) {
283 raw_spin_unlock_irq(&ctx->lock);
284 return;
285 }
286 if (ctx->is_active) {
287 raw_spin_unlock_irq(&ctx->lock);
288 goto again;
289 }
290 func(event, NULL, ctx, data);
291 raw_spin_unlock_irq(&ctx->lock);
292 }
293
294 /*
295 * Similar to event_function_call() + event_function(), but hard assumes IRQs
296 * are already disabled and we're on the right CPU.
297 */
298 static void event_function_local(struct perf_event *event, event_f func, void *data)
299 {
300 struct perf_event_context *ctx = event->ctx;
301 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
302 struct task_struct *task = READ_ONCE(ctx->task);
303 struct perf_event_context *task_ctx = NULL;
304
305 WARN_ON_ONCE(!irqs_disabled());
306
307 if (task) {
308 if (task == TASK_TOMBSTONE)
309 return;
310
311 task_ctx = ctx;
312 }
313
314 perf_ctx_lock(cpuctx, task_ctx);
315
316 task = ctx->task;
317 if (task == TASK_TOMBSTONE)
318 goto unlock;
319
320 if (task) {
321 /*
322 * We must be either inactive or active and the right task,
323 * otherwise we're screwed, since we cannot IPI to somewhere
324 * else.
325 */
326 if (ctx->is_active) {
327 if (WARN_ON_ONCE(task != current))
328 goto unlock;
329
330 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
331 goto unlock;
332 }
333 } else {
334 WARN_ON_ONCE(&cpuctx->ctx != ctx);
335 }
336
337 func(event, cpuctx, ctx, data);
338 unlock:
339 perf_ctx_unlock(cpuctx, task_ctx);
340 }
341
342 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
343 PERF_FLAG_FD_OUTPUT |\
344 PERF_FLAG_PID_CGROUP |\
345 PERF_FLAG_FD_CLOEXEC)
346
347 /*
348 * branch priv levels that need permission checks
349 */
350 #define PERF_SAMPLE_BRANCH_PERM_PLM \
351 (PERF_SAMPLE_BRANCH_KERNEL |\
352 PERF_SAMPLE_BRANCH_HV)
353
354 enum event_type_t {
355 EVENT_FLEXIBLE = 0x1,
356 EVENT_PINNED = 0x2,
357 EVENT_TIME = 0x4,
358 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
359 };
360
361 /*
362 * perf_sched_events : >0 events exist
363 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
364 */
365
366 static void perf_sched_delayed(struct work_struct *work);
367 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
368 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
369 static DEFINE_MUTEX(perf_sched_mutex);
370 static atomic_t perf_sched_count;
371
372 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
373 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
374 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
375
376 static atomic_t nr_mmap_events __read_mostly;
377 static atomic_t nr_comm_events __read_mostly;
378 static atomic_t nr_task_events __read_mostly;
379 static atomic_t nr_freq_events __read_mostly;
380 static atomic_t nr_switch_events __read_mostly;
381
382 static LIST_HEAD(pmus);
383 static DEFINE_MUTEX(pmus_lock);
384 static struct srcu_struct pmus_srcu;
385
386 /*
387 * perf event paranoia level:
388 * -1 - not paranoid at all
389 * 0 - disallow raw tracepoint access for unpriv
390 * 1 - disallow cpu events for unpriv
391 * 2 - disallow kernel profiling for unpriv
392 */
393 int sysctl_perf_event_paranoid __read_mostly = 2;
394
395 /* Minimum for 512 kiB + 1 user control page */
396 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
397
398 /*
399 * max perf event sample rate
400 */
401 #define DEFAULT_MAX_SAMPLE_RATE 100000
402 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
403 #define DEFAULT_CPU_TIME_MAX_PERCENT 25
404
405 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
406
407 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
408 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
409
410 static int perf_sample_allowed_ns __read_mostly =
411 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
412
413 static void update_perf_cpu_limits(void)
414 {
415 u64 tmp = perf_sample_period_ns;
416
417 tmp *= sysctl_perf_cpu_time_max_percent;
418 tmp = div_u64(tmp, 100);
419 if (!tmp)
420 tmp = 1;
421
422 WRITE_ONCE(perf_sample_allowed_ns, tmp);
423 }
424
425 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
426
427 int perf_proc_update_handler(struct ctl_table *table, int write,
428 void __user *buffer, size_t *lenp,
429 loff_t *ppos)
430 {
431 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
432
433 if (ret || !write)
434 return ret;
435
436 /*
437 * If throttling is disabled don't allow the write:
438 */
439 if (sysctl_perf_cpu_time_max_percent == 100 ||
440 sysctl_perf_cpu_time_max_percent == 0)
441 return -EINVAL;
442
443 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
444 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
445 update_perf_cpu_limits();
446
447 return 0;
448 }
449
450 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
451
452 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
453 void __user *buffer, size_t *lenp,
454 loff_t *ppos)
455 {
456 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
457
458 if (ret || !write)
459 return ret;
460
461 if (sysctl_perf_cpu_time_max_percent == 100 ||
462 sysctl_perf_cpu_time_max_percent == 0) {
463 printk(KERN_WARNING
464 "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
465 WRITE_ONCE(perf_sample_allowed_ns, 0);
466 } else {
467 update_perf_cpu_limits();
468 }
469
470 return 0;
471 }
472
473 /*
474 * perf samples are done in some very critical code paths (NMIs).
475 * If they take too much CPU time, the system can lock up and not
476 * get any real work done. This will drop the sample rate when
477 * we detect that events are taking too long.
478 */
479 #define NR_ACCUMULATED_SAMPLES 128
480 static DEFINE_PER_CPU(u64, running_sample_length);
481
482 static u64 __report_avg;
483 static u64 __report_allowed;
484
485 static void perf_duration_warn(struct irq_work *w)
486 {
487 printk_ratelimited(KERN_INFO
488 "perf: interrupt took too long (%lld > %lld), lowering "
489 "kernel.perf_event_max_sample_rate to %d\n",
490 __report_avg, __report_allowed,
491 sysctl_perf_event_sample_rate);
492 }
493
494 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
495
496 void perf_sample_event_took(u64 sample_len_ns)
497 {
498 u64 max_len = READ_ONCE(perf_sample_allowed_ns);
499 u64 running_len;
500 u64 avg_len;
501 u32 max;
502
503 if (max_len == 0)
504 return;
505
506 /* Decay the counter by 1 average sample. */
507 running_len = __this_cpu_read(running_sample_length);
508 running_len -= running_len/NR_ACCUMULATED_SAMPLES;
509 running_len += sample_len_ns;
510 __this_cpu_write(running_sample_length, running_len);
511
512 /*
513 * Note: this will be biased artifically low until we have
514 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
515 * from having to maintain a count.
516 */
517 avg_len = running_len/NR_ACCUMULATED_SAMPLES;
518 if (avg_len <= max_len)
519 return;
520
521 __report_avg = avg_len;
522 __report_allowed = max_len;
523
524 /*
525 * Compute a throttle threshold 25% below the current duration.
526 */
527 avg_len += avg_len / 4;
528 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
529 if (avg_len < max)
530 max /= (u32)avg_len;
531 else
532 max = 1;
533
534 WRITE_ONCE(perf_sample_allowed_ns, avg_len);
535 WRITE_ONCE(max_samples_per_tick, max);
536
537 sysctl_perf_event_sample_rate = max * HZ;
538 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
539
540 if (!irq_work_queue(&perf_duration_work)) {
541 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
542 "kernel.perf_event_max_sample_rate to %d\n",
543 __report_avg, __report_allowed,
544 sysctl_perf_event_sample_rate);
545 }
546 }
547
548 static atomic64_t perf_event_id;
549
550 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
551 enum event_type_t event_type);
552
553 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
554 enum event_type_t event_type,
555 struct task_struct *task);
556
557 static void update_context_time(struct perf_event_context *ctx);
558 static u64 perf_event_time(struct perf_event *event);
559
560 void __weak perf_event_print_debug(void) { }
561
562 extern __weak const char *perf_pmu_name(void)
563 {
564 return "pmu";
565 }
566
567 static inline u64 perf_clock(void)
568 {
569 return local_clock();
570 }
571
572 static inline u64 perf_event_clock(struct perf_event *event)
573 {
574 return event->clock();
575 }
576
577 #ifdef CONFIG_CGROUP_PERF
578
579 static inline bool
580 perf_cgroup_match(struct perf_event *event)
581 {
582 struct perf_event_context *ctx = event->ctx;
583 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
584
585 /* @event doesn't care about cgroup */
586 if (!event->cgrp)
587 return true;
588
589 /* wants specific cgroup scope but @cpuctx isn't associated with any */
590 if (!cpuctx->cgrp)
591 return false;
592
593 /*
594 * Cgroup scoping is recursive. An event enabled for a cgroup is
595 * also enabled for all its descendant cgroups. If @cpuctx's
596 * cgroup is a descendant of @event's (the test covers identity
597 * case), it's a match.
598 */
599 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
600 event->cgrp->css.cgroup);
601 }
602
603 static inline void perf_detach_cgroup(struct perf_event *event)
604 {
605 css_put(&event->cgrp->css);
606 event->cgrp = NULL;
607 }
608
609 static inline int is_cgroup_event(struct perf_event *event)
610 {
611 return event->cgrp != NULL;
612 }
613
614 static inline u64 perf_cgroup_event_time(struct perf_event *event)
615 {
616 struct perf_cgroup_info *t;
617
618 t = per_cpu_ptr(event->cgrp->info, event->cpu);
619 return t->time;
620 }
621
622 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
623 {
624 struct perf_cgroup_info *info;
625 u64 now;
626
627 now = perf_clock();
628
629 info = this_cpu_ptr(cgrp->info);
630
631 info->time += now - info->timestamp;
632 info->timestamp = now;
633 }
634
635 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
636 {
637 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
638 if (cgrp_out)
639 __update_cgrp_time(cgrp_out);
640 }
641
642 static inline void update_cgrp_time_from_event(struct perf_event *event)
643 {
644 struct perf_cgroup *cgrp;
645
646 /*
647 * ensure we access cgroup data only when needed and
648 * when we know the cgroup is pinned (css_get)
649 */
650 if (!is_cgroup_event(event))
651 return;
652
653 cgrp = perf_cgroup_from_task(current, event->ctx);
654 /*
655 * Do not update time when cgroup is not active
656 */
657 if (cgrp == event->cgrp)
658 __update_cgrp_time(event->cgrp);
659 }
660
661 static inline void
662 perf_cgroup_set_timestamp(struct task_struct *task,
663 struct perf_event_context *ctx)
664 {
665 struct perf_cgroup *cgrp;
666 struct perf_cgroup_info *info;
667
668 /*
669 * ctx->lock held by caller
670 * ensure we do not access cgroup data
671 * unless we have the cgroup pinned (css_get)
672 */
673 if (!task || !ctx->nr_cgroups)
674 return;
675
676 cgrp = perf_cgroup_from_task(task, ctx);
677 info = this_cpu_ptr(cgrp->info);
678 info->timestamp = ctx->timestamp;
679 }
680
681 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
682 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
683
684 /*
685 * reschedule events based on the cgroup constraint of task.
686 *
687 * mode SWOUT : schedule out everything
688 * mode SWIN : schedule in based on cgroup for next
689 */
690 static void perf_cgroup_switch(struct task_struct *task, int mode)
691 {
692 struct perf_cpu_context *cpuctx;
693 struct pmu *pmu;
694 unsigned long flags;
695
696 /*
697 * disable interrupts to avoid geting nr_cgroup
698 * changes via __perf_event_disable(). Also
699 * avoids preemption.
700 */
701 local_irq_save(flags);
702
703 /*
704 * we reschedule only in the presence of cgroup
705 * constrained events.
706 */
707
708 list_for_each_entry_rcu(pmu, &pmus, entry) {
709 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
710 if (cpuctx->unique_pmu != pmu)
711 continue; /* ensure we process each cpuctx once */
712
713 /*
714 * perf_cgroup_events says at least one
715 * context on this CPU has cgroup events.
716 *
717 * ctx->nr_cgroups reports the number of cgroup
718 * events for a context.
719 */
720 if (cpuctx->ctx.nr_cgroups > 0) {
721 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
722 perf_pmu_disable(cpuctx->ctx.pmu);
723
724 if (mode & PERF_CGROUP_SWOUT) {
725 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
726 /*
727 * must not be done before ctxswout due
728 * to event_filter_match() in event_sched_out()
729 */
730 cpuctx->cgrp = NULL;
731 }
732
733 if (mode & PERF_CGROUP_SWIN) {
734 WARN_ON_ONCE(cpuctx->cgrp);
735 /*
736 * set cgrp before ctxsw in to allow
737 * event_filter_match() to not have to pass
738 * task around
739 * we pass the cpuctx->ctx to perf_cgroup_from_task()
740 * because cgorup events are only per-cpu
741 */
742 cpuctx->cgrp = perf_cgroup_from_task(task, &cpuctx->ctx);
743 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
744 }
745 perf_pmu_enable(cpuctx->ctx.pmu);
746 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
747 }
748 }
749
750 local_irq_restore(flags);
751 }
752
753 static inline void perf_cgroup_sched_out(struct task_struct *task,
754 struct task_struct *next)
755 {
756 struct perf_cgroup *cgrp1;
757 struct perf_cgroup *cgrp2 = NULL;
758
759 rcu_read_lock();
760 /*
761 * we come here when we know perf_cgroup_events > 0
762 * we do not need to pass the ctx here because we know
763 * we are holding the rcu lock
764 */
765 cgrp1 = perf_cgroup_from_task(task, NULL);
766 cgrp2 = perf_cgroup_from_task(next, NULL);
767
768 /*
769 * only schedule out current cgroup events if we know
770 * that we are switching to a different cgroup. Otherwise,
771 * do no touch the cgroup events.
772 */
773 if (cgrp1 != cgrp2)
774 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
775
776 rcu_read_unlock();
777 }
778
779 static inline void perf_cgroup_sched_in(struct task_struct *prev,
780 struct task_struct *task)
781 {
782 struct perf_cgroup *cgrp1;
783 struct perf_cgroup *cgrp2 = NULL;
784
785 rcu_read_lock();
786 /*
787 * we come here when we know perf_cgroup_events > 0
788 * we do not need to pass the ctx here because we know
789 * we are holding the rcu lock
790 */
791 cgrp1 = perf_cgroup_from_task(task, NULL);
792 cgrp2 = perf_cgroup_from_task(prev, NULL);
793
794 /*
795 * only need to schedule in cgroup events if we are changing
796 * cgroup during ctxsw. Cgroup events were not scheduled
797 * out of ctxsw out if that was not the case.
798 */
799 if (cgrp1 != cgrp2)
800 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
801
802 rcu_read_unlock();
803 }
804
805 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
806 struct perf_event_attr *attr,
807 struct perf_event *group_leader)
808 {
809 struct perf_cgroup *cgrp;
810 struct cgroup_subsys_state *css;
811 struct fd f = fdget(fd);
812 int ret = 0;
813
814 if (!f.file)
815 return -EBADF;
816
817 css = css_tryget_online_from_dir(f.file->f_path.dentry,
818 &perf_event_cgrp_subsys);
819 if (IS_ERR(css)) {
820 ret = PTR_ERR(css);
821 goto out;
822 }
823
824 cgrp = container_of(css, struct perf_cgroup, css);
825 event->cgrp = cgrp;
826
827 /*
828 * all events in a group must monitor
829 * the same cgroup because a task belongs
830 * to only one perf cgroup at a time
831 */
832 if (group_leader && group_leader->cgrp != cgrp) {
833 perf_detach_cgroup(event);
834 ret = -EINVAL;
835 }
836 out:
837 fdput(f);
838 return ret;
839 }
840
841 static inline void
842 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
843 {
844 struct perf_cgroup_info *t;
845 t = per_cpu_ptr(event->cgrp->info, event->cpu);
846 event->shadow_ctx_time = now - t->timestamp;
847 }
848
849 static inline void
850 perf_cgroup_defer_enabled(struct perf_event *event)
851 {
852 /*
853 * when the current task's perf cgroup does not match
854 * the event's, we need to remember to call the
855 * perf_mark_enable() function the first time a task with
856 * a matching perf cgroup is scheduled in.
857 */
858 if (is_cgroup_event(event) && !perf_cgroup_match(event))
859 event->cgrp_defer_enabled = 1;
860 }
861
862 static inline void
863 perf_cgroup_mark_enabled(struct perf_event *event,
864 struct perf_event_context *ctx)
865 {
866 struct perf_event *sub;
867 u64 tstamp = perf_event_time(event);
868
869 if (!event->cgrp_defer_enabled)
870 return;
871
872 event->cgrp_defer_enabled = 0;
873
874 event->tstamp_enabled = tstamp - event->total_time_enabled;
875 list_for_each_entry(sub, &event->sibling_list, group_entry) {
876 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
877 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
878 sub->cgrp_defer_enabled = 0;
879 }
880 }
881 }
882
883 /*
884 * Update cpuctx->cgrp so that it is set when first cgroup event is added and
885 * cleared when last cgroup event is removed.
886 */
887 static inline void
888 list_update_cgroup_event(struct perf_event *event,
889 struct perf_event_context *ctx, bool add)
890 {
891 struct perf_cpu_context *cpuctx;
892
893 if (!is_cgroup_event(event))
894 return;
895
896 if (add && ctx->nr_cgroups++)
897 return;
898 else if (!add && --ctx->nr_cgroups)
899 return;
900 /*
901 * Because cgroup events are always per-cpu events,
902 * this will always be called from the right CPU.
903 */
904 cpuctx = __get_cpu_context(ctx);
905
906 /*
907 * cpuctx->cgrp is NULL until a cgroup event is sched in or
908 * ctx->nr_cgroup == 0 .
909 */
910 if (add && perf_cgroup_from_task(current, ctx) == event->cgrp)
911 cpuctx->cgrp = event->cgrp;
912 else if (!add)
913 cpuctx->cgrp = NULL;
914 }
915
916 #else /* !CONFIG_CGROUP_PERF */
917
918 static inline bool
919 perf_cgroup_match(struct perf_event *event)
920 {
921 return true;
922 }
923
924 static inline void perf_detach_cgroup(struct perf_event *event)
925 {}
926
927 static inline int is_cgroup_event(struct perf_event *event)
928 {
929 return 0;
930 }
931
932 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
933 {
934 return 0;
935 }
936
937 static inline void update_cgrp_time_from_event(struct perf_event *event)
938 {
939 }
940
941 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
942 {
943 }
944
945 static inline void perf_cgroup_sched_out(struct task_struct *task,
946 struct task_struct *next)
947 {
948 }
949
950 static inline void perf_cgroup_sched_in(struct task_struct *prev,
951 struct task_struct *task)
952 {
953 }
954
955 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
956 struct perf_event_attr *attr,
957 struct perf_event *group_leader)
958 {
959 return -EINVAL;
960 }
961
962 static inline void
963 perf_cgroup_set_timestamp(struct task_struct *task,
964 struct perf_event_context *ctx)
965 {
966 }
967
968 void
969 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
970 {
971 }
972
973 static inline void
974 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
975 {
976 }
977
978 static inline u64 perf_cgroup_event_time(struct perf_event *event)
979 {
980 return 0;
981 }
982
983 static inline void
984 perf_cgroup_defer_enabled(struct perf_event *event)
985 {
986 }
987
988 static inline void
989 perf_cgroup_mark_enabled(struct perf_event *event,
990 struct perf_event_context *ctx)
991 {
992 }
993
994 static inline void
995 list_update_cgroup_event(struct perf_event *event,
996 struct perf_event_context *ctx, bool add)
997 {
998 }
999
1000 #endif
1001
1002 /*
1003 * set default to be dependent on timer tick just
1004 * like original code
1005 */
1006 #define PERF_CPU_HRTIMER (1000 / HZ)
1007 /*
1008 * function must be called with interrupts disbled
1009 */
1010 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1011 {
1012 struct perf_cpu_context *cpuctx;
1013 int rotations = 0;
1014
1015 WARN_ON(!irqs_disabled());
1016
1017 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1018 rotations = perf_rotate_context(cpuctx);
1019
1020 raw_spin_lock(&cpuctx->hrtimer_lock);
1021 if (rotations)
1022 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1023 else
1024 cpuctx->hrtimer_active = 0;
1025 raw_spin_unlock(&cpuctx->hrtimer_lock);
1026
1027 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1028 }
1029
1030 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1031 {
1032 struct hrtimer *timer = &cpuctx->hrtimer;
1033 struct pmu *pmu = cpuctx->ctx.pmu;
1034 u64 interval;
1035
1036 /* no multiplexing needed for SW PMU */
1037 if (pmu->task_ctx_nr == perf_sw_context)
1038 return;
1039
1040 /*
1041 * check default is sane, if not set then force to
1042 * default interval (1/tick)
1043 */
1044 interval = pmu->hrtimer_interval_ms;
1045 if (interval < 1)
1046 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1047
1048 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1049
1050 raw_spin_lock_init(&cpuctx->hrtimer_lock);
1051 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
1052 timer->function = perf_mux_hrtimer_handler;
1053 }
1054
1055 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1056 {
1057 struct hrtimer *timer = &cpuctx->hrtimer;
1058 struct pmu *pmu = cpuctx->ctx.pmu;
1059 unsigned long flags;
1060
1061 /* not for SW PMU */
1062 if (pmu->task_ctx_nr == perf_sw_context)
1063 return 0;
1064
1065 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1066 if (!cpuctx->hrtimer_active) {
1067 cpuctx->hrtimer_active = 1;
1068 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1069 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1070 }
1071 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1072
1073 return 0;
1074 }
1075
1076 void perf_pmu_disable(struct pmu *pmu)
1077 {
1078 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1079 if (!(*count)++)
1080 pmu->pmu_disable(pmu);
1081 }
1082
1083 void perf_pmu_enable(struct pmu *pmu)
1084 {
1085 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1086 if (!--(*count))
1087 pmu->pmu_enable(pmu);
1088 }
1089
1090 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1091
1092 /*
1093 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1094 * perf_event_task_tick() are fully serialized because they're strictly cpu
1095 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1096 * disabled, while perf_event_task_tick is called from IRQ context.
1097 */
1098 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1099 {
1100 struct list_head *head = this_cpu_ptr(&active_ctx_list);
1101
1102 WARN_ON(!irqs_disabled());
1103
1104 WARN_ON(!list_empty(&ctx->active_ctx_list));
1105
1106 list_add(&ctx->active_ctx_list, head);
1107 }
1108
1109 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1110 {
1111 WARN_ON(!irqs_disabled());
1112
1113 WARN_ON(list_empty(&ctx->active_ctx_list));
1114
1115 list_del_init(&ctx->active_ctx_list);
1116 }
1117
1118 static void get_ctx(struct perf_event_context *ctx)
1119 {
1120 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1121 }
1122
1123 static void free_ctx(struct rcu_head *head)
1124 {
1125 struct perf_event_context *ctx;
1126
1127 ctx = container_of(head, struct perf_event_context, rcu_head);
1128 kfree(ctx->task_ctx_data);
1129 kfree(ctx);
1130 }
1131
1132 static void put_ctx(struct perf_event_context *ctx)
1133 {
1134 if (atomic_dec_and_test(&ctx->refcount)) {
1135 if (ctx->parent_ctx)
1136 put_ctx(ctx->parent_ctx);
1137 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1138 put_task_struct(ctx->task);
1139 call_rcu(&ctx->rcu_head, free_ctx);
1140 }
1141 }
1142
1143 /*
1144 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1145 * perf_pmu_migrate_context() we need some magic.
1146 *
1147 * Those places that change perf_event::ctx will hold both
1148 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1149 *
1150 * Lock ordering is by mutex address. There are two other sites where
1151 * perf_event_context::mutex nests and those are:
1152 *
1153 * - perf_event_exit_task_context() [ child , 0 ]
1154 * perf_event_exit_event()
1155 * put_event() [ parent, 1 ]
1156 *
1157 * - perf_event_init_context() [ parent, 0 ]
1158 * inherit_task_group()
1159 * inherit_group()
1160 * inherit_event()
1161 * perf_event_alloc()
1162 * perf_init_event()
1163 * perf_try_init_event() [ child , 1 ]
1164 *
1165 * While it appears there is an obvious deadlock here -- the parent and child
1166 * nesting levels are inverted between the two. This is in fact safe because
1167 * life-time rules separate them. That is an exiting task cannot fork, and a
1168 * spawning task cannot (yet) exit.
1169 *
1170 * But remember that that these are parent<->child context relations, and
1171 * migration does not affect children, therefore these two orderings should not
1172 * interact.
1173 *
1174 * The change in perf_event::ctx does not affect children (as claimed above)
1175 * because the sys_perf_event_open() case will install a new event and break
1176 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1177 * concerned with cpuctx and that doesn't have children.
1178 *
1179 * The places that change perf_event::ctx will issue:
1180 *
1181 * perf_remove_from_context();
1182 * synchronize_rcu();
1183 * perf_install_in_context();
1184 *
1185 * to affect the change. The remove_from_context() + synchronize_rcu() should
1186 * quiesce the event, after which we can install it in the new location. This
1187 * means that only external vectors (perf_fops, prctl) can perturb the event
1188 * while in transit. Therefore all such accessors should also acquire
1189 * perf_event_context::mutex to serialize against this.
1190 *
1191 * However; because event->ctx can change while we're waiting to acquire
1192 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1193 * function.
1194 *
1195 * Lock order:
1196 * cred_guard_mutex
1197 * task_struct::perf_event_mutex
1198 * perf_event_context::mutex
1199 * perf_event::child_mutex;
1200 * perf_event_context::lock
1201 * perf_event::mmap_mutex
1202 * mmap_sem
1203 */
1204 static struct perf_event_context *
1205 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1206 {
1207 struct perf_event_context *ctx;
1208
1209 again:
1210 rcu_read_lock();
1211 ctx = ACCESS_ONCE(event->ctx);
1212 if (!atomic_inc_not_zero(&ctx->refcount)) {
1213 rcu_read_unlock();
1214 goto again;
1215 }
1216 rcu_read_unlock();
1217
1218 mutex_lock_nested(&ctx->mutex, nesting);
1219 if (event->ctx != ctx) {
1220 mutex_unlock(&ctx->mutex);
1221 put_ctx(ctx);
1222 goto again;
1223 }
1224
1225 return ctx;
1226 }
1227
1228 static inline struct perf_event_context *
1229 perf_event_ctx_lock(struct perf_event *event)
1230 {
1231 return perf_event_ctx_lock_nested(event, 0);
1232 }
1233
1234 static void perf_event_ctx_unlock(struct perf_event *event,
1235 struct perf_event_context *ctx)
1236 {
1237 mutex_unlock(&ctx->mutex);
1238 put_ctx(ctx);
1239 }
1240
1241 /*
1242 * This must be done under the ctx->lock, such as to serialize against
1243 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1244 * calling scheduler related locks and ctx->lock nests inside those.
1245 */
1246 static __must_check struct perf_event_context *
1247 unclone_ctx(struct perf_event_context *ctx)
1248 {
1249 struct perf_event_context *parent_ctx = ctx->parent_ctx;
1250
1251 lockdep_assert_held(&ctx->lock);
1252
1253 if (parent_ctx)
1254 ctx->parent_ctx = NULL;
1255 ctx->generation++;
1256
1257 return parent_ctx;
1258 }
1259
1260 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1261 {
1262 /*
1263 * only top level events have the pid namespace they were created in
1264 */
1265 if (event->parent)
1266 event = event->parent;
1267
1268 return task_tgid_nr_ns(p, event->ns);
1269 }
1270
1271 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1272 {
1273 /*
1274 * only top level events have the pid namespace they were created in
1275 */
1276 if (event->parent)
1277 event = event->parent;
1278
1279 return task_pid_nr_ns(p, event->ns);
1280 }
1281
1282 /*
1283 * If we inherit events we want to return the parent event id
1284 * to userspace.
1285 */
1286 static u64 primary_event_id(struct perf_event *event)
1287 {
1288 u64 id = event->id;
1289
1290 if (event->parent)
1291 id = event->parent->id;
1292
1293 return id;
1294 }
1295
1296 /*
1297 * Get the perf_event_context for a task and lock it.
1298 *
1299 * This has to cope with with the fact that until it is locked,
1300 * the context could get moved to another task.
1301 */
1302 static struct perf_event_context *
1303 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1304 {
1305 struct perf_event_context *ctx;
1306
1307 retry:
1308 /*
1309 * One of the few rules of preemptible RCU is that one cannot do
1310 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1311 * part of the read side critical section was irqs-enabled -- see
1312 * rcu_read_unlock_special().
1313 *
1314 * Since ctx->lock nests under rq->lock we must ensure the entire read
1315 * side critical section has interrupts disabled.
1316 */
1317 local_irq_save(*flags);
1318 rcu_read_lock();
1319 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1320 if (ctx) {
1321 /*
1322 * If this context is a clone of another, it might
1323 * get swapped for another underneath us by
1324 * perf_event_task_sched_out, though the
1325 * rcu_read_lock() protects us from any context
1326 * getting freed. Lock the context and check if it
1327 * got swapped before we could get the lock, and retry
1328 * if so. If we locked the right context, then it
1329 * can't get swapped on us any more.
1330 */
1331 raw_spin_lock(&ctx->lock);
1332 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1333 raw_spin_unlock(&ctx->lock);
1334 rcu_read_unlock();
1335 local_irq_restore(*flags);
1336 goto retry;
1337 }
1338
1339 if (ctx->task == TASK_TOMBSTONE ||
1340 !atomic_inc_not_zero(&ctx->refcount)) {
1341 raw_spin_unlock(&ctx->lock);
1342 ctx = NULL;
1343 } else {
1344 WARN_ON_ONCE(ctx->task != task);
1345 }
1346 }
1347 rcu_read_unlock();
1348 if (!ctx)
1349 local_irq_restore(*flags);
1350 return ctx;
1351 }
1352
1353 /*
1354 * Get the context for a task and increment its pin_count so it
1355 * can't get swapped to another task. This also increments its
1356 * reference count so that the context can't get freed.
1357 */
1358 static struct perf_event_context *
1359 perf_pin_task_context(struct task_struct *task, int ctxn)
1360 {
1361 struct perf_event_context *ctx;
1362 unsigned long flags;
1363
1364 ctx = perf_lock_task_context(task, ctxn, &flags);
1365 if (ctx) {
1366 ++ctx->pin_count;
1367 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1368 }
1369 return ctx;
1370 }
1371
1372 static void perf_unpin_context(struct perf_event_context *ctx)
1373 {
1374 unsigned long flags;
1375
1376 raw_spin_lock_irqsave(&ctx->lock, flags);
1377 --ctx->pin_count;
1378 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1379 }
1380
1381 /*
1382 * Update the record of the current time in a context.
1383 */
1384 static void update_context_time(struct perf_event_context *ctx)
1385 {
1386 u64 now = perf_clock();
1387
1388 ctx->time += now - ctx->timestamp;
1389 ctx->timestamp = now;
1390 }
1391
1392 static u64 perf_event_time(struct perf_event *event)
1393 {
1394 struct perf_event_context *ctx = event->ctx;
1395
1396 if (is_cgroup_event(event))
1397 return perf_cgroup_event_time(event);
1398
1399 return ctx ? ctx->time : 0;
1400 }
1401
1402 /*
1403 * Update the total_time_enabled and total_time_running fields for a event.
1404 */
1405 static void update_event_times(struct perf_event *event)
1406 {
1407 struct perf_event_context *ctx = event->ctx;
1408 u64 run_end;
1409
1410 lockdep_assert_held(&ctx->lock);
1411
1412 if (event->state < PERF_EVENT_STATE_INACTIVE ||
1413 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1414 return;
1415
1416 /*
1417 * in cgroup mode, time_enabled represents
1418 * the time the event was enabled AND active
1419 * tasks were in the monitored cgroup. This is
1420 * independent of the activity of the context as
1421 * there may be a mix of cgroup and non-cgroup events.
1422 *
1423 * That is why we treat cgroup events differently
1424 * here.
1425 */
1426 if (is_cgroup_event(event))
1427 run_end = perf_cgroup_event_time(event);
1428 else if (ctx->is_active)
1429 run_end = ctx->time;
1430 else
1431 run_end = event->tstamp_stopped;
1432
1433 event->total_time_enabled = run_end - event->tstamp_enabled;
1434
1435 if (event->state == PERF_EVENT_STATE_INACTIVE)
1436 run_end = event->tstamp_stopped;
1437 else
1438 run_end = perf_event_time(event);
1439
1440 event->total_time_running = run_end - event->tstamp_running;
1441
1442 }
1443
1444 /*
1445 * Update total_time_enabled and total_time_running for all events in a group.
1446 */
1447 static void update_group_times(struct perf_event *leader)
1448 {
1449 struct perf_event *event;
1450
1451 update_event_times(leader);
1452 list_for_each_entry(event, &leader->sibling_list, group_entry)
1453 update_event_times(event);
1454 }
1455
1456 static struct list_head *
1457 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1458 {
1459 if (event->attr.pinned)
1460 return &ctx->pinned_groups;
1461 else
1462 return &ctx->flexible_groups;
1463 }
1464
1465 /*
1466 * Add a event from the lists for its context.
1467 * Must be called with ctx->mutex and ctx->lock held.
1468 */
1469 static void
1470 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1471 {
1472 lockdep_assert_held(&ctx->lock);
1473
1474 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1475 event->attach_state |= PERF_ATTACH_CONTEXT;
1476
1477 /*
1478 * If we're a stand alone event or group leader, we go to the context
1479 * list, group events are kept attached to the group so that
1480 * perf_group_detach can, at all times, locate all siblings.
1481 */
1482 if (event->group_leader == event) {
1483 struct list_head *list;
1484
1485 event->group_caps = event->event_caps;
1486
1487 list = ctx_group_list(event, ctx);
1488 list_add_tail(&event->group_entry, list);
1489 }
1490
1491 list_update_cgroup_event(event, ctx, true);
1492
1493 list_add_rcu(&event->event_entry, &ctx->event_list);
1494 ctx->nr_events++;
1495 if (event->attr.inherit_stat)
1496 ctx->nr_stat++;
1497
1498 ctx->generation++;
1499 }
1500
1501 /*
1502 * Initialize event state based on the perf_event_attr::disabled.
1503 */
1504 static inline void perf_event__state_init(struct perf_event *event)
1505 {
1506 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1507 PERF_EVENT_STATE_INACTIVE;
1508 }
1509
1510 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1511 {
1512 int entry = sizeof(u64); /* value */
1513 int size = 0;
1514 int nr = 1;
1515
1516 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1517 size += sizeof(u64);
1518
1519 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1520 size += sizeof(u64);
1521
1522 if (event->attr.read_format & PERF_FORMAT_ID)
1523 entry += sizeof(u64);
1524
1525 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1526 nr += nr_siblings;
1527 size += sizeof(u64);
1528 }
1529
1530 size += entry * nr;
1531 event->read_size = size;
1532 }
1533
1534 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1535 {
1536 struct perf_sample_data *data;
1537 u16 size = 0;
1538
1539 if (sample_type & PERF_SAMPLE_IP)
1540 size += sizeof(data->ip);
1541
1542 if (sample_type & PERF_SAMPLE_ADDR)
1543 size += sizeof(data->addr);
1544
1545 if (sample_type & PERF_SAMPLE_PERIOD)
1546 size += sizeof(data->period);
1547
1548 if (sample_type & PERF_SAMPLE_WEIGHT)
1549 size += sizeof(data->weight);
1550
1551 if (sample_type & PERF_SAMPLE_READ)
1552 size += event->read_size;
1553
1554 if (sample_type & PERF_SAMPLE_DATA_SRC)
1555 size += sizeof(data->data_src.val);
1556
1557 if (sample_type & PERF_SAMPLE_TRANSACTION)
1558 size += sizeof(data->txn);
1559
1560 event->header_size = size;
1561 }
1562
1563 /*
1564 * Called at perf_event creation and when events are attached/detached from a
1565 * group.
1566 */
1567 static void perf_event__header_size(struct perf_event *event)
1568 {
1569 __perf_event_read_size(event,
1570 event->group_leader->nr_siblings);
1571 __perf_event_header_size(event, event->attr.sample_type);
1572 }
1573
1574 static void perf_event__id_header_size(struct perf_event *event)
1575 {
1576 struct perf_sample_data *data;
1577 u64 sample_type = event->attr.sample_type;
1578 u16 size = 0;
1579
1580 if (sample_type & PERF_SAMPLE_TID)
1581 size += sizeof(data->tid_entry);
1582
1583 if (sample_type & PERF_SAMPLE_TIME)
1584 size += sizeof(data->time);
1585
1586 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1587 size += sizeof(data->id);
1588
1589 if (sample_type & PERF_SAMPLE_ID)
1590 size += sizeof(data->id);
1591
1592 if (sample_type & PERF_SAMPLE_STREAM_ID)
1593 size += sizeof(data->stream_id);
1594
1595 if (sample_type & PERF_SAMPLE_CPU)
1596 size += sizeof(data->cpu_entry);
1597
1598 event->id_header_size = size;
1599 }
1600
1601 static bool perf_event_validate_size(struct perf_event *event)
1602 {
1603 /*
1604 * The values computed here will be over-written when we actually
1605 * attach the event.
1606 */
1607 __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1608 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1609 perf_event__id_header_size(event);
1610
1611 /*
1612 * Sum the lot; should not exceed the 64k limit we have on records.
1613 * Conservative limit to allow for callchains and other variable fields.
1614 */
1615 if (event->read_size + event->header_size +
1616 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1617 return false;
1618
1619 return true;
1620 }
1621
1622 static void perf_group_attach(struct perf_event *event)
1623 {
1624 struct perf_event *group_leader = event->group_leader, *pos;
1625
1626 lockdep_assert_held(&event->ctx->lock);
1627
1628 /*
1629 * We can have double attach due to group movement in perf_event_open.
1630 */
1631 if (event->attach_state & PERF_ATTACH_GROUP)
1632 return;
1633
1634 event->attach_state |= PERF_ATTACH_GROUP;
1635
1636 if (group_leader == event)
1637 return;
1638
1639 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1640
1641 group_leader->group_caps &= event->event_caps;
1642
1643 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1644 group_leader->nr_siblings++;
1645
1646 perf_event__header_size(group_leader);
1647
1648 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1649 perf_event__header_size(pos);
1650 }
1651
1652 /*
1653 * Remove a event from the lists for its context.
1654 * Must be called with ctx->mutex and ctx->lock held.
1655 */
1656 static void
1657 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1658 {
1659 WARN_ON_ONCE(event->ctx != ctx);
1660 lockdep_assert_held(&ctx->lock);
1661
1662 /*
1663 * We can have double detach due to exit/hot-unplug + close.
