]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/events/core.c
Merge tag 'openrisc-for-linus' of git://github.com/openrisc/linux
[mirror_ubuntu-artful-kernel.git] / kernel / events / core.c
1 /*
2 * Performance events core code:
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49
50 #include "internal.h"
51
52 #include <asm/irq_regs.h>
53
54 typedef int (*remote_function_f)(void *);
55
56 struct remote_function_call {
57 struct task_struct *p;
58 remote_function_f func;
59 void *info;
60 int ret;
61 };
62
63 static void remote_function(void *data)
64 {
65 struct remote_function_call *tfc = data;
66 struct task_struct *p = tfc->p;
67
68 if (p) {
69 /* -EAGAIN */
70 if (task_cpu(p) != smp_processor_id())
71 return;
72
73 /*
74 * Now that we're on right CPU with IRQs disabled, we can test
75 * if we hit the right task without races.
76 */
77
78 tfc->ret = -ESRCH; /* No such (running) process */
79 if (p != current)
80 return;
81 }
82
83 tfc->ret = tfc->func(tfc->info);
84 }
85
86 /**
87 * task_function_call - call a function on the cpu on which a task runs
88 * @p: the task to evaluate
89 * @func: the function to be called
90 * @info: the function call argument
91 *
92 * Calls the function @func when the task is currently running. This might
93 * be on the current CPU, which just calls the function directly
94 *
95 * returns: @func return value, or
96 * -ESRCH - when the process isn't running
97 * -EAGAIN - when the process moved away
98 */
99 static int
100 task_function_call(struct task_struct *p, remote_function_f func, void *info)
101 {
102 struct remote_function_call data = {
103 .p = p,
104 .func = func,
105 .info = info,
106 .ret = -EAGAIN,
107 };
108 int ret;
109
110 do {
111 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
112 if (!ret)
113 ret = data.ret;
114 } while (ret == -EAGAIN);
115
116 return ret;
117 }
118
119 /**
120 * cpu_function_call - call a function on the cpu
121 * @func: the function to be called
122 * @info: the function call argument
123 *
124 * Calls the function @func on the remote cpu.
125 *
126 * returns: @func return value or -ENXIO when the cpu is offline
127 */
128 static int cpu_function_call(int cpu, remote_function_f func, void *info)
129 {
130 struct remote_function_call data = {
131 .p = NULL,
132 .func = func,
133 .info = info,
134 .ret = -ENXIO, /* No such CPU */
135 };
136
137 smp_call_function_single(cpu, remote_function, &data, 1);
138
139 return data.ret;
140 }
141
142 static inline struct perf_cpu_context *
143 __get_cpu_context(struct perf_event_context *ctx)
144 {
145 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
146 }
147
148 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
149 struct perf_event_context *ctx)
150 {
151 raw_spin_lock(&cpuctx->ctx.lock);
152 if (ctx)
153 raw_spin_lock(&ctx->lock);
154 }
155
156 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
157 struct perf_event_context *ctx)
158 {
159 if (ctx)
160 raw_spin_unlock(&ctx->lock);
161 raw_spin_unlock(&cpuctx->ctx.lock);
162 }
163
164 #define TASK_TOMBSTONE ((void *)-1L)
165
166 static bool is_kernel_event(struct perf_event *event)
167 {
168 return READ_ONCE(event->owner) == TASK_TOMBSTONE;
169 }
170
171 /*
172 * On task ctx scheduling...
173 *
174 * When !ctx->nr_events a task context will not be scheduled. This means
175 * we can disable the scheduler hooks (for performance) without leaving
176 * pending task ctx state.
177 *
178 * This however results in two special cases:
179 *
180 * - removing the last event from a task ctx; this is relatively straight
181 * forward and is done in __perf_remove_from_context.
182 *
183 * - adding the first event to a task ctx; this is tricky because we cannot
184 * rely on ctx->is_active and therefore cannot use event_function_call().
185 * See perf_install_in_context().
186 *
187 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
188 */
189
190 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
191 struct perf_event_context *, void *);
192
193 struct event_function_struct {
194 struct perf_event *event;
195 event_f func;
196 void *data;
197 };
198
199 static int event_function(void *info)
200 {
201 struct event_function_struct *efs = info;
202 struct perf_event *event = efs->event;
203 struct perf_event_context *ctx = event->ctx;
204 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
205 struct perf_event_context *task_ctx = cpuctx->task_ctx;
206 int ret = 0;
207
208 WARN_ON_ONCE(!irqs_disabled());
209
210 perf_ctx_lock(cpuctx, task_ctx);
211 /*
212 * Since we do the IPI call without holding ctx->lock things can have
213 * changed, double check we hit the task we set out to hit.
214 */
215 if (ctx->task) {
216 if (ctx->task != current) {
217 ret = -ESRCH;
218 goto unlock;
219 }
220
221 /*
222 * We only use event_function_call() on established contexts,
223 * and event_function() is only ever called when active (or
224 * rather, we'll have bailed in task_function_call() or the
225 * above ctx->task != current test), therefore we must have
226 * ctx->is_active here.
227 */
228 WARN_ON_ONCE(!ctx->is_active);
229 /*
230 * And since we have ctx->is_active, cpuctx->task_ctx must
231 * match.
232 */
233 WARN_ON_ONCE(task_ctx != ctx);
234 } else {
235 WARN_ON_ONCE(&cpuctx->ctx != ctx);
236 }
237
238 efs->func(event, cpuctx, ctx, efs->data);
239 unlock:
240 perf_ctx_unlock(cpuctx, task_ctx);
241
242 return ret;
243 }
244
245 static void event_function_call(struct perf_event *event, event_f func, void *data)
246 {
247 struct perf_event_context *ctx = event->ctx;
248 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
249 struct event_function_struct efs = {
250 .event = event,
251 .func = func,
252 .data = data,
253 };
254
255 if (!event->parent) {
256 /*
257 * If this is a !child event, we must hold ctx::mutex to
258 * stabilize the the event->ctx relation. See
259 * perf_event_ctx_lock().
260 */
261 lockdep_assert_held(&ctx->mutex);
262 }
263
264 if (!task) {
265 cpu_function_call(event->cpu, event_function, &efs);
266 return;
267 }
268
269 if (task == TASK_TOMBSTONE)
270 return;
271
272 again:
273 if (!task_function_call(task, event_function, &efs))
274 return;
275
276 raw_spin_lock_irq(&ctx->lock);
277 /*
278 * Reload the task pointer, it might have been changed by
279 * a concurrent perf_event_context_sched_out().
280 */
281 task = ctx->task;
282 if (task == TASK_TOMBSTONE) {
283 raw_spin_unlock_irq(&ctx->lock);
284 return;
285 }
286 if (ctx->is_active) {
287 raw_spin_unlock_irq(&ctx->lock);
288 goto again;
289 }
290 func(event, NULL, ctx, data);
291 raw_spin_unlock_irq(&ctx->lock);
292 }
293
294 /*
295 * Similar to event_function_call() + event_function(), but hard assumes IRQs
296 * are already disabled and we're on the right CPU.
297 */
298 static void event_function_local(struct perf_event *event, event_f func, void *data)
299 {
300 struct perf_event_context *ctx = event->ctx;
301 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
302 struct task_struct *task = READ_ONCE(ctx->task);
303 struct perf_event_context *task_ctx = NULL;
304
305 WARN_ON_ONCE(!irqs_disabled());
306
307 if (task) {
308 if (task == TASK_TOMBSTONE)
309 return;
310
311 task_ctx = ctx;
312 }
313
314 perf_ctx_lock(cpuctx, task_ctx);
315
316 task = ctx->task;
317 if (task == TASK_TOMBSTONE)
318 goto unlock;
319
320 if (task) {
321 /*
322 * We must be either inactive or active and the right task,
323 * otherwise we're screwed, since we cannot IPI to somewhere
324 * else.
325 */
326 if (ctx->is_active) {
327 if (WARN_ON_ONCE(task != current))
328 goto unlock;
329
330 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
331 goto unlock;
332 }
333 } else {
334 WARN_ON_ONCE(&cpuctx->ctx != ctx);
335 }
336
337 func(event, cpuctx, ctx, data);
338 unlock:
339 perf_ctx_unlock(cpuctx, task_ctx);
340 }
341
342 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
343 PERF_FLAG_FD_OUTPUT |\
344 PERF_FLAG_PID_CGROUP |\
345 PERF_FLAG_FD_CLOEXEC)
346
347 /*
348 * branch priv levels that need permission checks
349 */
350 #define PERF_SAMPLE_BRANCH_PERM_PLM \
351 (PERF_SAMPLE_BRANCH_KERNEL |\
352 PERF_SAMPLE_BRANCH_HV)
353
354 enum event_type_t {
355 EVENT_FLEXIBLE = 0x1,
356 EVENT_PINNED = 0x2,
357 EVENT_TIME = 0x4,
358 /* see ctx_resched() for details */
359 EVENT_CPU = 0x8,
360 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
361 };
362
363 /*
364 * perf_sched_events : >0 events exist
365 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
366 */
367
368 static void perf_sched_delayed(struct work_struct *work);
369 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
370 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
371 static DEFINE_MUTEX(perf_sched_mutex);
372 static atomic_t perf_sched_count;
373
374 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
375 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
376 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
377
378 static atomic_t nr_mmap_events __read_mostly;
379 static atomic_t nr_comm_events __read_mostly;
380 static atomic_t nr_task_events __read_mostly;
381 static atomic_t nr_freq_events __read_mostly;
382 static atomic_t nr_switch_events __read_mostly;
383
384 static LIST_HEAD(pmus);
385 static DEFINE_MUTEX(pmus_lock);
386 static struct srcu_struct pmus_srcu;
387
388 /*
389 * perf event paranoia level:
390 * -1 - not paranoid at all
391 * 0 - disallow raw tracepoint access for unpriv
392 * 1 - disallow cpu events for unpriv
393 * 2 - disallow kernel profiling for unpriv
394 */
395 int sysctl_perf_event_paranoid __read_mostly = 2;
396
397 /* Minimum for 512 kiB + 1 user control page */
398 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
399
400 /*
401 * max perf event sample rate
402 */
403 #define DEFAULT_MAX_SAMPLE_RATE 100000
404 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
405 #define DEFAULT_CPU_TIME_MAX_PERCENT 25
406
407 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
408
409 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
410 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
411
412 static int perf_sample_allowed_ns __read_mostly =
413 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
414
415 static void update_perf_cpu_limits(void)
416 {
417 u64 tmp = perf_sample_period_ns;
418
419 tmp *= sysctl_perf_cpu_time_max_percent;
420 tmp = div_u64(tmp, 100);
421 if (!tmp)
422 tmp = 1;
423
424 WRITE_ONCE(perf_sample_allowed_ns, tmp);
425 }
426
427 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
428
429 int perf_proc_update_handler(struct ctl_table *table, int write,
430 void __user *buffer, size_t *lenp,
431 loff_t *ppos)
432 {
433 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
434
435 if (ret || !write)
436 return ret;
437
438 /*
439 * If throttling is disabled don't allow the write:
440 */
441 if (sysctl_perf_cpu_time_max_percent == 100 ||
442 sysctl_perf_cpu_time_max_percent == 0)
443 return -EINVAL;
444
445 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
446 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
447 update_perf_cpu_limits();
448
449 return 0;
450 }
451
452 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
453
454 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
455 void __user *buffer, size_t *lenp,
456 loff_t *ppos)
457 {
458 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
459
460 if (ret || !write)
461 return ret;
462
463 if (sysctl_perf_cpu_time_max_percent == 100 ||
464 sysctl_perf_cpu_time_max_percent == 0) {
465 printk(KERN_WARNING
466 "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
467 WRITE_ONCE(perf_sample_allowed_ns, 0);
468 } else {
469 update_perf_cpu_limits();
470 }
471
472 return 0;
473 }
474
475 /*
476 * perf samples are done in some very critical code paths (NMIs).
477 * If they take too much CPU time, the system can lock up and not
478 * get any real work done. This will drop the sample rate when
479 * we detect that events are taking too long.
480 */
481 #define NR_ACCUMULATED_SAMPLES 128
482 static DEFINE_PER_CPU(u64, running_sample_length);
483
484 static u64 __report_avg;
485 static u64 __report_allowed;
486
487 static void perf_duration_warn(struct irq_work *w)
488 {
489 printk_ratelimited(KERN_INFO
490 "perf: interrupt took too long (%lld > %lld), lowering "
491 "kernel.perf_event_max_sample_rate to %d\n",
492 __report_avg, __report_allowed,
493 sysctl_perf_event_sample_rate);
494 }
495
496 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
497
498 void perf_sample_event_took(u64 sample_len_ns)
499 {
500 u64 max_len = READ_ONCE(perf_sample_allowed_ns);
501 u64 running_len;
502 u64 avg_len;
503 u32 max;
504
505 if (max_len == 0)
506 return;
507
508 /* Decay the counter by 1 average sample. */
509 running_len = __this_cpu_read(running_sample_length);
510 running_len -= running_len/NR_ACCUMULATED_SAMPLES;
511 running_len += sample_len_ns;
512 __this_cpu_write(running_sample_length, running_len);
513
514 /*
515 * Note: this will be biased artifically low until we have
516 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
517 * from having to maintain a count.
518 */
519 avg_len = running_len/NR_ACCUMULATED_SAMPLES;
520 if (avg_len <= max_len)
521 return;
522
523 __report_avg = avg_len;
524 __report_allowed = max_len;
525
526 /*
527 * Compute a throttle threshold 25% below the current duration.
528 */
529 avg_len += avg_len / 4;
530 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
531 if (avg_len < max)
532 max /= (u32)avg_len;
533 else
534 max = 1;
535
536 WRITE_ONCE(perf_sample_allowed_ns, avg_len);
537 WRITE_ONCE(max_samples_per_tick, max);
538
539 sysctl_perf_event_sample_rate = max * HZ;
540 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
541
542 if (!irq_work_queue(&perf_duration_work)) {
543 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
544 "kernel.perf_event_max_sample_rate to %d\n",
545 __report_avg, __report_allowed,
546 sysctl_perf_event_sample_rate);
547 }
548 }
549
550 static atomic64_t perf_event_id;
551
552 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
553 enum event_type_t event_type);
554
555 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
556 enum event_type_t event_type,
557 struct task_struct *task);
558
559 static void update_context_time(struct perf_event_context *ctx);
560 static u64 perf_event_time(struct perf_event *event);
561
562 void __weak perf_event_print_debug(void) { }
563
564 extern __weak const char *perf_pmu_name(void)
565 {
566 return "pmu";
567 }
568
569 static inline u64 perf_clock(void)
570 {
571 return local_clock();
572 }
573
574 static inline u64 perf_event_clock(struct perf_event *event)
575 {
576 return event->clock();
577 }
578
579 #ifdef CONFIG_CGROUP_PERF
580
581 static inline bool
582 perf_cgroup_match(struct perf_event *event)
583 {
584 struct perf_event_context *ctx = event->ctx;
585 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
586
587 /* @event doesn't care about cgroup */
588 if (!event->cgrp)
589 return true;
590
591 /* wants specific cgroup scope but @cpuctx isn't associated with any */
592 if (!cpuctx->cgrp)
593 return false;
594
595 /*
596 * Cgroup scoping is recursive. An event enabled for a cgroup is
597 * also enabled for all its descendant cgroups. If @cpuctx's
598 * cgroup is a descendant of @event's (the test covers identity
599 * case), it's a match.
600 */
601 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
602 event->cgrp->css.cgroup);
603 }
604
605 static inline void perf_detach_cgroup(struct perf_event *event)
606 {
607 css_put(&event->cgrp->css);
608 event->cgrp = NULL;
609 }
610
611 static inline int is_cgroup_event(struct perf_event *event)
612 {
613 return event->cgrp != NULL;
614 }
615
616 static inline u64 perf_cgroup_event_time(struct perf_event *event)
617 {
618 struct perf_cgroup_info *t;
619
620 t = per_cpu_ptr(event->cgrp->info, event->cpu);
621 return t->time;
622 }
623
624 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
625 {
626 struct perf_cgroup_info *info;
627 u64 now;
628
629 now = perf_clock();
630
631 info = this_cpu_ptr(cgrp->info);
632
633 info->time += now - info->timestamp;
634 info->timestamp = now;
635 }
636
637 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
638 {
639 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
640 if (cgrp_out)
641 __update_cgrp_time(cgrp_out);
642 }
643
644 static inline void update_cgrp_time_from_event(struct perf_event *event)
645 {
646 struct perf_cgroup *cgrp;
647
648 /*
649 * ensure we access cgroup data only when needed and
650 * when we know the cgroup is pinned (css_get)
651 */
652 if (!is_cgroup_event(event))
653 return;
654
655 cgrp = perf_cgroup_from_task(current, event->ctx);
656 /*
657 * Do not update time when cgroup is not active
658 */
659 if (cgrp == event->cgrp)
660 __update_cgrp_time(event->cgrp);
661 }
662
663 static inline void
664 perf_cgroup_set_timestamp(struct task_struct *task,
665 struct perf_event_context *ctx)
666 {
667 struct perf_cgroup *cgrp;
668 struct perf_cgroup_info *info;
669
670 /*
671 * ctx->lock held by caller
672 * ensure we do not access cgroup data
673 * unless we have the cgroup pinned (css_get)
674 */
675 if (!task || !ctx->nr_cgroups)
676 return;
677
678 cgrp = perf_cgroup_from_task(task, ctx);
679 info = this_cpu_ptr(cgrp->info);
680 info->timestamp = ctx->timestamp;
681 }
682
683 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
684
685 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
686 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
687
688 /*
689 * reschedule events based on the cgroup constraint of task.
690 *
691 * mode SWOUT : schedule out everything
692 * mode SWIN : schedule in based on cgroup for next
693 */
694 static void perf_cgroup_switch(struct task_struct *task, int mode)
695 {
696 struct perf_cpu_context *cpuctx;
697 struct list_head *list;
698 unsigned long flags;
699
700 /*
701 * Disable interrupts and preemption to avoid this CPU's
702 * cgrp_cpuctx_entry to change under us.
703 */
704 local_irq_save(flags);
705
706 list = this_cpu_ptr(&cgrp_cpuctx_list);
707 list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
708 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
709
710 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
711 perf_pmu_disable(cpuctx->ctx.pmu);
712
713 if (mode & PERF_CGROUP_SWOUT) {
714 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
715 /*
716 * must not be done before ctxswout due
717 * to event_filter_match() in event_sched_out()
718 */
719 cpuctx->cgrp = NULL;
720 }
721
722 if (mode & PERF_CGROUP_SWIN) {
723 WARN_ON_ONCE(cpuctx->cgrp);
724 /*
725 * set cgrp before ctxsw in to allow
726 * event_filter_match() to not have to pass
727 * task around
728 * we pass the cpuctx->ctx to perf_cgroup_from_task()
729 * because cgorup events are only per-cpu
730 */
731 cpuctx->cgrp = perf_cgroup_from_task(task,
732 &cpuctx->ctx);
733 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
734 }
735 perf_pmu_enable(cpuctx->ctx.pmu);
736 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
737 }
738
739 local_irq_restore(flags);
740 }
741
742 static inline void perf_cgroup_sched_out(struct task_struct *task,
743 struct task_struct *next)
744 {
745 struct perf_cgroup *cgrp1;
746 struct perf_cgroup *cgrp2 = NULL;
747
748 rcu_read_lock();
749 /*
750 * we come here when we know perf_cgroup_events > 0
751 * we do not need to pass the ctx here because we know
752 * we are holding the rcu lock
753 */
754 cgrp1 = perf_cgroup_from_task(task, NULL);
755 cgrp2 = perf_cgroup_from_task(next, NULL);
756
757 /*
758 * only schedule out current cgroup events if we know
759 * that we are switching to a different cgroup. Otherwise,
760 * do no touch the cgroup events.
761 */
762 if (cgrp1 != cgrp2)
763 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
764
765 rcu_read_unlock();
766 }
767
768 static inline void perf_cgroup_sched_in(struct task_struct *prev,
769 struct task_struct *task)
770 {
771 struct perf_cgroup *cgrp1;
772 struct perf_cgroup *cgrp2 = NULL;
773
774 rcu_read_lock();
775 /*
776 * we come here when we know perf_cgroup_events > 0
777 * we do not need to pass the ctx here because we know
778 * we are holding the rcu lock
779 */
780 cgrp1 = perf_cgroup_from_task(task, NULL);
781 cgrp2 = perf_cgroup_from_task(prev, NULL);
782
783 /*
784 * only need to schedule in cgroup events if we are changing
785 * cgroup during ctxsw. Cgroup events were not scheduled
786 * out of ctxsw out if that was not the case.
787 */
788 if (cgrp1 != cgrp2)
789 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
790
791 rcu_read_unlock();
792 }
793
794 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
795 struct perf_event_attr *attr,
796 struct perf_event *group_leader)
797 {
798 struct perf_cgroup *cgrp;
799 struct cgroup_subsys_state *css;
800 struct fd f = fdget(fd);
801 int ret = 0;
802
803 if (!f.file)
804 return -EBADF;
805
806 css = css_tryget_online_from_dir(f.file->f_path.dentry,
807 &perf_event_cgrp_subsys);
808 if (IS_ERR(css)) {
809 ret = PTR_ERR(css);
810 goto out;
811 }
812
813 cgrp = container_of(css, struct perf_cgroup, css);
814 event->cgrp = cgrp;
815
816 /*
817 * all events in a group must monitor
818 * the same cgroup because a task belongs
819 * to only one perf cgroup at a time
820 */
821 if (group_leader && group_leader->cgrp != cgrp) {
822 perf_detach_cgroup(event);
823 ret = -EINVAL;
824 }
825 out:
826 fdput(f);
827 return ret;
828 }
829
830 static inline void
831 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
832 {
833 struct perf_cgroup_info *t;
834 t = per_cpu_ptr(event->cgrp->info, event->cpu);
835 event->shadow_ctx_time = now - t->timestamp;
836 }
837
838 static inline void
839 perf_cgroup_defer_enabled(struct perf_event *event)
840 {
841 /*
842 * when the current task's perf cgroup does not match
843 * the event's, we need to remember to call the
844 * perf_mark_enable() function the first time a task with
845 * a matching perf cgroup is scheduled in.
846 */
847 if (is_cgroup_event(event) && !perf_cgroup_match(event))
848 event->cgrp_defer_enabled = 1;
849 }
850
851 static inline void
852 perf_cgroup_mark_enabled(struct perf_event *event,
853 struct perf_event_context *ctx)
854 {
855 struct perf_event *sub;
856 u64 tstamp = perf_event_time(event);
857
858 if (!event->cgrp_defer_enabled)
859 return;
860
861 event->cgrp_defer_enabled = 0;
862
863 event->tstamp_enabled = tstamp - event->total_time_enabled;
864 list_for_each_entry(sub, &event->sibling_list, group_entry) {
865 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
866 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
867 sub->cgrp_defer_enabled = 0;
868 }
869 }
870 }
871
872 /*
873 * Update cpuctx->cgrp so that it is set when first cgroup event is added and
874 * cleared when last cgroup event is removed.
875 */
876 static inline void
877 list_update_cgroup_event(struct perf_event *event,
878 struct perf_event_context *ctx, bool add)
879 {
880 struct perf_cpu_context *cpuctx;
881 struct list_head *cpuctx_entry;
882
883 if (!is_cgroup_event(event))
884 return;
885
886 if (add && ctx->nr_cgroups++)
887 return;
888 else if (!add && --ctx->nr_cgroups)
889 return;
890 /*
891 * Because cgroup events are always per-cpu events,
892 * this will always be called from the right CPU.
893 */
894 cpuctx = __get_cpu_context(ctx);
895 cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
896 /* cpuctx->cgrp is NULL unless a cgroup event is active in this CPU .*/
897 if (add) {
898 list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list));
899 if (perf_cgroup_from_task(current, ctx) == event->cgrp)
900 cpuctx->cgrp = event->cgrp;
901 } else {
902 list_del(cpuctx_entry);
903 cpuctx->cgrp = NULL;
904 }
905 }
906
907 #else /* !CONFIG_CGROUP_PERF */
908
909 static inline bool
910 perf_cgroup_match(struct perf_event *event)
911 {
912 return true;
913 }
914
915 static inline void perf_detach_cgroup(struct perf_event *event)
916 {}
917
918 static inline int is_cgroup_event(struct perf_event *event)
919 {
920 return 0;
921 }
922
923 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
924 {
925 return 0;
926 }
927
928 static inline void update_cgrp_time_from_event(struct perf_event *event)
929 {
930 }
931
932 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
933 {
934 }
935
936 static inline void perf_cgroup_sched_out(struct task_struct *task,
937 struct task_struct *next)
938 {
939 }
940
941 static inline void perf_cgroup_sched_in(struct task_struct *prev,
942 struct task_struct *task)
943 {
944 }
945
946 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
947 struct perf_event_attr *attr,
948 struct perf_event *group_leader)
949 {
950 return -EINVAL;
951 }
952
953 static inline void
954 perf_cgroup_set_timestamp(struct task_struct *task,
955 struct perf_event_context *ctx)
956 {
957 }
958
959 void
960 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
961 {
962 }
963
964 static inline void
965 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
966 {
967 }
968
969 static inline u64 perf_cgroup_event_time(struct perf_event *event)
970 {
971 return 0;
972 }
973
974 static inline void
975 perf_cgroup_defer_enabled(struct perf_event *event)
976 {
977 }
978
979 static inline void
980 perf_cgroup_mark_enabled(struct perf_event *event,
981 struct perf_event_context *ctx)
982 {
983 }
984
985 static inline void
986 list_update_cgroup_event(struct perf_event *event,
987 struct perf_event_context *ctx, bool add)
988 {
989 }
990
991 #endif
992
993 /*
994 * set default to be dependent on timer tick just
995 * like original code
996 */
997 #define PERF_CPU_HRTIMER (1000 / HZ)
998 /*
999 * function must be called with interrupts disbled
1000 */
1001 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1002 {
1003 struct perf_cpu_context *cpuctx;
1004 int rotations = 0;
1005
1006 WARN_ON(!irqs_disabled());
1007
1008 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1009 rotations = perf_rotate_context(cpuctx);
1010
1011 raw_spin_lock(&cpuctx->hrtimer_lock);
1012 if (rotations)
1013 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1014 else
1015 cpuctx->hrtimer_active = 0;
1016 raw_spin_unlock(&cpuctx->hrtimer_lock);
1017
1018 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1019 }
1020
1021 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1022 {
1023 struct hrtimer *timer = &cpuctx->hrtimer;
1024 struct pmu *pmu = cpuctx->ctx.pmu;
1025 u64 interval;
1026
1027 /* no multiplexing needed for SW PMU */
1028 if (pmu->task_ctx_nr == perf_sw_context)
1029 return;
1030
1031 /*
1032 * check default is sane, if not set then force to
1033 * default interval (1/tick)
1034 */
1035 interval = pmu->hrtimer_interval_ms;
1036 if (interval < 1)
1037 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1038
1039 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1040
1041 raw_spin_lock_init(&cpuctx->hrtimer_lock);
1042 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
1043 timer->function = perf_mux_hrtimer_handler;
1044 }
1045
1046 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1047 {
1048 struct hrtimer *timer = &cpuctx->hrtimer;
1049 struct pmu *pmu = cpuctx->ctx.pmu;
1050 unsigned long flags;
1051
1052 /* not for SW PMU */
1053 if (pmu->task_ctx_nr == perf_sw_context)
1054 return 0;
1055
1056 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1057 if (!cpuctx->hrtimer_active) {
1058 cpuctx->hrtimer_active = 1;
1059 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1060 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1061 }
1062 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1063
1064 return 0;
1065 }
1066
1067 void perf_pmu_disable(struct pmu *pmu)
1068 {
1069 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1070 if (!(*count)++)
1071 pmu->pmu_disable(pmu);
1072 }
1073
1074 void perf_pmu_enable(struct pmu *pmu)
1075 {
1076 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1077 if (!--(*count))
1078 pmu->pmu_enable(pmu);
1079 }
1080
1081 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1082
1083 /*
1084 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1085 * perf_event_task_tick() are fully serialized because they're strictly cpu
1086 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1087 * disabled, while perf_event_task_tick is called from IRQ context.
1088 */
1089 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1090 {
1091 struct list_head *head = this_cpu_ptr(&active_ctx_list);
1092
1093 WARN_ON(!irqs_disabled());
1094
1095 WARN_ON(!list_empty(&ctx->active_ctx_list));
1096
1097 list_add(&ctx->active_ctx_list, head);
1098 }
1099
1100 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1101 {
1102 WARN_ON(!irqs_disabled());
1103
1104 WARN_ON(list_empty(&ctx->active_ctx_list));
1105
1106 list_del_init(&ctx->active_ctx_list);
1107 }
1108
1109 static void get_ctx(struct perf_event_context *ctx)
1110 {
1111 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1112 }
1113
1114 static void free_ctx(struct rcu_head *head)
1115 {
1116 struct perf_event_context *ctx;
1117
1118 ctx = container_of(head, struct perf_event_context, rcu_head);
1119 kfree(ctx->task_ctx_data);
1120 kfree(ctx);
1121 }
1122
1123 static void put_ctx(struct perf_event_context *ctx)
1124 {
1125 if (atomic_dec_and_test(&ctx->refcount)) {
1126 if (ctx->parent_ctx)
1127 put_ctx(ctx->parent_ctx);
1128 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1129 put_task_struct(ctx->task);
1130 call_rcu(&ctx->rcu_head, free_ctx);
1131 }
1132 }
1133
1134 /*
1135 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1136 * perf_pmu_migrate_context() we need some magic.
1137 *
1138 * Those places that change perf_event::ctx will hold both
1139 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1140 *
1141 * Lock ordering is by mutex address. There are two other sites where
1142 * perf_event_context::mutex nests and those are:
1143 *
1144 * - perf_event_exit_task_context() [ child , 0 ]
1145 * perf_event_exit_event()
1146 * put_event() [ parent, 1 ]
1147 *
1148 * - perf_event_init_context() [ parent, 0 ]
1149 * inherit_task_group()
1150 * inherit_group()
1151 * inherit_event()
1152 * perf_event_alloc()
1153 * perf_init_event()
1154 * perf_try_init_event() [ child , 1 ]
1155 *
1156 * While it appears there is an obvious deadlock here -- the parent and child
1157 * nesting levels are inverted between the two. This is in fact safe because
1158 * life-time rules separate them. That is an exiting task cannot fork, and a
1159 * spawning task cannot (yet) exit.
1160 *
1161 * But remember that that these are parent<->child context relations, and
1162 * migration does not affect children, therefore these two orderings should not
1163 * interact.
1164 *
1165 * The change in perf_event::ctx does not affect children (as claimed above)
1166 * because the sys_perf_event_open() case will install a new event and break
1167 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1168 * concerned with cpuctx and that doesn't have children.
1169 *
1170 * The places that change perf_event::ctx will issue:
1171 *
1172 * perf_remove_from_context();
1173 * synchronize_rcu();
1174 * perf_install_in_context();
1175 *
1176 * to affect the change. The remove_from_context() + synchronize_rcu() should
1177 * quiesce the event, after which we can install it in the new location. This
1178 * means that only external vectors (perf_fops, prctl) can perturb the event
1179 * while in transit. Therefore all such accessors should also acquire
1180 * perf_event_context::mutex to serialize against this.
1181 *
1182 * However; because event->ctx can change while we're waiting to acquire
1183 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1184 * function.
1185 *
1186 * Lock order:
1187 * cred_guard_mutex
1188 * task_struct::perf_event_mutex
1189 * perf_event_context::mutex
1190 * perf_event::child_mutex;
1191 * perf_event_context::lock
1192 * perf_event::mmap_mutex
1193 * mmap_sem
1194 */
1195 static struct perf_event_context *
1196 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1197 {
1198 struct perf_event_context *ctx;
1199
1200 again:
1201 rcu_read_lock();
1202 ctx = ACCESS_ONCE(event->ctx);
1203 if (!atomic_inc_not_zero(&ctx->refcount)) {
1204 rcu_read_unlock();
1205 goto again;
1206 }
1207 rcu_read_unlock();
1208
1209 mutex_lock_nested(&ctx->mutex, nesting);
1210 if (event->ctx != ctx) {
1211 mutex_unlock(&ctx->mutex);
1212 put_ctx(ctx);
1213 goto again;
1214 }
1215
1216 return ctx;
1217 }
1218
1219 static inline struct perf_event_context *
1220 perf_event_ctx_lock(struct perf_event *event)
1221 {
1222 return perf_event_ctx_lock_nested(event, 0);
1223 }
1224
1225 static void perf_event_ctx_unlock(struct perf_event *event,
1226 struct perf_event_context *ctx)
1227 {
1228 mutex_unlock(&ctx->mutex);
1229 put_ctx(ctx);
1230 }
1231
1232 /*
1233 * This must be done under the ctx->lock, such as to serialize against
1234 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1235 * calling scheduler related locks and ctx->lock nests inside those.
1236 */
1237 static __must_check struct perf_event_context *
1238 unclone_ctx(struct perf_event_context *ctx)
1239 {
1240 struct perf_event_context *parent_ctx = ctx->parent_ctx;
1241
1242 lockdep_assert_held(&ctx->lock);
1243
1244 if (parent_ctx)
1245 ctx->parent_ctx = NULL;
1246 ctx->generation++;
1247
1248 return parent_ctx;
1249 }
1250
1251 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1252 {
1253 /*
1254 * only top level events have the pid namespace they were created in
1255 */
1256 if (event->parent)
1257 event = event->parent;
1258
1259 return task_tgid_nr_ns(p, event->ns);
1260 }
1261
1262 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1263 {
1264 /*
1265 * only top level events have the pid namespace they were created in
1266 */
1267 if (event->parent)
1268 event = event->parent;
1269
1270 return task_pid_nr_ns(p, event->ns);
1271 }
1272
1273 /*
1274 * If we inherit events we want to return the parent event id
1275 * to userspace.
1276 */
1277 static u64 primary_event_id(struct perf_event *event)
1278 {
1279 u64 id = event->id;
1280
1281 if (event->parent)
1282 id = event->parent->id;
1283
1284 return id;
1285 }
1286
1287 /*
1288 * Get the perf_event_context for a task and lock it.
1289 *
1290 * This has to cope with with the fact that until it is locked,
1291 * the context could get moved to another task.
1292 */
1293 static struct perf_event_context *
1294 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1295 {
1296 struct perf_event_context *ctx;
1297
1298 retry:
1299 /*
1300 * One of the few rules of preemptible RCU is that one cannot do
1301 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1302 * part of the read side critical section was irqs-enabled -- see
1303 * rcu_read_unlock_special().
1304 *
1305 * Since ctx->lock nests under rq->lock we must ensure the entire read
1306 * side critical section has interrupts disabled.
1307 */
1308 local_irq_save(*flags);
1309 rcu_read_lock();
1310 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1311 if (ctx) {
1312 /*
1313 * If this context is a clone of another, it might
1314 * get swapped for another underneath us by
1315 * perf_event_task_sched_out, though the
1316 * rcu_read_lock() protects us from any context
1317 * getting freed. Lock the context and check if it
1318 * got swapped before we could get the lock, and retry
1319 * if so. If we locked the right context, then it
1320 * can't get swapped on us any more.
1321 */
1322 raw_spin_lock(&ctx->lock);
1323 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1324 raw_spin_unlock(&ctx->lock);
1325 rcu_read_unlock();
1326 local_irq_restore(*flags);
1327 goto retry;
1328 }
1329
1330 if (ctx->task == TASK_TOMBSTONE ||
1331 !atomic_inc_not_zero(&ctx->refcount)) {
1332 raw_spin_unlock(&ctx->lock);
1333 ctx = NULL;
1334 } else {
1335 WARN_ON_ONCE(ctx->task != task);
1336 }
1337 }
1338 rcu_read_unlock();
1339 if (!ctx)
1340 local_irq_restore(*flags);
1341 return ctx;
1342 }
1343
1344 /*
1345 * Get the context for a task and increment its pin_count so it
1346 * can't get swapped to another task. This also increments its
1347 * reference count so that the context can't get freed.
1348 */
1349 static struct perf_event_context *
1350 perf_pin_task_context(struct task_struct *task, int ctxn)
1351 {
1352 struct perf_event_context *ctx;
1353 unsigned long flags;
1354
1355 ctx = perf_lock_task_context(task, ctxn, &flags);
1356 if (ctx) {
1357 ++ctx->pin_count;
1358 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1359 }
1360 return ctx;
1361 }
1362
1363 static void perf_unpin_context(struct perf_event_context *ctx)
1364 {
1365 unsigned long flags;
1366
1367 raw_spin_lock_irqsave(&ctx->lock, flags);
1368 --ctx->pin_count;
1369 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1370 }
1371
1372 /*
1373 * Update the record of the current time in a context.
1374 */
1375 static void update_context_time(struct perf_event_context *ctx)
1376 {
1377 u64 now = perf_clock();
1378
1379 ctx->time += now - ctx->timestamp;
1380 ctx->timestamp = now;
1381 }
1382
1383 static u64 perf_event_time(struct perf_event *event)
1384 {
1385 struct perf_event_context *ctx = event->ctx;
1386
1387 if (is_cgroup_event(event))
1388 return perf_cgroup_event_time(event);
1389
1390 return ctx ? ctx->time : 0;
1391 }
1392
1393 /*
1394 * Update the total_time_enabled and total_time_running fields for a event.
1395 */
1396 static void update_event_times(struct perf_event *event)
1397 {
1398 struct perf_event_context *ctx = event->ctx;
1399 u64 run_end;
1400
1401 lockdep_assert_held(&ctx->lock);
1402
1403 if (event->state < PERF_EVENT_STATE_INACTIVE ||
1404 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1405 return;
1406
1407 /*
1408 * in cgroup mode, time_enabled represents
1409 * the time the event was enabled AND active
1410 * tasks were in the monitored cgroup. This is
1411 * independent of the activity of the context as
1412 * there may be a mix of cgroup and non-cgroup events.
1413 *
1414 * That is why we treat cgroup events differently
1415 * here.
1416 */
1417 if (is_cgroup_event(event))
1418 run_end = perf_cgroup_event_time(event);
1419 else if (ctx->is_active)
1420 run_end = ctx->time;
1421 else
1422 run_end = event->tstamp_stopped;
1423
1424 event->total_time_enabled = run_end - event->tstamp_enabled;
1425
1426 if (event->state == PERF_EVENT_STATE_INACTIVE)
1427 run_end = event->tstamp_stopped;
1428 else
1429 run_end = perf_event_time(event);
1430
1431 event->total_time_running = run_end - event->tstamp_running;
1432
1433 }
1434
1435 /*
1436 * Update total_time_enabled and total_time_running for all events in a group.
1437 */
1438 static void update_group_times(struct perf_event *leader)
1439 {
1440 struct perf_event *event;
1441
1442 update_event_times(leader);
1443 list_for_each_entry(event, &leader->sibling_list, group_entry)
1444 update_event_times(event);
1445 }
1446
1447 static enum event_type_t get_event_type(struct perf_event *event)
1448 {
1449 struct perf_event_context *ctx = event->ctx;
1450 enum event_type_t event_type;
1451
1452 lockdep_assert_held(&ctx->lock);
1453
1454 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1455 if (!ctx->task)
1456 event_type |= EVENT_CPU;
1457
1458 return event_type;
1459 }
1460
1461 static struct list_head *
1462 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1463 {
1464 if (event->attr.pinned)
1465 return &ctx->pinned_groups;
1466 else
1467 return &ctx->flexible_groups;
1468 }
1469
1470 /*
1471 * Add a event from the lists for its context.
1472 * Must be called with ctx->mutex and ctx->lock held.
1473 */
1474 static void
1475 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1476 {
1477 lockdep_assert_held(&ctx->lock);
1478
1479 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1480 event->attach_state |= PERF_ATTACH_CONTEXT;
1481
1482 /*
1483 * If we're a stand alone event or group leader, we go to the context
1484 * list, group events are kept attached to the group so that
1485 * perf_group_detach can, at all times, locate all siblings.
