]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/events/core.c
Merge branch 'next' of git://git.infradead.org/users/vkoul/slave-dma
[mirror_ubuntu-artful-kernel.git] / kernel / events / core.c
1 /*
2 * Performance events core code:
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/rculist.h>
32 #include <linux/uaccess.h>
33 #include <linux/syscalls.h>
34 #include <linux/anon_inodes.h>
35 #include <linux/kernel_stat.h>
36 #include <linux/perf_event.h>
37 #include <linux/ftrace_event.h>
38 #include <linux/hw_breakpoint.h>
39 #include <linux/mm_types.h>
40
41 #include "internal.h"
42
43 #include <asm/irq_regs.h>
44
45 struct remote_function_call {
46 struct task_struct *p;
47 int (*func)(void *info);
48 void *info;
49 int ret;
50 };
51
52 static void remote_function(void *data)
53 {
54 struct remote_function_call *tfc = data;
55 struct task_struct *p = tfc->p;
56
57 if (p) {
58 tfc->ret = -EAGAIN;
59 if (task_cpu(p) != smp_processor_id() || !task_curr(p))
60 return;
61 }
62
63 tfc->ret = tfc->func(tfc->info);
64 }
65
66 /**
67 * task_function_call - call a function on the cpu on which a task runs
68 * @p: the task to evaluate
69 * @func: the function to be called
70 * @info: the function call argument
71 *
72 * Calls the function @func when the task is currently running. This might
73 * be on the current CPU, which just calls the function directly
74 *
75 * returns: @func return value, or
76 * -ESRCH - when the process isn't running
77 * -EAGAIN - when the process moved away
78 */
79 static int
80 task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
81 {
82 struct remote_function_call data = {
83 .p = p,
84 .func = func,
85 .info = info,
86 .ret = -ESRCH, /* No such (running) process */
87 };
88
89 if (task_curr(p))
90 smp_call_function_single(task_cpu(p), remote_function, &data, 1);
91
92 return data.ret;
93 }
94
95 /**
96 * cpu_function_call - call a function on the cpu
97 * @func: the function to be called
98 * @info: the function call argument
99 *
100 * Calls the function @func on the remote cpu.
101 *
102 * returns: @func return value or -ENXIO when the cpu is offline
103 */
104 static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
105 {
106 struct remote_function_call data = {
107 .p = NULL,
108 .func = func,
109 .info = info,
110 .ret = -ENXIO, /* No such CPU */
111 };
112
113 smp_call_function_single(cpu, remote_function, &data, 1);
114
115 return data.ret;
116 }
117
118 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
119 PERF_FLAG_FD_OUTPUT |\
120 PERF_FLAG_PID_CGROUP)
121
122 /*
123 * branch priv levels that need permission checks
124 */
125 #define PERF_SAMPLE_BRANCH_PERM_PLM \
126 (PERF_SAMPLE_BRANCH_KERNEL |\
127 PERF_SAMPLE_BRANCH_HV)
128
129 enum event_type_t {
130 EVENT_FLEXIBLE = 0x1,
131 EVENT_PINNED = 0x2,
132 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
133 };
134
135 /*
136 * perf_sched_events : >0 events exist
137 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
138 */
139 struct static_key_deferred perf_sched_events __read_mostly;
140 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
141 static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events);
142
143 static atomic_t nr_mmap_events __read_mostly;
144 static atomic_t nr_comm_events __read_mostly;
145 static atomic_t nr_task_events __read_mostly;
146
147 static LIST_HEAD(pmus);
148 static DEFINE_MUTEX(pmus_lock);
149 static struct srcu_struct pmus_srcu;
150
151 /*
152 * perf event paranoia level:
153 * -1 - not paranoid at all
154 * 0 - disallow raw tracepoint access for unpriv
155 * 1 - disallow cpu events for unpriv
156 * 2 - disallow kernel profiling for unpriv
157 */
158 int sysctl_perf_event_paranoid __read_mostly = 1;
159
160 /* Minimum for 512 kiB + 1 user control page */
161 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
162
163 /*
164 * max perf event sample rate
165 */
166 #define DEFAULT_MAX_SAMPLE_RATE 100000
167 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
168 static int max_samples_per_tick __read_mostly =
169 DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
170
171 int perf_proc_update_handler(struct ctl_table *table, int write,
172 void __user *buffer, size_t *lenp,
173 loff_t *ppos)
174 {
175 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
176
177 if (ret || !write)
178 return ret;
179
180 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
181
182 return 0;
183 }
184
185 static atomic64_t perf_event_id;
186
187 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
188 enum event_type_t event_type);
189
190 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
191 enum event_type_t event_type,
192 struct task_struct *task);
193
194 static void update_context_time(struct perf_event_context *ctx);
195 static u64 perf_event_time(struct perf_event *event);
196
197 static void ring_buffer_attach(struct perf_event *event,
198 struct ring_buffer *rb);
199
200 void __weak perf_event_print_debug(void) { }
201
202 extern __weak const char *perf_pmu_name(void)
203 {
204 return "pmu";
205 }
206
207 static inline u64 perf_clock(void)
208 {
209 return local_clock();
210 }
211
212 static inline struct perf_cpu_context *
213 __get_cpu_context(struct perf_event_context *ctx)
214 {
215 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
216 }
217
218 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
219 struct perf_event_context *ctx)
220 {
221 raw_spin_lock(&cpuctx->ctx.lock);
222 if (ctx)
223 raw_spin_lock(&ctx->lock);
224 }
225
226 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
227 struct perf_event_context *ctx)
228 {
229 if (ctx)
230 raw_spin_unlock(&ctx->lock);
231 raw_spin_unlock(&cpuctx->ctx.lock);
232 }
233
234 #ifdef CONFIG_CGROUP_PERF
235
236 /*
237 * Must ensure cgroup is pinned (css_get) before calling
238 * this function. In other words, we cannot call this function
239 * if there is no cgroup event for the current CPU context.
240 */
241 static inline struct perf_cgroup *
242 perf_cgroup_from_task(struct task_struct *task)
243 {
244 return container_of(task_subsys_state(task, perf_subsys_id),
245 struct perf_cgroup, css);
246 }
247
248 static inline bool
249 perf_cgroup_match(struct perf_event *event)
250 {
251 struct perf_event_context *ctx = event->ctx;
252 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
253
254 return !event->cgrp || event->cgrp == cpuctx->cgrp;
255 }
256
257 static inline bool perf_tryget_cgroup(struct perf_event *event)
258 {
259 return css_tryget(&event->cgrp->css);
260 }
261
262 static inline void perf_put_cgroup(struct perf_event *event)
263 {
264 css_put(&event->cgrp->css);
265 }
266
267 static inline void perf_detach_cgroup(struct perf_event *event)
268 {
269 perf_put_cgroup(event);
270 event->cgrp = NULL;
271 }
272
273 static inline int is_cgroup_event(struct perf_event *event)
274 {
275 return event->cgrp != NULL;
276 }
277
278 static inline u64 perf_cgroup_event_time(struct perf_event *event)
279 {
280 struct perf_cgroup_info *t;
281
282 t = per_cpu_ptr(event->cgrp->info, event->cpu);
283 return t->time;
284 }
285
286 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
287 {
288 struct perf_cgroup_info *info;
289 u64 now;
290
291 now = perf_clock();
292
293 info = this_cpu_ptr(cgrp->info);
294
295 info->time += now - info->timestamp;
296 info->timestamp = now;
297 }
298
299 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
300 {
301 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
302 if (cgrp_out)
303 __update_cgrp_time(cgrp_out);
304 }
305
306 static inline void update_cgrp_time_from_event(struct perf_event *event)
307 {
308 struct perf_cgroup *cgrp;
309
310 /*
311 * ensure we access cgroup data only when needed and
312 * when we know the cgroup is pinned (css_get)
313 */
314 if (!is_cgroup_event(event))
315 return;
316
317 cgrp = perf_cgroup_from_task(current);
318 /*
319 * Do not update time when cgroup is not active
320 */
321 if (cgrp == event->cgrp)
322 __update_cgrp_time(event->cgrp);
323 }
324
325 static inline void
326 perf_cgroup_set_timestamp(struct task_struct *task,
327 struct perf_event_context *ctx)
328 {
329 struct perf_cgroup *cgrp;
330 struct perf_cgroup_info *info;
331
332 /*
333 * ctx->lock held by caller
334 * ensure we do not access cgroup data
335 * unless we have the cgroup pinned (css_get)
336 */
337 if (!task || !ctx->nr_cgroups)
338 return;
339
340 cgrp = perf_cgroup_from_task(task);
341 info = this_cpu_ptr(cgrp->info);
342 info->timestamp = ctx->timestamp;
343 }
344
345 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
346 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
347
348 /*
349 * reschedule events based on the cgroup constraint of task.
350 *
351 * mode SWOUT : schedule out everything
352 * mode SWIN : schedule in based on cgroup for next
353 */
354 void perf_cgroup_switch(struct task_struct *task, int mode)
355 {
356 struct perf_cpu_context *cpuctx;
357 struct pmu *pmu;
358 unsigned long flags;
359
360 /*
361 * disable interrupts to avoid geting nr_cgroup
362 * changes via __perf_event_disable(). Also
363 * avoids preemption.
364 */
365 local_irq_save(flags);
366
367 /*
368 * we reschedule only in the presence of cgroup
369 * constrained events.
370 */
371 rcu_read_lock();
372
373 list_for_each_entry_rcu(pmu, &pmus, entry) {
374 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
375
376 /*
377 * perf_cgroup_events says at least one
378 * context on this CPU has cgroup events.
379 *
380 * ctx->nr_cgroups reports the number of cgroup
381 * events for a context.
382 */
383 if (cpuctx->ctx.nr_cgroups > 0) {
384 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
385 perf_pmu_disable(cpuctx->ctx.pmu);
386
387 if (mode & PERF_CGROUP_SWOUT) {
388 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
389 /*
390 * must not be done before ctxswout due
391 * to event_filter_match() in event_sched_out()
392 */
393 cpuctx->cgrp = NULL;
394 }
395
396 if (mode & PERF_CGROUP_SWIN) {
397 WARN_ON_ONCE(cpuctx->cgrp);
398 /* set cgrp before ctxsw in to
399 * allow event_filter_match() to not
400 * have to pass task around
401 */
402 cpuctx->cgrp = perf_cgroup_from_task(task);
403 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
404 }
405 perf_pmu_enable(cpuctx->ctx.pmu);
406 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
407 }
408 }
409
410 rcu_read_unlock();
411
412 local_irq_restore(flags);
413 }
414
415 static inline void perf_cgroup_sched_out(struct task_struct *task,
416 struct task_struct *next)
417 {
418 struct perf_cgroup *cgrp1;
419 struct perf_cgroup *cgrp2 = NULL;
420
421 /*
422 * we come here when we know perf_cgroup_events > 0
423 */
424 cgrp1 = perf_cgroup_from_task(task);
425
426 /*
427 * next is NULL when called from perf_event_enable_on_exec()
428 * that will systematically cause a cgroup_switch()
429 */
430 if (next)
431 cgrp2 = perf_cgroup_from_task(next);
432
433 /*
434 * only schedule out current cgroup events if we know
435 * that we are switching to a different cgroup. Otherwise,
436 * do no touch the cgroup events.
437 */
438 if (cgrp1 != cgrp2)
439 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
440 }
441
442 static inline void perf_cgroup_sched_in(struct task_struct *prev,
443 struct task_struct *task)
444 {
445 struct perf_cgroup *cgrp1;
446 struct perf_cgroup *cgrp2 = NULL;
447
448 /*
449 * we come here when we know perf_cgroup_events > 0
450 */
451 cgrp1 = perf_cgroup_from_task(task);
452
453 /* prev can never be NULL */
454 cgrp2 = perf_cgroup_from_task(prev);
455
456 /*
457 * only need to schedule in cgroup events if we are changing
458 * cgroup during ctxsw. Cgroup events were not scheduled
459 * out of ctxsw out if that was not the case.
460 */
461 if (cgrp1 != cgrp2)
462 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
463 }
464
465 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
466 struct perf_event_attr *attr,
467 struct perf_event *group_leader)
468 {
469 struct perf_cgroup *cgrp;
470 struct cgroup_subsys_state *css;
471 struct fd f = fdget(fd);
472 int ret = 0;
473
474 if (!f.file)
475 return -EBADF;
476
477 css = cgroup_css_from_dir(f.file, perf_subsys_id);
478 if (IS_ERR(css)) {
479 ret = PTR_ERR(css);
480 goto out;
481 }
482
483 cgrp = container_of(css, struct perf_cgroup, css);
484 event->cgrp = cgrp;
485
486 /* must be done before we fput() the file */
487 if (!perf_tryget_cgroup(event)) {
488 event->cgrp = NULL;
489 ret = -ENOENT;
490 goto out;
491 }
492
493 /*
494 * all events in a group must monitor
495 * the same cgroup because a task belongs
496 * to only one perf cgroup at a time
497 */
498 if (group_leader && group_leader->cgrp != cgrp) {
499 perf_detach_cgroup(event);
500 ret = -EINVAL;
501 }
502 out:
503 fdput(f);
504 return ret;
505 }
506
507 static inline void
508 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
509 {
510 struct perf_cgroup_info *t;
511 t = per_cpu_ptr(event->cgrp->info, event->cpu);
512 event->shadow_ctx_time = now - t->timestamp;
513 }
514
515 static inline void
516 perf_cgroup_defer_enabled(struct perf_event *event)
517 {
518 /*
519 * when the current task's perf cgroup does not match
520 * the event's, we need to remember to call the
521 * perf_mark_enable() function the first time a task with
522 * a matching perf cgroup is scheduled in.
523 */
524 if (is_cgroup_event(event) && !perf_cgroup_match(event))
525 event->cgrp_defer_enabled = 1;
526 }
527
528 static inline void
529 perf_cgroup_mark_enabled(struct perf_event *event,
530 struct perf_event_context *ctx)
531 {
532 struct perf_event *sub;
533 u64 tstamp = perf_event_time(event);
534
535 if (!event->cgrp_defer_enabled)
536 return;
537
538 event->cgrp_defer_enabled = 0;
539
540 event->tstamp_enabled = tstamp - event->total_time_enabled;
541 list_for_each_entry(sub, &event->sibling_list, group_entry) {
542 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
543 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
544 sub->cgrp_defer_enabled = 0;
545 }
546 }
547 }
548 #else /* !CONFIG_CGROUP_PERF */
549
550 static inline bool
551 perf_cgroup_match(struct perf_event *event)
552 {
553 return true;
554 }
555
556 static inline void perf_detach_cgroup(struct perf_event *event)
557 {}
558
559 static inline int is_cgroup_event(struct perf_event *event)
560 {
561 return 0;
562 }
563
564 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
565 {
566 return 0;
567 }
568
569 static inline void update_cgrp_time_from_event(struct perf_event *event)
570 {
571 }
572
573 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
574 {
575 }
576
577 static inline void perf_cgroup_sched_out(struct task_struct *task,
578 struct task_struct *next)
579 {
580 }
581
582 static inline void perf_cgroup_sched_in(struct task_struct *prev,
583 struct task_struct *task)
584 {
585 }
586
587 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
588 struct perf_event_attr *attr,
589 struct perf_event *group_leader)
590 {
591 return -EINVAL;
592 }
593
594 static inline void
595 perf_cgroup_set_timestamp(struct task_struct *task,
596 struct perf_event_context *ctx)
597 {
598 }
599
600 void
601 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
602 {
603 }
604
605 static inline void
606 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
607 {
608 }
609
610 static inline u64 perf_cgroup_event_time(struct perf_event *event)
611 {
612 return 0;
613 }
614
615 static inline void
616 perf_cgroup_defer_enabled(struct perf_event *event)
617 {
618 }
619
620 static inline void
621 perf_cgroup_mark_enabled(struct perf_event *event,
622 struct perf_event_context *ctx)
623 {
624 }
625 #endif
626
627 void perf_pmu_disable(struct pmu *pmu)
628 {
629 int *count = this_cpu_ptr(pmu->pmu_disable_count);
630 if (!(*count)++)
631 pmu->pmu_disable(pmu);
632 }
633
634 void perf_pmu_enable(struct pmu *pmu)
635 {
636 int *count = this_cpu_ptr(pmu->pmu_disable_count);
637 if (!--(*count))
638 pmu->pmu_enable(pmu);
639 }
640
641 static DEFINE_PER_CPU(struct list_head, rotation_list);
642
643 /*
644 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
645 * because they're strictly cpu affine and rotate_start is called with IRQs
646 * disabled, while rotate_context is called from IRQ context.
647 */
648 static void perf_pmu_rotate_start(struct pmu *pmu)
649 {
650 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
651 struct list_head *head = &__get_cpu_var(rotation_list);
652
653 WARN_ON(!irqs_disabled());
654
655 if (list_empty(&cpuctx->rotation_list))
656 list_add(&cpuctx->rotation_list, head);
657 }
658
659 static void get_ctx(struct perf_event_context *ctx)
660 {
661 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
662 }
663
664 static void put_ctx(struct perf_event_context *ctx)
665 {
666 if (atomic_dec_and_test(&ctx->refcount)) {
667 if (ctx->parent_ctx)
668 put_ctx(ctx->parent_ctx);
669 if (ctx->task)
670 put_task_struct(ctx->task);
671 kfree_rcu(ctx, rcu_head);
672 }
673 }
674
675 static void unclone_ctx(struct perf_event_context *ctx)
676 {
677 if (ctx->parent_ctx) {
678 put_ctx(ctx->parent_ctx);
679 ctx->parent_ctx = NULL;
680 }
681 }
682
683 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
684 {
685 /*
686 * only top level events have the pid namespace they were created in
687 */
688 if (event->parent)
689 event = event->parent;
690
691 return task_tgid_nr_ns(p, event->ns);
692 }
693
694 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
695 {
696 /*
697 * only top level events have the pid namespace they were created in
698 */
699 if (event->parent)
700 event = event->parent;
701
702 return task_pid_nr_ns(p, event->ns);
703 }
704
705 /*
706 * If we inherit events we want to return the parent event id
707 * to userspace.
708 */
709 static u64 primary_event_id(struct perf_event *event)
710 {
711 u64 id = event->id;
712
713 if (event->parent)
714 id = event->parent->id;
715
716 return id;
717 }
718
719 /*
720 * Get the perf_event_context for a task and lock it.
721 * This has to cope with with the fact that until it is locked,
722 * the context could get moved to another task.
723 */
724 static struct perf_event_context *
725 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
726 {
727 struct perf_event_context *ctx;
728
729 rcu_read_lock();
730 retry:
731 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
732 if (ctx) {
733 /*
734 * If this context is a clone of another, it might
735 * get swapped for another underneath us by
736 * perf_event_task_sched_out, though the
737 * rcu_read_lock() protects us from any context
738 * getting freed. Lock the context and check if it
739 * got swapped before we could get the lock, and retry
740 * if so. If we locked the right context, then it
741 * can't get swapped on us any more.
742 */
743 raw_spin_lock_irqsave(&ctx->lock, *flags);
744 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
745 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
746 goto retry;
747 }
748
749 if (!atomic_inc_not_zero(&ctx->refcount)) {
750 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
751 ctx = NULL;
752 }
753 }
754 rcu_read_unlock();
755 return ctx;
756 }
757
758 /*
759 * Get the context for a task and increment its pin_count so it
760 * can't get swapped to another task. This also increments its
761 * reference count so that the context can't get freed.
762 */
763 static struct perf_event_context *
764 perf_pin_task_context(struct task_struct *task, int ctxn)
765 {
766 struct perf_event_context *ctx;
767 unsigned long flags;
768
769 ctx = perf_lock_task_context(task, ctxn, &flags);
770 if (ctx) {
771 ++ctx->pin_count;
772 raw_spin_unlock_irqrestore(&ctx->lock, flags);
773 }
774 return ctx;
775 }
776
777 static void perf_unpin_context(struct perf_event_context *ctx)
778 {
779 unsigned long flags;
780
781 raw_spin_lock_irqsave(&ctx->lock, flags);
782 --ctx->pin_count;
783 raw_spin_unlock_irqrestore(&ctx->lock, flags);
784 }
785
786 /*
787 * Update the record of the current time in a context.
788 */
789 static void update_context_time(struct perf_event_context *ctx)
790 {
791 u64 now = perf_clock();
792
793 ctx->time += now - ctx->timestamp;
794 ctx->timestamp = now;
795 }
796
797 static u64 perf_event_time(struct perf_event *event)
798 {
799 struct perf_event_context *ctx = event->ctx;
800
801 if (is_cgroup_event(event))
802 return perf_cgroup_event_time(event);
803
804 return ctx ? ctx->time : 0;
805 }
806
807 /*
808 * Update the total_time_enabled and total_time_running fields for a event.
809 * The caller of this function needs to hold the ctx->lock.
810 */
811 static void update_event_times(struct perf_event *event)
812 {
813 struct perf_event_context *ctx = event->ctx;
814 u64 run_end;
815
816 if (event->state < PERF_EVENT_STATE_INACTIVE ||
817 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
818 return;
819 /*
820 * in cgroup mode, time_enabled represents
821 * the time the event was enabled AND active
822 * tasks were in the monitored cgroup. This is
823 * independent of the activity of the context as
824 * there may be a mix of cgroup and non-cgroup events.
825 *
826 * That is why we treat cgroup events differently
827 * here.
828 */
829 if (is_cgroup_event(event))
830 run_end = perf_cgroup_event_time(event);
831 else if (ctx->is_active)
832 run_end = ctx->time;
833 else
834 run_end = event->tstamp_stopped;
835
836 event->total_time_enabled = run_end - event->tstamp_enabled;
837
838 if (event->state == PERF_EVENT_STATE_INACTIVE)
839 run_end = event->tstamp_stopped;
840 else
841 run_end = perf_event_time(event);
842
843 event->total_time_running = run_end - event->tstamp_running;
844
845 }
846
847 /*
848 * Update total_time_enabled and total_time_running for all events in a group.
849 */
850 static void update_group_times(struct perf_event *leader)
851 {
852 struct perf_event *event;
853
854 update_event_times(leader);
855 list_for_each_entry(event, &leader->sibling_list, group_entry)
856 update_event_times(event);
857 }
858
859 static struct list_head *
860 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
861 {
862 if (event->attr.pinned)
863 return &ctx->pinned_groups;
864 else
865 return &ctx->flexible_groups;
866 }
867
868 /*
869 * Add a event from the lists for its context.
870 * Must be called with ctx->mutex and ctx->lock held.
871 */
872 static void
873 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
874 {
875 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
876 event->attach_state |= PERF_ATTACH_CONTEXT;
877
878 /*
879 * If we're a stand alone event or group leader, we go to the context
880 * list, group events are kept attached to the group so that
881 * perf_group_detach can, at all times, locate all siblings.
882 */
883 if (event->group_leader == event) {
884 struct list_head *list;
885
886 if (is_software_event(event))
887 event->group_flags |= PERF_GROUP_SOFTWARE;
888
889 list = ctx_group_list(event, ctx);
890 list_add_tail(&event->group_entry, list);
891 }
892
893 if (is_cgroup_event(event))
894 ctx->nr_cgroups++;
895
896 if (has_branch_stack(event))
897 ctx->nr_branch_stack++;
898
899 list_add_rcu(&event->event_entry, &ctx->event_list);
900 if (!ctx->nr_events)
901 perf_pmu_rotate_start(ctx->pmu);
902 ctx->nr_events++;
903 if (event->attr.inherit_stat)
904 ctx->nr_stat++;
905 }
906
907 /*
908 * Called at perf_event creation and when events are attached/detached from a
909 * group.
910 */
911 static void perf_event__read_size(struct perf_event *event)
912 {
913 int entry = sizeof(u64); /* value */
914 int size = 0;
915 int nr = 1;
916
917 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
918 size += sizeof(u64);
919
920 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
921 size += sizeof(u64);
922
923 if (event->attr.read_format & PERF_FORMAT_ID)
924 entry += sizeof(u64);
925
926 if (event->attr.read_format & PERF_FORMAT_GROUP) {
927 nr += event->group_leader->nr_siblings;
928 size += sizeof(u64);
929 }
930
931 size += entry * nr;
932 event->read_size = size;
933 }
934
935 static void perf_event__header_size(struct perf_event *event)
936 {
937 struct perf_sample_data *data;
938 u64 sample_type = event->attr.sample_type;
939 u16 size = 0;
940
941 perf_event__read_size(event);
942
943 if (sample_type & PERF_SAMPLE_IP)
944 size += sizeof(data->ip);
945
946 if (sample_type & PERF_SAMPLE_ADDR)
947 size += sizeof(data->addr);
948
949 if (sample_type & PERF_SAMPLE_PERIOD)
950 size += sizeof(data->period);
951
952 if (sample_type & PERF_SAMPLE_READ)
953 size += event->read_size;
954
955 event->header_size = size;
956 }
957
958 static void perf_event__id_header_size(struct perf_event *event)
959 {
960 struct perf_sample_data *data;
961 u64 sample_type = event->attr.sample_type;
962 u16 size = 0;
963
964 if (sample_type & PERF_SAMPLE_TID)
965 size += sizeof(data->tid_entry);
966
967 if (sample_type & PERF_SAMPLE_TIME)
968 size += sizeof(data->time);
969
970 if (sample_type & PERF_SAMPLE_ID)
971 size += sizeof(data->id);
972
973 if (sample_type & PERF_SAMPLE_STREAM_ID)
974 size += sizeof(data->stream_id);
975
976 if (sample_type & PERF_SAMPLE_CPU)
977 size += sizeof(data->cpu_entry);
978
979 event->id_header_size = size;
980 }
981
982 static void perf_group_attach(struct perf_event *event)
983 {
984 struct perf_event *group_leader = event->group_leader, *pos;
985
986 /*
987 * We can have double attach due to group movement in perf_event_open.
988 */
989 if (event->attach_state & PERF_ATTACH_GROUP)
990 return;
991
992 event->attach_state |= PERF_ATTACH_GROUP;
993
994 if (group_leader == event)
995 return;
996
997 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
998 !is_software_event(event))
999 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1000
1001 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1002 group_leader->nr_siblings++;
1003
1004 perf_event__header_size(group_leader);
1005
1006 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1007 perf_event__header_size(pos);
1008 }
1009
1010 /*
1011 * Remove a event from the lists for its context.
1012 * Must be called with ctx->mutex and ctx->lock held.
1013 */
1014 static void
1015 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1016 {
1017 struct perf_cpu_context *cpuctx;
1018 /*
1019 * We can have double detach due to exit/hot-unplug + close.
1020 */
1021 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1022 return;
1023
1024 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1025
1026 if (is_cgroup_event(event)) {
1027 ctx->nr_cgroups--;
1028 cpuctx = __get_cpu_context(ctx);
1029 /*
1030 * if there are no more cgroup events
1031 * then cler cgrp to avoid stale pointer
1032 * in update_cgrp_time_from_cpuctx()
1033 */
1034 if (!ctx->nr_cgroups)
1035 cpuctx->cgrp = NULL;
1036 }
1037
1038 if (has_branch_stack(event))
1039 ctx->nr_branch_stack--;
1040
1041 ctx->nr_events--;
1042 if (event->attr.inherit_stat)
1043 ctx->nr_stat--;
1044
1045 list_del_rcu(&event->event_entry);
1046
1047 if (event->group_leader == event)
1048 list_del_init(&event->group_entry);
1049
1050 update_group_times(event);
1051
1052 /*
1053 * If event was in error state, then keep it
1054 * that way, otherwise bogus counts will be
1055 * returned on read(). The only way to get out
1056 * of error state is by explicit re-enabling
1057 * of the event
1058 */
1059 if (event->state > PERF_EVENT_STATE_OFF)
1060 event->state = PERF_EVENT_STATE_OFF;
1061 }
1062
1063 static void perf_group_detach(struct perf_event *event)
1064 {
1065 struct perf_event *sibling, *tmp;
1066 struct list_head *list = NULL;
1067
1068 /*
1069 * We can have double detach due to exit/hot-unplug + close.