1664 */
1665 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1666 return;
1667
1668 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1669
1670 list_update_cgroup_event(event, ctx, false);
1671
1672 ctx->nr_events--;
1673 if (event->attr.inherit_stat)
1674 ctx->nr_stat--;
1675
1676 list_del_rcu(&event->event_entry);
1677
1678 if (event->group_leader == event)
1679 list_del_init(&event->group_entry);
1680
1681 update_group_times(event);
1682
1683 /*
1684 * If event was in error state, then keep it
1685 * that way, otherwise bogus counts will be
1686 * returned on read(). The only way to get out
1687 * of error state is by explicit re-enabling
1688 * of the event
1689 */
1690 if (event->state > PERF_EVENT_STATE_OFF)
1691 event->state = PERF_EVENT_STATE_OFF;
1692
1693 ctx->generation++;
1694 }
1695
1696 static void perf_group_detach(struct perf_event *event)
1697 {
1698 struct perf_event *sibling, *tmp;
1699 struct list_head *list = NULL;
1700
1701 lockdep_assert_held(&event->ctx->lock);
1702
1703 /*
1704 * We can have double detach due to exit/hot-unplug + close.
1705 */
1706 if (!(event->attach_state & PERF_ATTACH_GROUP))
1707 return;
1708
1709 event->attach_state &= ~PERF_ATTACH_GROUP;
1710
1711 /*
1712 * If this is a sibling, remove it from its group.
1713 */
1714 if (event->group_leader != event) {
1715 list_del_init(&event->group_entry);
1716 event->group_leader->nr_siblings--;
1717 goto out;
1718 }
1719
1720 if (!list_empty(&event->group_entry))
1721 list = &event->group_entry;
1722
1723 /*
1724 * If this was a group event with sibling events then
1725 * upgrade the siblings to singleton events by adding them
1726 * to whatever list we are on.
1727 */
1728 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1729 if (list)
1730 list_move_tail(&sibling->group_entry, list);
1731 sibling->group_leader = sibling;
1732
1733 /* Inherit group flags from the previous leader */
1734 sibling->group_caps = event->group_caps;
1735
1736 WARN_ON_ONCE(sibling->ctx != event->ctx);
1737 }
1738
1739 out:
1740 perf_event__header_size(event->group_leader);
1741
1742 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1743 perf_event__header_size(tmp);
1744 }
1745
1746 static bool is_orphaned_event(struct perf_event *event)
1747 {
1748 return event->state == PERF_EVENT_STATE_DEAD;
1749 }
1750
1751 static inline int __pmu_filter_match(struct perf_event *event)
1752 {
1753 struct pmu *pmu = event->pmu;
1754 return pmu->filter_match ? pmu->filter_match(event) : 1;
1755 }
1756
1757 /*
1758 * Check whether we should attempt to schedule an event group based on
1759 * PMU-specific filtering. An event group can consist of HW and SW events,
1760 * potentially with a SW leader, so we must check all the filters, to
1761 * determine whether a group is schedulable:
1762 */
1763 static inline int pmu_filter_match(struct perf_event *event)
1764 {
1765 struct perf_event *child;
1766
1767 if (!__pmu_filter_match(event))
1768 return 0;
1769
1770 list_for_each_entry(child, &event->sibling_list, group_entry) {
1771 if (!__pmu_filter_match(child))
1772 return 0;
1773 }
1774
1775 return 1;
1776 }
1777
1778 static inline int
1779 event_filter_match(struct perf_event *event)
1780 {
1781 return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1782 perf_cgroup_match(event) && pmu_filter_match(event);
1783 }
1784
1785 static void
1786 event_sched_out(struct perf_event *event,
1787 struct perf_cpu_context *cpuctx,
1788 struct perf_event_context *ctx)
1789 {
1790 u64 tstamp = perf_event_time(event);
1791 u64 delta;
1792
1793 WARN_ON_ONCE(event->ctx != ctx);
1794 lockdep_assert_held(&ctx->lock);
1795
1796 /*
1797 * An event which could not be activated because of
1798 * filter mismatch still needs to have its timings
1799 * maintained, otherwise bogus information is return
1800 * via read() for time_enabled, time_running:
1801 */
1802 if (event->state == PERF_EVENT_STATE_INACTIVE &&
1803 !event_filter_match(event)) {
1804 delta = tstamp - event->tstamp_stopped;
1805 event->tstamp_running += delta;
1806 event->tstamp_stopped = tstamp;
1807 }
1808
1809 if (event->state != PERF_EVENT_STATE_ACTIVE)
1810 return;
1811
1812 perf_pmu_disable(event->pmu);
1813
1814 event->tstamp_stopped = tstamp;
1815 event->pmu->del(event, 0);
1816 event->oncpu = -1;
1817 event->state = PERF_EVENT_STATE_INACTIVE;
1818 if (event->pending_disable) {
1819 event->pending_disable = 0;
1820 event->state = PERF_EVENT_STATE_OFF;
1821 }
1822
1823 if (!is_software_event(event))
1824 cpuctx->active_oncpu--;
1825 if (!--ctx->nr_active)
1826 perf_event_ctx_deactivate(ctx);
1827 if (event->attr.freq && event->attr.sample_freq)
1828 ctx->nr_freq--;
1829 if (event->attr.exclusive || !cpuctx->active_oncpu)
1830 cpuctx->exclusive = 0;
1831
1832 perf_pmu_enable(event->pmu);
1833 }
1834
1835 static void
1836 group_sched_out(struct perf_event *group_event,
1837 struct perf_cpu_context *cpuctx,
1838 struct perf_event_context *ctx)
1839 {
1840 struct perf_event *event;
1841 int state = group_event->state;
1842
1843 perf_pmu_disable(ctx->pmu);
1844
1845 event_sched_out(group_event, cpuctx, ctx);
1846
1847 /*
1848 * Schedule out siblings (if any):
1849 */
1850 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1851 event_sched_out(event, cpuctx, ctx);
1852
1853 perf_pmu_enable(ctx->pmu);
1854
1855 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1856 cpuctx->exclusive = 0;
1857 }
1858
1859 #define DETACH_GROUP 0x01UL
1860
1861 /*
1862 * Cross CPU call to remove a performance event
1863 *
1864 * We disable the event on the hardware level first. After that we
1865 * remove it from the context list.
1866 */
1867 static void
1868 __perf_remove_from_context(struct perf_event *event,
1869 struct perf_cpu_context *cpuctx,
1870 struct perf_event_context *ctx,
1871 void *info)
1872 {
1873 unsigned long flags = (unsigned long)info;
1874
1875 event_sched_out(event, cpuctx, ctx);
1876 if (flags & DETACH_GROUP)
1877 perf_group_detach(event);
1878 list_del_event(event, ctx);
1879
1880 if (!ctx->nr_events && ctx->is_active) {
1881 ctx->is_active = 0;
1882 if (ctx->task) {
1883 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1884 cpuctx->task_ctx = NULL;
1885 }
1886 }
1887 }
1888
1889 /*
1890 * Remove the event from a task's (or a CPU's) list of events.
1891 *
1892 * If event->ctx is a cloned context, callers must make sure that
1893 * every task struct that event->ctx->task could possibly point to
1894 * remains valid. This is OK when called from perf_release since
1895 * that only calls us on the top-level context, which can't be a clone.
1896 * When called from perf_event_exit_task, it's OK because the
1897 * context has been detached from its task.
1898 */
1899 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
1900 {
1901 struct perf_event_context *ctx = event->ctx;
1902
1903 lockdep_assert_held(&ctx->mutex);
1904
1905 event_function_call(event, __perf_remove_from_context, (void *)flags);
1906
1907 /*
1908 * The above event_function_call() can NO-OP when it hits
1909 * TASK_TOMBSTONE. In that case we must already have been detached
1910 * from the context (by perf_event_exit_event()) but the grouping
1911 * might still be in-tact.
1912 */
1913 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1914 if ((flags & DETACH_GROUP) &&
1915 (event->attach_state & PERF_ATTACH_GROUP)) {
1916 /*
1917 * Since in that case we cannot possibly be scheduled, simply
1918 * detach now.
1919 */
1920 raw_spin_lock_irq(&ctx->lock);
1921 perf_group_detach(event);
1922 raw_spin_unlock_irq(&ctx->lock);
1923 }
1924 }
1925
1926 /*
1927 * Cross CPU call to disable a performance event
1928 */
1929 static void __perf_event_disable(struct perf_event *event,
1930 struct perf_cpu_context *cpuctx,
1931 struct perf_event_context *ctx,
1932 void *info)
1933 {
1934 if (event->state < PERF_EVENT_STATE_INACTIVE)
1935 return;
1936
1937 update_context_time(ctx);
1938 update_cgrp_time_from_event(event);
1939 update_group_times(event);
1940 if (event == event->group_leader)
1941 group_sched_out(event, cpuctx, ctx);
1942 else
1943 event_sched_out(event, cpuctx, ctx);
1944 event->state = PERF_EVENT_STATE_OFF;
1945 }
1946
1947 /*
1948 * Disable a event.
1949 *
1950 * If event->ctx is a cloned context, callers must make sure that
1951 * every task struct that event->ctx->task could possibly point to
1952 * remains valid. This condition is satisifed when called through
1953 * perf_event_for_each_child or perf_event_for_each because they
1954 * hold the top-level event's child_mutex, so any descendant that
1955 * goes to exit will block in perf_event_exit_event().
1956 *
1957 * When called from perf_pending_event it's OK because event->ctx
1958 * is the current context on this CPU and preemption is disabled,
1959 * hence we can't get into perf_event_task_sched_out for this context.
1960 */
1961 static void _perf_event_disable(struct perf_event *event)
1962 {
1963 struct perf_event_context *ctx = event->ctx;
1964
1965 raw_spin_lock_irq(&ctx->lock);
1966 if (event->state <= PERF_EVENT_STATE_OFF) {
1967 raw_spin_unlock_irq(&ctx->lock);
1968 return;
1969 }
1970 raw_spin_unlock_irq(&ctx->lock);
1971
1972 event_function_call(event, __perf_event_disable, NULL);
1973 }
1974
1975 void perf_event_disable_local(struct perf_event *event)
1976 {
1977 event_function_local(event, __perf_event_disable, NULL);
1978 }
1979
1980 /*
1981 * Strictly speaking kernel users cannot create groups and therefore this
1982 * interface does not need the perf_event_ctx_lock() magic.
1983 */
1984 void perf_event_disable(struct perf_event *event)
1985 {
1986 struct perf_event_context *ctx;
1987
1988 ctx = perf_event_ctx_lock(event);
1989 _perf_event_disable(event);
1990 perf_event_ctx_unlock(event, ctx);
1991 }
1992 EXPORT_SYMBOL_GPL(perf_event_disable);
1993
1994 void perf_event_disable_inatomic(struct perf_event *event)
1995 {
1996 event->pending_disable = 1;
1997 irq_work_queue(&event->pending);
1998 }
1999
2000 static void perf_set_shadow_time(struct perf_event *event,
2001 struct perf_event_context *ctx,
2002 u64 tstamp)
2003 {
2004 /*
2005 * use the correct time source for the time snapshot
2006 *
2007 * We could get by without this by leveraging the
2008 * fact that to get to this function, the caller
2009 * has most likely already called update_context_time()
2010 * and update_cgrp_time_xx() and thus both timestamp
2011 * are identical (or very close). Given that tstamp is,
2012 * already adjusted for cgroup, we could say that:
2013 * tstamp - ctx->timestamp
2014 * is equivalent to
2015 * tstamp - cgrp->timestamp.
2016 *
2017 * Then, in perf_output_read(), the calculation would
2018 * work with no changes because:
2019 * - event is guaranteed scheduled in
2020 * - no scheduled out in between
2021 * - thus the timestamp would be the same
2022 *
2023 * But this is a bit hairy.
2024 *
2025 * So instead, we have an explicit cgroup call to remain
2026 * within the time time source all along. We believe it
2027 * is cleaner and simpler to understand.
2028 */
2029 if (is_cgroup_event(event))
2030 perf_cgroup_set_shadow_time(event, tstamp);
2031 else
2032 event->shadow_ctx_time = tstamp - ctx->timestamp;
2033 }
2034
2035 #define MAX_INTERRUPTS (~0ULL)
2036
2037 static void perf_log_throttle(struct perf_event *event, int enable);
2038 static void perf_log_itrace_start(struct perf_event *event);
2039
2040 static int
2041 event_sched_in(struct perf_event *event,
2042 struct perf_cpu_context *cpuctx,
2043 struct perf_event_context *ctx)
2044 {
2045 u64 tstamp = perf_event_time(event);
2046 int ret = 0;
2047
2048 lockdep_assert_held(&ctx->lock);
2049
2050 if (event->state <= PERF_EVENT_STATE_OFF)
2051 return 0;
2052
2053 WRITE_ONCE(event->oncpu, smp_processor_id());
2054 /*
2055 * Order event::oncpu write to happen before the ACTIVE state
2056 * is visible.
2057 */
2058 smp_wmb();
2059 WRITE_ONCE(event->state, PERF_EVENT_STATE_ACTIVE);
2060
2061 /*
2062 * Unthrottle events, since we scheduled we might have missed several
2063 * ticks already, also for a heavily scheduling task there is little
2064 * guarantee it'll get a tick in a timely manner.
2065 */
2066 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2067 perf_log_throttle(event, 1);
2068 event->hw.interrupts = 0;
2069 }
2070
2071 /*
2072 * The new state must be visible before we turn it on in the hardware:
2073 */
2074 smp_wmb();
2075
2076 perf_pmu_disable(event->pmu);
2077
2078 perf_set_shadow_time(event, ctx, tstamp);
2079
2080 perf_log_itrace_start(event);
2081
2082 if (event->pmu->add(event, PERF_EF_START)) {
2083 event->state = PERF_EVENT_STATE_INACTIVE;
2084 event->oncpu = -1;
2085 ret = -EAGAIN;
2086 goto out;
2087 }
2088
2089 event->tstamp_running += tstamp - event->tstamp_stopped;
2090
2091 if (!is_software_event(event))
2092 cpuctx->active_oncpu++;
2093 if (!ctx->nr_active++)
2094 perf_event_ctx_activate(ctx);
2095 if (event->attr.freq && event->attr.sample_freq)
2096 ctx->nr_freq++;
2097
2098 if (event->attr.exclusive)
2099 cpuctx->exclusive = 1;
2100
2101 out:
2102 perf_pmu_enable(event->pmu);
2103
2104 return ret;
2105 }
2106
2107 static int
2108 group_sched_in(struct perf_event *group_event,
2109 struct perf_cpu_context *cpuctx,
2110 struct perf_event_context *ctx)
2111 {
2112 struct perf_event *event, *partial_group = NULL;
2113 struct pmu *pmu = ctx->pmu;
2114 u64 now = ctx->time;
2115 bool simulate = false;
2116
2117 if (group_event->state == PERF_EVENT_STATE_OFF)
2118 return 0;
2119
2120 pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2121
2122 if (event_sched_in(group_event, cpuctx, ctx)) {
2123 pmu->cancel_txn(pmu);
2124 perf_mux_hrtimer_restart(cpuctx);
2125 return -EAGAIN;
2126 }
2127
2128 /*
2129 * Schedule in siblings as one group (if any):
2130 */
2131 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2132 if (event_sched_in(event, cpuctx, ctx)) {
2133 partial_group = event;
2134 goto group_error;
2135 }
2136 }
2137
2138 if (!pmu->commit_txn(pmu))
2139 return 0;
2140
2141 group_error:
2142 /*
2143 * Groups can be scheduled in as one unit only, so undo any
2144 * partial group before returning:
2145 * The events up to the failed event are scheduled out normally,
2146 * tstamp_stopped will be updated.
2147 *
2148 * The failed events and the remaining siblings need to have
2149 * their timings updated as if they had gone thru event_sched_in()
2150 * and event_sched_out(). This is required to get consistent timings
2151 * across the group. This also takes care of the case where the group
2152 * could never be scheduled by ensuring tstamp_stopped is set to mark
2153 * the time the event was actually stopped, such that time delta
2154 * calculation in update_event_times() is correct.
2155 */
2156 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2157 if (event == partial_group)
2158 simulate = true;
2159
2160 if (simulate) {
2161 event->tstamp_running += now - event->tstamp_stopped;
2162 event->tstamp_stopped = now;
2163 } else {
2164 event_sched_out(event, cpuctx, ctx);
2165 }
2166 }
2167 event_sched_out(group_event, cpuctx, ctx);
2168
2169 pmu->cancel_txn(pmu);
2170
2171 perf_mux_hrtimer_restart(cpuctx);
2172
2173 return -EAGAIN;
2174 }
2175
2176 /*
2177 * Work out whether we can put this event group on the CPU now.
2178 */
2179 static int group_can_go_on(struct perf_event *event,
2180 struct perf_cpu_context *cpuctx,
2181 int can_add_hw)
2182 {
2183 /*
2184 * Groups consisting entirely of software events can always go on.
2185 */
2186 if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2187 return 1;
2188 /*
2189 * If an exclusive group is already on, no other hardware
2190 * events can go on.
2191 */
2192 if (cpuctx->exclusive)
2193 return 0;
2194 /*
2195 * If this group is exclusive and there are already
2196 * events on the CPU, it can't go on.
2197 */
2198 if (event->attr.exclusive && cpuctx->active_oncpu)
2199 return 0;
2200 /*
2201 * Otherwise, try to add it if all previous groups were able
2202 * to go on.
2203 */
2204 return can_add_hw;
2205 }
2206
2207 static void add_event_to_ctx(struct perf_event *event,
2208 struct perf_event_context *ctx)
2209 {
2210 u64 tstamp = perf_event_time(event);
2211
2212 list_add_event(event, ctx);
2213 perf_group_attach(event);
2214 event->tstamp_enabled = tstamp;
2215 event->tstamp_running = tstamp;
2216 event->tstamp_stopped = tstamp;
2217 }
2218
2219 static void ctx_sched_out(struct perf_event_context *ctx,
2220 struct perf_cpu_context *cpuctx,
2221 enum event_type_t event_type);
2222 static void
2223 ctx_sched_in(struct perf_event_context *ctx,
2224 struct perf_cpu_context *cpuctx,
2225 enum event_type_t event_type,
2226 struct task_struct *task);
2227
2228 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2229 struct perf_event_context *ctx)
2230 {
2231 if (!cpuctx->task_ctx)
2232 return;
2233
2234 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2235 return;
2236
2237 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2238 }
2239
2240 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2241 struct perf_event_context *ctx,
2242 struct task_struct *task)
2243 {
2244 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2245 if (ctx)
2246 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2247 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2248 if (ctx)
2249 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2250 }
2251
2252 static void ctx_resched(struct perf_cpu_context *cpuctx,
2253 struct perf_event_context *task_ctx)
2254 {
2255 perf_pmu_disable(cpuctx->ctx.pmu);
2256 if (task_ctx)
2257 task_ctx_sched_out(cpuctx, task_ctx);
2258 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
2259 perf_event_sched_in(cpuctx, task_ctx, current);
2260 perf_pmu_enable(cpuctx->ctx.pmu);
2261 }
2262
2263 /*
2264 * Cross CPU call to install and enable a performance event
2265 *
2266 * Very similar to remote_function() + event_function() but cannot assume that
2267 * things like ctx->is_active and cpuctx->task_ctx are set.
2268 */
2269 static int __perf_install_in_context(void *info)
2270 {
2271 struct perf_event *event = info;
2272 struct perf_event_context *ctx = event->ctx;
2273 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2274 struct perf_event_context *task_ctx = cpuctx->task_ctx;
2275 bool reprogram = true;
2276 int ret = 0;
2277
2278 raw_spin_lock(&cpuctx->ctx.lock);
2279 if (ctx->task) {
2280 raw_spin_lock(&ctx->lock);
2281 task_ctx = ctx;
2282
2283 reprogram = (ctx->task == current);
2284
2285 /*
2286 * If the task is running, it must be running on this CPU,
2287 * otherwise we cannot reprogram things.
2288 *
2289 * If its not running, we don't care, ctx->lock will
2290 * serialize against it becoming runnable.
2291 */
2292 if (task_curr(ctx->task) && !reprogram) {
2293 ret = -ESRCH;
2294 goto unlock;
2295 }
2296
2297 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2298 } else if (task_ctx) {
2299 raw_spin_lock(&task_ctx->lock);
2300 }
2301
2302 if (reprogram) {
2303 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2304 add_event_to_ctx(event, ctx);
2305 ctx_resched(cpuctx, task_ctx);
2306 } else {
2307 add_event_to_ctx(event, ctx);
2308 }
2309
2310 unlock:
2311 perf_ctx_unlock(cpuctx, task_ctx);
2312
2313 return ret;
2314 }
2315
2316 /*
2317 * Attach a performance event to a context.
2318 *
2319 * Very similar to event_function_call, see comment there.
2320 */
2321 static void
2322 perf_install_in_context(struct perf_event_context *ctx,
2323 struct perf_event *event,
2324 int cpu)
2325 {
2326 struct task_struct *task = READ_ONCE(ctx->task);
2327
2328 lockdep_assert_held(&ctx->mutex);
2329
2330 if (event->cpu != -1)
2331 event->cpu = cpu;
2332
2333 /*
2334 * Ensures that if we can observe event->ctx, both the event and ctx
2335 * will be 'complete'. See perf_iterate_sb_cpu().
2336 */
2337 smp_store_release(&event->ctx, ctx);
2338
2339 if (!task) {
2340 cpu_function_call(cpu, __perf_install_in_context, event);
2341 return;
2342 }
2343
2344 /*
2345 * Should not happen, we validate the ctx is still alive before calling.
2346 */
2347 if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2348 return;
2349
2350 /*
2351 * Installing events is tricky because we cannot rely on ctx->is_active
2352 * to be set in case this is the nr_events 0 -> 1 transition.
2353 *
2354 * Instead we use task_curr(), which tells us if the task is running.
2355 * However, since we use task_curr() outside of rq::lock, we can race
2356 * against the actual state. This means the result can be wrong.
2357 *
2358 * If we get a false positive, we retry, this is harmless.
2359 *
2360 * If we get a false negative, things are complicated. If we are after
2361 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2362 * value must be correct. If we're before, it doesn't matter since
2363 * perf_event_context_sched_in() will program the counter.
2364 *
2365 * However, this hinges on the remote context switch having observed
2366 * our task->perf_event_ctxp[] store, such that it will in fact take
2367 * ctx::lock in perf_event_context_sched_in().
2368 *
2369 * We do this by task_function_call(), if the IPI fails to hit the task
2370 * we know any future context switch of task must see the
2371 * perf_event_ctpx[] store.
2372 */
2373
2374 /*
2375 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2376 * task_cpu() load, such that if the IPI then does not find the task
2377 * running, a future context switch of that task must observe the
2378 * store.
2379 */
2380 smp_mb();
2381 again:
2382 if (!task_function_call(task, __perf_install_in_context, event))
2383 return;
2384
2385 raw_spin_lock_irq(&ctx->lock);
2386 task = ctx->task;
2387 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2388 /*
2389 * Cannot happen because we already checked above (which also
2390 * cannot happen), and we hold ctx->mutex, which serializes us
2391 * against perf_event_exit_task_context().
2392 */
2393 raw_spin_unlock_irq(&ctx->lock);
2394 return;
2395 }
2396 /*
2397 * If the task is not running, ctx->lock will avoid it becoming so,
2398 * thus we can safely install the event.
2399 */
2400 if (task_curr(task)) {
2401 raw_spin_unlock_irq(&ctx->lock);
2402 goto again;
2403 }
2404 add_event_to_ctx(event, ctx);
2405 raw_spin_unlock_irq(&ctx->lock);
2406 }
2407
2408 /*
2409 * Put a event into inactive state and update time fields.
2410 * Enabling the leader of a group effectively enables all
2411 * the group members that aren't explicitly disabled, so we
2412 * have to update their ->tstamp_enabled also.
2413 * Note: this works for group members as well as group leaders
2414 * since the non-leader members' sibling_lists will be empty.
2415 */
2416 static void __perf_event_mark_enabled(struct perf_event *event)
2417 {
2418 struct perf_event *sub;
2419 u64 tstamp = perf_event_time(event);
2420
2421 event->state = PERF_EVENT_STATE_INACTIVE;
2422 event->tstamp_enabled = tstamp - event->total_time_enabled;
2423 list_for_each_entry(sub, &event->sibling_list, group_entry) {
2424 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2425 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
2426 }
2427 }
2428
2429 /*
2430 * Cross CPU call to enable a performance event
2431 */
2432 static void __perf_event_enable(struct perf_event *event,
2433 struct perf_cpu_context *cpuctx,
2434 struct perf_event_context *ctx,
2435 void *info)
2436 {
2437 struct perf_event *leader = event->group_leader;
2438 struct perf_event_context *task_ctx;
2439
2440 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2441 event->state <= PERF_EVENT_STATE_ERROR)
2442 return;
2443
2444 if (ctx->is_active)
2445 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2446
2447 __perf_event_mark_enabled(event);
2448
2449 if (!ctx->is_active)
2450 return;
2451
2452 if (!event_filter_match(event)) {
2453 if (is_cgroup_event(event))
2454 perf_cgroup_defer_enabled(event);
2455 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2456 return;
2457 }
2458
2459 /*
2460 * If the event is in a group and isn't the group leader,
2461 * then don't put it on unless the group is on.
2462 */
2463 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2464 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2465 return;
2466 }
2467
2468 task_ctx = cpuctx->task_ctx;
2469 if (ctx->task)
2470 WARN_ON_ONCE(task_ctx != ctx);
2471
2472 ctx_resched(cpuctx, task_ctx);
2473 }
2474
2475 /*
2476 * Enable a event.
2477 *
2478 * If event->ctx is a cloned context, callers must make sure that
2479 * every task struct that event->ctx->task could possibly point to
2480 * remains valid. This condition is satisfied when called through
2481 * perf_event_for_each_child or perf_event_for_each as described
2482 * for perf_event_disable.
2483 */
2484 static void _perf_event_enable(struct perf_event *event)
2485 {
2486 struct perf_event_context *ctx = event->ctx;
2487
2488 raw_spin_lock_irq(&ctx->lock);
2489 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2490 event->state < PERF_EVENT_STATE_ERROR) {
2491 raw_spin_unlock_irq(&ctx->lock);
2492 return;
2493 }
2494
2495 /*
2496 * If the event is in error state, clear that first.
2497 *
2498 * That way, if we see the event in error state below, we know that it
2499 * has gone back into error state, as distinct from the task having
2500 * been scheduled away before the cross-call arrived.
2501 */
2502 if (event->state == PERF_EVENT_STATE_ERROR)
2503 event->state = PERF_EVENT_STATE_OFF;
2504 raw_spin_unlock_irq(&ctx->lock);
2505
2506 event_function_call(event, __perf_event_enable, NULL);
2507 }
2508
2509 /*
2510 * See perf_event_disable();
2511 */
2512 void perf_event_enable(struct perf_event *event)
2513 {
2514 struct perf_event_context *ctx;
2515
2516 ctx = perf_event_ctx_lock(event);
2517 _perf_event_enable(event);
2518 perf_event_ctx_unlock(event, ctx);
2519 }
2520 EXPORT_SYMBOL_GPL(perf_event_enable);
2521
2522 struct stop_event_data {
2523 struct perf_event *event;
2524 unsigned int restart;
2525 };
2526
2527 static int __perf_event_stop(void *info)
2528 {
2529 struct stop_event_data *sd = info;
2530 struct perf_event *event = sd->event;
2531
2532 /* if it's already INACTIVE, do nothing */
2533 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2534 return 0;
2535
2536 /* matches smp_wmb() in event_sched_in() */
2537 smp_rmb();
2538
2539 /*
2540 * There is a window with interrupts enabled before we get here,
2541 * so we need to check again lest we try to stop another CPU's event.
2542 */
2543 if (READ_ONCE(event->oncpu) != smp_processor_id())
2544 return -EAGAIN;
2545
2546 event->pmu->stop(event, PERF_EF_UPDATE);
2547
2548 /*
2549 * May race with the actual stop (through perf_pmu_output_stop()),
2550 * but it is only used for events with AUX ring buffer, and such
2551 * events will refuse to restart because of rb::aux_mmap_count==0,
2552 * see comments in perf_aux_output_begin().
2553 *
2554 * Since this is happening on a event-local CPU, no trace is lost
2555 * while restarting.
2556 */
2557 if (sd->restart)
2558 event->pmu->start(event, 0);
2559
2560 return 0;
2561 }
2562
2563 static int perf_event_stop(struct perf_event *event, int restart)
2564 {
2565 struct stop_event_data sd = {
2566 .event = event,
2567 .restart = restart,
2568 };
2569 int ret = 0;
2570
2571 do {
2572 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2573 return 0;
2574
2575 /* matches smp_wmb() in event_sched_in() */
2576 smp_rmb();
2577
2578 /*
2579 * We only want to restart ACTIVE events, so if the event goes
2580 * inactive here (event->oncpu==-1), there's nothing more to do;
2581 * fall through with ret==-ENXIO.
2582 */
2583 ret = cpu_function_call(READ_ONCE(event->oncpu),
2584 __perf_event_stop, &sd);
2585 } while (ret == -EAGAIN);
2586
2587 return ret;
2588 }
2589
2590 /*
2591 * In order to contain the amount of racy and tricky in the address filter
2592 * configuration management, it is a two part process:
2593 *
2594 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2595 * we update the addresses of corresponding vmas in
2596 * event::addr_filters_offs array and bump the event::addr_filters_gen;
2597 * (p2) when an event is scheduled in (pmu::add), it calls
2598 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2599 * if the generation has changed since the previous call.
2600 *
2601 * If (p1) happens while the event is active, we restart it to force (p2).
2602 *
2603 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2604 * pre-existing mappings, called once when new filters arrive via SET_FILTER
2605 * ioctl;
2606 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2607 * registered mapping, called for every new mmap(), with mm::mmap_sem down
2608 * for reading;
2609 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2610 * of exec.
2611 */
2612 void perf_event_addr_filters_sync(struct perf_event *event)
2613 {
2614 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2615
2616 if (!has_addr_filter(event))
2617 return;
2618
2619 raw_spin_lock(&ifh->lock);
2620 if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2621 event->pmu->addr_filters_sync(event);
2622 event->hw.addr_filters_gen = event->addr_filters_gen;
2623 }
2624 raw_spin_unlock(&ifh->lock);
2625 }
2626 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2627
2628 static int _perf_event_refresh(struct perf_event *event, int refresh)
2629 {
2630 /*
2631 * not supported on inherited events
2632 */
2633 if (event->attr.inherit || !is_sampling_event(event))
2634 return -EINVAL;
2635
2636 atomic_add(refresh, &event->event_limit);
2637 _perf_event_enable(event);
2638
2639 return 0;
2640 }
2641
2642 /*
2643 * See perf_event_disable()
2644 */
2645 int perf_event_refresh(struct perf_event *event, int refresh)
2646 {
2647 struct perf_event_context *ctx;
2648 int ret;
2649
2650 ctx = perf_event_ctx_lock(event);
2651 ret = _perf_event_refresh(event, refresh);
2652 perf_event_ctx_unlock(event, ctx);
2653
2654 return ret;
2655 }
2656 EXPORT_SYMBOL_GPL(perf_event_refresh);
2657
2658 static void ctx_sched_out(struct perf_event_context *ctx,
2659 struct perf_cpu_context *cpuctx,
2660 enum event_type_t event_type)
2661 {
2662 int is_active = ctx->is_active;
2663 struct perf_event *event;
2664
2665 lockdep_assert_held(&ctx->lock);
2666
2667 if (likely(!ctx->nr_events)) {
2668 /*
2669 * See __perf_remove_from_context().
2670 */
2671 WARN_ON_ONCE(ctx->is_active);
2672 if (ctx->task)
2673 WARN_ON_ONCE(cpuctx->task_ctx);
2674 return;
2675 }
2676
2677 ctx->is_active &= ~event_type;
2678 if (!(ctx->is_active & EVENT_ALL))
2679 ctx->is_active = 0;
2680
2681 if (ctx->task) {
2682 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2683 if (!ctx->is_active)
2684 cpuctx->task_ctx = NULL;
2685 }
2686
2687 /*
2688 * Always update time if it was set; not only when it changes.
2689 * Otherwise we can 'forget' to update time for any but the last
2690 * context we sched out. For example:
2691 *
2692 * ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2693 * ctx_sched_out(.event_type = EVENT_PINNED)
2694 *
2695 * would only update time for the pinned events.
2696 */
2697 if (is_active & EVENT_TIME) {
2698 /* update (and stop) ctx time */
2699 update_context_time(ctx);
2700 update_cgrp_time_from_cpuctx(cpuctx);
2701 }
2702
2703 is_active ^= ctx->is_active; /* changed bits */
2704
2705 if (!ctx->nr_active || !(is_active & EVENT_ALL))
2706 return;
2707
2708 perf_pmu_disable(ctx->pmu);
2709 if (is_active & EVENT_PINNED) {
2710 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2711 group_sched_out(event, cpuctx, ctx);
2712 }
2713
2714 if (is_active & EVENT_FLEXIBLE) {
2715 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2716 group_sched_out(event, cpuctx, ctx);
2717 }
2718 perf_pmu_enable(ctx->pmu);
2719 }
2720
2721 /*
2722 * Test whether two contexts are equivalent, i.e. whether they have both been
2723 * cloned from the same version of the same context.
2724 *
2725 * Equivalence is measured using a generation number in the context that is
2726 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2727 * and list_del_event().
2728 */
2729 static int context_equiv(struct perf_event_context *ctx1,
2730 struct perf_event_context *ctx2)
2731 {
2732 lockdep_assert_held(&ctx1->lock);
2733 lockdep_assert_held(&ctx2->lock);
2734
2735 /* Pinning disables the swap optimization */
2736 if (ctx1->pin_count || ctx2->pin_count)
2737 return 0;
2738
2739 /* If ctx1 is the parent of ctx2 */
2740 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2741 return 1;
2742
2743 /* If ctx2 is the parent of ctx1 */
2744 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2745 return 1;
2746
2747 /*
2748 * If ctx1 and ctx2 have the same parent; we flatten the parent
2749 * hierarchy, see perf_event_init_context().
2750 */
2751 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2752 ctx1->parent_gen == ctx2->parent_gen)
2753 return 1;
2754
2755 /* Unmatched */
2756 return 0;
2757 }
2758
2759 static void __perf_event_sync_stat(struct perf_event *event,
2760 struct perf_event *next_event)
2761 {
2762 u64 value;
2763
2764 if (!event->attr.inherit_stat)
2765 return;
2766
2767 /*
2768 * Update the event value, we cannot use perf_event_read()
2769 * because we're in the middle of a context switch and have IRQs
2770 * disabled, which upsets smp_call_function_single(), however
2771 * we know the event must be on the current CPU, therefore we
2772 * don't need to use it.
2773 */
2774 switch (event->state) {
2775 case PERF_EVENT_STATE_ACTIVE:
2776 event->pmu->read(event);
2777 /* fall-through */
2778
2779 case PERF_EVENT_STATE_INACTIVE:
2780 update_event_times(event);
2781 break;
2782
2783 default:
2784 break;
2785 }
2786
2787 /*
2788 * In order to keep per-task stats reliable we need to flip the event
2789 * values when we flip the contexts.
2790 */
2791 value = local64_read(&next_event->count);
2792 value = local64_xchg(&event->count, value);
2793 local64_set(&next_event->count, value);
2794
2795 swap(event->total_time_enabled, next_event->total_time_enabled);
2796 swap(event->total_time_running, next_event->total_time_running);
2797
2798 /*
2799 * Since we swizzled the values, update the user visible data too.
2800 */
2801 perf_event_update_userpage(event);
2802 perf_event_update_userpage(next_event);
2803 }
2804
2805 static void perf_event_sync_stat(struct perf_event_context *ctx,
2806 struct perf_event_context *next_ctx)
2807 {
2808 struct perf_event *event, *next_event;
2809
2810 if (!ctx->nr_stat)
2811 return;
2812
2813 update_context_time(ctx);
2814
2815 event = list_first_entry(&ctx->event_list,
2816 struct perf_event, event_entry);
2817
2818 next_event = list_first_entry(&next_ctx->event_list,
2819 struct perf_event, event_entry);
2820
2821 while (&event->event_entry != &ctx->event_list &&
2822 &next_event->event_entry != &next_ctx->event_list) {
2823
2824 __perf_event_sync_stat(event, next_event);
2825
2826 event = list_next_entry(event, event_entry);
2827 next_event = list_next_entry(next_event, event_entry);
2828 }
2829 }
2830
2831 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2832 struct task_struct *next)
2833 {
2834 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2835 struct perf_event_context *next_ctx;
2836 struct perf_event_context *parent, *next_parent;
2837 struct perf_cpu_context *cpuctx;
2838 int do_switch = 1;
2839
2840 if (likely(!ctx))
2841 return;
2842
2843 cpuctx = __get_cpu_context(ctx);
2844 if (!cpuctx->task_ctx)
2845 return;
2846
2847 rcu_read_lock();
2848 next_ctx = next->perf_event_ctxp[ctxn];
2849 if (!next_ctx)
2850 goto unlock;
2851
2852 parent = rcu_dereference(ctx->parent_ctx);
2853 next_parent = rcu_dereference(next_ctx->parent_ctx);
2854
2855 /* If neither context have a parent context; they cannot be clones. */
2856 if (!parent && !next_parent)
2857 goto unlock;
2858
2859 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2860 /*
2861 * Looks like the two contexts are clones, so we might be
2862 * able to optimize the context switch. We lock both
2863 * contexts and check that they are clones under the
2864 * lock (including re-checking that neither has been
2865 * uncloned in the meantime). It doesn't matter which
2866 * order we take the locks because no other cpu could
2867 * be trying to lock both of these tasks.
2868 */
2869 raw_spin_lock(&ctx->lock);
2870 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2871 if (context_equiv(ctx, next_ctx)) {
2872 WRITE_ONCE(ctx->task, next);
2873 WRITE_ONCE(next_ctx->task, task);
2874
2875 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2876
2877 /*
2878 * RCU_INIT_POINTER here is safe because we've not
2879 * modified the ctx and the above modification of
2880 * ctx->task and ctx->task_ctx_data are immaterial
2881 * since those values are always verified under
2882 * ctx->lock which we're now holding.
2883 */
2884 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
2885 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
2886
2887 do_switch = 0;
2888
2889 perf_event_sync_stat(ctx, next_ctx);
2890 }
2891 raw_spin_unlock(&next_ctx->lock);
2892 raw_spin_unlock(&ctx->lock);
2893 }
2894 unlock:
2895 rcu_read_unlock();
2896
2897 if (do_switch) {
2898 raw_spin_lock(&ctx->lock);
2899 task_ctx_sched_out(cpuctx, ctx);
2900 raw_spin_unlock(&ctx->lock);
2901 }
2902 }
2903
2904 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
2905
2906 void perf_sched_cb_dec(struct pmu *pmu)
2907 {
2908 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2909
2910 this_cpu_dec(perf_sched_cb_usages);
2911
2912 if (!--cpuctx->sched_cb_usage)
2913 list_del(&cpuctx->sched_cb_entry);
2914 }
2915
2916
2917 void perf_sched_cb_inc(struct pmu *pmu)
2918 {
2919 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2920
2921 if (!cpuctx->sched_cb_usage++)
2922 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
2923
2924 this_cpu_inc(perf_sched_cb_usages);
2925 }
2926
2927 /*
2928 * This function provides the context switch callback to the lower code
2929 * layer. It is invoked ONLY when the context switch callback is enabled.
