]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - kernel/events/core.c
perf/x86/p4: Block PMIs on init to prevent a stream of unkown NMIs
[mirror_ubuntu-eoan-kernel.git] / kernel / events / core.c
1 /*
2 * Performance events core code:
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/perf_event.h>
38 #include <linux/ftrace_event.h>
39 #include <linux/hw_breakpoint.h>
40 #include <linux/mm_types.h>
41 #include <linux/cgroup.h>
42
43 #include "internal.h"
44
45 #include <asm/irq_regs.h>
46
47 struct remote_function_call {
48 struct task_struct *p;
49 int (*func)(void *info);
50 void *info;
51 int ret;
52 };
53
54 static void remote_function(void *data)
55 {
56 struct remote_function_call *tfc = data;
57 struct task_struct *p = tfc->p;
58
59 if (p) {
60 tfc->ret = -EAGAIN;
61 if (task_cpu(p) != smp_processor_id() || !task_curr(p))
62 return;
63 }
64
65 tfc->ret = tfc->func(tfc->info);
66 }
67
68 /**
69 * task_function_call - call a function on the cpu on which a task runs
70 * @p: the task to evaluate
71 * @func: the function to be called
72 * @info: the function call argument
73 *
74 * Calls the function @func when the task is currently running. This might
75 * be on the current CPU, which just calls the function directly
76 *
77 * returns: @func return value, or
78 * -ESRCH - when the process isn't running
79 * -EAGAIN - when the process moved away
80 */
81 static int
82 task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
83 {
84 struct remote_function_call data = {
85 .p = p,
86 .func = func,
87 .info = info,
88 .ret = -ESRCH, /* No such (running) process */
89 };
90
91 if (task_curr(p))
92 smp_call_function_single(task_cpu(p), remote_function, &data, 1);
93
94 return data.ret;
95 }
96
97 /**
98 * cpu_function_call - call a function on the cpu
99 * @func: the function to be called
100 * @info: the function call argument
101 *
102 * Calls the function @func on the remote cpu.
103 *
104 * returns: @func return value or -ENXIO when the cpu is offline
105 */
106 static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
107 {
108 struct remote_function_call data = {
109 .p = NULL,
110 .func = func,
111 .info = info,
112 .ret = -ENXIO, /* No such CPU */
113 };
114
115 smp_call_function_single(cpu, remote_function, &data, 1);
116
117 return data.ret;
118 }
119
120 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
121 PERF_FLAG_FD_OUTPUT |\
122 PERF_FLAG_PID_CGROUP |\
123 PERF_FLAG_FD_CLOEXEC)
124
125 /*
126 * branch priv levels that need permission checks
127 */
128 #define PERF_SAMPLE_BRANCH_PERM_PLM \
129 (PERF_SAMPLE_BRANCH_KERNEL |\
130 PERF_SAMPLE_BRANCH_HV)
131
132 enum event_type_t {
133 EVENT_FLEXIBLE = 0x1,
134 EVENT_PINNED = 0x2,
135 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
136 };
137
138 /*
139 * perf_sched_events : >0 events exist
140 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
141 */
142 struct static_key_deferred perf_sched_events __read_mostly;
143 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
144 static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events);
145
146 static atomic_t nr_mmap_events __read_mostly;
147 static atomic_t nr_comm_events __read_mostly;
148 static atomic_t nr_task_events __read_mostly;
149 static atomic_t nr_freq_events __read_mostly;
150
151 static LIST_HEAD(pmus);
152 static DEFINE_MUTEX(pmus_lock);
153 static struct srcu_struct pmus_srcu;
154
155 /*
156 * perf event paranoia level:
157 * -1 - not paranoid at all
158 * 0 - disallow raw tracepoint access for unpriv
159 * 1 - disallow cpu events for unpriv
160 * 2 - disallow kernel profiling for unpriv
161 */
162 int sysctl_perf_event_paranoid __read_mostly = 1;
163
164 /* Minimum for 512 kiB + 1 user control page */
165 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
166
167 /*
168 * max perf event sample rate
169 */
170 #define DEFAULT_MAX_SAMPLE_RATE 100000
171 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
172 #define DEFAULT_CPU_TIME_MAX_PERCENT 25
173
174 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
175
176 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
177 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
178
179 static int perf_sample_allowed_ns __read_mostly =
180 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
181
182 void update_perf_cpu_limits(void)
183 {
184 u64 tmp = perf_sample_period_ns;
185
186 tmp *= sysctl_perf_cpu_time_max_percent;
187 do_div(tmp, 100);
188 ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
189 }
190
191 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
192
193 int perf_proc_update_handler(struct ctl_table *table, int write,
194 void __user *buffer, size_t *lenp,
195 loff_t *ppos)
196 {
197 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
198
199 if (ret || !write)
200 return ret;
201
202 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
203 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
204 update_perf_cpu_limits();
205
206 return 0;
207 }
208
209 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
210
211 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
212 void __user *buffer, size_t *lenp,
213 loff_t *ppos)
214 {
215 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
216
217 if (ret || !write)
218 return ret;
219
220 update_perf_cpu_limits();
221
222 return 0;
223 }
224
225 /*
226 * perf samples are done in some very critical code paths (NMIs).
227 * If they take too much CPU time, the system can lock up and not
228 * get any real work done. This will drop the sample rate when
229 * we detect that events are taking too long.
230 */
231 #define NR_ACCUMULATED_SAMPLES 128
232 static DEFINE_PER_CPU(u64, running_sample_length);
233
234 static void perf_duration_warn(struct irq_work *w)
235 {
236 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
237 u64 avg_local_sample_len;
238 u64 local_samples_len;
239
240 local_samples_len = __get_cpu_var(running_sample_length);
241 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
242
243 printk_ratelimited(KERN_WARNING
244 "perf interrupt took too long (%lld > %lld), lowering "
245 "kernel.perf_event_max_sample_rate to %d\n",
246 avg_local_sample_len, allowed_ns,
247 sysctl_perf_event_sample_rate);
248 }
249
250 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
251
252 void perf_sample_event_took(u64 sample_len_ns)
253 {
254 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
255 u64 avg_local_sample_len;
256 u64 local_samples_len;
257
258 if (allowed_ns == 0)
259 return;
260
261 /* decay the counter by 1 average sample */
262 local_samples_len = __get_cpu_var(running_sample_length);
263 local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
264 local_samples_len += sample_len_ns;
265 __get_cpu_var(running_sample_length) = local_samples_len;
266
267 /*
268 * note: this will be biased artifically low until we have
269 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
270 * from having to maintain a count.
271 */
272 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
273
274 if (avg_local_sample_len <= allowed_ns)
275 return;
276
277 if (max_samples_per_tick <= 1)
278 return;
279
280 max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
281 sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
282 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
283
284 update_perf_cpu_limits();
285
286 irq_work_queue(&perf_duration_work);
287 }
288
289 static atomic64_t perf_event_id;
290
291 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
292 enum event_type_t event_type);
293
294 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
295 enum event_type_t event_type,
296 struct task_struct *task);
297
298 static void update_context_time(struct perf_event_context *ctx);
299 static u64 perf_event_time(struct perf_event *event);
300
301 void __weak perf_event_print_debug(void) { }
302
303 extern __weak const char *perf_pmu_name(void)
304 {
305 return "pmu";
306 }
307
308 static inline u64 perf_clock(void)
309 {
310 return local_clock();
311 }
312
313 static inline struct perf_cpu_context *
314 __get_cpu_context(struct perf_event_context *ctx)
315 {
316 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
317 }
318
319 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
320 struct perf_event_context *ctx)
321 {
322 raw_spin_lock(&cpuctx->ctx.lock);
323 if (ctx)
324 raw_spin_lock(&ctx->lock);
325 }
326
327 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
328 struct perf_event_context *ctx)
329 {
330 if (ctx)
331 raw_spin_unlock(&ctx->lock);
332 raw_spin_unlock(&cpuctx->ctx.lock);
333 }
334
335 #ifdef CONFIG_CGROUP_PERF
336
337 /*
338 * perf_cgroup_info keeps track of time_enabled for a cgroup.
339 * This is a per-cpu dynamically allocated data structure.
340 */
341 struct perf_cgroup_info {
342 u64 time;
343 u64 timestamp;
344 };
345
346 struct perf_cgroup {
347 struct cgroup_subsys_state css;
348 struct perf_cgroup_info __percpu *info;
349 };
350
351 /*
352 * Must ensure cgroup is pinned (css_get) before calling
353 * this function. In other words, we cannot call this function
354 * if there is no cgroup event for the current CPU context.
355 */
356 static inline struct perf_cgroup *
357 perf_cgroup_from_task(struct task_struct *task)
358 {
359 return container_of(task_css(task, perf_subsys_id),
360 struct perf_cgroup, css);
361 }
362
363 static inline bool
364 perf_cgroup_match(struct perf_event *event)
365 {
366 struct perf_event_context *ctx = event->ctx;
367 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
368
369 /* @event doesn't care about cgroup */
370 if (!event->cgrp)
371 return true;
372
373 /* wants specific cgroup scope but @cpuctx isn't associated with any */
374 if (!cpuctx->cgrp)
375 return false;
376
377 /*
378 * Cgroup scoping is recursive. An event enabled for a cgroup is
379 * also enabled for all its descendant cgroups. If @cpuctx's
380 * cgroup is a descendant of @event's (the test covers identity
381 * case), it's a match.
382 */
383 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
384 event->cgrp->css.cgroup);
385 }
386
387 static inline bool perf_tryget_cgroup(struct perf_event *event)
388 {
389 return css_tryget(&event->cgrp->css);
390 }
391
392 static inline void perf_put_cgroup(struct perf_event *event)
393 {
394 css_put(&event->cgrp->css);
395 }
396
397 static inline void perf_detach_cgroup(struct perf_event *event)
398 {
399 perf_put_cgroup(event);
400 event->cgrp = NULL;
401 }
402
403 static inline int is_cgroup_event(struct perf_event *event)
404 {
405 return event->cgrp != NULL;
406 }
407
408 static inline u64 perf_cgroup_event_time(struct perf_event *event)
409 {
410 struct perf_cgroup_info *t;
411
412 t = per_cpu_ptr(event->cgrp->info, event->cpu);
413 return t->time;
414 }
415
416 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
417 {
418 struct perf_cgroup_info *info;
419 u64 now;
420
421 now = perf_clock();
422
423 info = this_cpu_ptr(cgrp->info);
424
425 info->time += now - info->timestamp;
426 info->timestamp = now;
427 }
428
429 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
430 {
431 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
432 if (cgrp_out)
433 __update_cgrp_time(cgrp_out);
434 }
435
436 static inline void update_cgrp_time_from_event(struct perf_event *event)
437 {
438 struct perf_cgroup *cgrp;
439
440 /*
441 * ensure we access cgroup data only when needed and
442 * when we know the cgroup is pinned (css_get)
443 */
444 if (!is_cgroup_event(event))
445 return;
446
447 cgrp = perf_cgroup_from_task(current);
448 /*
449 * Do not update time when cgroup is not active
450 */
451 if (cgrp == event->cgrp)
452 __update_cgrp_time(event->cgrp);
453 }
454
455 static inline void
456 perf_cgroup_set_timestamp(struct task_struct *task,
457 struct perf_event_context *ctx)
458 {
459 struct perf_cgroup *cgrp;
460 struct perf_cgroup_info *info;
461
462 /*
463 * ctx->lock held by caller
464 * ensure we do not access cgroup data
465 * unless we have the cgroup pinned (css_get)
466 */
467 if (!task || !ctx->nr_cgroups)
468 return;
469
470 cgrp = perf_cgroup_from_task(task);
471 info = this_cpu_ptr(cgrp->info);
472 info->timestamp = ctx->timestamp;
473 }
474
475 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
476 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
477
478 /*
479 * reschedule events based on the cgroup constraint of task.
480 *
481 * mode SWOUT : schedule out everything
482 * mode SWIN : schedule in based on cgroup for next
483 */
484 void perf_cgroup_switch(struct task_struct *task, int mode)
485 {
486 struct perf_cpu_context *cpuctx;
487 struct pmu *pmu;
488 unsigned long flags;
489
490 /*
491 * disable interrupts to avoid geting nr_cgroup
492 * changes via __perf_event_disable(). Also
493 * avoids preemption.
494 */
495 local_irq_save(flags);
496
497 /*
498 * we reschedule only in the presence of cgroup
499 * constrained events.
500 */
501 rcu_read_lock();
502
503 list_for_each_entry_rcu(pmu, &pmus, entry) {
504 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
505 if (cpuctx->unique_pmu != pmu)
506 continue; /* ensure we process each cpuctx once */
507
508 /*
509 * perf_cgroup_events says at least one
510 * context on this CPU has cgroup events.
511 *
512 * ctx->nr_cgroups reports the number of cgroup
513 * events for a context.
514 */
515 if (cpuctx->ctx.nr_cgroups > 0) {
516 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
517 perf_pmu_disable(cpuctx->ctx.pmu);
518
519 if (mode & PERF_CGROUP_SWOUT) {
520 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
521 /*
522 * must not be done before ctxswout due
523 * to event_filter_match() in event_sched_out()
524 */
525 cpuctx->cgrp = NULL;
526 }
527
528 if (mode & PERF_CGROUP_SWIN) {
529 WARN_ON_ONCE(cpuctx->cgrp);
530 /*
531 * set cgrp before ctxsw in to allow
532 * event_filter_match() to not have to pass
533 * task around
534 */
535 cpuctx->cgrp = perf_cgroup_from_task(task);
536 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
537 }
538 perf_pmu_enable(cpuctx->ctx.pmu);
539 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
540 }
541 }
542
543 rcu_read_unlock();
544
545 local_irq_restore(flags);
546 }
547
548 static inline void perf_cgroup_sched_out(struct task_struct *task,
549 struct task_struct *next)
550 {
551 struct perf_cgroup *cgrp1;
552 struct perf_cgroup *cgrp2 = NULL;
553
554 /*
555 * we come here when we know perf_cgroup_events > 0
556 */
557 cgrp1 = perf_cgroup_from_task(task);
558
559 /*
560 * next is NULL when called from perf_event_enable_on_exec()
561 * that will systematically cause a cgroup_switch()
562 */
563 if (next)
564 cgrp2 = perf_cgroup_from_task(next);
565
566 /*
567 * only schedule out current cgroup events if we know
568 * that we are switching to a different cgroup. Otherwise,
569 * do no touch the cgroup events.
570 */
571 if (cgrp1 != cgrp2)
572 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
573 }
574
575 static inline void perf_cgroup_sched_in(struct task_struct *prev,
576 struct task_struct *task)
577 {
578 struct perf_cgroup *cgrp1;
579 struct perf_cgroup *cgrp2 = NULL;
580
581 /*
582 * we come here when we know perf_cgroup_events > 0
583 */
584 cgrp1 = perf_cgroup_from_task(task);
585
586 /* prev can never be NULL */
587 cgrp2 = perf_cgroup_from_task(prev);
588
589 /*
590 * only need to schedule in cgroup events if we are changing
591 * cgroup during ctxsw. Cgroup events were not scheduled
592 * out of ctxsw out if that was not the case.
593 */
594 if (cgrp1 != cgrp2)
595 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
596 }
597
598 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
599 struct perf_event_attr *attr,
600 struct perf_event *group_leader)
601 {
602 struct perf_cgroup *cgrp;
603 struct cgroup_subsys_state *css;
604 struct fd f = fdget(fd);
605 int ret = 0;
606
607 if (!f.file)
608 return -EBADF;
609
610 rcu_read_lock();
611
612 css = css_from_dir(f.file->f_dentry, &perf_subsys);
613 if (IS_ERR(css)) {
614 ret = PTR_ERR(css);
615 goto out;
616 }
617
618 cgrp = container_of(css, struct perf_cgroup, css);
619 event->cgrp = cgrp;
620
621 /* must be done before we fput() the file */
622 if (!perf_tryget_cgroup(event)) {
623 event->cgrp = NULL;
624 ret = -ENOENT;
625 goto out;
626 }
627
628 /*
629 * all events in a group must monitor
630 * the same cgroup because a task belongs
631 * to only one perf cgroup at a time
632 */
633 if (group_leader && group_leader->cgrp != cgrp) {
634 perf_detach_cgroup(event);
635 ret = -EINVAL;
636 }
637 out:
638 rcu_read_unlock();
639 fdput(f);
640 return ret;
641 }
642
643 static inline void
644 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
645 {
646 struct perf_cgroup_info *t;
647 t = per_cpu_ptr(event->cgrp->info, event->cpu);
648 event->shadow_ctx_time = now - t->timestamp;
649 }
650
651 static inline void
652 perf_cgroup_defer_enabled(struct perf_event *event)
653 {
654 /*
655 * when the current task's perf cgroup does not match
656 * the event's, we need to remember to call the
657 * perf_mark_enable() function the first time a task with
658 * a matching perf cgroup is scheduled in.
659 */
660 if (is_cgroup_event(event) && !perf_cgroup_match(event))
661 event->cgrp_defer_enabled = 1;
662 }
663
664 static inline void
665 perf_cgroup_mark_enabled(struct perf_event *event,
666 struct perf_event_context *ctx)
667 {
668 struct perf_event *sub;
669 u64 tstamp = perf_event_time(event);
670
671 if (!event->cgrp_defer_enabled)
672 return;
673
674 event->cgrp_defer_enabled = 0;
675
676 event->tstamp_enabled = tstamp - event->total_time_enabled;
677 list_for_each_entry(sub, &event->sibling_list, group_entry) {
678 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
679 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
680 sub->cgrp_defer_enabled = 0;
681 }
682 }
683 }
684 #else /* !CONFIG_CGROUP_PERF */
685
686 static inline bool
687 perf_cgroup_match(struct perf_event *event)
688 {
689 return true;
690 }
691
692 static inline void perf_detach_cgroup(struct perf_event *event)
693 {}
694
695 static inline int is_cgroup_event(struct perf_event *event)
696 {
697 return 0;
698 }
699
700 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
701 {
702 return 0;
703 }
704
705 static inline void update_cgrp_time_from_event(struct perf_event *event)
706 {
707 }
708
709 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
710 {
711 }
712
713 static inline void perf_cgroup_sched_out(struct task_struct *task,
714 struct task_struct *next)
715 {
716 }
717
718 static inline void perf_cgroup_sched_in(struct task_struct *prev,
719 struct task_struct *task)
720 {
721 }
722
723 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
724 struct perf_event_attr *attr,
725 struct perf_event *group_leader)
726 {
727 return -EINVAL;
728 }
729
730 static inline void
731 perf_cgroup_set_timestamp(struct task_struct *task,
732 struct perf_event_context *ctx)
733 {
734 }
735
736 void
737 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
738 {
739 }
740
741 static inline void
742 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
743 {
744 }
745
746 static inline u64 perf_cgroup_event_time(struct perf_event *event)
747 {
748 return 0;
749 }
750
751 static inline void
752 perf_cgroup_defer_enabled(struct perf_event *event)
753 {
754 }
755
756 static inline void
757 perf_cgroup_mark_enabled(struct perf_event *event,
758 struct perf_event_context *ctx)
759 {
760 }
761 #endif
762
763 /*
764 * set default to be dependent on timer tick just
765 * like original code
766 */
767 #define PERF_CPU_HRTIMER (1000 / HZ)
768 /*
769 * function must be called with interrupts disbled
770 */
771 static enum hrtimer_restart perf_cpu_hrtimer_handler(struct hrtimer *hr)
772 {
773 struct perf_cpu_context *cpuctx;
774 enum hrtimer_restart ret = HRTIMER_NORESTART;
775 int rotations = 0;
776
777 WARN_ON(!irqs_disabled());
778
779 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
780
781 rotations = perf_rotate_context(cpuctx);
782
783 /*
784 * arm timer if needed
785 */
786 if (rotations) {
787 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
788 ret = HRTIMER_RESTART;
789 }
790
791 return ret;
792 }
793
794 /* CPU is going down */
795 void perf_cpu_hrtimer_cancel(int cpu)
796 {
797 struct perf_cpu_context *cpuctx;
798 struct pmu *pmu;
799 unsigned long flags;
800
801 if (WARN_ON(cpu != smp_processor_id()))
802 return;
803
804 local_irq_save(flags);
805
806 rcu_read_lock();
807
808 list_for_each_entry_rcu(pmu, &pmus, entry) {
809 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
810
811 if (pmu->task_ctx_nr == perf_sw_context)
812 continue;
813
814 hrtimer_cancel(&cpuctx->hrtimer);
815 }
816
817 rcu_read_unlock();
818
819 local_irq_restore(flags);
820 }
821
822 static void __perf_cpu_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
823 {
824 struct hrtimer *hr = &cpuctx->hrtimer;
825 struct pmu *pmu = cpuctx->ctx.pmu;
826 int timer;
827
828 /* no multiplexing needed for SW PMU */
829 if (pmu->task_ctx_nr == perf_sw_context)
830 return;
831
832 /*
833 * check default is sane, if not set then force to
834 * default interval (1/tick)
835 */
836 timer = pmu->hrtimer_interval_ms;
837 if (timer < 1)
838 timer = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
839
840 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
841
842 hrtimer_init(hr, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
843 hr->function = perf_cpu_hrtimer_handler;
844 }
845
846 static void perf_cpu_hrtimer_restart(struct perf_cpu_context *cpuctx)
847 {
848 struct hrtimer *hr = &cpuctx->hrtimer;
849 struct pmu *pmu = cpuctx->ctx.pmu;
850
851 /* not for SW PMU */
852 if (pmu->task_ctx_nr == perf_sw_context)
853 return;
854
855 if (hrtimer_active(hr))
856 return;
857
858 if (!hrtimer_callback_running(hr))
859 __hrtimer_start_range_ns(hr, cpuctx->hrtimer_interval,
860 0, HRTIMER_MODE_REL_PINNED, 0);
861 }
862
863 void perf_pmu_disable(struct pmu *pmu)
864 {
865 int *count = this_cpu_ptr(pmu->pmu_disable_count);
866 if (!(*count)++)
867 pmu->pmu_disable(pmu);
868 }
869
870 void perf_pmu_enable(struct pmu *pmu)
871 {
872 int *count = this_cpu_ptr(pmu->pmu_disable_count);
873 if (!--(*count))
874 pmu->pmu_enable(pmu);
875 }
876
877 static DEFINE_PER_CPU(struct list_head, rotation_list);
878
879 /*
880 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
881 * because they're strictly cpu affine and rotate_start is called with IRQs
882 * disabled, while rotate_context is called from IRQ context.
883 */
884 static void perf_pmu_rotate_start(struct pmu *pmu)
885 {
886 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
887 struct list_head *head = &__get_cpu_var(rotation_list);
888
889 WARN_ON(!irqs_disabled());
890
891 if (list_empty(&cpuctx->rotation_list))
892 list_add(&cpuctx->rotation_list, head);
893 }
894
895 static void get_ctx(struct perf_event_context *ctx)
896 {
897 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
898 }
899
900 static void put_ctx(struct perf_event_context *ctx)
901 {
902 if (atomic_dec_and_test(&ctx->refcount)) {
903 if (ctx->parent_ctx)
904 put_ctx(ctx->parent_ctx);
905 if (ctx->task)
906 put_task_struct(ctx->task);
907 kfree_rcu(ctx, rcu_head);
908 }
909 }
910
911 static void unclone_ctx(struct perf_event_context *ctx)
912 {
913 if (ctx->parent_ctx) {
914 put_ctx(ctx->parent_ctx);
915 ctx->parent_ctx = NULL;
916 }
917 ctx->generation++;
918 }
919
920 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
921 {
922 /*
923 * only top level events have the pid namespace they were created in
924 */
925 if (event->parent)
926 event = event->parent;
927
928 return task_tgid_nr_ns(p, event->ns);
929 }
930
931 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
932 {
933 /*
934 * only top level events have the pid namespace they were created in
935 */
936 if (event->parent)
937 event = event->parent;
938
939 return task_pid_nr_ns(p, event->ns);
940 }
941
942 /*
943 * If we inherit events we want to return the parent event id
944 * to userspace.
945 */
946 static u64 primary_event_id(struct perf_event *event)
947 {
948 u64 id = event->id;
949
950 if (event->parent)
951 id = event->parent->id;
952
953 return id;
954 }
955
956 /*
957 * Get the perf_event_context for a task and lock it.
958 * This has to cope with with the fact that until it is locked,
959 * the context could get moved to another task.
960 */
961 static struct perf_event_context *
962 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
963 {
964 struct perf_event_context *ctx;
965
966 retry:
967 /*
968 * One of the few rules of preemptible RCU is that one cannot do
969 * rcu_read_unlock() while holding a scheduler (or nested) lock when
970 * part of the read side critical section was preemptible -- see
971 * rcu_read_unlock_special().
972 *
973 * Since ctx->lock nests under rq->lock we must ensure the entire read
974 * side critical section is non-preemptible.
975 */
976 preempt_disable();
977 rcu_read_lock();
978 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
979 if (ctx) {
980 /*
981 * If this context is a clone of another, it might
982 * get swapped for another underneath us by
983 * perf_event_task_sched_out, though the
984 * rcu_read_lock() protects us from any context
985 * getting freed. Lock the context and check if it
986 * got swapped before we could get the lock, and retry
987 * if so. If we locked the right context, then it
988 * can't get swapped on us any more.
989 */
990 raw_spin_lock_irqsave(&ctx->lock, *flags);
991 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
992 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
993 rcu_read_unlock();
994 preempt_enable();
995 goto retry;
996 }
997
998 if (!atomic_inc_not_zero(&ctx->refcount)) {
999 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
1000 ctx = NULL;
1001 }
1002 }
1003 rcu_read_unlock();
1004 preempt_enable();
1005 return ctx;
1006 }
1007
1008 /*
1009 * Get the context for a task and increment its pin_count so it
1010 * can't get swapped to another task. This also increments its
1011 * reference count so that the context can't get freed.
1012 */
1013 static struct perf_event_context *
1014 perf_pin_task_context(struct task_struct *task, int ctxn)
1015 {
1016 struct perf_event_context *ctx;
1017 unsigned long flags;
1018
1019 ctx = perf_lock_task_context(task, ctxn, &flags);
1020 if (ctx) {
1021 ++ctx->pin_count;
1022 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1023 }
1024 return ctx;
1025 }
1026
1027 static void perf_unpin_context(struct perf_event_context *ctx)
1028 {
1029 unsigned long flags;
1030
1031 raw_spin_lock_irqsave(&ctx->lock, flags);
1032 --ctx->pin_count;
1033 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1034 }
1035
1036 /*
1037 * Update the record of the current time in a context.
1038 */
1039 static void update_context_time(struct perf_event_context *ctx)
1040 {
1041 u64 now = perf_clock();
1042
1043 ctx->time += now - ctx->timestamp;
1044 ctx->timestamp = now;
1045 }
1046
1047 static u64 perf_event_time(struct perf_event *event)
1048 {
1049 struct perf_event_context *ctx = event->ctx;
1050
1051 if (is_cgroup_event(event))
1052 return perf_cgroup_event_time(event);
1053
1054 return ctx ? ctx->time : 0;
1055 }
1056
1057 /*
1058 * Update the total_time_enabled and total_time_running fields for a event.
1059 * The caller of this function needs to hold the ctx->lock.
1060 */
1061 static void update_event_times(struct perf_event *event)
1062 {
1063 struct perf_event_context *ctx = event->ctx;
1064 u64 run_end;
1065
1066 if (event->state < PERF_EVENT_STATE_INACTIVE ||
1067 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1068 return;
1069 /*
1070 * in cgroup mode, time_enabled represents
1071 * the time the event was enabled AND active
1072 * tasks were in the monitored cgroup. This is
1073 * independent of the activity of the context as
1074 * there may be a mix of cgroup and non-cgroup events.
1075 *
1076 * That is why we treat cgroup events differently
1077 * here.
1078 */
1079 if (is_cgroup_event(event))
1080 run_end = perf_cgroup_event_time(event);
1081 else if (ctx->is_active)
1082 run_end = ctx->time;
1083 else
1084 run_end = event->tstamp_stopped;
1085
1086 event->total_time_enabled = run_end - event->tstamp_enabled;
1087
1088 if (event->state == PERF_EVENT_STATE_INACTIVE)
1089 run_end = event->tstamp_stopped;
1090 else
1091 run_end = perf_event_time(event);
1092
1093 event->total_time_running = run_end - event->tstamp_running;
1094
1095 }
1096
1097 /*
1098 * Update total_time_enabled and total_time_running for all events in a group.
1099 */
1100 static void update_group_times(struct perf_event *leader)
1101 {
1102 struct perf_event *event;
1103
1104 update_event_times(leader);
1105 list_for_each_entry(event, &leader->sibling_list, group_entry)
1106 update_event_times(event);
1107 }
1108
1109 static struct list_head *
1110 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1111 {
1112 if (event->attr.pinned)
1113 return &ctx->pinned_groups;
1114 else
1115 return &ctx->flexible_groups;
1116 }
1117
1118 /*
1119 * Add a event from the lists for its context.
1120 * Must be called with ctx->mutex and ctx->lock held.
1121 */
1122 static void
1123 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1124 {
1125 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1126 event->attach_state |= PERF_ATTACH_CONTEXT;
1127
1128 /*
1129 * If we're a stand alone event or group leader, we go to the context
1130 * list, group events are kept attached to the group so that
1131 * perf_group_detach can, at all times, locate all siblings.
