]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - kernel/events/core.c
Merge tag 'fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/rusty...
[mirror_ubuntu-zesty-kernel.git] / kernel / events / core.c
1 /*
2 * Performance events core code:
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47
48 #include "internal.h"
49
50 #include <asm/irq_regs.h>
51
52 static struct workqueue_struct *perf_wq;
53
54 typedef int (*remote_function_f)(void *);
55
56 struct remote_function_call {
57 struct task_struct *p;
58 remote_function_f func;
59 void *info;
60 int ret;
61 };
62
63 static void remote_function(void *data)
64 {
65 struct remote_function_call *tfc = data;
66 struct task_struct *p = tfc->p;
67
68 if (p) {
69 tfc->ret = -EAGAIN;
70 if (task_cpu(p) != smp_processor_id() || !task_curr(p))
71 return;
72 }
73
74 tfc->ret = tfc->func(tfc->info);
75 }
76
77 /**
78 * task_function_call - call a function on the cpu on which a task runs
79 * @p: the task to evaluate
80 * @func: the function to be called
81 * @info: the function call argument
82 *
83 * Calls the function @func when the task is currently running. This might
84 * be on the current CPU, which just calls the function directly
85 *
86 * returns: @func return value, or
87 * -ESRCH - when the process isn't running
88 * -EAGAIN - when the process moved away
89 */
90 static int
91 task_function_call(struct task_struct *p, remote_function_f func, void *info)
92 {
93 struct remote_function_call data = {
94 .p = p,
95 .func = func,
96 .info = info,
97 .ret = -ESRCH, /* No such (running) process */
98 };
99
100 if (task_curr(p))
101 smp_call_function_single(task_cpu(p), remote_function, &data, 1);
102
103 return data.ret;
104 }
105
106 /**
107 * cpu_function_call - call a function on the cpu
108 * @func: the function to be called
109 * @info: the function call argument
110 *
111 * Calls the function @func on the remote cpu.
112 *
113 * returns: @func return value or -ENXIO when the cpu is offline
114 */
115 static int cpu_function_call(int cpu, remote_function_f func, void *info)
116 {
117 struct remote_function_call data = {
118 .p = NULL,
119 .func = func,
120 .info = info,
121 .ret = -ENXIO, /* No such CPU */
122 };
123
124 smp_call_function_single(cpu, remote_function, &data, 1);
125
126 return data.ret;
127 }
128
129 #define EVENT_OWNER_KERNEL ((void *) -1)
130
131 static bool is_kernel_event(struct perf_event *event)
132 {
133 return event->owner == EVENT_OWNER_KERNEL;
134 }
135
136 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
137 PERF_FLAG_FD_OUTPUT |\
138 PERF_FLAG_PID_CGROUP |\
139 PERF_FLAG_FD_CLOEXEC)
140
141 /*
142 * branch priv levels that need permission checks
143 */
144 #define PERF_SAMPLE_BRANCH_PERM_PLM \
145 (PERF_SAMPLE_BRANCH_KERNEL |\
146 PERF_SAMPLE_BRANCH_HV)
147
148 enum event_type_t {
149 EVENT_FLEXIBLE = 0x1,
150 EVENT_PINNED = 0x2,
151 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
152 };
153
154 /*
155 * perf_sched_events : >0 events exist
156 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
157 */
158 struct static_key_deferred perf_sched_events __read_mostly;
159 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
160 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
161
162 static atomic_t nr_mmap_events __read_mostly;
163 static atomic_t nr_comm_events __read_mostly;
164 static atomic_t nr_task_events __read_mostly;
165 static atomic_t nr_freq_events __read_mostly;
166 static atomic_t nr_switch_events __read_mostly;
167
168 static LIST_HEAD(pmus);
169 static DEFINE_MUTEX(pmus_lock);
170 static struct srcu_struct pmus_srcu;
171
172 /*
173 * perf event paranoia level:
174 * -1 - not paranoid at all
175 * 0 - disallow raw tracepoint access for unpriv
176 * 1 - disallow cpu events for unpriv
177 * 2 - disallow kernel profiling for unpriv
178 */
179 int sysctl_perf_event_paranoid __read_mostly = 1;
180
181 /* Minimum for 512 kiB + 1 user control page */
182 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
183
184 /*
185 * max perf event sample rate
186 */
187 #define DEFAULT_MAX_SAMPLE_RATE 100000
188 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
189 #define DEFAULT_CPU_TIME_MAX_PERCENT 25
190
191 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
192
193 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
194 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
195
196 static int perf_sample_allowed_ns __read_mostly =
197 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
198
199 void update_perf_cpu_limits(void)
200 {
201 u64 tmp = perf_sample_period_ns;
202
203 tmp *= sysctl_perf_cpu_time_max_percent;
204 do_div(tmp, 100);
205 ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
206 }
207
208 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
209
210 int perf_proc_update_handler(struct ctl_table *table, int write,
211 void __user *buffer, size_t *lenp,
212 loff_t *ppos)
213 {
214 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
215
216 if (ret || !write)
217 return ret;
218
219 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
220 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
221 update_perf_cpu_limits();
222
223 return 0;
224 }
225
226 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
227
228 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
229 void __user *buffer, size_t *lenp,
230 loff_t *ppos)
231 {
232 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
233
234 if (ret || !write)
235 return ret;
236
237 update_perf_cpu_limits();
238
239 return 0;
240 }
241
242 /*
243 * perf samples are done in some very critical code paths (NMIs).
244 * If they take too much CPU time, the system can lock up and not
245 * get any real work done. This will drop the sample rate when
246 * we detect that events are taking too long.
247 */
248 #define NR_ACCUMULATED_SAMPLES 128
249 static DEFINE_PER_CPU(u64, running_sample_length);
250
251 static void perf_duration_warn(struct irq_work *w)
252 {
253 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
254 u64 avg_local_sample_len;
255 u64 local_samples_len;
256
257 local_samples_len = __this_cpu_read(running_sample_length);
258 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
259
260 printk_ratelimited(KERN_WARNING
261 "perf interrupt took too long (%lld > %lld), lowering "
262 "kernel.perf_event_max_sample_rate to %d\n",
263 avg_local_sample_len, allowed_ns >> 1,
264 sysctl_perf_event_sample_rate);
265 }
266
267 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
268
269 void perf_sample_event_took(u64 sample_len_ns)
270 {
271 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
272 u64 avg_local_sample_len;
273 u64 local_samples_len;
274
275 if (allowed_ns == 0)
276 return;
277
278 /* decay the counter by 1 average sample */
279 local_samples_len = __this_cpu_read(running_sample_length);
280 local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
281 local_samples_len += sample_len_ns;
282 __this_cpu_write(running_sample_length, local_samples_len);
283
284 /*
285 * note: this will be biased artifically low until we have
286 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
287 * from having to maintain a count.
288 */
289 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
290
291 if (avg_local_sample_len <= allowed_ns)
292 return;
293
294 if (max_samples_per_tick <= 1)
295 return;
296
297 max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
298 sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
299 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
300
301 update_perf_cpu_limits();
302
303 if (!irq_work_queue(&perf_duration_work)) {
304 early_printk("perf interrupt took too long (%lld > %lld), lowering "
305 "kernel.perf_event_max_sample_rate to %d\n",
306 avg_local_sample_len, allowed_ns >> 1,
307 sysctl_perf_event_sample_rate);
308 }
309 }
310
311 static atomic64_t perf_event_id;
312
313 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
314 enum event_type_t event_type);
315
316 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
317 enum event_type_t event_type,
318 struct task_struct *task);
319
320 static void update_context_time(struct perf_event_context *ctx);
321 static u64 perf_event_time(struct perf_event *event);
322
323 void __weak perf_event_print_debug(void) { }
324
325 extern __weak const char *perf_pmu_name(void)
326 {
327 return "pmu";
328 }
329
330 static inline u64 perf_clock(void)
331 {
332 return local_clock();
333 }
334
335 static inline u64 perf_event_clock(struct perf_event *event)
336 {
337 return event->clock();
338 }
339
340 static inline struct perf_cpu_context *
341 __get_cpu_context(struct perf_event_context *ctx)
342 {
343 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
344 }
345
346 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
347 struct perf_event_context *ctx)
348 {
349 raw_spin_lock(&cpuctx->ctx.lock);
350 if (ctx)
351 raw_spin_lock(&ctx->lock);
352 }
353
354 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
355 struct perf_event_context *ctx)
356 {
357 if (ctx)
358 raw_spin_unlock(&ctx->lock);
359 raw_spin_unlock(&cpuctx->ctx.lock);
360 }
361
362 #ifdef CONFIG_CGROUP_PERF
363
364 static inline bool
365 perf_cgroup_match(struct perf_event *event)
366 {
367 struct perf_event_context *ctx = event->ctx;
368 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
369
370 /* @event doesn't care about cgroup */
371 if (!event->cgrp)
372 return true;
373
374 /* wants specific cgroup scope but @cpuctx isn't associated with any */
375 if (!cpuctx->cgrp)
376 return false;
377
378 /*
379 * Cgroup scoping is recursive. An event enabled for a cgroup is
380 * also enabled for all its descendant cgroups. If @cpuctx's
381 * cgroup is a descendant of @event's (the test covers identity
382 * case), it's a match.
383 */
384 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
385 event->cgrp->css.cgroup);
386 }
387
388 static inline void perf_detach_cgroup(struct perf_event *event)
389 {
390 css_put(&event->cgrp->css);
391 event->cgrp = NULL;
392 }
393
394 static inline int is_cgroup_event(struct perf_event *event)
395 {
396 return event->cgrp != NULL;
397 }
398
399 static inline u64 perf_cgroup_event_time(struct perf_event *event)
400 {
401 struct perf_cgroup_info *t;
402
403 t = per_cpu_ptr(event->cgrp->info, event->cpu);
404 return t->time;
405 }
406
407 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
408 {
409 struct perf_cgroup_info *info;
410 u64 now;
411
412 now = perf_clock();
413
414 info = this_cpu_ptr(cgrp->info);
415
416 info->time += now - info->timestamp;
417 info->timestamp = now;
418 }
419
420 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
421 {
422 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
423 if (cgrp_out)
424 __update_cgrp_time(cgrp_out);
425 }
426
427 static inline void update_cgrp_time_from_event(struct perf_event *event)
428 {
429 struct perf_cgroup *cgrp;
430
431 /*
432 * ensure we access cgroup data only when needed and
433 * when we know the cgroup is pinned (css_get)
434 */
435 if (!is_cgroup_event(event))
436 return;
437
438 cgrp = perf_cgroup_from_task(current);
439 /*
440 * Do not update time when cgroup is not active
441 */
442 if (cgrp == event->cgrp)
443 __update_cgrp_time(event->cgrp);
444 }
445
446 static inline void
447 perf_cgroup_set_timestamp(struct task_struct *task,
448 struct perf_event_context *ctx)
449 {
450 struct perf_cgroup *cgrp;
451 struct perf_cgroup_info *info;
452
453 /*
454 * ctx->lock held by caller
455 * ensure we do not access cgroup data
456 * unless we have the cgroup pinned (css_get)
457 */
458 if (!task || !ctx->nr_cgroups)
459 return;
460
461 cgrp = perf_cgroup_from_task(task);
462 info = this_cpu_ptr(cgrp->info);
463 info->timestamp = ctx->timestamp;
464 }
465
466 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
467 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
468
469 /*
470 * reschedule events based on the cgroup constraint of task.
471 *
472 * mode SWOUT : schedule out everything
473 * mode SWIN : schedule in based on cgroup for next
474 */
475 void perf_cgroup_switch(struct task_struct *task, int mode)
476 {
477 struct perf_cpu_context *cpuctx;
478 struct pmu *pmu;
479 unsigned long flags;
480
481 /*
482 * disable interrupts to avoid geting nr_cgroup
483 * changes via __perf_event_disable(). Also
484 * avoids preemption.
485 */
486 local_irq_save(flags);
487
488 /*
489 * we reschedule only in the presence of cgroup
490 * constrained events.
491 */
492 rcu_read_lock();
493
494 list_for_each_entry_rcu(pmu, &pmus, entry) {
495 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
496 if (cpuctx->unique_pmu != pmu)
497 continue; /* ensure we process each cpuctx once */
498
499 /*
500 * perf_cgroup_events says at least one
501 * context on this CPU has cgroup events.
502 *
503 * ctx->nr_cgroups reports the number of cgroup
504 * events for a context.
505 */
506 if (cpuctx->ctx.nr_cgroups > 0) {
507 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
508 perf_pmu_disable(cpuctx->ctx.pmu);
509
510 if (mode & PERF_CGROUP_SWOUT) {
511 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
512 /*
513 * must not be done before ctxswout due
514 * to event_filter_match() in event_sched_out()
515 */
516 cpuctx->cgrp = NULL;
517 }
518
519 if (mode & PERF_CGROUP_SWIN) {
520 WARN_ON_ONCE(cpuctx->cgrp);
521 /*
522 * set cgrp before ctxsw in to allow
523 * event_filter_match() to not have to pass
524 * task around
525 */
526 cpuctx->cgrp = perf_cgroup_from_task(task);
527 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
528 }
529 perf_pmu_enable(cpuctx->ctx.pmu);
530 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
531 }
532 }
533
534 rcu_read_unlock();
535
536 local_irq_restore(flags);
537 }
538
539 static inline void perf_cgroup_sched_out(struct task_struct *task,
540 struct task_struct *next)
541 {
542 struct perf_cgroup *cgrp1;
543 struct perf_cgroup *cgrp2 = NULL;
544
545 /*
546 * we come here when we know perf_cgroup_events > 0
547 */
548 cgrp1 = perf_cgroup_from_task(task);
549
550 /*
551 * next is NULL when called from perf_event_enable_on_exec()
552 * that will systematically cause a cgroup_switch()
553 */
554 if (next)
555 cgrp2 = perf_cgroup_from_task(next);
556
557 /*
558 * only schedule out current cgroup events if we know
559 * that we are switching to a different cgroup. Otherwise,
560 * do no touch the cgroup events.
561 */
562 if (cgrp1 != cgrp2)
563 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
564 }
565
566 static inline void perf_cgroup_sched_in(struct task_struct *prev,
567 struct task_struct *task)
568 {
569 struct perf_cgroup *cgrp1;
570 struct perf_cgroup *cgrp2 = NULL;
571
572 /*
573 * we come here when we know perf_cgroup_events > 0
574 */
575 cgrp1 = perf_cgroup_from_task(task);
576
577 /* prev can never be NULL */
578 cgrp2 = perf_cgroup_from_task(prev);
579
580 /*
581 * only need to schedule in cgroup events if we are changing
582 * cgroup during ctxsw. Cgroup events were not scheduled
583 * out of ctxsw out if that was not the case.
584 */
585 if (cgrp1 != cgrp2)
586 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
587 }
588
589 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
590 struct perf_event_attr *attr,
591 struct perf_event *group_leader)
592 {
593 struct perf_cgroup *cgrp;
594 struct cgroup_subsys_state *css;
595 struct fd f = fdget(fd);
596 int ret = 0;
597
598 if (!f.file)
599 return -EBADF;
600
601 css = css_tryget_online_from_dir(f.file->f_path.dentry,
602 &perf_event_cgrp_subsys);
603 if (IS_ERR(css)) {
604 ret = PTR_ERR(css);
605 goto out;
606 }
607
608 cgrp = container_of(css, struct perf_cgroup, css);
609 event->cgrp = cgrp;
610
611 /*
612 * all events in a group must monitor
613 * the same cgroup because a task belongs
614 * to only one perf cgroup at a time
615 */
616 if (group_leader && group_leader->cgrp != cgrp) {
617 perf_detach_cgroup(event);
618 ret = -EINVAL;
619 }
620 out:
621 fdput(f);
622 return ret;
623 }
624
625 static inline void
626 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
627 {
628 struct perf_cgroup_info *t;
629 t = per_cpu_ptr(event->cgrp->info, event->cpu);
630 event->shadow_ctx_time = now - t->timestamp;
631 }
632
633 static inline void
634 perf_cgroup_defer_enabled(struct perf_event *event)
635 {
636 /*
637 * when the current task's perf cgroup does not match
638 * the event's, we need to remember to call the
639 * perf_mark_enable() function the first time a task with
640 * a matching perf cgroup is scheduled in.
641 */
642 if (is_cgroup_event(event) && !perf_cgroup_match(event))
643 event->cgrp_defer_enabled = 1;
644 }
645
646 static inline void
647 perf_cgroup_mark_enabled(struct perf_event *event,
648 struct perf_event_context *ctx)
649 {
650 struct perf_event *sub;
651 u64 tstamp = perf_event_time(event);
652
653 if (!event->cgrp_defer_enabled)
654 return;
655
656 event->cgrp_defer_enabled = 0;
657
658 event->tstamp_enabled = tstamp - event->total_time_enabled;
659 list_for_each_entry(sub, &event->sibling_list, group_entry) {
660 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
661 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
662 sub->cgrp_defer_enabled = 0;
663 }
664 }
665 }
666 #else /* !CONFIG_CGROUP_PERF */
667
668 static inline bool
669 perf_cgroup_match(struct perf_event *event)
670 {
671 return true;
672 }
673
674 static inline void perf_detach_cgroup(struct perf_event *event)
675 {}
676
677 static inline int is_cgroup_event(struct perf_event *event)
678 {
679 return 0;
680 }
681
682 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
683 {
684 return 0;
685 }
686
687 static inline void update_cgrp_time_from_event(struct perf_event *event)
688 {
689 }
690
691 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
692 {
693 }
694
695 static inline void perf_cgroup_sched_out(struct task_struct *task,
696 struct task_struct *next)
697 {
698 }
699
700 static inline void perf_cgroup_sched_in(struct task_struct *prev,
701 struct task_struct *task)
702 {
703 }
704
705 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
706 struct perf_event_attr *attr,
707 struct perf_event *group_leader)
708 {
709 return -EINVAL;
710 }
711
712 static inline void
713 perf_cgroup_set_timestamp(struct task_struct *task,
714 struct perf_event_context *ctx)
715 {
716 }
717
718 void
719 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
720 {
721 }
722
723 static inline void
724 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
725 {
726 }
727
728 static inline u64 perf_cgroup_event_time(struct perf_event *event)
729 {
730 return 0;
731 }
732
733 static inline void
734 perf_cgroup_defer_enabled(struct perf_event *event)
735 {
736 }
737
738 static inline void
739 perf_cgroup_mark_enabled(struct perf_event *event,
740 struct perf_event_context *ctx)
741 {
742 }
743 #endif
744
745 /*
746 * set default to be dependent on timer tick just
747 * like original code
748 */
749 #define PERF_CPU_HRTIMER (1000 / HZ)
750 /*
751 * function must be called with interrupts disbled
752 */
753 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
754 {
755 struct perf_cpu_context *cpuctx;
756 int rotations = 0;
757
758 WARN_ON(!irqs_disabled());
759
760 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
761 rotations = perf_rotate_context(cpuctx);
762
763 raw_spin_lock(&cpuctx->hrtimer_lock);
764 if (rotations)
765 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
766 else
767 cpuctx->hrtimer_active = 0;
768 raw_spin_unlock(&cpuctx->hrtimer_lock);
769
770 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
771 }
772
773 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
774 {
775 struct hrtimer *timer = &cpuctx->hrtimer;
776 struct pmu *pmu = cpuctx->ctx.pmu;
777 u64 interval;
778
779 /* no multiplexing needed for SW PMU */
780 if (pmu->task_ctx_nr == perf_sw_context)
781 return;
782
783 /*
784 * check default is sane, if not set then force to
785 * default interval (1/tick)
786 */
787 interval = pmu->hrtimer_interval_ms;
788 if (interval < 1)
789 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
790
791 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
792
793 raw_spin_lock_init(&cpuctx->hrtimer_lock);
794 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
795 timer->function = perf_mux_hrtimer_handler;
796 }
797
798 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
799 {
800 struct hrtimer *timer = &cpuctx->hrtimer;
801 struct pmu *pmu = cpuctx->ctx.pmu;
802 unsigned long flags;
803
804 /* not for SW PMU */
805 if (pmu->task_ctx_nr == perf_sw_context)
806 return 0;
807
808 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
809 if (!cpuctx->hrtimer_active) {
810 cpuctx->hrtimer_active = 1;
811 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
812 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
813 }
814 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
815
816 return 0;
817 }
818
819 void perf_pmu_disable(struct pmu *pmu)
820 {
821 int *count = this_cpu_ptr(pmu->pmu_disable_count);
822 if (!(*count)++)
823 pmu->pmu_disable(pmu);
824 }
825
826 void perf_pmu_enable(struct pmu *pmu)
827 {
828 int *count = this_cpu_ptr(pmu->pmu_disable_count);
829 if (!--(*count))
830 pmu->pmu_enable(pmu);
831 }
832
833 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
834
835 /*
836 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
837 * perf_event_task_tick() are fully serialized because they're strictly cpu
838 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
839 * disabled, while perf_event_task_tick is called from IRQ context.
840 */
841 static void perf_event_ctx_activate(struct perf_event_context *ctx)
842 {
843 struct list_head *head = this_cpu_ptr(&active_ctx_list);
844
845 WARN_ON(!irqs_disabled());
846
847 WARN_ON(!list_empty(&ctx->active_ctx_list));
848
849 list_add(&ctx->active_ctx_list, head);
850 }
851
852 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
853 {
854 WARN_ON(!irqs_disabled());
855
856 WARN_ON(list_empty(&ctx->active_ctx_list));
857
858 list_del_init(&ctx->active_ctx_list);
859 }
860
861 static void get_ctx(struct perf_event_context *ctx)
862 {
863 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
864 }
865
866 static void free_ctx(struct rcu_head *head)
867 {
868 struct perf_event_context *ctx;
869
870 ctx = container_of(head, struct perf_event_context, rcu_head);
871 kfree(ctx->task_ctx_data);
872 kfree(ctx);
873 }
874
875 static void put_ctx(struct perf_event_context *ctx)
876 {
877 if (atomic_dec_and_test(&ctx->refcount)) {
878 if (ctx->parent_ctx)
879 put_ctx(ctx->parent_ctx);
880 if (ctx->task)
881 put_task_struct(ctx->task);
882 call_rcu(&ctx->rcu_head, free_ctx);
883 }
884 }
885
886 /*
887 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
888 * perf_pmu_migrate_context() we need some magic.
889 *
890 * Those places that change perf_event::ctx will hold both
891 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
892 *
893 * Lock ordering is by mutex address. There are two other sites where
894 * perf_event_context::mutex nests and those are:
895 *
896 * - perf_event_exit_task_context() [ child , 0 ]
897 * __perf_event_exit_task()
898 * sync_child_event()
899 * put_event() [ parent, 1 ]
900 *
901 * - perf_event_init_context() [ parent, 0 ]
902 * inherit_task_group()
903 * inherit_group()
904 * inherit_event()
905 * perf_event_alloc()
906 * perf_init_event()
907 * perf_try_init_event() [ child , 1 ]
908 *
909 * While it appears there is an obvious deadlock here -- the parent and child
910 * nesting levels are inverted between the two. This is in fact safe because
911 * life-time rules separate them. That is an exiting task cannot fork, and a
912 * spawning task cannot (yet) exit.
913 *
914 * But remember that that these are parent<->child context relations, and
915 * migration does not affect children, therefore these two orderings should not
916 * interact.
917 *
918 * The change in perf_event::ctx does not affect children (as claimed above)
919 * because the sys_perf_event_open() case will install a new event and break
920 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
921 * concerned with cpuctx and that doesn't have children.
922 *
923 * The places that change perf_event::ctx will issue:
924 *
925 * perf_remove_from_context();
926 * synchronize_rcu();
927 * perf_install_in_context();
928 *
929 * to affect the change. The remove_from_context() + synchronize_rcu() should
930 * quiesce the event, after which we can install it in the new location. This
931 * means that only external vectors (perf_fops, prctl) can perturb the event
932 * while in transit. Therefore all such accessors should also acquire
933 * perf_event_context::mutex to serialize against this.
934 *
935 * However; because event->ctx can change while we're waiting to acquire
936 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
937 * function.
938 *
939 * Lock order:
940 * task_struct::perf_event_mutex
941 * perf_event_context::mutex
942 * perf_event_context::lock
943 * perf_event::child_mutex;
944 * perf_event::mmap_mutex
945 * mmap_sem
946 */
947 static struct perf_event_context *
948 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
949 {
950 struct perf_event_context *ctx;
951
952 again:
953 rcu_read_lock();
954 ctx = ACCESS_ONCE(event->ctx);
955 if (!atomic_inc_not_zero(&ctx->refcount)) {
956 rcu_read_unlock();
957 goto again;
958 }
959 rcu_read_unlock();
960
961 mutex_lock_nested(&ctx->mutex, nesting);
962 if (event->ctx != ctx) {
963 mutex_unlock(&ctx->mutex);
964 put_ctx(ctx);
965 goto again;
966 }
967
968 return ctx;
969 }
970
971 static inline struct perf_event_context *
972 perf_event_ctx_lock(struct perf_event *event)
973 {
974 return perf_event_ctx_lock_nested(event, 0);
975 }
976
977 static void perf_event_ctx_unlock(struct perf_event *event,
978 struct perf_event_context *ctx)
979 {
980 mutex_unlock(&ctx->mutex);
981 put_ctx(ctx);
982 }
983
984 /*
985 * This must be done under the ctx->lock, such as to serialize against
986 * context_equiv(), therefore we cannot call put_ctx() since that might end up
987 * calling scheduler related locks and ctx->lock nests inside those.
988 */
989 static __must_check struct perf_event_context *
990 unclone_ctx(struct perf_event_context *ctx)
991 {
992 struct perf_event_context *parent_ctx = ctx->parent_ctx;
993
994 lockdep_assert_held(&ctx->lock);
995
996 if (parent_ctx)
997 ctx->parent_ctx = NULL;
998 ctx->generation++;
999
1000 return parent_ctx;
1001 }
1002
1003 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1004 {
1005 /*
1006 * only top level events have the pid namespace they were created in
1007 */
1008 if (event->parent)
1009 event = event->parent;
1010
1011 return task_tgid_nr_ns(p, event->ns);
1012 }
1013
1014 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1015 {
1016 /*
1017 * only top level events have the pid namespace they were created in
1018 */
1019 if (event->parent)
1020 event = event->parent;
1021
1022 return task_pid_nr_ns(p, event->ns);
1023 }
1024
1025 /*
1026 * If we inherit events we want to return the parent event id
1027 * to userspace.
1028 */
1029 static u64 primary_event_id(struct perf_event *event)
1030 {
1031 u64 id = event->id;
1032
1033 if (event->parent)
1034 id = event->parent->id;
1035
1036 return id;
1037 }
1038
1039 /*
1040 * Get the perf_event_context for a task and lock it.
1041 * This has to cope with with the fact that until it is locked,
1042 * the context could get moved to another task.
1043 */
1044 static struct perf_event_context *
1045 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1046 {
1047 struct perf_event_context *ctx;
1048
1049 retry:
1050 /*
1051 * One of the few rules of preemptible RCU is that one cannot do
1052 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1053 * part of the read side critical section was preemptible -- see
1054 * rcu_read_unlock_special().
1055 *
1056 * Since ctx->lock nests under rq->lock we must ensure the entire read
1057 * side critical section is non-preemptible.
1058 */
1059 preempt_disable();
1060 rcu_read_lock();
1061 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1062 if (ctx) {
1063 /*
1064 * If this context is a clone of another, it might
1065 * get swapped for another underneath us by
1066 * perf_event_task_sched_out, though the
1067 * rcu_read_lock() protects us from any context
1068 * getting freed. Lock the context and check if it
1069 * got swapped before we could get the lock, and retry
1070 * if so. If we locked the right context, then it
1071 * can't get swapped on us any more.
1072 */
1073 raw_spin_lock_irqsave(&ctx->lock, *flags);
1074 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1075 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
1076 rcu_read_unlock();
1077 preempt_enable();
1078 goto retry;
1079 }
1080
1081 if (!atomic_inc_not_zero(&ctx->refcount)) {
1082 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
1083 ctx = NULL;
1084 }
1085 }
1086 rcu_read_unlock();
1087 preempt_enable();
1088 return ctx;
1089 }
1090
1091 /*
1092 * Get the context for a task and increment its pin_count so it
1093 * can't get swapped to another task. This also increments its
1094 * reference count so that the context can't get freed.
1095 */
1096 static struct perf_event_context *
1097 perf_pin_task_context(struct task_struct *task, int ctxn)
1098 {
1099 struct perf_event_context *ctx;
1100 unsigned long flags;
1101
1102 ctx = perf_lock_task_context(task, ctxn, &flags);
1103 if (ctx) {
1104 ++ctx->pin_count;
1105 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1106 }
1107 return ctx;
1108 }
1109
1110 static void perf_unpin_context(struct perf_event_context *ctx)
1111 {
1112 unsigned long flags;
1113
1114 raw_spin_lock_irqsave(&ctx->lock, flags);
1115 --ctx->pin_count;
1116 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1117 }
1118
1119 /*
1120 * Update the record of the current time in a context.
1121 */
1122 static void update_context_time(struct perf_event_context *ctx)
1123 {
1124 u64 now = perf_clock();
1125
1126 ctx->time += now - ctx->timestamp;
1127 ctx->timestamp = now;
1128 }
1129
1130 static u64 perf_event_time(struct perf_event *event)
1131 {
1132 struct perf_event_context *ctx = event->ctx;
1133
1134 if (is_cgroup_event(event))
1135 return perf_cgroup_event_time(event);
1136
1137 return ctx ? ctx->time : 0;
1138 }
1139
1140 /*
1141 * Update the total_time_enabled and total_time_running fields for a event.
1142 * The caller of this function needs to hold the ctx->lock.
1143 */
1144 static void update_event_times(struct perf_event *event)
1145 {
1146 struct perf_event_context *ctx = event->ctx;
1147 u64 run_end;
1148
1149 if (event->state < PERF_EVENT_STATE_INACTIVE ||
1150 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1151 return;
1152 /*
1153 * in cgroup mode, time_enabled represents
1154 * the time the event was enabled AND active
1155 * tasks were in the monitored cgroup. This is
1156 * independent of the activity of the context as
1157 * there may be a mix of cgroup and non-cgroup events.
1158 *
1159 * That is why we treat cgroup events differently
1160 * here.
1161 */
1162 if (is_cgroup_event(event))
1163 run_end = perf_cgroup_event_time(event);
1164 else if (ctx->is_active)
1165 run_end = ctx->time;
1166 else
1167 run_end = event->tstamp_stopped;
1168
1169 event->total_time_enabled = run_end - event->tstamp_enabled;
1170
1171 if (event->state == PERF_EVENT_STATE_INACTIVE)
1172 run_end = event->tstamp_stopped;
1173 else
1174 run_end = perf_event_time(event);
1175
1176 event->total_time_running = run_end - event->tstamp_running;
1177
1178 }
1179
1180 /*
1181 * Update total_time_enabled and total_time_running for all events in a group.
1182 */
1183 static void update_group_times(struct perf_event *leader)
1184 {
1185 struct perf_event *event;
1186
1187 update_event_times(leader);
1188 list_for_each_entry(event, &leader->sibling_list, group_entry)
1189 update_event_times(event);
1190 }
1191
1192 static struct list_head *
1193 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1194 {
1195 if (event->attr.pinned)
1196 return &ctx->pinned_groups;
1197 else
1198 return &ctx->flexible_groups;
1199 }
1200
1201 /*
1202 * Add a event from the lists for its context.
1203 * Must be called with ctx->mutex and ctx->lock held.
1204 */
1205 static void
1206 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1207 {
1208 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1209 event->attach_state |= PERF_ATTACH_CONTEXT;
1210
1211 /*
1212 * If we're a stand alone event or group leader, we go to the context
1213 * list, group events are kept attached to the group so that
1214 * perf_group_detach can, at all times, locate all siblings.
1215 */
1216 if (event->group_leader == event) {
1217 struct list_head *list;
1218
1219 if (is_software_event(event))
1220 event->group_flags |= PERF_GROUP_SOFTWARE;
1221
1222 list = ctx_group_list(event, ctx);
1223 list_add_tail(&event->group_entry, list);
1224 }
1225
1226 if (is_cgroup_event(event))
1227 ctx->nr_cgroups++;
1228
1229 list_add_rcu(&event->event_entry, &ctx->event_list);
1230 ctx->nr_events++;
1231 if (event->attr.inherit_stat)
1232 ctx->nr_stat++;
1233
1234 ctx->generation++;
1235 }
1236
1237 /*
1238 * Initialize event state based on the perf_event_attr::disabled.
1239 */
1240 static inline void perf_event__state_init(struct perf_event *event)
1241 {
1242 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1243 PERF_EVENT_STATE_INACTIVE;
1244 }
1245
1246 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1247 {
1248 int entry = sizeof(u64); /* value */
1249 int size = 0;
1250 int nr = 1;
1251
1252 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1253 size += sizeof(u64);
1254
1255 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1256 size += sizeof(u64);
1257
1258 if (event->attr.read_format & PERF_FORMAT_ID)
1259 entry += sizeof(u64);
1260
1261 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1262 nr += nr_siblings;
1263 size += sizeof(u64);
1264 }
1265
1266 size += entry * nr;
1267 event->read_size = size;
1268 }
1269
1270 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1271 {
1272 struct perf_sample_data *data;
1273 u16 size = 0;
1274
1275 if (sample_type & PERF_SAMPLE_IP)
1276 size += sizeof(data->ip);
1277
1278 if (sample_type & PERF_SAMPLE_ADDR)
1279 size += sizeof(data->addr);
1280
1281 if (sample_type & PERF_SAMPLE_PERIOD)
1282 size += sizeof(data->period);
1283
1284 if (sample_type & PERF_SAMPLE_WEIGHT)
1285 size += sizeof(data->weight);
1286
1287 if (sample_type & PERF_SAMPLE_READ)
1288 size += event->read_size;
1289
1290 if (sample_type & PERF_SAMPLE_DATA_SRC)
1291 size += sizeof(data->data_src.val);
1292
1293 if (sample_type & PERF_SAMPLE_TRANSACTION)
1294 size += sizeof(data->txn);
1295
1296 event->header_size = size;
1297 }
1298
1299 /*
1300 * Called at perf_event creation and when events are attached/detached from a
1301 * group.
