]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - kernel/events/core.c
Merge branch 'ras-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-zesty-kernel.git] / kernel / events / core.c
1 /*
2 * Performance events core code:
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47
48 #include "internal.h"
49
50 #include <asm/irq_regs.h>
51
52 static struct workqueue_struct *perf_wq;
53
54 typedef int (*remote_function_f)(void *);
55
56 struct remote_function_call {
57 struct task_struct *p;
58 remote_function_f func;
59 void *info;
60 int ret;
61 };
62
63 static void remote_function(void *data)
64 {
65 struct remote_function_call *tfc = data;
66 struct task_struct *p = tfc->p;
67
68 if (p) {
69 tfc->ret = -EAGAIN;
70 if (task_cpu(p) != smp_processor_id() || !task_curr(p))
71 return;
72 }
73
74 tfc->ret = tfc->func(tfc->info);
75 }
76
77 /**
78 * task_function_call - call a function on the cpu on which a task runs
79 * @p: the task to evaluate
80 * @func: the function to be called
81 * @info: the function call argument
82 *
83 * Calls the function @func when the task is currently running. This might
84 * be on the current CPU, which just calls the function directly
85 *
86 * returns: @func return value, or
87 * -ESRCH - when the process isn't running
88 * -EAGAIN - when the process moved away
89 */
90 static int
91 task_function_call(struct task_struct *p, remote_function_f func, void *info)
92 {
93 struct remote_function_call data = {
94 .p = p,
95 .func = func,
96 .info = info,
97 .ret = -ESRCH, /* No such (running) process */
98 };
99
100 if (task_curr(p))
101 smp_call_function_single(task_cpu(p), remote_function, &data, 1);
102
103 return data.ret;
104 }
105
106 /**
107 * cpu_function_call - call a function on the cpu
108 * @func: the function to be called
109 * @info: the function call argument
110 *
111 * Calls the function @func on the remote cpu.
112 *
113 * returns: @func return value or -ENXIO when the cpu is offline
114 */
115 static int cpu_function_call(int cpu, remote_function_f func, void *info)
116 {
117 struct remote_function_call data = {
118 .p = NULL,
119 .func = func,
120 .info = info,
121 .ret = -ENXIO, /* No such CPU */
122 };
123
124 smp_call_function_single(cpu, remote_function, &data, 1);
125
126 return data.ret;
127 }
128
129 #define EVENT_OWNER_KERNEL ((void *) -1)
130
131 static bool is_kernel_event(struct perf_event *event)
132 {
133 return event->owner == EVENT_OWNER_KERNEL;
134 }
135
136 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
137 PERF_FLAG_FD_OUTPUT |\
138 PERF_FLAG_PID_CGROUP |\
139 PERF_FLAG_FD_CLOEXEC)
140
141 /*
142 * branch priv levels that need permission checks
143 */
144 #define PERF_SAMPLE_BRANCH_PERM_PLM \
145 (PERF_SAMPLE_BRANCH_KERNEL |\
146 PERF_SAMPLE_BRANCH_HV)
147
148 enum event_type_t {
149 EVENT_FLEXIBLE = 0x1,
150 EVENT_PINNED = 0x2,
151 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
152 };
153
154 /*
155 * perf_sched_events : >0 events exist
156 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
157 */
158 struct static_key_deferred perf_sched_events __read_mostly;
159 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
160 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
161
162 static atomic_t nr_mmap_events __read_mostly;
163 static atomic_t nr_comm_events __read_mostly;
164 static atomic_t nr_task_events __read_mostly;
165 static atomic_t nr_freq_events __read_mostly;
166 static atomic_t nr_switch_events __read_mostly;
167
168 static LIST_HEAD(pmus);
169 static DEFINE_MUTEX(pmus_lock);
170 static struct srcu_struct pmus_srcu;
171
172 /*
173 * perf event paranoia level:
174 * -1 - not paranoid at all
175 * 0 - disallow raw tracepoint access for unpriv
176 * 1 - disallow cpu events for unpriv
177 * 2 - disallow kernel profiling for unpriv
178 */
179 int sysctl_perf_event_paranoid __read_mostly = 1;
180
181 /* Minimum for 512 kiB + 1 user control page */
182 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
183
184 /*
185 * max perf event sample rate
186 */
187 #define DEFAULT_MAX_SAMPLE_RATE 100000
188 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
189 #define DEFAULT_CPU_TIME_MAX_PERCENT 25
190
191 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
192
193 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
194 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
195
196 static int perf_sample_allowed_ns __read_mostly =
197 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
198
199 static void update_perf_cpu_limits(void)
200 {
201 u64 tmp = perf_sample_period_ns;
202
203 tmp *= sysctl_perf_cpu_time_max_percent;
204 do_div(tmp, 100);
205 ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
206 }
207
208 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
209
210 int perf_proc_update_handler(struct ctl_table *table, int write,
211 void __user *buffer, size_t *lenp,
212 loff_t *ppos)
213 {
214 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
215
216 if (ret || !write)
217 return ret;
218
219 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
220 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
221 update_perf_cpu_limits();
222
223 return 0;
224 }
225
226 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
227
228 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
229 void __user *buffer, size_t *lenp,
230 loff_t *ppos)
231 {
232 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
233
234 if (ret || !write)
235 return ret;
236
237 update_perf_cpu_limits();
238
239 return 0;
240 }
241
242 /*
243 * perf samples are done in some very critical code paths (NMIs).
244 * If they take too much CPU time, the system can lock up and not
245 * get any real work done. This will drop the sample rate when
246 * we detect that events are taking too long.
247 */
248 #define NR_ACCUMULATED_SAMPLES 128
249 static DEFINE_PER_CPU(u64, running_sample_length);
250
251 static void perf_duration_warn(struct irq_work *w)
252 {
253 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
254 u64 avg_local_sample_len;
255 u64 local_samples_len;
256
257 local_samples_len = __this_cpu_read(running_sample_length);
258 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
259
260 printk_ratelimited(KERN_WARNING
261 "perf interrupt took too long (%lld > %lld), lowering "
262 "kernel.perf_event_max_sample_rate to %d\n",
263 avg_local_sample_len, allowed_ns >> 1,
264 sysctl_perf_event_sample_rate);
265 }
266
267 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
268
269 void perf_sample_event_took(u64 sample_len_ns)
270 {
271 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
272 u64 avg_local_sample_len;
273 u64 local_samples_len;
274
275 if (allowed_ns == 0)
276 return;
277
278 /* decay the counter by 1 average sample */
279 local_samples_len = __this_cpu_read(running_sample_length);
280 local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
281 local_samples_len += sample_len_ns;
282 __this_cpu_write(running_sample_length, local_samples_len);
283
284 /*
285 * note: this will be biased artifically low until we have
286 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
287 * from having to maintain a count.
288 */
289 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
290
291 if (avg_local_sample_len <= allowed_ns)
292 return;
293
294 if (max_samples_per_tick <= 1)
295 return;
296
297 max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
298 sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
299 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
300
301 update_perf_cpu_limits();
302
303 if (!irq_work_queue(&perf_duration_work)) {
304 early_printk("perf interrupt took too long (%lld > %lld), lowering "
305 "kernel.perf_event_max_sample_rate to %d\n",
306 avg_local_sample_len, allowed_ns >> 1,
307 sysctl_perf_event_sample_rate);
308 }
309 }
310
311 static atomic64_t perf_event_id;
312
313 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
314 enum event_type_t event_type);
315
316 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
317 enum event_type_t event_type,
318 struct task_struct *task);
319
320 static void update_context_time(struct perf_event_context *ctx);
321 static u64 perf_event_time(struct perf_event *event);
322
323 void __weak perf_event_print_debug(void) { }
324
325 extern __weak const char *perf_pmu_name(void)
326 {
327 return "pmu";
328 }
329
330 static inline u64 perf_clock(void)
331 {
332 return local_clock();
333 }
334
335 static inline u64 perf_event_clock(struct perf_event *event)
336 {
337 return event->clock();
338 }
339
340 static inline struct perf_cpu_context *
341 __get_cpu_context(struct perf_event_context *ctx)
342 {
343 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
344 }
345
346 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
347 struct perf_event_context *ctx)
348 {
349 raw_spin_lock(&cpuctx->ctx.lock);
350 if (ctx)
351 raw_spin_lock(&ctx->lock);
352 }
353
354 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
355 struct perf_event_context *ctx)
356 {
357 if (ctx)
358 raw_spin_unlock(&ctx->lock);
359 raw_spin_unlock(&cpuctx->ctx.lock);
360 }
361
362 #ifdef CONFIG_CGROUP_PERF
363
364 static inline bool
365 perf_cgroup_match(struct perf_event *event)
366 {
367 struct perf_event_context *ctx = event->ctx;
368 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
369
370 /* @event doesn't care about cgroup */
371 if (!event->cgrp)
372 return true;
373
374 /* wants specific cgroup scope but @cpuctx isn't associated with any */
375 if (!cpuctx->cgrp)
376 return false;
377
378 /*
379 * Cgroup scoping is recursive. An event enabled for a cgroup is
380 * also enabled for all its descendant cgroups. If @cpuctx's
381 * cgroup is a descendant of @event's (the test covers identity
382 * case), it's a match.