1132 */
1133 if (event->group_leader == event) {
1134 struct list_head *list;
1135
1136 if (is_software_event(event))
1137 event->group_flags |= PERF_GROUP_SOFTWARE;
1138
1139 list = ctx_group_list(event, ctx);
1140 list_add_tail(&event->group_entry, list);
1141 }
1142
1143 if (is_cgroup_event(event))
1144 ctx->nr_cgroups++;
1145
1146 if (has_branch_stack(event))
1147 ctx->nr_branch_stack++;
1148
1149 list_add_rcu(&event->event_entry, &ctx->event_list);
1150 if (!ctx->nr_events)
1151 perf_pmu_rotate_start(ctx->pmu);
1152 ctx->nr_events++;
1153 if (event->attr.inherit_stat)
1154 ctx->nr_stat++;
1155
1156 ctx->generation++;
1157 }
1158
1159 /*
1160 * Initialize event state based on the perf_event_attr::disabled.
1161 */
1162 static inline void perf_event__state_init(struct perf_event *event)
1163 {
1164 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1165 PERF_EVENT_STATE_INACTIVE;
1166 }
1167
1168 /*
1169 * Called at perf_event creation and when events are attached/detached from a
1170 * group.
1171 */
1172 static void perf_event__read_size(struct perf_event *event)
1173 {
1174 int entry = sizeof(u64); /* value */
1175 int size = 0;
1176 int nr = 1;
1177
1178 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1179 size += sizeof(u64);
1180
1181 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1182 size += sizeof(u64);
1183
1184 if (event->attr.read_format & PERF_FORMAT_ID)
1185 entry += sizeof(u64);
1186
1187 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1188 nr += event->group_leader->nr_siblings;
1189 size += sizeof(u64);
1190 }
1191
1192 size += entry * nr;
1193 event->read_size = size;
1194 }
1195
1196 static void perf_event__header_size(struct perf_event *event)
1197 {
1198 struct perf_sample_data *data;
1199 u64 sample_type = event->attr.sample_type;
1200 u16 size = 0;
1201
1202 perf_event__read_size(event);
1203
1204 if (sample_type & PERF_SAMPLE_IP)
1205 size += sizeof(data->ip);
1206
1207 if (sample_type & PERF_SAMPLE_ADDR)
1208 size += sizeof(data->addr);
1209
1210 if (sample_type & PERF_SAMPLE_PERIOD)
1211 size += sizeof(data->period);
1212
1213 if (sample_type & PERF_SAMPLE_WEIGHT)
1214 size += sizeof(data->weight);
1215
1216 if (sample_type & PERF_SAMPLE_READ)
1217 size += event->read_size;
1218
1219 if (sample_type & PERF_SAMPLE_DATA_SRC)
1220 size += sizeof(data->data_src.val);
1221
1222 if (sample_type & PERF_SAMPLE_TRANSACTION)
1223 size += sizeof(data->txn);
1224
1225 event->header_size = size;
1226 }
1227
1228 static void perf_event__id_header_size(struct perf_event *event)
1229 {
1230 struct perf_sample_data *data;
1231 u64 sample_type = event->attr.sample_type;
1232 u16 size = 0;
1233
1234 if (sample_type & PERF_SAMPLE_TID)
1235 size += sizeof(data->tid_entry);
1236
1237 if (sample_type & PERF_SAMPLE_TIME)
1238 size += sizeof(data->time);
1239
1240 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1241 size += sizeof(data->id);
1242
1243 if (sample_type & PERF_SAMPLE_ID)
1244 size += sizeof(data->id);
1245
1246 if (sample_type & PERF_SAMPLE_STREAM_ID)
1247 size += sizeof(data->stream_id);
1248
1249 if (sample_type & PERF_SAMPLE_CPU)
1250 size += sizeof(data->cpu_entry);
1251
1252 event->id_header_size = size;
1253 }
1254
1255 static void perf_group_attach(struct perf_event *event)
1256 {
1257 struct perf_event *group_leader = event->group_leader, *pos;
1258
1259 /*
1260 * We can have double attach due to group movement in perf_event_open.
1261 */
1262 if (event->attach_state & PERF_ATTACH_GROUP)
1263 return;
1264
1265 event->attach_state |= PERF_ATTACH_GROUP;
1266
1267 if (group_leader == event)
1268 return;
1269
1270 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1271 !is_software_event(event))
1272 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1273
1274 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1275 group_leader->nr_siblings++;
1276
1277 perf_event__header_size(group_leader);
1278
1279 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1280 perf_event__header_size(pos);
1281 }
1282
1283 /*
1284 * Remove a event from the lists for its context.
1285 * Must be called with ctx->mutex and ctx->lock held.
1286 */
1287 static void
1288 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1289 {
1290 struct perf_cpu_context *cpuctx;
1291 /*
1292 * We can have double detach due to exit/hot-unplug + close.
1293 */
1294 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1295 return;
1296
1297 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1298
1299 if (is_cgroup_event(event)) {
1300 ctx->nr_cgroups--;
1301 cpuctx = __get_cpu_context(ctx);
1302 /*
1303 * if there are no more cgroup events
1304 * then cler cgrp to avoid stale pointer
1305 * in update_cgrp_time_from_cpuctx()
1306 */
1307 if (!ctx->nr_cgroups)
1308 cpuctx->cgrp = NULL;
1309 }
1310
1311 if (has_branch_stack(event))
1312 ctx->nr_branch_stack--;
1313
1314 ctx->nr_events--;
1315 if (event->attr.inherit_stat)
1316 ctx->nr_stat--;
1317
1318 list_del_rcu(&event->event_entry);
1319
1320 if (event->group_leader == event)
1321 list_del_init(&event->group_entry);
1322
1323 update_group_times(event);
1324
1325 /*
1326 * If event was in error state, then keep it
1327 * that way, otherwise bogus counts will be
1328 * returned on read(). The only way to get out
1329 * of error state is by explicit re-enabling
1330 * of the event
1331 */
1332 if (event->state > PERF_EVENT_STATE_OFF)
1333 event->state = PERF_EVENT_STATE_OFF;
1334
1335 ctx->generation++;
1336 }
1337
1338 static void perf_group_detach(struct perf_event *event)
1339 {
1340 struct perf_event *sibling, *tmp;
1341 struct list_head *list = NULL;
1342
1343 /*
1344 * We can have double detach due to exit/hot-unplug + close.
1345 */
1346 if (!(event->attach_state & PERF_ATTACH_GROUP))
1347 return;
1348
1349 event->attach_state &= ~PERF_ATTACH_GROUP;
1350
1351 /*
1352 * If this is a sibling, remove it from its group.
1353 */
1354 if (event->group_leader != event) {
1355 list_del_init(&event->group_entry);
1356 event->group_leader->nr_siblings--;
1357 goto out;
1358 }
1359
1360 if (!list_empty(&event->group_entry))
1361 list = &event->group_entry;
1362
1363 /*
1364 * If this was a group event with sibling events then
1365 * upgrade the siblings to singleton events by adding them
1366 * to whatever list we are on.
1367 */
1368 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1369 if (list)
1370 list_move_tail(&sibling->group_entry, list);
1371 sibling->group_leader = sibling;
1372
1373 /* Inherit group flags from the previous leader */
1374 sibling->group_flags = event->group_flags;
1375 }
1376
1377 out:
1378 perf_event__header_size(event->group_leader);
1379
1380 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1381 perf_event__header_size(tmp);
1382 }
1383
1384 static inline int
1385 event_filter_match(struct perf_event *event)
1386 {
1387 return (event->cpu == -1 || event->cpu == smp_processor_id())
1388 && perf_cgroup_match(event);
1389 }
1390
1391 static void
1392 event_sched_out(struct perf_event *event,
1393 struct perf_cpu_context *cpuctx,
1394 struct perf_event_context *ctx)
1395 {
1396 u64 tstamp = perf_event_time(event);
1397 u64 delta;
1398 /*
1399 * An event which could not be activated because of
1400 * filter mismatch still needs to have its timings
1401 * maintained, otherwise bogus information is return
1402 * via read() for time_enabled, time_running:
1403 */
1404 if (event->state == PERF_EVENT_STATE_INACTIVE
1405 && !event_filter_match(event)) {
1406 delta = tstamp - event->tstamp_stopped;
1407 event->tstamp_running += delta;
1408 event->tstamp_stopped = tstamp;
1409 }
1410
1411 if (event->state != PERF_EVENT_STATE_ACTIVE)
1412 return;
1413
1414 perf_pmu_disable(event->pmu);
1415
1416 event->state = PERF_EVENT_STATE_INACTIVE;
1417 if (event->pending_disable) {
1418 event->pending_disable = 0;
1419 event->state = PERF_EVENT_STATE_OFF;
1420 }
1421 event->tstamp_stopped = tstamp;
1422 event->pmu->del(event, 0);
1423 event->oncpu = -1;
1424
1425 if (!is_software_event(event))
1426 cpuctx->active_oncpu--;
1427 ctx->nr_active--;
1428 if (event->attr.freq && event->attr.sample_freq)
1429 ctx->nr_freq--;
1430 if (event->attr.exclusive || !cpuctx->active_oncpu)
1431 cpuctx->exclusive = 0;
1432
1433 perf_pmu_enable(event->pmu);
1434 }
1435
1436 static void
1437 group_sched_out(struct perf_event *group_event,
1438 struct perf_cpu_context *cpuctx,
1439 struct perf_event_context *ctx)
1440 {
1441 struct perf_event *event;
1442 int state = group_event->state;
1443
1444 event_sched_out(group_event, cpuctx, ctx);
1445
1446 /*
1447 * Schedule out siblings (if any):
1448 */
1449 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1450 event_sched_out(event, cpuctx, ctx);
1451
1452 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1453 cpuctx->exclusive = 0;
1454 }
1455
1456 /*
1457 * Cross CPU call to remove a performance event
1458 *
1459 * We disable the event on the hardware level first. After that we
1460 * remove it from the context list.
1461 */
1462 static int __perf_remove_from_context(void *info)
1463 {
1464 struct perf_event *event = info;
1465 struct perf_event_context *ctx = event->ctx;
1466 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1467
1468 raw_spin_lock(&ctx->lock);
1469 event_sched_out(event, cpuctx, ctx);
1470 list_del_event(event, ctx);
1471 if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1472 ctx->is_active = 0;
1473 cpuctx->task_ctx = NULL;
1474 }
1475 raw_spin_unlock(&ctx->lock);
1476
1477 return 0;
1478 }
1479
1480
1481 /*
1482 * Remove the event from a task's (or a CPU's) list of events.
1483 *
1484 * CPU events are removed with a smp call. For task events we only
1485 * call when the task is on a CPU.
1486 *
1487 * If event->ctx is a cloned context, callers must make sure that
1488 * every task struct that event->ctx->task could possibly point to
1489 * remains valid. This is OK when called from perf_release since
1490 * that only calls us on the top-level context, which can't be a clone.
1491 * When called from perf_event_exit_task, it's OK because the
1492 * context has been detached from its task.
1493 */
1494 static void perf_remove_from_context(struct perf_event *event)
1495 {
1496 struct perf_event_context *ctx = event->ctx;
1497 struct task_struct *task = ctx->task;
1498
1499 lockdep_assert_held(&ctx->mutex);
1500
1501 if (!task) {
1502 /*
1503 * Per cpu events are removed via an smp call and
1504 * the removal is always successful.
1505 */
1506 cpu_function_call(event->cpu, __perf_remove_from_context, event);
1507 return;
1508 }
1509
1510 retry:
1511 if (!task_function_call(task, __perf_remove_from_context, event))
1512 return;
1513
1514 raw_spin_lock_irq(&ctx->lock);
1515 /*
1516 * If we failed to find a running task, but find the context active now
1517 * that we've acquired the ctx->lock, retry.
1518 */
1519 if (ctx->is_active) {
1520 raw_spin_unlock_irq(&ctx->lock);
1521 goto retry;
1522 }
1523
1524 /*
1525 * Since the task isn't running, its safe to remove the event, us
1526 * holding the ctx->lock ensures the task won't get scheduled in.
1527 */
1528 list_del_event(event, ctx);
1529 raw_spin_unlock_irq(&ctx->lock);
1530 }
1531
1532 /*
1533 * Cross CPU call to disable a performance event
1534 */
1535 int __perf_event_disable(void *info)
1536 {
1537 struct perf_event *event = info;
1538 struct perf_event_context *ctx = event->ctx;
1539 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1540
1541 /*
1542 * If this is a per-task event, need to check whether this
1543 * event's task is the current task on this cpu.
1544 *
1545 * Can trigger due to concurrent perf_event_context_sched_out()
1546 * flipping contexts around.
1547 */
1548 if (ctx->task && cpuctx->task_ctx != ctx)
1549 return -EINVAL;
1550
1551 raw_spin_lock(&ctx->lock);
1552
1553 /*
1554 * If the event is on, turn it off.
1555 * If it is in error state, leave it in error state.
1556 */
1557 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1558 update_context_time(ctx);
1559 update_cgrp_time_from_event(event);
1560 update_group_times(event);
1561 if (event == event->group_leader)
1562 group_sched_out(event, cpuctx, ctx);
1563 else
1564 event_sched_out(event, cpuctx, ctx);
1565 event->state = PERF_EVENT_STATE_OFF;
1566 }
1567
1568 raw_spin_unlock(&ctx->lock);
1569
1570 return 0;
1571 }
1572
1573 /*
1574 * Disable a event.
1575 *
1576 * If event->ctx is a cloned context, callers must make sure that
1577 * every task struct that event->ctx->task could possibly point to
1578 * remains valid. This condition is satisifed when called through
1579 * perf_event_for_each_child or perf_event_for_each because they
1580 * hold the top-level event's child_mutex, so any descendant that
1581 * goes to exit will block in sync_child_event.
1582 * When called from perf_pending_event it's OK because event->ctx
1583 * is the current context on this CPU and preemption is disabled,
1584 * hence we can't get into perf_event_task_sched_out for this context.
1585 */
1586 void perf_event_disable(struct perf_event *event)
1587 {
1588 struct perf_event_context *ctx = event->ctx;
1589 struct task_struct *task = ctx->task;
1590
1591 if (!task) {
1592 /*
1593 * Disable the event on the cpu that it's on
1594 */
1595 cpu_function_call(event->cpu, __perf_event_disable, event);
1596 return;
1597 }
1598
1599 retry:
1600 if (!task_function_call(task, __perf_event_disable, event))
1601 return;
1602
1603 raw_spin_lock_irq(&ctx->lock);
1604 /*
1605 * If the event is still active, we need to retry the cross-call.
1606 */
1607 if (event->state == PERF_EVENT_STATE_ACTIVE) {
1608 raw_spin_unlock_irq(&ctx->lock);
1609 /*
1610 * Reload the task pointer, it might have been changed by
1611 * a concurrent perf_event_context_sched_out().
1612 */
1613 task = ctx->task;
1614 goto retry;
1615 }
1616
1617 /*
1618 * Since we have the lock this context can't be scheduled
1619 * in, so we can change the state safely.
1620 */
1621 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1622 update_group_times(event);
1623 event->state = PERF_EVENT_STATE_OFF;
1624 }
1625 raw_spin_unlock_irq(&ctx->lock);
1626 }
1627 EXPORT_SYMBOL_GPL(perf_event_disable);
1628
1629 static void perf_set_shadow_time(struct perf_event *event,
1630 struct perf_event_context *ctx,
1631 u64 tstamp)
1632 {
1633 /*
1634 * use the correct time source for the time snapshot
1635 *
1636 * We could get by without this by leveraging the
1637 * fact that to get to this function, the caller
1638 * has most likely already called update_context_time()
1639 * and update_cgrp_time_xx() and thus both timestamp
1640 * are identical (or very close). Given that tstamp is,
1641 * already adjusted for cgroup, we could say that:
1642 * tstamp - ctx->timestamp
1643 * is equivalent to
1644 * tstamp - cgrp->timestamp.
1645 *
1646 * Then, in perf_output_read(), the calculation would
1647 * work with no changes because:
1648 * - event is guaranteed scheduled in
1649 * - no scheduled out in between
1650 * - thus the timestamp would be the same
1651 *
1652 * But this is a bit hairy.
1653 *
1654 * So instead, we have an explicit cgroup call to remain
1655 * within the time time source all along. We believe it
1656 * is cleaner and simpler to understand.
1657 */
1658 if (is_cgroup_event(event))
1659 perf_cgroup_set_shadow_time(event, tstamp);
1660 else
1661 event->shadow_ctx_time = tstamp - ctx->timestamp;
1662 }
1663
1664 #define MAX_INTERRUPTS (~0ULL)
1665
1666 static void perf_log_throttle(struct perf_event *event, int enable);
1667
1668 static int
1669 event_sched_in(struct perf_event *event,
1670 struct perf_cpu_context *cpuctx,
1671 struct perf_event_context *ctx)
1672 {
1673 u64 tstamp = perf_event_time(event);
1674 int ret = 0;
1675
1676 if (event->state <= PERF_EVENT_STATE_OFF)
1677 return 0;
1678
1679 event->state = PERF_EVENT_STATE_ACTIVE;
1680 event->oncpu = smp_processor_id();
1681
1682 /*
1683 * Unthrottle events, since we scheduled we might have missed several
1684 * ticks already, also for a heavily scheduling task there is little
1685 * guarantee it'll get a tick in a timely manner.
1686 */
1687 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1688 perf_log_throttle(event, 1);
1689 event->hw.interrupts = 0;
1690 }
1691
1692 /*
1693 * The new state must be visible before we turn it on in the hardware:
1694 */
1695 smp_wmb();
1696
1697 perf_pmu_disable(event->pmu);
1698
1699 if (event->pmu->add(event, PERF_EF_START)) {
1700 event->state = PERF_EVENT_STATE_INACTIVE;
1701 event->oncpu = -1;
1702 ret = -EAGAIN;
1703 goto out;
1704 }
1705
1706 event->tstamp_running += tstamp - event->tstamp_stopped;
1707
1708 perf_set_shadow_time(event, ctx, tstamp);
1709
1710 if (!is_software_event(event))
1711 cpuctx->active_oncpu++;
1712 ctx->nr_active++;
1713 if (event->attr.freq && event->attr.sample_freq)
1714 ctx->nr_freq++;
1715
1716 if (event->attr.exclusive)
1717 cpuctx->exclusive = 1;
1718
1719 out:
1720 perf_pmu_enable(event->pmu);
1721
1722 return ret;
1723 }
1724
1725 static int
1726 group_sched_in(struct perf_event *group_event,
1727 struct perf_cpu_context *cpuctx,
1728 struct perf_event_context *ctx)
1729 {
1730 struct perf_event *event, *partial_group = NULL;
1731 struct pmu *pmu = group_event->pmu;
1732 u64 now = ctx->time;
1733 bool simulate = false;
1734
1735 if (group_event->state == PERF_EVENT_STATE_OFF)
1736 return 0;
1737
1738 pmu->start_txn(pmu);
1739
1740 if (event_sched_in(group_event, cpuctx, ctx)) {
1741 pmu->cancel_txn(pmu);
1742 perf_cpu_hrtimer_restart(cpuctx);
1743 return -EAGAIN;
1744 }
1745
1746 /*
1747 * Schedule in siblings as one group (if any):
1748 */
1749 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1750 if (event_sched_in(event, cpuctx, ctx)) {
1751 partial_group = event;
1752 goto group_error;
1753 }
1754 }
1755
1756 if (!pmu->commit_txn(pmu))
1757 return 0;
1758
1759 group_error:
1760 /*
1761 * Groups can be scheduled in as one unit only, so undo any
1762 * partial group before returning:
1763 * The events up to the failed event are scheduled out normally,
1764 * tstamp_stopped will be updated.
1765 *
1766 * The failed events and the remaining siblings need to have
1767 * their timings updated as if they had gone thru event_sched_in()
1768 * and event_sched_out(). This is required to get consistent timings
1769 * across the group. This also takes care of the case where the group
1770 * could never be scheduled by ensuring tstamp_stopped is set to mark
1771 * the time the event was actually stopped, such that time delta
1772 * calculation in update_event_times() is correct.
1773 */
1774 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1775 if (event == partial_group)
1776 simulate = true;
1777
1778 if (simulate) {
1779 event->tstamp_running += now - event->tstamp_stopped;
1780 event->tstamp_stopped = now;
1781 } else {
1782 event_sched_out(event, cpuctx, ctx);
1783 }
1784 }
1785 event_sched_out(group_event, cpuctx, ctx);
1786
1787 pmu->cancel_txn(pmu);
1788
1789 perf_cpu_hrtimer_restart(cpuctx);
1790
1791 return -EAGAIN;
1792 }
1793
1794 /*
1795 * Work out whether we can put this event group on the CPU now.
1796 */
1797 static int group_can_go_on(struct perf_event *event,
1798 struct perf_cpu_context *cpuctx,
1799 int can_add_hw)
1800 {
1801 /*
1802 * Groups consisting entirely of software events can always go on.
1803 */
1804 if (event->group_flags & PERF_GROUP_SOFTWARE)
1805 return 1;
1806 /*
1807 * If an exclusive group is already on, no other hardware
1808 * events can go on.
1809 */
1810 if (cpuctx->exclusive)
1811 return 0;
1812 /*
1813 * If this group is exclusive and there are already
1814 * events on the CPU, it can't go on.
1815 */
1816 if (event->attr.exclusive && cpuctx->active_oncpu)
1817 return 0;
1818 /*
1819 * Otherwise, try to add it if all previous groups were able
1820 * to go on.
1821 */
1822 return can_add_hw;
1823 }
1824
1825 static void add_event_to_ctx(struct perf_event *event,
1826 struct perf_event_context *ctx)
1827 {
1828 u64 tstamp = perf_event_time(event);
1829
1830 list_add_event(event, ctx);
1831 perf_group_attach(event);
1832 event->tstamp_enabled = tstamp;
1833 event->tstamp_running = tstamp;
1834 event->tstamp_stopped = tstamp;
1835 }
1836
1837 static void task_ctx_sched_out(struct perf_event_context *ctx);
1838 static void
1839 ctx_sched_in(struct perf_event_context *ctx,
1840 struct perf_cpu_context *cpuctx,
1841 enum event_type_t event_type,
1842 struct task_struct *task);
1843
1844 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
1845 struct perf_event_context *ctx,
1846 struct task_struct *task)
1847 {
1848 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
1849 if (ctx)
1850 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
1851 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
1852 if (ctx)
1853 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
1854 }
1855
1856 /*
1857 * Cross CPU call to install and enable a performance event
1858 *
1859 * Must be called with ctx->mutex held
1860 */
1861 static int __perf_install_in_context(void *info)
1862 {
1863 struct perf_event *event = info;
1864 struct perf_event_context *ctx = event->ctx;
1865 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1866 struct perf_event_context *task_ctx = cpuctx->task_ctx;
1867 struct task_struct *task = current;
1868
1869 perf_ctx_lock(cpuctx, task_ctx);
1870 perf_pmu_disable(cpuctx->ctx.pmu);
1871
1872 /*
1873 * If there was an active task_ctx schedule it out.
1874 */
1875 if (task_ctx)
1876 task_ctx_sched_out(task_ctx);
1877
1878 /*
1879 * If the context we're installing events in is not the
1880 * active task_ctx, flip them.
1881 */
1882 if (ctx->task && task_ctx != ctx) {
1883 if (task_ctx)
1884 raw_spin_unlock(&task_ctx->lock);
1885 raw_spin_lock(&ctx->lock);
1886 task_ctx = ctx;
1887 }
1888
1889 if (task_ctx) {
1890 cpuctx->task_ctx = task_ctx;
1891 task = task_ctx->task;
1892 }
1893
1894 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
1895
1896 update_context_time(ctx);
1897 /*
1898 * update cgrp time only if current cgrp
1899 * matches event->cgrp. Must be done before
1900 * calling add_event_to_ctx()
1901 */
1902 update_cgrp_time_from_event(event);
1903
1904 add_event_to_ctx(event, ctx);
1905
1906 /*
1907 * Schedule everything back in
1908 */
1909 perf_event_sched_in(cpuctx, task_ctx, task);
1910
1911 perf_pmu_enable(cpuctx->ctx.pmu);
1912 perf_ctx_unlock(cpuctx, task_ctx);
1913
1914 return 0;
1915 }
1916
1917 /*
1918 * Attach a performance event to a context
1919 *
1920 * First we add the event to the list with the hardware enable bit
1921 * in event->hw_config cleared.
1922 *
1923 * If the event is attached to a task which is on a CPU we use a smp
1924 * call to enable it in the task context. The task might have been
1925 * scheduled away, but we check this in the smp call again.
1926 */
1927 static void
1928 perf_install_in_context(struct perf_event_context *ctx,
1929 struct perf_event *event,
1930 int cpu)
1931 {
1932 struct task_struct *task = ctx->task;
1933
1934 lockdep_assert_held(&ctx->mutex);
1935
1936 event->ctx = ctx;
1937 if (event->cpu != -1)
1938 event->cpu = cpu;
1939
1940 if (!task) {
1941 /*
1942 * Per cpu events are installed via an smp call and
1943 * the install is always successful.
1944 */
1945 cpu_function_call(cpu, __perf_install_in_context, event);
1946 return;
1947 }
1948
1949 retry:
1950 if (!task_function_call(task, __perf_install_in_context, event))
1951 return;
1952
1953 raw_spin_lock_irq(&ctx->lock);
1954 /*
1955 * If we failed to find a running task, but find the context active now
1956 * that we've acquired the ctx->lock, retry.
1957 */
1958 if (ctx->is_active) {
1959 raw_spin_unlock_irq(&ctx->lock);
1960 goto retry;
1961 }
1962
1963 /*
1964 * Since the task isn't running, its safe to add the event, us holding
1965 * the ctx->lock ensures the task won't get scheduled in.
1966 */
1967 add_event_to_ctx(event, ctx);
1968 raw_spin_unlock_irq(&ctx->lock);
1969 }
1970
1971 /*
1972 * Put a event into inactive state and update time fields.
1973 * Enabling the leader of a group effectively enables all
1974 * the group members that aren't explicitly disabled, so we
1975 * have to update their ->tstamp_enabled also.
1976 * Note: this works for group members as well as group leaders
1977 * since the non-leader members' sibling_lists will be empty.
1978 */
1979 static void __perf_event_mark_enabled(struct perf_event *event)
1980 {
1981 struct perf_event *sub;
1982 u64 tstamp = perf_event_time(event);
1983
1984 event->state = PERF_EVENT_STATE_INACTIVE;
1985 event->tstamp_enabled = tstamp - event->total_time_enabled;
1986 list_for_each_entry(sub, &event->sibling_list, group_entry) {
1987 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
1988 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
1989 }
1990 }
1991
1992 /*
1993 * Cross CPU call to enable a performance event
1994 */
1995 static int __perf_event_enable(void *info)
1996 {
1997 struct perf_event *event = info;
1998 struct perf_event_context *ctx = event->ctx;
1999 struct perf_event *leader = event->group_leader;
2000 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2001 int err;
2002
2003 /*
2004 * There's a time window between 'ctx->is_active' check
2005 * in perf_event_enable function and this place having:
2006 * - IRQs on
2007 * - ctx->lock unlocked
2008 *
2009 * where the task could be killed and 'ctx' deactivated
2010 * by perf_event_exit_task.
2011 */
2012 if (!ctx->is_active)
2013 return -EINVAL;
2014
2015 raw_spin_lock(&ctx->lock);
2016 update_context_time(ctx);
2017
2018 if (event->state >= PERF_EVENT_STATE_INACTIVE)
2019 goto unlock;
2020
2021 /*
2022 * set current task's cgroup time reference point
2023 */
2024 perf_cgroup_set_timestamp(current, ctx);
2025
2026 __perf_event_mark_enabled(event);
2027
2028 if (!event_filter_match(event)) {
2029 if (is_cgroup_event(event))
2030 perf_cgroup_defer_enabled(event);
2031 goto unlock;
2032 }
2033
2034 /*
2035 * If the event is in a group and isn't the group leader,
2036 * then don't put it on unless the group is on.
2037 */
2038 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
2039 goto unlock;
2040
2041 if (!group_can_go_on(event, cpuctx, 1)) {
2042 err = -EEXIST;
2043 } else {
2044 if (event == leader)
2045 err = group_sched_in(event, cpuctx, ctx);
2046 else
2047 err = event_sched_in(event, cpuctx, ctx);
2048 }
2049
2050 if (err) {
2051 /*
2052 * If this event can't go on and it's part of a
2053 * group, then the whole group has to come off.
2054 */
2055 if (leader != event) {
2056 group_sched_out(leader, cpuctx, ctx);
2057 perf_cpu_hrtimer_restart(cpuctx);
2058 }
2059 if (leader->attr.pinned) {
2060 update_group_times(leader);
2061 leader->state = PERF_EVENT_STATE_ERROR;
2062 }
2063 }
2064
2065 unlock:
2066 raw_spin_unlock(&ctx->lock);
2067
2068 return 0;
2069 }
2070
2071 /*
2072 * Enable a event.
2073 *
2074 * If event->ctx is a cloned context, callers must make sure that
2075 * every task struct that event->ctx->task could possibly point to
2076 * remains valid. This condition is satisfied when called through
2077 * perf_event_for_each_child or perf_event_for_each as described
2078 * for perf_event_disable.
2079 */
2080 void perf_event_enable(struct perf_event *event)
2081 {
2082 struct perf_event_context *ctx = event->ctx;
2083 struct task_struct *task = ctx->task;
2084
2085 if (!task) {
2086 /*
2087 * Enable the event on the cpu that it's on
2088 */
2089 cpu_function_call(event->cpu, __perf_event_enable, event);
2090 return;
2091 }
2092
2093 raw_spin_lock_irq(&ctx->lock);
2094 if (event->state >= PERF_EVENT_STATE_INACTIVE)
2095 goto out;
2096
2097 /*
2098 * If the event is in error state, clear that first.