1302 */
1303 static void perf_event__header_size(struct perf_event *event)
1304 {
1305 __perf_event_read_size(event,
1306 event->group_leader->nr_siblings);
1307 __perf_event_header_size(event, event->attr.sample_type);
1308 }
1309
1310 static void perf_event__id_header_size(struct perf_event *event)
1311 {
1312 struct perf_sample_data *data;
1313 u64 sample_type = event->attr.sample_type;
1314 u16 size = 0;
1315
1316 if (sample_type & PERF_SAMPLE_TID)
1317 size += sizeof(data->tid_entry);
1318
1319 if (sample_type & PERF_SAMPLE_TIME)
1320 size += sizeof(data->time);
1321
1322 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1323 size += sizeof(data->id);
1324
1325 if (sample_type & PERF_SAMPLE_ID)
1326 size += sizeof(data->id);
1327
1328 if (sample_type & PERF_SAMPLE_STREAM_ID)
1329 size += sizeof(data->stream_id);
1330
1331 if (sample_type & PERF_SAMPLE_CPU)
1332 size += sizeof(data->cpu_entry);
1333
1334 event->id_header_size = size;
1335 }
1336
1337 static bool perf_event_validate_size(struct perf_event *event)
1338 {
1339 /*
1340 * The values computed here will be over-written when we actually
1341 * attach the event.
1342 */
1343 __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1344 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1345 perf_event__id_header_size(event);
1346
1347 /*
1348 * Sum the lot; should not exceed the 64k limit we have on records.
1349 * Conservative limit to allow for callchains and other variable fields.
1350 */
1351 if (event->read_size + event->header_size +
1352 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1353 return false;
1354
1355 return true;
1356 }
1357
1358 static void perf_group_attach(struct perf_event *event)
1359 {
1360 struct perf_event *group_leader = event->group_leader, *pos;
1361
1362 /*
1363 * We can have double attach due to group movement in perf_event_open.
1364 */
1365 if (event->attach_state & PERF_ATTACH_GROUP)
1366 return;
1367
1368 event->attach_state |= PERF_ATTACH_GROUP;
1369
1370 if (group_leader == event)
1371 return;
1372
1373 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1374
1375 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1376 !is_software_event(event))
1377 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1378
1379 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1380 group_leader->nr_siblings++;
1381
1382 perf_event__header_size(group_leader);
1383
1384 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1385 perf_event__header_size(pos);
1386 }
1387
1388 /*
1389 * Remove a event from the lists for its context.
1390 * Must be called with ctx->mutex and ctx->lock held.
1391 */
1392 static void
1393 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1394 {
1395 struct perf_cpu_context *cpuctx;
1396
1397 WARN_ON_ONCE(event->ctx != ctx);
1398 lockdep_assert_held(&ctx->lock);
1399
1400 /*
1401 * We can have double detach due to exit/hot-unplug + close.
1402 */
1403 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1404 return;
1405
1406 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1407
1408 if (is_cgroup_event(event)) {
1409 ctx->nr_cgroups--;
1410 cpuctx = __get_cpu_context(ctx);
1411 /*
1412 * if there are no more cgroup events
1413 * then cler cgrp to avoid stale pointer
1414 * in update_cgrp_time_from_cpuctx()
1415 */
1416 if (!ctx->nr_cgroups)
1417 cpuctx->cgrp = NULL;
1418 }
1419
1420 ctx->nr_events--;
1421 if (event->attr.inherit_stat)
1422 ctx->nr_stat--;
1423
1424 list_del_rcu(&event->event_entry);
1425
1426 if (event->group_leader == event)
1427 list_del_init(&event->group_entry);
1428
1429 update_group_times(event);
1430
1431 /*
1432 * If event was in error state, then keep it
1433 * that way, otherwise bogus counts will be
1434 * returned on read(). The only way to get out
1435 * of error state is by explicit re-enabling
1436 * of the event
1437 */
1438 if (event->state > PERF_EVENT_STATE_OFF)
1439 event->state = PERF_EVENT_STATE_OFF;
1440
1441 ctx->generation++;
1442 }
1443
1444 static void perf_group_detach(struct perf_event *event)
1445 {
1446 struct perf_event *sibling, *tmp;
1447 struct list_head *list = NULL;
1448
1449 /*
1450 * We can have double detach due to exit/hot-unplug + close.
1451 */
1452 if (!(event->attach_state & PERF_ATTACH_GROUP))
1453 return;
1454
1455 event->attach_state &= ~PERF_ATTACH_GROUP;
1456
1457 /*
1458 * If this is a sibling, remove it from its group.
1459 */
1460 if (event->group_leader != event) {
1461 list_del_init(&event->group_entry);
1462 event->group_leader->nr_siblings--;
1463 goto out;
1464 }
1465
1466 if (!list_empty(&event->group_entry))
1467 list = &event->group_entry;
1468
1469 /*
1470 * If this was a group event with sibling events then
1471 * upgrade the siblings to singleton events by adding them
1472 * to whatever list we are on.
1473 */
1474 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1475 if (list)
1476 list_move_tail(&sibling->group_entry, list);
1477 sibling->group_leader = sibling;
1478
1479 /* Inherit group flags from the previous leader */
1480 sibling->group_flags = event->group_flags;
1481
1482 WARN_ON_ONCE(sibling->ctx != event->ctx);
1483 }
1484
1485 out:
1486 perf_event__header_size(event->group_leader);
1487
1488 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1489 perf_event__header_size(tmp);
1490 }
1491
1492 /*
1493 * User event without the task.
1494 */
1495 static bool is_orphaned_event(struct perf_event *event)
1496 {
1497 return event && !is_kernel_event(event) && !event->owner;
1498 }
1499
1500 /*
1501 * Event has a parent but parent's task finished and it's
1502 * alive only because of children holding refference.
1503 */
1504 static bool is_orphaned_child(struct perf_event *event)
1505 {
1506 return is_orphaned_event(event->parent);
1507 }
1508
1509 static void orphans_remove_work(struct work_struct *work);
1510
1511 static void schedule_orphans_remove(struct perf_event_context *ctx)
1512 {
1513 if (!ctx->task || ctx->orphans_remove_sched || !perf_wq)
1514 return;
1515
1516 if (queue_delayed_work(perf_wq, &ctx->orphans_remove, 1)) {
1517 get_ctx(ctx);
1518 ctx->orphans_remove_sched = true;
1519 }
1520 }
1521
1522 static int __init perf_workqueue_init(void)
1523 {
1524 perf_wq = create_singlethread_workqueue("perf");
1525 WARN(!perf_wq, "failed to create perf workqueue\n");
1526 return perf_wq ? 0 : -1;
1527 }
1528
1529 core_initcall(perf_workqueue_init);
1530
1531 static inline int pmu_filter_match(struct perf_event *event)
1532 {
1533 struct pmu *pmu = event->pmu;
1534 return pmu->filter_match ? pmu->filter_match(event) : 1;
1535 }
1536
1537 static inline int
1538 event_filter_match(struct perf_event *event)
1539 {
1540 return (event->cpu == -1 || event->cpu == smp_processor_id())
1541 && perf_cgroup_match(event) && pmu_filter_match(event);
1542 }
1543
1544 static void
1545 event_sched_out(struct perf_event *event,
1546 struct perf_cpu_context *cpuctx,
1547 struct perf_event_context *ctx)
1548 {
1549 u64 tstamp = perf_event_time(event);
1550 u64 delta;
1551
1552 WARN_ON_ONCE(event->ctx != ctx);
1553 lockdep_assert_held(&ctx->lock);
1554
1555 /*
1556 * An event which could not be activated because of
1557 * filter mismatch still needs to have its timings
1558 * maintained, otherwise bogus information is return
1559 * via read() for time_enabled, time_running:
1560 */
1561 if (event->state == PERF_EVENT_STATE_INACTIVE
1562 && !event_filter_match(event)) {
1563 delta = tstamp - event->tstamp_stopped;
1564 event->tstamp_running += delta;
1565 event->tstamp_stopped = tstamp;
1566 }
1567
1568 if (event->state != PERF_EVENT_STATE_ACTIVE)
1569 return;
1570
1571 perf_pmu_disable(event->pmu);
1572
1573 event->state = PERF_EVENT_STATE_INACTIVE;
1574 if (event->pending_disable) {
1575 event->pending_disable = 0;
1576 event->state = PERF_EVENT_STATE_OFF;
1577 }
1578 event->tstamp_stopped = tstamp;
1579 event->pmu->del(event, 0);
1580 event->oncpu = -1;
1581
1582 if (!is_software_event(event))
1583 cpuctx->active_oncpu--;
1584 if (!--ctx->nr_active)
1585 perf_event_ctx_deactivate(ctx);
1586 if (event->attr.freq && event->attr.sample_freq)
1587 ctx->nr_freq--;
1588 if (event->attr.exclusive || !cpuctx->active_oncpu)
1589 cpuctx->exclusive = 0;
1590
1591 if (is_orphaned_child(event))
1592 schedule_orphans_remove(ctx);
1593
1594 perf_pmu_enable(event->pmu);
1595 }
1596
1597 static void
1598 group_sched_out(struct perf_event *group_event,
1599 struct perf_cpu_context *cpuctx,
1600 struct perf_event_context *ctx)
1601 {
1602 struct perf_event *event;
1603 int state = group_event->state;
1604
1605 event_sched_out(group_event, cpuctx, ctx);
1606
1607 /*
1608 * Schedule out siblings (if any):
1609 */
1610 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1611 event_sched_out(event, cpuctx, ctx);
1612
1613 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1614 cpuctx->exclusive = 0;
1615 }
1616
1617 struct remove_event {
1618 struct perf_event *event;
1619 bool detach_group;
1620 };
1621
1622 /*
1623 * Cross CPU call to remove a performance event
1624 *
1625 * We disable the event on the hardware level first. After that we
1626 * remove it from the context list.
1627 */
1628 static int __perf_remove_from_context(void *info)
1629 {
1630 struct remove_event *re = info;
1631 struct perf_event *event = re->event;
1632 struct perf_event_context *ctx = event->ctx;
1633 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1634
1635 raw_spin_lock(&ctx->lock);
1636 event_sched_out(event, cpuctx, ctx);
1637 if (re->detach_group)
1638 perf_group_detach(event);
1639 list_del_event(event, ctx);
1640 if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1641 ctx->is_active = 0;
1642 cpuctx->task_ctx = NULL;
1643 }
1644 raw_spin_unlock(&ctx->lock);
1645
1646 return 0;
1647 }
1648
1649
1650 /*
1651 * Remove the event from a task's (or a CPU's) list of events.
1652 *
1653 * CPU events are removed with a smp call. For task events we only
1654 * call when the task is on a CPU.
1655 *
1656 * If event->ctx is a cloned context, callers must make sure that
1657 * every task struct that event->ctx->task could possibly point to
1658 * remains valid. This is OK when called from perf_release since
1659 * that only calls us on the top-level context, which can't be a clone.
1660 * When called from perf_event_exit_task, it's OK because the
1661 * context has been detached from its task.
1662 */
1663 static void perf_remove_from_context(struct perf_event *event, bool detach_group)
1664 {
1665 struct perf_event_context *ctx = event->ctx;
1666 struct task_struct *task = ctx->task;
1667 struct remove_event re = {
1668 .event = event,
1669 .detach_group = detach_group,
1670 };
1671
1672 lockdep_assert_held(&ctx->mutex);
1673
1674 if (!task) {
1675 /*
1676 * Per cpu events are removed via an smp call. The removal can
1677 * fail if the CPU is currently offline, but in that case we
1678 * already called __perf_remove_from_context from
1679 * perf_event_exit_cpu.
1680 */
1681 cpu_function_call(event->cpu, __perf_remove_from_context, &re);
1682 return;
1683 }
1684
1685 retry:
1686 if (!task_function_call(task, __perf_remove_from_context, &re))
1687 return;
1688
1689 raw_spin_lock_irq(&ctx->lock);
1690 /*
1691 * If we failed to find a running task, but find the context active now
1692 * that we've acquired the ctx->lock, retry.
1693 */
1694 if (ctx->is_active) {
1695 raw_spin_unlock_irq(&ctx->lock);
1696 /*
1697 * Reload the task pointer, it might have been changed by
1698 * a concurrent perf_event_context_sched_out().
1699 */
1700 task = ctx->task;
1701 goto retry;
1702 }
1703
1704 /*
1705 * Since the task isn't running, its safe to remove the event, us
1706 * holding the ctx->lock ensures the task won't get scheduled in.
1707 */
1708 if (detach_group)
1709 perf_group_detach(event);
1710 list_del_event(event, ctx);
1711 raw_spin_unlock_irq(&ctx->lock);
1712 }
1713
1714 /*
1715 * Cross CPU call to disable a performance event
1716 */
1717 int __perf_event_disable(void *info)
1718 {
1719 struct perf_event *event = info;
1720 struct perf_event_context *ctx = event->ctx;
1721 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1722
1723 /*
1724 * If this is a per-task event, need to check whether this
1725 * event's task is the current task on this cpu.
1726 *
1727 * Can trigger due to concurrent perf_event_context_sched_out()
1728 * flipping contexts around.
1729 */
1730 if (ctx->task && cpuctx->task_ctx != ctx)
1731 return -EINVAL;
1732
1733 raw_spin_lock(&ctx->lock);
1734
1735 /*
1736 * If the event is on, turn it off.
1737 * If it is in error state, leave it in error state.
1738 */
1739 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1740 update_context_time(ctx);
1741 update_cgrp_time_from_event(event);
1742 update_group_times(event);
1743 if (event == event->group_leader)
1744 group_sched_out(event, cpuctx, ctx);
1745 else
1746 event_sched_out(event, cpuctx, ctx);
1747 event->state = PERF_EVENT_STATE_OFF;
1748 }
1749
1750 raw_spin_unlock(&ctx->lock);
1751
1752 return 0;
1753 }
1754
1755 /*
1756 * Disable a event.
1757 *
1758 * If event->ctx is a cloned context, callers must make sure that
1759 * every task struct that event->ctx->task could possibly point to
1760 * remains valid. This condition is satisifed when called through
1761 * perf_event_for_each_child or perf_event_for_each because they
1762 * hold the top-level event's child_mutex, so any descendant that
1763 * goes to exit will block in sync_child_event.
1764 * When called from perf_pending_event it's OK because event->ctx
1765 * is the current context on this CPU and preemption is disabled,
1766 * hence we can't get into perf_event_task_sched_out for this context.
1767 */
1768 static void _perf_event_disable(struct perf_event *event)
1769 {
1770 struct perf_event_context *ctx = event->ctx;
1771 struct task_struct *task = ctx->task;
1772
1773 if (!task) {
1774 /*
1775 * Disable the event on the cpu that it's on
1776 */
1777 cpu_function_call(event->cpu, __perf_event_disable, event);
1778 return;
1779 }
1780
1781 retry:
1782 if (!task_function_call(task, __perf_event_disable, event))
1783 return;
1784
1785 raw_spin_lock_irq(&ctx->lock);
1786 /*
1787 * If the event is still active, we need to retry the cross-call.
1788 */
1789 if (event->state == PERF_EVENT_STATE_ACTIVE) {
1790 raw_spin_unlock_irq(&ctx->lock);
1791 /*
1792 * Reload the task pointer, it might have been changed by
1793 * a concurrent perf_event_context_sched_out().
1794 */
1795 task = ctx->task;
1796 goto retry;
1797 }
1798
1799 /*
1800 * Since we have the lock this context can't be scheduled
1801 * in, so we can change the state safely.
1802 */
1803 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1804 update_group_times(event);
1805 event->state = PERF_EVENT_STATE_OFF;
1806 }
1807 raw_spin_unlock_irq(&ctx->lock);
1808 }
1809
1810 /*
1811 * Strictly speaking kernel users cannot create groups and therefore this
1812 * interface does not need the perf_event_ctx_lock() magic.
1813 */
1814 void perf_event_disable(struct perf_event *event)
1815 {
1816 struct perf_event_context *ctx;
1817
1818 ctx = perf_event_ctx_lock(event);
1819 _perf_event_disable(event);
1820 perf_event_ctx_unlock(event, ctx);
1821 }
1822 EXPORT_SYMBOL_GPL(perf_event_disable);
1823
1824 static void perf_set_shadow_time(struct perf_event *event,
1825 struct perf_event_context *ctx,
1826 u64 tstamp)
1827 {
1828 /*
1829 * use the correct time source for the time snapshot
1830 *
1831 * We could get by without this by leveraging the
1832 * fact that to get to this function, the caller
1833 * has most likely already called update_context_time()
1834 * and update_cgrp_time_xx() and thus both timestamp
1835 * are identical (or very close). Given that tstamp is,
1836 * already adjusted for cgroup, we could say that:
1837 * tstamp - ctx->timestamp
1838 * is equivalent to
1839 * tstamp - cgrp->timestamp.
1840 *
1841 * Then, in perf_output_read(), the calculation would
1842 * work with no changes because:
1843 * - event is guaranteed scheduled in
1844 * - no scheduled out in between
1845 * - thus the timestamp would be the same
1846 *
1847 * But this is a bit hairy.
1848 *
1849 * So instead, we have an explicit cgroup call to remain
1850 * within the time time source all along. We believe it
1851 * is cleaner and simpler to understand.
1852 */
1853 if (is_cgroup_event(event))
1854 perf_cgroup_set_shadow_time(event, tstamp);
1855 else
1856 event->shadow_ctx_time = tstamp - ctx->timestamp;
1857 }
1858
1859 #define MAX_INTERRUPTS (~0ULL)
1860
1861 static void perf_log_throttle(struct perf_event *event, int enable);
1862 static void perf_log_itrace_start(struct perf_event *event);
1863
1864 static int
1865 event_sched_in(struct perf_event *event,
1866 struct perf_cpu_context *cpuctx,
1867 struct perf_event_context *ctx)
1868 {
1869 u64 tstamp = perf_event_time(event);
1870 int ret = 0;
1871
1872 lockdep_assert_held(&ctx->lock);
1873
1874 if (event->state <= PERF_EVENT_STATE_OFF)
1875 return 0;
1876
1877 event->state = PERF_EVENT_STATE_ACTIVE;
1878 event->oncpu = smp_processor_id();
1879
1880 /*
1881 * Unthrottle events, since we scheduled we might have missed several
1882 * ticks already, also for a heavily scheduling task there is little
1883 * guarantee it'll get a tick in a timely manner.
1884 */
1885 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1886 perf_log_throttle(event, 1);
1887 event->hw.interrupts = 0;
1888 }
1889
1890 /*
1891 * The new state must be visible before we turn it on in the hardware:
1892 */
1893 smp_wmb();
1894
1895 perf_pmu_disable(event->pmu);
1896
1897 perf_set_shadow_time(event, ctx, tstamp);
1898
1899 perf_log_itrace_start(event);
1900
1901 if (event->pmu->add(event, PERF_EF_START)) {
1902 event->state = PERF_EVENT_STATE_INACTIVE;
1903 event->oncpu = -1;
1904 ret = -EAGAIN;
1905 goto out;
1906 }
1907
1908 event->tstamp_running += tstamp - event->tstamp_stopped;
1909
1910 if (!is_software_event(event))
1911 cpuctx->active_oncpu++;
1912 if (!ctx->nr_active++)
1913 perf_event_ctx_activate(ctx);
1914 if (event->attr.freq && event->attr.sample_freq)
1915 ctx->nr_freq++;
1916
1917 if (event->attr.exclusive)
1918 cpuctx->exclusive = 1;
1919
1920 if (is_orphaned_child(event))
1921 schedule_orphans_remove(ctx);
1922
1923 out:
1924 perf_pmu_enable(event->pmu);
1925
1926 return ret;
1927 }
1928
1929 static int
1930 group_sched_in(struct perf_event *group_event,
1931 struct perf_cpu_context *cpuctx,
1932 struct perf_event_context *ctx)
1933 {
1934 struct perf_event *event, *partial_group = NULL;
1935 struct pmu *pmu = ctx->pmu;
1936 u64 now = ctx->time;
1937 bool simulate = false;
1938
1939 if (group_event->state == PERF_EVENT_STATE_OFF)
1940 return 0;
1941
1942 pmu->start_txn(pmu);
1943
1944 if (event_sched_in(group_event, cpuctx, ctx)) {
1945 pmu->cancel_txn(pmu);
1946 perf_mux_hrtimer_restart(cpuctx);
1947 return -EAGAIN;
1948 }
1949
1950 /*
1951 * Schedule in siblings as one group (if any):
1952 */
1953 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1954 if (event_sched_in(event, cpuctx, ctx)) {
1955 partial_group = event;
1956 goto group_error;
1957 }
1958 }
1959
1960 if (!pmu->commit_txn(pmu))
1961 return 0;
1962
1963 group_error:
1964 /*
1965 * Groups can be scheduled in as one unit only, so undo any
1966 * partial group before returning:
1967 * The events up to the failed event are scheduled out normally,
1968 * tstamp_stopped will be updated.
1969 *
1970 * The failed events and the remaining siblings need to have
1971 * their timings updated as if they had gone thru event_sched_in()
1972 * and event_sched_out(). This is required to get consistent timings
1973 * across the group. This also takes care of the case where the group
1974 * could never be scheduled by ensuring tstamp_stopped is set to mark
1975 * the time the event was actually stopped, such that time delta
1976 * calculation in update_event_times() is correct.
1977 */
1978 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1979 if (event == partial_group)
1980 simulate = true;
1981
1982 if (simulate) {
1983 event->tstamp_running += now - event->tstamp_stopped;
1984 event->tstamp_stopped = now;
1985 } else {
1986 event_sched_out(event, cpuctx, ctx);
1987 }
1988 }
1989 event_sched_out(group_event, cpuctx, ctx);
1990
1991 pmu->cancel_txn(pmu);
1992
1993 perf_mux_hrtimer_restart(cpuctx);
1994
1995 return -EAGAIN;
1996 }
1997
1998 /*
1999 * Work out whether we can put this event group on the CPU now.
2000 */
2001 static int group_can_go_on(struct perf_event *event,
2002 struct perf_cpu_context *cpuctx,
2003 int can_add_hw)
2004 {
2005 /*
2006 * Groups consisting entirely of software events can always go on.
2007 */
2008 if (event->group_flags & PERF_GROUP_SOFTWARE)
2009 return 1;
2010 /*
2011 * If an exclusive group is already on, no other hardware
2012 * events can go on.
2013 */
2014 if (cpuctx->exclusive)
2015 return 0;
2016 /*
2017 * If this group is exclusive and there are already
2018 * events on the CPU, it can't go on.
2019 */
2020 if (event->attr.exclusive && cpuctx->active_oncpu)
2021 return 0;
2022 /*
2023 * Otherwise, try to add it if all previous groups were able
2024 * to go on.
2025 */
2026 return can_add_hw;
2027 }
2028
2029 static void add_event_to_ctx(struct perf_event *event,
2030 struct perf_event_context *ctx)
2031 {
2032 u64 tstamp = perf_event_time(event);
2033
2034 list_add_event(event, ctx);
2035 perf_group_attach(event);
2036 event->tstamp_enabled = tstamp;
2037 event->tstamp_running = tstamp;
2038 event->tstamp_stopped = tstamp;
2039 }
2040
2041 static void task_ctx_sched_out(struct perf_event_context *ctx);
2042 static void
2043 ctx_sched_in(struct perf_event_context *ctx,
2044 struct perf_cpu_context *cpuctx,
2045 enum event_type_t event_type,
2046 struct task_struct *task);
2047
2048 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2049 struct perf_event_context *ctx,
2050 struct task_struct *task)
2051 {
2052 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2053 if (ctx)
2054 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2055 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2056 if (ctx)
2057 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2058 }
2059
2060 /*
2061 * Cross CPU call to install and enable a performance event
2062 *
2063 * Must be called with ctx->mutex held
2064 */
2065 static int __perf_install_in_context(void *info)
2066 {
2067 struct perf_event *event = info;
2068 struct perf_event_context *ctx = event->ctx;
2069 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2070 struct perf_event_context *task_ctx = cpuctx->task_ctx;
2071 struct task_struct *task = current;
2072
2073 perf_ctx_lock(cpuctx, task_ctx);
2074 perf_pmu_disable(cpuctx->ctx.pmu);
2075
2076 /*
2077 * If there was an active task_ctx schedule it out.
2078 */
2079 if (task_ctx)
2080 task_ctx_sched_out(task_ctx);
2081
2082 /*
2083 * If the context we're installing events in is not the
2084 * active task_ctx, flip them.
2085 */
2086 if (ctx->task && task_ctx != ctx) {
2087 if (task_ctx)
2088 raw_spin_unlock(&task_ctx->lock);
2089 raw_spin_lock(&ctx->lock);
2090 task_ctx = ctx;
2091 }
2092
2093 if (task_ctx) {
2094 cpuctx->task_ctx = task_ctx;
2095 task = task_ctx->task;
2096 }
2097
2098 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
2099
2100 update_context_time(ctx);
2101 /*
2102 * update cgrp time only if current cgrp
2103 * matches event->cgrp. Must be done before
2104 * calling add_event_to_ctx()
2105 */
2106 update_cgrp_time_from_event(event);
2107
2108 add_event_to_ctx(event, ctx);
2109
2110 /*
2111 * Schedule everything back in
2112 */
2113 perf_event_sched_in(cpuctx, task_ctx, task);
2114
2115 perf_pmu_enable(cpuctx->ctx.pmu);
2116 perf_ctx_unlock(cpuctx, task_ctx);
2117
2118 return 0;
2119 }
2120
2121 /*
2122 * Attach a performance event to a context
2123 *
2124 * First we add the event to the list with the hardware enable bit
2125 * in event->hw_config cleared.
2126 *
2127 * If the event is attached to a task which is on a CPU we use a smp
2128 * call to enable it in the task context. The task might have been
2129 * scheduled away, but we check this in the smp call again.
2130 */
2131 static void
2132 perf_install_in_context(struct perf_event_context *ctx,
2133 struct perf_event *event,
2134 int cpu)
2135 {
2136 struct task_struct *task = ctx->task;
2137
2138 lockdep_assert_held(&ctx->mutex);
2139
2140 event->ctx = ctx;
2141 if (event->cpu != -1)
2142 event->cpu = cpu;
2143
2144 if (!task) {
2145 /*
2146 * Per cpu events are installed via an smp call and
2147 * the install is always successful.
2148 */
2149 cpu_function_call(cpu, __perf_install_in_context, event);
2150 return;
2151 }
2152
2153 retry:
2154 if (!task_function_call(task, __perf_install_in_context, event))
2155 return;
2156
2157 raw_spin_lock_irq(&ctx->lock);
2158 /*
2159 * If we failed to find a running task, but find the context active now
2160 * that we've acquired the ctx->lock, retry.
2161 */
2162 if (ctx->is_active) {
2163 raw_spin_unlock_irq(&ctx->lock);
2164 /*
2165 * Reload the task pointer, it might have been changed by
2166 * a concurrent perf_event_context_sched_out().
2167 */
2168 task = ctx->task;
2169 goto retry;
2170 }
2171
2172 /*
2173 * Since the task isn't running, its safe to add the event, us holding
2174 * the ctx->lock ensures the task won't get scheduled in.
2175 */
2176 add_event_to_ctx(event, ctx);
2177 raw_spin_unlock_irq(&ctx->lock);
2178 }
2179
2180 /*
2181 * Put a event into inactive state and update time fields.
2182 * Enabling the leader of a group effectively enables all
2183 * the group members that aren't explicitly disabled, so we
2184 * have to update their ->tstamp_enabled also.
2185 * Note: this works for group members as well as group leaders
2186 * since the non-leader members' sibling_lists will be empty.
2187 */
2188 static void __perf_event_mark_enabled(struct perf_event *event)
2189 {
2190 struct perf_event *sub;
2191 u64 tstamp = perf_event_time(event);
2192
2193 event->state = PERF_EVENT_STATE_INACTIVE;
2194 event->tstamp_enabled = tstamp - event->total_time_enabled;
2195 list_for_each_entry(sub, &event->sibling_list, group_entry) {
2196 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2197 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
2198 }
2199 }
2200
2201 /*
2202 * Cross CPU call to enable a performance event
2203 */
2204 static int __perf_event_enable(void *info)
2205 {
2206 struct perf_event *event = info;
2207 struct perf_event_context *ctx = event->ctx;
2208 struct perf_event *leader = event->group_leader;
2209 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2210 int err;
2211
2212 /*
2213 * There's a time window between 'ctx->is_active' check
2214 * in perf_event_enable function and this place having:
2215 * - IRQs on
2216 * - ctx->lock unlocked
2217 *
2218 * where the task could be killed and 'ctx' deactivated
2219 * by perf_event_exit_task.
2220 */
2221 if (!ctx->is_active)
2222 return -EINVAL;
2223
2224 raw_spin_lock(&ctx->lock);
2225 update_context_time(ctx);
2226
2227 if (event->state >= PERF_EVENT_STATE_INACTIVE)
2228 goto unlock;
2229
2230 /*
2231 * set current task's cgroup time reference point
2232 */
2233 perf_cgroup_set_timestamp(current, ctx);
2234
2235 __perf_event_mark_enabled(event);
2236
2237 if (!event_filter_match(event)) {
2238 if (is_cgroup_event(event))
2239 perf_cgroup_defer_enabled(event);
2240 goto unlock;
2241 }
2242
2243 /*
2244 * If the event is in a group and isn't the group leader,
2245 * then don't put it on unless the group is on.
2246 */
2247 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
2248 goto unlock;
2249
2250 if (!group_can_go_on(event, cpuctx, 1)) {
2251 err = -EEXIST;
2252 } else {
2253 if (event == leader)
2254 err = group_sched_in(event, cpuctx, ctx);
2255 else
2256 err = event_sched_in(event, cpuctx, ctx);
2257 }
2258
2259 if (err) {
2260 /*
2261 * If this event can't go on and it's part of a
2262 * group, then the whole group has to come off.
2263 */
2264 if (leader != event) {
2265 group_sched_out(leader, cpuctx, ctx);
2266 perf_mux_hrtimer_restart(cpuctx);
2267 }
2268 if (leader->attr.pinned) {
2269 update_group_times(leader);
2270 leader->state = PERF_EVENT_STATE_ERROR;
2271 }
2272 }
2273
2274 unlock:
2275 raw_spin_unlock(&ctx->lock);
2276
2277 return 0;
2278 }
2279
2280 /*
2281 * Enable a event.
2282 *
2283 * If event->ctx is a cloned context, callers must make sure that
2284 * every task struct that event->ctx->task could possibly point to
2285 * remains valid. This condition is satisfied when called through
2286 * perf_event_for_each_child or perf_event_for_each as described
2287 * for perf_event_disable.
2288 */
2289 static void _perf_event_enable(struct perf_event *event)
2290 {
2291 struct perf_event_context *ctx = event->ctx;
2292 struct task_struct *task = ctx->task;
2293
2294 if (!task) {
2295 /*
2296 * Enable the event on the cpu that it's on
2297 */
2298 cpu_function_call(event->cpu, __perf_event_enable, event);
2299 return;
2300 }
2301
2302 raw_spin_lock_irq(&ctx->lock);
2303 if (event->state >= PERF_EVENT_STATE_INACTIVE)
2304 goto out;
2305
2306 /*
2307 * If the event is in error state, clear that first.
2308 * That way, if we see the event in error state below, we
2309 * know that it has gone back into error state, as distinct
2310 * from the task having been scheduled away before the
2311 * cross-call arrived.
2312 */
2313 if (event->state == PERF_EVENT_STATE_ERROR)
2314 event->state = PERF_EVENT_STATE_OFF;
2315
2316 retry:
2317 if (!ctx->is_active) {
2318 __perf_event_mark_enabled(event);
2319 goto out;
2320 }
2321
2322 raw_spin_unlock_irq(&ctx->lock);
2323
2324 if (!task_function_call(task, __perf_event_enable, event))
2325 return;
2326
2327 raw_spin_lock_irq(&ctx->lock);
2328
2329 /*
2330 * If the context is active and the event is still off,
2331 * we need to retry the cross-call.
2332 */
2333 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
2334 /*
2335 * task could have been flipped by a concurrent
2336 * perf_event_context_sched_out()
2337 */
2338 task = ctx->task;
2339 goto retry;
2340 }
2341
2342 out:
2343 raw_spin_unlock_irq(&ctx->lock);
2344 }
2345
2346 /*
2347 * See perf_event_disable();
2348 */
2349 void perf_event_enable(struct perf_event *event)
2350 {
2351 struct perf_event_context *ctx;
2352
2353 ctx = perf_event_ctx_lock(event);
2354 _perf_event_enable(event);
2355 perf_event_ctx_unlock(event, ctx);
2356 }
2357 EXPORT_SYMBOL_GPL(perf_event_enable);
2358
2359 static int _perf_event_refresh(struct perf_event *event, int refresh)
2360 {
2361 /*
2362 * not supported on inherited events
2363 */
2364 if (event->attr.inherit || !is_sampling_event(event))
2365 return -EINVAL;
2366
2367 atomic_add(refresh, &event->event_limit);
2368 _perf_event_enable(event);
2369
2370 return 0;
2371 }
2372
2373 /*
2374 * See perf_event_disable()
2375 */
2376 int perf_event_refresh(struct perf_event *event, int refresh)
2377 {
2378 struct perf_event_context *ctx;
2379 int ret;
2380
2381 ctx = perf_event_ctx_lock(event);
2382 ret = _perf_event_refresh(event, refresh);
2383 perf_event_ctx_unlock(event, ctx);
2384
2385 return ret;
2386 }
2387 EXPORT_SYMBOL_GPL(perf_event_refresh);
2388
2389 static void ctx_sched_out(struct perf_event_context *ctx,
2390 struct perf_cpu_context *cpuctx,
2391 enum event_type_t event_type)
2392 {
2393 struct perf_event *event;
2394 int is_active = ctx->is_active;
2395
2396 ctx->is_active &= ~event_type;
2397 if (likely(!ctx->nr_events))
2398 return;
2399
2400 update_context_time(ctx);
2401 update_cgrp_time_from_cpuctx(cpuctx);
2402 if (!ctx->nr_active)
2403 return;
2404
2405 perf_pmu_disable(ctx->pmu);
2406 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
2407 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2408 group_sched_out(event, cpuctx, ctx);
2409 }
2410
2411 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
2412 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2413 group_sched_out(event, cpuctx, ctx);
2414 }
2415 perf_pmu_enable(ctx->pmu);
2416 }
2417
2418 /*
2419 * Test whether two contexts are equivalent, i.e. whether they have both been
2420 * cloned from the same version of the same context.