1486 */
1487 if (event->group_leader == event) {
1488 struct list_head *list;
1489
1490 event->group_caps = event->event_caps;
1491
1492 list = ctx_group_list(event, ctx);
1493 list_add_tail(&event->group_entry, list);
1494 }
1495
1496 list_update_cgroup_event(event, ctx, true);
1497
1498 list_add_rcu(&event->event_entry, &ctx->event_list);
1499 ctx->nr_events++;
1500 if (event->attr.inherit_stat)
1501 ctx->nr_stat++;
1502
1503 ctx->generation++;
1504 }
1505
1506 /*
1507 * Initialize event state based on the perf_event_attr::disabled.
1508 */
1509 static inline void perf_event__state_init(struct perf_event *event)
1510 {
1511 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1512 PERF_EVENT_STATE_INACTIVE;
1513 }
1514
1515 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1516 {
1517 int entry = sizeof(u64); /* value */
1518 int size = 0;
1519 int nr = 1;
1520
1521 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1522 size += sizeof(u64);
1523
1524 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1525 size += sizeof(u64);
1526
1527 if (event->attr.read_format & PERF_FORMAT_ID)
1528 entry += sizeof(u64);
1529
1530 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1531 nr += nr_siblings;
1532 size += sizeof(u64);
1533 }
1534
1535 size += entry * nr;
1536 event->read_size = size;
1537 }
1538
1539 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1540 {
1541 struct perf_sample_data *data;
1542 u16 size = 0;
1543
1544 if (sample_type & PERF_SAMPLE_IP)
1545 size += sizeof(data->ip);
1546
1547 if (sample_type & PERF_SAMPLE_ADDR)
1548 size += sizeof(data->addr);
1549
1550 if (sample_type & PERF_SAMPLE_PERIOD)
1551 size += sizeof(data->period);
1552
1553 if (sample_type & PERF_SAMPLE_WEIGHT)
1554 size += sizeof(data->weight);
1555
1556 if (sample_type & PERF_SAMPLE_READ)
1557 size += event->read_size;
1558
1559 if (sample_type & PERF_SAMPLE_DATA_SRC)
1560 size += sizeof(data->data_src.val);
1561
1562 if (sample_type & PERF_SAMPLE_TRANSACTION)
1563 size += sizeof(data->txn);
1564
1565 event->header_size = size;
1566 }
1567
1568 /*
1569 * Called at perf_event creation and when events are attached/detached from a
1570 * group.
1571 */
1572 static void perf_event__header_size(struct perf_event *event)
1573 {
1574 __perf_event_read_size(event,
1575 event->group_leader->nr_siblings);
1576 __perf_event_header_size(event, event->attr.sample_type);
1577 }
1578
1579 static void perf_event__id_header_size(struct perf_event *event)
1580 {
1581 struct perf_sample_data *data;
1582 u64 sample_type = event->attr.sample_type;
1583 u16 size = 0;
1584
1585 if (sample_type & PERF_SAMPLE_TID)
1586 size += sizeof(data->tid_entry);
1587
1588 if (sample_type & PERF_SAMPLE_TIME)
1589 size += sizeof(data->time);
1590
1591 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1592 size += sizeof(data->id);
1593
1594 if (sample_type & PERF_SAMPLE_ID)
1595 size += sizeof(data->id);
1596
1597 if (sample_type & PERF_SAMPLE_STREAM_ID)
1598 size += sizeof(data->stream_id);
1599
1600 if (sample_type & PERF_SAMPLE_CPU)
1601 size += sizeof(data->cpu_entry);
1602
1603 event->id_header_size = size;
1604 }
1605
1606 static bool perf_event_validate_size(struct perf_event *event)
1607 {
1608 /*
1609 * The values computed here will be over-written when we actually
1610 * attach the event.
1611 */
1612 __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1613 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1614 perf_event__id_header_size(event);
1615
1616 /*
1617 * Sum the lot; should not exceed the 64k limit we have on records.
1618 * Conservative limit to allow for callchains and other variable fields.
1619 */
1620 if (event->read_size + event->header_size +
1621 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1622 return false;
1623
1624 return true;
1625 }
1626
1627 static void perf_group_attach(struct perf_event *event)
1628 {
1629 struct perf_event *group_leader = event->group_leader, *pos;
1630
1631 lockdep_assert_held(&event->ctx->lock);
1632
1633 /*
1634 * We can have double attach due to group movement in perf_event_open.
1635 */
1636 if (event->attach_state & PERF_ATTACH_GROUP)
1637 return;
1638
1639 event->attach_state |= PERF_ATTACH_GROUP;
1640
1641 if (group_leader == event)
1642 return;
1643
1644 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1645
1646 group_leader->group_caps &= event->event_caps;
1647
1648 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1649 group_leader->nr_siblings++;
1650
1651 perf_event__header_size(group_leader);
1652
1653 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1654 perf_event__header_size(pos);
1655 }
1656
1657 /*
1658 * Remove a event from the lists for its context.
1659 * Must be called with ctx->mutex and ctx->lock held.
1660 */
1661 static void
1662 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1663 {
1664 WARN_ON_ONCE(event->ctx != ctx);
1665 lockdep_assert_held(&ctx->lock);
1666
1667 /*
1668 * We can have double detach due to exit/hot-unplug + close.
1669 */
1670 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1671 return;
1672
1673 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1674
1675 list_update_cgroup_event(event, ctx, false);
1676
1677 ctx->nr_events--;
1678 if (event->attr.inherit_stat)
1679 ctx->nr_stat--;
1680
1681 list_del_rcu(&event->event_entry);
1682
1683 if (event->group_leader == event)
1684 list_del_init(&event->group_entry);
1685
1686 update_group_times(event);
1687
1688 /*
1689 * If event was in error state, then keep it
1690 * that way, otherwise bogus counts will be
1691 * returned on read(). The only way to get out
1692 * of error state is by explicit re-enabling
1693 * of the event
1694 */
1695 if (event->state > PERF_EVENT_STATE_OFF)
1696 event->state = PERF_EVENT_STATE_OFF;
1697
1698 ctx->generation++;
1699 }
1700
1701 static void perf_group_detach(struct perf_event *event)
1702 {
1703 struct perf_event *sibling, *tmp;
1704 struct list_head *list = NULL;
1705
1706 lockdep_assert_held(&event->ctx->lock);
1707
1708 /*
1709 * We can have double detach due to exit/hot-unplug + close.
1710 */
1711 if (!(event->attach_state & PERF_ATTACH_GROUP))
1712 return;
1713
1714 event->attach_state &= ~PERF_ATTACH_GROUP;
1715
1716 /*
1717 * If this is a sibling, remove it from its group.
1718 */
1719 if (event->group_leader != event) {
1720 list_del_init(&event->group_entry);
1721 event->group_leader->nr_siblings--;
1722 goto out;
1723 }
1724
1725 if (!list_empty(&event->group_entry))
1726 list = &event->group_entry;
1727
1728 /*
1729 * If this was a group event with sibling events then
1730 * upgrade the siblings to singleton events by adding them
1731 * to whatever list we are on.
1732 */
1733 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1734 if (list)
1735 list_move_tail(&sibling->group_entry, list);
1736 sibling->group_leader = sibling;
1737
1738 /* Inherit group flags from the previous leader */
1739 sibling->group_caps = event->group_caps;
1740
1741 WARN_ON_ONCE(sibling->ctx != event->ctx);
1742 }
1743
1744 out:
1745 perf_event__header_size(event->group_leader);
1746
1747 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1748 perf_event__header_size(tmp);
1749 }
1750
1751 static bool is_orphaned_event(struct perf_event *event)
1752 {
1753 return event->state == PERF_EVENT_STATE_DEAD;
1754 }
1755
1756 static inline int __pmu_filter_match(struct perf_event *event)
1757 {
1758 struct pmu *pmu = event->pmu;
1759 return pmu->filter_match ? pmu->filter_match(event) : 1;
1760 }
1761
1762 /*
1763 * Check whether we should attempt to schedule an event group based on
1764 * PMU-specific filtering. An event group can consist of HW and SW events,
1765 * potentially with a SW leader, so we must check all the filters, to
1766 * determine whether a group is schedulable:
1767 */
1768 static inline int pmu_filter_match(struct perf_event *event)
1769 {
1770 struct perf_event *child;
1771
1772 if (!__pmu_filter_match(event))
1773 return 0;
1774
1775 list_for_each_entry(child, &event->sibling_list, group_entry) {
1776 if (!__pmu_filter_match(child))
1777 return 0;
1778 }
1779
1780 return 1;
1781 }
1782
1783 static inline int
1784 event_filter_match(struct perf_event *event)
1785 {
1786 return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1787 perf_cgroup_match(event) && pmu_filter_match(event);
1788 }
1789
1790 static void
1791 event_sched_out(struct perf_event *event,
1792 struct perf_cpu_context *cpuctx,
1793 struct perf_event_context *ctx)
1794 {
1795 u64 tstamp = perf_event_time(event);
1796 u64 delta;
1797
1798 WARN_ON_ONCE(event->ctx != ctx);
1799 lockdep_assert_held(&ctx->lock);
1800
1801 /*
1802 * An event which could not be activated because of
1803 * filter mismatch still needs to have its timings
1804 * maintained, otherwise bogus information is return
1805 * via read() for time_enabled, time_running:
1806 */
1807 if (event->state == PERF_EVENT_STATE_INACTIVE &&
1808 !event_filter_match(event)) {
1809 delta = tstamp - event->tstamp_stopped;
1810 event->tstamp_running += delta;
1811 event->tstamp_stopped = tstamp;
1812 }
1813
1814 if (event->state != PERF_EVENT_STATE_ACTIVE)
1815 return;
1816
1817 perf_pmu_disable(event->pmu);
1818
1819 event->tstamp_stopped = tstamp;
1820 event->pmu->del(event, 0);
1821 event->oncpu = -1;
1822 event->state = PERF_EVENT_STATE_INACTIVE;
1823 if (event->pending_disable) {
1824 event->pending_disable = 0;
1825 event->state = PERF_EVENT_STATE_OFF;
1826 }
1827
1828 if (!is_software_event(event))
1829 cpuctx->active_oncpu--;
1830 if (!--ctx->nr_active)
1831 perf_event_ctx_deactivate(ctx);
1832 if (event->attr.freq && event->attr.sample_freq)
1833 ctx->nr_freq--;
1834 if (event->attr.exclusive || !cpuctx->active_oncpu)
1835 cpuctx->exclusive = 0;
1836
1837 perf_pmu_enable(event->pmu);
1838 }
1839
1840 static void
1841 group_sched_out(struct perf_event *group_event,
1842 struct perf_cpu_context *cpuctx,
1843 struct perf_event_context *ctx)
1844 {
1845 struct perf_event *event;
1846 int state = group_event->state;
1847
1848 perf_pmu_disable(ctx->pmu);
1849
1850 event_sched_out(group_event, cpuctx, ctx);
1851
1852 /*
1853 * Schedule out siblings (if any):
1854 */
1855 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1856 event_sched_out(event, cpuctx, ctx);
1857
1858 perf_pmu_enable(ctx->pmu);
1859
1860 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1861 cpuctx->exclusive = 0;
1862 }
1863
1864 #define DETACH_GROUP 0x01UL
1865
1866 /*
1867 * Cross CPU call to remove a performance event
1868 *
1869 * We disable the event on the hardware level first. After that we
1870 * remove it from the context list.
1871 */
1872 static void
1873 __perf_remove_from_context(struct perf_event *event,
1874 struct perf_cpu_context *cpuctx,
1875 struct perf_event_context *ctx,
1876 void *info)
1877 {
1878 unsigned long flags = (unsigned long)info;
1879
1880 event_sched_out(event, cpuctx, ctx);
1881 if (flags & DETACH_GROUP)
1882 perf_group_detach(event);
1883 list_del_event(event, ctx);
1884
1885 if (!ctx->nr_events && ctx->is_active) {
1886 ctx->is_active = 0;
1887 if (ctx->task) {
1888 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1889 cpuctx->task_ctx = NULL;
1890 }
1891 }
1892 }
1893
1894 /*
1895 * Remove the event from a task's (or a CPU's) list of events.
1896 *
1897 * If event->ctx is a cloned context, callers must make sure that
1898 * every task struct that event->ctx->task could possibly point to
1899 * remains valid. This is OK when called from perf_release since
1900 * that only calls us on the top-level context, which can't be a clone.
1901 * When called from perf_event_exit_task, it's OK because the
1902 * context has been detached from its task.
1903 */
1904 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
1905 {
1906 struct perf_event_context *ctx = event->ctx;
1907
1908 lockdep_assert_held(&ctx->mutex);
1909
1910 event_function_call(event, __perf_remove_from_context, (void *)flags);
1911
1912 /*
1913 * The above event_function_call() can NO-OP when it hits
1914 * TASK_TOMBSTONE. In that case we must already have been detached
1915 * from the context (by perf_event_exit_event()) but the grouping
1916 * might still be in-tact.
1917 */
1918 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1919 if ((flags & DETACH_GROUP) &&
1920 (event->attach_state & PERF_ATTACH_GROUP)) {
1921 /*
1922 * Since in that case we cannot possibly be scheduled, simply
1923 * detach now.
1924 */
1925 raw_spin_lock_irq(&ctx->lock);
1926 perf_group_detach(event);
1927 raw_spin_unlock_irq(&ctx->lock);
1928 }
1929 }
1930
1931 /*
1932 * Cross CPU call to disable a performance event
1933 */
1934 static void __perf_event_disable(struct perf_event *event,
1935 struct perf_cpu_context *cpuctx,
1936 struct perf_event_context *ctx,
1937 void *info)
1938 {
1939 if (event->state < PERF_EVENT_STATE_INACTIVE)
1940 return;
1941
1942 update_context_time(ctx);
1943 update_cgrp_time_from_event(event);
1944 update_group_times(event);
1945 if (event == event->group_leader)
1946 group_sched_out(event, cpuctx, ctx);
1947 else
1948 event_sched_out(event, cpuctx, ctx);
1949 event->state = PERF_EVENT_STATE_OFF;
1950 }
1951
1952 /*
1953 * Disable a event.
1954 *
1955 * If event->ctx is a cloned context, callers must make sure that
1956 * every task struct that event->ctx->task could possibly point to
1957 * remains valid. This condition is satisifed when called through
1958 * perf_event_for_each_child or perf_event_for_each because they
1959 * hold the top-level event's child_mutex, so any descendant that
1960 * goes to exit will block in perf_event_exit_event().
1961 *
1962 * When called from perf_pending_event it's OK because event->ctx
1963 * is the current context on this CPU and preemption is disabled,
1964 * hence we can't get into perf_event_task_sched_out for this context.
1965 */
1966 static void _perf_event_disable(struct perf_event *event)
1967 {
1968 struct perf_event_context *ctx = event->ctx;
1969
1970 raw_spin_lock_irq(&ctx->lock);
1971 if (event->state <= PERF_EVENT_STATE_OFF) {
1972 raw_spin_unlock_irq(&ctx->lock);
1973 return;
1974 }
1975 raw_spin_unlock_irq(&ctx->lock);
1976
1977 event_function_call(event, __perf_event_disable, NULL);
1978 }
1979
1980 void perf_event_disable_local(struct perf_event *event)
1981 {
1982 event_function_local(event, __perf_event_disable, NULL);
1983 }
1984
1985 /*
1986 * Strictly speaking kernel users cannot create groups and therefore this
1987 * interface does not need the perf_event_ctx_lock() magic.
1988 */
1989 void perf_event_disable(struct perf_event *event)
1990 {
1991 struct perf_event_context *ctx;
1992
1993 ctx = perf_event_ctx_lock(event);
1994 _perf_event_disable(event);
1995 perf_event_ctx_unlock(event, ctx);
1996 }
1997 EXPORT_SYMBOL_GPL(perf_event_disable);
1998
1999 void perf_event_disable_inatomic(struct perf_event *event)
2000 {
2001 event->pending_disable = 1;
2002 irq_work_queue(&event->pending);
2003 }
2004
2005 static void perf_set_shadow_time(struct perf_event *event,
2006 struct perf_event_context *ctx,
2007 u64 tstamp)
2008 {
2009 /*
2010 * use the correct time source for the time snapshot
2011 *
2012 * We could get by without this by leveraging the
2013 * fact that to get to this function, the caller
2014 * has most likely already called update_context_time()
2015 * and update_cgrp_time_xx() and thus both timestamp
2016 * are identical (or very close). Given that tstamp is,
2017 * already adjusted for cgroup, we could say that:
2018 * tstamp - ctx->timestamp
2019 * is equivalent to
2020 * tstamp - cgrp->timestamp.
2021 *
2022 * Then, in perf_output_read(), the calculation would
2023 * work with no changes because:
2024 * - event is guaranteed scheduled in
2025 * - no scheduled out in between
2026 * - thus the timestamp would be the same
2027 *
2028 * But this is a bit hairy.
2029 *
2030 * So instead, we have an explicit cgroup call to remain
2031 * within the time time source all along. We believe it
2032 * is cleaner and simpler to understand.
2033 */
2034 if (is_cgroup_event(event))
2035 perf_cgroup_set_shadow_time(event, tstamp);
2036 else
2037 event->shadow_ctx_time = tstamp - ctx->timestamp;
2038 }
2039
2040 #define MAX_INTERRUPTS (~0ULL)
2041
2042 static void perf_log_throttle(struct perf_event *event, int enable);
2043 static void perf_log_itrace_start(struct perf_event *event);
2044
2045 static int
2046 event_sched_in(struct perf_event *event,
2047 struct perf_cpu_context *cpuctx,
2048 struct perf_event_context *ctx)
2049 {
2050 u64 tstamp = perf_event_time(event);
2051 int ret = 0;
2052
2053 lockdep_assert_held(&ctx->lock);
2054
2055 if (event->state <= PERF_EVENT_STATE_OFF)
2056 return 0;
2057
2058 WRITE_ONCE(event->oncpu, smp_processor_id());
2059 /*
2060 * Order event::oncpu write to happen before the ACTIVE state
2061 * is visible.
2062 */
2063 smp_wmb();
2064 WRITE_ONCE(event->state, PERF_EVENT_STATE_ACTIVE);
2065
2066 /*
2067 * Unthrottle events, since we scheduled we might have missed several
2068 * ticks already, also for a heavily scheduling task there is little
2069 * guarantee it'll get a tick in a timely manner.
2070 */
2071 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2072 perf_log_throttle(event, 1);
2073 event->hw.interrupts = 0;
2074 }
2075
2076 /*
2077 * The new state must be visible before we turn it on in the hardware:
2078 */
2079 smp_wmb();
2080
2081 perf_pmu_disable(event->pmu);
2082
2083 perf_set_shadow_time(event, ctx, tstamp);
2084
2085 perf_log_itrace_start(event);
2086
2087 if (event->pmu->add(event, PERF_EF_START)) {
2088 event->state = PERF_EVENT_STATE_INACTIVE;
2089 event->oncpu = -1;
2090 ret = -EAGAIN;
2091 goto out;
2092 }
2093
2094 event->tstamp_running += tstamp - event->tstamp_stopped;
2095
2096 if (!is_software_event(event))
2097 cpuctx->active_oncpu++;
2098 if (!ctx->nr_active++)
2099 perf_event_ctx_activate(ctx);
2100 if (event->attr.freq && event->attr.sample_freq)
2101 ctx->nr_freq++;
2102
2103 if (event->attr.exclusive)
2104 cpuctx->exclusive = 1;
2105
2106 out:
2107 perf_pmu_enable(event->pmu);
2108
2109 return ret;
2110 }
2111
2112 static int
2113 group_sched_in(struct perf_event *group_event,
2114 struct perf_cpu_context *cpuctx,
2115 struct perf_event_context *ctx)
2116 {
2117 struct perf_event *event, *partial_group = NULL;
2118 struct pmu *pmu = ctx->pmu;
2119 u64 now = ctx->time;
2120 bool simulate = false;
2121
2122 if (group_event->state == PERF_EVENT_STATE_OFF)
2123 return 0;
2124
2125 pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2126
2127 if (event_sched_in(group_event, cpuctx, ctx)) {
2128 pmu->cancel_txn(pmu);
2129 perf_mux_hrtimer_restart(cpuctx);
2130 return -EAGAIN;
2131 }
2132
2133 /*
2134 * Schedule in siblings as one group (if any):
2135 */
2136 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2137 if (event_sched_in(event, cpuctx, ctx)) {
2138 partial_group = event;
2139 goto group_error;
2140 }
2141 }
2142
2143 if (!pmu->commit_txn(pmu))
2144 return 0;
2145
2146 group_error:
2147 /*
2148 * Groups can be scheduled in as one unit only, so undo any
2149 * partial group before returning:
2150 * The events up to the failed event are scheduled out normally,
2151 * tstamp_stopped will be updated.
2152 *
2153 * The failed events and the remaining siblings need to have
2154 * their timings updated as if they had gone thru event_sched_in()
2155 * and event_sched_out(). This is required to get consistent timings
2156 * across the group. This also takes care of the case where the group
2157 * could never be scheduled by ensuring tstamp_stopped is set to mark
2158 * the time the event was actually stopped, such that time delta
2159 * calculation in update_event_times() is correct.
2160 */
2161 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2162 if (event == partial_group)
2163 simulate = true;
2164
2165 if (simulate) {
2166 event->tstamp_running += now - event->tstamp_stopped;
2167 event->tstamp_stopped = now;
2168 } else {
2169 event_sched_out(event, cpuctx, ctx);
2170 }
2171 }
2172 event_sched_out(group_event, cpuctx, ctx);
2173
2174 pmu->cancel_txn(pmu);
2175
2176 perf_mux_hrtimer_restart(cpuctx);
2177
2178 return -EAGAIN;
2179 }
2180
2181 /*
2182 * Work out whether we can put this event group on the CPU now.
2183 */
2184 static int group_can_go_on(struct perf_event *event,
2185 struct perf_cpu_context *cpuctx,
2186 int can_add_hw)
2187 {
2188 /*
2189 * Groups consisting entirely of software events can always go on.
2190 */
2191 if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2192 return 1;
2193 /*
2194 * If an exclusive group is already on, no other hardware
2195 * events can go on.
2196 */
2197 if (cpuctx->exclusive)
2198 return 0;
2199 /*
2200 * If this group is exclusive and there are already
2201 * events on the CPU, it can't go on.
2202 */
2203 if (event->attr.exclusive && cpuctx->active_oncpu)
2204 return 0;
2205 /*
2206 * Otherwise, try to add it if all previous groups were able
2207 * to go on.
2208 */
2209 return can_add_hw;
2210 }
2211
2212 static void add_event_to_ctx(struct perf_event *event,
2213 struct perf_event_context *ctx)
2214 {
2215 u64 tstamp = perf_event_time(event);
2216
2217 list_add_event(event, ctx);
2218 perf_group_attach(event);
2219 event->tstamp_enabled = tstamp;
2220 event->tstamp_running = tstamp;
2221 event->tstamp_stopped = tstamp;
2222 }
2223
2224 static void ctx_sched_out(struct perf_event_context *ctx,
2225 struct perf_cpu_context *cpuctx,
2226 enum event_type_t event_type);
2227 static void
2228 ctx_sched_in(struct perf_event_context *ctx,
2229 struct perf_cpu_context *cpuctx,
2230 enum event_type_t event_type,
2231 struct task_struct *task);
2232
2233 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2234 struct perf_event_context *ctx,
2235 enum event_type_t event_type)
2236 {
2237 if (!cpuctx->task_ctx)
2238 return;
2239
2240 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2241 return;
2242
2243 ctx_sched_out(ctx, cpuctx, event_type);
2244 }
2245
2246 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2247 struct perf_event_context *ctx,
2248 struct task_struct *task)
2249 {
2250 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2251 if (ctx)
2252 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2253 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2254 if (ctx)
2255 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2256 }
2257
2258 /*
2259 * We want to maintain the following priority of scheduling:
2260 * - CPU pinned (EVENT_CPU | EVENT_PINNED)
2261 * - task pinned (EVENT_PINNED)
2262 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2263 * - task flexible (EVENT_FLEXIBLE).
2264 *
2265 * In order to avoid unscheduling and scheduling back in everything every
2266 * time an event is added, only do it for the groups of equal priority and
2267 * below.
2268 *
2269 * This can be called after a batch operation on task events, in which case
2270 * event_type is a bit mask of the types of events involved. For CPU events,
2271 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2272 */
2273 static void ctx_resched(struct perf_cpu_context *cpuctx,
2274 struct perf_event_context *task_ctx,
2275 enum event_type_t event_type)
2276 {
2277 enum event_type_t ctx_event_type = event_type & EVENT_ALL;
2278 bool cpu_event = !!(event_type & EVENT_CPU);
2279
2280 /*
2281 * If pinned groups are involved, flexible groups also need to be
2282 * scheduled out.
2283 */
2284 if (event_type & EVENT_PINNED)
2285 event_type |= EVENT_FLEXIBLE;
2286
2287 perf_pmu_disable(cpuctx->ctx.pmu);
2288 if (task_ctx)
2289 task_ctx_sched_out(cpuctx, task_ctx, event_type);
2290
2291 /*
2292 * Decide which cpu ctx groups to schedule out based on the types
2293 * of events that caused rescheduling:
2294 * - EVENT_CPU: schedule out corresponding groups;
2295 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2296 * - otherwise, do nothing more.
2297 */
2298 if (cpu_event)
2299 cpu_ctx_sched_out(cpuctx, ctx_event_type);
2300 else if (ctx_event_type & EVENT_PINNED)
2301 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2302
2303 perf_event_sched_in(cpuctx, task_ctx, current);
2304 perf_pmu_enable(cpuctx->ctx.pmu);
2305 }
2306
2307 /*
2308 * Cross CPU call to install and enable a performance event
2309 *
2310 * Very similar to remote_function() + event_function() but cannot assume that
2311 * things like ctx->is_active and cpuctx->task_ctx are set.
2312 */
2313 static int __perf_install_in_context(void *info)
2314 {
2315 struct perf_event *event = info;
2316 struct perf_event_context *ctx = event->ctx;
2317 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2318 struct perf_event_context *task_ctx = cpuctx->task_ctx;
2319 bool reprogram = true;
2320 int ret = 0;
2321
2322 raw_spin_lock(&cpuctx->ctx.lock);
2323 if (ctx->task) {
2324 raw_spin_lock(&ctx->lock);
2325 task_ctx = ctx;
2326
2327 reprogram = (ctx->task == current);
2328
2329 /*
2330 * If the task is running, it must be running on this CPU,
2331 * otherwise we cannot reprogram things.
2332 *
2333 * If its not running, we don't care, ctx->lock will
2334 * serialize against it becoming runnable.
2335 */
2336 if (task_curr(ctx->task) && !reprogram) {
2337 ret = -ESRCH;
2338 goto unlock;
2339 }
2340
2341 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2342 } else if (task_ctx) {
2343 raw_spin_lock(&task_ctx->lock);
2344 }
2345
2346 if (reprogram) {
2347 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2348 add_event_to_ctx(event, ctx);
2349 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2350 } else {
2351 add_event_to_ctx(event, ctx);
2352 }
2353
2354 unlock:
2355 perf_ctx_unlock(cpuctx, task_ctx);
2356
2357 return ret;
2358 }
2359
2360 /*
2361 * Attach a performance event to a context.
2362 *
2363 * Very similar to event_function_call, see comment there.
2364 */
2365 static void
2366 perf_install_in_context(struct perf_event_context *ctx,
2367 struct perf_event *event,
2368 int cpu)
2369 {
2370 struct task_struct *task = READ_ONCE(ctx->task);
2371
2372 lockdep_assert_held(&ctx->mutex);
2373
2374 if (event->cpu != -1)
2375 event->cpu = cpu;
2376
2377 /*
2378 * Ensures that if we can observe event->ctx, both the event and ctx
2379 * will be 'complete'. See perf_iterate_sb_cpu().
2380 */
2381 smp_store_release(&event->ctx, ctx);
2382
2383 if (!task) {
2384 cpu_function_call(cpu, __perf_install_in_context, event);
2385 return;
2386 }
2387
2388 /*
2389 * Should not happen, we validate the ctx is still alive before calling.
2390 */
2391 if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2392 return;
2393
2394 /*
2395 * Installing events is tricky because we cannot rely on ctx->is_active
2396 * to be set in case this is the nr_events 0 -> 1 transition.
2397 *
2398 * Instead we use task_curr(), which tells us if the task is running.
2399 * However, since we use task_curr() outside of rq::lock, we can race
2400 * against the actual state. This means the result can be wrong.
2401 *
2402 * If we get a false positive, we retry, this is harmless.
2403 *
2404 * If we get a false negative, things are complicated. If we are after
2405 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2406 * value must be correct. If we're before, it doesn't matter since
2407 * perf_event_context_sched_in() will program the counter.
2408 *
2409 * However, this hinges on the remote context switch having observed
2410 * our task->perf_event_ctxp[] store, such that it will in fact take
2411 * ctx::lock in perf_event_context_sched_in().
2412 *
2413 * We do this by task_function_call(), if the IPI fails to hit the task
2414 * we know any future context switch of task must see the
2415 * perf_event_ctpx[] store.
2416 */
2417
2418 /*
2419 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2420 * task_cpu() load, such that if the IPI then does not find the task
2421 * running, a future context switch of that task must observe the
2422 * store.
2423 */
2424 smp_mb();
2425 again:
2426 if (!task_function_call(task, __perf_install_in_context, event))
2427 return;
2428
2429 raw_spin_lock_irq(&ctx->lock);
2430 task = ctx->task;
2431 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2432 /*
2433 * Cannot happen because we already checked above (which also
2434 * cannot happen), and we hold ctx->mutex, which serializes us
2435 * against perf_event_exit_task_context().
2436 */
2437 raw_spin_unlock_irq(&ctx->lock);
2438 return;
2439 }
2440 /*
2441 * If the task is not running, ctx->lock will avoid it becoming so,
2442 * thus we can safely install the event.
2443 */
2444 if (task_curr(task)) {
2445 raw_spin_unlock_irq(&ctx->lock);
2446 goto again;
2447 }
2448 add_event_to_ctx(event, ctx);
2449 raw_spin_unlock_irq(&ctx->lock);
2450 }
2451
2452 /*
2453 * Put a event into inactive state and update time fields.
2454 * Enabling the leader of a group effectively enables all
2455 * the group members that aren't explicitly disabled, so we
2456 * have to update their ->tstamp_enabled also.
2457 * Note: this works for group members as well as group leaders
2458 * since the non-leader members' sibling_lists will be empty.
2459 */
2460 static void __perf_event_mark_enabled(struct perf_event *event)
2461 {
2462 struct perf_event *sub;
2463 u64 tstamp = perf_event_time(event);
2464
2465 event->state = PERF_EVENT_STATE_INACTIVE;
2466 event->tstamp_enabled = tstamp - event->total_time_enabled;
2467 list_for_each_entry(sub, &event->sibling_list, group_entry) {
2468 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2469 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
2470 }
2471 }
2472
2473 /*
2474 * Cross CPU call to enable a performance event
2475 */
2476 static void __perf_event_enable(struct perf_event *event,
2477 struct perf_cpu_context *cpuctx,
2478 struct perf_event_context *ctx,
2479 void *info)
2480 {
2481 struct perf_event *leader = event->group_leader;
2482 struct perf_event_context *task_ctx;
2483
2484 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2485 event->state <= PERF_EVENT_STATE_ERROR)
2486 return;
2487
2488 if (ctx->is_active)
2489 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2490
2491 __perf_event_mark_enabled(event);
2492
2493 if (!ctx->is_active)
2494 return;
2495
2496 if (!event_filter_match(event)) {
2497 if (is_cgroup_event(event))
2498 perf_cgroup_defer_enabled(event);
2499 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2500 return;
2501 }
2502
2503 /*
2504 * If the event is in a group and isn't the group leader,
2505 * then don't put it on unless the group is on.
2506 */
2507 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2508 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2509 return;
2510 }
2511
2512 task_ctx = cpuctx->task_ctx;
2513 if (ctx->task)
2514 WARN_ON_ONCE(task_ctx != ctx);
2515
2516 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2517 }
2518
2519 /*
2520 * Enable a event.
2521 *
2522 * If event->ctx is a cloned context, callers must make sure that
2523 * every task struct that event->ctx->task could possibly point to
2524 * remains valid. This condition is satisfied when called through
2525 * perf_event_for_each_child or perf_event_for_each as described
2526 * for perf_event_disable.
2527 */
2528 static void _perf_event_enable(struct perf_event *event)
2529 {
2530 struct perf_event_context *ctx = event->ctx;
2531
2532 raw_spin_lock_irq(&ctx->lock);
2533 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2534 event->state < PERF_EVENT_STATE_ERROR) {
2535 raw_spin_unlock_irq(&ctx->lock);
2536 return;
2537 }
2538
2539 /*
2540 * If the event is in error state, clear that first.
2541 *
2542 * That way, if we see the event in error state below, we know that it
2543 * has gone back into error state, as distinct from the task having
2544 * been scheduled away before the cross-call arrived.
2545 */
2546 if (event->state == PERF_EVENT_STATE_ERROR)
2547 event->state = PERF_EVENT_STATE_OFF;
2548 raw_spin_unlock_irq(&ctx->lock);
2549
2550 event_function_call(event, __perf_event_enable, NULL);
2551 }
2552
2553 /*
2554 * See perf_event_disable();
2555 */
2556 void perf_event_enable(struct perf_event *event)
2557 {
2558 struct perf_event_context *ctx;
2559
2560 ctx = perf_event_ctx_lock(event);
2561 _perf_event_enable(event);
2562 perf_event_ctx_unlock(event, ctx);
2563 }
2564 EXPORT_SYMBOL_GPL(perf_event_enable);
2565
2566 struct stop_event_data {
2567 struct perf_event *event;
2568 unsigned int restart;
2569 };
2570
2571 static int __perf_event_stop(void *info)
2572 {
2573 struct stop_event_data *sd = info;
2574 struct perf_event *event = sd->event;
2575
2576 /* if it's already INACTIVE, do nothing */
2577 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2578 return 0;
2579
2580 /* matches smp_wmb() in event_sched_in() */
2581 smp_rmb();
2582
2583 /*
2584 * There is a window with interrupts enabled before we get here,
2585 * so we need to check again lest we try to stop another CPU's event.
2586 */
2587 if (READ_ONCE(event->oncpu) != smp_processor_id())
2588 return -EAGAIN;
2589
2590 event->pmu->stop(event, PERF_EF_UPDATE);
2591
2592 /*
2593 * May race with the actual stop (through perf_pmu_output_stop()),
2594 * but it is only used for events with AUX ring buffer, and such
2595 * events will refuse to restart because of rb::aux_mmap_count==0,
2596 * see comments in perf_aux_output_begin().
2597 *
2598 * Since this is happening on a event-local CPU, no trace is lost
2599 * while restarting.
2600 */
2601 if (sd->restart)
2602 event->pmu->start(event, 0);
2603
2604 return 0;
2605 }
2606
2607 static int perf_event_stop(struct perf_event *event, int restart)
2608 {
2609 struct stop_event_data sd = {
2610 .event = event,
2611 .restart = restart,
2612 };
2613 int ret = 0;
2614
2615 do {
2616 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2617 return 0;
2618
2619 /* matches smp_wmb() in event_sched_in() */
2620 smp_rmb();
2621
2622 /*
2623 * We only want to restart ACTIVE events, so if the event goes
2624 * inactive here (event->oncpu==-1), there's nothing more to do;
2625 * fall through with ret==-ENXIO.
2626 */
2627 ret = cpu_function_call(READ_ONCE(event->oncpu),
2628 __perf_event_stop, &sd);
2629 } while (ret == -EAGAIN);
2630
2631 return ret;
2632 }
2633
2634 /*
2635 * In order to contain the amount of racy and tricky in the address filter
2636 * configuration management, it is a two part process:
2637 *
2638 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2639 * we update the addresses of corresponding vmas in
2640 * event::addr_filters_offs array and bump the event::addr_filters_gen;
2641 * (p2) when an event is scheduled in (pmu::add), it calls
2642 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2643 * if the generation has changed since the previous call.
2644 *
2645 * If (p1) happens while the event is active, we restart it to force (p2).
2646 *
2647 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2648 * pre-existing mappings, called once when new filters arrive via SET_FILTER
2649 * ioctl;
2650 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2651 * registered mapping, called for every new mmap(), with mm::mmap_sem down
2652 * for reading;
2653 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2654 * of exec.
2655 */
2656 void perf_event_addr_filters_sync(struct perf_event *event)
2657 {
2658 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2659
2660 if (!has_addr_filter(event))
2661 return;
2662
2663 raw_spin_lock(&ifh->lock);
2664 if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2665 event->pmu->addr_filters_sync(event);
2666 event->hw.addr_filters_gen = event->addr_filters_gen;
2667 }
2668 raw_spin_unlock(&ifh->lock);
2669 }
2670 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2671
2672 static int _perf_event_refresh(struct perf_event *event, int refresh)
2673 {
2674 /*
2675 * not supported on inherited events
2676 */
2677 if (event->attr.inherit || !is_sampling_event(event))
2678 return -EINVAL;
2679
2680 atomic_add(refresh, &event->event_limit);
2681 _perf_event_enable(event);
2682
2683 return 0;
2684 }
2685
2686 /*
2687 * See perf_event_disable()
2688 */
2689 int perf_event_refresh(struct perf_event *event, int refresh)
2690 {
2691 struct perf_event_context *ctx;
2692 int ret;
2693
2694 ctx = perf_event_ctx_lock(event);
2695 ret = _perf_event_refresh(event, refresh);
2696 perf_event_ctx_unlock(event, ctx);
2697
2698 return ret;
2699 }
2700 EXPORT_SYMBOL_GPL(perf_event_refresh);
2701
2702 static void ctx_sched_out(struct perf_event_context *ctx,
2703 struct perf_cpu_context *cpuctx,
2704 enum event_type_t event_type)
2705 {
2706 int is_active = ctx->is_active;
2707 struct perf_event *event;
2708
2709 lockdep_assert_held(&ctx->lock);
2710
2711 if (likely(!ctx->nr_events)) {
2712 /*
2713 * See __perf_remove_from_context().
2714 */
2715 WARN_ON_ONCE(ctx->is_active);
2716 if (ctx->task)
2717 WARN_ON_ONCE(cpuctx->task_ctx);
2718 return;
2719 }
2720
2721 ctx->is_active &= ~event_type;
2722 if (!(ctx->is_active & EVENT_ALL))
2723 ctx->is_active = 0;
2724
2725 if (ctx->task) {
2726 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2727 if (!ctx->is_active)
2728 cpuctx->task_ctx = NULL;
2729 }
2730
2731 /*
2732 * Always update time if it was set; not only when it changes.
2733 * Otherwise we can 'forget' to update time for any but the last
2734 * context we sched out. For example:
2735 *
2736 * ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2737 * ctx_sched_out(.event_type = EVENT_PINNED)
2738 *
2739 * would only update time for the pinned events.
2740 */
2741 if (is_active & EVENT_TIME) {
2742 /* update (and stop) ctx time */
2743 update_context_time(ctx);
2744 update_cgrp_time_from_cpuctx(cpuctx);
2745 }
2746
2747 is_active ^= ctx->is_active; /* changed bits */
2748
2749 if (!ctx->nr_active || !(is_active & EVENT_ALL))
2750 return;
2751
2752 perf_pmu_disable(ctx->pmu);
2753 if (is_active & EVENT_PINNED) {
2754 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2755 group_sched_out(event, cpuctx, ctx);
2756 }
2757
2758 if (is_active & EVENT_FLEXIBLE) {
2759 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2760 group_sched_out(event, cpuctx, ctx);
2761 }
2762 perf_pmu_enable(ctx->pmu);
2763 }
2764
2765 /*
2766 * Test whether two contexts are equivalent, i.e. whether they have both been
2767 * cloned from the same version of the same context.
2768 *
2769 * Equivalence is measured using a generation number in the context that is
2770 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2771 * and list_del_event().