2930 *
2931 * This callback is relevant even to per-cpu events; for example multi event
2932 * PEBS requires this to provide PID/TID information. This requires we flush
2933 * all queued PEBS records before we context switch to a new task.
2934 */
2935 static void perf_pmu_sched_task(struct task_struct *prev,
2936 struct task_struct *next,
2937 bool sched_in)
2938 {
2939 struct perf_cpu_context *cpuctx;
2940 struct pmu *pmu;
2941
2942 if (prev == next)
2943 return;
2944
2945 list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
2946 pmu = cpuctx->unique_pmu; /* software PMUs will not have sched_task */
2947
2948 if (WARN_ON_ONCE(!pmu->sched_task))
2949 continue;
2950
2951 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2952 perf_pmu_disable(pmu);
2953
2954 pmu->sched_task(cpuctx->task_ctx, sched_in);
2955
2956 perf_pmu_enable(pmu);
2957 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2958 }
2959 }
2960
2961 static void perf_event_switch(struct task_struct *task,
2962 struct task_struct *next_prev, bool sched_in);
2963
2964 #define for_each_task_context_nr(ctxn) \
2965 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2966
2967 /*
2968 * Called from scheduler to remove the events of the current task,
2969 * with interrupts disabled.
2970 *
2971 * We stop each event and update the event value in event->count.
2972 *
2973 * This does not protect us against NMI, but disable()
2974 * sets the disabled bit in the control field of event _before_
2975 * accessing the event control register. If a NMI hits, then it will
2976 * not restart the event.
2977 */
2978 void __perf_event_task_sched_out(struct task_struct *task,
2979 struct task_struct *next)
2980 {
2981 int ctxn;
2982
2983 if (__this_cpu_read(perf_sched_cb_usages))
2984 perf_pmu_sched_task(task, next, false);
2985
2986 if (atomic_read(&nr_switch_events))
2987 perf_event_switch(task, next, false);
2988
2989 for_each_task_context_nr(ctxn)
2990 perf_event_context_sched_out(task, ctxn, next);
2991
2992 /*
2993 * if cgroup events exist on this CPU, then we need
2994 * to check if we have to switch out PMU state.
2995 * cgroup event are system-wide mode only
2996 */
2997 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2998 perf_cgroup_sched_out(task, next);
2999 }
3000
3001 /*
3002 * Called with IRQs disabled
3003 */
3004 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3005 enum event_type_t event_type)
3006 {
3007 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3008 }
3009
3010 static void
3011 ctx_pinned_sched_in(struct perf_event_context *ctx,
3012 struct perf_cpu_context *cpuctx)
3013 {
3014 struct perf_event *event;
3015
3016 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
3017 if (event->state <= PERF_EVENT_STATE_OFF)
3018 continue;
3019 if (!event_filter_match(event))
3020 continue;
3021
3022 /* may need to reset tstamp_enabled */
3023 if (is_cgroup_event(event))
3024 perf_cgroup_mark_enabled(event, ctx);
3025
3026 if (group_can_go_on(event, cpuctx, 1))
3027 group_sched_in(event, cpuctx, ctx);
3028
3029 /*
3030 * If this pinned group hasn't been scheduled,
3031 * put it in error state.
3032 */
3033 if (event->state == PERF_EVENT_STATE_INACTIVE) {
3034 update_group_times(event);
3035 event->state = PERF_EVENT_STATE_ERROR;
3036 }
3037 }
3038 }
3039
3040 static void
3041 ctx_flexible_sched_in(struct perf_event_context *ctx,
3042 struct perf_cpu_context *cpuctx)
3043 {
3044 struct perf_event *event;
3045 int can_add_hw = 1;
3046
3047 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
3048 /* Ignore events in OFF or ERROR state */
3049 if (event->state <= PERF_EVENT_STATE_OFF)
3050 continue;
3051 /*
3052 * Listen to the 'cpu' scheduling filter constraint
3053 * of events:
3054 */
3055 if (!event_filter_match(event))
3056 continue;
3057
3058 /* may need to reset tstamp_enabled */
3059 if (is_cgroup_event(event))
3060 perf_cgroup_mark_enabled(event, ctx);
3061
3062 if (group_can_go_on(event, cpuctx, can_add_hw)) {
3063 if (group_sched_in(event, cpuctx, ctx))
3064 can_add_hw = 0;
3065 }
3066 }
3067 }
3068
3069 static void
3070 ctx_sched_in(struct perf_event_context *ctx,
3071 struct perf_cpu_context *cpuctx,
3072 enum event_type_t event_type,
3073 struct task_struct *task)
3074 {
3075 int is_active = ctx->is_active;
3076 u64 now;
3077
3078 lockdep_assert_held(&ctx->lock);
3079
3080 if (likely(!ctx->nr_events))
3081 return;
3082
3083 ctx->is_active |= (event_type | EVENT_TIME);
3084 if (ctx->task) {
3085 if (!is_active)
3086 cpuctx->task_ctx = ctx;
3087 else
3088 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3089 }
3090
3091 is_active ^= ctx->is_active; /* changed bits */
3092
3093 if (is_active & EVENT_TIME) {
3094 /* start ctx time */
3095 now = perf_clock();
3096 ctx->timestamp = now;
3097 perf_cgroup_set_timestamp(task, ctx);
3098 }
3099
3100 /*
3101 * First go through the list and put on any pinned groups
3102 * in order to give them the best chance of going on.
3103 */
3104 if (is_active & EVENT_PINNED)
3105 ctx_pinned_sched_in(ctx, cpuctx);
3106
3107 /* Then walk through the lower prio flexible groups */
3108 if (is_active & EVENT_FLEXIBLE)
3109 ctx_flexible_sched_in(ctx, cpuctx);
3110 }
3111
3112 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3113 enum event_type_t event_type,
3114 struct task_struct *task)
3115 {
3116 struct perf_event_context *ctx = &cpuctx->ctx;
3117
3118 ctx_sched_in(ctx, cpuctx, event_type, task);
3119 }
3120
3121 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3122 struct task_struct *task)
3123 {
3124 struct perf_cpu_context *cpuctx;
3125
3126 cpuctx = __get_cpu_context(ctx);
3127 if (cpuctx->task_ctx == ctx)
3128 return;
3129
3130 perf_ctx_lock(cpuctx, ctx);
3131 perf_pmu_disable(ctx->pmu);
3132 /*
3133 * We want to keep the following priority order:
3134 * cpu pinned (that don't need to move), task pinned,
3135 * cpu flexible, task flexible.
3136 */
3137 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3138 perf_event_sched_in(cpuctx, ctx, task);
3139 perf_pmu_enable(ctx->pmu);
3140 perf_ctx_unlock(cpuctx, ctx);
3141 }
3142
3143 /*
3144 * Called from scheduler to add the events of the current task
3145 * with interrupts disabled.
3146 *
3147 * We restore the event value and then enable it.
3148 *
3149 * This does not protect us against NMI, but enable()
3150 * sets the enabled bit in the control field of event _before_
3151 * accessing the event control register. If a NMI hits, then it will
3152 * keep the event running.
3153 */
3154 void __perf_event_task_sched_in(struct task_struct *prev,
3155 struct task_struct *task)
3156 {
3157 struct perf_event_context *ctx;
3158 int ctxn;
3159
3160 /*
3161 * If cgroup events exist on this CPU, then we need to check if we have
3162 * to switch in PMU state; cgroup event are system-wide mode only.
3163 *
3164 * Since cgroup events are CPU events, we must schedule these in before
3165 * we schedule in the task events.
3166 */
3167 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3168 perf_cgroup_sched_in(prev, task);
3169
3170 for_each_task_context_nr(ctxn) {
3171 ctx = task->perf_event_ctxp[ctxn];
3172 if (likely(!ctx))
3173 continue;
3174
3175 perf_event_context_sched_in(ctx, task);
3176 }
3177
3178 if (atomic_read(&nr_switch_events))
3179 perf_event_switch(task, prev, true);
3180
3181 if (__this_cpu_read(perf_sched_cb_usages))
3182 perf_pmu_sched_task(prev, task, true);
3183 }
3184
3185 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3186 {
3187 u64 frequency = event->attr.sample_freq;
3188 u64 sec = NSEC_PER_SEC;
3189 u64 divisor, dividend;
3190
3191 int count_fls, nsec_fls, frequency_fls, sec_fls;
3192
3193 count_fls = fls64(count);
3194 nsec_fls = fls64(nsec);
3195 frequency_fls = fls64(frequency);
3196 sec_fls = 30;
3197
3198 /*
3199 * We got @count in @nsec, with a target of sample_freq HZ
3200 * the target period becomes:
3201 *
3202 * @count * 10^9
3203 * period = -------------------
3204 * @nsec * sample_freq
3205 *
3206 */
3207
3208 /*
3209 * Reduce accuracy by one bit such that @a and @b converge
3210 * to a similar magnitude.
3211 */
3212 #define REDUCE_FLS(a, b) \
3213 do { \
3214 if (a##_fls > b##_fls) { \
3215 a >>= 1; \
3216 a##_fls--; \
3217 } else { \
3218 b >>= 1; \
3219 b##_fls--; \
3220 } \
3221 } while (0)
3222
3223 /*
3224 * Reduce accuracy until either term fits in a u64, then proceed with
3225 * the other, so that finally we can do a u64/u64 division.
3226 */
3227 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3228 REDUCE_FLS(nsec, frequency);
3229 REDUCE_FLS(sec, count);
3230 }
3231
3232 if (count_fls + sec_fls > 64) {
3233 divisor = nsec * frequency;
3234
3235 while (count_fls + sec_fls > 64) {
3236 REDUCE_FLS(count, sec);
3237 divisor >>= 1;
3238 }
3239
3240 dividend = count * sec;
3241 } else {
3242 dividend = count * sec;
3243
3244 while (nsec_fls + frequency_fls > 64) {
3245 REDUCE_FLS(nsec, frequency);
3246 dividend >>= 1;
3247 }
3248
3249 divisor = nsec * frequency;
3250 }
3251
3252 if (!divisor)
3253 return dividend;
3254
3255 return div64_u64(dividend, divisor);
3256 }
3257
3258 static DEFINE_PER_CPU(int, perf_throttled_count);
3259 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3260
3261 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3262 {
3263 struct hw_perf_event *hwc = &event->hw;
3264 s64 period, sample_period;
3265 s64 delta;
3266
3267 period = perf_calculate_period(event, nsec, count);
3268
3269 delta = (s64)(period - hwc->sample_period);
3270 delta = (delta + 7) / 8; /* low pass filter */
3271
3272 sample_period = hwc->sample_period + delta;
3273
3274 if (!sample_period)
3275 sample_period = 1;
3276
3277 hwc->sample_period = sample_period;
3278
3279 if (local64_read(&hwc->period_left) > 8*sample_period) {
3280 if (disable)
3281 event->pmu->stop(event, PERF_EF_UPDATE);
3282
3283 local64_set(&hwc->period_left, 0);
3284
3285 if (disable)
3286 event->pmu->start(event, PERF_EF_RELOAD);
3287 }
3288 }
3289
3290 /*
3291 * combine freq adjustment with unthrottling to avoid two passes over the
3292 * events. At the same time, make sure, having freq events does not change
3293 * the rate of unthrottling as that would introduce bias.
3294 */
3295 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3296 int needs_unthr)
3297 {
3298 struct perf_event *event;
3299 struct hw_perf_event *hwc;
3300 u64 now, period = TICK_NSEC;
3301 s64 delta;
3302
3303 /*
3304 * only need to iterate over all events iff:
3305 * - context have events in frequency mode (needs freq adjust)
3306 * - there are events to unthrottle on this cpu
3307 */
3308 if (!(ctx->nr_freq || needs_unthr))
3309 return;
3310
3311 raw_spin_lock(&ctx->lock);
3312 perf_pmu_disable(ctx->pmu);
3313
3314 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3315 if (event->state != PERF_EVENT_STATE_ACTIVE)
3316 continue;
3317
3318 if (!event_filter_match(event))
3319 continue;
3320
3321 perf_pmu_disable(event->pmu);
3322
3323 hwc = &event->hw;
3324
3325 if (hwc->interrupts == MAX_INTERRUPTS) {
3326 hwc->interrupts = 0;
3327 perf_log_throttle(event, 1);
3328 event->pmu->start(event, 0);
3329 }
3330
3331 if (!event->attr.freq || !event->attr.sample_freq)
3332 goto next;
3333
3334 /*
3335 * stop the event and update event->count
3336 */
3337 event->pmu->stop(event, PERF_EF_UPDATE);
3338
3339 now = local64_read(&event->count);
3340 delta = now - hwc->freq_count_stamp;
3341 hwc->freq_count_stamp = now;
3342
3343 /*
3344 * restart the event
3345 * reload only if value has changed
3346 * we have stopped the event so tell that
3347 * to perf_adjust_period() to avoid stopping it
3348 * twice.
3349 */
3350 if (delta > 0)
3351 perf_adjust_period(event, period, delta, false);
3352
3353 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3354 next:
3355 perf_pmu_enable(event->pmu);
3356 }
3357
3358 perf_pmu_enable(ctx->pmu);
3359 raw_spin_unlock(&ctx->lock);
3360 }
3361
3362 /*
3363 * Round-robin a context's events:
3364 */
3365 static void rotate_ctx(struct perf_event_context *ctx)
3366 {
3367 /*
3368 * Rotate the first entry last of non-pinned groups. Rotation might be
3369 * disabled by the inheritance code.
3370 */
3371 if (!ctx->rotate_disable)
3372 list_rotate_left(&ctx->flexible_groups);
3373 }
3374
3375 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3376 {
3377 struct perf_event_context *ctx = NULL;
3378 int rotate = 0;
3379
3380 if (cpuctx->ctx.nr_events) {
3381 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3382 rotate = 1;
3383 }
3384
3385 ctx = cpuctx->task_ctx;
3386 if (ctx && ctx->nr_events) {
3387 if (ctx->nr_events != ctx->nr_active)
3388 rotate = 1;
3389 }
3390
3391 if (!rotate)
3392 goto done;
3393
3394 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3395 perf_pmu_disable(cpuctx->ctx.pmu);
3396
3397 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3398 if (ctx)
3399 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3400
3401 rotate_ctx(&cpuctx->ctx);
3402 if (ctx)
3403 rotate_ctx(ctx);
3404
3405 perf_event_sched_in(cpuctx, ctx, current);
3406
3407 perf_pmu_enable(cpuctx->ctx.pmu);
3408 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3409 done:
3410
3411 return rotate;
3412 }
3413
3414 void perf_event_task_tick(void)
3415 {
3416 struct list_head *head = this_cpu_ptr(&active_ctx_list);
3417 struct perf_event_context *ctx, *tmp;
3418 int throttled;
3419
3420 WARN_ON(!irqs_disabled());
3421
3422 __this_cpu_inc(perf_throttled_seq);
3423 throttled = __this_cpu_xchg(perf_throttled_count, 0);
3424 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3425
3426 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3427 perf_adjust_freq_unthr_context(ctx, throttled);
3428 }
3429
3430 static int event_enable_on_exec(struct perf_event *event,
3431 struct perf_event_context *ctx)
3432 {
3433 if (!event->attr.enable_on_exec)
3434 return 0;
3435
3436 event->attr.enable_on_exec = 0;
3437 if (event->state >= PERF_EVENT_STATE_INACTIVE)
3438 return 0;
3439
3440 __perf_event_mark_enabled(event);
3441
3442 return 1;
3443 }
3444
3445 /*
3446 * Enable all of a task's events that have been marked enable-on-exec.
3447 * This expects task == current.
3448 */
3449 static void perf_event_enable_on_exec(int ctxn)
3450 {
3451 struct perf_event_context *ctx, *clone_ctx = NULL;
3452 struct perf_cpu_context *cpuctx;
3453 struct perf_event *event;
3454 unsigned long flags;
3455 int enabled = 0;
3456
3457 local_irq_save(flags);
3458 ctx = current->perf_event_ctxp[ctxn];
3459 if (!ctx || !ctx->nr_events)
3460 goto out;
3461
3462 cpuctx = __get_cpu_context(ctx);
3463 perf_ctx_lock(cpuctx, ctx);
3464 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3465 list_for_each_entry(event, &ctx->event_list, event_entry)
3466 enabled |= event_enable_on_exec(event, ctx);
3467
3468 /*
3469 * Unclone and reschedule this context if we enabled any event.
3470 */
3471 if (enabled) {
3472 clone_ctx = unclone_ctx(ctx);
3473 ctx_resched(cpuctx, ctx);
3474 }
3475 perf_ctx_unlock(cpuctx, ctx);
3476
3477 out:
3478 local_irq_restore(flags);
3479
3480 if (clone_ctx)
3481 put_ctx(clone_ctx);
3482 }
3483
3484 struct perf_read_data {
3485 struct perf_event *event;
3486 bool group;
3487 int ret;
3488 };
3489
3490 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
3491 {
3492 u16 local_pkg, event_pkg;
3493
3494 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
3495 int local_cpu = smp_processor_id();
3496
3497 event_pkg = topology_physical_package_id(event_cpu);
3498 local_pkg = topology_physical_package_id(local_cpu);
3499
3500 if (event_pkg == local_pkg)
3501 return local_cpu;
3502 }
3503
3504 return event_cpu;
3505 }
3506
3507 /*
3508 * Cross CPU call to read the hardware event
3509 */
3510 static void __perf_event_read(void *info)
3511 {
3512 struct perf_read_data *data = info;
3513 struct perf_event *sub, *event = data->event;
3514 struct perf_event_context *ctx = event->ctx;
3515 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3516 struct pmu *pmu = event->pmu;
3517
3518 /*
3519 * If this is a task context, we need to check whether it is
3520 * the current task context of this cpu. If not it has been
3521 * scheduled out before the smp call arrived. In that case
3522 * event->count would have been updated to a recent sample
3523 * when the event was scheduled out.
3524 */
3525 if (ctx->task && cpuctx->task_ctx != ctx)
3526 return;
3527
3528 raw_spin_lock(&ctx->lock);
3529 if (ctx->is_active) {
3530 update_context_time(ctx);
3531 update_cgrp_time_from_event(event);
3532 }
3533
3534 update_event_times(event);
3535 if (event->state != PERF_EVENT_STATE_ACTIVE)
3536 goto unlock;
3537
3538 if (!data->group) {
3539 pmu->read(event);
3540 data->ret = 0;
3541 goto unlock;
3542 }
3543
3544 pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3545
3546 pmu->read(event);
3547
3548 list_for_each_entry(sub, &event->sibling_list, group_entry) {
3549 update_event_times(sub);
3550 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3551 /*
3552 * Use sibling's PMU rather than @event's since
3553 * sibling could be on different (eg: software) PMU.
3554 */
3555 sub->pmu->read(sub);
3556 }
3557 }
3558
3559 data->ret = pmu->commit_txn(pmu);
3560
3561 unlock:
3562 raw_spin_unlock(&ctx->lock);
3563 }
3564
3565 static inline u64 perf_event_count(struct perf_event *event)
3566 {
3567 if (event->pmu->count)
3568 return event->pmu->count(event);
3569
3570 return __perf_event_count(event);
3571 }
3572
3573 /*
3574 * NMI-safe method to read a local event, that is an event that
3575 * is:
3576 * - either for the current task, or for this CPU
3577 * - does not have inherit set, for inherited task events
3578 * will not be local and we cannot read them atomically
3579 * - must not have a pmu::count method
3580 */
3581 u64 perf_event_read_local(struct perf_event *event)
3582 {
3583 unsigned long flags;
3584 u64 val;
3585
3586 /*
3587 * Disabling interrupts avoids all counter scheduling (context
3588 * switches, timer based rotation and IPIs).
3589 */
3590 local_irq_save(flags);
3591
3592 /* If this is a per-task event, it must be for current */
3593 WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
3594 event->hw.target != current);
3595
3596 /* If this is a per-CPU event, it must be for this CPU */
3597 WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
3598 event->cpu != smp_processor_id());
3599
3600 /*
3601 * It must not be an event with inherit set, we cannot read
3602 * all child counters from atomic context.
3603 */
3604 WARN_ON_ONCE(event->attr.inherit);
3605
3606 /*
3607 * It must not have a pmu::count method, those are not
3608 * NMI safe.
3609 */
3610 WARN_ON_ONCE(event->pmu->count);
3611
3612 /*
3613 * If the event is currently on this CPU, its either a per-task event,
3614 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3615 * oncpu == -1).
3616 */
3617 if (event->oncpu == smp_processor_id())
3618 event->pmu->read(event);
3619
3620 val = local64_read(&event->count);
3621 local_irq_restore(flags);
3622
3623 return val;
3624 }
3625
3626 static int perf_event_read(struct perf_event *event, bool group)
3627 {
3628 int event_cpu, ret = 0;
3629
3630 /*
3631 * If event is enabled and currently active on a CPU, update the
3632 * value in the event structure:
3633 */
3634 if (event->state == PERF_EVENT_STATE_ACTIVE) {
3635 struct perf_read_data data = {
3636 .event = event,
3637 .group = group,
3638 .ret = 0,
3639 };
3640
3641 event_cpu = READ_ONCE(event->oncpu);
3642 if ((unsigned)event_cpu >= nr_cpu_ids)
3643 return 0;
3644
3645 preempt_disable();
3646 event_cpu = __perf_event_read_cpu(event, event_cpu);
3647
3648 /*
3649 * Purposely ignore the smp_call_function_single() return
3650 * value.
3651 *
3652 * If event_cpu isn't a valid CPU it means the event got
3653 * scheduled out and that will have updated the event count.
3654 *
3655 * Therefore, either way, we'll have an up-to-date event count
3656 * after this.
3657 */
3658 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
3659 preempt_enable();
3660 ret = data.ret;
3661 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
3662 struct perf_event_context *ctx = event->ctx;
3663 unsigned long flags;
3664
3665 raw_spin_lock_irqsave(&ctx->lock, flags);
3666 /*
3667 * may read while context is not active
3668 * (e.g., thread is blocked), in that case
3669 * we cannot update context time
3670 */
3671 if (ctx->is_active) {
3672 update_context_time(ctx);
3673 update_cgrp_time_from_event(event);
3674 }
3675 if (group)
3676 update_group_times(event);
3677 else
3678 update_event_times(event);
3679 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3680 }
3681
3682 return ret;
3683 }
3684
3685 /*
3686 * Initialize the perf_event context in a task_struct:
3687 */
3688 static void __perf_event_init_context(struct perf_event_context *ctx)
3689 {
3690 raw_spin_lock_init(&ctx->lock);
3691 mutex_init(&ctx->mutex);
3692 INIT_LIST_HEAD(&ctx->active_ctx_list);
3693 INIT_LIST_HEAD(&ctx->pinned_groups);
3694 INIT_LIST_HEAD(&ctx->flexible_groups);
3695 INIT_LIST_HEAD(&ctx->event_list);
3696 atomic_set(&ctx->refcount, 1);
3697 }
3698
3699 static struct perf_event_context *
3700 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3701 {
3702 struct perf_event_context *ctx;
3703
3704 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3705 if (!ctx)
3706 return NULL;
3707
3708 __perf_event_init_context(ctx);
3709 if (task) {
3710 ctx->task = task;
3711 get_task_struct(task);
3712 }
3713 ctx->pmu = pmu;
3714
3715 return ctx;
3716 }
3717
3718 static struct task_struct *
3719 find_lively_task_by_vpid(pid_t vpid)
3720 {
3721 struct task_struct *task;
3722
3723 rcu_read_lock();
3724 if (!vpid)
3725 task = current;
3726 else
3727 task = find_task_by_vpid(vpid);
3728 if (task)
3729 get_task_struct(task);
3730 rcu_read_unlock();
3731
3732 if (!task)
3733 return ERR_PTR(-ESRCH);
3734
3735 return task;
3736 }
3737
3738 /*
3739 * Returns a matching context with refcount and pincount.
3740 */
3741 static struct perf_event_context *
3742 find_get_context(struct pmu *pmu, struct task_struct *task,
3743 struct perf_event *event)
3744 {
3745 struct perf_event_context *ctx, *clone_ctx = NULL;
3746 struct perf_cpu_context *cpuctx;
3747 void *task_ctx_data = NULL;
3748 unsigned long flags;
3749 int ctxn, err;
3750 int cpu = event->cpu;
3751
3752 if (!task) {
3753 /* Must be root to operate on a CPU event: */
3754 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3755 return ERR_PTR(-EACCES);
3756
3757 /*
3758 * We could be clever and allow to attach a event to an
3759 * offline CPU and activate it when the CPU comes up, but
3760 * that's for later.
3761 */
3762 if (!cpu_online(cpu))
3763 return ERR_PTR(-ENODEV);
3764
3765 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3766 ctx = &cpuctx->ctx;
3767 get_ctx(ctx);
3768 ++ctx->pin_count;
3769
3770 return ctx;
3771 }
3772
3773 err = -EINVAL;
3774 ctxn = pmu->task_ctx_nr;
3775 if (ctxn < 0)
3776 goto errout;
3777
3778 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3779 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3780 if (!task_ctx_data) {
3781 err = -ENOMEM;
3782 goto errout;
3783 }
3784 }
3785
3786 retry:
3787 ctx = perf_lock_task_context(task, ctxn, &flags);
3788 if (ctx) {
3789 clone_ctx = unclone_ctx(ctx);
3790 ++ctx->pin_count;
3791
3792 if (task_ctx_data && !ctx->task_ctx_data) {
3793 ctx->task_ctx_data = task_ctx_data;
3794 task_ctx_data = NULL;
3795 }
3796 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3797
3798 if (clone_ctx)
3799 put_ctx(clone_ctx);
3800 } else {
3801 ctx = alloc_perf_context(pmu, task);
3802 err = -ENOMEM;
3803 if (!ctx)
3804 goto errout;
3805
3806 if (task_ctx_data) {
3807 ctx->task_ctx_data = task_ctx_data;
3808 task_ctx_data = NULL;
3809 }
3810
3811 err = 0;
3812 mutex_lock(&task->perf_event_mutex);
3813 /*
3814 * If it has already passed perf_event_exit_task().
3815 * we must see PF_EXITING, it takes this mutex too.
3816 */
3817 if (task->flags & PF_EXITING)
3818 err = -ESRCH;
3819 else if (task->perf_event_ctxp[ctxn])
3820 err = -EAGAIN;
3821 else {
3822 get_ctx(ctx);
3823 ++ctx->pin_count;
3824 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3825 }
3826 mutex_unlock(&task->perf_event_mutex);
3827
3828 if (unlikely(err)) {
3829 put_ctx(ctx);
3830
3831 if (err == -EAGAIN)
3832 goto retry;
3833 goto errout;
3834 }
3835 }
3836
3837 kfree(task_ctx_data);
3838 return ctx;
3839
3840 errout:
3841 kfree(task_ctx_data);
3842 return ERR_PTR(err);
3843 }
3844
3845 static void perf_event_free_filter(struct perf_event *event);
3846 static void perf_event_free_bpf_prog(struct perf_event *event);
3847
3848 static void free_event_rcu(struct rcu_head *head)
3849 {
3850 struct perf_event *event;
3851
3852 event = container_of(head, struct perf_event, rcu_head);
3853 if (event->ns)
3854 put_pid_ns(event->ns);
3855 perf_event_free_filter(event);
3856 kfree(event);
3857 }
3858
3859 static void ring_buffer_attach(struct perf_event *event,
3860 struct ring_buffer *rb);
3861
3862 static void detach_sb_event(struct perf_event *event)
3863 {
3864 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
3865
3866 raw_spin_lock(&pel->lock);
3867 list_del_rcu(&event->sb_list);
3868 raw_spin_unlock(&pel->lock);
3869 }
3870
3871 static bool is_sb_event(struct perf_event *event)
3872 {
3873 struct perf_event_attr *attr = &event->attr;
3874
3875 if (event->parent)
3876 return false;
3877
3878 if (event->attach_state & PERF_ATTACH_TASK)
3879 return false;
3880
3881 if (attr->mmap || attr->mmap_data || attr->mmap2 ||
3882 attr->comm || attr->comm_exec ||
3883 attr->task ||
3884 attr->context_switch)
3885 return true;
3886 return false;
3887 }
3888
3889 static void unaccount_pmu_sb_event(struct perf_event *event)
3890 {
3891 if (is_sb_event(event))
3892 detach_sb_event(event);
3893 }
3894
3895 static void unaccount_event_cpu(struct perf_event *event, int cpu)
3896 {
3897 if (event->parent)
3898 return;
3899
3900 if (is_cgroup_event(event))
3901 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3902 }
3903
3904 #ifdef CONFIG_NO_HZ_FULL
3905 static DEFINE_SPINLOCK(nr_freq_lock);
3906 #endif
3907
3908 static void unaccount_freq_event_nohz(void)
3909 {
3910 #ifdef CONFIG_NO_HZ_FULL
3911 spin_lock(&nr_freq_lock);
3912 if (atomic_dec_and_test(&nr_freq_events))
3913 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
3914 spin_unlock(&nr_freq_lock);
3915 #endif
3916 }
3917
3918 static void unaccount_freq_event(void)
3919 {
3920 if (tick_nohz_full_enabled())
3921 unaccount_freq_event_nohz();
3922 else
3923 atomic_dec(&nr_freq_events);
3924 }
3925
3926 static void unaccount_event(struct perf_event *event)
3927 {
3928 bool dec = false;
3929
3930 if (event->parent)
3931 return;
3932
3933 if (event->attach_state & PERF_ATTACH_TASK)
3934 dec = true;
3935 if (event->attr.mmap || event->attr.mmap_data)
3936 atomic_dec(&nr_mmap_events);
3937 if (event->attr.comm)
3938 atomic_dec(&nr_comm_events);
3939 if (event->attr.task)
3940 atomic_dec(&nr_task_events);
3941 if (event->attr.freq)
3942 unaccount_freq_event();
3943 if (event->attr.context_switch) {
3944 dec = true;
3945 atomic_dec(&nr_switch_events);
3946 }
3947 if (is_cgroup_event(event))
3948 dec = true;
3949 if (has_branch_stack(event))
3950 dec = true;
3951
3952 if (dec) {
3953 if (!atomic_add_unless(&perf_sched_count, -1, 1))
3954 schedule_delayed_work(&perf_sched_work, HZ);
3955 }
3956
3957 unaccount_event_cpu(event, event->cpu);
3958
3959 unaccount_pmu_sb_event(event);
3960 }
3961
3962 static void perf_sched_delayed(struct work_struct *work)
3963 {
3964 mutex_lock(&perf_sched_mutex);
3965 if (atomic_dec_and_test(&perf_sched_count))
3966 static_branch_disable(&perf_sched_events);
3967 mutex_unlock(&perf_sched_mutex);
3968 }
3969
3970 /*
3971 * The following implement mutual exclusion of events on "exclusive" pmus
3972 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3973 * at a time, so we disallow creating events that might conflict, namely:
3974 *
3975 * 1) cpu-wide events in the presence of per-task events,
3976 * 2) per-task events in the presence of cpu-wide events,
3977 * 3) two matching events on the same context.
3978 *
3979 * The former two cases are handled in the allocation path (perf_event_alloc(),
3980 * _free_event()), the latter -- before the first perf_install_in_context().
3981 */
3982 static int exclusive_event_init(struct perf_event *event)
3983 {
3984 struct pmu *pmu = event->pmu;
3985
3986 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3987 return 0;
3988
3989 /*
3990 * Prevent co-existence of per-task and cpu-wide events on the
3991 * same exclusive pmu.
3992 *
3993 * Negative pmu::exclusive_cnt means there are cpu-wide
3994 * events on this "exclusive" pmu, positive means there are
3995 * per-task events.
3996 *
3997 * Since this is called in perf_event_alloc() path, event::ctx
3998 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
3999 * to mean "per-task event", because unlike other attach states it
4000 * never gets cleared.
4001 */
4002 if (event->attach_state & PERF_ATTACH_TASK) {
4003 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4004 return -EBUSY;
4005 } else {
4006 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4007 return -EBUSY;
4008 }
4009
4010 return 0;
4011 }
4012
4013 static void exclusive_event_destroy(struct perf_event *event)
4014 {
4015 struct pmu *pmu = event->pmu;
4016
4017 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4018 return;
4019
4020 /* see comment in exclusive_event_init() */
4021 if (event->attach_state & PERF_ATTACH_TASK)
4022 atomic_dec(&pmu->exclusive_cnt);
4023 else
4024 atomic_inc(&pmu->exclusive_cnt);
4025 }
4026
4027 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4028 {
4029 if ((e1->pmu == e2->pmu) &&
4030 (e1->cpu == e2->cpu ||
4031 e1->cpu == -1 ||
4032 e2->cpu == -1))
4033 return true;
4034 return false;
4035 }
4036
4037 /* Called under the same ctx::mutex as perf_install_in_context() */
4038 static bool exclusive_event_installable(struct perf_event *event,
4039 struct perf_event_context *ctx)
4040 {
4041 struct perf_event *iter_event;
4042 struct pmu *pmu = event->pmu;
4043
4044 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4045 return true;
4046
4047 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4048 if (exclusive_event_match(iter_event, event))
4049 return false;
4050 }
4051
4052 return true;
4053 }
4054
4055 static void perf_addr_filters_splice(struct perf_event *event,
4056 struct list_head *head);
4057
4058 static void _free_event(struct perf_event *event)
4059 {
4060 irq_work_sync(&event->pending);
4061
4062 unaccount_event(event);
4063
4064 if (event->rb) {
4065 /*
4066 * Can happen when we close an event with re-directed output.
4067 *
4068 * Since we have a 0 refcount, perf_mmap_close() will skip
4069 * over us; possibly making our ring_buffer_put() the last.
4070 */
4071 mutex_lock(&event->mmap_mutex);
4072 ring_buffer_attach(event, NULL);
4073 mutex_unlock(&event->mmap_mutex);
4074 }
4075
4076 if (is_cgroup_event(event))
4077 perf_detach_cgroup(event);
4078
4079 if (!event->parent) {
4080 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4081 put_callchain_buffers();
4082 }
4083
4084 perf_event_free_bpf_prog(event);
4085 perf_addr_filters_splice(event, NULL);
4086 kfree(event->addr_filters_offs);
4087
4088 if (event->destroy)
4089 event->destroy(event);
4090
4091 if (event->ctx)
4092 put_ctx(event->ctx);
4093
4094 exclusive_event_destroy(event);
4095 module_put(event->pmu->module);
4096
4097 call_rcu(&event->rcu_head, free_event_rcu);
4098 }
4099
4100 /*
4101 * Used to free events which have a known refcount of 1, such as in error paths
4102 * where the event isn't exposed yet and inherited events.
4103 */
4104 static void free_event(struct perf_event *event)
4105 {
4106 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4107 "unexpected event refcount: %ld; ptr=%p\n",
4108 atomic_long_read(&event->refcount), event)) {
4109 /* leak to avoid use-after-free */
4110 return;
4111 }
4112
4113 _free_event(event);
4114 }
4115
4116 /*
4117 * Remove user event from the owner task.
4118 */
4119 static void perf_remove_from_owner(struct perf_event *event)
4120 {
4121 struct task_struct *owner;
4122
4123 rcu_read_lock();
4124 /*
4125 * Matches the smp_store_release() in perf_event_exit_task(). If we
4126 * observe !owner it means the list deletion is complete and we can
4127 * indeed free this event, otherwise we need to serialize on
4128 * owner->perf_event_mutex.
4129 */
4130 owner = lockless_dereference(event->owner);
4131 if (owner) {
4132 /*
4133 * Since delayed_put_task_struct() also drops the last
4134 * task reference we can safely take a new reference
4135 * while holding the rcu_read_lock().
4136 */
4137 get_task_struct(owner);
4138 }
4139 rcu_read_unlock();
4140
4141 if (owner) {
4142 /*
4143 * If we're here through perf_event_exit_task() we're already
4144 * holding ctx->mutex which would be an inversion wrt. the
4145 * normal lock order.
4146 *
4147 * However we can safely take this lock because its the child
4148 * ctx->mutex.
4149 */
4150 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4151
4152 /*
4153 * We have to re-check the event->owner field, if it is cleared
4154 * we raced with perf_event_exit_task(), acquiring the mutex
4155 * ensured they're done, and we can proceed with freeing the
4156 * event.
4157 */
4158 if (event->owner) {
4159 list_del_init(&event->owner_entry);
4160 smp_store_release(&event->owner, NULL);
4161 }
4162 mutex_unlock(&owner->perf_event_mutex);
4163 put_task_struct(owner);
4164 }
4165 }
4166
4167 static void put_event(struct perf_event *event)
4168 {
4169 if (!atomic_long_dec_and_test(&event->refcount))
4170 return;
4171
4172 _free_event(event);
4173 }
4174
4175 /*
4176 * Kill an event dead; while event:refcount will preserve the event
4177 * object, it will not preserve its functionality. Once the last 'user'
4178 * gives up the object, we'll destroy the thing.
4179 */
4180 int perf_event_release_kernel(struct perf_event *event)
4181 {
4182 struct perf_event_context *ctx = event->ctx;
4183 struct perf_event *child, *tmp;
4184
4185 /*
4186 * If we got here through err_file: fput(event_file); we will not have
4187 * attached to a context yet.
4188 */
4189 if (!ctx) {
4190 WARN_ON_ONCE(event->attach_state &
4191 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4192 goto no_ctx;
4193 }
4194
4195 if (!is_kernel_event(event))
4196 perf_remove_from_owner(event);
4197
4198 ctx = perf_event_ctx_lock(event);
4199 WARN_ON_ONCE(ctx->parent_ctx);
4200 perf_remove_from_context(event, DETACH_GROUP);
4201
4202 raw_spin_lock_irq(&ctx->lock);
4203 /*
4204 * Mark this even as STATE_DEAD, there is no external reference to it
4205 * anymore.
4206 *
4207 * Anybody acquiring event->child_mutex after the below loop _must_
4208 * also see this, most importantly inherit_event() which will avoid
4209 * placing more children on the list.
4210 *
4211 * Thus this guarantees that we will in fact observe and kill _ALL_
4212 * child events.
4213 */
4214 event->state = PERF_EVENT_STATE_DEAD;
4215 raw_spin_unlock_irq(&ctx->lock);
4216
4217 perf_event_ctx_unlock(event, ctx);
4218
4219 again:
4220 mutex_lock(&event->child_mutex);
4221 list_for_each_entry(child, &event->child_list, child_list) {
4222
4223 /*
4224 * Cannot change, child events are not migrated, see the
4225 * comment with perf_event_ctx_lock_nested().
4226 */
4227 ctx = lockless_dereference(child->ctx);
4228 /*
4229 * Since child_mutex nests inside ctx::mutex, we must jump
4230 * through hoops. We start by grabbing a reference on the ctx.
4231 *
4232 * Since the event cannot get freed while we hold the
4233 * child_mutex, the context must also exist and have a !0
4234 * reference count.