1070 */
1071 if (!(event->attach_state & PERF_ATTACH_GROUP))
1072 return;
1073
1074 event->attach_state &= ~PERF_ATTACH_GROUP;
1075
1076 /*
1077 * If this is a sibling, remove it from its group.
1078 */
1079 if (event->group_leader != event) {
1080 list_del_init(&event->group_entry);
1081 event->group_leader->nr_siblings--;
1082 goto out;
1083 }
1084
1085 if (!list_empty(&event->group_entry))
1086 list = &event->group_entry;
1087
1088 /*
1089 * If this was a group event with sibling events then
1090 * upgrade the siblings to singleton events by adding them
1091 * to whatever list we are on.
1092 */
1093 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1094 if (list)
1095 list_move_tail(&sibling->group_entry, list);
1096 sibling->group_leader = sibling;
1097
1098 /* Inherit group flags from the previous leader */
1099 sibling->group_flags = event->group_flags;
1100 }
1101
1102 out:
1103 perf_event__header_size(event->group_leader);
1104
1105 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1106 perf_event__header_size(tmp);
1107 }
1108
1109 static inline int
1110 event_filter_match(struct perf_event *event)
1111 {
1112 return (event->cpu == -1 || event->cpu == smp_processor_id())
1113 && perf_cgroup_match(event);
1114 }
1115
1116 static void
1117 event_sched_out(struct perf_event *event,
1118 struct perf_cpu_context *cpuctx,
1119 struct perf_event_context *ctx)
1120 {
1121 u64 tstamp = perf_event_time(event);
1122 u64 delta;
1123 /*
1124 * An event which could not be activated because of
1125 * filter mismatch still needs to have its timings
1126 * maintained, otherwise bogus information is return
1127 * via read() for time_enabled, time_running:
1128 */
1129 if (event->state == PERF_EVENT_STATE_INACTIVE
1130 && !event_filter_match(event)) {
1131 delta = tstamp - event->tstamp_stopped;
1132 event->tstamp_running += delta;
1133 event->tstamp_stopped = tstamp;
1134 }
1135
1136 if (event->state != PERF_EVENT_STATE_ACTIVE)
1137 return;
1138
1139 event->state = PERF_EVENT_STATE_INACTIVE;
1140 if (event->pending_disable) {
1141 event->pending_disable = 0;
1142 event->state = PERF_EVENT_STATE_OFF;
1143 }
1144 event->tstamp_stopped = tstamp;
1145 event->pmu->del(event, 0);
1146 event->oncpu = -1;
1147
1148 if (!is_software_event(event))
1149 cpuctx->active_oncpu--;
1150 ctx->nr_active--;
1151 if (event->attr.freq && event->attr.sample_freq)
1152 ctx->nr_freq--;
1153 if (event->attr.exclusive || !cpuctx->active_oncpu)
1154 cpuctx->exclusive = 0;
1155 }
1156
1157 static void
1158 group_sched_out(struct perf_event *group_event,
1159 struct perf_cpu_context *cpuctx,
1160 struct perf_event_context *ctx)
1161 {
1162 struct perf_event *event;
1163 int state = group_event->state;
1164
1165 event_sched_out(group_event, cpuctx, ctx);
1166
1167 /*
1168 * Schedule out siblings (if any):
1169 */
1170 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1171 event_sched_out(event, cpuctx, ctx);
1172
1173 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1174 cpuctx->exclusive = 0;
1175 }
1176
1177 /*
1178 * Cross CPU call to remove a performance event
1179 *
1180 * We disable the event on the hardware level first. After that we
1181 * remove it from the context list.
1182 */
1183 static int __perf_remove_from_context(void *info)
1184 {
1185 struct perf_event *event = info;
1186 struct perf_event_context *ctx = event->ctx;
1187 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1188
1189 raw_spin_lock(&ctx->lock);
1190 event_sched_out(event, cpuctx, ctx);
1191 list_del_event(event, ctx);
1192 if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1193 ctx->is_active = 0;
1194 cpuctx->task_ctx = NULL;
1195 }
1196 raw_spin_unlock(&ctx->lock);
1197
1198 return 0;
1199 }
1200
1201
1202 /*
1203 * Remove the event from a task's (or a CPU's) list of events.
1204 *
1205 * CPU events are removed with a smp call. For task events we only
1206 * call when the task is on a CPU.
1207 *
1208 * If event->ctx is a cloned context, callers must make sure that
1209 * every task struct that event->ctx->task could possibly point to
1210 * remains valid. This is OK when called from perf_release since
1211 * that only calls us on the top-level context, which can't be a clone.
1212 * When called from perf_event_exit_task, it's OK because the
1213 * context has been detached from its task.
1214 */
1215 static void perf_remove_from_context(struct perf_event *event)
1216 {
1217 struct perf_event_context *ctx = event->ctx;
1218 struct task_struct *task = ctx->task;
1219
1220 lockdep_assert_held(&ctx->mutex);
1221
1222 if (!task) {
1223 /*
1224 * Per cpu events are removed via an smp call and
1225 * the removal is always successful.
1226 */
1227 cpu_function_call(event->cpu, __perf_remove_from_context, event);
1228 return;
1229 }
1230
1231 retry:
1232 if (!task_function_call(task, __perf_remove_from_context, event))
1233 return;
1234
1235 raw_spin_lock_irq(&ctx->lock);
1236 /*
1237 * If we failed to find a running task, but find the context active now
1238 * that we've acquired the ctx->lock, retry.
1239 */
1240 if (ctx->is_active) {
1241 raw_spin_unlock_irq(&ctx->lock);
1242 goto retry;
1243 }
1244
1245 /*
1246 * Since the task isn't running, its safe to remove the event, us
1247 * holding the ctx->lock ensures the task won't get scheduled in.
1248 */
1249 list_del_event(event, ctx);
1250 raw_spin_unlock_irq(&ctx->lock);
1251 }
1252
1253 /*
1254 * Cross CPU call to disable a performance event
1255 */
1256 int __perf_event_disable(void *info)
1257 {
1258 struct perf_event *event = info;
1259 struct perf_event_context *ctx = event->ctx;
1260 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1261
1262 /*
1263 * If this is a per-task event, need to check whether this
1264 * event's task is the current task on this cpu.
1265 *
1266 * Can trigger due to concurrent perf_event_context_sched_out()
1267 * flipping contexts around.
1268 */
1269 if (ctx->task && cpuctx->task_ctx != ctx)
1270 return -EINVAL;
1271
1272 raw_spin_lock(&ctx->lock);
1273
1274 /*
1275 * If the event is on, turn it off.
1276 * If it is in error state, leave it in error state.
1277 */
1278 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1279 update_context_time(ctx);
1280 update_cgrp_time_from_event(event);
1281 update_group_times(event);
1282 if (event == event->group_leader)
1283 group_sched_out(event, cpuctx, ctx);
1284 else
1285 event_sched_out(event, cpuctx, ctx);
1286 event->state = PERF_EVENT_STATE_OFF;
1287 }
1288
1289 raw_spin_unlock(&ctx->lock);
1290
1291 return 0;
1292 }
1293
1294 /*
1295 * Disable a event.
1296 *
1297 * If event->ctx is a cloned context, callers must make sure that
1298 * every task struct that event->ctx->task could possibly point to
1299 * remains valid. This condition is satisifed when called through
1300 * perf_event_for_each_child or perf_event_for_each because they
1301 * hold the top-level event's child_mutex, so any descendant that
1302 * goes to exit will block in sync_child_event.
1303 * When called from perf_pending_event it's OK because event->ctx
1304 * is the current context on this CPU and preemption is disabled,
1305 * hence we can't get into perf_event_task_sched_out for this context.
1306 */
1307 void perf_event_disable(struct perf_event *event)
1308 {
1309 struct perf_event_context *ctx = event->ctx;
1310 struct task_struct *task = ctx->task;
1311
1312 if (!task) {
1313 /*
1314 * Disable the event on the cpu that it's on
1315 */
1316 cpu_function_call(event->cpu, __perf_event_disable, event);
1317 return;
1318 }
1319
1320 retry:
1321 if (!task_function_call(task, __perf_event_disable, event))
1322 return;
1323
1324 raw_spin_lock_irq(&ctx->lock);
1325 /*
1326 * If the event is still active, we need to retry the cross-call.
1327 */
1328 if (event->state == PERF_EVENT_STATE_ACTIVE) {
1329 raw_spin_unlock_irq(&ctx->lock);
1330 /*
1331 * Reload the task pointer, it might have been changed by
1332 * a concurrent perf_event_context_sched_out().
1333 */
1334 task = ctx->task;
1335 goto retry;
1336 }
1337
1338 /*
1339 * Since we have the lock this context can't be scheduled
1340 * in, so we can change the state safely.
1341 */
1342 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1343 update_group_times(event);
1344 event->state = PERF_EVENT_STATE_OFF;
1345 }
1346 raw_spin_unlock_irq(&ctx->lock);
1347 }
1348 EXPORT_SYMBOL_GPL(perf_event_disable);
1349
1350 static void perf_set_shadow_time(struct perf_event *event,
1351 struct perf_event_context *ctx,
1352 u64 tstamp)
1353 {
1354 /*
1355 * use the correct time source for the time snapshot
1356 *
1357 * We could get by without this by leveraging the
1358 * fact that to get to this function, the caller
1359 * has most likely already called update_context_time()
1360 * and update_cgrp_time_xx() and thus both timestamp
1361 * are identical (or very close). Given that tstamp is,
1362 * already adjusted for cgroup, we could say that:
1363 * tstamp - ctx->timestamp
1364 * is equivalent to
1365 * tstamp - cgrp->timestamp.
1366 *
1367 * Then, in perf_output_read(), the calculation would
1368 * work with no changes because:
1369 * - event is guaranteed scheduled in
1370 * - no scheduled out in between
1371 * - thus the timestamp would be the same
1372 *
1373 * But this is a bit hairy.
1374 *
1375 * So instead, we have an explicit cgroup call to remain
1376 * within the time time source all along. We believe it
1377 * is cleaner and simpler to understand.
1378 */
1379 if (is_cgroup_event(event))
1380 perf_cgroup_set_shadow_time(event, tstamp);
1381 else
1382 event->shadow_ctx_time = tstamp - ctx->timestamp;
1383 }
1384
1385 #define MAX_INTERRUPTS (~0ULL)
1386
1387 static void perf_log_throttle(struct perf_event *event, int enable);
1388
1389 static int
1390 event_sched_in(struct perf_event *event,
1391 struct perf_cpu_context *cpuctx,
1392 struct perf_event_context *ctx)
1393 {
1394 u64 tstamp = perf_event_time(event);
1395
1396 if (event->state <= PERF_EVENT_STATE_OFF)
1397 return 0;
1398
1399 event->state = PERF_EVENT_STATE_ACTIVE;
1400 event->oncpu = smp_processor_id();
1401
1402 /*
1403 * Unthrottle events, since we scheduled we might have missed several
1404 * ticks already, also for a heavily scheduling task there is little
1405 * guarantee it'll get a tick in a timely manner.
1406 */
1407 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1408 perf_log_throttle(event, 1);
1409 event->hw.interrupts = 0;
1410 }
1411
1412 /*
1413 * The new state must be visible before we turn it on in the hardware:
1414 */
1415 smp_wmb();
1416
1417 if (event->pmu->add(event, PERF_EF_START)) {
1418 event->state = PERF_EVENT_STATE_INACTIVE;
1419 event->oncpu = -1;
1420 return -EAGAIN;
1421 }
1422
1423 event->tstamp_running += tstamp - event->tstamp_stopped;
1424
1425 perf_set_shadow_time(event, ctx, tstamp);
1426
1427 if (!is_software_event(event))
1428 cpuctx->active_oncpu++;
1429 ctx->nr_active++;
1430 if (event->attr.freq && event->attr.sample_freq)
1431 ctx->nr_freq++;
1432
1433 if (event->attr.exclusive)
1434 cpuctx->exclusive = 1;
1435
1436 return 0;
1437 }
1438
1439 static int
1440 group_sched_in(struct perf_event *group_event,
1441 struct perf_cpu_context *cpuctx,
1442 struct perf_event_context *ctx)
1443 {
1444 struct perf_event *event, *partial_group = NULL;
1445 struct pmu *pmu = group_event->pmu;
1446 u64 now = ctx->time;
1447 bool simulate = false;
1448
1449 if (group_event->state == PERF_EVENT_STATE_OFF)
1450 return 0;
1451
1452 pmu->start_txn(pmu);
1453
1454 if (event_sched_in(group_event, cpuctx, ctx)) {
1455 pmu->cancel_txn(pmu);
1456 return -EAGAIN;
1457 }
1458
1459 /*
1460 * Schedule in siblings as one group (if any):
1461 */
1462 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1463 if (event_sched_in(event, cpuctx, ctx)) {
1464 partial_group = event;
1465 goto group_error;
1466 }
1467 }
1468
1469 if (!pmu->commit_txn(pmu))
1470 return 0;
1471
1472 group_error:
1473 /*
1474 * Groups can be scheduled in as one unit only, so undo any
1475 * partial group before returning:
1476 * The events up to the failed event are scheduled out normally,
1477 * tstamp_stopped will be updated.
1478 *
1479 * The failed events and the remaining siblings need to have
1480 * their timings updated as if they had gone thru event_sched_in()
1481 * and event_sched_out(). This is required to get consistent timings
1482 * across the group. This also takes care of the case where the group
1483 * could never be scheduled by ensuring tstamp_stopped is set to mark
1484 * the time the event was actually stopped, such that time delta
1485 * calculation in update_event_times() is correct.
1486 */
1487 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1488 if (event == partial_group)
1489 simulate = true;
1490
1491 if (simulate) {
1492 event->tstamp_running += now - event->tstamp_stopped;
1493 event->tstamp_stopped = now;
1494 } else {
1495 event_sched_out(event, cpuctx, ctx);
1496 }
1497 }
1498 event_sched_out(group_event, cpuctx, ctx);
1499
1500 pmu->cancel_txn(pmu);
1501
1502 return -EAGAIN;
1503 }
1504
1505 /*
1506 * Work out whether we can put this event group on the CPU now.
1507 */
1508 static int group_can_go_on(struct perf_event *event,
1509 struct perf_cpu_context *cpuctx,
1510 int can_add_hw)
1511 {
1512 /*
1513 * Groups consisting entirely of software events can always go on.
1514 */
1515 if (event->group_flags & PERF_GROUP_SOFTWARE)
1516 return 1;
1517 /*
1518 * If an exclusive group is already on, no other hardware
1519 * events can go on.
1520 */
1521 if (cpuctx->exclusive)
1522 return 0;
1523 /*
1524 * If this group is exclusive and there are already
1525 * events on the CPU, it can't go on.
1526 */
1527 if (event->attr.exclusive && cpuctx->active_oncpu)
1528 return 0;
1529 /*
1530 * Otherwise, try to add it if all previous groups were able
1531 * to go on.
1532 */
1533 return can_add_hw;
1534 }
1535
1536 static void add_event_to_ctx(struct perf_event *event,
1537 struct perf_event_context *ctx)
1538 {
1539 u64 tstamp = perf_event_time(event);
1540
1541 list_add_event(event, ctx);
1542 perf_group_attach(event);
1543 event->tstamp_enabled = tstamp;
1544 event->tstamp_running = tstamp;
1545 event->tstamp_stopped = tstamp;
1546 }
1547
1548 static void task_ctx_sched_out(struct perf_event_context *ctx);
1549 static void
1550 ctx_sched_in(struct perf_event_context *ctx,
1551 struct perf_cpu_context *cpuctx,
1552 enum event_type_t event_type,
1553 struct task_struct *task);
1554
1555 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
1556 struct perf_event_context *ctx,
1557 struct task_struct *task)
1558 {
1559 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
1560 if (ctx)
1561 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
1562 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
1563 if (ctx)
1564 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
1565 }
1566
1567 /*
1568 * Cross CPU call to install and enable a performance event
1569 *
1570 * Must be called with ctx->mutex held
1571 */
1572 static int __perf_install_in_context(void *info)
1573 {
1574 struct perf_event *event = info;
1575 struct perf_event_context *ctx = event->ctx;
1576 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1577 struct perf_event_context *task_ctx = cpuctx->task_ctx;
1578 struct task_struct *task = current;
1579
1580 perf_ctx_lock(cpuctx, task_ctx);
1581 perf_pmu_disable(cpuctx->ctx.pmu);
1582
1583 /*
1584 * If there was an active task_ctx schedule it out.
1585 */
1586 if (task_ctx)
1587 task_ctx_sched_out(task_ctx);
1588
1589 /*
1590 * If the context we're installing events in is not the
1591 * active task_ctx, flip them.
1592 */
1593 if (ctx->task && task_ctx != ctx) {
1594 if (task_ctx)
1595 raw_spin_unlock(&task_ctx->lock);
1596 raw_spin_lock(&ctx->lock);
1597 task_ctx = ctx;
1598 }
1599
1600 if (task_ctx) {
1601 cpuctx->task_ctx = task_ctx;
1602 task = task_ctx->task;
1603 }
1604
1605 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
1606
1607 update_context_time(ctx);
1608 /*
1609 * update cgrp time only if current cgrp
1610 * matches event->cgrp. Must be done before
1611 * calling add_event_to_ctx()
1612 */
1613 update_cgrp_time_from_event(event);
1614
1615 add_event_to_ctx(event, ctx);
1616
1617 /*
1618 * Schedule everything back in
1619 */
1620 perf_event_sched_in(cpuctx, task_ctx, task);
1621
1622 perf_pmu_enable(cpuctx->ctx.pmu);
1623 perf_ctx_unlock(cpuctx, task_ctx);
1624
1625 return 0;
1626 }
1627
1628 /*
1629 * Attach a performance event to a context
1630 *
1631 * First we add the event to the list with the hardware enable bit
1632 * in event->hw_config cleared.
1633 *
1634 * If the event is attached to a task which is on a CPU we use a smp
1635 * call to enable it in the task context. The task might have been
1636 * scheduled away, but we check this in the smp call again.
1637 */
1638 static void
1639 perf_install_in_context(struct perf_event_context *ctx,
1640 struct perf_event *event,
1641 int cpu)
1642 {
1643 struct task_struct *task = ctx->task;
1644
1645 lockdep_assert_held(&ctx->mutex);
1646
1647 event->ctx = ctx;
1648 if (event->cpu != -1)
1649 event->cpu = cpu;
1650
1651 if (!task) {
1652 /*
1653 * Per cpu events are installed via an smp call and
1654 * the install is always successful.
1655 */
1656 cpu_function_call(cpu, __perf_install_in_context, event);
1657 return;
1658 }
1659
1660 retry:
1661 if (!task_function_call(task, __perf_install_in_context, event))
1662 return;
1663
1664 raw_spin_lock_irq(&ctx->lock);
1665 /*
1666 * If we failed to find a running task, but find the context active now
1667 * that we've acquired the ctx->lock, retry.
1668 */
1669 if (ctx->is_active) {
1670 raw_spin_unlock_irq(&ctx->lock);
1671 goto retry;
1672 }
1673
1674 /*
1675 * Since the task isn't running, its safe to add the event, us holding
1676 * the ctx->lock ensures the task won't get scheduled in.
1677 */
1678 add_event_to_ctx(event, ctx);
1679 raw_spin_unlock_irq(&ctx->lock);
1680 }
1681
1682 /*
1683 * Put a event into inactive state and update time fields.
1684 * Enabling the leader of a group effectively enables all
1685 * the group members that aren't explicitly disabled, so we
1686 * have to update their ->tstamp_enabled also.
1687 * Note: this works for group members as well as group leaders
1688 * since the non-leader members' sibling_lists will be empty.
1689 */
1690 static void __perf_event_mark_enabled(struct perf_event *event)
1691 {
1692 struct perf_event *sub;
1693 u64 tstamp = perf_event_time(event);
1694
1695 event->state = PERF_EVENT_STATE_INACTIVE;
1696 event->tstamp_enabled = tstamp - event->total_time_enabled;
1697 list_for_each_entry(sub, &event->sibling_list, group_entry) {
1698 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
1699 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
1700 }
1701 }
1702
1703 /*
1704 * Cross CPU call to enable a performance event
1705 */
1706 static int __perf_event_enable(void *info)
1707 {
1708 struct perf_event *event = info;
1709 struct perf_event_context *ctx = event->ctx;
1710 struct perf_event *leader = event->group_leader;
1711 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1712 int err;
1713
1714 if (WARN_ON_ONCE(!ctx->is_active))
1715 return -EINVAL;
1716
1717 raw_spin_lock(&ctx->lock);
1718 update_context_time(ctx);
1719
1720 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1721 goto unlock;
1722
1723 /*
1724 * set current task's cgroup time reference point
1725 */
1726 perf_cgroup_set_timestamp(current, ctx);
1727
1728 __perf_event_mark_enabled(event);
1729
1730 if (!event_filter_match(event)) {
1731 if (is_cgroup_event(event))
1732 perf_cgroup_defer_enabled(event);
1733 goto unlock;
1734 }
1735
1736 /*
1737 * If the event is in a group and isn't the group leader,
1738 * then don't put it on unless the group is on.
1739 */
1740 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
1741 goto unlock;
1742
1743 if (!group_can_go_on(event, cpuctx, 1)) {
1744 err = -EEXIST;
1745 } else {
1746 if (event == leader)
1747 err = group_sched_in(event, cpuctx, ctx);
1748 else
1749 err = event_sched_in(event, cpuctx, ctx);
1750 }
1751
1752 if (err) {
1753 /*
1754 * If this event can't go on and it's part of a
1755 * group, then the whole group has to come off.
1756 */
1757 if (leader != event)
1758 group_sched_out(leader, cpuctx, ctx);
1759 if (leader->attr.pinned) {
1760 update_group_times(leader);
1761 leader->state = PERF_EVENT_STATE_ERROR;
1762 }
1763 }
1764
1765 unlock:
1766 raw_spin_unlock(&ctx->lock);
1767
1768 return 0;
1769 }
1770
1771 /*
1772 * Enable a event.
1773 *
1774 * If event->ctx is a cloned context, callers must make sure that
1775 * every task struct that event->ctx->task could possibly point to
1776 * remains valid. This condition is satisfied when called through
1777 * perf_event_for_each_child or perf_event_for_each as described
1778 * for perf_event_disable.
1779 */
1780 void perf_event_enable(struct perf_event *event)
1781 {
1782 struct perf_event_context *ctx = event->ctx;
1783 struct task_struct *task = ctx->task;
1784
1785 if (!task) {
1786 /*
1787 * Enable the event on the cpu that it's on
1788 */
1789 cpu_function_call(event->cpu, __perf_event_enable, event);
1790 return;
1791 }
1792
1793 raw_spin_lock_irq(&ctx->lock);
1794 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1795 goto out;
1796
1797 /*
1798 * If the event is in error state, clear that first.
1799 * That way, if we see the event in error state below, we
1800 * know that it has gone back into error state, as distinct
1801 * from the task having been scheduled away before the
1802 * cross-call arrived.
1803 */
1804 if (event->state == PERF_EVENT_STATE_ERROR)
1805 event->state = PERF_EVENT_STATE_OFF;
1806
1807 retry:
1808 if (!ctx->is_active) {
1809 __perf_event_mark_enabled(event);
1810 goto out;
1811 }
1812
1813 raw_spin_unlock_irq(&ctx->lock);
1814
1815 if (!task_function_call(task, __perf_event_enable, event))
1816 return;
1817
1818 raw_spin_lock_irq(&ctx->lock);
1819
1820 /*
1821 * If the context is active and the event is still off,
1822 * we need to retry the cross-call.
1823 */
1824 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
1825 /*
1826 * task could have been flipped by a concurrent
1827 * perf_event_context_sched_out()
1828 */
1829 task = ctx->task;
1830 goto retry;
1831 }
1832
1833 out:
1834 raw_spin_unlock_irq(&ctx->lock);
1835 }
1836 EXPORT_SYMBOL_GPL(perf_event_enable);
1837
1838 int perf_event_refresh(struct perf_event *event, int refresh)
1839 {
1840 /*
1841 * not supported on inherited events
1842 */
1843 if (event->attr.inherit || !is_sampling_event(event))
1844 return -EINVAL;
1845
1846 atomic_add(refresh, &event->event_limit);
1847 perf_event_enable(event);
1848
1849 return 0;
1850 }
1851 EXPORT_SYMBOL_GPL(perf_event_refresh);
1852
1853 static void ctx_sched_out(struct perf_event_context *ctx,
1854 struct perf_cpu_context *cpuctx,
1855 enum event_type_t event_type)
1856 {
1857 struct perf_event *event;
1858 int is_active = ctx->is_active;
1859
1860 ctx->is_active &= ~event_type;
1861 if (likely(!ctx->nr_events))
1862 return;
1863
1864 update_context_time(ctx);
1865 update_cgrp_time_from_cpuctx(cpuctx);
1866 if (!ctx->nr_active)
1867 return;
1868
1869 perf_pmu_disable(ctx->pmu);
1870 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
1871 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1872 group_sched_out(event, cpuctx, ctx);
1873 }
1874
1875 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
1876 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1877 group_sched_out(event, cpuctx, ctx);
1878 }
1879 perf_pmu_enable(ctx->pmu);
1880 }
1881
1882 /*
1883 * Test whether two contexts are equivalent, i.e. whether they
1884 * have both been cloned from the same version of the same context
1885 * and they both have the same number of enabled events.
1886 * If the number of enabled events is the same, then the set
1887 * of enabled events should be the same, because these are both
1888 * inherited contexts, therefore we can't access individual events
1889 * in them directly with an fd; we can only enable/disable all
1890 * events via prctl, or enable/disable all events in a family
1891 * via ioctl, which will have the same effect on both contexts.
1892 */
1893 static int context_equiv(struct perf_event_context *ctx1,
1894 struct perf_event_context *ctx2)
1895 {
1896 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1897 && ctx1->parent_gen == ctx2->parent_gen
1898 && !ctx1->pin_count && !ctx2->pin_count;
1899 }
1900
1901 static void __perf_event_sync_stat(struct perf_event *event,
1902 struct perf_event *next_event)
1903 {
1904 u64 value;
1905
1906 if (!event->attr.inherit_stat)
1907 return;
1908
1909 /*
1910 * Update the event value, we cannot use perf_event_read()
1911 * because we're in the middle of a context switch and have IRQs
1912 * disabled, which upsets smp_call_function_single(), however
1913 * we know the event must be on the current CPU, therefore we
1914 * don't need to use it.
1915 */
1916 switch (event->state) {
1917 case PERF_EVENT_STATE_ACTIVE:
1918 event->pmu->read(event);
1919 /* fall-through */
1920
1921 case PERF_EVENT_STATE_INACTIVE:
1922 update_event_times(event);
1923 break;
1924
1925 default:
1926 break;
1927 }
1928
1929 /*
1930 * In order to keep per-task stats reliable we need to flip the event
1931 * values when we flip the contexts.
1932 */
1933 value = local64_read(&next_event->count);
1934 value = local64_xchg(&event->count, value);
1935 local64_set(&next_event->count, value);
1936
1937 swap(event->total_time_enabled, next_event->total_time_enabled);
1938 swap(event->total_time_running, next_event->total_time_running);
1939
1940 /*
1941 * Since we swizzled the values, update the user visible data too.