2772 */
2773 static int context_equiv(struct perf_event_context *ctx1,
2774 struct perf_event_context *ctx2)
2775 {
2776 lockdep_assert_held(&ctx1->lock);
2777 lockdep_assert_held(&ctx2->lock);
2778
2779 /* Pinning disables the swap optimization */
2780 if (ctx1->pin_count || ctx2->pin_count)
2781 return 0;
2782
2783 /* If ctx1 is the parent of ctx2 */
2784 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2785 return 1;
2786
2787 /* If ctx2 is the parent of ctx1 */
2788 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2789 return 1;
2790
2791 /*
2792 * If ctx1 and ctx2 have the same parent; we flatten the parent
2793 * hierarchy, see perf_event_init_context().
2794 */
2795 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2796 ctx1->parent_gen == ctx2->parent_gen)
2797 return 1;
2798
2799 /* Unmatched */
2800 return 0;
2801 }
2802
2803 static void __perf_event_sync_stat(struct perf_event *event,
2804 struct perf_event *next_event)
2805 {
2806 u64 value;
2807
2808 if (!event->attr.inherit_stat)
2809 return;
2810
2811 /*
2812 * Update the event value, we cannot use perf_event_read()
2813 * because we're in the middle of a context switch and have IRQs
2814 * disabled, which upsets smp_call_function_single(), however
2815 * we know the event must be on the current CPU, therefore we
2816 * don't need to use it.
2817 */
2818 switch (event->state) {
2819 case PERF_EVENT_STATE_ACTIVE:
2820 event->pmu->read(event);
2821 /* fall-through */
2822
2823 case PERF_EVENT_STATE_INACTIVE:
2824 update_event_times(event);
2825 break;
2826
2827 default:
2828 break;
2829 }
2830
2831 /*
2832 * In order to keep per-task stats reliable we need to flip the event
2833 * values when we flip the contexts.
2834 */
2835 value = local64_read(&next_event->count);
2836 value = local64_xchg(&event->count, value);
2837 local64_set(&next_event->count, value);
2838
2839 swap(event->total_time_enabled, next_event->total_time_enabled);
2840 swap(event->total_time_running, next_event->total_time_running);
2841
2842 /*
2843 * Since we swizzled the values, update the user visible data too.
2844 */
2845 perf_event_update_userpage(event);
2846 perf_event_update_userpage(next_event);
2847 }
2848
2849 static void perf_event_sync_stat(struct perf_event_context *ctx,
2850 struct perf_event_context *next_ctx)
2851 {
2852 struct perf_event *event, *next_event;
2853
2854 if (!ctx->nr_stat)
2855 return;
2856
2857 update_context_time(ctx);
2858
2859 event = list_first_entry(&ctx->event_list,
2860 struct perf_event, event_entry);
2861
2862 next_event = list_first_entry(&next_ctx->event_list,
2863 struct perf_event, event_entry);
2864
2865 while (&event->event_entry != &ctx->event_list &&
2866 &next_event->event_entry != &next_ctx->event_list) {
2867
2868 __perf_event_sync_stat(event, next_event);
2869
2870 event = list_next_entry(event, event_entry);
2871 next_event = list_next_entry(next_event, event_entry);
2872 }
2873 }
2874
2875 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2876 struct task_struct *next)
2877 {
2878 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2879 struct perf_event_context *next_ctx;
2880 struct perf_event_context *parent, *next_parent;
2881 struct perf_cpu_context *cpuctx;
2882 int do_switch = 1;
2883
2884 if (likely(!ctx))
2885 return;
2886
2887 cpuctx = __get_cpu_context(ctx);
2888 if (!cpuctx->task_ctx)
2889 return;
2890
2891 rcu_read_lock();
2892 next_ctx = next->perf_event_ctxp[ctxn];
2893 if (!next_ctx)
2894 goto unlock;
2895
2896 parent = rcu_dereference(ctx->parent_ctx);
2897 next_parent = rcu_dereference(next_ctx->parent_ctx);
2898
2899 /* If neither context have a parent context; they cannot be clones. */
2900 if (!parent && !next_parent)
2901 goto unlock;
2902
2903 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2904 /*
2905 * Looks like the two contexts are clones, so we might be
2906 * able to optimize the context switch. We lock both
2907 * contexts and check that they are clones under the
2908 * lock (including re-checking that neither has been
2909 * uncloned in the meantime). It doesn't matter which
2910 * order we take the locks because no other cpu could
2911 * be trying to lock both of these tasks.
2912 */
2913 raw_spin_lock(&ctx->lock);
2914 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2915 if (context_equiv(ctx, next_ctx)) {
2916 WRITE_ONCE(ctx->task, next);
2917 WRITE_ONCE(next_ctx->task, task);
2918
2919 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2920
2921 /*
2922 * RCU_INIT_POINTER here is safe because we've not
2923 * modified the ctx and the above modification of
2924 * ctx->task and ctx->task_ctx_data are immaterial
2925 * since those values are always verified under
2926 * ctx->lock which we're now holding.
2927 */
2928 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
2929 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
2930
2931 do_switch = 0;
2932
2933 perf_event_sync_stat(ctx, next_ctx);
2934 }
2935 raw_spin_unlock(&next_ctx->lock);
2936 raw_spin_unlock(&ctx->lock);
2937 }
2938 unlock:
2939 rcu_read_unlock();
2940
2941 if (do_switch) {
2942 raw_spin_lock(&ctx->lock);
2943 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
2944 raw_spin_unlock(&ctx->lock);
2945 }
2946 }
2947
2948 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
2949
2950 void perf_sched_cb_dec(struct pmu *pmu)
2951 {
2952 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2953
2954 this_cpu_dec(perf_sched_cb_usages);
2955
2956 if (!--cpuctx->sched_cb_usage)
2957 list_del(&cpuctx->sched_cb_entry);
2958 }
2959
2960
2961 void perf_sched_cb_inc(struct pmu *pmu)
2962 {
2963 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2964
2965 if (!cpuctx->sched_cb_usage++)
2966 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
2967
2968 this_cpu_inc(perf_sched_cb_usages);
2969 }
2970
2971 /*
2972 * This function provides the context switch callback to the lower code
2973 * layer. It is invoked ONLY when the context switch callback is enabled.
2974 *
2975 * This callback is relevant even to per-cpu events; for example multi event
2976 * PEBS requires this to provide PID/TID information. This requires we flush
2977 * all queued PEBS records before we context switch to a new task.
2978 */
2979 static void perf_pmu_sched_task(struct task_struct *prev,
2980 struct task_struct *next,
2981 bool sched_in)
2982 {
2983 struct perf_cpu_context *cpuctx;
2984 struct pmu *pmu;
2985
2986 if (prev == next)
2987 return;
2988
2989 list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
2990 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
2991
2992 if (WARN_ON_ONCE(!pmu->sched_task))
2993 continue;
2994
2995 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2996 perf_pmu_disable(pmu);
2997
2998 pmu->sched_task(cpuctx->task_ctx, sched_in);
2999
3000 perf_pmu_enable(pmu);
3001 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3002 }
3003 }
3004
3005 static void perf_event_switch(struct task_struct *task,
3006 struct task_struct *next_prev, bool sched_in);
3007
3008 #define for_each_task_context_nr(ctxn) \
3009 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3010
3011 /*
3012 * Called from scheduler to remove the events of the current task,
3013 * with interrupts disabled.
3014 *
3015 * We stop each event and update the event value in event->count.
3016 *
3017 * This does not protect us against NMI, but disable()
3018 * sets the disabled bit in the control field of event _before_
3019 * accessing the event control register. If a NMI hits, then it will
3020 * not restart the event.
3021 */
3022 void __perf_event_task_sched_out(struct task_struct *task,
3023 struct task_struct *next)
3024 {
3025 int ctxn;
3026
3027 if (__this_cpu_read(perf_sched_cb_usages))
3028 perf_pmu_sched_task(task, next, false);
3029
3030 if (atomic_read(&nr_switch_events))
3031 perf_event_switch(task, next, false);
3032
3033 for_each_task_context_nr(ctxn)
3034 perf_event_context_sched_out(task, ctxn, next);
3035
3036 /*
3037 * if cgroup events exist on this CPU, then we need
3038 * to check if we have to switch out PMU state.
3039 * cgroup event are system-wide mode only
3040 */
3041 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3042 perf_cgroup_sched_out(task, next);
3043 }
3044
3045 /*
3046 * Called with IRQs disabled
3047 */
3048 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3049 enum event_type_t event_type)
3050 {
3051 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3052 }
3053
3054 static void
3055 ctx_pinned_sched_in(struct perf_event_context *ctx,
3056 struct perf_cpu_context *cpuctx)
3057 {
3058 struct perf_event *event;
3059
3060 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
3061 if (event->state <= PERF_EVENT_STATE_OFF)
3062 continue;
3063 if (!event_filter_match(event))
3064 continue;
3065
3066 /* may need to reset tstamp_enabled */
3067 if (is_cgroup_event(event))
3068 perf_cgroup_mark_enabled(event, ctx);
3069
3070 if (group_can_go_on(event, cpuctx, 1))
3071 group_sched_in(event, cpuctx, ctx);
3072
3073 /*
3074 * If this pinned group hasn't been scheduled,
3075 * put it in error state.
3076 */
3077 if (event->state == PERF_EVENT_STATE_INACTIVE) {
3078 update_group_times(event);
3079 event->state = PERF_EVENT_STATE_ERROR;
3080 }
3081 }
3082 }
3083
3084 static void
3085 ctx_flexible_sched_in(struct perf_event_context *ctx,
3086 struct perf_cpu_context *cpuctx)
3087 {
3088 struct perf_event *event;
3089 int can_add_hw = 1;
3090
3091 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
3092 /* Ignore events in OFF or ERROR state */
3093 if (event->state <= PERF_EVENT_STATE_OFF)
3094 continue;
3095 /*
3096 * Listen to the 'cpu' scheduling filter constraint
3097 * of events:
3098 */
3099 if (!event_filter_match(event))
3100 continue;
3101
3102 /* may need to reset tstamp_enabled */
3103 if (is_cgroup_event(event))
3104 perf_cgroup_mark_enabled(event, ctx);
3105
3106 if (group_can_go_on(event, cpuctx, can_add_hw)) {
3107 if (group_sched_in(event, cpuctx, ctx))
3108 can_add_hw = 0;
3109 }
3110 }
3111 }
3112
3113 static void
3114 ctx_sched_in(struct perf_event_context *ctx,
3115 struct perf_cpu_context *cpuctx,
3116 enum event_type_t event_type,
3117 struct task_struct *task)
3118 {
3119 int is_active = ctx->is_active;
3120 u64 now;
3121
3122 lockdep_assert_held(&ctx->lock);
3123
3124 if (likely(!ctx->nr_events))
3125 return;
3126
3127 ctx->is_active |= (event_type | EVENT_TIME);
3128 if (ctx->task) {
3129 if (!is_active)
3130 cpuctx->task_ctx = ctx;
3131 else
3132 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3133 }
3134
3135 is_active ^= ctx->is_active; /* changed bits */
3136
3137 if (is_active & EVENT_TIME) {
3138 /* start ctx time */
3139 now = perf_clock();
3140 ctx->timestamp = now;
3141 perf_cgroup_set_timestamp(task, ctx);
3142 }
3143
3144 /*
3145 * First go through the list and put on any pinned groups
3146 * in order to give them the best chance of going on.
3147 */
3148 if (is_active & EVENT_PINNED)
3149 ctx_pinned_sched_in(ctx, cpuctx);
3150
3151 /* Then walk through the lower prio flexible groups */
3152 if (is_active & EVENT_FLEXIBLE)
3153 ctx_flexible_sched_in(ctx, cpuctx);
3154 }
3155
3156 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3157 enum event_type_t event_type,
3158 struct task_struct *task)
3159 {
3160 struct perf_event_context *ctx = &cpuctx->ctx;
3161
3162 ctx_sched_in(ctx, cpuctx, event_type, task);
3163 }
3164
3165 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3166 struct task_struct *task)
3167 {
3168 struct perf_cpu_context *cpuctx;
3169
3170 cpuctx = __get_cpu_context(ctx);
3171 if (cpuctx->task_ctx == ctx)
3172 return;
3173
3174 perf_ctx_lock(cpuctx, ctx);
3175 perf_pmu_disable(ctx->pmu);
3176 /*
3177 * We want to keep the following priority order:
3178 * cpu pinned (that don't need to move), task pinned,
3179 * cpu flexible, task flexible.
3180 *
3181 * However, if task's ctx is not carrying any pinned
3182 * events, no need to flip the cpuctx's events around.
3183 */
3184 if (!list_empty(&ctx->pinned_groups))
3185 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3186 perf_event_sched_in(cpuctx, ctx, task);
3187 perf_pmu_enable(ctx->pmu);
3188 perf_ctx_unlock(cpuctx, ctx);
3189 }
3190
3191 /*
3192 * Called from scheduler to add the events of the current task
3193 * with interrupts disabled.
3194 *
3195 * We restore the event value and then enable it.
3196 *
3197 * This does not protect us against NMI, but enable()
3198 * sets the enabled bit in the control field of event _before_
3199 * accessing the event control register. If a NMI hits, then it will
3200 * keep the event running.
3201 */
3202 void __perf_event_task_sched_in(struct task_struct *prev,
3203 struct task_struct *task)
3204 {
3205 struct perf_event_context *ctx;
3206 int ctxn;
3207
3208 /*
3209 * If cgroup events exist on this CPU, then we need to check if we have
3210 * to switch in PMU state; cgroup event are system-wide mode only.
3211 *
3212 * Since cgroup events are CPU events, we must schedule these in before
3213 * we schedule in the task events.
3214 */
3215 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3216 perf_cgroup_sched_in(prev, task);
3217
3218 for_each_task_context_nr(ctxn) {
3219 ctx = task->perf_event_ctxp[ctxn];
3220 if (likely(!ctx))
3221 continue;
3222
3223 perf_event_context_sched_in(ctx, task);
3224 }
3225
3226 if (atomic_read(&nr_switch_events))
3227 perf_event_switch(task, prev, true);
3228
3229 if (__this_cpu_read(perf_sched_cb_usages))
3230 perf_pmu_sched_task(prev, task, true);
3231 }
3232
3233 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3234 {
3235 u64 frequency = event->attr.sample_freq;
3236 u64 sec = NSEC_PER_SEC;
3237 u64 divisor, dividend;
3238
3239 int count_fls, nsec_fls, frequency_fls, sec_fls;
3240
3241 count_fls = fls64(count);
3242 nsec_fls = fls64(nsec);
3243 frequency_fls = fls64(frequency);
3244 sec_fls = 30;
3245
3246 /*
3247 * We got @count in @nsec, with a target of sample_freq HZ
3248 * the target period becomes:
3249 *
3250 * @count * 10^9
3251 * period = -------------------
3252 * @nsec * sample_freq
3253 *
3254 */
3255
3256 /*
3257 * Reduce accuracy by one bit such that @a and @b converge
3258 * to a similar magnitude.
3259 */
3260 #define REDUCE_FLS(a, b) \
3261 do { \
3262 if (a##_fls > b##_fls) { \
3263 a >>= 1; \
3264 a##_fls--; \
3265 } else { \
3266 b >>= 1; \
3267 b##_fls--; \
3268 } \
3269 } while (0)
3270
3271 /*
3272 * Reduce accuracy until either term fits in a u64, then proceed with
3273 * the other, so that finally we can do a u64/u64 division.
3274 */
3275 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3276 REDUCE_FLS(nsec, frequency);
3277 REDUCE_FLS(sec, count);
3278 }
3279
3280 if (count_fls + sec_fls > 64) {
3281 divisor = nsec * frequency;
3282
3283 while (count_fls + sec_fls > 64) {
3284 REDUCE_FLS(count, sec);
3285 divisor >>= 1;
3286 }
3287
3288 dividend = count * sec;
3289 } else {
3290 dividend = count * sec;
3291
3292 while (nsec_fls + frequency_fls > 64) {
3293 REDUCE_FLS(nsec, frequency);
3294 dividend >>= 1;
3295 }
3296
3297 divisor = nsec * frequency;
3298 }
3299
3300 if (!divisor)
3301 return dividend;
3302
3303 return div64_u64(dividend, divisor);
3304 }
3305
3306 static DEFINE_PER_CPU(int, perf_throttled_count);
3307 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3308
3309 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3310 {
3311 struct hw_perf_event *hwc = &event->hw;
3312 s64 period, sample_period;
3313 s64 delta;
3314
3315 period = perf_calculate_period(event, nsec, count);
3316
3317 delta = (s64)(period - hwc->sample_period);
3318 delta = (delta + 7) / 8; /* low pass filter */
3319
3320 sample_period = hwc->sample_period + delta;
3321
3322 if (!sample_period)
3323 sample_period = 1;
3324
3325 hwc->sample_period = sample_period;
3326
3327 if (local64_read(&hwc->period_left) > 8*sample_period) {
3328 if (disable)
3329 event->pmu->stop(event, PERF_EF_UPDATE);
3330
3331 local64_set(&hwc->period_left, 0);
3332
3333 if (disable)
3334 event->pmu->start(event, PERF_EF_RELOAD);
3335 }
3336 }
3337
3338 /*
3339 * combine freq adjustment with unthrottling to avoid two passes over the
3340 * events. At the same time, make sure, having freq events does not change
3341 * the rate of unthrottling as that would introduce bias.
3342 */
3343 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3344 int needs_unthr)
3345 {
3346 struct perf_event *event;
3347 struct hw_perf_event *hwc;
3348 u64 now, period = TICK_NSEC;
3349 s64 delta;
3350
3351 /*
3352 * only need to iterate over all events iff:
3353 * - context have events in frequency mode (needs freq adjust)
3354 * - there are events to unthrottle on this cpu
3355 */
3356 if (!(ctx->nr_freq || needs_unthr))
3357 return;
3358
3359 raw_spin_lock(&ctx->lock);
3360 perf_pmu_disable(ctx->pmu);
3361
3362 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3363 if (event->state != PERF_EVENT_STATE_ACTIVE)
3364 continue;
3365
3366 if (!event_filter_match(event))
3367 continue;
3368
3369 perf_pmu_disable(event->pmu);
3370
3371 hwc = &event->hw;
3372
3373 if (hwc->interrupts == MAX_INTERRUPTS) {
3374 hwc->interrupts = 0;
3375 perf_log_throttle(event, 1);
3376 event->pmu->start(event, 0);
3377 }
3378
3379 if (!event->attr.freq || !event->attr.sample_freq)
3380 goto next;
3381
3382 /*
3383 * stop the event and update event->count
3384 */
3385 event->pmu->stop(event, PERF_EF_UPDATE);
3386
3387 now = local64_read(&event->count);
3388 delta = now - hwc->freq_count_stamp;
3389 hwc->freq_count_stamp = now;
3390
3391 /*
3392 * restart the event
3393 * reload only if value has changed
3394 * we have stopped the event so tell that
3395 * to perf_adjust_period() to avoid stopping it
3396 * twice.
3397 */
3398 if (delta > 0)
3399 perf_adjust_period(event, period, delta, false);
3400
3401 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3402 next:
3403 perf_pmu_enable(event->pmu);
3404 }
3405
3406 perf_pmu_enable(ctx->pmu);
3407 raw_spin_unlock(&ctx->lock);
3408 }
3409
3410 /*
3411 * Round-robin a context's events:
3412 */
3413 static void rotate_ctx(struct perf_event_context *ctx)
3414 {
3415 /*
3416 * Rotate the first entry last of non-pinned groups. Rotation might be
3417 * disabled by the inheritance code.
3418 */
3419 if (!ctx->rotate_disable)
3420 list_rotate_left(&ctx->flexible_groups);
3421 }
3422
3423 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3424 {
3425 struct perf_event_context *ctx = NULL;
3426 int rotate = 0;
3427
3428 if (cpuctx->ctx.nr_events) {
3429 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3430 rotate = 1;
3431 }
3432
3433 ctx = cpuctx->task_ctx;
3434 if (ctx && ctx->nr_events) {
3435 if (ctx->nr_events != ctx->nr_active)
3436 rotate = 1;
3437 }
3438
3439 if (!rotate)
3440 goto done;
3441
3442 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3443 perf_pmu_disable(cpuctx->ctx.pmu);
3444
3445 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3446 if (ctx)
3447 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3448
3449 rotate_ctx(&cpuctx->ctx);
3450 if (ctx)
3451 rotate_ctx(ctx);
3452
3453 perf_event_sched_in(cpuctx, ctx, current);
3454
3455 perf_pmu_enable(cpuctx->ctx.pmu);
3456 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3457 done:
3458
3459 return rotate;
3460 }
3461
3462 void perf_event_task_tick(void)
3463 {
3464 struct list_head *head = this_cpu_ptr(&active_ctx_list);
3465 struct perf_event_context *ctx, *tmp;
3466 int throttled;
3467
3468 WARN_ON(!irqs_disabled());
3469
3470 __this_cpu_inc(perf_throttled_seq);
3471 throttled = __this_cpu_xchg(perf_throttled_count, 0);
3472 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3473
3474 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3475 perf_adjust_freq_unthr_context(ctx, throttled);
3476 }
3477
3478 static int event_enable_on_exec(struct perf_event *event,
3479 struct perf_event_context *ctx)
3480 {
3481 if (!event->attr.enable_on_exec)
3482 return 0;
3483
3484 event->attr.enable_on_exec = 0;
3485 if (event->state >= PERF_EVENT_STATE_INACTIVE)
3486 return 0;
3487
3488 __perf_event_mark_enabled(event);
3489
3490 return 1;
3491 }
3492
3493 /*
3494 * Enable all of a task's events that have been marked enable-on-exec.
3495 * This expects task == current.
3496 */
3497 static void perf_event_enable_on_exec(int ctxn)
3498 {
3499 struct perf_event_context *ctx, *clone_ctx = NULL;
3500 enum event_type_t event_type = 0;
3501 struct perf_cpu_context *cpuctx;
3502 struct perf_event *event;
3503 unsigned long flags;
3504 int enabled = 0;
3505
3506 local_irq_save(flags);
3507 ctx = current->perf_event_ctxp[ctxn];
3508 if (!ctx || !ctx->nr_events)
3509 goto out;
3510
3511 cpuctx = __get_cpu_context(ctx);
3512 perf_ctx_lock(cpuctx, ctx);
3513 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3514 list_for_each_entry(event, &ctx->event_list, event_entry) {
3515 enabled |= event_enable_on_exec(event, ctx);
3516 event_type |= get_event_type(event);
3517 }
3518
3519 /*
3520 * Unclone and reschedule this context if we enabled any event.
3521 */
3522 if (enabled) {
3523 clone_ctx = unclone_ctx(ctx);
3524 ctx_resched(cpuctx, ctx, event_type);
3525 }
3526 perf_ctx_unlock(cpuctx, ctx);
3527
3528 out:
3529 local_irq_restore(flags);
3530
3531 if (clone_ctx)
3532 put_ctx(clone_ctx);
3533 }
3534
3535 struct perf_read_data {
3536 struct perf_event *event;
3537 bool group;
3538 int ret;
3539 };
3540
3541 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
3542 {
3543 u16 local_pkg, event_pkg;
3544
3545 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
3546 int local_cpu = smp_processor_id();
3547
3548 event_pkg = topology_physical_package_id(event_cpu);
3549 local_pkg = topology_physical_package_id(local_cpu);
3550
3551 if (event_pkg == local_pkg)
3552 return local_cpu;
3553 }
3554
3555 return event_cpu;
3556 }
3557
3558 /*
3559 * Cross CPU call to read the hardware event
3560 */
3561 static void __perf_event_read(void *info)
3562 {
3563 struct perf_read_data *data = info;
3564 struct perf_event *sub, *event = data->event;
3565 struct perf_event_context *ctx = event->ctx;
3566 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3567 struct pmu *pmu = event->pmu;
3568
3569 /*
3570 * If this is a task context, we need to check whether it is
3571 * the current task context of this cpu. If not it has been
3572 * scheduled out before the smp call arrived. In that case
3573 * event->count would have been updated to a recent sample
3574 * when the event was scheduled out.
3575 */
3576 if (ctx->task && cpuctx->task_ctx != ctx)
3577 return;
3578
3579 raw_spin_lock(&ctx->lock);
3580 if (ctx->is_active) {
3581 update_context_time(ctx);
3582 update_cgrp_time_from_event(event);
3583 }
3584
3585 update_event_times(event);
3586 if (event->state != PERF_EVENT_STATE_ACTIVE)
3587 goto unlock;
3588
3589 if (!data->group) {
3590 pmu->read(event);
3591 data->ret = 0;
3592 goto unlock;
3593 }
3594
3595 pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3596
3597 pmu->read(event);
3598
3599 list_for_each_entry(sub, &event->sibling_list, group_entry) {
3600 update_event_times(sub);
3601 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3602 /*
3603 * Use sibling's PMU rather than @event's since
3604 * sibling could be on different (eg: software) PMU.
3605 */
3606 sub->pmu->read(sub);
3607 }
3608 }
3609
3610 data->ret = pmu->commit_txn(pmu);
3611
3612 unlock:
3613 raw_spin_unlock(&ctx->lock);
3614 }
3615
3616 static inline u64 perf_event_count(struct perf_event *event)
3617 {
3618 if (event->pmu->count)
3619 return event->pmu->count(event);
3620
3621 return __perf_event_count(event);
3622 }
3623
3624 /*
3625 * NMI-safe method to read a local event, that is an event that
3626 * is:
3627 * - either for the current task, or for this CPU
3628 * - does not have inherit set, for inherited task events
3629 * will not be local and we cannot read them atomically
3630 * - must not have a pmu::count method
3631 */
3632 u64 perf_event_read_local(struct perf_event *event)
3633 {
3634 unsigned long flags;
3635 u64 val;
3636
3637 /*
3638 * Disabling interrupts avoids all counter scheduling (context
3639 * switches, timer based rotation and IPIs).
3640 */
3641 local_irq_save(flags);
3642
3643 /* If this is a per-task event, it must be for current */
3644 WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
3645 event->hw.target != current);
3646
3647 /* If this is a per-CPU event, it must be for this CPU */
3648 WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
3649 event->cpu != smp_processor_id());
3650
3651 /*
3652 * It must not be an event with inherit set, we cannot read
3653 * all child counters from atomic context.
3654 */
3655 WARN_ON_ONCE(event->attr.inherit);
3656
3657 /*
3658 * It must not have a pmu::count method, those are not
3659 * NMI safe.
3660 */
3661 WARN_ON_ONCE(event->pmu->count);
3662
3663 /*
3664 * If the event is currently on this CPU, its either a per-task event,
3665 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3666 * oncpu == -1).
3667 */
3668 if (event->oncpu == smp_processor_id())
3669 event->pmu->read(event);
3670
3671 val = local64_read(&event->count);
3672 local_irq_restore(flags);
3673
3674 return val;
3675 }
3676
3677 static int perf_event_read(struct perf_event *event, bool group)
3678 {
3679 int event_cpu, ret = 0;
3680
3681 /*
3682 * If event is enabled and currently active on a CPU, update the
3683 * value in the event structure:
3684 */
3685 if (event->state == PERF_EVENT_STATE_ACTIVE) {
3686 struct perf_read_data data = {
3687 .event = event,
3688 .group = group,
3689 .ret = 0,
3690 };
3691
3692 event_cpu = READ_ONCE(event->oncpu);
3693 if ((unsigned)event_cpu >= nr_cpu_ids)
3694 return 0;
3695
3696 preempt_disable();
3697 event_cpu = __perf_event_read_cpu(event, event_cpu);
3698
3699 /*
3700 * Purposely ignore the smp_call_function_single() return
3701 * value.
3702 *
3703 * If event_cpu isn't a valid CPU it means the event got
3704 * scheduled out and that will have updated the event count.
3705 *
3706 * Therefore, either way, we'll have an up-to-date event count
3707 * after this.
3708 */
3709 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
3710 preempt_enable();
3711 ret = data.ret;
3712 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
3713 struct perf_event_context *ctx = event->ctx;
3714 unsigned long flags;
3715
3716 raw_spin_lock_irqsave(&ctx->lock, flags);
3717 /*
3718 * may read while context is not active
3719 * (e.g., thread is blocked), in that case
3720 * we cannot update context time
3721 */
3722 if (ctx->is_active) {
3723 update_context_time(ctx);
3724 update_cgrp_time_from_event(event);
3725 }
3726 if (group)
3727 update_group_times(event);
3728 else
3729 update_event_times(event);
3730 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3731 }
3732
3733 return ret;
3734 }
3735
3736 /*
3737 * Initialize the perf_event context in a task_struct:
3738 */
3739 static void __perf_event_init_context(struct perf_event_context *ctx)
3740 {
3741 raw_spin_lock_init(&ctx->lock);
3742 mutex_init(&ctx->mutex);
3743 INIT_LIST_HEAD(&ctx->active_ctx_list);
3744 INIT_LIST_HEAD(&ctx->pinned_groups);
3745 INIT_LIST_HEAD(&ctx->flexible_groups);
3746 INIT_LIST_HEAD(&ctx->event_list);
3747 atomic_set(&ctx->refcount, 1);
3748 }
3749
3750 static struct perf_event_context *
3751 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3752 {
3753 struct perf_event_context *ctx;
3754
3755 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3756 if (!ctx)
3757 return NULL;
3758
3759 __perf_event_init_context(ctx);
3760 if (task) {
3761 ctx->task = task;
3762 get_task_struct(task);
3763 }
3764 ctx->pmu = pmu;
3765
3766 return ctx;
3767 }
3768
3769 static struct task_struct *
3770 find_lively_task_by_vpid(pid_t vpid)
3771 {
3772 struct task_struct *task;
3773
3774 rcu_read_lock();
3775 if (!vpid)
3776 task = current;
3777 else
3778 task = find_task_by_vpid(vpid);
3779 if (task)
3780 get_task_struct(task);
3781 rcu_read_unlock();
3782
3783 if (!task)
3784 return ERR_PTR(-ESRCH);
3785
3786 return task;
3787 }
3788
3789 /*
3790 * Returns a matching context with refcount and pincount.
3791 */
3792 static struct perf_event_context *
3793 find_get_context(struct pmu *pmu, struct task_struct *task,
3794 struct perf_event *event)
3795 {
3796 struct perf_event_context *ctx, *clone_ctx = NULL;
3797 struct perf_cpu_context *cpuctx;
3798 void *task_ctx_data = NULL;
3799 unsigned long flags;
3800 int ctxn, err;
3801 int cpu = event->cpu;
3802
3803 if (!task) {
3804 /* Must be root to operate on a CPU event: */
3805 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3806 return ERR_PTR(-EACCES);
3807
3808 /*
3809 * We could be clever and allow to attach a event to an
3810 * offline CPU and activate it when the CPU comes up, but
3811 * that's for later.
3812 */
3813 if (!cpu_online(cpu))
3814 return ERR_PTR(-ENODEV);
3815
3816 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3817 ctx = &cpuctx->ctx;
3818 get_ctx(ctx);
3819 ++ctx->pin_count;
3820
3821 return ctx;
3822 }
3823
3824 err = -EINVAL;
3825 ctxn = pmu->task_ctx_nr;
3826 if (ctxn < 0)
3827 goto errout;
3828
3829 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3830 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3831 if (!task_ctx_data) {
3832 err = -ENOMEM;
3833 goto errout;
3834 }
3835 }
3836
3837 retry:
3838 ctx = perf_lock_task_context(task, ctxn, &flags);
3839 if (ctx) {
3840 clone_ctx = unclone_ctx(ctx);
3841 ++ctx->pin_count;
3842
3843 if (task_ctx_data && !ctx->task_ctx_data) {
3844 ctx->task_ctx_data = task_ctx_data;
3845 task_ctx_data = NULL;
3846 }
3847 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3848
3849 if (clone_ctx)
3850 put_ctx(clone_ctx);
3851 } else {
3852 ctx = alloc_perf_context(pmu, task);
3853 err = -ENOMEM;
3854 if (!ctx)
3855 goto errout;
3856
3857 if (task_ctx_data) {
3858 ctx->task_ctx_data = task_ctx_data;
3859 task_ctx_data = NULL;
3860 }
3861
3862 err = 0;
3863 mutex_lock(&task->perf_event_mutex);
3864 /*
3865 * If it has already passed perf_event_exit_task().
3866 * we must see PF_EXITING, it takes this mutex too.
3867 */
3868 if (task->flags & PF_EXITING)
3869 err = -ESRCH;
3870 else if (task->perf_event_ctxp[ctxn])
3871 err = -EAGAIN;
3872 else {
3873 get_ctx(ctx);
3874 ++ctx->pin_count;
3875 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3876 }
3877 mutex_unlock(&task->perf_event_mutex);
3878
3879 if (unlikely(err)) {
3880 put_ctx(ctx);
3881
3882 if (err == -EAGAIN)
3883 goto retry;
3884 goto errout;
3885 }
3886 }
3887
3888 kfree(task_ctx_data);
3889 return ctx;
3890
3891 errout:
3892 kfree(task_ctx_data);
3893 return ERR_PTR(err);
3894 }
3895
3896 static void perf_event_free_filter(struct perf_event *event);
3897 static void perf_event_free_bpf_prog(struct perf_event *event);
3898
3899 static void free_event_rcu(struct rcu_head *head)
3900 {
3901 struct perf_event *event;
3902
3903 event = container_of(head, struct perf_event, rcu_head);
3904 if (event->ns)
3905 put_pid_ns(event->ns);
3906 perf_event_free_filter(event);
3907 kfree(event);
3908 }
3909
3910 static void ring_buffer_attach(struct perf_event *event,
3911 struct ring_buffer *rb);
3912
3913 static void detach_sb_event(struct perf_event *event)
3914 {
3915 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
3916
3917 raw_spin_lock(&pel->lock);
3918 list_del_rcu(&event->sb_list);
3919 raw_spin_unlock(&pel->lock);
3920 }
3921
3922 static bool is_sb_event(struct perf_event *event)
3923 {
3924 struct perf_event_attr *attr = &event->attr;
3925
3926 if (event->parent)
3927 return false;
3928
3929 if (event->attach_state & PERF_ATTACH_TASK)
3930 return false;
3931
3932 if (attr->mmap || attr->mmap_data || attr->mmap2 ||
3933 attr->comm || attr->comm_exec ||
3934 attr->task ||
3935 attr->context_switch)
3936 return true;
3937 return false;
3938 }
3939
3940 static void unaccount_pmu_sb_event(struct perf_event *event)
3941 {
3942 if (is_sb_event(event))
3943 detach_sb_event(event);
3944 }
3945
3946 static void unaccount_event_cpu(struct perf_event *event, int cpu)
3947 {
3948 if (event->parent)
3949 return;
3950
3951 if (is_cgroup_event(event))
3952 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3953 }
3954
3955 #ifdef CONFIG_NO_HZ_FULL
3956 static DEFINE_SPINLOCK(nr_freq_lock);
3957 #endif
3958
3959 static void unaccount_freq_event_nohz(void)
3960 {
3961 #ifdef CONFIG_NO_HZ_FULL
3962 spin_lock(&nr_freq_lock);
3963 if (atomic_dec_and_test(&nr_freq_events))
3964 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
3965 spin_unlock(&nr_freq_lock);
3966 #endif
3967 }
3968
3969 static void unaccount_freq_event(void)
3970 {
3971 if (tick_nohz_full_enabled())
3972 unaccount_freq_event_nohz();
3973 else
3974 atomic_dec(&nr_freq_events);
3975 }
3976
3977 static void unaccount_event(struct perf_event *event)
3978 {
3979 bool dec = false;
3980
3981 if (event->parent)
3982 return;
3983
3984 if (event->attach_state & PERF_ATTACH_TASK)
3985 dec = true;
3986 if (event->attr.mmap || event->attr.mmap_data)
3987 atomic_dec(&nr_mmap_events);
3988 if (event->attr.comm)
3989 atomic_dec(&nr_comm_events);
3990 if (event->attr.task)
3991 atomic_dec(&nr_task_events);
3992 if (event->attr.freq)
3993 unaccount_freq_event();
3994 if (event->attr.context_switch) {
3995 dec = true;
3996 atomic_dec(&nr_switch_events);
3997 }
3998 if (is_cgroup_event(event))
3999 dec = true;
4000 if (has_branch_stack(event))
4001 dec = true;
4002
4003 if (dec) {
4004 if (!atomic_add_unless(&perf_sched_count, -1, 1))
4005 schedule_delayed_work(&perf_sched_work, HZ);
4006 }
4007
4008 unaccount_event_cpu(event, event->cpu);
4009
4010 unaccount_pmu_sb_event(event);
4011 }
4012
4013 static void perf_sched_delayed(struct work_struct *work)
4014 {
4015 mutex_lock(&perf_sched_mutex);
4016 if (atomic_dec_and_test(&perf_sched_count))
4017 static_branch_disable(&perf_sched_events);
4018 mutex_unlock(&perf_sched_mutex);
4019 }
4020
4021 /*
4022 * The following implement mutual exclusion of events on "exclusive" pmus
4023 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4024 * at a time, so we disallow creating events that might conflict, namely:
4025 *
4026 * 1) cpu-wide events in the presence of per-task events,
4027 * 2) per-task events in the presence of cpu-wide events,
4028 * 3) two matching events on the same context.
4029 *
4030 * The former two cases are handled in the allocation path (perf_event_alloc(),
4031 * _free_event()), the latter -- before the first perf_install_in_context().
4032 */
4033 static int exclusive_event_init(struct perf_event *event)
4034 {
4035 struct pmu *pmu = event->pmu;
4036
4037 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4038 return 0;
4039
4040 /*
4041 * Prevent co-existence of per-task and cpu-wide events on the
4042 * same exclusive pmu.
4043 *
4044 * Negative pmu::exclusive_cnt means there are cpu-wide
4045 * events on this "exclusive" pmu, positive means there are
4046 * per-task events.
4047 *
4048 * Since this is called in perf_event_alloc() path, event::ctx
4049 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4050 * to mean "per-task event", because unlike other attach states it
4051 * never gets cleared.
4052 */
4053 if (event->attach_state & PERF_ATTACH_TASK) {
4054 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4055 return -EBUSY;
4056 } else {
4057 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4058 return -EBUSY;
4059 }
4060
4061 return 0;
4062 }
4063
4064 static void exclusive_event_destroy(struct perf_event *event)
4065 {
4066 struct pmu *pmu = event->pmu;
4067
4068 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4069 return;
4070
4071 /* see comment in exclusive_event_init() */
4072 if (event->attach_state & PERF_ATTACH_TASK)
4073 atomic_dec(&pmu->exclusive_cnt);
4074 else
4075 atomic_inc(&pmu->exclusive_cnt);
4076 }
4077
4078 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4079 {
4080 if ((e1->pmu == e2->pmu) &&
4081 (e1->cpu == e2->cpu ||
4082 e1->cpu == -1 ||
4083 e2->cpu == -1))
4084 return true;
4085 return false;
4086 }
4087
4088 /* Called under the same ctx::mutex as perf_install_in_context() */
4089 static bool exclusive_event_installable(struct perf_event *event,
4090 struct perf_event_context *ctx)
4091 {
4092 struct perf_event *iter_event;
4093 struct pmu *pmu = event->pmu;
4094
4095 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4096 return true;
4097
4098 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4099 if (exclusive_event_match(iter_event, event))
4100 return false;
4101 }
4102
4103 return true;
4104 }
4105
4106 static void perf_addr_filters_splice(struct perf_event *event,
4107 struct list_head *head);
4108
4109 static void _free_event(struct perf_event *event)
4110 {
4111 irq_work_sync(&event->pending);
4112
4113 unaccount_event(event);
4114
4115 if (event->rb) {
4116 /*
4117 * Can happen when we close an event with re-directed output.
4118 *
4119 * Since we have a 0 refcount, perf_mmap_close() will skip
4120 * over us; possibly making our ring_buffer_put() the last.