383 */
384 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
385 event->cgrp->css.cgroup);
386 }
387
388 static inline void perf_detach_cgroup(struct perf_event *event)
389 {
390 css_put(&event->cgrp->css);
391 event->cgrp = NULL;
392 }
393
394 static inline int is_cgroup_event(struct perf_event *event)
395 {
396 return event->cgrp != NULL;
397 }
398
399 static inline u64 perf_cgroup_event_time(struct perf_event *event)
400 {
401 struct perf_cgroup_info *t;
402
403 t = per_cpu_ptr(event->cgrp->info, event->cpu);
404 return t->time;
405 }
406
407 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
408 {
409 struct perf_cgroup_info *info;
410 u64 now;
411
412 now = perf_clock();
413
414 info = this_cpu_ptr(cgrp->info);
415
416 info->time += now - info->timestamp;
417 info->timestamp = now;
418 }
419
420 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
421 {
422 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
423 if (cgrp_out)
424 __update_cgrp_time(cgrp_out);
425 }
426
427 static inline void update_cgrp_time_from_event(struct perf_event *event)
428 {
429 struct perf_cgroup *cgrp;
430
431 /*
432 * ensure we access cgroup data only when needed and
433 * when we know the cgroup is pinned (css_get)
434 */
435 if (!is_cgroup_event(event))
436 return;
437
438 cgrp = perf_cgroup_from_task(current);
439 /*
440 * Do not update time when cgroup is not active
441 */
442 if (cgrp == event->cgrp)
443 __update_cgrp_time(event->cgrp);
444 }
445
446 static inline void
447 perf_cgroup_set_timestamp(struct task_struct *task,
448 struct perf_event_context *ctx)
449 {
450 struct perf_cgroup *cgrp;
451 struct perf_cgroup_info *info;
452
453 /*
454 * ctx->lock held by caller
455 * ensure we do not access cgroup data
456 * unless we have the cgroup pinned (css_get)
457 */
458 if (!task || !ctx->nr_cgroups)
459 return;
460
461 cgrp = perf_cgroup_from_task(task);
462 info = this_cpu_ptr(cgrp->info);
463 info->timestamp = ctx->timestamp;
464 }
465
466 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
467 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
468
469 /*
470 * reschedule events based on the cgroup constraint of task.
471 *
472 * mode SWOUT : schedule out everything
473 * mode SWIN : schedule in based on cgroup for next
474 */
475 static void perf_cgroup_switch(struct task_struct *task, int mode)
476 {
477 struct perf_cpu_context *cpuctx;
478 struct pmu *pmu;
479 unsigned long flags;
480
481 /*
482 * disable interrupts to avoid geting nr_cgroup
483 * changes via __perf_event_disable(). Also
484 * avoids preemption.
485 */
486 local_irq_save(flags);
487
488 /*
489 * we reschedule only in the presence of cgroup
490 * constrained events.
491 */
492 rcu_read_lock();
493
494 list_for_each_entry_rcu(pmu, &pmus, entry) {
495 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
496 if (cpuctx->unique_pmu != pmu)
497 continue; /* ensure we process each cpuctx once */
498
499 /*
500 * perf_cgroup_events says at least one
501 * context on this CPU has cgroup events.
502 *
503 * ctx->nr_cgroups reports the number of cgroup
504 * events for a context.
505 */
506 if (cpuctx->ctx.nr_cgroups > 0) {
507 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
508 perf_pmu_disable(cpuctx->ctx.pmu);
509
510 if (mode & PERF_CGROUP_SWOUT) {
511 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
512 /*
513 * must not be done before ctxswout due
514 * to event_filter_match() in event_sched_out()
515 */
516 cpuctx->cgrp = NULL;
517 }
518
519 if (mode & PERF_CGROUP_SWIN) {
520 WARN_ON_ONCE(cpuctx->cgrp);
521 /*
522 * set cgrp before ctxsw in to allow
523 * event_filter_match() to not have to pass
524 * task around
525 */
526 cpuctx->cgrp = perf_cgroup_from_task(task);
527 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
528 }
529 perf_pmu_enable(cpuctx->ctx.pmu);
530 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
531 }
532 }
533
534 rcu_read_unlock();
535
536 local_irq_restore(flags);
537 }
538
539 static inline void perf_cgroup_sched_out(struct task_struct *task,
540 struct task_struct *next)
541 {
542 struct perf_cgroup *cgrp1;
543 struct perf_cgroup *cgrp2 = NULL;
544
545 /*
546 * we come here when we know perf_cgroup_events > 0
547 */
548 cgrp1 = perf_cgroup_from_task(task);
549
550 /*
551 * next is NULL when called from perf_event_enable_on_exec()
552 * that will systematically cause a cgroup_switch()
553 */
554 if (next)
555 cgrp2 = perf_cgroup_from_task(next);
556
557 /*
558 * only schedule out current cgroup events if we know
559 * that we are switching to a different cgroup. Otherwise,
560 * do no touch the cgroup events.
561 */
562 if (cgrp1 != cgrp2)
563 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
564 }
565
566 static inline void perf_cgroup_sched_in(struct task_struct *prev,
567 struct task_struct *task)
568 {
569 struct perf_cgroup *cgrp1;
570 struct perf_cgroup *cgrp2 = NULL;
571
572 /*
573 * we come here when we know perf_cgroup_events > 0
574 */
575 cgrp1 = perf_cgroup_from_task(task);
576
577 /* prev can never be NULL */
578 cgrp2 = perf_cgroup_from_task(prev);
579
580 /*
581 * only need to schedule in cgroup events if we are changing
582 * cgroup during ctxsw. Cgroup events were not scheduled
583 * out of ctxsw out if that was not the case.
584 */
585 if (cgrp1 != cgrp2)
586 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
587 }
588
589 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
590 struct perf_event_attr *attr,
591 struct perf_event *group_leader)
592 {
593 struct perf_cgroup *cgrp;
594 struct cgroup_subsys_state *css;
595 struct fd f = fdget(fd);
596 int ret = 0;
597
598 if (!f.file)
599 return -EBADF;
600
601 css = css_tryget_online_from_dir(f.file->f_path.dentry,
602 &perf_event_cgrp_subsys);
603 if (IS_ERR(css)) {
604 ret = PTR_ERR(css);
605 goto out;
606 }
607
608 cgrp = container_of(css, struct perf_cgroup, css);
609 event->cgrp = cgrp;
610
611 /*
612 * all events in a group must monitor
613 * the same cgroup because a task belongs
614 * to only one perf cgroup at a time
615 */
616 if (group_leader && group_leader->cgrp != cgrp) {
617 perf_detach_cgroup(event);
618 ret = -EINVAL;
619 }
620 out:
621 fdput(f);
622 return ret;
623 }
624
625 static inline void
626 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
627 {
628 struct perf_cgroup_info *t;
629 t = per_cpu_ptr(event->cgrp->info, event->cpu);
630 event->shadow_ctx_time = now - t->timestamp;
631 }
632
633 static inline void
634 perf_cgroup_defer_enabled(struct perf_event *event)
635 {
636 /*
637 * when the current task's perf cgroup does not match
638 * the event's, we need to remember to call the
639 * perf_mark_enable() function the first time a task with
640 * a matching perf cgroup is scheduled in.