2099 * That way, if we see the event in error state below, we
2100 * know that it has gone back into error state, as distinct
2101 * from the task having been scheduled away before the
2102 * cross-call arrived.
2103 */
2104 if (event->state == PERF_EVENT_STATE_ERROR)
2105 event->state = PERF_EVENT_STATE_OFF;
2106
2107 retry:
2108 if (!ctx->is_active) {
2109 __perf_event_mark_enabled(event);
2110 goto out;
2111 }
2112
2113 raw_spin_unlock_irq(&ctx->lock);
2114
2115 if (!task_function_call(task, __perf_event_enable, event))
2116 return;
2117
2118 raw_spin_lock_irq(&ctx->lock);
2119
2120 /*
2121 * If the context is active and the event is still off,
2122 * we need to retry the cross-call.
2123 */
2124 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
2125 /*
2126 * task could have been flipped by a concurrent
2127 * perf_event_context_sched_out()
2128 */
2129 task = ctx->task;
2130 goto retry;
2131 }
2132
2133 out:
2134 raw_spin_unlock_irq(&ctx->lock);
2135 }
2136 EXPORT_SYMBOL_GPL(perf_event_enable);
2137
2138 int perf_event_refresh(struct perf_event *event, int refresh)
2139 {
2140 /*
2141 * not supported on inherited events
2142 */
2143 if (event->attr.inherit || !is_sampling_event(event))
2144 return -EINVAL;
2145
2146 atomic_add(refresh, &event->event_limit);
2147 perf_event_enable(event);
2148
2149 return 0;
2150 }
2151 EXPORT_SYMBOL_GPL(perf_event_refresh);
2152
2153 static void ctx_sched_out(struct perf_event_context *ctx,
2154 struct perf_cpu_context *cpuctx,
2155 enum event_type_t event_type)
2156 {
2157 struct perf_event *event;
2158 int is_active = ctx->is_active;
2159
2160 ctx->is_active &= ~event_type;
2161 if (likely(!ctx->nr_events))
2162 return;
2163
2164 update_context_time(ctx);
2165 update_cgrp_time_from_cpuctx(cpuctx);
2166 if (!ctx->nr_active)
2167 return;
2168
2169 perf_pmu_disable(ctx->pmu);
2170 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
2171 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2172 group_sched_out(event, cpuctx, ctx);
2173 }
2174
2175 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
2176 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2177 group_sched_out(event, cpuctx, ctx);
2178 }
2179 perf_pmu_enable(ctx->pmu);
2180 }
2181
2182 /*
2183 * Test whether two contexts are equivalent, i.e. whether they have both been
2184 * cloned from the same version of the same context.
2185 *
2186 * Equivalence is measured using a generation number in the context that is
2187 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2188 * and list_del_event().
2189 */
2190 static int context_equiv(struct perf_event_context *ctx1,
2191 struct perf_event_context *ctx2)
2192 {
2193 /* Pinning disables the swap optimization */
2194 if (ctx1->pin_count || ctx2->pin_count)
2195 return 0;
2196
2197 /* If ctx1 is the parent of ctx2 */
2198 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2199 return 1;
2200
2201 /* If ctx2 is the parent of ctx1 */
2202 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2203 return 1;
2204
2205 /*
2206 * If ctx1 and ctx2 have the same parent; we flatten the parent
2207 * hierarchy, see perf_event_init_context().
2208 */
2209 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2210 ctx1->parent_gen == ctx2->parent_gen)
2211 return 1;
2212
2213 /* Unmatched */
2214 return 0;
2215 }
2216
2217 static void __perf_event_sync_stat(struct perf_event *event,
2218 struct perf_event *next_event)
2219 {
2220 u64 value;
2221
2222 if (!event->attr.inherit_stat)
2223 return;
2224
2225 /*
2226 * Update the event value, we cannot use perf_event_read()
2227 * because we're in the middle of a context switch and have IRQs
2228 * disabled, which upsets smp_call_function_single(), however
2229 * we know the event must be on the current CPU, therefore we
2230 * don't need to use it.
2231 */
2232 switch (event->state) {
2233 case PERF_EVENT_STATE_ACTIVE:
2234 event->pmu->read(event);
2235 /* fall-through */
2236
2237 case PERF_EVENT_STATE_INACTIVE:
2238 update_event_times(event);
2239 break;
2240
2241 default:
2242 break;
2243 }
2244
2245 /*
2246 * In order to keep per-task stats reliable we need to flip the event
2247 * values when we flip the contexts.
2248 */
2249 value = local64_read(&next_event->count);
2250 value = local64_xchg(&event->count, value);
2251 local64_set(&next_event->count, value);
2252
2253 swap(event->total_time_enabled, next_event->total_time_enabled);
2254 swap(event->total_time_running, next_event->total_time_running);
2255
2256 /*
2257 * Since we swizzled the values, update the user visible data too.
2258 */
2259 perf_event_update_userpage(event);
2260 perf_event_update_userpage(next_event);
2261 }
2262
2263 static void perf_event_sync_stat(struct perf_event_context *ctx,
2264 struct perf_event_context *next_ctx)
2265 {
2266 struct perf_event *event, *next_event;
2267
2268 if (!ctx->nr_stat)
2269 return;
2270
2271 update_context_time(ctx);
2272
2273 event = list_first_entry(&ctx->event_list,
2274 struct perf_event, event_entry);
2275
2276 next_event = list_first_entry(&next_ctx->event_list,
2277 struct perf_event, event_entry);
2278
2279 while (&event->event_entry != &ctx->event_list &&
2280 &next_event->event_entry != &next_ctx->event_list) {
2281
2282 __perf_event_sync_stat(event, next_event);
2283
2284 event = list_next_entry(event, event_entry);
2285 next_event = list_next_entry(next_event, event_entry);
2286 }
2287 }
2288
2289 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2290 struct task_struct *next)
2291 {
2292 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2293 struct perf_event_context *next_ctx;
2294 struct perf_event_context *parent, *next_parent;
2295 struct perf_cpu_context *cpuctx;
2296 int do_switch = 1;
2297
2298 if (likely(!ctx))
2299 return;
2300
2301 cpuctx = __get_cpu_context(ctx);
2302 if (!cpuctx->task_ctx)
2303 return;
2304
2305 rcu_read_lock();
2306 next_ctx = next->perf_event_ctxp[ctxn];
2307 if (!next_ctx)
2308 goto unlock;
2309
2310 parent = rcu_dereference(ctx->parent_ctx);
2311 next_parent = rcu_dereference(next_ctx->parent_ctx);
2312
2313 /* If neither context have a parent context; they cannot be clones. */
2314 if (!parent && !next_parent)
2315 goto unlock;
2316
2317 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2318 /*
2319 * Looks like the two contexts are clones, so we might be
2320 * able to optimize the context switch. We lock both
2321 * contexts and check that they are clones under the
2322 * lock (including re-checking that neither has been
2323 * uncloned in the meantime). It doesn't matter which
2324 * order we take the locks because no other cpu could
2325 * be trying to lock both of these tasks.
2326 */
2327 raw_spin_lock(&ctx->lock);
2328 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2329 if (context_equiv(ctx, next_ctx)) {
2330 /*
2331 * XXX do we need a memory barrier of sorts
2332 * wrt to rcu_dereference() of perf_event_ctxp
2333 */
2334 task->perf_event_ctxp[ctxn] = next_ctx;
2335 next->perf_event_ctxp[ctxn] = ctx;
2336 ctx->task = next;
2337 next_ctx->task = task;
2338 do_switch = 0;
2339
2340 perf_event_sync_stat(ctx, next_ctx);
2341 }
2342 raw_spin_unlock(&next_ctx->lock);
2343 raw_spin_unlock(&ctx->lock);
2344 }
2345 unlock:
2346 rcu_read_unlock();
2347
2348 if (do_switch) {
2349 raw_spin_lock(&ctx->lock);
2350 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2351 cpuctx->task_ctx = NULL;
2352 raw_spin_unlock(&ctx->lock);
2353 }
2354 }
2355
2356 #define for_each_task_context_nr(ctxn) \
2357 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2358
2359 /*
2360 * Called from scheduler to remove the events of the current task,
2361 * with interrupts disabled.
2362 *
2363 * We stop each event and update the event value in event->count.
2364 *
2365 * This does not protect us against NMI, but disable()
2366 * sets the disabled bit in the control field of event _before_
2367 * accessing the event control register. If a NMI hits, then it will
2368 * not restart the event.
2369 */
2370 void __perf_event_task_sched_out(struct task_struct *task,
2371 struct task_struct *next)
2372 {
2373 int ctxn;
2374
2375 for_each_task_context_nr(ctxn)
2376 perf_event_context_sched_out(task, ctxn, next);
2377
2378 /*
2379 * if cgroup events exist on this CPU, then we need
2380 * to check if we have to switch out PMU state.
2381 * cgroup event are system-wide mode only
2382 */
2383 if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2384 perf_cgroup_sched_out(task, next);
2385 }
2386
2387 static void task_ctx_sched_out(struct perf_event_context *ctx)
2388 {
2389 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2390
2391 if (!cpuctx->task_ctx)
2392 return;
2393
2394 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2395 return;
2396
2397 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2398 cpuctx->task_ctx = NULL;
2399 }
2400
2401 /*
2402 * Called with IRQs disabled
2403 */
2404 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2405 enum event_type_t event_type)
2406 {
2407 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2408 }
2409
2410 static void
2411 ctx_pinned_sched_in(struct perf_event_context *ctx,
2412 struct perf_cpu_context *cpuctx)
2413 {
2414 struct perf_event *event;
2415
2416 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2417 if (event->state <= PERF_EVENT_STATE_OFF)
2418 continue;
2419 if (!event_filter_match(event))
2420 continue;
2421
2422 /* may need to reset tstamp_enabled */
2423 if (is_cgroup_event(event))
2424 perf_cgroup_mark_enabled(event, ctx);
2425
2426 if (group_can_go_on(event, cpuctx, 1))
2427 group_sched_in(event, cpuctx, ctx);
2428
2429 /*
2430 * If this pinned group hasn't been scheduled,
2431 * put it in error state.
2432 */
2433 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2434 update_group_times(event);
2435 event->state = PERF_EVENT_STATE_ERROR;
2436 }
2437 }
2438 }
2439
2440 static void
2441 ctx_flexible_sched_in(struct perf_event_context *ctx,
2442 struct perf_cpu_context *cpuctx)
2443 {
2444 struct perf_event *event;
2445 int can_add_hw = 1;
2446
2447 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2448 /* Ignore events in OFF or ERROR state */
2449 if (event->state <= PERF_EVENT_STATE_OFF)
2450 continue;
2451 /*
2452 * Listen to the 'cpu' scheduling filter constraint
2453 * of events:
2454 */
2455 if (!event_filter_match(event))
2456 continue;
2457
2458 /* may need to reset tstamp_enabled */
2459 if (is_cgroup_event(event))
2460 perf_cgroup_mark_enabled(event, ctx);
2461
2462 if (group_can_go_on(event, cpuctx, can_add_hw)) {
2463 if (group_sched_in(event, cpuctx, ctx))
2464 can_add_hw = 0;
2465 }
2466 }
2467 }
2468
2469 static void
2470 ctx_sched_in(struct perf_event_context *ctx,
2471 struct perf_cpu_context *cpuctx,
2472 enum event_type_t event_type,
2473 struct task_struct *task)
2474 {
2475 u64 now;
2476 int is_active = ctx->is_active;
2477
2478 ctx->is_active |= event_type;
2479 if (likely(!ctx->nr_events))
2480 return;
2481
2482 now = perf_clock();
2483 ctx->timestamp = now;
2484 perf_cgroup_set_timestamp(task, ctx);
2485 /*
2486 * First go through the list and put on any pinned groups
2487 * in order to give them the best chance of going on.
2488 */
2489 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2490 ctx_pinned_sched_in(ctx, cpuctx);
2491
2492 /* Then walk through the lower prio flexible groups */
2493 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2494 ctx_flexible_sched_in(ctx, cpuctx);
2495 }
2496
2497 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
2498 enum event_type_t event_type,
2499 struct task_struct *task)
2500 {
2501 struct perf_event_context *ctx = &cpuctx->ctx;
2502
2503 ctx_sched_in(ctx, cpuctx, event_type, task);
2504 }
2505
2506 static void perf_event_context_sched_in(struct perf_event_context *ctx,
2507 struct task_struct *task)
2508 {
2509 struct perf_cpu_context *cpuctx;
2510
2511 cpuctx = __get_cpu_context(ctx);
2512 if (cpuctx->task_ctx == ctx)
2513 return;
2514
2515 perf_ctx_lock(cpuctx, ctx);
2516 perf_pmu_disable(ctx->pmu);
2517 /*
2518 * We want to keep the following priority order:
2519 * cpu pinned (that don't need to move), task pinned,
2520 * cpu flexible, task flexible.
2521 */
2522 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2523
2524 if (ctx->nr_events)
2525 cpuctx->task_ctx = ctx;
2526
2527 perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2528
2529 perf_pmu_enable(ctx->pmu);
2530 perf_ctx_unlock(cpuctx, ctx);
2531
2532 /*
2533 * Since these rotations are per-cpu, we need to ensure the
2534 * cpu-context we got scheduled on is actually rotating.
2535 */
2536 perf_pmu_rotate_start(ctx->pmu);
2537 }
2538
2539 /*
2540 * When sampling the branck stack in system-wide, it may be necessary
2541 * to flush the stack on context switch. This happens when the branch
2542 * stack does not tag its entries with the pid of the current task.
2543 * Otherwise it becomes impossible to associate a branch entry with a
2544 * task. This ambiguity is more likely to appear when the branch stack
2545 * supports priv level filtering and the user sets it to monitor only
2546 * at the user level (which could be a useful measurement in system-wide
2547 * mode). In that case, the risk is high of having a branch stack with
2548 * branch from multiple tasks. Flushing may mean dropping the existing
2549 * entries or stashing them somewhere in the PMU specific code layer.
2550 *
2551 * This function provides the context switch callback to the lower code
2552 * layer. It is invoked ONLY when there is at least one system-wide context
2553 * with at least one active event using taken branch sampling.
2554 */
2555 static void perf_branch_stack_sched_in(struct task_struct *prev,
2556 struct task_struct *task)
2557 {
2558 struct perf_cpu_context *cpuctx;
2559 struct pmu *pmu;
2560 unsigned long flags;
2561
2562 /* no need to flush branch stack if not changing task */
2563 if (prev == task)
2564 return;
2565
2566 local_irq_save(flags);
2567
2568 rcu_read_lock();
2569
2570 list_for_each_entry_rcu(pmu, &pmus, entry) {
2571 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2572
2573 /*
2574 * check if the context has at least one
2575 * event using PERF_SAMPLE_BRANCH_STACK
2576 */
2577 if (cpuctx->ctx.nr_branch_stack > 0
2578 && pmu->flush_branch_stack) {
2579
2580 pmu = cpuctx->ctx.pmu;
2581
2582 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2583
2584 perf_pmu_disable(pmu);
2585
2586 pmu->flush_branch_stack();
2587
2588 perf_pmu_enable(pmu);
2589
2590 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2591 }
2592 }
2593
2594 rcu_read_unlock();
2595
2596 local_irq_restore(flags);
2597 }
2598
2599 /*
2600 * Called from scheduler to add the events of the current task
2601 * with interrupts disabled.
2602 *
2603 * We restore the event value and then enable it.
2604 *
2605 * This does not protect us against NMI, but enable()
2606 * sets the enabled bit in the control field of event _before_
2607 * accessing the event control register. If a NMI hits, then it will
2608 * keep the event running.
2609 */
2610 void __perf_event_task_sched_in(struct task_struct *prev,
2611 struct task_struct *task)
2612 {
2613 struct perf_event_context *ctx;
2614 int ctxn;
2615
2616 for_each_task_context_nr(ctxn) {
2617 ctx = task->perf_event_ctxp[ctxn];
2618 if (likely(!ctx))
2619 continue;
2620
2621 perf_event_context_sched_in(ctx, task);
2622 }
2623 /*
2624 * if cgroup events exist on this CPU, then we need
2625 * to check if we have to switch in PMU state.
2626 * cgroup event are system-wide mode only
2627 */
2628 if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2629 perf_cgroup_sched_in(prev, task);
2630
2631 /* check for system-wide branch_stack events */
2632 if (atomic_read(&__get_cpu_var(perf_branch_stack_events)))
2633 perf_branch_stack_sched_in(prev, task);
2634 }
2635
2636 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2637 {
2638 u64 frequency = event->attr.sample_freq;
2639 u64 sec = NSEC_PER_SEC;
2640 u64 divisor, dividend;
2641
2642 int count_fls, nsec_fls, frequency_fls, sec_fls;
2643
2644 count_fls = fls64(count);
2645 nsec_fls = fls64(nsec);
2646 frequency_fls = fls64(frequency);
2647 sec_fls = 30;
2648
2649 /*
2650 * We got @count in @nsec, with a target of sample_freq HZ
2651 * the target period becomes:
2652 *
2653 * @count * 10^9
2654 * period = -------------------
2655 * @nsec * sample_freq
2656 *
2657 */
2658
2659 /*
2660 * Reduce accuracy by one bit such that @a and @b converge
2661 * to a similar magnitude.
2662 */
2663 #define REDUCE_FLS(a, b) \
2664 do { \
2665 if (a##_fls > b##_fls) { \
2666 a >>= 1; \
2667 a##_fls--; \
2668 } else { \
2669 b >>= 1; \
2670 b##_fls--; \
2671 } \
2672 } while (0)
2673
2674 /*
2675 * Reduce accuracy until either term fits in a u64, then proceed with
2676 * the other, so that finally we can do a u64/u64 division.
2677 */
2678 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2679 REDUCE_FLS(nsec, frequency);
2680 REDUCE_FLS(sec, count);
2681 }
2682
2683 if (count_fls + sec_fls > 64) {
2684 divisor = nsec * frequency;
2685
2686 while (count_fls + sec_fls > 64) {
2687 REDUCE_FLS(count, sec);
2688 divisor >>= 1;
2689 }
2690
2691 dividend = count * sec;
2692 } else {
2693 dividend = count * sec;
2694
2695 while (nsec_fls + frequency_fls > 64) {
2696 REDUCE_FLS(nsec, frequency);
2697 dividend >>= 1;
2698 }
2699
2700 divisor = nsec * frequency;
2701 }
2702
2703 if (!divisor)
2704 return dividend;
2705
2706 return div64_u64(dividend, divisor);
2707 }
2708
2709 static DEFINE_PER_CPU(int, perf_throttled_count);
2710 static DEFINE_PER_CPU(u64, perf_throttled_seq);
2711
2712 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2713 {
2714 struct hw_perf_event *hwc = &event->hw;
2715 s64 period, sample_period;
2716 s64 delta;
2717
2718 period = perf_calculate_period(event, nsec, count);
2719
2720 delta = (s64)(period - hwc->sample_period);
2721 delta = (delta + 7) / 8; /* low pass filter */
2722
2723 sample_period = hwc->sample_period + delta;
2724
2725 if (!sample_period)
2726 sample_period = 1;
2727
2728 hwc->sample_period = sample_period;
2729
2730 if (local64_read(&hwc->period_left) > 8*sample_period) {
2731 if (disable)
2732 event->pmu->stop(event, PERF_EF_UPDATE);
2733
2734 local64_set(&hwc->period_left, 0);
2735
2736 if (disable)
2737 event->pmu->start(event, PERF_EF_RELOAD);
2738 }
2739 }
2740
2741 /*
2742 * combine freq adjustment with unthrottling to avoid two passes over the
2743 * events. At the same time, make sure, having freq events does not change
2744 * the rate of unthrottling as that would introduce bias.
2745 */
2746 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2747 int needs_unthr)
2748 {
2749 struct perf_event *event;
2750 struct hw_perf_event *hwc;
2751 u64 now, period = TICK_NSEC;
2752 s64 delta;
2753
2754 /*
2755 * only need to iterate over all events iff:
2756 * - context have events in frequency mode (needs freq adjust)
2757 * - there are events to unthrottle on this cpu
2758 */
2759 if (!(ctx->nr_freq || needs_unthr))
2760 return;
2761
2762 raw_spin_lock(&ctx->lock);
2763 perf_pmu_disable(ctx->pmu);
2764
2765 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2766 if (event->state != PERF_EVENT_STATE_ACTIVE)
2767 continue;
2768
2769 if (!event_filter_match(event))
2770 continue;
2771
2772 perf_pmu_disable(event->pmu);
2773
2774 hwc = &event->hw;
2775
2776 if (hwc->interrupts == MAX_INTERRUPTS) {
2777 hwc->interrupts = 0;
2778 perf_log_throttle(event, 1);
2779 event->pmu->start(event, 0);
2780 }
2781
2782 if (!event->attr.freq || !event->attr.sample_freq)
2783 goto next;
2784
2785 /*
2786 * stop the event and update event->count
2787 */
2788 event->pmu->stop(event, PERF_EF_UPDATE);
2789
2790 now = local64_read(&event->count);
2791 delta = now - hwc->freq_count_stamp;
2792 hwc->freq_count_stamp = now;
2793
2794 /*
2795 * restart the event
2796 * reload only if value has changed
2797 * we have stopped the event so tell that
2798 * to perf_adjust_period() to avoid stopping it
2799 * twice.
2800 */
2801 if (delta > 0)
2802 perf_adjust_period(event, period, delta, false);
2803
2804 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
2805 next:
2806 perf_pmu_enable(event->pmu);
2807 }
2808
2809 perf_pmu_enable(ctx->pmu);
2810 raw_spin_unlock(&ctx->lock);
2811 }
2812
2813 /*
2814 * Round-robin a context's events:
2815 */
2816 static void rotate_ctx(struct perf_event_context *ctx)
2817 {
2818 /*
2819 * Rotate the first entry last of non-pinned groups. Rotation might be
2820 * disabled by the inheritance code.
2821 */
2822 if (!ctx->rotate_disable)
2823 list_rotate_left(&ctx->flexible_groups);
2824 }
2825
2826 /*
2827 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
2828 * because they're strictly cpu affine and rotate_start is called with IRQs
2829 * disabled, while rotate_context is called from IRQ context.
2830 */
2831 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
2832 {
2833 struct perf_event_context *ctx = NULL;
2834 int rotate = 0, remove = 1;
2835
2836 if (cpuctx->ctx.nr_events) {
2837 remove = 0;
2838 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
2839 rotate = 1;
2840 }
2841
2842 ctx = cpuctx->task_ctx;
2843 if (ctx && ctx->nr_events) {
2844 remove = 0;
2845 if (ctx->nr_events != ctx->nr_active)
2846 rotate = 1;
2847 }
2848
2849 if (!rotate)
2850 goto done;
2851
2852 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2853 perf_pmu_disable(cpuctx->ctx.pmu);
2854
2855 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2856 if (ctx)
2857 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
2858
2859 rotate_ctx(&cpuctx->ctx);
2860 if (ctx)
2861 rotate_ctx(ctx);
2862
2863 perf_event_sched_in(cpuctx, ctx, current);
2864
2865 perf_pmu_enable(cpuctx->ctx.pmu);
2866 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2867 done:
2868 if (remove)
2869 list_del_init(&cpuctx->rotation_list);
2870
2871 return rotate;
2872 }
2873
2874 #ifdef CONFIG_NO_HZ_FULL
2875 bool perf_event_can_stop_tick(void)
2876 {
2877 if (atomic_read(&nr_freq_events) ||
2878 __this_cpu_read(perf_throttled_count))
2879 return false;
2880 else
2881 return true;
2882 }
2883 #endif
2884
2885 void perf_event_task_tick(void)
2886 {
2887 struct list_head *head = &__get_cpu_var(rotation_list);
2888 struct perf_cpu_context *cpuctx, *tmp;
2889 struct perf_event_context *ctx;
2890 int throttled;
2891
2892 WARN_ON(!irqs_disabled());
2893
2894 __this_cpu_inc(perf_throttled_seq);
2895 throttled = __this_cpu_xchg(perf_throttled_count, 0);
2896
2897 list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
2898 ctx = &cpuctx->ctx;
2899 perf_adjust_freq_unthr_context(ctx, throttled);
2900
2901 ctx = cpuctx->task_ctx;
2902 if (ctx)
2903 perf_adjust_freq_unthr_context(ctx, throttled);
2904 }
2905 }
2906
2907 static int event_enable_on_exec(struct perf_event *event,
2908 struct perf_event_context *ctx)
2909 {
2910 if (!event->attr.enable_on_exec)
2911 return 0;
2912
2913 event->attr.enable_on_exec = 0;
2914 if (event->state >= PERF_EVENT_STATE_INACTIVE)
2915 return 0;
2916
2917 __perf_event_mark_enabled(event);
2918
2919 return 1;
2920 }
2921
2922 /*
2923 * Enable all of a task's events that have been marked enable-on-exec.
2924 * This expects task == current.
2925 */
2926 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
2927 {
2928 struct perf_event *event;
2929 unsigned long flags;
2930 int enabled = 0;
2931 int ret;
2932
2933 local_irq_save(flags);
2934 if (!ctx || !ctx->nr_events)
2935 goto out;
2936
2937 /*
2938 * We must ctxsw out cgroup events to avoid conflict
2939 * when invoking perf_task_event_sched_in() later on
2940 * in this function. Otherwise we end up trying to
2941 * ctxswin cgroup events which are already scheduled
2942 * in.
2943 */
2944 perf_cgroup_sched_out(current, NULL);
2945
2946 raw_spin_lock(&ctx->lock);
2947 task_ctx_sched_out(ctx);
2948
2949 list_for_each_entry(event, &ctx->event_list, event_entry) {
2950 ret = event_enable_on_exec(event, ctx);
2951 if (ret)
2952 enabled = 1;
2953 }
2954
2955 /*
2956 * Unclone this context if we enabled any event.
2957 */
2958 if (enabled)
2959 unclone_ctx(ctx);
2960
2961 raw_spin_unlock(&ctx->lock);
2962
2963 /*
2964 * Also calls ctxswin for cgroup events, if any:
2965 */
2966 perf_event_context_sched_in(ctx, ctx->task);
2967 out:
2968 local_irq_restore(flags);
2969 }
2970
2971 /*
2972 * Cross CPU call to read the hardware event
2973 */
2974 static void __perf_event_read(void *info)
2975 {
2976 struct perf_event *event = info;
2977 struct perf_event_context *ctx = event->ctx;
2978 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2979
2980 /*
2981 * If this is a task context, we need to check whether it is
2982 * the current task context of this cpu. If not it has been
2983 * scheduled out before the smp call arrived. In that case
2984 * event->count would have been updated to a recent sample
2985 * when the event was scheduled out.
2986 */
2987 if (ctx->task && cpuctx->task_ctx != ctx)
2988 return;
2989
2990 raw_spin_lock(&ctx->lock);
2991 if (ctx->is_active) {
2992 update_context_time(ctx);
2993 update_cgrp_time_from_event(event);
2994 }
2995 update_event_times(event);
2996 if (event->state == PERF_EVENT_STATE_ACTIVE)
2997 event->pmu->read(event);
2998 raw_spin_unlock(&ctx->lock);
2999 }
3000
3001 static inline u64 perf_event_count(struct perf_event *event)
3002 {
3003 return local64_read(&event->count) + atomic64_read(&event->child_count);
3004 }
3005
3006 static u64 perf_event_read(struct perf_event *event)
3007 {
3008 /*
3009 * If event is enabled and currently active on a CPU, update the
3010 * value in the event structure:
3011 */
3012 if (event->state == PERF_EVENT_STATE_ACTIVE) {
3013 smp_call_function_single(event->oncpu,
3014 __perf_event_read, event, 1);
3015 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
3016 struct perf_event_context *ctx = event->ctx;
3017 unsigned long flags;
3018
3019 raw_spin_lock_irqsave(&ctx->lock, flags);
3020 /*
3021 * may read while context is not active
3022 * (e.g., thread is blocked), in that case
3023 * we cannot update context time
3024 */
3025 if (ctx->is_active) {
3026 update_context_time(ctx);
3027 update_cgrp_time_from_event(event);
3028 }
3029 update_event_times(event);
3030 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3031 }
3032
3033 return perf_event_count(event);
3034 }
3035
3036 /*
3037 * Initialize the perf_event context in a task_struct:
3038 */
3039 static void __perf_event_init_context(struct perf_event_context *ctx)
3040 {
3041 raw_spin_lock_init(&ctx->lock);
3042 mutex_init(&ctx->mutex);
3043 INIT_LIST_HEAD(&ctx->pinned_groups);
3044 INIT_LIST_HEAD(&ctx->flexible_groups);
3045 INIT_LIST_HEAD(&ctx->event_list);
3046 atomic_set(&ctx->refcount, 1);
3047 }
3048
3049 static struct perf_event_context *
3050 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3051 {
3052 struct perf_event_context *ctx;
3053
3054 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3055 if (!ctx)
3056 return NULL;
3057
3058 __perf_event_init_context(ctx);
3059 if (task) {
3060 ctx->task = task;
3061 get_task_struct(task);
3062 }
3063 ctx->pmu = pmu;
3064
3065 return ctx;
3066 }
3067
3068 static struct task_struct *
3069 find_lively_task_by_vpid(pid_t vpid)
3070 {
3071 struct task_struct *task;
3072 int err;
3073
3074 rcu_read_lock();
3075 if (!vpid)
3076 task = current;
3077 else
3078 task = find_task_by_vpid(vpid);
3079 if (task)
3080 get_task_struct(task);
3081 rcu_read_unlock();
3082
3083 if (!task)
3084 return ERR_PTR(-ESRCH);
3085
3086 /* Reuse ptrace permission checks for now. */
3087 err = -EACCES;
3088 if (!ptrace_may_access(task, PTRACE_MODE_READ))
3089 goto errout;
3090
3091 return task;
3092 errout:
3093 put_task_struct(task);
3094 return ERR_PTR(err);
3095
3096 }
3097
3098 /*
3099 * Returns a matching context with refcount and pincount.