4121 */
4122 mutex_lock(&event->mmap_mutex);
4123 ring_buffer_attach(event, NULL);
4124 mutex_unlock(&event->mmap_mutex);
4125 }
4126
4127 if (is_cgroup_event(event))
4128 perf_detach_cgroup(event);
4129
4130 if (!event->parent) {
4131 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4132 put_callchain_buffers();
4133 }
4134
4135 perf_event_free_bpf_prog(event);
4136 perf_addr_filters_splice(event, NULL);
4137 kfree(event->addr_filters_offs);
4138
4139 if (event->destroy)
4140 event->destroy(event);
4141
4142 if (event->ctx)
4143 put_ctx(event->ctx);
4144
4145 exclusive_event_destroy(event);
4146 module_put(event->pmu->module);
4147
4148 call_rcu(&event->rcu_head, free_event_rcu);
4149 }
4150
4151 /*
4152 * Used to free events which have a known refcount of 1, such as in error paths
4153 * where the event isn't exposed yet and inherited events.
4154 */
4155 static void free_event(struct perf_event *event)
4156 {
4157 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4158 "unexpected event refcount: %ld; ptr=%p\n",
4159 atomic_long_read(&event->refcount), event)) {
4160 /* leak to avoid use-after-free */
4161 return;
4162 }
4163
4164 _free_event(event);
4165 }
4166
4167 /*
4168 * Remove user event from the owner task.
4169 */
4170 static void perf_remove_from_owner(struct perf_event *event)
4171 {
4172 struct task_struct *owner;
4173
4174 rcu_read_lock();
4175 /*
4176 * Matches the smp_store_release() in perf_event_exit_task(). If we
4177 * observe !owner it means the list deletion is complete and we can
4178 * indeed free this event, otherwise we need to serialize on
4179 * owner->perf_event_mutex.
4180 */
4181 owner = lockless_dereference(event->owner);
4182 if (owner) {
4183 /*
4184 * Since delayed_put_task_struct() also drops the last
4185 * task reference we can safely take a new reference
4186 * while holding the rcu_read_lock().
4187 */
4188 get_task_struct(owner);
4189 }
4190 rcu_read_unlock();
4191
4192 if (owner) {
4193 /*
4194 * If we're here through perf_event_exit_task() we're already
4195 * holding ctx->mutex which would be an inversion wrt. the
4196 * normal lock order.
4197 *
4198 * However we can safely take this lock because its the child
4199 * ctx->mutex.
4200 */
4201 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4202
4203 /*
4204 * We have to re-check the event->owner field, if it is cleared
4205 * we raced with perf_event_exit_task(), acquiring the mutex
4206 * ensured they're done, and we can proceed with freeing the
4207 * event.
4208 */
4209 if (event->owner) {
4210 list_del_init(&event->owner_entry);
4211 smp_store_release(&event->owner, NULL);
4212 }
4213 mutex_unlock(&owner->perf_event_mutex);
4214 put_task_struct(owner);
4215 }
4216 }
4217
4218 static void put_event(struct perf_event *event)
4219 {
4220 if (!atomic_long_dec_and_test(&event->refcount))
4221 return;
4222
4223 _free_event(event);
4224 }
4225
4226 /*
4227 * Kill an event dead; while event:refcount will preserve the event
4228 * object, it will not preserve its functionality. Once the last 'user'
4229 * gives up the object, we'll destroy the thing.
4230 */
4231 int perf_event_release_kernel(struct perf_event *event)
4232 {
4233 struct perf_event_context *ctx = event->ctx;
4234 struct perf_event *child, *tmp;
4235
4236 /*
4237 * If we got here through err_file: fput(event_file); we will not have
4238 * attached to a context yet.
4239 */
4240 if (!ctx) {
4241 WARN_ON_ONCE(event->attach_state &
4242 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4243 goto no_ctx;
4244 }
4245
4246 if (!is_kernel_event(event))
4247 perf_remove_from_owner(event);
4248
4249 ctx = perf_event_ctx_lock(event);
4250 WARN_ON_ONCE(ctx->parent_ctx);
4251 perf_remove_from_context(event, DETACH_GROUP);
4252
4253 raw_spin_lock_irq(&ctx->lock);
4254 /*
4255 * Mark this even as STATE_DEAD, there is no external reference to it
4256 * anymore.
4257 *
4258 * Anybody acquiring event->child_mutex after the below loop _must_
4259 * also see this, most importantly inherit_event() which will avoid
4260 * placing more children on the list.
4261 *
4262 * Thus this guarantees that we will in fact observe and kill _ALL_
4263 * child events.
4264 */
4265 event->state = PERF_EVENT_STATE_DEAD;
4266 raw_spin_unlock_irq(&ctx->lock);
4267
4268 perf_event_ctx_unlock(event, ctx);
4269
4270 again:
4271 mutex_lock(&event->child_mutex);
4272 list_for_each_entry(child, &event->child_list, child_list) {
4273
4274 /*
4275 * Cannot change, child events are not migrated, see the
4276 * comment with perf_event_ctx_lock_nested().
4277 */
4278 ctx = lockless_dereference(child->ctx);
4279 /*
4280 * Since child_mutex nests inside ctx::mutex, we must jump
4281 * through hoops. We start by grabbing a reference on the ctx.
4282 *
4283 * Since the event cannot get freed while we hold the
4284 * child_mutex, the context must also exist and have a !0
4285 * reference count.
4286 */
4287 get_ctx(ctx);
4288
4289 /*
4290 * Now that we have a ctx ref, we can drop child_mutex, and
4291 * acquire ctx::mutex without fear of it going away. Then we
4292 * can re-acquire child_mutex.
4293 */
4294 mutex_unlock(&event->child_mutex);
4295 mutex_lock(&ctx->mutex);
4296 mutex_lock(&event->child_mutex);
4297
4298 /*
4299 * Now that we hold ctx::mutex and child_mutex, revalidate our
4300 * state, if child is still the first entry, it didn't get freed
4301 * and we can continue doing so.
4302 */
4303 tmp = list_first_entry_or_null(&event->child_list,
4304 struct perf_event, child_list);
4305 if (tmp == child) {
4306 perf_remove_from_context(child, DETACH_GROUP);
4307 list_del(&child->child_list);
4308 free_event(child);
4309 /*
4310 * This matches the refcount bump in inherit_event();
4311 * this can't be the last reference.
4312 */
4313 put_event(event);
4314 }
4315
4316 mutex_unlock(&event->child_mutex);
4317 mutex_unlock(&ctx->mutex);
4318 put_ctx(ctx);
4319 goto again;
4320 }
4321 mutex_unlock(&event->child_mutex);
4322
4323 no_ctx:
4324 put_event(event); /* Must be the 'last' reference */
4325 return 0;
4326 }
4327 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4328
4329 /*
4330 * Called when the last reference to the file is gone.
4331 */
4332 static int perf_release(struct inode *inode, struct file *file)
4333 {
4334 perf_event_release_kernel(file->private_data);
4335 return 0;
4336 }
4337
4338 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4339 {
4340 struct perf_event *child;
4341 u64 total = 0;
4342
4343 *enabled = 0;
4344 *running = 0;
4345
4346 mutex_lock(&event->child_mutex);
4347
4348 (void)perf_event_read(event, false);
4349 total += perf_event_count(event);
4350
4351 *enabled += event->total_time_enabled +
4352 atomic64_read(&event->child_total_time_enabled);
4353 *running += event->total_time_running +
4354 atomic64_read(&event->child_total_time_running);
4355
4356 list_for_each_entry(child, &event->child_list, child_list) {
4357 (void)perf_event_read(child, false);
4358 total += perf_event_count(child);
4359 *enabled += child->total_time_enabled;
4360 *running += child->total_time_running;
4361 }
4362 mutex_unlock(&event->child_mutex);
4363
4364 return total;
4365 }
4366 EXPORT_SYMBOL_GPL(perf_event_read_value);
4367
4368 static int __perf_read_group_add(struct perf_event *leader,
4369 u64 read_format, u64 *values)
4370 {
4371 struct perf_event *sub;
4372 int n = 1; /* skip @nr */
4373 int ret;
4374
4375 ret = perf_event_read(leader, true);
4376 if (ret)
4377 return ret;
4378
4379 /*
4380 * Since we co-schedule groups, {enabled,running} times of siblings
4381 * will be identical to those of the leader, so we only publish one
4382 * set.
4383 */
4384 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4385 values[n++] += leader->total_time_enabled +
4386 atomic64_read(&leader->child_total_time_enabled);
4387 }
4388
4389 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4390 values[n++] += leader->total_time_running +
4391 atomic64_read(&leader->child_total_time_running);
4392 }
4393
4394 /*
4395 * Write {count,id} tuples for every sibling.
4396 */
4397 values[n++] += perf_event_count(leader);
4398 if (read_format & PERF_FORMAT_ID)
4399 values[n++] = primary_event_id(leader);
4400
4401 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4402 values[n++] += perf_event_count(sub);
4403 if (read_format & PERF_FORMAT_ID)
4404 values[n++] = primary_event_id(sub);
4405 }
4406
4407 return 0;
4408 }
4409
4410 static int perf_read_group(struct perf_event *event,
4411 u64 read_format, char __user *buf)
4412 {
4413 struct perf_event *leader = event->group_leader, *child;
4414 struct perf_event_context *ctx = leader->ctx;
4415 int ret;
4416 u64 *values;
4417
4418 lockdep_assert_held(&ctx->mutex);
4419
4420 values = kzalloc(event->read_size, GFP_KERNEL);
4421 if (!values)
4422 return -ENOMEM;
4423
4424 values[0] = 1 + leader->nr_siblings;
4425
4426 /*
4427 * By locking the child_mutex of the leader we effectively
4428 * lock the child list of all siblings.. XXX explain how.
4429 */
4430 mutex_lock(&leader->child_mutex);
4431
4432 ret = __perf_read_group_add(leader, read_format, values);
4433 if (ret)
4434 goto unlock;
4435
4436 list_for_each_entry(child, &leader->child_list, child_list) {
4437 ret = __perf_read_group_add(child, read_format, values);
4438 if (ret)
4439 goto unlock;
4440 }
4441
4442 mutex_unlock(&leader->child_mutex);
4443
4444 ret = event->read_size;
4445 if (copy_to_user(buf, values, event->read_size))
4446 ret = -EFAULT;
4447 goto out;
4448
4449 unlock:
4450 mutex_unlock(&leader->child_mutex);
4451 out:
4452 kfree(values);
4453 return ret;
4454 }
4455
4456 static int perf_read_one(struct perf_event *event,
4457 u64 read_format, char __user *buf)
4458 {
4459 u64 enabled, running;
4460 u64 values[4];
4461 int n = 0;
4462
4463 values[n++] = perf_event_read_value(event, &enabled, &running);
4464 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4465 values[n++] = enabled;
4466 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4467 values[n++] = running;
4468 if (read_format & PERF_FORMAT_ID)
4469 values[n++] = primary_event_id(event);
4470
4471 if (copy_to_user(buf, values, n * sizeof(u64)))
4472 return -EFAULT;
4473
4474 return n * sizeof(u64);
4475 }
4476
4477 static bool is_event_hup(struct perf_event *event)
4478 {
4479 bool no_children;
4480
4481 if (event->state > PERF_EVENT_STATE_EXIT)
4482 return false;
4483
4484 mutex_lock(&event->child_mutex);
4485 no_children = list_empty(&event->child_list);
4486 mutex_unlock(&event->child_mutex);
4487 return no_children;
4488 }
4489
4490 /*
4491 * Read the performance event - simple non blocking version for now
4492 */
4493 static ssize_t
4494 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4495 {
4496 u64 read_format = event->attr.read_format;
4497 int ret;
4498
4499 /*
4500 * Return end-of-file for a read on a event that is in
4501 * error state (i.e. because it was pinned but it couldn't be
4502 * scheduled on to the CPU at some point).
4503 */
4504 if (event->state == PERF_EVENT_STATE_ERROR)
4505 return 0;
4506
4507 if (count < event->read_size)
4508 return -ENOSPC;
4509
4510 WARN_ON_ONCE(event->ctx->parent_ctx);
4511 if (read_format & PERF_FORMAT_GROUP)
4512 ret = perf_read_group(event, read_format, buf);
4513 else
4514 ret = perf_read_one(event, read_format, buf);
4515
4516 return ret;
4517 }
4518
4519 static ssize_t
4520 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4521 {
4522 struct perf_event *event = file->private_data;
4523 struct perf_event_context *ctx;
4524 int ret;
4525
4526 ctx = perf_event_ctx_lock(event);
4527 ret = __perf_read(event, buf, count);
4528 perf_event_ctx_unlock(event, ctx);
4529
4530 return ret;
4531 }
4532
4533 static unsigned int perf_poll(struct file *file, poll_table *wait)
4534 {
4535 struct perf_event *event = file->private_data;
4536 struct ring_buffer *rb;
4537 unsigned int events = POLLHUP;
4538
4539 poll_wait(file, &event->waitq, wait);
4540
4541 if (is_event_hup(event))
4542 return events;
4543
4544 /*
4545 * Pin the event->rb by taking event->mmap_mutex; otherwise
4546 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4547 */
4548 mutex_lock(&event->mmap_mutex);
4549 rb = event->rb;
4550 if (rb)
4551 events = atomic_xchg(&rb->poll, 0);
4552 mutex_unlock(&event->mmap_mutex);
4553 return events;
4554 }
4555
4556 static void _perf_event_reset(struct perf_event *event)
4557 {
4558 (void)perf_event_read(event, false);
4559 local64_set(&event->count, 0);
4560 perf_event_update_userpage(event);
4561 }
4562
4563 /*
4564 * Holding the top-level event's child_mutex means that any
4565 * descendant process that has inherited this event will block
4566 * in perf_event_exit_event() if it goes to exit, thus satisfying the
4567 * task existence requirements of perf_event_enable/disable.
4568 */
4569 static void perf_event_for_each_child(struct perf_event *event,
4570 void (*func)(struct perf_event *))
4571 {
4572 struct perf_event *child;
4573
4574 WARN_ON_ONCE(event->ctx->parent_ctx);
4575
4576 mutex_lock(&event->child_mutex);
4577 func(event);
4578 list_for_each_entry(child, &event->child_list, child_list)
4579 func(child);
4580 mutex_unlock(&event->child_mutex);
4581 }
4582
4583 static void perf_event_for_each(struct perf_event *event,
4584 void (*func)(struct perf_event *))
4585 {
4586 struct perf_event_context *ctx = event->ctx;
4587 struct perf_event *sibling;
4588
4589 lockdep_assert_held(&ctx->mutex);
4590
4591 event = event->group_leader;
4592
4593 perf_event_for_each_child(event, func);
4594 list_for_each_entry(sibling, &event->sibling_list, group_entry)
4595 perf_event_for_each_child(sibling, func);
4596 }
4597
4598 static void __perf_event_period(struct perf_event *event,
4599 struct perf_cpu_context *cpuctx,
4600 struct perf_event_context *ctx,
4601 void *info)
4602 {
4603 u64 value = *((u64 *)info);
4604 bool active;
4605
4606 if (event->attr.freq) {
4607 event->attr.sample_freq = value;
4608 } else {
4609 event->attr.sample_period = value;
4610 event->hw.sample_period = value;
4611 }
4612
4613 active = (event->state == PERF_EVENT_STATE_ACTIVE);
4614 if (active) {
4615 perf_pmu_disable(ctx->pmu);
4616 /*
4617 * We could be throttled; unthrottle now to avoid the tick
4618 * trying to unthrottle while we already re-started the event.
4619 */
4620 if (event->hw.interrupts == MAX_INTERRUPTS) {
4621 event->hw.interrupts = 0;
4622 perf_log_throttle(event, 1);
4623 }
4624 event->pmu->stop(event, PERF_EF_UPDATE);
4625 }
4626
4627 local64_set(&event->hw.period_left, 0);
4628
4629 if (active) {
4630 event->pmu->start(event, PERF_EF_RELOAD);
4631 perf_pmu_enable(ctx->pmu);
4632 }
4633 }
4634
4635 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4636 {
4637 u64 value;
4638
4639 if (!is_sampling_event(event))
4640 return -EINVAL;
4641
4642 if (copy_from_user(&value, arg, sizeof(value)))
4643 return -EFAULT;
4644
4645 if (!value)
4646 return -EINVAL;
4647
4648 if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4649 return -EINVAL;
4650
4651 event_function_call(event, __perf_event_period, &value);
4652
4653 return 0;
4654 }
4655
4656 static const struct file_operations perf_fops;
4657
4658 static inline int perf_fget_light(int fd, struct fd *p)
4659 {
4660 struct fd f = fdget(fd);
4661 if (!f.file)
4662 return -EBADF;
4663
4664 if (f.file->f_op != &perf_fops) {
4665 fdput(f);
4666 return -EBADF;
4667 }
4668 *p = f;
4669 return 0;
4670 }
4671
4672 static int perf_event_set_output(struct perf_event *event,
4673 struct perf_event *output_event);
4674 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4675 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4676
4677 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4678 {
4679 void (*func)(struct perf_event *);
4680 u32 flags = arg;
4681
4682 switch (cmd) {
4683 case PERF_EVENT_IOC_ENABLE:
4684 func = _perf_event_enable;
4685 break;
4686 case PERF_EVENT_IOC_DISABLE:
4687 func = _perf_event_disable;
4688 break;
4689 case PERF_EVENT_IOC_RESET:
4690 func = _perf_event_reset;
4691 break;
4692
4693 case PERF_EVENT_IOC_REFRESH:
4694 return _perf_event_refresh(event, arg);
4695
4696 case PERF_EVENT_IOC_PERIOD:
4697 return perf_event_period(event, (u64 __user *)arg);
4698
4699 case PERF_EVENT_IOC_ID:
4700 {
4701 u64 id = primary_event_id(event);
4702
4703 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4704 return -EFAULT;
4705 return 0;
4706 }
4707
4708 case PERF_EVENT_IOC_SET_OUTPUT:
4709 {
4710 int ret;
4711 if (arg != -1) {
4712 struct perf_event *output_event;
4713 struct fd output;
4714 ret = perf_fget_light(arg, &output);
4715 if (ret)
4716 return ret;
4717 output_event = output.file->private_data;
4718 ret = perf_event_set_output(event, output_event);
4719 fdput(output);
4720 } else {
4721 ret = perf_event_set_output(event, NULL);
4722 }
4723 return ret;
4724 }
4725
4726 case PERF_EVENT_IOC_SET_FILTER:
4727 return perf_event_set_filter(event, (void __user *)arg);
4728
4729 case PERF_EVENT_IOC_SET_BPF:
4730 return perf_event_set_bpf_prog(event, arg);
4731
4732 case PERF_EVENT_IOC_PAUSE_OUTPUT: {
4733 struct ring_buffer *rb;
4734
4735 rcu_read_lock();
4736 rb = rcu_dereference(event->rb);
4737 if (!rb || !rb->nr_pages) {
4738 rcu_read_unlock();
4739 return -EINVAL;
4740 }
4741 rb_toggle_paused(rb, !!arg);
4742 rcu_read_unlock();
4743 return 0;
4744 }
4745 default:
4746 return -ENOTTY;
4747 }
4748
4749 if (flags & PERF_IOC_FLAG_GROUP)
4750 perf_event_for_each(event, func);
4751 else
4752 perf_event_for_each_child(event, func);
4753
4754 return 0;
4755 }
4756
4757 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4758 {
4759 struct perf_event *event = file->private_data;
4760 struct perf_event_context *ctx;
4761 long ret;
4762
4763 ctx = perf_event_ctx_lock(event);
4764 ret = _perf_ioctl(event, cmd, arg);
4765 perf_event_ctx_unlock(event, ctx);
4766
4767 return ret;
4768 }
4769
4770 #ifdef CONFIG_COMPAT
4771 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4772 unsigned long arg)
4773 {
4774 switch (_IOC_NR(cmd)) {
4775 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4776 case _IOC_NR(PERF_EVENT_IOC_ID):
4777 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4778 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4779 cmd &= ~IOCSIZE_MASK;
4780 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4781 }
4782 break;
4783 }
4784 return perf_ioctl(file, cmd, arg);
4785 }
4786 #else
4787 # define perf_compat_ioctl NULL
4788 #endif
4789
4790 int perf_event_task_enable(void)
4791 {
4792 struct perf_event_context *ctx;
4793 struct perf_event *event;
4794
4795 mutex_lock(&current->perf_event_mutex);
4796 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4797 ctx = perf_event_ctx_lock(event);
4798 perf_event_for_each_child(event, _perf_event_enable);
4799 perf_event_ctx_unlock(event, ctx);
4800 }
4801 mutex_unlock(&current->perf_event_mutex);
4802
4803 return 0;
4804 }
4805
4806 int perf_event_task_disable(void)
4807 {
4808 struct perf_event_context *ctx;
4809 struct perf_event *event;
4810
4811 mutex_lock(&current->perf_event_mutex);
4812 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4813 ctx = perf_event_ctx_lock(event);
4814 perf_event_for_each_child(event, _perf_event_disable);
4815 perf_event_ctx_unlock(event, ctx);
4816 }
4817 mutex_unlock(&current->perf_event_mutex);
4818
4819 return 0;
4820 }
4821
4822 static int perf_event_index(struct perf_event *event)
4823 {
4824 if (event->hw.state & PERF_HES_STOPPED)
4825 return 0;
4826
4827 if (event->state != PERF_EVENT_STATE_ACTIVE)
4828 return 0;
4829
4830 return event->pmu->event_idx(event);
4831 }
4832
4833 static void calc_timer_values(struct perf_event *event,
4834 u64 *now,
4835 u64 *enabled,
4836 u64 *running)
4837 {
4838 u64 ctx_time;
4839
4840 *now = perf_clock();
4841 ctx_time = event->shadow_ctx_time + *now;
4842 *enabled = ctx_time - event->tstamp_enabled;
4843 *running = ctx_time - event->tstamp_running;
4844 }
4845
4846 static void perf_event_init_userpage(struct perf_event *event)
4847 {
4848 struct perf_event_mmap_page *userpg;
4849 struct ring_buffer *rb;
4850
4851 rcu_read_lock();
4852 rb = rcu_dereference(event->rb);
4853 if (!rb)
4854 goto unlock;
4855
4856 userpg = rb->user_page;
4857
4858 /* Allow new userspace to detect that bit 0 is deprecated */
4859 userpg->cap_bit0_is_deprecated = 1;
4860 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4861 userpg->data_offset = PAGE_SIZE;
4862 userpg->data_size = perf_data_size(rb);
4863
4864 unlock:
4865 rcu_read_unlock();
4866 }
4867
4868 void __weak arch_perf_update_userpage(
4869 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4870 {
4871 }
4872
4873 /*
4874 * Callers need to ensure there can be no nesting of this function, otherwise
4875 * the seqlock logic goes bad. We can not serialize this because the arch
4876 * code calls this from NMI context.
4877 */
4878 void perf_event_update_userpage(struct perf_event *event)
4879 {
4880 struct perf_event_mmap_page *userpg;
4881 struct ring_buffer *rb;
4882 u64 enabled, running, now;
4883
4884 rcu_read_lock();
4885 rb = rcu_dereference(event->rb);
4886 if (!rb)
4887 goto unlock;
4888
4889 /*
4890 * compute total_time_enabled, total_time_running
4891 * based on snapshot values taken when the event
4892 * was last scheduled in.
4893 *
4894 * we cannot simply called update_context_time()
4895 * because of locking issue as we can be called in
4896 * NMI context
4897 */
4898 calc_timer_values(event, &now, &enabled, &running);
4899
4900 userpg = rb->user_page;
4901 /*
4902 * Disable preemption so as to not let the corresponding user-space
4903 * spin too long if we get preempted.
4904 */
4905 preempt_disable();
4906 ++userpg->lock;
4907 barrier();
4908 userpg->index = perf_event_index(event);
4909 userpg->offset = perf_event_count(event);
4910 if (userpg->index)
4911 userpg->offset -= local64_read(&event->hw.prev_count);
4912
4913 userpg->time_enabled = enabled +
4914 atomic64_read(&event->child_total_time_enabled);
4915
4916 userpg->time_running = running +
4917 atomic64_read(&event->child_total_time_running);
4918
4919 arch_perf_update_userpage(event, userpg, now);
4920
4921 barrier();
4922 ++userpg->lock;
4923 preempt_enable();
4924 unlock:
4925 rcu_read_unlock();
4926 }
4927
4928 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
4929 {
4930 struct perf_event *event = vma->vm_file->private_data;
4931 struct ring_buffer *rb;
4932 int ret = VM_FAULT_SIGBUS;
4933
4934 if (vmf->flags & FAULT_FLAG_MKWRITE) {
4935 if (vmf->pgoff == 0)
4936 ret = 0;
4937 return ret;
4938 }
4939
4940 rcu_read_lock();
4941 rb = rcu_dereference(event->rb);
4942 if (!rb)
4943 goto unlock;
4944
4945 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4946 goto unlock;
4947
4948 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4949 if (!vmf->page)
4950 goto unlock;
4951
4952 get_page(vmf->page);
4953 vmf->page->mapping = vma->vm_file->f_mapping;
4954 vmf->page->index = vmf->pgoff;
4955
4956 ret = 0;
4957 unlock:
4958 rcu_read_unlock();
4959
4960 return ret;
4961 }
4962
4963 static void ring_buffer_attach(struct perf_event *event,
4964 struct ring_buffer *rb)
4965 {
4966 struct ring_buffer *old_rb = NULL;
4967 unsigned long flags;
4968
4969 if (event->rb) {
4970 /*
4971 * Should be impossible, we set this when removing
4972 * event->rb_entry and wait/clear when adding event->rb_entry.
4973 */
4974 WARN_ON_ONCE(event->rcu_pending);
4975
4976 old_rb = event->rb;
4977 spin_lock_irqsave(&old_rb->event_lock, flags);
4978 list_del_rcu(&event->rb_entry);
4979 spin_unlock_irqrestore(&old_rb->event_lock, flags);
4980
4981 event->rcu_batches = get_state_synchronize_rcu();
4982 event->rcu_pending = 1;
4983 }
4984
4985 if (rb) {
4986 if (event->rcu_pending) {
4987 cond_synchronize_rcu(event->rcu_batches);
4988 event->rcu_pending = 0;
4989 }
4990
4991 spin_lock_irqsave(&rb->event_lock, flags);
4992 list_add_rcu(&event->rb_entry, &rb->event_list);
4993 spin_unlock_irqrestore(&rb->event_lock, flags);
4994 }
4995
4996 /*
4997 * Avoid racing with perf_mmap_close(AUX): stop the event
4998 * before swizzling the event::rb pointer; if it's getting
4999 * unmapped, its aux_mmap_count will be 0 and it won't
5000 * restart. See the comment in __perf_pmu_output_stop().
5001 *
5002 * Data will inevitably be lost when set_output is done in
5003 * mid-air, but then again, whoever does it like this is
5004 * not in for the data anyway.
5005 */
5006 if (has_aux(event))
5007 perf_event_stop(event, 0);
5008
5009 rcu_assign_pointer(event->rb, rb);
5010
5011 if (old_rb) {
5012 ring_buffer_put(old_rb);
5013 /*
5014 * Since we detached before setting the new rb, so that we
5015 * could attach the new rb, we could have missed a wakeup.
5016 * Provide it now.
5017 */
5018 wake_up_all(&event->waitq);
5019 }
5020 }
5021
5022 static void ring_buffer_wakeup(struct perf_event *event)
5023 {
5024 struct ring_buffer *rb;
5025
5026 rcu_read_lock();
5027 rb = rcu_dereference(event->rb);
5028 if (rb) {
5029 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5030 wake_up_all(&event->waitq);
5031 }
5032 rcu_read_unlock();
5033 }
5034
5035 struct ring_buffer *ring_buffer_get(struct perf_event *event)
5036 {
5037 struct ring_buffer *rb;
5038
5039 rcu_read_lock();
5040 rb = rcu_dereference(event->rb);
5041 if (rb) {
5042 if (!atomic_inc_not_zero(&rb->refcount))
5043 rb = NULL;
5044 }
5045 rcu_read_unlock();
5046
5047 return rb;
5048 }
5049
5050 void ring_buffer_put(struct ring_buffer *rb)
5051 {
5052 if (!atomic_dec_and_test(&rb->refcount))
5053 return;
5054
5055 WARN_ON_ONCE(!list_empty(&rb->event_list));
5056
5057 call_rcu(&rb->rcu_head, rb_free_rcu);
5058 }
5059
5060 static void perf_mmap_open(struct vm_area_struct *vma)
5061 {
5062 struct perf_event *event = vma->vm_file->private_data;
5063
5064 atomic_inc(&event->mmap_count);
5065 atomic_inc(&event->rb->mmap_count);
5066
5067 if (vma->vm_pgoff)
5068 atomic_inc(&event->rb->aux_mmap_count);
5069
5070 if (event->pmu->event_mapped)
5071 event->pmu->event_mapped(event);
5072 }
5073
5074 static void perf_pmu_output_stop(struct perf_event *event);
5075
5076 /*
5077 * A buffer can be mmap()ed multiple times; either directly through the same
5078 * event, or through other events by use of perf_event_set_output().
5079 *
5080 * In order to undo the VM accounting done by perf_mmap() we need to destroy
5081 * the buffer here, where we still have a VM context. This means we need
5082 * to detach all events redirecting to us.
5083 */
5084 static void perf_mmap_close(struct vm_area_struct *vma)
5085 {
5086 struct perf_event *event = vma->vm_file->private_data;
5087
5088 struct ring_buffer *rb = ring_buffer_get(event);
5089 struct user_struct *mmap_user = rb->mmap_user;
5090 int mmap_locked = rb->mmap_locked;
5091 unsigned long size = perf_data_size(rb);
5092
5093 if (event->pmu->event_unmapped)
5094 event->pmu->event_unmapped(event);
5095
5096 /*
5097 * rb->aux_mmap_count will always drop before rb->mmap_count and
5098 * event->mmap_count, so it is ok to use event->mmap_mutex to
5099 * serialize with perf_mmap here.
5100 */
5101 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5102 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
5103 /*
5104 * Stop all AUX events that are writing to this buffer,
5105 * so that we can free its AUX pages and corresponding PMU
5106 * data. Note that after rb::aux_mmap_count dropped to zero,
5107 * they won't start any more (see perf_aux_output_begin()).
5108 */
5109 perf_pmu_output_stop(event);
5110
5111 /* now it's safe to free the pages */
5112 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
5113 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
5114
5115 /* this has to be the last one */
5116 rb_free_aux(rb);
5117 WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
5118
5119 mutex_unlock(&event->mmap_mutex);
5120 }
5121
5122 atomic_dec(&rb->mmap_count);
5123
5124 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5125 goto out_put;
5126
5127 ring_buffer_attach(event, NULL);
5128 mutex_unlock(&event->mmap_mutex);
5129
5130 /* If there's still other mmap()s of this buffer, we're done. */
5131 if (atomic_read(&rb->mmap_count))
5132 goto out_put;
5133
5134 /*
5135 * No other mmap()s, detach from all other events that might redirect
5136 * into the now unreachable buffer. Somewhat complicated by the
5137 * fact that rb::event_lock otherwise nests inside mmap_mutex.
5138 */
5139 again:
5140 rcu_read_lock();
5141 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5142 if (!atomic_long_inc_not_zero(&event->refcount)) {
5143 /*
5144 * This event is en-route to free_event() which will
5145 * detach it and remove it from the list.
5146 */
5147 continue;
5148 }
5149 rcu_read_unlock();
5150
5151 mutex_lock(&event->mmap_mutex);
5152 /*
5153 * Check we didn't race with perf_event_set_output() which can
5154 * swizzle the rb from under us while we were waiting to
5155 * acquire mmap_mutex.
5156 *
5157 * If we find a different rb; ignore this event, a next
5158 * iteration will no longer find it on the list. We have to
5159 * still restart the iteration to make sure we're not now
5160 * iterating the wrong list.
5161 */
5162 if (event->rb == rb)
5163 ring_buffer_attach(event, NULL);
5164
5165 mutex_unlock(&event->mmap_mutex);
5166 put_event(event);
5167
5168 /*
5169 * Restart the iteration; either we're on the wrong list or
5170 * destroyed its integrity by doing a deletion.
5171 */
5172 goto again;
5173 }
5174 rcu_read_unlock();
5175
5176 /*
5177 * It could be there's still a few 0-ref events on the list; they'll
5178 * get cleaned up by free_event() -- they'll also still have their
5179 * ref on the rb and will free it whenever they are done with it.
5180 *
5181 * Aside from that, this buffer is 'fully' detached and unmapped,
5182 * undo the VM accounting.
5183 */
5184
5185 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
5186 vma->vm_mm->pinned_vm -= mmap_locked;
5187 free_uid(mmap_user);
5188
5189 out_put:
5190 ring_buffer_put(rb); /* could be last */
5191 }
5192
5193 static const struct vm_operations_struct perf_mmap_vmops = {
5194 .open = perf_mmap_open,
5195 .close = perf_mmap_close, /* non mergable */
5196 .fault = perf_mmap_fault,
5197 .page_mkwrite = perf_mmap_fault,
5198 };
5199
5200 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5201 {
5202 struct perf_event *event = file->private_data;
5203 unsigned long user_locked, user_lock_limit;
5204 struct user_struct *user = current_user();
5205 unsigned long locked, lock_limit;
5206 struct ring_buffer *rb = NULL;
5207 unsigned long vma_size;
5208 unsigned long nr_pages;
5209 long user_extra = 0, extra = 0;
5210 int ret = 0, flags = 0;
5211
5212 /*
5213 * Don't allow mmap() of inherited per-task counters. This would
5214 * create a performance issue due to all children writing to the
5215 * same rb.
5216 */
5217 if (event->cpu == -1 && event->attr.inherit)
5218 return -EINVAL;
5219
5220 if (!(vma->vm_flags & VM_SHARED))
5221 return -EINVAL;
5222
5223 vma_size = vma->vm_end - vma->vm_start;
5224
5225 if (vma->vm_pgoff == 0) {
5226 nr_pages = (vma_size / PAGE_SIZE) - 1;
5227 } else {
5228 /*
5229 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5230 * mapped, all subsequent mappings should have the same size
5231 * and offset. Must be above the normal perf buffer.
5232 */
5233 u64 aux_offset, aux_size;
5234
5235 if (!event->rb)
5236 return -EINVAL;
5237
5238 nr_pages = vma_size / PAGE_SIZE;
5239
5240 mutex_lock(&event->mmap_mutex);
5241 ret = -EINVAL;
5242
5243 rb = event->rb;
5244 if (!rb)
5245 goto aux_unlock;
5246
5247 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
5248 aux_size = ACCESS_ONCE(rb->user_page->aux_size);
5249
5250 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5251 goto aux_unlock;
5252
5253 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5254 goto aux_unlock;
5255
5256 /* already mapped with a different offset */
5257 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5258 goto aux_unlock;
5259
5260 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5261 goto aux_unlock;
5262
5263 /* already mapped with a different size */
5264 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5265 goto aux_unlock;
5266
5267 if (!is_power_of_2(nr_pages))
5268 goto aux_unlock;
5269
5270 if (!atomic_inc_not_zero(&rb->mmap_count))
5271 goto aux_unlock;
5272
5273 if (rb_has_aux(rb)) {
5274 atomic_inc(&rb->aux_mmap_count);
5275 ret = 0;
5276 goto unlock;
5277 }
5278
5279 atomic_set(&rb->aux_mmap_count, 1);
5280 user_extra = nr_pages;
5281
5282 goto accounting;
5283 }
5284
5285 /*
5286 * If we have rb pages ensure they're a power-of-two number, so we
5287 * can do bitmasks instead of modulo.
5288 */
5289 if (nr_pages != 0 && !is_power_of_2(nr_pages))
5290 return -EINVAL;
5291
5292 if (vma_size != PAGE_SIZE * (1 + nr_pages))
5293 return -EINVAL;
5294
5295 WARN_ON_ONCE(event->ctx->parent_ctx);
5296 again:
5297 mutex_lock(&event->mmap_mutex);
5298 if (event->rb) {
5299 if (event->rb->nr_pages != nr_pages) {
5300 ret = -EINVAL;
5301 goto unlock;
5302 }
5303
5304 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5305 /*
5306 * Raced against perf_mmap_close() through
5307 * perf_event_set_output(). Try again, hope for better
5308 * luck.
5309 */
5310 mutex_unlock(&event->mmap_mutex);
5311 goto again;
5312 }
5313
5314 goto unlock;
5315 }
5316
5317 user_extra = nr_pages + 1;
5318
5319 accounting:
5320 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
5321
5322 /*
5323 * Increase the limit linearly with more CPUs:
5324 */
5325 user_lock_limit *= num_online_cpus();
5326
5327 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
5328
5329 if (user_locked > user_lock_limit)
5330 extra = user_locked - user_lock_limit;
5331
5332 lock_limit = rlimit(RLIMIT_MEMLOCK);
5333 lock_limit >>= PAGE_SHIFT;
5334 locked = vma->vm_mm->pinned_vm + extra;
5335
5336 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5337 !capable(CAP_IPC_LOCK)) {
5338 ret = -EPERM;
5339 goto unlock;
5340 }
5341
5342 WARN_ON(!rb && event->rb);
5343
5344 if (vma->vm_flags & VM_WRITE)
5345 flags |= RING_BUFFER_WRITABLE;
5346
5347 if (!rb) {
5348 rb = rb_alloc(nr_pages,
5349 event->attr.watermark ? event->attr.wakeup_watermark : 0,
5350 event->cpu, flags);
5351
5352 if (!rb) {
5353 ret = -ENOMEM;
5354 goto unlock;
5355 }
5356
5357 atomic_set(&rb->mmap_count, 1);
5358 rb->mmap_user = get_current_user();
5359 rb->mmap_locked = extra;
5360
5361 ring_buffer_attach(event, rb);
5362
5363 perf_event_init_userpage(event);
5364 perf_event_update_userpage(event);
5365 } else {
5366 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5367 event->attr.aux_watermark, flags);
5368 if (!ret)
5369 rb->aux_mmap_locked = extra;
5370 }
5371
5372 unlock:
5373 if (!ret) {
5374 atomic_long_add(user_extra, &user->locked_vm);
5375 vma->vm_mm->pinned_vm += extra;
5376
5377 atomic_inc(&event->mmap_count);
5378 } else if (rb) {
5379 atomic_dec(&rb->mmap_count);
5380 }
5381 aux_unlock:
5382 mutex_unlock(&event->mmap_mutex);
5383
5384 /*
5385 * Since pinned accounting is per vm we cannot allow fork() to copy our
5386 * vma.
5387 */
5388 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5389 vma->vm_ops = &perf_mmap_vmops;
5390
5391 if (event->pmu->event_mapped)
5392 event->pmu->event_mapped(event);
5393
5394 return ret;
5395 }
5396
5397 static int perf_fasync(int fd, struct file *filp, int on)
5398 {
5399 struct inode *inode = file_inode(filp);
5400 struct perf_event *event = filp->private_data;
5401 int retval;
5402
5403 inode_lock(inode);
5404 retval = fasync_helper(fd, filp, on, &event->fasync);
5405 inode_unlock(inode);
5406
5407 if (retval < 0)
5408 return retval;
5409
5410 return 0;
5411 }
5412
5413 static const struct file_operations perf_fops = {
5414 .llseek = no_llseek,
5415 .release = perf_release,
5416 .read = perf_read,
5417 .poll = perf_poll,
5418 .unlocked_ioctl = perf_ioctl,
5419 .compat_ioctl = perf_compat_ioctl,
5420 .mmap = perf_mmap,
5421 .fasync = perf_fasync,
5422 };
5423
5424 /*
5425 * Perf event wakeup
5426 *
5427 * If there's data, ensure we set the poll() state and publish everything
5428 * to user-space before waking everybody up.
5429 */
5430
5431 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5432 {
5433 /* only the parent has fasync state */
5434 if (event->parent)
5435 event = event->parent;
5436 return &event->fasync;
5437 }
5438
5439 void perf_event_wakeup(struct perf_event *event)
5440 {
5441 ring_buffer_wakeup(event);
5442
5443 if (event->pending_kill) {
5444 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5445 event->pending_kill = 0;
5446 }
5447 }
5448
5449 static void perf_pending_event(struct irq_work *entry)
5450 {
5451 struct perf_event *event = container_of(entry,
5452 struct perf_event, pending);
5453 int rctx;
5454
5455 rctx = perf_swevent_get_recursion_context();
5456 /*
5457 * If we 'fail' here, that's OK, it means recursion is already disabled
5458 * and we won't recurse 'further'.