4235 */
4236 get_ctx(ctx);
4237
4238 /*
4239 * Now that we have a ctx ref, we can drop child_mutex, and
4240 * acquire ctx::mutex without fear of it going away. Then we
4241 * can re-acquire child_mutex.
4242 */
4243 mutex_unlock(&event->child_mutex);
4244 mutex_lock(&ctx->mutex);
4245 mutex_lock(&event->child_mutex);
4246
4247 /*
4248 * Now that we hold ctx::mutex and child_mutex, revalidate our
4249 * state, if child is still the first entry, it didn't get freed
4250 * and we can continue doing so.
4251 */
4252 tmp = list_first_entry_or_null(&event->child_list,
4253 struct perf_event, child_list);
4254 if (tmp == child) {
4255 perf_remove_from_context(child, DETACH_GROUP);
4256 list_del(&child->child_list);
4257 free_event(child);
4258 /*
4259 * This matches the refcount bump in inherit_event();
4260 * this can't be the last reference.
4261 */
4262 put_event(event);
4263 }
4264
4265 mutex_unlock(&event->child_mutex);
4266 mutex_unlock(&ctx->mutex);
4267 put_ctx(ctx);
4268 goto again;
4269 }
4270 mutex_unlock(&event->child_mutex);
4271
4272 no_ctx:
4273 put_event(event); /* Must be the 'last' reference */
4274 return 0;
4275 }
4276 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4277
4278 /*
4279 * Called when the last reference to the file is gone.
4280 */
4281 static int perf_release(struct inode *inode, struct file *file)
4282 {
4283 perf_event_release_kernel(file->private_data);
4284 return 0;
4285 }
4286
4287 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4288 {
4289 struct perf_event *child;
4290 u64 total = 0;
4291
4292 *enabled = 0;
4293 *running = 0;
4294
4295 mutex_lock(&event->child_mutex);
4296
4297 (void)perf_event_read(event, false);
4298 total += perf_event_count(event);
4299
4300 *enabled += event->total_time_enabled +
4301 atomic64_read(&event->child_total_time_enabled);
4302 *running += event->total_time_running +
4303 atomic64_read(&event->child_total_time_running);
4304
4305 list_for_each_entry(child, &event->child_list, child_list) {
4306 (void)perf_event_read(child, false);
4307 total += perf_event_count(child);
4308 *enabled += child->total_time_enabled;
4309 *running += child->total_time_running;
4310 }
4311 mutex_unlock(&event->child_mutex);
4312
4313 return total;
4314 }
4315 EXPORT_SYMBOL_GPL(perf_event_read_value);
4316
4317 static int __perf_read_group_add(struct perf_event *leader,
4318 u64 read_format, u64 *values)
4319 {
4320 struct perf_event *sub;
4321 int n = 1; /* skip @nr */
4322 int ret;
4323
4324 ret = perf_event_read(leader, true);
4325 if (ret)
4326 return ret;
4327
4328 /*
4329 * Since we co-schedule groups, {enabled,running} times of siblings
4330 * will be identical to those of the leader, so we only publish one
4331 * set.
4332 */
4333 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4334 values[n++] += leader->total_time_enabled +
4335 atomic64_read(&leader->child_total_time_enabled);
4336 }
4337
4338 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4339 values[n++] += leader->total_time_running +
4340 atomic64_read(&leader->child_total_time_running);
4341 }
4342
4343 /*
4344 * Write {count,id} tuples for every sibling.
4345 */
4346 values[n++] += perf_event_count(leader);
4347 if (read_format & PERF_FORMAT_ID)
4348 values[n++] = primary_event_id(leader);
4349
4350 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4351 values[n++] += perf_event_count(sub);
4352 if (read_format & PERF_FORMAT_ID)
4353 values[n++] = primary_event_id(sub);
4354 }
4355
4356 return 0;
4357 }
4358
4359 static int perf_read_group(struct perf_event *event,
4360 u64 read_format, char __user *buf)
4361 {
4362 struct perf_event *leader = event->group_leader, *child;
4363 struct perf_event_context *ctx = leader->ctx;
4364 int ret;
4365 u64 *values;
4366
4367 lockdep_assert_held(&ctx->mutex);
4368
4369 values = kzalloc(event->read_size, GFP_KERNEL);
4370 if (!values)
4371 return -ENOMEM;
4372
4373 values[0] = 1 + leader->nr_siblings;
4374
4375 /*
4376 * By locking the child_mutex of the leader we effectively
4377 * lock the child list of all siblings.. XXX explain how.
4378 */
4379 mutex_lock(&leader->child_mutex);
4380
4381 ret = __perf_read_group_add(leader, read_format, values);
4382 if (ret)
4383 goto unlock;
4384
4385 list_for_each_entry(child, &leader->child_list, child_list) {
4386 ret = __perf_read_group_add(child, read_format, values);
4387 if (ret)
4388 goto unlock;
4389 }
4390
4391 mutex_unlock(&leader->child_mutex);
4392
4393 ret = event->read_size;
4394 if (copy_to_user(buf, values, event->read_size))
4395 ret = -EFAULT;
4396 goto out;
4397
4398 unlock:
4399 mutex_unlock(&leader->child_mutex);
4400 out:
4401 kfree(values);
4402 return ret;
4403 }
4404
4405 static int perf_read_one(struct perf_event *event,
4406 u64 read_format, char __user *buf)
4407 {
4408 u64 enabled, running;
4409 u64 values[4];
4410 int n = 0;
4411
4412 values[n++] = perf_event_read_value(event, &enabled, &running);
4413 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4414 values[n++] = enabled;
4415 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4416 values[n++] = running;
4417 if (read_format & PERF_FORMAT_ID)
4418 values[n++] = primary_event_id(event);
4419
4420 if (copy_to_user(buf, values, n * sizeof(u64)))
4421 return -EFAULT;
4422
4423 return n * sizeof(u64);
4424 }
4425
4426 static bool is_event_hup(struct perf_event *event)
4427 {
4428 bool no_children;
4429
4430 if (event->state > PERF_EVENT_STATE_EXIT)
4431 return false;
4432
4433 mutex_lock(&event->child_mutex);
4434 no_children = list_empty(&event->child_list);
4435 mutex_unlock(&event->child_mutex);
4436 return no_children;
4437 }
4438
4439 /*
4440 * Read the performance event - simple non blocking version for now
4441 */
4442 static ssize_t
4443 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4444 {
4445 u64 read_format = event->attr.read_format;
4446 int ret;
4447
4448 /*
4449 * Return end-of-file for a read on a event that is in
4450 * error state (i.e. because it was pinned but it couldn't be
4451 * scheduled on to the CPU at some point).
4452 */
4453 if (event->state == PERF_EVENT_STATE_ERROR)
4454 return 0;
4455
4456 if (count < event->read_size)
4457 return -ENOSPC;
4458
4459 WARN_ON_ONCE(event->ctx->parent_ctx);
4460 if (read_format & PERF_FORMAT_GROUP)
4461 ret = perf_read_group(event, read_format, buf);
4462 else
4463 ret = perf_read_one(event, read_format, buf);
4464
4465 return ret;
4466 }
4467
4468 static ssize_t
4469 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4470 {
4471 struct perf_event *event = file->private_data;
4472 struct perf_event_context *ctx;
4473 int ret;
4474
4475 ctx = perf_event_ctx_lock(event);
4476 ret = __perf_read(event, buf, count);
4477 perf_event_ctx_unlock(event, ctx);
4478
4479 return ret;
4480 }
4481
4482 static unsigned int perf_poll(struct file *file, poll_table *wait)
4483 {
4484 struct perf_event *event = file->private_data;
4485 struct ring_buffer *rb;
4486 unsigned int events = POLLHUP;
4487
4488 poll_wait(file, &event->waitq, wait);
4489
4490 if (is_event_hup(event))
4491 return events;
4492
4493 /*
4494 * Pin the event->rb by taking event->mmap_mutex; otherwise
4495 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4496 */
4497 mutex_lock(&event->mmap_mutex);
4498 rb = event->rb;
4499 if (rb)
4500 events = atomic_xchg(&rb->poll, 0);
4501 mutex_unlock(&event->mmap_mutex);
4502 return events;
4503 }
4504
4505 static void _perf_event_reset(struct perf_event *event)
4506 {
4507 (void)perf_event_read(event, false);
4508 local64_set(&event->count, 0);
4509 perf_event_update_userpage(event);
4510 }
4511
4512 /*
4513 * Holding the top-level event's child_mutex means that any
4514 * descendant process that has inherited this event will block
4515 * in perf_event_exit_event() if it goes to exit, thus satisfying the
4516 * task existence requirements of perf_event_enable/disable.
4517 */
4518 static void perf_event_for_each_child(struct perf_event *event,
4519 void (*func)(struct perf_event *))
4520 {
4521 struct perf_event *child;
4522
4523 WARN_ON_ONCE(event->ctx->parent_ctx);
4524
4525 mutex_lock(&event->child_mutex);
4526 func(event);
4527 list_for_each_entry(child, &event->child_list, child_list)
4528 func(child);
4529 mutex_unlock(&event->child_mutex);
4530 }
4531
4532 static void perf_event_for_each(struct perf_event *event,
4533 void (*func)(struct perf_event *))
4534 {
4535 struct perf_event_context *ctx = event->ctx;
4536 struct perf_event *sibling;
4537
4538 lockdep_assert_held(&ctx->mutex);
4539
4540 event = event->group_leader;
4541
4542 perf_event_for_each_child(event, func);
4543 list_for_each_entry(sibling, &event->sibling_list, group_entry)
4544 perf_event_for_each_child(sibling, func);
4545 }
4546
4547 static void __perf_event_period(struct perf_event *event,
4548 struct perf_cpu_context *cpuctx,
4549 struct perf_event_context *ctx,
4550 void *info)
4551 {
4552 u64 value = *((u64 *)info);
4553 bool active;
4554
4555 if (event->attr.freq) {
4556 event->attr.sample_freq = value;
4557 } else {
4558 event->attr.sample_period = value;
4559 event->hw.sample_period = value;
4560 }
4561
4562 active = (event->state == PERF_EVENT_STATE_ACTIVE);
4563 if (active) {
4564 perf_pmu_disable(ctx->pmu);
4565 /*
4566 * We could be throttled; unthrottle now to avoid the tick
4567 * trying to unthrottle while we already re-started the event.
4568 */
4569 if (event->hw.interrupts == MAX_INTERRUPTS) {
4570 event->hw.interrupts = 0;
4571 perf_log_throttle(event, 1);
4572 }
4573 event->pmu->stop(event, PERF_EF_UPDATE);
4574 }
4575
4576 local64_set(&event->hw.period_left, 0);
4577
4578 if (active) {
4579 event->pmu->start(event, PERF_EF_RELOAD);
4580 perf_pmu_enable(ctx->pmu);
4581 }
4582 }
4583
4584 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4585 {
4586 u64 value;
4587
4588 if (!is_sampling_event(event))
4589 return -EINVAL;
4590
4591 if (copy_from_user(&value, arg, sizeof(value)))
4592 return -EFAULT;
4593
4594 if (!value)
4595 return -EINVAL;
4596
4597 if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4598 return -EINVAL;
4599
4600 event_function_call(event, __perf_event_period, &value);
4601
4602 return 0;
4603 }
4604
4605 static const struct file_operations perf_fops;
4606
4607 static inline int perf_fget_light(int fd, struct fd *p)
4608 {
4609 struct fd f = fdget(fd);
4610 if (!f.file)
4611 return -EBADF;
4612
4613 if (f.file->f_op != &perf_fops) {
4614 fdput(f);
4615 return -EBADF;
4616 }
4617 *p = f;
4618 return 0;
4619 }
4620
4621 static int perf_event_set_output(struct perf_event *event,
4622 struct perf_event *output_event);
4623 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4624 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4625
4626 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4627 {
4628 void (*func)(struct perf_event *);
4629 u32 flags = arg;
4630
4631 switch (cmd) {
4632 case PERF_EVENT_IOC_ENABLE:
4633 func = _perf_event_enable;
4634 break;
4635 case PERF_EVENT_IOC_DISABLE:
4636 func = _perf_event_disable;
4637 break;
4638 case PERF_EVENT_IOC_RESET:
4639 func = _perf_event_reset;
4640 break;
4641
4642 case PERF_EVENT_IOC_REFRESH:
4643 return _perf_event_refresh(event, arg);
4644
4645 case PERF_EVENT_IOC_PERIOD:
4646 return perf_event_period(event, (u64 __user *)arg);
4647
4648 case PERF_EVENT_IOC_ID:
4649 {
4650 u64 id = primary_event_id(event);
4651
4652 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4653 return -EFAULT;
4654 return 0;
4655 }
4656
4657 case PERF_EVENT_IOC_SET_OUTPUT:
4658 {
4659 int ret;
4660 if (arg != -1) {
4661 struct perf_event *output_event;
4662 struct fd output;
4663 ret = perf_fget_light(arg, &output);
4664 if (ret)
4665 return ret;
4666 output_event = output.file->private_data;
4667 ret = perf_event_set_output(event, output_event);
4668 fdput(output);
4669 } else {
4670 ret = perf_event_set_output(event, NULL);
4671 }
4672 return ret;
4673 }
4674
4675 case PERF_EVENT_IOC_SET_FILTER:
4676 return perf_event_set_filter(event, (void __user *)arg);
4677
4678 case PERF_EVENT_IOC_SET_BPF:
4679 return perf_event_set_bpf_prog(event, arg);
4680
4681 case PERF_EVENT_IOC_PAUSE_OUTPUT: {
4682 struct ring_buffer *rb;
4683
4684 rcu_read_lock();
4685 rb = rcu_dereference(event->rb);
4686 if (!rb || !rb->nr_pages) {
4687 rcu_read_unlock();
4688 return -EINVAL;
4689 }
4690 rb_toggle_paused(rb, !!arg);
4691 rcu_read_unlock();
4692 return 0;
4693 }
4694 default:
4695 return -ENOTTY;
4696 }
4697
4698 if (flags & PERF_IOC_FLAG_GROUP)
4699 perf_event_for_each(event, func);
4700 else
4701 perf_event_for_each_child(event, func);
4702
4703 return 0;
4704 }
4705
4706 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4707 {
4708 struct perf_event *event = file->private_data;
4709 struct perf_event_context *ctx;
4710 long ret;
4711
4712 ctx = perf_event_ctx_lock(event);
4713 ret = _perf_ioctl(event, cmd, arg);
4714 perf_event_ctx_unlock(event, ctx);
4715
4716 return ret;
4717 }
4718
4719 #ifdef CONFIG_COMPAT
4720 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4721 unsigned long arg)
4722 {
4723 switch (_IOC_NR(cmd)) {
4724 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4725 case _IOC_NR(PERF_EVENT_IOC_ID):
4726 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4727 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4728 cmd &= ~IOCSIZE_MASK;
4729 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4730 }
4731 break;
4732 }
4733 return perf_ioctl(file, cmd, arg);
4734 }
4735 #else
4736 # define perf_compat_ioctl NULL
4737 #endif
4738
4739 int perf_event_task_enable(void)
4740 {
4741 struct perf_event_context *ctx;
4742 struct perf_event *event;
4743
4744 mutex_lock(&current->perf_event_mutex);
4745 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4746 ctx = perf_event_ctx_lock(event);
4747 perf_event_for_each_child(event, _perf_event_enable);
4748 perf_event_ctx_unlock(event, ctx);
4749 }
4750 mutex_unlock(&current->perf_event_mutex);
4751
4752 return 0;
4753 }
4754
4755 int perf_event_task_disable(void)
4756 {
4757 struct perf_event_context *ctx;
4758 struct perf_event *event;
4759
4760 mutex_lock(&current->perf_event_mutex);
4761 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4762 ctx = perf_event_ctx_lock(event);
4763 perf_event_for_each_child(event, _perf_event_disable);
4764 perf_event_ctx_unlock(event, ctx);
4765 }
4766 mutex_unlock(&current->perf_event_mutex);
4767
4768 return 0;
4769 }
4770
4771 static int perf_event_index(struct perf_event *event)
4772 {
4773 if (event->hw.state & PERF_HES_STOPPED)
4774 return 0;
4775
4776 if (event->state != PERF_EVENT_STATE_ACTIVE)
4777 return 0;
4778
4779 return event->pmu->event_idx(event);
4780 }
4781
4782 static void calc_timer_values(struct perf_event *event,
4783 u64 *now,
4784 u64 *enabled,
4785 u64 *running)
4786 {
4787 u64 ctx_time;
4788
4789 *now = perf_clock();
4790 ctx_time = event->shadow_ctx_time + *now;
4791 *enabled = ctx_time - event->tstamp_enabled;
4792 *running = ctx_time - event->tstamp_running;
4793 }
4794
4795 static void perf_event_init_userpage(struct perf_event *event)
4796 {
4797 struct perf_event_mmap_page *userpg;
4798 struct ring_buffer *rb;
4799
4800 rcu_read_lock();
4801 rb = rcu_dereference(event->rb);
4802 if (!rb)
4803 goto unlock;
4804
4805 userpg = rb->user_page;
4806
4807 /* Allow new userspace to detect that bit 0 is deprecated */
4808 userpg->cap_bit0_is_deprecated = 1;
4809 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4810 userpg->data_offset = PAGE_SIZE;
4811 userpg->data_size = perf_data_size(rb);
4812
4813 unlock:
4814 rcu_read_unlock();
4815 }
4816
4817 void __weak arch_perf_update_userpage(
4818 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4819 {
4820 }
4821
4822 /*
4823 * Callers need to ensure there can be no nesting of this function, otherwise
4824 * the seqlock logic goes bad. We can not serialize this because the arch
4825 * code calls this from NMI context.
4826 */
4827 void perf_event_update_userpage(struct perf_event *event)
4828 {
4829 struct perf_event_mmap_page *userpg;
4830 struct ring_buffer *rb;
4831 u64 enabled, running, now;
4832
4833 rcu_read_lock();
4834 rb = rcu_dereference(event->rb);
4835 if (!rb)
4836 goto unlock;
4837
4838 /*
4839 * compute total_time_enabled, total_time_running
4840 * based on snapshot values taken when the event
4841 * was last scheduled in.
4842 *
4843 * we cannot simply called update_context_time()
4844 * because of locking issue as we can be called in
4845 * NMI context
4846 */
4847 calc_timer_values(event, &now, &enabled, &running);
4848
4849 userpg = rb->user_page;
4850 /*
4851 * Disable preemption so as to not let the corresponding user-space
4852 * spin too long if we get preempted.
4853 */
4854 preempt_disable();
4855 ++userpg->lock;
4856 barrier();
4857 userpg->index = perf_event_index(event);
4858 userpg->offset = perf_event_count(event);
4859 if (userpg->index)
4860 userpg->offset -= local64_read(&event->hw.prev_count);
4861
4862 userpg->time_enabled = enabled +
4863 atomic64_read(&event->child_total_time_enabled);
4864
4865 userpg->time_running = running +
4866 atomic64_read(&event->child_total_time_running);
4867
4868 arch_perf_update_userpage(event, userpg, now);
4869
4870 barrier();
4871 ++userpg->lock;
4872 preempt_enable();
4873 unlock:
4874 rcu_read_unlock();
4875 }
4876
4877 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
4878 {
4879 struct perf_event *event = vma->vm_file->private_data;
4880 struct ring_buffer *rb;
4881 int ret = VM_FAULT_SIGBUS;
4882
4883 if (vmf->flags & FAULT_FLAG_MKWRITE) {
4884 if (vmf->pgoff == 0)
4885 ret = 0;
4886 return ret;
4887 }
4888
4889 rcu_read_lock();
4890 rb = rcu_dereference(event->rb);
4891 if (!rb)
4892 goto unlock;
4893
4894 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4895 goto unlock;
4896
4897 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4898 if (!vmf->page)
4899 goto unlock;
4900
4901 get_page(vmf->page);
4902 vmf->page->mapping = vma->vm_file->f_mapping;
4903 vmf->page->index = vmf->pgoff;
4904
4905 ret = 0;
4906 unlock:
4907 rcu_read_unlock();
4908
4909 return ret;
4910 }
4911
4912 static void ring_buffer_attach(struct perf_event *event,
4913 struct ring_buffer *rb)
4914 {
4915 struct ring_buffer *old_rb = NULL;
4916 unsigned long flags;
4917
4918 if (event->rb) {
4919 /*
4920 * Should be impossible, we set this when removing
4921 * event->rb_entry and wait/clear when adding event->rb_entry.
4922 */
4923 WARN_ON_ONCE(event->rcu_pending);
4924
4925 old_rb = event->rb;
4926 spin_lock_irqsave(&old_rb->event_lock, flags);
4927 list_del_rcu(&event->rb_entry);
4928 spin_unlock_irqrestore(&old_rb->event_lock, flags);
4929
4930 event->rcu_batches = get_state_synchronize_rcu();
4931 event->rcu_pending = 1;
4932 }
4933
4934 if (rb) {
4935 if (event->rcu_pending) {
4936 cond_synchronize_rcu(event->rcu_batches);
4937 event->rcu_pending = 0;
4938 }
4939
4940 spin_lock_irqsave(&rb->event_lock, flags);
4941 list_add_rcu(&event->rb_entry, &rb->event_list);
4942 spin_unlock_irqrestore(&rb->event_lock, flags);
4943 }
4944
4945 /*
4946 * Avoid racing with perf_mmap_close(AUX): stop the event
4947 * before swizzling the event::rb pointer; if it's getting
4948 * unmapped, its aux_mmap_count will be 0 and it won't
4949 * restart. See the comment in __perf_pmu_output_stop().
4950 *
4951 * Data will inevitably be lost when set_output is done in
4952 * mid-air, but then again, whoever does it like this is
4953 * not in for the data anyway.
4954 */
4955 if (has_aux(event))
4956 perf_event_stop(event, 0);
4957
4958 rcu_assign_pointer(event->rb, rb);
4959
4960 if (old_rb) {
4961 ring_buffer_put(old_rb);
4962 /*
4963 * Since we detached before setting the new rb, so that we
4964 * could attach the new rb, we could have missed a wakeup.
4965 * Provide it now.
4966 */
4967 wake_up_all(&event->waitq);
4968 }
4969 }
4970
4971 static void ring_buffer_wakeup(struct perf_event *event)
4972 {
4973 struct ring_buffer *rb;
4974
4975 rcu_read_lock();
4976 rb = rcu_dereference(event->rb);
4977 if (rb) {
4978 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
4979 wake_up_all(&event->waitq);
4980 }
4981 rcu_read_unlock();
4982 }
4983
4984 struct ring_buffer *ring_buffer_get(struct perf_event *event)
4985 {
4986 struct ring_buffer *rb;
4987
4988 rcu_read_lock();
4989 rb = rcu_dereference(event->rb);
4990 if (rb) {
4991 if (!atomic_inc_not_zero(&rb->refcount))
4992 rb = NULL;
4993 }
4994 rcu_read_unlock();
4995
4996 return rb;
4997 }
4998
4999 void ring_buffer_put(struct ring_buffer *rb)
5000 {
5001 if (!atomic_dec_and_test(&rb->refcount))
5002 return;
5003
5004 WARN_ON_ONCE(!list_empty(&rb->event_list));
5005
5006 call_rcu(&rb->rcu_head, rb_free_rcu);
5007 }
5008
5009 static void perf_mmap_open(struct vm_area_struct *vma)
5010 {
5011 struct perf_event *event = vma->vm_file->private_data;
5012
5013 atomic_inc(&event->mmap_count);
5014 atomic_inc(&event->rb->mmap_count);
5015
5016 if (vma->vm_pgoff)
5017 atomic_inc(&event->rb->aux_mmap_count);
5018
5019 if (event->pmu->event_mapped)
5020 event->pmu->event_mapped(event);
5021 }
5022
5023 static void perf_pmu_output_stop(struct perf_event *event);
5024
5025 /*
5026 * A buffer can be mmap()ed multiple times; either directly through the same
5027 * event, or through other events by use of perf_event_set_output().
5028 *
5029 * In order to undo the VM accounting done by perf_mmap() we need to destroy
5030 * the buffer here, where we still have a VM context. This means we need
5031 * to detach all events redirecting to us.
5032 */
5033 static void perf_mmap_close(struct vm_area_struct *vma)
5034 {
5035 struct perf_event *event = vma->vm_file->private_data;
5036
5037 struct ring_buffer *rb = ring_buffer_get(event);
5038 struct user_struct *mmap_user = rb->mmap_user;
5039 int mmap_locked = rb->mmap_locked;
5040 unsigned long size = perf_data_size(rb);
5041
5042 if (event->pmu->event_unmapped)
5043 event->pmu->event_unmapped(event);
5044
5045 /*
5046 * rb->aux_mmap_count will always drop before rb->mmap_count and
5047 * event->mmap_count, so it is ok to use event->mmap_mutex to
5048 * serialize with perf_mmap here.
5049 */
5050 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5051 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
5052 /*
5053 * Stop all AUX events that are writing to this buffer,
5054 * so that we can free its AUX pages and corresponding PMU
5055 * data. Note that after rb::aux_mmap_count dropped to zero,
5056 * they won't start any more (see perf_aux_output_begin()).
5057 */
5058 perf_pmu_output_stop(event);
5059
5060 /* now it's safe to free the pages */
5061 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
5062 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
5063
5064 /* this has to be the last one */
5065 rb_free_aux(rb);
5066 WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
5067
5068 mutex_unlock(&event->mmap_mutex);
5069 }
5070
5071 atomic_dec(&rb->mmap_count);
5072
5073 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5074 goto out_put;
5075
5076 ring_buffer_attach(event, NULL);
5077 mutex_unlock(&event->mmap_mutex);
5078
5079 /* If there's still other mmap()s of this buffer, we're done. */
5080 if (atomic_read(&rb->mmap_count))
5081 goto out_put;
5082
5083 /*
5084 * No other mmap()s, detach from all other events that might redirect
5085 * into the now unreachable buffer. Somewhat complicated by the
5086 * fact that rb::event_lock otherwise nests inside mmap_mutex.
5087 */
5088 again:
5089 rcu_read_lock();
5090 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5091 if (!atomic_long_inc_not_zero(&event->refcount)) {
5092 /*
5093 * This event is en-route to free_event() which will
5094 * detach it and remove it from the list.
5095 */
5096 continue;
5097 }
5098 rcu_read_unlock();
5099
5100 mutex_lock(&event->mmap_mutex);
5101 /*
5102 * Check we didn't race with perf_event_set_output() which can
5103 * swizzle the rb from under us while we were waiting to
5104 * acquire mmap_mutex.
5105 *
5106 * If we find a different rb; ignore this event, a next
5107 * iteration will no longer find it on the list. We have to
5108 * still restart the iteration to make sure we're not now
5109 * iterating the wrong list.
5110 */
5111 if (event->rb == rb)
5112 ring_buffer_attach(event, NULL);
5113
5114 mutex_unlock(&event->mmap_mutex);
5115 put_event(event);
5116
5117 /*
5118 * Restart the iteration; either we're on the wrong list or
5119 * destroyed its integrity by doing a deletion.
5120 */
5121 goto again;
5122 }
5123 rcu_read_unlock();
5124
5125 /*
5126 * It could be there's still a few 0-ref events on the list; they'll
5127 * get cleaned up by free_event() -- they'll also still have their
5128 * ref on the rb and will free it whenever they are done with it.
5129 *
5130 * Aside from that, this buffer is 'fully' detached and unmapped,
5131 * undo the VM accounting.
5132 */
5133
5134 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
5135 vma->vm_mm->pinned_vm -= mmap_locked;
5136 free_uid(mmap_user);
5137
5138 out_put:
5139 ring_buffer_put(rb); /* could be last */
5140 }
5141
5142 static const struct vm_operations_struct perf_mmap_vmops = {
5143 .open = perf_mmap_open,
5144 .close = perf_mmap_close, /* non mergable */
5145 .fault = perf_mmap_fault,
5146 .page_mkwrite = perf_mmap_fault,
5147 };
5148
5149 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5150 {
5151 struct perf_event *event = file->private_data;
5152 unsigned long user_locked, user_lock_limit;
5153 struct user_struct *user = current_user();
5154 unsigned long locked, lock_limit;
5155 struct ring_buffer *rb = NULL;
5156 unsigned long vma_size;
5157 unsigned long nr_pages;
5158 long user_extra = 0, extra = 0;
5159 int ret = 0, flags = 0;
5160
5161 /*
5162 * Don't allow mmap() of inherited per-task counters. This would
5163 * create a performance issue due to all children writing to the
5164 * same rb.
5165 */
5166 if (event->cpu == -1 && event->attr.inherit)
5167 return -EINVAL;
5168
5169 if (!(vma->vm_flags & VM_SHARED))
5170 return -EINVAL;
5171
5172 vma_size = vma->vm_end - vma->vm_start;
5173
5174 if (vma->vm_pgoff == 0) {
5175 nr_pages = (vma_size / PAGE_SIZE) - 1;
5176 } else {
5177 /*
5178 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5179 * mapped, all subsequent mappings should have the same size
5180 * and offset. Must be above the normal perf buffer.
5181 */
5182 u64 aux_offset, aux_size;
5183
5184 if (!event->rb)
5185 return -EINVAL;
5186
5187 nr_pages = vma_size / PAGE_SIZE;
5188
5189 mutex_lock(&event->mmap_mutex);
5190 ret = -EINVAL;
5191
5192 rb = event->rb;
5193 if (!rb)
5194 goto aux_unlock;
5195
5196 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
5197 aux_size = ACCESS_ONCE(rb->user_page->aux_size);
5198
5199 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5200 goto aux_unlock;
5201
5202 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5203 goto aux_unlock;
5204
5205 /* already mapped with a different offset */
5206 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5207 goto aux_unlock;
5208
5209 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5210 goto aux_unlock;
5211
5212 /* already mapped with a different size */
5213 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5214 goto aux_unlock;
5215
5216 if (!is_power_of_2(nr_pages))
5217 goto aux_unlock;
5218
5219 if (!atomic_inc_not_zero(&rb->mmap_count))
5220 goto aux_unlock;
5221
5222 if (rb_has_aux(rb)) {
5223 atomic_inc(&rb->aux_mmap_count);
5224 ret = 0;
5225 goto unlock;
5226 }
5227
5228 atomic_set(&rb->aux_mmap_count, 1);
5229 user_extra = nr_pages;
5230
5231 goto accounting;
5232 }
5233
5234 /*
5235 * If we have rb pages ensure they're a power-of-two number, so we
5236 * can do bitmasks instead of modulo.
5237 */
5238 if (nr_pages != 0 && !is_power_of_2(nr_pages))
5239 return -EINVAL;
5240
5241 if (vma_size != PAGE_SIZE * (1 + nr_pages))
5242 return -EINVAL;
5243
5244 WARN_ON_ONCE(event->ctx->parent_ctx);
5245 again:
5246 mutex_lock(&event->mmap_mutex);
5247 if (event->rb) {
5248 if (event->rb->nr_pages != nr_pages) {
5249 ret = -EINVAL;
5250 goto unlock;
5251 }
5252
5253 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5254 /*
5255 * Raced against perf_mmap_close() through
5256 * perf_event_set_output(). Try again, hope for better
5257 * luck.
5258 */
5259 mutex_unlock(&event->mmap_mutex);
5260 goto again;
5261 }
5262
5263 goto unlock;
5264 }
5265
5266 user_extra = nr_pages + 1;
5267
5268 accounting:
5269 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
5270
5271 /*
5272 * Increase the limit linearly with more CPUs:
5273 */
5274 user_lock_limit *= num_online_cpus();
5275
5276 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
5277
5278 if (user_locked > user_lock_limit)
5279 extra = user_locked - user_lock_limit;
5280
5281 lock_limit = rlimit(RLIMIT_MEMLOCK);
5282 lock_limit >>= PAGE_SHIFT;
5283 locked = vma->vm_mm->pinned_vm + extra;
5284
5285 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5286 !capable(CAP_IPC_LOCK)) {
5287 ret = -EPERM;
5288 goto unlock;
5289 }
5290
5291 WARN_ON(!rb && event->rb);
5292
5293 if (vma->vm_flags & VM_WRITE)
5294 flags |= RING_BUFFER_WRITABLE;
5295
5296 if (!rb) {
5297 rb = rb_alloc(nr_pages,
5298 event->attr.watermark ? event->attr.wakeup_watermark : 0,
5299 event->cpu, flags);
5300
5301 if (!rb) {
5302 ret = -ENOMEM;
5303 goto unlock;
5304 }
5305
5306 atomic_set(&rb->mmap_count, 1);
5307 rb->mmap_user = get_current_user();
5308 rb->mmap_locked = extra;
5309
5310 ring_buffer_attach(event, rb);
5311
5312 perf_event_init_userpage(event);
5313 perf_event_update_userpage(event);
5314 } else {
5315 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5316 event->attr.aux_watermark, flags);
5317 if (!ret)
5318 rb->aux_mmap_locked = extra;
5319 }
5320
5321 unlock:
5322 if (!ret) {
5323 atomic_long_add(user_extra, &user->locked_vm);
5324 vma->vm_mm->pinned_vm += extra;
5325
5326 atomic_inc(&event->mmap_count);
5327 } else if (rb) {
5328 atomic_dec(&rb->mmap_count);
5329 }
5330 aux_unlock:
5331 mutex_unlock(&event->mmap_mutex);
5332
5333 /*
5334 * Since pinned accounting is per vm we cannot allow fork() to copy our
5335 * vma.
5336 */
5337 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5338 vma->vm_ops = &perf_mmap_vmops;
5339
5340 if (event->pmu->event_mapped)
5341 event->pmu->event_mapped(event);
5342
5343 return ret;
5344 }
5345
5346 static int perf_fasync(int fd, struct file *filp, int on)
5347 {
5348 struct inode *inode = file_inode(filp);
5349 struct perf_event *event = filp->private_data;
5350 int retval;
5351
5352 inode_lock(inode);
5353 retval = fasync_helper(fd, filp, on, &event->fasync);
5354 inode_unlock(inode);
5355
5356 if (retval < 0)
5357 return retval;
5358
5359 return 0;
5360 }
5361
5362 static const struct file_operations perf_fops = {
5363 .llseek = no_llseek,
5364 .release = perf_release,
5365 .read = perf_read,
5366 .poll = perf_poll,
5367 .unlocked_ioctl = perf_ioctl,
5368 .compat_ioctl = perf_compat_ioctl,
5369 .mmap = perf_mmap,
5370 .fasync = perf_fasync,
5371 };
5372
5373 /*
5374 * Perf event wakeup
5375 *
5376 * If there's data, ensure we set the poll() state and publish everything
5377 * to user-space before waking everybody up.
5378 */
5379
5380 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5381 {
5382 /* only the parent has fasync state */
5383 if (event->parent)
5384 event = event->parent;
5385 return &event->fasync;
5386 }
5387
5388 void perf_event_wakeup(struct perf_event *event)
5389 {
5390 ring_buffer_wakeup(event);
5391
5392 if (event->pending_kill) {
5393 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5394 event->pending_kill = 0;
5395 }
5396 }
5397
5398 static void perf_pending_event(struct irq_work *entry)
5399 {
5400 struct perf_event *event = container_of(entry,
5401 struct perf_event, pending);
5402 int rctx;
5403
5404 rctx = perf_swevent_get_recursion_context();
5405 /*
5406 * If we 'fail' here, that's OK, it means recursion is already disabled
5407 * and we won't recurse 'further'.
5408 */
5409
5410 if (event->pending_disable) {
5411 event->pending_disable = 0;
5412 perf_event_disable_local(event);
5413 }
5414
5415 if (event->pending_wakeup) {
5416 event->pending_wakeup = 0;
5417 perf_event_wakeup(event);
5418 }
5419
5420 if (rctx >= 0)
5421 perf_swevent_put_recursion_context(rctx);
5422 }
5423
5424 /*
5425 * We assume there is only KVM supporting the callbacks.
5426 * Later on, we might change it to a list if there is
5427 * another virtualization implementation supporting the callbacks.
5428 */
5429 struct perf_guest_info_callbacks *perf_guest_cbs;
5430
5431 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5432 {
5433 perf_guest_cbs = cbs;
5434 return 0;
5435 }
5436 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5437
5438 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5439 {
5440 perf_guest_cbs = NULL;
5441 return 0;
5442 }
5443 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5444
5445 static void
5446 perf_output_sample_regs(struct perf_output_handle *handle,
5447 struct pt_regs *regs, u64 mask)
5448 {
5449 int bit;
5450 DECLARE_BITMAP(_mask, 64);
5451
5452 bitmap_from_u64(_mask, mask);
5453 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
5454 u64 val;
5455
5456 val = perf_reg_value(regs, bit);
5457 perf_output_put(handle, val);
5458 }
5459 }
5460
5461 static void perf_sample_regs_user(struct perf_regs *regs_user,
5462 struct pt_regs *regs,
5463 struct pt_regs *regs_user_copy)
5464 {
5465 if (user_mode(regs)) {
5466 regs_user->abi = perf_reg_abi(current);
5467 regs_user->regs = regs;
5468 } else if (current->mm) {
5469 perf_get_regs_user(regs_user, regs, regs_user_copy);
5470 } else {
5471 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5472 regs_user->regs = NULL;
5473 }
5474 }
5475
5476 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5477 struct pt_regs *regs)
5478 {
5479 regs_intr->regs = regs;
5480 regs_intr->abi = perf_reg_abi(current);
5481 }
5482
5483
5484 /*
5485 * Get remaining task size from user stack pointer.
5486 *
5487 * It'd be better to take stack vma map and limit this more
5488 * precisly, but there's no way to get it safely under interrupt,
5489 * so using TASK_SIZE as limit.
5490 */
5491 static u64 perf_ustack_task_size(struct pt_regs *regs)
5492 {
5493 unsigned long addr = perf_user_stack_pointer(regs);
5494
5495 if (!addr || addr >= TASK_SIZE)
5496 return 0;
5497
5498 return TASK_SIZE - addr;
5499 }
5500
5501 static u16
5502 perf_sample_ustack_size(u16 stack_size, u16 header_size,
5503 struct pt_regs *regs)
5504 {
5505 u64 task_size;
5506
5507 /* No regs, no stack pointer, no dump. */
5508 if (!regs)
5509 return 0;
5510
5511 /*
5512 * Check if we fit in with the requested stack size into the:
5513 * - TASK_SIZE
5514 * If we don't, we limit the size to the TASK_SIZE.
5515 *
5516 * - remaining sample size
5517 * If we don't, we customize the stack size to
5518 * fit in to the remaining sample size.
5519 */
5520
5521 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5522 stack_size = min(stack_size, (u16) task_size);
5523
5524 /* Current header size plus static size and dynamic size. */
5525 header_size += 2 * sizeof(u64);
5526
5527 /* Do we fit in with the current stack dump size? */
5528 if ((u16) (header_size + stack_size) < header_size) {
5529 /*
5530 * If we overflow the maximum size for the sample,
5531 * we customize the stack dump size to fit in.