641 */
642 if (is_cgroup_event(event) && !perf_cgroup_match(event))
643 event->cgrp_defer_enabled = 1;
644 }
645
646 static inline void
647 perf_cgroup_mark_enabled(struct perf_event *event,
648 struct perf_event_context *ctx)
649 {
650 struct perf_event *sub;
651 u64 tstamp = perf_event_time(event);
652
653 if (!event->cgrp_defer_enabled)
654 return;
655
656 event->cgrp_defer_enabled = 0;
657
658 event->tstamp_enabled = tstamp - event->total_time_enabled;
659 list_for_each_entry(sub, &event->sibling_list, group_entry) {
660 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
661 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
662 sub->cgrp_defer_enabled = 0;
663 }
664 }
665 }
666 #else /* !CONFIG_CGROUP_PERF */
667
668 static inline bool
669 perf_cgroup_match(struct perf_event *event)
670 {
671 return true;
672 }
673
674 static inline void perf_detach_cgroup(struct perf_event *event)
675 {}
676
677 static inline int is_cgroup_event(struct perf_event *event)
678 {
679 return 0;
680 }
681
682 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
683 {
684 return 0;
685 }
686
687 static inline void update_cgrp_time_from_event(struct perf_event *event)
688 {
689 }
690
691 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
692 {
693 }
694
695 static inline void perf_cgroup_sched_out(struct task_struct *task,
696 struct task_struct *next)
697 {
698 }
699
700 static inline void perf_cgroup_sched_in(struct task_struct *prev,
701 struct task_struct *task)
702 {
703 }
704
705 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
706 struct perf_event_attr *attr,
707 struct perf_event *group_leader)
708 {
709 return -EINVAL;
710 }
711
712 static inline void
713 perf_cgroup_set_timestamp(struct task_struct *task,
714 struct perf_event_context *ctx)
715 {
716 }
717
718 void
719 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
720 {
721 }
722
723 static inline void
724 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
725 {
726 }
727
728 static inline u64 perf_cgroup_event_time(struct perf_event *event)
729 {
730 return 0;
731 }
732
733 static inline void
734 perf_cgroup_defer_enabled(struct perf_event *event)
735 {
736 }
737
738 static inline void
739 perf_cgroup_mark_enabled(struct perf_event *event,
740 struct perf_event_context *ctx)
741 {
742 }
743 #endif
744
745 /*
746 * set default to be dependent on timer tick just
747 * like original code
748 */
749 #define PERF_CPU_HRTIMER (1000 / HZ)
750 /*
751 * function must be called with interrupts disbled
752 */
753 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
754 {
755 struct perf_cpu_context *cpuctx;
756 int rotations = 0;
757
758 WARN_ON(!irqs_disabled());
759
760 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
761 rotations = perf_rotate_context(cpuctx);
762
763 raw_spin_lock(&cpuctx->hrtimer_lock);
764 if (rotations)
765 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
766 else
767 cpuctx->hrtimer_active = 0;
768 raw_spin_unlock(&cpuctx->hrtimer_lock);
769
770 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
771 }
772
773 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
774 {
775 struct hrtimer *timer = &cpuctx->hrtimer;
776 struct pmu *pmu = cpuctx->ctx.pmu;
777 u64 interval;
778
779 /* no multiplexing needed for SW PMU */
780 if (pmu->task_ctx_nr == perf_sw_context)
781 return;
782
783 /*
784 * check default is sane, if not set then force to
785 * default interval (1/tick)
786 */
787 interval = pmu->hrtimer_interval_ms;
788 if (interval < 1)
789 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
790
791 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
792
793 raw_spin_lock_init(&cpuctx->hrtimer_lock);
794 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
795 timer->function = perf_mux_hrtimer_handler;
796 }
797
798 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
799 {
800 struct hrtimer *timer = &cpuctx->hrtimer;
801 struct pmu *pmu = cpuctx->ctx.pmu;
802 unsigned long flags;
803
804 /* not for SW PMU */
805 if (pmu->task_ctx_nr == perf_sw_context)
806 return 0;
807
808 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
809 if (!cpuctx->hrtimer_active) {
810 cpuctx->hrtimer_active = 1;
811 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
812 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
813 }
814 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
815
816 return 0;
817 }
818
819 void perf_pmu_disable(struct pmu *pmu)
820 {
821 int *count = this_cpu_ptr(pmu->pmu_disable_count);
822 if (!(*count)++)
823 pmu->pmu_disable(pmu);
824 }
825
826 void perf_pmu_enable(struct pmu *pmu)
827 {
828 int *count = this_cpu_ptr(pmu->pmu_disable_count);
829 if (!--(*count))
830 pmu->pmu_enable(pmu);
831 }
832
833 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
834
835 /*
836 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
837 * perf_event_task_tick() are fully serialized because they're strictly cpu
838 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
839 * disabled, while perf_event_task_tick is called from IRQ context.
840 */
841 static void perf_event_ctx_activate(struct perf_event_context *ctx)
842 {
843 struct list_head *head = this_cpu_ptr(&active_ctx_list);
844
845 WARN_ON(!irqs_disabled());
846
847 WARN_ON(!list_empty(&ctx->active_ctx_list));
848
849 list_add(&ctx->active_ctx_list, head);
850 }
851
852 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
853 {
854 WARN_ON(!irqs_disabled());
855
856 WARN_ON(list_empty(&ctx->active_ctx_list));
857
858 list_del_init(&ctx->active_ctx_list);
859 }
860
861 static void get_ctx(struct perf_event_context *ctx)
862 {
863 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
864 }
865
866 static void free_ctx(struct rcu_head *head)
867 {
868 struct perf_event_context *ctx;
869
870 ctx = container_of(head, struct perf_event_context, rcu_head);
871 kfree(ctx->task_ctx_data);
872 kfree(ctx);
873 }
874
875 static void put_ctx(struct perf_event_context *ctx)
876 {
877 if (atomic_dec_and_test(&ctx->refcount)) {
878 if (ctx->parent_ctx)
879 put_ctx(ctx->parent_ctx);
880 if (ctx->task)
881 put_task_struct(ctx->task);
882 call_rcu(&ctx->rcu_head, free_ctx);
883 }
884 }
885
886 /*
887 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
888 * perf_pmu_migrate_context() we need some magic.
889 *
890 * Those places that change perf_event::ctx will hold both
891 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
892 *
893 * Lock ordering is by mutex address. There are two other sites where
894 * perf_event_context::mutex nests and those are:
895 *
896 * - perf_event_exit_task_context() [ child , 0 ]
897 * __perf_event_exit_task()
898 * sync_child_event()
899 * put_event() [ parent, 1 ]
900 *
901 * - perf_event_init_context() [ parent, 0 ]
902 * inherit_task_group()
903 * inherit_group()
904 * inherit_event()
905 * perf_event_alloc()
906 * perf_init_event()
907 * perf_try_init_event() [ child , 1 ]
908 *
909 * While it appears there is an obvious deadlock here -- the parent and child
910 * nesting levels are inverted between the two. This is in fact safe because
911 * life-time rules separate them. That is an exiting task cannot fork, and a
912 * spawning task cannot (yet) exit.
913 *
914 * But remember that that these are parent<->child context relations, and
915 * migration does not affect children, therefore these two orderings should not
916 * interact.
917 *
918 * The change in perf_event::ctx does not affect children (as claimed above)
919 * because the sys_perf_event_open() case will install a new event and break
920 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
921 * concerned with cpuctx and that doesn't have children.
922 *
923 * The places that change perf_event::ctx will issue:
924 *
925 * perf_remove_from_context();
926 * synchronize_rcu();
927 * perf_install_in_context();
928 *
929 * to affect the change. The remove_from_context() + synchronize_rcu() should
930 * quiesce the event, after which we can install it in the new location. This
931 * means that only external vectors (perf_fops, prctl) can perturb the event
932 * while in transit. Therefore all such accessors should also acquire
933 * perf_event_context::mutex to serialize against this.
934 *
935 * However; because event->ctx can change while we're waiting to acquire
936 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
937 * function.