5459 */
5460
5461 if (event->pending_disable) {
5462 event->pending_disable = 0;
5463 perf_event_disable_local(event);
5464 }
5465
5466 if (event->pending_wakeup) {
5467 event->pending_wakeup = 0;
5468 perf_event_wakeup(event);
5469 }
5470
5471 if (rctx >= 0)
5472 perf_swevent_put_recursion_context(rctx);
5473 }
5474
5475 /*
5476 * We assume there is only KVM supporting the callbacks.
5477 * Later on, we might change it to a list if there is
5478 * another virtualization implementation supporting the callbacks.
5479 */
5480 struct perf_guest_info_callbacks *perf_guest_cbs;
5481
5482 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5483 {
5484 perf_guest_cbs = cbs;
5485 return 0;
5486 }
5487 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5488
5489 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5490 {
5491 perf_guest_cbs = NULL;
5492 return 0;
5493 }
5494 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5495
5496 static void
5497 perf_output_sample_regs(struct perf_output_handle *handle,
5498 struct pt_regs *regs, u64 mask)
5499 {
5500 int bit;
5501 DECLARE_BITMAP(_mask, 64);
5502
5503 bitmap_from_u64(_mask, mask);
5504 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
5505 u64 val;
5506
5507 val = perf_reg_value(regs, bit);
5508 perf_output_put(handle, val);
5509 }
5510 }
5511
5512 static void perf_sample_regs_user(struct perf_regs *regs_user,
5513 struct pt_regs *regs,
5514 struct pt_regs *regs_user_copy)
5515 {
5516 if (user_mode(regs)) {
5517 regs_user->abi = perf_reg_abi(current);
5518 regs_user->regs = regs;
5519 } else if (current->mm) {
5520 perf_get_regs_user(regs_user, regs, regs_user_copy);
5521 } else {
5522 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5523 regs_user->regs = NULL;
5524 }
5525 }
5526
5527 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5528 struct pt_regs *regs)
5529 {
5530 regs_intr->regs = regs;
5531 regs_intr->abi = perf_reg_abi(current);
5532 }
5533
5534
5535 /*
5536 * Get remaining task size from user stack pointer.
5537 *
5538 * It'd be better to take stack vma map and limit this more
5539 * precisly, but there's no way to get it safely under interrupt,
5540 * so using TASK_SIZE as limit.
5541 */
5542 static u64 perf_ustack_task_size(struct pt_regs *regs)
5543 {
5544 unsigned long addr = perf_user_stack_pointer(regs);
5545
5546 if (!addr || addr >= TASK_SIZE)
5547 return 0;
5548
5549 return TASK_SIZE - addr;
5550 }
5551
5552 static u16
5553 perf_sample_ustack_size(u16 stack_size, u16 header_size,
5554 struct pt_regs *regs)
5555 {
5556 u64 task_size;
5557
5558 /* No regs, no stack pointer, no dump. */
5559 if (!regs)
5560 return 0;
5561
5562 /*
5563 * Check if we fit in with the requested stack size into the:
5564 * - TASK_SIZE
5565 * If we don't, we limit the size to the TASK_SIZE.
5566 *
5567 * - remaining sample size
5568 * If we don't, we customize the stack size to
5569 * fit in to the remaining sample size.
5570 */
5571
5572 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5573 stack_size = min(stack_size, (u16) task_size);
5574
5575 /* Current header size plus static size and dynamic size. */
5576 header_size += 2 * sizeof(u64);
5577
5578 /* Do we fit in with the current stack dump size? */
5579 if ((u16) (header_size + stack_size) < header_size) {
5580 /*
5581 * If we overflow the maximum size for the sample,
5582 * we customize the stack dump size to fit in.
5583 */
5584 stack_size = USHRT_MAX - header_size - sizeof(u64);
5585 stack_size = round_up(stack_size, sizeof(u64));
5586 }
5587
5588 return stack_size;
5589 }
5590
5591 static void
5592 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5593 struct pt_regs *regs)
5594 {
5595 /* Case of a kernel thread, nothing to dump */
5596 if (!regs) {
5597 u64 size = 0;
5598 perf_output_put(handle, size);
5599 } else {
5600 unsigned long sp;
5601 unsigned int rem;
5602 u64 dyn_size;
5603
5604 /*
5605 * We dump:
5606 * static size
5607 * - the size requested by user or the best one we can fit
5608 * in to the sample max size
5609 * data
5610 * - user stack dump data
5611 * dynamic size
5612 * - the actual dumped size
5613 */
5614
5615 /* Static size. */
5616 perf_output_put(handle, dump_size);
5617
5618 /* Data. */
5619 sp = perf_user_stack_pointer(regs);
5620 rem = __output_copy_user(handle, (void *) sp, dump_size);
5621 dyn_size = dump_size - rem;
5622
5623 perf_output_skip(handle, rem);
5624
5625 /* Dynamic size. */
5626 perf_output_put(handle, dyn_size);
5627 }
5628 }
5629
5630 static void __perf_event_header__init_id(struct perf_event_header *header,
5631 struct perf_sample_data *data,
5632 struct perf_event *event)
5633 {
5634 u64 sample_type = event->attr.sample_type;
5635
5636 data->type = sample_type;
5637 header->size += event->id_header_size;
5638
5639 if (sample_type & PERF_SAMPLE_TID) {
5640 /* namespace issues */
5641 data->tid_entry.pid = perf_event_pid(event, current);
5642 data->tid_entry.tid = perf_event_tid(event, current);
5643 }
5644
5645 if (sample_type & PERF_SAMPLE_TIME)
5646 data->time = perf_event_clock(event);
5647
5648 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5649 data->id = primary_event_id(event);
5650
5651 if (sample_type & PERF_SAMPLE_STREAM_ID)
5652 data->stream_id = event->id;
5653
5654 if (sample_type & PERF_SAMPLE_CPU) {
5655 data->cpu_entry.cpu = raw_smp_processor_id();
5656 data->cpu_entry.reserved = 0;
5657 }
5658 }
5659
5660 void perf_event_header__init_id(struct perf_event_header *header,
5661 struct perf_sample_data *data,
5662 struct perf_event *event)
5663 {
5664 if (event->attr.sample_id_all)
5665 __perf_event_header__init_id(header, data, event);
5666 }
5667
5668 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5669 struct perf_sample_data *data)
5670 {
5671 u64 sample_type = data->type;
5672
5673 if (sample_type & PERF_SAMPLE_TID)
5674 perf_output_put(handle, data->tid_entry);
5675
5676 if (sample_type & PERF_SAMPLE_TIME)
5677 perf_output_put(handle, data->time);
5678
5679 if (sample_type & PERF_SAMPLE_ID)
5680 perf_output_put(handle, data->id);
5681
5682 if (sample_type & PERF_SAMPLE_STREAM_ID)
5683 perf_output_put(handle, data->stream_id);
5684
5685 if (sample_type & PERF_SAMPLE_CPU)
5686 perf_output_put(handle, data->cpu_entry);
5687
5688 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5689 perf_output_put(handle, data->id);
5690 }
5691
5692 void perf_event__output_id_sample(struct perf_event *event,
5693 struct perf_output_handle *handle,
5694 struct perf_sample_data *sample)
5695 {
5696 if (event->attr.sample_id_all)
5697 __perf_event__output_id_sample(handle, sample);
5698 }
5699
5700 static void perf_output_read_one(struct perf_output_handle *handle,
5701 struct perf_event *event,
5702 u64 enabled, u64 running)
5703 {
5704 u64 read_format = event->attr.read_format;
5705 u64 values[4];
5706 int n = 0;
5707
5708 values[n++] = perf_event_count(event);
5709 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5710 values[n++] = enabled +
5711 atomic64_read(&event->child_total_time_enabled);
5712 }
5713 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5714 values[n++] = running +
5715 atomic64_read(&event->child_total_time_running);
5716 }
5717 if (read_format & PERF_FORMAT_ID)
5718 values[n++] = primary_event_id(event);
5719
5720 __output_copy(handle, values, n * sizeof(u64));
5721 }
5722
5723 /*
5724 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
5725 */
5726 static void perf_output_read_group(struct perf_output_handle *handle,
5727 struct perf_event *event,
5728 u64 enabled, u64 running)
5729 {
5730 struct perf_event *leader = event->group_leader, *sub;
5731 u64 read_format = event->attr.read_format;
5732 u64 values[5];
5733 int n = 0;
5734
5735 values[n++] = 1 + leader->nr_siblings;
5736
5737 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5738 values[n++] = enabled;
5739
5740 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5741 values[n++] = running;
5742
5743 if (leader != event)
5744 leader->pmu->read(leader);
5745
5746 values[n++] = perf_event_count(leader);
5747 if (read_format & PERF_FORMAT_ID)
5748 values[n++] = primary_event_id(leader);
5749
5750 __output_copy(handle, values, n * sizeof(u64));
5751
5752 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5753 n = 0;
5754
5755 if ((sub != event) &&
5756 (sub->state == PERF_EVENT_STATE_ACTIVE))
5757 sub->pmu->read(sub);
5758
5759 values[n++] = perf_event_count(sub);
5760 if (read_format & PERF_FORMAT_ID)
5761 values[n++] = primary_event_id(sub);
5762
5763 __output_copy(handle, values, n * sizeof(u64));
5764 }
5765 }
5766
5767 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5768 PERF_FORMAT_TOTAL_TIME_RUNNING)
5769
5770 static void perf_output_read(struct perf_output_handle *handle,
5771 struct perf_event *event)
5772 {
5773 u64 enabled = 0, running = 0, now;
5774 u64 read_format = event->attr.read_format;
5775
5776 /*
5777 * compute total_time_enabled, total_time_running
5778 * based on snapshot values taken when the event
5779 * was last scheduled in.
5780 *
5781 * we cannot simply called update_context_time()
5782 * because of locking issue as we are called in
5783 * NMI context
5784 */
5785 if (read_format & PERF_FORMAT_TOTAL_TIMES)
5786 calc_timer_values(event, &now, &enabled, &running);
5787
5788 if (event->attr.read_format & PERF_FORMAT_GROUP)
5789 perf_output_read_group(handle, event, enabled, running);
5790 else
5791 perf_output_read_one(handle, event, enabled, running);
5792 }
5793
5794 void perf_output_sample(struct perf_output_handle *handle,
5795 struct perf_event_header *header,
5796 struct perf_sample_data *data,
5797 struct perf_event *event)
5798 {
5799 u64 sample_type = data->type;
5800
5801 perf_output_put(handle, *header);
5802
5803 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5804 perf_output_put(handle, data->id);
5805
5806 if (sample_type & PERF_SAMPLE_IP)
5807 perf_output_put(handle, data->ip);
5808
5809 if (sample_type & PERF_SAMPLE_TID)
5810 perf_output_put(handle, data->tid_entry);
5811
5812 if (sample_type & PERF_SAMPLE_TIME)
5813 perf_output_put(handle, data->time);
5814
5815 if (sample_type & PERF_SAMPLE_ADDR)
5816 perf_output_put(handle, data->addr);
5817
5818 if (sample_type & PERF_SAMPLE_ID)
5819 perf_output_put(handle, data->id);
5820
5821 if (sample_type & PERF_SAMPLE_STREAM_ID)
5822 perf_output_put(handle, data->stream_id);
5823
5824 if (sample_type & PERF_SAMPLE_CPU)
5825 perf_output_put(handle, data->cpu_entry);
5826
5827 if (sample_type & PERF_SAMPLE_PERIOD)
5828 perf_output_put(handle, data->period);
5829
5830 if (sample_type & PERF_SAMPLE_READ)
5831 perf_output_read(handle, event);
5832
5833 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5834 if (data->callchain) {
5835 int size = 1;
5836
5837 if (data->callchain)
5838 size += data->callchain->nr;
5839
5840 size *= sizeof(u64);
5841
5842 __output_copy(handle, data->callchain, size);
5843 } else {
5844 u64 nr = 0;
5845 perf_output_put(handle, nr);
5846 }
5847 }
5848
5849 if (sample_type & PERF_SAMPLE_RAW) {
5850 struct perf_raw_record *raw = data->raw;
5851
5852 if (raw) {
5853 struct perf_raw_frag *frag = &raw->frag;
5854
5855 perf_output_put(handle, raw->size);
5856 do {
5857 if (frag->copy) {
5858 __output_custom(handle, frag->copy,
5859 frag->data, frag->size);
5860 } else {
5861 __output_copy(handle, frag->data,
5862 frag->size);
5863 }
5864 if (perf_raw_frag_last(frag))
5865 break;
5866 frag = frag->next;
5867 } while (1);
5868 if (frag->pad)
5869 __output_skip(handle, NULL, frag->pad);
5870 } else {
5871 struct {
5872 u32 size;
5873 u32 data;
5874 } raw = {
5875 .size = sizeof(u32),
5876 .data = 0,
5877 };
5878 perf_output_put(handle, raw);
5879 }
5880 }
5881
5882 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5883 if (data->br_stack) {
5884 size_t size;
5885
5886 size = data->br_stack->nr
5887 * sizeof(struct perf_branch_entry);
5888
5889 perf_output_put(handle, data->br_stack->nr);
5890 perf_output_copy(handle, data->br_stack->entries, size);
5891 } else {
5892 /*
5893 * we always store at least the value of nr
5894 */
5895 u64 nr = 0;
5896 perf_output_put(handle, nr);
5897 }
5898 }
5899
5900 if (sample_type & PERF_SAMPLE_REGS_USER) {
5901 u64 abi = data->regs_user.abi;
5902
5903 /*
5904 * If there are no regs to dump, notice it through
5905 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5906 */
5907 perf_output_put(handle, abi);
5908
5909 if (abi) {
5910 u64 mask = event->attr.sample_regs_user;
5911 perf_output_sample_regs(handle,
5912 data->regs_user.regs,
5913 mask);
5914 }
5915 }
5916
5917 if (sample_type & PERF_SAMPLE_STACK_USER) {
5918 perf_output_sample_ustack(handle,
5919 data->stack_user_size,
5920 data->regs_user.regs);
5921 }
5922
5923 if (sample_type & PERF_SAMPLE_WEIGHT)
5924 perf_output_put(handle, data->weight);
5925
5926 if (sample_type & PERF_SAMPLE_DATA_SRC)
5927 perf_output_put(handle, data->data_src.val);
5928
5929 if (sample_type & PERF_SAMPLE_TRANSACTION)
5930 perf_output_put(handle, data->txn);
5931
5932 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5933 u64 abi = data->regs_intr.abi;
5934 /*
5935 * If there are no regs to dump, notice it through
5936 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5937 */
5938 perf_output_put(handle, abi);
5939
5940 if (abi) {
5941 u64 mask = event->attr.sample_regs_intr;
5942
5943 perf_output_sample_regs(handle,
5944 data->regs_intr.regs,
5945 mask);
5946 }
5947 }
5948
5949 if (!event->attr.watermark) {
5950 int wakeup_events = event->attr.wakeup_events;
5951
5952 if (wakeup_events) {
5953 struct ring_buffer *rb = handle->rb;
5954 int events = local_inc_return(&rb->events);
5955
5956 if (events >= wakeup_events) {
5957 local_sub(wakeup_events, &rb->events);
5958 local_inc(&rb->wakeup);
5959 }
5960 }
5961 }
5962 }
5963
5964 void perf_prepare_sample(struct perf_event_header *header,
5965 struct perf_sample_data *data,
5966 struct perf_event *event,
5967 struct pt_regs *regs)
5968 {
5969 u64 sample_type = event->attr.sample_type;
5970
5971 header->type = PERF_RECORD_SAMPLE;
5972 header->size = sizeof(*header) + event->header_size;
5973
5974 header->misc = 0;
5975 header->misc |= perf_misc_flags(regs);
5976
5977 __perf_event_header__init_id(header, data, event);
5978
5979 if (sample_type & PERF_SAMPLE_IP)
5980 data->ip = perf_instruction_pointer(regs);
5981
5982 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5983 int size = 1;
5984
5985 data->callchain = perf_callchain(event, regs);
5986
5987 if (data->callchain)
5988 size += data->callchain->nr;
5989
5990 header->size += size * sizeof(u64);
5991 }
5992
5993 if (sample_type & PERF_SAMPLE_RAW) {
5994 struct perf_raw_record *raw = data->raw;
5995 int size;
5996
5997 if (raw) {
5998 struct perf_raw_frag *frag = &raw->frag;
5999 u32 sum = 0;
6000
6001 do {
6002 sum += frag->size;
6003 if (perf_raw_frag_last(frag))
6004 break;
6005 frag = frag->next;
6006 } while (1);
6007
6008 size = round_up(sum + sizeof(u32), sizeof(u64));
6009 raw->size = size - sizeof(u32);
6010 frag->pad = raw->size - sum;
6011 } else {
6012 size = sizeof(u64);
6013 }
6014
6015 header->size += size;
6016 }
6017
6018 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6019 int size = sizeof(u64); /* nr */
6020 if (data->br_stack) {
6021 size += data->br_stack->nr
6022 * sizeof(struct perf_branch_entry);
6023 }
6024 header->size += size;
6025 }
6026
6027 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
6028 perf_sample_regs_user(&data->regs_user, regs,
6029 &data->regs_user_copy);
6030
6031 if (sample_type & PERF_SAMPLE_REGS_USER) {
6032 /* regs dump ABI info */
6033 int size = sizeof(u64);
6034
6035 if (data->regs_user.regs) {
6036 u64 mask = event->attr.sample_regs_user;
6037 size += hweight64(mask) * sizeof(u64);
6038 }
6039
6040 header->size += size;
6041 }
6042
6043 if (sample_type & PERF_SAMPLE_STACK_USER) {
6044 /*
6045 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
6046 * processed as the last one or have additional check added
6047 * in case new sample type is added, because we could eat
6048 * up the rest of the sample size.
6049 */
6050 u16 stack_size = event->attr.sample_stack_user;
6051 u16 size = sizeof(u64);
6052
6053 stack_size = perf_sample_ustack_size(stack_size, header->size,
6054 data->regs_user.regs);
6055
6056 /*
6057 * If there is something to dump, add space for the dump
6058 * itself and for the field that tells the dynamic size,
6059 * which is how many have been actually dumped.
6060 */
6061 if (stack_size)
6062 size += sizeof(u64) + stack_size;
6063
6064 data->stack_user_size = stack_size;
6065 header->size += size;
6066 }
6067
6068 if (sample_type & PERF_SAMPLE_REGS_INTR) {
6069 /* regs dump ABI info */
6070 int size = sizeof(u64);
6071
6072 perf_sample_regs_intr(&data->regs_intr, regs);
6073
6074 if (data->regs_intr.regs) {
6075 u64 mask = event->attr.sample_regs_intr;
6076
6077 size += hweight64(mask) * sizeof(u64);
6078 }
6079
6080 header->size += size;
6081 }
6082 }
6083
6084 static void __always_inline
6085 __perf_event_output(struct perf_event *event,
6086 struct perf_sample_data *data,
6087 struct pt_regs *regs,
6088 int (*output_begin)(struct perf_output_handle *,
6089 struct perf_event *,
6090 unsigned int))
6091 {
6092 struct perf_output_handle handle;
6093 struct perf_event_header header;
6094
6095 /* protect the callchain buffers */
6096 rcu_read_lock();
6097
6098 perf_prepare_sample(&header, data, event, regs);
6099
6100 if (output_begin(&handle, event, header.size))
6101 goto exit;
6102
6103 perf_output_sample(&handle, &header, data, event);
6104
6105 perf_output_end(&handle);
6106
6107 exit:
6108 rcu_read_unlock();
6109 }
6110
6111 void
6112 perf_event_output_forward(struct perf_event *event,
6113 struct perf_sample_data *data,
6114 struct pt_regs *regs)
6115 {
6116 __perf_event_output(event, data, regs, perf_output_begin_forward);
6117 }
6118
6119 void
6120 perf_event_output_backward(struct perf_event *event,
6121 struct perf_sample_data *data,
6122 struct pt_regs *regs)
6123 {
6124 __perf_event_output(event, data, regs, perf_output_begin_backward);
6125 }
6126
6127 void
6128 perf_event_output(struct perf_event *event,
6129 struct perf_sample_data *data,
6130 struct pt_regs *regs)
6131 {
6132 __perf_event_output(event, data, regs, perf_output_begin);
6133 }
6134
6135 /*
6136 * read event_id
6137 */
6138
6139 struct perf_read_event {
6140 struct perf_event_header header;
6141
6142 u32 pid;
6143 u32 tid;
6144 };
6145
6146 static void
6147 perf_event_read_event(struct perf_event *event,
6148 struct task_struct *task)
6149 {
6150 struct perf_output_handle handle;
6151 struct perf_sample_data sample;
6152 struct perf_read_event read_event = {
6153 .header = {
6154 .type = PERF_RECORD_READ,
6155 .misc = 0,
6156 .size = sizeof(read_event) + event->read_size,
6157 },
6158 .pid = perf_event_pid(event, task),
6159 .tid = perf_event_tid(event, task),
6160 };
6161 int ret;
6162
6163 perf_event_header__init_id(&read_event.header, &sample, event);
6164 ret = perf_output_begin(&handle, event, read_event.header.size);
6165 if (ret)
6166 return;
6167
6168 perf_output_put(&handle, read_event);
6169 perf_output_read(&handle, event);
6170 perf_event__output_id_sample(event, &handle, &sample);
6171
6172 perf_output_end(&handle);
6173 }
6174
6175 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
6176
6177 static void
6178 perf_iterate_ctx(struct perf_event_context *ctx,
6179 perf_iterate_f output,
6180 void *data, bool all)
6181 {
6182 struct perf_event *event;
6183
6184 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6185 if (!all) {
6186 if (event->state < PERF_EVENT_STATE_INACTIVE)
6187 continue;
6188 if (!event_filter_match(event))
6189 continue;
6190 }
6191
6192 output(event, data);
6193 }
6194 }
6195
6196 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
6197 {
6198 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6199 struct perf_event *event;
6200
6201 list_for_each_entry_rcu(event, &pel->list, sb_list) {
6202 /*
6203 * Skip events that are not fully formed yet; ensure that
6204 * if we observe event->ctx, both event and ctx will be
6205 * complete enough. See perf_install_in_context().
6206 */
6207 if (!smp_load_acquire(&event->ctx))
6208 continue;
6209
6210 if (event->state < PERF_EVENT_STATE_INACTIVE)
6211 continue;
6212 if (!event_filter_match(event))
6213 continue;
6214 output(event, data);
6215 }
6216 }
6217
6218 /*
6219 * Iterate all events that need to receive side-band events.
6220 *
6221 * For new callers; ensure that account_pmu_sb_event() includes
6222 * your event, otherwise it might not get delivered.
6223 */
6224 static void
6225 perf_iterate_sb(perf_iterate_f output, void *data,
6226 struct perf_event_context *task_ctx)
6227 {
6228 struct perf_event_context *ctx;
6229 int ctxn;
6230
6231 rcu_read_lock();
6232 preempt_disable();
6233
6234 /*
6235 * If we have task_ctx != NULL we only notify the task context itself.
6236 * The task_ctx is set only for EXIT events before releasing task
6237 * context.
6238 */
6239 if (task_ctx) {
6240 perf_iterate_ctx(task_ctx, output, data, false);
6241 goto done;
6242 }
6243
6244 perf_iterate_sb_cpu(output, data);
6245
6246 for_each_task_context_nr(ctxn) {
6247 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6248 if (ctx)
6249 perf_iterate_ctx(ctx, output, data, false);
6250 }
6251 done:
6252 preempt_enable();
6253 rcu_read_unlock();
6254 }
6255
6256 /*
6257 * Clear all file-based filters at exec, they'll have to be
6258 * re-instated when/if these objects are mmapped again.
6259 */
6260 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6261 {
6262 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6263 struct perf_addr_filter *filter;
6264 unsigned int restart = 0, count = 0;
6265 unsigned long flags;
6266
6267 if (!has_addr_filter(event))
6268 return;
6269
6270 raw_spin_lock_irqsave(&ifh->lock, flags);
6271 list_for_each_entry(filter, &ifh->list, entry) {
6272 if (filter->inode) {
6273 event->addr_filters_offs[count] = 0;
6274 restart++;
6275 }
6276
6277 count++;
6278 }
6279
6280 if (restart)
6281 event->addr_filters_gen++;
6282 raw_spin_unlock_irqrestore(&ifh->lock, flags);
6283
6284 if (restart)
6285 perf_event_stop(event, 1);
6286 }
6287
6288 void perf_event_exec(void)
6289 {
6290 struct perf_event_context *ctx;
6291 int ctxn;
6292
6293 rcu_read_lock();
6294 for_each_task_context_nr(ctxn) {
6295 ctx = current->perf_event_ctxp[ctxn];
6296 if (!ctx)
6297 continue;
6298
6299 perf_event_enable_on_exec(ctxn);
6300
6301 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
6302 true);
6303 }
6304 rcu_read_unlock();
6305 }
6306
6307 struct remote_output {
6308 struct ring_buffer *rb;
6309 int err;
6310 };
6311
6312 static void __perf_event_output_stop(struct perf_event *event, void *data)
6313 {
6314 struct perf_event *parent = event->parent;
6315 struct remote_output *ro = data;
6316 struct ring_buffer *rb = ro->rb;
6317 struct stop_event_data sd = {
6318 .event = event,
6319 };
6320
6321 if (!has_aux(event))
6322 return;
6323
6324 if (!parent)
6325 parent = event;
6326
6327 /*
6328 * In case of inheritance, it will be the parent that links to the
6329 * ring-buffer, but it will be the child that's actually using it.
6330 *
6331 * We are using event::rb to determine if the event should be stopped,
6332 * however this may race with ring_buffer_attach() (through set_output),
6333 * which will make us skip the event that actually needs to be stopped.
6334 * So ring_buffer_attach() has to stop an aux event before re-assigning
6335 * its rb pointer.
6336 */
6337 if (rcu_dereference(parent->rb) == rb)
6338 ro->err = __perf_event_stop(&sd);
6339 }
6340
6341 static int __perf_pmu_output_stop(void *info)
6342 {
6343 struct perf_event *event = info;
6344 struct pmu *pmu = event->pmu;
6345 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6346 struct remote_output ro = {
6347 .rb = event->rb,
6348 };
6349
6350 rcu_read_lock();
6351 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6352 if (cpuctx->task_ctx)
6353 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6354 &ro, false);
6355 rcu_read_unlock();
6356
6357 return ro.err;
6358 }
6359
6360 static void perf_pmu_output_stop(struct perf_event *event)
6361 {
6362 struct perf_event *iter;
6363 int err, cpu;
6364
6365 restart:
6366 rcu_read_lock();
6367 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6368 /*
6369 * For per-CPU events, we need to make sure that neither they
6370 * nor their children are running; for cpu==-1 events it's
6371 * sufficient to stop the event itself if it's active, since
6372 * it can't have children.
6373 */
6374 cpu = iter->cpu;
6375 if (cpu == -1)
6376 cpu = READ_ONCE(iter->oncpu);
6377
6378 if (cpu == -1)
6379 continue;
6380
6381 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6382 if (err == -EAGAIN) {
6383 rcu_read_unlock();
6384 goto restart;
6385 }
6386 }
6387 rcu_read_unlock();
6388 }
6389
6390 /*
6391 * task tracking -- fork/exit
6392 *
6393 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
6394 */
6395
6396 struct perf_task_event {
6397 struct task_struct *task;
6398 struct perf_event_context *task_ctx;
6399
6400 struct {
6401 struct perf_event_header header;
6402
6403 u32 pid;
6404 u32 ppid;
6405 u32 tid;
6406 u32 ptid;
6407 u64 time;
6408 } event_id;
6409 };
6410
6411 static int perf_event_task_match(struct perf_event *event)
6412 {
6413 return event->attr.comm || event->attr.mmap ||
6414 event->attr.mmap2 || event->attr.mmap_data ||
6415 event->attr.task;
6416 }
6417
6418 static void perf_event_task_output(struct perf_event *event,
6419 void *data)
6420 {
6421 struct perf_task_event *task_event = data;
6422 struct perf_output_handle handle;
6423 struct perf_sample_data sample;
6424 struct task_struct *task = task_event->task;
6425 int ret, size = task_event->event_id.header.size;
6426
6427 if (!perf_event_task_match(event))
6428 return;
6429
6430 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
6431
6432 ret = perf_output_begin(&handle, event,
6433 task_event->event_id.header.size);
6434 if (ret)
6435 goto out;
6436
6437 task_event->event_id.pid = perf_event_pid(event, task);
6438 task_event->event_id.ppid = perf_event_pid(event, current);
6439
6440 task_event->event_id.tid = perf_event_tid(event, task);
6441 task_event->event_id.ptid = perf_event_tid(event, current);
6442
6443 task_event->event_id.time = perf_event_clock(event);
6444
6445 perf_output_put(&handle, task_event->event_id);
6446
6447 perf_event__output_id_sample(event, &handle, &sample);
6448
6449 perf_output_end(&handle);
6450 out:
6451 task_event->event_id.header.size = size;
6452 }
6453
6454 static void perf_event_task(struct task_struct *task,
6455 struct perf_event_context *task_ctx,
6456 int new)
6457 {
6458 struct perf_task_event task_event;
6459
6460 if (!atomic_read(&nr_comm_events) &&
6461 !atomic_read(&nr_mmap_events) &&
6462 !atomic_read(&nr_task_events))
6463 return;
6464
6465 task_event = (struct perf_task_event){
6466 .task = task,
6467 .task_ctx = task_ctx,
6468 .event_id = {
6469 .header = {
6470 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
6471 .misc = 0,
6472 .size = sizeof(task_event.event_id),
6473 },
6474 /* .pid */
6475 /* .ppid */
6476 /* .tid */
6477 /* .ptid */
6478 /* .time */
6479 },
6480 };
6481
6482 perf_iterate_sb(perf_event_task_output,
6483 &task_event,
6484 task_ctx);
6485 }
6486
6487 void perf_event_fork(struct task_struct *task)
6488 {
6489 perf_event_task(task, NULL, 1);
6490 }
6491
6492 /*
6493 * comm tracking
6494 */
6495
6496 struct perf_comm_event {
6497 struct task_struct *task;
6498 char *comm;
6499 int comm_size;
6500
6501 struct {
6502 struct perf_event_header header;
6503
6504 u32 pid;
6505 u32 tid;
6506 } event_id;
6507 };
6508
6509 static int perf_event_comm_match(struct perf_event *event)
6510 {
6511 return event->attr.comm;
6512 }
6513
6514 static void perf_event_comm_output(struct perf_event *event,
6515 void *data)
6516 {
6517 struct perf_comm_event *comm_event = data;
6518 struct perf_output_handle handle;
6519 struct perf_sample_data sample;
6520 int size = comm_event->event_id.header.size;
6521 int ret;
6522
6523 if (!perf_event_comm_match(event))
6524 return;
6525
6526 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6527 ret = perf_output_begin(&handle, event,
6528 comm_event->event_id.header.size);
6529
6530 if (ret)
6531 goto out;
6532
6533 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6534 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
6535
6536 perf_output_put(&handle, comm_event->event_id);
6537 __output_copy(&handle, comm_event->comm,
6538 comm_event->comm_size);
6539
6540 perf_event__output_id_sample(event, &handle, &sample);
6541
6542 perf_output_end(&handle);
6543 out:
6544 comm_event->event_id.header.size = size;
6545 }
6546
6547 static void perf_event_comm_event(struct perf_comm_event *comm_event)
6548 {
6549 char comm[TASK_COMM_LEN];
6550 unsigned int size;
6551
6552 memset(comm, 0, sizeof(comm));
6553 strlcpy(comm, comm_event->task->comm, sizeof(comm));
6554 size = ALIGN(strlen(comm)+1, sizeof(u64));
6555
6556 comm_event->comm = comm;
6557 comm_event->comm_size = size;
6558
6559 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
6560
6561 perf_iterate_sb(perf_event_comm_output,
6562 comm_event,
6563 NULL);
6564 }
6565
6566 void perf_event_comm(struct task_struct *task, bool exec)
6567 {
6568 struct perf_comm_event comm_event;
6569
6570 if (!atomic_read(&nr_comm_events))
6571 return;
6572
6573 comm_event = (struct perf_comm_event){
6574 .task = task,
6575 /* .comm */
6576 /* .comm_size */
6577 .event_id = {
6578 .header = {
6579 .type = PERF_RECORD_COMM,
6580 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
6581 /* .size */
6582 },
6583 /* .pid */
6584 /* .tid */
6585 },
6586 };
6587
6588 perf_event_comm_event(&comm_event);
6589 }
6590
6591 /*
6592 * mmap tracking
6593 */
6594
6595 struct perf_mmap_event {
6596 struct vm_area_struct *vma;
6597
6598 const char *file_name;
6599 int file_size;
6600 int maj, min;
6601 u64 ino;
6602 u64 ino_generation;
6603 u32 prot, flags;
6604
6605 struct {
6606 struct perf_event_header header;
6607
6608 u32 pid;
6609 u32 tid;
6610 u64 start;
6611 u64 len;
6612 u64 pgoff;
6613 } event_id;
6614 };
6615
6616 static int perf_event_mmap_match(struct perf_event *event,
6617 void *data)
6618 {
6619 struct perf_mmap_event *mmap_event = data;
6620 struct vm_area_struct *vma = mmap_event->vma;
6621 int executable = vma->vm_flags & VM_EXEC;
6622
6623 return (!executable && event->attr.mmap_data) ||
6624 (executable && (event->attr.mmap || event->attr.mmap2));
6625 }
6626
6627 static void perf_event_mmap_output(struct perf_event *event,
6628 void *data)
6629 {
6630 struct perf_mmap_event *mmap_event = data;
6631 struct perf_output_handle handle;
6632 struct perf_sample_data sample;
6633 int size = mmap_event->event_id.header.size;
6634 int ret;
6635
6636 if (!perf_event_mmap_match(event, data))
6637 return;
6638
6639 if (event->attr.mmap2) {
6640 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
6641 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
6642 mmap_event->event_id.header.size += sizeof(mmap_event->min);
6643 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
6644 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
6645 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
6646 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
6647 }
6648
6649 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
6650 ret = perf_output_begin(&handle, event,
6651 mmap_event->event_id.header.size);
6652 if (ret)
6653 goto out;
6654
6655 mmap_event->event_id.pid = perf_event_pid(event, current);
6656 mmap_event->event_id.tid = perf_event_tid(event, current);
6657
6658 perf_output_put(&handle, mmap_event->event_id);
6659
6660 if (event->attr.mmap2) {
6661 perf_output_put(&handle, mmap_event->maj);
6662 perf_output_put(&handle, mmap_event->min);
6663 perf_output_put(&handle, mmap_event->ino);
6664 perf_output_put(&handle, mmap_event->ino_generation);
6665 perf_output_put(&handle, mmap_event->prot);
6666 perf_output_put(&handle, mmap_event->flags);
6667 }
6668
6669 __output_copy(&handle, mmap_event->file_name,
6670 mmap_event->file_size);
6671
6672 perf_event__output_id_sample(event, &handle, &sample);
6673
6674 perf_output_end(&handle);
6675 out:
6676 mmap_event->event_id.header.size = size;
6677 }
6678
6679 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
6680 {
6681 struct vm_area_struct *vma = mmap_event->vma;
6682 struct file *file = vma->vm_file;
6683 int maj = 0, min = 0;
6684 u64 ino = 0, gen = 0;
6685 u32 prot = 0, flags = 0;
6686 unsigned int size;
6687 char tmp[16];
6688 char *buf = NULL;
6689 char *name;
6690
6691 if (vma->vm_flags & VM_READ)
6692 prot |= PROT_READ;
6693 if (vma->vm_flags & VM_WRITE)
6694 prot |= PROT_WRITE;
6695 if (vma->vm_flags & VM_EXEC)
6696 prot |= PROT_EXEC;
6697
6698 if (vma->vm_flags & VM_MAYSHARE)
6699 flags = MAP_SHARED;
6700 else
6701 flags = MAP_PRIVATE;
6702
6703 if (vma->vm_flags & VM_DENYWRITE)
6704 flags |= MAP_DENYWRITE;
6705 if (vma->vm_flags & VM_MAYEXEC)
6706 flags |= MAP_EXECUTABLE;
6707 if (vma->vm_flags & VM_LOCKED)
6708 flags |= MAP_LOCKED;
6709 if (vma->vm_flags & VM_HUGETLB)
6710 flags |= MAP_HUGETLB;
6711
6712 if (file) {
6713 struct inode *inode;
6714 dev_t dev;
6715
6716 buf = kmalloc(PATH_MAX, GFP_KERNEL);
6717 if (!buf) {
6718 name = "//enomem";
6719 goto cpy_name;
6720 }
6721 /*
6722 * d_path() works from the end of the rb backwards, so we
6723 * need to add enough zero bytes after the string to handle
6724 * the 64bit alignment we do later.
6725 */
6726 name = file_path(file, buf, PATH_MAX - sizeof(u64));
6727 if (IS_ERR(name)) {
6728 name = "//toolong";
6729 goto cpy_name;
6730 }
6731 inode = file_inode(vma->vm_file);
6732 dev = inode->i_sb->s_dev;
6733 ino = inode->i_ino;
6734 gen = inode->i_generation;
6735 maj = MAJOR(dev);
6736 min = MINOR(dev);
6737
6738 goto got_name;
6739 } else {
6740 if (vma->vm_ops && vma->vm_ops->name) {
6741 name = (char *) vma->vm_ops->name(vma);
6742 if (name)
6743 goto cpy_name;
6744 }
6745
6746 name = (char *)arch_vma_name(vma);
6747 if (name)
6748 goto cpy_name;
6749
6750 if (vma->vm_start <= vma->vm_mm->start_brk &&
6751 vma->vm_end >= vma->vm_mm->brk) {
6752 name = "[heap]";
6753 goto cpy_name;
6754 }
6755 if (vma->vm_start <= vma->vm_mm->start_stack &&
6756 vma->vm_end >= vma->vm_mm->start_stack) {
6757 name = "[stack]";
6758 goto cpy_name;
6759 }
6760
6761 name = "//anon";
6762 goto cpy_name;
6763 }
6764
6765 cpy_name:
6766 strlcpy(tmp, name, sizeof(tmp));
6767 name = tmp;
6768 got_name:
6769 /*
6770 * Since our buffer works in 8 byte units we need to align our string
6771 * size to a multiple of 8. However, we must guarantee the tail end is
6772 * zero'd out to avoid leaking random bits to userspace.
6773 */
6774 size = strlen(name)+1;
6775 while (!IS_ALIGNED(size, sizeof(u64)))
6776 name[size++] = '\0';
6777
6778 mmap_event->file_name = name;
6779 mmap_event->file_size = size;
6780 mmap_event->maj = maj;
6781 mmap_event->min = min;
6782 mmap_event->ino = ino;
6783 mmap_event->ino_generation = gen;
6784 mmap_event->prot = prot;
6785 mmap_event->flags = flags;
6786
6787 if (!(vma->vm_flags & VM_EXEC))
6788 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6789
6790 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
6791
6792 perf_iterate_sb(perf_event_mmap_output,
6793 mmap_event,
6794 NULL);
6795
6796 kfree(buf);
6797 }
6798
6799 /*
6800 * Check whether inode and address range match filter criteria.