1942 */
1943 perf_event_update_userpage(event);
1944 perf_event_update_userpage(next_event);
1945 }
1946
1947 #define list_next_entry(pos, member) \
1948 list_entry(pos->member.next, typeof(*pos), member)
1949
1950 static void perf_event_sync_stat(struct perf_event_context *ctx,
1951 struct perf_event_context *next_ctx)
1952 {
1953 struct perf_event *event, *next_event;
1954
1955 if (!ctx->nr_stat)
1956 return;
1957
1958 update_context_time(ctx);
1959
1960 event = list_first_entry(&ctx->event_list,
1961 struct perf_event, event_entry);
1962
1963 next_event = list_first_entry(&next_ctx->event_list,
1964 struct perf_event, event_entry);
1965
1966 while (&event->event_entry != &ctx->event_list &&
1967 &next_event->event_entry != &next_ctx->event_list) {
1968
1969 __perf_event_sync_stat(event, next_event);
1970
1971 event = list_next_entry(event, event_entry);
1972 next_event = list_next_entry(next_event, event_entry);
1973 }
1974 }
1975
1976 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
1977 struct task_struct *next)
1978 {
1979 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
1980 struct perf_event_context *next_ctx;
1981 struct perf_event_context *parent;
1982 struct perf_cpu_context *cpuctx;
1983 int do_switch = 1;
1984
1985 if (likely(!ctx))
1986 return;
1987
1988 cpuctx = __get_cpu_context(ctx);
1989 if (!cpuctx->task_ctx)
1990 return;
1991
1992 rcu_read_lock();
1993 parent = rcu_dereference(ctx->parent_ctx);
1994 next_ctx = next->perf_event_ctxp[ctxn];
1995 if (parent && next_ctx &&
1996 rcu_dereference(next_ctx->parent_ctx) == parent) {
1997 /*
1998 * Looks like the two contexts are clones, so we might be
1999 * able to optimize the context switch. We lock both
2000 * contexts and check that they are clones under the
2001 * lock (including re-checking that neither has been
2002 * uncloned in the meantime). It doesn't matter which
2003 * order we take the locks because no other cpu could
2004 * be trying to lock both of these tasks.
2005 */
2006 raw_spin_lock(&ctx->lock);
2007 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2008 if (context_equiv(ctx, next_ctx)) {
2009 /*
2010 * XXX do we need a memory barrier of sorts
2011 * wrt to rcu_dereference() of perf_event_ctxp
2012 */
2013 task->perf_event_ctxp[ctxn] = next_ctx;
2014 next->perf_event_ctxp[ctxn] = ctx;
2015 ctx->task = next;
2016 next_ctx->task = task;
2017 do_switch = 0;
2018
2019 perf_event_sync_stat(ctx, next_ctx);
2020 }
2021 raw_spin_unlock(&next_ctx->lock);
2022 raw_spin_unlock(&ctx->lock);
2023 }
2024 rcu_read_unlock();
2025
2026 if (do_switch) {
2027 raw_spin_lock(&ctx->lock);
2028 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2029 cpuctx->task_ctx = NULL;
2030 raw_spin_unlock(&ctx->lock);
2031 }
2032 }
2033
2034 #define for_each_task_context_nr(ctxn) \
2035 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2036
2037 /*
2038 * Called from scheduler to remove the events of the current task,
2039 * with interrupts disabled.
2040 *
2041 * We stop each event and update the event value in event->count.
2042 *
2043 * This does not protect us against NMI, but disable()
2044 * sets the disabled bit in the control field of event _before_
2045 * accessing the event control register. If a NMI hits, then it will
2046 * not restart the event.
2047 */
2048 void __perf_event_task_sched_out(struct task_struct *task,
2049 struct task_struct *next)
2050 {
2051 int ctxn;
2052
2053 for_each_task_context_nr(ctxn)
2054 perf_event_context_sched_out(task, ctxn, next);
2055
2056 /*
2057 * if cgroup events exist on this CPU, then we need
2058 * to check if we have to switch out PMU state.
2059 * cgroup event are system-wide mode only
2060 */
2061 if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2062 perf_cgroup_sched_out(task, next);
2063 }
2064
2065 static void task_ctx_sched_out(struct perf_event_context *ctx)
2066 {
2067 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2068
2069 if (!cpuctx->task_ctx)
2070 return;
2071
2072 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2073 return;
2074
2075 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2076 cpuctx->task_ctx = NULL;
2077 }
2078
2079 /*
2080 * Called with IRQs disabled
2081 */
2082 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2083 enum event_type_t event_type)
2084 {
2085 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2086 }
2087
2088 static void
2089 ctx_pinned_sched_in(struct perf_event_context *ctx,
2090 struct perf_cpu_context *cpuctx)
2091 {
2092 struct perf_event *event;
2093
2094 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2095 if (event->state <= PERF_EVENT_STATE_OFF)
2096 continue;
2097 if (!event_filter_match(event))
2098 continue;
2099
2100 /* may need to reset tstamp_enabled */
2101 if (is_cgroup_event(event))
2102 perf_cgroup_mark_enabled(event, ctx);
2103
2104 if (group_can_go_on(event, cpuctx, 1))
2105 group_sched_in(event, cpuctx, ctx);
2106
2107 /*
2108 * If this pinned group hasn't been scheduled,
2109 * put it in error state.
2110 */
2111 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2112 update_group_times(event);
2113 event->state = PERF_EVENT_STATE_ERROR;
2114 }
2115 }
2116 }
2117
2118 static void
2119 ctx_flexible_sched_in(struct perf_event_context *ctx,
2120 struct perf_cpu_context *cpuctx)
2121 {
2122 struct perf_event *event;
2123 int can_add_hw = 1;
2124
2125 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2126 /* Ignore events in OFF or ERROR state */
2127 if (event->state <= PERF_EVENT_STATE_OFF)
2128 continue;
2129 /*
2130 * Listen to the 'cpu' scheduling filter constraint
2131 * of events:
2132 */
2133 if (!event_filter_match(event))
2134 continue;
2135
2136 /* may need to reset tstamp_enabled */
2137 if (is_cgroup_event(event))
2138 perf_cgroup_mark_enabled(event, ctx);
2139
2140 if (group_can_go_on(event, cpuctx, can_add_hw)) {
2141 if (group_sched_in(event, cpuctx, ctx))
2142 can_add_hw = 0;
2143 }
2144 }
2145 }
2146
2147 static void
2148 ctx_sched_in(struct perf_event_context *ctx,
2149 struct perf_cpu_context *cpuctx,
2150 enum event_type_t event_type,
2151 struct task_struct *task)
2152 {
2153 u64 now;
2154 int is_active = ctx->is_active;
2155
2156 ctx->is_active |= event_type;
2157 if (likely(!ctx->nr_events))
2158 return;
2159
2160 now = perf_clock();
2161 ctx->timestamp = now;
2162 perf_cgroup_set_timestamp(task, ctx);
2163 /*
2164 * First go through the list and put on any pinned groups
2165 * in order to give them the best chance of going on.
2166 */
2167 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2168 ctx_pinned_sched_in(ctx, cpuctx);
2169
2170 /* Then walk through the lower prio flexible groups */
2171 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2172 ctx_flexible_sched_in(ctx, cpuctx);
2173 }
2174
2175 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
2176 enum event_type_t event_type,
2177 struct task_struct *task)
2178 {
2179 struct perf_event_context *ctx = &cpuctx->ctx;
2180
2181 ctx_sched_in(ctx, cpuctx, event_type, task);
2182 }
2183
2184 static void perf_event_context_sched_in(struct perf_event_context *ctx,
2185 struct task_struct *task)
2186 {
2187 struct perf_cpu_context *cpuctx;
2188
2189 cpuctx = __get_cpu_context(ctx);
2190 if (cpuctx->task_ctx == ctx)
2191 return;
2192
2193 perf_ctx_lock(cpuctx, ctx);
2194 perf_pmu_disable(ctx->pmu);
2195 /*
2196 * We want to keep the following priority order:
2197 * cpu pinned (that don't need to move), task pinned,
2198 * cpu flexible, task flexible.
2199 */
2200 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2201
2202 if (ctx->nr_events)
2203 cpuctx->task_ctx = ctx;
2204
2205 perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2206
2207 perf_pmu_enable(ctx->pmu);
2208 perf_ctx_unlock(cpuctx, ctx);
2209
2210 /*
2211 * Since these rotations are per-cpu, we need to ensure the
2212 * cpu-context we got scheduled on is actually rotating.
2213 */
2214 perf_pmu_rotate_start(ctx->pmu);
2215 }
2216
2217 /*
2218 * When sampling the branck stack in system-wide, it may be necessary
2219 * to flush the stack on context switch. This happens when the branch
2220 * stack does not tag its entries with the pid of the current task.
2221 * Otherwise it becomes impossible to associate a branch entry with a
2222 * task. This ambiguity is more likely to appear when the branch stack
2223 * supports priv level filtering and the user sets it to monitor only
2224 * at the user level (which could be a useful measurement in system-wide
2225 * mode). In that case, the risk is high of having a branch stack with
2226 * branch from multiple tasks. Flushing may mean dropping the existing
2227 * entries or stashing them somewhere in the PMU specific code layer.
2228 *
2229 * This function provides the context switch callback to the lower code
2230 * layer. It is invoked ONLY when there is at least one system-wide context
2231 * with at least one active event using taken branch sampling.
2232 */
2233 static void perf_branch_stack_sched_in(struct task_struct *prev,
2234 struct task_struct *task)
2235 {
2236 struct perf_cpu_context *cpuctx;
2237 struct pmu *pmu;
2238 unsigned long flags;
2239
2240 /* no need to flush branch stack if not changing task */
2241 if (prev == task)
2242 return;
2243
2244 local_irq_save(flags);
2245
2246 rcu_read_lock();
2247
2248 list_for_each_entry_rcu(pmu, &pmus, entry) {
2249 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2250
2251 /*
2252 * check if the context has at least one
2253 * event using PERF_SAMPLE_BRANCH_STACK
2254 */
2255 if (cpuctx->ctx.nr_branch_stack > 0
2256 && pmu->flush_branch_stack) {
2257
2258 pmu = cpuctx->ctx.pmu;
2259
2260 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2261
2262 perf_pmu_disable(pmu);
2263
2264 pmu->flush_branch_stack();
2265
2266 perf_pmu_enable(pmu);
2267
2268 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2269 }
2270 }
2271
2272 rcu_read_unlock();
2273
2274 local_irq_restore(flags);
2275 }
2276
2277 /*
2278 * Called from scheduler to add the events of the current task
2279 * with interrupts disabled.
2280 *
2281 * We restore the event value and then enable it.
2282 *
2283 * This does not protect us against NMI, but enable()
2284 * sets the enabled bit in the control field of event _before_
2285 * accessing the event control register. If a NMI hits, then it will
2286 * keep the event running.
2287 */
2288 void __perf_event_task_sched_in(struct task_struct *prev,
2289 struct task_struct *task)
2290 {
2291 struct perf_event_context *ctx;
2292 int ctxn;
2293
2294 for_each_task_context_nr(ctxn) {
2295 ctx = task->perf_event_ctxp[ctxn];
2296 if (likely(!ctx))
2297 continue;
2298
2299 perf_event_context_sched_in(ctx, task);
2300 }
2301 /*
2302 * if cgroup events exist on this CPU, then we need
2303 * to check if we have to switch in PMU state.
2304 * cgroup event are system-wide mode only
2305 */
2306 if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2307 perf_cgroup_sched_in(prev, task);
2308
2309 /* check for system-wide branch_stack events */
2310 if (atomic_read(&__get_cpu_var(perf_branch_stack_events)))
2311 perf_branch_stack_sched_in(prev, task);
2312 }
2313
2314 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2315 {
2316 u64 frequency = event->attr.sample_freq;
2317 u64 sec = NSEC_PER_SEC;
2318 u64 divisor, dividend;
2319
2320 int count_fls, nsec_fls, frequency_fls, sec_fls;
2321
2322 count_fls = fls64(count);
2323 nsec_fls = fls64(nsec);
2324 frequency_fls = fls64(frequency);
2325 sec_fls = 30;
2326
2327 /*
2328 * We got @count in @nsec, with a target of sample_freq HZ
2329 * the target period becomes:
2330 *
2331 * @count * 10^9
2332 * period = -------------------
2333 * @nsec * sample_freq
2334 *
2335 */
2336
2337 /*
2338 * Reduce accuracy by one bit such that @a and @b converge
2339 * to a similar magnitude.
2340 */
2341 #define REDUCE_FLS(a, b) \
2342 do { \
2343 if (a##_fls > b##_fls) { \
2344 a >>= 1; \
2345 a##_fls--; \
2346 } else { \
2347 b >>= 1; \
2348 b##_fls--; \
2349 } \
2350 } while (0)
2351
2352 /*
2353 * Reduce accuracy until either term fits in a u64, then proceed with
2354 * the other, so that finally we can do a u64/u64 division.
2355 */
2356 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2357 REDUCE_FLS(nsec, frequency);
2358 REDUCE_FLS(sec, count);
2359 }
2360
2361 if (count_fls + sec_fls > 64) {
2362 divisor = nsec * frequency;
2363
2364 while (count_fls + sec_fls > 64) {
2365 REDUCE_FLS(count, sec);
2366 divisor >>= 1;
2367 }
2368
2369 dividend = count * sec;
2370 } else {
2371 dividend = count * sec;
2372
2373 while (nsec_fls + frequency_fls > 64) {
2374 REDUCE_FLS(nsec, frequency);
2375 dividend >>= 1;
2376 }
2377
2378 divisor = nsec * frequency;
2379 }
2380
2381 if (!divisor)
2382 return dividend;
2383
2384 return div64_u64(dividend, divisor);
2385 }
2386
2387 static DEFINE_PER_CPU(int, perf_throttled_count);
2388 static DEFINE_PER_CPU(u64, perf_throttled_seq);
2389
2390 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2391 {
2392 struct hw_perf_event *hwc = &event->hw;
2393 s64 period, sample_period;
2394 s64 delta;
2395
2396 period = perf_calculate_period(event, nsec, count);
2397
2398 delta = (s64)(period - hwc->sample_period);
2399 delta = (delta + 7) / 8; /* low pass filter */
2400
2401 sample_period = hwc->sample_period + delta;
2402
2403 if (!sample_period)
2404 sample_period = 1;
2405
2406 hwc->sample_period = sample_period;
2407
2408 if (local64_read(&hwc->period_left) > 8*sample_period) {
2409 if (disable)
2410 event->pmu->stop(event, PERF_EF_UPDATE);
2411
2412 local64_set(&hwc->period_left, 0);
2413
2414 if (disable)
2415 event->pmu->start(event, PERF_EF_RELOAD);
2416 }
2417 }
2418
2419 /*
2420 * combine freq adjustment with unthrottling to avoid two passes over the
2421 * events. At the same time, make sure, having freq events does not change
2422 * the rate of unthrottling as that would introduce bias.
2423 */
2424 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2425 int needs_unthr)
2426 {
2427 struct perf_event *event;
2428 struct hw_perf_event *hwc;
2429 u64 now, period = TICK_NSEC;
2430 s64 delta;
2431
2432 /*
2433 * only need to iterate over all events iff:
2434 * - context have events in frequency mode (needs freq adjust)
2435 * - there are events to unthrottle on this cpu
2436 */
2437 if (!(ctx->nr_freq || needs_unthr))
2438 return;
2439
2440 raw_spin_lock(&ctx->lock);
2441 perf_pmu_disable(ctx->pmu);
2442
2443 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2444 if (event->state != PERF_EVENT_STATE_ACTIVE)
2445 continue;
2446
2447 if (!event_filter_match(event))
2448 continue;
2449
2450 hwc = &event->hw;
2451
2452 if (needs_unthr && hwc->interrupts == MAX_INTERRUPTS) {
2453 hwc->interrupts = 0;
2454 perf_log_throttle(event, 1);
2455 event->pmu->start(event, 0);
2456 }
2457
2458 if (!event->attr.freq || !event->attr.sample_freq)
2459 continue;
2460
2461 /*
2462 * stop the event and update event->count
2463 */
2464 event->pmu->stop(event, PERF_EF_UPDATE);
2465
2466 now = local64_read(&event->count);
2467 delta = now - hwc->freq_count_stamp;
2468 hwc->freq_count_stamp = now;
2469
2470 /*
2471 * restart the event
2472 * reload only if value has changed
2473 * we have stopped the event so tell that
2474 * to perf_adjust_period() to avoid stopping it
2475 * twice.
2476 */
2477 if (delta > 0)
2478 perf_adjust_period(event, period, delta, false);
2479
2480 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
2481 }
2482
2483 perf_pmu_enable(ctx->pmu);
2484 raw_spin_unlock(&ctx->lock);
2485 }
2486
2487 /*
2488 * Round-robin a context's events:
2489 */
2490 static void rotate_ctx(struct perf_event_context *ctx)
2491 {
2492 /*
2493 * Rotate the first entry last of non-pinned groups. Rotation might be
2494 * disabled by the inheritance code.
2495 */
2496 if (!ctx->rotate_disable)
2497 list_rotate_left(&ctx->flexible_groups);
2498 }
2499
2500 /*
2501 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
2502 * because they're strictly cpu affine and rotate_start is called with IRQs
2503 * disabled, while rotate_context is called from IRQ context.
2504 */
2505 static void perf_rotate_context(struct perf_cpu_context *cpuctx)
2506 {
2507 struct perf_event_context *ctx = NULL;
2508 int rotate = 0, remove = 1;
2509
2510 if (cpuctx->ctx.nr_events) {
2511 remove = 0;
2512 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
2513 rotate = 1;
2514 }
2515
2516 ctx = cpuctx->task_ctx;
2517 if (ctx && ctx->nr_events) {
2518 remove = 0;
2519 if (ctx->nr_events != ctx->nr_active)
2520 rotate = 1;
2521 }
2522
2523 if (!rotate)
2524 goto done;
2525
2526 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2527 perf_pmu_disable(cpuctx->ctx.pmu);
2528
2529 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2530 if (ctx)
2531 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
2532
2533 rotate_ctx(&cpuctx->ctx);
2534 if (ctx)
2535 rotate_ctx(ctx);
2536
2537 perf_event_sched_in(cpuctx, ctx, current);
2538
2539 perf_pmu_enable(cpuctx->ctx.pmu);
2540 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2541 done:
2542 if (remove)
2543 list_del_init(&cpuctx->rotation_list);
2544 }
2545
2546 void perf_event_task_tick(void)
2547 {
2548 struct list_head *head = &__get_cpu_var(rotation_list);
2549 struct perf_cpu_context *cpuctx, *tmp;
2550 struct perf_event_context *ctx;
2551 int throttled;
2552
2553 WARN_ON(!irqs_disabled());
2554
2555 __this_cpu_inc(perf_throttled_seq);
2556 throttled = __this_cpu_xchg(perf_throttled_count, 0);
2557
2558 list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
2559 ctx = &cpuctx->ctx;
2560 perf_adjust_freq_unthr_context(ctx, throttled);
2561
2562 ctx = cpuctx->task_ctx;
2563 if (ctx)
2564 perf_adjust_freq_unthr_context(ctx, throttled);
2565
2566 if (cpuctx->jiffies_interval == 1 ||
2567 !(jiffies % cpuctx->jiffies_interval))
2568 perf_rotate_context(cpuctx);
2569 }
2570 }
2571
2572 static int event_enable_on_exec(struct perf_event *event,
2573 struct perf_event_context *ctx)
2574 {
2575 if (!event->attr.enable_on_exec)
2576 return 0;
2577
2578 event->attr.enable_on_exec = 0;
2579 if (event->state >= PERF_EVENT_STATE_INACTIVE)
2580 return 0;
2581
2582 __perf_event_mark_enabled(event);
2583
2584 return 1;
2585 }
2586
2587 /*
2588 * Enable all of a task's events that have been marked enable-on-exec.
2589 * This expects task == current.
2590 */
2591 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
2592 {
2593 struct perf_event *event;
2594 unsigned long flags;
2595 int enabled = 0;
2596 int ret;
2597
2598 local_irq_save(flags);
2599 if (!ctx || !ctx->nr_events)
2600 goto out;
2601
2602 /*
2603 * We must ctxsw out cgroup events to avoid conflict
2604 * when invoking perf_task_event_sched_in() later on
2605 * in this function. Otherwise we end up trying to
2606 * ctxswin cgroup events which are already scheduled
2607 * in.
2608 */
2609 perf_cgroup_sched_out(current, NULL);
2610
2611 raw_spin_lock(&ctx->lock);
2612 task_ctx_sched_out(ctx);
2613
2614 list_for_each_entry(event, &ctx->event_list, event_entry) {
2615 ret = event_enable_on_exec(event, ctx);
2616 if (ret)
2617 enabled = 1;
2618 }
2619
2620 /*
2621 * Unclone this context if we enabled any event.
2622 */
2623 if (enabled)
2624 unclone_ctx(ctx);
2625
2626 raw_spin_unlock(&ctx->lock);
2627
2628 /*
2629 * Also calls ctxswin for cgroup events, if any:
2630 */
2631 perf_event_context_sched_in(ctx, ctx->task);
2632 out:
2633 local_irq_restore(flags);
2634 }
2635
2636 /*
2637 * Cross CPU call to read the hardware event
2638 */
2639 static void __perf_event_read(void *info)
2640 {
2641 struct perf_event *event = info;
2642 struct perf_event_context *ctx = event->ctx;
2643 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2644
2645 /*
2646 * If this is a task context, we need to check whether it is
2647 * the current task context of this cpu. If not it has been
2648 * scheduled out before the smp call arrived. In that case
2649 * event->count would have been updated to a recent sample
2650 * when the event was scheduled out.
2651 */
2652 if (ctx->task && cpuctx->task_ctx != ctx)
2653 return;
2654
2655 raw_spin_lock(&ctx->lock);
2656 if (ctx->is_active) {
2657 update_context_time(ctx);
2658 update_cgrp_time_from_event(event);
2659 }
2660 update_event_times(event);
2661 if (event->state == PERF_EVENT_STATE_ACTIVE)
2662 event->pmu->read(event);
2663 raw_spin_unlock(&ctx->lock);
2664 }
2665
2666 static inline u64 perf_event_count(struct perf_event *event)
2667 {
2668 return local64_read(&event->count) + atomic64_read(&event->child_count);
2669 }
2670
2671 static u64 perf_event_read(struct perf_event *event)
2672 {
2673 /*
2674 * If event is enabled and currently active on a CPU, update the
2675 * value in the event structure:
2676 */
2677 if (event->state == PERF_EVENT_STATE_ACTIVE) {
2678 smp_call_function_single(event->oncpu,
2679 __perf_event_read, event, 1);
2680 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2681 struct perf_event_context *ctx = event->ctx;
2682 unsigned long flags;
2683
2684 raw_spin_lock_irqsave(&ctx->lock, flags);
2685 /*
2686 * may read while context is not active
2687 * (e.g., thread is blocked), in that case
2688 * we cannot update context time
2689 */
2690 if (ctx->is_active) {
2691 update_context_time(ctx);
2692 update_cgrp_time_from_event(event);
2693 }
2694 update_event_times(event);
2695 raw_spin_unlock_irqrestore(&ctx->lock, flags);
2696 }
2697
2698 return perf_event_count(event);
2699 }
2700
2701 /*
2702 * Initialize the perf_event context in a task_struct:
2703 */
2704 static void __perf_event_init_context(struct perf_event_context *ctx)
2705 {
2706 raw_spin_lock_init(&ctx->lock);
2707 mutex_init(&ctx->mutex);
2708 INIT_LIST_HEAD(&ctx->pinned_groups);
2709 INIT_LIST_HEAD(&ctx->flexible_groups);
2710 INIT_LIST_HEAD(&ctx->event_list);
2711 atomic_set(&ctx->refcount, 1);
2712 }
2713
2714 static struct perf_event_context *
2715 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
2716 {
2717 struct perf_event_context *ctx;
2718
2719 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
2720 if (!ctx)
2721 return NULL;
2722
2723 __perf_event_init_context(ctx);
2724 if (task) {
2725 ctx->task = task;
2726 get_task_struct(task);
2727 }
2728 ctx->pmu = pmu;
2729
2730 return ctx;
2731 }
2732
2733 static struct task_struct *
2734 find_lively_task_by_vpid(pid_t vpid)
2735 {
2736 struct task_struct *task;
2737 int err;
2738
2739 rcu_read_lock();
2740 if (!vpid)
2741 task = current;
2742 else
2743 task = find_task_by_vpid(vpid);
2744 if (task)
2745 get_task_struct(task);
2746 rcu_read_unlock();
2747
2748 if (!task)
2749 return ERR_PTR(-ESRCH);
2750
2751 /* Reuse ptrace permission checks for now. */
2752 err = -EACCES;
2753 if (!ptrace_may_access(task, PTRACE_MODE_READ))
2754 goto errout;
2755
2756 return task;
2757 errout:
2758 put_task_struct(task);
2759 return ERR_PTR(err);
2760
2761 }
2762
2763 /*
2764 * Returns a matching context with refcount and pincount.
2765 */
2766 static struct perf_event_context *
2767 find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
2768 {
2769 struct perf_event_context *ctx;
2770 struct perf_cpu_context *cpuctx;
2771 unsigned long flags;
2772 int ctxn, err;
2773
2774 if (!task) {
2775 /* Must be root to operate on a CPU event: */
2776 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
2777 return ERR_PTR(-EACCES);
2778
2779 /*
2780 * We could be clever and allow to attach a event to an
2781 * offline CPU and activate it when the CPU comes up, but
2782 * that's for later.
2783 */
2784 if (!cpu_online(cpu))
2785 return ERR_PTR(-ENODEV);
2786
2787 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
2788 ctx = &cpuctx->ctx;
2789 get_ctx(ctx);
2790 ++ctx->pin_count;
2791
2792 return ctx;
2793 }
2794
2795 err = -EINVAL;
2796 ctxn = pmu->task_ctx_nr;
2797 if (ctxn < 0)
2798 goto errout;
2799
2800 retry:
2801 ctx = perf_lock_task_context(task, ctxn, &flags);
2802 if (ctx) {
2803 unclone_ctx(ctx);
2804 ++ctx->pin_count;
2805 raw_spin_unlock_irqrestore(&ctx->lock, flags);
2806 } else {
2807 ctx = alloc_perf_context(pmu, task);
2808 err = -ENOMEM;
2809 if (!ctx)
2810 goto errout;
2811
2812 err = 0;
2813 mutex_lock(&task->perf_event_mutex);
2814 /*
2815 * If it has already passed perf_event_exit_task().
2816 * we must see PF_EXITING, it takes this mutex too.