938 *
939 * Lock order:
940 * task_struct::perf_event_mutex
941 * perf_event_context::mutex
942 * perf_event_context::lock
943 * perf_event::child_mutex;
944 * perf_event::mmap_mutex
945 * mmap_sem
946 */
947 static struct perf_event_context *
948 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
949 {
950 struct perf_event_context *ctx;
951
952 again:
953 rcu_read_lock();
954 ctx = ACCESS_ONCE(event->ctx);
955 if (!atomic_inc_not_zero(&ctx->refcount)) {
956 rcu_read_unlock();
957 goto again;
958 }
959 rcu_read_unlock();
960
961 mutex_lock_nested(&ctx->mutex, nesting);
962 if (event->ctx != ctx) {
963 mutex_unlock(&ctx->mutex);
964 put_ctx(ctx);
965 goto again;
966 }
967
968 return ctx;
969 }
970
971 static inline struct perf_event_context *
972 perf_event_ctx_lock(struct perf_event *event)
973 {
974 return perf_event_ctx_lock_nested(event, 0);
975 }
976
977 static void perf_event_ctx_unlock(struct perf_event *event,
978 struct perf_event_context *ctx)
979 {
980 mutex_unlock(&ctx->mutex);
981 put_ctx(ctx);
982 }
983
984 /*
985 * This must be done under the ctx->lock, such as to serialize against
986 * context_equiv(), therefore we cannot call put_ctx() since that might end up
987 * calling scheduler related locks and ctx->lock nests inside those.
988 */
989 static __must_check struct perf_event_context *
990 unclone_ctx(struct perf_event_context *ctx)
991 {
992 struct perf_event_context *parent_ctx = ctx->parent_ctx;
993
994 lockdep_assert_held(&ctx->lock);
995
996 if (parent_ctx)
997 ctx->parent_ctx = NULL;
998 ctx->generation++;
999
1000 return parent_ctx;
1001 }
1002
1003 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1004 {
1005 /*
1006 * only top level events have the pid namespace they were created in
1007 */
1008 if (event->parent)
1009 event = event->parent;
1010
1011 return task_tgid_nr_ns(p, event->ns);
1012 }
1013
1014 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1015 {
1016 /*
1017 * only top level events have the pid namespace they were created in
1018 */
1019 if (event->parent)
1020 event = event->parent;
1021
1022 return task_pid_nr_ns(p, event->ns);
1023 }
1024
1025 /*
1026 * If we inherit events we want to return the parent event id
1027 * to userspace.
1028 */
1029 static u64 primary_event_id(struct perf_event *event)
1030 {
1031 u64 id = event->id;
1032
1033 if (event->parent)
1034 id = event->parent->id;
1035
1036 return id;
1037 }
1038
1039 /*
1040 * Get the perf_event_context for a task and lock it.
1041 * This has to cope with with the fact that until it is locked,
1042 * the context could get moved to another task.
1043 */
1044 static struct perf_event_context *
1045 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1046 {
1047 struct perf_event_context *ctx;
1048
1049 retry:
1050 /*
1051 * One of the few rules of preemptible RCU is that one cannot do
1052 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1053 * part of the read side critical section was preemptible -- see
1054 * rcu_read_unlock_special().
1055 *
1056 * Since ctx->lock nests under rq->lock we must ensure the entire read
1057 * side critical section is non-preemptible.
1058 */
1059 preempt_disable();
1060 rcu_read_lock();
1061 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1062 if (ctx) {
1063 /*
1064 * If this context is a clone of another, it might
1065 * get swapped for another underneath us by
1066 * perf_event_task_sched_out, though the
1067 * rcu_read_lock() protects us from any context
1068 * getting freed. Lock the context and check if it
1069 * got swapped before we could get the lock, and retry
1070 * if so. If we locked the right context, then it
1071 * can't get swapped on us any more.
1072 */
1073 raw_spin_lock_irqsave(&ctx->lock, *flags);
1074 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1075 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
1076 rcu_read_unlock();
1077 preempt_enable();
1078 goto retry;
1079 }
1080
1081 if (!atomic_inc_not_zero(&ctx->refcount)) {
1082 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
1083 ctx = NULL;
1084 }
1085 }
1086 rcu_read_unlock();
1087 preempt_enable();
1088 return ctx;
1089 }
1090
1091 /*
1092 * Get the context for a task and increment its pin_count so it
1093 * can't get swapped to another task. This also increments its
1094 * reference count so that the context can't get freed.
1095 */
1096 static struct perf_event_context *
1097 perf_pin_task_context(struct task_struct *task, int ctxn)
1098 {
1099 struct perf_event_context *ctx;
1100 unsigned long flags;
1101
1102 ctx = perf_lock_task_context(task, ctxn, &flags);
1103 if (ctx) {
1104 ++ctx->pin_count;
1105 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1106 }
1107 return ctx;
1108 }
1109
1110 static void perf_unpin_context(struct perf_event_context *ctx)
1111 {
1112 unsigned long flags;
1113
1114 raw_spin_lock_irqsave(&ctx->lock, flags);
1115 --ctx->pin_count;
1116 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1117 }
1118
1119 /*
1120 * Update the record of the current time in a context.
1121 */
1122 static void update_context_time(struct perf_event_context *ctx)
1123 {
1124 u64 now = perf_clock();
1125
1126 ctx->time += now - ctx->timestamp;
1127 ctx->timestamp = now;
1128 }
1129
1130 static u64 perf_event_time(struct perf_event *event)
1131 {
1132 struct perf_event_context *ctx = event->ctx;
1133
1134 if (is_cgroup_event(event))
1135 return perf_cgroup_event_time(event);
1136
1137 return ctx ? ctx->time : 0;
1138 }
1139
1140 /*
1141 * Update the total_time_enabled and total_time_running fields for a event.
1142 * The caller of this function needs to hold the ctx->lock.
1143 */
1144 static void update_event_times(struct perf_event *event)
1145 {
1146 struct perf_event_context *ctx = event->ctx;
1147 u64 run_end;
1148
1149 if (event->state < PERF_EVENT_STATE_INACTIVE ||
1150 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1151 return;
1152 /*
1153 * in cgroup mode, time_enabled represents
1154 * the time the event was enabled AND active
1155 * tasks were in the monitored cgroup. This is
1156 * independent of the activity of the context as
1157 * there may be a mix of cgroup and non-cgroup events.
1158 *
1159 * That is why we treat cgroup events differently
1160 * here.
1161 */
1162 if (is_cgroup_event(event))
1163 run_end = perf_cgroup_event_time(event);
1164 else if (ctx->is_active)
1165 run_end = ctx->time;
1166 else
1167 run_end = event->tstamp_stopped;
1168
1169 event->total_time_enabled = run_end - event->tstamp_enabled;
1170
1171 if (event->state == PERF_EVENT_STATE_INACTIVE)
1172 run_end = event->tstamp_stopped;
1173 else
1174 run_end = perf_event_time(event);
1175
1176 event->total_time_running = run_end - event->tstamp_running;
1177
1178 }
1179
1180 /*
1181 * Update total_time_enabled and total_time_running for all events in a group.
1182 */
1183 static void update_group_times(struct perf_event *leader)
1184 {
1185 struct perf_event *event;
1186
1187 update_event_times(leader);
1188 list_for_each_entry(event, &leader->sibling_list, group_entry)
1189 update_event_times(event);
1190 }
1191
1192 static struct list_head *
1193 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1194 {
1195 if (event->attr.pinned)
1196 return &ctx->pinned_groups;
1197 else
1198 return &ctx->flexible_groups;
1199 }
1200
1201 /*
1202 * Add a event from the lists for its context.
1203 * Must be called with ctx->mutex and ctx->lock held.
1204 */
1205 static void
1206 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1207 {
1208 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1209 event->attach_state |= PERF_ATTACH_CONTEXT;
1210
1211 /*
1212 * If we're a stand alone event or group leader, we go to the context
1213 * list, group events are kept attached to the group so that
1214 * perf_group_detach can, at all times, locate all siblings.