5532 */
5533 stack_size = USHRT_MAX - header_size - sizeof(u64);
5534 stack_size = round_up(stack_size, sizeof(u64));
5535 }
5536
5537 return stack_size;
5538 }
5539
5540 static void
5541 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5542 struct pt_regs *regs)
5543 {
5544 /* Case of a kernel thread, nothing to dump */
5545 if (!regs) {
5546 u64 size = 0;
5547 perf_output_put(handle, size);
5548 } else {
5549 unsigned long sp;
5550 unsigned int rem;
5551 u64 dyn_size;
5552
5553 /*
5554 * We dump:
5555 * static size
5556 * - the size requested by user or the best one we can fit
5557 * in to the sample max size
5558 * data
5559 * - user stack dump data
5560 * dynamic size
5561 * - the actual dumped size
5562 */
5563
5564 /* Static size. */
5565 perf_output_put(handle, dump_size);
5566
5567 /* Data. */
5568 sp = perf_user_stack_pointer(regs);
5569 rem = __output_copy_user(handle, (void *) sp, dump_size);
5570 dyn_size = dump_size - rem;
5571
5572 perf_output_skip(handle, rem);
5573
5574 /* Dynamic size. */
5575 perf_output_put(handle, dyn_size);
5576 }
5577 }
5578
5579 static void __perf_event_header__init_id(struct perf_event_header *header,
5580 struct perf_sample_data *data,
5581 struct perf_event *event)
5582 {
5583 u64 sample_type = event->attr.sample_type;
5584
5585 data->type = sample_type;
5586 header->size += event->id_header_size;
5587
5588 if (sample_type & PERF_SAMPLE_TID) {
5589 /* namespace issues */
5590 data->tid_entry.pid = perf_event_pid(event, current);
5591 data->tid_entry.tid = perf_event_tid(event, current);
5592 }
5593
5594 if (sample_type & PERF_SAMPLE_TIME)
5595 data->time = perf_event_clock(event);
5596
5597 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5598 data->id = primary_event_id(event);
5599
5600 if (sample_type & PERF_SAMPLE_STREAM_ID)
5601 data->stream_id = event->id;
5602
5603 if (sample_type & PERF_SAMPLE_CPU) {
5604 data->cpu_entry.cpu = raw_smp_processor_id();
5605 data->cpu_entry.reserved = 0;
5606 }
5607 }
5608
5609 void perf_event_header__init_id(struct perf_event_header *header,
5610 struct perf_sample_data *data,
5611 struct perf_event *event)
5612 {
5613 if (event->attr.sample_id_all)
5614 __perf_event_header__init_id(header, data, event);
5615 }
5616
5617 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5618 struct perf_sample_data *data)
5619 {
5620 u64 sample_type = data->type;
5621
5622 if (sample_type & PERF_SAMPLE_TID)
5623 perf_output_put(handle, data->tid_entry);
5624
5625 if (sample_type & PERF_SAMPLE_TIME)
5626 perf_output_put(handle, data->time);
5627
5628 if (sample_type & PERF_SAMPLE_ID)
5629 perf_output_put(handle, data->id);
5630
5631 if (sample_type & PERF_SAMPLE_STREAM_ID)
5632 perf_output_put(handle, data->stream_id);
5633
5634 if (sample_type & PERF_SAMPLE_CPU)
5635 perf_output_put(handle, data->cpu_entry);
5636
5637 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5638 perf_output_put(handle, data->id);
5639 }
5640
5641 void perf_event__output_id_sample(struct perf_event *event,
5642 struct perf_output_handle *handle,
5643 struct perf_sample_data *sample)
5644 {
5645 if (event->attr.sample_id_all)
5646 __perf_event__output_id_sample(handle, sample);
5647 }
5648
5649 static void perf_output_read_one(struct perf_output_handle *handle,
5650 struct perf_event *event,
5651 u64 enabled, u64 running)
5652 {
5653 u64 read_format = event->attr.read_format;
5654 u64 values[4];
5655 int n = 0;
5656
5657 values[n++] = perf_event_count(event);
5658 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5659 values[n++] = enabled +
5660 atomic64_read(&event->child_total_time_enabled);
5661 }
5662 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5663 values[n++] = running +
5664 atomic64_read(&event->child_total_time_running);
5665 }
5666 if (read_format & PERF_FORMAT_ID)
5667 values[n++] = primary_event_id(event);
5668
5669 __output_copy(handle, values, n * sizeof(u64));
5670 }
5671
5672 /*
5673 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
5674 */
5675 static void perf_output_read_group(struct perf_output_handle *handle,
5676 struct perf_event *event,
5677 u64 enabled, u64 running)
5678 {
5679 struct perf_event *leader = event->group_leader, *sub;
5680 u64 read_format = event->attr.read_format;
5681 u64 values[5];
5682 int n = 0;
5683
5684 values[n++] = 1 + leader->nr_siblings;
5685
5686 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5687 values[n++] = enabled;
5688
5689 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5690 values[n++] = running;
5691
5692 if (leader != event)
5693 leader->pmu->read(leader);
5694
5695 values[n++] = perf_event_count(leader);
5696 if (read_format & PERF_FORMAT_ID)
5697 values[n++] = primary_event_id(leader);
5698
5699 __output_copy(handle, values, n * sizeof(u64));
5700
5701 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5702 n = 0;
5703
5704 if ((sub != event) &&
5705 (sub->state == PERF_EVENT_STATE_ACTIVE))
5706 sub->pmu->read(sub);
5707
5708 values[n++] = perf_event_count(sub);
5709 if (read_format & PERF_FORMAT_ID)
5710 values[n++] = primary_event_id(sub);
5711
5712 __output_copy(handle, values, n * sizeof(u64));
5713 }
5714 }
5715
5716 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5717 PERF_FORMAT_TOTAL_TIME_RUNNING)
5718
5719 static void perf_output_read(struct perf_output_handle *handle,
5720 struct perf_event *event)
5721 {
5722 u64 enabled = 0, running = 0, now;
5723 u64 read_format = event->attr.read_format;
5724
5725 /*
5726 * compute total_time_enabled, total_time_running
5727 * based on snapshot values taken when the event
5728 * was last scheduled in.
5729 *
5730 * we cannot simply called update_context_time()
5731 * because of locking issue as we are called in
5732 * NMI context
5733 */
5734 if (read_format & PERF_FORMAT_TOTAL_TIMES)
5735 calc_timer_values(event, &now, &enabled, &running);
5736
5737 if (event->attr.read_format & PERF_FORMAT_GROUP)
5738 perf_output_read_group(handle, event, enabled, running);
5739 else
5740 perf_output_read_one(handle, event, enabled, running);
5741 }
5742
5743 void perf_output_sample(struct perf_output_handle *handle,
5744 struct perf_event_header *header,
5745 struct perf_sample_data *data,
5746 struct perf_event *event)
5747 {
5748 u64 sample_type = data->type;
5749
5750 perf_output_put(handle, *header);
5751
5752 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5753 perf_output_put(handle, data->id);
5754
5755 if (sample_type & PERF_SAMPLE_IP)
5756 perf_output_put(handle, data->ip);
5757
5758 if (sample_type & PERF_SAMPLE_TID)
5759 perf_output_put(handle, data->tid_entry);
5760
5761 if (sample_type & PERF_SAMPLE_TIME)
5762 perf_output_put(handle, data->time);
5763
5764 if (sample_type & PERF_SAMPLE_ADDR)
5765 perf_output_put(handle, data->addr);
5766
5767 if (sample_type & PERF_SAMPLE_ID)
5768 perf_output_put(handle, data->id);
5769
5770 if (sample_type & PERF_SAMPLE_STREAM_ID)
5771 perf_output_put(handle, data->stream_id);
5772
5773 if (sample_type & PERF_SAMPLE_CPU)
5774 perf_output_put(handle, data->cpu_entry);
5775
5776 if (sample_type & PERF_SAMPLE_PERIOD)
5777 perf_output_put(handle, data->period);
5778
5779 if (sample_type & PERF_SAMPLE_READ)
5780 perf_output_read(handle, event);
5781
5782 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5783 if (data->callchain) {
5784 int size = 1;
5785
5786 if (data->callchain)
5787 size += data->callchain->nr;
5788
5789 size *= sizeof(u64);
5790
5791 __output_copy(handle, data->callchain, size);
5792 } else {
5793 u64 nr = 0;
5794 perf_output_put(handle, nr);
5795 }
5796 }
5797
5798 if (sample_type & PERF_SAMPLE_RAW) {
5799 struct perf_raw_record *raw = data->raw;
5800
5801 if (raw) {
5802 struct perf_raw_frag *frag = &raw->frag;
5803
5804 perf_output_put(handle, raw->size);
5805 do {
5806 if (frag->copy) {
5807 __output_custom(handle, frag->copy,
5808 frag->data, frag->size);
5809 } else {
5810 __output_copy(handle, frag->data,
5811 frag->size);
5812 }
5813 if (perf_raw_frag_last(frag))
5814 break;
5815 frag = frag->next;
5816 } while (1);
5817 if (frag->pad)
5818 __output_skip(handle, NULL, frag->pad);
5819 } else {
5820 struct {
5821 u32 size;
5822 u32 data;
5823 } raw = {
5824 .size = sizeof(u32),
5825 .data = 0,
5826 };
5827 perf_output_put(handle, raw);
5828 }
5829 }
5830
5831 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5832 if (data->br_stack) {
5833 size_t size;
5834
5835 size = data->br_stack->nr
5836 * sizeof(struct perf_branch_entry);
5837
5838 perf_output_put(handle, data->br_stack->nr);
5839 perf_output_copy(handle, data->br_stack->entries, size);
5840 } else {
5841 /*
5842 * we always store at least the value of nr
5843 */
5844 u64 nr = 0;
5845 perf_output_put(handle, nr);
5846 }
5847 }
5848
5849 if (sample_type & PERF_SAMPLE_REGS_USER) {
5850 u64 abi = data->regs_user.abi;
5851
5852 /*
5853 * If there are no regs to dump, notice it through
5854 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5855 */
5856 perf_output_put(handle, abi);
5857
5858 if (abi) {
5859 u64 mask = event->attr.sample_regs_user;
5860 perf_output_sample_regs(handle,
5861 data->regs_user.regs,
5862 mask);
5863 }
5864 }
5865
5866 if (sample_type & PERF_SAMPLE_STACK_USER) {
5867 perf_output_sample_ustack(handle,
5868 data->stack_user_size,
5869 data->regs_user.regs);
5870 }
5871
5872 if (sample_type & PERF_SAMPLE_WEIGHT)
5873 perf_output_put(handle, data->weight);
5874
5875 if (sample_type & PERF_SAMPLE_DATA_SRC)
5876 perf_output_put(handle, data->data_src.val);
5877
5878 if (sample_type & PERF_SAMPLE_TRANSACTION)
5879 perf_output_put(handle, data->txn);
5880
5881 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5882 u64 abi = data->regs_intr.abi;
5883 /*
5884 * If there are no regs to dump, notice it through
5885 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5886 */
5887 perf_output_put(handle, abi);
5888
5889 if (abi) {
5890 u64 mask = event->attr.sample_regs_intr;
5891
5892 perf_output_sample_regs(handle,
5893 data->regs_intr.regs,
5894 mask);
5895 }
5896 }
5897
5898 if (!event->attr.watermark) {
5899 int wakeup_events = event->attr.wakeup_events;
5900
5901 if (wakeup_events) {
5902 struct ring_buffer *rb = handle->rb;
5903 int events = local_inc_return(&rb->events);
5904
5905 if (events >= wakeup_events) {
5906 local_sub(wakeup_events, &rb->events);
5907 local_inc(&rb->wakeup);
5908 }
5909 }
5910 }
5911 }
5912
5913 void perf_prepare_sample(struct perf_event_header *header,
5914 struct perf_sample_data *data,
5915 struct perf_event *event,
5916 struct pt_regs *regs)
5917 {
5918 u64 sample_type = event->attr.sample_type;
5919
5920 header->type = PERF_RECORD_SAMPLE;
5921 header->size = sizeof(*header) + event->header_size;
5922
5923 header->misc = 0;
5924 header->misc |= perf_misc_flags(regs);
5925
5926 __perf_event_header__init_id(header, data, event);
5927
5928 if (sample_type & PERF_SAMPLE_IP)
5929 data->ip = perf_instruction_pointer(regs);
5930
5931 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5932 int size = 1;
5933
5934 data->callchain = perf_callchain(event, regs);
5935
5936 if (data->callchain)
5937 size += data->callchain->nr;
5938
5939 header->size += size * sizeof(u64);
5940 }
5941
5942 if (sample_type & PERF_SAMPLE_RAW) {
5943 struct perf_raw_record *raw = data->raw;
5944 int size;
5945
5946 if (raw) {
5947 struct perf_raw_frag *frag = &raw->frag;
5948 u32 sum = 0;
5949
5950 do {
5951 sum += frag->size;
5952 if (perf_raw_frag_last(frag))
5953 break;
5954 frag = frag->next;
5955 } while (1);
5956
5957 size = round_up(sum + sizeof(u32), sizeof(u64));
5958 raw->size = size - sizeof(u32);
5959 frag->pad = raw->size - sum;
5960 } else {
5961 size = sizeof(u64);
5962 }
5963
5964 header->size += size;
5965 }
5966
5967 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5968 int size = sizeof(u64); /* nr */
5969 if (data->br_stack) {
5970 size += data->br_stack->nr
5971 * sizeof(struct perf_branch_entry);
5972 }
5973 header->size += size;
5974 }
5975
5976 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
5977 perf_sample_regs_user(&data->regs_user, regs,
5978 &data->regs_user_copy);
5979
5980 if (sample_type & PERF_SAMPLE_REGS_USER) {
5981 /* regs dump ABI info */
5982 int size = sizeof(u64);
5983
5984 if (data->regs_user.regs) {
5985 u64 mask = event->attr.sample_regs_user;
5986 size += hweight64(mask) * sizeof(u64);
5987 }
5988
5989 header->size += size;
5990 }
5991
5992 if (sample_type & PERF_SAMPLE_STACK_USER) {
5993 /*
5994 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
5995 * processed as the last one or have additional check added
5996 * in case new sample type is added, because we could eat
5997 * up the rest of the sample size.
5998 */
5999 u16 stack_size = event->attr.sample_stack_user;
6000 u16 size = sizeof(u64);
6001
6002 stack_size = perf_sample_ustack_size(stack_size, header->size,
6003 data->regs_user.regs);
6004
6005 /*
6006 * If there is something to dump, add space for the dump
6007 * itself and for the field that tells the dynamic size,
6008 * which is how many have been actually dumped.
6009 */
6010 if (stack_size)
6011 size += sizeof(u64) + stack_size;
6012
6013 data->stack_user_size = stack_size;
6014 header->size += size;
6015 }
6016
6017 if (sample_type & PERF_SAMPLE_REGS_INTR) {
6018 /* regs dump ABI info */
6019 int size = sizeof(u64);
6020
6021 perf_sample_regs_intr(&data->regs_intr, regs);
6022
6023 if (data->regs_intr.regs) {
6024 u64 mask = event->attr.sample_regs_intr;
6025
6026 size += hweight64(mask) * sizeof(u64);
6027 }
6028
6029 header->size += size;
6030 }
6031 }
6032
6033 static void __always_inline
6034 __perf_event_output(struct perf_event *event,
6035 struct perf_sample_data *data,
6036 struct pt_regs *regs,
6037 int (*output_begin)(struct perf_output_handle *,
6038 struct perf_event *,
6039 unsigned int))
6040 {
6041 struct perf_output_handle handle;
6042 struct perf_event_header header;
6043
6044 /* protect the callchain buffers */
6045 rcu_read_lock();
6046
6047 perf_prepare_sample(&header, data, event, regs);
6048
6049 if (output_begin(&handle, event, header.size))
6050 goto exit;
6051
6052 perf_output_sample(&handle, &header, data, event);
6053
6054 perf_output_end(&handle);
6055
6056 exit:
6057 rcu_read_unlock();
6058 }
6059
6060 void
6061 perf_event_output_forward(struct perf_event *event,
6062 struct perf_sample_data *data,
6063 struct pt_regs *regs)
6064 {
6065 __perf_event_output(event, data, regs, perf_output_begin_forward);
6066 }
6067
6068 void
6069 perf_event_output_backward(struct perf_event *event,
6070 struct perf_sample_data *data,
6071 struct pt_regs *regs)
6072 {
6073 __perf_event_output(event, data, regs, perf_output_begin_backward);
6074 }
6075
6076 void
6077 perf_event_output(struct perf_event *event,
6078 struct perf_sample_data *data,
6079 struct pt_regs *regs)
6080 {
6081 __perf_event_output(event, data, regs, perf_output_begin);
6082 }
6083
6084 /*
6085 * read event_id
6086 */
6087
6088 struct perf_read_event {
6089 struct perf_event_header header;
6090
6091 u32 pid;
6092 u32 tid;
6093 };
6094
6095 static void
6096 perf_event_read_event(struct perf_event *event,
6097 struct task_struct *task)
6098 {
6099 struct perf_output_handle handle;
6100 struct perf_sample_data sample;
6101 struct perf_read_event read_event = {
6102 .header = {
6103 .type = PERF_RECORD_READ,
6104 .misc = 0,
6105 .size = sizeof(read_event) + event->read_size,
6106 },
6107 .pid = perf_event_pid(event, task),
6108 .tid = perf_event_tid(event, task),
6109 };
6110 int ret;
6111
6112 perf_event_header__init_id(&read_event.header, &sample, event);
6113 ret = perf_output_begin(&handle, event, read_event.header.size);
6114 if (ret)
6115 return;
6116
6117 perf_output_put(&handle, read_event);
6118 perf_output_read(&handle, event);
6119 perf_event__output_id_sample(event, &handle, &sample);
6120
6121 perf_output_end(&handle);
6122 }
6123
6124 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
6125
6126 static void
6127 perf_iterate_ctx(struct perf_event_context *ctx,
6128 perf_iterate_f output,
6129 void *data, bool all)
6130 {
6131 struct perf_event *event;
6132
6133 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6134 if (!all) {
6135 if (event->state < PERF_EVENT_STATE_INACTIVE)
6136 continue;
6137 if (!event_filter_match(event))
6138 continue;
6139 }
6140
6141 output(event, data);
6142 }
6143 }
6144
6145 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
6146 {
6147 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6148 struct perf_event *event;
6149
6150 list_for_each_entry_rcu(event, &pel->list, sb_list) {
6151 /*
6152 * Skip events that are not fully formed yet; ensure that
6153 * if we observe event->ctx, both event and ctx will be
6154 * complete enough. See perf_install_in_context().
6155 */
6156 if (!smp_load_acquire(&event->ctx))
6157 continue;
6158
6159 if (event->state < PERF_EVENT_STATE_INACTIVE)
6160 continue;
6161 if (!event_filter_match(event))
6162 continue;
6163 output(event, data);
6164 }
6165 }
6166
6167 /*
6168 * Iterate all events that need to receive side-band events.
6169 *
6170 * For new callers; ensure that account_pmu_sb_event() includes
6171 * your event, otherwise it might not get delivered.
6172 */
6173 static void
6174 perf_iterate_sb(perf_iterate_f output, void *data,
6175 struct perf_event_context *task_ctx)
6176 {
6177 struct perf_event_context *ctx;
6178 int ctxn;
6179
6180 rcu_read_lock();
6181 preempt_disable();
6182
6183 /*
6184 * If we have task_ctx != NULL we only notify the task context itself.
6185 * The task_ctx is set only for EXIT events before releasing task
6186 * context.
6187 */
6188 if (task_ctx) {
6189 perf_iterate_ctx(task_ctx, output, data, false);
6190 goto done;
6191 }
6192
6193 perf_iterate_sb_cpu(output, data);
6194
6195 for_each_task_context_nr(ctxn) {
6196 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6197 if (ctx)
6198 perf_iterate_ctx(ctx, output, data, false);
6199 }
6200 done:
6201 preempt_enable();
6202 rcu_read_unlock();
6203 }
6204
6205 /*
6206 * Clear all file-based filters at exec, they'll have to be
6207 * re-instated when/if these objects are mmapped again.
6208 */
6209 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6210 {
6211 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6212 struct perf_addr_filter *filter;
6213 unsigned int restart = 0, count = 0;
6214 unsigned long flags;
6215
6216 if (!has_addr_filter(event))
6217 return;
6218
6219 raw_spin_lock_irqsave(&ifh->lock, flags);
6220 list_for_each_entry(filter, &ifh->list, entry) {
6221 if (filter->inode) {
6222 event->addr_filters_offs[count] = 0;
6223 restart++;
6224 }
6225
6226 count++;
6227 }
6228
6229 if (restart)
6230 event->addr_filters_gen++;
6231 raw_spin_unlock_irqrestore(&ifh->lock, flags);
6232
6233 if (restart)
6234 perf_event_stop(event, 1);
6235 }
6236
6237 void perf_event_exec(void)
6238 {
6239 struct perf_event_context *ctx;
6240 int ctxn;
6241
6242 rcu_read_lock();
6243 for_each_task_context_nr(ctxn) {
6244 ctx = current->perf_event_ctxp[ctxn];
6245 if (!ctx)
6246 continue;
6247
6248 perf_event_enable_on_exec(ctxn);
6249
6250 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
6251 true);
6252 }
6253 rcu_read_unlock();
6254 }
6255
6256 struct remote_output {
6257 struct ring_buffer *rb;
6258 int err;
6259 };
6260
6261 static void __perf_event_output_stop(struct perf_event *event, void *data)
6262 {
6263 struct perf_event *parent = event->parent;
6264 struct remote_output *ro = data;
6265 struct ring_buffer *rb = ro->rb;
6266 struct stop_event_data sd = {
6267 .event = event,
6268 };
6269
6270 if (!has_aux(event))
6271 return;
6272
6273 if (!parent)
6274 parent = event;
6275
6276 /*
6277 * In case of inheritance, it will be the parent that links to the
6278 * ring-buffer, but it will be the child that's actually using it.
6279 *
6280 * We are using event::rb to determine if the event should be stopped,
6281 * however this may race with ring_buffer_attach() (through set_output),
6282 * which will make us skip the event that actually needs to be stopped.
6283 * So ring_buffer_attach() has to stop an aux event before re-assigning
6284 * its rb pointer.
6285 */
6286 if (rcu_dereference(parent->rb) == rb)
6287 ro->err = __perf_event_stop(&sd);
6288 }
6289
6290 static int __perf_pmu_output_stop(void *info)
6291 {
6292 struct perf_event *event = info;
6293 struct pmu *pmu = event->pmu;
6294 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6295 struct remote_output ro = {
6296 .rb = event->rb,
6297 };
6298
6299 rcu_read_lock();
6300 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6301 if (cpuctx->task_ctx)
6302 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6303 &ro, false);
6304 rcu_read_unlock();
6305
6306 return ro.err;
6307 }
6308
6309 static void perf_pmu_output_stop(struct perf_event *event)
6310 {
6311 struct perf_event *iter;
6312 int err, cpu;
6313
6314 restart:
6315 rcu_read_lock();
6316 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6317 /*
6318 * For per-CPU events, we need to make sure that neither they
6319 * nor their children are running; for cpu==-1 events it's
6320 * sufficient to stop the event itself if it's active, since
6321 * it can't have children.
6322 */
6323 cpu = iter->cpu;
6324 if (cpu == -1)
6325 cpu = READ_ONCE(iter->oncpu);
6326
6327 if (cpu == -1)
6328 continue;
6329
6330 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6331 if (err == -EAGAIN) {
6332 rcu_read_unlock();
6333 goto restart;
6334 }
6335 }
6336 rcu_read_unlock();
6337 }
6338
6339 /*
6340 * task tracking -- fork/exit
6341 *
6342 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
6343 */
6344
6345 struct perf_task_event {
6346 struct task_struct *task;
6347 struct perf_event_context *task_ctx;
6348
6349 struct {
6350 struct perf_event_header header;
6351
6352 u32 pid;
6353 u32 ppid;
6354 u32 tid;
6355 u32 ptid;
6356 u64 time;
6357 } event_id;
6358 };
6359
6360 static int perf_event_task_match(struct perf_event *event)
6361 {
6362 return event->attr.comm || event->attr.mmap ||
6363 event->attr.mmap2 || event->attr.mmap_data ||
6364 event->attr.task;
6365 }
6366
6367 static void perf_event_task_output(struct perf_event *event,
6368 void *data)
6369 {
6370 struct perf_task_event *task_event = data;
6371 struct perf_output_handle handle;
6372 struct perf_sample_data sample;
6373 struct task_struct *task = task_event->task;
6374 int ret, size = task_event->event_id.header.size;
6375
6376 if (!perf_event_task_match(event))
6377 return;
6378
6379 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
6380
6381 ret = perf_output_begin(&handle, event,
6382 task_event->event_id.header.size);
6383 if (ret)
6384 goto out;
6385
6386 task_event->event_id.pid = perf_event_pid(event, task);
6387 task_event->event_id.ppid = perf_event_pid(event, current);
6388
6389 task_event->event_id.tid = perf_event_tid(event, task);
6390 task_event->event_id.ptid = perf_event_tid(event, current);
6391
6392 task_event->event_id.time = perf_event_clock(event);
6393
6394 perf_output_put(&handle, task_event->event_id);
6395
6396 perf_event__output_id_sample(event, &handle, &sample);
6397
6398 perf_output_end(&handle);
6399 out:
6400 task_event->event_id.header.size = size;
6401 }
6402
6403 static void perf_event_task(struct task_struct *task,
6404 struct perf_event_context *task_ctx,
6405 int new)
6406 {
6407 struct perf_task_event task_event;
6408
6409 if (!atomic_read(&nr_comm_events) &&
6410 !atomic_read(&nr_mmap_events) &&
6411 !atomic_read(&nr_task_events))
6412 return;
6413
6414 task_event = (struct perf_task_event){
6415 .task = task,
6416 .task_ctx = task_ctx,
6417 .event_id = {
6418 .header = {
6419 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
6420 .misc = 0,
6421 .size = sizeof(task_event.event_id),
6422 },
6423 /* .pid */
6424 /* .ppid */
6425 /* .tid */
6426 /* .ptid */
6427 /* .time */
6428 },
6429 };
6430
6431 perf_iterate_sb(perf_event_task_output,
6432 &task_event,
6433 task_ctx);
6434 }
6435
6436 void perf_event_fork(struct task_struct *task)
6437 {
6438 perf_event_task(task, NULL, 1);
6439 }
6440
6441 /*
6442 * comm tracking
6443 */
6444
6445 struct perf_comm_event {
6446 struct task_struct *task;
6447 char *comm;
6448 int comm_size;
6449
6450 struct {
6451 struct perf_event_header header;
6452
6453 u32 pid;
6454 u32 tid;
6455 } event_id;
6456 };
6457
6458 static int perf_event_comm_match(struct perf_event *event)
6459 {
6460 return event->attr.comm;
6461 }
6462
6463 static void perf_event_comm_output(struct perf_event *event,
6464 void *data)
6465 {
6466 struct perf_comm_event *comm_event = data;
6467 struct perf_output_handle handle;
6468 struct perf_sample_data sample;
6469 int size = comm_event->event_id.header.size;
6470 int ret;
6471
6472 if (!perf_event_comm_match(event))
6473 return;
6474
6475 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6476 ret = perf_output_begin(&handle, event,
6477 comm_event->event_id.header.size);
6478
6479 if (ret)
6480 goto out;
6481
6482 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6483 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
6484
6485 perf_output_put(&handle, comm_event->event_id);
6486 __output_copy(&handle, comm_event->comm,
6487 comm_event->comm_size);
6488
6489 perf_event__output_id_sample(event, &handle, &sample);
6490
6491 perf_output_end(&handle);
6492 out:
6493 comm_event->event_id.header.size = size;
6494 }
6495
6496 static void perf_event_comm_event(struct perf_comm_event *comm_event)
6497 {
6498 char comm[TASK_COMM_LEN];
6499 unsigned int size;
6500
6501 memset(comm, 0, sizeof(comm));
6502 strlcpy(comm, comm_event->task->comm, sizeof(comm));
6503 size = ALIGN(strlen(comm)+1, sizeof(u64));
6504
6505 comm_event->comm = comm;
6506 comm_event->comm_size = size;
6507
6508 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
6509
6510 perf_iterate_sb(perf_event_comm_output,
6511 comm_event,
6512 NULL);
6513 }
6514
6515 void perf_event_comm(struct task_struct *task, bool exec)
6516 {
6517 struct perf_comm_event comm_event;
6518
6519 if (!atomic_read(&nr_comm_events))
6520 return;
6521
6522 comm_event = (struct perf_comm_event){
6523 .task = task,
6524 /* .comm */
6525 /* .comm_size */
6526 .event_id = {
6527 .header = {
6528 .type = PERF_RECORD_COMM,
6529 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
6530 /* .size */
6531 },
6532 /* .pid */
6533 /* .tid */
6534 },
6535 };
6536
6537 perf_event_comm_event(&comm_event);
6538 }
6539
6540 /*
6541 * mmap tracking
6542 */
6543
6544 struct perf_mmap_event {
6545 struct vm_area_struct *vma;
6546
6547 const char *file_name;
6548 int file_size;
6549 int maj, min;
6550 u64 ino;
6551 u64 ino_generation;
6552 u32 prot, flags;
6553
6554 struct {
6555 struct perf_event_header header;
6556
6557 u32 pid;
6558 u32 tid;
6559 u64 start;
6560 u64 len;
6561 u64 pgoff;
6562 } event_id;
6563 };
6564
6565 static int perf_event_mmap_match(struct perf_event *event,
6566 void *data)
6567 {
6568 struct perf_mmap_event *mmap_event = data;
6569 struct vm_area_struct *vma = mmap_event->vma;
6570 int executable = vma->vm_flags & VM_EXEC;
6571
6572 return (!executable && event->attr.mmap_data) ||
6573 (executable && (event->attr.mmap || event->attr.mmap2));
6574 }
6575
6576 static void perf_event_mmap_output(struct perf_event *event,
6577 void *data)
6578 {
6579 struct perf_mmap_event *mmap_event = data;
6580 struct perf_output_handle handle;
6581 struct perf_sample_data sample;
6582 int size = mmap_event->event_id.header.size;
6583 int ret;
6584
6585 if (!perf_event_mmap_match(event, data))
6586 return;
6587
6588 if (event->attr.mmap2) {
6589 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
6590 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
6591 mmap_event->event_id.header.size += sizeof(mmap_event->min);
6592 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
6593 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
6594 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
6595 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
6596 }
6597
6598 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
6599 ret = perf_output_begin(&handle, event,
6600 mmap_event->event_id.header.size);
6601 if (ret)
6602 goto out;
6603
6604 mmap_event->event_id.pid = perf_event_pid(event, current);
6605 mmap_event->event_id.tid = perf_event_tid(event, current);
6606
6607 perf_output_put(&handle, mmap_event->event_id);
6608
6609 if (event->attr.mmap2) {
6610 perf_output_put(&handle, mmap_event->maj);
6611 perf_output_put(&handle, mmap_event->min);
6612 perf_output_put(&handle, mmap_event->ino);
6613 perf_output_put(&handle, mmap_event->ino_generation);
6614 perf_output_put(&handle, mmap_event->prot);
6615 perf_output_put(&handle, mmap_event->flags);
6616 }
6617
6618 __output_copy(&handle, mmap_event->file_name,
6619 mmap_event->file_size);
6620
6621 perf_event__output_id_sample(event, &handle, &sample);
6622
6623 perf_output_end(&handle);
6624 out:
6625 mmap_event->event_id.header.size = size;
6626 }
6627
6628 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
6629 {
6630 struct vm_area_struct *vma = mmap_event->vma;
6631 struct file *file = vma->vm_file;
6632 int maj = 0, min = 0;
6633 u64 ino = 0, gen = 0;
6634 u32 prot = 0, flags = 0;
6635 unsigned int size;
6636 char tmp[16];
6637 char *buf = NULL;
6638 char *name;
6639
6640 if (vma->vm_flags & VM_READ)
6641 prot |= PROT_READ;
6642 if (vma->vm_flags & VM_WRITE)
6643 prot |= PROT_WRITE;
6644 if (vma->vm_flags & VM_EXEC)
6645 prot |= PROT_EXEC;
6646
6647 if (vma->vm_flags & VM_MAYSHARE)
6648 flags = MAP_SHARED;
6649 else
6650 flags = MAP_PRIVATE;
6651
6652 if (vma->vm_flags & VM_DENYWRITE)
6653 flags |= MAP_DENYWRITE;
6654 if (vma->vm_flags & VM_MAYEXEC)
6655 flags |= MAP_EXECUTABLE;
6656 if (vma->vm_flags & VM_LOCKED)
6657 flags |= MAP_LOCKED;
6658 if (vma->vm_flags & VM_HUGETLB)
6659 flags |= MAP_HUGETLB;
6660
6661 if (file) {
6662 struct inode *inode;
6663 dev_t dev;
6664
6665 buf = kmalloc(PATH_MAX, GFP_KERNEL);
6666 if (!buf) {
6667 name = "//enomem";
6668 goto cpy_name;
6669 }
6670 /*
6671 * d_path() works from the end of the rb backwards, so we
6672 * need to add enough zero bytes after the string to handle
6673 * the 64bit alignment we do later.
6674 */
6675 name = file_path(file, buf, PATH_MAX - sizeof(u64));
6676 if (IS_ERR(name)) {
6677 name = "//toolong";
6678 goto cpy_name;
6679 }
6680 inode = file_inode(vma->vm_file);
6681 dev = inode->i_sb->s_dev;
6682 ino = inode->i_ino;
6683 gen = inode->i_generation;
6684 maj = MAJOR(dev);
6685 min = MINOR(dev);
6686
6687 goto got_name;
6688 } else {
6689 if (vma->vm_ops && vma->vm_ops->name) {
6690 name = (char *) vma->vm_ops->name(vma);
6691 if (name)
6692 goto cpy_name;
6693 }
6694
6695 name = (char *)arch_vma_name(vma);
6696 if (name)
6697 goto cpy_name;
6698
6699 if (vma->vm_start <= vma->vm_mm->start_brk &&
6700 vma->vm_end >= vma->vm_mm->brk) {
6701 name = "[heap]";
6702 goto cpy_name;
6703 }
6704 if (vma->vm_start <= vma->vm_mm->start_stack &&
6705 vma->vm_end >= vma->vm_mm->start_stack) {
6706 name = "[stack]";
6707 goto cpy_name;
6708 }
6709
6710 name = "//anon";
6711 goto cpy_name;
6712 }
6713
6714 cpy_name:
6715 strlcpy(tmp, name, sizeof(tmp));
6716 name = tmp;
6717 got_name:
6718 /*
6719 * Since our buffer works in 8 byte units we need to align our string
6720 * size to a multiple of 8. However, we must guarantee the tail end is
6721 * zero'd out to avoid leaking random bits to userspace.
6722 */
6723 size = strlen(name)+1;
6724 while (!IS_ALIGNED(size, sizeof(u64)))
6725 name[size++] = '\0';
6726
6727 mmap_event->file_name = name;
6728 mmap_event->file_size = size;
6729 mmap_event->maj = maj;
6730 mmap_event->min = min;
6731 mmap_event->ino = ino;
6732 mmap_event->ino_generation = gen;
6733 mmap_event->prot = prot;
6734 mmap_event->flags = flags;
6735
6736 if (!(vma->vm_flags & VM_EXEC))
6737 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6738
6739 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
6740
6741 perf_iterate_sb(perf_event_mmap_output,
6742 mmap_event,
6743 NULL);
6744
6745 kfree(buf);
6746 }
6747
6748 /*
6749 * Check whether inode and address range match filter criteria.