3100 */
3101 static struct perf_event_context *
3102 find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
3103 {
3104 struct perf_event_context *ctx;
3105 struct perf_cpu_context *cpuctx;
3106 unsigned long flags;
3107 int ctxn, err;
3108
3109 if (!task) {
3110 /* Must be root to operate on a CPU event: */
3111 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3112 return ERR_PTR(-EACCES);
3113
3114 /*
3115 * We could be clever and allow to attach a event to an
3116 * offline CPU and activate it when the CPU comes up, but
3117 * that's for later.
3118 */
3119 if (!cpu_online(cpu))
3120 return ERR_PTR(-ENODEV);
3121
3122 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3123 ctx = &cpuctx->ctx;
3124 get_ctx(ctx);
3125 ++ctx->pin_count;
3126
3127 return ctx;
3128 }
3129
3130 err = -EINVAL;
3131 ctxn = pmu->task_ctx_nr;
3132 if (ctxn < 0)
3133 goto errout;
3134
3135 retry:
3136 ctx = perf_lock_task_context(task, ctxn, &flags);
3137 if (ctx) {
3138 unclone_ctx(ctx);
3139 ++ctx->pin_count;
3140 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3141 } else {
3142 ctx = alloc_perf_context(pmu, task);
3143 err = -ENOMEM;
3144 if (!ctx)
3145 goto errout;
3146
3147 err = 0;
3148 mutex_lock(&task->perf_event_mutex);
3149 /*
3150 * If it has already passed perf_event_exit_task().
3151 * we must see PF_EXITING, it takes this mutex too.
3152 */
3153 if (task->flags & PF_EXITING)
3154 err = -ESRCH;
3155 else if (task->perf_event_ctxp[ctxn])
3156 err = -EAGAIN;
3157 else {
3158 get_ctx(ctx);
3159 ++ctx->pin_count;
3160 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3161 }
3162 mutex_unlock(&task->perf_event_mutex);
3163
3164 if (unlikely(err)) {
3165 put_ctx(ctx);
3166
3167 if (err == -EAGAIN)
3168 goto retry;
3169 goto errout;
3170 }
3171 }
3172
3173 return ctx;
3174
3175 errout:
3176 return ERR_PTR(err);
3177 }
3178
3179 static void perf_event_free_filter(struct perf_event *event);
3180
3181 static void free_event_rcu(struct rcu_head *head)
3182 {
3183 struct perf_event *event;
3184
3185 event = container_of(head, struct perf_event, rcu_head);
3186 if (event->ns)
3187 put_pid_ns(event->ns);
3188 perf_event_free_filter(event);
3189 kfree(event);
3190 }
3191
3192 static void ring_buffer_put(struct ring_buffer *rb);
3193 static void ring_buffer_detach(struct perf_event *event, struct ring_buffer *rb);
3194
3195 static void unaccount_event_cpu(struct perf_event *event, int cpu)
3196 {
3197 if (event->parent)
3198 return;
3199
3200 if (has_branch_stack(event)) {
3201 if (!(event->attach_state & PERF_ATTACH_TASK))
3202 atomic_dec(&per_cpu(perf_branch_stack_events, cpu));
3203 }
3204 if (is_cgroup_event(event))
3205 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3206 }
3207
3208 static void unaccount_event(struct perf_event *event)
3209 {
3210 if (event->parent)
3211 return;
3212
3213 if (event->attach_state & PERF_ATTACH_TASK)
3214 static_key_slow_dec_deferred(&perf_sched_events);
3215 if (event->attr.mmap || event->attr.mmap_data)
3216 atomic_dec(&nr_mmap_events);
3217 if (event->attr.comm)
3218 atomic_dec(&nr_comm_events);
3219 if (event->attr.task)
3220 atomic_dec(&nr_task_events);
3221 if (event->attr.freq)
3222 atomic_dec(&nr_freq_events);
3223 if (is_cgroup_event(event))
3224 static_key_slow_dec_deferred(&perf_sched_events);
3225 if (has_branch_stack(event))
3226 static_key_slow_dec_deferred(&perf_sched_events);
3227
3228 unaccount_event_cpu(event, event->cpu);
3229 }
3230
3231 static void __free_event(struct perf_event *event)
3232 {
3233 if (!event->parent) {
3234 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3235 put_callchain_buffers();
3236 }
3237
3238 if (event->destroy)
3239 event->destroy(event);
3240
3241 if (event->ctx)
3242 put_ctx(event->ctx);
3243
3244 call_rcu(&event->rcu_head, free_event_rcu);
3245 }
3246 static void free_event(struct perf_event *event)
3247 {
3248 irq_work_sync(&event->pending);
3249
3250 unaccount_event(event);
3251
3252 if (event->rb) {
3253 struct ring_buffer *rb;
3254
3255 /*
3256 * Can happen when we close an event with re-directed output.
3257 *
3258 * Since we have a 0 refcount, perf_mmap_close() will skip
3259 * over us; possibly making our ring_buffer_put() the last.
3260 */
3261 mutex_lock(&event->mmap_mutex);
3262 rb = event->rb;
3263 if (rb) {
3264 rcu_assign_pointer(event->rb, NULL);
3265 ring_buffer_detach(event, rb);
3266 ring_buffer_put(rb); /* could be last */
3267 }
3268 mutex_unlock(&event->mmap_mutex);
3269 }
3270
3271 if (is_cgroup_event(event))
3272 perf_detach_cgroup(event);
3273
3274
3275 __free_event(event);
3276 }
3277
3278 int perf_event_release_kernel(struct perf_event *event)
3279 {
3280 struct perf_event_context *ctx = event->ctx;
3281
3282 WARN_ON_ONCE(ctx->parent_ctx);
3283 /*
3284 * There are two ways this annotation is useful:
3285 *
3286 * 1) there is a lock recursion from perf_event_exit_task
3287 * see the comment there.
3288 *
3289 * 2) there is a lock-inversion with mmap_sem through
3290 * perf_event_read_group(), which takes faults while
3291 * holding ctx->mutex, however this is called after
3292 * the last filedesc died, so there is no possibility
3293 * to trigger the AB-BA case.
3294 */
3295 mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
3296 raw_spin_lock_irq(&ctx->lock);
3297 perf_group_detach(event);
3298 raw_spin_unlock_irq(&ctx->lock);
3299 perf_remove_from_context(event);
3300 mutex_unlock(&ctx->mutex);
3301
3302 free_event(event);
3303
3304 return 0;
3305 }
3306 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
3307
3308 /*
3309 * Called when the last reference to the file is gone.
3310 */
3311 static void put_event(struct perf_event *event)
3312 {
3313 struct task_struct *owner;
3314
3315 if (!atomic_long_dec_and_test(&event->refcount))
3316 return;
3317
3318 rcu_read_lock();
3319 owner = ACCESS_ONCE(event->owner);
3320 /*
3321 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
3322 * !owner it means the list deletion is complete and we can indeed
3323 * free this event, otherwise we need to serialize on
3324 * owner->perf_event_mutex.
3325 */
3326 smp_read_barrier_depends();
3327 if (owner) {
3328 /*
3329 * Since delayed_put_task_struct() also drops the last
3330 * task reference we can safely take a new reference
3331 * while holding the rcu_read_lock().
3332 */
3333 get_task_struct(owner);
3334 }
3335 rcu_read_unlock();
3336
3337 if (owner) {
3338 mutex_lock(&owner->perf_event_mutex);
3339 /*
3340 * We have to re-check the event->owner field, if it is cleared
3341 * we raced with perf_event_exit_task(), acquiring the mutex
3342 * ensured they're done, and we can proceed with freeing the
3343 * event.
3344 */
3345 if (event->owner)
3346 list_del_init(&event->owner_entry);
3347 mutex_unlock(&owner->perf_event_mutex);
3348 put_task_struct(owner);
3349 }
3350
3351 perf_event_release_kernel(event);
3352 }
3353
3354 static int perf_release(struct inode *inode, struct file *file)
3355 {
3356 put_event(file->private_data);
3357 return 0;
3358 }
3359
3360 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3361 {
3362 struct perf_event *child;
3363 u64 total = 0;
3364
3365 *enabled = 0;
3366 *running = 0;
3367
3368 mutex_lock(&event->child_mutex);
3369 total += perf_event_read(event);
3370 *enabled += event->total_time_enabled +
3371 atomic64_read(&event->child_total_time_enabled);
3372 *running += event->total_time_running +
3373 atomic64_read(&event->child_total_time_running);
3374
3375 list_for_each_entry(child, &event->child_list, child_list) {
3376 total += perf_event_read(child);
3377 *enabled += child->total_time_enabled;
3378 *running += child->total_time_running;
3379 }
3380 mutex_unlock(&event->child_mutex);
3381
3382 return total;
3383 }
3384 EXPORT_SYMBOL_GPL(perf_event_read_value);
3385
3386 static int perf_event_read_group(struct perf_event *event,
3387 u64 read_format, char __user *buf)
3388 {
3389 struct perf_event *leader = event->group_leader, *sub;
3390 int n = 0, size = 0, ret = -EFAULT;
3391 struct perf_event_context *ctx = leader->ctx;
3392 u64 values[5];
3393 u64 count, enabled, running;
3394
3395 mutex_lock(&ctx->mutex);
3396 count = perf_event_read_value(leader, &enabled, &running);
3397
3398 values[n++] = 1 + leader->nr_siblings;
3399 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3400 values[n++] = enabled;
3401 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3402 values[n++] = running;
3403 values[n++] = count;
3404 if (read_format & PERF_FORMAT_ID)
3405 values[n++] = primary_event_id(leader);
3406
3407 size = n * sizeof(u64);
3408
3409 if (copy_to_user(buf, values, size))
3410 goto unlock;
3411
3412 ret = size;
3413
3414 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3415 n = 0;
3416
3417 values[n++] = perf_event_read_value(sub, &enabled, &running);
3418 if (read_format & PERF_FORMAT_ID)
3419 values[n++] = primary_event_id(sub);
3420
3421 size = n * sizeof(u64);
3422
3423 if (copy_to_user(buf + ret, values, size)) {
3424 ret = -EFAULT;
3425 goto unlock;
3426 }
3427
3428 ret += size;
3429 }
3430 unlock:
3431 mutex_unlock(&ctx->mutex);
3432
3433 return ret;
3434 }
3435
3436 static int perf_event_read_one(struct perf_event *event,
3437 u64 read_format, char __user *buf)
3438 {
3439 u64 enabled, running;
3440 u64 values[4];
3441 int n = 0;
3442
3443 values[n++] = perf_event_read_value(event, &enabled, &running);
3444 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3445 values[n++] = enabled;
3446 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3447 values[n++] = running;
3448 if (read_format & PERF_FORMAT_ID)
3449 values[n++] = primary_event_id(event);
3450
3451 if (copy_to_user(buf, values, n * sizeof(u64)))
3452 return -EFAULT;
3453
3454 return n * sizeof(u64);
3455 }
3456
3457 /*
3458 * Read the performance event - simple non blocking version for now
3459 */
3460 static ssize_t
3461 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
3462 {
3463 u64 read_format = event->attr.read_format;
3464 int ret;
3465
3466 /*
3467 * Return end-of-file for a read on a event that is in
3468 * error state (i.e. because it was pinned but it couldn't be
3469 * scheduled on to the CPU at some point).
3470 */
3471 if (event->state == PERF_EVENT_STATE_ERROR)
3472 return 0;
3473
3474 if (count < event->read_size)
3475 return -ENOSPC;
3476
3477 WARN_ON_ONCE(event->ctx->parent_ctx);
3478 if (read_format & PERF_FORMAT_GROUP)
3479 ret = perf_event_read_group(event, read_format, buf);
3480 else
3481 ret = perf_event_read_one(event, read_format, buf);
3482
3483 return ret;
3484 }
3485
3486 static ssize_t
3487 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
3488 {
3489 struct perf_event *event = file->private_data;
3490
3491 return perf_read_hw(event, buf, count);
3492 }
3493
3494 static unsigned int perf_poll(struct file *file, poll_table *wait)
3495 {
3496 struct perf_event *event = file->private_data;
3497 struct ring_buffer *rb;
3498 unsigned int events = POLL_HUP;
3499
3500 /*
3501 * Pin the event->rb by taking event->mmap_mutex; otherwise
3502 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
3503 */
3504 mutex_lock(&event->mmap_mutex);
3505 rb = event->rb;
3506 if (rb)
3507 events = atomic_xchg(&rb->poll, 0);
3508 mutex_unlock(&event->mmap_mutex);
3509
3510 poll_wait(file, &event->waitq, wait);
3511
3512 return events;
3513 }
3514
3515 static void perf_event_reset(struct perf_event *event)
3516 {
3517 (void)perf_event_read(event);
3518 local64_set(&event->count, 0);
3519 perf_event_update_userpage(event);
3520 }
3521
3522 /*
3523 * Holding the top-level event's child_mutex means that any
3524 * descendant process that has inherited this event will block
3525 * in sync_child_event if it goes to exit, thus satisfying the
3526 * task existence requirements of perf_event_enable/disable.
3527 */
3528 static void perf_event_for_each_child(struct perf_event *event,
3529 void (*func)(struct perf_event *))
3530 {
3531 struct perf_event *child;
3532
3533 WARN_ON_ONCE(event->ctx->parent_ctx);
3534 mutex_lock(&event->child_mutex);
3535 func(event);
3536 list_for_each_entry(child, &event->child_list, child_list)
3537 func(child);
3538 mutex_unlock(&event->child_mutex);
3539 }
3540
3541 static void perf_event_for_each(struct perf_event *event,
3542 void (*func)(struct perf_event *))
3543 {
3544 struct perf_event_context *ctx = event->ctx;
3545 struct perf_event *sibling;
3546
3547 WARN_ON_ONCE(ctx->parent_ctx);
3548 mutex_lock(&ctx->mutex);
3549 event = event->group_leader;
3550
3551 perf_event_for_each_child(event, func);
3552 list_for_each_entry(sibling, &event->sibling_list, group_entry)
3553 perf_event_for_each_child(sibling, func);
3554 mutex_unlock(&ctx->mutex);
3555 }
3556
3557 static int perf_event_period(struct perf_event *event, u64 __user *arg)
3558 {
3559 struct perf_event_context *ctx = event->ctx;
3560 int ret = 0, active;
3561 u64 value;
3562
3563 if (!is_sampling_event(event))
3564 return -EINVAL;
3565
3566 if (copy_from_user(&value, arg, sizeof(value)))
3567 return -EFAULT;
3568
3569 if (!value)
3570 return -EINVAL;
3571
3572 raw_spin_lock_irq(&ctx->lock);
3573 if (event->attr.freq) {
3574 if (value > sysctl_perf_event_sample_rate) {
3575 ret = -EINVAL;
3576 goto unlock;
3577 }
3578
3579 event->attr.sample_freq = value;
3580 } else {
3581 event->attr.sample_period = value;
3582 event->hw.sample_period = value;
3583 }
3584
3585 active = (event->state == PERF_EVENT_STATE_ACTIVE);
3586 if (active) {
3587 perf_pmu_disable(ctx->pmu);
3588 event->pmu->stop(event, PERF_EF_UPDATE);
3589 }
3590
3591 local64_set(&event->hw.period_left, 0);
3592
3593 if (active) {
3594 event->pmu->start(event, PERF_EF_RELOAD);
3595 perf_pmu_enable(ctx->pmu);
3596 }
3597
3598 unlock:
3599 raw_spin_unlock_irq(&ctx->lock);
3600
3601 return ret;
3602 }
3603
3604 static const struct file_operations perf_fops;
3605
3606 static inline int perf_fget_light(int fd, struct fd *p)
3607 {
3608 struct fd f = fdget(fd);
3609 if (!f.file)
3610 return -EBADF;
3611
3612 if (f.file->f_op != &perf_fops) {
3613 fdput(f);
3614 return -EBADF;
3615 }
3616 *p = f;
3617 return 0;
3618 }
3619
3620 static int perf_event_set_output(struct perf_event *event,
3621 struct perf_event *output_event);
3622 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3623
3624 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3625 {
3626 struct perf_event *event = file->private_data;
3627 void (*func)(struct perf_event *);
3628 u32 flags = arg;
3629
3630 switch (cmd) {
3631 case PERF_EVENT_IOC_ENABLE:
3632 func = perf_event_enable;
3633 break;
3634 case PERF_EVENT_IOC_DISABLE:
3635 func = perf_event_disable;
3636 break;
3637 case PERF_EVENT_IOC_RESET:
3638 func = perf_event_reset;
3639 break;
3640
3641 case PERF_EVENT_IOC_REFRESH:
3642 return perf_event_refresh(event, arg);
3643
3644 case PERF_EVENT_IOC_PERIOD:
3645 return perf_event_period(event, (u64 __user *)arg);
3646
3647 case PERF_EVENT_IOC_ID:
3648 {
3649 u64 id = primary_event_id(event);
3650
3651 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
3652 return -EFAULT;
3653 return 0;
3654 }
3655
3656 case PERF_EVENT_IOC_SET_OUTPUT:
3657 {
3658 int ret;
3659 if (arg != -1) {
3660 struct perf_event *output_event;
3661 struct fd output;
3662 ret = perf_fget_light(arg, &output);
3663 if (ret)
3664 return ret;
3665 output_event = output.file->private_data;
3666 ret = perf_event_set_output(event, output_event);
3667 fdput(output);
3668 } else {
3669 ret = perf_event_set_output(event, NULL);
3670 }
3671 return ret;
3672 }
3673
3674 case PERF_EVENT_IOC_SET_FILTER:
3675 return perf_event_set_filter(event, (void __user *)arg);
3676
3677 default:
3678 return -ENOTTY;
3679 }
3680
3681 if (flags & PERF_IOC_FLAG_GROUP)
3682 perf_event_for_each(event, func);
3683 else
3684 perf_event_for_each_child(event, func);
3685
3686 return 0;
3687 }
3688
3689 int perf_event_task_enable(void)
3690 {
3691 struct perf_event *event;
3692
3693 mutex_lock(&current->perf_event_mutex);
3694 list_for_each_entry(event, &current->perf_event_list, owner_entry)
3695 perf_event_for_each_child(event, perf_event_enable);
3696 mutex_unlock(&current->perf_event_mutex);
3697
3698 return 0;
3699 }
3700
3701 int perf_event_task_disable(void)
3702 {
3703 struct perf_event *event;
3704
3705 mutex_lock(&current->perf_event_mutex);
3706 list_for_each_entry(event, &current->perf_event_list, owner_entry)
3707 perf_event_for_each_child(event, perf_event_disable);
3708 mutex_unlock(&current->perf_event_mutex);
3709
3710 return 0;
3711 }
3712
3713 static int perf_event_index(struct perf_event *event)
3714 {
3715 if (event->hw.state & PERF_HES_STOPPED)
3716 return 0;
3717
3718 if (event->state != PERF_EVENT_STATE_ACTIVE)
3719 return 0;
3720
3721 return event->pmu->event_idx(event);
3722 }
3723
3724 static void calc_timer_values(struct perf_event *event,
3725 u64 *now,
3726 u64 *enabled,
3727 u64 *running)
3728 {
3729 u64 ctx_time;
3730
3731 *now = perf_clock();
3732 ctx_time = event->shadow_ctx_time + *now;
3733 *enabled = ctx_time - event->tstamp_enabled;
3734 *running = ctx_time - event->tstamp_running;
3735 }
3736
3737 static void perf_event_init_userpage(struct perf_event *event)
3738 {
3739 struct perf_event_mmap_page *userpg;
3740 struct ring_buffer *rb;
3741
3742 rcu_read_lock();
3743 rb = rcu_dereference(event->rb);
3744 if (!rb)
3745 goto unlock;
3746
3747 userpg = rb->user_page;
3748
3749 /* Allow new userspace to detect that bit 0 is deprecated */
3750 userpg->cap_bit0_is_deprecated = 1;
3751 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
3752
3753 unlock:
3754 rcu_read_unlock();
3755 }
3756
3757 void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
3758 {
3759 }
3760
3761 /*
3762 * Callers need to ensure there can be no nesting of this function, otherwise
3763 * the seqlock logic goes bad. We can not serialize this because the arch
3764 * code calls this from NMI context.
3765 */
3766 void perf_event_update_userpage(struct perf_event *event)
3767 {
3768 struct perf_event_mmap_page *userpg;
3769 struct ring_buffer *rb;
3770 u64 enabled, running, now;
3771
3772 rcu_read_lock();
3773 rb = rcu_dereference(event->rb);
3774 if (!rb)
3775 goto unlock;
3776
3777 /*
3778 * compute total_time_enabled, total_time_running
3779 * based on snapshot values taken when the event
3780 * was last scheduled in.
3781 *
3782 * we cannot simply called update_context_time()
3783 * because of locking issue as we can be called in
3784 * NMI context
3785 */
3786 calc_timer_values(event, &now, &enabled, &running);
3787
3788 userpg = rb->user_page;
3789 /*
3790 * Disable preemption so as to not let the corresponding user-space
3791 * spin too long if we get preempted.
3792 */
3793 preempt_disable();
3794 ++userpg->lock;
3795 barrier();
3796 userpg->index = perf_event_index(event);
3797 userpg->offset = perf_event_count(event);
3798 if (userpg->index)
3799 userpg->offset -= local64_read(&event->hw.prev_count);
3800
3801 userpg->time_enabled = enabled +
3802 atomic64_read(&event->child_total_time_enabled);
3803
3804 userpg->time_running = running +
3805 atomic64_read(&event->child_total_time_running);
3806
3807 arch_perf_update_userpage(userpg, now);
3808
3809 barrier();
3810 ++userpg->lock;
3811 preempt_enable();
3812 unlock:
3813 rcu_read_unlock();
3814 }
3815
3816 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
3817 {
3818 struct perf_event *event = vma->vm_file->private_data;
3819 struct ring_buffer *rb;
3820 int ret = VM_FAULT_SIGBUS;
3821
3822 if (vmf->flags & FAULT_FLAG_MKWRITE) {
3823 if (vmf->pgoff == 0)
3824 ret = 0;
3825 return ret;
3826 }
3827
3828 rcu_read_lock();
3829 rb = rcu_dereference(event->rb);
3830 if (!rb)
3831 goto unlock;
3832
3833 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
3834 goto unlock;
3835
3836 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
3837 if (!vmf->page)
3838 goto unlock;
3839
3840 get_page(vmf->page);
3841 vmf->page->mapping = vma->vm_file->f_mapping;
3842 vmf->page->index = vmf->pgoff;
3843
3844 ret = 0;
3845 unlock:
3846 rcu_read_unlock();
3847
3848 return ret;
3849 }
3850
3851 static void ring_buffer_attach(struct perf_event *event,
3852 struct ring_buffer *rb)
3853 {
3854 unsigned long flags;
3855
3856 if (!list_empty(&event->rb_entry))
3857 return;
3858
3859 spin_lock_irqsave(&rb->event_lock, flags);
3860 if (list_empty(&event->rb_entry))
3861 list_add(&event->rb_entry, &rb->event_list);
3862 spin_unlock_irqrestore(&rb->event_lock, flags);
3863 }
3864
3865 static void ring_buffer_detach(struct perf_event *event, struct ring_buffer *rb)
3866 {
3867 unsigned long flags;
3868
3869 if (list_empty(&event->rb_entry))
3870 return;
3871
3872 spin_lock_irqsave(&rb->event_lock, flags);
3873 list_del_init(&event->rb_entry);
3874 wake_up_all(&event->waitq);
3875 spin_unlock_irqrestore(&rb->event_lock, flags);
3876 }
3877
3878 static void ring_buffer_wakeup(struct perf_event *event)
3879 {
3880 struct ring_buffer *rb;
3881
3882 rcu_read_lock();
3883 rb = rcu_dereference(event->rb);
3884 if (rb) {
3885 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
3886 wake_up_all(&event->waitq);
3887 }
3888 rcu_read_unlock();
3889 }
3890
3891 static void rb_free_rcu(struct rcu_head *rcu_head)
3892 {
3893 struct ring_buffer *rb;
3894
3895 rb = container_of(rcu_head, struct ring_buffer, rcu_head);
3896 rb_free(rb);
3897 }
3898
3899 static struct ring_buffer *ring_buffer_get(struct perf_event *event)
3900 {
3901 struct ring_buffer *rb;
3902
3903 rcu_read_lock();
3904 rb = rcu_dereference(event->rb);
3905 if (rb) {
3906 if (!atomic_inc_not_zero(&rb->refcount))
3907 rb = NULL;
3908 }
3909 rcu_read_unlock();
3910
3911 return rb;
3912 }
3913
3914 static void ring_buffer_put(struct ring_buffer *rb)
3915 {
3916 if (!atomic_dec_and_test(&rb->refcount))
3917 return;
3918
3919 WARN_ON_ONCE(!list_empty(&rb->event_list));
3920
3921 call_rcu(&rb->rcu_head, rb_free_rcu);
3922 }
3923
3924 static void perf_mmap_open(struct vm_area_struct *vma)
3925 {
3926 struct perf_event *event = vma->vm_file->private_data;
3927
3928 atomic_inc(&event->mmap_count);
3929 atomic_inc(&event->rb->mmap_count);
3930 }
3931
3932 /*
3933 * A buffer can be mmap()ed multiple times; either directly through the same
3934 * event, or through other events by use of perf_event_set_output().
3935 *
3936 * In order to undo the VM accounting done by perf_mmap() we need to destroy
3937 * the buffer here, where we still have a VM context. This means we need
3938 * to detach all events redirecting to us.
3939 */
3940 static void perf_mmap_close(struct vm_area_struct *vma)
3941 {
3942 struct perf_event *event = vma->vm_file->private_data;
3943
3944 struct ring_buffer *rb = event->rb;
3945 struct user_struct *mmap_user = rb->mmap_user;
3946 int mmap_locked = rb->mmap_locked;
3947 unsigned long size = perf_data_size(rb);
3948
3949 atomic_dec(&rb->mmap_count);
3950
3951 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
3952 return;
3953
3954 /* Detach current event from the buffer. */
3955 rcu_assign_pointer(event->rb, NULL);
3956 ring_buffer_detach(event, rb);
3957 mutex_unlock(&event->mmap_mutex);
3958
3959 /* If there's still other mmap()s of this buffer, we're done. */
3960 if (atomic_read(&rb->mmap_count)) {
3961 ring_buffer_put(rb); /* can't be last */
3962 return;
3963 }
3964
3965 /*
3966 * No other mmap()s, detach from all other events that might redirect
3967 * into the now unreachable buffer. Somewhat complicated by the
3968 * fact that rb::event_lock otherwise nests inside mmap_mutex.
3969 */
3970 again:
3971 rcu_read_lock();
3972 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
3973 if (!atomic_long_inc_not_zero(&event->refcount)) {
3974 /*
3975 * This event is en-route to free_event() which will
3976 * detach it and remove it from the list.
3977 */
3978 continue;
3979 }
3980 rcu_read_unlock();
3981
3982 mutex_lock(&event->mmap_mutex);
3983 /*
3984 * Check we didn't race with perf_event_set_output() which can
3985 * swizzle the rb from under us while we were waiting to
3986 * acquire mmap_mutex.
3987 *
3988 * If we find a different rb; ignore this event, a next
3989 * iteration will no longer find it on the list. We have to
3990 * still restart the iteration to make sure we're not now
3991 * iterating the wrong list.
3992 */
3993 if (event->rb == rb) {
3994 rcu_assign_pointer(event->rb, NULL);
3995 ring_buffer_detach(event, rb);
3996 ring_buffer_put(rb); /* can't be last, we still have one */
3997 }
3998 mutex_unlock(&event->mmap_mutex);
3999 put_event(event);
4000
4001 /*
4002 * Restart the iteration; either we're on the wrong list or
4003 * destroyed its integrity by doing a deletion.
4004 */
4005 goto again;
4006 }
4007 rcu_read_unlock();
4008
4009 /*
4010 * It could be there's still a few 0-ref events on the list; they'll
4011 * get cleaned up by free_event() -- they'll also still have their
4012 * ref on the rb and will free it whenever they are done with it.
4013 *
4014 * Aside from that, this buffer is 'fully' detached and unmapped,
4015 * undo the VM accounting.
4016 */
4017
4018 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
4019 vma->vm_mm->pinned_vm -= mmap_locked;
4020 free_uid(mmap_user);
4021
4022 ring_buffer_put(rb); /* could be last */
4023 }
4024
4025 static const struct vm_operations_struct perf_mmap_vmops = {
4026 .open = perf_mmap_open,
4027 .close = perf_mmap_close,
4028 .fault = perf_mmap_fault,
4029 .page_mkwrite = perf_mmap_fault,
4030 };
4031
4032 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
4033 {
4034 struct perf_event *event = file->private_data;
4035 unsigned long user_locked, user_lock_limit;
4036 struct user_struct *user = current_user();
4037 unsigned long locked, lock_limit;
4038 struct ring_buffer *rb;
4039 unsigned long vma_size;
4040 unsigned long nr_pages;
4041 long user_extra, extra;
4042 int ret = 0, flags = 0;
4043
4044 /*
4045 * Don't allow mmap() of inherited per-task counters. This would
4046 * create a performance issue due to all children writing to the
4047 * same rb.