1215 */
1216 if (event->group_leader == event) {
1217 struct list_head *list;
1218
1219 if (is_software_event(event))
1220 event->group_flags |= PERF_GROUP_SOFTWARE;
1221
1222 list = ctx_group_list(event, ctx);
1223 list_add_tail(&event->group_entry, list);
1224 }
1225
1226 if (is_cgroup_event(event))
1227 ctx->nr_cgroups++;
1228
1229 list_add_rcu(&event->event_entry, &ctx->event_list);
1230 ctx->nr_events++;
1231 if (event->attr.inherit_stat)
1232 ctx->nr_stat++;
1233
1234 ctx->generation++;
1235 }
1236
1237 /*
1238 * Initialize event state based on the perf_event_attr::disabled.
1239 */
1240 static inline void perf_event__state_init(struct perf_event *event)
1241 {
1242 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1243 PERF_EVENT_STATE_INACTIVE;
1244 }
1245
1246 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1247 {
1248 int entry = sizeof(u64); /* value */
1249 int size = 0;
1250 int nr = 1;
1251
1252 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1253 size += sizeof(u64);
1254
1255 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1256 size += sizeof(u64);
1257
1258 if (event->attr.read_format & PERF_FORMAT_ID)
1259 entry += sizeof(u64);
1260
1261 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1262 nr += nr_siblings;
1263 size += sizeof(u64);
1264 }
1265
1266 size += entry * nr;
1267 event->read_size = size;
1268 }
1269
1270 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1271 {
1272 struct perf_sample_data *data;
1273 u16 size = 0;
1274
1275 if (sample_type & PERF_SAMPLE_IP)
1276 size += sizeof(data->ip);
1277
1278 if (sample_type & PERF_SAMPLE_ADDR)
1279 size += sizeof(data->addr);
1280
1281 if (sample_type & PERF_SAMPLE_PERIOD)
1282 size += sizeof(data->period);
1283
1284 if (sample_type & PERF_SAMPLE_WEIGHT)
1285 size += sizeof(data->weight);
1286
1287 if (sample_type & PERF_SAMPLE_READ)
1288 size += event->read_size;
1289
1290 if (sample_type & PERF_SAMPLE_DATA_SRC)
1291 size += sizeof(data->data_src.val);
1292
1293 if (sample_type & PERF_SAMPLE_TRANSACTION)
1294 size += sizeof(data->txn);
1295
1296 event->header_size = size;
1297 }
1298
1299 /*
1300 * Called at perf_event creation and when events are attached/detached from a
1301 * group.
1302 */
1303 static void perf_event__header_size(struct perf_event *event)
1304 {
1305 __perf_event_read_size(event,
1306 event->group_leader->nr_siblings);
1307 __perf_event_header_size(event, event->attr.sample_type);
1308 }
1309
1310 static void perf_event__id_header_size(struct perf_event *event)
1311 {
1312 struct perf_sample_data *data;
1313 u64 sample_type = event->attr.sample_type;
1314 u16 size = 0;
1315
1316 if (sample_type & PERF_SAMPLE_TID)
1317 size += sizeof(data->tid_entry);
1318
1319 if (sample_type & PERF_SAMPLE_TIME)
1320 size += sizeof(data->time);
1321
1322 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1323 size += sizeof(data->id);
1324
1325 if (sample_type & PERF_SAMPLE_ID)
1326 size += sizeof(data->id);
1327
1328 if (sample_type & PERF_SAMPLE_STREAM_ID)
1329 size += sizeof(data->stream_id);
1330
1331 if (sample_type & PERF_SAMPLE_CPU)
1332 size += sizeof(data->cpu_entry);
1333
1334 event->id_header_size = size;
1335 }
1336
1337 static bool perf_event_validate_size(struct perf_event *event)
1338 {
1339 /*
1340 * The values computed here will be over-written when we actually
1341 * attach the event.
1342 */
1343 __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1344 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1345 perf_event__id_header_size(event);
1346
1347 /*
1348 * Sum the lot; should not exceed the 64k limit we have on records.
1349 * Conservative limit to allow for callchains and other variable fields.
1350 */
1351 if (event->read_size + event->header_size +
1352 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1353 return false;
1354
1355 return true;
1356 }
1357
1358 static void perf_group_attach(struct perf_event *event)
1359 {
1360 struct perf_event *group_leader = event->group_leader, *pos;
1361
1362 /*
1363 * We can have double attach due to group movement in perf_event_open.
1364 */
1365 if (event->attach_state & PERF_ATTACH_GROUP)
1366 return;
1367
1368 event->attach_state |= PERF_ATTACH_GROUP;
1369
1370 if (group_leader == event)
1371 return;
1372
1373 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1374
1375 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1376 !is_software_event(event))
1377 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1378
1379 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1380 group_leader->nr_siblings++;
1381
1382 perf_event__header_size(group_leader);
1383
1384 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1385 perf_event__header_size(pos);
1386 }
1387
1388 /*
1389 * Remove a event from the lists for its context.
1390 * Must be called with ctx->mutex and ctx->lock held.
1391 */
1392 static void
1393 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1394 {
1395 struct perf_cpu_context *cpuctx;
1396
1397 WARN_ON_ONCE(event->ctx != ctx);
1398 lockdep_assert_held(&ctx->lock);
1399
1400 /*
1401 * We can have double detach due to exit/hot-unplug + close.
1402 */
1403 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1404 return;
1405
1406 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1407
1408 if (is_cgroup_event(event)) {
1409 ctx->nr_cgroups--;
1410 cpuctx = __get_cpu_context(ctx);
1411 /*
1412 * if there are no more cgroup events
1413 * then cler cgrp to avoid stale pointer
1414 * in update_cgrp_time_from_cpuctx()
1415 */
1416 if (!ctx->nr_cgroups)
1417 cpuctx->cgrp = NULL;
1418 }
1419
1420 ctx->nr_events--;
1421 if (event->attr.inherit_stat)
1422 ctx->nr_stat--;
1423
1424 list_del_rcu(&event->event_entry);
1425
1426 if (event->group_leader == event)
1427 list_del_init(&event->group_entry);
1428
1429 update_group_times(event);
1430
1431 /*
1432 * If event was in error state, then keep it
1433 * that way, otherwise bogus counts will be
1434 * returned on read(). The only way to get out
1435 * of error state is by explicit re-enabling
1436 * of the event
1437 */
1438 if (event->state > PERF_EVENT_STATE_OFF)
1439 event->state = PERF_EVENT_STATE_OFF;
1440
1441 ctx->generation++;
1442 }
1443
1444 static void perf_group_detach(struct perf_event *event)
1445 {
1446 struct perf_event *sibling, *tmp;
1447 struct list_head *list = NULL;
1448
1449 /*
1450 * We can have double detach due to exit/hot-unplug + close.
1451 */
1452 if (!(event->attach_state & PERF_ATTACH_GROUP))
1453 return;
1454
1455 event->attach_state &= ~PERF_ATTACH_GROUP;
1456
1457 /*
1458 * If this is a sibling, remove it from its group.
1459 */
1460 if (event->group_leader != event) {
1461 list_del_init(&event->group_entry);
1462 event->group_leader->nr_siblings--;
1463 goto out;
1464 }
1465
1466 if (!list_empty(&event->group_entry))
1467 list = &event->group_entry;
1468
1469 /*
1470 * If this was a group event with sibling events then
1471 * upgrade the siblings to singleton events by adding them
1472 * to whatever list we are on.
1473 */
1474 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1475 if (list)
1476 list_move_tail(&sibling->group_entry, list);
1477 sibling->group_leader = sibling;
1478
1479 /* Inherit group flags from the previous leader */
1480 sibling->group_flags = event->group_flags;
1481
1482 WARN_ON_ONCE(sibling->ctx != event->ctx);
1483 }
1484
1485 out:
1486 perf_event__header_size(event->group_leader);
1487
1488 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1489 perf_event__header_size(tmp);
1490 }
1491
1492 /*
1493 * User event without the task.
1494 */
1495 static bool is_orphaned_event(struct perf_event *event)
1496 {
1497 return event && !is_kernel_event(event) && !event->owner;
1498 }
1499
1500 /*
1501 * Event has a parent but parent's task finished and it's
1502 * alive only because of children holding refference.