6750 */
6751 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
6752 struct file *file, unsigned long offset,
6753 unsigned long size)
6754 {
6755 if (filter->inode != file_inode(file))
6756 return false;
6757
6758 if (filter->offset > offset + size)
6759 return false;
6760
6761 if (filter->offset + filter->size < offset)
6762 return false;
6763
6764 return true;
6765 }
6766
6767 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
6768 {
6769 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6770 struct vm_area_struct *vma = data;
6771 unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
6772 struct file *file = vma->vm_file;
6773 struct perf_addr_filter *filter;
6774 unsigned int restart = 0, count = 0;
6775
6776 if (!has_addr_filter(event))
6777 return;
6778
6779 if (!file)
6780 return;
6781
6782 raw_spin_lock_irqsave(&ifh->lock, flags);
6783 list_for_each_entry(filter, &ifh->list, entry) {
6784 if (perf_addr_filter_match(filter, file, off,
6785 vma->vm_end - vma->vm_start)) {
6786 event->addr_filters_offs[count] = vma->vm_start;
6787 restart++;
6788 }
6789
6790 count++;
6791 }
6792
6793 if (restart)
6794 event->addr_filters_gen++;
6795 raw_spin_unlock_irqrestore(&ifh->lock, flags);
6796
6797 if (restart)
6798 perf_event_stop(event, 1);
6799 }
6800
6801 /*
6802 * Adjust all task's events' filters to the new vma
6803 */
6804 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
6805 {
6806 struct perf_event_context *ctx;
6807 int ctxn;
6808
6809 /*
6810 * Data tracing isn't supported yet and as such there is no need
6811 * to keep track of anything that isn't related to executable code:
6812 */
6813 if (!(vma->vm_flags & VM_EXEC))
6814 return;
6815
6816 rcu_read_lock();
6817 for_each_task_context_nr(ctxn) {
6818 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6819 if (!ctx)
6820 continue;
6821
6822 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
6823 }
6824 rcu_read_unlock();
6825 }
6826
6827 void perf_event_mmap(struct vm_area_struct *vma)
6828 {
6829 struct perf_mmap_event mmap_event;
6830
6831 if (!atomic_read(&nr_mmap_events))
6832 return;
6833
6834 mmap_event = (struct perf_mmap_event){
6835 .vma = vma,
6836 /* .file_name */
6837 /* .file_size */
6838 .event_id = {
6839 .header = {
6840 .type = PERF_RECORD_MMAP,
6841 .misc = PERF_RECORD_MISC_USER,
6842 /* .size */
6843 },
6844 /* .pid */
6845 /* .tid */
6846 .start = vma->vm_start,
6847 .len = vma->vm_end - vma->vm_start,
6848 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
6849 },
6850 /* .maj (attr_mmap2 only) */
6851 /* .min (attr_mmap2 only) */
6852 /* .ino (attr_mmap2 only) */
6853 /* .ino_generation (attr_mmap2 only) */
6854 /* .prot (attr_mmap2 only) */
6855 /* .flags (attr_mmap2 only) */
6856 };
6857
6858 perf_addr_filters_adjust(vma);
6859 perf_event_mmap_event(&mmap_event);
6860 }
6861
6862 void perf_event_aux_event(struct perf_event *event, unsigned long head,
6863 unsigned long size, u64 flags)
6864 {
6865 struct perf_output_handle handle;
6866 struct perf_sample_data sample;
6867 struct perf_aux_event {
6868 struct perf_event_header header;
6869 u64 offset;
6870 u64 size;
6871 u64 flags;
6872 } rec = {
6873 .header = {
6874 .type = PERF_RECORD_AUX,
6875 .misc = 0,
6876 .size = sizeof(rec),
6877 },
6878 .offset = head,
6879 .size = size,
6880 .flags = flags,
6881 };
6882 int ret;
6883
6884 perf_event_header__init_id(&rec.header, &sample, event);
6885 ret = perf_output_begin(&handle, event, rec.header.size);
6886
6887 if (ret)
6888 return;
6889
6890 perf_output_put(&handle, rec);
6891 perf_event__output_id_sample(event, &handle, &sample);
6892
6893 perf_output_end(&handle);
6894 }
6895
6896 /*
6897 * Lost/dropped samples logging
6898 */
6899 void perf_log_lost_samples(struct perf_event *event, u64 lost)
6900 {
6901 struct perf_output_handle handle;
6902 struct perf_sample_data sample;
6903 int ret;
6904
6905 struct {
6906 struct perf_event_header header;
6907 u64 lost;
6908 } lost_samples_event = {
6909 .header = {
6910 .type = PERF_RECORD_LOST_SAMPLES,
6911 .misc = 0,
6912 .size = sizeof(lost_samples_event),
6913 },
6914 .lost = lost,
6915 };
6916
6917 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
6918
6919 ret = perf_output_begin(&handle, event,
6920 lost_samples_event.header.size);
6921 if (ret)
6922 return;
6923
6924 perf_output_put(&handle, lost_samples_event);
6925 perf_event__output_id_sample(event, &handle, &sample);
6926 perf_output_end(&handle);
6927 }
6928
6929 /*
6930 * context_switch tracking
6931 */
6932
6933 struct perf_switch_event {
6934 struct task_struct *task;
6935 struct task_struct *next_prev;
6936
6937 struct {
6938 struct perf_event_header header;
6939 u32 next_prev_pid;
6940 u32 next_prev_tid;
6941 } event_id;
6942 };
6943
6944 static int perf_event_switch_match(struct perf_event *event)
6945 {
6946 return event->attr.context_switch;
6947 }
6948
6949 static void perf_event_switch_output(struct perf_event *event, void *data)
6950 {
6951 struct perf_switch_event *se = data;
6952 struct perf_output_handle handle;
6953 struct perf_sample_data sample;
6954 int ret;
6955
6956 if (!perf_event_switch_match(event))
6957 return;
6958
6959 /* Only CPU-wide events are allowed to see next/prev pid/tid */
6960 if (event->ctx->task) {
6961 se->event_id.header.type = PERF_RECORD_SWITCH;
6962 se->event_id.header.size = sizeof(se->event_id.header);
6963 } else {
6964 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
6965 se->event_id.header.size = sizeof(se->event_id);
6966 se->event_id.next_prev_pid =
6967 perf_event_pid(event, se->next_prev);
6968 se->event_id.next_prev_tid =
6969 perf_event_tid(event, se->next_prev);
6970 }
6971
6972 perf_event_header__init_id(&se->event_id.header, &sample, event);
6973
6974 ret = perf_output_begin(&handle, event, se->event_id.header.size);
6975 if (ret)
6976 return;
6977
6978 if (event->ctx->task)
6979 perf_output_put(&handle, se->event_id.header);
6980 else
6981 perf_output_put(&handle, se->event_id);
6982
6983 perf_event__output_id_sample(event, &handle, &sample);
6984
6985 perf_output_end(&handle);
6986 }
6987
6988 static void perf_event_switch(struct task_struct *task,
6989 struct task_struct *next_prev, bool sched_in)
6990 {
6991 struct perf_switch_event switch_event;
6992
6993 /* N.B. caller checks nr_switch_events != 0 */
6994
6995 switch_event = (struct perf_switch_event){
6996 .task = task,
6997 .next_prev = next_prev,
6998 .event_id = {
6999 .header = {
7000 /* .type */
7001 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
7002 /* .size */
7003 },
7004 /* .next_prev_pid */
7005 /* .next_prev_tid */
7006 },
7007 };
7008
7009 perf_iterate_sb(perf_event_switch_output,
7010 &switch_event,
7011 NULL);
7012 }
7013
7014 /*
7015 * IRQ throttle logging
7016 */
7017
7018 static void perf_log_throttle(struct perf_event *event, int enable)
7019 {
7020 struct perf_output_handle handle;
7021 struct perf_sample_data sample;
7022 int ret;
7023
7024 struct {
7025 struct perf_event_header header;
7026 u64 time;
7027 u64 id;
7028 u64 stream_id;
7029 } throttle_event = {
7030 .header = {
7031 .type = PERF_RECORD_THROTTLE,
7032 .misc = 0,
7033 .size = sizeof(throttle_event),
7034 },
7035 .time = perf_event_clock(event),
7036 .id = primary_event_id(event),
7037 .stream_id = event->id,
7038 };
7039
7040 if (enable)
7041 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
7042
7043 perf_event_header__init_id(&throttle_event.header, &sample, event);
7044
7045 ret = perf_output_begin(&handle, event,
7046 throttle_event.header.size);
7047 if (ret)
7048 return;
7049
7050 perf_output_put(&handle, throttle_event);
7051 perf_event__output_id_sample(event, &handle, &sample);
7052 perf_output_end(&handle);
7053 }
7054
7055 static void perf_log_itrace_start(struct perf_event *event)
7056 {
7057 struct perf_output_handle handle;
7058 struct perf_sample_data sample;
7059 struct perf_aux_event {
7060 struct perf_event_header header;
7061 u32 pid;
7062 u32 tid;
7063 } rec;
7064 int ret;
7065
7066 if (event->parent)
7067 event = event->parent;
7068
7069 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
7070 event->hw.itrace_started)
7071 return;
7072
7073 rec.header.type = PERF_RECORD_ITRACE_START;
7074 rec.header.misc = 0;
7075 rec.header.size = sizeof(rec);
7076 rec.pid = perf_event_pid(event, current);
7077 rec.tid = perf_event_tid(event, current);
7078
7079 perf_event_header__init_id(&rec.header, &sample, event);
7080 ret = perf_output_begin(&handle, event, rec.header.size);
7081
7082 if (ret)
7083 return;
7084
7085 perf_output_put(&handle, rec);
7086 perf_event__output_id_sample(event, &handle, &sample);
7087
7088 perf_output_end(&handle);
7089 }
7090
7091 static int
7092 __perf_event_account_interrupt(struct perf_event *event, int throttle)
7093 {
7094 struct hw_perf_event *hwc = &event->hw;
7095 int ret = 0;
7096 u64 seq;
7097
7098 seq = __this_cpu_read(perf_throttled_seq);
7099 if (seq != hwc->interrupts_seq) {
7100 hwc->interrupts_seq = seq;
7101 hwc->interrupts = 1;
7102 } else {
7103 hwc->interrupts++;
7104 if (unlikely(throttle
7105 && hwc->interrupts >= max_samples_per_tick)) {
7106 __this_cpu_inc(perf_throttled_count);
7107 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
7108 hwc->interrupts = MAX_INTERRUPTS;
7109 perf_log_throttle(event, 0);
7110 ret = 1;
7111 }
7112 }
7113
7114 if (event->attr.freq) {
7115 u64 now = perf_clock();
7116 s64 delta = now - hwc->freq_time_stamp;
7117
7118 hwc->freq_time_stamp = now;
7119
7120 if (delta > 0 && delta < 2*TICK_NSEC)
7121 perf_adjust_period(event, delta, hwc->last_period, true);
7122 }
7123
7124 return ret;
7125 }
7126
7127 int perf_event_account_interrupt(struct perf_event *event)
7128 {
7129 return __perf_event_account_interrupt(event, 1);
7130 }
7131
7132 /*
7133 * Generic event overflow handling, sampling.
7134 */
7135
7136 static int __perf_event_overflow(struct perf_event *event,
7137 int throttle, struct perf_sample_data *data,
7138 struct pt_regs *regs)
7139 {
7140 int events = atomic_read(&event->event_limit);
7141 int ret = 0;
7142
7143 /*
7144 * Non-sampling counters might still use the PMI to fold short
7145 * hardware counters, ignore those.
7146 */
7147 if (unlikely(!is_sampling_event(event)))
7148 return 0;
7149
7150 ret = __perf_event_account_interrupt(event, throttle);
7151
7152 /*
7153 * XXX event_limit might not quite work as expected on inherited
7154 * events
7155 */
7156
7157 event->pending_kill = POLL_IN;
7158 if (events && atomic_dec_and_test(&event->event_limit)) {
7159 ret = 1;
7160 event->pending_kill = POLL_HUP;
7161
7162 perf_event_disable_inatomic(event);
7163 }
7164
7165 READ_ONCE(event->overflow_handler)(event, data, regs);
7166
7167 if (*perf_event_fasync(event) && event->pending_kill) {
7168 event->pending_wakeup = 1;
7169 irq_work_queue(&event->pending);
7170 }
7171
7172 return ret;
7173 }
7174
7175 int perf_event_overflow(struct perf_event *event,
7176 struct perf_sample_data *data,
7177 struct pt_regs *regs)
7178 {
7179 return __perf_event_overflow(event, 1, data, regs);
7180 }
7181
7182 /*
7183 * Generic software event infrastructure
7184 */
7185
7186 struct swevent_htable {
7187 struct swevent_hlist *swevent_hlist;
7188 struct mutex hlist_mutex;
7189 int hlist_refcount;
7190
7191 /* Recursion avoidance in each contexts */
7192 int recursion[PERF_NR_CONTEXTS];
7193 };
7194
7195 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
7196
7197 /*
7198 * We directly increment event->count and keep a second value in
7199 * event->hw.period_left to count intervals. This period event
7200 * is kept in the range [-sample_period, 0] so that we can use the
7201 * sign as trigger.
7202 */
7203
7204 u64 perf_swevent_set_period(struct perf_event *event)
7205 {
7206 struct hw_perf_event *hwc = &event->hw;
7207 u64 period = hwc->last_period;
7208 u64 nr, offset;
7209 s64 old, val;
7210
7211 hwc->last_period = hwc->sample_period;
7212
7213 again:
7214 old = val = local64_read(&hwc->period_left);
7215 if (val < 0)
7216 return 0;
7217
7218 nr = div64_u64(period + val, period);
7219 offset = nr * period;
7220 val -= offset;
7221 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7222 goto again;
7223
7224 return nr;
7225 }
7226
7227 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
7228 struct perf_sample_data *data,
7229 struct pt_regs *regs)
7230 {
7231 struct hw_perf_event *hwc = &event->hw;
7232 int throttle = 0;
7233
7234 if (!overflow)
7235 overflow = perf_swevent_set_period(event);
7236
7237 if (hwc->interrupts == MAX_INTERRUPTS)
7238 return;
7239
7240 for (; overflow; overflow--) {
7241 if (__perf_event_overflow(event, throttle,
7242 data, regs)) {
7243 /*
7244 * We inhibit the overflow from happening when
7245 * hwc->interrupts == MAX_INTERRUPTS.
7246 */
7247 break;
7248 }
7249 throttle = 1;
7250 }
7251 }
7252
7253 static void perf_swevent_event(struct perf_event *event, u64 nr,
7254 struct perf_sample_data *data,
7255 struct pt_regs *regs)
7256 {
7257 struct hw_perf_event *hwc = &event->hw;
7258
7259 local64_add(nr, &event->count);
7260
7261 if (!regs)
7262 return;
7263
7264 if (!is_sampling_event(event))
7265 return;
7266
7267 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
7268 data->period = nr;
7269 return perf_swevent_overflow(event, 1, data, regs);
7270 } else
7271 data->period = event->hw.last_period;
7272
7273 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
7274 return perf_swevent_overflow(event, 1, data, regs);
7275
7276 if (local64_add_negative(nr, &hwc->period_left))
7277 return;
7278
7279 perf_swevent_overflow(event, 0, data, regs);
7280 }
7281
7282 static int perf_exclude_event(struct perf_event *event,
7283 struct pt_regs *regs)
7284 {
7285 if (event->hw.state & PERF_HES_STOPPED)
7286 return 1;
7287
7288 if (regs) {
7289 if (event->attr.exclude_user && user_mode(regs))
7290 return 1;
7291
7292 if (event->attr.exclude_kernel && !user_mode(regs))
7293 return 1;
7294 }
7295
7296 return 0;
7297 }
7298
7299 static int perf_swevent_match(struct perf_event *event,
7300 enum perf_type_id type,
7301 u32 event_id,
7302 struct perf_sample_data *data,
7303 struct pt_regs *regs)
7304 {
7305 if (event->attr.type != type)
7306 return 0;
7307
7308 if (event->attr.config != event_id)
7309 return 0;
7310
7311 if (perf_exclude_event(event, regs))
7312 return 0;
7313
7314 return 1;
7315 }
7316
7317 static inline u64 swevent_hash(u64 type, u32 event_id)
7318 {
7319 u64 val = event_id | (type << 32);
7320
7321 return hash_64(val, SWEVENT_HLIST_BITS);
7322 }
7323
7324 static inline struct hlist_head *
7325 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
7326 {
7327 u64 hash = swevent_hash(type, event_id);
7328
7329 return &hlist->heads[hash];
7330 }
7331
7332 /* For the read side: events when they trigger */
7333 static inline struct hlist_head *
7334 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
7335 {
7336 struct swevent_hlist *hlist;
7337
7338 hlist = rcu_dereference(swhash->swevent_hlist);
7339 if (!hlist)
7340 return NULL;
7341
7342 return __find_swevent_head(hlist, type, event_id);
7343 }
7344
7345 /* For the event head insertion and removal in the hlist */
7346 static inline struct hlist_head *
7347 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
7348 {
7349 struct swevent_hlist *hlist;
7350 u32 event_id = event->attr.config;
7351 u64 type = event->attr.type;
7352
7353 /*
7354 * Event scheduling is always serialized against hlist allocation
7355 * and release. Which makes the protected version suitable here.
7356 * The context lock guarantees that.
7357 */
7358 hlist = rcu_dereference_protected(swhash->swevent_hlist,
7359 lockdep_is_held(&event->ctx->lock));
7360 if (!hlist)
7361 return NULL;
7362
7363 return __find_swevent_head(hlist, type, event_id);
7364 }
7365
7366 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
7367 u64 nr,
7368 struct perf_sample_data *data,
7369 struct pt_regs *regs)
7370 {
7371 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7372 struct perf_event *event;
7373 struct hlist_head *head;
7374
7375 rcu_read_lock();
7376 head = find_swevent_head_rcu(swhash, type, event_id);
7377 if (!head)
7378 goto end;
7379
7380 hlist_for_each_entry_rcu(event, head, hlist_entry) {
7381 if (perf_swevent_match(event, type, event_id, data, regs))
7382 perf_swevent_event(event, nr, data, regs);
7383 }
7384 end:
7385 rcu_read_unlock();
7386 }
7387
7388 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
7389
7390 int perf_swevent_get_recursion_context(void)
7391 {
7392 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7393
7394 return get_recursion_context(swhash->recursion);
7395 }
7396 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
7397
7398 void perf_swevent_put_recursion_context(int rctx)
7399 {
7400 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7401
7402 put_recursion_context(swhash->recursion, rctx);
7403 }
7404
7405 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7406 {
7407 struct perf_sample_data data;
7408
7409 if (WARN_ON_ONCE(!regs))
7410 return;
7411
7412 perf_sample_data_init(&data, addr, 0);
7413 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
7414 }
7415
7416 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7417 {
7418 int rctx;
7419
7420 preempt_disable_notrace();
7421 rctx = perf_swevent_get_recursion_context();
7422 if (unlikely(rctx < 0))
7423 goto fail;
7424
7425 ___perf_sw_event(event_id, nr, regs, addr);
7426
7427 perf_swevent_put_recursion_context(rctx);
7428 fail:
7429 preempt_enable_notrace();
7430 }
7431
7432 static void perf_swevent_read(struct perf_event *event)
7433 {
7434 }
7435
7436 static int perf_swevent_add(struct perf_event *event, int flags)
7437 {
7438 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7439 struct hw_perf_event *hwc = &event->hw;
7440 struct hlist_head *head;
7441
7442 if (is_sampling_event(event)) {
7443 hwc->last_period = hwc->sample_period;
7444 perf_swevent_set_period(event);
7445 }
7446
7447 hwc->state = !(flags & PERF_EF_START);
7448
7449 head = find_swevent_head(swhash, event);
7450 if (WARN_ON_ONCE(!head))
7451 return -EINVAL;
7452
7453 hlist_add_head_rcu(&event->hlist_entry, head);
7454 perf_event_update_userpage(event);
7455
7456 return 0;
7457 }
7458
7459 static void perf_swevent_del(struct perf_event *event, int flags)
7460 {
7461 hlist_del_rcu(&event->hlist_entry);
7462 }
7463
7464 static void perf_swevent_start(struct perf_event *event, int flags)
7465 {
7466 event->hw.state = 0;
7467 }
7468
7469 static void perf_swevent_stop(struct perf_event *event, int flags)
7470 {
7471 event->hw.state = PERF_HES_STOPPED;
7472 }
7473
7474 /* Deref the hlist from the update side */
7475 static inline struct swevent_hlist *
7476 swevent_hlist_deref(struct swevent_htable *swhash)
7477 {
7478 return rcu_dereference_protected(swhash->swevent_hlist,
7479 lockdep_is_held(&swhash->hlist_mutex));
7480 }
7481
7482 static void swevent_hlist_release(struct swevent_htable *swhash)
7483 {
7484 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
7485
7486 if (!hlist)
7487 return;
7488
7489 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
7490 kfree_rcu(hlist, rcu_head);
7491 }
7492
7493 static void swevent_hlist_put_cpu(int cpu)
7494 {
7495 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7496
7497 mutex_lock(&swhash->hlist_mutex);
7498
7499 if (!--swhash->hlist_refcount)
7500 swevent_hlist_release(swhash);
7501
7502 mutex_unlock(&swhash->hlist_mutex);
7503 }
7504
7505 static void swevent_hlist_put(void)
7506 {
7507 int cpu;
7508
7509 for_each_possible_cpu(cpu)
7510 swevent_hlist_put_cpu(cpu);
7511 }
7512
7513 static int swevent_hlist_get_cpu(int cpu)
7514 {
7515 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7516 int err = 0;
7517
7518 mutex_lock(&swhash->hlist_mutex);
7519 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
7520 struct swevent_hlist *hlist;
7521
7522 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
7523 if (!hlist) {
7524 err = -ENOMEM;
7525 goto exit;
7526 }
7527 rcu_assign_pointer(swhash->swevent_hlist, hlist);
7528 }
7529 swhash->hlist_refcount++;
7530 exit:
7531 mutex_unlock(&swhash->hlist_mutex);
7532
7533 return err;
7534 }
7535
7536 static int swevent_hlist_get(void)
7537 {
7538 int err, cpu, failed_cpu;
7539
7540 get_online_cpus();
7541 for_each_possible_cpu(cpu) {
7542 err = swevent_hlist_get_cpu(cpu);
7543 if (err) {
7544 failed_cpu = cpu;
7545 goto fail;
7546 }
7547 }
7548 put_online_cpus();
7549
7550 return 0;
7551 fail:
7552 for_each_possible_cpu(cpu) {
7553 if (cpu == failed_cpu)
7554 break;
7555 swevent_hlist_put_cpu(cpu);
7556 }
7557
7558 put_online_cpus();
7559 return err;
7560 }
7561
7562 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
7563
7564 static void sw_perf_event_destroy(struct perf_event *event)
7565 {
7566 u64 event_id = event->attr.config;
7567
7568 WARN_ON(event->parent);
7569
7570 static_key_slow_dec(&perf_swevent_enabled[event_id]);
7571 swevent_hlist_put();
7572 }
7573
7574 static int perf_swevent_init(struct perf_event *event)
7575 {
7576 u64 event_id = event->attr.config;
7577
7578 if (event->attr.type != PERF_TYPE_SOFTWARE)
7579 return -ENOENT;
7580
7581 /*
7582 * no branch sampling for software events
7583 */
7584 if (has_branch_stack(event))
7585 return -EOPNOTSUPP;
7586
7587 switch (event_id) {
7588 case PERF_COUNT_SW_CPU_CLOCK:
7589 case PERF_COUNT_SW_TASK_CLOCK:
7590 return -ENOENT;
7591
7592 default:
7593 break;
7594 }
7595
7596 if (event_id >= PERF_COUNT_SW_MAX)
7597 return -ENOENT;
7598
7599 if (!event->parent) {
7600 int err;
7601
7602 err = swevent_hlist_get();
7603 if (err)
7604 return err;
7605
7606 static_key_slow_inc(&perf_swevent_enabled[event_id]);
7607 event->destroy = sw_perf_event_destroy;
7608 }
7609
7610 return 0;
7611 }
7612
7613 static struct pmu perf_swevent = {
7614 .task_ctx_nr = perf_sw_context,
7615
7616 .capabilities = PERF_PMU_CAP_NO_NMI,
7617
7618 .event_init = perf_swevent_init,
7619 .add = perf_swevent_add,
7620 .del = perf_swevent_del,
7621 .start = perf_swevent_start,
7622 .stop = perf_swevent_stop,
7623 .read = perf_swevent_read,
7624 };
7625
7626 #ifdef CONFIG_EVENT_TRACING
7627
7628 static int perf_tp_filter_match(struct perf_event *event,
7629 struct perf_sample_data *data)
7630 {
7631 void *record = data->raw->frag.data;
7632
7633 /* only top level events have filters set */
7634 if (event->parent)
7635 event = event->parent;
7636
7637 if (likely(!event->filter) || filter_match_preds(event->filter, record))
7638 return 1;
7639 return 0;
7640 }
7641
7642 static int perf_tp_event_match(struct perf_event *event,
7643 struct perf_sample_data *data,
7644 struct pt_regs *regs)
7645 {
7646 if (event->hw.state & PERF_HES_STOPPED)
7647 return 0;
7648 /*
7649 * All tracepoints are from kernel-space.
7650 */
7651 if (event->attr.exclude_kernel)
7652 return 0;
7653
7654 if (!perf_tp_filter_match(event, data))
7655 return 0;
7656
7657 return 1;
7658 }
7659
7660 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
7661 struct trace_event_call *call, u64 count,
7662 struct pt_regs *regs, struct hlist_head *head,
7663 struct task_struct *task)
7664 {
7665 struct bpf_prog *prog = call->prog;
7666
7667 if (prog) {
7668 *(struct pt_regs **)raw_data = regs;
7669 if (!trace_call_bpf(prog, raw_data) || hlist_empty(head)) {
7670 perf_swevent_put_recursion_context(rctx);
7671 return;
7672 }
7673 }
7674 perf_tp_event(call->event.type, count, raw_data, size, regs, head,
7675 rctx, task);
7676 }
7677 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
7678
7679 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
7680 struct pt_regs *regs, struct hlist_head *head, int rctx,
7681 struct task_struct *task)
7682 {
7683 struct perf_sample_data data;
7684 struct perf_event *event;
7685
7686 struct perf_raw_record raw = {
7687 .frag = {
7688 .size = entry_size,
7689 .data = record,
7690 },
7691 };
7692
7693 perf_sample_data_init(&data, 0, 0);
7694 data.raw = &raw;
7695
7696 perf_trace_buf_update(record, event_type);
7697
7698 hlist_for_each_entry_rcu(event, head, hlist_entry) {
7699 if (perf_tp_event_match(event, &data, regs))
7700 perf_swevent_event(event, count, &data, regs);
7701 }
7702
7703 /*
7704 * If we got specified a target task, also iterate its context and
7705 * deliver this event there too.
7706 */
7707 if (task && task != current) {
7708 struct perf_event_context *ctx;
7709 struct trace_entry *entry = record;
7710
7711 rcu_read_lock();
7712 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
7713 if (!ctx)
7714 goto unlock;
7715
7716 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7717 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7718 continue;
7719 if (event->attr.config != entry->type)
7720 continue;
7721 if (perf_tp_event_match(event, &data, regs))
7722 perf_swevent_event(event, count, &data, regs);
7723 }
7724 unlock:
7725 rcu_read_unlock();
7726 }
7727
7728 perf_swevent_put_recursion_context(rctx);
7729 }
7730 EXPORT_SYMBOL_GPL(perf_tp_event);
7731
7732 static void tp_perf_event_destroy(struct perf_event *event)
7733 {
7734 perf_trace_destroy(event);
7735 }
7736
7737 static int perf_tp_event_init(struct perf_event *event)
7738 {
7739 int err;
7740
7741 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7742 return -ENOENT;
7743
7744 /*
7745 * no branch sampling for tracepoint events
7746 */
7747 if (has_branch_stack(event))
7748 return -EOPNOTSUPP;
7749
7750 err = perf_trace_init(event);
7751 if (err)
7752 return err;
7753
7754 event->destroy = tp_perf_event_destroy;
7755
7756 return 0;
7757 }
7758
7759 static struct pmu perf_tracepoint = {
7760 .task_ctx_nr = perf_sw_context,
7761
7762 .event_init = perf_tp_event_init,
7763 .add = perf_trace_add,
7764 .del = perf_trace_del,
7765 .start = perf_swevent_start,
7766 .stop = perf_swevent_stop,
7767 .read = perf_swevent_read,
7768 };
7769
7770 static inline void perf_tp_register(void)
7771 {
7772 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
7773 }
7774
7775 static void perf_event_free_filter(struct perf_event *event)
7776 {
7777 ftrace_profile_free_filter(event);
7778 }
7779
7780 #ifdef CONFIG_BPF_SYSCALL
7781 static void bpf_overflow_handler(struct perf_event *event,
7782 struct perf_sample_data *data,
7783 struct pt_regs *regs)
7784 {
7785 struct bpf_perf_event_data_kern ctx = {
7786 .data = data,
7787 .regs = regs,
7788 };
7789 int ret = 0;
7790
7791 preempt_disable();
7792 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
7793 goto out;
7794 rcu_read_lock();
7795 ret = BPF_PROG_RUN(event->prog, &ctx);
7796 rcu_read_unlock();
7797 out:
7798 __this_cpu_dec(bpf_prog_active);
7799 preempt_enable();
7800 if (!ret)
7801 return;
7802
7803 event->orig_overflow_handler(event, data, regs);
7804 }
7805
7806 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
7807 {
7808 struct bpf_prog *prog;
7809
7810 if (event->overflow_handler_context)
7811 /* hw breakpoint or kernel counter */
7812 return -EINVAL;
7813
7814 if (event->prog)
7815 return -EEXIST;
7816
7817 prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
7818 if (IS_ERR(prog))
7819 return PTR_ERR(prog);
7820
7821 event->prog = prog;
7822 event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
7823 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
7824 return 0;
7825 }
7826
7827 static void perf_event_free_bpf_handler(struct perf_event *event)
7828 {
7829 struct bpf_prog *prog = event->prog;
7830
7831 if (!prog)
7832 return;
7833
7834 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
7835 event->prog = NULL;
7836 bpf_prog_put(prog);
7837 }
7838 #else
7839 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
7840 {
7841 return -EOPNOTSUPP;
7842 }
7843 static void perf_event_free_bpf_handler(struct perf_event *event)
7844 {
7845 }
7846 #endif
7847
7848 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7849 {
7850 bool is_kprobe, is_tracepoint;
7851 struct bpf_prog *prog;
7852
7853 if (event->attr.type == PERF_TYPE_HARDWARE ||
7854 event->attr.type == PERF_TYPE_SOFTWARE)
7855 return perf_event_set_bpf_handler(event, prog_fd);
7856
7857 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7858 return -EINVAL;
7859
7860 if (event->tp_event->prog)
7861 return -EEXIST;
7862
7863 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
7864 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
7865 if (!is_kprobe && !is_tracepoint)
7866 /* bpf programs can only be attached to u/kprobe or tracepoint */
7867 return -EINVAL;
7868
7869 prog = bpf_prog_get(prog_fd);
7870 if (IS_ERR(prog))
7871 return PTR_ERR(prog);
7872
7873 if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
7874 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
7875 /* valid fd, but invalid bpf program type */
7876 bpf_prog_put(prog);
7877 return -EINVAL;
7878 }
7879
7880 if (is_tracepoint) {
7881 int off = trace_event_get_offsets(event->tp_event);
7882
7883 if (prog->aux->max_ctx_offset > off) {
7884 bpf_prog_put(prog);
7885 return -EACCES;
7886 }
7887 }
7888 event->tp_event->prog = prog;
7889
7890 return 0;
7891 }
7892
7893 static void perf_event_free_bpf_prog(struct perf_event *event)
7894 {
7895 struct bpf_prog *prog;
7896
7897 perf_event_free_bpf_handler(event);
7898
7899 if (!event->tp_event)
7900 return;
7901
7902 prog = event->tp_event->prog;
7903 if (prog) {
7904 event->tp_event->prog = NULL;
7905 bpf_prog_put(prog);
7906 }
7907 }
7908
7909 #else
7910
7911 static inline void perf_tp_register(void)
7912 {
7913 }
7914
7915 static void perf_event_free_filter(struct perf_event *event)
7916 {
7917 }
7918
7919 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7920 {
7921 return -ENOENT;
7922 }
7923
7924 static void perf_event_free_bpf_prog(struct perf_event *event)
7925 {
7926 }
7927 #endif /* CONFIG_EVENT_TRACING */
7928
7929 #ifdef CONFIG_HAVE_HW_BREAKPOINT
7930 void perf_bp_event(struct perf_event *bp, void *data)
7931 {
7932 struct perf_sample_data sample;
7933 struct pt_regs *regs = data;
7934
7935 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
7936
7937 if (!bp->hw.state && !perf_exclude_event(bp, regs))
7938 perf_swevent_event(bp, 1, &sample, regs);
7939 }
7940 #endif
7941
7942 /*
7943 * Allocate a new address filter
7944 */
7945 static struct perf_addr_filter *
7946 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
7947 {
7948 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
7949 struct perf_addr_filter *filter;
7950
7951 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
7952 if (!filter)
7953 return NULL;
7954
7955 INIT_LIST_HEAD(&filter->entry);
7956 list_add_tail(&filter->entry, filters);
7957
7958 return filter;
7959 }
7960
7961 static void free_filters_list(struct list_head *filters)
7962 {
7963 struct perf_addr_filter *filter, *iter;
7964
7965 list_for_each_entry_safe(filter, iter, filters, entry) {
7966 if (filter->inode)
7967 iput(filter->inode);
7968 list_del(&filter->entry);
7969 kfree(filter);
7970 }
7971 }
7972
7973 /*
7974 * Free existing address filters and optionally install new ones
7975 */
7976 static void perf_addr_filters_splice(struct perf_event *event,
7977 struct list_head *head)
7978 {
7979 unsigned long flags;
7980 LIST_HEAD(list);
7981
7982 if (!has_addr_filter(event))
7983 return;
7984
7985 /* don't bother with children, they don't have their own filters */
7986 if (event->parent)
7987 return;
7988
7989 raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
7990
7991 list_splice_init(&event->addr_filters.list, &list);
7992 if (head)
7993 list_splice(head, &event->addr_filters.list);
7994
7995 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
7996
7997 free_filters_list(&list);
7998 }
7999
8000 /*
8001 * Scan through mm's vmas and see if one of them matches the
8002 * @filter; if so, adjust filter's address range.
8003 * Called with mm::mmap_sem down for reading.
8004 */
8005 static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
8006 struct mm_struct *mm)
8007 {
8008 struct vm_area_struct *vma;
8009
8010 for (vma = mm->mmap; vma; vma = vma->vm_next) {
8011 struct file *file = vma->vm_file;
8012 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8013 unsigned long vma_size = vma->vm_end - vma->vm_start;
8014
8015 if (!file)
8016 continue;
8017
8018 if (!perf_addr_filter_match(filter, file, off, vma_size))
8019 continue;
8020
8021 return vma->vm_start;
8022 }
8023
8024 return 0;
8025 }
8026
8027 /*
8028 * Update event's address range filters based on the
8029 * task's existing mappings, if any.
8030 */
8031 static void perf_event_addr_filters_apply(struct perf_event *event)
8032 {
8033 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8034 struct task_struct *task = READ_ONCE(event->ctx->task);
8035 struct perf_addr_filter *filter;
8036 struct mm_struct *mm = NULL;
8037 unsigned int count = 0;
8038 unsigned long flags;
8039
8040 /*
8041 * We may observe TASK_TOMBSTONE, which means that the event tear-down
8042 * will stop on the parent's child_mutex that our caller is also holding
8043 */
8044 if (task == TASK_TOMBSTONE)
8045 return;
8046
8047 mm = get_task_mm(event->ctx->task);
8048 if (!mm)
8049 goto restart;
8050
8051 down_read(&mm->mmap_sem);
8052
8053 raw_spin_lock_irqsave(&ifh->lock, flags);
8054 list_for_each_entry(filter, &ifh->list, entry) {
8055 event->addr_filters_offs[count] = 0;
8056
8057 /*
8058 * Adjust base offset if the filter is associated to a binary
8059 * that needs to be mapped:
8060 */
8061 if (filter->inode)
8062 event->addr_filters_offs[count] =
8063 perf_addr_filter_apply(filter, mm);
8064
8065 count++;
8066 }
8067
8068 event->addr_filters_gen++;
8069 raw_spin_unlock_irqrestore(&ifh->lock, flags);
8070
8071 up_read(&mm->mmap_sem);
8072
8073 mmput(mm);
8074
8075 restart:
8076 perf_event_stop(event, 1);
8077 }
8078
8079 /*
8080 * Address range filtering: limiting the data to certain
8081 * instruction address ranges. Filters are ioctl()ed to us from
8082 * userspace as ascii strings.
8083 *
8084 * Filter string format:
8085 *
8086 * ACTION RANGE_SPEC
8087 * where ACTION is one of the
8088 * * "filter": limit the trace to this region
8089 * * "start": start tracing from this address
8090 * * "stop": stop tracing at this address/region;
8091 * RANGE_SPEC is
8092 * * for kernel addresses: <start address>[/<size>]
8093 * * for object files: <start address>[/<size>]@</path/to/object/file>
8094 *
8095 * if <size> is not specified, the range is treated as a single address.
8096 */
8097 enum {
8098 IF_ACT_NONE = -1,
8099 IF_ACT_FILTER,
8100 IF_ACT_START,
8101 IF_ACT_STOP,
8102 IF_SRC_FILE,
8103 IF_SRC_KERNEL,
8104 IF_SRC_FILEADDR,
8105 IF_SRC_KERNELADDR,
8106 };
8107
8108 enum {
8109 IF_STATE_ACTION = 0,
8110 IF_STATE_SOURCE,
8111 IF_STATE_END,
8112 };
8113
8114 static const match_table_t if_tokens = {
8115 { IF_ACT_FILTER, "filter" },
8116 { IF_ACT_START, "start" },
8117 { IF_ACT_STOP, "stop" },
8118 { IF_SRC_FILE, "%u/%u@%s" },
8119 { IF_SRC_KERNEL, "%u/%u" },
8120 { IF_SRC_FILEADDR, "%u@%s" },
8121 { IF_SRC_KERNELADDR, "%u" },
8122 { IF_ACT_NONE, NULL },
8123 };
8124
8125 /*
8126 * Address filter string parser
8127 */
8128 static int
8129 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
8130 struct list_head *filters)
8131 {
8132 struct perf_addr_filter *filter = NULL;
8133 char *start, *orig, *filename = NULL;
8134 struct path path;
8135 substring_t args[MAX_OPT_ARGS];
8136 int state = IF_STATE_ACTION, token;
8137 unsigned int kernel = 0;
8138 int ret = -EINVAL;
8139
8140 orig = fstr = kstrdup(fstr, GFP_KERNEL);
8141 if (!fstr)
8142 return -ENOMEM;
8143
8144 while ((start = strsep(&fstr, " ,\n")) != NULL) {
8145 ret = -EINVAL;
8146
8147 if (!*start)
8148 continue;
8149
8150 /* filter definition begins */
8151 if (state == IF_STATE_ACTION) {
8152 filter = perf_addr_filter_new(event, filters);
8153 if (!filter)
8154 goto fail;
8155 }
8156
8157 token = match_token(start, if_tokens, args);
8158 switch (token) {
8159 case IF_ACT_FILTER:
8160 case IF_ACT_START:
8161 filter->filter = 1;
8162
8163 case IF_ACT_STOP:
8164 if (state != IF_STATE_ACTION)
8165 goto fail;
8166
8167 state = IF_STATE_SOURCE;
8168 break;
8169
8170 case IF_SRC_KERNELADDR:
8171 case IF_SRC_KERNEL:
8172 kernel = 1;
8173
8174 case IF_SRC_FILEADDR:
8175 case IF_SRC_FILE:
8176 if (state != IF_STATE_SOURCE)
8177 goto fail;
8178
8179 if (token == IF_SRC_FILE || token == IF_SRC_KERNEL)
8180 filter->range = 1;
8181
8182 *args[0].to = 0;
8183 ret = kstrtoul(args[0].from, 0, &filter->offset);
8184 if (ret)
8185 goto fail;
8186
8187 if (filter->range) {
8188 *args[1].to = 0;
8189 ret = kstrtoul(args[1].from, 0, &filter->size);
8190 if (ret)
8191 goto fail;
8192 }
8193
8194 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
8195 int fpos = filter->range ? 2 : 1;
8196
8197 filename = match_strdup(&args[fpos]);
8198 if (!filename) {
8199 ret = -ENOMEM;
8200 goto fail;
8201 }
8202 }
8203
8204 state = IF_STATE_END;
8205 break;
8206
8207 default:
8208 goto fail;
8209 }
8210
8211 /*
8212 * Filter definition is fully parsed, validate and install it.
8213 * Make sure that it doesn't contradict itself or the event's
8214 * attribute.
8215 */
8216 if (state == IF_STATE_END) {
8217 if (kernel && event->attr.exclude_kernel)
8218 goto fail;
8219
8220 if (!kernel) {
8221 if (!filename)
8222 goto fail;
8223
8224 /* look up the path and grab its inode */
8225 ret = kern_path(filename, LOOKUP_FOLLOW, &path);
8226 if (ret)
8227 goto fail_free_name;
8228
8229 filter->inode = igrab(d_inode(path.dentry));
8230 path_put(&path);
8231 kfree(filename);
8232 filename = NULL;
8233
8234 ret = -EINVAL;
8235 if (!filter->inode ||
8236 !S_ISREG(filter->inode->i_mode))
8237 /* free_filters_list() will iput() */
8238 goto fail;
8239 }
8240
8241 /* ready to consume more filters */
8242 state = IF_STATE_ACTION;
8243 filter = NULL;
8244 }
8245 }
8246
8247 if (state != IF_STATE_ACTION)
8248 goto fail;
8249
8250 kfree(orig);
8251
8252 return 0;
8253
8254 fail_free_name:
8255 kfree(filename);
8256 fail:
8257 free_filters_list(filters);
8258 kfree(orig);
8259
8260 return ret;
8261 }
8262
8263 static int
8264 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
8265 {
8266 LIST_HEAD(filters);
8267 int ret;
8268
8269 /*
8270 * Since this is called in perf_ioctl() path, we're already holding
8271 * ctx::mutex.