2421 *
2422 * Equivalence is measured using a generation number in the context that is
2423 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2424 * and list_del_event().
2425 */
2426 static int context_equiv(struct perf_event_context *ctx1,
2427 struct perf_event_context *ctx2)
2428 {
2429 lockdep_assert_held(&ctx1->lock);
2430 lockdep_assert_held(&ctx2->lock);
2431
2432 /* Pinning disables the swap optimization */
2433 if (ctx1->pin_count || ctx2->pin_count)
2434 return 0;
2435
2436 /* If ctx1 is the parent of ctx2 */
2437 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2438 return 1;
2439
2440 /* If ctx2 is the parent of ctx1 */
2441 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2442 return 1;
2443
2444 /*
2445 * If ctx1 and ctx2 have the same parent; we flatten the parent
2446 * hierarchy, see perf_event_init_context().
2447 */
2448 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2449 ctx1->parent_gen == ctx2->parent_gen)
2450 return 1;
2451
2452 /* Unmatched */
2453 return 0;
2454 }
2455
2456 static void __perf_event_sync_stat(struct perf_event *event,
2457 struct perf_event *next_event)
2458 {
2459 u64 value;
2460
2461 if (!event->attr.inherit_stat)
2462 return;
2463
2464 /*
2465 * Update the event value, we cannot use perf_event_read()
2466 * because we're in the middle of a context switch and have IRQs
2467 * disabled, which upsets smp_call_function_single(), however
2468 * we know the event must be on the current CPU, therefore we
2469 * don't need to use it.
2470 */
2471 switch (event->state) {
2472 case PERF_EVENT_STATE_ACTIVE:
2473 event->pmu->read(event);
2474 /* fall-through */
2475
2476 case PERF_EVENT_STATE_INACTIVE:
2477 update_event_times(event);
2478 break;
2479
2480 default:
2481 break;
2482 }
2483
2484 /*
2485 * In order to keep per-task stats reliable we need to flip the event
2486 * values when we flip the contexts.
2487 */
2488 value = local64_read(&next_event->count);
2489 value = local64_xchg(&event->count, value);
2490 local64_set(&next_event->count, value);
2491
2492 swap(event->total_time_enabled, next_event->total_time_enabled);
2493 swap(event->total_time_running, next_event->total_time_running);
2494
2495 /*
2496 * Since we swizzled the values, update the user visible data too.
2497 */
2498 perf_event_update_userpage(event);
2499 perf_event_update_userpage(next_event);
2500 }
2501
2502 static void perf_event_sync_stat(struct perf_event_context *ctx,
2503 struct perf_event_context *next_ctx)
2504 {
2505 struct perf_event *event, *next_event;
2506
2507 if (!ctx->nr_stat)
2508 return;
2509
2510 update_context_time(ctx);
2511
2512 event = list_first_entry(&ctx->event_list,
2513 struct perf_event, event_entry);
2514
2515 next_event = list_first_entry(&next_ctx->event_list,
2516 struct perf_event, event_entry);
2517
2518 while (&event->event_entry != &ctx->event_list &&
2519 &next_event->event_entry != &next_ctx->event_list) {
2520
2521 __perf_event_sync_stat(event, next_event);
2522
2523 event = list_next_entry(event, event_entry);
2524 next_event = list_next_entry(next_event, event_entry);
2525 }
2526 }
2527
2528 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2529 struct task_struct *next)
2530 {
2531 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2532 struct perf_event_context *next_ctx;
2533 struct perf_event_context *parent, *next_parent;
2534 struct perf_cpu_context *cpuctx;
2535 int do_switch = 1;
2536
2537 if (likely(!ctx))
2538 return;
2539
2540 cpuctx = __get_cpu_context(ctx);
2541 if (!cpuctx->task_ctx)
2542 return;
2543
2544 rcu_read_lock();
2545 next_ctx = next->perf_event_ctxp[ctxn];
2546 if (!next_ctx)
2547 goto unlock;
2548
2549 parent = rcu_dereference(ctx->parent_ctx);
2550 next_parent = rcu_dereference(next_ctx->parent_ctx);
2551
2552 /* If neither context have a parent context; they cannot be clones. */
2553 if (!parent && !next_parent)
2554 goto unlock;
2555
2556 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2557 /*
2558 * Looks like the two contexts are clones, so we might be
2559 * able to optimize the context switch. We lock both
2560 * contexts and check that they are clones under the
2561 * lock (including re-checking that neither has been
2562 * uncloned in the meantime). It doesn't matter which
2563 * order we take the locks because no other cpu could
2564 * be trying to lock both of these tasks.
2565 */
2566 raw_spin_lock(&ctx->lock);
2567 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2568 if (context_equiv(ctx, next_ctx)) {
2569 /*
2570 * XXX do we need a memory barrier of sorts
2571 * wrt to rcu_dereference() of perf_event_ctxp
2572 */
2573 task->perf_event_ctxp[ctxn] = next_ctx;
2574 next->perf_event_ctxp[ctxn] = ctx;
2575 ctx->task = next;
2576 next_ctx->task = task;
2577
2578 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2579
2580 do_switch = 0;
2581
2582 perf_event_sync_stat(ctx, next_ctx);
2583 }
2584 raw_spin_unlock(&next_ctx->lock);
2585 raw_spin_unlock(&ctx->lock);
2586 }
2587 unlock:
2588 rcu_read_unlock();
2589
2590 if (do_switch) {
2591 raw_spin_lock(&ctx->lock);
2592 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2593 cpuctx->task_ctx = NULL;
2594 raw_spin_unlock(&ctx->lock);
2595 }
2596 }
2597
2598 void perf_sched_cb_dec(struct pmu *pmu)
2599 {
2600 this_cpu_dec(perf_sched_cb_usages);
2601 }
2602
2603 void perf_sched_cb_inc(struct pmu *pmu)
2604 {
2605 this_cpu_inc(perf_sched_cb_usages);
2606 }
2607
2608 /*
2609 * This function provides the context switch callback to the lower code
2610 * layer. It is invoked ONLY when the context switch callback is enabled.
2611 */
2612 static void perf_pmu_sched_task(struct task_struct *prev,
2613 struct task_struct *next,
2614 bool sched_in)
2615 {
2616 struct perf_cpu_context *cpuctx;
2617 struct pmu *pmu;
2618 unsigned long flags;
2619
2620 if (prev == next)
2621 return;
2622
2623 local_irq_save(flags);
2624
2625 rcu_read_lock();
2626
2627 list_for_each_entry_rcu(pmu, &pmus, entry) {
2628 if (pmu->sched_task) {
2629 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2630
2631 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2632
2633 perf_pmu_disable(pmu);
2634
2635 pmu->sched_task(cpuctx->task_ctx, sched_in);
2636
2637 perf_pmu_enable(pmu);
2638
2639 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2640 }
2641 }
2642
2643 rcu_read_unlock();
2644
2645 local_irq_restore(flags);
2646 }
2647
2648 static void perf_event_switch(struct task_struct *task,
2649 struct task_struct *next_prev, bool sched_in);
2650
2651 #define for_each_task_context_nr(ctxn) \
2652 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2653
2654 /*
2655 * Called from scheduler to remove the events of the current task,
2656 * with interrupts disabled.
2657 *
2658 * We stop each event and update the event value in event->count.
2659 *
2660 * This does not protect us against NMI, but disable()
2661 * sets the disabled bit in the control field of event _before_
2662 * accessing the event control register. If a NMI hits, then it will
2663 * not restart the event.
2664 */
2665 void __perf_event_task_sched_out(struct task_struct *task,
2666 struct task_struct *next)
2667 {
2668 int ctxn;
2669
2670 if (__this_cpu_read(perf_sched_cb_usages))
2671 perf_pmu_sched_task(task, next, false);
2672
2673 if (atomic_read(&nr_switch_events))
2674 perf_event_switch(task, next, false);
2675
2676 for_each_task_context_nr(ctxn)
2677 perf_event_context_sched_out(task, ctxn, next);
2678
2679 /*
2680 * if cgroup events exist on this CPU, then we need
2681 * to check if we have to switch out PMU state.
2682 * cgroup event are system-wide mode only
2683 */
2684 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2685 perf_cgroup_sched_out(task, next);
2686 }
2687
2688 static void task_ctx_sched_out(struct perf_event_context *ctx)
2689 {
2690 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2691
2692 if (!cpuctx->task_ctx)
2693 return;
2694
2695 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2696 return;
2697
2698 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2699 cpuctx->task_ctx = NULL;
2700 }
2701
2702 /*
2703 * Called with IRQs disabled
2704 */
2705 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2706 enum event_type_t event_type)
2707 {
2708 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2709 }
2710
2711 static void
2712 ctx_pinned_sched_in(struct perf_event_context *ctx,
2713 struct perf_cpu_context *cpuctx)
2714 {
2715 struct perf_event *event;
2716
2717 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2718 if (event->state <= PERF_EVENT_STATE_OFF)
2719 continue;
2720 if (!event_filter_match(event))
2721 continue;
2722
2723 /* may need to reset tstamp_enabled */
2724 if (is_cgroup_event(event))
2725 perf_cgroup_mark_enabled(event, ctx);
2726
2727 if (group_can_go_on(event, cpuctx, 1))
2728 group_sched_in(event, cpuctx, ctx);
2729
2730 /*
2731 * If this pinned group hasn't been scheduled,
2732 * put it in error state.
2733 */
2734 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2735 update_group_times(event);
2736 event->state = PERF_EVENT_STATE_ERROR;
2737 }
2738 }
2739 }
2740
2741 static void
2742 ctx_flexible_sched_in(struct perf_event_context *ctx,
2743 struct perf_cpu_context *cpuctx)
2744 {
2745 struct perf_event *event;
2746 int can_add_hw = 1;
2747
2748 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2749 /* Ignore events in OFF or ERROR state */
2750 if (event->state <= PERF_EVENT_STATE_OFF)
2751 continue;
2752 /*
2753 * Listen to the 'cpu' scheduling filter constraint
2754 * of events:
2755 */
2756 if (!event_filter_match(event))
2757 continue;
2758
2759 /* may need to reset tstamp_enabled */
2760 if (is_cgroup_event(event))
2761 perf_cgroup_mark_enabled(event, ctx);
2762
2763 if (group_can_go_on(event, cpuctx, can_add_hw)) {
2764 if (group_sched_in(event, cpuctx, ctx))
2765 can_add_hw = 0;
2766 }
2767 }
2768 }
2769
2770 static void
2771 ctx_sched_in(struct perf_event_context *ctx,
2772 struct perf_cpu_context *cpuctx,
2773 enum event_type_t event_type,
2774 struct task_struct *task)
2775 {
2776 u64 now;
2777 int is_active = ctx->is_active;
2778
2779 ctx->is_active |= event_type;
2780 if (likely(!ctx->nr_events))
2781 return;
2782
2783 now = perf_clock();
2784 ctx->timestamp = now;
2785 perf_cgroup_set_timestamp(task, ctx);
2786 /*
2787 * First go through the list and put on any pinned groups
2788 * in order to give them the best chance of going on.
2789 */
2790 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2791 ctx_pinned_sched_in(ctx, cpuctx);
2792
2793 /* Then walk through the lower prio flexible groups */
2794 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2795 ctx_flexible_sched_in(ctx, cpuctx);
2796 }
2797
2798 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
2799 enum event_type_t event_type,
2800 struct task_struct *task)
2801 {
2802 struct perf_event_context *ctx = &cpuctx->ctx;
2803
2804 ctx_sched_in(ctx, cpuctx, event_type, task);
2805 }
2806
2807 static void perf_event_context_sched_in(struct perf_event_context *ctx,
2808 struct task_struct *task)
2809 {
2810 struct perf_cpu_context *cpuctx;
2811
2812 cpuctx = __get_cpu_context(ctx);
2813 if (cpuctx->task_ctx == ctx)
2814 return;
2815
2816 perf_ctx_lock(cpuctx, ctx);
2817 perf_pmu_disable(ctx->pmu);
2818 /*
2819 * We want to keep the following priority order:
2820 * cpu pinned (that don't need to move), task pinned,
2821 * cpu flexible, task flexible.
2822 */
2823 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2824
2825 if (ctx->nr_events)
2826 cpuctx->task_ctx = ctx;
2827
2828 perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2829
2830 perf_pmu_enable(ctx->pmu);
2831 perf_ctx_unlock(cpuctx, ctx);
2832 }
2833
2834 /*
2835 * Called from scheduler to add the events of the current task
2836 * with interrupts disabled.
2837 *
2838 * We restore the event value and then enable it.
2839 *
2840 * This does not protect us against NMI, but enable()
2841 * sets the enabled bit in the control field of event _before_
2842 * accessing the event control register. If a NMI hits, then it will
2843 * keep the event running.
2844 */
2845 void __perf_event_task_sched_in(struct task_struct *prev,
2846 struct task_struct *task)
2847 {
2848 struct perf_event_context *ctx;
2849 int ctxn;
2850
2851 for_each_task_context_nr(ctxn) {
2852 ctx = task->perf_event_ctxp[ctxn];
2853 if (likely(!ctx))
2854 continue;
2855
2856 perf_event_context_sched_in(ctx, task);
2857 }
2858 /*
2859 * if cgroup events exist on this CPU, then we need
2860 * to check if we have to switch in PMU state.
2861 * cgroup event are system-wide mode only
2862 */
2863 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2864 perf_cgroup_sched_in(prev, task);
2865
2866 if (atomic_read(&nr_switch_events))
2867 perf_event_switch(task, prev, true);
2868
2869 if (__this_cpu_read(perf_sched_cb_usages))
2870 perf_pmu_sched_task(prev, task, true);
2871 }
2872
2873 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2874 {
2875 u64 frequency = event->attr.sample_freq;
2876 u64 sec = NSEC_PER_SEC;
2877 u64 divisor, dividend;
2878
2879 int count_fls, nsec_fls, frequency_fls, sec_fls;
2880
2881 count_fls = fls64(count);
2882 nsec_fls = fls64(nsec);
2883 frequency_fls = fls64(frequency);
2884 sec_fls = 30;
2885
2886 /*
2887 * We got @count in @nsec, with a target of sample_freq HZ
2888 * the target period becomes:
2889 *
2890 * @count * 10^9
2891 * period = -------------------
2892 * @nsec * sample_freq
2893 *
2894 */
2895
2896 /*
2897 * Reduce accuracy by one bit such that @a and @b converge
2898 * to a similar magnitude.
2899 */
2900 #define REDUCE_FLS(a, b) \
2901 do { \
2902 if (a##_fls > b##_fls) { \
2903 a >>= 1; \
2904 a##_fls--; \
2905 } else { \
2906 b >>= 1; \
2907 b##_fls--; \
2908 } \
2909 } while (0)
2910
2911 /*
2912 * Reduce accuracy until either term fits in a u64, then proceed with
2913 * the other, so that finally we can do a u64/u64 division.
2914 */
2915 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2916 REDUCE_FLS(nsec, frequency);
2917 REDUCE_FLS(sec, count);
2918 }
2919
2920 if (count_fls + sec_fls > 64) {
2921 divisor = nsec * frequency;
2922
2923 while (count_fls + sec_fls > 64) {
2924 REDUCE_FLS(count, sec);
2925 divisor >>= 1;
2926 }
2927
2928 dividend = count * sec;
2929 } else {
2930 dividend = count * sec;
2931
2932 while (nsec_fls + frequency_fls > 64) {
2933 REDUCE_FLS(nsec, frequency);
2934 dividend >>= 1;
2935 }
2936
2937 divisor = nsec * frequency;
2938 }
2939
2940 if (!divisor)
2941 return dividend;
2942
2943 return div64_u64(dividend, divisor);
2944 }
2945
2946 static DEFINE_PER_CPU(int, perf_throttled_count);
2947 static DEFINE_PER_CPU(u64, perf_throttled_seq);
2948
2949 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2950 {
2951 struct hw_perf_event *hwc = &event->hw;
2952 s64 period, sample_period;
2953 s64 delta;
2954
2955 period = perf_calculate_period(event, nsec, count);
2956
2957 delta = (s64)(period - hwc->sample_period);
2958 delta = (delta + 7) / 8; /* low pass filter */
2959
2960 sample_period = hwc->sample_period + delta;
2961
2962 if (!sample_period)
2963 sample_period = 1;
2964
2965 hwc->sample_period = sample_period;
2966
2967 if (local64_read(&hwc->period_left) > 8*sample_period) {
2968 if (disable)
2969 event->pmu->stop(event, PERF_EF_UPDATE);
2970
2971 local64_set(&hwc->period_left, 0);
2972
2973 if (disable)
2974 event->pmu->start(event, PERF_EF_RELOAD);
2975 }
2976 }
2977
2978 /*
2979 * combine freq adjustment with unthrottling to avoid two passes over the
2980 * events. At the same time, make sure, having freq events does not change
2981 * the rate of unthrottling as that would introduce bias.
2982 */
2983 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2984 int needs_unthr)
2985 {
2986 struct perf_event *event;
2987 struct hw_perf_event *hwc;
2988 u64 now, period = TICK_NSEC;
2989 s64 delta;
2990
2991 /*
2992 * only need to iterate over all events iff:
2993 * - context have events in frequency mode (needs freq adjust)
2994 * - there are events to unthrottle on this cpu
2995 */
2996 if (!(ctx->nr_freq || needs_unthr))
2997 return;
2998
2999 raw_spin_lock(&ctx->lock);
3000 perf_pmu_disable(ctx->pmu);
3001
3002 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3003 if (event->state != PERF_EVENT_STATE_ACTIVE)
3004 continue;
3005
3006 if (!event_filter_match(event))
3007 continue;
3008
3009 perf_pmu_disable(event->pmu);
3010
3011 hwc = &event->hw;
3012
3013 if (hwc->interrupts == MAX_INTERRUPTS) {
3014 hwc->interrupts = 0;
3015 perf_log_throttle(event, 1);
3016 event->pmu->start(event, 0);
3017 }
3018
3019 if (!event->attr.freq || !event->attr.sample_freq)
3020 goto next;
3021
3022 /*
3023 * stop the event and update event->count
3024 */
3025 event->pmu->stop(event, PERF_EF_UPDATE);
3026
3027 now = local64_read(&event->count);
3028 delta = now - hwc->freq_count_stamp;
3029 hwc->freq_count_stamp = now;
3030
3031 /*
3032 * restart the event
3033 * reload only if value has changed
3034 * we have stopped the event so tell that
3035 * to perf_adjust_period() to avoid stopping it
3036 * twice.
3037 */
3038 if (delta > 0)
3039 perf_adjust_period(event, period, delta, false);
3040
3041 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3042 next:
3043 perf_pmu_enable(event->pmu);
3044 }
3045
3046 perf_pmu_enable(ctx->pmu);
3047 raw_spin_unlock(&ctx->lock);
3048 }
3049
3050 /*
3051 * Round-robin a context's events:
3052 */
3053 static void rotate_ctx(struct perf_event_context *ctx)
3054 {
3055 /*
3056 * Rotate the first entry last of non-pinned groups. Rotation might be
3057 * disabled by the inheritance code.
3058 */
3059 if (!ctx->rotate_disable)
3060 list_rotate_left(&ctx->flexible_groups);
3061 }
3062
3063 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3064 {
3065 struct perf_event_context *ctx = NULL;
3066 int rotate = 0;
3067
3068 if (cpuctx->ctx.nr_events) {
3069 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3070 rotate = 1;
3071 }
3072
3073 ctx = cpuctx->task_ctx;
3074 if (ctx && ctx->nr_events) {
3075 if (ctx->nr_events != ctx->nr_active)
3076 rotate = 1;
3077 }
3078
3079 if (!rotate)
3080 goto done;
3081
3082 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3083 perf_pmu_disable(cpuctx->ctx.pmu);
3084
3085 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3086 if (ctx)
3087 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3088
3089 rotate_ctx(&cpuctx->ctx);
3090 if (ctx)
3091 rotate_ctx(ctx);
3092
3093 perf_event_sched_in(cpuctx, ctx, current);
3094
3095 perf_pmu_enable(cpuctx->ctx.pmu);
3096 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3097 done:
3098
3099 return rotate;
3100 }
3101
3102 #ifdef CONFIG_NO_HZ_FULL
3103 bool perf_event_can_stop_tick(void)
3104 {
3105 if (atomic_read(&nr_freq_events) ||
3106 __this_cpu_read(perf_throttled_count))
3107 return false;
3108 else
3109 return true;
3110 }
3111 #endif
3112
3113 void perf_event_task_tick(void)
3114 {
3115 struct list_head *head = this_cpu_ptr(&active_ctx_list);
3116 struct perf_event_context *ctx, *tmp;
3117 int throttled;
3118
3119 WARN_ON(!irqs_disabled());
3120
3121 __this_cpu_inc(perf_throttled_seq);
3122 throttled = __this_cpu_xchg(perf_throttled_count, 0);
3123
3124 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3125 perf_adjust_freq_unthr_context(ctx, throttled);
3126 }
3127
3128 static int event_enable_on_exec(struct perf_event *event,
3129 struct perf_event_context *ctx)
3130 {
3131 if (!event->attr.enable_on_exec)
3132 return 0;
3133
3134 event->attr.enable_on_exec = 0;
3135 if (event->state >= PERF_EVENT_STATE_INACTIVE)
3136 return 0;
3137
3138 __perf_event_mark_enabled(event);
3139
3140 return 1;
3141 }
3142
3143 /*
3144 * Enable all of a task's events that have been marked enable-on-exec.
3145 * This expects task == current.
3146 */
3147 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
3148 {
3149 struct perf_event_context *clone_ctx = NULL;
3150 struct perf_event *event;
3151 unsigned long flags;
3152 int enabled = 0;
3153 int ret;
3154
3155 local_irq_save(flags);
3156 if (!ctx || !ctx->nr_events)
3157 goto out;
3158
3159 /*
3160 * We must ctxsw out cgroup events to avoid conflict
3161 * when invoking perf_task_event_sched_in() later on
3162 * in this function. Otherwise we end up trying to
3163 * ctxswin cgroup events which are already scheduled
3164 * in.
3165 */
3166 perf_cgroup_sched_out(current, NULL);
3167
3168 raw_spin_lock(&ctx->lock);
3169 task_ctx_sched_out(ctx);
3170
3171 list_for_each_entry(event, &ctx->event_list, event_entry) {
3172 ret = event_enable_on_exec(event, ctx);
3173 if (ret)
3174 enabled = 1;
3175 }
3176
3177 /*
3178 * Unclone this context if we enabled any event.
3179 */
3180 if (enabled)
3181 clone_ctx = unclone_ctx(ctx);
3182
3183 raw_spin_unlock(&ctx->lock);
3184
3185 /*
3186 * Also calls ctxswin for cgroup events, if any:
3187 */
3188 perf_event_context_sched_in(ctx, ctx->task);
3189 out:
3190 local_irq_restore(flags);
3191
3192 if (clone_ctx)
3193 put_ctx(clone_ctx);
3194 }
3195
3196 void perf_event_exec(void)
3197 {
3198 struct perf_event_context *ctx;
3199 int ctxn;
3200
3201 rcu_read_lock();
3202 for_each_task_context_nr(ctxn) {
3203 ctx = current->perf_event_ctxp[ctxn];
3204 if (!ctx)
3205 continue;
3206
3207 perf_event_enable_on_exec(ctx);
3208 }
3209 rcu_read_unlock();
3210 }
3211
3212 /*
3213 * Cross CPU call to read the hardware event
3214 */
3215 static void __perf_event_read(void *info)
3216 {
3217 struct perf_event *event = info;
3218 struct perf_event_context *ctx = event->ctx;
3219 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3220
3221 /*
3222 * If this is a task context, we need to check whether it is
3223 * the current task context of this cpu. If not it has been
3224 * scheduled out before the smp call arrived. In that case
3225 * event->count would have been updated to a recent sample
3226 * when the event was scheduled out.
3227 */
3228 if (ctx->task && cpuctx->task_ctx != ctx)
3229 return;
3230
3231 raw_spin_lock(&ctx->lock);
3232 if (ctx->is_active) {
3233 update_context_time(ctx);
3234 update_cgrp_time_from_event(event);
3235 }
3236 update_event_times(event);
3237 if (event->state == PERF_EVENT_STATE_ACTIVE)
3238 event->pmu->read(event);
3239 raw_spin_unlock(&ctx->lock);
3240 }
3241
3242 static inline u64 perf_event_count(struct perf_event *event)
3243 {
3244 if (event->pmu->count)
3245 return event->pmu->count(event);
3246
3247 return __perf_event_count(event);
3248 }
3249
3250 /*
3251 * NMI-safe method to read a local event, that is an event that
3252 * is:
3253 * - either for the current task, or for this CPU
3254 * - does not have inherit set, for inherited task events
3255 * will not be local and we cannot read them atomically
3256 * - must not have a pmu::count method
3257 */
3258 u64 perf_event_read_local(struct perf_event *event)
3259 {
3260 unsigned long flags;
3261 u64 val;
3262
3263 /*
3264 * Disabling interrupts avoids all counter scheduling (context
3265 * switches, timer based rotation and IPIs).
3266 */
3267 local_irq_save(flags);
3268
3269 /* If this is a per-task event, it must be for current */
3270 WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
3271 event->hw.target != current);
3272
3273 /* If this is a per-CPU event, it must be for this CPU */
3274 WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
3275 event->cpu != smp_processor_id());
3276
3277 /*
3278 * It must not be an event with inherit set, we cannot read
3279 * all child counters from atomic context.
3280 */
3281 WARN_ON_ONCE(event->attr.inherit);
3282
3283 /*
3284 * It must not have a pmu::count method, those are not
3285 * NMI safe.
3286 */
3287 WARN_ON_ONCE(event->pmu->count);
3288
3289 /*
3290 * If the event is currently on this CPU, its either a per-task event,
3291 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3292 * oncpu == -1).
3293 */
3294 if (event->oncpu == smp_processor_id())
3295 event->pmu->read(event);
3296
3297 val = local64_read(&event->count);
3298 local_irq_restore(flags);
3299
3300 return val;
3301 }
3302
3303 static u64 perf_event_read(struct perf_event *event)
3304 {
3305 /*
3306 * If event is enabled and currently active on a CPU, update the
3307 * value in the event structure:
3308 */
3309 if (event->state == PERF_EVENT_STATE_ACTIVE) {
3310 smp_call_function_single(event->oncpu,
3311 __perf_event_read, event, 1);
3312 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
3313 struct perf_event_context *ctx = event->ctx;
3314 unsigned long flags;
3315
3316 raw_spin_lock_irqsave(&ctx->lock, flags);
3317 /*
3318 * may read while context is not active
3319 * (e.g., thread is blocked), in that case
3320 * we cannot update context time
3321 */
3322 if (ctx->is_active) {
3323 update_context_time(ctx);
3324 update_cgrp_time_from_event(event);
3325 }
3326 update_event_times(event);
3327 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3328 }
3329
3330 return perf_event_count(event);
3331 }
3332
3333 /*
3334 * Initialize the perf_event context in a task_struct:
3335 */
3336 static void __perf_event_init_context(struct perf_event_context *ctx)
3337 {
3338 raw_spin_lock_init(&ctx->lock);
3339 mutex_init(&ctx->mutex);
3340 INIT_LIST_HEAD(&ctx->active_ctx_list);
3341 INIT_LIST_HEAD(&ctx->pinned_groups);
3342 INIT_LIST_HEAD(&ctx->flexible_groups);
3343 INIT_LIST_HEAD(&ctx->event_list);
3344 atomic_set(&ctx->refcount, 1);
3345 INIT_DELAYED_WORK(&ctx->orphans_remove, orphans_remove_work);
3346 }
3347
3348 static struct perf_event_context *
3349 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3350 {
3351 struct perf_event_context *ctx;
3352
3353 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3354 if (!ctx)
3355 return NULL;
3356
3357 __perf_event_init_context(ctx);
3358 if (task) {
3359 ctx->task = task;
3360 get_task_struct(task);
3361 }
3362 ctx->pmu = pmu;
3363
3364 return ctx;
3365 }
3366
3367 static struct task_struct *
3368 find_lively_task_by_vpid(pid_t vpid)
3369 {
3370 struct task_struct *task;
3371 int err;
3372
3373 rcu_read_lock();
3374 if (!vpid)
3375 task = current;
3376 else
3377 task = find_task_by_vpid(vpid);
3378 if (task)
3379 get_task_struct(task);
3380 rcu_read_unlock();
3381
3382 if (!task)
3383 return ERR_PTR(-ESRCH);
3384
3385 /* Reuse ptrace permission checks for now. */
3386 err = -EACCES;
3387 if (!ptrace_may_access(task, PTRACE_MODE_READ))
3388 goto errout;
3389
3390 return task;
3391 errout:
3392 put_task_struct(task);
3393 return ERR_PTR(err);
3394
3395 }
3396
3397 /*
3398 * Returns a matching context with refcount and pincount.
3399 */
3400 static struct perf_event_context *
3401 find_get_context(struct pmu *pmu, struct task_struct *task,
3402 struct perf_event *event)
3403 {
3404 struct perf_event_context *ctx, *clone_ctx = NULL;
3405 struct perf_cpu_context *cpuctx;
3406 void *task_ctx_data = NULL;
3407 unsigned long flags;
3408 int ctxn, err;
3409 int cpu = event->cpu;
3410
3411 if (!task) {
3412 /* Must be root to operate on a CPU event: */
3413 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3414 return ERR_PTR(-EACCES);
3415
3416 /*
3417 * We could be clever and allow to attach a event to an
3418 * offline CPU and activate it when the CPU comes up, but
3419 * that's for later.
3420 */
3421 if (!cpu_online(cpu))
3422 return ERR_PTR(-ENODEV);
3423
3424 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3425 ctx = &cpuctx->ctx;
3426 get_ctx(ctx);
3427 ++ctx->pin_count;
3428
3429 return ctx;
3430 }
3431
3432 err = -EINVAL;
3433 ctxn = pmu->task_ctx_nr;
3434 if (ctxn < 0)
3435 goto errout;
3436
3437 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3438 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3439 if (!task_ctx_data) {
3440 err = -ENOMEM;
3441 goto errout;
3442 }
3443 }
3444
3445 retry:
3446 ctx = perf_lock_task_context(task, ctxn, &flags);
3447 if (ctx) {
3448 clone_ctx = unclone_ctx(ctx);
3449 ++ctx->pin_count;
3450
3451 if (task_ctx_data && !ctx->task_ctx_data) {
3452 ctx->task_ctx_data = task_ctx_data;
3453 task_ctx_data = NULL;
3454 }
3455 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3456
3457 if (clone_ctx)
3458 put_ctx(clone_ctx);
3459 } else {
3460 ctx = alloc_perf_context(pmu, task);
3461 err = -ENOMEM;
3462 if (!ctx)
3463 goto errout;
3464
3465 if (task_ctx_data) {
3466 ctx->task_ctx_data = task_ctx_data;
3467 task_ctx_data = NULL;
3468 }
3469
3470 err = 0;
3471 mutex_lock(&task->perf_event_mutex);
3472 /*
3473 * If it has already passed perf_event_exit_task().
3474 * we must see PF_EXITING, it takes this mutex too.
3475 */
3476 if (task->flags & PF_EXITING)
3477 err = -ESRCH;
3478 else if (task->perf_event_ctxp[ctxn])
3479 err = -EAGAIN;
3480 else {
3481 get_ctx(ctx);
3482 ++ctx->pin_count;
3483 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3484 }
3485 mutex_unlock(&task->perf_event_mutex);
3486
3487 if (unlikely(err)) {
3488 put_ctx(ctx);
3489
3490 if (err == -EAGAIN)
3491 goto retry;
3492 goto errout;
3493 }
3494 }
3495
3496 kfree(task_ctx_data);
3497 return ctx;
3498
3499 errout:
3500 kfree(task_ctx_data);
3501 return ERR_PTR(err);
3502 }
3503
3504 static void perf_event_free_filter(struct perf_event *event);
3505 static void perf_event_free_bpf_prog(struct perf_event *event);
3506
3507 static void free_event_rcu(struct rcu_head *head)
3508 {
3509 struct perf_event *event;
3510
3511 event = container_of(head, struct perf_event, rcu_head);
3512 if (event->ns)
3513 put_pid_ns(event->ns);
3514 perf_event_free_filter(event);
3515 kfree(event);
3516 }
3517
3518 static void ring_buffer_attach(struct perf_event *event,
3519 struct ring_buffer *rb);
3520
3521 static void unaccount_event_cpu(struct perf_event *event, int cpu)
3522 {
3523 if (event->parent)
3524 return;
3525
3526 if (is_cgroup_event(event))
3527 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3528 }
3529
3530 static void unaccount_event(struct perf_event *event)
3531 {
3532 if (event->parent)
3533 return;
3534
3535 if (event->attach_state & PERF_ATTACH_TASK)
3536 static_key_slow_dec_deferred(&perf_sched_events);
3537 if (event->attr.mmap || event->attr.mmap_data)
3538 atomic_dec(&nr_mmap_events);
3539 if (event->attr.comm)
3540 atomic_dec(&nr_comm_events);
3541 if (event->attr.task)
3542 atomic_dec(&nr_task_events);
3543 if (event->attr.freq)
3544 atomic_dec(&nr_freq_events);
3545 if (event->attr.context_switch) {
3546 static_key_slow_dec_deferred(&perf_sched_events);
3547 atomic_dec(&nr_switch_events);
3548 }
3549 if (is_cgroup_event(event))
3550 static_key_slow_dec_deferred(&perf_sched_events);
3551 if (has_branch_stack(event))
3552 static_key_slow_dec_deferred(&perf_sched_events);
3553
3554 unaccount_event_cpu(event, event->cpu);
3555 }
3556
3557 /*
3558 * The following implement mutual exclusion of events on "exclusive" pmus
3559 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3560 * at a time, so we disallow creating events that might conflict, namely:
3561 *
3562 * 1) cpu-wide events in the presence of per-task events,
3563 * 2) per-task events in the presence of cpu-wide events,
3564 * 3) two matching events on the same context.