4048 */
4049 if (event->cpu == -1 && event->attr.inherit)
4050 return -EINVAL;
4051
4052 if (!(vma->vm_flags & VM_SHARED))
4053 return -EINVAL;
4054
4055 vma_size = vma->vm_end - vma->vm_start;
4056 nr_pages = (vma_size / PAGE_SIZE) - 1;
4057
4058 /*
4059 * If we have rb pages ensure they're a power-of-two number, so we
4060 * can do bitmasks instead of modulo.
4061 */
4062 if (nr_pages != 0 && !is_power_of_2(nr_pages))
4063 return -EINVAL;
4064
4065 if (vma_size != PAGE_SIZE * (1 + nr_pages))
4066 return -EINVAL;
4067
4068 if (vma->vm_pgoff != 0)
4069 return -EINVAL;
4070
4071 WARN_ON_ONCE(event->ctx->parent_ctx);
4072 again:
4073 mutex_lock(&event->mmap_mutex);
4074 if (event->rb) {
4075 if (event->rb->nr_pages != nr_pages) {
4076 ret = -EINVAL;
4077 goto unlock;
4078 }
4079
4080 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
4081 /*
4082 * Raced against perf_mmap_close() through
4083 * perf_event_set_output(). Try again, hope for better
4084 * luck.
4085 */
4086 mutex_unlock(&event->mmap_mutex);
4087 goto again;
4088 }
4089
4090 goto unlock;
4091 }
4092
4093 user_extra = nr_pages + 1;
4094 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
4095
4096 /*
4097 * Increase the limit linearly with more CPUs:
4098 */
4099 user_lock_limit *= num_online_cpus();
4100
4101 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
4102
4103 extra = 0;
4104 if (user_locked > user_lock_limit)
4105 extra = user_locked - user_lock_limit;
4106
4107 lock_limit = rlimit(RLIMIT_MEMLOCK);
4108 lock_limit >>= PAGE_SHIFT;
4109 locked = vma->vm_mm->pinned_vm + extra;
4110
4111 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
4112 !capable(CAP_IPC_LOCK)) {
4113 ret = -EPERM;
4114 goto unlock;
4115 }
4116
4117 WARN_ON(event->rb);
4118
4119 if (vma->vm_flags & VM_WRITE)
4120 flags |= RING_BUFFER_WRITABLE;
4121
4122 rb = rb_alloc(nr_pages,
4123 event->attr.watermark ? event->attr.wakeup_watermark : 0,
4124 event->cpu, flags);
4125
4126 if (!rb) {
4127 ret = -ENOMEM;
4128 goto unlock;
4129 }
4130
4131 atomic_set(&rb->mmap_count, 1);
4132 rb->mmap_locked = extra;
4133 rb->mmap_user = get_current_user();
4134
4135 atomic_long_add(user_extra, &user->locked_vm);
4136 vma->vm_mm->pinned_vm += extra;
4137
4138 ring_buffer_attach(event, rb);
4139 rcu_assign_pointer(event->rb, rb);
4140
4141 perf_event_init_userpage(event);
4142 perf_event_update_userpage(event);
4143
4144 unlock:
4145 if (!ret)
4146 atomic_inc(&event->mmap_count);
4147 mutex_unlock(&event->mmap_mutex);
4148
4149 /*
4150 * Since pinned accounting is per vm we cannot allow fork() to copy our
4151 * vma.
4152 */
4153 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
4154 vma->vm_ops = &perf_mmap_vmops;
4155
4156 return ret;
4157 }
4158
4159 static int perf_fasync(int fd, struct file *filp, int on)
4160 {
4161 struct inode *inode = file_inode(filp);
4162 struct perf_event *event = filp->private_data;
4163 int retval;
4164
4165 mutex_lock(&inode->i_mutex);
4166 retval = fasync_helper(fd, filp, on, &event->fasync);
4167 mutex_unlock(&inode->i_mutex);
4168
4169 if (retval < 0)
4170 return retval;
4171
4172 return 0;
4173 }
4174
4175 static const struct file_operations perf_fops = {
4176 .llseek = no_llseek,
4177 .release = perf_release,
4178 .read = perf_read,
4179 .poll = perf_poll,
4180 .unlocked_ioctl = perf_ioctl,
4181 .compat_ioctl = perf_ioctl,
4182 .mmap = perf_mmap,
4183 .fasync = perf_fasync,
4184 };
4185
4186 /*
4187 * Perf event wakeup
4188 *
4189 * If there's data, ensure we set the poll() state and publish everything
4190 * to user-space before waking everybody up.
4191 */
4192
4193 void perf_event_wakeup(struct perf_event *event)
4194 {
4195 ring_buffer_wakeup(event);
4196
4197 if (event->pending_kill) {
4198 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
4199 event->pending_kill = 0;
4200 }
4201 }
4202
4203 static void perf_pending_event(struct irq_work *entry)
4204 {
4205 struct perf_event *event = container_of(entry,
4206 struct perf_event, pending);
4207
4208 if (event->pending_disable) {
4209 event->pending_disable = 0;
4210 __perf_event_disable(event);
4211 }
4212
4213 if (event->pending_wakeup) {
4214 event->pending_wakeup = 0;
4215 perf_event_wakeup(event);
4216 }
4217 }
4218
4219 /*
4220 * We assume there is only KVM supporting the callbacks.
4221 * Later on, we might change it to a list if there is
4222 * another virtualization implementation supporting the callbacks.
4223 */
4224 struct perf_guest_info_callbacks *perf_guest_cbs;
4225
4226 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4227 {
4228 perf_guest_cbs = cbs;
4229 return 0;
4230 }
4231 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
4232
4233 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4234 {
4235 perf_guest_cbs = NULL;
4236 return 0;
4237 }
4238 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
4239
4240 static void
4241 perf_output_sample_regs(struct perf_output_handle *handle,
4242 struct pt_regs *regs, u64 mask)
4243 {
4244 int bit;
4245
4246 for_each_set_bit(bit, (const unsigned long *) &mask,
4247 sizeof(mask) * BITS_PER_BYTE) {
4248 u64 val;
4249
4250 val = perf_reg_value(regs, bit);
4251 perf_output_put(handle, val);
4252 }
4253 }
4254
4255 static void perf_sample_regs_user(struct perf_regs_user *regs_user,
4256 struct pt_regs *regs)
4257 {
4258 if (!user_mode(regs)) {
4259 if (current->mm)
4260 regs = task_pt_regs(current);
4261 else
4262 regs = NULL;
4263 }
4264
4265 if (regs) {
4266 regs_user->regs = regs;
4267 regs_user->abi = perf_reg_abi(current);
4268 }
4269 }
4270
4271 /*
4272 * Get remaining task size from user stack pointer.
4273 *
4274 * It'd be better to take stack vma map and limit this more
4275 * precisly, but there's no way to get it safely under interrupt,
4276 * so using TASK_SIZE as limit.
4277 */
4278 static u64 perf_ustack_task_size(struct pt_regs *regs)
4279 {
4280 unsigned long addr = perf_user_stack_pointer(regs);
4281
4282 if (!addr || addr >= TASK_SIZE)
4283 return 0;
4284
4285 return TASK_SIZE - addr;
4286 }
4287
4288 static u16
4289 perf_sample_ustack_size(u16 stack_size, u16 header_size,
4290 struct pt_regs *regs)
4291 {
4292 u64 task_size;
4293
4294 /* No regs, no stack pointer, no dump. */
4295 if (!regs)
4296 return 0;
4297
4298 /*
4299 * Check if we fit in with the requested stack size into the:
4300 * - TASK_SIZE
4301 * If we don't, we limit the size to the TASK_SIZE.
4302 *
4303 * - remaining sample size
4304 * If we don't, we customize the stack size to
4305 * fit in to the remaining sample size.
4306 */
4307
4308 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
4309 stack_size = min(stack_size, (u16) task_size);
4310
4311 /* Current header size plus static size and dynamic size. */
4312 header_size += 2 * sizeof(u64);
4313
4314 /* Do we fit in with the current stack dump size? */
4315 if ((u16) (header_size + stack_size) < header_size) {
4316 /*
4317 * If we overflow the maximum size for the sample,
4318 * we customize the stack dump size to fit in.
4319 */
4320 stack_size = USHRT_MAX - header_size - sizeof(u64);
4321 stack_size = round_up(stack_size, sizeof(u64));
4322 }
4323
4324 return stack_size;
4325 }
4326
4327 static void
4328 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
4329 struct pt_regs *regs)
4330 {
4331 /* Case of a kernel thread, nothing to dump */
4332 if (!regs) {
4333 u64 size = 0;
4334 perf_output_put(handle, size);
4335 } else {
4336 unsigned long sp;
4337 unsigned int rem;
4338 u64 dyn_size;
4339
4340 /*
4341 * We dump:
4342 * static size
4343 * - the size requested by user or the best one we can fit
4344 * in to the sample max size
4345 * data
4346 * - user stack dump data
4347 * dynamic size
4348 * - the actual dumped size
4349 */
4350
4351 /* Static size. */
4352 perf_output_put(handle, dump_size);
4353
4354 /* Data. */
4355 sp = perf_user_stack_pointer(regs);
4356 rem = __output_copy_user(handle, (void *) sp, dump_size);
4357 dyn_size = dump_size - rem;
4358
4359 perf_output_skip(handle, rem);
4360
4361 /* Dynamic size. */
4362 perf_output_put(handle, dyn_size);
4363 }
4364 }
4365
4366 static void __perf_event_header__init_id(struct perf_event_header *header,
4367 struct perf_sample_data *data,
4368 struct perf_event *event)
4369 {
4370 u64 sample_type = event->attr.sample_type;
4371
4372 data->type = sample_type;
4373 header->size += event->id_header_size;
4374
4375 if (sample_type & PERF_SAMPLE_TID) {
4376 /* namespace issues */
4377 data->tid_entry.pid = perf_event_pid(event, current);
4378 data->tid_entry.tid = perf_event_tid(event, current);
4379 }
4380
4381 if (sample_type & PERF_SAMPLE_TIME)
4382 data->time = perf_clock();
4383
4384 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
4385 data->id = primary_event_id(event);
4386
4387 if (sample_type & PERF_SAMPLE_STREAM_ID)
4388 data->stream_id = event->id;
4389
4390 if (sample_type & PERF_SAMPLE_CPU) {
4391 data->cpu_entry.cpu = raw_smp_processor_id();
4392 data->cpu_entry.reserved = 0;
4393 }
4394 }
4395
4396 void perf_event_header__init_id(struct perf_event_header *header,
4397 struct perf_sample_data *data,
4398 struct perf_event *event)
4399 {
4400 if (event->attr.sample_id_all)
4401 __perf_event_header__init_id(header, data, event);
4402 }
4403
4404 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
4405 struct perf_sample_data *data)
4406 {
4407 u64 sample_type = data->type;
4408
4409 if (sample_type & PERF_SAMPLE_TID)
4410 perf_output_put(handle, data->tid_entry);
4411
4412 if (sample_type & PERF_SAMPLE_TIME)
4413 perf_output_put(handle, data->time);
4414
4415 if (sample_type & PERF_SAMPLE_ID)
4416 perf_output_put(handle, data->id);
4417
4418 if (sample_type & PERF_SAMPLE_STREAM_ID)
4419 perf_output_put(handle, data->stream_id);
4420
4421 if (sample_type & PERF_SAMPLE_CPU)
4422 perf_output_put(handle, data->cpu_entry);
4423
4424 if (sample_type & PERF_SAMPLE_IDENTIFIER)
4425 perf_output_put(handle, data->id);
4426 }
4427
4428 void perf_event__output_id_sample(struct perf_event *event,
4429 struct perf_output_handle *handle,
4430 struct perf_sample_data *sample)
4431 {
4432 if (event->attr.sample_id_all)
4433 __perf_event__output_id_sample(handle, sample);
4434 }
4435
4436 static void perf_output_read_one(struct perf_output_handle *handle,
4437 struct perf_event *event,
4438 u64 enabled, u64 running)
4439 {
4440 u64 read_format = event->attr.read_format;
4441 u64 values[4];
4442 int n = 0;
4443
4444 values[n++] = perf_event_count(event);
4445 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4446 values[n++] = enabled +
4447 atomic64_read(&event->child_total_time_enabled);
4448 }
4449 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4450 values[n++] = running +
4451 atomic64_read(&event->child_total_time_running);
4452 }
4453 if (read_format & PERF_FORMAT_ID)
4454 values[n++] = primary_event_id(event);
4455
4456 __output_copy(handle, values, n * sizeof(u64));
4457 }
4458
4459 /*
4460 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
4461 */
4462 static void perf_output_read_group(struct perf_output_handle *handle,
4463 struct perf_event *event,
4464 u64 enabled, u64 running)
4465 {
4466 struct perf_event *leader = event->group_leader, *sub;
4467 u64 read_format = event->attr.read_format;
4468 u64 values[5];
4469 int n = 0;
4470
4471 values[n++] = 1 + leader->nr_siblings;
4472
4473 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4474 values[n++] = enabled;
4475
4476 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4477 values[n++] = running;
4478
4479 if (leader != event)
4480 leader->pmu->read(leader);
4481
4482 values[n++] = perf_event_count(leader);
4483 if (read_format & PERF_FORMAT_ID)
4484 values[n++] = primary_event_id(leader);
4485
4486 __output_copy(handle, values, n * sizeof(u64));
4487
4488 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4489 n = 0;
4490
4491 if ((sub != event) &&
4492 (sub->state == PERF_EVENT_STATE_ACTIVE))
4493 sub->pmu->read(sub);
4494
4495 values[n++] = perf_event_count(sub);
4496 if (read_format & PERF_FORMAT_ID)
4497 values[n++] = primary_event_id(sub);
4498
4499 __output_copy(handle, values, n * sizeof(u64));
4500 }
4501 }
4502
4503 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
4504 PERF_FORMAT_TOTAL_TIME_RUNNING)
4505
4506 static void perf_output_read(struct perf_output_handle *handle,
4507 struct perf_event *event)
4508 {
4509 u64 enabled = 0, running = 0, now;
4510 u64 read_format = event->attr.read_format;
4511
4512 /*
4513 * compute total_time_enabled, total_time_running
4514 * based on snapshot values taken when the event
4515 * was last scheduled in.
4516 *
4517 * we cannot simply called update_context_time()
4518 * because of locking issue as we are called in
4519 * NMI context
4520 */
4521 if (read_format & PERF_FORMAT_TOTAL_TIMES)
4522 calc_timer_values(event, &now, &enabled, &running);
4523
4524 if (event->attr.read_format & PERF_FORMAT_GROUP)
4525 perf_output_read_group(handle, event, enabled, running);
4526 else
4527 perf_output_read_one(handle, event, enabled, running);
4528 }
4529
4530 void perf_output_sample(struct perf_output_handle *handle,
4531 struct perf_event_header *header,
4532 struct perf_sample_data *data,
4533 struct perf_event *event)
4534 {
4535 u64 sample_type = data->type;
4536
4537 perf_output_put(handle, *header);
4538
4539 if (sample_type & PERF_SAMPLE_IDENTIFIER)
4540 perf_output_put(handle, data->id);
4541
4542 if (sample_type & PERF_SAMPLE_IP)
4543 perf_output_put(handle, data->ip);
4544
4545 if (sample_type & PERF_SAMPLE_TID)
4546 perf_output_put(handle, data->tid_entry);
4547
4548 if (sample_type & PERF_SAMPLE_TIME)
4549 perf_output_put(handle, data->time);
4550
4551 if (sample_type & PERF_SAMPLE_ADDR)
4552 perf_output_put(handle, data->addr);
4553
4554 if (sample_type & PERF_SAMPLE_ID)
4555 perf_output_put(handle, data->id);
4556
4557 if (sample_type & PERF_SAMPLE_STREAM_ID)
4558 perf_output_put(handle, data->stream_id);
4559
4560 if (sample_type & PERF_SAMPLE_CPU)
4561 perf_output_put(handle, data->cpu_entry);
4562
4563 if (sample_type & PERF_SAMPLE_PERIOD)
4564 perf_output_put(handle, data->period);
4565
4566 if (sample_type & PERF_SAMPLE_READ)
4567 perf_output_read(handle, event);
4568
4569 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4570 if (data->callchain) {
4571 int size = 1;
4572
4573 if (data->callchain)
4574 size += data->callchain->nr;
4575
4576 size *= sizeof(u64);
4577
4578 __output_copy(handle, data->callchain, size);
4579 } else {
4580 u64 nr = 0;
4581 perf_output_put(handle, nr);
4582 }
4583 }
4584
4585 if (sample_type & PERF_SAMPLE_RAW) {
4586 if (data->raw) {
4587 perf_output_put(handle, data->raw->size);
4588 __output_copy(handle, data->raw->data,
4589 data->raw->size);
4590 } else {
4591 struct {
4592 u32 size;
4593 u32 data;
4594 } raw = {
4595 .size = sizeof(u32),
4596 .data = 0,
4597 };
4598 perf_output_put(handle, raw);
4599 }
4600 }
4601
4602 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4603 if (data->br_stack) {
4604 size_t size;
4605
4606 size = data->br_stack->nr
4607 * sizeof(struct perf_branch_entry);
4608
4609 perf_output_put(handle, data->br_stack->nr);
4610 perf_output_copy(handle, data->br_stack->entries, size);
4611 } else {
4612 /*
4613 * we always store at least the value of nr
4614 */
4615 u64 nr = 0;
4616 perf_output_put(handle, nr);
4617 }
4618 }
4619
4620 if (sample_type & PERF_SAMPLE_REGS_USER) {
4621 u64 abi = data->regs_user.abi;
4622
4623 /*
4624 * If there are no regs to dump, notice it through
4625 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
4626 */
4627 perf_output_put(handle, abi);
4628
4629 if (abi) {
4630 u64 mask = event->attr.sample_regs_user;
4631 perf_output_sample_regs(handle,
4632 data->regs_user.regs,
4633 mask);
4634 }
4635 }
4636
4637 if (sample_type & PERF_SAMPLE_STACK_USER) {
4638 perf_output_sample_ustack(handle,
4639 data->stack_user_size,
4640 data->regs_user.regs);
4641 }
4642
4643 if (sample_type & PERF_SAMPLE_WEIGHT)
4644 perf_output_put(handle, data->weight);
4645
4646 if (sample_type & PERF_SAMPLE_DATA_SRC)
4647 perf_output_put(handle, data->data_src.val);
4648
4649 if (sample_type & PERF_SAMPLE_TRANSACTION)
4650 perf_output_put(handle, data->txn);
4651
4652 if (!event->attr.watermark) {
4653 int wakeup_events = event->attr.wakeup_events;
4654
4655 if (wakeup_events) {
4656 struct ring_buffer *rb = handle->rb;
4657 int events = local_inc_return(&rb->events);
4658
4659 if (events >= wakeup_events) {
4660 local_sub(wakeup_events, &rb->events);
4661 local_inc(&rb->wakeup);
4662 }
4663 }
4664 }
4665 }
4666
4667 void perf_prepare_sample(struct perf_event_header *header,
4668 struct perf_sample_data *data,
4669 struct perf_event *event,
4670 struct pt_regs *regs)
4671 {
4672 u64 sample_type = event->attr.sample_type;
4673
4674 header->type = PERF_RECORD_SAMPLE;
4675 header->size = sizeof(*header) + event->header_size;
4676
4677 header->misc = 0;
4678 header->misc |= perf_misc_flags(regs);
4679
4680 __perf_event_header__init_id(header, data, event);
4681
4682 if (sample_type & PERF_SAMPLE_IP)
4683 data->ip = perf_instruction_pointer(regs);
4684
4685 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4686 int size = 1;
4687
4688 data->callchain = perf_callchain(event, regs);
4689
4690 if (data->callchain)
4691 size += data->callchain->nr;
4692
4693 header->size += size * sizeof(u64);
4694 }
4695
4696 if (sample_type & PERF_SAMPLE_RAW) {
4697 int size = sizeof(u32);
4698
4699 if (data->raw)
4700 size += data->raw->size;
4701 else
4702 size += sizeof(u32);
4703
4704 WARN_ON_ONCE(size & (sizeof(u64)-1));
4705 header->size += size;
4706 }
4707
4708 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4709 int size = sizeof(u64); /* nr */
4710 if (data->br_stack) {
4711 size += data->br_stack->nr
4712 * sizeof(struct perf_branch_entry);
4713 }
4714 header->size += size;
4715 }
4716
4717 if (sample_type & PERF_SAMPLE_REGS_USER) {
4718 /* regs dump ABI info */
4719 int size = sizeof(u64);
4720
4721 perf_sample_regs_user(&data->regs_user, regs);
4722
4723 if (data->regs_user.regs) {
4724 u64 mask = event->attr.sample_regs_user;
4725 size += hweight64(mask) * sizeof(u64);
4726 }
4727
4728 header->size += size;
4729 }
4730
4731 if (sample_type & PERF_SAMPLE_STACK_USER) {
4732 /*
4733 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
4734 * processed as the last one or have additional check added
4735 * in case new sample type is added, because we could eat
4736 * up the rest of the sample size.
4737 */
4738 struct perf_regs_user *uregs = &data->regs_user;
4739 u16 stack_size = event->attr.sample_stack_user;
4740 u16 size = sizeof(u64);
4741
4742 if (!uregs->abi)
4743 perf_sample_regs_user(uregs, regs);
4744
4745 stack_size = perf_sample_ustack_size(stack_size, header->size,
4746 uregs->regs);
4747
4748 /*
4749 * If there is something to dump, add space for the dump
4750 * itself and for the field that tells the dynamic size,
4751 * which is how many have been actually dumped.
4752 */
4753 if (stack_size)
4754 size += sizeof(u64) + stack_size;
4755
4756 data->stack_user_size = stack_size;
4757 header->size += size;
4758 }
4759 }
4760
4761 static void perf_event_output(struct perf_event *event,
4762 struct perf_sample_data *data,
4763 struct pt_regs *regs)
4764 {
4765 struct perf_output_handle handle;
4766 struct perf_event_header header;
4767
4768 /* protect the callchain buffers */
4769 rcu_read_lock();
4770
4771 perf_prepare_sample(&header, data, event, regs);
4772
4773 if (perf_output_begin(&handle, event, header.size))
4774 goto exit;
4775
4776 perf_output_sample(&handle, &header, data, event);
4777
4778 perf_output_end(&handle);
4779
4780 exit:
4781 rcu_read_unlock();
4782 }
4783
4784 /*
4785 * read event_id
4786 */
4787
4788 struct perf_read_event {
4789 struct perf_event_header header;
4790
4791 u32 pid;
4792 u32 tid;
4793 };
4794
4795 static void
4796 perf_event_read_event(struct perf_event *event,
4797 struct task_struct *task)
4798 {
4799 struct perf_output_handle handle;
4800 struct perf_sample_data sample;
4801 struct perf_read_event read_event = {
4802 .header = {
4803 .type = PERF_RECORD_READ,
4804 .misc = 0,
4805 .size = sizeof(read_event) + event->read_size,
4806 },
4807 .pid = perf_event_pid(event, task),
4808 .tid = perf_event_tid(event, task),
4809 };
4810 int ret;
4811
4812 perf_event_header__init_id(&read_event.header, &sample, event);
4813 ret = perf_output_begin(&handle, event, read_event.header.size);
4814 if (ret)
4815 return;
4816
4817 perf_output_put(&handle, read_event);
4818 perf_output_read(&handle, event);
4819 perf_event__output_id_sample(event, &handle, &sample);
4820
4821 perf_output_end(&handle);
4822 }
4823
4824 typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
4825
4826 static void
4827 perf_event_aux_ctx(struct perf_event_context *ctx,
4828 perf_event_aux_output_cb output,
4829 void *data)
4830 {
4831 struct perf_event *event;
4832
4833 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4834 if (event->state < PERF_EVENT_STATE_INACTIVE)
4835 continue;
4836 if (!event_filter_match(event))
4837 continue;
4838 output(event, data);
4839 }
4840 }
4841
4842 static void
4843 perf_event_aux(perf_event_aux_output_cb output, void *data,
4844 struct perf_event_context *task_ctx)
4845 {
4846 struct perf_cpu_context *cpuctx;
4847 struct perf_event_context *ctx;
4848 struct pmu *pmu;
4849 int ctxn;
4850
4851 rcu_read_lock();
4852 list_for_each_entry_rcu(pmu, &pmus, entry) {
4853 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4854 if (cpuctx->unique_pmu != pmu)
4855 goto next;
4856 perf_event_aux_ctx(&cpuctx->ctx, output, data);
4857 if (task_ctx)
4858 goto next;
4859 ctxn = pmu->task_ctx_nr;
4860 if (ctxn < 0)
4861 goto next;
4862 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4863 if (ctx)
4864 perf_event_aux_ctx(ctx, output, data);
4865 next:
4866 put_cpu_ptr(pmu->pmu_cpu_context);
4867 }
4868
4869 if (task_ctx) {
4870 preempt_disable();
4871 perf_event_aux_ctx(task_ctx, output, data);
4872 preempt_enable();
4873 }
4874 rcu_read_unlock();
4875 }
4876
4877 /*
4878 * task tracking -- fork/exit
4879 *
4880 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
4881 */
4882
4883 struct perf_task_event {
4884 struct task_struct *task;
4885 struct perf_event_context *task_ctx;
4886
4887 struct {
4888 struct perf_event_header header;
4889
4890 u32 pid;
4891 u32 ppid;
4892 u32 tid;
4893 u32 ptid;
4894 u64 time;
4895 } event_id;
4896 };
4897
4898 static int perf_event_task_match(struct perf_event *event)
4899 {
4900 return event->attr.comm || event->attr.mmap ||
4901 event->attr.mmap2 || event->attr.mmap_data ||
4902 event->attr.task;
4903 }
4904
4905 static void perf_event_task_output(struct perf_event *event,
4906 void *data)
4907 {
4908 struct perf_task_event *task_event = data;
4909 struct perf_output_handle handle;
4910 struct perf_sample_data sample;
4911 struct task_struct *task = task_event->task;
4912 int ret, size = task_event->event_id.header.size;
4913
4914 if (!perf_event_task_match(event))
4915 return;
4916
4917 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
4918
4919 ret = perf_output_begin(&handle, event,
4920 task_event->event_id.header.size);
4921 if (ret)
4922 goto out;
4923
4924 task_event->event_id.pid = perf_event_pid(event, task);
4925 task_event->event_id.ppid = perf_event_pid(event, current);
4926
4927 task_event->event_id.tid = perf_event_tid(event, task);
4928 task_event->event_id.ptid = perf_event_tid(event, current);
4929
4930 perf_output_put(&handle, task_event->event_id);
4931
4932 perf_event__output_id_sample(event, &handle, &sample);
4933
4934 perf_output_end(&handle);
4935 out:
4936 task_event->event_id.header.size = size;
4937 }
4938
4939 static void perf_event_task(struct task_struct *task,
4940 struct perf_event_context *task_ctx,
4941 int new)
4942 {
4943 struct perf_task_event task_event;
4944
4945 if (!atomic_read(&nr_comm_events) &&
4946 !atomic_read(&nr_mmap_events) &&
4947 !atomic_read(&nr_task_events))
4948 return;
4949
4950 task_event = (struct perf_task_event){
4951 .task = task,
4952 .task_ctx = task_ctx,
4953 .event_id = {
4954 .header = {
4955 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
4956 .misc = 0,
4957 .size = sizeof(task_event.event_id),
4958 },
4959 /* .pid */
4960 /* .ppid */
4961 /* .tid */
4962 /* .ptid */
4963 .time = perf_clock(),
4964 },
4965 };
4966
4967 perf_event_aux(perf_event_task_output,
4968 &task_event,
4969 task_ctx);
4970 }
4971
4972 void perf_event_fork(struct task_struct *task)
4973 {
4974 perf_event_task(task, NULL, 1);
4975 }
4976
4977 /*
4978 * comm tracking
4979 */
4980
4981 struct perf_comm_event {
4982 struct task_struct *task;
4983 char *comm;
4984 int comm_size;
4985
4986 struct {
4987 struct perf_event_header header;
4988
4989 u32 pid;
4990 u32 tid;
4991 } event_id;
4992 };
4993
4994 static int perf_event_comm_match(struct perf_event *event)
4995 {
4996 return event->attr.comm;
4997 }
4998
4999 static void perf_event_comm_output(struct perf_event *event,
5000 void *data)
5001 {
5002 struct perf_comm_event *comm_event = data;
5003 struct perf_output_handle handle;
5004 struct perf_sample_data sample;
5005 int size = comm_event->event_id.header.size;
5006 int ret;
5007
5008 if (!perf_event_comm_match(event))
5009 return;
5010
5011 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
5012 ret = perf_output_begin(&handle, event,
5013 comm_event->event_id.header.size);
5014
5015 if (ret)
5016 goto out;
5017
5018 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
5019 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
5020
5021 perf_output_put(&handle, comm_event->event_id);
5022 __output_copy(&handle, comm_event->comm,
5023 comm_event->comm_size);
5024
5025 perf_event__output_id_sample(event, &handle, &sample);
5026
5027 perf_output_end(&handle);
5028 out:
5029 comm_event->event_id.header.size = size;
5030 }
5031
5032 static void perf_event_comm_event(struct perf_comm_event *comm_event)
5033 {
5034 char comm[TASK_COMM_LEN];
5035 unsigned int size;
5036
5037 memset(comm, 0, sizeof(comm));
5038 strlcpy(comm, comm_event->task->comm, sizeof(comm));
5039 size = ALIGN(strlen(comm)+1, sizeof(u64));
5040
5041 comm_event->comm = comm;
5042 comm_event->comm_size = size;
5043
5044 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
5045
5046 perf_event_aux(perf_event_comm_output,
5047 comm_event,
5048 NULL);
5049 }
5050
5051 void perf_event_comm(struct task_struct *task)
5052 {
5053 struct perf_comm_event comm_event;
5054 struct perf_event_context *ctx;
5055 int ctxn;
5056
5057 rcu_read_lock();
5058 for_each_task_context_nr(ctxn) {
5059 ctx = task->perf_event_ctxp[ctxn];
5060 if (!ctx)
5061 continue;
5062
5063 perf_event_enable_on_exec(ctx);
5064 }
5065 rcu_read_unlock();
5066
5067 if (!atomic_read(&nr_comm_events))
5068 return;
5069
5070 comm_event = (struct perf_comm_event){
5071 .task = task,
5072 /* .comm */
5073 /* .comm_size */
5074 .event_id = {
5075 .header = {
5076 .type = PERF_RECORD_COMM,
5077 .misc = 0,
5078 /* .size */
5079 },
5080 /* .pid */
5081 /* .tid */
5082 },
5083 };
5084
5085 perf_event_comm_event(&comm_event);
5086 }
5087
5088 /*
5089 * mmap tracking
5090 */
5091
5092 struct perf_mmap_event {
5093 struct vm_area_struct *vma;
5094
5095 const char *file_name;
5096 int file_size;
5097 int maj, min;
5098 u64 ino;
5099 u64 ino_generation;
5100
5101 struct {
5102 struct perf_event_header header;
5103
5104 u32 pid;
5105 u32 tid;
5106 u64 start;
5107 u64 len;
5108 u64 pgoff;
5109 } event_id;
5110 };
5111
5112 static int perf_event_mmap_match(struct perf_event *event,
5113 void *data)
5114 {
5115 struct perf_mmap_event *mmap_event = data;
5116 struct vm_area_struct *vma = mmap_event->vma;
5117 int executable = vma->vm_flags & VM_EXEC;
5118
5119 return (!executable && event->attr.mmap_data) ||
5120 (executable && (event->attr.mmap || event->attr.mmap2));
5121 }
5122
5123 static void perf_event_mmap_output(struct perf_event *event,
5124 void *data)
5125 {
5126 struct perf_mmap_event *mmap_event = data;
5127 struct perf_output_handle handle;
5128 struct perf_sample_data sample;
5129 int size = mmap_event->event_id.header.size;
5130 int ret;
5131
5132 if (!perf_event_mmap_match(event, data))
5133 return;
5134
5135 if (event->attr.mmap2) {
5136 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
5137 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
5138 mmap_event->event_id.header.size += sizeof(mmap_event->min);
5139 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
5140 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
5141 }
5142
5143 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
5144 ret = perf_output_begin(&handle, event,
5145 mmap_event->event_id.header.size);
5146 if (ret)
5147 goto out;
5148
5149 mmap_event->event_id.pid = perf_event_pid(event, current);
5150 mmap_event->event_id.tid = perf_event_tid(event, current);
5151
5152 perf_output_put(&handle, mmap_event->event_id);
5153
5154 if (event->attr.mmap2) {
5155 perf_output_put(&handle, mmap_event->maj);
5156 perf_output_put(&handle, mmap_event->min);
5157 perf_output_put(&handle, mmap_event->ino);
5158 perf_output_put(&handle, mmap_event->ino_generation);
5159 }
5160
5161 __output_copy(&handle, mmap_event->file_name,
5162 mmap_event->file_size);
5163
5164 perf_event__output_id_sample(event, &handle, &sample);
5165
5166 perf_output_end(&handle);
5167 out:
5168 mmap_event->event_id.header.size = size;
5169 }
5170
5171 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
5172 {
5173 struct vm_area_struct *vma = mmap_event->vma;
5174 struct file *file = vma->vm_file;
5175 int maj = 0, min = 0;
5176 u64 ino = 0, gen = 0;
5177 unsigned int size;
5178 char tmp[16];
5179 char *buf = NULL;
5180 char *name;
5181
5182 if (file) {
5183 struct inode *inode;
5184 dev_t dev;
5185
5186 buf = kmalloc(PATH_MAX, GFP_KERNEL);
5187 if (!buf) {
5188 name = "//enomem";
5189 goto cpy_name;
5190 }
5191 /*
5192 * d_path() works from the end of the rb backwards, so we
5193 * need to add enough zero bytes after the string to handle
5194 * the 64bit alignment we do later.