6801 */
6802 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
6803 struct file *file, unsigned long offset,
6804 unsigned long size)
6805 {
6806 if (filter->inode != file_inode(file))
6807 return false;
6808
6809 if (filter->offset > offset + size)
6810 return false;
6811
6812 if (filter->offset + filter->size < offset)
6813 return false;
6814
6815 return true;
6816 }
6817
6818 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
6819 {
6820 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6821 struct vm_area_struct *vma = data;
6822 unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
6823 struct file *file = vma->vm_file;
6824 struct perf_addr_filter *filter;
6825 unsigned int restart = 0, count = 0;
6826
6827 if (!has_addr_filter(event))
6828 return;
6829
6830 if (!file)
6831 return;
6832
6833 raw_spin_lock_irqsave(&ifh->lock, flags);
6834 list_for_each_entry(filter, &ifh->list, entry) {
6835 if (perf_addr_filter_match(filter, file, off,
6836 vma->vm_end - vma->vm_start)) {
6837 event->addr_filters_offs[count] = vma->vm_start;
6838 restart++;
6839 }
6840
6841 count++;
6842 }
6843
6844 if (restart)
6845 event->addr_filters_gen++;
6846 raw_spin_unlock_irqrestore(&ifh->lock, flags);
6847
6848 if (restart)
6849 perf_event_stop(event, 1);
6850 }
6851
6852 /*
6853 * Adjust all task's events' filters to the new vma
6854 */
6855 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
6856 {
6857 struct perf_event_context *ctx;
6858 int ctxn;
6859
6860 /*
6861 * Data tracing isn't supported yet and as such there is no need
6862 * to keep track of anything that isn't related to executable code:
6863 */
6864 if (!(vma->vm_flags & VM_EXEC))
6865 return;
6866
6867 rcu_read_lock();
6868 for_each_task_context_nr(ctxn) {
6869 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6870 if (!ctx)
6871 continue;
6872
6873 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
6874 }
6875 rcu_read_unlock();
6876 }
6877
6878 void perf_event_mmap(struct vm_area_struct *vma)
6879 {
6880 struct perf_mmap_event mmap_event;
6881
6882 if (!atomic_read(&nr_mmap_events))
6883 return;
6884
6885 mmap_event = (struct perf_mmap_event){
6886 .vma = vma,
6887 /* .file_name */
6888 /* .file_size */
6889 .event_id = {
6890 .header = {
6891 .type = PERF_RECORD_MMAP,
6892 .misc = PERF_RECORD_MISC_USER,
6893 /* .size */
6894 },
6895 /* .pid */
6896 /* .tid */
6897 .start = vma->vm_start,
6898 .len = vma->vm_end - vma->vm_start,
6899 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
6900 },
6901 /* .maj (attr_mmap2 only) */
6902 /* .min (attr_mmap2 only) */
6903 /* .ino (attr_mmap2 only) */
6904 /* .ino_generation (attr_mmap2 only) */
6905 /* .prot (attr_mmap2 only) */
6906 /* .flags (attr_mmap2 only) */
6907 };
6908
6909 perf_addr_filters_adjust(vma);
6910 perf_event_mmap_event(&mmap_event);
6911 }
6912
6913 void perf_event_aux_event(struct perf_event *event, unsigned long head,
6914 unsigned long size, u64 flags)
6915 {
6916 struct perf_output_handle handle;
6917 struct perf_sample_data sample;
6918 struct perf_aux_event {
6919 struct perf_event_header header;
6920 u64 offset;
6921 u64 size;
6922 u64 flags;
6923 } rec = {
6924 .header = {
6925 .type = PERF_RECORD_AUX,
6926 .misc = 0,
6927 .size = sizeof(rec),
6928 },
6929 .offset = head,
6930 .size = size,
6931 .flags = flags,
6932 };
6933 int ret;
6934
6935 perf_event_header__init_id(&rec.header, &sample, event);
6936 ret = perf_output_begin(&handle, event, rec.header.size);
6937
6938 if (ret)
6939 return;
6940
6941 perf_output_put(&handle, rec);
6942 perf_event__output_id_sample(event, &handle, &sample);
6943
6944 perf_output_end(&handle);
6945 }
6946
6947 /*
6948 * Lost/dropped samples logging
6949 */
6950 void perf_log_lost_samples(struct perf_event *event, u64 lost)
6951 {
6952 struct perf_output_handle handle;
6953 struct perf_sample_data sample;
6954 int ret;
6955
6956 struct {
6957 struct perf_event_header header;
6958 u64 lost;
6959 } lost_samples_event = {
6960 .header = {
6961 .type = PERF_RECORD_LOST_SAMPLES,
6962 .misc = 0,
6963 .size = sizeof(lost_samples_event),
6964 },
6965 .lost = lost,
6966 };
6967
6968 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
6969
6970 ret = perf_output_begin(&handle, event,
6971 lost_samples_event.header.size);
6972 if (ret)
6973 return;
6974
6975 perf_output_put(&handle, lost_samples_event);
6976 perf_event__output_id_sample(event, &handle, &sample);
6977 perf_output_end(&handle);
6978 }
6979
6980 /*
6981 * context_switch tracking
6982 */
6983
6984 struct perf_switch_event {
6985 struct task_struct *task;
6986 struct task_struct *next_prev;
6987
6988 struct {
6989 struct perf_event_header header;
6990 u32 next_prev_pid;
6991 u32 next_prev_tid;
6992 } event_id;
6993 };
6994
6995 static int perf_event_switch_match(struct perf_event *event)
6996 {
6997 return event->attr.context_switch;
6998 }
6999
7000 static void perf_event_switch_output(struct perf_event *event, void *data)
7001 {
7002 struct perf_switch_event *se = data;
7003 struct perf_output_handle handle;
7004 struct perf_sample_data sample;
7005 int ret;
7006
7007 if (!perf_event_switch_match(event))
7008 return;
7009
7010 /* Only CPU-wide events are allowed to see next/prev pid/tid */
7011 if (event->ctx->task) {
7012 se->event_id.header.type = PERF_RECORD_SWITCH;
7013 se->event_id.header.size = sizeof(se->event_id.header);
7014 } else {
7015 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
7016 se->event_id.header.size = sizeof(se->event_id);
7017 se->event_id.next_prev_pid =
7018 perf_event_pid(event, se->next_prev);
7019 se->event_id.next_prev_tid =
7020 perf_event_tid(event, se->next_prev);
7021 }
7022
7023 perf_event_header__init_id(&se->event_id.header, &sample, event);
7024
7025 ret = perf_output_begin(&handle, event, se->event_id.header.size);
7026 if (ret)
7027 return;
7028
7029 if (event->ctx->task)
7030 perf_output_put(&handle, se->event_id.header);
7031 else
7032 perf_output_put(&handle, se->event_id);
7033
7034 perf_event__output_id_sample(event, &handle, &sample);
7035
7036 perf_output_end(&handle);
7037 }
7038
7039 static void perf_event_switch(struct task_struct *task,
7040 struct task_struct *next_prev, bool sched_in)
7041 {
7042 struct perf_switch_event switch_event;
7043
7044 /* N.B. caller checks nr_switch_events != 0 */
7045
7046 switch_event = (struct perf_switch_event){
7047 .task = task,
7048 .next_prev = next_prev,
7049 .event_id = {
7050 .header = {
7051 /* .type */
7052 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
7053 /* .size */
7054 },
7055 /* .next_prev_pid */
7056 /* .next_prev_tid */
7057 },
7058 };
7059
7060 perf_iterate_sb(perf_event_switch_output,
7061 &switch_event,
7062 NULL);
7063 }
7064
7065 /*
7066 * IRQ throttle logging
7067 */
7068
7069 static void perf_log_throttle(struct perf_event *event, int enable)
7070 {
7071 struct perf_output_handle handle;
7072 struct perf_sample_data sample;
7073 int ret;
7074
7075 struct {
7076 struct perf_event_header header;
7077 u64 time;
7078 u64 id;
7079 u64 stream_id;
7080 } throttle_event = {
7081 .header = {
7082 .type = PERF_RECORD_THROTTLE,
7083 .misc = 0,
7084 .size = sizeof(throttle_event),
7085 },
7086 .time = perf_event_clock(event),
7087 .id = primary_event_id(event),
7088 .stream_id = event->id,
7089 };
7090
7091 if (enable)
7092 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
7093
7094 perf_event_header__init_id(&throttle_event.header, &sample, event);
7095
7096 ret = perf_output_begin(&handle, event,
7097 throttle_event.header.size);
7098 if (ret)
7099 return;
7100
7101 perf_output_put(&handle, throttle_event);
7102 perf_event__output_id_sample(event, &handle, &sample);
7103 perf_output_end(&handle);
7104 }
7105
7106 static void perf_log_itrace_start(struct perf_event *event)
7107 {
7108 struct perf_output_handle handle;
7109 struct perf_sample_data sample;
7110 struct perf_aux_event {
7111 struct perf_event_header header;
7112 u32 pid;
7113 u32 tid;
7114 } rec;
7115 int ret;
7116
7117 if (event->parent)
7118 event = event->parent;
7119
7120 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
7121 event->hw.itrace_started)
7122 return;
7123
7124 rec.header.type = PERF_RECORD_ITRACE_START;
7125 rec.header.misc = 0;
7126 rec.header.size = sizeof(rec);
7127 rec.pid = perf_event_pid(event, current);
7128 rec.tid = perf_event_tid(event, current);
7129
7130 perf_event_header__init_id(&rec.header, &sample, event);
7131 ret = perf_output_begin(&handle, event, rec.header.size);
7132
7133 if (ret)
7134 return;
7135
7136 perf_output_put(&handle, rec);
7137 perf_event__output_id_sample(event, &handle, &sample);
7138
7139 perf_output_end(&handle);
7140 }
7141
7142 static int
7143 __perf_event_account_interrupt(struct perf_event *event, int throttle)
7144 {
7145 struct hw_perf_event *hwc = &event->hw;
7146 int ret = 0;
7147 u64 seq;
7148
7149 seq = __this_cpu_read(perf_throttled_seq);
7150 if (seq != hwc->interrupts_seq) {
7151 hwc->interrupts_seq = seq;
7152 hwc->interrupts = 1;
7153 } else {
7154 hwc->interrupts++;
7155 if (unlikely(throttle
7156 && hwc->interrupts >= max_samples_per_tick)) {
7157 __this_cpu_inc(perf_throttled_count);
7158 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
7159 hwc->interrupts = MAX_INTERRUPTS;
7160 perf_log_throttle(event, 0);
7161 ret = 1;
7162 }
7163 }
7164
7165 if (event->attr.freq) {
7166 u64 now = perf_clock();
7167 s64 delta = now - hwc->freq_time_stamp;
7168
7169 hwc->freq_time_stamp = now;
7170
7171 if (delta > 0 && delta < 2*TICK_NSEC)
7172 perf_adjust_period(event, delta, hwc->last_period, true);
7173 }
7174
7175 return ret;
7176 }
7177
7178 int perf_event_account_interrupt(struct perf_event *event)
7179 {
7180 return __perf_event_account_interrupt(event, 1);
7181 }
7182
7183 /*
7184 * Generic event overflow handling, sampling.
7185 */
7186
7187 static int __perf_event_overflow(struct perf_event *event,
7188 int throttle, struct perf_sample_data *data,
7189 struct pt_regs *regs)
7190 {
7191 int events = atomic_read(&event->event_limit);
7192 int ret = 0;
7193
7194 /*
7195 * Non-sampling counters might still use the PMI to fold short
7196 * hardware counters, ignore those.
7197 */
7198 if (unlikely(!is_sampling_event(event)))
7199 return 0;
7200
7201 ret = __perf_event_account_interrupt(event, throttle);
7202
7203 /*
7204 * XXX event_limit might not quite work as expected on inherited
7205 * events
7206 */
7207
7208 event->pending_kill = POLL_IN;
7209 if (events && atomic_dec_and_test(&event->event_limit)) {
7210 ret = 1;
7211 event->pending_kill = POLL_HUP;
7212
7213 perf_event_disable_inatomic(event);
7214 }
7215
7216 READ_ONCE(event->overflow_handler)(event, data, regs);
7217
7218 if (*perf_event_fasync(event) && event->pending_kill) {
7219 event->pending_wakeup = 1;
7220 irq_work_queue(&event->pending);
7221 }
7222
7223 return ret;
7224 }
7225
7226 int perf_event_overflow(struct perf_event *event,
7227 struct perf_sample_data *data,
7228 struct pt_regs *regs)
7229 {
7230 return __perf_event_overflow(event, 1, data, regs);
7231 }
7232
7233 /*
7234 * Generic software event infrastructure
7235 */
7236
7237 struct swevent_htable {
7238 struct swevent_hlist *swevent_hlist;
7239 struct mutex hlist_mutex;
7240 int hlist_refcount;
7241
7242 /* Recursion avoidance in each contexts */
7243 int recursion[PERF_NR_CONTEXTS];
7244 };
7245
7246 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
7247
7248 /*
7249 * We directly increment event->count and keep a second value in
7250 * event->hw.period_left to count intervals. This period event
7251 * is kept in the range [-sample_period, 0] so that we can use the
7252 * sign as trigger.
7253 */
7254
7255 u64 perf_swevent_set_period(struct perf_event *event)
7256 {
7257 struct hw_perf_event *hwc = &event->hw;
7258 u64 period = hwc->last_period;
7259 u64 nr, offset;
7260 s64 old, val;
7261
7262 hwc->last_period = hwc->sample_period;
7263
7264 again:
7265 old = val = local64_read(&hwc->period_left);
7266 if (val < 0)
7267 return 0;
7268
7269 nr = div64_u64(period + val, period);
7270 offset = nr * period;
7271 val -= offset;
7272 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7273 goto again;
7274
7275 return nr;
7276 }
7277
7278 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
7279 struct perf_sample_data *data,
7280 struct pt_regs *regs)
7281 {
7282 struct hw_perf_event *hwc = &event->hw;
7283 int throttle = 0;
7284
7285 if (!overflow)
7286 overflow = perf_swevent_set_period(event);
7287
7288 if (hwc->interrupts == MAX_INTERRUPTS)
7289 return;
7290
7291 for (; overflow; overflow--) {
7292 if (__perf_event_overflow(event, throttle,
7293 data, regs)) {
7294 /*
7295 * We inhibit the overflow from happening when
7296 * hwc->interrupts == MAX_INTERRUPTS.
7297 */
7298 break;
7299 }
7300 throttle = 1;
7301 }
7302 }
7303
7304 static void perf_swevent_event(struct perf_event *event, u64 nr,
7305 struct perf_sample_data *data,
7306 struct pt_regs *regs)
7307 {
7308 struct hw_perf_event *hwc = &event->hw;
7309
7310 local64_add(nr, &event->count);
7311
7312 if (!regs)
7313 return;
7314
7315 if (!is_sampling_event(event))
7316 return;
7317
7318 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
7319 data->period = nr;
7320 return perf_swevent_overflow(event, 1, data, regs);
7321 } else
7322 data->period = event->hw.last_period;
7323
7324 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
7325 return perf_swevent_overflow(event, 1, data, regs);
7326
7327 if (local64_add_negative(nr, &hwc->period_left))
7328 return;
7329
7330 perf_swevent_overflow(event, 0, data, regs);
7331 }
7332
7333 static int perf_exclude_event(struct perf_event *event,
7334 struct pt_regs *regs)
7335 {
7336 if (event->hw.state & PERF_HES_STOPPED)
7337 return 1;
7338
7339 if (regs) {
7340 if (event->attr.exclude_user && user_mode(regs))
7341 return 1;
7342
7343 if (event->attr.exclude_kernel && !user_mode(regs))
7344 return 1;
7345 }
7346
7347 return 0;
7348 }
7349
7350 static int perf_swevent_match(struct perf_event *event,
7351 enum perf_type_id type,
7352 u32 event_id,
7353 struct perf_sample_data *data,
7354 struct pt_regs *regs)
7355 {
7356 if (event->attr.type != type)
7357 return 0;
7358
7359 if (event->attr.config != event_id)
7360 return 0;
7361
7362 if (perf_exclude_event(event, regs))
7363 return 0;
7364
7365 return 1;
7366 }
7367
7368 static inline u64 swevent_hash(u64 type, u32 event_id)
7369 {
7370 u64 val = event_id | (type << 32);
7371
7372 return hash_64(val, SWEVENT_HLIST_BITS);
7373 }
7374
7375 static inline struct hlist_head *
7376 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
7377 {
7378 u64 hash = swevent_hash(type, event_id);
7379
7380 return &hlist->heads[hash];
7381 }
7382
7383 /* For the read side: events when they trigger */
7384 static inline struct hlist_head *
7385 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
7386 {
7387 struct swevent_hlist *hlist;
7388
7389 hlist = rcu_dereference(swhash->swevent_hlist);
7390 if (!hlist)
7391 return NULL;
7392
7393 return __find_swevent_head(hlist, type, event_id);
7394 }
7395
7396 /* For the event head insertion and removal in the hlist */
7397 static inline struct hlist_head *
7398 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
7399 {
7400 struct swevent_hlist *hlist;
7401 u32 event_id = event->attr.config;
7402 u64 type = event->attr.type;
7403
7404 /*
7405 * Event scheduling is always serialized against hlist allocation
7406 * and release. Which makes the protected version suitable here.
7407 * The context lock guarantees that.
7408 */
7409 hlist = rcu_dereference_protected(swhash->swevent_hlist,
7410 lockdep_is_held(&event->ctx->lock));
7411 if (!hlist)
7412 return NULL;
7413
7414 return __find_swevent_head(hlist, type, event_id);
7415 }
7416
7417 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
7418 u64 nr,
7419 struct perf_sample_data *data,
7420 struct pt_regs *regs)
7421 {
7422 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7423 struct perf_event *event;
7424 struct hlist_head *head;
7425
7426 rcu_read_lock();
7427 head = find_swevent_head_rcu(swhash, type, event_id);
7428 if (!head)
7429 goto end;
7430
7431 hlist_for_each_entry_rcu(event, head, hlist_entry) {
7432 if (perf_swevent_match(event, type, event_id, data, regs))
7433 perf_swevent_event(event, nr, data, regs);
7434 }
7435 end:
7436 rcu_read_unlock();
7437 }
7438
7439 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
7440
7441 int perf_swevent_get_recursion_context(void)
7442 {
7443 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7444
7445 return get_recursion_context(swhash->recursion);
7446 }
7447 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
7448
7449 void perf_swevent_put_recursion_context(int rctx)
7450 {
7451 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7452
7453 put_recursion_context(swhash->recursion, rctx);
7454 }
7455
7456 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7457 {
7458 struct perf_sample_data data;
7459
7460 if (WARN_ON_ONCE(!regs))
7461 return;
7462
7463 perf_sample_data_init(&data, addr, 0);
7464 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
7465 }
7466
7467 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7468 {
7469 int rctx;
7470
7471 preempt_disable_notrace();
7472 rctx = perf_swevent_get_recursion_context();
7473 if (unlikely(rctx < 0))
7474 goto fail;
7475
7476 ___perf_sw_event(event_id, nr, regs, addr);
7477
7478 perf_swevent_put_recursion_context(rctx);
7479 fail:
7480 preempt_enable_notrace();
7481 }
7482
7483 static void perf_swevent_read(struct perf_event *event)
7484 {
7485 }
7486
7487 static int perf_swevent_add(struct perf_event *event, int flags)
7488 {
7489 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7490 struct hw_perf_event *hwc = &event->hw;
7491 struct hlist_head *head;
7492
7493 if (is_sampling_event(event)) {
7494 hwc->last_period = hwc->sample_period;
7495 perf_swevent_set_period(event);
7496 }
7497
7498 hwc->state = !(flags & PERF_EF_START);
7499
7500 head = find_swevent_head(swhash, event);
7501 if (WARN_ON_ONCE(!head))
7502 return -EINVAL;
7503
7504 hlist_add_head_rcu(&event->hlist_entry, head);
7505 perf_event_update_userpage(event);
7506
7507 return 0;
7508 }
7509
7510 static void perf_swevent_del(struct perf_event *event, int flags)
7511 {
7512 hlist_del_rcu(&event->hlist_entry);
7513 }
7514
7515 static void perf_swevent_start(struct perf_event *event, int flags)
7516 {
7517 event->hw.state = 0;
7518 }
7519
7520 static void perf_swevent_stop(struct perf_event *event, int flags)
7521 {
7522 event->hw.state = PERF_HES_STOPPED;
7523 }
7524
7525 /* Deref the hlist from the update side */
7526 static inline struct swevent_hlist *
7527 swevent_hlist_deref(struct swevent_htable *swhash)
7528 {
7529 return rcu_dereference_protected(swhash->swevent_hlist,
7530 lockdep_is_held(&swhash->hlist_mutex));
7531 }
7532
7533 static void swevent_hlist_release(struct swevent_htable *swhash)
7534 {
7535 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
7536
7537 if (!hlist)
7538 return;
7539
7540 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
7541 kfree_rcu(hlist, rcu_head);
7542 }
7543
7544 static void swevent_hlist_put_cpu(int cpu)
7545 {
7546 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7547
7548 mutex_lock(&swhash->hlist_mutex);
7549
7550 if (!--swhash->hlist_refcount)
7551 swevent_hlist_release(swhash);
7552
7553 mutex_unlock(&swhash->hlist_mutex);
7554 }
7555
7556 static void swevent_hlist_put(void)
7557 {
7558 int cpu;
7559
7560 for_each_possible_cpu(cpu)
7561 swevent_hlist_put_cpu(cpu);
7562 }
7563
7564 static int swevent_hlist_get_cpu(int cpu)
7565 {
7566 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7567 int err = 0;
7568
7569 mutex_lock(&swhash->hlist_mutex);
7570 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
7571 struct swevent_hlist *hlist;
7572
7573 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
7574 if (!hlist) {
7575 err = -ENOMEM;
7576 goto exit;
7577 }
7578 rcu_assign_pointer(swhash->swevent_hlist, hlist);
7579 }
7580 swhash->hlist_refcount++;
7581 exit:
7582 mutex_unlock(&swhash->hlist_mutex);
7583
7584 return err;
7585 }
7586
7587 static int swevent_hlist_get(void)
7588 {
7589 int err, cpu, failed_cpu;
7590
7591 get_online_cpus();
7592 for_each_possible_cpu(cpu) {
7593 err = swevent_hlist_get_cpu(cpu);
7594 if (err) {
7595 failed_cpu = cpu;
7596 goto fail;
7597 }
7598 }
7599 put_online_cpus();
7600
7601 return 0;
7602 fail:
7603 for_each_possible_cpu(cpu) {
7604 if (cpu == failed_cpu)
7605 break;
7606 swevent_hlist_put_cpu(cpu);
7607 }
7608
7609 put_online_cpus();
7610 return err;
7611 }
7612
7613 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
7614
7615 static void sw_perf_event_destroy(struct perf_event *event)
7616 {
7617 u64 event_id = event->attr.config;
7618
7619 WARN_ON(event->parent);
7620
7621 static_key_slow_dec(&perf_swevent_enabled[event_id]);
7622 swevent_hlist_put();
7623 }
7624
7625 static int perf_swevent_init(struct perf_event *event)
7626 {
7627 u64 event_id = event->attr.config;
7628
7629 if (event->attr.type != PERF_TYPE_SOFTWARE)
7630 return -ENOENT;
7631
7632 /*
7633 * no branch sampling for software events
7634 */
7635 if (has_branch_stack(event))
7636 return -EOPNOTSUPP;
7637
7638 switch (event_id) {
7639 case PERF_COUNT_SW_CPU_CLOCK:
7640 case PERF_COUNT_SW_TASK_CLOCK:
7641 return -ENOENT;
7642
7643 default:
7644 break;
7645 }
7646
7647 if (event_id >= PERF_COUNT_SW_MAX)
7648 return -ENOENT;
7649
7650 if (!event->parent) {
7651 int err;
7652
7653 err = swevent_hlist_get();
7654 if (err)
7655 return err;
7656
7657 static_key_slow_inc(&perf_swevent_enabled[event_id]);
7658 event->destroy = sw_perf_event_destroy;
7659 }
7660
7661 return 0;
7662 }
7663
7664 static struct pmu perf_swevent = {
7665 .task_ctx_nr = perf_sw_context,
7666
7667 .capabilities = PERF_PMU_CAP_NO_NMI,
7668
7669 .event_init = perf_swevent_init,
7670 .add = perf_swevent_add,
7671 .del = perf_swevent_del,
7672 .start = perf_swevent_start,
7673 .stop = perf_swevent_stop,
7674 .read = perf_swevent_read,
7675 };
7676
7677 #ifdef CONFIG_EVENT_TRACING
7678
7679 static int perf_tp_filter_match(struct perf_event *event,
7680 struct perf_sample_data *data)
7681 {
7682 void *record = data->raw->frag.data;
7683
7684 /* only top level events have filters set */
7685 if (event->parent)
7686 event = event->parent;
7687
7688 if (likely(!event->filter) || filter_match_preds(event->filter, record))
7689 return 1;
7690 return 0;
7691 }
7692
7693 static int perf_tp_event_match(struct perf_event *event,
7694 struct perf_sample_data *data,
7695 struct pt_regs *regs)
7696 {
7697 if (event->hw.state & PERF_HES_STOPPED)
7698 return 0;
7699 /*
7700 * All tracepoints are from kernel-space.
7701 */
7702 if (event->attr.exclude_kernel)
7703 return 0;
7704
7705 if (!perf_tp_filter_match(event, data))
7706 return 0;
7707
7708 return 1;
7709 }
7710
7711 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
7712 struct trace_event_call *call, u64 count,
7713 struct pt_regs *regs, struct hlist_head *head,
7714 struct task_struct *task)
7715 {
7716 struct bpf_prog *prog = call->prog;
7717
7718 if (prog) {
7719 *(struct pt_regs **)raw_data = regs;
7720 if (!trace_call_bpf(prog, raw_data) || hlist_empty(head)) {
7721 perf_swevent_put_recursion_context(rctx);
7722 return;
7723 }
7724 }
7725 perf_tp_event(call->event.type, count, raw_data, size, regs, head,
7726 rctx, task);
7727 }
7728 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
7729
7730 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
7731 struct pt_regs *regs, struct hlist_head *head, int rctx,
7732 struct task_struct *task)
7733 {
7734 struct perf_sample_data data;
7735 struct perf_event *event;
7736
7737 struct perf_raw_record raw = {
7738 .frag = {
7739 .size = entry_size,
7740 .data = record,
7741 },
7742 };
7743
7744 perf_sample_data_init(&data, 0, 0);
7745 data.raw = &raw;
7746
7747 perf_trace_buf_update(record, event_type);
7748
7749 hlist_for_each_entry_rcu(event, head, hlist_entry) {
7750 if (perf_tp_event_match(event, &data, regs))
7751 perf_swevent_event(event, count, &data, regs);
7752 }
7753
7754 /*
7755 * If we got specified a target task, also iterate its context and
7756 * deliver this event there too.
7757 */
7758 if (task && task != current) {
7759 struct perf_event_context *ctx;
7760 struct trace_entry *entry = record;
7761
7762 rcu_read_lock();
7763 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
7764 if (!ctx)
7765 goto unlock;
7766
7767 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7768 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7769 continue;
7770 if (event->attr.config != entry->type)
7771 continue;
7772 if (perf_tp_event_match(event, &data, regs))
7773 perf_swevent_event(event, count, &data, regs);
7774 }
7775 unlock:
7776 rcu_read_unlock();
7777 }
7778
7779 perf_swevent_put_recursion_context(rctx);
7780 }
7781 EXPORT_SYMBOL_GPL(perf_tp_event);
7782
7783 static void tp_perf_event_destroy(struct perf_event *event)
7784 {
7785 perf_trace_destroy(event);
7786 }
7787
7788 static int perf_tp_event_init(struct perf_event *event)
7789 {
7790 int err;
7791
7792 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7793 return -ENOENT;
7794
7795 /*
7796 * no branch sampling for tracepoint events
7797 */
7798 if (has_branch_stack(event))
7799 return -EOPNOTSUPP;
7800
7801 err = perf_trace_init(event);
7802 if (err)
7803 return err;
7804
7805 event->destroy = tp_perf_event_destroy;
7806
7807 return 0;
7808 }
7809
7810 static struct pmu perf_tracepoint = {
7811 .task_ctx_nr = perf_sw_context,
7812
7813 .event_init = perf_tp_event_init,
7814 .add = perf_trace_add,
7815 .del = perf_trace_del,
7816 .start = perf_swevent_start,
7817 .stop = perf_swevent_stop,
7818 .read = perf_swevent_read,
7819 };
7820
7821 static inline void perf_tp_register(void)
7822 {
7823 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
7824 }
7825
7826 static void perf_event_free_filter(struct perf_event *event)
7827 {
7828 ftrace_profile_free_filter(event);
7829 }
7830
7831 #ifdef CONFIG_BPF_SYSCALL
7832 static void bpf_overflow_handler(struct perf_event *event,
7833 struct perf_sample_data *data,
7834 struct pt_regs *regs)
7835 {
7836 struct bpf_perf_event_data_kern ctx = {
7837 .data = data,
7838 .regs = regs,
7839 };
7840 int ret = 0;
7841
7842 preempt_disable();
7843 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
7844 goto out;
7845 rcu_read_lock();
7846 ret = BPF_PROG_RUN(event->prog, &ctx);
7847 rcu_read_unlock();
7848 out:
7849 __this_cpu_dec(bpf_prog_active);
7850 preempt_enable();
7851 if (!ret)
7852 return;
7853
7854 event->orig_overflow_handler(event, data, regs);
7855 }
7856
7857 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
7858 {
7859 struct bpf_prog *prog;
7860
7861 if (event->overflow_handler_context)
7862 /* hw breakpoint or kernel counter */
7863 return -EINVAL;
7864
7865 if (event->prog)
7866 return -EEXIST;
7867
7868 prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
7869 if (IS_ERR(prog))
7870 return PTR_ERR(prog);
7871
7872 event->prog = prog;
7873 event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
7874 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
7875 return 0;
7876 }
7877
7878 static void perf_event_free_bpf_handler(struct perf_event *event)
7879 {
7880 struct bpf_prog *prog = event->prog;
7881
7882 if (!prog)
7883 return;
7884
7885 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
7886 event->prog = NULL;
7887 bpf_prog_put(prog);
7888 }
7889 #else
7890 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
7891 {
7892 return -EOPNOTSUPP;
7893 }
7894 static void perf_event_free_bpf_handler(struct perf_event *event)
7895 {
7896 }
7897 #endif
7898
7899 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7900 {
7901 bool is_kprobe, is_tracepoint;
7902 struct bpf_prog *prog;
7903
7904 if (event->attr.type == PERF_TYPE_HARDWARE ||
7905 event->attr.type == PERF_TYPE_SOFTWARE)
7906 return perf_event_set_bpf_handler(event, prog_fd);
7907
7908 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7909 return -EINVAL;
7910
7911 if (event->tp_event->prog)
7912 return -EEXIST;
7913
7914 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
7915 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
7916 if (!is_kprobe && !is_tracepoint)
7917 /* bpf programs can only be attached to u/kprobe or tracepoint */
7918 return -EINVAL;
7919
7920 prog = bpf_prog_get(prog_fd);
7921 if (IS_ERR(prog))
7922 return PTR_ERR(prog);
7923
7924 if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
7925 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
7926 /* valid fd, but invalid bpf program type */
7927 bpf_prog_put(prog);
7928 return -EINVAL;
7929 }
7930
7931 if (is_tracepoint) {
7932 int off = trace_event_get_offsets(event->tp_event);
7933
7934 if (prog->aux->max_ctx_offset > off) {
7935 bpf_prog_put(prog);
7936 return -EACCES;
7937 }
7938 }
7939 event->tp_event->prog = prog;
7940
7941 return 0;
7942 }
7943
7944 static void perf_event_free_bpf_prog(struct perf_event *event)
7945 {
7946 struct bpf_prog *prog;
7947
7948 perf_event_free_bpf_handler(event);
7949
7950 if (!event->tp_event)
7951 return;
7952
7953 prog = event->tp_event->prog;
7954 if (prog) {
7955 event->tp_event->prog = NULL;
7956 bpf_prog_put(prog);
7957 }
7958 }
7959
7960 #else
7961
7962 static inline void perf_tp_register(void)
7963 {
7964 }
7965
7966 static void perf_event_free_filter(struct perf_event *event)
7967 {
7968 }
7969
7970 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7971 {
7972 return -ENOENT;
7973 }
7974
7975 static void perf_event_free_bpf_prog(struct perf_event *event)
7976 {
7977 }
7978 #endif /* CONFIG_EVENT_TRACING */
7979
7980 #ifdef CONFIG_HAVE_HW_BREAKPOINT
7981 void perf_bp_event(struct perf_event *bp, void *data)
7982 {
7983 struct perf_sample_data sample;
7984 struct pt_regs *regs = data;
7985
7986 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
7987
7988 if (!bp->hw.state && !perf_exclude_event(bp, regs))
7989 perf_swevent_event(bp, 1, &sample, regs);
7990 }
7991 #endif
7992
7993 /*
7994 * Allocate a new address filter
7995 */
7996 static struct perf_addr_filter *
7997 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
7998 {
7999 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
8000 struct perf_addr_filter *filter;
8001
8002 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
8003 if (!filter)
8004 return NULL;
8005
8006 INIT_LIST_HEAD(&filter->entry);
8007 list_add_tail(&filter->entry, filters);
8008
8009 return filter;
8010 }
8011
8012 static void free_filters_list(struct list_head *filters)
8013 {
8014 struct perf_addr_filter *filter, *iter;
8015
8016 list_for_each_entry_safe(filter, iter, filters, entry) {
8017 if (filter->inode)
8018 iput(filter->inode);
8019 list_del(&filter->entry);
8020 kfree(filter);
8021 }
8022 }
8023
8024 /*
8025 * Free existing address filters and optionally install new ones
8026 */
8027 static void perf_addr_filters_splice(struct perf_event *event,
8028 struct list_head *head)
8029 {
8030 unsigned long flags;
8031 LIST_HEAD(list);
8032
8033 if (!has_addr_filter(event))
8034 return;
8035
8036 /* don't bother with children, they don't have their own filters */
8037 if (event->parent)
8038 return;
8039
8040 raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
8041
8042 list_splice_init(&event->addr_filters.list, &list);
8043 if (head)
8044 list_splice(head, &event->addr_filters.list);
8045
8046 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
8047
8048 free_filters_list(&list);
8049 }
8050
8051 /*
8052 * Scan through mm's vmas and see if one of them matches the
8053 * @filter; if so, adjust filter's address range.
8054 * Called with mm::mmap_sem down for reading.
8055 */
8056 static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
8057 struct mm_struct *mm)
8058 {
8059 struct vm_area_struct *vma;
8060
8061 for (vma = mm->mmap; vma; vma = vma->vm_next) {
8062 struct file *file = vma->vm_file;
8063 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8064 unsigned long vma_size = vma->vm_end - vma->vm_start;
8065
8066 if (!file)
8067 continue;
8068
8069 if (!perf_addr_filter_match(filter, file, off, vma_size))
8070 continue;
8071
8072 return vma->vm_start;
8073 }
8074
8075 return 0;
8076 }
8077
8078 /*
8079 * Update event's address range filters based on the
8080 * task's existing mappings, if any.
8081 */
8082 static void perf_event_addr_filters_apply(struct perf_event *event)
8083 {
8084 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8085 struct task_struct *task = READ_ONCE(event->ctx->task);
8086 struct perf_addr_filter *filter;
8087 struct mm_struct *mm = NULL;
8088 unsigned int count = 0;
8089 unsigned long flags;
8090
8091 /*
8092 * We may observe TASK_TOMBSTONE, which means that the event tear-down
8093 * will stop on the parent's child_mutex that our caller is also holding
8094 */
8095 if (task == TASK_TOMBSTONE)
8096 return;
8097
8098 if (!ifh->nr_file_filters)
8099 return;
8100
8101 mm = get_task_mm(event->ctx->task);
8102 if (!mm)
8103 goto restart;
8104
8105 down_read(&mm->mmap_sem);
8106
8107 raw_spin_lock_irqsave(&ifh->lock, flags);
8108 list_for_each_entry(filter, &ifh->list, entry) {
8109 event->addr_filters_offs[count] = 0;
8110
8111 /*
8112 * Adjust base offset if the filter is associated to a binary
8113 * that needs to be mapped:
8114 */
8115 if (filter->inode)
8116 event->addr_filters_offs[count] =
8117 perf_addr_filter_apply(filter, mm);
8118
8119 count++;
8120 }
8121
8122 event->addr_filters_gen++;
8123 raw_spin_unlock_irqrestore(&ifh->lock, flags);
8124
8125 up_read(&mm->mmap_sem);
8126
8127 mmput(mm);
8128
8129 restart:
8130 perf_event_stop(event, 1);
8131 }
8132
8133 /*
8134 * Address range filtering: limiting the data to certain
8135 * instruction address ranges. Filters are ioctl()ed to us from
8136 * userspace as ascii strings.
8137 *
8138 * Filter string format:
8139 *
8140 * ACTION RANGE_SPEC
8141 * where ACTION is one of the
8142 * * "filter": limit the trace to this region
8143 * * "start": start tracing from this address
8144 * * "stop": stop tracing at this address/region;
8145 * RANGE_SPEC is
8146 * * for kernel addresses: <start address>[/<size>]
8147 * * for object files: <start address>[/<size>]@</path/to/object/file>
8148 *
8149 * if <size> is not specified, the range is treated as a single address.
8150 */
8151 enum {
8152 IF_ACT_NONE = -1,
8153 IF_ACT_FILTER,
8154 IF_ACT_START,
8155 IF_ACT_STOP,
8156 IF_SRC_FILE,
8157 IF_SRC_KERNEL,
8158 IF_SRC_FILEADDR,
8159 IF_SRC_KERNELADDR,
8160 };
8161
8162 enum {
8163 IF_STATE_ACTION = 0,
8164 IF_STATE_SOURCE,
8165 IF_STATE_END,
8166 };
8167
8168 static const match_table_t if_tokens = {
8169 { IF_ACT_FILTER, "filter" },
8170 { IF_ACT_START, "start" },
8171 { IF_ACT_STOP, "stop" },
8172 { IF_SRC_FILE, "%u/%u@%s" },
8173 { IF_SRC_KERNEL, "%u/%u" },
8174 { IF_SRC_FILEADDR, "%u@%s" },
8175 { IF_SRC_KERNELADDR, "%u" },
8176 { IF_ACT_NONE, NULL },
8177 };
8178
8179 /*
8180 * Address filter string parser
8181 */
8182 static int
8183 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
8184 struct list_head *filters)
8185 {
8186 struct perf_addr_filter *filter = NULL;
8187 char *start, *orig, *filename = NULL;
8188 struct path path;
8189 substring_t args[MAX_OPT_ARGS];
8190 int state = IF_STATE_ACTION, token;
8191 unsigned int kernel = 0;
8192 int ret = -EINVAL;
8193
8194 orig = fstr = kstrdup(fstr, GFP_KERNEL);
8195 if (!fstr)
8196 return -ENOMEM;
8197
8198 while ((start = strsep(&fstr, " ,\n")) != NULL) {
8199 ret = -EINVAL;
8200
8201 if (!*start)
8202 continue;
8203
8204 /* filter definition begins */
8205 if (state == IF_STATE_ACTION) {
8206 filter = perf_addr_filter_new(event, filters);
8207 if (!filter)
8208 goto fail;
8209 }
8210
8211 token = match_token(start, if_tokens, args);
8212 switch (token) {
8213 case IF_ACT_FILTER:
8214 case IF_ACT_START:
8215 filter->filter = 1;
8216
8217 case IF_ACT_STOP:
8218 if (state != IF_STATE_ACTION)
8219 goto fail;
8220
8221 state = IF_STATE_SOURCE;
8222 break;
8223
8224 case IF_SRC_KERNELADDR:
8225 case IF_SRC_KERNEL:
8226 kernel = 1;
8227
8228 case IF_SRC_FILEADDR:
8229 case IF_SRC_FILE:
8230 if (state != IF_STATE_SOURCE)
8231 goto fail;
8232
8233 if (token == IF_SRC_FILE || token == IF_SRC_KERNEL)
8234 filter->range = 1;
8235
8236 *args[0].to = 0;
8237 ret = kstrtoul(args[0].from, 0, &filter->offset);
8238 if (ret)
8239 goto fail;
8240
8241 if (filter->range) {
8242 *args[1].to = 0;
8243 ret = kstrtoul(args[1].from, 0, &filter->size);
8244 if (ret)
8245 goto fail;
8246 }
8247
8248 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
8249 int fpos = filter->range ? 2 : 1;
8250
8251 filename = match_strdup(&args[fpos]);
8252 if (!filename) {
8253 ret = -ENOMEM;
8254 goto fail;
8255 }
8256 }
8257
8258 state = IF_STATE_END;
8259 break;
8260
8261 default:
8262 goto fail;
8263 }
8264
8265 /*
8266 * Filter definition is fully parsed, validate and install it.