2817 */
2818 if (task->flags & PF_EXITING)
2819 err = -ESRCH;
2820 else if (task->perf_event_ctxp[ctxn])
2821 err = -EAGAIN;
2822 else {
2823 get_ctx(ctx);
2824 ++ctx->pin_count;
2825 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
2826 }
2827 mutex_unlock(&task->perf_event_mutex);
2828
2829 if (unlikely(err)) {
2830 put_ctx(ctx);
2831
2832 if (err == -EAGAIN)
2833 goto retry;
2834 goto errout;
2835 }
2836 }
2837
2838 return ctx;
2839
2840 errout:
2841 return ERR_PTR(err);
2842 }
2843
2844 static void perf_event_free_filter(struct perf_event *event);
2845
2846 static void free_event_rcu(struct rcu_head *head)
2847 {
2848 struct perf_event *event;
2849
2850 event = container_of(head, struct perf_event, rcu_head);
2851 if (event->ns)
2852 put_pid_ns(event->ns);
2853 perf_event_free_filter(event);
2854 kfree(event);
2855 }
2856
2857 static void ring_buffer_put(struct ring_buffer *rb);
2858
2859 static void free_event(struct perf_event *event)
2860 {
2861 irq_work_sync(&event->pending);
2862
2863 if (!event->parent) {
2864 if (event->attach_state & PERF_ATTACH_TASK)
2865 static_key_slow_dec_deferred(&perf_sched_events);
2866 if (event->attr.mmap || event->attr.mmap_data)
2867 atomic_dec(&nr_mmap_events);
2868 if (event->attr.comm)
2869 atomic_dec(&nr_comm_events);
2870 if (event->attr.task)
2871 atomic_dec(&nr_task_events);
2872 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
2873 put_callchain_buffers();
2874 if (is_cgroup_event(event)) {
2875 atomic_dec(&per_cpu(perf_cgroup_events, event->cpu));
2876 static_key_slow_dec_deferred(&perf_sched_events);
2877 }
2878
2879 if (has_branch_stack(event)) {
2880 static_key_slow_dec_deferred(&perf_sched_events);
2881 /* is system-wide event */
2882 if (!(event->attach_state & PERF_ATTACH_TASK))
2883 atomic_dec(&per_cpu(perf_branch_stack_events,
2884 event->cpu));
2885 }
2886 }
2887
2888 if (event->rb) {
2889 ring_buffer_put(event->rb);
2890 event->rb = NULL;
2891 }
2892
2893 if (is_cgroup_event(event))
2894 perf_detach_cgroup(event);
2895
2896 if (event->destroy)
2897 event->destroy(event);
2898
2899 if (event->ctx)
2900 put_ctx(event->ctx);
2901
2902 call_rcu(&event->rcu_head, free_event_rcu);
2903 }
2904
2905 int perf_event_release_kernel(struct perf_event *event)
2906 {
2907 struct perf_event_context *ctx = event->ctx;
2908
2909 WARN_ON_ONCE(ctx->parent_ctx);
2910 /*
2911 * There are two ways this annotation is useful:
2912 *
2913 * 1) there is a lock recursion from perf_event_exit_task
2914 * see the comment there.
2915 *
2916 * 2) there is a lock-inversion with mmap_sem through
2917 * perf_event_read_group(), which takes faults while
2918 * holding ctx->mutex, however this is called after
2919 * the last filedesc died, so there is no possibility
2920 * to trigger the AB-BA case.
2921 */
2922 mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
2923 raw_spin_lock_irq(&ctx->lock);
2924 perf_group_detach(event);
2925 raw_spin_unlock_irq(&ctx->lock);
2926 perf_remove_from_context(event);
2927 mutex_unlock(&ctx->mutex);
2928
2929 free_event(event);
2930
2931 return 0;
2932 }
2933 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
2934
2935 /*
2936 * Called when the last reference to the file is gone.
2937 */
2938 static void put_event(struct perf_event *event)
2939 {
2940 struct task_struct *owner;
2941
2942 if (!atomic_long_dec_and_test(&event->refcount))
2943 return;
2944
2945 rcu_read_lock();
2946 owner = ACCESS_ONCE(event->owner);
2947 /*
2948 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
2949 * !owner it means the list deletion is complete and we can indeed
2950 * free this event, otherwise we need to serialize on
2951 * owner->perf_event_mutex.
2952 */
2953 smp_read_barrier_depends();
2954 if (owner) {
2955 /*
2956 * Since delayed_put_task_struct() also drops the last
2957 * task reference we can safely take a new reference
2958 * while holding the rcu_read_lock().
2959 */
2960 get_task_struct(owner);
2961 }
2962 rcu_read_unlock();
2963
2964 if (owner) {
2965 mutex_lock(&owner->perf_event_mutex);
2966 /*
2967 * We have to re-check the event->owner field, if it is cleared
2968 * we raced with perf_event_exit_task(), acquiring the mutex
2969 * ensured they're done, and we can proceed with freeing the
2970 * event.
2971 */
2972 if (event->owner)
2973 list_del_init(&event->owner_entry);
2974 mutex_unlock(&owner->perf_event_mutex);
2975 put_task_struct(owner);
2976 }
2977
2978 perf_event_release_kernel(event);
2979 }
2980
2981 static int perf_release(struct inode *inode, struct file *file)
2982 {
2983 put_event(file->private_data);
2984 return 0;
2985 }
2986
2987 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
2988 {
2989 struct perf_event *child;
2990 u64 total = 0;
2991
2992 *enabled = 0;
2993 *running = 0;
2994
2995 mutex_lock(&event->child_mutex);
2996 total += perf_event_read(event);
2997 *enabled += event->total_time_enabled +
2998 atomic64_read(&event->child_total_time_enabled);
2999 *running += event->total_time_running +
3000 atomic64_read(&event->child_total_time_running);
3001
3002 list_for_each_entry(child, &event->child_list, child_list) {
3003 total += perf_event_read(child);
3004 *enabled += child->total_time_enabled;
3005 *running += child->total_time_running;
3006 }
3007 mutex_unlock(&event->child_mutex);
3008
3009 return total;
3010 }
3011 EXPORT_SYMBOL_GPL(perf_event_read_value);
3012
3013 static int perf_event_read_group(struct perf_event *event,
3014 u64 read_format, char __user *buf)
3015 {
3016 struct perf_event *leader = event->group_leader, *sub;
3017 int n = 0, size = 0, ret = -EFAULT;
3018 struct perf_event_context *ctx = leader->ctx;
3019 u64 values[5];
3020 u64 count, enabled, running;
3021
3022 mutex_lock(&ctx->mutex);
3023 count = perf_event_read_value(leader, &enabled, &running);
3024
3025 values[n++] = 1 + leader->nr_siblings;
3026 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3027 values[n++] = enabled;
3028 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3029 values[n++] = running;
3030 values[n++] = count;
3031 if (read_format & PERF_FORMAT_ID)
3032 values[n++] = primary_event_id(leader);
3033
3034 size = n * sizeof(u64);
3035
3036 if (copy_to_user(buf, values, size))
3037 goto unlock;
3038
3039 ret = size;
3040
3041 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3042 n = 0;
3043
3044 values[n++] = perf_event_read_value(sub, &enabled, &running);
3045 if (read_format & PERF_FORMAT_ID)
3046 values[n++] = primary_event_id(sub);
3047
3048 size = n * sizeof(u64);
3049
3050 if (copy_to_user(buf + ret, values, size)) {
3051 ret = -EFAULT;
3052 goto unlock;
3053 }
3054
3055 ret += size;
3056 }
3057 unlock:
3058 mutex_unlock(&ctx->mutex);
3059
3060 return ret;
3061 }
3062
3063 static int perf_event_read_one(struct perf_event *event,
3064 u64 read_format, char __user *buf)
3065 {
3066 u64 enabled, running;
3067 u64 values[4];
3068 int n = 0;
3069
3070 values[n++] = perf_event_read_value(event, &enabled, &running);
3071 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3072 values[n++] = enabled;
3073 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3074 values[n++] = running;
3075 if (read_format & PERF_FORMAT_ID)
3076 values[n++] = primary_event_id(event);
3077
3078 if (copy_to_user(buf, values, n * sizeof(u64)))
3079 return -EFAULT;
3080
3081 return n * sizeof(u64);
3082 }
3083
3084 /*
3085 * Read the performance event - simple non blocking version for now
3086 */
3087 static ssize_t
3088 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
3089 {
3090 u64 read_format = event->attr.read_format;
3091 int ret;
3092
3093 /*
3094 * Return end-of-file for a read on a event that is in
3095 * error state (i.e. because it was pinned but it couldn't be
3096 * scheduled on to the CPU at some point).
3097 */
3098 if (event->state == PERF_EVENT_STATE_ERROR)
3099 return 0;
3100
3101 if (count < event->read_size)
3102 return -ENOSPC;
3103
3104 WARN_ON_ONCE(event->ctx->parent_ctx);
3105 if (read_format & PERF_FORMAT_GROUP)
3106 ret = perf_event_read_group(event, read_format, buf);
3107 else
3108 ret = perf_event_read_one(event, read_format, buf);
3109
3110 return ret;
3111 }
3112
3113 static ssize_t
3114 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
3115 {
3116 struct perf_event *event = file->private_data;
3117
3118 return perf_read_hw(event, buf, count);
3119 }
3120
3121 static unsigned int perf_poll(struct file *file, poll_table *wait)
3122 {
3123 struct perf_event *event = file->private_data;
3124 struct ring_buffer *rb;
3125 unsigned int events = POLL_HUP;
3126
3127 /*
3128 * Race between perf_event_set_output() and perf_poll(): perf_poll()
3129 * grabs the rb reference but perf_event_set_output() overrides it.
3130 * Here is the timeline for two threads T1, T2:
3131 * t0: T1, rb = rcu_dereference(event->rb)
3132 * t1: T2, old_rb = event->rb
3133 * t2: T2, event->rb = new rb
3134 * t3: T2, ring_buffer_detach(old_rb)
3135 * t4: T1, ring_buffer_attach(rb1)
3136 * t5: T1, poll_wait(event->waitq)
3137 *
3138 * To avoid this problem, we grab mmap_mutex in perf_poll()
3139 * thereby ensuring that the assignment of the new ring buffer
3140 * and the detachment of the old buffer appear atomic to perf_poll()
3141 */
3142 mutex_lock(&event->mmap_mutex);
3143
3144 rcu_read_lock();
3145 rb = rcu_dereference(event->rb);
3146 if (rb) {
3147 ring_buffer_attach(event, rb);
3148 events = atomic_xchg(&rb->poll, 0);
3149 }
3150 rcu_read_unlock();
3151
3152 mutex_unlock(&event->mmap_mutex);
3153
3154 poll_wait(file, &event->waitq, wait);
3155
3156 return events;
3157 }
3158
3159 static void perf_event_reset(struct perf_event *event)
3160 {
3161 (void)perf_event_read(event);
3162 local64_set(&event->count, 0);
3163 perf_event_update_userpage(event);
3164 }
3165
3166 /*
3167 * Holding the top-level event's child_mutex means that any
3168 * descendant process that has inherited this event will block
3169 * in sync_child_event if it goes to exit, thus satisfying the
3170 * task existence requirements of perf_event_enable/disable.
3171 */
3172 static void perf_event_for_each_child(struct perf_event *event,
3173 void (*func)(struct perf_event *))
3174 {
3175 struct perf_event *child;
3176
3177 WARN_ON_ONCE(event->ctx->parent_ctx);
3178 mutex_lock(&event->child_mutex);
3179 func(event);
3180 list_for_each_entry(child, &event->child_list, child_list)
3181 func(child);
3182 mutex_unlock(&event->child_mutex);
3183 }
3184
3185 static void perf_event_for_each(struct perf_event *event,
3186 void (*func)(struct perf_event *))
3187 {
3188 struct perf_event_context *ctx = event->ctx;
3189 struct perf_event *sibling;
3190
3191 WARN_ON_ONCE(ctx->parent_ctx);
3192 mutex_lock(&ctx->mutex);
3193 event = event->group_leader;
3194
3195 perf_event_for_each_child(event, func);
3196 list_for_each_entry(sibling, &event->sibling_list, group_entry)
3197 perf_event_for_each_child(sibling, func);
3198 mutex_unlock(&ctx->mutex);
3199 }
3200
3201 static int perf_event_period(struct perf_event *event, u64 __user *arg)
3202 {
3203 struct perf_event_context *ctx = event->ctx;
3204 int ret = 0;
3205 u64 value;
3206
3207 if (!is_sampling_event(event))
3208 return -EINVAL;
3209
3210 if (copy_from_user(&value, arg, sizeof(value)))
3211 return -EFAULT;
3212
3213 if (!value)
3214 return -EINVAL;
3215
3216 raw_spin_lock_irq(&ctx->lock);
3217 if (event->attr.freq) {
3218 if (value > sysctl_perf_event_sample_rate) {
3219 ret = -EINVAL;
3220 goto unlock;
3221 }
3222
3223 event->attr.sample_freq = value;
3224 } else {
3225 event->attr.sample_period = value;
3226 event->hw.sample_period = value;
3227 }
3228 unlock:
3229 raw_spin_unlock_irq(&ctx->lock);
3230
3231 return ret;
3232 }
3233
3234 static const struct file_operations perf_fops;
3235
3236 static inline int perf_fget_light(int fd, struct fd *p)
3237 {
3238 struct fd f = fdget(fd);
3239 if (!f.file)
3240 return -EBADF;
3241
3242 if (f.file->f_op != &perf_fops) {
3243 fdput(f);
3244 return -EBADF;
3245 }
3246 *p = f;
3247 return 0;
3248 }
3249
3250 static int perf_event_set_output(struct perf_event *event,
3251 struct perf_event *output_event);
3252 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3253
3254 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3255 {
3256 struct perf_event *event = file->private_data;
3257 void (*func)(struct perf_event *);
3258 u32 flags = arg;
3259
3260 switch (cmd) {
3261 case PERF_EVENT_IOC_ENABLE:
3262 func = perf_event_enable;
3263 break;
3264 case PERF_EVENT_IOC_DISABLE:
3265 func = perf_event_disable;
3266 break;
3267 case PERF_EVENT_IOC_RESET:
3268 func = perf_event_reset;
3269 break;
3270
3271 case PERF_EVENT_IOC_REFRESH:
3272 return perf_event_refresh(event, arg);
3273
3274 case PERF_EVENT_IOC_PERIOD:
3275 return perf_event_period(event, (u64 __user *)arg);
3276
3277 case PERF_EVENT_IOC_SET_OUTPUT:
3278 {
3279 int ret;
3280 if (arg != -1) {
3281 struct perf_event *output_event;
3282 struct fd output;
3283 ret = perf_fget_light(arg, &output);
3284 if (ret)
3285 return ret;
3286 output_event = output.file->private_data;
3287 ret = perf_event_set_output(event, output_event);
3288 fdput(output);
3289 } else {
3290 ret = perf_event_set_output(event, NULL);
3291 }
3292 return ret;
3293 }
3294
3295 case PERF_EVENT_IOC_SET_FILTER:
3296 return perf_event_set_filter(event, (void __user *)arg);
3297
3298 default:
3299 return -ENOTTY;
3300 }
3301
3302 if (flags & PERF_IOC_FLAG_GROUP)
3303 perf_event_for_each(event, func);
3304 else
3305 perf_event_for_each_child(event, func);
3306
3307 return 0;
3308 }
3309
3310 int perf_event_task_enable(void)
3311 {
3312 struct perf_event *event;
3313
3314 mutex_lock(&current->perf_event_mutex);
3315 list_for_each_entry(event, &current->perf_event_list, owner_entry)
3316 perf_event_for_each_child(event, perf_event_enable);
3317 mutex_unlock(&current->perf_event_mutex);
3318
3319 return 0;
3320 }
3321
3322 int perf_event_task_disable(void)
3323 {
3324 struct perf_event *event;
3325
3326 mutex_lock(&current->perf_event_mutex);
3327 list_for_each_entry(event, &current->perf_event_list, owner_entry)
3328 perf_event_for_each_child(event, perf_event_disable);
3329 mutex_unlock(&current->perf_event_mutex);
3330
3331 return 0;
3332 }
3333
3334 static int perf_event_index(struct perf_event *event)
3335 {
3336 if (event->hw.state & PERF_HES_STOPPED)
3337 return 0;
3338
3339 if (event->state != PERF_EVENT_STATE_ACTIVE)
3340 return 0;
3341
3342 return event->pmu->event_idx(event);
3343 }
3344
3345 static void calc_timer_values(struct perf_event *event,
3346 u64 *now,
3347 u64 *enabled,
3348 u64 *running)
3349 {
3350 u64 ctx_time;
3351
3352 *now = perf_clock();
3353 ctx_time = event->shadow_ctx_time + *now;
3354 *enabled = ctx_time - event->tstamp_enabled;
3355 *running = ctx_time - event->tstamp_running;
3356 }
3357
3358 void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
3359 {
3360 }
3361
3362 /*
3363 * Callers need to ensure there can be no nesting of this function, otherwise
3364 * the seqlock logic goes bad. We can not serialize this because the arch
3365 * code calls this from NMI context.
3366 */
3367 void perf_event_update_userpage(struct perf_event *event)
3368 {
3369 struct perf_event_mmap_page *userpg;
3370 struct ring_buffer *rb;
3371 u64 enabled, running, now;
3372
3373 rcu_read_lock();
3374 /*
3375 * compute total_time_enabled, total_time_running
3376 * based on snapshot values taken when the event
3377 * was last scheduled in.
3378 *
3379 * we cannot simply called update_context_time()
3380 * because of locking issue as we can be called in
3381 * NMI context
3382 */
3383 calc_timer_values(event, &now, &enabled, &running);
3384 rb = rcu_dereference(event->rb);
3385 if (!rb)
3386 goto unlock;
3387
3388 userpg = rb->user_page;
3389
3390 /*
3391 * Disable preemption so as to not let the corresponding user-space
3392 * spin too long if we get preempted.
3393 */
3394 preempt_disable();
3395 ++userpg->lock;
3396 barrier();
3397 userpg->index = perf_event_index(event);
3398 userpg->offset = perf_event_count(event);
3399 if (userpg->index)
3400 userpg->offset -= local64_read(&event->hw.prev_count);
3401
3402 userpg->time_enabled = enabled +
3403 atomic64_read(&event->child_total_time_enabled);
3404
3405 userpg->time_running = running +
3406 atomic64_read(&event->child_total_time_running);
3407
3408 arch_perf_update_userpage(userpg, now);
3409
3410 barrier();
3411 ++userpg->lock;
3412 preempt_enable();
3413 unlock:
3414 rcu_read_unlock();
3415 }
3416
3417 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
3418 {
3419 struct perf_event *event = vma->vm_file->private_data;
3420 struct ring_buffer *rb;
3421 int ret = VM_FAULT_SIGBUS;
3422
3423 if (vmf->flags & FAULT_FLAG_MKWRITE) {
3424 if (vmf->pgoff == 0)
3425 ret = 0;
3426 return ret;
3427 }
3428
3429 rcu_read_lock();
3430 rb = rcu_dereference(event->rb);
3431 if (!rb)
3432 goto unlock;
3433
3434 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
3435 goto unlock;
3436
3437 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
3438 if (!vmf->page)
3439 goto unlock;
3440
3441 get_page(vmf->page);
3442 vmf->page->mapping = vma->vm_file->f_mapping;
3443 vmf->page->index = vmf->pgoff;
3444
3445 ret = 0;
3446 unlock:
3447 rcu_read_unlock();
3448
3449 return ret;
3450 }
3451
3452 static void ring_buffer_attach(struct perf_event *event,
3453 struct ring_buffer *rb)
3454 {
3455 unsigned long flags;
3456
3457 if (!list_empty(&event->rb_entry))
3458 return;
3459
3460 spin_lock_irqsave(&rb->event_lock, flags);
3461 if (!list_empty(&event->rb_entry))
3462 goto unlock;
3463
3464 list_add(&event->rb_entry, &rb->event_list);
3465 unlock:
3466 spin_unlock_irqrestore(&rb->event_lock, flags);
3467 }
3468
3469 static void ring_buffer_detach(struct perf_event *event,
3470 struct ring_buffer *rb)
3471 {
3472 unsigned long flags;
3473
3474 if (list_empty(&event->rb_entry))
3475 return;
3476
3477 spin_lock_irqsave(&rb->event_lock, flags);
3478 list_del_init(&event->rb_entry);
3479 wake_up_all(&event->waitq);
3480 spin_unlock_irqrestore(&rb->event_lock, flags);
3481 }
3482
3483 static void ring_buffer_wakeup(struct perf_event *event)
3484 {
3485 struct ring_buffer *rb;
3486
3487 rcu_read_lock();
3488 rb = rcu_dereference(event->rb);
3489 if (!rb)
3490 goto unlock;
3491
3492 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
3493 wake_up_all(&event->waitq);
3494
3495 unlock:
3496 rcu_read_unlock();
3497 }
3498
3499 static void rb_free_rcu(struct rcu_head *rcu_head)
3500 {
3501 struct ring_buffer *rb;
3502
3503 rb = container_of(rcu_head, struct ring_buffer, rcu_head);
3504 rb_free(rb);
3505 }
3506
3507 static struct ring_buffer *ring_buffer_get(struct perf_event *event)
3508 {
3509 struct ring_buffer *rb;
3510
3511 rcu_read_lock();
3512 rb = rcu_dereference(event->rb);
3513 if (rb) {
3514 if (!atomic_inc_not_zero(&rb->refcount))
3515 rb = NULL;
3516 }
3517 rcu_read_unlock();
3518
3519 return rb;
3520 }
3521
3522 static void ring_buffer_put(struct ring_buffer *rb)
3523 {
3524 struct perf_event *event, *n;
3525 unsigned long flags;
3526
3527 if (!atomic_dec_and_test(&rb->refcount))
3528 return;
3529
3530 spin_lock_irqsave(&rb->event_lock, flags);
3531 list_for_each_entry_safe(event, n, &rb->event_list, rb_entry) {
3532 list_del_init(&event->rb_entry);
3533 wake_up_all(&event->waitq);
3534 }
3535 spin_unlock_irqrestore(&rb->event_lock, flags);
3536
3537 call_rcu(&rb->rcu_head, rb_free_rcu);
3538 }
3539
3540 static void perf_mmap_open(struct vm_area_struct *vma)
3541 {
3542 struct perf_event *event = vma->vm_file->private_data;
3543
3544 atomic_inc(&event->mmap_count);
3545 }
3546
3547 static void perf_mmap_close(struct vm_area_struct *vma)
3548 {
3549 struct perf_event *event = vma->vm_file->private_data;
3550
3551 if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
3552 unsigned long size = perf_data_size(event->rb);
3553 struct user_struct *user = event->mmap_user;
3554 struct ring_buffer *rb = event->rb;
3555
3556 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
3557 vma->vm_mm->pinned_vm -= event->mmap_locked;
3558 rcu_assign_pointer(event->rb, NULL);
3559 ring_buffer_detach(event, rb);
3560 mutex_unlock(&event->mmap_mutex);
3561
3562 ring_buffer_put(rb);
3563 free_uid(user);
3564 }
3565 }
3566
3567 static const struct vm_operations_struct perf_mmap_vmops = {
3568 .open = perf_mmap_open,
3569 .close = perf_mmap_close,
3570 .fault = perf_mmap_fault,
3571 .page_mkwrite = perf_mmap_fault,
3572 };
3573
3574 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
3575 {
3576 struct perf_event *event = file->private_data;
3577 unsigned long user_locked, user_lock_limit;
3578 struct user_struct *user = current_user();
3579 unsigned long locked, lock_limit;
3580 struct ring_buffer *rb;
3581 unsigned long vma_size;
3582 unsigned long nr_pages;
3583 long user_extra, extra;
3584 int ret = 0, flags = 0;
3585
3586 /*
3587 * Don't allow mmap() of inherited per-task counters. This would
3588 * create a performance issue due to all children writing to the
3589 * same rb.
3590 */
3591 if (event->cpu == -1 && event->attr.inherit)
3592 return -EINVAL;
3593
3594 if (!(vma->vm_flags & VM_SHARED))
3595 return -EINVAL;
3596
3597 vma_size = vma->vm_end - vma->vm_start;
3598 nr_pages = (vma_size / PAGE_SIZE) - 1;
3599
3600 /*
3601 * If we have rb pages ensure they're a power-of-two number, so we
3602 * can do bitmasks instead of modulo.
3603 */
3604 if (nr_pages != 0 && !is_power_of_2(nr_pages))
3605 return -EINVAL;
3606
3607 if (vma_size != PAGE_SIZE * (1 + nr_pages))
3608 return -EINVAL;
3609
3610 if (vma->vm_pgoff != 0)
3611 return -EINVAL;
3612
3613 WARN_ON_ONCE(event->ctx->parent_ctx);
3614 mutex_lock(&event->mmap_mutex);
3615 if (event->rb) {
3616 if (event->rb->nr_pages == nr_pages)
3617 atomic_inc(&event->rb->refcount);
3618 else
3619 ret = -EINVAL;
3620 goto unlock;
3621 }
3622
3623 user_extra = nr_pages + 1;
3624 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
3625
3626 /*
3627 * Increase the limit linearly with more CPUs:
3628 */
3629 user_lock_limit *= num_online_cpus();
3630
3631 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
3632
3633 extra = 0;
3634 if (user_locked > user_lock_limit)
3635 extra = user_locked - user_lock_limit;
3636
3637 lock_limit = rlimit(RLIMIT_MEMLOCK);
3638 lock_limit >>= PAGE_SHIFT;
3639 locked = vma->vm_mm->pinned_vm + extra;
3640
3641 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
3642 !capable(CAP_IPC_LOCK)) {
3643 ret = -EPERM;
3644 goto unlock;
3645 }
3646
3647 WARN_ON(event->rb);
3648
3649 if (vma->vm_flags & VM_WRITE)
3650 flags |= RING_BUFFER_WRITABLE;
3651
3652 rb = rb_alloc(nr_pages,
3653 event->attr.watermark ? event->attr.wakeup_watermark : 0,
3654 event->cpu, flags);
3655
3656 if (!rb) {
3657 ret = -ENOMEM;
3658 goto unlock;
3659 }
3660 rcu_assign_pointer(event->rb, rb);
3661
3662 atomic_long_add(user_extra, &user->locked_vm);
3663 event->mmap_locked = extra;
3664 event->mmap_user = get_current_user();
3665 vma->vm_mm->pinned_vm += event->mmap_locked;
3666
3667 perf_event_update_userpage(event);
3668
3669 unlock:
3670 if (!ret)
3671 atomic_inc(&event->mmap_count);
3672 mutex_unlock(&event->mmap_mutex);
3673
3674 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
3675 vma->vm_ops = &perf_mmap_vmops;
3676
3677 return ret;
3678 }
3679
3680 static int perf_fasync(int fd, struct file *filp, int on)
3681 {
3682 struct inode *inode = filp->f_path.dentry->d_inode;
3683 struct perf_event *event = filp->private_data;
3684 int retval;
3685
3686 mutex_lock(&inode->i_mutex);
3687 retval = fasync_helper(fd, filp, on, &event->fasync);
3688 mutex_unlock(&inode->i_mutex);
3689
3690 if (retval < 0)
3691 return retval;
3692
3693 return 0;
3694 }
3695
3696 static const struct file_operations perf_fops = {
3697 .llseek = no_llseek,
3698 .release = perf_release,
3699 .read = perf_read,
3700 .poll = perf_poll,
3701 .unlocked_ioctl = perf_ioctl,
3702 .compat_ioctl = perf_ioctl,
3703 .mmap = perf_mmap,
3704 .fasync = perf_fasync,
3705 };
3706
3707 /*
3708 * Perf event wakeup
3709 *
3710 * If there's data, ensure we set the poll() state and publish everything
3711 * to user-space before waking everybody up.
3712 */
3713
3714 void perf_event_wakeup(struct perf_event *event)
3715 {
3716 ring_buffer_wakeup(event);
3717
3718 if (event->pending_kill) {
3719 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
3720 event->pending_kill = 0;
3721 }
3722 }
3723
3724 static void perf_pending_event(struct irq_work *entry)
3725 {
3726 struct perf_event *event = container_of(entry,
3727 struct perf_event, pending);
3728
3729 if (event->pending_disable) {
3730 event->pending_disable = 0;
3731 __perf_event_disable(event);
3732 }
3733
3734 if (event->pending_wakeup) {
3735 event->pending_wakeup = 0;
3736 perf_event_wakeup(event);
3737 }
3738 }
3739
3740 /*
3741 * We assume there is only KVM supporting the callbacks.