5195 */
5196 name = d_path(&file->f_path, buf, PATH_MAX - sizeof(u64));
5197 if (IS_ERR(name)) {
5198 name = "//toolong";
5199 goto cpy_name;
5200 }
5201 inode = file_inode(vma->vm_file);
5202 dev = inode->i_sb->s_dev;
5203 ino = inode->i_ino;
5204 gen = inode->i_generation;
5205 maj = MAJOR(dev);
5206 min = MINOR(dev);
5207 goto got_name;
5208 } else {
5209 name = (char *)arch_vma_name(vma);
5210 if (name)
5211 goto cpy_name;
5212
5213 if (vma->vm_start <= vma->vm_mm->start_brk &&
5214 vma->vm_end >= vma->vm_mm->brk) {
5215 name = "[heap]";
5216 goto cpy_name;
5217 }
5218 if (vma->vm_start <= vma->vm_mm->start_stack &&
5219 vma->vm_end >= vma->vm_mm->start_stack) {
5220 name = "[stack]";
5221 goto cpy_name;
5222 }
5223
5224 name = "//anon";
5225 goto cpy_name;
5226 }
5227
5228 cpy_name:
5229 strlcpy(tmp, name, sizeof(tmp));
5230 name = tmp;
5231 got_name:
5232 /*
5233 * Since our buffer works in 8 byte units we need to align our string
5234 * size to a multiple of 8. However, we must guarantee the tail end is
5235 * zero'd out to avoid leaking random bits to userspace.
5236 */
5237 size = strlen(name)+1;
5238 while (!IS_ALIGNED(size, sizeof(u64)))
5239 name[size++] = '\0';
5240
5241 mmap_event->file_name = name;
5242 mmap_event->file_size = size;
5243 mmap_event->maj = maj;
5244 mmap_event->min = min;
5245 mmap_event->ino = ino;
5246 mmap_event->ino_generation = gen;
5247
5248 if (!(vma->vm_flags & VM_EXEC))
5249 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
5250
5251 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
5252
5253 perf_event_aux(perf_event_mmap_output,
5254 mmap_event,
5255 NULL);
5256
5257 kfree(buf);
5258 }
5259
5260 void perf_event_mmap(struct vm_area_struct *vma)
5261 {
5262 struct perf_mmap_event mmap_event;
5263
5264 if (!atomic_read(&nr_mmap_events))
5265 return;
5266
5267 mmap_event = (struct perf_mmap_event){
5268 .vma = vma,
5269 /* .file_name */
5270 /* .file_size */
5271 .event_id = {
5272 .header = {
5273 .type = PERF_RECORD_MMAP,
5274 .misc = PERF_RECORD_MISC_USER,
5275 /* .size */
5276 },
5277 /* .pid */
5278 /* .tid */
5279 .start = vma->vm_start,
5280 .len = vma->vm_end - vma->vm_start,
5281 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
5282 },
5283 /* .maj (attr_mmap2 only) */
5284 /* .min (attr_mmap2 only) */
5285 /* .ino (attr_mmap2 only) */
5286 /* .ino_generation (attr_mmap2 only) */
5287 };
5288
5289 perf_event_mmap_event(&mmap_event);
5290 }
5291
5292 /*
5293 * IRQ throttle logging
5294 */
5295
5296 static void perf_log_throttle(struct perf_event *event, int enable)
5297 {
5298 struct perf_output_handle handle;
5299 struct perf_sample_data sample;
5300 int ret;
5301
5302 struct {
5303 struct perf_event_header header;
5304 u64 time;
5305 u64 id;
5306 u64 stream_id;
5307 } throttle_event = {
5308 .header = {
5309 .type = PERF_RECORD_THROTTLE,
5310 .misc = 0,
5311 .size = sizeof(throttle_event),
5312 },
5313 .time = perf_clock(),
5314 .id = primary_event_id(event),
5315 .stream_id = event->id,
5316 };
5317
5318 if (enable)
5319 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
5320
5321 perf_event_header__init_id(&throttle_event.header, &sample, event);
5322
5323 ret = perf_output_begin(&handle, event,
5324 throttle_event.header.size);
5325 if (ret)
5326 return;
5327
5328 perf_output_put(&handle, throttle_event);
5329 perf_event__output_id_sample(event, &handle, &sample);
5330 perf_output_end(&handle);
5331 }
5332
5333 /*
5334 * Generic event overflow handling, sampling.
5335 */
5336
5337 static int __perf_event_overflow(struct perf_event *event,
5338 int throttle, struct perf_sample_data *data,
5339 struct pt_regs *regs)
5340 {
5341 int events = atomic_read(&event->event_limit);
5342 struct hw_perf_event *hwc = &event->hw;
5343 u64 seq;
5344 int ret = 0;
5345
5346 /*
5347 * Non-sampling counters might still use the PMI to fold short
5348 * hardware counters, ignore those.
5349 */
5350 if (unlikely(!is_sampling_event(event)))
5351 return 0;
5352
5353 seq = __this_cpu_read(perf_throttled_seq);
5354 if (seq != hwc->interrupts_seq) {
5355 hwc->interrupts_seq = seq;
5356 hwc->interrupts = 1;
5357 } else {
5358 hwc->interrupts++;
5359 if (unlikely(throttle
5360 && hwc->interrupts >= max_samples_per_tick)) {
5361 __this_cpu_inc(perf_throttled_count);
5362 hwc->interrupts = MAX_INTERRUPTS;
5363 perf_log_throttle(event, 0);
5364 tick_nohz_full_kick();
5365 ret = 1;
5366 }
5367 }
5368
5369 if (event->attr.freq) {
5370 u64 now = perf_clock();
5371 s64 delta = now - hwc->freq_time_stamp;
5372
5373 hwc->freq_time_stamp = now;
5374
5375 if (delta > 0 && delta < 2*TICK_NSEC)
5376 perf_adjust_period(event, delta, hwc->last_period, true);
5377 }
5378
5379 /*
5380 * XXX event_limit might not quite work as expected on inherited
5381 * events
5382 */
5383
5384 event->pending_kill = POLL_IN;
5385 if (events && atomic_dec_and_test(&event->event_limit)) {
5386 ret = 1;
5387 event->pending_kill = POLL_HUP;
5388 event->pending_disable = 1;
5389 irq_work_queue(&event->pending);
5390 }
5391
5392 if (event->overflow_handler)
5393 event->overflow_handler(event, data, regs);
5394 else
5395 perf_event_output(event, data, regs);
5396
5397 if (event->fasync && event->pending_kill) {
5398 event->pending_wakeup = 1;
5399 irq_work_queue(&event->pending);
5400 }
5401
5402 return ret;
5403 }
5404
5405 int perf_event_overflow(struct perf_event *event,
5406 struct perf_sample_data *data,
5407 struct pt_regs *regs)
5408 {
5409 return __perf_event_overflow(event, 1, data, regs);
5410 }
5411
5412 /*
5413 * Generic software event infrastructure
5414 */
5415
5416 struct swevent_htable {
5417 struct swevent_hlist *swevent_hlist;
5418 struct mutex hlist_mutex;
5419 int hlist_refcount;
5420
5421 /* Recursion avoidance in each contexts */
5422 int recursion[PERF_NR_CONTEXTS];
5423 };
5424
5425 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
5426
5427 /*
5428 * We directly increment event->count and keep a second value in
5429 * event->hw.period_left to count intervals. This period event
5430 * is kept in the range [-sample_period, 0] so that we can use the
5431 * sign as trigger.
5432 */
5433
5434 u64 perf_swevent_set_period(struct perf_event *event)
5435 {
5436 struct hw_perf_event *hwc = &event->hw;
5437 u64 period = hwc->last_period;
5438 u64 nr, offset;
5439 s64 old, val;
5440
5441 hwc->last_period = hwc->sample_period;
5442
5443 again:
5444 old = val = local64_read(&hwc->period_left);
5445 if (val < 0)
5446 return 0;
5447
5448 nr = div64_u64(period + val, period);
5449 offset = nr * period;
5450 val -= offset;
5451 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
5452 goto again;
5453
5454 return nr;
5455 }
5456
5457 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
5458 struct perf_sample_data *data,
5459 struct pt_regs *regs)
5460 {
5461 struct hw_perf_event *hwc = &event->hw;
5462 int throttle = 0;
5463
5464 if (!overflow)
5465 overflow = perf_swevent_set_period(event);
5466
5467 if (hwc->interrupts == MAX_INTERRUPTS)
5468 return;
5469
5470 for (; overflow; overflow--) {
5471 if (__perf_event_overflow(event, throttle,
5472 data, regs)) {
5473 /*
5474 * We inhibit the overflow from happening when
5475 * hwc->interrupts == MAX_INTERRUPTS.
5476 */
5477 break;
5478 }
5479 throttle = 1;
5480 }
5481 }
5482
5483 static void perf_swevent_event(struct perf_event *event, u64 nr,
5484 struct perf_sample_data *data,
5485 struct pt_regs *regs)
5486 {
5487 struct hw_perf_event *hwc = &event->hw;
5488
5489 local64_add(nr, &event->count);
5490
5491 if (!regs)
5492 return;
5493
5494 if (!is_sampling_event(event))
5495 return;
5496
5497 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
5498 data->period = nr;
5499 return perf_swevent_overflow(event, 1, data, regs);
5500 } else
5501 data->period = event->hw.last_period;
5502
5503 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
5504 return perf_swevent_overflow(event, 1, data, regs);
5505
5506 if (local64_add_negative(nr, &hwc->period_left))
5507 return;
5508
5509 perf_swevent_overflow(event, 0, data, regs);
5510 }
5511
5512 static int perf_exclude_event(struct perf_event *event,
5513 struct pt_regs *regs)
5514 {
5515 if (event->hw.state & PERF_HES_STOPPED)
5516 return 1;
5517
5518 if (regs) {
5519 if (event->attr.exclude_user && user_mode(regs))
5520 return 1;
5521
5522 if (event->attr.exclude_kernel && !user_mode(regs))
5523 return 1;
5524 }
5525
5526 return 0;
5527 }
5528
5529 static int perf_swevent_match(struct perf_event *event,
5530 enum perf_type_id type,
5531 u32 event_id,
5532 struct perf_sample_data *data,
5533 struct pt_regs *regs)
5534 {
5535 if (event->attr.type != type)
5536 return 0;
5537
5538 if (event->attr.config != event_id)
5539 return 0;
5540
5541 if (perf_exclude_event(event, regs))
5542 return 0;
5543
5544 return 1;
5545 }
5546
5547 static inline u64 swevent_hash(u64 type, u32 event_id)
5548 {
5549 u64 val = event_id | (type << 32);
5550
5551 return hash_64(val, SWEVENT_HLIST_BITS);
5552 }
5553
5554 static inline struct hlist_head *
5555 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
5556 {
5557 u64 hash = swevent_hash(type, event_id);
5558
5559 return &hlist->heads[hash];
5560 }
5561
5562 /* For the read side: events when they trigger */
5563 static inline struct hlist_head *
5564 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
5565 {
5566 struct swevent_hlist *hlist;
5567
5568 hlist = rcu_dereference(swhash->swevent_hlist);
5569 if (!hlist)
5570 return NULL;
5571
5572 return __find_swevent_head(hlist, type, event_id);
5573 }
5574
5575 /* For the event head insertion and removal in the hlist */
5576 static inline struct hlist_head *
5577 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
5578 {
5579 struct swevent_hlist *hlist;
5580 u32 event_id = event->attr.config;
5581 u64 type = event->attr.type;
5582
5583 /*
5584 * Event scheduling is always serialized against hlist allocation
5585 * and release. Which makes the protected version suitable here.
5586 * The context lock guarantees that.
5587 */
5588 hlist = rcu_dereference_protected(swhash->swevent_hlist,
5589 lockdep_is_held(&event->ctx->lock));
5590 if (!hlist)
5591 return NULL;
5592
5593 return __find_swevent_head(hlist, type, event_id);
5594 }
5595
5596 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
5597 u64 nr,
5598 struct perf_sample_data *data,
5599 struct pt_regs *regs)
5600 {
5601 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5602 struct perf_event *event;
5603 struct hlist_head *head;
5604
5605 rcu_read_lock();
5606 head = find_swevent_head_rcu(swhash, type, event_id);
5607 if (!head)
5608 goto end;
5609
5610 hlist_for_each_entry_rcu(event, head, hlist_entry) {
5611 if (perf_swevent_match(event, type, event_id, data, regs))
5612 perf_swevent_event(event, nr, data, regs);
5613 }
5614 end:
5615 rcu_read_unlock();
5616 }
5617
5618 int perf_swevent_get_recursion_context(void)
5619 {
5620 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5621
5622 return get_recursion_context(swhash->recursion);
5623 }
5624 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
5625
5626 inline void perf_swevent_put_recursion_context(int rctx)
5627 {
5628 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5629
5630 put_recursion_context(swhash->recursion, rctx);
5631 }
5632
5633 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
5634 {
5635 struct perf_sample_data data;
5636 int rctx;
5637
5638 preempt_disable_notrace();
5639 rctx = perf_swevent_get_recursion_context();
5640 if (rctx < 0)
5641 return;
5642
5643 perf_sample_data_init(&data, addr, 0);
5644
5645 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
5646
5647 perf_swevent_put_recursion_context(rctx);
5648 preempt_enable_notrace();
5649 }
5650
5651 static void perf_swevent_read(struct perf_event *event)
5652 {
5653 }
5654
5655 static int perf_swevent_add(struct perf_event *event, int flags)
5656 {
5657 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5658 struct hw_perf_event *hwc = &event->hw;
5659 struct hlist_head *head;
5660
5661 if (is_sampling_event(event)) {
5662 hwc->last_period = hwc->sample_period;
5663 perf_swevent_set_period(event);
5664 }
5665
5666 hwc->state = !(flags & PERF_EF_START);
5667
5668 head = find_swevent_head(swhash, event);
5669 if (WARN_ON_ONCE(!head))
5670 return -EINVAL;
5671
5672 hlist_add_head_rcu(&event->hlist_entry, head);
5673
5674 return 0;
5675 }
5676
5677 static void perf_swevent_del(struct perf_event *event, int flags)
5678 {
5679 hlist_del_rcu(&event->hlist_entry);
5680 }
5681
5682 static void perf_swevent_start(struct perf_event *event, int flags)
5683 {
5684 event->hw.state = 0;
5685 }
5686
5687 static void perf_swevent_stop(struct perf_event *event, int flags)
5688 {
5689 event->hw.state = PERF_HES_STOPPED;
5690 }
5691
5692 /* Deref the hlist from the update side */
5693 static inline struct swevent_hlist *
5694 swevent_hlist_deref(struct swevent_htable *swhash)
5695 {
5696 return rcu_dereference_protected(swhash->swevent_hlist,
5697 lockdep_is_held(&swhash->hlist_mutex));
5698 }
5699
5700 static void swevent_hlist_release(struct swevent_htable *swhash)
5701 {
5702 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
5703
5704 if (!hlist)
5705 return;
5706
5707 rcu_assign_pointer(swhash->swevent_hlist, NULL);
5708 kfree_rcu(hlist, rcu_head);
5709 }
5710
5711 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
5712 {
5713 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5714
5715 mutex_lock(&swhash->hlist_mutex);
5716
5717 if (!--swhash->hlist_refcount)
5718 swevent_hlist_release(swhash);
5719
5720 mutex_unlock(&swhash->hlist_mutex);
5721 }
5722
5723 static void swevent_hlist_put(struct perf_event *event)
5724 {
5725 int cpu;
5726
5727 for_each_possible_cpu(cpu)
5728 swevent_hlist_put_cpu(event, cpu);
5729 }
5730
5731 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
5732 {
5733 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5734 int err = 0;
5735
5736 mutex_lock(&swhash->hlist_mutex);
5737
5738 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
5739 struct swevent_hlist *hlist;
5740
5741 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
5742 if (!hlist) {
5743 err = -ENOMEM;
5744 goto exit;
5745 }
5746 rcu_assign_pointer(swhash->swevent_hlist, hlist);
5747 }
5748 swhash->hlist_refcount++;
5749 exit:
5750 mutex_unlock(&swhash->hlist_mutex);
5751
5752 return err;
5753 }
5754
5755 static int swevent_hlist_get(struct perf_event *event)
5756 {
5757 int err;
5758 int cpu, failed_cpu;
5759
5760 get_online_cpus();
5761 for_each_possible_cpu(cpu) {
5762 err = swevent_hlist_get_cpu(event, cpu);
5763 if (err) {
5764 failed_cpu = cpu;
5765 goto fail;
5766 }
5767 }
5768 put_online_cpus();
5769
5770 return 0;
5771 fail:
5772 for_each_possible_cpu(cpu) {
5773 if (cpu == failed_cpu)
5774 break;
5775 swevent_hlist_put_cpu(event, cpu);
5776 }
5777
5778 put_online_cpus();
5779 return err;
5780 }
5781
5782 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
5783
5784 static void sw_perf_event_destroy(struct perf_event *event)
5785 {
5786 u64 event_id = event->attr.config;
5787
5788 WARN_ON(event->parent);
5789
5790 static_key_slow_dec(&perf_swevent_enabled[event_id]);
5791 swevent_hlist_put(event);
5792 }
5793
5794 static int perf_swevent_init(struct perf_event *event)
5795 {
5796 u64 event_id = event->attr.config;
5797
5798 if (event->attr.type != PERF_TYPE_SOFTWARE)
5799 return -ENOENT;
5800
5801 /*
5802 * no branch sampling for software events
5803 */
5804 if (has_branch_stack(event))
5805 return -EOPNOTSUPP;
5806
5807 switch (event_id) {
5808 case PERF_COUNT_SW_CPU_CLOCK:
5809 case PERF_COUNT_SW_TASK_CLOCK:
5810 return -ENOENT;
5811
5812 default:
5813 break;
5814 }
5815
5816 if (event_id >= PERF_COUNT_SW_MAX)
5817 return -ENOENT;
5818
5819 if (!event->parent) {
5820 int err;
5821
5822 err = swevent_hlist_get(event);
5823 if (err)
5824 return err;
5825
5826 static_key_slow_inc(&perf_swevent_enabled[event_id]);
5827 event->destroy = sw_perf_event_destroy;
5828 }
5829
5830 return 0;
5831 }
5832
5833 static int perf_swevent_event_idx(struct perf_event *event)
5834 {
5835 return 0;
5836 }
5837
5838 static struct pmu perf_swevent = {
5839 .task_ctx_nr = perf_sw_context,
5840
5841 .event_init = perf_swevent_init,
5842 .add = perf_swevent_add,
5843 .del = perf_swevent_del,
5844 .start = perf_swevent_start,
5845 .stop = perf_swevent_stop,
5846 .read = perf_swevent_read,
5847
5848 .event_idx = perf_swevent_event_idx,
5849 };
5850
5851 #ifdef CONFIG_EVENT_TRACING
5852
5853 static int perf_tp_filter_match(struct perf_event *event,
5854 struct perf_sample_data *data)
5855 {
5856 void *record = data->raw->data;
5857
5858 if (likely(!event->filter) || filter_match_preds(event->filter, record))
5859 return 1;
5860 return 0;
5861 }
5862
5863 static int perf_tp_event_match(struct perf_event *event,
5864 struct perf_sample_data *data,
5865 struct pt_regs *regs)
5866 {
5867 if (event->hw.state & PERF_HES_STOPPED)
5868 return 0;
5869 /*
5870 * All tracepoints are from kernel-space.
5871 */
5872 if (event->attr.exclude_kernel)
5873 return 0;
5874
5875 if (!perf_tp_filter_match(event, data))
5876 return 0;
5877
5878 return 1;
5879 }
5880
5881 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
5882 struct pt_regs *regs, struct hlist_head *head, int rctx,
5883 struct task_struct *task)
5884 {
5885 struct perf_sample_data data;
5886 struct perf_event *event;
5887
5888 struct perf_raw_record raw = {
5889 .size = entry_size,
5890 .data = record,
5891 };
5892
5893 perf_sample_data_init(&data, addr, 0);
5894 data.raw = &raw;
5895
5896 hlist_for_each_entry_rcu(event, head, hlist_entry) {
5897 if (perf_tp_event_match(event, &data, regs))
5898 perf_swevent_event(event, count, &data, regs);
5899 }
5900
5901 /*
5902 * If we got specified a target task, also iterate its context and
5903 * deliver this event there too.
5904 */
5905 if (task && task != current) {
5906 struct perf_event_context *ctx;
5907 struct trace_entry *entry = record;
5908
5909 rcu_read_lock();
5910 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
5911 if (!ctx)
5912 goto unlock;
5913
5914 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5915 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5916 continue;
5917 if (event->attr.config != entry->type)
5918 continue;
5919 if (perf_tp_event_match(event, &data, regs))
5920 perf_swevent_event(event, count, &data, regs);
5921 }
5922 unlock:
5923 rcu_read_unlock();
5924 }
5925
5926 perf_swevent_put_recursion_context(rctx);
5927 }
5928 EXPORT_SYMBOL_GPL(perf_tp_event);
5929
5930 static void tp_perf_event_destroy(struct perf_event *event)
5931 {
5932 perf_trace_destroy(event);
5933 }
5934
5935 static int perf_tp_event_init(struct perf_event *event)
5936 {
5937 int err;
5938
5939 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5940 return -ENOENT;
5941
5942 /*
5943 * no branch sampling for tracepoint events
5944 */
5945 if (has_branch_stack(event))
5946 return -EOPNOTSUPP;
5947
5948 err = perf_trace_init(event);
5949 if (err)
5950 return err;
5951
5952 event->destroy = tp_perf_event_destroy;
5953
5954 return 0;
5955 }
5956
5957 static struct pmu perf_tracepoint = {
5958 .task_ctx_nr = perf_sw_context,
5959
5960 .event_init = perf_tp_event_init,
5961 .add = perf_trace_add,
5962 .del = perf_trace_del,
5963 .start = perf_swevent_start,
5964 .stop = perf_swevent_stop,
5965 .read = perf_swevent_read,
5966
5967 .event_idx = perf_swevent_event_idx,
5968 };
5969
5970 static inline void perf_tp_register(void)
5971 {
5972 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
5973 }
5974
5975 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5976 {
5977 char *filter_str;
5978 int ret;
5979
5980 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5981 return -EINVAL;
5982
5983 filter_str = strndup_user(arg, PAGE_SIZE);
5984 if (IS_ERR(filter_str))
5985 return PTR_ERR(filter_str);
5986
5987 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
5988
5989 kfree(filter_str);
5990 return ret;
5991 }
5992
5993 static void perf_event_free_filter(struct perf_event *event)
5994 {
5995 ftrace_profile_free_filter(event);
5996 }
5997
5998 #else
5999
6000 static inline void perf_tp_register(void)
6001 {
6002 }
6003
6004 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
6005 {
6006 return -ENOENT;
6007 }
6008
6009 static void perf_event_free_filter(struct perf_event *event)
6010 {
6011 }
6012
6013 #endif /* CONFIG_EVENT_TRACING */
6014
6015 #ifdef CONFIG_HAVE_HW_BREAKPOINT
6016 void perf_bp_event(struct perf_event *bp, void *data)
6017 {
6018 struct perf_sample_data sample;
6019 struct pt_regs *regs = data;
6020
6021 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
6022
6023 if (!bp->hw.state && !perf_exclude_event(bp, regs))
6024 perf_swevent_event(bp, 1, &sample, regs);
6025 }
6026 #endif
6027
6028 /*
6029 * hrtimer based swevent callback
6030 */
6031
6032 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
6033 {
6034 enum hrtimer_restart ret = HRTIMER_RESTART;
6035 struct perf_sample_data data;
6036 struct pt_regs *regs;
6037 struct perf_event *event;
6038 u64 period;
6039
6040 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
6041
6042 if (event->state != PERF_EVENT_STATE_ACTIVE)
6043 return HRTIMER_NORESTART;
6044
6045 event->pmu->read(event);
6046
6047 perf_sample_data_init(&data, 0, event->hw.last_period);
6048 regs = get_irq_regs();
6049
6050 if (regs && !perf_exclude_event(event, regs)) {
6051 if (!(event->attr.exclude_idle && is_idle_task(current)))
6052 if (__perf_event_overflow(event, 1, &data, regs))
6053 ret = HRTIMER_NORESTART;
6054 }
6055
6056 period = max_t(u64, 10000, event->hw.sample_period);
6057 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
6058
6059 return ret;
6060 }
6061
6062 static void perf_swevent_start_hrtimer(struct perf_event *event)
6063 {
6064 struct hw_perf_event *hwc = &event->hw;
6065 s64 period;
6066
6067 if (!is_sampling_event(event))
6068 return;
6069
6070 period = local64_read(&hwc->period_left);
6071 if (period) {
6072 if (period < 0)
6073 period = 10000;
6074
6075 local64_set(&hwc->period_left, 0);
6076 } else {
6077 period = max_t(u64, 10000, hwc->sample_period);
6078 }
6079 __hrtimer_start_range_ns(&hwc->hrtimer,
6080 ns_to_ktime(period), 0,
6081 HRTIMER_MODE_REL_PINNED, 0);
6082 }
6083
6084 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
6085 {
6086 struct hw_perf_event *hwc = &event->hw;
6087
6088 if (is_sampling_event(event)) {
6089 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
6090 local64_set(&hwc->period_left, ktime_to_ns(remaining));
6091
6092 hrtimer_cancel(&hwc->hrtimer);
6093 }
6094 }
6095
6096 static void perf_swevent_init_hrtimer(struct perf_event *event)
6097 {
6098 struct hw_perf_event *hwc = &event->hw;
6099
6100 if (!is_sampling_event(event))
6101 return;
6102
6103 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
6104 hwc->hrtimer.function = perf_swevent_hrtimer;
6105
6106 /*
6107 * Since hrtimers have a fixed rate, we can do a static freq->period
6108 * mapping and avoid the whole period adjust feedback stuff.