1503 */
1504 static bool is_orphaned_child(struct perf_event *event)
1505 {
1506 return is_orphaned_event(event->parent);
1507 }
1508
1509 static void orphans_remove_work(struct work_struct *work);
1510
1511 static void schedule_orphans_remove(struct perf_event_context *ctx)
1512 {
1513 if (!ctx->task || ctx->orphans_remove_sched || !perf_wq)
1514 return;
1515
1516 if (queue_delayed_work(perf_wq, &ctx->orphans_remove, 1)) {
1517 get_ctx(ctx);
1518 ctx->orphans_remove_sched = true;
1519 }
1520 }
1521
1522 static int __init perf_workqueue_init(void)
1523 {
1524 perf_wq = create_singlethread_workqueue("perf");
1525 WARN(!perf_wq, "failed to create perf workqueue\n");
1526 return perf_wq ? 0 : -1;
1527 }
1528
1529 core_initcall(perf_workqueue_init);
1530
1531 static inline int pmu_filter_match(struct perf_event *event)
1532 {
1533 struct pmu *pmu = event->pmu;
1534 return pmu->filter_match ? pmu->filter_match(event) : 1;
1535 }
1536
1537 static inline int
1538 event_filter_match(struct perf_event *event)
1539 {
1540 return (event->cpu == -1 || event->cpu == smp_processor_id())
1541 && perf_cgroup_match(event) && pmu_filter_match(event);
1542 }
1543
1544 static void
1545 event_sched_out(struct perf_event *event,
1546 struct perf_cpu_context *cpuctx,
1547 struct perf_event_context *ctx)
1548 {
1549 u64 tstamp = perf_event_time(event);
1550 u64 delta;
1551
1552 WARN_ON_ONCE(event->ctx != ctx);
1553 lockdep_assert_held(&ctx->lock);
1554
1555 /*
1556 * An event which could not be activated because of
1557 * filter mismatch still needs to have its timings
1558 * maintained, otherwise bogus information is return
1559 * via read() for time_enabled, time_running:
1560 */
1561 if (event->state == PERF_EVENT_STATE_INACTIVE
1562 && !event_filter_match(event)) {
1563 delta = tstamp - event->tstamp_stopped;
1564 event->tstamp_running += delta;
1565 event->tstamp_stopped = tstamp;
1566 }
1567
1568 if (event->state != PERF_EVENT_STATE_ACTIVE)
1569 return;
1570
1571 perf_pmu_disable(event->pmu);
1572
1573 event->state = PERF_EVENT_STATE_INACTIVE;
1574 if (event->pending_disable) {
1575 event->pending_disable = 0;
1576 event->state = PERF_EVENT_STATE_OFF;
1577 }
1578 event->tstamp_stopped = tstamp;
1579 event->pmu->del(event, 0);
1580 event->oncpu = -1;
1581
1582 if (!is_software_event(event))
1583 cpuctx->active_oncpu--;
1584 if (!--ctx->nr_active)
1585 perf_event_ctx_deactivate(ctx);
1586 if (event->attr.freq && event->attr.sample_freq)
1587 ctx->nr_freq--;
1588 if (event->attr.exclusive || !cpuctx->active_oncpu)
1589 cpuctx->exclusive = 0;
1590
1591 if (is_orphaned_child(event))
1592 schedule_orphans_remove(ctx);
1593
1594 perf_pmu_enable(event->pmu);
1595 }
1596
1597 static void
1598 group_sched_out(struct perf_event *group_event,
1599 struct perf_cpu_context *cpuctx,
1600 struct perf_event_context *ctx)
1601 {
1602 struct perf_event *event;
1603 int state = group_event->state;
1604
1605 event_sched_out(group_event, cpuctx, ctx);
1606
1607 /*
1608 * Schedule out siblings (if any):
1609 */
1610 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1611 event_sched_out(event, cpuctx, ctx);
1612
1613 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1614 cpuctx->exclusive = 0;
1615 }
1616
1617 struct remove_event {
1618 struct perf_event *event;
1619 bool detach_group;
1620 };
1621
1622 /*
1623 * Cross CPU call to remove a performance event
1624 *
1625 * We disable the event on the hardware level first. After that we
1626 * remove it from the context list.
1627 */
1628 static int __perf_remove_from_context(void *info)
1629 {
1630 struct remove_event *re = info;
1631 struct perf_event *event = re->event;
1632 struct perf_event_context *ctx = event->ctx;
1633 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1634
1635 raw_spin_lock(&ctx->lock);
1636 event_sched_out(event, cpuctx, ctx);
1637 if (re->detach_group)
1638 perf_group_detach(event);
1639 list_del_event(event, ctx);
1640 if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1641 ctx->is_active = 0;
1642 cpuctx->task_ctx = NULL;
1643 }
1644 raw_spin_unlock(&ctx->lock);
1645
1646 return 0;
1647 }
1648
1649
1650 /*
1651 * Remove the event from a task's (or a CPU's) list of events.
1652 *
1653 * CPU events are removed with a smp call. For task events we only
1654 * call when the task is on a CPU.
1655 *
1656 * If event->ctx is a cloned context, callers must make sure that
1657 * every task struct that event->ctx->task could possibly point to
1658 * remains valid. This is OK when called from perf_release since
1659 * that only calls us on the top-level context, which can't be a clone.
1660 * When called from perf_event_exit_task, it's OK because the
1661 * context has been detached from its task.
1662 */
1663 static void perf_remove_from_context(struct perf_event *event, bool detach_group)
1664 {
1665 struct perf_event_context *ctx = event->ctx;
1666 struct task_struct *task = ctx->task;
1667 struct remove_event re = {
1668 .event = event,
1669 .detach_group = detach_group,
1670 };
1671
1672 lockdep_assert_held(&ctx->mutex);
1673
1674 if (!task) {
1675 /*
1676 * Per cpu events are removed via an smp call. The removal can
1677 * fail if the CPU is currently offline, but in that case we
1678 * already called __perf_remove_from_context from
1679 * perf_event_exit_cpu.
1680 */
1681 cpu_function_call(event->cpu, __perf_remove_from_context, &re);
1682 return;
1683 }
1684
1685 retry:
1686 if (!task_function_call(task, __perf_remove_from_context, &re))
1687 return;
1688
1689 raw_spin_lock_irq(&ctx->lock);
1690 /*
1691 * If we failed to find a running task, but find the context active now
1692 * that we've acquired the ctx->lock, retry.
1693 */
1694 if (ctx->is_active) {
1695 raw_spin_unlock_irq(&ctx->lock);
1696 /*
1697 * Reload the task pointer, it might have been changed by
1698 * a concurrent perf_event_context_sched_out().
1699 */
1700 task = ctx->task;
1701 goto retry;
1702 }
1703
1704 /*
1705 * Since the task isn't running, its safe to remove the event, us
1706 * holding the ctx->lock ensures the task won't get scheduled in.
1707 */
1708 if (detach_group)
1709 perf_group_detach(event);
1710 list_del_event(event, ctx);
1711 raw_spin_unlock_irq(&ctx->lock);
1712 }
1713
1714 /*
1715 * Cross CPU call to disable a performance event
1716 */
1717 int __perf_event_disable(void *info)
1718 {
1719 struct perf_event *event = info;
1720 struct perf_event_context *ctx = event->ctx;
1721 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1722
1723 /*
1724 * If this is a per-task event, need to check whether this
1725 * event's task is the current task on this cpu.
1726 *
1727 * Can trigger due to concurrent perf_event_context_sched_out()
1728 * flipping contexts around.
1729 */
1730 if (ctx->task && cpuctx->task_ctx != ctx)
1731 return -EINVAL;
1732
1733 raw_spin_lock(&ctx->lock);
1734
1735 /*
1736 * If the event is on, turn it off.
1737 * If it is in error state, leave it in error state.
1738 */
1739 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1740 update_context_time(ctx);
1741 update_cgrp_time_from_event(event);
1742 update_group_times(event);
1743 if (event == event->group_leader)
1744 group_sched_out(event, cpuctx, ctx);
1745 else
1746 event_sched_out(event, cpuctx, ctx);
1747 event->state = PERF_EVENT_STATE_OFF;
1748 }
1749
1750 raw_spin_unlock(&ctx->lock);
1751
1752 return 0;
1753 }
1754
1755 /*
1756 * Disable a event.