8267 * Make sure that it doesn't contradict itself or the event's
8268 * attribute.
8269 */
8270 if (state == IF_STATE_END) {
8271 ret = -EINVAL;
8272 if (kernel && event->attr.exclude_kernel)
8273 goto fail;
8274
8275 if (!kernel) {
8276 if (!filename)
8277 goto fail;
8278
8279 /*
8280 * For now, we only support file-based filters
8281 * in per-task events; doing so for CPU-wide
8282 * events requires additional context switching
8283 * trickery, since same object code will be
8284 * mapped at different virtual addresses in
8285 * different processes.
8286 */
8287 ret = -EOPNOTSUPP;
8288 if (!event->ctx->task)
8289 goto fail_free_name;
8290
8291 /* look up the path and grab its inode */
8292 ret = kern_path(filename, LOOKUP_FOLLOW, &path);
8293 if (ret)
8294 goto fail_free_name;
8295
8296 filter->inode = igrab(d_inode(path.dentry));
8297 path_put(&path);
8298 kfree(filename);
8299 filename = NULL;
8300
8301 ret = -EINVAL;
8302 if (!filter->inode ||
8303 !S_ISREG(filter->inode->i_mode))
8304 /* free_filters_list() will iput() */
8305 goto fail;
8306
8307 event->addr_filters.nr_file_filters++;
8308 }
8309
8310 /* ready to consume more filters */
8311 state = IF_STATE_ACTION;
8312 filter = NULL;
8313 }
8314 }
8315
8316 if (state != IF_STATE_ACTION)
8317 goto fail;
8318
8319 kfree(orig);
8320
8321 return 0;
8322
8323 fail_free_name:
8324 kfree(filename);
8325 fail:
8326 free_filters_list(filters);
8327 kfree(orig);
8328
8329 return ret;
8330 }
8331
8332 static int
8333 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
8334 {
8335 LIST_HEAD(filters);
8336 int ret;
8337
8338 /*
8339 * Since this is called in perf_ioctl() path, we're already holding
8340 * ctx::mutex.
8341 */
8342 lockdep_assert_held(&event->ctx->mutex);
8343
8344 if (WARN_ON_ONCE(event->parent))
8345 return -EINVAL;
8346
8347 ret = perf_event_parse_addr_filter(event, filter_str, &filters);
8348 if (ret)
8349 goto fail_clear_files;
8350
8351 ret = event->pmu->addr_filters_validate(&filters);
8352 if (ret)
8353 goto fail_free_filters;
8354
8355 /* remove existing filters, if any */
8356 perf_addr_filters_splice(event, &filters);
8357
8358 /* install new filters */
8359 perf_event_for_each_child(event, perf_event_addr_filters_apply);
8360
8361 return ret;
8362
8363 fail_free_filters:
8364 free_filters_list(&filters);
8365
8366 fail_clear_files:
8367 event->addr_filters.nr_file_filters = 0;
8368
8369 return ret;
8370 }
8371
8372 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
8373 {
8374 char *filter_str;
8375 int ret = -EINVAL;
8376
8377 if ((event->attr.type != PERF_TYPE_TRACEPOINT ||
8378 !IS_ENABLED(CONFIG_EVENT_TRACING)) &&
8379 !has_addr_filter(event))
8380 return -EINVAL;
8381
8382 filter_str = strndup_user(arg, PAGE_SIZE);
8383 if (IS_ERR(filter_str))
8384 return PTR_ERR(filter_str);
8385
8386 if (IS_ENABLED(CONFIG_EVENT_TRACING) &&
8387 event->attr.type == PERF_TYPE_TRACEPOINT)
8388 ret = ftrace_profile_set_filter(event, event->attr.config,
8389 filter_str);
8390 else if (has_addr_filter(event))
8391 ret = perf_event_set_addr_filter(event, filter_str);
8392
8393 kfree(filter_str);
8394 return ret;
8395 }
8396
8397 /*
8398 * hrtimer based swevent callback
8399 */
8400
8401 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
8402 {
8403 enum hrtimer_restart ret = HRTIMER_RESTART;
8404 struct perf_sample_data data;
8405 struct pt_regs *regs;
8406 struct perf_event *event;
8407 u64 period;
8408
8409 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
8410
8411 if (event->state != PERF_EVENT_STATE_ACTIVE)
8412 return HRTIMER_NORESTART;
8413
8414 event->pmu->read(event);
8415
8416 perf_sample_data_init(&data, 0, event->hw.last_period);
8417 regs = get_irq_regs();
8418
8419 if (regs && !perf_exclude_event(event, regs)) {
8420 if (!(event->attr.exclude_idle && is_idle_task(current)))
8421 if (__perf_event_overflow(event, 1, &data, regs))
8422 ret = HRTIMER_NORESTART;
8423 }
8424
8425 period = max_t(u64, 10000, event->hw.sample_period);
8426 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
8427
8428 return ret;
8429 }
8430
8431 static void perf_swevent_start_hrtimer(struct perf_event *event)
8432 {
8433 struct hw_perf_event *hwc = &event->hw;
8434 s64 period;
8435
8436 if (!is_sampling_event(event))
8437 return;
8438
8439 period = local64_read(&hwc->period_left);
8440 if (period) {
8441 if (period < 0)
8442 period = 10000;
8443
8444 local64_set(&hwc->period_left, 0);
8445 } else {
8446 period = max_t(u64, 10000, hwc->sample_period);
8447 }
8448 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
8449 HRTIMER_MODE_REL_PINNED);
8450 }
8451
8452 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
8453 {
8454 struct hw_perf_event *hwc = &event->hw;
8455
8456 if (is_sampling_event(event)) {
8457 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
8458 local64_set(&hwc->period_left, ktime_to_ns(remaining));
8459
8460 hrtimer_cancel(&hwc->hrtimer);
8461 }
8462 }
8463
8464 static void perf_swevent_init_hrtimer(struct perf_event *event)
8465 {
8466 struct hw_perf_event *hwc = &event->hw;
8467
8468 if (!is_sampling_event(event))
8469 return;
8470
8471 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
8472 hwc->hrtimer.function = perf_swevent_hrtimer;
8473
8474 /*
8475 * Since hrtimers have a fixed rate, we can do a static freq->period
8476 * mapping and avoid the whole period adjust feedback stuff.
8477 */
8478 if (event->attr.freq) {
8479 long freq = event->attr.sample_freq;
8480
8481 event->attr.sample_period = NSEC_PER_SEC / freq;
8482 hwc->sample_period = event->attr.sample_period;
8483 local64_set(&hwc->period_left, hwc->sample_period);
8484 hwc->last_period = hwc->sample_period;
8485 event->attr.freq = 0;
8486 }
8487 }
8488
8489 /*
8490 * Software event: cpu wall time clock
8491 */
8492
8493 static void cpu_clock_event_update(struct perf_event *event)
8494 {
8495 s64 prev;
8496 u64 now;
8497
8498 now = local_clock();
8499 prev = local64_xchg(&event->hw.prev_count, now);
8500 local64_add(now - prev, &event->count);
8501 }
8502
8503 static void cpu_clock_event_start(struct perf_event *event, int flags)
8504 {
8505 local64_set(&event->hw.prev_count, local_clock());
8506 perf_swevent_start_hrtimer(event);
8507 }
8508
8509 static void cpu_clock_event_stop(struct perf_event *event, int flags)
8510 {
8511 perf_swevent_cancel_hrtimer(event);
8512 cpu_clock_event_update(event);
8513 }
8514
8515 static int cpu_clock_event_add(struct perf_event *event, int flags)
8516 {
8517 if (flags & PERF_EF_START)
8518 cpu_clock_event_start(event, flags);
8519 perf_event_update_userpage(event);
8520
8521 return 0;
8522 }
8523
8524 static void cpu_clock_event_del(struct perf_event *event, int flags)
8525 {
8526 cpu_clock_event_stop(event, flags);
8527 }
8528
8529 static void cpu_clock_event_read(struct perf_event *event)
8530 {
8531 cpu_clock_event_update(event);
8532 }
8533
8534 static int cpu_clock_event_init(struct perf_event *event)
8535 {
8536 if (event->attr.type != PERF_TYPE_SOFTWARE)
8537 return -ENOENT;
8538
8539 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
8540 return -ENOENT;
8541
8542 /*
8543 * no branch sampling for software events
8544 */
8545 if (has_branch_stack(event))
8546 return -EOPNOTSUPP;
8547
8548 perf_swevent_init_hrtimer(event);
8549
8550 return 0;
8551 }
8552
8553 static struct pmu perf_cpu_clock = {
8554 .task_ctx_nr = perf_sw_context,
8555
8556 .capabilities = PERF_PMU_CAP_NO_NMI,
8557
8558 .event_init = cpu_clock_event_init,
8559 .add = cpu_clock_event_add,
8560 .del = cpu_clock_event_del,
8561 .start = cpu_clock_event_start,
8562 .stop = cpu_clock_event_stop,
8563 .read = cpu_clock_event_read,
8564 };
8565
8566 /*
8567 * Software event: task time clock
8568 */
8569
8570 static void task_clock_event_update(struct perf_event *event, u64 now)
8571 {
8572 u64 prev;
8573 s64 delta;
8574
8575 prev = local64_xchg(&event->hw.prev_count, now);
8576 delta = now - prev;
8577 local64_add(delta, &event->count);
8578 }
8579
8580 static void task_clock_event_start(struct perf_event *event, int flags)
8581 {
8582 local64_set(&event->hw.prev_count, event->ctx->time);
8583 perf_swevent_start_hrtimer(event);
8584 }
8585
8586 static void task_clock_event_stop(struct perf_event *event, int flags)
8587 {
8588 perf_swevent_cancel_hrtimer(event);
8589 task_clock_event_update(event, event->ctx->time);
8590 }
8591
8592 static int task_clock_event_add(struct perf_event *event, int flags)
8593 {
8594 if (flags & PERF_EF_START)
8595 task_clock_event_start(event, flags);
8596 perf_event_update_userpage(event);
8597
8598 return 0;
8599 }
8600
8601 static void task_clock_event_del(struct perf_event *event, int flags)
8602 {
8603 task_clock_event_stop(event, PERF_EF_UPDATE);
8604 }
8605
8606 static void task_clock_event_read(struct perf_event *event)
8607 {
8608 u64 now = perf_clock();
8609 u64 delta = now - event->ctx->timestamp;
8610 u64 time = event->ctx->time + delta;
8611
8612 task_clock_event_update(event, time);
8613 }
8614
8615 static int task_clock_event_init(struct perf_event *event)
8616 {
8617 if (event->attr.type != PERF_TYPE_SOFTWARE)
8618 return -ENOENT;
8619
8620 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
8621 return -ENOENT;
8622
8623 /*
8624 * no branch sampling for software events
8625 */
8626 if (has_branch_stack(event))
8627 return -EOPNOTSUPP;
8628
8629 perf_swevent_init_hrtimer(event);
8630
8631 return 0;
8632 }
8633
8634 static struct pmu perf_task_clock = {
8635 .task_ctx_nr = perf_sw_context,
8636
8637 .capabilities = PERF_PMU_CAP_NO_NMI,
8638
8639 .event_init = task_clock_event_init,
8640 .add = task_clock_event_add,
8641 .del = task_clock_event_del,
8642 .start = task_clock_event_start,
8643 .stop = task_clock_event_stop,
8644 .read = task_clock_event_read,
8645 };
8646
8647 static void perf_pmu_nop_void(struct pmu *pmu)
8648 {
8649 }
8650
8651 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
8652 {
8653 }
8654
8655 static int perf_pmu_nop_int(struct pmu *pmu)
8656 {
8657 return 0;
8658 }
8659
8660 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
8661
8662 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
8663 {
8664 __this_cpu_write(nop_txn_flags, flags);
8665
8666 if (flags & ~PERF_PMU_TXN_ADD)
8667 return;
8668
8669 perf_pmu_disable(pmu);
8670 }
8671
8672 static int perf_pmu_commit_txn(struct pmu *pmu)
8673 {
8674 unsigned int flags = __this_cpu_read(nop_txn_flags);
8675
8676 __this_cpu_write(nop_txn_flags, 0);
8677
8678 if (flags & ~PERF_PMU_TXN_ADD)
8679 return 0;
8680
8681 perf_pmu_enable(pmu);
8682 return 0;
8683 }
8684
8685 static void perf_pmu_cancel_txn(struct pmu *pmu)
8686 {
8687 unsigned int flags = __this_cpu_read(nop_txn_flags);
8688
8689 __this_cpu_write(nop_txn_flags, 0);
8690
8691 if (flags & ~PERF_PMU_TXN_ADD)
8692 return;
8693
8694 perf_pmu_enable(pmu);
8695 }
8696
8697 static int perf_event_idx_default(struct perf_event *event)
8698 {
8699 return 0;
8700 }
8701
8702 /*
8703 * Ensures all contexts with the same task_ctx_nr have the same
8704 * pmu_cpu_context too.
8705 */
8706 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
8707 {
8708 struct pmu *pmu;
8709
8710 if (ctxn < 0)
8711 return NULL;
8712
8713 list_for_each_entry(pmu, &pmus, entry) {
8714 if (pmu->task_ctx_nr == ctxn)
8715 return pmu->pmu_cpu_context;
8716 }
8717
8718 return NULL;
8719 }
8720
8721 static void free_pmu_context(struct pmu *pmu)
8722 {
8723 mutex_lock(&pmus_lock);
8724 free_percpu(pmu->pmu_cpu_context);
8725 mutex_unlock(&pmus_lock);
8726 }
8727
8728 /*
8729 * Let userspace know that this PMU supports address range filtering:
8730 */
8731 static ssize_t nr_addr_filters_show(struct device *dev,
8732 struct device_attribute *attr,
8733 char *page)
8734 {
8735 struct pmu *pmu = dev_get_drvdata(dev);
8736
8737 return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
8738 }
8739 DEVICE_ATTR_RO(nr_addr_filters);
8740
8741 static struct idr pmu_idr;
8742
8743 static ssize_t
8744 type_show(struct device *dev, struct device_attribute *attr, char *page)
8745 {
8746 struct pmu *pmu = dev_get_drvdata(dev);
8747
8748 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
8749 }
8750 static DEVICE_ATTR_RO(type);
8751
8752 static ssize_t
8753 perf_event_mux_interval_ms_show(struct device *dev,
8754 struct device_attribute *attr,
8755 char *page)
8756 {
8757 struct pmu *pmu = dev_get_drvdata(dev);
8758
8759 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
8760 }
8761
8762 static DEFINE_MUTEX(mux_interval_mutex);
8763
8764 static ssize_t
8765 perf_event_mux_interval_ms_store(struct device *dev,
8766 struct device_attribute *attr,
8767 const char *buf, size_t count)
8768 {
8769 struct pmu *pmu = dev_get_drvdata(dev);
8770 int timer, cpu, ret;
8771
8772 ret = kstrtoint(buf, 0, &timer);
8773 if (ret)
8774 return ret;
8775
8776 if (timer < 1)
8777 return -EINVAL;
8778
8779 /* same value, noting to do */
8780 if (timer == pmu->hrtimer_interval_ms)
8781 return count;
8782
8783 mutex_lock(&mux_interval_mutex);
8784 pmu->hrtimer_interval_ms = timer;
8785
8786 /* update all cpuctx for this PMU */
8787 get_online_cpus();
8788 for_each_online_cpu(cpu) {
8789 struct perf_cpu_context *cpuctx;
8790 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8791 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
8792
8793 cpu_function_call(cpu,
8794 (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
8795 }
8796 put_online_cpus();
8797 mutex_unlock(&mux_interval_mutex);
8798
8799 return count;
8800 }
8801 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
8802
8803 static struct attribute *pmu_dev_attrs[] = {
8804 &dev_attr_type.attr,
8805 &dev_attr_perf_event_mux_interval_ms.attr,
8806 NULL,
8807 };
8808 ATTRIBUTE_GROUPS(pmu_dev);
8809
8810 static int pmu_bus_running;
8811 static struct bus_type pmu_bus = {
8812 .name = "event_source",
8813 .dev_groups = pmu_dev_groups,
8814 };
8815
8816 static void pmu_dev_release(struct device *dev)
8817 {
8818 kfree(dev);
8819 }
8820
8821 static int pmu_dev_alloc(struct pmu *pmu)
8822 {
8823 int ret = -ENOMEM;
8824
8825 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
8826 if (!pmu->dev)
8827 goto out;
8828
8829 pmu->dev->groups = pmu->attr_groups;
8830 device_initialize(pmu->dev);
8831 ret = dev_set_name(pmu->dev, "%s", pmu->name);
8832 if (ret)
8833 goto free_dev;
8834
8835 dev_set_drvdata(pmu->dev, pmu);
8836 pmu->dev->bus = &pmu_bus;
8837 pmu->dev->release = pmu_dev_release;
8838 ret = device_add(pmu->dev);
8839 if (ret)
8840 goto free_dev;
8841
8842 /* For PMUs with address filters, throw in an extra attribute: */
8843 if (pmu->nr_addr_filters)
8844 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
8845
8846 if (ret)
8847 goto del_dev;
8848
8849 out:
8850 return ret;
8851
8852 del_dev:
8853 device_del(pmu->dev);
8854
8855 free_dev:
8856 put_device(pmu->dev);
8857 goto out;
8858 }
8859
8860 static struct lock_class_key cpuctx_mutex;
8861 static struct lock_class_key cpuctx_lock;
8862
8863 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
8864 {
8865 int cpu, ret;
8866
8867 mutex_lock(&pmus_lock);
8868 ret = -ENOMEM;
8869 pmu->pmu_disable_count = alloc_percpu(int);
8870 if (!pmu->pmu_disable_count)
8871 goto unlock;
8872
8873 pmu->type = -1;
8874 if (!name)
8875 goto skip_type;
8876 pmu->name = name;
8877
8878 if (type < 0) {
8879 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
8880 if (type < 0) {
8881 ret = type;
8882 goto free_pdc;
8883 }
8884 }
8885 pmu->type = type;
8886
8887 if (pmu_bus_running) {
8888 ret = pmu_dev_alloc(pmu);
8889 if (ret)
8890 goto free_idr;
8891 }
8892
8893 skip_type:
8894 if (pmu->task_ctx_nr == perf_hw_context) {
8895 static int hw_context_taken = 0;
8896
8897 /*
8898 * Other than systems with heterogeneous CPUs, it never makes
8899 * sense for two PMUs to share perf_hw_context. PMUs which are
8900 * uncore must use perf_invalid_context.
8901 */
8902 if (WARN_ON_ONCE(hw_context_taken &&
8903 !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
8904 pmu->task_ctx_nr = perf_invalid_context;
8905
8906 hw_context_taken = 1;
8907 }
8908
8909 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
8910 if (pmu->pmu_cpu_context)
8911 goto got_cpu_context;
8912
8913 ret = -ENOMEM;
8914 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
8915 if (!pmu->pmu_cpu_context)
8916 goto free_dev;
8917
8918 for_each_possible_cpu(cpu) {
8919 struct perf_cpu_context *cpuctx;
8920
8921 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8922 __perf_event_init_context(&cpuctx->ctx);
8923 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
8924 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
8925 cpuctx->ctx.pmu = pmu;
8926
8927 __perf_mux_hrtimer_init(cpuctx, cpu);
8928 }
8929
8930 got_cpu_context:
8931 if (!pmu->start_txn) {
8932 if (pmu->pmu_enable) {
8933 /*
8934 * If we have pmu_enable/pmu_disable calls, install
8935 * transaction stubs that use that to try and batch
8936 * hardware accesses.
8937 */
8938 pmu->start_txn = perf_pmu_start_txn;
8939 pmu->commit_txn = perf_pmu_commit_txn;
8940 pmu->cancel_txn = perf_pmu_cancel_txn;
8941 } else {
8942 pmu->start_txn = perf_pmu_nop_txn;
8943 pmu->commit_txn = perf_pmu_nop_int;
8944 pmu->cancel_txn = perf_pmu_nop_void;
8945 }
8946 }
8947
8948 if (!pmu->pmu_enable) {
8949 pmu->pmu_enable = perf_pmu_nop_void;
8950 pmu->pmu_disable = perf_pmu_nop_void;
8951 }
8952
8953 if (!pmu->event_idx)
8954 pmu->event_idx = perf_event_idx_default;
8955
8956 list_add_rcu(&pmu->entry, &pmus);
8957 atomic_set(&pmu->exclusive_cnt, 0);
8958 ret = 0;
8959 unlock:
8960 mutex_unlock(&pmus_lock);
8961
8962 return ret;
8963
8964 free_dev:
8965 device_del(pmu->dev);
8966 put_device(pmu->dev);
8967
8968 free_idr:
8969 if (pmu->type >= PERF_TYPE_MAX)
8970 idr_remove(&pmu_idr, pmu->type);
8971
8972 free_pdc:
8973 free_percpu(pmu->pmu_disable_count);
8974 goto unlock;
8975 }
8976 EXPORT_SYMBOL_GPL(perf_pmu_register);
8977
8978 void perf_pmu_unregister(struct pmu *pmu)
8979 {
8980 int remove_device;
8981
8982 mutex_lock(&pmus_lock);
8983 remove_device = pmu_bus_running;
8984 list_del_rcu(&pmu->entry);
8985 mutex_unlock(&pmus_lock);
8986
8987 /*
8988 * We dereference the pmu list under both SRCU and regular RCU, so
8989 * synchronize against both of those.
8990 */
8991 synchronize_srcu(&pmus_srcu);
8992 synchronize_rcu();
8993
8994 free_percpu(pmu->pmu_disable_count);
8995 if (pmu->type >= PERF_TYPE_MAX)
8996 idr_remove(&pmu_idr, pmu->type);
8997 if (remove_device) {
8998 if (pmu->nr_addr_filters)
8999 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
9000 device_del(pmu->dev);
9001 put_device(pmu->dev);
9002 }
9003 free_pmu_context(pmu);
9004 }
9005 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
9006
9007 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
9008 {
9009 struct perf_event_context *ctx = NULL;
9010 int ret;
9011
9012 if (!try_module_get(pmu->module))
9013 return -ENODEV;
9014
9015 if (event->group_leader != event) {
9016 /*
9017 * This ctx->mutex can nest when we're called through
9018 * inheritance. See the perf_event_ctx_lock_nested() comment.
9019 */
9020 ctx = perf_event_ctx_lock_nested(event->group_leader,
9021 SINGLE_DEPTH_NESTING);
9022 BUG_ON(!ctx);
9023 }
9024
9025 event->pmu = pmu;
9026 ret = pmu->event_init(event);
9027
9028 if (ctx)
9029 perf_event_ctx_unlock(event->group_leader, ctx);
9030
9031 if (ret)
9032 module_put(pmu->module);
9033
9034 return ret;
9035 }
9036
9037 static struct pmu *perf_init_event(struct perf_event *event)
9038 {
9039 struct pmu *pmu = NULL;
9040 int idx;
9041 int ret;
9042
9043 idx = srcu_read_lock(&pmus_srcu);
9044
9045 /* Try parent's PMU first: */
9046 if (event->parent && event->parent->pmu) {
9047 pmu = event->parent->pmu;
9048 ret = perf_try_init_event(pmu, event);
9049 if (!ret)
9050 goto unlock;
9051 }
9052
9053 rcu_read_lock();
9054 pmu = idr_find(&pmu_idr, event->attr.type);
9055 rcu_read_unlock();
9056 if (pmu) {
9057 ret = perf_try_init_event(pmu, event);
9058 if (ret)
9059 pmu = ERR_PTR(ret);
9060 goto unlock;
9061 }
9062
9063 list_for_each_entry_rcu(pmu, &pmus, entry) {
9064 ret = perf_try_init_event(pmu, event);
9065 if (!ret)
9066 goto unlock;
9067
9068 if (ret != -ENOENT) {
9069 pmu = ERR_PTR(ret);
9070 goto unlock;
9071 }
9072 }
9073 pmu = ERR_PTR(-ENOENT);
9074 unlock:
9075 srcu_read_unlock(&pmus_srcu, idx);
9076
9077 return pmu;
9078 }
9079
9080 static void attach_sb_event(struct perf_event *event)
9081 {
9082 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
9083
9084 raw_spin_lock(&pel->lock);
9085 list_add_rcu(&event->sb_list, &pel->list);
9086 raw_spin_unlock(&pel->lock);
9087 }
9088
9089 /*
9090 * We keep a list of all !task (and therefore per-cpu) events
9091 * that need to receive side-band records.
9092 *
9093 * This avoids having to scan all the various PMU per-cpu contexts
9094 * looking for them.
9095 */
9096 static void account_pmu_sb_event(struct perf_event *event)
9097 {
9098 if (is_sb_event(event))
9099 attach_sb_event(event);
9100 }
9101
9102 static void account_event_cpu(struct perf_event *event, int cpu)
9103 {
9104 if (event->parent)
9105 return;
9106
9107 if (is_cgroup_event(event))
9108 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
9109 }
9110
9111 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
9112 static void account_freq_event_nohz(void)
9113 {
9114 #ifdef CONFIG_NO_HZ_FULL
9115 /* Lock so we don't race with concurrent unaccount */
9116 spin_lock(&nr_freq_lock);
9117 if (atomic_inc_return(&nr_freq_events) == 1)
9118 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
9119 spin_unlock(&nr_freq_lock);
9120 #endif
9121 }
9122
9123 static void account_freq_event(void)
9124 {
9125 if (tick_nohz_full_enabled())
9126 account_freq_event_nohz();
9127 else
9128 atomic_inc(&nr_freq_events);
9129 }
9130
9131
9132 static void account_event(struct perf_event *event)
9133 {
9134 bool inc = false;
9135
9136 if (event->parent)
9137 return;
9138
9139 if (event->attach_state & PERF_ATTACH_TASK)
9140 inc = true;
9141 if (event->attr.mmap || event->attr.mmap_data)
9142 atomic_inc(&nr_mmap_events);
9143 if (event->attr.comm)
9144 atomic_inc(&nr_comm_events);
9145 if (event->attr.task)
9146 atomic_inc(&nr_task_events);
9147 if (event->attr.freq)
9148 account_freq_event();
9149 if (event->attr.context_switch) {
9150 atomic_inc(&nr_switch_events);
9151 inc = true;
9152 }
9153 if (has_branch_stack(event))
9154 inc = true;
9155 if (is_cgroup_event(event))
9156 inc = true;
9157
9158 if (inc) {
9159 if (atomic_inc_not_zero(&perf_sched_count))
9160 goto enabled;
9161
9162 mutex_lock(&perf_sched_mutex);
9163 if (!atomic_read(&perf_sched_count)) {
9164 static_branch_enable(&perf_sched_events);
9165 /*
9166 * Guarantee that all CPUs observe they key change and
9167 * call the perf scheduling hooks before proceeding to
9168 * install events that need them.
9169 */
9170 synchronize_sched();
9171 }
9172 /*
9173 * Now that we have waited for the sync_sched(), allow further
9174 * increments to by-pass the mutex.
9175 */
9176 atomic_inc(&perf_sched_count);
9177 mutex_unlock(&perf_sched_mutex);
9178 }
9179 enabled:
9180
9181 account_event_cpu(event, event->cpu);
9182
9183 account_pmu_sb_event(event);
9184 }
9185
9186 /*
9187 * Allocate and initialize a event structure
9188 */
9189 static struct perf_event *
9190 perf_event_alloc(struct perf_event_attr *attr, int cpu,
9191 struct task_struct *task,
9192 struct perf_event *group_leader,
9193 struct perf_event *parent_event,
9194 perf_overflow_handler_t overflow_handler,
9195 void *context, int cgroup_fd)
9196 {
9197 struct pmu *pmu;
9198 struct perf_event *event;
9199 struct hw_perf_event *hwc;
9200 long err = -EINVAL;
9201
9202 if ((unsigned)cpu >= nr_cpu_ids) {
9203 if (!task || cpu != -1)
9204 return ERR_PTR(-EINVAL);
9205 }
9206
9207 event = kzalloc(sizeof(*event), GFP_KERNEL);
9208 if (!event)
9209 return ERR_PTR(-ENOMEM);
9210
9211 /*
9212 * Single events are their own group leaders, with an
9213 * empty sibling list:
9214 */
9215 if (!group_leader)
9216 group_leader = event;
9217
9218 mutex_init(&event->child_mutex);
9219 INIT_LIST_HEAD(&event->child_list);
9220
9221 INIT_LIST_HEAD(&event->group_entry);
9222 INIT_LIST_HEAD(&event->event_entry);
9223 INIT_LIST_HEAD(&event->sibling_list);
9224 INIT_LIST_HEAD(&event->rb_entry);
9225 INIT_LIST_HEAD(&event->active_entry);
9226 INIT_LIST_HEAD(&event->addr_filters.list);
9227 INIT_HLIST_NODE(&event->hlist_entry);
9228
9229
9230 init_waitqueue_head(&event->waitq);
9231 init_irq_work(&event->pending, perf_pending_event);
9232
9233 mutex_init(&event->mmap_mutex);
9234 raw_spin_lock_init(&event->addr_filters.lock);
9235
9236 atomic_long_set(&event->refcount, 1);
9237 event->cpu = cpu;
9238 event->attr = *attr;
9239 event->group_leader = group_leader;
9240 event->pmu = NULL;
9241 event->oncpu = -1;
9242
9243 event->parent = parent_event;
9244
9245 event->ns = get_pid_ns(task_active_pid_ns(current));
9246 event->id = atomic64_inc_return(&perf_event_id);
9247
9248 event->state = PERF_EVENT_STATE_INACTIVE;
9249
9250 if (task) {
9251 event->attach_state = PERF_ATTACH_TASK;
9252 /*
9253 * XXX pmu::event_init needs to know what task to account to
9254 * and we cannot use the ctx information because we need the
9255 * pmu before we get a ctx.
9256 */
9257 event->hw.target = task;
9258 }
9259
9260 event->clock = &local_clock;
9261 if (parent_event)
9262 event->clock = parent_event->clock;
9263
9264 if (!overflow_handler && parent_event) {
9265 overflow_handler = parent_event->overflow_handler;
9266 context = parent_event->overflow_handler_context;
9267 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
9268 if (overflow_handler == bpf_overflow_handler) {
9269 struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
9270
9271 if (IS_ERR(prog)) {
9272 err = PTR_ERR(prog);
9273 goto err_ns;
9274 }
9275 event->prog = prog;
9276 event->orig_overflow_handler =
9277 parent_event->orig_overflow_handler;
9278 }
9279 #endif
9280 }
9281
9282 if (overflow_handler) {
9283 event->overflow_handler = overflow_handler;
9284 event->overflow_handler_context = context;
9285 } else if (is_write_backward(event)){
9286 event->overflow_handler = perf_event_output_backward;
9287 event->overflow_handler_context = NULL;
9288 } else {
9289 event->overflow_handler = perf_event_output_forward;
9290 event->overflow_handler_context = NULL;
9291 }
9292
9293 perf_event__state_init(event);
9294
9295 pmu = NULL;
9296
9297 hwc = &event->hw;
9298 hwc->sample_period = attr->sample_period;
9299 if (attr->freq && attr->sample_freq)
9300 hwc->sample_period = 1;
9301 hwc->last_period = hwc->sample_period;
9302
9303 local64_set(&hwc->period_left, hwc->sample_period);
9304
9305 /*
9306 * we currently do not support PERF_FORMAT_GROUP on inherited events
9307 */
9308 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
9309 goto err_ns;
9310
9311 if (!has_branch_stack(event))
9312 event->attr.branch_sample_type = 0;
9313
9314 if (cgroup_fd != -1) {
9315 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
9316 if (err)
9317 goto err_ns;
9318 }
9319
9320 pmu = perf_init_event(event);
9321 if (!pmu)
9322 goto err_ns;
9323 else if (IS_ERR(pmu)) {
9324 err = PTR_ERR(pmu);
9325 goto err_ns;
9326 }
9327
9328 err = exclusive_event_init(event);
9329 if (err)
9330 goto err_pmu;
9331
9332 if (has_addr_filter(event)) {
9333 event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
9334 sizeof(unsigned long),
9335 GFP_KERNEL);
9336 if (!event->addr_filters_offs)
9337 goto err_per_task;
9338
9339 /* force hw sync on the address filters */
9340 event->addr_filters_gen = 1;
9341 }
9342
9343 if (!event->parent) {
9344 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
9345 err = get_callchain_buffers(attr->sample_max_stack);
9346 if (err)
9347 goto err_addr_filters;
9348 }
9349 }
9350
9351 /* symmetric to unaccount_event() in _free_event() */
9352 account_event(event);
9353
9354 return event;
9355
9356 err_addr_filters:
9357 kfree(event->addr_filters_offs);
9358
9359 err_per_task:
9360 exclusive_event_destroy(event);
9361
9362 err_pmu:
9363 if (event->destroy)
9364 event->destroy(event);
9365 module_put(pmu->module);
9366 err_ns:
9367 if (is_cgroup_event(event))
9368 perf_detach_cgroup(event);
9369 if (event->ns)
9370 put_pid_ns(event->ns);
9371 kfree(event);
9372
9373 return ERR_PTR(err);
9374 }
9375
9376 static int perf_copy_attr(struct perf_event_attr __user *uattr,
9377 struct perf_event_attr *attr)
9378 {
9379 u32 size;
9380 int ret;
9381
9382 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
9383 return -EFAULT;
9384
9385 /*
9386 * zero the full structure, so that a short copy will be nice.
9387 */
9388 memset(attr, 0, sizeof(*attr));
9389
9390 ret = get_user(size, &uattr->size);
9391 if (ret)
9392 return ret;
9393
9394 if (size > PAGE_SIZE) /* silly large */
9395 goto err_size;
9396
9397 if (!size) /* abi compat */
9398 size = PERF_ATTR_SIZE_VER0;
9399
9400 if (size < PERF_ATTR_SIZE_VER0)
9401 goto err_size;
9402
9403 /*
9404 * If we're handed a bigger struct than we know of,
9405 * ensure all the unknown bits are 0 - i.e. new
9406 * user-space does not rely on any kernel feature
9407 * extensions we dont know about yet.
9408 */
9409 if (size > sizeof(*attr)) {
9410 unsigned char __user *addr;
9411 unsigned char __user *end;
9412 unsigned char val;
9413
9414 addr = (void __user *)uattr + sizeof(*attr);
9415 end = (void __user *)uattr + size;
9416
9417 for (; addr < end; addr++) {
9418 ret = get_user(val, addr);
9419 if (ret)
9420 return ret;
9421 if (val)
9422 goto err_size;
9423 }
9424 size = sizeof(*attr);
9425 }
9426
9427 ret = copy_from_user(attr, uattr, size);
9428 if (ret)
9429 return -EFAULT;
9430
9431 if (attr->__reserved_1)
9432 return -EINVAL;
9433
9434 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
9435 return -EINVAL;
9436
9437 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
9438 return -EINVAL;
9439
9440 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
9441 u64 mask = attr->branch_sample_type;
9442
9443 /* only using defined bits */
9444 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
9445 return -EINVAL;
9446
9447 /* at least one branch bit must be set */
9448 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
9449 return -EINVAL;
9450
9451 /* propagate priv level, when not set for branch */
9452 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
9453
9454 /* exclude_kernel checked on syscall entry */
9455 if (!attr->exclude_kernel)
9456 mask |= PERF_SAMPLE_BRANCH_KERNEL;
9457
9458 if (!attr->exclude_user)
9459 mask |= PERF_SAMPLE_BRANCH_USER;
9460
9461 if (!attr->exclude_hv)
9462 mask |= PERF_SAMPLE_BRANCH_HV;
9463 /*
9464 * adjust user setting (for HW filter setup)
9465 */
9466 attr->branch_sample_type = mask;
9467 }
9468 /* privileged levels capture (kernel, hv): check permissions */
9469 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
9470 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9471 return -EACCES;
9472 }
9473
9474 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
9475 ret = perf_reg_validate(attr->sample_regs_user);
9476 if (ret)
9477 return ret;
9478 }
9479
9480 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
9481 if (!arch_perf_have_user_stack_dump())
9482 return -ENOSYS;
9483
9484 /*
9485 * We have __u32 type for the size, but so far
9486 * we can only use __u16 as maximum due to the
9487 * __u16 sample size limit.
9488 */
9489 if (attr->sample_stack_user >= USHRT_MAX)
9490 ret = -EINVAL;
9491 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
9492 ret = -EINVAL;
9493 }
9494
9495 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
9496 ret = perf_reg_validate(attr->sample_regs_intr);
9497 out:
9498 return ret;
9499
9500 err_size:
9501 put_user(sizeof(*attr), &uattr->size);
9502 ret = -E2BIG;
9503 goto out;
9504 }
9505
9506 static int
9507 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
9508 {
9509 struct ring_buffer *rb = NULL;
9510 int ret = -EINVAL;
9511
9512 if (!output_event)
9513 goto set;
9514
9515 /* don't allow circular references */
9516 if (event == output_event)
9517 goto out;
9518
9519 /*
9520 * Don't allow cross-cpu buffers
9521 */
9522 if (output_event->cpu != event->cpu)
9523 goto out;
9524
9525 /*
9526 * If its not a per-cpu rb, it must be the same task.
9527 */
9528 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
9529 goto out;
9530
9531 /*
9532 * Mixing clocks in the same buffer is trouble you don't need.
9533 */
9534 if (output_event->clock != event->clock)
9535 goto out;
9536
9537 /*
9538 * Either writing ring buffer from beginning or from end.
9539 * Mixing is not allowed.
9540 */
9541 if (is_write_backward(output_event) != is_write_backward(event))
9542 goto out;
9543
9544 /*
9545 * If both events generate aux data, they must be on the same PMU
9546 */
9547 if (has_aux(event) && has_aux(output_event) &&
9548 event->pmu != output_event->pmu)
9549 goto out;
9550
9551 set:
9552 mutex_lock(&event->mmap_mutex);
9553 /* Can't redirect output if we've got an active mmap() */
9554 if (atomic_read(&event->mmap_count))
9555 goto unlock;
9556
9557 if (output_event) {
9558 /* get the rb we want to redirect to */
9559 rb = ring_buffer_get(output_event);
9560 if (!rb)
9561 goto unlock;
9562 }
9563
9564 ring_buffer_attach(event, rb);
9565
9566 ret = 0;
9567 unlock:
9568 mutex_unlock(&event->mmap_mutex);
9569
9570 out:
9571 return ret;
9572 }
9573
9574 static void mutex_lock_double(struct mutex *a, struct mutex *b)
9575 {
9576 if (b < a)
9577 swap(a, b);
9578
9579 mutex_lock(a);
9580 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
9581 }
9582
9583 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
9584 {
9585 bool nmi_safe = false;
9586
9587 switch (clk_id) {
9588 case CLOCK_MONOTONIC:
9589 event->clock = &ktime_get_mono_fast_ns;
9590 nmi_safe = true;
9591 break;
9592
9593 case CLOCK_MONOTONIC_RAW:
9594 event->clock = &ktime_get_raw_fast_ns;
9595 nmi_safe = true;
9596 break;
9597
9598 case CLOCK_REALTIME:
9599 event->clock = &ktime_get_real_ns;
9600 break;
9601
9602 case CLOCK_BOOTTIME:
9603 event->clock = &ktime_get_boot_ns;
9604 break;
9605
9606 case CLOCK_TAI:
9607 event->clock = &ktime_get_tai_ns;
9608 break;
9609
9610 default:
9611 return -EINVAL;
9612 }
9613
9614 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
9615 return -EINVAL;
9616
9617 return 0;
9618 }
9619
9620 /*
9621 * Variation on perf_event_ctx_lock_nested(), except we take two context
9622 * mutexes.