6109 */
6110 if (event->attr.freq) {
6111 long freq = event->attr.sample_freq;
6112
6113 event->attr.sample_period = NSEC_PER_SEC / freq;
6114 hwc->sample_period = event->attr.sample_period;
6115 local64_set(&hwc->period_left, hwc->sample_period);
6116 hwc->last_period = hwc->sample_period;
6117 event->attr.freq = 0;
6118 }
6119 }
6120
6121 /*
6122 * Software event: cpu wall time clock
6123 */
6124
6125 static void cpu_clock_event_update(struct perf_event *event)
6126 {
6127 s64 prev;
6128 u64 now;
6129
6130 now = local_clock();
6131 prev = local64_xchg(&event->hw.prev_count, now);
6132 local64_add(now - prev, &event->count);
6133 }
6134
6135 static void cpu_clock_event_start(struct perf_event *event, int flags)
6136 {
6137 local64_set(&event->hw.prev_count, local_clock());
6138 perf_swevent_start_hrtimer(event);
6139 }
6140
6141 static void cpu_clock_event_stop(struct perf_event *event, int flags)
6142 {
6143 perf_swevent_cancel_hrtimer(event);
6144 cpu_clock_event_update(event);
6145 }
6146
6147 static int cpu_clock_event_add(struct perf_event *event, int flags)
6148 {
6149 if (flags & PERF_EF_START)
6150 cpu_clock_event_start(event, flags);
6151
6152 return 0;
6153 }
6154
6155 static void cpu_clock_event_del(struct perf_event *event, int flags)
6156 {
6157 cpu_clock_event_stop(event, flags);
6158 }
6159
6160 static void cpu_clock_event_read(struct perf_event *event)
6161 {
6162 cpu_clock_event_update(event);
6163 }
6164
6165 static int cpu_clock_event_init(struct perf_event *event)
6166 {
6167 if (event->attr.type != PERF_TYPE_SOFTWARE)
6168 return -ENOENT;
6169
6170 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
6171 return -ENOENT;
6172
6173 /*
6174 * no branch sampling for software events
6175 */
6176 if (has_branch_stack(event))
6177 return -EOPNOTSUPP;
6178
6179 perf_swevent_init_hrtimer(event);
6180
6181 return 0;
6182 }
6183
6184 static struct pmu perf_cpu_clock = {
6185 .task_ctx_nr = perf_sw_context,
6186
6187 .event_init = cpu_clock_event_init,
6188 .add = cpu_clock_event_add,
6189 .del = cpu_clock_event_del,
6190 .start = cpu_clock_event_start,
6191 .stop = cpu_clock_event_stop,
6192 .read = cpu_clock_event_read,
6193
6194 .event_idx = perf_swevent_event_idx,
6195 };
6196
6197 /*
6198 * Software event: task time clock
6199 */
6200
6201 static void task_clock_event_update(struct perf_event *event, u64 now)
6202 {
6203 u64 prev;
6204 s64 delta;
6205
6206 prev = local64_xchg(&event->hw.prev_count, now);
6207 delta = now - prev;
6208 local64_add(delta, &event->count);
6209 }
6210
6211 static void task_clock_event_start(struct perf_event *event, int flags)
6212 {
6213 local64_set(&event->hw.prev_count, event->ctx->time);
6214 perf_swevent_start_hrtimer(event);
6215 }
6216
6217 static void task_clock_event_stop(struct perf_event *event, int flags)
6218 {
6219 perf_swevent_cancel_hrtimer(event);
6220 task_clock_event_update(event, event->ctx->time);
6221 }
6222
6223 static int task_clock_event_add(struct perf_event *event, int flags)
6224 {
6225 if (flags & PERF_EF_START)
6226 task_clock_event_start(event, flags);
6227
6228 return 0;
6229 }
6230
6231 static void task_clock_event_del(struct perf_event *event, int flags)
6232 {
6233 task_clock_event_stop(event, PERF_EF_UPDATE);
6234 }
6235
6236 static void task_clock_event_read(struct perf_event *event)
6237 {
6238 u64 now = perf_clock();
6239 u64 delta = now - event->ctx->timestamp;
6240 u64 time = event->ctx->time + delta;
6241
6242 task_clock_event_update(event, time);
6243 }
6244
6245 static int task_clock_event_init(struct perf_event *event)
6246 {
6247 if (event->attr.type != PERF_TYPE_SOFTWARE)
6248 return -ENOENT;
6249
6250 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
6251 return -ENOENT;
6252
6253 /*
6254 * no branch sampling for software events
6255 */
6256 if (has_branch_stack(event))
6257 return -EOPNOTSUPP;
6258
6259 perf_swevent_init_hrtimer(event);
6260
6261 return 0;
6262 }
6263
6264 static struct pmu perf_task_clock = {
6265 .task_ctx_nr = perf_sw_context,
6266
6267 .event_init = task_clock_event_init,
6268 .add = task_clock_event_add,
6269 .del = task_clock_event_del,
6270 .start = task_clock_event_start,
6271 .stop = task_clock_event_stop,
6272 .read = task_clock_event_read,
6273
6274 .event_idx = perf_swevent_event_idx,
6275 };
6276
6277 static void perf_pmu_nop_void(struct pmu *pmu)
6278 {
6279 }
6280
6281 static int perf_pmu_nop_int(struct pmu *pmu)
6282 {
6283 return 0;
6284 }
6285
6286 static void perf_pmu_start_txn(struct pmu *pmu)
6287 {
6288 perf_pmu_disable(pmu);
6289 }
6290
6291 static int perf_pmu_commit_txn(struct pmu *pmu)
6292 {
6293 perf_pmu_enable(pmu);
6294 return 0;
6295 }
6296
6297 static void perf_pmu_cancel_txn(struct pmu *pmu)
6298 {
6299 perf_pmu_enable(pmu);
6300 }
6301
6302 static int perf_event_idx_default(struct perf_event *event)
6303 {
6304 return event->hw.idx + 1;
6305 }
6306
6307 /*
6308 * Ensures all contexts with the same task_ctx_nr have the same
6309 * pmu_cpu_context too.
6310 */
6311 static void *find_pmu_context(int ctxn)
6312 {
6313 struct pmu *pmu;
6314
6315 if (ctxn < 0)
6316 return NULL;
6317
6318 list_for_each_entry(pmu, &pmus, entry) {
6319 if (pmu->task_ctx_nr == ctxn)
6320 return pmu->pmu_cpu_context;
6321 }
6322
6323 return NULL;
6324 }
6325
6326 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
6327 {
6328 int cpu;
6329
6330 for_each_possible_cpu(cpu) {
6331 struct perf_cpu_context *cpuctx;
6332
6333 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6334
6335 if (cpuctx->unique_pmu == old_pmu)
6336 cpuctx->unique_pmu = pmu;
6337 }
6338 }
6339
6340 static void free_pmu_context(struct pmu *pmu)
6341 {
6342 struct pmu *i;
6343
6344 mutex_lock(&pmus_lock);
6345 /*
6346 * Like a real lame refcount.
6347 */
6348 list_for_each_entry(i, &pmus, entry) {
6349 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
6350 update_pmu_context(i, pmu);
6351 goto out;
6352 }
6353 }
6354
6355 free_percpu(pmu->pmu_cpu_context);
6356 out:
6357 mutex_unlock(&pmus_lock);
6358 }
6359 static struct idr pmu_idr;
6360
6361 static ssize_t
6362 type_show(struct device *dev, struct device_attribute *attr, char *page)
6363 {
6364 struct pmu *pmu = dev_get_drvdata(dev);
6365
6366 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
6367 }
6368 static DEVICE_ATTR_RO(type);
6369
6370 static ssize_t
6371 perf_event_mux_interval_ms_show(struct device *dev,
6372 struct device_attribute *attr,
6373 char *page)
6374 {
6375 struct pmu *pmu = dev_get_drvdata(dev);
6376
6377 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
6378 }
6379
6380 static ssize_t
6381 perf_event_mux_interval_ms_store(struct device *dev,
6382 struct device_attribute *attr,
6383 const char *buf, size_t count)
6384 {
6385 struct pmu *pmu = dev_get_drvdata(dev);
6386 int timer, cpu, ret;
6387
6388 ret = kstrtoint(buf, 0, &timer);
6389 if (ret)
6390 return ret;
6391
6392 if (timer < 1)
6393 return -EINVAL;
6394
6395 /* same value, noting to do */
6396 if (timer == pmu->hrtimer_interval_ms)
6397 return count;
6398
6399 pmu->hrtimer_interval_ms = timer;
6400
6401 /* update all cpuctx for this PMU */
6402 for_each_possible_cpu(cpu) {
6403 struct perf_cpu_context *cpuctx;
6404 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6405 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
6406
6407 if (hrtimer_active(&cpuctx->hrtimer))
6408 hrtimer_forward_now(&cpuctx->hrtimer, cpuctx->hrtimer_interval);
6409 }
6410
6411 return count;
6412 }
6413 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
6414
6415 static struct attribute *pmu_dev_attrs[] = {
6416 &dev_attr_type.attr,
6417 &dev_attr_perf_event_mux_interval_ms.attr,
6418 NULL,
6419 };
6420 ATTRIBUTE_GROUPS(pmu_dev);
6421
6422 static int pmu_bus_running;
6423 static struct bus_type pmu_bus = {
6424 .name = "event_source",
6425 .dev_groups = pmu_dev_groups,
6426 };
6427
6428 static void pmu_dev_release(struct device *dev)
6429 {
6430 kfree(dev);
6431 }
6432
6433 static int pmu_dev_alloc(struct pmu *pmu)
6434 {
6435 int ret = -ENOMEM;
6436
6437 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
6438 if (!pmu->dev)
6439 goto out;
6440
6441 pmu->dev->groups = pmu->attr_groups;
6442 device_initialize(pmu->dev);
6443 ret = dev_set_name(pmu->dev, "%s", pmu->name);
6444 if (ret)
6445 goto free_dev;
6446
6447 dev_set_drvdata(pmu->dev, pmu);
6448 pmu->dev->bus = &pmu_bus;
6449 pmu->dev->release = pmu_dev_release;
6450 ret = device_add(pmu->dev);
6451 if (ret)
6452 goto free_dev;
6453
6454 out:
6455 return ret;
6456
6457 free_dev:
6458 put_device(pmu->dev);
6459 goto out;
6460 }
6461
6462 static struct lock_class_key cpuctx_mutex;
6463 static struct lock_class_key cpuctx_lock;
6464
6465 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
6466 {
6467 int cpu, ret;
6468
6469 mutex_lock(&pmus_lock);
6470 ret = -ENOMEM;
6471 pmu->pmu_disable_count = alloc_percpu(int);
6472 if (!pmu->pmu_disable_count)
6473 goto unlock;
6474
6475 pmu->type = -1;
6476 if (!name)
6477 goto skip_type;
6478 pmu->name = name;
6479
6480 if (type < 0) {
6481 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
6482 if (type < 0) {
6483 ret = type;
6484 goto free_pdc;
6485 }
6486 }
6487 pmu->type = type;
6488
6489 if (pmu_bus_running) {
6490 ret = pmu_dev_alloc(pmu);
6491 if (ret)
6492 goto free_idr;
6493 }
6494
6495 skip_type:
6496 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
6497 if (pmu->pmu_cpu_context)
6498 goto got_cpu_context;
6499
6500 ret = -ENOMEM;
6501 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
6502 if (!pmu->pmu_cpu_context)
6503 goto free_dev;
6504
6505 for_each_possible_cpu(cpu) {
6506 struct perf_cpu_context *cpuctx;
6507
6508 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6509 __perf_event_init_context(&cpuctx->ctx);
6510 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
6511 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
6512 cpuctx->ctx.type = cpu_context;
6513 cpuctx->ctx.pmu = pmu;
6514
6515 __perf_cpu_hrtimer_init(cpuctx, cpu);
6516
6517 INIT_LIST_HEAD(&cpuctx->rotation_list);
6518 cpuctx->unique_pmu = pmu;
6519 }
6520
6521 got_cpu_context:
6522 if (!pmu->start_txn) {
6523 if (pmu->pmu_enable) {
6524 /*
6525 * If we have pmu_enable/pmu_disable calls, install
6526 * transaction stubs that use that to try and batch
6527 * hardware accesses.
6528 */
6529 pmu->start_txn = perf_pmu_start_txn;
6530 pmu->commit_txn = perf_pmu_commit_txn;
6531 pmu->cancel_txn = perf_pmu_cancel_txn;
6532 } else {
6533 pmu->start_txn = perf_pmu_nop_void;
6534 pmu->commit_txn = perf_pmu_nop_int;
6535 pmu->cancel_txn = perf_pmu_nop_void;
6536 }
6537 }
6538
6539 if (!pmu->pmu_enable) {
6540 pmu->pmu_enable = perf_pmu_nop_void;
6541 pmu->pmu_disable = perf_pmu_nop_void;
6542 }
6543
6544 if (!pmu->event_idx)
6545 pmu->event_idx = perf_event_idx_default;
6546
6547 list_add_rcu(&pmu->entry, &pmus);
6548 ret = 0;
6549 unlock:
6550 mutex_unlock(&pmus_lock);
6551
6552 return ret;
6553
6554 free_dev:
6555 device_del(pmu->dev);
6556 put_device(pmu->dev);
6557
6558 free_idr:
6559 if (pmu->type >= PERF_TYPE_MAX)
6560 idr_remove(&pmu_idr, pmu->type);
6561
6562 free_pdc:
6563 free_percpu(pmu->pmu_disable_count);
6564 goto unlock;
6565 }
6566
6567 void perf_pmu_unregister(struct pmu *pmu)
6568 {
6569 mutex_lock(&pmus_lock);
6570 list_del_rcu(&pmu->entry);
6571 mutex_unlock(&pmus_lock);
6572
6573 /*
6574 * We dereference the pmu list under both SRCU and regular RCU, so
6575 * synchronize against both of those.
6576 */
6577 synchronize_srcu(&pmus_srcu);
6578 synchronize_rcu();
6579
6580 free_percpu(pmu->pmu_disable_count);
6581 if (pmu->type >= PERF_TYPE_MAX)
6582 idr_remove(&pmu_idr, pmu->type);
6583 device_del(pmu->dev);
6584 put_device(pmu->dev);
6585 free_pmu_context(pmu);
6586 }
6587
6588 struct pmu *perf_init_event(struct perf_event *event)
6589 {
6590 struct pmu *pmu = NULL;
6591 int idx;
6592 int ret;
6593
6594 idx = srcu_read_lock(&pmus_srcu);
6595
6596 rcu_read_lock();
6597 pmu = idr_find(&pmu_idr, event->attr.type);
6598 rcu_read_unlock();
6599 if (pmu) {
6600 event->pmu = pmu;
6601 ret = pmu->event_init(event);
6602 if (ret)
6603 pmu = ERR_PTR(ret);
6604 goto unlock;
6605 }
6606
6607 list_for_each_entry_rcu(pmu, &pmus, entry) {
6608 event->pmu = pmu;
6609 ret = pmu->event_init(event);
6610 if (!ret)
6611 goto unlock;
6612
6613 if (ret != -ENOENT) {
6614 pmu = ERR_PTR(ret);
6615 goto unlock;
6616 }
6617 }
6618 pmu = ERR_PTR(-ENOENT);
6619 unlock:
6620 srcu_read_unlock(&pmus_srcu, idx);
6621
6622 return pmu;
6623 }
6624
6625 static void account_event_cpu(struct perf_event *event, int cpu)
6626 {
6627 if (event->parent)
6628 return;
6629
6630 if (has_branch_stack(event)) {
6631 if (!(event->attach_state & PERF_ATTACH_TASK))
6632 atomic_inc(&per_cpu(perf_branch_stack_events, cpu));
6633 }
6634 if (is_cgroup_event(event))
6635 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
6636 }
6637
6638 static void account_event(struct perf_event *event)
6639 {
6640 if (event->parent)
6641 return;
6642
6643 if (event->attach_state & PERF_ATTACH_TASK)
6644 static_key_slow_inc(&perf_sched_events.key);
6645 if (event->attr.mmap || event->attr.mmap_data)
6646 atomic_inc(&nr_mmap_events);
6647 if (event->attr.comm)
6648 atomic_inc(&nr_comm_events);
6649 if (event->attr.task)
6650 atomic_inc(&nr_task_events);
6651 if (event->attr.freq) {
6652 if (atomic_inc_return(&nr_freq_events) == 1)
6653 tick_nohz_full_kick_all();
6654 }
6655 if (has_branch_stack(event))
6656 static_key_slow_inc(&perf_sched_events.key);
6657 if (is_cgroup_event(event))
6658 static_key_slow_inc(&perf_sched_events.key);
6659
6660 account_event_cpu(event, event->cpu);
6661 }
6662
6663 /*
6664 * Allocate and initialize a event structure
6665 */
6666 static struct perf_event *
6667 perf_event_alloc(struct perf_event_attr *attr, int cpu,
6668 struct task_struct *task,
6669 struct perf_event *group_leader,
6670 struct perf_event *parent_event,
6671 perf_overflow_handler_t overflow_handler,
6672 void *context)
6673 {
6674 struct pmu *pmu;
6675 struct perf_event *event;
6676 struct hw_perf_event *hwc;
6677 long err = -EINVAL;
6678
6679 if ((unsigned)cpu >= nr_cpu_ids) {
6680 if (!task || cpu != -1)
6681 return ERR_PTR(-EINVAL);
6682 }
6683
6684 event = kzalloc(sizeof(*event), GFP_KERNEL);
6685 if (!event)
6686 return ERR_PTR(-ENOMEM);
6687
6688 /*
6689 * Single events are their own group leaders, with an
6690 * empty sibling list:
6691 */
6692 if (!group_leader)
6693 group_leader = event;
6694
6695 mutex_init(&event->child_mutex);
6696 INIT_LIST_HEAD(&event->child_list);
6697
6698 INIT_LIST_HEAD(&event->group_entry);
6699 INIT_LIST_HEAD(&event->event_entry);
6700 INIT_LIST_HEAD(&event->sibling_list);
6701 INIT_LIST_HEAD(&event->rb_entry);
6702 INIT_LIST_HEAD(&event->active_entry);
6703 INIT_HLIST_NODE(&event->hlist_entry);
6704
6705
6706 init_waitqueue_head(&event->waitq);
6707 init_irq_work(&event->pending, perf_pending_event);
6708
6709 mutex_init(&event->mmap_mutex);
6710
6711 atomic_long_set(&event->refcount, 1);
6712 event->cpu = cpu;
6713 event->attr = *attr;
6714 event->group_leader = group_leader;
6715 event->pmu = NULL;
6716 event->oncpu = -1;
6717
6718 event->parent = parent_event;
6719
6720 event->ns = get_pid_ns(task_active_pid_ns(current));
6721 event->id = atomic64_inc_return(&perf_event_id);
6722
6723 event->state = PERF_EVENT_STATE_INACTIVE;
6724
6725 if (task) {
6726 event->attach_state = PERF_ATTACH_TASK;
6727
6728 if (attr->type == PERF_TYPE_TRACEPOINT)
6729 event->hw.tp_target = task;
6730 #ifdef CONFIG_HAVE_HW_BREAKPOINT
6731 /*
6732 * hw_breakpoint is a bit difficult here..
6733 */
6734 else if (attr->type == PERF_TYPE_BREAKPOINT)
6735 event->hw.bp_target = task;
6736 #endif
6737 }
6738
6739 if (!overflow_handler && parent_event) {
6740 overflow_handler = parent_event->overflow_handler;
6741 context = parent_event->overflow_handler_context;
6742 }
6743
6744 event->overflow_handler = overflow_handler;
6745 event->overflow_handler_context = context;
6746
6747 perf_event__state_init(event);
6748
6749 pmu = NULL;
6750
6751 hwc = &event->hw;
6752 hwc->sample_period = attr->sample_period;
6753 if (attr->freq && attr->sample_freq)
6754 hwc->sample_period = 1;
6755 hwc->last_period = hwc->sample_period;
6756
6757 local64_set(&hwc->period_left, hwc->sample_period);
6758
6759 /*
6760 * we currently do not support PERF_FORMAT_GROUP on inherited events
6761 */
6762 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
6763 goto err_ns;
6764
6765 pmu = perf_init_event(event);
6766 if (!pmu)
6767 goto err_ns;
6768 else if (IS_ERR(pmu)) {
6769 err = PTR_ERR(pmu);
6770 goto err_ns;
6771 }
6772
6773 if (!event->parent) {
6774 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
6775 err = get_callchain_buffers();
6776 if (err)
6777 goto err_pmu;
6778 }
6779 }
6780
6781 return event;
6782
6783 err_pmu:
6784 if (event->destroy)
6785 event->destroy(event);
6786 err_ns:
6787 if (event->ns)
6788 put_pid_ns(event->ns);
6789 kfree(event);
6790
6791 return ERR_PTR(err);
6792 }
6793
6794 static int perf_copy_attr(struct perf_event_attr __user *uattr,
6795 struct perf_event_attr *attr)
6796 {
6797 u32 size;
6798 int ret;
6799
6800 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
6801 return -EFAULT;
6802
6803 /*
6804 * zero the full structure, so that a short copy will be nice.
6805 */
6806 memset(attr, 0, sizeof(*attr));
6807
6808 ret = get_user(size, &uattr->size);
6809 if (ret)
6810 return ret;
6811
6812 if (size > PAGE_SIZE) /* silly large */
6813 goto err_size;
6814
6815 if (!size) /* abi compat */
6816 size = PERF_ATTR_SIZE_VER0;
6817
6818 if (size < PERF_ATTR_SIZE_VER0)
6819 goto err_size;
6820
6821 /*
6822 * If we're handed a bigger struct than we know of,
6823 * ensure all the unknown bits are 0 - i.e. new
6824 * user-space does not rely on any kernel feature
6825 * extensions we dont know about yet.
6826 */
6827 if (size > sizeof(*attr)) {
6828 unsigned char __user *addr;
6829 unsigned char __user *end;
6830 unsigned char val;
6831
6832 addr = (void __user *)uattr + sizeof(*attr);
6833 end = (void __user *)uattr + size;
6834
6835 for (; addr < end; addr++) {
6836 ret = get_user(val, addr);
6837 if (ret)
6838 return ret;
6839 if (val)
6840 goto err_size;
6841 }
6842 size = sizeof(*attr);
6843 }
6844
6845 ret = copy_from_user(attr, uattr, size);
6846 if (ret)
6847 return -EFAULT;
6848
6849 /* disabled for now */
6850 if (attr->mmap2)
6851 return -EINVAL;
6852
6853 if (attr->__reserved_1)
6854 return -EINVAL;
6855
6856 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
6857 return -EINVAL;
6858
6859 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
6860 return -EINVAL;
6861
6862 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
6863 u64 mask = attr->branch_sample_type;
6864
6865 /* only using defined bits */
6866 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
6867 return -EINVAL;
6868
6869 /* at least one branch bit must be set */
6870 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
6871 return -EINVAL;
6872
6873 /* propagate priv level, when not set for branch */
6874 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
6875
6876 /* exclude_kernel checked on syscall entry */
6877 if (!attr->exclude_kernel)
6878 mask |= PERF_SAMPLE_BRANCH_KERNEL;
6879
6880 if (!attr->exclude_user)
6881 mask |= PERF_SAMPLE_BRANCH_USER;
6882
6883 if (!attr->exclude_hv)
6884 mask |= PERF_SAMPLE_BRANCH_HV;
6885 /*
6886 * adjust user setting (for HW filter setup)
6887 */
6888 attr->branch_sample_type = mask;
6889 }
6890 /* privileged levels capture (kernel, hv): check permissions */
6891 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
6892 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6893 return -EACCES;
6894 }
6895
6896 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
6897 ret = perf_reg_validate(attr->sample_regs_user);
6898 if (ret)
6899 return ret;
6900 }
6901
6902 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
6903 if (!arch_perf_have_user_stack_dump())
6904 return -ENOSYS;
6905
6906 /*
6907 * We have __u32 type for the size, but so far
6908 * we can only use __u16 as maximum due to the
6909 * __u16 sample size limit.
6910 */
6911 if (attr->sample_stack_user >= USHRT_MAX)
6912 ret = -EINVAL;
6913 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
6914 ret = -EINVAL;
6915 }
6916
6917 out:
6918 return ret;
6919
6920 err_size:
6921 put_user(sizeof(*attr), &uattr->size);
6922 ret = -E2BIG;
6923 goto out;
6924 }
6925
6926 static int
6927 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
6928 {
6929 struct ring_buffer *rb = NULL, *old_rb = NULL;
6930 int ret = -EINVAL;
6931
6932 if (!output_event)
6933 goto set;
6934
6935 /* don't allow circular references */
6936 if (event == output_event)
6937 goto out;
6938
6939 /*
6940 * Don't allow cross-cpu buffers
6941 */
6942 if (output_event->cpu != event->cpu)
6943 goto out;
6944
6945 /*
6946 * If its not a per-cpu rb, it must be the same task.
6947 */
6948 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
6949 goto out;
6950
6951 set:
6952 mutex_lock(&event->mmap_mutex);
6953 /* Can't redirect output if we've got an active mmap() */
6954 if (atomic_read(&event->mmap_count))
6955 goto unlock;
6956
6957 old_rb = event->rb;
6958
6959 if (output_event) {
6960 /* get the rb we want to redirect to */
6961 rb = ring_buffer_get(output_event);
6962 if (!rb)
6963 goto unlock;
6964 }
6965
6966 if (old_rb)
6967 ring_buffer_detach(event, old_rb);
6968
6969 if (rb)
6970 ring_buffer_attach(event, rb);
6971
6972 rcu_assign_pointer(event->rb, rb);
6973
6974 if (old_rb) {
6975 ring_buffer_put(old_rb);
6976 /*
6977 * Since we detached before setting the new rb, so that we
6978 * could attach the new rb, we could have missed a wakeup.
6979 * Provide it now.
6980 */
6981 wake_up_all(&event->waitq);
6982 }
6983
6984 ret = 0;
6985 unlock:
6986 mutex_unlock(&event->mmap_mutex);
6987
6988 out:
6989 return ret;
6990 }
6991
6992 /**
6993 * sys_perf_event_open - open a performance event, associate it to a task/cpu
6994 *
6995 * @attr_uptr: event_id type attributes for monitoring/sampling
6996 * @pid: target pid
6997 * @cpu: target cpu
6998 * @group_fd: group leader event fd
6999 */
7000 SYSCALL_DEFINE5(perf_event_open,
7001 struct perf_event_attr __user *, attr_uptr,
7002 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
7003 {
7004 struct perf_event *group_leader = NULL, *output_event = NULL;
7005 struct perf_event *event, *sibling;
7006 struct perf_event_attr attr;
7007 struct perf_event_context *ctx;
7008 struct file *event_file = NULL;
7009 struct fd group = {NULL, 0};
7010 struct task_struct *task = NULL;
7011 struct pmu *pmu;
7012 int event_fd;
7013 int move_group = 0;
7014 int err;
7015 int f_flags = O_RDWR;
7016
7017 /* for future expandability... */
7018 if (flags & ~PERF_FLAG_ALL)
7019 return -EINVAL;
7020
7021 err = perf_copy_attr(attr_uptr, &attr);
7022 if (err)
7023 return err;
7024
7025 if (!attr.exclude_kernel) {
7026 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
7027 return -EACCES;
7028 }
7029
7030 if (attr.freq) {
7031 if (attr.sample_freq > sysctl_perf_event_sample_rate)
7032 return -EINVAL;
7033 }
7034
7035 /*
7036 * In cgroup mode, the pid argument is used to pass the fd
7037 * opened to the cgroup directory in cgroupfs. The cpu argument
7038 * designates the cpu on which to monitor threads from that
7039 * cgroup.
7040 */
7041 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
7042 return -EINVAL;
7043
7044 if (flags & PERF_FLAG_FD_CLOEXEC)
7045 f_flags |= O_CLOEXEC;
7046
7047 event_fd = get_unused_fd_flags(f_flags);
7048 if (event_fd < 0)
7049 return event_fd;
7050
7051 if (group_fd != -1) {
7052 err = perf_fget_light(group_fd, &group);
7053 if (err)
7054 goto err_fd;
7055 group_leader = group.file->private_data;
7056 if (flags & PERF_FLAG_FD_OUTPUT)
7057 output_event = group_leader;
7058 if (flags & PERF_FLAG_FD_NO_GROUP)
7059 group_leader = NULL;
7060 }
7061
7062 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
7063 task = find_lively_task_by_vpid(pid);
7064 if (IS_ERR(task)) {
7065 err = PTR_ERR(task);
7066 goto err_group_fd;
7067 }
7068 }
7069
7070 get_online_cpus();
7071
7072 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
7073 NULL, NULL);
7074 if (IS_ERR(event)) {
7075 err = PTR_ERR(event);
7076 goto err_task;
7077 }
7078
7079 if (flags & PERF_FLAG_PID_CGROUP) {
7080 err = perf_cgroup_connect(pid, event, &attr, group_leader);
7081 if (err) {
7082 __free_event(event);
7083 goto err_task;
7084 }
7085 }
7086
7087 account_event(event);
7088
7089 /*
7090 * Special case software events and allow them to be part of
7091 * any hardware group.