1757 *
1758 * If event->ctx is a cloned context, callers must make sure that
1759 * every task struct that event->ctx->task could possibly point to
1760 * remains valid. This condition is satisifed when called through
1761 * perf_event_for_each_child or perf_event_for_each because they
1762 * hold the top-level event's child_mutex, so any descendant that
1763 * goes to exit will block in sync_child_event.
1764 * When called from perf_pending_event it's OK because event->ctx
1765 * is the current context on this CPU and preemption is disabled,
1766 * hence we can't get into perf_event_task_sched_out for this context.
1767 */
1768 static void _perf_event_disable(struct perf_event *event)
1769 {
1770 struct perf_event_context *ctx = event->ctx;
1771 struct task_struct *task = ctx->task;
1772
1773 if (!task) {
1774 /*
1775 * Disable the event on the cpu that it's on
1776 */
1777 cpu_function_call(event->cpu, __perf_event_disable, event);
1778 return;
1779 }
1780
1781 retry:
1782 if (!task_function_call(task, __perf_event_disable, event))
1783 return;
1784
1785 raw_spin_lock_irq(&ctx->lock);
1786 /*
1787 * If the event is still active, we need to retry the cross-call.
1788 */
1789 if (event->state == PERF_EVENT_STATE_ACTIVE) {
1790 raw_spin_unlock_irq(&ctx->lock);
1791 /*
1792 * Reload the task pointer, it might have been changed by
1793 * a concurrent perf_event_context_sched_out().
1794 */
1795 task = ctx->task;
1796 goto retry;
1797 }
1798
1799 /*
1800 * Since we have the lock this context can't be scheduled
1801 * in, so we can change the state safely.
1802 */
1803 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1804 update_group_times(event);
1805 event->state = PERF_EVENT_STATE_OFF;
1806 }
1807 raw_spin_unlock_irq(&ctx->lock);
1808 }
1809
1810 /*
1811 * Strictly speaking kernel users cannot create groups and therefore this
1812 * interface does not need the perf_event_ctx_lock() magic.
1813 */
1814 void perf_event_disable(struct perf_event *event)
1815 {
1816 struct perf_event_context *ctx;
1817
1818 ctx = perf_event_ctx_lock(event);
1819 _perf_event_disable(event);
1820 perf_event_ctx_unlock(event, ctx);
1821 }
1822 EXPORT_SYMBOL_GPL(perf_event_disable);
1823
1824 static void perf_set_shadow_time(struct perf_event *event,
1825 struct perf_event_context *ctx,
1826 u64 tstamp)
1827 {
1828 /*
1829 * use the correct time source for the time snapshot
1830 *
1831 * We could get by without this by leveraging the
1832 * fact that to get to this function, the caller
1833 * has most likely already called update_context_time()
1834 * and update_cgrp_time_xx() and thus both timestamp
1835 * are identical (or very close). Given that tstamp is,
1836 * already adjusted for cgroup, we could say that:
1837 * tstamp - ctx->timestamp
1838 * is equivalent to
1839 * tstamp - cgrp->timestamp.
1840 *
1841 * Then, in perf_output_read(), the calculation would
1842 * work with no changes because:
1843 * - event is guaranteed scheduled in
1844 * - no scheduled out in between
1845 * - thus the timestamp would be the same
1846 *
1847 * But this is a bit hairy.
1848 *
1849 * So instead, we have an explicit cgroup call to remain
1850 * within the time time source all along. We believe it
1851 * is cleaner and simpler to understand.
1852 */
1853 if (is_cgroup_event(event))
1854 perf_cgroup_set_shadow_time(event, tstamp);
1855 else
1856 event->shadow_ctx_time = tstamp - ctx->timestamp;
1857 }
1858
1859 #define MAX_INTERRUPTS (~0ULL)
1860
1861 static void perf_log_throttle(struct perf_event *event, int enable);
1862 static void perf_log_itrace_start(struct perf_event *event);
1863
1864 static int
1865 event_sched_in(struct perf_event *event,
1866 struct perf_cpu_context *cpuctx,
1867 struct perf_event_context *ctx)
1868 {
1869 u64 tstamp = perf_event_time(event);
1870 int ret = 0;
1871
1872 lockdep_assert_held(&ctx->lock);
1873
1874 if (event->state <= PERF_EVENT_STATE_OFF)
1875 return 0;
1876
1877 event->state = PERF_EVENT_STATE_ACTIVE;
1878 event->oncpu = smp_processor_id();
1879
1880 /*
1881 * Unthrottle events, since we scheduled we might have missed several
1882 * ticks already, also for a heavily scheduling task there is little
1883 * guarantee it'll get a tick in a timely manner.
1884 */
1885 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1886 perf_log_throttle(event, 1);
1887 event->hw.interrupts = 0;
1888 }
1889
1890 /*
1891 * The new state must be visible before we turn it on in the hardware:
1892 */
1893 smp_wmb();
1894
1895 perf_pmu_disable(event->pmu);
1896
1897 perf_set_shadow_time(event, ctx, tstamp);
1898
1899 perf_log_itrace_start(event);
1900
1901 if (event->pmu->add(event, PERF_EF_START)) {
1902 event->state = PERF_EVENT_STATE_INACTIVE;
1903 event->oncpu = -1;
1904 ret = -EAGAIN;
1905 goto out;
1906 }
1907
1908 event->tstamp_running += tstamp - event->tstamp_stopped;
1909
1910 if (!is_software_event(event))
1911 cpuctx->active_oncpu++;
1912 if (!ctx->nr_active++)
1913 perf_event_ctx_activate(ctx);
1914 if (event->attr.freq && event->attr.sample_freq)
1915 ctx->nr_freq++;
1916
1917 if (event->attr.exclusive)
1918 cpuctx->exclusive = 1;
1919
1920 if (is_orphaned_child(event))
1921 schedule_orphans_remove(ctx);
1922
1923 out:
1924 perf_pmu_enable(event->pmu);
1925
1926 return ret;
1927 }
1928
1929 static int
1930 group_sched_in(struct perf_event *group_event,
1931 struct perf_cpu_context *cpuctx,
1932 struct perf_event_context *ctx)
1933 {
1934 struct perf_event *event, *partial_group = NULL;
1935 struct pmu *pmu = ctx->pmu;
1936 u64 now = ctx->time;
1937 bool simulate = false;
1938
1939 if (group_event->state == PERF_EVENT_STATE_OFF)
1940 return 0;
1941
1942 pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
1943
1944 if (event_sched_in(group_event, cpuctx, ctx)) {
1945 pmu->cancel_txn(pmu);
1946 perf_mux_hrtimer_restart(cpuctx);
1947 return -EAGAIN;
1948 }
1949
1950 /*
1951 * Schedule in siblings as one group (if any):
1952 */
1953 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1954 if (event_sched_in(event, cpuctx, ctx)) {
1955 partial_group = event;
1956 goto group_error;
1957 }
1958 }
1959
1960 if (!pmu->commit_txn(pmu))
1961 return 0;
1962
1963 group_error:
1964 /*
1965 * Groups can be scheduled in as one unit only, so undo any
1966 * partial group before returning:
1967 * The events up to the failed event are scheduled out normally,
1968 * tstamp_stopped will be updated.
1969 *
1970 * The failed events and the remaining siblings need to have
1971 * their timings updated as if they had gone thru event_sched_in()
1972 * and event_sched_out(). This is required to get consistent timings
1973 * across the group. This also takes care of the case where the group
1974 * could never be scheduled by ensuring tstamp_stopped is set to mark
1975 * the time the event was actually stopped, such that time delta
1976 * calculation in update_event_times() is correct.
1977 */
1978 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1979 if (event == partial_group)
1980 simulate = true;
1981
1982 if (simulate) {
1983 event->tstamp_running += now - event->tstamp_stopped;
1984 event->tstamp_stopped = now;
1985 } else {
1986 event_sched_out(event, cpuctx, ctx);
1987 }
1988 }
1989 event_sched_out(group_event, cpuctx, ctx);
1990
1991 pmu->cancel_txn(pmu);
1992
1993 perf_mux_hrtimer_restart(cpuctx);
1994
1995 return -EAGAIN;
1996 }
1997
1998 /*
1999 * Work out whether we can put this event group on the CPU now.