3565 *
3566 * The former two cases are handled in the allocation path (perf_event_alloc(),
3567 * __free_event()), the latter -- before the first perf_install_in_context().
3568 */
3569 static int exclusive_event_init(struct perf_event *event)
3570 {
3571 struct pmu *pmu = event->pmu;
3572
3573 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3574 return 0;
3575
3576 /*
3577 * Prevent co-existence of per-task and cpu-wide events on the
3578 * same exclusive pmu.
3579 *
3580 * Negative pmu::exclusive_cnt means there are cpu-wide
3581 * events on this "exclusive" pmu, positive means there are
3582 * per-task events.
3583 *
3584 * Since this is called in perf_event_alloc() path, event::ctx
3585 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
3586 * to mean "per-task event", because unlike other attach states it
3587 * never gets cleared.
3588 */
3589 if (event->attach_state & PERF_ATTACH_TASK) {
3590 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
3591 return -EBUSY;
3592 } else {
3593 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
3594 return -EBUSY;
3595 }
3596
3597 return 0;
3598 }
3599
3600 static void exclusive_event_destroy(struct perf_event *event)
3601 {
3602 struct pmu *pmu = event->pmu;
3603
3604 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3605 return;
3606
3607 /* see comment in exclusive_event_init() */
3608 if (event->attach_state & PERF_ATTACH_TASK)
3609 atomic_dec(&pmu->exclusive_cnt);
3610 else
3611 atomic_inc(&pmu->exclusive_cnt);
3612 }
3613
3614 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
3615 {
3616 if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) &&
3617 (e1->cpu == e2->cpu ||
3618 e1->cpu == -1 ||
3619 e2->cpu == -1))
3620 return true;
3621 return false;
3622 }
3623
3624 /* Called under the same ctx::mutex as perf_install_in_context() */
3625 static bool exclusive_event_installable(struct perf_event *event,
3626 struct perf_event_context *ctx)
3627 {
3628 struct perf_event *iter_event;
3629 struct pmu *pmu = event->pmu;
3630
3631 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3632 return true;
3633
3634 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
3635 if (exclusive_event_match(iter_event, event))
3636 return false;
3637 }
3638
3639 return true;
3640 }
3641
3642 static void __free_event(struct perf_event *event)
3643 {
3644 if (!event->parent) {
3645 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3646 put_callchain_buffers();
3647 }
3648
3649 perf_event_free_bpf_prog(event);
3650
3651 if (event->destroy)
3652 event->destroy(event);
3653
3654 if (event->ctx)
3655 put_ctx(event->ctx);
3656
3657 if (event->pmu) {
3658 exclusive_event_destroy(event);
3659 module_put(event->pmu->module);
3660 }
3661
3662 call_rcu(&event->rcu_head, free_event_rcu);
3663 }
3664
3665 static void _free_event(struct perf_event *event)
3666 {
3667 irq_work_sync(&event->pending);
3668
3669 unaccount_event(event);
3670
3671 if (event->rb) {
3672 /*
3673 * Can happen when we close an event with re-directed output.
3674 *
3675 * Since we have a 0 refcount, perf_mmap_close() will skip
3676 * over us; possibly making our ring_buffer_put() the last.
3677 */
3678 mutex_lock(&event->mmap_mutex);
3679 ring_buffer_attach(event, NULL);
3680 mutex_unlock(&event->mmap_mutex);
3681 }
3682
3683 if (is_cgroup_event(event))
3684 perf_detach_cgroup(event);
3685
3686 __free_event(event);
3687 }
3688
3689 /*
3690 * Used to free events which have a known refcount of 1, such as in error paths
3691 * where the event isn't exposed yet and inherited events.
3692 */
3693 static void free_event(struct perf_event *event)
3694 {
3695 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
3696 "unexpected event refcount: %ld; ptr=%p\n",
3697 atomic_long_read(&event->refcount), event)) {
3698 /* leak to avoid use-after-free */
3699 return;
3700 }
3701
3702 _free_event(event);
3703 }
3704
3705 /*
3706 * Remove user event from the owner task.
3707 */
3708 static void perf_remove_from_owner(struct perf_event *event)
3709 {
3710 struct task_struct *owner;
3711
3712 rcu_read_lock();
3713 owner = ACCESS_ONCE(event->owner);
3714 /*
3715 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
3716 * !owner it means the list deletion is complete and we can indeed
3717 * free this event, otherwise we need to serialize on
3718 * owner->perf_event_mutex.
3719 */
3720 smp_read_barrier_depends();
3721 if (owner) {
3722 /*
3723 * Since delayed_put_task_struct() also drops the last
3724 * task reference we can safely take a new reference
3725 * while holding the rcu_read_lock().
3726 */
3727 get_task_struct(owner);
3728 }
3729 rcu_read_unlock();
3730
3731 if (owner) {
3732 /*
3733 * If we're here through perf_event_exit_task() we're already
3734 * holding ctx->mutex which would be an inversion wrt. the
3735 * normal lock order.
3736 *
3737 * However we can safely take this lock because its the child
3738 * ctx->mutex.
3739 */
3740 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
3741
3742 /*
3743 * We have to re-check the event->owner field, if it is cleared
3744 * we raced with perf_event_exit_task(), acquiring the mutex
3745 * ensured they're done, and we can proceed with freeing the
3746 * event.
3747 */
3748 if (event->owner)
3749 list_del_init(&event->owner_entry);
3750 mutex_unlock(&owner->perf_event_mutex);
3751 put_task_struct(owner);
3752 }
3753 }
3754
3755 static void put_event(struct perf_event *event)
3756 {
3757 struct perf_event_context *ctx;
3758
3759 if (!atomic_long_dec_and_test(&event->refcount))
3760 return;
3761
3762 if (!is_kernel_event(event))
3763 perf_remove_from_owner(event);
3764
3765 /*
3766 * There are two ways this annotation is useful:
3767 *
3768 * 1) there is a lock recursion from perf_event_exit_task
3769 * see the comment there.
3770 *
3771 * 2) there is a lock-inversion with mmap_sem through
3772 * perf_event_read_group(), which takes faults while
3773 * holding ctx->mutex, however this is called after
3774 * the last filedesc died, so there is no possibility
3775 * to trigger the AB-BA case.
3776 */
3777 ctx = perf_event_ctx_lock_nested(event, SINGLE_DEPTH_NESTING);
3778 WARN_ON_ONCE(ctx->parent_ctx);
3779 perf_remove_from_context(event, true);
3780 perf_event_ctx_unlock(event, ctx);
3781
3782 _free_event(event);
3783 }
3784
3785 int perf_event_release_kernel(struct perf_event *event)
3786 {
3787 put_event(event);
3788 return 0;
3789 }
3790 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
3791
3792 /*
3793 * Called when the last reference to the file is gone.
3794 */
3795 static int perf_release(struct inode *inode, struct file *file)
3796 {
3797 put_event(file->private_data);
3798 return 0;
3799 }
3800
3801 /*
3802 * Remove all orphanes events from the context.
3803 */
3804 static void orphans_remove_work(struct work_struct *work)
3805 {
3806 struct perf_event_context *ctx;
3807 struct perf_event *event, *tmp;
3808
3809 ctx = container_of(work, struct perf_event_context,
3810 orphans_remove.work);
3811
3812 mutex_lock(&ctx->mutex);
3813 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) {
3814 struct perf_event *parent_event = event->parent;
3815
3816 if (!is_orphaned_child(event))
3817 continue;
3818
3819 perf_remove_from_context(event, true);
3820
3821 mutex_lock(&parent_event->child_mutex);
3822 list_del_init(&event->child_list);
3823 mutex_unlock(&parent_event->child_mutex);
3824
3825 free_event(event);
3826 put_event(parent_event);
3827 }
3828
3829 raw_spin_lock_irq(&ctx->lock);
3830 ctx->orphans_remove_sched = false;
3831 raw_spin_unlock_irq(&ctx->lock);
3832 mutex_unlock(&ctx->mutex);
3833
3834 put_ctx(ctx);
3835 }
3836
3837 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3838 {
3839 struct perf_event *child;
3840 u64 total = 0;
3841
3842 *enabled = 0;
3843 *running = 0;
3844
3845 mutex_lock(&event->child_mutex);
3846 total += perf_event_read(event);
3847 *enabled += event->total_time_enabled +
3848 atomic64_read(&event->child_total_time_enabled);
3849 *running += event->total_time_running +
3850 atomic64_read(&event->child_total_time_running);
3851
3852 list_for_each_entry(child, &event->child_list, child_list) {
3853 total += perf_event_read(child);
3854 *enabled += child->total_time_enabled;
3855 *running += child->total_time_running;
3856 }
3857 mutex_unlock(&event->child_mutex);
3858
3859 return total;
3860 }
3861 EXPORT_SYMBOL_GPL(perf_event_read_value);
3862
3863 static int perf_event_read_group(struct perf_event *event,
3864 u64 read_format, char __user *buf)
3865 {
3866 struct perf_event *leader = event->group_leader, *sub;
3867 struct perf_event_context *ctx = leader->ctx;
3868 int n = 0, size = 0, ret;
3869 u64 count, enabled, running;
3870 u64 values[5];
3871
3872 lockdep_assert_held(&ctx->mutex);
3873
3874 count = perf_event_read_value(leader, &enabled, &running);
3875
3876 values[n++] = 1 + leader->nr_siblings;
3877 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3878 values[n++] = enabled;
3879 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3880 values[n++] = running;
3881 values[n++] = count;
3882 if (read_format & PERF_FORMAT_ID)
3883 values[n++] = primary_event_id(leader);
3884
3885 size = n * sizeof(u64);
3886
3887 if (copy_to_user(buf, values, size))
3888 return -EFAULT;
3889
3890 ret = size;
3891
3892 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3893 n = 0;
3894
3895 values[n++] = perf_event_read_value(sub, &enabled, &running);
3896 if (read_format & PERF_FORMAT_ID)
3897 values[n++] = primary_event_id(sub);
3898
3899 size = n * sizeof(u64);
3900
3901 if (copy_to_user(buf + ret, values, size)) {
3902 return -EFAULT;
3903 }
3904
3905 ret += size;
3906 }
3907
3908 return ret;
3909 }
3910
3911 static int perf_event_read_one(struct perf_event *event,
3912 u64 read_format, char __user *buf)
3913 {
3914 u64 enabled, running;
3915 u64 values[4];
3916 int n = 0;
3917
3918 values[n++] = perf_event_read_value(event, &enabled, &running);
3919 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3920 values[n++] = enabled;
3921 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3922 values[n++] = running;
3923 if (read_format & PERF_FORMAT_ID)
3924 values[n++] = primary_event_id(event);
3925
3926 if (copy_to_user(buf, values, n * sizeof(u64)))
3927 return -EFAULT;
3928
3929 return n * sizeof(u64);
3930 }
3931
3932 static bool is_event_hup(struct perf_event *event)
3933 {
3934 bool no_children;
3935
3936 if (event->state != PERF_EVENT_STATE_EXIT)
3937 return false;
3938
3939 mutex_lock(&event->child_mutex);
3940 no_children = list_empty(&event->child_list);
3941 mutex_unlock(&event->child_mutex);
3942 return no_children;
3943 }
3944
3945 /*
3946 * Read the performance event - simple non blocking version for now
3947 */
3948 static ssize_t
3949 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
3950 {
3951 u64 read_format = event->attr.read_format;
3952 int ret;
3953
3954 /*
3955 * Return end-of-file for a read on a event that is in
3956 * error state (i.e. because it was pinned but it couldn't be
3957 * scheduled on to the CPU at some point).
3958 */
3959 if (event->state == PERF_EVENT_STATE_ERROR)
3960 return 0;
3961
3962 if (count < event->read_size)
3963 return -ENOSPC;
3964
3965 WARN_ON_ONCE(event->ctx->parent_ctx);
3966 if (read_format & PERF_FORMAT_GROUP)
3967 ret = perf_event_read_group(event, read_format, buf);
3968 else
3969 ret = perf_event_read_one(event, read_format, buf);
3970
3971 return ret;
3972 }
3973
3974 static ssize_t
3975 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
3976 {
3977 struct perf_event *event = file->private_data;
3978 struct perf_event_context *ctx;
3979 int ret;
3980
3981 ctx = perf_event_ctx_lock(event);
3982 ret = perf_read_hw(event, buf, count);
3983 perf_event_ctx_unlock(event, ctx);
3984
3985 return ret;
3986 }
3987
3988 static unsigned int perf_poll(struct file *file, poll_table *wait)
3989 {
3990 struct perf_event *event = file->private_data;
3991 struct ring_buffer *rb;
3992 unsigned int events = POLLHUP;
3993
3994 poll_wait(file, &event->waitq, wait);
3995
3996 if (is_event_hup(event))
3997 return events;
3998
3999 /*
4000 * Pin the event->rb by taking event->mmap_mutex; otherwise
4001 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4002 */
4003 mutex_lock(&event->mmap_mutex);
4004 rb = event->rb;
4005 if (rb)
4006 events = atomic_xchg(&rb->poll, 0);
4007 mutex_unlock(&event->mmap_mutex);
4008 return events;
4009 }
4010
4011 static void _perf_event_reset(struct perf_event *event)
4012 {
4013 (void)perf_event_read(event);
4014 local64_set(&event->count, 0);
4015 perf_event_update_userpage(event);
4016 }
4017
4018 /*
4019 * Holding the top-level event's child_mutex means that any
4020 * descendant process that has inherited this event will block
4021 * in sync_child_event if it goes to exit, thus satisfying the
4022 * task existence requirements of perf_event_enable/disable.
4023 */
4024 static void perf_event_for_each_child(struct perf_event *event,
4025 void (*func)(struct perf_event *))
4026 {
4027 struct perf_event *child;
4028
4029 WARN_ON_ONCE(event->ctx->parent_ctx);
4030
4031 mutex_lock(&event->child_mutex);
4032 func(event);
4033 list_for_each_entry(child, &event->child_list, child_list)
4034 func(child);
4035 mutex_unlock(&event->child_mutex);
4036 }
4037
4038 static void perf_event_for_each(struct perf_event *event,
4039 void (*func)(struct perf_event *))
4040 {
4041 struct perf_event_context *ctx = event->ctx;
4042 struct perf_event *sibling;
4043
4044 lockdep_assert_held(&ctx->mutex);
4045
4046 event = event->group_leader;
4047
4048 perf_event_for_each_child(event, func);
4049 list_for_each_entry(sibling, &event->sibling_list, group_entry)
4050 perf_event_for_each_child(sibling, func);
4051 }
4052
4053 struct period_event {
4054 struct perf_event *event;
4055 u64 value;
4056 };
4057
4058 static int __perf_event_period(void *info)
4059 {
4060 struct period_event *pe = info;
4061 struct perf_event *event = pe->event;
4062 struct perf_event_context *ctx = event->ctx;
4063 u64 value = pe->value;
4064 bool active;
4065
4066 raw_spin_lock(&ctx->lock);
4067 if (event->attr.freq) {
4068 event->attr.sample_freq = value;
4069 } else {
4070 event->attr.sample_period = value;
4071 event->hw.sample_period = value;
4072 }
4073
4074 active = (event->state == PERF_EVENT_STATE_ACTIVE);
4075 if (active) {
4076 perf_pmu_disable(ctx->pmu);
4077 event->pmu->stop(event, PERF_EF_UPDATE);
4078 }
4079
4080 local64_set(&event->hw.period_left, 0);
4081
4082 if (active) {
4083 event->pmu->start(event, PERF_EF_RELOAD);
4084 perf_pmu_enable(ctx->pmu);
4085 }
4086 raw_spin_unlock(&ctx->lock);
4087
4088 return 0;
4089 }
4090
4091 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4092 {
4093 struct period_event pe = { .event = event, };
4094 struct perf_event_context *ctx = event->ctx;
4095 struct task_struct *task;
4096 u64 value;
4097
4098 if (!is_sampling_event(event))
4099 return -EINVAL;
4100
4101 if (copy_from_user(&value, arg, sizeof(value)))
4102 return -EFAULT;
4103
4104 if (!value)
4105 return -EINVAL;
4106
4107 if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4108 return -EINVAL;
4109
4110 task = ctx->task;
4111 pe.value = value;
4112
4113 if (!task) {
4114 cpu_function_call(event->cpu, __perf_event_period, &pe);
4115 return 0;
4116 }
4117
4118 retry:
4119 if (!task_function_call(task, __perf_event_period, &pe))
4120 return 0;
4121
4122 raw_spin_lock_irq(&ctx->lock);
4123 if (ctx->is_active) {
4124 raw_spin_unlock_irq(&ctx->lock);
4125 task = ctx->task;
4126 goto retry;
4127 }
4128
4129 __perf_event_period(&pe);
4130 raw_spin_unlock_irq(&ctx->lock);
4131
4132 return 0;
4133 }
4134
4135 static const struct file_operations perf_fops;
4136
4137 static inline int perf_fget_light(int fd, struct fd *p)
4138 {
4139 struct fd f = fdget(fd);
4140 if (!f.file)
4141 return -EBADF;
4142
4143 if (f.file->f_op != &perf_fops) {
4144 fdput(f);
4145 return -EBADF;
4146 }
4147 *p = f;
4148 return 0;
4149 }
4150
4151 static int perf_event_set_output(struct perf_event *event,
4152 struct perf_event *output_event);
4153 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4154 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4155
4156 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4157 {
4158 void (*func)(struct perf_event *);
4159 u32 flags = arg;
4160
4161 switch (cmd) {
4162 case PERF_EVENT_IOC_ENABLE:
4163 func = _perf_event_enable;
4164 break;
4165 case PERF_EVENT_IOC_DISABLE:
4166 func = _perf_event_disable;
4167 break;
4168 case PERF_EVENT_IOC_RESET:
4169 func = _perf_event_reset;
4170 break;
4171
4172 case PERF_EVENT_IOC_REFRESH:
4173 return _perf_event_refresh(event, arg);
4174
4175 case PERF_EVENT_IOC_PERIOD:
4176 return perf_event_period(event, (u64 __user *)arg);
4177
4178 case PERF_EVENT_IOC_ID:
4179 {
4180 u64 id = primary_event_id(event);
4181
4182 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4183 return -EFAULT;
4184 return 0;
4185 }
4186
4187 case PERF_EVENT_IOC_SET_OUTPUT:
4188 {
4189 int ret;
4190 if (arg != -1) {
4191 struct perf_event *output_event;
4192 struct fd output;
4193 ret = perf_fget_light(arg, &output);
4194 if (ret)
4195 return ret;
4196 output_event = output.file->private_data;
4197 ret = perf_event_set_output(event, output_event);
4198 fdput(output);
4199 } else {
4200 ret = perf_event_set_output(event, NULL);
4201 }
4202 return ret;
4203 }
4204
4205 case PERF_EVENT_IOC_SET_FILTER:
4206 return perf_event_set_filter(event, (void __user *)arg);
4207
4208 case PERF_EVENT_IOC_SET_BPF:
4209 return perf_event_set_bpf_prog(event, arg);
4210
4211 default:
4212 return -ENOTTY;
4213 }
4214
4215 if (flags & PERF_IOC_FLAG_GROUP)
4216 perf_event_for_each(event, func);
4217 else
4218 perf_event_for_each_child(event, func);
4219
4220 return 0;
4221 }
4222
4223 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4224 {
4225 struct perf_event *event = file->private_data;
4226 struct perf_event_context *ctx;
4227 long ret;
4228
4229 ctx = perf_event_ctx_lock(event);
4230 ret = _perf_ioctl(event, cmd, arg);
4231 perf_event_ctx_unlock(event, ctx);
4232
4233 return ret;
4234 }
4235
4236 #ifdef CONFIG_COMPAT
4237 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4238 unsigned long arg)
4239 {
4240 switch (_IOC_NR(cmd)) {
4241 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4242 case _IOC_NR(PERF_EVENT_IOC_ID):
4243 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4244 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4245 cmd &= ~IOCSIZE_MASK;
4246 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4247 }
4248 break;
4249 }
4250 return perf_ioctl(file, cmd, arg);
4251 }
4252 #else
4253 # define perf_compat_ioctl NULL
4254 #endif
4255
4256 int perf_event_task_enable(void)
4257 {
4258 struct perf_event_context *ctx;
4259 struct perf_event *event;
4260
4261 mutex_lock(&current->perf_event_mutex);
4262 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4263 ctx = perf_event_ctx_lock(event);
4264 perf_event_for_each_child(event, _perf_event_enable);
4265 perf_event_ctx_unlock(event, ctx);
4266 }
4267 mutex_unlock(&current->perf_event_mutex);
4268
4269 return 0;
4270 }
4271
4272 int perf_event_task_disable(void)
4273 {
4274 struct perf_event_context *ctx;
4275 struct perf_event *event;
4276
4277 mutex_lock(&current->perf_event_mutex);
4278 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4279 ctx = perf_event_ctx_lock(event);
4280 perf_event_for_each_child(event, _perf_event_disable);
4281 perf_event_ctx_unlock(event, ctx);
4282 }
4283 mutex_unlock(&current->perf_event_mutex);
4284
4285 return 0;
4286 }
4287
4288 static int perf_event_index(struct perf_event *event)
4289 {
4290 if (event->hw.state & PERF_HES_STOPPED)
4291 return 0;
4292
4293 if (event->state != PERF_EVENT_STATE_ACTIVE)
4294 return 0;
4295
4296 return event->pmu->event_idx(event);
4297 }
4298
4299 static void calc_timer_values(struct perf_event *event,
4300 u64 *now,
4301 u64 *enabled,
4302 u64 *running)
4303 {
4304 u64 ctx_time;
4305
4306 *now = perf_clock();
4307 ctx_time = event->shadow_ctx_time + *now;
4308 *enabled = ctx_time - event->tstamp_enabled;
4309 *running = ctx_time - event->tstamp_running;
4310 }
4311
4312 static void perf_event_init_userpage(struct perf_event *event)
4313 {
4314 struct perf_event_mmap_page *userpg;
4315 struct ring_buffer *rb;
4316
4317 rcu_read_lock();
4318 rb = rcu_dereference(event->rb);
4319 if (!rb)
4320 goto unlock;
4321
4322 userpg = rb->user_page;
4323
4324 /* Allow new userspace to detect that bit 0 is deprecated */
4325 userpg->cap_bit0_is_deprecated = 1;
4326 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4327 userpg->data_offset = PAGE_SIZE;
4328 userpg->data_size = perf_data_size(rb);
4329
4330 unlock:
4331 rcu_read_unlock();
4332 }
4333
4334 void __weak arch_perf_update_userpage(
4335 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4336 {
4337 }
4338
4339 /*
4340 * Callers need to ensure there can be no nesting of this function, otherwise
4341 * the seqlock logic goes bad. We can not serialize this because the arch
4342 * code calls this from NMI context.
4343 */
4344 void perf_event_update_userpage(struct perf_event *event)
4345 {
4346 struct perf_event_mmap_page *userpg;
4347 struct ring_buffer *rb;
4348 u64 enabled, running, now;
4349
4350 rcu_read_lock();
4351 rb = rcu_dereference(event->rb);
4352 if (!rb)
4353 goto unlock;
4354
4355 /*
4356 * compute total_time_enabled, total_time_running
4357 * based on snapshot values taken when the event
4358 * was last scheduled in.
4359 *
4360 * we cannot simply called update_context_time()
4361 * because of locking issue as we can be called in
4362 * NMI context
4363 */
4364 calc_timer_values(event, &now, &enabled, &running);
4365
4366 userpg = rb->user_page;
4367 /*
4368 * Disable preemption so as to not let the corresponding user-space
4369 * spin too long if we get preempted.
4370 */
4371 preempt_disable();
4372 ++userpg->lock;
4373 barrier();
4374 userpg->index = perf_event_index(event);
4375 userpg->offset = perf_event_count(event);
4376 if (userpg->index)
4377 userpg->offset -= local64_read(&event->hw.prev_count);
4378
4379 userpg->time_enabled = enabled +
4380 atomic64_read(&event->child_total_time_enabled);
4381
4382 userpg->time_running = running +
4383 atomic64_read(&event->child_total_time_running);
4384
4385 arch_perf_update_userpage(event, userpg, now);
4386
4387 barrier();
4388 ++userpg->lock;
4389 preempt_enable();
4390 unlock:
4391 rcu_read_unlock();
4392 }
4393
4394 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
4395 {
4396 struct perf_event *event = vma->vm_file->private_data;
4397 struct ring_buffer *rb;
4398 int ret = VM_FAULT_SIGBUS;
4399
4400 if (vmf->flags & FAULT_FLAG_MKWRITE) {
4401 if (vmf->pgoff == 0)
4402 ret = 0;
4403 return ret;
4404 }
4405
4406 rcu_read_lock();
4407 rb = rcu_dereference(event->rb);
4408 if (!rb)
4409 goto unlock;
4410
4411 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4412 goto unlock;
4413
4414 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4415 if (!vmf->page)
4416 goto unlock;
4417
4418 get_page(vmf->page);
4419 vmf->page->mapping = vma->vm_file->f_mapping;
4420 vmf->page->index = vmf->pgoff;
4421
4422 ret = 0;
4423 unlock:
4424 rcu_read_unlock();
4425
4426 return ret;
4427 }
4428
4429 static void ring_buffer_attach(struct perf_event *event,
4430 struct ring_buffer *rb)
4431 {
4432 struct ring_buffer *old_rb = NULL;
4433 unsigned long flags;
4434
4435 if (event->rb) {
4436 /*
4437 * Should be impossible, we set this when removing
4438 * event->rb_entry and wait/clear when adding event->rb_entry.
4439 */
4440 WARN_ON_ONCE(event->rcu_pending);
4441
4442 old_rb = event->rb;
4443 spin_lock_irqsave(&old_rb->event_lock, flags);
4444 list_del_rcu(&event->rb_entry);
4445 spin_unlock_irqrestore(&old_rb->event_lock, flags);
4446
4447 event->rcu_batches = get_state_synchronize_rcu();
4448 event->rcu_pending = 1;
4449 }
4450
4451 if (rb) {
4452 if (event->rcu_pending) {
4453 cond_synchronize_rcu(event->rcu_batches);
4454 event->rcu_pending = 0;
4455 }
4456
4457 spin_lock_irqsave(&rb->event_lock, flags);
4458 list_add_rcu(&event->rb_entry, &rb->event_list);
4459 spin_unlock_irqrestore(&rb->event_lock, flags);
4460 }
4461
4462 rcu_assign_pointer(event->rb, rb);
4463
4464 if (old_rb) {
4465 ring_buffer_put(old_rb);
4466 /*
4467 * Since we detached before setting the new rb, so that we
4468 * could attach the new rb, we could have missed a wakeup.
4469 * Provide it now.
4470 */
4471 wake_up_all(&event->waitq);
4472 }
4473 }
4474
4475 static void ring_buffer_wakeup(struct perf_event *event)
4476 {
4477 struct ring_buffer *rb;
4478
4479 rcu_read_lock();
4480 rb = rcu_dereference(event->rb);
4481 if (rb) {
4482 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
4483 wake_up_all(&event->waitq);
4484 }
4485 rcu_read_unlock();
4486 }
4487
4488 struct ring_buffer *ring_buffer_get(struct perf_event *event)
4489 {
4490 struct ring_buffer *rb;
4491
4492 rcu_read_lock();
4493 rb = rcu_dereference(event->rb);
4494 if (rb) {
4495 if (!atomic_inc_not_zero(&rb->refcount))
4496 rb = NULL;
4497 }
4498 rcu_read_unlock();
4499
4500 return rb;
4501 }
4502
4503 void ring_buffer_put(struct ring_buffer *rb)
4504 {
4505 if (!atomic_dec_and_test(&rb->refcount))
4506 return;
4507
4508 WARN_ON_ONCE(!list_empty(&rb->event_list));
4509
4510 call_rcu(&rb->rcu_head, rb_free_rcu);
4511 }
4512
4513 static void perf_mmap_open(struct vm_area_struct *vma)
4514 {
4515 struct perf_event *event = vma->vm_file->private_data;
4516
4517 atomic_inc(&event->mmap_count);
4518 atomic_inc(&event->rb->mmap_count);
4519
4520 if (vma->vm_pgoff)
4521 atomic_inc(&event->rb->aux_mmap_count);
4522
4523 if (event->pmu->event_mapped)
4524 event->pmu->event_mapped(event);
4525 }
4526
4527 /*
4528 * A buffer can be mmap()ed multiple times; either directly through the same
4529 * event, or through other events by use of perf_event_set_output().
4530 *
4531 * In order to undo the VM accounting done by perf_mmap() we need to destroy
4532 * the buffer here, where we still have a VM context. This means we need
4533 * to detach all events redirecting to us.
4534 */
4535 static void perf_mmap_close(struct vm_area_struct *vma)
4536 {
4537 struct perf_event *event = vma->vm_file->private_data;
4538
4539 struct ring_buffer *rb = ring_buffer_get(event);
4540 struct user_struct *mmap_user = rb->mmap_user;
4541 int mmap_locked = rb->mmap_locked;
4542 unsigned long size = perf_data_size(rb);
4543
4544 if (event->pmu->event_unmapped)
4545 event->pmu->event_unmapped(event);
4546
4547 /*
4548 * rb->aux_mmap_count will always drop before rb->mmap_count and
4549 * event->mmap_count, so it is ok to use event->mmap_mutex to
4550 * serialize with perf_mmap here.
4551 */
4552 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
4553 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
4554 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
4555 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
4556
4557 rb_free_aux(rb);
4558 mutex_unlock(&event->mmap_mutex);
4559 }
4560
4561 atomic_dec(&rb->mmap_count);
4562
4563 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
4564 goto out_put;
4565
4566 ring_buffer_attach(event, NULL);
4567 mutex_unlock(&event->mmap_mutex);
4568
4569 /* If there's still other mmap()s of this buffer, we're done. */
4570 if (atomic_read(&rb->mmap_count))
4571 goto out_put;
4572
4573 /*
4574 * No other mmap()s, detach from all other events that might redirect
4575 * into the now unreachable buffer. Somewhat complicated by the
4576 * fact that rb::event_lock otherwise nests inside mmap_mutex.
4577 */
4578 again:
4579 rcu_read_lock();
4580 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
4581 if (!atomic_long_inc_not_zero(&event->refcount)) {
4582 /*
4583 * This event is en-route to free_event() which will
4584 * detach it and remove it from the list.
4585 */
4586 continue;
4587 }
4588 rcu_read_unlock();
4589
4590 mutex_lock(&event->mmap_mutex);
4591 /*
4592 * Check we didn't race with perf_event_set_output() which can
4593 * swizzle the rb from under us while we were waiting to
4594 * acquire mmap_mutex.
4595 *
4596 * If we find a different rb; ignore this event, a next
4597 * iteration will no longer find it on the list. We have to
4598 * still restart the iteration to make sure we're not now
4599 * iterating the wrong list.
4600 */
4601 if (event->rb == rb)
4602 ring_buffer_attach(event, NULL);
4603
4604 mutex_unlock(&event->mmap_mutex);
4605 put_event(event);
4606
4607 /*
4608 * Restart the iteration; either we're on the wrong list or
4609 * destroyed its integrity by doing a deletion.
4610 */
4611 goto again;
4612 }
4613 rcu_read_unlock();
4614
4615 /*
4616 * It could be there's still a few 0-ref events on the list; they'll
4617 * get cleaned up by free_event() -- they'll also still have their
4618 * ref on the rb and will free it whenever they are done with it.
4619 *
4620 * Aside from that, this buffer is 'fully' detached and unmapped,
4621 * undo the VM accounting.
4622 */
4623
4624 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
4625 vma->vm_mm->pinned_vm -= mmap_locked;
4626 free_uid(mmap_user);
4627
4628 out_put:
4629 ring_buffer_put(rb); /* could be last */
4630 }
4631
4632 static const struct vm_operations_struct perf_mmap_vmops = {
4633 .open = perf_mmap_open,
4634 .close = perf_mmap_close, /* non mergable */
4635 .fault = perf_mmap_fault,
4636 .page_mkwrite = perf_mmap_fault,
4637 };
4638
4639 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
4640 {
4641 struct perf_event *event = file->private_data;
4642 unsigned long user_locked, user_lock_limit;
4643 struct user_struct *user = current_user();
4644 unsigned long locked, lock_limit;
4645 struct ring_buffer *rb = NULL;
4646 unsigned long vma_size;
4647 unsigned long nr_pages;
4648 long user_extra = 0, extra = 0;
4649 int ret = 0, flags = 0;
4650
4651 /*
4652 * Don't allow mmap() of inherited per-task counters. This would
4653 * create a performance issue due to all children writing to the
4654 * same rb.
4655 */
4656 if (event->cpu == -1 && event->attr.inherit)
4657 return -EINVAL;
4658
4659 if (!(vma->vm_flags & VM_SHARED))
4660 return -EINVAL;
4661
4662 vma_size = vma->vm_end - vma->vm_start;
4663
4664 if (vma->vm_pgoff == 0) {
4665 nr_pages = (vma_size / PAGE_SIZE) - 1;
4666 } else {
4667 /*
4668 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
4669 * mapped, all subsequent mappings should have the same size
4670 * and offset. Must be above the normal perf buffer.