8272 */
8273 lockdep_assert_held(&event->ctx->mutex);
8274
8275 if (WARN_ON_ONCE(event->parent))
8276 return -EINVAL;
8277
8278 /*
8279 * For now, we only support filtering in per-task events; doing so
8280 * for CPU-wide events requires additional context switching trickery,
8281 * since same object code will be mapped at different virtual
8282 * addresses in different processes.
8283 */
8284 if (!event->ctx->task)
8285 return -EOPNOTSUPP;
8286
8287 ret = perf_event_parse_addr_filter(event, filter_str, &filters);
8288 if (ret)
8289 return ret;
8290
8291 ret = event->pmu->addr_filters_validate(&filters);
8292 if (ret) {
8293 free_filters_list(&filters);
8294 return ret;
8295 }
8296
8297 /* remove existing filters, if any */
8298 perf_addr_filters_splice(event, &filters);
8299
8300 /* install new filters */
8301 perf_event_for_each_child(event, perf_event_addr_filters_apply);
8302
8303 return ret;
8304 }
8305
8306 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
8307 {
8308 char *filter_str;
8309 int ret = -EINVAL;
8310
8311 if ((event->attr.type != PERF_TYPE_TRACEPOINT ||
8312 !IS_ENABLED(CONFIG_EVENT_TRACING)) &&
8313 !has_addr_filter(event))
8314 return -EINVAL;
8315
8316 filter_str = strndup_user(arg, PAGE_SIZE);
8317 if (IS_ERR(filter_str))
8318 return PTR_ERR(filter_str);
8319
8320 if (IS_ENABLED(CONFIG_EVENT_TRACING) &&
8321 event->attr.type == PERF_TYPE_TRACEPOINT)
8322 ret = ftrace_profile_set_filter(event, event->attr.config,
8323 filter_str);
8324 else if (has_addr_filter(event))
8325 ret = perf_event_set_addr_filter(event, filter_str);
8326
8327 kfree(filter_str);
8328 return ret;
8329 }
8330
8331 /*
8332 * hrtimer based swevent callback
8333 */
8334
8335 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
8336 {
8337 enum hrtimer_restart ret = HRTIMER_RESTART;
8338 struct perf_sample_data data;
8339 struct pt_regs *regs;
8340 struct perf_event *event;
8341 u64 period;
8342
8343 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
8344
8345 if (event->state != PERF_EVENT_STATE_ACTIVE)
8346 return HRTIMER_NORESTART;
8347
8348 event->pmu->read(event);
8349
8350 perf_sample_data_init(&data, 0, event->hw.last_period);
8351 regs = get_irq_regs();
8352
8353 if (regs && !perf_exclude_event(event, regs)) {
8354 if (!(event->attr.exclude_idle && is_idle_task(current)))
8355 if (__perf_event_overflow(event, 1, &data, regs))
8356 ret = HRTIMER_NORESTART;
8357 }
8358
8359 period = max_t(u64, 10000, event->hw.sample_period);
8360 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
8361
8362 return ret;
8363 }
8364
8365 static void perf_swevent_start_hrtimer(struct perf_event *event)
8366 {
8367 struct hw_perf_event *hwc = &event->hw;
8368 s64 period;
8369
8370 if (!is_sampling_event(event))
8371 return;
8372
8373 period = local64_read(&hwc->period_left);
8374 if (period) {
8375 if (period < 0)
8376 period = 10000;
8377
8378 local64_set(&hwc->period_left, 0);
8379 } else {
8380 period = max_t(u64, 10000, hwc->sample_period);
8381 }
8382 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
8383 HRTIMER_MODE_REL_PINNED);
8384 }
8385
8386 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
8387 {
8388 struct hw_perf_event *hwc = &event->hw;
8389
8390 if (is_sampling_event(event)) {
8391 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
8392 local64_set(&hwc->period_left, ktime_to_ns(remaining));
8393
8394 hrtimer_cancel(&hwc->hrtimer);
8395 }
8396 }
8397
8398 static void perf_swevent_init_hrtimer(struct perf_event *event)
8399 {
8400 struct hw_perf_event *hwc = &event->hw;
8401
8402 if (!is_sampling_event(event))
8403 return;
8404
8405 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
8406 hwc->hrtimer.function = perf_swevent_hrtimer;
8407
8408 /*
8409 * Since hrtimers have a fixed rate, we can do a static freq->period
8410 * mapping and avoid the whole period adjust feedback stuff.
8411 */
8412 if (event->attr.freq) {
8413 long freq = event->attr.sample_freq;
8414
8415 event->attr.sample_period = NSEC_PER_SEC / freq;
8416 hwc->sample_period = event->attr.sample_period;
8417 local64_set(&hwc->period_left, hwc->sample_period);
8418 hwc->last_period = hwc->sample_period;
8419 event->attr.freq = 0;
8420 }
8421 }
8422
8423 /*
8424 * Software event: cpu wall time clock
8425 */
8426
8427 static void cpu_clock_event_update(struct perf_event *event)
8428 {
8429 s64 prev;
8430 u64 now;
8431
8432 now = local_clock();
8433 prev = local64_xchg(&event->hw.prev_count, now);
8434 local64_add(now - prev, &event->count);
8435 }
8436
8437 static void cpu_clock_event_start(struct perf_event *event, int flags)
8438 {
8439 local64_set(&event->hw.prev_count, local_clock());
8440 perf_swevent_start_hrtimer(event);
8441 }
8442
8443 static void cpu_clock_event_stop(struct perf_event *event, int flags)
8444 {
8445 perf_swevent_cancel_hrtimer(event);
8446 cpu_clock_event_update(event);
8447 }
8448
8449 static int cpu_clock_event_add(struct perf_event *event, int flags)
8450 {
8451 if (flags & PERF_EF_START)
8452 cpu_clock_event_start(event, flags);
8453 perf_event_update_userpage(event);
8454
8455 return 0;
8456 }
8457
8458 static void cpu_clock_event_del(struct perf_event *event, int flags)
8459 {
8460 cpu_clock_event_stop(event, flags);
8461 }
8462
8463 static void cpu_clock_event_read(struct perf_event *event)
8464 {
8465 cpu_clock_event_update(event);
8466 }
8467
8468 static int cpu_clock_event_init(struct perf_event *event)
8469 {
8470 if (event->attr.type != PERF_TYPE_SOFTWARE)
8471 return -ENOENT;
8472
8473 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
8474 return -ENOENT;
8475
8476 /*
8477 * no branch sampling for software events
8478 */
8479 if (has_branch_stack(event))
8480 return -EOPNOTSUPP;
8481
8482 perf_swevent_init_hrtimer(event);
8483
8484 return 0;
8485 }
8486
8487 static struct pmu perf_cpu_clock = {
8488 .task_ctx_nr = perf_sw_context,
8489
8490 .capabilities = PERF_PMU_CAP_NO_NMI,
8491
8492 .event_init = cpu_clock_event_init,
8493 .add = cpu_clock_event_add,
8494 .del = cpu_clock_event_del,
8495 .start = cpu_clock_event_start,
8496 .stop = cpu_clock_event_stop,
8497 .read = cpu_clock_event_read,
8498 };
8499
8500 /*
8501 * Software event: task time clock
8502 */
8503
8504 static void task_clock_event_update(struct perf_event *event, u64 now)
8505 {
8506 u64 prev;
8507 s64 delta;
8508
8509 prev = local64_xchg(&event->hw.prev_count, now);
8510 delta = now - prev;
8511 local64_add(delta, &event->count);
8512 }
8513
8514 static void task_clock_event_start(struct perf_event *event, int flags)
8515 {
8516 local64_set(&event->hw.prev_count, event->ctx->time);
8517 perf_swevent_start_hrtimer(event);
8518 }
8519
8520 static void task_clock_event_stop(struct perf_event *event, int flags)
8521 {
8522 perf_swevent_cancel_hrtimer(event);
8523 task_clock_event_update(event, event->ctx->time);
8524 }
8525
8526 static int task_clock_event_add(struct perf_event *event, int flags)
8527 {
8528 if (flags & PERF_EF_START)
8529 task_clock_event_start(event, flags);
8530 perf_event_update_userpage(event);
8531
8532 return 0;
8533 }
8534
8535 static void task_clock_event_del(struct perf_event *event, int flags)
8536 {
8537 task_clock_event_stop(event, PERF_EF_UPDATE);
8538 }
8539
8540 static void task_clock_event_read(struct perf_event *event)
8541 {
8542 u64 now = perf_clock();
8543 u64 delta = now - event->ctx->timestamp;
8544 u64 time = event->ctx->time + delta;
8545
8546 task_clock_event_update(event, time);
8547 }
8548
8549 static int task_clock_event_init(struct perf_event *event)
8550 {
8551 if (event->attr.type != PERF_TYPE_SOFTWARE)
8552 return -ENOENT;
8553
8554 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
8555 return -ENOENT;
8556
8557 /*
8558 * no branch sampling for software events
8559 */
8560 if (has_branch_stack(event))
8561 return -EOPNOTSUPP;
8562
8563 perf_swevent_init_hrtimer(event);
8564
8565 return 0;
8566 }
8567
8568 static struct pmu perf_task_clock = {
8569 .task_ctx_nr = perf_sw_context,
8570
8571 .capabilities = PERF_PMU_CAP_NO_NMI,
8572
8573 .event_init = task_clock_event_init,
8574 .add = task_clock_event_add,
8575 .del = task_clock_event_del,
8576 .start = task_clock_event_start,
8577 .stop = task_clock_event_stop,
8578 .read = task_clock_event_read,
8579 };
8580
8581 static void perf_pmu_nop_void(struct pmu *pmu)
8582 {
8583 }
8584
8585 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
8586 {
8587 }
8588
8589 static int perf_pmu_nop_int(struct pmu *pmu)
8590 {
8591 return 0;
8592 }
8593
8594 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
8595
8596 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
8597 {
8598 __this_cpu_write(nop_txn_flags, flags);
8599
8600 if (flags & ~PERF_PMU_TXN_ADD)
8601 return;
8602
8603 perf_pmu_disable(pmu);
8604 }
8605
8606 static int perf_pmu_commit_txn(struct pmu *pmu)
8607 {
8608 unsigned int flags = __this_cpu_read(nop_txn_flags);
8609
8610 __this_cpu_write(nop_txn_flags, 0);
8611
8612 if (flags & ~PERF_PMU_TXN_ADD)
8613 return 0;
8614
8615 perf_pmu_enable(pmu);
8616 return 0;
8617 }
8618
8619 static void perf_pmu_cancel_txn(struct pmu *pmu)
8620 {
8621 unsigned int flags = __this_cpu_read(nop_txn_flags);
8622
8623 __this_cpu_write(nop_txn_flags, 0);
8624
8625 if (flags & ~PERF_PMU_TXN_ADD)
8626 return;
8627
8628 perf_pmu_enable(pmu);
8629 }
8630
8631 static int perf_event_idx_default(struct perf_event *event)
8632 {
8633 return 0;
8634 }
8635
8636 /*
8637 * Ensures all contexts with the same task_ctx_nr have the same
8638 * pmu_cpu_context too.
8639 */
8640 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
8641 {
8642 struct pmu *pmu;
8643
8644 if (ctxn < 0)
8645 return NULL;
8646
8647 list_for_each_entry(pmu, &pmus, entry) {
8648 if (pmu->task_ctx_nr == ctxn)
8649 return pmu->pmu_cpu_context;
8650 }
8651
8652 return NULL;
8653 }
8654
8655 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
8656 {
8657 int cpu;
8658
8659 for_each_possible_cpu(cpu) {
8660 struct perf_cpu_context *cpuctx;
8661
8662 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8663
8664 if (cpuctx->unique_pmu == old_pmu)
8665 cpuctx->unique_pmu = pmu;
8666 }
8667 }
8668
8669 static void free_pmu_context(struct pmu *pmu)
8670 {
8671 struct pmu *i;
8672
8673 mutex_lock(&pmus_lock);
8674 /*
8675 * Like a real lame refcount.
8676 */
8677 list_for_each_entry(i, &pmus, entry) {
8678 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
8679 update_pmu_context(i, pmu);
8680 goto out;
8681 }
8682 }
8683
8684 free_percpu(pmu->pmu_cpu_context);
8685 out:
8686 mutex_unlock(&pmus_lock);
8687 }
8688
8689 /*
8690 * Let userspace know that this PMU supports address range filtering:
8691 */
8692 static ssize_t nr_addr_filters_show(struct device *dev,
8693 struct device_attribute *attr,
8694 char *page)
8695 {
8696 struct pmu *pmu = dev_get_drvdata(dev);
8697
8698 return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
8699 }
8700 DEVICE_ATTR_RO(nr_addr_filters);
8701
8702 static struct idr pmu_idr;
8703
8704 static ssize_t
8705 type_show(struct device *dev, struct device_attribute *attr, char *page)
8706 {
8707 struct pmu *pmu = dev_get_drvdata(dev);
8708
8709 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
8710 }
8711 static DEVICE_ATTR_RO(type);
8712
8713 static ssize_t
8714 perf_event_mux_interval_ms_show(struct device *dev,
8715 struct device_attribute *attr,
8716 char *page)
8717 {
8718 struct pmu *pmu = dev_get_drvdata(dev);
8719
8720 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
8721 }
8722
8723 static DEFINE_MUTEX(mux_interval_mutex);
8724
8725 static ssize_t
8726 perf_event_mux_interval_ms_store(struct device *dev,
8727 struct device_attribute *attr,
8728 const char *buf, size_t count)
8729 {
8730 struct pmu *pmu = dev_get_drvdata(dev);
8731 int timer, cpu, ret;
8732
8733 ret = kstrtoint(buf, 0, &timer);
8734 if (ret)
8735 return ret;
8736
8737 if (timer < 1)
8738 return -EINVAL;
8739
8740 /* same value, noting to do */
8741 if (timer == pmu->hrtimer_interval_ms)
8742 return count;
8743
8744 mutex_lock(&mux_interval_mutex);
8745 pmu->hrtimer_interval_ms = timer;
8746
8747 /* update all cpuctx for this PMU */
8748 get_online_cpus();
8749 for_each_online_cpu(cpu) {
8750 struct perf_cpu_context *cpuctx;
8751 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8752 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
8753
8754 cpu_function_call(cpu,
8755 (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
8756 }
8757 put_online_cpus();
8758 mutex_unlock(&mux_interval_mutex);
8759
8760 return count;
8761 }
8762 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
8763
8764 static struct attribute *pmu_dev_attrs[] = {
8765 &dev_attr_type.attr,
8766 &dev_attr_perf_event_mux_interval_ms.attr,
8767 NULL,
8768 };
8769 ATTRIBUTE_GROUPS(pmu_dev);
8770
8771 static int pmu_bus_running;
8772 static struct bus_type pmu_bus = {
8773 .name = "event_source",
8774 .dev_groups = pmu_dev_groups,
8775 };
8776
8777 static void pmu_dev_release(struct device *dev)
8778 {
8779 kfree(dev);
8780 }
8781
8782 static int pmu_dev_alloc(struct pmu *pmu)
8783 {
8784 int ret = -ENOMEM;
8785
8786 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
8787 if (!pmu->dev)
8788 goto out;
8789
8790 pmu->dev->groups = pmu->attr_groups;
8791 device_initialize(pmu->dev);
8792 ret = dev_set_name(pmu->dev, "%s", pmu->name);
8793 if (ret)
8794 goto free_dev;
8795
8796 dev_set_drvdata(pmu->dev, pmu);
8797 pmu->dev->bus = &pmu_bus;
8798 pmu->dev->release = pmu_dev_release;
8799 ret = device_add(pmu->dev);
8800 if (ret)
8801 goto free_dev;
8802
8803 /* For PMUs with address filters, throw in an extra attribute: */
8804 if (pmu->nr_addr_filters)
8805 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
8806
8807 if (ret)
8808 goto del_dev;
8809
8810 out:
8811 return ret;
8812
8813 del_dev:
8814 device_del(pmu->dev);
8815
8816 free_dev:
8817 put_device(pmu->dev);
8818 goto out;
8819 }
8820
8821 static struct lock_class_key cpuctx_mutex;
8822 static struct lock_class_key cpuctx_lock;
8823
8824 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
8825 {
8826 int cpu, ret;
8827
8828 mutex_lock(&pmus_lock);
8829 ret = -ENOMEM;
8830 pmu->pmu_disable_count = alloc_percpu(int);
8831 if (!pmu->pmu_disable_count)
8832 goto unlock;
8833
8834 pmu->type = -1;
8835 if (!name)
8836 goto skip_type;
8837 pmu->name = name;
8838
8839 if (type < 0) {
8840 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
8841 if (type < 0) {
8842 ret = type;
8843 goto free_pdc;
8844 }
8845 }
8846 pmu->type = type;
8847
8848 if (pmu_bus_running) {
8849 ret = pmu_dev_alloc(pmu);
8850 if (ret)
8851 goto free_idr;
8852 }
8853
8854 skip_type:
8855 if (pmu->task_ctx_nr == perf_hw_context) {
8856 static int hw_context_taken = 0;
8857
8858 /*
8859 * Other than systems with heterogeneous CPUs, it never makes
8860 * sense for two PMUs to share perf_hw_context. PMUs which are
8861 * uncore must use perf_invalid_context.
8862 */
8863 if (WARN_ON_ONCE(hw_context_taken &&
8864 !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
8865 pmu->task_ctx_nr = perf_invalid_context;
8866
8867 hw_context_taken = 1;
8868 }
8869
8870 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
8871 if (pmu->pmu_cpu_context)
8872 goto got_cpu_context;
8873
8874 ret = -ENOMEM;
8875 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
8876 if (!pmu->pmu_cpu_context)
8877 goto free_dev;
8878
8879 for_each_possible_cpu(cpu) {
8880 struct perf_cpu_context *cpuctx;
8881
8882 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8883 __perf_event_init_context(&cpuctx->ctx);
8884 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
8885 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
8886 cpuctx->ctx.pmu = pmu;
8887
8888 __perf_mux_hrtimer_init(cpuctx, cpu);
8889
8890 cpuctx->unique_pmu = pmu;
8891 }
8892
8893 got_cpu_context:
8894 if (!pmu->start_txn) {
8895 if (pmu->pmu_enable) {
8896 /*
8897 * If we have pmu_enable/pmu_disable calls, install
8898 * transaction stubs that use that to try and batch
8899 * hardware accesses.
8900 */
8901 pmu->start_txn = perf_pmu_start_txn;
8902 pmu->commit_txn = perf_pmu_commit_txn;
8903 pmu->cancel_txn = perf_pmu_cancel_txn;
8904 } else {
8905 pmu->start_txn = perf_pmu_nop_txn;
8906 pmu->commit_txn = perf_pmu_nop_int;
8907 pmu->cancel_txn = perf_pmu_nop_void;
8908 }
8909 }
8910
8911 if (!pmu->pmu_enable) {
8912 pmu->pmu_enable = perf_pmu_nop_void;
8913 pmu->pmu_disable = perf_pmu_nop_void;
8914 }
8915
8916 if (!pmu->event_idx)
8917 pmu->event_idx = perf_event_idx_default;
8918
8919 list_add_rcu(&pmu->entry, &pmus);
8920 atomic_set(&pmu->exclusive_cnt, 0);
8921 ret = 0;
8922 unlock:
8923 mutex_unlock(&pmus_lock);
8924
8925 return ret;
8926
8927 free_dev:
8928 device_del(pmu->dev);
8929 put_device(pmu->dev);
8930
8931 free_idr:
8932 if (pmu->type >= PERF_TYPE_MAX)
8933 idr_remove(&pmu_idr, pmu->type);
8934
8935 free_pdc:
8936 free_percpu(pmu->pmu_disable_count);
8937 goto unlock;
8938 }
8939 EXPORT_SYMBOL_GPL(perf_pmu_register);
8940
8941 void perf_pmu_unregister(struct pmu *pmu)
8942 {
8943 int remove_device;
8944
8945 mutex_lock(&pmus_lock);
8946 remove_device = pmu_bus_running;
8947 list_del_rcu(&pmu->entry);
8948 mutex_unlock(&pmus_lock);
8949
8950 /*
8951 * We dereference the pmu list under both SRCU and regular RCU, so
8952 * synchronize against both of those.
8953 */
8954 synchronize_srcu(&pmus_srcu);
8955 synchronize_rcu();
8956
8957 free_percpu(pmu->pmu_disable_count);
8958 if (pmu->type >= PERF_TYPE_MAX)
8959 idr_remove(&pmu_idr, pmu->type);
8960 if (remove_device) {
8961 if (pmu->nr_addr_filters)
8962 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
8963 device_del(pmu->dev);
8964 put_device(pmu->dev);
8965 }
8966 free_pmu_context(pmu);
8967 }
8968 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
8969
8970 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
8971 {
8972 struct perf_event_context *ctx = NULL;
8973 int ret;
8974
8975 if (!try_module_get(pmu->module))
8976 return -ENODEV;
8977
8978 if (event->group_leader != event) {
8979 /*
8980 * This ctx->mutex can nest when we're called through
8981 * inheritance. See the perf_event_ctx_lock_nested() comment.
8982 */
8983 ctx = perf_event_ctx_lock_nested(event->group_leader,
8984 SINGLE_DEPTH_NESTING);
8985 BUG_ON(!ctx);
8986 }
8987
8988 event->pmu = pmu;
8989 ret = pmu->event_init(event);
8990
8991 if (ctx)
8992 perf_event_ctx_unlock(event->group_leader, ctx);
8993
8994 if (ret)
8995 module_put(pmu->module);
8996
8997 return ret;
8998 }
8999
9000 static struct pmu *perf_init_event(struct perf_event *event)
9001 {
9002 struct pmu *pmu = NULL;
9003 int idx;
9004 int ret;
9005
9006 idx = srcu_read_lock(&pmus_srcu);
9007
9008 rcu_read_lock();
9009 pmu = idr_find(&pmu_idr, event->attr.type);
9010 rcu_read_unlock();
9011 if (pmu) {
9012 ret = perf_try_init_event(pmu, event);
9013 if (ret)
9014 pmu = ERR_PTR(ret);
9015 goto unlock;
9016 }
9017
9018 list_for_each_entry_rcu(pmu, &pmus, entry) {
9019 ret = perf_try_init_event(pmu, event);
9020 if (!ret)
9021 goto unlock;
9022
9023 if (ret != -ENOENT) {
9024 pmu = ERR_PTR(ret);
9025 goto unlock;
9026 }
9027 }
9028 pmu = ERR_PTR(-ENOENT);
9029 unlock:
9030 srcu_read_unlock(&pmus_srcu, idx);
9031
9032 return pmu;
9033 }
9034
9035 static void attach_sb_event(struct perf_event *event)
9036 {
9037 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
9038
9039 raw_spin_lock(&pel->lock);
9040 list_add_rcu(&event->sb_list, &pel->list);
9041 raw_spin_unlock(&pel->lock);
9042 }
9043
9044 /*
9045 * We keep a list of all !task (and therefore per-cpu) events
9046 * that need to receive side-band records.
9047 *
9048 * This avoids having to scan all the various PMU per-cpu contexts
9049 * looking for them.
9050 */
9051 static void account_pmu_sb_event(struct perf_event *event)
9052 {
9053 if (is_sb_event(event))
9054 attach_sb_event(event);
9055 }
9056
9057 static void account_event_cpu(struct perf_event *event, int cpu)
9058 {
9059 if (event->parent)
9060 return;
9061
9062 if (is_cgroup_event(event))
9063 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
9064 }
9065
9066 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
9067 static void account_freq_event_nohz(void)
9068 {
9069 #ifdef CONFIG_NO_HZ_FULL
9070 /* Lock so we don't race with concurrent unaccount */
9071 spin_lock(&nr_freq_lock);
9072 if (atomic_inc_return(&nr_freq_events) == 1)
9073 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
9074 spin_unlock(&nr_freq_lock);
9075 #endif
9076 }
9077
9078 static void account_freq_event(void)
9079 {
9080 if (tick_nohz_full_enabled())
9081 account_freq_event_nohz();
9082 else
9083 atomic_inc(&nr_freq_events);
9084 }
9085
9086
9087 static void account_event(struct perf_event *event)
9088 {
9089 bool inc = false;
9090
9091 if (event->parent)
9092 return;
9093
9094 if (event->attach_state & PERF_ATTACH_TASK)
9095 inc = true;
9096 if (event->attr.mmap || event->attr.mmap_data)
9097 atomic_inc(&nr_mmap_events);
9098 if (event->attr.comm)
9099 atomic_inc(&nr_comm_events);
9100 if (event->attr.task)
9101 atomic_inc(&nr_task_events);
9102 if (event->attr.freq)
9103 account_freq_event();
9104 if (event->attr.context_switch) {
9105 atomic_inc(&nr_switch_events);
9106 inc = true;
9107 }
9108 if (has_branch_stack(event))
9109 inc = true;
9110 if (is_cgroup_event(event))
9111 inc = true;
9112
9113 if (inc) {
9114 if (atomic_inc_not_zero(&perf_sched_count))
9115 goto enabled;
9116
9117 mutex_lock(&perf_sched_mutex);
9118 if (!atomic_read(&perf_sched_count)) {
9119 static_branch_enable(&perf_sched_events);
9120 /*
9121 * Guarantee that all CPUs observe they key change and
9122 * call the perf scheduling hooks before proceeding to
9123 * install events that need them.
9124 */
9125 synchronize_sched();
9126 }
9127 /*
9128 * Now that we have waited for the sync_sched(), allow further
9129 * increments to by-pass the mutex.
9130 */
9131 atomic_inc(&perf_sched_count);
9132 mutex_unlock(&perf_sched_mutex);
9133 }
9134 enabled:
9135
9136 account_event_cpu(event, event->cpu);
9137
9138 account_pmu_sb_event(event);
9139 }
9140
9141 /*
9142 * Allocate and initialize a event structure
9143 */
9144 static struct perf_event *
9145 perf_event_alloc(struct perf_event_attr *attr, int cpu,
9146 struct task_struct *task,
9147 struct perf_event *group_leader,
9148 struct perf_event *parent_event,
9149 perf_overflow_handler_t overflow_handler,
9150 void *context, int cgroup_fd)
9151 {
9152 struct pmu *pmu;
9153 struct perf_event *event;
9154 struct hw_perf_event *hwc;
9155 long err = -EINVAL;
9156
9157 if ((unsigned)cpu >= nr_cpu_ids) {
9158 if (!task || cpu != -1)
9159 return ERR_PTR(-EINVAL);
9160 }
9161
9162 event = kzalloc(sizeof(*event), GFP_KERNEL);
9163 if (!event)
9164 return ERR_PTR(-ENOMEM);
9165
9166 /*
9167 * Single events are their own group leaders, with an
9168 * empty sibling list:
9169 */
9170 if (!group_leader)
9171 group_leader = event;
9172
9173 mutex_init(&event->child_mutex);
9174 INIT_LIST_HEAD(&event->child_list);
9175
9176 INIT_LIST_HEAD(&event->group_entry);
9177 INIT_LIST_HEAD(&event->event_entry);
9178 INIT_LIST_HEAD(&event->sibling_list);
9179 INIT_LIST_HEAD(&event->rb_entry);
9180 INIT_LIST_HEAD(&event->active_entry);
9181 INIT_LIST_HEAD(&event->addr_filters.list);
9182 INIT_HLIST_NODE(&event->hlist_entry);
9183
9184
9185 init_waitqueue_head(&event->waitq);
9186 init_irq_work(&event->pending, perf_pending_event);
9187
9188 mutex_init(&event->mmap_mutex);
9189 raw_spin_lock_init(&event->addr_filters.lock);
9190
9191 atomic_long_set(&event->refcount, 1);
9192 event->cpu = cpu;
9193 event->attr = *attr;
9194 event->group_leader = group_leader;
9195 event->pmu = NULL;
9196 event->oncpu = -1;
9197
9198 event->parent = parent_event;
9199
9200 event->ns = get_pid_ns(task_active_pid_ns(current));
9201 event->id = atomic64_inc_return(&perf_event_id);
9202
9203 event->state = PERF_EVENT_STATE_INACTIVE;
9204
9205 if (task) {
9206 event->attach_state = PERF_ATTACH_TASK;
9207 /*
9208 * XXX pmu::event_init needs to know what task to account to
9209 * and we cannot use the ctx information because we need the
9210 * pmu before we get a ctx.
9211 */
9212 event->hw.target = task;
9213 }
9214
9215 event->clock = &local_clock;
9216 if (parent_event)
9217 event->clock = parent_event->clock;
9218
9219 if (!overflow_handler && parent_event) {
9220 overflow_handler = parent_event->overflow_handler;
9221 context = parent_event->overflow_handler_context;
9222 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
9223 if (overflow_handler == bpf_overflow_handler) {
9224 struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
9225
9226 if (IS_ERR(prog)) {
9227 err = PTR_ERR(prog);
9228 goto err_ns;
9229 }
9230 event->prog = prog;
9231 event->orig_overflow_handler =
9232 parent_event->orig_overflow_handler;
9233 }
9234 #endif
9235 }
9236
9237 if (overflow_handler) {
9238 event->overflow_handler = overflow_handler;
9239 event->overflow_handler_context = context;
9240 } else if (is_write_backward(event)){
9241 event->overflow_handler = perf_event_output_backward;
9242 event->overflow_handler_context = NULL;
9243 } else {
9244 event->overflow_handler = perf_event_output_forward;
9245 event->overflow_handler_context = NULL;
9246 }
9247
9248 perf_event__state_init(event);
9249
9250 pmu = NULL;
9251
9252 hwc = &event->hw;
9253 hwc->sample_period = attr->sample_period;
9254 if (attr->freq && attr->sample_freq)
9255 hwc->sample_period = 1;
9256 hwc->last_period = hwc->sample_period;
9257
9258 local64_set(&hwc->period_left, hwc->sample_period);
9259
9260 /*
9261 * we currently do not support PERF_FORMAT_GROUP on inherited events
9262 */
9263 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
9264 goto err_ns;
9265
9266 if (!has_branch_stack(event))
9267 event->attr.branch_sample_type = 0;
9268
9269 if (cgroup_fd != -1) {
9270 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
9271 if (err)
9272 goto err_ns;
9273 }
9274
9275 pmu = perf_init_event(event);
9276 if (!pmu)
9277 goto err_ns;
9278 else if (IS_ERR(pmu)) {
9279 err = PTR_ERR(pmu);
9280 goto err_ns;
9281 }
9282
9283 err = exclusive_event_init(event);
9284 if (err)
9285 goto err_pmu;
9286
9287 if (has_addr_filter(event)) {
9288 event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
9289 sizeof(unsigned long),
9290 GFP_KERNEL);
9291 if (!event->addr_filters_offs)
9292 goto err_per_task;
9293
9294 /* force hw sync on the address filters */
9295 event->addr_filters_gen = 1;
9296 }
9297
9298 if (!event->parent) {
9299 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
9300 err = get_callchain_buffers(attr->sample_max_stack);
9301 if (err)
9302 goto err_addr_filters;
9303 }
9304 }
9305
9306 /* symmetric to unaccount_event() in _free_event() */
9307 account_event(event);
9308
9309 return event;
9310
9311 err_addr_filters:
9312 kfree(event->addr_filters_offs);
9313
9314 err_per_task:
9315 exclusive_event_destroy(event);
9316
9317 err_pmu:
9318 if (event->destroy)
9319 event->destroy(event);
9320 module_put(pmu->module);
9321 err_ns:
9322 if (is_cgroup_event(event))
9323 perf_detach_cgroup(event);
9324 if (event->ns)
9325 put_pid_ns(event->ns);
9326 kfree(event);
9327
9328 return ERR_PTR(err);
9329 }
9330
9331 static int perf_copy_attr(struct perf_event_attr __user *uattr,
9332 struct perf_event_attr *attr)
9333 {
9334 u32 size;
9335 int ret;
9336
9337 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
9338 return -EFAULT;
9339
9340 /*
9341 * zero the full structure, so that a short copy will be nice.
9342 */
9343 memset(attr, 0, sizeof(*attr));
9344
9345 ret = get_user(size, &uattr->size);
9346 if (ret)
9347 return ret;
9348
9349 if (size > PAGE_SIZE) /* silly large */
9350 goto err_size;
9351
9352 if (!size) /* abi compat */
9353 size = PERF_ATTR_SIZE_VER0;
9354
9355 if (size < PERF_ATTR_SIZE_VER0)
9356 goto err_size;
9357
9358 /*
9359 * If we're handed a bigger struct than we know of,
9360 * ensure all the unknown bits are 0 - i.e. new
9361 * user-space does not rely on any kernel feature
9362 * extensions we dont know about yet.
9363 */
9364 if (size > sizeof(*attr)) {
9365 unsigned char __user *addr;
9366 unsigned char __user *end;
9367 unsigned char val;
9368
9369 addr = (void __user *)uattr + sizeof(*attr);
9370 end = (void __user *)uattr + size;
9371
9372 for (; addr < end; addr++) {
9373 ret = get_user(val, addr);
9374 if (ret)
9375 return ret;
9376 if (val)
9377 goto err_size;
9378 }
9379 size = sizeof(*attr);
9380 }
9381
9382 ret = copy_from_user(attr, uattr, size);
9383 if (ret)
9384 return -EFAULT;
9385
9386 if (attr->__reserved_1)
9387 return -EINVAL;
9388
9389 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
9390 return -EINVAL;
9391
9392 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
9393 return -EINVAL;
9394
9395 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
9396 u64 mask = attr->branch_sample_type;
9397
9398 /* only using defined bits */
9399 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
9400 return -EINVAL;
9401
9402 /* at least one branch bit must be set */
9403 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
9404 return -EINVAL;
9405
9406 /* propagate priv level, when not set for branch */
9407 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
9408
9409 /* exclude_kernel checked on syscall entry */
9410 if (!attr->exclude_kernel)
9411 mask |= PERF_SAMPLE_BRANCH_KERNEL;
9412
9413 if (!attr->exclude_user)
9414 mask |= PERF_SAMPLE_BRANCH_USER;
9415
9416 if (!attr->exclude_hv)
9417 mask |= PERF_SAMPLE_BRANCH_HV;
9418 /*
9419 * adjust user setting (for HW filter setup)
9420 */
9421 attr->branch_sample_type = mask;
9422 }
9423 /* privileged levels capture (kernel, hv): check permissions */
9424 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
9425 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9426 return -EACCES;
9427 }
9428
9429 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
9430 ret = perf_reg_validate(attr->sample_regs_user);
9431 if (ret)
9432 return ret;
9433 }
9434
9435 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
9436 if (!arch_perf_have_user_stack_dump())
9437 return -ENOSYS;
9438
9439 /*
9440 * We have __u32 type for the size, but so far
9441 * we can only use __u16 as maximum due to the
9442 * __u16 sample size limit.
9443 */
9444 if (attr->sample_stack_user >= USHRT_MAX)
9445 ret = -EINVAL;
9446 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
9447 ret = -EINVAL;
9448 }
9449
9450 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
9451 ret = perf_reg_validate(attr->sample_regs_intr);
9452 out:
9453 return ret;
9454
9455 err_size:
9456 put_user(sizeof(*attr), &uattr->size);
9457 ret = -E2BIG;
9458 goto out;
9459 }
9460
9461 static int
9462 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
9463 {
9464 struct ring_buffer *rb = NULL;
9465 int ret = -EINVAL;
9466
9467 if (!output_event)
9468 goto set;
9469
9470 /* don't allow circular references */
9471 if (event == output_event)
9472 goto out;
9473
9474 /*
9475 * Don't allow cross-cpu buffers
9476 */
9477 if (output_event->cpu != event->cpu)
9478 goto out;
9479
9480 /*
9481 * If its not a per-cpu rb, it must be the same task.
9482 */
9483 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
9484 goto out;
9485
9486 /*
9487 * Mixing clocks in the same buffer is trouble you don't need.
9488 */
9489 if (output_event->clock != event->clock)
9490 goto out;
9491
9492 /*
9493 * Either writing ring buffer from beginning or from end.
9494 * Mixing is not allowed.
9495 */
9496 if (is_write_backward(output_event) != is_write_backward(event))
9497 goto out;
9498
9499 /*
9500 * If both events generate aux data, they must be on the same PMU
9501 */
9502 if (has_aux(event) && has_aux(output_event) &&
9503 event->pmu != output_event->pmu)
9504 goto out;
9505
9506 set:
9507 mutex_lock(&event->mmap_mutex);
9508 /* Can't redirect output if we've got an active mmap() */
9509 if (atomic_read(&event->mmap_count))
9510 goto unlock;
9511
9512 if (output_event) {
9513 /* get the rb we want to redirect to */
9514 rb = ring_buffer_get(output_event);
9515 if (!rb)
9516 goto unlock;
9517 }
9518
9519 ring_buffer_attach(event, rb);
9520
9521 ret = 0;
9522 unlock:
9523 mutex_unlock(&event->mmap_mutex);
9524
9525 out:
9526 return ret;
9527 }
9528
9529 static void mutex_lock_double(struct mutex *a, struct mutex *b)
9530 {
9531 if (b < a)
9532 swap(a, b);
9533
9534 mutex_lock(a);
9535 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
9536 }
9537
9538 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
9539 {
9540 bool nmi_safe = false;
9541
9542 switch (clk_id) {
9543 case CLOCK_MONOTONIC:
9544 event->clock = &ktime_get_mono_fast_ns;
9545 nmi_safe = true;
9546 break;
9547
9548 case CLOCK_MONOTONIC_RAW:
9549 event->clock = &ktime_get_raw_fast_ns;
9550 nmi_safe = true;
9551 break;
9552
9553 case CLOCK_REALTIME:
9554 event->clock = &ktime_get_real_ns;
9555 break;
9556
9557 case CLOCK_BOOTTIME:
9558 event->clock = &ktime_get_boot_ns;
9559 break;
9560
9561 case CLOCK_TAI:
9562 event->clock = &ktime_get_tai_ns;
9563 break;
9564
9565 default:
9566 return -EINVAL;
9567 }
9568
9569 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
9570 return -EINVAL;
9571
9572 return 0;
9573 }
9574
9575 /*
9576 * Variation on perf_event_ctx_lock_nested(), except we take two context
9577 * mutexes.