9623 */
9624 static struct perf_event_context *
9625 __perf_event_ctx_lock_double(struct perf_event *group_leader,
9626 struct perf_event_context *ctx)
9627 {
9628 struct perf_event_context *gctx;
9629
9630 again:
9631 rcu_read_lock();
9632 gctx = READ_ONCE(group_leader->ctx);
9633 if (!atomic_inc_not_zero(&gctx->refcount)) {
9634 rcu_read_unlock();
9635 goto again;
9636 }
9637 rcu_read_unlock();
9638
9639 mutex_lock_double(&gctx->mutex, &ctx->mutex);
9640
9641 if (group_leader->ctx != gctx) {
9642 mutex_unlock(&ctx->mutex);
9643 mutex_unlock(&gctx->mutex);
9644 put_ctx(gctx);
9645 goto again;
9646 }
9647
9648 return gctx;
9649 }
9650
9651 /**
9652 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9653 *
9654 * @attr_uptr: event_id type attributes for monitoring/sampling
9655 * @pid: target pid
9656 * @cpu: target cpu
9657 * @group_fd: group leader event fd
9658 */
9659 SYSCALL_DEFINE5(perf_event_open,
9660 struct perf_event_attr __user *, attr_uptr,
9661 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
9662 {
9663 struct perf_event *group_leader = NULL, *output_event = NULL;
9664 struct perf_event *event, *sibling;
9665 struct perf_event_attr attr;
9666 struct perf_event_context *ctx, *uninitialized_var(gctx);
9667 struct file *event_file = NULL;
9668 struct fd group = {NULL, 0};
9669 struct task_struct *task = NULL;
9670 struct pmu *pmu;
9671 int event_fd;
9672 int move_group = 0;
9673 int err;
9674 int f_flags = O_RDWR;
9675 int cgroup_fd = -1;
9676
9677 /* for future expandability... */
9678 if (flags & ~PERF_FLAG_ALL)
9679 return -EINVAL;
9680
9681 err = perf_copy_attr(attr_uptr, &attr);
9682 if (err)
9683 return err;
9684
9685 if (!attr.exclude_kernel) {
9686 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9687 return -EACCES;
9688 }
9689
9690 if (attr.freq) {
9691 if (attr.sample_freq > sysctl_perf_event_sample_rate)
9692 return -EINVAL;
9693 } else {
9694 if (attr.sample_period & (1ULL << 63))
9695 return -EINVAL;
9696 }
9697
9698 if (!attr.sample_max_stack)
9699 attr.sample_max_stack = sysctl_perf_event_max_stack;
9700
9701 /*
9702 * In cgroup mode, the pid argument is used to pass the fd
9703 * opened to the cgroup directory in cgroupfs. The cpu argument
9704 * designates the cpu on which to monitor threads from that
9705 * cgroup.
9706 */
9707 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
9708 return -EINVAL;
9709
9710 if (flags & PERF_FLAG_FD_CLOEXEC)
9711 f_flags |= O_CLOEXEC;
9712
9713 event_fd = get_unused_fd_flags(f_flags);
9714 if (event_fd < 0)
9715 return event_fd;
9716
9717 if (group_fd != -1) {
9718 err = perf_fget_light(group_fd, &group);
9719 if (err)
9720 goto err_fd;
9721 group_leader = group.file->private_data;
9722 if (flags & PERF_FLAG_FD_OUTPUT)
9723 output_event = group_leader;
9724 if (flags & PERF_FLAG_FD_NO_GROUP)
9725 group_leader = NULL;
9726 }
9727
9728 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
9729 task = find_lively_task_by_vpid(pid);
9730 if (IS_ERR(task)) {
9731 err = PTR_ERR(task);
9732 goto err_group_fd;
9733 }
9734 }
9735
9736 if (task && group_leader &&
9737 group_leader->attr.inherit != attr.inherit) {
9738 err = -EINVAL;
9739 goto err_task;
9740 }
9741
9742 get_online_cpus();
9743
9744 if (task) {
9745 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
9746 if (err)
9747 goto err_cpus;
9748
9749 /*
9750 * Reuse ptrace permission checks for now.
9751 *
9752 * We must hold cred_guard_mutex across this and any potential
9753 * perf_install_in_context() call for this new event to
9754 * serialize against exec() altering our credentials (and the
9755 * perf_event_exit_task() that could imply).
9756 */
9757 err = -EACCES;
9758 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
9759 goto err_cred;
9760 }
9761
9762 if (flags & PERF_FLAG_PID_CGROUP)
9763 cgroup_fd = pid;
9764
9765 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
9766 NULL, NULL, cgroup_fd);
9767 if (IS_ERR(event)) {
9768 err = PTR_ERR(event);
9769 goto err_cred;
9770 }
9771
9772 if (is_sampling_event(event)) {
9773 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
9774 err = -EOPNOTSUPP;
9775 goto err_alloc;
9776 }
9777 }
9778
9779 /*
9780 * Special case software events and allow them to be part of
9781 * any hardware group.
9782 */
9783 pmu = event->pmu;
9784
9785 if (attr.use_clockid) {
9786 err = perf_event_set_clock(event, attr.clockid);
9787 if (err)
9788 goto err_alloc;
9789 }
9790
9791 if (pmu->task_ctx_nr == perf_sw_context)
9792 event->event_caps |= PERF_EV_CAP_SOFTWARE;
9793
9794 if (group_leader &&
9795 (is_software_event(event) != is_software_event(group_leader))) {
9796 if (is_software_event(event)) {
9797 /*
9798 * If event and group_leader are not both a software
9799 * event, and event is, then group leader is not.
9800 *
9801 * Allow the addition of software events to !software
9802 * groups, this is safe because software events never
9803 * fail to schedule.
9804 */
9805 pmu = group_leader->pmu;
9806 } else if (is_software_event(group_leader) &&
9807 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
9808 /*
9809 * In case the group is a pure software group, and we
9810 * try to add a hardware event, move the whole group to
9811 * the hardware context.
9812 */
9813 move_group = 1;
9814 }
9815 }
9816
9817 /*
9818 * Get the target context (task or percpu):
9819 */
9820 ctx = find_get_context(pmu, task, event);
9821 if (IS_ERR(ctx)) {
9822 err = PTR_ERR(ctx);
9823 goto err_alloc;
9824 }
9825
9826 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
9827 err = -EBUSY;
9828 goto err_context;
9829 }
9830
9831 /*
9832 * Look up the group leader (we will attach this event to it):
9833 */
9834 if (group_leader) {
9835 err = -EINVAL;
9836
9837 /*
9838 * Do not allow a recursive hierarchy (this new sibling
9839 * becoming part of another group-sibling):
9840 */
9841 if (group_leader->group_leader != group_leader)
9842 goto err_context;
9843
9844 /* All events in a group should have the same clock */
9845 if (group_leader->clock != event->clock)
9846 goto err_context;
9847
9848 /*
9849 * Do not allow to attach to a group in a different
9850 * task or CPU context:
9851 */
9852 if (move_group) {
9853 /*
9854 * Make sure we're both on the same task, or both
9855 * per-cpu events.
9856 */
9857 if (group_leader->ctx->task != ctx->task)
9858 goto err_context;
9859
9860 /*
9861 * Make sure we're both events for the same CPU;
9862 * grouping events for different CPUs is broken; since
9863 * you can never concurrently schedule them anyhow.
9864 */
9865 if (group_leader->cpu != event->cpu)
9866 goto err_context;
9867 } else {
9868 if (group_leader->ctx != ctx)
9869 goto err_context;
9870 }
9871
9872 /*
9873 * Only a group leader can be exclusive or pinned
9874 */
9875 if (attr.exclusive || attr.pinned)
9876 goto err_context;
9877 }
9878
9879 if (output_event) {
9880 err = perf_event_set_output(event, output_event);
9881 if (err)
9882 goto err_context;
9883 }
9884
9885 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
9886 f_flags);
9887 if (IS_ERR(event_file)) {
9888 err = PTR_ERR(event_file);
9889 event_file = NULL;
9890 goto err_context;
9891 }
9892
9893 if (move_group) {
9894 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
9895
9896 if (gctx->task == TASK_TOMBSTONE) {
9897 err = -ESRCH;
9898 goto err_locked;
9899 }
9900
9901 /*
9902 * Check if we raced against another sys_perf_event_open() call
9903 * moving the software group underneath us.
9904 */
9905 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
9906 /*
9907 * If someone moved the group out from under us, check
9908 * if this new event wound up on the same ctx, if so
9909 * its the regular !move_group case, otherwise fail.
9910 */
9911 if (gctx != ctx) {
9912 err = -EINVAL;
9913 goto err_locked;
9914 } else {
9915 perf_event_ctx_unlock(group_leader, gctx);
9916 move_group = 0;
9917 }
9918 }
9919 } else {
9920 mutex_lock(&ctx->mutex);
9921 }
9922
9923 if (ctx->task == TASK_TOMBSTONE) {
9924 err = -ESRCH;
9925 goto err_locked;
9926 }
9927
9928 if (!perf_event_validate_size(event)) {
9929 err = -E2BIG;
9930 goto err_locked;
9931 }
9932
9933 /*
9934 * Must be under the same ctx::mutex as perf_install_in_context(),
9935 * because we need to serialize with concurrent event creation.
9936 */
9937 if (!exclusive_event_installable(event, ctx)) {
9938 /* exclusive and group stuff are assumed mutually exclusive */
9939 WARN_ON_ONCE(move_group);
9940
9941 err = -EBUSY;
9942 goto err_locked;
9943 }
9944
9945 WARN_ON_ONCE(ctx->parent_ctx);
9946
9947 /*
9948 * This is the point on no return; we cannot fail hereafter. This is
9949 * where we start modifying current state.
9950 */
9951
9952 if (move_group) {
9953 /*
9954 * See perf_event_ctx_lock() for comments on the details
9955 * of swizzling perf_event::ctx.
9956 */
9957 perf_remove_from_context(group_leader, 0);
9958
9959 list_for_each_entry(sibling, &group_leader->sibling_list,
9960 group_entry) {
9961 perf_remove_from_context(sibling, 0);
9962 put_ctx(gctx);
9963 }
9964
9965 /*
9966 * Wait for everybody to stop referencing the events through
9967 * the old lists, before installing it on new lists.
9968 */
9969 synchronize_rcu();
9970
9971 /*
9972 * Install the group siblings before the group leader.
9973 *
9974 * Because a group leader will try and install the entire group
9975 * (through the sibling list, which is still in-tact), we can
9976 * end up with siblings installed in the wrong context.
9977 *
9978 * By installing siblings first we NO-OP because they're not
9979 * reachable through the group lists.
9980 */
9981 list_for_each_entry(sibling, &group_leader->sibling_list,
9982 group_entry) {
9983 perf_event__state_init(sibling);
9984 perf_install_in_context(ctx, sibling, sibling->cpu);
9985 get_ctx(ctx);
9986 }
9987
9988 /*
9989 * Removing from the context ends up with disabled
9990 * event. What we want here is event in the initial
9991 * startup state, ready to be add into new context.
9992 */
9993 perf_event__state_init(group_leader);
9994 perf_install_in_context(ctx, group_leader, group_leader->cpu);
9995 get_ctx(ctx);
9996
9997 /*
9998 * Now that all events are installed in @ctx, nothing
9999 * references @gctx anymore, so drop the last reference we have
10000 * on it.
10001 */
10002 put_ctx(gctx);
10003 }
10004
10005 /*
10006 * Precalculate sample_data sizes; do while holding ctx::mutex such
10007 * that we're serialized against further additions and before
10008 * perf_install_in_context() which is the point the event is active and
10009 * can use these values.
10010 */
10011 perf_event__header_size(event);
10012 perf_event__id_header_size(event);
10013
10014 event->owner = current;
10015
10016 perf_install_in_context(ctx, event, event->cpu);
10017 perf_unpin_context(ctx);
10018
10019 if (move_group)
10020 perf_event_ctx_unlock(group_leader, gctx);
10021 mutex_unlock(&ctx->mutex);
10022
10023 if (task) {
10024 mutex_unlock(&task->signal->cred_guard_mutex);
10025 put_task_struct(task);
10026 }
10027
10028 put_online_cpus();
10029
10030 mutex_lock(&current->perf_event_mutex);
10031 list_add_tail(&event->owner_entry, &current->perf_event_list);
10032 mutex_unlock(&current->perf_event_mutex);
10033
10034 /*
10035 * Drop the reference on the group_event after placing the
10036 * new event on the sibling_list. This ensures destruction
10037 * of the group leader will find the pointer to itself in
10038 * perf_group_detach().
10039 */
10040 fdput(group);
10041 fd_install(event_fd, event_file);
10042 return event_fd;
10043
10044 err_locked:
10045 if (move_group)
10046 perf_event_ctx_unlock(group_leader, gctx);
10047 mutex_unlock(&ctx->mutex);
10048 /* err_file: */
10049 fput(event_file);
10050 err_context:
10051 perf_unpin_context(ctx);
10052 put_ctx(ctx);
10053 err_alloc:
10054 /*
10055 * If event_file is set, the fput() above will have called ->release()
10056 * and that will take care of freeing the event.
10057 */
10058 if (!event_file)
10059 free_event(event);
10060 err_cred:
10061 if (task)
10062 mutex_unlock(&task->signal->cred_guard_mutex);
10063 err_cpus:
10064 put_online_cpus();
10065 err_task:
10066 if (task)
10067 put_task_struct(task);
10068 err_group_fd:
10069 fdput(group);
10070 err_fd:
10071 put_unused_fd(event_fd);
10072 return err;
10073 }
10074
10075 /**
10076 * perf_event_create_kernel_counter
10077 *
10078 * @attr: attributes of the counter to create
10079 * @cpu: cpu in which the counter is bound
10080 * @task: task to profile (NULL for percpu)
10081 */
10082 struct perf_event *
10083 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
10084 struct task_struct *task,
10085 perf_overflow_handler_t overflow_handler,
10086 void *context)
10087 {
10088 struct perf_event_context *ctx;
10089 struct perf_event *event;
10090 int err;
10091
10092 /*
10093 * Get the target context (task or percpu):
10094 */
10095
10096 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
10097 overflow_handler, context, -1);
10098 if (IS_ERR(event)) {
10099 err = PTR_ERR(event);
10100 goto err;
10101 }
10102
10103 /* Mark owner so we could distinguish it from user events. */
10104 event->owner = TASK_TOMBSTONE;
10105
10106 ctx = find_get_context(event->pmu, task, event);
10107 if (IS_ERR(ctx)) {
10108 err = PTR_ERR(ctx);
10109 goto err_free;
10110 }
10111
10112 WARN_ON_ONCE(ctx->parent_ctx);
10113 mutex_lock(&ctx->mutex);
10114 if (ctx->task == TASK_TOMBSTONE) {
10115 err = -ESRCH;
10116 goto err_unlock;
10117 }
10118
10119 if (!exclusive_event_installable(event, ctx)) {
10120 err = -EBUSY;
10121 goto err_unlock;
10122 }
10123
10124 perf_install_in_context(ctx, event, cpu);
10125 perf_unpin_context(ctx);
10126 mutex_unlock(&ctx->mutex);
10127
10128 return event;
10129
10130 err_unlock:
10131 mutex_unlock(&ctx->mutex);
10132 perf_unpin_context(ctx);
10133 put_ctx(ctx);
10134 err_free:
10135 free_event(event);
10136 err:
10137 return ERR_PTR(err);
10138 }
10139 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
10140
10141 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
10142 {
10143 struct perf_event_context *src_ctx;
10144 struct perf_event_context *dst_ctx;
10145 struct perf_event *event, *tmp;
10146 LIST_HEAD(events);
10147
10148 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
10149 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
10150
10151 /*
10152 * See perf_event_ctx_lock() for comments on the details
10153 * of swizzling perf_event::ctx.
10154 */
10155 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
10156 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
10157 event_entry) {
10158 perf_remove_from_context(event, 0);
10159 unaccount_event_cpu(event, src_cpu);
10160 put_ctx(src_ctx);
10161 list_add(&event->migrate_entry, &events);
10162 }
10163
10164 /*
10165 * Wait for the events to quiesce before re-instating them.
10166 */
10167 synchronize_rcu();
10168
10169 /*
10170 * Re-instate events in 2 passes.
10171 *
10172 * Skip over group leaders and only install siblings on this first
10173 * pass, siblings will not get enabled without a leader, however a
10174 * leader will enable its siblings, even if those are still on the old
10175 * context.
10176 */
10177 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10178 if (event->group_leader == event)
10179 continue;
10180
10181 list_del(&event->migrate_entry);
10182 if (event->state >= PERF_EVENT_STATE_OFF)
10183 event->state = PERF_EVENT_STATE_INACTIVE;
10184 account_event_cpu(event, dst_cpu);
10185 perf_install_in_context(dst_ctx, event, dst_cpu);
10186 get_ctx(dst_ctx);
10187 }
10188
10189 /*
10190 * Once all the siblings are setup properly, install the group leaders
10191 * to make it go.
10192 */
10193 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10194 list_del(&event->migrate_entry);
10195 if (event->state >= PERF_EVENT_STATE_OFF)
10196 event->state = PERF_EVENT_STATE_INACTIVE;
10197 account_event_cpu(event, dst_cpu);
10198 perf_install_in_context(dst_ctx, event, dst_cpu);
10199 get_ctx(dst_ctx);
10200 }
10201 mutex_unlock(&dst_ctx->mutex);
10202 mutex_unlock(&src_ctx->mutex);
10203 }
10204 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
10205
10206 static void sync_child_event(struct perf_event *child_event,
10207 struct task_struct *child)
10208 {
10209 struct perf_event *parent_event = child_event->parent;
10210 u64 child_val;
10211
10212 if (child_event->attr.inherit_stat)
10213 perf_event_read_event(child_event, child);
10214
10215 child_val = perf_event_count(child_event);
10216
10217 /*
10218 * Add back the child's count to the parent's count:
10219 */
10220 atomic64_add(child_val, &parent_event->child_count);
10221 atomic64_add(child_event->total_time_enabled,
10222 &parent_event->child_total_time_enabled);
10223 atomic64_add(child_event->total_time_running,
10224 &parent_event->child_total_time_running);
10225 }
10226
10227 static void
10228 perf_event_exit_event(struct perf_event *child_event,
10229 struct perf_event_context *child_ctx,
10230 struct task_struct *child)
10231 {
10232 struct perf_event *parent_event = child_event->parent;
10233
10234 /*
10235 * Do not destroy the 'original' grouping; because of the context
10236 * switch optimization the original events could've ended up in a
10237 * random child task.
10238 *
10239 * If we were to destroy the original group, all group related
10240 * operations would cease to function properly after this random
10241 * child dies.
10242 *
10243 * Do destroy all inherited groups, we don't care about those
10244 * and being thorough is better.
10245 */
10246 raw_spin_lock_irq(&child_ctx->lock);
10247 WARN_ON_ONCE(child_ctx->is_active);
10248
10249 if (parent_event)
10250 perf_group_detach(child_event);
10251 list_del_event(child_event, child_ctx);
10252 child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */
10253 raw_spin_unlock_irq(&child_ctx->lock);
10254
10255 /*
10256 * Parent events are governed by their filedesc, retain them.
10257 */
10258 if (!parent_event) {
10259 perf_event_wakeup(child_event);
10260 return;
10261 }
10262 /*
10263 * Child events can be cleaned up.
10264 */
10265
10266 sync_child_event(child_event, child);
10267
10268 /*
10269 * Remove this event from the parent's list
10270 */
10271 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
10272 mutex_lock(&parent_event->child_mutex);
10273 list_del_init(&child_event->child_list);
10274 mutex_unlock(&parent_event->child_mutex);
10275
10276 /*
10277 * Kick perf_poll() for is_event_hup().
10278 */
10279 perf_event_wakeup(parent_event);
10280 free_event(child_event);
10281 put_event(parent_event);
10282 }
10283
10284 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
10285 {
10286 struct perf_event_context *child_ctx, *clone_ctx = NULL;
10287 struct perf_event *child_event, *next;
10288
10289 WARN_ON_ONCE(child != current);
10290
10291 child_ctx = perf_pin_task_context(child, ctxn);
10292 if (!child_ctx)
10293 return;
10294
10295 /*
10296 * In order to reduce the amount of tricky in ctx tear-down, we hold
10297 * ctx::mutex over the entire thing. This serializes against almost
10298 * everything that wants to access the ctx.
10299 *
10300 * The exception is sys_perf_event_open() /
10301 * perf_event_create_kernel_count() which does find_get_context()
10302 * without ctx::mutex (it cannot because of the move_group double mutex
10303 * lock thing). See the comments in perf_install_in_context().
10304 */
10305 mutex_lock(&child_ctx->mutex);
10306
10307 /*
10308 * In a single ctx::lock section, de-schedule the events and detach the
10309 * context from the task such that we cannot ever get it scheduled back
10310 * in.
10311 */
10312 raw_spin_lock_irq(&child_ctx->lock);
10313 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
10314
10315 /*
10316 * Now that the context is inactive, destroy the task <-> ctx relation
10317 * and mark the context dead.
10318 */
10319 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
10320 put_ctx(child_ctx); /* cannot be last */
10321 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
10322 put_task_struct(current); /* cannot be last */
10323
10324 clone_ctx = unclone_ctx(child_ctx);
10325 raw_spin_unlock_irq(&child_ctx->lock);
10326
10327 if (clone_ctx)
10328 put_ctx(clone_ctx);
10329
10330 /*
10331 * Report the task dead after unscheduling the events so that we
10332 * won't get any samples after PERF_RECORD_EXIT. We can however still
10333 * get a few PERF_RECORD_READ events.
10334 */
10335 perf_event_task(child, child_ctx, 0);
10336
10337 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
10338 perf_event_exit_event(child_event, child_ctx, child);
10339
10340 mutex_unlock(&child_ctx->mutex);
10341
10342 put_ctx(child_ctx);
10343 }
10344
10345 /*
10346 * When a child task exits, feed back event values to parent events.
10347 *
10348 * Can be called with cred_guard_mutex held when called from
10349 * install_exec_creds().
10350 */
10351 void perf_event_exit_task(struct task_struct *child)
10352 {
10353 struct perf_event *event, *tmp;
10354 int ctxn;
10355
10356 mutex_lock(&child->perf_event_mutex);
10357 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
10358 owner_entry) {
10359 list_del_init(&event->owner_entry);
10360
10361 /*
10362 * Ensure the list deletion is visible before we clear
10363 * the owner, closes a race against perf_release() where
10364 * we need to serialize on the owner->perf_event_mutex.
10365 */
10366 smp_store_release(&event->owner, NULL);
10367 }
10368 mutex_unlock(&child->perf_event_mutex);
10369
10370 for_each_task_context_nr(ctxn)
10371 perf_event_exit_task_context(child, ctxn);
10372
10373 /*
10374 * The perf_event_exit_task_context calls perf_event_task
10375 * with child's task_ctx, which generates EXIT events for
10376 * child contexts and sets child->perf_event_ctxp[] to NULL.
10377 * At this point we need to send EXIT events to cpu contexts.
10378 */
10379 perf_event_task(child, NULL, 0);
10380 }
10381
10382 static void perf_free_event(struct perf_event *event,
10383 struct perf_event_context *ctx)
10384 {
10385 struct perf_event *parent = event->parent;
10386
10387 if (WARN_ON_ONCE(!parent))
10388 return;
10389
10390 mutex_lock(&parent->child_mutex);
10391 list_del_init(&event->child_list);
10392 mutex_unlock(&parent->child_mutex);
10393
10394 put_event(parent);
10395
10396 raw_spin_lock_irq(&ctx->lock);
10397 perf_group_detach(event);
10398 list_del_event(event, ctx);
10399 raw_spin_unlock_irq(&ctx->lock);
10400 free_event(event);
10401 }
10402
10403 /*
10404 * Free an unexposed, unused context as created by inheritance by
10405 * perf_event_init_task below, used by fork() in case of fail.
10406 *
10407 * Not all locks are strictly required, but take them anyway to be nice and
10408 * help out with the lockdep assertions.
10409 */
10410 void perf_event_free_task(struct task_struct *task)
10411 {
10412 struct perf_event_context *ctx;
10413 struct perf_event *event, *tmp;
10414 int ctxn;
10415
10416 for_each_task_context_nr(ctxn) {
10417 ctx = task->perf_event_ctxp[ctxn];
10418 if (!ctx)
10419 continue;
10420
10421 mutex_lock(&ctx->mutex);
10422 again:
10423 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
10424 group_entry)
10425 perf_free_event(event, ctx);
10426
10427 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
10428 group_entry)
10429 perf_free_event(event, ctx);
10430
10431 if (!list_empty(&ctx->pinned_groups) ||
10432 !list_empty(&ctx->flexible_groups))
10433 goto again;
10434
10435 mutex_unlock(&ctx->mutex);
10436
10437 put_ctx(ctx);
10438 }
10439 }
10440
10441 void perf_event_delayed_put(struct task_struct *task)
10442 {
10443 int ctxn;
10444
10445 for_each_task_context_nr(ctxn)
10446 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
10447 }
10448
10449 struct file *perf_event_get(unsigned int fd)
10450 {
10451 struct file *file;
10452
10453 file = fget_raw(fd);
10454 if (!file)
10455 return ERR_PTR(-EBADF);
10456
10457 if (file->f_op != &perf_fops) {
10458 fput(file);
10459 return ERR_PTR(-EBADF);
10460 }
10461
10462 return file;
10463 }
10464
10465 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
10466 {
10467 if (!event)
10468 return ERR_PTR(-EINVAL);
10469
10470 return &event->attr;
10471 }
10472
10473 /*
10474 * inherit a event from parent task to child task:
10475 */
10476 static struct perf_event *
10477 inherit_event(struct perf_event *parent_event,
10478 struct task_struct *parent,
10479 struct perf_event_context *parent_ctx,
10480 struct task_struct *child,
10481 struct perf_event *group_leader,
10482 struct perf_event_context *child_ctx)
10483 {
10484 enum perf_event_active_state parent_state = parent_event->state;
10485 struct perf_event *child_event;
10486 unsigned long flags;
10487
10488 /*
10489 * Instead of creating recursive hierarchies of events,
10490 * we link inherited events back to the original parent,
10491 * which has a filp for sure, which we use as the reference
10492 * count:
10493 */
10494 if (parent_event->parent)
10495 parent_event = parent_event->parent;
10496
10497 child_event = perf_event_alloc(&parent_event->attr,
10498 parent_event->cpu,
10499 child,
10500 group_leader, parent_event,
10501 NULL, NULL, -1);
10502 if (IS_ERR(child_event))
10503 return child_event;
10504
10505 /*
10506 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
10507 * must be under the same lock in order to serialize against
10508 * perf_event_release_kernel(), such that either we must observe
10509 * is_orphaned_event() or they will observe us on the child_list.
10510 */
10511 mutex_lock(&parent_event->child_mutex);
10512 if (is_orphaned_event(parent_event) ||
10513 !atomic_long_inc_not_zero(&parent_event->refcount)) {
10514 mutex_unlock(&parent_event->child_mutex);
10515 free_event(child_event);
10516 return NULL;
10517 }
10518
10519 get_ctx(child_ctx);
10520
10521 /*
10522 * Make the child state follow the state of the parent event,
10523 * not its attr.disabled bit. We hold the parent's mutex,
10524 * so we won't race with perf_event_{en, dis}able_family.
10525 */
10526 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
10527 child_event->state = PERF_EVENT_STATE_INACTIVE;
10528 else
10529 child_event->state = PERF_EVENT_STATE_OFF;
10530
10531 if (parent_event->attr.freq) {
10532 u64 sample_period = parent_event->hw.sample_period;
10533 struct hw_perf_event *hwc = &child_event->hw;
10534
10535 hwc->sample_period = sample_period;
10536 hwc->last_period = sample_period;
10537
10538 local64_set(&hwc->period_left, sample_period);
10539 }
10540
10541 child_event->ctx = child_ctx;
10542 child_event->overflow_handler = parent_event->overflow_handler;
10543 child_event->overflow_handler_context
10544 = parent_event->overflow_handler_context;
10545
10546 /*
10547 * Precalculate sample_data sizes
10548 */
10549 perf_event__header_size(child_event);
10550 perf_event__id_header_size(child_event);
10551
10552 /*
10553 * Link it up in the child's context:
10554 */
10555 raw_spin_lock_irqsave(&child_ctx->lock, flags);
10556 add_event_to_ctx(child_event, child_ctx);
10557 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
10558
10559 /*
10560 * Link this into the parent event's child list
10561 */
10562 list_add_tail(&child_event->child_list, &parent_event->child_list);
10563 mutex_unlock(&parent_event->child_mutex);
10564
10565 return child_event;
10566 }
10567
10568 static int inherit_group(struct perf_event *parent_event,
10569 struct task_struct *parent,
10570 struct perf_event_context *parent_ctx,
10571 struct task_struct *child,
10572 struct perf_event_context *child_ctx)
10573 {
10574 struct perf_event *leader;
10575 struct perf_event *sub;
10576 struct perf_event *child_ctr;
10577
10578 leader = inherit_event(parent_event, parent, parent_ctx,
10579 child, NULL, child_ctx);
10580 if (IS_ERR(leader))
10581 return PTR_ERR(leader);
10582 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
10583 child_ctr = inherit_event(sub, parent, parent_ctx,
10584 child, leader, child_ctx);
10585 if (IS_ERR(child_ctr))
10586 return PTR_ERR(child_ctr);
10587 }
10588 return 0;
10589 }
10590
10591 static int
10592 inherit_task_group(struct perf_event *event, struct task_struct *parent,
10593 struct perf_event_context *parent_ctx,
10594 struct task_struct *child, int ctxn,
10595 int *inherited_all)
10596 {
10597 int ret;
10598 struct perf_event_context *child_ctx;
10599
10600 if (!event->attr.inherit) {
10601 *inherited_all = 0;
10602 return 0;
10603 }
10604
10605 child_ctx = child->perf_event_ctxp[ctxn];
10606 if (!child_ctx) {
10607 /*
10608 * This is executed from the parent task context, so
10609 * inherit events that have been marked for cloning.
10610 * First allocate and initialize a context for the
10611 * child.
10612 */
10613
10614 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
10615 if (!child_ctx)
10616 return -ENOMEM;
10617
10618 child->perf_event_ctxp[ctxn] = child_ctx;
10619 }
10620
10621 ret = inherit_group(event, parent, parent_ctx,
10622 child, child_ctx);
10623
10624 if (ret)
10625 *inherited_all = 0;
10626
10627 return ret;
10628 }
10629
10630 /*
10631 * Initialize the perf_event context in task_struct
10632 */
10633 static int perf_event_init_context(struct task_struct *child, int ctxn)
10634 {
10635 struct perf_event_context *child_ctx, *parent_ctx;
10636 struct perf_event_context *cloned_ctx;
10637 struct perf_event *event;
10638 struct task_struct *parent = current;
10639 int inherited_all = 1;
10640 unsigned long flags;
10641 int ret = 0;
10642
10643 if (likely(!parent->perf_event_ctxp[ctxn]))
10644 return 0;
10645
10646 /*
10647 * If the parent's context is a clone, pin it so it won't get
10648 * swapped under us.
10649 */
10650 parent_ctx = perf_pin_task_context(parent, ctxn);
10651 if (!parent_ctx)
10652 return 0;
10653
10654 /*
10655 * No need to check if parent_ctx != NULL here; since we saw
10656 * it non-NULL earlier, the only reason for it to become NULL
10657 * is if we exit, and since we're currently in the middle of
10658 * a fork we can't be exiting at the same time.
10659 */
10660
10661 /*
10662 * Lock the parent list. No need to lock the child - not PID
10663 * hashed yet and not running, so nobody can access it.
10664 */
10665 mutex_lock(&parent_ctx->mutex);
10666
10667 /*
10668 * We dont have to disable NMIs - we are only looking at
10669 * the list, not manipulating it:
10670 */
10671 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
10672 ret = inherit_task_group(event, parent, parent_ctx,
10673 child, ctxn, &inherited_all);
10674 if (ret)
10675 break;
10676 }
10677
10678 /*
10679 * We can't hold ctx->lock when iterating the ->flexible_group list due
10680 * to allocations, but we need to prevent rotation because
10681 * rotate_ctx() will change the list from interrupt context.
10682 */
10683 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10684 parent_ctx->rotate_disable = 1;
10685 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10686
10687 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
10688 ret = inherit_task_group(event, parent, parent_ctx,
10689 child, ctxn, &inherited_all);
10690 if (ret)
10691 break;
10692 }
10693
10694 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10695 parent_ctx->rotate_disable = 0;
10696
10697 child_ctx = child->perf_event_ctxp[ctxn];
10698
10699 if (child_ctx && inherited_all) {
10700 /*
10701 * Mark the child context as a clone of the parent
10702 * context, or of whatever the parent is a clone of.
10703 *
10704 * Note that if the parent is a clone, the holding of
10705 * parent_ctx->lock avoids it from being uncloned.
10706 */
10707 cloned_ctx = parent_ctx->parent_ctx;
10708 if (cloned_ctx) {
10709 child_ctx->parent_ctx = cloned_ctx;
10710 child_ctx->parent_gen = parent_ctx->parent_gen;
10711 } else {
10712 child_ctx->parent_ctx = parent_ctx;
10713 child_ctx->parent_gen = parent_ctx->generation;
10714 }
10715 get_ctx(child_ctx->parent_ctx);
10716 }
10717
10718 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10719 mutex_unlock(&parent_ctx->mutex);
10720
10721 perf_unpin_context(parent_ctx);
10722 put_ctx(parent_ctx);
10723
10724 return ret;
10725 }
10726
10727 /*
10728 * Initialize the perf_event context in task_struct
10729 */
10730 int perf_event_init_task(struct task_struct *child)
10731 {
10732 int ctxn, ret;
10733
10734 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
10735 mutex_init(&child->perf_event_mutex);
10736 INIT_LIST_HEAD(&child->perf_event_list);
10737
10738 for_each_task_context_nr(ctxn) {
10739 ret = perf_event_init_context(child, ctxn);
10740 if (ret) {
10741 perf_event_free_task(child);
10742 return ret;
10743 }
10744 }
10745
10746 return 0;
10747 }
10748
10749 static void __init perf_event_init_all_cpus(void)
10750 {
10751 struct swevent_htable *swhash;
10752 int cpu;
10753
10754 for_each_possible_cpu(cpu) {
10755 swhash = &per_cpu(swevent_htable, cpu);
10756 mutex_init(&swhash->hlist_mutex);
10757 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
10758
10759 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
10760 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
10761
10762 #ifdef CONFIG_CGROUP_PERF
10763 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
10764 #endif
10765 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
10766 }
10767 }
10768
10769 int perf_event_init_cpu(unsigned int cpu)
10770 {
10771 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
10772
10773 mutex_lock(&swhash->hlist_mutex);
10774 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
10775 struct swevent_hlist *hlist;
10776
10777 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
10778 WARN_ON(!hlist);
10779 rcu_assign_pointer(swhash->swevent_hlist, hlist);
10780 }
10781 mutex_unlock(&swhash->hlist_mutex);
10782 return 0;
10783 }
10784
10785 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
10786 static void __perf_event_exit_context(void *__info)
10787 {
10788 struct perf_event_context *ctx = __info;
10789 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
10790 struct perf_event *event;
10791
10792 raw_spin_lock(&ctx->lock);
10793 list_for_each_entry(event, &ctx->event_list, event_entry)
10794 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
10795 raw_spin_unlock(&ctx->lock);
10796 }
10797
10798 static void perf_event_exit_cpu_context(int cpu)
10799 {
10800 struct perf_event_context *ctx;
10801 struct pmu *pmu;
10802 int idx;
10803
10804 idx = srcu_read_lock(&pmus_srcu);
10805 list_for_each_entry_rcu(pmu, &pmus, entry) {
10806 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
10807
10808 mutex_lock(&ctx->mutex);
10809 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
10810 mutex_unlock(&ctx->mutex);
10811 }
10812 srcu_read_unlock(&pmus_srcu, idx);
10813 }
10814 #else
10815
10816 static void perf_event_exit_cpu_context(int cpu) { }
10817
10818 #endif
10819
10820 int perf_event_exit_cpu(unsigned int cpu)
10821 {
10822 perf_event_exit_cpu_context(cpu);
10823 return 0;
10824 }
10825
10826 static int
10827 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
10828 {
10829 int cpu;
10830
10831 for_each_online_cpu(cpu)
10832 perf_event_exit_cpu(cpu);
10833
10834 return NOTIFY_OK;
10835 }
10836
10837 /*
10838 * Run the perf reboot notifier at the very last possible moment so that
10839 * the generic watchdog code runs as long as possible.
10840 */
10841 static struct notifier_block perf_reboot_notifier = {
10842 .notifier_call = perf_reboot,
10843 .priority = INT_MIN,
10844 };
10845
10846 void __init perf_event_init(void)
10847 {
10848 int ret;
10849
10850 idr_init(&pmu_idr);
10851
10852 perf_event_init_all_cpus();
10853 init_srcu_struct(&pmus_srcu);
10854 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
10855 perf_pmu_register(&perf_cpu_clock, NULL, -1);
10856 perf_pmu_register(&perf_task_clock, NULL, -1);
10857 perf_tp_register();
10858 perf_event_init_cpu(smp_processor_id());
10859 register_reboot_notifier(&perf_reboot_notifier);
10860
10861 ret = init_hw_breakpoint();
10862 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
10863
10864 /*
10865 * Build time assertion that we keep the data_head at the intended
10866 * location. IOW, validation we got the __reserved[] size right.
10867 */
10868 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
10869 != 1024);
10870 }
10871
10872 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
10873 char *page)
10874 {
10875 struct perf_pmu_events_attr *pmu_attr =
10876 container_of(attr, struct perf_pmu_events_attr, attr);
10877
10878 if (pmu_attr->event_str)
10879 return sprintf(page, "%s\n", pmu_attr->event_str);
10880
10881 return 0;
10882 }
10883 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
10884
10885 static int __init perf_event_sysfs_init(void)
10886 {
10887 struct pmu *pmu;
10888 int ret;
10889
10890 mutex_lock(&pmus_lock);
10891
10892 ret = bus_register(&pmu_bus);
10893 if (ret)
10894 goto unlock;
10895
10896 list_for_each_entry(pmu, &pmus, entry) {
10897 if (!pmu->name || pmu->type < 0)
10898 continue;
10899
10900 ret = pmu_dev_alloc(pmu);
10901 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
10902 }
10903 pmu_bus_running = 1;
10904 ret = 0;
10905
10906 unlock:
10907 mutex_unlock(&pmus_lock);
10908
10909 return ret;
10910 }
10911 device_initcall(perf_event_sysfs_init);
10912
10913 #ifdef CONFIG_CGROUP_PERF
10914 static struct cgroup_subsys_state *
10915 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
10916 {
10917 struct perf_cgroup *jc;
10918
10919 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
10920 if (!jc)
10921 return ERR_PTR(-ENOMEM);
10922
10923 jc->info = alloc_percpu(struct perf_cgroup_info);
10924 if (!jc->info) {
10925 kfree(jc);
10926 return ERR_PTR(-ENOMEM);
10927 }
10928
10929 return &jc->css;
10930 }
10931
10932 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
10933 {
10934 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
10935
10936 free_percpu(jc->info);
10937 kfree(jc);
10938 }
10939
10940 static int __perf_cgroup_move(void *info)
10941 {
10942 struct task_struct *task = info;
10943 rcu_read_lock();
10944 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
10945 rcu_read_unlock();
10946 return 0;
10947 }
10948
10949 static void perf_cgroup_attach(struct cgroup_taskset *tset)
10950 {
10951 struct task_struct *task;
10952 struct cgroup_subsys_state *css;
10953
10954 cgroup_taskset_for_each(task, css, tset)
10955 task_function_call(task, __perf_cgroup_move, task);
10956 }
10957
10958 struct cgroup_subsys perf_event_cgrp_subsys = {
10959 .css_alloc = perf_cgroup_css_alloc,
10960 .css_free = perf_cgroup_css_free,
10961 .attach = perf_cgroup_attach,
10962 };
10963 #endif /* CONFIG_CGROUP_PERF */