4671 */
4672 u64 aux_offset, aux_size;
4673
4674 if (!event->rb)
4675 return -EINVAL;
4676
4677 nr_pages = vma_size / PAGE_SIZE;
4678
4679 mutex_lock(&event->mmap_mutex);
4680 ret = -EINVAL;
4681
4682 rb = event->rb;
4683 if (!rb)
4684 goto aux_unlock;
4685
4686 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
4687 aux_size = ACCESS_ONCE(rb->user_page->aux_size);
4688
4689 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
4690 goto aux_unlock;
4691
4692 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
4693 goto aux_unlock;
4694
4695 /* already mapped with a different offset */
4696 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
4697 goto aux_unlock;
4698
4699 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
4700 goto aux_unlock;
4701
4702 /* already mapped with a different size */
4703 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
4704 goto aux_unlock;
4705
4706 if (!is_power_of_2(nr_pages))
4707 goto aux_unlock;
4708
4709 if (!atomic_inc_not_zero(&rb->mmap_count))
4710 goto aux_unlock;
4711
4712 if (rb_has_aux(rb)) {
4713 atomic_inc(&rb->aux_mmap_count);
4714 ret = 0;
4715 goto unlock;
4716 }
4717
4718 atomic_set(&rb->aux_mmap_count, 1);
4719 user_extra = nr_pages;
4720
4721 goto accounting;
4722 }
4723
4724 /*
4725 * If we have rb pages ensure they're a power-of-two number, so we
4726 * can do bitmasks instead of modulo.
4727 */
4728 if (nr_pages != 0 && !is_power_of_2(nr_pages))
4729 return -EINVAL;
4730
4731 if (vma_size != PAGE_SIZE * (1 + nr_pages))
4732 return -EINVAL;
4733
4734 WARN_ON_ONCE(event->ctx->parent_ctx);
4735 again:
4736 mutex_lock(&event->mmap_mutex);
4737 if (event->rb) {
4738 if (event->rb->nr_pages != nr_pages) {
4739 ret = -EINVAL;
4740 goto unlock;
4741 }
4742
4743 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
4744 /*
4745 * Raced against perf_mmap_close() through
4746 * perf_event_set_output(). Try again, hope for better
4747 * luck.
4748 */
4749 mutex_unlock(&event->mmap_mutex);
4750 goto again;
4751 }
4752
4753 goto unlock;
4754 }
4755
4756 user_extra = nr_pages + 1;
4757
4758 accounting:
4759 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
4760
4761 /*
4762 * Increase the limit linearly with more CPUs:
4763 */
4764 user_lock_limit *= num_online_cpus();
4765
4766 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
4767
4768 if (user_locked > user_lock_limit)
4769 extra = user_locked - user_lock_limit;
4770
4771 lock_limit = rlimit(RLIMIT_MEMLOCK);
4772 lock_limit >>= PAGE_SHIFT;
4773 locked = vma->vm_mm->pinned_vm + extra;
4774
4775 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
4776 !capable(CAP_IPC_LOCK)) {
4777 ret = -EPERM;
4778 goto unlock;
4779 }
4780
4781 WARN_ON(!rb && event->rb);
4782
4783 if (vma->vm_flags & VM_WRITE)
4784 flags |= RING_BUFFER_WRITABLE;
4785
4786 if (!rb) {
4787 rb = rb_alloc(nr_pages,
4788 event->attr.watermark ? event->attr.wakeup_watermark : 0,
4789 event->cpu, flags);
4790
4791 if (!rb) {
4792 ret = -ENOMEM;
4793 goto unlock;
4794 }
4795
4796 atomic_set(&rb->mmap_count, 1);
4797 rb->mmap_user = get_current_user();
4798 rb->mmap_locked = extra;
4799
4800 ring_buffer_attach(event, rb);
4801
4802 perf_event_init_userpage(event);
4803 perf_event_update_userpage(event);
4804 } else {
4805 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
4806 event->attr.aux_watermark, flags);
4807 if (!ret)
4808 rb->aux_mmap_locked = extra;
4809 }
4810
4811 unlock:
4812 if (!ret) {
4813 atomic_long_add(user_extra, &user->locked_vm);
4814 vma->vm_mm->pinned_vm += extra;
4815
4816 atomic_inc(&event->mmap_count);
4817 } else if (rb) {
4818 atomic_dec(&rb->mmap_count);
4819 }
4820 aux_unlock:
4821 mutex_unlock(&event->mmap_mutex);
4822
4823 /*
4824 * Since pinned accounting is per vm we cannot allow fork() to copy our
4825 * vma.
4826 */
4827 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
4828 vma->vm_ops = &perf_mmap_vmops;
4829
4830 if (event->pmu->event_mapped)
4831 event->pmu->event_mapped(event);
4832
4833 return ret;
4834 }
4835
4836 static int perf_fasync(int fd, struct file *filp, int on)
4837 {
4838 struct inode *inode = file_inode(filp);
4839 struct perf_event *event = filp->private_data;
4840 int retval;
4841
4842 mutex_lock(&inode->i_mutex);
4843 retval = fasync_helper(fd, filp, on, &event->fasync);
4844 mutex_unlock(&inode->i_mutex);
4845
4846 if (retval < 0)
4847 return retval;
4848
4849 return 0;
4850 }
4851
4852 static const struct file_operations perf_fops = {
4853 .llseek = no_llseek,
4854 .release = perf_release,
4855 .read = perf_read,
4856 .poll = perf_poll,
4857 .unlocked_ioctl = perf_ioctl,
4858 .compat_ioctl = perf_compat_ioctl,
4859 .mmap = perf_mmap,
4860 .fasync = perf_fasync,
4861 };
4862
4863 /*
4864 * Perf event wakeup
4865 *
4866 * If there's data, ensure we set the poll() state and publish everything
4867 * to user-space before waking everybody up.
4868 */
4869
4870 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
4871 {
4872 /* only the parent has fasync state */
4873 if (event->parent)
4874 event = event->parent;
4875 return &event->fasync;
4876 }
4877
4878 void perf_event_wakeup(struct perf_event *event)
4879 {
4880 ring_buffer_wakeup(event);
4881
4882 if (event->pending_kill) {
4883 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
4884 event->pending_kill = 0;
4885 }
4886 }
4887
4888 static void perf_pending_event(struct irq_work *entry)
4889 {
4890 struct perf_event *event = container_of(entry,
4891 struct perf_event, pending);
4892 int rctx;
4893
4894 rctx = perf_swevent_get_recursion_context();
4895 /*
4896 * If we 'fail' here, that's OK, it means recursion is already disabled
4897 * and we won't recurse 'further'.
4898 */
4899
4900 if (event->pending_disable) {
4901 event->pending_disable = 0;
4902 __perf_event_disable(event);
4903 }
4904
4905 if (event->pending_wakeup) {
4906 event->pending_wakeup = 0;
4907 perf_event_wakeup(event);
4908 }
4909
4910 if (rctx >= 0)
4911 perf_swevent_put_recursion_context(rctx);
4912 }
4913
4914 /*
4915 * We assume there is only KVM supporting the callbacks.
4916 * Later on, we might change it to a list if there is
4917 * another virtualization implementation supporting the callbacks.
4918 */
4919 struct perf_guest_info_callbacks *perf_guest_cbs;
4920
4921 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4922 {
4923 perf_guest_cbs = cbs;
4924 return 0;
4925 }
4926 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
4927
4928 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4929 {
4930 perf_guest_cbs = NULL;
4931 return 0;
4932 }
4933 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
4934
4935 static void
4936 perf_output_sample_regs(struct perf_output_handle *handle,
4937 struct pt_regs *regs, u64 mask)
4938 {
4939 int bit;
4940
4941 for_each_set_bit(bit, (const unsigned long *) &mask,
4942 sizeof(mask) * BITS_PER_BYTE) {
4943 u64 val;
4944
4945 val = perf_reg_value(regs, bit);
4946 perf_output_put(handle, val);
4947 }
4948 }
4949
4950 static void perf_sample_regs_user(struct perf_regs *regs_user,
4951 struct pt_regs *regs,
4952 struct pt_regs *regs_user_copy)
4953 {
4954 if (user_mode(regs)) {
4955 regs_user->abi = perf_reg_abi(current);
4956 regs_user->regs = regs;
4957 } else if (current->mm) {
4958 perf_get_regs_user(regs_user, regs, regs_user_copy);
4959 } else {
4960 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
4961 regs_user->regs = NULL;
4962 }
4963 }
4964
4965 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
4966 struct pt_regs *regs)
4967 {
4968 regs_intr->regs = regs;
4969 regs_intr->abi = perf_reg_abi(current);
4970 }
4971
4972
4973 /*
4974 * Get remaining task size from user stack pointer.
4975 *
4976 * It'd be better to take stack vma map and limit this more
4977 * precisly, but there's no way to get it safely under interrupt,
4978 * so using TASK_SIZE as limit.
4979 */
4980 static u64 perf_ustack_task_size(struct pt_regs *regs)
4981 {
4982 unsigned long addr = perf_user_stack_pointer(regs);
4983
4984 if (!addr || addr >= TASK_SIZE)
4985 return 0;
4986
4987 return TASK_SIZE - addr;
4988 }
4989
4990 static u16
4991 perf_sample_ustack_size(u16 stack_size, u16 header_size,
4992 struct pt_regs *regs)
4993 {
4994 u64 task_size;
4995
4996 /* No regs, no stack pointer, no dump. */
4997 if (!regs)
4998 return 0;
4999
5000 /*
5001 * Check if we fit in with the requested stack size into the:
5002 * - TASK_SIZE
5003 * If we don't, we limit the size to the TASK_SIZE.
5004 *
5005 * - remaining sample size
5006 * If we don't, we customize the stack size to
5007 * fit in to the remaining sample size.
5008 */
5009
5010 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5011 stack_size = min(stack_size, (u16) task_size);
5012
5013 /* Current header size plus static size and dynamic size. */
5014 header_size += 2 * sizeof(u64);
5015
5016 /* Do we fit in with the current stack dump size? */
5017 if ((u16) (header_size + stack_size) < header_size) {
5018 /*
5019 * If we overflow the maximum size for the sample,
5020 * we customize the stack dump size to fit in.
5021 */
5022 stack_size = USHRT_MAX - header_size - sizeof(u64);
5023 stack_size = round_up(stack_size, sizeof(u64));
5024 }
5025
5026 return stack_size;
5027 }
5028
5029 static void
5030 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5031 struct pt_regs *regs)
5032 {
5033 /* Case of a kernel thread, nothing to dump */
5034 if (!regs) {
5035 u64 size = 0;
5036 perf_output_put(handle, size);
5037 } else {
5038 unsigned long sp;
5039 unsigned int rem;
5040 u64 dyn_size;
5041
5042 /*
5043 * We dump:
5044 * static size
5045 * - the size requested by user or the best one we can fit
5046 * in to the sample max size
5047 * data
5048 * - user stack dump data
5049 * dynamic size
5050 * - the actual dumped size
5051 */
5052
5053 /* Static size. */
5054 perf_output_put(handle, dump_size);
5055
5056 /* Data. */
5057 sp = perf_user_stack_pointer(regs);
5058 rem = __output_copy_user(handle, (void *) sp, dump_size);
5059 dyn_size = dump_size - rem;
5060
5061 perf_output_skip(handle, rem);
5062
5063 /* Dynamic size. */
5064 perf_output_put(handle, dyn_size);
5065 }
5066 }
5067
5068 static void __perf_event_header__init_id(struct perf_event_header *header,
5069 struct perf_sample_data *data,
5070 struct perf_event *event)
5071 {
5072 u64 sample_type = event->attr.sample_type;
5073
5074 data->type = sample_type;
5075 header->size += event->id_header_size;
5076
5077 if (sample_type & PERF_SAMPLE_TID) {
5078 /* namespace issues */
5079 data->tid_entry.pid = perf_event_pid(event, current);
5080 data->tid_entry.tid = perf_event_tid(event, current);
5081 }
5082
5083 if (sample_type & PERF_SAMPLE_TIME)
5084 data->time = perf_event_clock(event);
5085
5086 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5087 data->id = primary_event_id(event);
5088
5089 if (sample_type & PERF_SAMPLE_STREAM_ID)
5090 data->stream_id = event->id;
5091
5092 if (sample_type & PERF_SAMPLE_CPU) {
5093 data->cpu_entry.cpu = raw_smp_processor_id();
5094 data->cpu_entry.reserved = 0;
5095 }
5096 }
5097
5098 void perf_event_header__init_id(struct perf_event_header *header,
5099 struct perf_sample_data *data,
5100 struct perf_event *event)
5101 {
5102 if (event->attr.sample_id_all)
5103 __perf_event_header__init_id(header, data, event);
5104 }
5105
5106 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5107 struct perf_sample_data *data)
5108 {
5109 u64 sample_type = data->type;
5110
5111 if (sample_type & PERF_SAMPLE_TID)
5112 perf_output_put(handle, data->tid_entry);
5113
5114 if (sample_type & PERF_SAMPLE_TIME)
5115 perf_output_put(handle, data->time);
5116
5117 if (sample_type & PERF_SAMPLE_ID)
5118 perf_output_put(handle, data->id);
5119
5120 if (sample_type & PERF_SAMPLE_STREAM_ID)
5121 perf_output_put(handle, data->stream_id);
5122
5123 if (sample_type & PERF_SAMPLE_CPU)
5124 perf_output_put(handle, data->cpu_entry);
5125
5126 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5127 perf_output_put(handle, data->id);
5128 }
5129
5130 void perf_event__output_id_sample(struct perf_event *event,
5131 struct perf_output_handle *handle,
5132 struct perf_sample_data *sample)
5133 {
5134 if (event->attr.sample_id_all)
5135 __perf_event__output_id_sample(handle, sample);
5136 }
5137
5138 static void perf_output_read_one(struct perf_output_handle *handle,
5139 struct perf_event *event,
5140 u64 enabled, u64 running)
5141 {
5142 u64 read_format = event->attr.read_format;
5143 u64 values[4];
5144 int n = 0;
5145
5146 values[n++] = perf_event_count(event);
5147 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5148 values[n++] = enabled +
5149 atomic64_read(&event->child_total_time_enabled);
5150 }
5151 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5152 values[n++] = running +
5153 atomic64_read(&event->child_total_time_running);
5154 }
5155 if (read_format & PERF_FORMAT_ID)
5156 values[n++] = primary_event_id(event);
5157
5158 __output_copy(handle, values, n * sizeof(u64));
5159 }
5160
5161 /*
5162 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
5163 */
5164 static void perf_output_read_group(struct perf_output_handle *handle,
5165 struct perf_event *event,
5166 u64 enabled, u64 running)
5167 {
5168 struct perf_event *leader = event->group_leader, *sub;
5169 u64 read_format = event->attr.read_format;
5170 u64 values[5];
5171 int n = 0;
5172
5173 values[n++] = 1 + leader->nr_siblings;
5174
5175 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5176 values[n++] = enabled;
5177
5178 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5179 values[n++] = running;
5180
5181 if (leader != event)
5182 leader->pmu->read(leader);
5183
5184 values[n++] = perf_event_count(leader);
5185 if (read_format & PERF_FORMAT_ID)
5186 values[n++] = primary_event_id(leader);
5187
5188 __output_copy(handle, values, n * sizeof(u64));
5189
5190 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5191 n = 0;
5192
5193 if ((sub != event) &&
5194 (sub->state == PERF_EVENT_STATE_ACTIVE))
5195 sub->pmu->read(sub);
5196
5197 values[n++] = perf_event_count(sub);
5198 if (read_format & PERF_FORMAT_ID)
5199 values[n++] = primary_event_id(sub);
5200
5201 __output_copy(handle, values, n * sizeof(u64));
5202 }
5203 }
5204
5205 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5206 PERF_FORMAT_TOTAL_TIME_RUNNING)
5207
5208 static void perf_output_read(struct perf_output_handle *handle,
5209 struct perf_event *event)
5210 {
5211 u64 enabled = 0, running = 0, now;
5212 u64 read_format = event->attr.read_format;
5213
5214 /*
5215 * compute total_time_enabled, total_time_running
5216 * based on snapshot values taken when the event
5217 * was last scheduled in.
5218 *
5219 * we cannot simply called update_context_time()
5220 * because of locking issue as we are called in
5221 * NMI context
5222 */
5223 if (read_format & PERF_FORMAT_TOTAL_TIMES)
5224 calc_timer_values(event, &now, &enabled, &running);
5225
5226 if (event->attr.read_format & PERF_FORMAT_GROUP)
5227 perf_output_read_group(handle, event, enabled, running);
5228 else
5229 perf_output_read_one(handle, event, enabled, running);
5230 }
5231
5232 void perf_output_sample(struct perf_output_handle *handle,
5233 struct perf_event_header *header,
5234 struct perf_sample_data *data,
5235 struct perf_event *event)
5236 {
5237 u64 sample_type = data->type;
5238
5239 perf_output_put(handle, *header);
5240
5241 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5242 perf_output_put(handle, data->id);
5243
5244 if (sample_type & PERF_SAMPLE_IP)
5245 perf_output_put(handle, data->ip);
5246
5247 if (sample_type & PERF_SAMPLE_TID)
5248 perf_output_put(handle, data->tid_entry);
5249
5250 if (sample_type & PERF_SAMPLE_TIME)
5251 perf_output_put(handle, data->time);
5252
5253 if (sample_type & PERF_SAMPLE_ADDR)
5254 perf_output_put(handle, data->addr);
5255
5256 if (sample_type & PERF_SAMPLE_ID)
5257 perf_output_put(handle, data->id);
5258
5259 if (sample_type & PERF_SAMPLE_STREAM_ID)
5260 perf_output_put(handle, data->stream_id);
5261
5262 if (sample_type & PERF_SAMPLE_CPU)
5263 perf_output_put(handle, data->cpu_entry);
5264
5265 if (sample_type & PERF_SAMPLE_PERIOD)
5266 perf_output_put(handle, data->period);
5267
5268 if (sample_type & PERF_SAMPLE_READ)
5269 perf_output_read(handle, event);
5270
5271 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5272 if (data->callchain) {
5273 int size = 1;
5274
5275 if (data->callchain)
5276 size += data->callchain->nr;
5277
5278 size *= sizeof(u64);
5279
5280 __output_copy(handle, data->callchain, size);
5281 } else {
5282 u64 nr = 0;
5283 perf_output_put(handle, nr);
5284 }
5285 }
5286
5287 if (sample_type & PERF_SAMPLE_RAW) {
5288 if (data->raw) {
5289 perf_output_put(handle, data->raw->size);
5290 __output_copy(handle, data->raw->data,
5291 data->raw->size);
5292 } else {
5293 struct {
5294 u32 size;
5295 u32 data;
5296 } raw = {
5297 .size = sizeof(u32),
5298 .data = 0,
5299 };
5300 perf_output_put(handle, raw);
5301 }
5302 }
5303
5304 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5305 if (data->br_stack) {
5306 size_t size;
5307
5308 size = data->br_stack->nr
5309 * sizeof(struct perf_branch_entry);
5310
5311 perf_output_put(handle, data->br_stack->nr);
5312 perf_output_copy(handle, data->br_stack->entries, size);
5313 } else {
5314 /*
5315 * we always store at least the value of nr
5316 */
5317 u64 nr = 0;
5318 perf_output_put(handle, nr);
5319 }
5320 }
5321
5322 if (sample_type & PERF_SAMPLE_REGS_USER) {
5323 u64 abi = data->regs_user.abi;
5324
5325 /*
5326 * If there are no regs to dump, notice it through
5327 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5328 */
5329 perf_output_put(handle, abi);
5330
5331 if (abi) {
5332 u64 mask = event->attr.sample_regs_user;
5333 perf_output_sample_regs(handle,
5334 data->regs_user.regs,
5335 mask);
5336 }
5337 }
5338
5339 if (sample_type & PERF_SAMPLE_STACK_USER) {
5340 perf_output_sample_ustack(handle,
5341 data->stack_user_size,
5342 data->regs_user.regs);
5343 }
5344
5345 if (sample_type & PERF_SAMPLE_WEIGHT)
5346 perf_output_put(handle, data->weight);
5347
5348 if (sample_type & PERF_SAMPLE_DATA_SRC)
5349 perf_output_put(handle, data->data_src.val);
5350
5351 if (sample_type & PERF_SAMPLE_TRANSACTION)
5352 perf_output_put(handle, data->txn);
5353
5354 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5355 u64 abi = data->regs_intr.abi;
5356 /*
5357 * If there are no regs to dump, notice it through
5358 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5359 */
5360 perf_output_put(handle, abi);
5361
5362 if (abi) {
5363 u64 mask = event->attr.sample_regs_intr;
5364
5365 perf_output_sample_regs(handle,
5366 data->regs_intr.regs,
5367 mask);
5368 }
5369 }
5370
5371 if (!event->attr.watermark) {
5372 int wakeup_events = event->attr.wakeup_events;
5373
5374 if (wakeup_events) {
5375 struct ring_buffer *rb = handle->rb;
5376 int events = local_inc_return(&rb->events);
5377
5378 if (events >= wakeup_events) {
5379 local_sub(wakeup_events, &rb->events);
5380 local_inc(&rb->wakeup);
5381 }
5382 }
5383 }
5384 }
5385
5386 void perf_prepare_sample(struct perf_event_header *header,
5387 struct perf_sample_data *data,
5388 struct perf_event *event,
5389 struct pt_regs *regs)
5390 {
5391 u64 sample_type = event->attr.sample_type;
5392
5393 header->type = PERF_RECORD_SAMPLE;
5394 header->size = sizeof(*header) + event->header_size;
5395
5396 header->misc = 0;
5397 header->misc |= perf_misc_flags(regs);
5398
5399 __perf_event_header__init_id(header, data, event);
5400
5401 if (sample_type & PERF_SAMPLE_IP)
5402 data->ip = perf_instruction_pointer(regs);
5403
5404 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5405 int size = 1;
5406
5407 data->callchain = perf_callchain(event, regs);
5408
5409 if (data->callchain)
5410 size += data->callchain->nr;
5411
5412 header->size += size * sizeof(u64);
5413 }
5414
5415 if (sample_type & PERF_SAMPLE_RAW) {
5416 int size = sizeof(u32);
5417
5418 if (data->raw)
5419 size += data->raw->size;
5420 else
5421 size += sizeof(u32);
5422
5423 WARN_ON_ONCE(size & (sizeof(u64)-1));
5424 header->size += size;
5425 }
5426
5427 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5428 int size = sizeof(u64); /* nr */
5429 if (data->br_stack) {
5430 size += data->br_stack->nr
5431 * sizeof(struct perf_branch_entry);
5432 }
5433 header->size += size;
5434 }
5435
5436 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
5437 perf_sample_regs_user(&data->regs_user, regs,
5438 &data->regs_user_copy);
5439
5440 if (sample_type & PERF_SAMPLE_REGS_USER) {
5441 /* regs dump ABI info */
5442 int size = sizeof(u64);
5443
5444 if (data->regs_user.regs) {
5445 u64 mask = event->attr.sample_regs_user;
5446 size += hweight64(mask) * sizeof(u64);
5447 }
5448
5449 header->size += size;
5450 }
5451
5452 if (sample_type & PERF_SAMPLE_STACK_USER) {
5453 /*
5454 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
5455 * processed as the last one or have additional check added
5456 * in case new sample type is added, because we could eat
5457 * up the rest of the sample size.
5458 */
5459 u16 stack_size = event->attr.sample_stack_user;
5460 u16 size = sizeof(u64);
5461
5462 stack_size = perf_sample_ustack_size(stack_size, header->size,
5463 data->regs_user.regs);
5464
5465 /*
5466 * If there is something to dump, add space for the dump
5467 * itself and for the field that tells the dynamic size,
5468 * which is how many have been actually dumped.
5469 */
5470 if (stack_size)
5471 size += sizeof(u64) + stack_size;
5472
5473 data->stack_user_size = stack_size;
5474 header->size += size;
5475 }
5476
5477 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5478 /* regs dump ABI info */
5479 int size = sizeof(u64);
5480
5481 perf_sample_regs_intr(&data->regs_intr, regs);
5482
5483 if (data->regs_intr.regs) {
5484 u64 mask = event->attr.sample_regs_intr;
5485
5486 size += hweight64(mask) * sizeof(u64);
5487 }
5488
5489 header->size += size;
5490 }
5491 }
5492
5493 void perf_event_output(struct perf_event *event,
5494 struct perf_sample_data *data,
5495 struct pt_regs *regs)
5496 {
5497 struct perf_output_handle handle;
5498 struct perf_event_header header;
5499
5500 /* protect the callchain buffers */
5501 rcu_read_lock();
5502
5503 perf_prepare_sample(&header, data, event, regs);
5504
5505 if (perf_output_begin(&handle, event, header.size))
5506 goto exit;
5507
5508 perf_output_sample(&handle, &header, data, event);
5509
5510 perf_output_end(&handle);
5511
5512 exit:
5513 rcu_read_unlock();
5514 }
5515
5516 /*
5517 * read event_id
5518 */
5519
5520 struct perf_read_event {
5521 struct perf_event_header header;
5522
5523 u32 pid;
5524 u32 tid;
5525 };
5526
5527 static void
5528 perf_event_read_event(struct perf_event *event,
5529 struct task_struct *task)
5530 {
5531 struct perf_output_handle handle;
5532 struct perf_sample_data sample;
5533 struct perf_read_event read_event = {
5534 .header = {
5535 .type = PERF_RECORD_READ,
5536 .misc = 0,
5537 .size = sizeof(read_event) + event->read_size,
5538 },
5539 .pid = perf_event_pid(event, task),
5540 .tid = perf_event_tid(event, task),
5541 };
5542 int ret;
5543
5544 perf_event_header__init_id(&read_event.header, &sample, event);
5545 ret = perf_output_begin(&handle, event, read_event.header.size);
5546 if (ret)
5547 return;
5548
5549 perf_output_put(&handle, read_event);
5550 perf_output_read(&handle, event);
5551 perf_event__output_id_sample(event, &handle, &sample);
5552
5553 perf_output_end(&handle);
5554 }
5555
5556 typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
5557
5558 static void
5559 perf_event_aux_ctx(struct perf_event_context *ctx,
5560 perf_event_aux_output_cb output,
5561 void *data)
5562 {
5563 struct perf_event *event;
5564
5565 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5566 if (event->state < PERF_EVENT_STATE_INACTIVE)
5567 continue;
5568 if (!event_filter_match(event))
5569 continue;
5570 output(event, data);
5571 }
5572 }
5573
5574 static void
5575 perf_event_aux(perf_event_aux_output_cb output, void *data,
5576 struct perf_event_context *task_ctx)
5577 {
5578 struct perf_cpu_context *cpuctx;
5579 struct perf_event_context *ctx;
5580 struct pmu *pmu;
5581 int ctxn;
5582
5583 rcu_read_lock();
5584 list_for_each_entry_rcu(pmu, &pmus, entry) {
5585 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
5586 if (cpuctx->unique_pmu != pmu)
5587 goto next;
5588 perf_event_aux_ctx(&cpuctx->ctx, output, data);
5589 if (task_ctx)
5590 goto next;
5591 ctxn = pmu->task_ctx_nr;
5592 if (ctxn < 0)
5593 goto next;
5594 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
5595 if (ctx)
5596 perf_event_aux_ctx(ctx, output, data);
5597 next:
5598 put_cpu_ptr(pmu->pmu_cpu_context);
5599 }
5600
5601 if (task_ctx) {
5602 preempt_disable();
5603 perf_event_aux_ctx(task_ctx, output, data);
5604 preempt_enable();
5605 }
5606 rcu_read_unlock();
5607 }
5608
5609 /*
5610 * task tracking -- fork/exit
5611 *
5612 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
5613 */
5614
5615 struct perf_task_event {
5616 struct task_struct *task;
5617 struct perf_event_context *task_ctx;
5618
5619 struct {
5620 struct perf_event_header header;
5621
5622 u32 pid;
5623 u32 ppid;
5624 u32 tid;
5625 u32 ptid;
5626 u64 time;
5627 } event_id;
5628 };
5629
5630 static int perf_event_task_match(struct perf_event *event)
5631 {
5632 return event->attr.comm || event->attr.mmap ||
5633 event->attr.mmap2 || event->attr.mmap_data ||
5634 event->attr.task;
5635 }
5636
5637 static void perf_event_task_output(struct perf_event *event,
5638 void *data)
5639 {
5640 struct perf_task_event *task_event = data;
5641 struct perf_output_handle handle;
5642 struct perf_sample_data sample;
5643 struct task_struct *task = task_event->task;
5644 int ret, size = task_event->event_id.header.size;
5645
5646 if (!perf_event_task_match(event))
5647 return;
5648
5649 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
5650
5651 ret = perf_output_begin(&handle, event,
5652 task_event->event_id.header.size);
5653 if (ret)
5654 goto out;
5655
5656 task_event->event_id.pid = perf_event_pid(event, task);
5657 task_event->event_id.ppid = perf_event_pid(event, current);
5658
5659 task_event->event_id.tid = perf_event_tid(event, task);
5660 task_event->event_id.ptid = perf_event_tid(event, current);
5661
5662 task_event->event_id.time = perf_event_clock(event);
5663
5664 perf_output_put(&handle, task_event->event_id);
5665
5666 perf_event__output_id_sample(event, &handle, &sample);
5667
5668 perf_output_end(&handle);
5669 out:
5670 task_event->event_id.header.size = size;
5671 }
5672
5673 static void perf_event_task(struct task_struct *task,
5674 struct perf_event_context *task_ctx,
5675 int new)
5676 {
5677 struct perf_task_event task_event;
5678
5679 if (!atomic_read(&nr_comm_events) &&
5680 !atomic_read(&nr_mmap_events) &&
5681 !atomic_read(&nr_task_events))
5682 return;
5683
5684 task_event = (struct perf_task_event){
5685 .task = task,
5686 .task_ctx = task_ctx,
5687 .event_id = {
5688 .header = {
5689 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
5690 .misc = 0,
5691 .size = sizeof(task_event.event_id),
5692 },
5693 /* .pid */
5694 /* .ppid */
5695 /* .tid */
5696 /* .ptid */
5697 /* .time */
5698 },
5699 };
5700
5701 perf_event_aux(perf_event_task_output,
5702 &task_event,
5703 task_ctx);
5704 }
5705
5706 void perf_event_fork(struct task_struct *task)
5707 {
5708 perf_event_task(task, NULL, 1);
5709 }
5710
5711 /*
5712 * comm tracking
5713 */
5714
5715 struct perf_comm_event {
5716 struct task_struct *task;
5717 char *comm;
5718 int comm_size;
5719
5720 struct {
5721 struct perf_event_header header;
5722
5723 u32 pid;
5724 u32 tid;
5725 } event_id;
5726 };
5727
5728 static int perf_event_comm_match(struct perf_event *event)
5729 {
5730 return event->attr.comm;
5731 }
5732
5733 static void perf_event_comm_output(struct perf_event *event,
5734 void *data)
5735 {
5736 struct perf_comm_event *comm_event = data;
5737 struct perf_output_handle handle;
5738 struct perf_sample_data sample;
5739 int size = comm_event->event_id.header.size;
5740 int ret;
5741
5742 if (!perf_event_comm_match(event))
5743 return;
5744
5745 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
5746 ret = perf_output_begin(&handle, event,
5747 comm_event->event_id.header.size);
5748
5749 if (ret)
5750 goto out;
5751
5752 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
5753 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
5754
5755 perf_output_put(&handle, comm_event->event_id);
5756 __output_copy(&handle, comm_event->comm,
5757 comm_event->comm_size);
5758
5759 perf_event__output_id_sample(event, &handle, &sample);
5760
5761 perf_output_end(&handle);
5762 out:
5763 comm_event->event_id.header.size = size;
5764 }
5765
5766 static void perf_event_comm_event(struct perf_comm_event *comm_event)
5767 {
5768 char comm[TASK_COMM_LEN];
5769 unsigned int size;
5770
5771 memset(comm, 0, sizeof(comm));
5772 strlcpy(comm, comm_event->task->comm, sizeof(comm));
5773 size = ALIGN(strlen(comm)+1, sizeof(u64));
5774
5775 comm_event->comm = comm;
5776 comm_event->comm_size = size;
5777
5778 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
5779
5780 perf_event_aux(perf_event_comm_output,
5781 comm_event,
5782 NULL);
5783 }
5784
5785 void perf_event_comm(struct task_struct *task, bool exec)
5786 {
5787 struct perf_comm_event comm_event;
5788
5789 if (!atomic_read(&nr_comm_events))
5790 return;
5791
5792 comm_event = (struct perf_comm_event){
5793 .task = task,
5794 /* .comm */
5795 /* .comm_size */
5796 .event_id = {
5797 .header = {
5798 .type = PERF_RECORD_COMM,
5799 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
5800 /* .size */
5801 },
5802 /* .pid */
5803 /* .tid */
5804 },
5805 };
5806
5807 perf_event_comm_event(&comm_event);
5808 }
5809
5810 /*
5811 * mmap tracking
5812 */
5813
5814 struct perf_mmap_event {
5815 struct vm_area_struct *vma;
5816
5817 const char *file_name;
5818 int file_size;
5819 int maj, min;
5820 u64 ino;
5821 u64 ino_generation;
5822 u32 prot, flags;
5823
5824 struct {
5825 struct perf_event_header header;
5826
5827 u32 pid;
5828 u32 tid;
5829 u64 start;
5830 u64 len;
5831 u64 pgoff;
5832 } event_id;
5833 };
5834
5835 static int perf_event_mmap_match(struct perf_event *event,
5836 void *data)
5837 {
5838 struct perf_mmap_event *mmap_event = data;
5839 struct vm_area_struct *vma = mmap_event->vma;
5840 int executable = vma->vm_flags & VM_EXEC;
5841
5842 return (!executable && event->attr.mmap_data) ||
5843 (executable && (event->attr.mmap || event->attr.mmap2));
5844 }
5845
5846 static void perf_event_mmap_output(struct perf_event *event,
5847 void *data)
5848 {
5849 struct perf_mmap_event *mmap_event = data;
5850 struct perf_output_handle handle;
5851 struct perf_sample_data sample;
5852 int size = mmap_event->event_id.header.size;
5853 int ret;
5854
5855 if (!perf_event_mmap_match(event, data))
5856 return;
5857
5858 if (event->attr.mmap2) {
5859 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
5860 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
5861 mmap_event->event_id.header.size += sizeof(mmap_event->min);
5862 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
5863 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
5864 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
5865 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
5866 }
5867
5868 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
5869 ret = perf_output_begin(&handle, event,
5870 mmap_event->event_id.header.size);
5871 if (ret)
5872 goto out;
5873
5874 mmap_event->event_id.pid = perf_event_pid(event, current);
5875 mmap_event->event_id.tid = perf_event_tid(event, current);
5876
5877 perf_output_put(&handle, mmap_event->event_id);
5878
5879 if (event->attr.mmap2) {
5880 perf_output_put(&handle, mmap_event->maj);
5881 perf_output_put(&handle, mmap_event->min);
5882 perf_output_put(&handle, mmap_event->ino);
5883 perf_output_put(&handle, mmap_event->ino_generation);
5884 perf_output_put(&handle, mmap_event->prot);
5885 perf_output_put(&handle, mmap_event->flags);
5886 }
5887
5888 __output_copy(&handle, mmap_event->file_name,
5889 mmap_event->file_size);
5890
5891 perf_event__output_id_sample(event, &handle, &sample);
5892
5893 perf_output_end(&handle);
5894 out:
5895 mmap_event->event_id.header.size = size;
5896 }
5897
5898 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
5899 {
5900 struct vm_area_struct *vma = mmap_event->vma;
5901 struct file *file = vma->vm_file;
5902 int maj = 0, min = 0;
5903 u64 ino = 0, gen = 0;
5904 u32 prot = 0, flags = 0;
5905 unsigned int size;
5906 char tmp[16];
5907 char *buf = NULL;
5908 char *name;
5909
5910 if (file) {
5911 struct inode *inode;
5912 dev_t dev;
5913
5914 buf = kmalloc(PATH_MAX, GFP_KERNEL);
5915 if (!buf) {
5916 name = "//enomem";
5917 goto cpy_name;
5918 }
5919 /*
5920 * d_path() works from the end of the rb backwards, so we
5921 * need to add enough zero bytes after the string to handle
5922 * the 64bit alignment we do later.