3742 * Later on, we might change it to a list if there is
3743 * another virtualization implementation supporting the callbacks.
3744 */
3745 struct perf_guest_info_callbacks *perf_guest_cbs;
3746
3747 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3748 {
3749 perf_guest_cbs = cbs;
3750 return 0;
3751 }
3752 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
3753
3754 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3755 {
3756 perf_guest_cbs = NULL;
3757 return 0;
3758 }
3759 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
3760
3761 static void
3762 perf_output_sample_regs(struct perf_output_handle *handle,
3763 struct pt_regs *regs, u64 mask)
3764 {
3765 int bit;
3766
3767 for_each_set_bit(bit, (const unsigned long *) &mask,
3768 sizeof(mask) * BITS_PER_BYTE) {
3769 u64 val;
3770
3771 val = perf_reg_value(regs, bit);
3772 perf_output_put(handle, val);
3773 }
3774 }
3775
3776 static void perf_sample_regs_user(struct perf_regs_user *regs_user,
3777 struct pt_regs *regs)
3778 {
3779 if (!user_mode(regs)) {
3780 if (current->mm)
3781 regs = task_pt_regs(current);
3782 else
3783 regs = NULL;
3784 }
3785
3786 if (regs) {
3787 regs_user->regs = regs;
3788 regs_user->abi = perf_reg_abi(current);
3789 }
3790 }
3791
3792 /*
3793 * Get remaining task size from user stack pointer.
3794 *
3795 * It'd be better to take stack vma map and limit this more
3796 * precisly, but there's no way to get it safely under interrupt,
3797 * so using TASK_SIZE as limit.
3798 */
3799 static u64 perf_ustack_task_size(struct pt_regs *regs)
3800 {
3801 unsigned long addr = perf_user_stack_pointer(regs);
3802
3803 if (!addr || addr >= TASK_SIZE)
3804 return 0;
3805
3806 return TASK_SIZE - addr;
3807 }
3808
3809 static u16
3810 perf_sample_ustack_size(u16 stack_size, u16 header_size,
3811 struct pt_regs *regs)
3812 {
3813 u64 task_size;
3814
3815 /* No regs, no stack pointer, no dump. */
3816 if (!regs)
3817 return 0;
3818
3819 /*
3820 * Check if we fit in with the requested stack size into the:
3821 * - TASK_SIZE
3822 * If we don't, we limit the size to the TASK_SIZE.
3823 *
3824 * - remaining sample size
3825 * If we don't, we customize the stack size to
3826 * fit in to the remaining sample size.
3827 */
3828
3829 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
3830 stack_size = min(stack_size, (u16) task_size);
3831
3832 /* Current header size plus static size and dynamic size. */
3833 header_size += 2 * sizeof(u64);
3834
3835 /* Do we fit in with the current stack dump size? */
3836 if ((u16) (header_size + stack_size) < header_size) {
3837 /*
3838 * If we overflow the maximum size for the sample,
3839 * we customize the stack dump size to fit in.
3840 */
3841 stack_size = USHRT_MAX - header_size - sizeof(u64);
3842 stack_size = round_up(stack_size, sizeof(u64));
3843 }
3844
3845 return stack_size;
3846 }
3847
3848 static void
3849 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
3850 struct pt_regs *regs)
3851 {
3852 /* Case of a kernel thread, nothing to dump */
3853 if (!regs) {
3854 u64 size = 0;
3855 perf_output_put(handle, size);
3856 } else {
3857 unsigned long sp;
3858 unsigned int rem;
3859 u64 dyn_size;
3860
3861 /*
3862 * We dump:
3863 * static size
3864 * - the size requested by user or the best one we can fit
3865 * in to the sample max size
3866 * data
3867 * - user stack dump data
3868 * dynamic size
3869 * - the actual dumped size
3870 */
3871
3872 /* Static size. */
3873 perf_output_put(handle, dump_size);
3874
3875 /* Data. */
3876 sp = perf_user_stack_pointer(regs);
3877 rem = __output_copy_user(handle, (void *) sp, dump_size);
3878 dyn_size = dump_size - rem;
3879
3880 perf_output_skip(handle, rem);
3881
3882 /* Dynamic size. */
3883 perf_output_put(handle, dyn_size);
3884 }
3885 }
3886
3887 static void __perf_event_header__init_id(struct perf_event_header *header,
3888 struct perf_sample_data *data,
3889 struct perf_event *event)
3890 {
3891 u64 sample_type = event->attr.sample_type;
3892
3893 data->type = sample_type;
3894 header->size += event->id_header_size;
3895
3896 if (sample_type & PERF_SAMPLE_TID) {
3897 /* namespace issues */
3898 data->tid_entry.pid = perf_event_pid(event, current);
3899 data->tid_entry.tid = perf_event_tid(event, current);
3900 }
3901
3902 if (sample_type & PERF_SAMPLE_TIME)
3903 data->time = perf_clock();
3904
3905 if (sample_type & PERF_SAMPLE_ID)
3906 data->id = primary_event_id(event);
3907
3908 if (sample_type & PERF_SAMPLE_STREAM_ID)
3909 data->stream_id = event->id;
3910
3911 if (sample_type & PERF_SAMPLE_CPU) {
3912 data->cpu_entry.cpu = raw_smp_processor_id();
3913 data->cpu_entry.reserved = 0;
3914 }
3915 }
3916
3917 void perf_event_header__init_id(struct perf_event_header *header,
3918 struct perf_sample_data *data,
3919 struct perf_event *event)
3920 {
3921 if (event->attr.sample_id_all)
3922 __perf_event_header__init_id(header, data, event);
3923 }
3924
3925 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
3926 struct perf_sample_data *data)
3927 {
3928 u64 sample_type = data->type;
3929
3930 if (sample_type & PERF_SAMPLE_TID)
3931 perf_output_put(handle, data->tid_entry);
3932
3933 if (sample_type & PERF_SAMPLE_TIME)
3934 perf_output_put(handle, data->time);
3935
3936 if (sample_type & PERF_SAMPLE_ID)
3937 perf_output_put(handle, data->id);
3938
3939 if (sample_type & PERF_SAMPLE_STREAM_ID)
3940 perf_output_put(handle, data->stream_id);
3941
3942 if (sample_type & PERF_SAMPLE_CPU)
3943 perf_output_put(handle, data->cpu_entry);
3944 }
3945
3946 void perf_event__output_id_sample(struct perf_event *event,
3947 struct perf_output_handle *handle,
3948 struct perf_sample_data *sample)
3949 {
3950 if (event->attr.sample_id_all)
3951 __perf_event__output_id_sample(handle, sample);
3952 }
3953
3954 static void perf_output_read_one(struct perf_output_handle *handle,
3955 struct perf_event *event,
3956 u64 enabled, u64 running)
3957 {
3958 u64 read_format = event->attr.read_format;
3959 u64 values[4];
3960 int n = 0;
3961
3962 values[n++] = perf_event_count(event);
3963 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3964 values[n++] = enabled +
3965 atomic64_read(&event->child_total_time_enabled);
3966 }
3967 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3968 values[n++] = running +
3969 atomic64_read(&event->child_total_time_running);
3970 }
3971 if (read_format & PERF_FORMAT_ID)
3972 values[n++] = primary_event_id(event);
3973
3974 __output_copy(handle, values, n * sizeof(u64));
3975 }
3976
3977 /*
3978 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3979 */
3980 static void perf_output_read_group(struct perf_output_handle *handle,
3981 struct perf_event *event,
3982 u64 enabled, u64 running)
3983 {
3984 struct perf_event *leader = event->group_leader, *sub;
3985 u64 read_format = event->attr.read_format;
3986 u64 values[5];
3987 int n = 0;
3988
3989 values[n++] = 1 + leader->nr_siblings;
3990
3991 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3992 values[n++] = enabled;
3993
3994 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3995 values[n++] = running;
3996
3997 if (leader != event)
3998 leader->pmu->read(leader);
3999
4000 values[n++] = perf_event_count(leader);
4001 if (read_format & PERF_FORMAT_ID)
4002 values[n++] = primary_event_id(leader);
4003
4004 __output_copy(handle, values, n * sizeof(u64));
4005
4006 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4007 n = 0;
4008
4009 if (sub != event)
4010 sub->pmu->read(sub);
4011
4012 values[n++] = perf_event_count(sub);
4013 if (read_format & PERF_FORMAT_ID)
4014 values[n++] = primary_event_id(sub);
4015
4016 __output_copy(handle, values, n * sizeof(u64));
4017 }
4018 }
4019
4020 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
4021 PERF_FORMAT_TOTAL_TIME_RUNNING)
4022
4023 static void perf_output_read(struct perf_output_handle *handle,
4024 struct perf_event *event)
4025 {
4026 u64 enabled = 0, running = 0, now;
4027 u64 read_format = event->attr.read_format;
4028
4029 /*
4030 * compute total_time_enabled, total_time_running
4031 * based on snapshot values taken when the event
4032 * was last scheduled in.
4033 *
4034 * we cannot simply called update_context_time()
4035 * because of locking issue as we are called in
4036 * NMI context
4037 */
4038 if (read_format & PERF_FORMAT_TOTAL_TIMES)
4039 calc_timer_values(event, &now, &enabled, &running);
4040
4041 if (event->attr.read_format & PERF_FORMAT_GROUP)
4042 perf_output_read_group(handle, event, enabled, running);
4043 else
4044 perf_output_read_one(handle, event, enabled, running);
4045 }
4046
4047 void perf_output_sample(struct perf_output_handle *handle,
4048 struct perf_event_header *header,
4049 struct perf_sample_data *data,
4050 struct perf_event *event)
4051 {
4052 u64 sample_type = data->type;
4053
4054 perf_output_put(handle, *header);
4055
4056 if (sample_type & PERF_SAMPLE_IP)
4057 perf_output_put(handle, data->ip);
4058
4059 if (sample_type & PERF_SAMPLE_TID)
4060 perf_output_put(handle, data->tid_entry);
4061
4062 if (sample_type & PERF_SAMPLE_TIME)
4063 perf_output_put(handle, data->time);
4064
4065 if (sample_type & PERF_SAMPLE_ADDR)
4066 perf_output_put(handle, data->addr);
4067
4068 if (sample_type & PERF_SAMPLE_ID)
4069 perf_output_put(handle, data->id);
4070
4071 if (sample_type & PERF_SAMPLE_STREAM_ID)
4072 perf_output_put(handle, data->stream_id);
4073
4074 if (sample_type & PERF_SAMPLE_CPU)
4075 perf_output_put(handle, data->cpu_entry);
4076
4077 if (sample_type & PERF_SAMPLE_PERIOD)
4078 perf_output_put(handle, data->period);
4079
4080 if (sample_type & PERF_SAMPLE_READ)
4081 perf_output_read(handle, event);
4082
4083 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4084 if (data->callchain) {
4085 int size = 1;
4086
4087 if (data->callchain)
4088 size += data->callchain->nr;
4089
4090 size *= sizeof(u64);
4091
4092 __output_copy(handle, data->callchain, size);
4093 } else {
4094 u64 nr = 0;
4095 perf_output_put(handle, nr);
4096 }
4097 }
4098
4099 if (sample_type & PERF_SAMPLE_RAW) {
4100 if (data->raw) {
4101 perf_output_put(handle, data->raw->size);
4102 __output_copy(handle, data->raw->data,
4103 data->raw->size);
4104 } else {
4105 struct {
4106 u32 size;
4107 u32 data;
4108 } raw = {
4109 .size = sizeof(u32),
4110 .data = 0,
4111 };
4112 perf_output_put(handle, raw);
4113 }
4114 }
4115
4116 if (!event->attr.watermark) {
4117 int wakeup_events = event->attr.wakeup_events;
4118
4119 if (wakeup_events) {
4120 struct ring_buffer *rb = handle->rb;
4121 int events = local_inc_return(&rb->events);
4122
4123 if (events >= wakeup_events) {
4124 local_sub(wakeup_events, &rb->events);
4125 local_inc(&rb->wakeup);
4126 }
4127 }
4128 }
4129
4130 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4131 if (data->br_stack) {
4132 size_t size;
4133
4134 size = data->br_stack->nr
4135 * sizeof(struct perf_branch_entry);
4136
4137 perf_output_put(handle, data->br_stack->nr);
4138 perf_output_copy(handle, data->br_stack->entries, size);
4139 } else {
4140 /*
4141 * we always store at least the value of nr
4142 */
4143 u64 nr = 0;
4144 perf_output_put(handle, nr);
4145 }
4146 }
4147
4148 if (sample_type & PERF_SAMPLE_REGS_USER) {
4149 u64 abi = data->regs_user.abi;
4150
4151 /*
4152 * If there are no regs to dump, notice it through
4153 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
4154 */
4155 perf_output_put(handle, abi);
4156
4157 if (abi) {
4158 u64 mask = event->attr.sample_regs_user;
4159 perf_output_sample_regs(handle,
4160 data->regs_user.regs,
4161 mask);
4162 }
4163 }
4164
4165 if (sample_type & PERF_SAMPLE_STACK_USER)
4166 perf_output_sample_ustack(handle,
4167 data->stack_user_size,
4168 data->regs_user.regs);
4169 }
4170
4171 void perf_prepare_sample(struct perf_event_header *header,
4172 struct perf_sample_data *data,
4173 struct perf_event *event,
4174 struct pt_regs *regs)
4175 {
4176 u64 sample_type = event->attr.sample_type;
4177
4178 header->type = PERF_RECORD_SAMPLE;
4179 header->size = sizeof(*header) + event->header_size;
4180
4181 header->misc = 0;
4182 header->misc |= perf_misc_flags(regs);
4183
4184 __perf_event_header__init_id(header, data, event);
4185
4186 if (sample_type & PERF_SAMPLE_IP)
4187 data->ip = perf_instruction_pointer(regs);
4188
4189 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4190 int size = 1;
4191
4192 data->callchain = perf_callchain(event, regs);
4193
4194 if (data->callchain)
4195 size += data->callchain->nr;
4196
4197 header->size += size * sizeof(u64);
4198 }
4199
4200 if (sample_type & PERF_SAMPLE_RAW) {
4201 int size = sizeof(u32);
4202
4203 if (data->raw)
4204 size += data->raw->size;
4205 else
4206 size += sizeof(u32);
4207
4208 WARN_ON_ONCE(size & (sizeof(u64)-1));
4209 header->size += size;
4210 }
4211
4212 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4213 int size = sizeof(u64); /* nr */
4214 if (data->br_stack) {
4215 size += data->br_stack->nr
4216 * sizeof(struct perf_branch_entry);
4217 }
4218 header->size += size;
4219 }
4220
4221 if (sample_type & PERF_SAMPLE_REGS_USER) {
4222 /* regs dump ABI info */
4223 int size = sizeof(u64);
4224
4225 perf_sample_regs_user(&data->regs_user, regs);
4226
4227 if (data->regs_user.regs) {
4228 u64 mask = event->attr.sample_regs_user;
4229 size += hweight64(mask) * sizeof(u64);
4230 }
4231
4232 header->size += size;
4233 }
4234
4235 if (sample_type & PERF_SAMPLE_STACK_USER) {
4236 /*
4237 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
4238 * processed as the last one or have additional check added
4239 * in case new sample type is added, because we could eat
4240 * up the rest of the sample size.
4241 */
4242 struct perf_regs_user *uregs = &data->regs_user;
4243 u16 stack_size = event->attr.sample_stack_user;
4244 u16 size = sizeof(u64);
4245
4246 if (!uregs->abi)
4247 perf_sample_regs_user(uregs, regs);
4248
4249 stack_size = perf_sample_ustack_size(stack_size, header->size,
4250 uregs->regs);
4251
4252 /*
4253 * If there is something to dump, add space for the dump
4254 * itself and for the field that tells the dynamic size,
4255 * which is how many have been actually dumped.
4256 */
4257 if (stack_size)
4258 size += sizeof(u64) + stack_size;
4259
4260 data->stack_user_size = stack_size;
4261 header->size += size;
4262 }
4263 }
4264
4265 static void perf_event_output(struct perf_event *event,
4266 struct perf_sample_data *data,
4267 struct pt_regs *regs)
4268 {
4269 struct perf_output_handle handle;
4270 struct perf_event_header header;
4271
4272 /* protect the callchain buffers */
4273 rcu_read_lock();
4274
4275 perf_prepare_sample(&header, data, event, regs);
4276
4277 if (perf_output_begin(&handle, event, header.size))
4278 goto exit;
4279
4280 perf_output_sample(&handle, &header, data, event);
4281
4282 perf_output_end(&handle);
4283
4284 exit:
4285 rcu_read_unlock();
4286 }
4287
4288 /*
4289 * read event_id
4290 */
4291
4292 struct perf_read_event {
4293 struct perf_event_header header;
4294
4295 u32 pid;
4296 u32 tid;
4297 };
4298
4299 static void
4300 perf_event_read_event(struct perf_event *event,
4301 struct task_struct *task)
4302 {
4303 struct perf_output_handle handle;
4304 struct perf_sample_data sample;
4305 struct perf_read_event read_event = {
4306 .header = {
4307 .type = PERF_RECORD_READ,
4308 .misc = 0,
4309 .size = sizeof(read_event) + event->read_size,
4310 },
4311 .pid = perf_event_pid(event, task),
4312 .tid = perf_event_tid(event, task),
4313 };
4314 int ret;
4315
4316 perf_event_header__init_id(&read_event.header, &sample, event);
4317 ret = perf_output_begin(&handle, event, read_event.header.size);
4318 if (ret)
4319 return;
4320
4321 perf_output_put(&handle, read_event);
4322 perf_output_read(&handle, event);
4323 perf_event__output_id_sample(event, &handle, &sample);
4324
4325 perf_output_end(&handle);
4326 }
4327
4328 /*
4329 * task tracking -- fork/exit
4330 *
4331 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
4332 */
4333
4334 struct perf_task_event {
4335 struct task_struct *task;
4336 struct perf_event_context *task_ctx;
4337
4338 struct {
4339 struct perf_event_header header;
4340
4341 u32 pid;
4342 u32 ppid;
4343 u32 tid;
4344 u32 ptid;
4345 u64 time;
4346 } event_id;
4347 };
4348
4349 static void perf_event_task_output(struct perf_event *event,
4350 struct perf_task_event *task_event)
4351 {
4352 struct perf_output_handle handle;
4353 struct perf_sample_data sample;
4354 struct task_struct *task = task_event->task;
4355 int ret, size = task_event->event_id.header.size;
4356
4357 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
4358
4359 ret = perf_output_begin(&handle, event,
4360 task_event->event_id.header.size);
4361 if (ret)
4362 goto out;
4363
4364 task_event->event_id.pid = perf_event_pid(event, task);
4365 task_event->event_id.ppid = perf_event_pid(event, current);
4366
4367 task_event->event_id.tid = perf_event_tid(event, task);
4368 task_event->event_id.ptid = perf_event_tid(event, current);
4369
4370 perf_output_put(&handle, task_event->event_id);
4371
4372 perf_event__output_id_sample(event, &handle, &sample);
4373
4374 perf_output_end(&handle);
4375 out:
4376 task_event->event_id.header.size = size;
4377 }
4378
4379 static int perf_event_task_match(struct perf_event *event)
4380 {
4381 if (event->state < PERF_EVENT_STATE_INACTIVE)
4382 return 0;
4383
4384 if (!event_filter_match(event))
4385 return 0;
4386
4387 if (event->attr.comm || event->attr.mmap ||
4388 event->attr.mmap_data || event->attr.task)
4389 return 1;
4390
4391 return 0;
4392 }
4393
4394 static void perf_event_task_ctx(struct perf_event_context *ctx,
4395 struct perf_task_event *task_event)
4396 {
4397 struct perf_event *event;
4398
4399 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4400 if (perf_event_task_match(event))
4401 perf_event_task_output(event, task_event);
4402 }
4403 }
4404
4405 static void perf_event_task_event(struct perf_task_event *task_event)
4406 {
4407 struct perf_cpu_context *cpuctx;
4408 struct perf_event_context *ctx;
4409 struct pmu *pmu;
4410 int ctxn;
4411
4412 rcu_read_lock();
4413 list_for_each_entry_rcu(pmu, &pmus, entry) {
4414 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4415 if (cpuctx->active_pmu != pmu)
4416 goto next;
4417 perf_event_task_ctx(&cpuctx->ctx, task_event);
4418
4419 ctx = task_event->task_ctx;
4420 if (!ctx) {
4421 ctxn = pmu->task_ctx_nr;
4422 if (ctxn < 0)
4423 goto next;
4424 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4425 }
4426 if (ctx)
4427 perf_event_task_ctx(ctx, task_event);
4428 next:
4429 put_cpu_ptr(pmu->pmu_cpu_context);
4430 }
4431 rcu_read_unlock();
4432 }
4433
4434 static void perf_event_task(struct task_struct *task,
4435 struct perf_event_context *task_ctx,
4436 int new)
4437 {
4438 struct perf_task_event task_event;
4439
4440 if (!atomic_read(&nr_comm_events) &&
4441 !atomic_read(&nr_mmap_events) &&
4442 !atomic_read(&nr_task_events))
4443 return;
4444
4445 task_event = (struct perf_task_event){
4446 .task = task,
4447 .task_ctx = task_ctx,
4448 .event_id = {
4449 .header = {
4450 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
4451 .misc = 0,
4452 .size = sizeof(task_event.event_id),
4453 },
4454 /* .pid */
4455 /* .ppid */
4456 /* .tid */
4457 /* .ptid */
4458 .time = perf_clock(),
4459 },
4460 };
4461
4462 perf_event_task_event(&task_event);
4463 }
4464
4465 void perf_event_fork(struct task_struct *task)
4466 {
4467 perf_event_task(task, NULL, 1);
4468 }
4469
4470 /*
4471 * comm tracking
4472 */
4473
4474 struct perf_comm_event {
4475 struct task_struct *task;
4476 char *comm;
4477 int comm_size;
4478
4479 struct {
4480 struct perf_event_header header;
4481
4482 u32 pid;
4483 u32 tid;
4484 } event_id;
4485 };
4486
4487 static void perf_event_comm_output(struct perf_event *event,
4488 struct perf_comm_event *comm_event)
4489 {
4490 struct perf_output_handle handle;
4491 struct perf_sample_data sample;
4492 int size = comm_event->event_id.header.size;
4493 int ret;
4494
4495 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
4496 ret = perf_output_begin(&handle, event,
4497 comm_event->event_id.header.size);
4498
4499 if (ret)
4500 goto out;
4501
4502 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
4503 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
4504
4505 perf_output_put(&handle, comm_event->event_id);
4506 __output_copy(&handle, comm_event->comm,
4507 comm_event->comm_size);
4508
4509 perf_event__output_id_sample(event, &handle, &sample);
4510
4511 perf_output_end(&handle);
4512 out:
4513 comm_event->event_id.header.size = size;
4514 }
4515
4516 static int perf_event_comm_match(struct perf_event *event)
4517 {
4518 if (event->state < PERF_EVENT_STATE_INACTIVE)
4519 return 0;
4520
4521 if (!event_filter_match(event))
4522 return 0;
4523
4524 if (event->attr.comm)
4525 return 1;
4526
4527 return 0;
4528 }
4529
4530 static void perf_event_comm_ctx(struct perf_event_context *ctx,
4531 struct perf_comm_event *comm_event)
4532 {
4533 struct perf_event *event;
4534
4535 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4536 if (perf_event_comm_match(event))
4537 perf_event_comm_output(event, comm_event);
4538 }
4539 }
4540
4541 static void perf_event_comm_event(struct perf_comm_event *comm_event)
4542 {
4543 struct perf_cpu_context *cpuctx;
4544 struct perf_event_context *ctx;
4545 char comm[TASK_COMM_LEN];
4546 unsigned int size;
4547 struct pmu *pmu;
4548 int ctxn;
4549
4550 memset(comm, 0, sizeof(comm));
4551 strlcpy(comm, comm_event->task->comm, sizeof(comm));
4552 size = ALIGN(strlen(comm)+1, sizeof(u64));
4553
4554 comm_event->comm = comm;
4555 comm_event->comm_size = size;
4556
4557 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
4558 rcu_read_lock();
4559 list_for_each_entry_rcu(pmu, &pmus, entry) {
4560 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4561 if (cpuctx->active_pmu != pmu)
4562 goto next;
4563 perf_event_comm_ctx(&cpuctx->ctx, comm_event);
4564
4565 ctxn = pmu->task_ctx_nr;
4566 if (ctxn < 0)
4567 goto next;
4568
4569 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4570 if (ctx)
4571 perf_event_comm_ctx(ctx, comm_event);
4572 next:
4573 put_cpu_ptr(pmu->pmu_cpu_context);
4574 }
4575 rcu_read_unlock();
4576 }
4577
4578 void perf_event_comm(struct task_struct *task)
4579 {
4580 struct perf_comm_event comm_event;
4581 struct perf_event_context *ctx;
4582 int ctxn;
4583
4584 for_each_task_context_nr(ctxn) {
4585 ctx = task->perf_event_ctxp[ctxn];
4586 if (!ctx)
4587 continue;
4588
4589 perf_event_enable_on_exec(ctx);
4590 }
4591
4592 if (!atomic_read(&nr_comm_events))
4593 return;
4594
4595 comm_event = (struct perf_comm_event){
4596 .task = task,
4597 /* .comm */
4598 /* .comm_size */
4599 .event_id = {
4600 .header = {
4601 .type = PERF_RECORD_COMM,
4602 .misc = 0,
4603 /* .size */
4604 },
4605 /* .pid */
4606 /* .tid */
4607 },
4608 };
4609
4610 perf_event_comm_event(&comm_event);
4611 }
4612
4613 /*
4614 * mmap tracking
4615 */
4616
4617 struct perf_mmap_event {
4618 struct vm_area_struct *vma;
4619
4620 const char *file_name;
4621 int file_size;
4622
4623 struct {
4624 struct perf_event_header header;
4625
4626 u32 pid;
4627 u32 tid;
4628 u64 start;
4629 u64 len;
4630 u64 pgoff;
4631 } event_id;
4632 };
4633
4634 static void perf_event_mmap_output(struct perf_event *event,
4635 struct perf_mmap_event *mmap_event)
4636 {
4637 struct perf_output_handle handle;
4638 struct perf_sample_data sample;
4639 int size = mmap_event->event_id.header.size;
4640 int ret;
4641
4642 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
4643 ret = perf_output_begin(&handle, event,
4644 mmap_event->event_id.header.size);
4645 if (ret)
4646 goto out;
4647
4648 mmap_event->event_id.pid = perf_event_pid(event, current);
4649 mmap_event->event_id.tid = perf_event_tid(event, current);
4650
4651 perf_output_put(&handle, mmap_event->event_id);
4652 __output_copy(&handle, mmap_event->file_name,
4653 mmap_event->file_size);
4654
4655 perf_event__output_id_sample(event, &handle, &sample);
4656
4657 perf_output_end(&handle);
4658 out:
4659 mmap_event->event_id.header.size = size;
4660 }
4661
4662 static int perf_event_mmap_match(struct perf_event *event,
4663 struct perf_mmap_event *mmap_event,
4664 int executable)
4665 {
4666 if (event->state < PERF_EVENT_STATE_INACTIVE)
4667 return 0;
4668
4669 if (!event_filter_match(event))
4670 return 0;
4671
4672 if ((!executable && event->attr.mmap_data) ||
4673 (executable && event->attr.mmap))
4674 return 1;
4675
4676 return 0;
4677 }
4678
4679 static void perf_event_mmap_ctx(struct perf_event_context *ctx,
4680 struct perf_mmap_event *mmap_event,
4681 int executable)
4682 {
4683 struct perf_event *event;
4684
4685 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4686 if (perf_event_mmap_match(event, mmap_event, executable))
4687 perf_event_mmap_output(event, mmap_event);
4688 }
4689 }
4690
4691 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
4692 {
4693 struct perf_cpu_context *cpuctx;
4694 struct perf_event_context *ctx;
4695 struct vm_area_struct *vma = mmap_event->vma;
4696 struct file *file = vma->vm_file;
4697 unsigned int size;
4698 char tmp[16];
4699 char *buf = NULL;
4700 const char *name;
4701 struct pmu *pmu;
4702 int ctxn;
4703
4704 memset(tmp, 0, sizeof(tmp));
4705
4706 if (file) {
4707 /*
4708 * d_path works from the end of the rb backwards, so we
4709 * need to add enough zero bytes after the string to handle
4710 * the 64bit alignment we do later.