9578 */
9579 static struct perf_event_context *
9580 __perf_event_ctx_lock_double(struct perf_event *group_leader,
9581 struct perf_event_context *ctx)
9582 {
9583 struct perf_event_context *gctx;
9584
9585 again:
9586 rcu_read_lock();
9587 gctx = READ_ONCE(group_leader->ctx);
9588 if (!atomic_inc_not_zero(&gctx->refcount)) {
9589 rcu_read_unlock();
9590 goto again;
9591 }
9592 rcu_read_unlock();
9593
9594 mutex_lock_double(&gctx->mutex, &ctx->mutex);
9595
9596 if (group_leader->ctx != gctx) {
9597 mutex_unlock(&ctx->mutex);
9598 mutex_unlock(&gctx->mutex);
9599 put_ctx(gctx);
9600 goto again;
9601 }
9602
9603 return gctx;
9604 }
9605
9606 /**
9607 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9608 *
9609 * @attr_uptr: event_id type attributes for monitoring/sampling
9610 * @pid: target pid
9611 * @cpu: target cpu
9612 * @group_fd: group leader event fd
9613 */
9614 SYSCALL_DEFINE5(perf_event_open,
9615 struct perf_event_attr __user *, attr_uptr,
9616 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
9617 {
9618 struct perf_event *group_leader = NULL, *output_event = NULL;
9619 struct perf_event *event, *sibling;
9620 struct perf_event_attr attr;
9621 struct perf_event_context *ctx, *uninitialized_var(gctx);
9622 struct file *event_file = NULL;
9623 struct fd group = {NULL, 0};
9624 struct task_struct *task = NULL;
9625 struct pmu *pmu;
9626 int event_fd;
9627 int move_group = 0;
9628 int err;
9629 int f_flags = O_RDWR;
9630 int cgroup_fd = -1;
9631
9632 /* for future expandability... */
9633 if (flags & ~PERF_FLAG_ALL)
9634 return -EINVAL;
9635
9636 err = perf_copy_attr(attr_uptr, &attr);
9637 if (err)
9638 return err;
9639
9640 if (!attr.exclude_kernel) {
9641 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9642 return -EACCES;
9643 }
9644
9645 if (attr.freq) {
9646 if (attr.sample_freq > sysctl_perf_event_sample_rate)
9647 return -EINVAL;
9648 } else {
9649 if (attr.sample_period & (1ULL << 63))
9650 return -EINVAL;
9651 }
9652
9653 if (!attr.sample_max_stack)
9654 attr.sample_max_stack = sysctl_perf_event_max_stack;
9655
9656 /*
9657 * In cgroup mode, the pid argument is used to pass the fd
9658 * opened to the cgroup directory in cgroupfs. The cpu argument
9659 * designates the cpu on which to monitor threads from that
9660 * cgroup.
9661 */
9662 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
9663 return -EINVAL;
9664
9665 if (flags & PERF_FLAG_FD_CLOEXEC)
9666 f_flags |= O_CLOEXEC;
9667
9668 event_fd = get_unused_fd_flags(f_flags);
9669 if (event_fd < 0)
9670 return event_fd;
9671
9672 if (group_fd != -1) {
9673 err = perf_fget_light(group_fd, &group);
9674 if (err)
9675 goto err_fd;
9676 group_leader = group.file->private_data;
9677 if (flags & PERF_FLAG_FD_OUTPUT)
9678 output_event = group_leader;
9679 if (flags & PERF_FLAG_FD_NO_GROUP)
9680 group_leader = NULL;
9681 }
9682
9683 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
9684 task = find_lively_task_by_vpid(pid);
9685 if (IS_ERR(task)) {
9686 err = PTR_ERR(task);
9687 goto err_group_fd;
9688 }
9689 }
9690
9691 if (task && group_leader &&
9692 group_leader->attr.inherit != attr.inherit) {
9693 err = -EINVAL;
9694 goto err_task;
9695 }
9696
9697 get_online_cpus();
9698
9699 if (task) {
9700 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
9701 if (err)
9702 goto err_cpus;
9703
9704 /*
9705 * Reuse ptrace permission checks for now.
9706 *
9707 * We must hold cred_guard_mutex across this and any potential
9708 * perf_install_in_context() call for this new event to
9709 * serialize against exec() altering our credentials (and the
9710 * perf_event_exit_task() that could imply).
9711 */
9712 err = -EACCES;
9713 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
9714 goto err_cred;
9715 }
9716
9717 if (flags & PERF_FLAG_PID_CGROUP)
9718 cgroup_fd = pid;
9719
9720 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
9721 NULL, NULL, cgroup_fd);
9722 if (IS_ERR(event)) {
9723 err = PTR_ERR(event);
9724 goto err_cred;
9725 }
9726
9727 if (is_sampling_event(event)) {
9728 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
9729 err = -EOPNOTSUPP;
9730 goto err_alloc;
9731 }
9732 }
9733
9734 /*
9735 * Special case software events and allow them to be part of
9736 * any hardware group.
9737 */
9738 pmu = event->pmu;
9739
9740 if (attr.use_clockid) {
9741 err = perf_event_set_clock(event, attr.clockid);
9742 if (err)
9743 goto err_alloc;
9744 }
9745
9746 if (pmu->task_ctx_nr == perf_sw_context)
9747 event->event_caps |= PERF_EV_CAP_SOFTWARE;
9748
9749 if (group_leader &&
9750 (is_software_event(event) != is_software_event(group_leader))) {
9751 if (is_software_event(event)) {
9752 /*
9753 * If event and group_leader are not both a software
9754 * event, and event is, then group leader is not.
9755 *
9756 * Allow the addition of software events to !software
9757 * groups, this is safe because software events never
9758 * fail to schedule.
9759 */
9760 pmu = group_leader->pmu;
9761 } else if (is_software_event(group_leader) &&
9762 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
9763 /*
9764 * In case the group is a pure software group, and we
9765 * try to add a hardware event, move the whole group to
9766 * the hardware context.
9767 */
9768 move_group = 1;
9769 }
9770 }
9771
9772 /*
9773 * Get the target context (task or percpu):
9774 */
9775 ctx = find_get_context(pmu, task, event);
9776 if (IS_ERR(ctx)) {
9777 err = PTR_ERR(ctx);
9778 goto err_alloc;
9779 }
9780
9781 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
9782 err = -EBUSY;
9783 goto err_context;
9784 }
9785
9786 /*
9787 * Look up the group leader (we will attach this event to it):
9788 */
9789 if (group_leader) {
9790 err = -EINVAL;
9791
9792 /*
9793 * Do not allow a recursive hierarchy (this new sibling
9794 * becoming part of another group-sibling):
9795 */
9796 if (group_leader->group_leader != group_leader)
9797 goto err_context;
9798
9799 /* All events in a group should have the same clock */
9800 if (group_leader->clock != event->clock)
9801 goto err_context;
9802
9803 /*
9804 * Do not allow to attach to a group in a different
9805 * task or CPU context:
9806 */
9807 if (move_group) {
9808 /*
9809 * Make sure we're both on the same task, or both
9810 * per-cpu events.
9811 */
9812 if (group_leader->ctx->task != ctx->task)
9813 goto err_context;
9814
9815 /*
9816 * Make sure we're both events for the same CPU;
9817 * grouping events for different CPUs is broken; since
9818 * you can never concurrently schedule them anyhow.
9819 */
9820 if (group_leader->cpu != event->cpu)
9821 goto err_context;
9822 } else {
9823 if (group_leader->ctx != ctx)
9824 goto err_context;
9825 }
9826
9827 /*
9828 * Only a group leader can be exclusive or pinned
9829 */
9830 if (attr.exclusive || attr.pinned)
9831 goto err_context;
9832 }
9833
9834 if (output_event) {
9835 err = perf_event_set_output(event, output_event);
9836 if (err)
9837 goto err_context;
9838 }
9839
9840 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
9841 f_flags);
9842 if (IS_ERR(event_file)) {
9843 err = PTR_ERR(event_file);
9844 event_file = NULL;
9845 goto err_context;
9846 }
9847
9848 if (move_group) {
9849 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
9850
9851 if (gctx->task == TASK_TOMBSTONE) {
9852 err = -ESRCH;
9853 goto err_locked;
9854 }
9855
9856 /*
9857 * Check if we raced against another sys_perf_event_open() call
9858 * moving the software group underneath us.
9859 */
9860 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
9861 /*
9862 * If someone moved the group out from under us, check
9863 * if this new event wound up on the same ctx, if so
9864 * its the regular !move_group case, otherwise fail.
9865 */
9866 if (gctx != ctx) {
9867 err = -EINVAL;
9868 goto err_locked;
9869 } else {
9870 perf_event_ctx_unlock(group_leader, gctx);
9871 move_group = 0;
9872 }
9873 }
9874 } else {
9875 mutex_lock(&ctx->mutex);
9876 }
9877
9878 if (ctx->task == TASK_TOMBSTONE) {
9879 err = -ESRCH;
9880 goto err_locked;
9881 }
9882
9883 if (!perf_event_validate_size(event)) {
9884 err = -E2BIG;
9885 goto err_locked;
9886 }
9887
9888 /*
9889 * Must be under the same ctx::mutex as perf_install_in_context(),
9890 * because we need to serialize with concurrent event creation.
9891 */
9892 if (!exclusive_event_installable(event, ctx)) {
9893 /* exclusive and group stuff are assumed mutually exclusive */
9894 WARN_ON_ONCE(move_group);
9895
9896 err = -EBUSY;
9897 goto err_locked;
9898 }
9899
9900 WARN_ON_ONCE(ctx->parent_ctx);
9901
9902 /*
9903 * This is the point on no return; we cannot fail hereafter. This is
9904 * where we start modifying current state.
9905 */
9906
9907 if (move_group) {
9908 /*
9909 * See perf_event_ctx_lock() for comments on the details
9910 * of swizzling perf_event::ctx.
9911 */
9912 perf_remove_from_context(group_leader, 0);
9913
9914 list_for_each_entry(sibling, &group_leader->sibling_list,
9915 group_entry) {
9916 perf_remove_from_context(sibling, 0);
9917 put_ctx(gctx);
9918 }
9919
9920 /*
9921 * Wait for everybody to stop referencing the events through
9922 * the old lists, before installing it on new lists.
9923 */
9924 synchronize_rcu();
9925
9926 /*
9927 * Install the group siblings before the group leader.
9928 *
9929 * Because a group leader will try and install the entire group
9930 * (through the sibling list, which is still in-tact), we can
9931 * end up with siblings installed in the wrong context.
9932 *
9933 * By installing siblings first we NO-OP because they're not
9934 * reachable through the group lists.
9935 */
9936 list_for_each_entry(sibling, &group_leader->sibling_list,
9937 group_entry) {
9938 perf_event__state_init(sibling);
9939 perf_install_in_context(ctx, sibling, sibling->cpu);
9940 get_ctx(ctx);
9941 }
9942
9943 /*
9944 * Removing from the context ends up with disabled
9945 * event. What we want here is event in the initial
9946 * startup state, ready to be add into new context.
9947 */
9948 perf_event__state_init(group_leader);
9949 perf_install_in_context(ctx, group_leader, group_leader->cpu);
9950 get_ctx(ctx);
9951
9952 /*
9953 * Now that all events are installed in @ctx, nothing
9954 * references @gctx anymore, so drop the last reference we have
9955 * on it.
9956 */
9957 put_ctx(gctx);
9958 }
9959
9960 /*
9961 * Precalculate sample_data sizes; do while holding ctx::mutex such
9962 * that we're serialized against further additions and before
9963 * perf_install_in_context() which is the point the event is active and
9964 * can use these values.
9965 */
9966 perf_event__header_size(event);
9967 perf_event__id_header_size(event);
9968
9969 event->owner = current;
9970
9971 perf_install_in_context(ctx, event, event->cpu);
9972 perf_unpin_context(ctx);
9973
9974 if (move_group)
9975 perf_event_ctx_unlock(group_leader, gctx);
9976 mutex_unlock(&ctx->mutex);
9977
9978 if (task) {
9979 mutex_unlock(&task->signal->cred_guard_mutex);
9980 put_task_struct(task);
9981 }
9982
9983 put_online_cpus();
9984
9985 mutex_lock(&current->perf_event_mutex);
9986 list_add_tail(&event->owner_entry, &current->perf_event_list);
9987 mutex_unlock(&current->perf_event_mutex);
9988
9989 /*
9990 * Drop the reference on the group_event after placing the
9991 * new event on the sibling_list. This ensures destruction
9992 * of the group leader will find the pointer to itself in
9993 * perf_group_detach().
9994 */
9995 fdput(group);
9996 fd_install(event_fd, event_file);
9997 return event_fd;
9998
9999 err_locked:
10000 if (move_group)
10001 perf_event_ctx_unlock(group_leader, gctx);
10002 mutex_unlock(&ctx->mutex);
10003 /* err_file: */
10004 fput(event_file);
10005 err_context:
10006 perf_unpin_context(ctx);
10007 put_ctx(ctx);
10008 err_alloc:
10009 /*
10010 * If event_file is set, the fput() above will have called ->release()
10011 * and that will take care of freeing the event.
10012 */
10013 if (!event_file)
10014 free_event(event);
10015 err_cred:
10016 if (task)
10017 mutex_unlock(&task->signal->cred_guard_mutex);
10018 err_cpus:
10019 put_online_cpus();
10020 err_task:
10021 if (task)
10022 put_task_struct(task);
10023 err_group_fd:
10024 fdput(group);
10025 err_fd:
10026 put_unused_fd(event_fd);
10027 return err;
10028 }
10029
10030 /**
10031 * perf_event_create_kernel_counter
10032 *
10033 * @attr: attributes of the counter to create
10034 * @cpu: cpu in which the counter is bound
10035 * @task: task to profile (NULL for percpu)
10036 */
10037 struct perf_event *
10038 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
10039 struct task_struct *task,
10040 perf_overflow_handler_t overflow_handler,
10041 void *context)
10042 {
10043 struct perf_event_context *ctx;
10044 struct perf_event *event;
10045 int err;
10046
10047 /*
10048 * Get the target context (task or percpu):
10049 */
10050
10051 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
10052 overflow_handler, context, -1);
10053 if (IS_ERR(event)) {
10054 err = PTR_ERR(event);
10055 goto err;
10056 }
10057
10058 /* Mark owner so we could distinguish it from user events. */
10059 event->owner = TASK_TOMBSTONE;
10060
10061 ctx = find_get_context(event->pmu, task, event);
10062 if (IS_ERR(ctx)) {
10063 err = PTR_ERR(ctx);
10064 goto err_free;
10065 }
10066
10067 WARN_ON_ONCE(ctx->parent_ctx);
10068 mutex_lock(&ctx->mutex);
10069 if (ctx->task == TASK_TOMBSTONE) {
10070 err = -ESRCH;
10071 goto err_unlock;
10072 }
10073
10074 if (!exclusive_event_installable(event, ctx)) {
10075 err = -EBUSY;
10076 goto err_unlock;
10077 }
10078
10079 perf_install_in_context(ctx, event, cpu);
10080 perf_unpin_context(ctx);
10081 mutex_unlock(&ctx->mutex);
10082
10083 return event;
10084
10085 err_unlock:
10086 mutex_unlock(&ctx->mutex);
10087 perf_unpin_context(ctx);
10088 put_ctx(ctx);
10089 err_free:
10090 free_event(event);
10091 err:
10092 return ERR_PTR(err);
10093 }
10094 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
10095
10096 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
10097 {
10098 struct perf_event_context *src_ctx;
10099 struct perf_event_context *dst_ctx;
10100 struct perf_event *event, *tmp;
10101 LIST_HEAD(events);
10102
10103 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
10104 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
10105
10106 /*
10107 * See perf_event_ctx_lock() for comments on the details
10108 * of swizzling perf_event::ctx.
10109 */
10110 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
10111 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
10112 event_entry) {
10113 perf_remove_from_context(event, 0);
10114 unaccount_event_cpu(event, src_cpu);
10115 put_ctx(src_ctx);
10116 list_add(&event->migrate_entry, &events);
10117 }
10118
10119 /*
10120 * Wait for the events to quiesce before re-instating them.
10121 */
10122 synchronize_rcu();
10123
10124 /*
10125 * Re-instate events in 2 passes.
10126 *
10127 * Skip over group leaders and only install siblings on this first
10128 * pass, siblings will not get enabled without a leader, however a
10129 * leader will enable its siblings, even if those are still on the old
10130 * context.
10131 */
10132 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10133 if (event->group_leader == event)
10134 continue;
10135
10136 list_del(&event->migrate_entry);
10137 if (event->state >= PERF_EVENT_STATE_OFF)
10138 event->state = PERF_EVENT_STATE_INACTIVE;
10139 account_event_cpu(event, dst_cpu);
10140 perf_install_in_context(dst_ctx, event, dst_cpu);
10141 get_ctx(dst_ctx);
10142 }
10143
10144 /*
10145 * Once all the siblings are setup properly, install the group leaders
10146 * to make it go.
10147 */
10148 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10149 list_del(&event->migrate_entry);
10150 if (event->state >= PERF_EVENT_STATE_OFF)
10151 event->state = PERF_EVENT_STATE_INACTIVE;
10152 account_event_cpu(event, dst_cpu);
10153 perf_install_in_context(dst_ctx, event, dst_cpu);
10154 get_ctx(dst_ctx);
10155 }
10156 mutex_unlock(&dst_ctx->mutex);
10157 mutex_unlock(&src_ctx->mutex);
10158 }
10159 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
10160
10161 static void sync_child_event(struct perf_event *child_event,
10162 struct task_struct *child)
10163 {
10164 struct perf_event *parent_event = child_event->parent;
10165 u64 child_val;
10166
10167 if (child_event->attr.inherit_stat)
10168 perf_event_read_event(child_event, child);
10169
10170 child_val = perf_event_count(child_event);
10171
10172 /*
10173 * Add back the child's count to the parent's count:
10174 */
10175 atomic64_add(child_val, &parent_event->child_count);
10176 atomic64_add(child_event->total_time_enabled,
10177 &parent_event->child_total_time_enabled);
10178 atomic64_add(child_event->total_time_running,
10179 &parent_event->child_total_time_running);
10180 }
10181
10182 static void
10183 perf_event_exit_event(struct perf_event *child_event,
10184 struct perf_event_context *child_ctx,
10185 struct task_struct *child)
10186 {
10187 struct perf_event *parent_event = child_event->parent;
10188
10189 /*
10190 * Do not destroy the 'original' grouping; because of the context
10191 * switch optimization the original events could've ended up in a
10192 * random child task.
10193 *
10194 * If we were to destroy the original group, all group related
10195 * operations would cease to function properly after this random
10196 * child dies.
10197 *
10198 * Do destroy all inherited groups, we don't care about those
10199 * and being thorough is better.
10200 */
10201 raw_spin_lock_irq(&child_ctx->lock);
10202 WARN_ON_ONCE(child_ctx->is_active);
10203
10204 if (parent_event)
10205 perf_group_detach(child_event);
10206 list_del_event(child_event, child_ctx);
10207 child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */
10208 raw_spin_unlock_irq(&child_ctx->lock);
10209
10210 /*
10211 * Parent events are governed by their filedesc, retain them.
10212 */
10213 if (!parent_event) {
10214 perf_event_wakeup(child_event);
10215 return;
10216 }
10217 /*
10218 * Child events can be cleaned up.
10219 */
10220
10221 sync_child_event(child_event, child);
10222
10223 /*
10224 * Remove this event from the parent's list
10225 */
10226 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
10227 mutex_lock(&parent_event->child_mutex);
10228 list_del_init(&child_event->child_list);
10229 mutex_unlock(&parent_event->child_mutex);
10230
10231 /*
10232 * Kick perf_poll() for is_event_hup().
10233 */
10234 perf_event_wakeup(parent_event);
10235 free_event(child_event);
10236 put_event(parent_event);
10237 }
10238
10239 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
10240 {
10241 struct perf_event_context *child_ctx, *clone_ctx = NULL;
10242 struct perf_event *child_event, *next;
10243
10244 WARN_ON_ONCE(child != current);
10245
10246 child_ctx = perf_pin_task_context(child, ctxn);
10247 if (!child_ctx)
10248 return;
10249
10250 /*
10251 * In order to reduce the amount of tricky in ctx tear-down, we hold
10252 * ctx::mutex over the entire thing. This serializes against almost
10253 * everything that wants to access the ctx.
10254 *
10255 * The exception is sys_perf_event_open() /
10256 * perf_event_create_kernel_count() which does find_get_context()
10257 * without ctx::mutex (it cannot because of the move_group double mutex
10258 * lock thing). See the comments in perf_install_in_context().
10259 */
10260 mutex_lock(&child_ctx->mutex);
10261
10262 /*
10263 * In a single ctx::lock section, de-schedule the events and detach the
10264 * context from the task such that we cannot ever get it scheduled back
10265 * in.
10266 */
10267 raw_spin_lock_irq(&child_ctx->lock);
10268 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx);
10269
10270 /*
10271 * Now that the context is inactive, destroy the task <-> ctx relation
10272 * and mark the context dead.
10273 */
10274 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
10275 put_ctx(child_ctx); /* cannot be last */
10276 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
10277 put_task_struct(current); /* cannot be last */
10278
10279 clone_ctx = unclone_ctx(child_ctx);
10280 raw_spin_unlock_irq(&child_ctx->lock);
10281
10282 if (clone_ctx)
10283 put_ctx(clone_ctx);
10284
10285 /*
10286 * Report the task dead after unscheduling the events so that we
10287 * won't get any samples after PERF_RECORD_EXIT. We can however still
10288 * get a few PERF_RECORD_READ events.
10289 */
10290 perf_event_task(child, child_ctx, 0);
10291
10292 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
10293 perf_event_exit_event(child_event, child_ctx, child);
10294
10295 mutex_unlock(&child_ctx->mutex);
10296
10297 put_ctx(child_ctx);
10298 }
10299
10300 /*
10301 * When a child task exits, feed back event values to parent events.
10302 *
10303 * Can be called with cred_guard_mutex held when called from
10304 * install_exec_creds().
10305 */
10306 void perf_event_exit_task(struct task_struct *child)
10307 {
10308 struct perf_event *event, *tmp;
10309 int ctxn;
10310
10311 mutex_lock(&child->perf_event_mutex);
10312 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
10313 owner_entry) {
10314 list_del_init(&event->owner_entry);
10315
10316 /*
10317 * Ensure the list deletion is visible before we clear
10318 * the owner, closes a race against perf_release() where
10319 * we need to serialize on the owner->perf_event_mutex.
10320 */
10321 smp_store_release(&event->owner, NULL);
10322 }
10323 mutex_unlock(&child->perf_event_mutex);
10324
10325 for_each_task_context_nr(ctxn)
10326 perf_event_exit_task_context(child, ctxn);
10327
10328 /*
10329 * The perf_event_exit_task_context calls perf_event_task
10330 * with child's task_ctx, which generates EXIT events for
10331 * child contexts and sets child->perf_event_ctxp[] to NULL.
10332 * At this point we need to send EXIT events to cpu contexts.
10333 */
10334 perf_event_task(child, NULL, 0);
10335 }
10336
10337 static void perf_free_event(struct perf_event *event,
10338 struct perf_event_context *ctx)
10339 {
10340 struct perf_event *parent = event->parent;
10341
10342 if (WARN_ON_ONCE(!parent))
10343 return;
10344
10345 mutex_lock(&parent->child_mutex);
10346 list_del_init(&event->child_list);
10347 mutex_unlock(&parent->child_mutex);
10348
10349 put_event(parent);
10350
10351 raw_spin_lock_irq(&ctx->lock);
10352 perf_group_detach(event);
10353 list_del_event(event, ctx);
10354 raw_spin_unlock_irq(&ctx->lock);
10355 free_event(event);
10356 }
10357
10358 /*
10359 * Free an unexposed, unused context as created by inheritance by
10360 * perf_event_init_task below, used by fork() in case of fail.
10361 *
10362 * Not all locks are strictly required, but take them anyway to be nice and
10363 * help out with the lockdep assertions.
10364 */
10365 void perf_event_free_task(struct task_struct *task)
10366 {
10367 struct perf_event_context *ctx;
10368 struct perf_event *event, *tmp;
10369 int ctxn;
10370
10371 for_each_task_context_nr(ctxn) {
10372 ctx = task->perf_event_ctxp[ctxn];
10373 if (!ctx)
10374 continue;
10375
10376 mutex_lock(&ctx->mutex);
10377 again:
10378 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
10379 group_entry)
10380 perf_free_event(event, ctx);
10381
10382 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
10383 group_entry)
10384 perf_free_event(event, ctx);
10385
10386 if (!list_empty(&ctx->pinned_groups) ||
10387 !list_empty(&ctx->flexible_groups))
10388 goto again;
10389
10390 mutex_unlock(&ctx->mutex);
10391
10392 put_ctx(ctx);
10393 }
10394 }
10395
10396 void perf_event_delayed_put(struct task_struct *task)
10397 {
10398 int ctxn;
10399
10400 for_each_task_context_nr(ctxn)
10401 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
10402 }
10403
10404 struct file *perf_event_get(unsigned int fd)
10405 {
10406 struct file *file;
10407
10408 file = fget_raw(fd);
10409 if (!file)
10410 return ERR_PTR(-EBADF);
10411
10412 if (file->f_op != &perf_fops) {
10413 fput(file);
10414 return ERR_PTR(-EBADF);
10415 }
10416
10417 return file;
10418 }
10419
10420 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
10421 {
10422 if (!event)
10423 return ERR_PTR(-EINVAL);
10424
10425 return &event->attr;
10426 }
10427
10428 /*
10429 * inherit a event from parent task to child task:
10430 */
10431 static struct perf_event *
10432 inherit_event(struct perf_event *parent_event,
10433 struct task_struct *parent,
10434 struct perf_event_context *parent_ctx,
10435 struct task_struct *child,
10436 struct perf_event *group_leader,
10437 struct perf_event_context *child_ctx)
10438 {
10439 enum perf_event_active_state parent_state = parent_event->state;
10440 struct perf_event *child_event;
10441 unsigned long flags;
10442
10443 /*
10444 * Instead of creating recursive hierarchies of events,
10445 * we link inherited events back to the original parent,
10446 * which has a filp for sure, which we use as the reference
10447 * count:
10448 */
10449 if (parent_event->parent)
10450 parent_event = parent_event->parent;
10451
10452 child_event = perf_event_alloc(&parent_event->attr,
10453 parent_event->cpu,
10454 child,
10455 group_leader, parent_event,
10456 NULL, NULL, -1);
10457 if (IS_ERR(child_event))
10458 return child_event;
10459
10460 /*
10461 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
10462 * must be under the same lock in order to serialize against
10463 * perf_event_release_kernel(), such that either we must observe
10464 * is_orphaned_event() or they will observe us on the child_list.
10465 */
10466 mutex_lock(&parent_event->child_mutex);
10467 if (is_orphaned_event(parent_event) ||
10468 !atomic_long_inc_not_zero(&parent_event->refcount)) {
10469 mutex_unlock(&parent_event->child_mutex);
10470 free_event(child_event);
10471 return NULL;
10472 }
10473
10474 get_ctx(child_ctx);
10475
10476 /*
10477 * Make the child state follow the state of the parent event,
10478 * not its attr.disabled bit. We hold the parent's mutex,
10479 * so we won't race with perf_event_{en, dis}able_family.
10480 */
10481 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
10482 child_event->state = PERF_EVENT_STATE_INACTIVE;
10483 else
10484 child_event->state = PERF_EVENT_STATE_OFF;
10485
10486 if (parent_event->attr.freq) {
10487 u64 sample_period = parent_event->hw.sample_period;
10488 struct hw_perf_event *hwc = &child_event->hw;
10489
10490 hwc->sample_period = sample_period;
10491 hwc->last_period = sample_period;
10492
10493 local64_set(&hwc->period_left, sample_period);
10494 }
10495
10496 child_event->ctx = child_ctx;
10497 child_event->overflow_handler = parent_event->overflow_handler;
10498 child_event->overflow_handler_context
10499 = parent_event->overflow_handler_context;
10500
10501 /*
10502 * Precalculate sample_data sizes
10503 */
10504 perf_event__header_size(child_event);
10505 perf_event__id_header_size(child_event);
10506
10507 /*
10508 * Link it up in the child's context:
10509 */
10510 raw_spin_lock_irqsave(&child_ctx->lock, flags);
10511 add_event_to_ctx(child_event, child_ctx);
10512 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
10513
10514 /*
10515 * Link this into the parent event's child list
10516 */
10517 list_add_tail(&child_event->child_list, &parent_event->child_list);
10518 mutex_unlock(&parent_event->child_mutex);
10519
10520 return child_event;
10521 }
10522
10523 static int inherit_group(struct perf_event *parent_event,
10524 struct task_struct *parent,
10525 struct perf_event_context *parent_ctx,
10526 struct task_struct *child,
10527 struct perf_event_context *child_ctx)
10528 {
10529 struct perf_event *leader;
10530 struct perf_event *sub;
10531 struct perf_event *child_ctr;
10532
10533 leader = inherit_event(parent_event, parent, parent_ctx,
10534 child, NULL, child_ctx);
10535 if (IS_ERR(leader))
10536 return PTR_ERR(leader);
10537 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
10538 child_ctr = inherit_event(sub, parent, parent_ctx,
10539 child, leader, child_ctx);
10540 if (IS_ERR(child_ctr))
10541 return PTR_ERR(child_ctr);
10542 }
10543 return 0;
10544 }
10545
10546 static int
10547 inherit_task_group(struct perf_event *event, struct task_struct *parent,
10548 struct perf_event_context *parent_ctx,
10549 struct task_struct *child, int ctxn,
10550 int *inherited_all)
10551 {
10552 int ret;
10553 struct perf_event_context *child_ctx;
10554
10555 if (!event->attr.inherit) {
10556 *inherited_all = 0;
10557 return 0;
10558 }
10559
10560 child_ctx = child->perf_event_ctxp[ctxn];
10561 if (!child_ctx) {
10562 /*
10563 * This is executed from the parent task context, so
10564 * inherit events that have been marked for cloning.
10565 * First allocate and initialize a context for the
10566 * child.
10567 */
10568
10569 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
10570 if (!child_ctx)
10571 return -ENOMEM;
10572
10573 child->perf_event_ctxp[ctxn] = child_ctx;
10574 }
10575
10576 ret = inherit_group(event, parent, parent_ctx,
10577 child, child_ctx);
10578
10579 if (ret)
10580 *inherited_all = 0;
10581
10582 return ret;
10583 }
10584
10585 /*
10586 * Initialize the perf_event context in task_struct
10587 */
10588 static int perf_event_init_context(struct task_struct *child, int ctxn)
10589 {
10590 struct perf_event_context *child_ctx, *parent_ctx;
10591 struct perf_event_context *cloned_ctx;
10592 struct perf_event *event;
10593 struct task_struct *parent = current;
10594 int inherited_all = 1;
10595 unsigned long flags;
10596 int ret = 0;
10597
10598 if (likely(!parent->perf_event_ctxp[ctxn]))
10599 return 0;
10600
10601 /*
10602 * If the parent's context is a clone, pin it so it won't get
10603 * swapped under us.
10604 */
10605 parent_ctx = perf_pin_task_context(parent, ctxn);
10606 if (!parent_ctx)
10607 return 0;
10608
10609 /*
10610 * No need to check if parent_ctx != NULL here; since we saw
10611 * it non-NULL earlier, the only reason for it to become NULL
10612 * is if we exit, and since we're currently in the middle of
10613 * a fork we can't be exiting at the same time.
10614 */
10615
10616 /*
10617 * Lock the parent list. No need to lock the child - not PID
10618 * hashed yet and not running, so nobody can access it.
10619 */
10620 mutex_lock(&parent_ctx->mutex);
10621
10622 /*
10623 * We dont have to disable NMIs - we are only looking at
10624 * the list, not manipulating it:
10625 */
10626 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
10627 ret = inherit_task_group(event, parent, parent_ctx,
10628 child, ctxn, &inherited_all);
10629 if (ret)
10630 break;
10631 }
10632
10633 /*
10634 * We can't hold ctx->lock when iterating the ->flexible_group list due
10635 * to allocations, but we need to prevent rotation because
10636 * rotate_ctx() will change the list from interrupt context.
10637 */
10638 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10639 parent_ctx->rotate_disable = 1;
10640 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10641
10642 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
10643 ret = inherit_task_group(event, parent, parent_ctx,
10644 child, ctxn, &inherited_all);
10645 if (ret)
10646 break;
10647 }
10648
10649 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10650 parent_ctx->rotate_disable = 0;
10651
10652 child_ctx = child->perf_event_ctxp[ctxn];
10653
10654 if (child_ctx && inherited_all) {
10655 /*
10656 * Mark the child context as a clone of the parent
10657 * context, or of whatever the parent is a clone of.
10658 *
10659 * Note that if the parent is a clone, the holding of
10660 * parent_ctx->lock avoids it from being uncloned.
10661 */
10662 cloned_ctx = parent_ctx->parent_ctx;
10663 if (cloned_ctx) {
10664 child_ctx->parent_ctx = cloned_ctx;
10665 child_ctx->parent_gen = parent_ctx->parent_gen;
10666 } else {
10667 child_ctx->parent_ctx = parent_ctx;
10668 child_ctx->parent_gen = parent_ctx->generation;
10669 }
10670 get_ctx(child_ctx->parent_ctx);
10671 }
10672
10673 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10674 mutex_unlock(&parent_ctx->mutex);
10675
10676 perf_unpin_context(parent_ctx);
10677 put_ctx(parent_ctx);
10678
10679 return ret;
10680 }
10681
10682 /*
10683 * Initialize the perf_event context in task_struct
10684 */
10685 int perf_event_init_task(struct task_struct *child)
10686 {
10687 int ctxn, ret;
10688
10689 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
10690 mutex_init(&child->perf_event_mutex);
10691 INIT_LIST_HEAD(&child->perf_event_list);
10692
10693 for_each_task_context_nr(ctxn) {
10694 ret = perf_event_init_context(child, ctxn);
10695 if (ret) {
10696 perf_event_free_task(child);
10697 return ret;
10698 }
10699 }
10700
10701 return 0;
10702 }
10703
10704 static void __init perf_event_init_all_cpus(void)
10705 {
10706 struct swevent_htable *swhash;
10707 int cpu;
10708
10709 for_each_possible_cpu(cpu) {
10710 swhash = &per_cpu(swevent_htable, cpu);
10711 mutex_init(&swhash->hlist_mutex);
10712 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
10713
10714 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
10715 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
10716
10717 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
10718 }
10719 }
10720
10721 int perf_event_init_cpu(unsigned int cpu)
10722 {
10723 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
10724
10725 mutex_lock(&swhash->hlist_mutex);
10726 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
10727 struct swevent_hlist *hlist;
10728
10729 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
10730 WARN_ON(!hlist);
10731 rcu_assign_pointer(swhash->swevent_hlist, hlist);
10732 }
10733 mutex_unlock(&swhash->hlist_mutex);
10734 return 0;
10735 }
10736
10737 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
10738 static void __perf_event_exit_context(void *__info)
10739 {
10740 struct perf_event_context *ctx = __info;
10741 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
10742 struct perf_event *event;
10743
10744 raw_spin_lock(&ctx->lock);
10745 list_for_each_entry(event, &ctx->event_list, event_entry)
10746 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
10747 raw_spin_unlock(&ctx->lock);
10748 }
10749
10750 static void perf_event_exit_cpu_context(int cpu)
10751 {
10752 struct perf_event_context *ctx;
10753 struct pmu *pmu;
10754 int idx;
10755
10756 idx = srcu_read_lock(&pmus_srcu);
10757 list_for_each_entry_rcu(pmu, &pmus, entry) {
10758 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
10759
10760 mutex_lock(&ctx->mutex);
10761 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
10762 mutex_unlock(&ctx->mutex);
10763 }
10764 srcu_read_unlock(&pmus_srcu, idx);
10765 }
10766 #else
10767
10768 static void perf_event_exit_cpu_context(int cpu) { }
10769
10770 #endif
10771
10772 int perf_event_exit_cpu(unsigned int cpu)
10773 {
10774 perf_event_exit_cpu_context(cpu);
10775 return 0;
10776 }
10777
10778 static int
10779 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
10780 {
10781 int cpu;
10782
10783 for_each_online_cpu(cpu)
10784 perf_event_exit_cpu(cpu);
10785
10786 return NOTIFY_OK;
10787 }
10788
10789 /*
10790 * Run the perf reboot notifier at the very last possible moment so that
10791 * the generic watchdog code runs as long as possible.
10792 */
10793 static struct notifier_block perf_reboot_notifier = {
10794 .notifier_call = perf_reboot,
10795 .priority = INT_MIN,
10796 };
10797
10798 void __init perf_event_init(void)
10799 {
10800 int ret;
10801
10802 idr_init(&pmu_idr);
10803
10804 perf_event_init_all_cpus();
10805 init_srcu_struct(&pmus_srcu);
10806 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
10807 perf_pmu_register(&perf_cpu_clock, NULL, -1);
10808 perf_pmu_register(&perf_task_clock, NULL, -1);
10809 perf_tp_register();
10810 perf_event_init_cpu(smp_processor_id());
10811 register_reboot_notifier(&perf_reboot_notifier);
10812
10813 ret = init_hw_breakpoint();
10814 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
10815
10816 /*
10817 * Build time assertion that we keep the data_head at the intended
10818 * location. IOW, validation we got the __reserved[] size right.
10819 */
10820 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
10821 != 1024);
10822 }
10823
10824 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
10825 char *page)
10826 {
10827 struct perf_pmu_events_attr *pmu_attr =
10828 container_of(attr, struct perf_pmu_events_attr, attr);
10829
10830 if (pmu_attr->event_str)
10831 return sprintf(page, "%s\n", pmu_attr->event_str);
10832
10833 return 0;
10834 }
10835 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
10836
10837 static int __init perf_event_sysfs_init(void)
10838 {
10839 struct pmu *pmu;
10840 int ret;
10841
10842 mutex_lock(&pmus_lock);
10843
10844 ret = bus_register(&pmu_bus);
10845 if (ret)
10846 goto unlock;
10847
10848 list_for_each_entry(pmu, &pmus, entry) {
10849 if (!pmu->name || pmu->type < 0)
10850 continue;
10851
10852 ret = pmu_dev_alloc(pmu);
10853 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
10854 }
10855 pmu_bus_running = 1;
10856 ret = 0;
10857
10858 unlock:
10859 mutex_unlock(&pmus_lock);
10860
10861 return ret;
10862 }
10863 device_initcall(perf_event_sysfs_init);
10864
10865 #ifdef CONFIG_CGROUP_PERF
10866 static struct cgroup_subsys_state *
10867 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
10868 {
10869 struct perf_cgroup *jc;
10870
10871 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
10872 if (!jc)
10873 return ERR_PTR(-ENOMEM);
10874
10875 jc->info = alloc_percpu(struct perf_cgroup_info);
10876 if (!jc->info) {
10877 kfree(jc);
10878 return ERR_PTR(-ENOMEM);
10879 }
10880
10881 return &jc->css;
10882 }
10883
10884 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
10885 {
10886 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
10887
10888 free_percpu(jc->info);
10889 kfree(jc);
10890 }
10891
10892 static int __perf_cgroup_move(void *info)
10893 {
10894 struct task_struct *task = info;
10895 rcu_read_lock();
10896 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
10897 rcu_read_unlock();
10898 return 0;
10899 }
10900
10901 static void perf_cgroup_attach(struct cgroup_taskset *tset)
10902 {
10903 struct task_struct *task;
10904 struct cgroup_subsys_state *css;
10905
10906 cgroup_taskset_for_each(task, css, tset)
10907 task_function_call(task, __perf_cgroup_move, task);
10908 }
10909
10910 struct cgroup_subsys perf_event_cgrp_subsys = {
10911 .css_alloc = perf_cgroup_css_alloc,
10912 .css_free = perf_cgroup_css_free,
10913 .attach = perf_cgroup_attach,
10914 };
10915 #endif /* CONFIG_CGROUP_PERF */