5923 */
5924 name = file_path(file, buf, PATH_MAX - sizeof(u64));
5925 if (IS_ERR(name)) {
5926 name = "//toolong";
5927 goto cpy_name;
5928 }
5929 inode = file_inode(vma->vm_file);
5930 dev = inode->i_sb->s_dev;
5931 ino = inode->i_ino;
5932 gen = inode->i_generation;
5933 maj = MAJOR(dev);
5934 min = MINOR(dev);
5935
5936 if (vma->vm_flags & VM_READ)
5937 prot |= PROT_READ;
5938 if (vma->vm_flags & VM_WRITE)
5939 prot |= PROT_WRITE;
5940 if (vma->vm_flags & VM_EXEC)
5941 prot |= PROT_EXEC;
5942
5943 if (vma->vm_flags & VM_MAYSHARE)
5944 flags = MAP_SHARED;
5945 else
5946 flags = MAP_PRIVATE;
5947
5948 if (vma->vm_flags & VM_DENYWRITE)
5949 flags |= MAP_DENYWRITE;
5950 if (vma->vm_flags & VM_MAYEXEC)
5951 flags |= MAP_EXECUTABLE;
5952 if (vma->vm_flags & VM_LOCKED)
5953 flags |= MAP_LOCKED;
5954 if (vma->vm_flags & VM_HUGETLB)
5955 flags |= MAP_HUGETLB;
5956
5957 goto got_name;
5958 } else {
5959 if (vma->vm_ops && vma->vm_ops->name) {
5960 name = (char *) vma->vm_ops->name(vma);
5961 if (name)
5962 goto cpy_name;
5963 }
5964
5965 name = (char *)arch_vma_name(vma);
5966 if (name)
5967 goto cpy_name;
5968
5969 if (vma->vm_start <= vma->vm_mm->start_brk &&
5970 vma->vm_end >= vma->vm_mm->brk) {
5971 name = "[heap]";
5972 goto cpy_name;
5973 }
5974 if (vma->vm_start <= vma->vm_mm->start_stack &&
5975 vma->vm_end >= vma->vm_mm->start_stack) {
5976 name = "[stack]";
5977 goto cpy_name;
5978 }
5979
5980 name = "//anon";
5981 goto cpy_name;
5982 }
5983
5984 cpy_name:
5985 strlcpy(tmp, name, sizeof(tmp));
5986 name = tmp;
5987 got_name:
5988 /*
5989 * Since our buffer works in 8 byte units we need to align our string
5990 * size to a multiple of 8. However, we must guarantee the tail end is
5991 * zero'd out to avoid leaking random bits to userspace.
5992 */
5993 size = strlen(name)+1;
5994 while (!IS_ALIGNED(size, sizeof(u64)))
5995 name[size++] = '\0';
5996
5997 mmap_event->file_name = name;
5998 mmap_event->file_size = size;
5999 mmap_event->maj = maj;
6000 mmap_event->min = min;
6001 mmap_event->ino = ino;
6002 mmap_event->ino_generation = gen;
6003 mmap_event->prot = prot;
6004 mmap_event->flags = flags;
6005
6006 if (!(vma->vm_flags & VM_EXEC))
6007 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6008
6009 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
6010
6011 perf_event_aux(perf_event_mmap_output,
6012 mmap_event,
6013 NULL);
6014
6015 kfree(buf);
6016 }
6017
6018 void perf_event_mmap(struct vm_area_struct *vma)
6019 {
6020 struct perf_mmap_event mmap_event;
6021
6022 if (!atomic_read(&nr_mmap_events))
6023 return;
6024
6025 mmap_event = (struct perf_mmap_event){
6026 .vma = vma,
6027 /* .file_name */
6028 /* .file_size */
6029 .event_id = {
6030 .header = {
6031 .type = PERF_RECORD_MMAP,
6032 .misc = PERF_RECORD_MISC_USER,
6033 /* .size */
6034 },
6035 /* .pid */
6036 /* .tid */
6037 .start = vma->vm_start,
6038 .len = vma->vm_end - vma->vm_start,
6039 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
6040 },
6041 /* .maj (attr_mmap2 only) */
6042 /* .min (attr_mmap2 only) */
6043 /* .ino (attr_mmap2 only) */
6044 /* .ino_generation (attr_mmap2 only) */
6045 /* .prot (attr_mmap2 only) */
6046 /* .flags (attr_mmap2 only) */
6047 };
6048
6049 perf_event_mmap_event(&mmap_event);
6050 }
6051
6052 void perf_event_aux_event(struct perf_event *event, unsigned long head,
6053 unsigned long size, u64 flags)
6054 {
6055 struct perf_output_handle handle;
6056 struct perf_sample_data sample;
6057 struct perf_aux_event {
6058 struct perf_event_header header;
6059 u64 offset;
6060 u64 size;
6061 u64 flags;
6062 } rec = {
6063 .header = {
6064 .type = PERF_RECORD_AUX,
6065 .misc = 0,
6066 .size = sizeof(rec),
6067 },
6068 .offset = head,
6069 .size = size,
6070 .flags = flags,
6071 };
6072 int ret;
6073
6074 perf_event_header__init_id(&rec.header, &sample, event);
6075 ret = perf_output_begin(&handle, event, rec.header.size);
6076
6077 if (ret)
6078 return;
6079
6080 perf_output_put(&handle, rec);
6081 perf_event__output_id_sample(event, &handle, &sample);
6082
6083 perf_output_end(&handle);
6084 }
6085
6086 /*
6087 * Lost/dropped samples logging
6088 */
6089 void perf_log_lost_samples(struct perf_event *event, u64 lost)
6090 {
6091 struct perf_output_handle handle;
6092 struct perf_sample_data sample;
6093 int ret;
6094
6095 struct {
6096 struct perf_event_header header;
6097 u64 lost;
6098 } lost_samples_event = {
6099 .header = {
6100 .type = PERF_RECORD_LOST_SAMPLES,
6101 .misc = 0,
6102 .size = sizeof(lost_samples_event),
6103 },
6104 .lost = lost,
6105 };
6106
6107 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
6108
6109 ret = perf_output_begin(&handle, event,
6110 lost_samples_event.header.size);
6111 if (ret)
6112 return;
6113
6114 perf_output_put(&handle, lost_samples_event);
6115 perf_event__output_id_sample(event, &handle, &sample);
6116 perf_output_end(&handle);
6117 }
6118
6119 /*
6120 * context_switch tracking
6121 */
6122
6123 struct perf_switch_event {
6124 struct task_struct *task;
6125 struct task_struct *next_prev;
6126
6127 struct {
6128 struct perf_event_header header;
6129 u32 next_prev_pid;
6130 u32 next_prev_tid;
6131 } event_id;
6132 };
6133
6134 static int perf_event_switch_match(struct perf_event *event)
6135 {
6136 return event->attr.context_switch;
6137 }
6138
6139 static void perf_event_switch_output(struct perf_event *event, void *data)
6140 {
6141 struct perf_switch_event *se = data;
6142 struct perf_output_handle handle;
6143 struct perf_sample_data sample;
6144 int ret;
6145
6146 if (!perf_event_switch_match(event))
6147 return;
6148
6149 /* Only CPU-wide events are allowed to see next/prev pid/tid */
6150 if (event->ctx->task) {
6151 se->event_id.header.type = PERF_RECORD_SWITCH;
6152 se->event_id.header.size = sizeof(se->event_id.header);
6153 } else {
6154 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
6155 se->event_id.header.size = sizeof(se->event_id);
6156 se->event_id.next_prev_pid =
6157 perf_event_pid(event, se->next_prev);
6158 se->event_id.next_prev_tid =
6159 perf_event_tid(event, se->next_prev);
6160 }
6161
6162 perf_event_header__init_id(&se->event_id.header, &sample, event);
6163
6164 ret = perf_output_begin(&handle, event, se->event_id.header.size);
6165 if (ret)
6166 return;
6167
6168 if (event->ctx->task)
6169 perf_output_put(&handle, se->event_id.header);
6170 else
6171 perf_output_put(&handle, se->event_id);
6172
6173 perf_event__output_id_sample(event, &handle, &sample);
6174
6175 perf_output_end(&handle);
6176 }
6177
6178 static void perf_event_switch(struct task_struct *task,
6179 struct task_struct *next_prev, bool sched_in)
6180 {
6181 struct perf_switch_event switch_event;
6182
6183 /* N.B. caller checks nr_switch_events != 0 */
6184
6185 switch_event = (struct perf_switch_event){
6186 .task = task,
6187 .next_prev = next_prev,
6188 .event_id = {
6189 .header = {
6190 /* .type */
6191 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
6192 /* .size */
6193 },
6194 /* .next_prev_pid */
6195 /* .next_prev_tid */
6196 },
6197 };
6198
6199 perf_event_aux(perf_event_switch_output,
6200 &switch_event,
6201 NULL);
6202 }
6203
6204 /*
6205 * IRQ throttle logging
6206 */
6207
6208 static void perf_log_throttle(struct perf_event *event, int enable)
6209 {
6210 struct perf_output_handle handle;
6211 struct perf_sample_data sample;
6212 int ret;
6213
6214 struct {
6215 struct perf_event_header header;
6216 u64 time;
6217 u64 id;
6218 u64 stream_id;
6219 } throttle_event = {
6220 .header = {
6221 .type = PERF_RECORD_THROTTLE,
6222 .misc = 0,
6223 .size = sizeof(throttle_event),
6224 },
6225 .time = perf_event_clock(event),
6226 .id = primary_event_id(event),
6227 .stream_id = event->id,
6228 };
6229
6230 if (enable)
6231 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
6232
6233 perf_event_header__init_id(&throttle_event.header, &sample, event);
6234
6235 ret = perf_output_begin(&handle, event,
6236 throttle_event.header.size);
6237 if (ret)
6238 return;
6239
6240 perf_output_put(&handle, throttle_event);
6241 perf_event__output_id_sample(event, &handle, &sample);
6242 perf_output_end(&handle);
6243 }
6244
6245 static void perf_log_itrace_start(struct perf_event *event)
6246 {
6247 struct perf_output_handle handle;
6248 struct perf_sample_data sample;
6249 struct perf_aux_event {
6250 struct perf_event_header header;
6251 u32 pid;
6252 u32 tid;
6253 } rec;
6254 int ret;
6255
6256 if (event->parent)
6257 event = event->parent;
6258
6259 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
6260 event->hw.itrace_started)
6261 return;
6262
6263 rec.header.type = PERF_RECORD_ITRACE_START;
6264 rec.header.misc = 0;
6265 rec.header.size = sizeof(rec);
6266 rec.pid = perf_event_pid(event, current);
6267 rec.tid = perf_event_tid(event, current);
6268
6269 perf_event_header__init_id(&rec.header, &sample, event);
6270 ret = perf_output_begin(&handle, event, rec.header.size);
6271
6272 if (ret)
6273 return;
6274
6275 perf_output_put(&handle, rec);
6276 perf_event__output_id_sample(event, &handle, &sample);
6277
6278 perf_output_end(&handle);
6279 }
6280
6281 /*
6282 * Generic event overflow handling, sampling.
6283 */
6284
6285 static int __perf_event_overflow(struct perf_event *event,
6286 int throttle, struct perf_sample_data *data,
6287 struct pt_regs *regs)
6288 {
6289 int events = atomic_read(&event->event_limit);
6290 struct hw_perf_event *hwc = &event->hw;
6291 u64 seq;
6292 int ret = 0;
6293
6294 /*
6295 * Non-sampling counters might still use the PMI to fold short
6296 * hardware counters, ignore those.
6297 */
6298 if (unlikely(!is_sampling_event(event)))
6299 return 0;
6300
6301 seq = __this_cpu_read(perf_throttled_seq);
6302 if (seq != hwc->interrupts_seq) {
6303 hwc->interrupts_seq = seq;
6304 hwc->interrupts = 1;
6305 } else {
6306 hwc->interrupts++;
6307 if (unlikely(throttle
6308 && hwc->interrupts >= max_samples_per_tick)) {
6309 __this_cpu_inc(perf_throttled_count);
6310 hwc->interrupts = MAX_INTERRUPTS;
6311 perf_log_throttle(event, 0);
6312 tick_nohz_full_kick();
6313 ret = 1;
6314 }
6315 }
6316
6317 if (event->attr.freq) {
6318 u64 now = perf_clock();
6319 s64 delta = now - hwc->freq_time_stamp;
6320
6321 hwc->freq_time_stamp = now;
6322
6323 if (delta > 0 && delta < 2*TICK_NSEC)
6324 perf_adjust_period(event, delta, hwc->last_period, true);
6325 }
6326
6327 /*
6328 * XXX event_limit might not quite work as expected on inherited
6329 * events
6330 */
6331
6332 event->pending_kill = POLL_IN;
6333 if (events && atomic_dec_and_test(&event->event_limit)) {
6334 ret = 1;
6335 event->pending_kill = POLL_HUP;
6336 event->pending_disable = 1;
6337 irq_work_queue(&event->pending);
6338 }
6339
6340 if (event->overflow_handler)
6341 event->overflow_handler(event, data, regs);
6342 else
6343 perf_event_output(event, data, regs);
6344
6345 if (*perf_event_fasync(event) && event->pending_kill) {
6346 event->pending_wakeup = 1;
6347 irq_work_queue(&event->pending);
6348 }
6349
6350 return ret;
6351 }
6352
6353 int perf_event_overflow(struct perf_event *event,
6354 struct perf_sample_data *data,
6355 struct pt_regs *regs)
6356 {
6357 return __perf_event_overflow(event, 1, data, regs);
6358 }
6359
6360 /*
6361 * Generic software event infrastructure
6362 */
6363
6364 struct swevent_htable {
6365 struct swevent_hlist *swevent_hlist;
6366 struct mutex hlist_mutex;
6367 int hlist_refcount;
6368
6369 /* Recursion avoidance in each contexts */
6370 int recursion[PERF_NR_CONTEXTS];
6371
6372 /* Keeps track of cpu being initialized/exited */
6373 bool online;
6374 };
6375
6376 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
6377
6378 /*
6379 * We directly increment event->count and keep a second value in
6380 * event->hw.period_left to count intervals. This period event
6381 * is kept in the range [-sample_period, 0] so that we can use the
6382 * sign as trigger.
6383 */
6384
6385 u64 perf_swevent_set_period(struct perf_event *event)
6386 {
6387 struct hw_perf_event *hwc = &event->hw;
6388 u64 period = hwc->last_period;
6389 u64 nr, offset;
6390 s64 old, val;
6391
6392 hwc->last_period = hwc->sample_period;
6393
6394 again:
6395 old = val = local64_read(&hwc->period_left);
6396 if (val < 0)
6397 return 0;
6398
6399 nr = div64_u64(period + val, period);
6400 offset = nr * period;
6401 val -= offset;
6402 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
6403 goto again;
6404
6405 return nr;
6406 }
6407
6408 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
6409 struct perf_sample_data *data,
6410 struct pt_regs *regs)
6411 {
6412 struct hw_perf_event *hwc = &event->hw;
6413 int throttle = 0;
6414
6415 if (!overflow)
6416 overflow = perf_swevent_set_period(event);
6417
6418 if (hwc->interrupts == MAX_INTERRUPTS)
6419 return;
6420
6421 for (; overflow; overflow--) {
6422 if (__perf_event_overflow(event, throttle,
6423 data, regs)) {
6424 /*
6425 * We inhibit the overflow from happening when
6426 * hwc->interrupts == MAX_INTERRUPTS.
6427 */
6428 break;
6429 }
6430 throttle = 1;
6431 }
6432 }
6433
6434 static void perf_swevent_event(struct perf_event *event, u64 nr,
6435 struct perf_sample_data *data,
6436 struct pt_regs *regs)
6437 {
6438 struct hw_perf_event *hwc = &event->hw;
6439
6440 local64_add(nr, &event->count);
6441
6442 if (!regs)
6443 return;
6444
6445 if (!is_sampling_event(event))
6446 return;
6447
6448 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
6449 data->period = nr;
6450 return perf_swevent_overflow(event, 1, data, regs);
6451 } else
6452 data->period = event->hw.last_period;
6453
6454 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
6455 return perf_swevent_overflow(event, 1, data, regs);
6456
6457 if (local64_add_negative(nr, &hwc->period_left))
6458 return;
6459
6460 perf_swevent_overflow(event, 0, data, regs);
6461 }
6462
6463 static int perf_exclude_event(struct perf_event *event,
6464 struct pt_regs *regs)
6465 {
6466 if (event->hw.state & PERF_HES_STOPPED)
6467 return 1;
6468
6469 if (regs) {
6470 if (event->attr.exclude_user && user_mode(regs))
6471 return 1;
6472
6473 if (event->attr.exclude_kernel && !user_mode(regs))
6474 return 1;
6475 }
6476
6477 return 0;
6478 }
6479
6480 static int perf_swevent_match(struct perf_event *event,
6481 enum perf_type_id type,
6482 u32 event_id,
6483 struct perf_sample_data *data,
6484 struct pt_regs *regs)
6485 {
6486 if (event->attr.type != type)
6487 return 0;
6488
6489 if (event->attr.config != event_id)
6490 return 0;
6491
6492 if (perf_exclude_event(event, regs))
6493 return 0;
6494
6495 return 1;
6496 }
6497
6498 static inline u64 swevent_hash(u64 type, u32 event_id)
6499 {
6500 u64 val = event_id | (type << 32);
6501
6502 return hash_64(val, SWEVENT_HLIST_BITS);
6503 }
6504
6505 static inline struct hlist_head *
6506 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
6507 {
6508 u64 hash = swevent_hash(type, event_id);
6509
6510 return &hlist->heads[hash];
6511 }
6512
6513 /* For the read side: events when they trigger */
6514 static inline struct hlist_head *
6515 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
6516 {
6517 struct swevent_hlist *hlist;
6518
6519 hlist = rcu_dereference(swhash->swevent_hlist);
6520 if (!hlist)
6521 return NULL;
6522
6523 return __find_swevent_head(hlist, type, event_id);
6524 }
6525
6526 /* For the event head insertion and removal in the hlist */
6527 static inline struct hlist_head *
6528 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
6529 {
6530 struct swevent_hlist *hlist;
6531 u32 event_id = event->attr.config;
6532 u64 type = event->attr.type;
6533
6534 /*
6535 * Event scheduling is always serialized against hlist allocation
6536 * and release. Which makes the protected version suitable here.
6537 * The context lock guarantees that.
6538 */
6539 hlist = rcu_dereference_protected(swhash->swevent_hlist,
6540 lockdep_is_held(&event->ctx->lock));
6541 if (!hlist)
6542 return NULL;
6543
6544 return __find_swevent_head(hlist, type, event_id);
6545 }
6546
6547 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
6548 u64 nr,
6549 struct perf_sample_data *data,
6550 struct pt_regs *regs)
6551 {
6552 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6553 struct perf_event *event;
6554 struct hlist_head *head;
6555
6556 rcu_read_lock();
6557 head = find_swevent_head_rcu(swhash, type, event_id);
6558 if (!head)
6559 goto end;
6560
6561 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6562 if (perf_swevent_match(event, type, event_id, data, regs))
6563 perf_swevent_event(event, nr, data, regs);
6564 }
6565 end:
6566 rcu_read_unlock();
6567 }
6568
6569 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
6570
6571 int perf_swevent_get_recursion_context(void)
6572 {
6573 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6574
6575 return get_recursion_context(swhash->recursion);
6576 }
6577 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
6578
6579 inline void perf_swevent_put_recursion_context(int rctx)
6580 {
6581 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6582
6583 put_recursion_context(swhash->recursion, rctx);
6584 }
6585
6586 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6587 {
6588 struct perf_sample_data data;
6589
6590 if (WARN_ON_ONCE(!regs))
6591 return;
6592
6593 perf_sample_data_init(&data, addr, 0);
6594 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
6595 }
6596
6597 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6598 {
6599 int rctx;
6600
6601 preempt_disable_notrace();
6602 rctx = perf_swevent_get_recursion_context();
6603 if (unlikely(rctx < 0))
6604 goto fail;
6605
6606 ___perf_sw_event(event_id, nr, regs, addr);
6607
6608 perf_swevent_put_recursion_context(rctx);
6609 fail:
6610 preempt_enable_notrace();
6611 }
6612
6613 static void perf_swevent_read(struct perf_event *event)
6614 {
6615 }
6616
6617 static int perf_swevent_add(struct perf_event *event, int flags)
6618 {
6619 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6620 struct hw_perf_event *hwc = &event->hw;
6621 struct hlist_head *head;
6622
6623 if (is_sampling_event(event)) {
6624 hwc->last_period = hwc->sample_period;
6625 perf_swevent_set_period(event);
6626 }
6627
6628 hwc->state = !(flags & PERF_EF_START);
6629
6630 head = find_swevent_head(swhash, event);
6631 if (!head) {
6632 /*
6633 * We can race with cpu hotplug code. Do not
6634 * WARN if the cpu just got unplugged.
6635 */
6636 WARN_ON_ONCE(swhash->online);
6637 return -EINVAL;
6638 }
6639
6640 hlist_add_head_rcu(&event->hlist_entry, head);
6641 perf_event_update_userpage(event);
6642
6643 return 0;
6644 }
6645
6646 static void perf_swevent_del(struct perf_event *event, int flags)
6647 {
6648 hlist_del_rcu(&event->hlist_entry);
6649 }
6650
6651 static void perf_swevent_start(struct perf_event *event, int flags)
6652 {
6653 event->hw.state = 0;
6654 }
6655
6656 static void perf_swevent_stop(struct perf_event *event, int flags)
6657 {
6658 event->hw.state = PERF_HES_STOPPED;
6659 }
6660
6661 /* Deref the hlist from the update side */
6662 static inline struct swevent_hlist *
6663 swevent_hlist_deref(struct swevent_htable *swhash)
6664 {
6665 return rcu_dereference_protected(swhash->swevent_hlist,
6666 lockdep_is_held(&swhash->hlist_mutex));
6667 }
6668
6669 static void swevent_hlist_release(struct swevent_htable *swhash)
6670 {
6671 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
6672
6673 if (!hlist)
6674 return;
6675
6676 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
6677 kfree_rcu(hlist, rcu_head);
6678 }
6679
6680 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
6681 {
6682 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6683
6684 mutex_lock(&swhash->hlist_mutex);
6685
6686 if (!--swhash->hlist_refcount)
6687 swevent_hlist_release(swhash);
6688
6689 mutex_unlock(&swhash->hlist_mutex);
6690 }
6691
6692 static void swevent_hlist_put(struct perf_event *event)
6693 {
6694 int cpu;
6695
6696 for_each_possible_cpu(cpu)
6697 swevent_hlist_put_cpu(event, cpu);
6698 }
6699
6700 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
6701 {
6702 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6703 int err = 0;
6704
6705 mutex_lock(&swhash->hlist_mutex);
6706
6707 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
6708 struct swevent_hlist *hlist;
6709
6710 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
6711 if (!hlist) {
6712 err = -ENOMEM;
6713 goto exit;
6714 }
6715 rcu_assign_pointer(swhash->swevent_hlist, hlist);
6716 }
6717 swhash->hlist_refcount++;
6718 exit:
6719 mutex_unlock(&swhash->hlist_mutex);
6720
6721 return err;
6722 }
6723
6724 static int swevent_hlist_get(struct perf_event *event)
6725 {
6726 int err;
6727 int cpu, failed_cpu;
6728
6729 get_online_cpus();
6730 for_each_possible_cpu(cpu) {
6731 err = swevent_hlist_get_cpu(event, cpu);
6732 if (err) {
6733 failed_cpu = cpu;
6734 goto fail;
6735 }
6736 }
6737 put_online_cpus();
6738
6739 return 0;
6740 fail:
6741 for_each_possible_cpu(cpu) {
6742 if (cpu == failed_cpu)
6743 break;
6744 swevent_hlist_put_cpu(event, cpu);
6745 }
6746
6747 put_online_cpus();
6748 return err;
6749 }
6750
6751 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
6752
6753 static void sw_perf_event_destroy(struct perf_event *event)
6754 {
6755 u64 event_id = event->attr.config;
6756
6757 WARN_ON(event->parent);
6758
6759 static_key_slow_dec(&perf_swevent_enabled[event_id]);
6760 swevent_hlist_put(event);
6761 }
6762
6763 static int perf_swevent_init(struct perf_event *event)
6764 {
6765 u64 event_id = event->attr.config;
6766
6767 if (event->attr.type != PERF_TYPE_SOFTWARE)
6768 return -ENOENT;
6769
6770 /*
6771 * no branch sampling for software events
6772 */
6773 if (has_branch_stack(event))
6774 return -EOPNOTSUPP;
6775
6776 switch (event_id) {
6777 case PERF_COUNT_SW_CPU_CLOCK:
6778 case PERF_COUNT_SW_TASK_CLOCK:
6779 return -ENOENT;
6780
6781 default:
6782 break;
6783 }
6784
6785 if (event_id >= PERF_COUNT_SW_MAX)
6786 return -ENOENT;
6787
6788 if (!event->parent) {
6789 int err;
6790
6791 err = swevent_hlist_get(event);
6792 if (err)
6793 return err;
6794
6795 static_key_slow_inc(&perf_swevent_enabled[event_id]);
6796 event->destroy = sw_perf_event_destroy;
6797 }
6798
6799 return 0;
6800 }
6801
6802 static struct pmu perf_swevent = {
6803 .task_ctx_nr = perf_sw_context,
6804
6805 .capabilities = PERF_PMU_CAP_NO_NMI,
6806
6807 .event_init = perf_swevent_init,
6808 .add = perf_swevent_add,
6809 .del = perf_swevent_del,
6810 .start = perf_swevent_start,
6811 .stop = perf_swevent_stop,
6812 .read = perf_swevent_read,
6813 };
6814
6815 #ifdef CONFIG_EVENT_TRACING
6816
6817 static int perf_tp_filter_match(struct perf_event *event,
6818 struct perf_sample_data *data)
6819 {
6820 void *record = data->raw->data;
6821
6822 if (likely(!event->filter) || filter_match_preds(event->filter, record))
6823 return 1;
6824 return 0;
6825 }
6826
6827 static int perf_tp_event_match(struct perf_event *event,
6828 struct perf_sample_data *data,
6829 struct pt_regs *regs)
6830 {
6831 if (event->hw.state & PERF_HES_STOPPED)
6832 return 0;
6833 /*
6834 * All tracepoints are from kernel-space.
6835 */
6836 if (event->attr.exclude_kernel)
6837 return 0;
6838
6839 if (!perf_tp_filter_match(event, data))
6840 return 0;
6841
6842 return 1;
6843 }
6844
6845 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
6846 struct pt_regs *regs, struct hlist_head *head, int rctx,
6847 struct task_struct *task)
6848 {
6849 struct perf_sample_data data;
6850 struct perf_event *event;
6851
6852 struct perf_raw_record raw = {
6853 .size = entry_size,
6854 .data = record,
6855 };
6856
6857 perf_sample_data_init(&data, addr, 0);
6858 data.raw = &raw;
6859
6860 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6861 if (perf_tp_event_match(event, &data, regs))
6862 perf_swevent_event(event, count, &data, regs);
6863 }
6864
6865 /*
6866 * If we got specified a target task, also iterate its context and
6867 * deliver this event there too.
6868 */
6869 if (task && task != current) {
6870 struct perf_event_context *ctx;
6871 struct trace_entry *entry = record;
6872
6873 rcu_read_lock();
6874 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
6875 if (!ctx)
6876 goto unlock;
6877
6878 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6879 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6880 continue;
6881 if (event->attr.config != entry->type)
6882 continue;
6883 if (perf_tp_event_match(event, &data, regs))
6884 perf_swevent_event(event, count, &data, regs);
6885 }
6886 unlock:
6887 rcu_read_unlock();
6888 }
6889
6890 perf_swevent_put_recursion_context(rctx);
6891 }
6892 EXPORT_SYMBOL_GPL(perf_tp_event);
6893
6894 static void tp_perf_event_destroy(struct perf_event *event)
6895 {
6896 perf_trace_destroy(event);
6897 }
6898
6899 static int perf_tp_event_init(struct perf_event *event)
6900 {
6901 int err;
6902
6903 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6904 return -ENOENT;
6905
6906 /*
6907 * no branch sampling for tracepoint events
6908 */
6909 if (has_branch_stack(event))
6910 return -EOPNOTSUPP;
6911
6912 err = perf_trace_init(event);
6913 if (err)
6914 return err;
6915
6916 event->destroy = tp_perf_event_destroy;
6917
6918 return 0;
6919 }
6920
6921 static struct pmu perf_tracepoint = {
6922 .task_ctx_nr = perf_sw_context,
6923
6924 .event_init = perf_tp_event_init,
6925 .add = perf_trace_add,
6926 .del = perf_trace_del,
6927 .start = perf_swevent_start,
6928 .stop = perf_swevent_stop,
6929 .read = perf_swevent_read,
6930 };
6931
6932 static inline void perf_tp_register(void)
6933 {
6934 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
6935 }
6936
6937 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
6938 {
6939 char *filter_str;
6940 int ret;
6941
6942 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6943 return -EINVAL;
6944
6945 filter_str = strndup_user(arg, PAGE_SIZE);
6946 if (IS_ERR(filter_str))
6947 return PTR_ERR(filter_str);
6948
6949 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
6950
6951 kfree(filter_str);
6952 return ret;
6953 }
6954
6955 static void perf_event_free_filter(struct perf_event *event)
6956 {
6957 ftrace_profile_free_filter(event);
6958 }
6959
6960 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
6961 {
6962 struct bpf_prog *prog;
6963
6964 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6965 return -EINVAL;
6966
6967 if (event->tp_event->prog)
6968 return -EEXIST;
6969
6970 if (!(event->tp_event->flags & TRACE_EVENT_FL_UKPROBE))
6971 /* bpf programs can only be attached to u/kprobes */
6972 return -EINVAL;
6973
6974 prog = bpf_prog_get(prog_fd);
6975 if (IS_ERR(prog))
6976 return PTR_ERR(prog);
6977
6978 if (prog->type != BPF_PROG_TYPE_KPROBE) {
6979 /* valid fd, but invalid bpf program type */
6980 bpf_prog_put(prog);
6981 return -EINVAL;
6982 }
6983
6984 event->tp_event->prog = prog;
6985
6986 return 0;
6987 }
6988
6989 static void perf_event_free_bpf_prog(struct perf_event *event)
6990 {
6991 struct bpf_prog *prog;
6992
6993 if (!event->tp_event)
6994 return;
6995
6996 prog = event->tp_event->prog;
6997 if (prog) {
6998 event->tp_event->prog = NULL;
6999 bpf_prog_put(prog);
7000 }
7001 }
7002
7003 #else
7004
7005 static inline void perf_tp_register(void)
7006 {
7007 }
7008
7009 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
7010 {
7011 return -ENOENT;
7012 }
7013
7014 static void perf_event_free_filter(struct perf_event *event)
7015 {
7016 }
7017
7018 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7019 {
7020 return -ENOENT;
7021 }
7022
7023 static void perf_event_free_bpf_prog(struct perf_event *event)
7024 {
7025 }
7026 #endif /* CONFIG_EVENT_TRACING */
7027
7028 #ifdef CONFIG_HAVE_HW_BREAKPOINT
7029 void perf_bp_event(struct perf_event *bp, void *data)
7030 {
7031 struct perf_sample_data sample;
7032 struct pt_regs *regs = data;
7033
7034 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
7035
7036 if (!bp->hw.state && !perf_exclude_event(bp, regs))
7037 perf_swevent_event(bp, 1, &sample, regs);
7038 }
7039 #endif
7040
7041 /*
7042 * hrtimer based swevent callback
7043 */
7044
7045 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
7046 {
7047 enum hrtimer_restart ret = HRTIMER_RESTART;
7048 struct perf_sample_data data;
7049 struct pt_regs *regs;
7050 struct perf_event *event;
7051 u64 period;
7052
7053 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
7054
7055 if (event->state != PERF_EVENT_STATE_ACTIVE)
7056 return HRTIMER_NORESTART;
7057
7058 event->pmu->read(event);
7059
7060 perf_sample_data_init(&data, 0, event->hw.last_period);
7061 regs = get_irq_regs();
7062
7063 if (regs && !perf_exclude_event(event, regs)) {
7064 if (!(event->attr.exclude_idle && is_idle_task(current)))
7065 if (__perf_event_overflow(event, 1, &data, regs))
7066 ret = HRTIMER_NORESTART;
7067 }
7068
7069 period = max_t(u64, 10000, event->hw.sample_period);
7070 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
7071
7072 return ret;
7073 }
7074
7075 static void perf_swevent_start_hrtimer(struct perf_event *event)
7076 {
7077 struct hw_perf_event *hwc = &event->hw;
7078 s64 period;
7079
7080 if (!is_sampling_event(event))
7081 return;
7082
7083 period = local64_read(&hwc->period_left);
7084 if (period) {
7085 if (period < 0)
7086 period = 10000;
7087
7088 local64_set(&hwc->period_left, 0);
7089 } else {
7090 period = max_t(u64, 10000, hwc->sample_period);
7091 }
7092 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
7093 HRTIMER_MODE_REL_PINNED);
7094 }
7095
7096 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
7097 {
7098 struct hw_perf_event *hwc = &event->hw;
7099
7100 if (is_sampling_event(event)) {
7101 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
7102 local64_set(&hwc->period_left, ktime_to_ns(remaining));
7103
7104 hrtimer_cancel(&hwc->hrtimer);
7105 }
7106 }
7107
7108 static void perf_swevent_init_hrtimer(struct perf_event *event)
7109 {
7110 struct hw_perf_event *hwc = &event->hw;
7111
7112 if (!is_sampling_event(event))
7113 return;
7114
7115 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
7116 hwc->hrtimer.function = perf_swevent_hrtimer;
7117
7118 /*
7119 * Since hrtimers have a fixed rate, we can do a static freq->period
7120 * mapping and avoid the whole period adjust feedback stuff.