4711 */
4712 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
4713 if (!buf) {
4714 name = strncpy(tmp, "//enomem", sizeof(tmp));
4715 goto got_name;
4716 }
4717 name = d_path(&file->f_path, buf, PATH_MAX);
4718 if (IS_ERR(name)) {
4719 name = strncpy(tmp, "//toolong", sizeof(tmp));
4720 goto got_name;
4721 }
4722 } else {
4723 if (arch_vma_name(mmap_event->vma)) {
4724 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
4725 sizeof(tmp));
4726 goto got_name;
4727 }
4728
4729 if (!vma->vm_mm) {
4730 name = strncpy(tmp, "[vdso]", sizeof(tmp));
4731 goto got_name;
4732 } else if (vma->vm_start <= vma->vm_mm->start_brk &&
4733 vma->vm_end >= vma->vm_mm->brk) {
4734 name = strncpy(tmp, "[heap]", sizeof(tmp));
4735 goto got_name;
4736 } else if (vma->vm_start <= vma->vm_mm->start_stack &&
4737 vma->vm_end >= vma->vm_mm->start_stack) {
4738 name = strncpy(tmp, "[stack]", sizeof(tmp));
4739 goto got_name;
4740 }
4741
4742 name = strncpy(tmp, "//anon", sizeof(tmp));
4743 goto got_name;
4744 }
4745
4746 got_name:
4747 size = ALIGN(strlen(name)+1, sizeof(u64));
4748
4749 mmap_event->file_name = name;
4750 mmap_event->file_size = size;
4751
4752 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
4753
4754 rcu_read_lock();
4755 list_for_each_entry_rcu(pmu, &pmus, entry) {
4756 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4757 if (cpuctx->active_pmu != pmu)
4758 goto next;
4759 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event,
4760 vma->vm_flags & VM_EXEC);
4761
4762 ctxn = pmu->task_ctx_nr;
4763 if (ctxn < 0)
4764 goto next;
4765
4766 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4767 if (ctx) {
4768 perf_event_mmap_ctx(ctx, mmap_event,
4769 vma->vm_flags & VM_EXEC);
4770 }
4771 next:
4772 put_cpu_ptr(pmu->pmu_cpu_context);
4773 }
4774 rcu_read_unlock();
4775
4776 kfree(buf);
4777 }
4778
4779 void perf_event_mmap(struct vm_area_struct *vma)
4780 {
4781 struct perf_mmap_event mmap_event;
4782
4783 if (!atomic_read(&nr_mmap_events))
4784 return;
4785
4786 mmap_event = (struct perf_mmap_event){
4787 .vma = vma,
4788 /* .file_name */
4789 /* .file_size */
4790 .event_id = {
4791 .header = {
4792 .type = PERF_RECORD_MMAP,
4793 .misc = PERF_RECORD_MISC_USER,
4794 /* .size */
4795 },
4796 /* .pid */
4797 /* .tid */
4798 .start = vma->vm_start,
4799 .len = vma->vm_end - vma->vm_start,
4800 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
4801 },
4802 };
4803
4804 perf_event_mmap_event(&mmap_event);
4805 }
4806
4807 /*
4808 * IRQ throttle logging
4809 */
4810
4811 static void perf_log_throttle(struct perf_event *event, int enable)
4812 {
4813 struct perf_output_handle handle;
4814 struct perf_sample_data sample;
4815 int ret;
4816
4817 struct {
4818 struct perf_event_header header;
4819 u64 time;
4820 u64 id;
4821 u64 stream_id;
4822 } throttle_event = {
4823 .header = {
4824 .type = PERF_RECORD_THROTTLE,
4825 .misc = 0,
4826 .size = sizeof(throttle_event),
4827 },
4828 .time = perf_clock(),
4829 .id = primary_event_id(event),
4830 .stream_id = event->id,
4831 };
4832
4833 if (enable)
4834 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
4835
4836 perf_event_header__init_id(&throttle_event.header, &sample, event);
4837
4838 ret = perf_output_begin(&handle, event,
4839 throttle_event.header.size);
4840 if (ret)
4841 return;
4842
4843 perf_output_put(&handle, throttle_event);
4844 perf_event__output_id_sample(event, &handle, &sample);
4845 perf_output_end(&handle);
4846 }
4847
4848 /*
4849 * Generic event overflow handling, sampling.
4850 */
4851
4852 static int __perf_event_overflow(struct perf_event *event,
4853 int throttle, struct perf_sample_data *data,
4854 struct pt_regs *regs)
4855 {
4856 int events = atomic_read(&event->event_limit);
4857 struct hw_perf_event *hwc = &event->hw;
4858 u64 seq;
4859 int ret = 0;
4860
4861 /*
4862 * Non-sampling counters might still use the PMI to fold short
4863 * hardware counters, ignore those.
4864 */
4865 if (unlikely(!is_sampling_event(event)))
4866 return 0;
4867
4868 seq = __this_cpu_read(perf_throttled_seq);
4869 if (seq != hwc->interrupts_seq) {
4870 hwc->interrupts_seq = seq;
4871 hwc->interrupts = 1;
4872 } else {
4873 hwc->interrupts++;
4874 if (unlikely(throttle
4875 && hwc->interrupts >= max_samples_per_tick)) {
4876 __this_cpu_inc(perf_throttled_count);
4877 hwc->interrupts = MAX_INTERRUPTS;
4878 perf_log_throttle(event, 0);
4879 ret = 1;
4880 }
4881 }
4882
4883 if (event->attr.freq) {
4884 u64 now = perf_clock();
4885 s64 delta = now - hwc->freq_time_stamp;
4886
4887 hwc->freq_time_stamp = now;
4888
4889 if (delta > 0 && delta < 2*TICK_NSEC)
4890 perf_adjust_period(event, delta, hwc->last_period, true);
4891 }
4892
4893 /*
4894 * XXX event_limit might not quite work as expected on inherited
4895 * events
4896 */
4897
4898 event->pending_kill = POLL_IN;
4899 if (events && atomic_dec_and_test(&event->event_limit)) {
4900 ret = 1;
4901 event->pending_kill = POLL_HUP;
4902 event->pending_disable = 1;
4903 irq_work_queue(&event->pending);
4904 }
4905
4906 if (event->overflow_handler)
4907 event->overflow_handler(event, data, regs);
4908 else
4909 perf_event_output(event, data, regs);
4910
4911 if (event->fasync && event->pending_kill) {
4912 event->pending_wakeup = 1;
4913 irq_work_queue(&event->pending);
4914 }
4915
4916 return ret;
4917 }
4918
4919 int perf_event_overflow(struct perf_event *event,
4920 struct perf_sample_data *data,
4921 struct pt_regs *regs)
4922 {
4923 return __perf_event_overflow(event, 1, data, regs);
4924 }
4925
4926 /*
4927 * Generic software event infrastructure
4928 */
4929
4930 struct swevent_htable {
4931 struct swevent_hlist *swevent_hlist;
4932 struct mutex hlist_mutex;
4933 int hlist_refcount;
4934
4935 /* Recursion avoidance in each contexts */
4936 int recursion[PERF_NR_CONTEXTS];
4937 };
4938
4939 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
4940
4941 /*
4942 * We directly increment event->count and keep a second value in
4943 * event->hw.period_left to count intervals. This period event
4944 * is kept in the range [-sample_period, 0] so that we can use the
4945 * sign as trigger.
4946 */
4947
4948 static u64 perf_swevent_set_period(struct perf_event *event)
4949 {
4950 struct hw_perf_event *hwc = &event->hw;
4951 u64 period = hwc->last_period;
4952 u64 nr, offset;
4953 s64 old, val;
4954
4955 hwc->last_period = hwc->sample_period;
4956
4957 again:
4958 old = val = local64_read(&hwc->period_left);
4959 if (val < 0)
4960 return 0;
4961
4962 nr = div64_u64(period + val, period);
4963 offset = nr * period;
4964 val -= offset;
4965 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
4966 goto again;
4967
4968 return nr;
4969 }
4970
4971 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
4972 struct perf_sample_data *data,
4973 struct pt_regs *regs)
4974 {
4975 struct hw_perf_event *hwc = &event->hw;
4976 int throttle = 0;
4977
4978 if (!overflow)
4979 overflow = perf_swevent_set_period(event);
4980
4981 if (hwc->interrupts == MAX_INTERRUPTS)
4982 return;
4983
4984 for (; overflow; overflow--) {
4985 if (__perf_event_overflow(event, throttle,
4986 data, regs)) {
4987 /*
4988 * We inhibit the overflow from happening when
4989 * hwc->interrupts == MAX_INTERRUPTS.
4990 */
4991 break;
4992 }
4993 throttle = 1;
4994 }
4995 }
4996
4997 static void perf_swevent_event(struct perf_event *event, u64 nr,
4998 struct perf_sample_data *data,
4999 struct pt_regs *regs)
5000 {
5001 struct hw_perf_event *hwc = &event->hw;
5002
5003 local64_add(nr, &event->count);
5004
5005 if (!regs)
5006 return;
5007
5008 if (!is_sampling_event(event))
5009 return;
5010
5011 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
5012 data->period = nr;
5013 return perf_swevent_overflow(event, 1, data, regs);
5014 } else
5015 data->period = event->hw.last_period;
5016
5017 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
5018 return perf_swevent_overflow(event, 1, data, regs);
5019
5020 if (local64_add_negative(nr, &hwc->period_left))
5021 return;
5022
5023 perf_swevent_overflow(event, 0, data, regs);
5024 }
5025
5026 static int perf_exclude_event(struct perf_event *event,
5027 struct pt_regs *regs)
5028 {
5029 if (event->hw.state & PERF_HES_STOPPED)
5030 return 1;
5031
5032 if (regs) {
5033 if (event->attr.exclude_user && user_mode(regs))
5034 return 1;
5035
5036 if (event->attr.exclude_kernel && !user_mode(regs))
5037 return 1;
5038 }
5039
5040 return 0;
5041 }
5042
5043 static int perf_swevent_match(struct perf_event *event,
5044 enum perf_type_id type,
5045 u32 event_id,
5046 struct perf_sample_data *data,
5047 struct pt_regs *regs)
5048 {
5049 if (event->attr.type != type)
5050 return 0;
5051
5052 if (event->attr.config != event_id)
5053 return 0;
5054
5055 if (perf_exclude_event(event, regs))
5056 return 0;
5057
5058 return 1;
5059 }
5060
5061 static inline u64 swevent_hash(u64 type, u32 event_id)
5062 {
5063 u64 val = event_id | (type << 32);
5064
5065 return hash_64(val, SWEVENT_HLIST_BITS);
5066 }
5067
5068 static inline struct hlist_head *
5069 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
5070 {
5071 u64 hash = swevent_hash(type, event_id);
5072
5073 return &hlist->heads[hash];
5074 }
5075
5076 /* For the read side: events when they trigger */
5077 static inline struct hlist_head *
5078 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
5079 {
5080 struct swevent_hlist *hlist;
5081
5082 hlist = rcu_dereference(swhash->swevent_hlist);
5083 if (!hlist)
5084 return NULL;
5085
5086 return __find_swevent_head(hlist, type, event_id);
5087 }
5088
5089 /* For the event head insertion and removal in the hlist */
5090 static inline struct hlist_head *
5091 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
5092 {
5093 struct swevent_hlist *hlist;
5094 u32 event_id = event->attr.config;
5095 u64 type = event->attr.type;
5096
5097 /*
5098 * Event scheduling is always serialized against hlist allocation
5099 * and release. Which makes the protected version suitable here.
5100 * The context lock guarantees that.
5101 */
5102 hlist = rcu_dereference_protected(swhash->swevent_hlist,
5103 lockdep_is_held(&event->ctx->lock));
5104 if (!hlist)
5105 return NULL;
5106
5107 return __find_swevent_head(hlist, type, event_id);
5108 }
5109
5110 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
5111 u64 nr,
5112 struct perf_sample_data *data,
5113 struct pt_regs *regs)
5114 {
5115 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5116 struct perf_event *event;
5117 struct hlist_node *node;
5118 struct hlist_head *head;
5119
5120 rcu_read_lock();
5121 head = find_swevent_head_rcu(swhash, type, event_id);
5122 if (!head)
5123 goto end;
5124
5125 hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
5126 if (perf_swevent_match(event, type, event_id, data, regs))
5127 perf_swevent_event(event, nr, data, regs);
5128 }
5129 end:
5130 rcu_read_unlock();
5131 }
5132
5133 int perf_swevent_get_recursion_context(void)
5134 {
5135 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5136
5137 return get_recursion_context(swhash->recursion);
5138 }
5139 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
5140
5141 inline void perf_swevent_put_recursion_context(int rctx)
5142 {
5143 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5144
5145 put_recursion_context(swhash->recursion, rctx);
5146 }
5147
5148 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
5149 {
5150 struct perf_sample_data data;
5151 int rctx;
5152
5153 preempt_disable_notrace();
5154 rctx = perf_swevent_get_recursion_context();
5155 if (rctx < 0)
5156 return;
5157
5158 perf_sample_data_init(&data, addr, 0);
5159
5160 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
5161
5162 perf_swevent_put_recursion_context(rctx);
5163 preempt_enable_notrace();
5164 }
5165
5166 static void perf_swevent_read(struct perf_event *event)
5167 {
5168 }
5169
5170 static int perf_swevent_add(struct perf_event *event, int flags)
5171 {
5172 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5173 struct hw_perf_event *hwc = &event->hw;
5174 struct hlist_head *head;
5175
5176 if (is_sampling_event(event)) {
5177 hwc->last_period = hwc->sample_period;
5178 perf_swevent_set_period(event);
5179 }
5180
5181 hwc->state = !(flags & PERF_EF_START);
5182
5183 head = find_swevent_head(swhash, event);
5184 if (WARN_ON_ONCE(!head))
5185 return -EINVAL;
5186
5187 hlist_add_head_rcu(&event->hlist_entry, head);
5188
5189 return 0;
5190 }
5191
5192 static void perf_swevent_del(struct perf_event *event, int flags)
5193 {
5194 hlist_del_rcu(&event->hlist_entry);
5195 }
5196
5197 static void perf_swevent_start(struct perf_event *event, int flags)
5198 {
5199 event->hw.state = 0;
5200 }
5201
5202 static void perf_swevent_stop(struct perf_event *event, int flags)
5203 {
5204 event->hw.state = PERF_HES_STOPPED;
5205 }
5206
5207 /* Deref the hlist from the update side */
5208 static inline struct swevent_hlist *
5209 swevent_hlist_deref(struct swevent_htable *swhash)
5210 {
5211 return rcu_dereference_protected(swhash->swevent_hlist,
5212 lockdep_is_held(&swhash->hlist_mutex));
5213 }
5214
5215 static void swevent_hlist_release(struct swevent_htable *swhash)
5216 {
5217 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
5218
5219 if (!hlist)
5220 return;
5221
5222 rcu_assign_pointer(swhash->swevent_hlist, NULL);
5223 kfree_rcu(hlist, rcu_head);
5224 }
5225
5226 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
5227 {
5228 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5229
5230 mutex_lock(&swhash->hlist_mutex);
5231
5232 if (!--swhash->hlist_refcount)
5233 swevent_hlist_release(swhash);
5234
5235 mutex_unlock(&swhash->hlist_mutex);
5236 }
5237
5238 static void swevent_hlist_put(struct perf_event *event)
5239 {
5240 int cpu;
5241
5242 if (event->cpu != -1) {
5243 swevent_hlist_put_cpu(event, event->cpu);
5244 return;
5245 }
5246
5247 for_each_possible_cpu(cpu)
5248 swevent_hlist_put_cpu(event, cpu);
5249 }
5250
5251 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
5252 {
5253 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5254 int err = 0;
5255
5256 mutex_lock(&swhash->hlist_mutex);
5257
5258 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
5259 struct swevent_hlist *hlist;
5260
5261 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
5262 if (!hlist) {
5263 err = -ENOMEM;
5264 goto exit;
5265 }
5266 rcu_assign_pointer(swhash->swevent_hlist, hlist);
5267 }
5268 swhash->hlist_refcount++;
5269 exit:
5270 mutex_unlock(&swhash->hlist_mutex);
5271
5272 return err;
5273 }
5274
5275 static int swevent_hlist_get(struct perf_event *event)
5276 {
5277 int err;
5278 int cpu, failed_cpu;
5279
5280 if (event->cpu != -1)
5281 return swevent_hlist_get_cpu(event, event->cpu);
5282
5283 get_online_cpus();
5284 for_each_possible_cpu(cpu) {
5285 err = swevent_hlist_get_cpu(event, cpu);
5286 if (err) {
5287 failed_cpu = cpu;
5288 goto fail;
5289 }
5290 }
5291 put_online_cpus();
5292
5293 return 0;
5294 fail:
5295 for_each_possible_cpu(cpu) {
5296 if (cpu == failed_cpu)
5297 break;
5298 swevent_hlist_put_cpu(event, cpu);
5299 }
5300
5301 put_online_cpus();
5302 return err;
5303 }
5304
5305 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
5306
5307 static void sw_perf_event_destroy(struct perf_event *event)
5308 {
5309 u64 event_id = event->attr.config;
5310
5311 WARN_ON(event->parent);
5312
5313 static_key_slow_dec(&perf_swevent_enabled[event_id]);
5314 swevent_hlist_put(event);
5315 }
5316
5317 static int perf_swevent_init(struct perf_event *event)
5318 {
5319 int event_id = event->attr.config;
5320
5321 if (event->attr.type != PERF_TYPE_SOFTWARE)
5322 return -ENOENT;
5323
5324 /*
5325 * no branch sampling for software events
5326 */
5327 if (has_branch_stack(event))
5328 return -EOPNOTSUPP;
5329
5330 switch (event_id) {
5331 case PERF_COUNT_SW_CPU_CLOCK:
5332 case PERF_COUNT_SW_TASK_CLOCK:
5333 return -ENOENT;
5334
5335 default:
5336 break;
5337 }
5338
5339 if (event_id >= PERF_COUNT_SW_MAX)
5340 return -ENOENT;
5341
5342 if (!event->parent) {
5343 int err;
5344
5345 err = swevent_hlist_get(event);
5346 if (err)
5347 return err;
5348
5349 static_key_slow_inc(&perf_swevent_enabled[event_id]);
5350 event->destroy = sw_perf_event_destroy;
5351 }
5352
5353 return 0;
5354 }
5355
5356 static int perf_swevent_event_idx(struct perf_event *event)
5357 {
5358 return 0;
5359 }
5360
5361 static struct pmu perf_swevent = {
5362 .task_ctx_nr = perf_sw_context,
5363
5364 .event_init = perf_swevent_init,
5365 .add = perf_swevent_add,
5366 .del = perf_swevent_del,
5367 .start = perf_swevent_start,
5368 .stop = perf_swevent_stop,
5369 .read = perf_swevent_read,
5370
5371 .event_idx = perf_swevent_event_idx,
5372 };
5373
5374 #ifdef CONFIG_EVENT_TRACING
5375
5376 static int perf_tp_filter_match(struct perf_event *event,
5377 struct perf_sample_data *data)
5378 {
5379 void *record = data->raw->data;
5380
5381 if (likely(!event->filter) || filter_match_preds(event->filter, record))
5382 return 1;
5383 return 0;
5384 }
5385
5386 static int perf_tp_event_match(struct perf_event *event,
5387 struct perf_sample_data *data,
5388 struct pt_regs *regs)
5389 {
5390 if (event->hw.state & PERF_HES_STOPPED)
5391 return 0;
5392 /*
5393 * All tracepoints are from kernel-space.
5394 */
5395 if (event->attr.exclude_kernel)
5396 return 0;
5397
5398 if (!perf_tp_filter_match(event, data))
5399 return 0;
5400
5401 return 1;
5402 }
5403
5404 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
5405 struct pt_regs *regs, struct hlist_head *head, int rctx,
5406 struct task_struct *task)
5407 {
5408 struct perf_sample_data data;
5409 struct perf_event *event;
5410 struct hlist_node *node;
5411
5412 struct perf_raw_record raw = {
5413 .size = entry_size,
5414 .data = record,
5415 };
5416
5417 perf_sample_data_init(&data, addr, 0);
5418 data.raw = &raw;
5419
5420 hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
5421 if (perf_tp_event_match(event, &data, regs))
5422 perf_swevent_event(event, count, &data, regs);
5423 }
5424
5425 /*
5426 * If we got specified a target task, also iterate its context and
5427 * deliver this event there too.
5428 */
5429 if (task && task != current) {
5430 struct perf_event_context *ctx;
5431 struct trace_entry *entry = record;
5432
5433 rcu_read_lock();
5434 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
5435 if (!ctx)
5436 goto unlock;
5437
5438 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5439 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5440 continue;
5441 if (event->attr.config != entry->type)
5442 continue;
5443 if (perf_tp_event_match(event, &data, regs))
5444 perf_swevent_event(event, count, &data, regs);
5445 }
5446 unlock:
5447 rcu_read_unlock();
5448 }
5449
5450 perf_swevent_put_recursion_context(rctx);
5451 }
5452 EXPORT_SYMBOL_GPL(perf_tp_event);
5453
5454 static void tp_perf_event_destroy(struct perf_event *event)
5455 {
5456 perf_trace_destroy(event);
5457 }
5458
5459 static int perf_tp_event_init(struct perf_event *event)
5460 {
5461 int err;
5462
5463 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5464 return -ENOENT;
5465
5466 /*
5467 * no branch sampling for tracepoint events
5468 */
5469 if (has_branch_stack(event))
5470 return -EOPNOTSUPP;
5471
5472 err = perf_trace_init(event);
5473 if (err)
5474 return err;
5475
5476 event->destroy = tp_perf_event_destroy;
5477
5478 return 0;
5479 }
5480
5481 static struct pmu perf_tracepoint = {
5482 .task_ctx_nr = perf_sw_context,
5483
5484 .event_init = perf_tp_event_init,
5485 .add = perf_trace_add,
5486 .del = perf_trace_del,
5487 .start = perf_swevent_start,
5488 .stop = perf_swevent_stop,
5489 .read = perf_swevent_read,
5490
5491 .event_idx = perf_swevent_event_idx,
5492 };
5493
5494 static inline void perf_tp_register(void)
5495 {
5496 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
5497 }
5498
5499 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5500 {
5501 char *filter_str;
5502 int ret;
5503
5504 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5505 return -EINVAL;
5506
5507 filter_str = strndup_user(arg, PAGE_SIZE);
5508 if (IS_ERR(filter_str))
5509 return PTR_ERR(filter_str);
5510
5511 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
5512
5513 kfree(filter_str);
5514 return ret;
5515 }
5516
5517 static void perf_event_free_filter(struct perf_event *event)
5518 {
5519 ftrace_profile_free_filter(event);
5520 }
5521
5522 #else
5523
5524 static inline void perf_tp_register(void)
5525 {
5526 }
5527
5528 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5529 {
5530 return -ENOENT;
5531 }
5532
5533 static void perf_event_free_filter(struct perf_event *event)
5534 {
5535 }
5536
5537 #endif /* CONFIG_EVENT_TRACING */
5538
5539 #ifdef CONFIG_HAVE_HW_BREAKPOINT
5540 void perf_bp_event(struct perf_event *bp, void *data)
5541 {
5542 struct perf_sample_data sample;
5543 struct pt_regs *regs = data;
5544
5545 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
5546
5547 if (!bp->hw.state && !perf_exclude_event(bp, regs))
5548 perf_swevent_event(bp, 1, &sample, regs);
5549 }
5550 #endif
5551
5552 /*
5553 * hrtimer based swevent callback
5554 */
5555
5556 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
5557 {
5558 enum hrtimer_restart ret = HRTIMER_RESTART;
5559 struct perf_sample_data data;
5560 struct pt_regs *regs;
5561 struct perf_event *event;
5562 u64 period;
5563
5564 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
5565
5566 if (event->state != PERF_EVENT_STATE_ACTIVE)
5567 return HRTIMER_NORESTART;
5568
5569 event->pmu->read(event);
5570
5571 perf_sample_data_init(&data, 0, event->hw.last_period);
5572 regs = get_irq_regs();
5573
5574 if (regs && !perf_exclude_event(event, regs)) {
5575 if (!(event->attr.exclude_idle && is_idle_task(current)))
5576 if (__perf_event_overflow(event, 1, &data, regs))
5577 ret = HRTIMER_NORESTART;
5578 }
5579
5580 period = max_t(u64, 10000, event->hw.sample_period);
5581 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
5582
5583 return ret;
5584 }
5585
5586 static void perf_swevent_start_hrtimer(struct perf_event *event)
5587 {
5588 struct hw_perf_event *hwc = &event->hw;
5589 s64 period;
5590
5591 if (!is_sampling_event(event))
5592 return;
5593
5594 period = local64_read(&hwc->period_left);
5595 if (period) {
5596 if (period < 0)
5597 period = 10000;
5598
5599 local64_set(&hwc->period_left, 0);
5600 } else {
5601 period = max_t(u64, 10000, hwc->sample_period);
5602 }
5603 __hrtimer_start_range_ns(&hwc->hrtimer,
5604 ns_to_ktime(period), 0,
5605 HRTIMER_MODE_REL_PINNED, 0);
5606 }
5607
5608 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
5609 {
5610 struct hw_perf_event *hwc = &event->hw;
5611
5612 if (is_sampling_event(event)) {
5613 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
5614 local64_set(&hwc->period_left, ktime_to_ns(remaining));
5615
5616 hrtimer_cancel(&hwc->hrtimer);
5617 }
5618 }
5619
5620 static void perf_swevent_init_hrtimer(struct perf_event *event)
5621 {
5622 struct hw_perf_event *hwc = &event->hw;
5623
5624 if (!is_sampling_event(event))
5625 return;
5626
5627 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5628 hwc->hrtimer.function = perf_swevent_hrtimer;
5629
5630 /*
5631 * Since hrtimers have a fixed rate, we can do a static freq->period
5632 * mapping and avoid the whole period adjust feedback stuff.