7092 */
7093 pmu = event->pmu;
7094
7095 if (group_leader &&
7096 (is_software_event(event) != is_software_event(group_leader))) {
7097 if (is_software_event(event)) {
7098 /*
7099 * If event and group_leader are not both a software
7100 * event, and event is, then group leader is not.
7101 *
7102 * Allow the addition of software events to !software
7103 * groups, this is safe because software events never
7104 * fail to schedule.
7105 */
7106 pmu = group_leader->pmu;
7107 } else if (is_software_event(group_leader) &&
7108 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
7109 /*
7110 * In case the group is a pure software group, and we
7111 * try to add a hardware event, move the whole group to
7112 * the hardware context.
7113 */
7114 move_group = 1;
7115 }
7116 }
7117
7118 /*
7119 * Get the target context (task or percpu):
7120 */
7121 ctx = find_get_context(pmu, task, event->cpu);
7122 if (IS_ERR(ctx)) {
7123 err = PTR_ERR(ctx);
7124 goto err_alloc;
7125 }
7126
7127 if (task) {
7128 put_task_struct(task);
7129 task = NULL;
7130 }
7131
7132 /*
7133 * Look up the group leader (we will attach this event to it):
7134 */
7135 if (group_leader) {
7136 err = -EINVAL;
7137
7138 /*
7139 * Do not allow a recursive hierarchy (this new sibling
7140 * becoming part of another group-sibling):
7141 */
7142 if (group_leader->group_leader != group_leader)
7143 goto err_context;
7144 /*
7145 * Do not allow to attach to a group in a different
7146 * task or CPU context:
7147 */
7148 if (move_group) {
7149 if (group_leader->ctx->type != ctx->type)
7150 goto err_context;
7151 } else {
7152 if (group_leader->ctx != ctx)
7153 goto err_context;
7154 }
7155
7156 /*
7157 * Only a group leader can be exclusive or pinned
7158 */
7159 if (attr.exclusive || attr.pinned)
7160 goto err_context;
7161 }
7162
7163 if (output_event) {
7164 err = perf_event_set_output(event, output_event);
7165 if (err)
7166 goto err_context;
7167 }
7168
7169 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
7170 f_flags);
7171 if (IS_ERR(event_file)) {
7172 err = PTR_ERR(event_file);
7173 goto err_context;
7174 }
7175
7176 if (move_group) {
7177 struct perf_event_context *gctx = group_leader->ctx;
7178
7179 mutex_lock(&gctx->mutex);
7180 perf_remove_from_context(group_leader);
7181
7182 /*
7183 * Removing from the context ends up with disabled
7184 * event. What we want here is event in the initial
7185 * startup state, ready to be add into new context.
7186 */
7187 perf_event__state_init(group_leader);
7188 list_for_each_entry(sibling, &group_leader->sibling_list,
7189 group_entry) {
7190 perf_remove_from_context(sibling);
7191 perf_event__state_init(sibling);
7192 put_ctx(gctx);
7193 }
7194 mutex_unlock(&gctx->mutex);
7195 put_ctx(gctx);
7196 }
7197
7198 WARN_ON_ONCE(ctx->parent_ctx);
7199 mutex_lock(&ctx->mutex);
7200
7201 if (move_group) {
7202 synchronize_rcu();
7203 perf_install_in_context(ctx, group_leader, event->cpu);
7204 get_ctx(ctx);
7205 list_for_each_entry(sibling, &group_leader->sibling_list,
7206 group_entry) {
7207 perf_install_in_context(ctx, sibling, event->cpu);
7208 get_ctx(ctx);
7209 }
7210 }
7211
7212 perf_install_in_context(ctx, event, event->cpu);
7213 perf_unpin_context(ctx);
7214 mutex_unlock(&ctx->mutex);
7215
7216 put_online_cpus();
7217
7218 event->owner = current;
7219
7220 mutex_lock(&current->perf_event_mutex);
7221 list_add_tail(&event->owner_entry, &current->perf_event_list);
7222 mutex_unlock(&current->perf_event_mutex);
7223
7224 /*
7225 * Precalculate sample_data sizes
7226 */
7227 perf_event__header_size(event);
7228 perf_event__id_header_size(event);
7229
7230 /*
7231 * Drop the reference on the group_event after placing the
7232 * new event on the sibling_list. This ensures destruction
7233 * of the group leader will find the pointer to itself in
7234 * perf_group_detach().
7235 */
7236 fdput(group);
7237 fd_install(event_fd, event_file);
7238 return event_fd;
7239
7240 err_context:
7241 perf_unpin_context(ctx);
7242 put_ctx(ctx);
7243 err_alloc:
7244 free_event(event);
7245 err_task:
7246 put_online_cpus();
7247 if (task)
7248 put_task_struct(task);
7249 err_group_fd:
7250 fdput(group);
7251 err_fd:
7252 put_unused_fd(event_fd);
7253 return err;
7254 }
7255
7256 /**
7257 * perf_event_create_kernel_counter
7258 *
7259 * @attr: attributes of the counter to create
7260 * @cpu: cpu in which the counter is bound
7261 * @task: task to profile (NULL for percpu)
7262 */
7263 struct perf_event *
7264 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
7265 struct task_struct *task,
7266 perf_overflow_handler_t overflow_handler,
7267 void *context)
7268 {
7269 struct perf_event_context *ctx;
7270 struct perf_event *event;
7271 int err;
7272
7273 /*
7274 * Get the target context (task or percpu):
7275 */
7276
7277 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
7278 overflow_handler, context);
7279 if (IS_ERR(event)) {
7280 err = PTR_ERR(event);
7281 goto err;
7282 }
7283
7284 account_event(event);
7285
7286 ctx = find_get_context(event->pmu, task, cpu);
7287 if (IS_ERR(ctx)) {
7288 err = PTR_ERR(ctx);
7289 goto err_free;
7290 }
7291
7292 WARN_ON_ONCE(ctx->parent_ctx);
7293 mutex_lock(&ctx->mutex);
7294 perf_install_in_context(ctx, event, cpu);
7295 perf_unpin_context(ctx);
7296 mutex_unlock(&ctx->mutex);
7297
7298 return event;
7299
7300 err_free:
7301 free_event(event);
7302 err:
7303 return ERR_PTR(err);
7304 }
7305 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
7306
7307 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
7308 {
7309 struct perf_event_context *src_ctx;
7310 struct perf_event_context *dst_ctx;
7311 struct perf_event *event, *tmp;
7312 LIST_HEAD(events);
7313
7314 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
7315 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
7316
7317 mutex_lock(&src_ctx->mutex);
7318 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
7319 event_entry) {
7320 perf_remove_from_context(event);
7321 unaccount_event_cpu(event, src_cpu);
7322 put_ctx(src_ctx);
7323 list_add(&event->migrate_entry, &events);
7324 }
7325 mutex_unlock(&src_ctx->mutex);
7326
7327 synchronize_rcu();
7328
7329 mutex_lock(&dst_ctx->mutex);
7330 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
7331 list_del(&event->migrate_entry);
7332 if (event->state >= PERF_EVENT_STATE_OFF)
7333 event->state = PERF_EVENT_STATE_INACTIVE;
7334 account_event_cpu(event, dst_cpu);
7335 perf_install_in_context(dst_ctx, event, dst_cpu);
7336 get_ctx(dst_ctx);
7337 }
7338 mutex_unlock(&dst_ctx->mutex);
7339 }
7340 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
7341
7342 static void sync_child_event(struct perf_event *child_event,
7343 struct task_struct *child)
7344 {
7345 struct perf_event *parent_event = child_event->parent;
7346 u64 child_val;
7347
7348 if (child_event->attr.inherit_stat)
7349 perf_event_read_event(child_event, child);
7350
7351 child_val = perf_event_count(child_event);
7352
7353 /*
7354 * Add back the child's count to the parent's count:
7355 */
7356 atomic64_add(child_val, &parent_event->child_count);
7357 atomic64_add(child_event->total_time_enabled,
7358 &parent_event->child_total_time_enabled);
7359 atomic64_add(child_event->total_time_running,
7360 &parent_event->child_total_time_running);
7361
7362 /*
7363 * Remove this event from the parent's list
7364 */
7365 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
7366 mutex_lock(&parent_event->child_mutex);
7367 list_del_init(&child_event->child_list);
7368 mutex_unlock(&parent_event->child_mutex);
7369
7370 /*
7371 * Release the parent event, if this was the last
7372 * reference to it.
7373 */
7374 put_event(parent_event);
7375 }
7376
7377 static void
7378 __perf_event_exit_task(struct perf_event *child_event,
7379 struct perf_event_context *child_ctx,
7380 struct task_struct *child)
7381 {
7382 if (child_event->parent) {
7383 raw_spin_lock_irq(&child_ctx->lock);
7384 perf_group_detach(child_event);
7385 raw_spin_unlock_irq(&child_ctx->lock);
7386 }
7387
7388 perf_remove_from_context(child_event);
7389
7390 /*
7391 * It can happen that the parent exits first, and has events
7392 * that are still around due to the child reference. These
7393 * events need to be zapped.
7394 */
7395 if (child_event->parent) {
7396 sync_child_event(child_event, child);
7397 free_event(child_event);
7398 }
7399 }
7400
7401 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
7402 {
7403 struct perf_event *child_event, *tmp;
7404 struct perf_event_context *child_ctx;
7405 unsigned long flags;
7406
7407 if (likely(!child->perf_event_ctxp[ctxn])) {
7408 perf_event_task(child, NULL, 0);
7409 return;
7410 }
7411
7412 local_irq_save(flags);
7413 /*
7414 * We can't reschedule here because interrupts are disabled,
7415 * and either child is current or it is a task that can't be
7416 * scheduled, so we are now safe from rescheduling changing
7417 * our context.
7418 */
7419 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
7420
7421 /*
7422 * Take the context lock here so that if find_get_context is
7423 * reading child->perf_event_ctxp, we wait until it has
7424 * incremented the context's refcount before we do put_ctx below.
7425 */
7426 raw_spin_lock(&child_ctx->lock);
7427 task_ctx_sched_out(child_ctx);
7428 child->perf_event_ctxp[ctxn] = NULL;
7429 /*
7430 * If this context is a clone; unclone it so it can't get
7431 * swapped to another process while we're removing all
7432 * the events from it.
7433 */
7434 unclone_ctx(child_ctx);
7435 update_context_time(child_ctx);
7436 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
7437
7438 /*
7439 * Report the task dead after unscheduling the events so that we
7440 * won't get any samples after PERF_RECORD_EXIT. We can however still
7441 * get a few PERF_RECORD_READ events.
7442 */
7443 perf_event_task(child, child_ctx, 0);
7444
7445 /*
7446 * We can recurse on the same lock type through:
7447 *
7448 * __perf_event_exit_task()
7449 * sync_child_event()
7450 * put_event()
7451 * mutex_lock(&ctx->mutex)
7452 *
7453 * But since its the parent context it won't be the same instance.
7454 */
7455 mutex_lock(&child_ctx->mutex);
7456
7457 again:
7458 list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
7459 group_entry)
7460 __perf_event_exit_task(child_event, child_ctx, child);
7461
7462 list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
7463 group_entry)
7464 __perf_event_exit_task(child_event, child_ctx, child);
7465
7466 /*
7467 * If the last event was a group event, it will have appended all
7468 * its siblings to the list, but we obtained 'tmp' before that which
7469 * will still point to the list head terminating the iteration.
7470 */
7471 if (!list_empty(&child_ctx->pinned_groups) ||
7472 !list_empty(&child_ctx->flexible_groups))
7473 goto again;
7474
7475 mutex_unlock(&child_ctx->mutex);
7476
7477 put_ctx(child_ctx);
7478 }
7479
7480 /*
7481 * When a child task exits, feed back event values to parent events.
7482 */
7483 void perf_event_exit_task(struct task_struct *child)
7484 {
7485 struct perf_event *event, *tmp;
7486 int ctxn;
7487
7488 mutex_lock(&child->perf_event_mutex);
7489 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
7490 owner_entry) {
7491 list_del_init(&event->owner_entry);
7492
7493 /*
7494 * Ensure the list deletion is visible before we clear
7495 * the owner, closes a race against perf_release() where
7496 * we need to serialize on the owner->perf_event_mutex.
7497 */
7498 smp_wmb();
7499 event->owner = NULL;
7500 }
7501 mutex_unlock(&child->perf_event_mutex);
7502
7503 for_each_task_context_nr(ctxn)
7504 perf_event_exit_task_context(child, ctxn);
7505 }
7506
7507 static void perf_free_event(struct perf_event *event,
7508 struct perf_event_context *ctx)
7509 {
7510 struct perf_event *parent = event->parent;
7511
7512 if (WARN_ON_ONCE(!parent))
7513 return;
7514
7515 mutex_lock(&parent->child_mutex);
7516 list_del_init(&event->child_list);
7517 mutex_unlock(&parent->child_mutex);
7518
7519 put_event(parent);
7520
7521 perf_group_detach(event);
7522 list_del_event(event, ctx);
7523 free_event(event);
7524 }
7525
7526 /*
7527 * free an unexposed, unused context as created by inheritance by
7528 * perf_event_init_task below, used by fork() in case of fail.
7529 */
7530 void perf_event_free_task(struct task_struct *task)
7531 {
7532 struct perf_event_context *ctx;
7533 struct perf_event *event, *tmp;
7534 int ctxn;
7535
7536 for_each_task_context_nr(ctxn) {
7537 ctx = task->perf_event_ctxp[ctxn];
7538 if (!ctx)
7539 continue;
7540
7541 mutex_lock(&ctx->mutex);
7542 again:
7543 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
7544 group_entry)
7545 perf_free_event(event, ctx);
7546
7547 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
7548 group_entry)
7549 perf_free_event(event, ctx);
7550
7551 if (!list_empty(&ctx->pinned_groups) ||
7552 !list_empty(&ctx->flexible_groups))
7553 goto again;
7554
7555 mutex_unlock(&ctx->mutex);
7556
7557 put_ctx(ctx);
7558 }
7559 }
7560
7561 void perf_event_delayed_put(struct task_struct *task)
7562 {
7563 int ctxn;
7564
7565 for_each_task_context_nr(ctxn)
7566 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
7567 }
7568
7569 /*
7570 * inherit a event from parent task to child task:
7571 */
7572 static struct perf_event *
7573 inherit_event(struct perf_event *parent_event,
7574 struct task_struct *parent,
7575 struct perf_event_context *parent_ctx,
7576 struct task_struct *child,
7577 struct perf_event *group_leader,
7578 struct perf_event_context *child_ctx)
7579 {
7580 struct perf_event *child_event;
7581 unsigned long flags;
7582
7583 /*
7584 * Instead of creating recursive hierarchies of events,
7585 * we link inherited events back to the original parent,
7586 * which has a filp for sure, which we use as the reference
7587 * count:
7588 */
7589 if (parent_event->parent)
7590 parent_event = parent_event->parent;
7591
7592 child_event = perf_event_alloc(&parent_event->attr,
7593 parent_event->cpu,
7594 child,
7595 group_leader, parent_event,
7596 NULL, NULL);
7597 if (IS_ERR(child_event))
7598 return child_event;
7599
7600 if (!atomic_long_inc_not_zero(&parent_event->refcount)) {
7601 free_event(child_event);
7602 return NULL;
7603 }
7604
7605 get_ctx(child_ctx);
7606
7607 /*
7608 * Make the child state follow the state of the parent event,
7609 * not its attr.disabled bit. We hold the parent's mutex,
7610 * so we won't race with perf_event_{en, dis}able_family.
7611 */
7612 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
7613 child_event->state = PERF_EVENT_STATE_INACTIVE;
7614 else
7615 child_event->state = PERF_EVENT_STATE_OFF;
7616
7617 if (parent_event->attr.freq) {
7618 u64 sample_period = parent_event->hw.sample_period;
7619 struct hw_perf_event *hwc = &child_event->hw;
7620
7621 hwc->sample_period = sample_period;
7622 hwc->last_period = sample_period;
7623
7624 local64_set(&hwc->period_left, sample_period);
7625 }
7626
7627 child_event->ctx = child_ctx;
7628 child_event->overflow_handler = parent_event->overflow_handler;
7629 child_event->overflow_handler_context
7630 = parent_event->overflow_handler_context;
7631
7632 /*
7633 * Precalculate sample_data sizes
7634 */
7635 perf_event__header_size(child_event);
7636 perf_event__id_header_size(child_event);
7637
7638 /*
7639 * Link it up in the child's context:
7640 */
7641 raw_spin_lock_irqsave(&child_ctx->lock, flags);
7642 add_event_to_ctx(child_event, child_ctx);
7643 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
7644
7645 /*
7646 * Link this into the parent event's child list
7647 */
7648 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
7649 mutex_lock(&parent_event->child_mutex);
7650 list_add_tail(&child_event->child_list, &parent_event->child_list);
7651 mutex_unlock(&parent_event->child_mutex);
7652
7653 return child_event;
7654 }
7655
7656 static int inherit_group(struct perf_event *parent_event,
7657 struct task_struct *parent,
7658 struct perf_event_context *parent_ctx,
7659 struct task_struct *child,
7660 struct perf_event_context *child_ctx)
7661 {
7662 struct perf_event *leader;
7663 struct perf_event *sub;
7664 struct perf_event *child_ctr;
7665
7666 leader = inherit_event(parent_event, parent, parent_ctx,
7667 child, NULL, child_ctx);
7668 if (IS_ERR(leader))
7669 return PTR_ERR(leader);
7670 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
7671 child_ctr = inherit_event(sub, parent, parent_ctx,
7672 child, leader, child_ctx);
7673 if (IS_ERR(child_ctr))
7674 return PTR_ERR(child_ctr);
7675 }
7676 return 0;
7677 }
7678
7679 static int
7680 inherit_task_group(struct perf_event *event, struct task_struct *parent,
7681 struct perf_event_context *parent_ctx,
7682 struct task_struct *child, int ctxn,
7683 int *inherited_all)
7684 {
7685 int ret;
7686 struct perf_event_context *child_ctx;
7687
7688 if (!event->attr.inherit) {
7689 *inherited_all = 0;
7690 return 0;
7691 }
7692
7693 child_ctx = child->perf_event_ctxp[ctxn];
7694 if (!child_ctx) {
7695 /*
7696 * This is executed from the parent task context, so
7697 * inherit events that have been marked for cloning.
7698 * First allocate and initialize a context for the
7699 * child.
7700 */
7701
7702 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
7703 if (!child_ctx)
7704 return -ENOMEM;
7705
7706 child->perf_event_ctxp[ctxn] = child_ctx;
7707 }
7708
7709 ret = inherit_group(event, parent, parent_ctx,
7710 child, child_ctx);
7711
7712 if (ret)
7713 *inherited_all = 0;
7714
7715 return ret;
7716 }
7717
7718 /*
7719 * Initialize the perf_event context in task_struct
7720 */
7721 int perf_event_init_context(struct task_struct *child, int ctxn)
7722 {
7723 struct perf_event_context *child_ctx, *parent_ctx;
7724 struct perf_event_context *cloned_ctx;
7725 struct perf_event *event;
7726 struct task_struct *parent = current;
7727 int inherited_all = 1;
7728 unsigned long flags;
7729 int ret = 0;
7730
7731 if (likely(!parent->perf_event_ctxp[ctxn]))
7732 return 0;
7733
7734 /*
7735 * If the parent's context is a clone, pin it so it won't get
7736 * swapped under us.
7737 */
7738 parent_ctx = perf_pin_task_context(parent, ctxn);
7739
7740 /*
7741 * No need to check if parent_ctx != NULL here; since we saw
7742 * it non-NULL earlier, the only reason for it to become NULL
7743 * is if we exit, and since we're currently in the middle of
7744 * a fork we can't be exiting at the same time.
7745 */
7746
7747 /*
7748 * Lock the parent list. No need to lock the child - not PID
7749 * hashed yet and not running, so nobody can access it.
7750 */
7751 mutex_lock(&parent_ctx->mutex);
7752
7753 /*
7754 * We dont have to disable NMIs - we are only looking at
7755 * the list, not manipulating it:
7756 */
7757 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
7758 ret = inherit_task_group(event, parent, parent_ctx,
7759 child, ctxn, &inherited_all);
7760 if (ret)
7761 break;
7762 }
7763
7764 /*
7765 * We can't hold ctx->lock when iterating the ->flexible_group list due
7766 * to allocations, but we need to prevent rotation because
7767 * rotate_ctx() will change the list from interrupt context.
7768 */
7769 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
7770 parent_ctx->rotate_disable = 1;
7771 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7772
7773 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
7774 ret = inherit_task_group(event, parent, parent_ctx,
7775 child, ctxn, &inherited_all);
7776 if (ret)
7777 break;
7778 }
7779
7780 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
7781 parent_ctx->rotate_disable = 0;
7782
7783 child_ctx = child->perf_event_ctxp[ctxn];
7784
7785 if (child_ctx && inherited_all) {
7786 /*
7787 * Mark the child context as a clone of the parent
7788 * context, or of whatever the parent is a clone of.
7789 *
7790 * Note that if the parent is a clone, the holding of
7791 * parent_ctx->lock avoids it from being uncloned.
7792 */
7793 cloned_ctx = parent_ctx->parent_ctx;
7794 if (cloned_ctx) {
7795 child_ctx->parent_ctx = cloned_ctx;
7796 child_ctx->parent_gen = parent_ctx->parent_gen;
7797 } else {
7798 child_ctx->parent_ctx = parent_ctx;
7799 child_ctx->parent_gen = parent_ctx->generation;
7800 }
7801 get_ctx(child_ctx->parent_ctx);
7802 }
7803
7804 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7805 mutex_unlock(&parent_ctx->mutex);
7806
7807 perf_unpin_context(parent_ctx);
7808 put_ctx(parent_ctx);
7809
7810 return ret;
7811 }
7812
7813 /*
7814 * Initialize the perf_event context in task_struct
7815 */
7816 int perf_event_init_task(struct task_struct *child)
7817 {
7818 int ctxn, ret;
7819
7820 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
7821 mutex_init(&child->perf_event_mutex);
7822 INIT_LIST_HEAD(&child->perf_event_list);
7823
7824 for_each_task_context_nr(ctxn) {
7825 ret = perf_event_init_context(child, ctxn);
7826 if (ret)
7827 return ret;
7828 }
7829
7830 return 0;
7831 }
7832
7833 static void __init perf_event_init_all_cpus(void)
7834 {
7835 struct swevent_htable *swhash;
7836 int cpu;
7837
7838 for_each_possible_cpu(cpu) {
7839 swhash = &per_cpu(swevent_htable, cpu);
7840 mutex_init(&swhash->hlist_mutex);
7841 INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
7842 }
7843 }
7844
7845 static void perf_event_init_cpu(int cpu)
7846 {
7847 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7848
7849 mutex_lock(&swhash->hlist_mutex);
7850 if (swhash->hlist_refcount > 0) {
7851 struct swevent_hlist *hlist;
7852
7853 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
7854 WARN_ON(!hlist);
7855 rcu_assign_pointer(swhash->swevent_hlist, hlist);
7856 }
7857 mutex_unlock(&swhash->hlist_mutex);
7858 }
7859
7860 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
7861 static void perf_pmu_rotate_stop(struct pmu *pmu)
7862 {
7863 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7864
7865 WARN_ON(!irqs_disabled());
7866
7867 list_del_init(&cpuctx->rotation_list);
7868 }
7869
7870 static void __perf_event_exit_context(void *__info)
7871 {
7872 struct perf_event_context *ctx = __info;
7873 struct perf_event *event, *tmp;
7874
7875 perf_pmu_rotate_stop(ctx->pmu);
7876
7877 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
7878 __perf_remove_from_context(event);
7879 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
7880 __perf_remove_from_context(event);
7881 }
7882
7883 static void perf_event_exit_cpu_context(int cpu)
7884 {
7885 struct perf_event_context *ctx;
7886 struct pmu *pmu;
7887 int idx;
7888
7889 idx = srcu_read_lock(&pmus_srcu);
7890 list_for_each_entry_rcu(pmu, &pmus, entry) {
7891 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
7892
7893 mutex_lock(&ctx->mutex);
7894 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
7895 mutex_unlock(&ctx->mutex);
7896 }
7897 srcu_read_unlock(&pmus_srcu, idx);
7898 }
7899
7900 static void perf_event_exit_cpu(int cpu)
7901 {
7902 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7903
7904 mutex_lock(&swhash->hlist_mutex);
7905 swevent_hlist_release(swhash);
7906 mutex_unlock(&swhash->hlist_mutex);
7907
7908 perf_event_exit_cpu_context(cpu);
7909 }
7910 #else
7911 static inline void perf_event_exit_cpu(int cpu) { }
7912 #endif
7913
7914 static int
7915 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
7916 {
7917 int cpu;
7918
7919 for_each_online_cpu(cpu)
7920 perf_event_exit_cpu(cpu);
7921
7922 return NOTIFY_OK;
7923 }
7924
7925 /*
7926 * Run the perf reboot notifier at the very last possible moment so that
7927 * the generic watchdog code runs as long as possible.
7928 */
7929 static struct notifier_block perf_reboot_notifier = {
7930 .notifier_call = perf_reboot,
7931 .priority = INT_MIN,
7932 };
7933
7934 static int
7935 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
7936 {
7937 unsigned int cpu = (long)hcpu;
7938
7939 switch (action & ~CPU_TASKS_FROZEN) {
7940
7941 case CPU_UP_PREPARE:
7942 case CPU_DOWN_FAILED:
7943 perf_event_init_cpu(cpu);
7944 break;
7945
7946 case CPU_UP_CANCELED:
7947 case CPU_DOWN_PREPARE:
7948 perf_event_exit_cpu(cpu);
7949 break;
7950 default:
7951 break;
7952 }
7953
7954 return NOTIFY_OK;
7955 }
7956
7957 void __init perf_event_init(void)
7958 {
7959 int ret;
7960
7961 idr_init(&pmu_idr);
7962
7963 perf_event_init_all_cpus();
7964 init_srcu_struct(&pmus_srcu);
7965 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
7966 perf_pmu_register(&perf_cpu_clock, NULL, -1);
7967 perf_pmu_register(&perf_task_clock, NULL, -1);
7968 perf_tp_register();
7969 perf_cpu_notifier(perf_cpu_notify);
7970 register_reboot_notifier(&perf_reboot_notifier);
7971
7972 ret = init_hw_breakpoint();
7973 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
7974
7975 /* do not patch jump label more than once per second */
7976 jump_label_rate_limit(&perf_sched_events, HZ);
7977
7978 /*
7979 * Build time assertion that we keep the data_head at the intended
7980 * location. IOW, validation we got the __reserved[] size right.
7981 */
7982 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
7983 != 1024);
7984 }
7985
7986 static int __init perf_event_sysfs_init(void)
7987 {
7988 struct pmu *pmu;
7989 int ret;
7990
7991 mutex_lock(&pmus_lock);
7992
7993 ret = bus_register(&pmu_bus);
7994 if (ret)
7995 goto unlock;
7996
7997 list_for_each_entry(pmu, &pmus, entry) {
7998 if (!pmu->name || pmu->type < 0)
7999 continue;
8000
8001 ret = pmu_dev_alloc(pmu);
8002 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
8003 }
8004 pmu_bus_running = 1;
8005 ret = 0;
8006
8007 unlock:
8008 mutex_unlock(&pmus_lock);
8009
8010 return ret;
8011 }
8012 device_initcall(perf_event_sysfs_init);
8013
8014 #ifdef CONFIG_CGROUP_PERF
8015 static struct cgroup_subsys_state *
8016 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8017 {
8018 struct perf_cgroup *jc;
8019
8020 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
8021 if (!jc)
8022 return ERR_PTR(-ENOMEM);
8023
8024 jc->info = alloc_percpu(struct perf_cgroup_info);
8025 if (!jc->info) {
8026 kfree(jc);
8027 return ERR_PTR(-ENOMEM);
8028 }
8029
8030 return &jc->css;
8031 }
8032
8033 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
8034 {
8035 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
8036
8037 free_percpu(jc->info);
8038 kfree(jc);
8039 }
8040
8041 static int __perf_cgroup_move(void *info)
8042 {
8043 struct task_struct *task = info;
8044 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
8045 return 0;
8046 }
8047
8048 static void perf_cgroup_attach(struct cgroup_subsys_state *css,
8049 struct cgroup_taskset *tset)
8050 {
8051 struct task_struct *task;
8052
8053 cgroup_taskset_for_each(task, css, tset)
8054 task_function_call(task, __perf_cgroup_move, task);
8055 }
8056
8057 static void perf_cgroup_exit(struct cgroup_subsys_state *css,
8058 struct cgroup_subsys_state *old_css,
8059 struct task_struct *task)
8060 {
8061 /*
8062 * cgroup_exit() is called in the copy_process() failure path.
8063 * Ignore this case since the task hasn't ran yet, this avoids
8064 * trying to poke a half freed task state from generic code.
8065 */
8066 if (!(task->flags & PF_EXITING))
8067 return;
8068
8069 task_function_call(task, __perf_cgroup_move, task);
8070 }
8071
8072 struct cgroup_subsys perf_subsys = {
8073 .name = "perf_event",
8074 .subsys_id = perf_subsys_id,
8075 .css_alloc = perf_cgroup_css_alloc,
8076 .css_free = perf_cgroup_css_free,
8077 .exit = perf_cgroup_exit,
8078 .attach = perf_cgroup_attach,
8079 };
8080 #endif /* CONFIG_CGROUP_PERF */