7121 */
7122 if (event->attr.freq) {
7123 long freq = event->attr.sample_freq;
7124
7125 event->attr.sample_period = NSEC_PER_SEC / freq;
7126 hwc->sample_period = event->attr.sample_period;
7127 local64_set(&hwc->period_left, hwc->sample_period);
7128 hwc->last_period = hwc->sample_period;
7129 event->attr.freq = 0;
7130 }
7131 }
7132
7133 /*
7134 * Software event: cpu wall time clock
7135 */
7136
7137 static void cpu_clock_event_update(struct perf_event *event)
7138 {
7139 s64 prev;
7140 u64 now;
7141
7142 now = local_clock();
7143 prev = local64_xchg(&event->hw.prev_count, now);
7144 local64_add(now - prev, &event->count);
7145 }
7146
7147 static void cpu_clock_event_start(struct perf_event *event, int flags)
7148 {
7149 local64_set(&event->hw.prev_count, local_clock());
7150 perf_swevent_start_hrtimer(event);
7151 }
7152
7153 static void cpu_clock_event_stop(struct perf_event *event, int flags)
7154 {
7155 perf_swevent_cancel_hrtimer(event);
7156 cpu_clock_event_update(event);
7157 }
7158
7159 static int cpu_clock_event_add(struct perf_event *event, int flags)
7160 {
7161 if (flags & PERF_EF_START)
7162 cpu_clock_event_start(event, flags);
7163 perf_event_update_userpage(event);
7164
7165 return 0;
7166 }
7167
7168 static void cpu_clock_event_del(struct perf_event *event, int flags)
7169 {
7170 cpu_clock_event_stop(event, flags);
7171 }
7172
7173 static void cpu_clock_event_read(struct perf_event *event)
7174 {
7175 cpu_clock_event_update(event);
7176 }
7177
7178 static int cpu_clock_event_init(struct perf_event *event)
7179 {
7180 if (event->attr.type != PERF_TYPE_SOFTWARE)
7181 return -ENOENT;
7182
7183 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
7184 return -ENOENT;
7185
7186 /*
7187 * no branch sampling for software events
7188 */
7189 if (has_branch_stack(event))
7190 return -EOPNOTSUPP;
7191
7192 perf_swevent_init_hrtimer(event);
7193
7194 return 0;
7195 }
7196
7197 static struct pmu perf_cpu_clock = {
7198 .task_ctx_nr = perf_sw_context,
7199
7200 .capabilities = PERF_PMU_CAP_NO_NMI,
7201
7202 .event_init = cpu_clock_event_init,
7203 .add = cpu_clock_event_add,
7204 .del = cpu_clock_event_del,
7205 .start = cpu_clock_event_start,
7206 .stop = cpu_clock_event_stop,
7207 .read = cpu_clock_event_read,
7208 };
7209
7210 /*
7211 * Software event: task time clock
7212 */
7213
7214 static void task_clock_event_update(struct perf_event *event, u64 now)
7215 {
7216 u64 prev;
7217 s64 delta;
7218
7219 prev = local64_xchg(&event->hw.prev_count, now);
7220 delta = now - prev;
7221 local64_add(delta, &event->count);
7222 }
7223
7224 static void task_clock_event_start(struct perf_event *event, int flags)
7225 {
7226 local64_set(&event->hw.prev_count, event->ctx->time);
7227 perf_swevent_start_hrtimer(event);
7228 }
7229
7230 static void task_clock_event_stop(struct perf_event *event, int flags)
7231 {
7232 perf_swevent_cancel_hrtimer(event);
7233 task_clock_event_update(event, event->ctx->time);
7234 }
7235
7236 static int task_clock_event_add(struct perf_event *event, int flags)
7237 {
7238 if (flags & PERF_EF_START)
7239 task_clock_event_start(event, flags);
7240 perf_event_update_userpage(event);
7241
7242 return 0;
7243 }
7244
7245 static void task_clock_event_del(struct perf_event *event, int flags)
7246 {
7247 task_clock_event_stop(event, PERF_EF_UPDATE);
7248 }
7249
7250 static void task_clock_event_read(struct perf_event *event)
7251 {
7252 u64 now = perf_clock();
7253 u64 delta = now - event->ctx->timestamp;
7254 u64 time = event->ctx->time + delta;
7255
7256 task_clock_event_update(event, time);
7257 }
7258
7259 static int task_clock_event_init(struct perf_event *event)
7260 {
7261 if (event->attr.type != PERF_TYPE_SOFTWARE)
7262 return -ENOENT;
7263
7264 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
7265 return -ENOENT;
7266
7267 /*
7268 * no branch sampling for software events
7269 */
7270 if (has_branch_stack(event))
7271 return -EOPNOTSUPP;
7272
7273 perf_swevent_init_hrtimer(event);
7274
7275 return 0;
7276 }
7277
7278 static struct pmu perf_task_clock = {
7279 .task_ctx_nr = perf_sw_context,
7280
7281 .capabilities = PERF_PMU_CAP_NO_NMI,
7282
7283 .event_init = task_clock_event_init,
7284 .add = task_clock_event_add,
7285 .del = task_clock_event_del,
7286 .start = task_clock_event_start,
7287 .stop = task_clock_event_stop,
7288 .read = task_clock_event_read,
7289 };
7290
7291 static void perf_pmu_nop_void(struct pmu *pmu)
7292 {
7293 }
7294
7295 static int perf_pmu_nop_int(struct pmu *pmu)
7296 {
7297 return 0;
7298 }
7299
7300 static void perf_pmu_start_txn(struct pmu *pmu)
7301 {
7302 perf_pmu_disable(pmu);
7303 }
7304
7305 static int perf_pmu_commit_txn(struct pmu *pmu)
7306 {
7307 perf_pmu_enable(pmu);
7308 return 0;
7309 }
7310
7311 static void perf_pmu_cancel_txn(struct pmu *pmu)
7312 {
7313 perf_pmu_enable(pmu);
7314 }
7315
7316 static int perf_event_idx_default(struct perf_event *event)
7317 {
7318 return 0;
7319 }
7320
7321 /*
7322 * Ensures all contexts with the same task_ctx_nr have the same
7323 * pmu_cpu_context too.
7324 */
7325 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
7326 {
7327 struct pmu *pmu;
7328
7329 if (ctxn < 0)
7330 return NULL;
7331
7332 list_for_each_entry(pmu, &pmus, entry) {
7333 if (pmu->task_ctx_nr == ctxn)
7334 return pmu->pmu_cpu_context;
7335 }
7336
7337 return NULL;
7338 }
7339
7340 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
7341 {
7342 int cpu;
7343
7344 for_each_possible_cpu(cpu) {
7345 struct perf_cpu_context *cpuctx;
7346
7347 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7348
7349 if (cpuctx->unique_pmu == old_pmu)
7350 cpuctx->unique_pmu = pmu;
7351 }
7352 }
7353
7354 static void free_pmu_context(struct pmu *pmu)
7355 {
7356 struct pmu *i;
7357
7358 mutex_lock(&pmus_lock);
7359 /*
7360 * Like a real lame refcount.
7361 */
7362 list_for_each_entry(i, &pmus, entry) {
7363 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
7364 update_pmu_context(i, pmu);
7365 goto out;
7366 }
7367 }
7368
7369 free_percpu(pmu->pmu_cpu_context);
7370 out:
7371 mutex_unlock(&pmus_lock);
7372 }
7373 static struct idr pmu_idr;
7374
7375 static ssize_t
7376 type_show(struct device *dev, struct device_attribute *attr, char *page)
7377 {
7378 struct pmu *pmu = dev_get_drvdata(dev);
7379
7380 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
7381 }
7382 static DEVICE_ATTR_RO(type);
7383
7384 static ssize_t
7385 perf_event_mux_interval_ms_show(struct device *dev,
7386 struct device_attribute *attr,
7387 char *page)
7388 {
7389 struct pmu *pmu = dev_get_drvdata(dev);
7390
7391 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
7392 }
7393
7394 static DEFINE_MUTEX(mux_interval_mutex);
7395
7396 static ssize_t
7397 perf_event_mux_interval_ms_store(struct device *dev,
7398 struct device_attribute *attr,
7399 const char *buf, size_t count)
7400 {
7401 struct pmu *pmu = dev_get_drvdata(dev);
7402 int timer, cpu, ret;
7403
7404 ret = kstrtoint(buf, 0, &timer);
7405 if (ret)
7406 return ret;
7407
7408 if (timer < 1)
7409 return -EINVAL;
7410
7411 /* same value, noting to do */
7412 if (timer == pmu->hrtimer_interval_ms)
7413 return count;
7414
7415 mutex_lock(&mux_interval_mutex);
7416 pmu->hrtimer_interval_ms = timer;
7417
7418 /* update all cpuctx for this PMU */
7419 get_online_cpus();
7420 for_each_online_cpu(cpu) {
7421 struct perf_cpu_context *cpuctx;
7422 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7423 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
7424
7425 cpu_function_call(cpu,
7426 (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
7427 }
7428 put_online_cpus();
7429 mutex_unlock(&mux_interval_mutex);
7430
7431 return count;
7432 }
7433 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
7434
7435 static struct attribute *pmu_dev_attrs[] = {
7436 &dev_attr_type.attr,
7437 &dev_attr_perf_event_mux_interval_ms.attr,
7438 NULL,
7439 };
7440 ATTRIBUTE_GROUPS(pmu_dev);
7441
7442 static int pmu_bus_running;
7443 static struct bus_type pmu_bus = {
7444 .name = "event_source",
7445 .dev_groups = pmu_dev_groups,
7446 };
7447
7448 static void pmu_dev_release(struct device *dev)
7449 {
7450 kfree(dev);
7451 }
7452
7453 static int pmu_dev_alloc(struct pmu *pmu)
7454 {
7455 int ret = -ENOMEM;
7456
7457 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
7458 if (!pmu->dev)
7459 goto out;
7460
7461 pmu->dev->groups = pmu->attr_groups;
7462 device_initialize(pmu->dev);
7463 ret = dev_set_name(pmu->dev, "%s", pmu->name);
7464 if (ret)
7465 goto free_dev;
7466
7467 dev_set_drvdata(pmu->dev, pmu);
7468 pmu->dev->bus = &pmu_bus;
7469 pmu->dev->release = pmu_dev_release;
7470 ret = device_add(pmu->dev);
7471 if (ret)
7472 goto free_dev;
7473
7474 out:
7475 return ret;
7476
7477 free_dev:
7478 put_device(pmu->dev);
7479 goto out;
7480 }
7481
7482 static struct lock_class_key cpuctx_mutex;
7483 static struct lock_class_key cpuctx_lock;
7484
7485 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
7486 {
7487 int cpu, ret;
7488
7489 mutex_lock(&pmus_lock);
7490 ret = -ENOMEM;
7491 pmu->pmu_disable_count = alloc_percpu(int);
7492 if (!pmu->pmu_disable_count)
7493 goto unlock;
7494
7495 pmu->type = -1;
7496 if (!name)
7497 goto skip_type;
7498 pmu->name = name;
7499
7500 if (type < 0) {
7501 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
7502 if (type < 0) {
7503 ret = type;
7504 goto free_pdc;
7505 }
7506 }
7507 pmu->type = type;
7508
7509 if (pmu_bus_running) {
7510 ret = pmu_dev_alloc(pmu);
7511 if (ret)
7512 goto free_idr;
7513 }
7514
7515 skip_type:
7516 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
7517 if (pmu->pmu_cpu_context)
7518 goto got_cpu_context;
7519
7520 ret = -ENOMEM;
7521 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
7522 if (!pmu->pmu_cpu_context)
7523 goto free_dev;
7524
7525 for_each_possible_cpu(cpu) {
7526 struct perf_cpu_context *cpuctx;
7527
7528 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7529 __perf_event_init_context(&cpuctx->ctx);
7530 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
7531 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
7532 cpuctx->ctx.pmu = pmu;
7533
7534 __perf_mux_hrtimer_init(cpuctx, cpu);
7535
7536 cpuctx->unique_pmu = pmu;
7537 }
7538
7539 got_cpu_context:
7540 if (!pmu->start_txn) {
7541 if (pmu->pmu_enable) {
7542 /*
7543 * If we have pmu_enable/pmu_disable calls, install
7544 * transaction stubs that use that to try and batch
7545 * hardware accesses.
7546 */
7547 pmu->start_txn = perf_pmu_start_txn;
7548 pmu->commit_txn = perf_pmu_commit_txn;
7549 pmu->cancel_txn = perf_pmu_cancel_txn;
7550 } else {
7551 pmu->start_txn = perf_pmu_nop_void;
7552 pmu->commit_txn = perf_pmu_nop_int;
7553 pmu->cancel_txn = perf_pmu_nop_void;
7554 }
7555 }
7556
7557 if (!pmu->pmu_enable) {
7558 pmu->pmu_enable = perf_pmu_nop_void;
7559 pmu->pmu_disable = perf_pmu_nop_void;
7560 }
7561
7562 if (!pmu->event_idx)
7563 pmu->event_idx = perf_event_idx_default;
7564
7565 list_add_rcu(&pmu->entry, &pmus);
7566 atomic_set(&pmu->exclusive_cnt, 0);
7567 ret = 0;
7568 unlock:
7569 mutex_unlock(&pmus_lock);
7570
7571 return ret;
7572
7573 free_dev:
7574 device_del(pmu->dev);
7575 put_device(pmu->dev);
7576
7577 free_idr:
7578 if (pmu->type >= PERF_TYPE_MAX)
7579 idr_remove(&pmu_idr, pmu->type);
7580
7581 free_pdc:
7582 free_percpu(pmu->pmu_disable_count);
7583 goto unlock;
7584 }
7585 EXPORT_SYMBOL_GPL(perf_pmu_register);
7586
7587 void perf_pmu_unregister(struct pmu *pmu)
7588 {
7589 mutex_lock(&pmus_lock);
7590 list_del_rcu(&pmu->entry);
7591 mutex_unlock(&pmus_lock);
7592
7593 /*
7594 * We dereference the pmu list under both SRCU and regular RCU, so
7595 * synchronize against both of those.
7596 */
7597 synchronize_srcu(&pmus_srcu);
7598 synchronize_rcu();
7599
7600 free_percpu(pmu->pmu_disable_count);
7601 if (pmu->type >= PERF_TYPE_MAX)
7602 idr_remove(&pmu_idr, pmu->type);
7603 device_del(pmu->dev);
7604 put_device(pmu->dev);
7605 free_pmu_context(pmu);
7606 }
7607 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
7608
7609 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
7610 {
7611 struct perf_event_context *ctx = NULL;
7612 int ret;
7613
7614 if (!try_module_get(pmu->module))
7615 return -ENODEV;
7616
7617 if (event->group_leader != event) {
7618 /*
7619 * This ctx->mutex can nest when we're called through
7620 * inheritance. See the perf_event_ctx_lock_nested() comment.
7621 */
7622 ctx = perf_event_ctx_lock_nested(event->group_leader,
7623 SINGLE_DEPTH_NESTING);
7624 BUG_ON(!ctx);
7625 }
7626
7627 event->pmu = pmu;
7628 ret = pmu->event_init(event);
7629
7630 if (ctx)
7631 perf_event_ctx_unlock(event->group_leader, ctx);
7632
7633 if (ret)
7634 module_put(pmu->module);
7635
7636 return ret;
7637 }
7638
7639 struct pmu *perf_init_event(struct perf_event *event)
7640 {
7641 struct pmu *pmu = NULL;
7642 int idx;
7643 int ret;
7644
7645 idx = srcu_read_lock(&pmus_srcu);
7646
7647 rcu_read_lock();
7648 pmu = idr_find(&pmu_idr, event->attr.type);
7649 rcu_read_unlock();
7650 if (pmu) {
7651 ret = perf_try_init_event(pmu, event);
7652 if (ret)
7653 pmu = ERR_PTR(ret);
7654 goto unlock;
7655 }
7656
7657 list_for_each_entry_rcu(pmu, &pmus, entry) {
7658 ret = perf_try_init_event(pmu, event);
7659 if (!ret)
7660 goto unlock;
7661
7662 if (ret != -ENOENT) {
7663 pmu = ERR_PTR(ret);
7664 goto unlock;
7665 }
7666 }
7667 pmu = ERR_PTR(-ENOENT);
7668 unlock:
7669 srcu_read_unlock(&pmus_srcu, idx);
7670
7671 return pmu;
7672 }
7673
7674 static void account_event_cpu(struct perf_event *event, int cpu)
7675 {
7676 if (event->parent)
7677 return;
7678
7679 if (is_cgroup_event(event))
7680 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
7681 }
7682
7683 static void account_event(struct perf_event *event)
7684 {
7685 if (event->parent)
7686 return;
7687
7688 if (event->attach_state & PERF_ATTACH_TASK)
7689 static_key_slow_inc(&perf_sched_events.key);
7690 if (event->attr.mmap || event->attr.mmap_data)
7691 atomic_inc(&nr_mmap_events);
7692 if (event->attr.comm)
7693 atomic_inc(&nr_comm_events);
7694 if (event->attr.task)
7695 atomic_inc(&nr_task_events);
7696 if (event->attr.freq) {
7697 if (atomic_inc_return(&nr_freq_events) == 1)
7698 tick_nohz_full_kick_all();
7699 }
7700 if (event->attr.context_switch) {
7701 atomic_inc(&nr_switch_events);
7702 static_key_slow_inc(&perf_sched_events.key);
7703 }
7704 if (has_branch_stack(event))
7705 static_key_slow_inc(&perf_sched_events.key);
7706 if (is_cgroup_event(event))
7707 static_key_slow_inc(&perf_sched_events.key);
7708
7709 account_event_cpu(event, event->cpu);
7710 }
7711
7712 /*
7713 * Allocate and initialize a event structure
7714 */
7715 static struct perf_event *
7716 perf_event_alloc(struct perf_event_attr *attr, int cpu,
7717 struct task_struct *task,
7718 struct perf_event *group_leader,
7719 struct perf_event *parent_event,
7720 perf_overflow_handler_t overflow_handler,
7721 void *context, int cgroup_fd)
7722 {
7723 struct pmu *pmu;
7724 struct perf_event *event;
7725 struct hw_perf_event *hwc;
7726 long err = -EINVAL;
7727
7728 if ((unsigned)cpu >= nr_cpu_ids) {
7729 if (!task || cpu != -1)
7730 return ERR_PTR(-EINVAL);
7731 }
7732
7733 event = kzalloc(sizeof(*event), GFP_KERNEL);
7734 if (!event)
7735 return ERR_PTR(-ENOMEM);
7736
7737 /*
7738 * Single events are their own group leaders, with an
7739 * empty sibling list:
7740 */
7741 if (!group_leader)
7742 group_leader = event;
7743
7744 mutex_init(&event->child_mutex);
7745 INIT_LIST_HEAD(&event->child_list);
7746
7747 INIT_LIST_HEAD(&event->group_entry);
7748 INIT_LIST_HEAD(&event->event_entry);
7749 INIT_LIST_HEAD(&event->sibling_list);
7750 INIT_LIST_HEAD(&event->rb_entry);
7751 INIT_LIST_HEAD(&event->active_entry);
7752 INIT_HLIST_NODE(&event->hlist_entry);
7753
7754
7755 init_waitqueue_head(&event->waitq);
7756 init_irq_work(&event->pending, perf_pending_event);
7757
7758 mutex_init(&event->mmap_mutex);
7759
7760 atomic_long_set(&event->refcount, 1);
7761 event->cpu = cpu;
7762 event->attr = *attr;
7763 event->group_leader = group_leader;
7764 event->pmu = NULL;
7765 event->oncpu = -1;
7766
7767 event->parent = parent_event;
7768
7769 event->ns = get_pid_ns(task_active_pid_ns(current));
7770 event->id = atomic64_inc_return(&perf_event_id);
7771
7772 event->state = PERF_EVENT_STATE_INACTIVE;
7773
7774 if (task) {
7775 event->attach_state = PERF_ATTACH_TASK;
7776 /*
7777 * XXX pmu::event_init needs to know what task to account to
7778 * and we cannot use the ctx information because we need the
7779 * pmu before we get a ctx.
7780 */
7781 event->hw.target = task;
7782 }
7783
7784 event->clock = &local_clock;
7785 if (parent_event)
7786 event->clock = parent_event->clock;
7787
7788 if (!overflow_handler && parent_event) {
7789 overflow_handler = parent_event->overflow_handler;
7790 context = parent_event->overflow_handler_context;
7791 }
7792
7793 event->overflow_handler = overflow_handler;
7794 event->overflow_handler_context = context;
7795
7796 perf_event__state_init(event);
7797
7798 pmu = NULL;
7799
7800 hwc = &event->hw;
7801 hwc->sample_period = attr->sample_period;
7802 if (attr->freq && attr->sample_freq)
7803 hwc->sample_period = 1;
7804 hwc->last_period = hwc->sample_period;
7805
7806 local64_set(&hwc->period_left, hwc->sample_period);
7807
7808 /*
7809 * we currently do not support PERF_FORMAT_GROUP on inherited events
7810 */
7811 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
7812 goto err_ns;
7813
7814 if (!has_branch_stack(event))
7815 event->attr.branch_sample_type = 0;
7816
7817 if (cgroup_fd != -1) {
7818 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
7819 if (err)
7820 goto err_ns;
7821 }
7822
7823 pmu = perf_init_event(event);
7824 if (!pmu)
7825 goto err_ns;
7826 else if (IS_ERR(pmu)) {
7827 err = PTR_ERR(pmu);
7828 goto err_ns;
7829 }
7830
7831 err = exclusive_event_init(event);
7832 if (err)
7833 goto err_pmu;
7834
7835 if (!event->parent) {
7836 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
7837 err = get_callchain_buffers();
7838 if (err)
7839 goto err_per_task;
7840 }
7841 }
7842
7843 return event;
7844
7845 err_per_task:
7846 exclusive_event_destroy(event);
7847
7848 err_pmu:
7849 if (event->destroy)
7850 event->destroy(event);
7851 module_put(pmu->module);
7852 err_ns:
7853 if (is_cgroup_event(event))
7854 perf_detach_cgroup(event);
7855 if (event->ns)
7856 put_pid_ns(event->ns);
7857 kfree(event);
7858
7859 return ERR_PTR(err);
7860 }
7861
7862 static int perf_copy_attr(struct perf_event_attr __user *uattr,
7863 struct perf_event_attr *attr)
7864 {
7865 u32 size;
7866 int ret;
7867
7868 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
7869 return -EFAULT;
7870
7871 /*
7872 * zero the full structure, so that a short copy will be nice.
7873 */
7874 memset(attr, 0, sizeof(*attr));
7875
7876 ret = get_user(size, &uattr->size);
7877 if (ret)
7878 return ret;
7879
7880 if (size > PAGE_SIZE) /* silly large */
7881 goto err_size;
7882
7883 if (!size) /* abi compat */
7884 size = PERF_ATTR_SIZE_VER0;
7885
7886 if (size < PERF_ATTR_SIZE_VER0)
7887 goto err_size;
7888
7889 /*
7890 * If we're handed a bigger struct than we know of,
7891 * ensure all the unknown bits are 0 - i.e. new
7892 * user-space does not rely on any kernel feature
7893 * extensions we dont know about yet.
7894 */
7895 if (size > sizeof(*attr)) {
7896 unsigned char __user *addr;
7897 unsigned char __user *end;
7898 unsigned char val;
7899
7900 addr = (void __user *)uattr + sizeof(*attr);
7901 end = (void __user *)uattr + size;
7902
7903 for (; addr < end; addr++) {
7904 ret = get_user(val, addr);
7905 if (ret)
7906 return ret;
7907 if (val)
7908 goto err_size;
7909 }
7910 size = sizeof(*attr);
7911 }
7912
7913 ret = copy_from_user(attr, uattr, size);
7914 if (ret)
7915 return -EFAULT;
7916
7917 if (attr->__reserved_1)
7918 return -EINVAL;
7919
7920 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
7921 return -EINVAL;
7922
7923 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
7924 return -EINVAL;
7925
7926 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
7927 u64 mask = attr->branch_sample_type;
7928
7929 /* only using defined bits */
7930 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
7931 return -EINVAL;
7932
7933 /* at least one branch bit must be set */
7934 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
7935 return -EINVAL;
7936
7937 /* propagate priv level, when not set for branch */
7938 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
7939
7940 /* exclude_kernel checked on syscall entry */
7941 if (!attr->exclude_kernel)
7942 mask |= PERF_SAMPLE_BRANCH_KERNEL;
7943
7944 if (!attr->exclude_user)
7945 mask |= PERF_SAMPLE_BRANCH_USER;
7946
7947 if (!attr->exclude_hv)
7948 mask |= PERF_SAMPLE_BRANCH_HV;
7949 /*
7950 * adjust user setting (for HW filter setup)
7951 */
7952 attr->branch_sample_type = mask;
7953 }
7954 /* privileged levels capture (kernel, hv): check permissions */
7955 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
7956 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
7957 return -EACCES;
7958 }
7959
7960 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
7961 ret = perf_reg_validate(attr->sample_regs_user);
7962 if (ret)
7963 return ret;
7964 }
7965
7966 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
7967 if (!arch_perf_have_user_stack_dump())
7968 return -ENOSYS;
7969
7970 /*
7971 * We have __u32 type for the size, but so far
7972 * we can only use __u16 as maximum due to the
7973 * __u16 sample size limit.
7974 */
7975 if (attr->sample_stack_user >= USHRT_MAX)
7976 ret = -EINVAL;
7977 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
7978 ret = -EINVAL;
7979 }
7980
7981 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
7982 ret = perf_reg_validate(attr->sample_regs_intr);
7983 out:
7984 return ret;
7985
7986 err_size:
7987 put_user(sizeof(*attr), &uattr->size);
7988 ret = -E2BIG;
7989 goto out;
7990 }
7991
7992 static int
7993 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
7994 {
7995 struct ring_buffer *rb = NULL;
7996 int ret = -EINVAL;
7997
7998 if (!output_event)
7999 goto set;
8000
8001 /* don't allow circular references */
8002 if (event == output_event)
8003 goto out;
8004
8005 /*
8006 * Don't allow cross-cpu buffers
8007 */
8008 if (output_event->cpu != event->cpu)
8009 goto out;
8010
8011 /*
8012 * If its not a per-cpu rb, it must be the same task.
8013 */
8014 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
8015 goto out;
8016
8017 /*
8018 * Mixing clocks in the same buffer is trouble you don't need.
8019 */
8020 if (output_event->clock != event->clock)
8021 goto out;
8022
8023 /*
8024 * If both events generate aux data, they must be on the same PMU
8025 */
8026 if (has_aux(event) && has_aux(output_event) &&
8027 event->pmu != output_event->pmu)
8028 goto out;
8029
8030 set:
8031 mutex_lock(&event->mmap_mutex);
8032 /* Can't redirect output if we've got an active mmap() */
8033 if (atomic_read(&event->mmap_count))
8034 goto unlock;
8035
8036 if (output_event) {
8037 /* get the rb we want to redirect to */
8038 rb = ring_buffer_get(output_event);
8039 if (!rb)
8040 goto unlock;
8041 }
8042
8043 ring_buffer_attach(event, rb);
8044
8045 ret = 0;
8046 unlock:
8047 mutex_unlock(&event->mmap_mutex);
8048
8049 out:
8050 return ret;
8051 }
8052
8053 static void mutex_lock_double(struct mutex *a, struct mutex *b)
8054 {
8055 if (b < a)
8056 swap(a, b);
8057
8058 mutex_lock(a);
8059 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
8060 }
8061
8062 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
8063 {
8064 bool nmi_safe = false;
8065
8066 switch (clk_id) {
8067 case CLOCK_MONOTONIC:
8068 event->clock = &ktime_get_mono_fast_ns;
8069 nmi_safe = true;
8070 break;
8071
8072 case CLOCK_MONOTONIC_RAW:
8073 event->clock = &ktime_get_raw_fast_ns;
8074 nmi_safe = true;
8075 break;
8076
8077 case CLOCK_REALTIME:
8078 event->clock = &ktime_get_real_ns;
8079 break;
8080
8081 case CLOCK_BOOTTIME:
8082 event->clock = &ktime_get_boot_ns;
8083 break;
8084
8085 case CLOCK_TAI:
8086 event->clock = &ktime_get_tai_ns;
8087 break;
8088
8089 default:
8090 return -EINVAL;
8091 }
8092
8093 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
8094 return -EINVAL;
8095
8096 return 0;
8097 }
8098
8099 /**
8100 * sys_perf_event_open - open a performance event, associate it to a task/cpu
8101 *
8102 * @attr_uptr: event_id type attributes for monitoring/sampling
8103 * @pid: target pid
8104 * @cpu: target cpu
8105 * @group_fd: group leader event fd
8106 */
8107 SYSCALL_DEFINE5(perf_event_open,
8108 struct perf_event_attr __user *, attr_uptr,
8109 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
8110 {
8111 struct perf_event *group_leader = NULL, *output_event = NULL;
8112 struct perf_event *event, *sibling;
8113 struct perf_event_attr attr;
8114 struct perf_event_context *ctx, *uninitialized_var(gctx);
8115 struct file *event_file = NULL;
8116 struct fd group = {NULL, 0};
8117 struct task_struct *task = NULL;
8118 struct pmu *pmu;
8119 int event_fd;
8120 int move_group = 0;
8121 int err;
8122 int f_flags = O_RDWR;
8123 int cgroup_fd = -1;
8124
8125 /* for future expandability... */
8126 if (flags & ~PERF_FLAG_ALL)
8127 return -EINVAL;
8128
8129 err = perf_copy_attr(attr_uptr, &attr);
8130 if (err)
8131 return err;
8132
8133 if (!attr.exclude_kernel) {
8134 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
8135 return -EACCES;
8136 }
8137
8138 if (attr.freq) {
8139 if (attr.sample_freq > sysctl_perf_event_sample_rate)
8140 return -EINVAL;
8141 } else {
8142 if (attr.sample_period & (1ULL << 63))
8143 return -EINVAL;
8144 }
8145
8146 /*
8147 * In cgroup mode, the pid argument is used to pass the fd
8148 * opened to the cgroup directory in cgroupfs. The cpu argument
8149 * designates the cpu on which to monitor threads from that
8150 * cgroup.
8151 */
8152 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
8153 return -EINVAL;
8154
8155 if (flags & PERF_FLAG_FD_CLOEXEC)
8156 f_flags |= O_CLOEXEC;
8157
8158 event_fd = get_unused_fd_flags(f_flags);
8159 if (event_fd < 0)
8160 return event_fd;
8161
8162 if (group_fd != -1) {
8163 err = perf_fget_light(group_fd, &group);
8164 if (err)
8165 goto err_fd;
8166 group_leader = group.file->private_data;
8167 if (flags & PERF_FLAG_FD_OUTPUT)
8168 output_event = group_leader;
8169 if (flags & PERF_FLAG_FD_NO_GROUP)
8170 group_leader = NULL;
8171 }
8172
8173 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
8174 task = find_lively_task_by_vpid(pid);
8175 if (IS_ERR(task)) {
8176 err = PTR_ERR(task);
8177 goto err_group_fd;
8178 }
8179 }
8180
8181 if (task && group_leader &&
8182 group_leader->attr.inherit != attr.inherit) {
8183 err = -EINVAL;
8184 goto err_task;
8185 }
8186
8187 get_online_cpus();
8188
8189 if (flags & PERF_FLAG_PID_CGROUP)
8190 cgroup_fd = pid;
8191
8192 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
8193 NULL, NULL, cgroup_fd);
8194 if (IS_ERR(event)) {
8195 err = PTR_ERR(event);
8196 goto err_cpus;
8197 }
8198
8199 if (is_sampling_event(event)) {
8200 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
8201 err = -ENOTSUPP;
8202 goto err_alloc;
8203 }
8204 }
8205
8206 account_event(event);
8207
8208 /*
8209 * Special case software events and allow them to be part of
8210 * any hardware group.
8211 */
8212 pmu = event->pmu;
8213
8214 if (attr.use_clockid) {
8215 err = perf_event_set_clock(event, attr.clockid);
8216 if (err)
8217 goto err_alloc;
8218 }
8219
8220 if (group_leader &&
8221 (is_software_event(event) != is_software_event(group_leader))) {
8222 if (is_software_event(event)) {
8223 /*
8224 * If event and group_leader are not both a software
8225 * event, and event is, then group leader is not.