5633 */
5634 if (event->attr.freq) {
5635 long freq = event->attr.sample_freq;
5636
5637 event->attr.sample_period = NSEC_PER_SEC / freq;
5638 hwc->sample_period = event->attr.sample_period;
5639 local64_set(&hwc->period_left, hwc->sample_period);
5640 event->attr.freq = 0;
5641 }
5642 }
5643
5644 /*
5645 * Software event: cpu wall time clock
5646 */
5647
5648 static void cpu_clock_event_update(struct perf_event *event)
5649 {
5650 s64 prev;
5651 u64 now;
5652
5653 now = local_clock();
5654 prev = local64_xchg(&event->hw.prev_count, now);
5655 local64_add(now - prev, &event->count);
5656 }
5657
5658 static void cpu_clock_event_start(struct perf_event *event, int flags)
5659 {
5660 local64_set(&event->hw.prev_count, local_clock());
5661 perf_swevent_start_hrtimer(event);
5662 }
5663
5664 static void cpu_clock_event_stop(struct perf_event *event, int flags)
5665 {
5666 perf_swevent_cancel_hrtimer(event);
5667 cpu_clock_event_update(event);
5668 }
5669
5670 static int cpu_clock_event_add(struct perf_event *event, int flags)
5671 {
5672 if (flags & PERF_EF_START)
5673 cpu_clock_event_start(event, flags);
5674
5675 return 0;
5676 }
5677
5678 static void cpu_clock_event_del(struct perf_event *event, int flags)
5679 {
5680 cpu_clock_event_stop(event, flags);
5681 }
5682
5683 static void cpu_clock_event_read(struct perf_event *event)
5684 {
5685 cpu_clock_event_update(event);
5686 }
5687
5688 static int cpu_clock_event_init(struct perf_event *event)
5689 {
5690 if (event->attr.type != PERF_TYPE_SOFTWARE)
5691 return -ENOENT;
5692
5693 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
5694 return -ENOENT;
5695
5696 /*
5697 * no branch sampling for software events
5698 */
5699 if (has_branch_stack(event))
5700 return -EOPNOTSUPP;
5701
5702 perf_swevent_init_hrtimer(event);
5703
5704 return 0;
5705 }
5706
5707 static struct pmu perf_cpu_clock = {
5708 .task_ctx_nr = perf_sw_context,
5709
5710 .event_init = cpu_clock_event_init,
5711 .add = cpu_clock_event_add,
5712 .del = cpu_clock_event_del,
5713 .start = cpu_clock_event_start,
5714 .stop = cpu_clock_event_stop,
5715 .read = cpu_clock_event_read,
5716
5717 .event_idx = perf_swevent_event_idx,
5718 };
5719
5720 /*
5721 * Software event: task time clock
5722 */
5723
5724 static void task_clock_event_update(struct perf_event *event, u64 now)
5725 {
5726 u64 prev;
5727 s64 delta;
5728
5729 prev = local64_xchg(&event->hw.prev_count, now);
5730 delta = now - prev;
5731 local64_add(delta, &event->count);
5732 }
5733
5734 static void task_clock_event_start(struct perf_event *event, int flags)
5735 {
5736 local64_set(&event->hw.prev_count, event->ctx->time);
5737 perf_swevent_start_hrtimer(event);
5738 }
5739
5740 static void task_clock_event_stop(struct perf_event *event, int flags)
5741 {
5742 perf_swevent_cancel_hrtimer(event);
5743 task_clock_event_update(event, event->ctx->time);
5744 }
5745
5746 static int task_clock_event_add(struct perf_event *event, int flags)
5747 {
5748 if (flags & PERF_EF_START)
5749 task_clock_event_start(event, flags);
5750
5751 return 0;
5752 }
5753
5754 static void task_clock_event_del(struct perf_event *event, int flags)
5755 {
5756 task_clock_event_stop(event, PERF_EF_UPDATE);
5757 }
5758
5759 static void task_clock_event_read(struct perf_event *event)
5760 {
5761 u64 now = perf_clock();
5762 u64 delta = now - event->ctx->timestamp;
5763 u64 time = event->ctx->time + delta;
5764
5765 task_clock_event_update(event, time);
5766 }
5767
5768 static int task_clock_event_init(struct perf_event *event)
5769 {
5770 if (event->attr.type != PERF_TYPE_SOFTWARE)
5771 return -ENOENT;
5772
5773 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
5774 return -ENOENT;
5775
5776 /*
5777 * no branch sampling for software events
5778 */
5779 if (has_branch_stack(event))
5780 return -EOPNOTSUPP;
5781
5782 perf_swevent_init_hrtimer(event);
5783
5784 return 0;
5785 }
5786
5787 static struct pmu perf_task_clock = {
5788 .task_ctx_nr = perf_sw_context,
5789
5790 .event_init = task_clock_event_init,
5791 .add = task_clock_event_add,
5792 .del = task_clock_event_del,
5793 .start = task_clock_event_start,
5794 .stop = task_clock_event_stop,
5795 .read = task_clock_event_read,
5796
5797 .event_idx = perf_swevent_event_idx,
5798 };
5799
5800 static void perf_pmu_nop_void(struct pmu *pmu)
5801 {
5802 }
5803
5804 static int perf_pmu_nop_int(struct pmu *pmu)
5805 {
5806 return 0;
5807 }
5808
5809 static void perf_pmu_start_txn(struct pmu *pmu)
5810 {
5811 perf_pmu_disable(pmu);
5812 }
5813
5814 static int perf_pmu_commit_txn(struct pmu *pmu)
5815 {
5816 perf_pmu_enable(pmu);
5817 return 0;
5818 }
5819
5820 static void perf_pmu_cancel_txn(struct pmu *pmu)
5821 {
5822 perf_pmu_enable(pmu);
5823 }
5824
5825 static int perf_event_idx_default(struct perf_event *event)
5826 {
5827 return event->hw.idx + 1;
5828 }
5829
5830 /*
5831 * Ensures all contexts with the same task_ctx_nr have the same
5832 * pmu_cpu_context too.
5833 */
5834 static void *find_pmu_context(int ctxn)
5835 {
5836 struct pmu *pmu;
5837
5838 if (ctxn < 0)
5839 return NULL;
5840
5841 list_for_each_entry(pmu, &pmus, entry) {
5842 if (pmu->task_ctx_nr == ctxn)
5843 return pmu->pmu_cpu_context;
5844 }
5845
5846 return NULL;
5847 }
5848
5849 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
5850 {
5851 int cpu;
5852
5853 for_each_possible_cpu(cpu) {
5854 struct perf_cpu_context *cpuctx;
5855
5856 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5857
5858 if (cpuctx->active_pmu == old_pmu)
5859 cpuctx->active_pmu = pmu;
5860 }
5861 }
5862
5863 static void free_pmu_context(struct pmu *pmu)
5864 {
5865 struct pmu *i;
5866
5867 mutex_lock(&pmus_lock);
5868 /*
5869 * Like a real lame refcount.
5870 */
5871 list_for_each_entry(i, &pmus, entry) {
5872 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
5873 update_pmu_context(i, pmu);
5874 goto out;
5875 }
5876 }
5877
5878 free_percpu(pmu->pmu_cpu_context);
5879 out:
5880 mutex_unlock(&pmus_lock);
5881 }
5882 static struct idr pmu_idr;
5883
5884 static ssize_t
5885 type_show(struct device *dev, struct device_attribute *attr, char *page)
5886 {
5887 struct pmu *pmu = dev_get_drvdata(dev);
5888
5889 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
5890 }
5891
5892 static struct device_attribute pmu_dev_attrs[] = {
5893 __ATTR_RO(type),
5894 __ATTR_NULL,
5895 };
5896
5897 static int pmu_bus_running;
5898 static struct bus_type pmu_bus = {
5899 .name = "event_source",
5900 .dev_attrs = pmu_dev_attrs,
5901 };
5902
5903 static void pmu_dev_release(struct device *dev)
5904 {
5905 kfree(dev);
5906 }
5907
5908 static int pmu_dev_alloc(struct pmu *pmu)
5909 {
5910 int ret = -ENOMEM;
5911
5912 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
5913 if (!pmu->dev)
5914 goto out;
5915
5916 pmu->dev->groups = pmu->attr_groups;
5917 device_initialize(pmu->dev);
5918 ret = dev_set_name(pmu->dev, "%s", pmu->name);
5919 if (ret)
5920 goto free_dev;
5921
5922 dev_set_drvdata(pmu->dev, pmu);
5923 pmu->dev->bus = &pmu_bus;
5924 pmu->dev->release = pmu_dev_release;
5925 ret = device_add(pmu->dev);
5926 if (ret)
5927 goto free_dev;
5928
5929 out:
5930 return ret;
5931
5932 free_dev:
5933 put_device(pmu->dev);
5934 goto out;
5935 }
5936
5937 static struct lock_class_key cpuctx_mutex;
5938 static struct lock_class_key cpuctx_lock;
5939
5940 int perf_pmu_register(struct pmu *pmu, char *name, int type)
5941 {
5942 int cpu, ret;
5943
5944 mutex_lock(&pmus_lock);
5945 ret = -ENOMEM;
5946 pmu->pmu_disable_count = alloc_percpu(int);
5947 if (!pmu->pmu_disable_count)
5948 goto unlock;
5949
5950 pmu->type = -1;
5951 if (!name)
5952 goto skip_type;
5953 pmu->name = name;
5954
5955 if (type < 0) {
5956 int err = idr_pre_get(&pmu_idr, GFP_KERNEL);
5957 if (!err)
5958 goto free_pdc;
5959
5960 err = idr_get_new_above(&pmu_idr, pmu, PERF_TYPE_MAX, &type);
5961 if (err) {
5962 ret = err;
5963 goto free_pdc;
5964 }
5965 }
5966 pmu->type = type;
5967
5968 if (pmu_bus_running) {
5969 ret = pmu_dev_alloc(pmu);
5970 if (ret)
5971 goto free_idr;
5972 }
5973
5974 skip_type:
5975 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
5976 if (pmu->pmu_cpu_context)
5977 goto got_cpu_context;
5978
5979 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
5980 if (!pmu->pmu_cpu_context)
5981 goto free_dev;
5982
5983 for_each_possible_cpu(cpu) {
5984 struct perf_cpu_context *cpuctx;
5985
5986 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5987 __perf_event_init_context(&cpuctx->ctx);
5988 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
5989 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
5990 cpuctx->ctx.type = cpu_context;
5991 cpuctx->ctx.pmu = pmu;
5992 cpuctx->jiffies_interval = 1;
5993 INIT_LIST_HEAD(&cpuctx->rotation_list);
5994 cpuctx->active_pmu = pmu;
5995 }
5996
5997 got_cpu_context:
5998 if (!pmu->start_txn) {
5999 if (pmu->pmu_enable) {
6000 /*
6001 * If we have pmu_enable/pmu_disable calls, install
6002 * transaction stubs that use that to try and batch
6003 * hardware accesses.
6004 */
6005 pmu->start_txn = perf_pmu_start_txn;
6006 pmu->commit_txn = perf_pmu_commit_txn;
6007 pmu->cancel_txn = perf_pmu_cancel_txn;
6008 } else {
6009 pmu->start_txn = perf_pmu_nop_void;
6010 pmu->commit_txn = perf_pmu_nop_int;
6011 pmu->cancel_txn = perf_pmu_nop_void;
6012 }
6013 }
6014
6015 if (!pmu->pmu_enable) {
6016 pmu->pmu_enable = perf_pmu_nop_void;
6017 pmu->pmu_disable = perf_pmu_nop_void;
6018 }
6019
6020 if (!pmu->event_idx)
6021 pmu->event_idx = perf_event_idx_default;
6022
6023 list_add_rcu(&pmu->entry, &pmus);
6024 ret = 0;
6025 unlock:
6026 mutex_unlock(&pmus_lock);
6027
6028 return ret;
6029
6030 free_dev:
6031 device_del(pmu->dev);
6032 put_device(pmu->dev);
6033
6034 free_idr:
6035 if (pmu->type >= PERF_TYPE_MAX)
6036 idr_remove(&pmu_idr, pmu->type);
6037
6038 free_pdc:
6039 free_percpu(pmu->pmu_disable_count);
6040 goto unlock;
6041 }
6042
6043 void perf_pmu_unregister(struct pmu *pmu)
6044 {
6045 mutex_lock(&pmus_lock);
6046 list_del_rcu(&pmu->entry);
6047 mutex_unlock(&pmus_lock);
6048
6049 /*
6050 * We dereference the pmu list under both SRCU and regular RCU, so
6051 * synchronize against both of those.
6052 */
6053 synchronize_srcu(&pmus_srcu);
6054 synchronize_rcu();
6055
6056 free_percpu(pmu->pmu_disable_count);
6057 if (pmu->type >= PERF_TYPE_MAX)
6058 idr_remove(&pmu_idr, pmu->type);
6059 device_del(pmu->dev);
6060 put_device(pmu->dev);
6061 free_pmu_context(pmu);
6062 }
6063
6064 struct pmu *perf_init_event(struct perf_event *event)
6065 {
6066 struct pmu *pmu = NULL;
6067 int idx;
6068 int ret;
6069
6070 idx = srcu_read_lock(&pmus_srcu);
6071
6072 rcu_read_lock();
6073 pmu = idr_find(&pmu_idr, event->attr.type);
6074 rcu_read_unlock();
6075 if (pmu) {
6076 event->pmu = pmu;
6077 ret = pmu->event_init(event);
6078 if (ret)
6079 pmu = ERR_PTR(ret);
6080 goto unlock;
6081 }
6082
6083 list_for_each_entry_rcu(pmu, &pmus, entry) {
6084 event->pmu = pmu;
6085 ret = pmu->event_init(event);
6086 if (!ret)
6087 goto unlock;
6088
6089 if (ret != -ENOENT) {
6090 pmu = ERR_PTR(ret);
6091 goto unlock;
6092 }
6093 }
6094 pmu = ERR_PTR(-ENOENT);
6095 unlock:
6096 srcu_read_unlock(&pmus_srcu, idx);
6097
6098 return pmu;
6099 }
6100
6101 /*
6102 * Allocate and initialize a event structure
6103 */
6104 static struct perf_event *
6105 perf_event_alloc(struct perf_event_attr *attr, int cpu,
6106 struct task_struct *task,
6107 struct perf_event *group_leader,
6108 struct perf_event *parent_event,
6109 perf_overflow_handler_t overflow_handler,
6110 void *context)
6111 {
6112 struct pmu *pmu;
6113 struct perf_event *event;
6114 struct hw_perf_event *hwc;
6115 long err;
6116
6117 if ((unsigned)cpu >= nr_cpu_ids) {
6118 if (!task || cpu != -1)
6119 return ERR_PTR(-EINVAL);
6120 }
6121
6122 event = kzalloc(sizeof(*event), GFP_KERNEL);
6123 if (!event)
6124 return ERR_PTR(-ENOMEM);
6125
6126 /*
6127 * Single events are their own group leaders, with an
6128 * empty sibling list:
6129 */
6130 if (!group_leader)
6131 group_leader = event;
6132
6133 mutex_init(&event->child_mutex);
6134 INIT_LIST_HEAD(&event->child_list);
6135
6136 INIT_LIST_HEAD(&event->group_entry);
6137 INIT_LIST_HEAD(&event->event_entry);
6138 INIT_LIST_HEAD(&event->sibling_list);
6139 INIT_LIST_HEAD(&event->rb_entry);
6140
6141 init_waitqueue_head(&event->waitq);
6142 init_irq_work(&event->pending, perf_pending_event);
6143
6144 mutex_init(&event->mmap_mutex);
6145
6146 atomic_long_set(&event->refcount, 1);
6147 event->cpu = cpu;
6148 event->attr = *attr;
6149 event->group_leader = group_leader;
6150 event->pmu = NULL;
6151 event->oncpu = -1;
6152
6153 event->parent = parent_event;
6154
6155 event->ns = get_pid_ns(current->nsproxy->pid_ns);
6156 event->id = atomic64_inc_return(&perf_event_id);
6157
6158 event->state = PERF_EVENT_STATE_INACTIVE;
6159
6160 if (task) {
6161 event->attach_state = PERF_ATTACH_TASK;
6162 #ifdef CONFIG_HAVE_HW_BREAKPOINT
6163 /*
6164 * hw_breakpoint is a bit difficult here..
6165 */
6166 if (attr->type == PERF_TYPE_BREAKPOINT)
6167 event->hw.bp_target = task;
6168 #endif
6169 }
6170
6171 if (!overflow_handler && parent_event) {
6172 overflow_handler = parent_event->overflow_handler;
6173 context = parent_event->overflow_handler_context;
6174 }
6175
6176 event->overflow_handler = overflow_handler;
6177 event->overflow_handler_context = context;
6178
6179 if (attr->disabled)
6180 event->state = PERF_EVENT_STATE_OFF;
6181
6182 pmu = NULL;
6183
6184 hwc = &event->hw;
6185 hwc->sample_period = attr->sample_period;
6186 if (attr->freq && attr->sample_freq)
6187 hwc->sample_period = 1;
6188 hwc->last_period = hwc->sample_period;
6189
6190 local64_set(&hwc->period_left, hwc->sample_period);
6191
6192 /*
6193 * we currently do not support PERF_FORMAT_GROUP on inherited events
6194 */
6195 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
6196 goto done;
6197
6198 pmu = perf_init_event(event);
6199
6200 done:
6201 err = 0;
6202 if (!pmu)
6203 err = -EINVAL;
6204 else if (IS_ERR(pmu))
6205 err = PTR_ERR(pmu);
6206
6207 if (err) {
6208 if (event->ns)
6209 put_pid_ns(event->ns);
6210 kfree(event);
6211 return ERR_PTR(err);
6212 }
6213
6214 if (!event->parent) {
6215 if (event->attach_state & PERF_ATTACH_TASK)
6216 static_key_slow_inc(&perf_sched_events.key);
6217 if (event->attr.mmap || event->attr.mmap_data)
6218 atomic_inc(&nr_mmap_events);
6219 if (event->attr.comm)
6220 atomic_inc(&nr_comm_events);
6221 if (event->attr.task)
6222 atomic_inc(&nr_task_events);
6223 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
6224 err = get_callchain_buffers();
6225 if (err) {
6226 free_event(event);
6227 return ERR_PTR(err);
6228 }
6229 }
6230 if (has_branch_stack(event)) {
6231 static_key_slow_inc(&perf_sched_events.key);
6232 if (!(event->attach_state & PERF_ATTACH_TASK))
6233 atomic_inc(&per_cpu(perf_branch_stack_events,
6234 event->cpu));
6235 }
6236 }
6237
6238 return event;
6239 }
6240
6241 static int perf_copy_attr(struct perf_event_attr __user *uattr,
6242 struct perf_event_attr *attr)
6243 {
6244 u32 size;
6245 int ret;
6246
6247 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
6248 return -EFAULT;
6249
6250 /*
6251 * zero the full structure, so that a short copy will be nice.
6252 */
6253 memset(attr, 0, sizeof(*attr));
6254
6255 ret = get_user(size, &uattr->size);
6256 if (ret)
6257 return ret;
6258
6259 if (size > PAGE_SIZE) /* silly large */
6260 goto err_size;
6261
6262 if (!size) /* abi compat */
6263 size = PERF_ATTR_SIZE_VER0;
6264
6265 if (size < PERF_ATTR_SIZE_VER0)
6266 goto err_size;
6267
6268 /*
6269 * If we're handed a bigger struct than we know of,
6270 * ensure all the unknown bits are 0 - i.e. new
6271 * user-space does not rely on any kernel feature
6272 * extensions we dont know about yet.
6273 */
6274 if (size > sizeof(*attr)) {
6275 unsigned char __user *addr;
6276 unsigned char __user *end;
6277 unsigned char val;
6278
6279 addr = (void __user *)uattr + sizeof(*attr);
6280 end = (void __user *)uattr + size;
6281
6282 for (; addr < end; addr++) {
6283 ret = get_user(val, addr);
6284 if (ret)
6285 return ret;
6286 if (val)
6287 goto err_size;
6288 }
6289 size = sizeof(*attr);
6290 }
6291
6292 ret = copy_from_user(attr, uattr, size);
6293 if (ret)
6294 return -EFAULT;
6295
6296 if (attr->__reserved_1)
6297 return -EINVAL;
6298
6299 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
6300 return -EINVAL;
6301
6302 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
6303 return -EINVAL;
6304
6305 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
6306 u64 mask = attr->branch_sample_type;
6307
6308 /* only using defined bits */
6309 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
6310 return -EINVAL;
6311
6312 /* at least one branch bit must be set */
6313 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
6314 return -EINVAL;
6315
6316 /* kernel level capture: check permissions */
6317 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
6318 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6319 return -EACCES;
6320
6321 /* propagate priv level, when not set for branch */
6322 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
6323
6324 /* exclude_kernel checked on syscall entry */
6325 if (!attr->exclude_kernel)
6326 mask |= PERF_SAMPLE_BRANCH_KERNEL;
6327
6328 if (!attr->exclude_user)
6329 mask |= PERF_SAMPLE_BRANCH_USER;
6330
6331 if (!attr->exclude_hv)
6332 mask |= PERF_SAMPLE_BRANCH_HV;
6333 /*
6334 * adjust user setting (for HW filter setup)
6335 */
6336 attr->branch_sample_type = mask;
6337 }
6338 }
6339
6340 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
6341 ret = perf_reg_validate(attr->sample_regs_user);
6342 if (ret)
6343 return ret;
6344 }
6345
6346 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
6347 if (!arch_perf_have_user_stack_dump())
6348 return -ENOSYS;
6349
6350 /*
6351 * We have __u32 type for the size, but so far
6352 * we can only use __u16 as maximum due to the
6353 * __u16 sample size limit.
6354 */
6355 if (attr->sample_stack_user >= USHRT_MAX)
6356 ret = -EINVAL;
6357 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
6358 ret = -EINVAL;
6359 }
6360
6361 out:
6362 return ret;
6363
6364 err_size:
6365 put_user(sizeof(*attr), &uattr->size);
6366 ret = -E2BIG;
6367 goto out;
6368 }
6369
6370 static int
6371 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
6372 {
6373 struct ring_buffer *rb = NULL, *old_rb = NULL;
6374 int ret = -EINVAL;
6375
6376 if (!output_event)
6377 goto set;
6378
6379 /* don't allow circular references */
6380 if (event == output_event)
6381 goto out;
6382
6383 /*
6384 * Don't allow cross-cpu buffers
6385 */
6386 if (output_event->cpu != event->cpu)
6387 goto out;
6388
6389 /*
6390 * If its not a per-cpu rb, it must be the same task.
6391 */
6392 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
6393 goto out;
6394
6395 set:
6396 mutex_lock(&event->mmap_mutex);
6397 /* Can't redirect output if we've got an active mmap() */
6398 if (atomic_read(&event->mmap_count))
6399 goto unlock;
6400
6401 if (output_event) {
6402 /* get the rb we want to redirect to */
6403 rb = ring_buffer_get(output_event);
6404 if (!rb)
6405 goto unlock;
6406 }
6407
6408 old_rb = event->rb;
6409 rcu_assign_pointer(event->rb, rb);
6410 if (old_rb)
6411 ring_buffer_detach(event, old_rb);
6412 ret = 0;
6413 unlock:
6414 mutex_unlock(&event->mmap_mutex);
6415
6416 if (old_rb)
6417 ring_buffer_put(old_rb);
6418 out:
6419 return ret;
6420 }
6421
6422 /**
6423 * sys_perf_event_open - open a performance event, associate it to a task/cpu
6424 *
6425 * @attr_uptr: event_id type attributes for monitoring/sampling
6426 * @pid: target pid
6427 * @cpu: target cpu
6428 * @group_fd: group leader event fd
6429 */
6430 SYSCALL_DEFINE5(perf_event_open,
6431 struct perf_event_attr __user *, attr_uptr,
6432 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
6433 {
6434 struct perf_event *group_leader = NULL, *output_event = NULL;
6435 struct perf_event *event, *sibling;
6436 struct perf_event_attr attr;
6437 struct perf_event_context *ctx;
6438 struct file *event_file = NULL;
6439 struct fd group = {NULL, 0};
6440 struct task_struct *task = NULL;
6441 struct pmu *pmu;
6442 int event_fd;
6443 int move_group = 0;
6444 int err;
6445
6446 /* for future expandability... */
6447 if (flags & ~PERF_FLAG_ALL)
6448 return -EINVAL;
6449
6450 err = perf_copy_attr(attr_uptr, &attr);
6451 if (err)
6452 return err;
6453
6454 if (!attr.exclude_kernel) {
6455 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6456 return -EACCES;
6457 }
6458
6459 if (attr.freq) {
6460 if (attr.sample_freq > sysctl_perf_event_sample_rate)
6461 return -EINVAL;
6462 }
6463
6464 /*
6465 * In cgroup mode, the pid argument is used to pass the fd
6466 * opened to the cgroup directory in cgroupfs. The cpu argument
6467 * designates the cpu on which to monitor threads from that
6468 * cgroup.
6469 */
6470 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
6471 return -EINVAL;
6472
6473 event_fd = get_unused_fd();
6474 if (event_fd < 0)
6475 return event_fd;
6476
6477 if (group_fd != -1) {
6478 err = perf_fget_light(group_fd, &group);
6479 if (err)
6480 goto err_fd;
6481 group_leader = group.file->private_data;
6482 if (flags & PERF_FLAG_FD_OUTPUT)
6483 output_event = group_leader;
6484 if (flags & PERF_FLAG_FD_NO_GROUP)
6485 group_leader = NULL;
6486 }
6487
6488 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
6489 task = find_lively_task_by_vpid(pid);
6490 if (IS_ERR(task)) {
6491 err = PTR_ERR(task);
6492 goto err_group_fd;
6493 }
6494 }
6495
6496 get_online_cpus();
6497
6498 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
6499 NULL, NULL);
6500 if (IS_ERR(event)) {
6501 err = PTR_ERR(event);
6502 goto err_task;
6503 }
6504
6505 if (flags & PERF_FLAG_PID_CGROUP) {
6506 err = perf_cgroup_connect(pid, event, &attr, group_leader);
6507 if (err)
6508 goto err_alloc;
6509 /*
6510 * one more event:
6511 * - that has cgroup constraint on event->cpu
6512 * - that may need work on context switch
6513 */
6514 atomic_inc(&per_cpu(perf_cgroup_events, event->cpu));
6515 static_key_slow_inc(&perf_sched_events.key);
6516 }
6517
6518 /*
6519 * Special case software events and allow them to be part of
6520 * any hardware group.
6521 */
6522 pmu = event->pmu;
6523
6524 if (group_leader &&
6525 (is_software_event(event) != is_software_event(group_leader))) {
6526 if (is_software_event(event)) {
6527 /*
6528 * If event and group_leader are not both a software
6529 * event, and event is, then group leader is not.
6530 *
6531 * Allow the addition of software events to !software
6532 * groups, this is safe because software events never
6533 * fail to schedule.
6534 */
6535 pmu = group_leader->pmu;
6536 } else if (is_software_event(group_leader) &&
6537 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
6538 /*
6539 * In case the group is a pure software group, and we
6540 * try to add a hardware event, move the whole group to
6541 * the hardware context.