8226 *
8227 * Allow the addition of software events to !software
8228 * groups, this is safe because software events never
8229 * fail to schedule.
8230 */
8231 pmu = group_leader->pmu;
8232 } else if (is_software_event(group_leader) &&
8233 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
8234 /*
8235 * In case the group is a pure software group, and we
8236 * try to add a hardware event, move the whole group to
8237 * the hardware context.
8238 */
8239 move_group = 1;
8240 }
8241 }
8242
8243 /*
8244 * Get the target context (task or percpu):
8245 */
8246 ctx = find_get_context(pmu, task, event);
8247 if (IS_ERR(ctx)) {
8248 err = PTR_ERR(ctx);
8249 goto err_alloc;
8250 }
8251
8252 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
8253 err = -EBUSY;
8254 goto err_context;
8255 }
8256
8257 if (task) {
8258 put_task_struct(task);
8259 task = NULL;
8260 }
8261
8262 /*
8263 * Look up the group leader (we will attach this event to it):
8264 */
8265 if (group_leader) {
8266 err = -EINVAL;
8267
8268 /*
8269 * Do not allow a recursive hierarchy (this new sibling
8270 * becoming part of another group-sibling):
8271 */
8272 if (group_leader->group_leader != group_leader)
8273 goto err_context;
8274
8275 /* All events in a group should have the same clock */
8276 if (group_leader->clock != event->clock)
8277 goto err_context;
8278
8279 /*
8280 * Do not allow to attach to a group in a different
8281 * task or CPU context:
8282 */
8283 if (move_group) {
8284 /*
8285 * Make sure we're both on the same task, or both
8286 * per-cpu events.
8287 */
8288 if (group_leader->ctx->task != ctx->task)
8289 goto err_context;
8290
8291 /*
8292 * Make sure we're both events for the same CPU;
8293 * grouping events for different CPUs is broken; since
8294 * you can never concurrently schedule them anyhow.
8295 */
8296 if (group_leader->cpu != event->cpu)
8297 goto err_context;
8298 } else {
8299 if (group_leader->ctx != ctx)
8300 goto err_context;
8301 }
8302
8303 /*
8304 * Only a group leader can be exclusive or pinned
8305 */
8306 if (attr.exclusive || attr.pinned)
8307 goto err_context;
8308 }
8309
8310 if (output_event) {
8311 err = perf_event_set_output(event, output_event);
8312 if (err)
8313 goto err_context;
8314 }
8315
8316 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
8317 f_flags);
8318 if (IS_ERR(event_file)) {
8319 err = PTR_ERR(event_file);
8320 goto err_context;
8321 }
8322
8323 if (move_group) {
8324 gctx = group_leader->ctx;
8325 mutex_lock_double(&gctx->mutex, &ctx->mutex);
8326 } else {
8327 mutex_lock(&ctx->mutex);
8328 }
8329
8330 if (!perf_event_validate_size(event)) {
8331 err = -E2BIG;
8332 goto err_locked;
8333 }
8334
8335 /*
8336 * Must be under the same ctx::mutex as perf_install_in_context(),
8337 * because we need to serialize with concurrent event creation.
8338 */
8339 if (!exclusive_event_installable(event, ctx)) {
8340 /* exclusive and group stuff are assumed mutually exclusive */
8341 WARN_ON_ONCE(move_group);
8342
8343 err = -EBUSY;
8344 goto err_locked;
8345 }
8346
8347 WARN_ON_ONCE(ctx->parent_ctx);
8348
8349 if (move_group) {
8350 /*
8351 * See perf_event_ctx_lock() for comments on the details
8352 * of swizzling perf_event::ctx.
8353 */
8354 perf_remove_from_context(group_leader, false);
8355
8356 list_for_each_entry(sibling, &group_leader->sibling_list,
8357 group_entry) {
8358 perf_remove_from_context(sibling, false);
8359 put_ctx(gctx);
8360 }
8361
8362 /*
8363 * Wait for everybody to stop referencing the events through
8364 * the old lists, before installing it on new lists.
8365 */
8366 synchronize_rcu();
8367
8368 /*
8369 * Install the group siblings before the group leader.
8370 *
8371 * Because a group leader will try and install the entire group
8372 * (through the sibling list, which is still in-tact), we can
8373 * end up with siblings installed in the wrong context.
8374 *
8375 * By installing siblings first we NO-OP because they're not
8376 * reachable through the group lists.
8377 */
8378 list_for_each_entry(sibling, &group_leader->sibling_list,
8379 group_entry) {
8380 perf_event__state_init(sibling);
8381 perf_install_in_context(ctx, sibling, sibling->cpu);
8382 get_ctx(ctx);
8383 }
8384
8385 /*
8386 * Removing from the context ends up with disabled
8387 * event. What we want here is event in the initial
8388 * startup state, ready to be add into new context.
8389 */
8390 perf_event__state_init(group_leader);
8391 perf_install_in_context(ctx, group_leader, group_leader->cpu);
8392 get_ctx(ctx);
8393
8394 /*
8395 * Now that all events are installed in @ctx, nothing
8396 * references @gctx anymore, so drop the last reference we have
8397 * on it.
8398 */
8399 put_ctx(gctx);
8400 }
8401
8402 /*
8403 * Precalculate sample_data sizes; do while holding ctx::mutex such
8404 * that we're serialized against further additions and before
8405 * perf_install_in_context() which is the point the event is active and
8406 * can use these values.
8407 */
8408 perf_event__header_size(event);
8409 perf_event__id_header_size(event);
8410
8411 perf_install_in_context(ctx, event, event->cpu);
8412 perf_unpin_context(ctx);
8413
8414 if (move_group)
8415 mutex_unlock(&gctx->mutex);
8416 mutex_unlock(&ctx->mutex);
8417
8418 put_online_cpus();
8419
8420 event->owner = current;
8421
8422 mutex_lock(&current->perf_event_mutex);
8423 list_add_tail(&event->owner_entry, &current->perf_event_list);
8424 mutex_unlock(&current->perf_event_mutex);
8425
8426 /*
8427 * Drop the reference on the group_event after placing the
8428 * new event on the sibling_list. This ensures destruction
8429 * of the group leader will find the pointer to itself in
8430 * perf_group_detach().
8431 */
8432 fdput(group);
8433 fd_install(event_fd, event_file);
8434 return event_fd;
8435
8436 err_locked:
8437 if (move_group)
8438 mutex_unlock(&gctx->mutex);
8439 mutex_unlock(&ctx->mutex);
8440 /* err_file: */
8441 fput(event_file);
8442 err_context:
8443 perf_unpin_context(ctx);
8444 put_ctx(ctx);
8445 err_alloc:
8446 free_event(event);
8447 err_cpus:
8448 put_online_cpus();
8449 err_task:
8450 if (task)
8451 put_task_struct(task);
8452 err_group_fd:
8453 fdput(group);
8454 err_fd:
8455 put_unused_fd(event_fd);
8456 return err;
8457 }
8458
8459 /**
8460 * perf_event_create_kernel_counter
8461 *
8462 * @attr: attributes of the counter to create
8463 * @cpu: cpu in which the counter is bound
8464 * @task: task to profile (NULL for percpu)
8465 */
8466 struct perf_event *
8467 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
8468 struct task_struct *task,
8469 perf_overflow_handler_t overflow_handler,
8470 void *context)
8471 {
8472 struct perf_event_context *ctx;
8473 struct perf_event *event;
8474 int err;
8475
8476 /*
8477 * Get the target context (task or percpu):
8478 */
8479
8480 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
8481 overflow_handler, context, -1);
8482 if (IS_ERR(event)) {
8483 err = PTR_ERR(event);
8484 goto err;
8485 }
8486
8487 /* Mark owner so we could distinguish it from user events. */
8488 event->owner = EVENT_OWNER_KERNEL;
8489
8490 account_event(event);
8491
8492 ctx = find_get_context(event->pmu, task, event);
8493 if (IS_ERR(ctx)) {
8494 err = PTR_ERR(ctx);
8495 goto err_free;
8496 }
8497
8498 WARN_ON_ONCE(ctx->parent_ctx);
8499 mutex_lock(&ctx->mutex);
8500 if (!exclusive_event_installable(event, ctx)) {
8501 mutex_unlock(&ctx->mutex);
8502 perf_unpin_context(ctx);
8503 put_ctx(ctx);
8504 err = -EBUSY;
8505 goto err_free;
8506 }
8507
8508 perf_install_in_context(ctx, event, cpu);
8509 perf_unpin_context(ctx);
8510 mutex_unlock(&ctx->mutex);
8511
8512 return event;
8513
8514 err_free:
8515 free_event(event);
8516 err:
8517 return ERR_PTR(err);
8518 }
8519 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
8520
8521 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
8522 {
8523 struct perf_event_context *src_ctx;
8524 struct perf_event_context *dst_ctx;
8525 struct perf_event *event, *tmp;
8526 LIST_HEAD(events);
8527
8528 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
8529 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
8530
8531 /*
8532 * See perf_event_ctx_lock() for comments on the details
8533 * of swizzling perf_event::ctx.
8534 */
8535 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
8536 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
8537 event_entry) {
8538 perf_remove_from_context(event, false);
8539 unaccount_event_cpu(event, src_cpu);
8540 put_ctx(src_ctx);
8541 list_add(&event->migrate_entry, &events);
8542 }
8543
8544 /*
8545 * Wait for the events to quiesce before re-instating them.
8546 */
8547 synchronize_rcu();
8548
8549 /*
8550 * Re-instate events in 2 passes.
8551 *
8552 * Skip over group leaders and only install siblings on this first
8553 * pass, siblings will not get enabled without a leader, however a
8554 * leader will enable its siblings, even if those are still on the old
8555 * context.
8556 */
8557 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8558 if (event->group_leader == event)
8559 continue;
8560
8561 list_del(&event->migrate_entry);
8562 if (event->state >= PERF_EVENT_STATE_OFF)
8563 event->state = PERF_EVENT_STATE_INACTIVE;
8564 account_event_cpu(event, dst_cpu);
8565 perf_install_in_context(dst_ctx, event, dst_cpu);
8566 get_ctx(dst_ctx);
8567 }
8568
8569 /*
8570 * Once all the siblings are setup properly, install the group leaders
8571 * to make it go.
8572 */
8573 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8574 list_del(&event->migrate_entry);
8575 if (event->state >= PERF_EVENT_STATE_OFF)
8576 event->state = PERF_EVENT_STATE_INACTIVE;
8577 account_event_cpu(event, dst_cpu);
8578 perf_install_in_context(dst_ctx, event, dst_cpu);
8579 get_ctx(dst_ctx);
8580 }
8581 mutex_unlock(&dst_ctx->mutex);
8582 mutex_unlock(&src_ctx->mutex);
8583 }
8584 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
8585
8586 static void sync_child_event(struct perf_event *child_event,
8587 struct task_struct *child)
8588 {
8589 struct perf_event *parent_event = child_event->parent;
8590 u64 child_val;
8591
8592 if (child_event->attr.inherit_stat)
8593 perf_event_read_event(child_event, child);
8594
8595 child_val = perf_event_count(child_event);
8596
8597 /*
8598 * Add back the child's count to the parent's count:
8599 */
8600 atomic64_add(child_val, &parent_event->child_count);
8601 atomic64_add(child_event->total_time_enabled,
8602 &parent_event->child_total_time_enabled);
8603 atomic64_add(child_event->total_time_running,
8604 &parent_event->child_total_time_running);
8605
8606 /*
8607 * Remove this event from the parent's list
8608 */
8609 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
8610 mutex_lock(&parent_event->child_mutex);
8611 list_del_init(&child_event->child_list);
8612 mutex_unlock(&parent_event->child_mutex);
8613
8614 /*
8615 * Make sure user/parent get notified, that we just
8616 * lost one event.
8617 */
8618 perf_event_wakeup(parent_event);
8619
8620 /*
8621 * Release the parent event, if this was the last
8622 * reference to it.
8623 */
8624 put_event(parent_event);
8625 }
8626
8627 static void
8628 __perf_event_exit_task(struct perf_event *child_event,
8629 struct perf_event_context *child_ctx,
8630 struct task_struct *child)
8631 {
8632 /*
8633 * Do not destroy the 'original' grouping; because of the context
8634 * switch optimization the original events could've ended up in a
8635 * random child task.
8636 *
8637 * If we were to destroy the original group, all group related
8638 * operations would cease to function properly after this random
8639 * child dies.
8640 *
8641 * Do destroy all inherited groups, we don't care about those
8642 * and being thorough is better.
8643 */
8644 perf_remove_from_context(child_event, !!child_event->parent);
8645
8646 /*
8647 * It can happen that the parent exits first, and has events
8648 * that are still around due to the child reference. These
8649 * events need to be zapped.
8650 */
8651 if (child_event->parent) {
8652 sync_child_event(child_event, child);
8653 free_event(child_event);
8654 } else {
8655 child_event->state = PERF_EVENT_STATE_EXIT;
8656 perf_event_wakeup(child_event);
8657 }
8658 }
8659
8660 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
8661 {
8662 struct perf_event *child_event, *next;
8663 struct perf_event_context *child_ctx, *clone_ctx = NULL;
8664 unsigned long flags;
8665
8666 if (likely(!child->perf_event_ctxp[ctxn])) {
8667 perf_event_task(child, NULL, 0);
8668 return;
8669 }
8670
8671 local_irq_save(flags);
8672 /*
8673 * We can't reschedule here because interrupts are disabled,
8674 * and either child is current or it is a task that can't be
8675 * scheduled, so we are now safe from rescheduling changing
8676 * our context.
8677 */
8678 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
8679
8680 /*
8681 * Take the context lock here so that if find_get_context is
8682 * reading child->perf_event_ctxp, we wait until it has
8683 * incremented the context's refcount before we do put_ctx below.
8684 */
8685 raw_spin_lock(&child_ctx->lock);
8686 task_ctx_sched_out(child_ctx);
8687 child->perf_event_ctxp[ctxn] = NULL;
8688
8689 /*
8690 * If this context is a clone; unclone it so it can't get
8691 * swapped to another process while we're removing all
8692 * the events from it.
8693 */
8694 clone_ctx = unclone_ctx(child_ctx);
8695 update_context_time(child_ctx);
8696 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
8697
8698 if (clone_ctx)
8699 put_ctx(clone_ctx);
8700
8701 /*
8702 * Report the task dead after unscheduling the events so that we
8703 * won't get any samples after PERF_RECORD_EXIT. We can however still
8704 * get a few PERF_RECORD_READ events.
8705 */
8706 perf_event_task(child, child_ctx, 0);
8707
8708 /*
8709 * We can recurse on the same lock type through:
8710 *
8711 * __perf_event_exit_task()
8712 * sync_child_event()
8713 * put_event()
8714 * mutex_lock(&ctx->mutex)
8715 *
8716 * But since its the parent context it won't be the same instance.
8717 */
8718 mutex_lock(&child_ctx->mutex);
8719
8720 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
8721 __perf_event_exit_task(child_event, child_ctx, child);
8722
8723 mutex_unlock(&child_ctx->mutex);
8724
8725 put_ctx(child_ctx);
8726 }
8727
8728 /*
8729 * When a child task exits, feed back event values to parent events.
8730 */
8731 void perf_event_exit_task(struct task_struct *child)
8732 {
8733 struct perf_event *event, *tmp;
8734 int ctxn;
8735
8736 mutex_lock(&child->perf_event_mutex);
8737 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
8738 owner_entry) {
8739 list_del_init(&event->owner_entry);
8740
8741 /*
8742 * Ensure the list deletion is visible before we clear
8743 * the owner, closes a race against perf_release() where
8744 * we need to serialize on the owner->perf_event_mutex.
8745 */
8746 smp_wmb();
8747 event->owner = NULL;
8748 }
8749 mutex_unlock(&child->perf_event_mutex);
8750
8751 for_each_task_context_nr(ctxn)
8752 perf_event_exit_task_context(child, ctxn);
8753 }
8754
8755 static void perf_free_event(struct perf_event *event,
8756 struct perf_event_context *ctx)
8757 {
8758 struct perf_event *parent = event->parent;
8759
8760 if (WARN_ON_ONCE(!parent))
8761 return;
8762
8763 mutex_lock(&parent->child_mutex);
8764 list_del_init(&event->child_list);
8765 mutex_unlock(&parent->child_mutex);
8766
8767 put_event(parent);
8768
8769 raw_spin_lock_irq(&ctx->lock);
8770 perf_group_detach(event);
8771 list_del_event(event, ctx);
8772 raw_spin_unlock_irq(&ctx->lock);
8773 free_event(event);
8774 }
8775
8776 /*
8777 * Free an unexposed, unused context as created by inheritance by
8778 * perf_event_init_task below, used by fork() in case of fail.
8779 *
8780 * Not all locks are strictly required, but take them anyway to be nice and
8781 * help out with the lockdep assertions.
8782 */
8783 void perf_event_free_task(struct task_struct *task)
8784 {
8785 struct perf_event_context *ctx;
8786 struct perf_event *event, *tmp;
8787 int ctxn;
8788
8789 for_each_task_context_nr(ctxn) {
8790 ctx = task->perf_event_ctxp[ctxn];
8791 if (!ctx)
8792 continue;
8793
8794 mutex_lock(&ctx->mutex);
8795 again:
8796 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
8797 group_entry)
8798 perf_free_event(event, ctx);
8799
8800 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
8801 group_entry)
8802 perf_free_event(event, ctx);
8803
8804 if (!list_empty(&ctx->pinned_groups) ||
8805 !list_empty(&ctx->flexible_groups))
8806 goto again;
8807
8808 mutex_unlock(&ctx->mutex);
8809
8810 put_ctx(ctx);
8811 }
8812 }
8813
8814 void perf_event_delayed_put(struct task_struct *task)
8815 {
8816 int ctxn;
8817
8818 for_each_task_context_nr(ctxn)
8819 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
8820 }
8821
8822 struct perf_event *perf_event_get(unsigned int fd)
8823 {
8824 int err;
8825 struct fd f;
8826 struct perf_event *event;
8827
8828 err = perf_fget_light(fd, &f);
8829 if (err)
8830 return ERR_PTR(err);
8831
8832 event = f.file->private_data;
8833 atomic_long_inc(&event->refcount);
8834 fdput(f);
8835
8836 return event;
8837 }
8838
8839 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
8840 {
8841 if (!event)
8842 return ERR_PTR(-EINVAL);
8843
8844 return &event->attr;
8845 }
8846
8847 /*
8848 * inherit a event from parent task to child task:
8849 */
8850 static struct perf_event *
8851 inherit_event(struct perf_event *parent_event,
8852 struct task_struct *parent,
8853 struct perf_event_context *parent_ctx,
8854 struct task_struct *child,
8855 struct perf_event *group_leader,
8856 struct perf_event_context *child_ctx)
8857 {
8858 enum perf_event_active_state parent_state = parent_event->state;
8859 struct perf_event *child_event;
8860 unsigned long flags;
8861
8862 /*
8863 * Instead of creating recursive hierarchies of events,
8864 * we link inherited events back to the original parent,
8865 * which has a filp for sure, which we use as the reference
8866 * count:
8867 */
8868 if (parent_event->parent)
8869 parent_event = parent_event->parent;
8870
8871 child_event = perf_event_alloc(&parent_event->attr,
8872 parent_event->cpu,
8873 child,
8874 group_leader, parent_event,
8875 NULL, NULL, -1);
8876 if (IS_ERR(child_event))
8877 return child_event;
8878
8879 if (is_orphaned_event(parent_event) ||
8880 !atomic_long_inc_not_zero(&parent_event->refcount)) {
8881 free_event(child_event);
8882 return NULL;
8883 }
8884
8885 get_ctx(child_ctx);
8886
8887 /*
8888 * Make the child state follow the state of the parent event,
8889 * not its attr.disabled bit. We hold the parent's mutex,
8890 * so we won't race with perf_event_{en, dis}able_family.
8891 */
8892 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
8893 child_event->state = PERF_EVENT_STATE_INACTIVE;
8894 else
8895 child_event->state = PERF_EVENT_STATE_OFF;
8896
8897 if (parent_event->attr.freq) {
8898 u64 sample_period = parent_event->hw.sample_period;
8899 struct hw_perf_event *hwc = &child_event->hw;
8900
8901 hwc->sample_period = sample_period;
8902 hwc->last_period = sample_period;
8903
8904 local64_set(&hwc->period_left, sample_period);
8905 }
8906
8907 child_event->ctx = child_ctx;
8908 child_event->overflow_handler = parent_event->overflow_handler;
8909 child_event->overflow_handler_context
8910 = parent_event->overflow_handler_context;
8911
8912 /*
8913 * Precalculate sample_data sizes
8914 */
8915 perf_event__header_size(child_event);
8916 perf_event__id_header_size(child_event);
8917
8918 /*
8919 * Link it up in the child's context:
8920 */
8921 raw_spin_lock_irqsave(&child_ctx->lock, flags);
8922 add_event_to_ctx(child_event, child_ctx);
8923 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
8924
8925 /*
8926 * Link this into the parent event's child list
8927 */
8928 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
8929 mutex_lock(&parent_event->child_mutex);
8930 list_add_tail(&child_event->child_list, &parent_event->child_list);
8931 mutex_unlock(&parent_event->child_mutex);
8932
8933 return child_event;
8934 }
8935
8936 static int inherit_group(struct perf_event *parent_event,
8937 struct task_struct *parent,
8938 struct perf_event_context *parent_ctx,
8939 struct task_struct *child,
8940 struct perf_event_context *child_ctx)
8941 {
8942 struct perf_event *leader;
8943 struct perf_event *sub;
8944 struct perf_event *child_ctr;
8945
8946 leader = inherit_event(parent_event, parent, parent_ctx,
8947 child, NULL, child_ctx);
8948 if (IS_ERR(leader))
8949 return PTR_ERR(leader);
8950 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
8951 child_ctr = inherit_event(sub, parent, parent_ctx,
8952 child, leader, child_ctx);
8953 if (IS_ERR(child_ctr))
8954 return PTR_ERR(child_ctr);
8955 }
8956 return 0;
8957 }
8958
8959 static int
8960 inherit_task_group(struct perf_event *event, struct task_struct *parent,
8961 struct perf_event_context *parent_ctx,
8962 struct task_struct *child, int ctxn,
8963 int *inherited_all)
8964 {
8965 int ret;
8966 struct perf_event_context *child_ctx;
8967
8968 if (!event->attr.inherit) {
8969 *inherited_all = 0;
8970 return 0;
8971 }
8972
8973 child_ctx = child->perf_event_ctxp[ctxn];
8974 if (!child_ctx) {
8975 /*
8976 * This is executed from the parent task context, so
8977 * inherit events that have been marked for cloning.
8978 * First allocate and initialize a context for the
8979 * child.
8980 */
8981
8982 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
8983 if (!child_ctx)
8984 return -ENOMEM;
8985
8986 child->perf_event_ctxp[ctxn] = child_ctx;
8987 }
8988
8989 ret = inherit_group(event, parent, parent_ctx,
8990 child, child_ctx);
8991
8992 if (ret)
8993 *inherited_all = 0;
8994
8995 return ret;
8996 }
8997
8998 /*
8999 * Initialize the perf_event context in task_struct
9000 */
9001 static int perf_event_init_context(struct task_struct *child, int ctxn)
9002 {
9003 struct perf_event_context *child_ctx, *parent_ctx;
9004 struct perf_event_context *cloned_ctx;
9005 struct perf_event *event;
9006 struct task_struct *parent = current;
9007 int inherited_all = 1;
9008 unsigned long flags;
9009 int ret = 0;
9010
9011 if (likely(!parent->perf_event_ctxp[ctxn]))
9012 return 0;
9013
9014 /*
9015 * If the parent's context is a clone, pin it so it won't get
9016 * swapped under us.
9017 */
9018 parent_ctx = perf_pin_task_context(parent, ctxn);
9019 if (!parent_ctx)
9020 return 0;
9021
9022 /*
9023 * No need to check if parent_ctx != NULL here; since we saw
9024 * it non-NULL earlier, the only reason for it to become NULL
9025 * is if we exit, and since we're currently in the middle of
9026 * a fork we can't be exiting at the same time.
9027 */
9028
9029 /*
9030 * Lock the parent list. No need to lock the child - not PID
9031 * hashed yet and not running, so nobody can access it.
9032 */
9033 mutex_lock(&parent_ctx->mutex);
9034
9035 /*
9036 * We dont have to disable NMIs - we are only looking at
9037 * the list, not manipulating it:
9038 */
9039 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
9040 ret = inherit_task_group(event, parent, parent_ctx,
9041 child, ctxn, &inherited_all);
9042 if (ret)
9043 break;
9044 }
9045
9046 /*
9047 * We can't hold ctx->lock when iterating the ->flexible_group list due
9048 * to allocations, but we need to prevent rotation because
9049 * rotate_ctx() will change the list from interrupt context.
9050 */
9051 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
9052 parent_ctx->rotate_disable = 1;
9053 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
9054
9055 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
9056 ret = inherit_task_group(event, parent, parent_ctx,
9057 child, ctxn, &inherited_all);
9058 if (ret)
9059 break;
9060 }
9061
9062 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
9063 parent_ctx->rotate_disable = 0;
9064
9065 child_ctx = child->perf_event_ctxp[ctxn];
9066
9067 if (child_ctx && inherited_all) {
9068 /*
9069 * Mark the child context as a clone of the parent
9070 * context, or of whatever the parent is a clone of.
9071 *
9072 * Note that if the parent is a clone, the holding of
9073 * parent_ctx->lock avoids it from being uncloned.
9074 */
9075 cloned_ctx = parent_ctx->parent_ctx;
9076 if (cloned_ctx) {
9077 child_ctx->parent_ctx = cloned_ctx;
9078 child_ctx->parent_gen = parent_ctx->parent_gen;
9079 } else {
9080 child_ctx->parent_ctx = parent_ctx;
9081 child_ctx->parent_gen = parent_ctx->generation;
9082 }
9083 get_ctx(child_ctx->parent_ctx);
9084 }
9085
9086 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
9087 mutex_unlock(&parent_ctx->mutex);
9088
9089 perf_unpin_context(parent_ctx);
9090 put_ctx(parent_ctx);
9091
9092 return ret;
9093 }
9094
9095 /*
9096 * Initialize the perf_event context in task_struct
9097 */
9098 int perf_event_init_task(struct task_struct *child)
9099 {
9100 int ctxn, ret;
9101
9102 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
9103 mutex_init(&child->perf_event_mutex);
9104 INIT_LIST_HEAD(&child->perf_event_list);
9105
9106 for_each_task_context_nr(ctxn) {
9107 ret = perf_event_init_context(child, ctxn);
9108 if (ret) {
9109 perf_event_free_task(child);
9110 return ret;
9111 }
9112 }
9113
9114 return 0;
9115 }
9116
9117 static void __init perf_event_init_all_cpus(void)
9118 {
9119 struct swevent_htable *swhash;
9120 int cpu;
9121
9122 for_each_possible_cpu(cpu) {
9123 swhash = &per_cpu(swevent_htable, cpu);
9124 mutex_init(&swhash->hlist_mutex);
9125 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
9126 }
9127 }
9128
9129 static void perf_event_init_cpu(int cpu)
9130 {
9131 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9132
9133 mutex_lock(&swhash->hlist_mutex);
9134 swhash->online = true;
9135 if (swhash->hlist_refcount > 0) {
9136 struct swevent_hlist *hlist;
9137
9138 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
9139 WARN_ON(!hlist);
9140 rcu_assign_pointer(swhash->swevent_hlist, hlist);
9141 }
9142 mutex_unlock(&swhash->hlist_mutex);
9143 }
9144
9145 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
9146 static void __perf_event_exit_context(void *__info)
9147 {
9148 struct remove_event re = { .detach_group = true };
9149 struct perf_event_context *ctx = __info;
9150
9151 rcu_read_lock();
9152 list_for_each_entry_rcu(re.event, &ctx->event_list, event_entry)
9153 __perf_remove_from_context(&re);
9154 rcu_read_unlock();
9155 }
9156
9157 static void perf_event_exit_cpu_context(int cpu)
9158 {
9159 struct perf_event_context *ctx;
9160 struct pmu *pmu;
9161 int idx;
9162
9163 idx = srcu_read_lock(&pmus_srcu);
9164 list_for_each_entry_rcu(pmu, &pmus, entry) {
9165 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
9166
9167 mutex_lock(&ctx->mutex);
9168 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
9169 mutex_unlock(&ctx->mutex);
9170 }
9171 srcu_read_unlock(&pmus_srcu, idx);
9172 }
9173
9174 static void perf_event_exit_cpu(int cpu)
9175 {
9176 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9177
9178 perf_event_exit_cpu_context(cpu);
9179
9180 mutex_lock(&swhash->hlist_mutex);
9181 swhash->online = false;
9182 swevent_hlist_release(swhash);
9183 mutex_unlock(&swhash->hlist_mutex);
9184 }
9185 #else
9186 static inline void perf_event_exit_cpu(int cpu) { }
9187 #endif
9188
9189 static int
9190 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
9191 {
9192 int cpu;
9193
9194 for_each_online_cpu(cpu)
9195 perf_event_exit_cpu(cpu);
9196
9197 return NOTIFY_OK;
9198 }
9199
9200 /*
9201 * Run the perf reboot notifier at the very last possible moment so that
9202 * the generic watchdog code runs as long as possible.
9203 */
9204 static struct notifier_block perf_reboot_notifier = {
9205 .notifier_call = perf_reboot,
9206 .priority = INT_MIN,
9207 };
9208
9209 static int
9210 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
9211 {
9212 unsigned int cpu = (long)hcpu;
9213
9214 switch (action & ~CPU_TASKS_FROZEN) {
9215
9216 case CPU_UP_PREPARE:
9217 case CPU_DOWN_FAILED:
9218 perf_event_init_cpu(cpu);
9219 break;
9220
9221 case CPU_UP_CANCELED:
9222 case CPU_DOWN_PREPARE:
9223 perf_event_exit_cpu(cpu);
9224 break;
9225 default:
9226 break;
9227 }
9228
9229 return NOTIFY_OK;
9230 }
9231
9232 void __init perf_event_init(void)
9233 {
9234 int ret;
9235
9236 idr_init(&pmu_idr);
9237
9238 perf_event_init_all_cpus();
9239 init_srcu_struct(&pmus_srcu);
9240 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
9241 perf_pmu_register(&perf_cpu_clock, NULL, -1);
9242 perf_pmu_register(&perf_task_clock, NULL, -1);
9243 perf_tp_register();
9244 perf_cpu_notifier(perf_cpu_notify);
9245 register_reboot_notifier(&perf_reboot_notifier);
9246
9247 ret = init_hw_breakpoint();
9248 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
9249
9250 /* do not patch jump label more than once per second */
9251 jump_label_rate_limit(&perf_sched_events, HZ);
9252
9253 /*
9254 * Build time assertion that we keep the data_head at the intended
9255 * location. IOW, validation we got the __reserved[] size right.
9256 */
9257 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
9258 != 1024);
9259 }
9260
9261 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
9262 char *page)
9263 {
9264 struct perf_pmu_events_attr *pmu_attr =
9265 container_of(attr, struct perf_pmu_events_attr, attr);
9266
9267 if (pmu_attr->event_str)
9268 return sprintf(page, "%s\n", pmu_attr->event_str);
9269
9270 return 0;
9271 }
9272
9273 static int __init perf_event_sysfs_init(void)
9274 {
9275 struct pmu *pmu;
9276 int ret;
9277
9278 mutex_lock(&pmus_lock);
9279
9280 ret = bus_register(&pmu_bus);
9281 if (ret)
9282 goto unlock;
9283
9284 list_for_each_entry(pmu, &pmus, entry) {
9285 if (!pmu->name || pmu->type < 0)
9286 continue;
9287
9288 ret = pmu_dev_alloc(pmu);
9289 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
9290 }
9291 pmu_bus_running = 1;
9292 ret = 0;
9293
9294 unlock:
9295 mutex_unlock(&pmus_lock);
9296
9297 return ret;
9298 }
9299 device_initcall(perf_event_sysfs_init);
9300
9301 #ifdef CONFIG_CGROUP_PERF
9302 static struct cgroup_subsys_state *
9303 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
9304 {
9305 struct perf_cgroup *jc;
9306
9307 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
9308 if (!jc)
9309 return ERR_PTR(-ENOMEM);
9310
9311 jc->info = alloc_percpu(struct perf_cgroup_info);
9312 if (!jc->info) {
9313 kfree(jc);
9314 return ERR_PTR(-ENOMEM);
9315 }
9316
9317 return &jc->css;
9318 }
9319
9320 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
9321 {
9322 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
9323
9324 free_percpu(jc->info);
9325 kfree(jc);
9326 }
9327
9328 static int __perf_cgroup_move(void *info)
9329 {
9330 struct task_struct *task = info;
9331 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
9332 return 0;
9333 }
9334
9335 static void perf_cgroup_attach(struct cgroup_subsys_state *css,
9336 struct cgroup_taskset *tset)
9337 {
9338 struct task_struct *task;
9339
9340 cgroup_taskset_for_each(task, tset)
9341 task_function_call(task, __perf_cgroup_move, task);
9342 }
9343
9344 static void perf_cgroup_exit(struct cgroup_subsys_state *css,
9345 struct cgroup_subsys_state *old_css,
9346 struct task_struct *task)
9347 {
9348 /*
9349 * cgroup_exit() is called in the copy_process() failure path.
9350 * Ignore this case since the task hasn't ran yet, this avoids
9351 * trying to poke a half freed task state from generic code.
9352 */
9353 if (!(task->flags & PF_EXITING))
9354 return;
9355
9356 task_function_call(task, __perf_cgroup_move, task);
9357 }
9358
9359 struct cgroup_subsys perf_event_cgrp_subsys = {
9360 .css_alloc = perf_cgroup_css_alloc,
9361 .css_free = perf_cgroup_css_free,
9362 .exit = perf_cgroup_exit,
9363 .attach = perf_cgroup_attach,
9364 };
9365 #endif /* CONFIG_CGROUP_PERF */