6542 */
6543 move_group = 1;
6544 }
6545 }
6546
6547 /*
6548 * Get the target context (task or percpu):
6549 */
6550 ctx = find_get_context(pmu, task, event->cpu);
6551 if (IS_ERR(ctx)) {
6552 err = PTR_ERR(ctx);
6553 goto err_alloc;
6554 }
6555
6556 if (task) {
6557 put_task_struct(task);
6558 task = NULL;
6559 }
6560
6561 /*
6562 * Look up the group leader (we will attach this event to it):
6563 */
6564 if (group_leader) {
6565 err = -EINVAL;
6566
6567 /*
6568 * Do not allow a recursive hierarchy (this new sibling
6569 * becoming part of another group-sibling):
6570 */
6571 if (group_leader->group_leader != group_leader)
6572 goto err_context;
6573 /*
6574 * Do not allow to attach to a group in a different
6575 * task or CPU context:
6576 */
6577 if (move_group) {
6578 if (group_leader->ctx->type != ctx->type)
6579 goto err_context;
6580 } else {
6581 if (group_leader->ctx != ctx)
6582 goto err_context;
6583 }
6584
6585 /*
6586 * Only a group leader can be exclusive or pinned
6587 */
6588 if (attr.exclusive || attr.pinned)
6589 goto err_context;
6590 }
6591
6592 if (output_event) {
6593 err = perf_event_set_output(event, output_event);
6594 if (err)
6595 goto err_context;
6596 }
6597
6598 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
6599 if (IS_ERR(event_file)) {
6600 err = PTR_ERR(event_file);
6601 goto err_context;
6602 }
6603
6604 if (move_group) {
6605 struct perf_event_context *gctx = group_leader->ctx;
6606
6607 mutex_lock(&gctx->mutex);
6608 perf_remove_from_context(group_leader);
6609 list_for_each_entry(sibling, &group_leader->sibling_list,
6610 group_entry) {
6611 perf_remove_from_context(sibling);
6612 put_ctx(gctx);
6613 }
6614 mutex_unlock(&gctx->mutex);
6615 put_ctx(gctx);
6616 }
6617
6618 WARN_ON_ONCE(ctx->parent_ctx);
6619 mutex_lock(&ctx->mutex);
6620
6621 if (move_group) {
6622 synchronize_rcu();
6623 perf_install_in_context(ctx, group_leader, event->cpu);
6624 get_ctx(ctx);
6625 list_for_each_entry(sibling, &group_leader->sibling_list,
6626 group_entry) {
6627 perf_install_in_context(ctx, sibling, event->cpu);
6628 get_ctx(ctx);
6629 }
6630 }
6631
6632 perf_install_in_context(ctx, event, event->cpu);
6633 ++ctx->generation;
6634 perf_unpin_context(ctx);
6635 mutex_unlock(&ctx->mutex);
6636
6637 put_online_cpus();
6638
6639 event->owner = current;
6640
6641 mutex_lock(&current->perf_event_mutex);
6642 list_add_tail(&event->owner_entry, &current->perf_event_list);
6643 mutex_unlock(&current->perf_event_mutex);
6644
6645 /*
6646 * Precalculate sample_data sizes
6647 */
6648 perf_event__header_size(event);
6649 perf_event__id_header_size(event);
6650
6651 /*
6652 * Drop the reference on the group_event after placing the
6653 * new event on the sibling_list. This ensures destruction
6654 * of the group leader will find the pointer to itself in
6655 * perf_group_detach().
6656 */
6657 fdput(group);
6658 fd_install(event_fd, event_file);
6659 return event_fd;
6660
6661 err_context:
6662 perf_unpin_context(ctx);
6663 put_ctx(ctx);
6664 err_alloc:
6665 free_event(event);
6666 err_task:
6667 put_online_cpus();
6668 if (task)
6669 put_task_struct(task);
6670 err_group_fd:
6671 fdput(group);
6672 err_fd:
6673 put_unused_fd(event_fd);
6674 return err;
6675 }
6676
6677 /**
6678 * perf_event_create_kernel_counter
6679 *
6680 * @attr: attributes of the counter to create
6681 * @cpu: cpu in which the counter is bound
6682 * @task: task to profile (NULL for percpu)
6683 */
6684 struct perf_event *
6685 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
6686 struct task_struct *task,
6687 perf_overflow_handler_t overflow_handler,
6688 void *context)
6689 {
6690 struct perf_event_context *ctx;
6691 struct perf_event *event;
6692 int err;
6693
6694 /*
6695 * Get the target context (task or percpu):
6696 */
6697
6698 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
6699 overflow_handler, context);
6700 if (IS_ERR(event)) {
6701 err = PTR_ERR(event);
6702 goto err;
6703 }
6704
6705 ctx = find_get_context(event->pmu, task, cpu);
6706 if (IS_ERR(ctx)) {
6707 err = PTR_ERR(ctx);
6708 goto err_free;
6709 }
6710
6711 WARN_ON_ONCE(ctx->parent_ctx);
6712 mutex_lock(&ctx->mutex);
6713 perf_install_in_context(ctx, event, cpu);
6714 ++ctx->generation;
6715 perf_unpin_context(ctx);
6716 mutex_unlock(&ctx->mutex);
6717
6718 return event;
6719
6720 err_free:
6721 free_event(event);
6722 err:
6723 return ERR_PTR(err);
6724 }
6725 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
6726
6727 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
6728 {
6729 struct perf_event_context *src_ctx;
6730 struct perf_event_context *dst_ctx;
6731 struct perf_event *event, *tmp;
6732 LIST_HEAD(events);
6733
6734 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
6735 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
6736
6737 mutex_lock(&src_ctx->mutex);
6738 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
6739 event_entry) {
6740 perf_remove_from_context(event);
6741 put_ctx(src_ctx);
6742 list_add(&event->event_entry, &events);
6743 }
6744 mutex_unlock(&src_ctx->mutex);
6745
6746 synchronize_rcu();
6747
6748 mutex_lock(&dst_ctx->mutex);
6749 list_for_each_entry_safe(event, tmp, &events, event_entry) {
6750 list_del(&event->event_entry);
6751 if (event->state >= PERF_EVENT_STATE_OFF)
6752 event->state = PERF_EVENT_STATE_INACTIVE;
6753 perf_install_in_context(dst_ctx, event, dst_cpu);
6754 get_ctx(dst_ctx);
6755 }
6756 mutex_unlock(&dst_ctx->mutex);
6757 }
6758 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
6759
6760 static void sync_child_event(struct perf_event *child_event,
6761 struct task_struct *child)
6762 {
6763 struct perf_event *parent_event = child_event->parent;
6764 u64 child_val;
6765
6766 if (child_event->attr.inherit_stat)
6767 perf_event_read_event(child_event, child);
6768
6769 child_val = perf_event_count(child_event);
6770
6771 /*
6772 * Add back the child's count to the parent's count:
6773 */
6774 atomic64_add(child_val, &parent_event->child_count);
6775 atomic64_add(child_event->total_time_enabled,
6776 &parent_event->child_total_time_enabled);
6777 atomic64_add(child_event->total_time_running,
6778 &parent_event->child_total_time_running);
6779
6780 /*
6781 * Remove this event from the parent's list
6782 */
6783 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
6784 mutex_lock(&parent_event->child_mutex);
6785 list_del_init(&child_event->child_list);
6786 mutex_unlock(&parent_event->child_mutex);
6787
6788 /*
6789 * Release the parent event, if this was the last
6790 * reference to it.
6791 */
6792 put_event(parent_event);
6793 }
6794
6795 static void
6796 __perf_event_exit_task(struct perf_event *child_event,
6797 struct perf_event_context *child_ctx,
6798 struct task_struct *child)
6799 {
6800 if (child_event->parent) {
6801 raw_spin_lock_irq(&child_ctx->lock);
6802 perf_group_detach(child_event);
6803 raw_spin_unlock_irq(&child_ctx->lock);
6804 }
6805
6806 perf_remove_from_context(child_event);
6807
6808 /*
6809 * It can happen that the parent exits first, and has events
6810 * that are still around due to the child reference. These
6811 * events need to be zapped.
6812 */
6813 if (child_event->parent) {
6814 sync_child_event(child_event, child);
6815 free_event(child_event);
6816 }
6817 }
6818
6819 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
6820 {
6821 struct perf_event *child_event, *tmp;
6822 struct perf_event_context *child_ctx;
6823 unsigned long flags;
6824
6825 if (likely(!child->perf_event_ctxp[ctxn])) {
6826 perf_event_task(child, NULL, 0);
6827 return;
6828 }
6829
6830 local_irq_save(flags);
6831 /*
6832 * We can't reschedule here because interrupts are disabled,
6833 * and either child is current or it is a task that can't be
6834 * scheduled, so we are now safe from rescheduling changing
6835 * our context.
6836 */
6837 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
6838
6839 /*
6840 * Take the context lock here so that if find_get_context is
6841 * reading child->perf_event_ctxp, we wait until it has
6842 * incremented the context's refcount before we do put_ctx below.
6843 */
6844 raw_spin_lock(&child_ctx->lock);
6845 task_ctx_sched_out(child_ctx);
6846 child->perf_event_ctxp[ctxn] = NULL;
6847 /*
6848 * If this context is a clone; unclone it so it can't get
6849 * swapped to another process while we're removing all
6850 * the events from it.
6851 */
6852 unclone_ctx(child_ctx);
6853 update_context_time(child_ctx);
6854 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
6855
6856 /*
6857 * Report the task dead after unscheduling the events so that we
6858 * won't get any samples after PERF_RECORD_EXIT. We can however still
6859 * get a few PERF_RECORD_READ events.
6860 */
6861 perf_event_task(child, child_ctx, 0);
6862
6863 /*
6864 * We can recurse on the same lock type through:
6865 *
6866 * __perf_event_exit_task()
6867 * sync_child_event()
6868 * put_event()
6869 * mutex_lock(&ctx->mutex)
6870 *
6871 * But since its the parent context it won't be the same instance.
6872 */
6873 mutex_lock(&child_ctx->mutex);
6874
6875 again:
6876 list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
6877 group_entry)
6878 __perf_event_exit_task(child_event, child_ctx, child);
6879
6880 list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
6881 group_entry)
6882 __perf_event_exit_task(child_event, child_ctx, child);
6883
6884 /*
6885 * If the last event was a group event, it will have appended all
6886 * its siblings to the list, but we obtained 'tmp' before that which
6887 * will still point to the list head terminating the iteration.
6888 */
6889 if (!list_empty(&child_ctx->pinned_groups) ||
6890 !list_empty(&child_ctx->flexible_groups))
6891 goto again;
6892
6893 mutex_unlock(&child_ctx->mutex);
6894
6895 put_ctx(child_ctx);
6896 }
6897
6898 /*
6899 * When a child task exits, feed back event values to parent events.
6900 */
6901 void perf_event_exit_task(struct task_struct *child)
6902 {
6903 struct perf_event *event, *tmp;
6904 int ctxn;
6905
6906 mutex_lock(&child->perf_event_mutex);
6907 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
6908 owner_entry) {
6909 list_del_init(&event->owner_entry);
6910
6911 /*
6912 * Ensure the list deletion is visible before we clear
6913 * the owner, closes a race against perf_release() where
6914 * we need to serialize on the owner->perf_event_mutex.
6915 */
6916 smp_wmb();
6917 event->owner = NULL;
6918 }
6919 mutex_unlock(&child->perf_event_mutex);
6920
6921 for_each_task_context_nr(ctxn)
6922 perf_event_exit_task_context(child, ctxn);
6923 }
6924
6925 static void perf_free_event(struct perf_event *event,
6926 struct perf_event_context *ctx)
6927 {
6928 struct perf_event *parent = event->parent;
6929
6930 if (WARN_ON_ONCE(!parent))
6931 return;
6932
6933 mutex_lock(&parent->child_mutex);
6934 list_del_init(&event->child_list);
6935 mutex_unlock(&parent->child_mutex);
6936
6937 put_event(parent);
6938
6939 perf_group_detach(event);
6940 list_del_event(event, ctx);
6941 free_event(event);
6942 }
6943
6944 /*
6945 * free an unexposed, unused context as created by inheritance by
6946 * perf_event_init_task below, used by fork() in case of fail.
6947 */
6948 void perf_event_free_task(struct task_struct *task)
6949 {
6950 struct perf_event_context *ctx;
6951 struct perf_event *event, *tmp;
6952 int ctxn;
6953
6954 for_each_task_context_nr(ctxn) {
6955 ctx = task->perf_event_ctxp[ctxn];
6956 if (!ctx)
6957 continue;
6958
6959 mutex_lock(&ctx->mutex);
6960 again:
6961 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
6962 group_entry)
6963 perf_free_event(event, ctx);
6964
6965 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
6966 group_entry)
6967 perf_free_event(event, ctx);
6968
6969 if (!list_empty(&ctx->pinned_groups) ||
6970 !list_empty(&ctx->flexible_groups))
6971 goto again;
6972
6973 mutex_unlock(&ctx->mutex);
6974
6975 put_ctx(ctx);
6976 }
6977 }
6978
6979 void perf_event_delayed_put(struct task_struct *task)
6980 {
6981 int ctxn;
6982
6983 for_each_task_context_nr(ctxn)
6984 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
6985 }
6986
6987 /*
6988 * inherit a event from parent task to child task:
6989 */
6990 static struct perf_event *
6991 inherit_event(struct perf_event *parent_event,
6992 struct task_struct *parent,
6993 struct perf_event_context *parent_ctx,
6994 struct task_struct *child,
6995 struct perf_event *group_leader,
6996 struct perf_event_context *child_ctx)
6997 {
6998 struct perf_event *child_event;
6999 unsigned long flags;
7000
7001 /*
7002 * Instead of creating recursive hierarchies of events,
7003 * we link inherited events back to the original parent,
7004 * which has a filp for sure, which we use as the reference
7005 * count:
7006 */
7007 if (parent_event->parent)
7008 parent_event = parent_event->parent;
7009
7010 child_event = perf_event_alloc(&parent_event->attr,
7011 parent_event->cpu,
7012 child,
7013 group_leader, parent_event,
7014 NULL, NULL);
7015 if (IS_ERR(child_event))
7016 return child_event;
7017
7018 if (!atomic_long_inc_not_zero(&parent_event->refcount)) {
7019 free_event(child_event);
7020 return NULL;
7021 }
7022
7023 get_ctx(child_ctx);
7024
7025 /*
7026 * Make the child state follow the state of the parent event,
7027 * not its attr.disabled bit. We hold the parent's mutex,
7028 * so we won't race with perf_event_{en, dis}able_family.
7029 */
7030 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
7031 child_event->state = PERF_EVENT_STATE_INACTIVE;
7032 else
7033 child_event->state = PERF_EVENT_STATE_OFF;
7034
7035 if (parent_event->attr.freq) {
7036 u64 sample_period = parent_event->hw.sample_period;
7037 struct hw_perf_event *hwc = &child_event->hw;
7038
7039 hwc->sample_period = sample_period;
7040 hwc->last_period = sample_period;
7041
7042 local64_set(&hwc->period_left, sample_period);
7043 }
7044
7045 child_event->ctx = child_ctx;
7046 child_event->overflow_handler = parent_event->overflow_handler;
7047 child_event->overflow_handler_context
7048 = parent_event->overflow_handler_context;
7049
7050 /*
7051 * Precalculate sample_data sizes
7052 */
7053 perf_event__header_size(child_event);
7054 perf_event__id_header_size(child_event);
7055
7056 /*
7057 * Link it up in the child's context:
7058 */
7059 raw_spin_lock_irqsave(&child_ctx->lock, flags);
7060 add_event_to_ctx(child_event, child_ctx);
7061 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
7062
7063 /*
7064 * Link this into the parent event's child list
7065 */
7066 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
7067 mutex_lock(&parent_event->child_mutex);
7068 list_add_tail(&child_event->child_list, &parent_event->child_list);
7069 mutex_unlock(&parent_event->child_mutex);
7070
7071 return child_event;
7072 }
7073
7074 static int inherit_group(struct perf_event *parent_event,
7075 struct task_struct *parent,
7076 struct perf_event_context *parent_ctx,
7077 struct task_struct *child,
7078 struct perf_event_context *child_ctx)
7079 {
7080 struct perf_event *leader;
7081 struct perf_event *sub;
7082 struct perf_event *child_ctr;
7083
7084 leader = inherit_event(parent_event, parent, parent_ctx,
7085 child, NULL, child_ctx);
7086 if (IS_ERR(leader))
7087 return PTR_ERR(leader);
7088 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
7089 child_ctr = inherit_event(sub, parent, parent_ctx,
7090 child, leader, child_ctx);
7091 if (IS_ERR(child_ctr))
7092 return PTR_ERR(child_ctr);
7093 }
7094 return 0;
7095 }
7096
7097 static int
7098 inherit_task_group(struct perf_event *event, struct task_struct *parent,
7099 struct perf_event_context *parent_ctx,
7100 struct task_struct *child, int ctxn,
7101 int *inherited_all)
7102 {
7103 int ret;
7104 struct perf_event_context *child_ctx;
7105
7106 if (!event->attr.inherit) {
7107 *inherited_all = 0;
7108 return 0;
7109 }
7110
7111 child_ctx = child->perf_event_ctxp[ctxn];
7112 if (!child_ctx) {
7113 /*
7114 * This is executed from the parent task context, so
7115 * inherit events that have been marked for cloning.
7116 * First allocate and initialize a context for the
7117 * child.
7118 */
7119
7120 child_ctx = alloc_perf_context(event->pmu, child);
7121 if (!child_ctx)
7122 return -ENOMEM;
7123
7124 child->perf_event_ctxp[ctxn] = child_ctx;
7125 }
7126
7127 ret = inherit_group(event, parent, parent_ctx,
7128 child, child_ctx);
7129
7130 if (ret)
7131 *inherited_all = 0;
7132
7133 return ret;
7134 }
7135
7136 /*
7137 * Initialize the perf_event context in task_struct
7138 */
7139 int perf_event_init_context(struct task_struct *child, int ctxn)
7140 {
7141 struct perf_event_context *child_ctx, *parent_ctx;
7142 struct perf_event_context *cloned_ctx;
7143 struct perf_event *event;
7144 struct task_struct *parent = current;
7145 int inherited_all = 1;
7146 unsigned long flags;
7147 int ret = 0;
7148
7149 if (likely(!parent->perf_event_ctxp[ctxn]))
7150 return 0;
7151
7152 /*
7153 * If the parent's context is a clone, pin it so it won't get
7154 * swapped under us.
7155 */
7156 parent_ctx = perf_pin_task_context(parent, ctxn);
7157
7158 /*
7159 * No need to check if parent_ctx != NULL here; since we saw
7160 * it non-NULL earlier, the only reason for it to become NULL
7161 * is if we exit, and since we're currently in the middle of
7162 * a fork we can't be exiting at the same time.
7163 */
7164
7165 /*
7166 * Lock the parent list. No need to lock the child - not PID
7167 * hashed yet and not running, so nobody can access it.
7168 */
7169 mutex_lock(&parent_ctx->mutex);
7170
7171 /*
7172 * We dont have to disable NMIs - we are only looking at
7173 * the list, not manipulating it:
7174 */
7175 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
7176 ret = inherit_task_group(event, parent, parent_ctx,
7177 child, ctxn, &inherited_all);
7178 if (ret)
7179 break;
7180 }
7181
7182 /*
7183 * We can't hold ctx->lock when iterating the ->flexible_group list due
7184 * to allocations, but we need to prevent rotation because
7185 * rotate_ctx() will change the list from interrupt context.
7186 */
7187 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
7188 parent_ctx->rotate_disable = 1;
7189 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7190
7191 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
7192 ret = inherit_task_group(event, parent, parent_ctx,
7193 child, ctxn, &inherited_all);
7194 if (ret)
7195 break;
7196 }
7197
7198 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
7199 parent_ctx->rotate_disable = 0;
7200
7201 child_ctx = child->perf_event_ctxp[ctxn];
7202
7203 if (child_ctx && inherited_all) {
7204 /*
7205 * Mark the child context as a clone of the parent
7206 * context, or of whatever the parent is a clone of.
7207 *
7208 * Note that if the parent is a clone, the holding of
7209 * parent_ctx->lock avoids it from being uncloned.
7210 */
7211 cloned_ctx = parent_ctx->parent_ctx;
7212 if (cloned_ctx) {
7213 child_ctx->parent_ctx = cloned_ctx;
7214 child_ctx->parent_gen = parent_ctx->parent_gen;
7215 } else {
7216 child_ctx->parent_ctx = parent_ctx;
7217 child_ctx->parent_gen = parent_ctx->generation;
7218 }
7219 get_ctx(child_ctx->parent_ctx);
7220 }
7221
7222 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7223 mutex_unlock(&parent_ctx->mutex);
7224
7225 perf_unpin_context(parent_ctx);
7226 put_ctx(parent_ctx);
7227
7228 return ret;
7229 }
7230
7231 /*
7232 * Initialize the perf_event context in task_struct
7233 */
7234 int perf_event_init_task(struct task_struct *child)
7235 {
7236 int ctxn, ret;
7237
7238 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
7239 mutex_init(&child->perf_event_mutex);
7240 INIT_LIST_HEAD(&child->perf_event_list);
7241
7242 for_each_task_context_nr(ctxn) {
7243 ret = perf_event_init_context(child, ctxn);
7244 if (ret)
7245 return ret;
7246 }
7247
7248 return 0;
7249 }
7250
7251 static void __init perf_event_init_all_cpus(void)
7252 {
7253 struct swevent_htable *swhash;
7254 int cpu;
7255
7256 for_each_possible_cpu(cpu) {
7257 swhash = &per_cpu(swevent_htable, cpu);
7258 mutex_init(&swhash->hlist_mutex);
7259 INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
7260 }
7261 }
7262
7263 static void __cpuinit perf_event_init_cpu(int cpu)
7264 {
7265 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7266
7267 mutex_lock(&swhash->hlist_mutex);
7268 if (swhash->hlist_refcount > 0) {
7269 struct swevent_hlist *hlist;
7270
7271 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
7272 WARN_ON(!hlist);
7273 rcu_assign_pointer(swhash->swevent_hlist, hlist);
7274 }
7275 mutex_unlock(&swhash->hlist_mutex);
7276 }
7277
7278 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
7279 static void perf_pmu_rotate_stop(struct pmu *pmu)
7280 {
7281 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7282
7283 WARN_ON(!irqs_disabled());
7284
7285 list_del_init(&cpuctx->rotation_list);
7286 }
7287
7288 static void __perf_event_exit_context(void *__info)
7289 {
7290 struct perf_event_context *ctx = __info;
7291 struct perf_event *event, *tmp;
7292
7293 perf_pmu_rotate_stop(ctx->pmu);
7294
7295 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
7296 __perf_remove_from_context(event);
7297 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
7298 __perf_remove_from_context(event);
7299 }
7300
7301 static void perf_event_exit_cpu_context(int cpu)
7302 {
7303 struct perf_event_context *ctx;
7304 struct pmu *pmu;
7305 int idx;
7306
7307 idx = srcu_read_lock(&pmus_srcu);
7308 list_for_each_entry_rcu(pmu, &pmus, entry) {
7309 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
7310
7311 mutex_lock(&ctx->mutex);
7312 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
7313 mutex_unlock(&ctx->mutex);
7314 }
7315 srcu_read_unlock(&pmus_srcu, idx);
7316 }
7317
7318 static void perf_event_exit_cpu(int cpu)
7319 {
7320 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7321
7322 mutex_lock(&swhash->hlist_mutex);
7323 swevent_hlist_release(swhash);
7324 mutex_unlock(&swhash->hlist_mutex);
7325
7326 perf_event_exit_cpu_context(cpu);
7327 }
7328 #else
7329 static inline void perf_event_exit_cpu(int cpu) { }
7330 #endif
7331
7332 static int
7333 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
7334 {
7335 int cpu;
7336
7337 for_each_online_cpu(cpu)
7338 perf_event_exit_cpu(cpu);
7339
7340 return NOTIFY_OK;
7341 }
7342
7343 /*
7344 * Run the perf reboot notifier at the very last possible moment so that
7345 * the generic watchdog code runs as long as possible.
7346 */
7347 static struct notifier_block perf_reboot_notifier = {
7348 .notifier_call = perf_reboot,
7349 .priority = INT_MIN,
7350 };
7351
7352 static int __cpuinit
7353 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
7354 {
7355 unsigned int cpu = (long)hcpu;
7356
7357 switch (action & ~CPU_TASKS_FROZEN) {
7358
7359 case CPU_UP_PREPARE:
7360 case CPU_DOWN_FAILED:
7361 perf_event_init_cpu(cpu);
7362 break;
7363
7364 case CPU_UP_CANCELED:
7365 case CPU_DOWN_PREPARE:
7366 perf_event_exit_cpu(cpu);
7367 break;
7368
7369 default:
7370 break;
7371 }
7372
7373 return NOTIFY_OK;
7374 }
7375
7376 void __init perf_event_init(void)
7377 {
7378 int ret;
7379
7380 idr_init(&pmu_idr);
7381
7382 perf_event_init_all_cpus();
7383 init_srcu_struct(&pmus_srcu);
7384 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
7385 perf_pmu_register(&perf_cpu_clock, NULL, -1);
7386 perf_pmu_register(&perf_task_clock, NULL, -1);
7387 perf_tp_register();
7388 perf_cpu_notifier(perf_cpu_notify);
7389 register_reboot_notifier(&perf_reboot_notifier);
7390
7391 ret = init_hw_breakpoint();
7392 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
7393
7394 /* do not patch jump label more than once per second */
7395 jump_label_rate_limit(&perf_sched_events, HZ);
7396
7397 /*
7398 * Build time assertion that we keep the data_head at the intended
7399 * location. IOW, validation we got the __reserved[] size right.
7400 */
7401 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
7402 != 1024);
7403 }
7404
7405 static int __init perf_event_sysfs_init(void)
7406 {
7407 struct pmu *pmu;
7408 int ret;
7409
7410 mutex_lock(&pmus_lock);
7411
7412 ret = bus_register(&pmu_bus);
7413 if (ret)
7414 goto unlock;
7415
7416 list_for_each_entry(pmu, &pmus, entry) {
7417 if (!pmu->name || pmu->type < 0)
7418 continue;
7419
7420 ret = pmu_dev_alloc(pmu);
7421 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
7422 }
7423 pmu_bus_running = 1;
7424 ret = 0;
7425
7426 unlock:
7427 mutex_unlock(&pmus_lock);
7428
7429 return ret;
7430 }
7431 device_initcall(perf_event_sysfs_init);
7432
7433 #ifdef CONFIG_CGROUP_PERF
7434 static struct cgroup_subsys_state *perf_cgroup_create(struct cgroup *cont)
7435 {
7436 struct perf_cgroup *jc;
7437
7438 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
7439 if (!jc)
7440 return ERR_PTR(-ENOMEM);
7441
7442 jc->info = alloc_percpu(struct perf_cgroup_info);
7443 if (!jc->info) {
7444 kfree(jc);
7445 return ERR_PTR(-ENOMEM);
7446 }
7447
7448 return &jc->css;
7449 }
7450
7451 static void perf_cgroup_destroy(struct cgroup *cont)
7452 {
7453 struct perf_cgroup *jc;
7454 jc = container_of(cgroup_subsys_state(cont, perf_subsys_id),
7455 struct perf_cgroup, css);
7456 free_percpu(jc->info);
7457 kfree(jc);
7458 }
7459
7460 static int __perf_cgroup_move(void *info)
7461 {
7462 struct task_struct *task = info;
7463 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
7464 return 0;
7465 }
7466
7467 static void perf_cgroup_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
7468 {
7469 struct task_struct *task;
7470
7471 cgroup_taskset_for_each(task, cgrp, tset)
7472 task_function_call(task, __perf_cgroup_move, task);
7473 }
7474
7475 static void perf_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
7476 struct task_struct *task)
7477 {
7478 /*
7479 * cgroup_exit() is called in the copy_process() failure path.
7480 * Ignore this case since the task hasn't ran yet, this avoids
7481 * trying to poke a half freed task state from generic code.
7482 */
7483 if (!(task->flags & PF_EXITING))
7484 return;
7485
7486 task_function_call(task, __perf_cgroup_move, task);
7487 }
7488
7489 struct cgroup_subsys perf_subsys = {
7490 .name = "perf_event",
7491 .subsys_id = perf_subsys_id,
7492 .create = perf_cgroup_create,
7493 .destroy = perf_cgroup_destroy,
7494 .exit = perf_cgroup_exit,
7495 .attach = perf_cgroup_attach,
7496
7497 /*
7498 * perf_event cgroup doesn't handle nesting correctly.
7499 * ctx->nr_cgroups adjustments should be propagated through the
7500 * cgroup hierarchy. Fix it and remove the following.
7501 */
7502 .broken_hierarchy = true,
7503 };
7504 #endif /* CONFIG_CGROUP_PERF */