2000 */
2001 static int group_can_go_on(struct perf_event *event,
2002 struct perf_cpu_context *cpuctx,
2003 int can_add_hw)
2004 {
2005 /*
2006 * Groups consisting entirely of software events can always go on.
2007 */
2008 if (event->group_flags & PERF_GROUP_SOFTWARE)
2009 return 1;
2010 /*
2011 * If an exclusive group is already on, no other hardware
2012 * events can go on.
2013 */
2014 if (cpuctx->exclusive)
2015 return 0;
2016 /*
2017 * If this group is exclusive and there are already
2018 * events on the CPU, it can't go on.
2019 */
2020 if (event->attr.exclusive && cpuctx->active_oncpu)
2021 return 0;
2022 /*
2023 * Otherwise, try to add it if all previous groups were able
2024 * to go on.
2025 */
2026 return can_add_hw;
2027 }
2028
2029 static void add_event_to_ctx(struct perf_event *event,
2030 struct perf_event_context *ctx)
2031 {
2032 u64 tstamp = perf_event_time(event);
2033
2034 list_add_event(event, ctx);
2035 perf_group_attach(event);
2036 event->tstamp_enabled = tstamp;
2037 event->tstamp_running = tstamp;
2038 event->tstamp_stopped = tstamp;
2039 }
2040
2041 static void task_ctx_sched_out(struct perf_event_context *ctx);
2042 static void
2043 ctx_sched_in(struct perf_event_context *ctx,
2044 struct perf_cpu_context *cpuctx,
2045 enum event_type_t event_type,
2046 struct task_struct *task);
2047
2048 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2049 struct perf_event_context *ctx,
2050 struct task_struct *task)
2051 {
2052 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2053 if (ctx)
2054 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2055 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2056 if (ctx)
2057 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2058 }
2059
2060 /*
2061 * Cross CPU call to install and enable a performance event
2062 *
2063 * Must be called with ctx->mutex held
2064 */
2065 static int __perf_install_in_context(void *info)
2066 {
2067 struct perf_event *event = info;
2068 struct perf_event_context *ctx = event->ctx;
2069 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2070 struct perf_event_context *task_ctx = cpuctx->task_ctx;
2071 struct task_struct *task = current;
2072
2073 perf_ctx_lock(cpuctx, task_ctx);
2074 perf_pmu_disable(cpuctx->ctx.pmu);
2075
2076 /*
2077 * If there was an active task_ctx schedule it out.
2078 */
2079 if (task_ctx)
2080 task_ctx_sched_out(task_ctx);
2081
2082 /*
2083 * If the context we're installing events in is not the
2084 * active task_ctx, flip them.
2085 */
2086 if (ctx->task && task_ctx != ctx) {
2087 if (task_ctx)
2088 raw_spin_unlock(&task_ctx->lock);
2089 raw_spin_lock(&ctx->lock);
2090 task_ctx = ctx;
2091 }
2092
2093 if (task_ctx) {
2094 cpuctx->task_ctx = task_ctx;
2095 task = task_ctx->task;
2096 }
2097
2098 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
2099
2100 update_context_time(ctx);
2101 /*
2102 * update cgrp time only if current cgrp
2103 * matches event->cgrp. Must be done before
2104 * calling add_event_to_ctx()
2105 */
2106 update_cgrp_time_from_event(event);
2107
2108 add_event_to_ctx(event, ctx);
2109
2110 /*
2111 * Schedule everything back in
2112 */
2113 perf_event_sched_in(cpuctx, task_ctx, task);
2114
2115 perf_pmu_enable(cpuctx->ctx.pmu);
2116 perf_ctx_unlock(cpuctx, task_ctx);
2117
2118 return 0;
2119 }
2120
2121 /*
2122 * Attach a performance event to a context
2123 *
2124 * First we add the event to the list with the hardware enable bit
2125 * in event->hw_config cleared.
2126 *
2127 * If the event is attached to a task which is on a CPU we use a smp
2128 * call to enable it in the task context. The task might have been
2129 * scheduled away, but we check this in the smp call again.
2130 */
2131 static void
2132 perf_install_in_context(struct perf_event_context *ctx,
2133 struct perf_event *event,
2134 int cpu)
2135 {
2136 struct task_struct *task = ctx->task;
2137
2138 lockdep_assert_held(&ctx->mutex);
2139
2140 event->ctx = ctx;
2141 if (event->cpu != -1)
2142 event->cpu = cpu;
2143
2144 if (!task) {
2145 /*
2146 * Per cpu events are installed via an smp call and
2147 * the install is always successful.
2148 */
2149 cpu_function_call(cpu, __perf_install_in_context, event);
2150 return;
2151 }
2152
2153 retry:
2154 if (!task_function_call(task, __perf_install_in_context, event))
2155 return;
2156
2157 raw_spin_lock_irq(&ctx->lock);
2158 /*
2159 * If we failed to find a running task, but find the context active now
2160 * that we've acquired the ctx->lock, retry.
2161 */
2162 if (ctx->is_active) {
2163 raw_spin_unlock_irq(&ctx->lock);
2164 /*
2165 * Reload the task pointer, it might have been changed by
2166 * a concurrent perf_event_context_sched_out().
2167 */
2168 task = ctx->task;
2169 goto retry;
2170 }
2171
2172 /*
2173 * Since the task isn't running, its safe to add the event, us holding
2174 * the ctx->lock ensures the task won't get scheduled in.
2175 */
2176 add_event_to_ctx(event, ctx);
2177 raw_spin_unlock_irq(&ctx->lock);
2178 }
2179
2180 /*
2181 * Put a event into inactive state and update time fields.
2182 * Enabling the leader of a group effectively enables all
2183 * the group members that aren't explicitly disabled, so we
2184 * have to update their ->tstamp_enabled also.
2185 * Note: this works for group members as well as group leaders
2186 * since the non-leader members' sibling_lists will be empty.
2187 */
2188 static void __perf_event_mark_enabled(struct perf_event *event)
2189 {
2190 struct perf_event *sub;
2191 u64 tstamp = perf_event_time(event);
2192
2193 event->state = PERF_EVENT_STATE_INACTIVE;
2194 event->tstamp_enabled = tstamp - event->total_time_enabled;
2195 list_for_each_entry(sub, &event->sibling_list, group_entry) {
2196 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2197 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
2198 }
2199 }
2200
2201 /*
2202 * Cross CPU call to enable a performance event
2203 */
2204 static int __perf_event_enable(void *info)
2205 {
2206 struct perf_event *event = info;
2207 struct perf_event_context *ctx = event->ctx;
2208 struct perf_event *leader = event->group_leader;
2209 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2210 int err;
2211
2212 /*
2213 * There's a time window between 'ctx->is_active' check
2214 * in perf_event_enable function and this place having:
2215 * - IRQs on
2216 * - ctx->lock unlocked
2217 *
2218 * where the task could be killed and 'ctx' deactivated
2219 * by perf_event_exit_task.
2220 */
2221 if (!ctx->is_active)
2222 return -EINVAL;
2223
2224 raw_spin_lock(&ctx->lock);
2225 update_context_time(ctx);
2226
2227 if (event->state >= PERF_EVENT_STATE_INACTIVE)
2228 goto unlock;
2229
2230 /*
2231 * set current task's cgroup time reference point
2232 */
2233 perf_cgroup_set_timestamp(current, ctx);
2234
2235 __perf_event_mark_enabled(event);
2236
2237 if (!event_filter_match(event)) {
2238 if (is_cgroup_event(event))
2239 perf_cgroup_defer_enabled(event);
2240 goto unlock;
2241 }
2242
2243 /*
2244 * If the event is in a group and isn't the group leader,
2245 * then don't put it on unless the group is on.
2246 */
2247 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
2248 goto unlock;
2249
2250 if (!group_can_go_on(event, cpuctx, 1)) {
2251 err = -EEXIST;
2252 } else {
2253 if (event == leader)
2254 err = group_sched_in(event, cpuctx, ctx);
2255 else
2256 err = event_sched_in(event, cpuctx, ctx);
2257 }
2258
2259 if (err) {
2260 /*
2261 * If this event can't go on and it's part of a
2262 * group, then the whole group has to come off.
2263 */
2264 if (leader != event) {
2265 group_sched_out(leader, cpuctx, ctx);
2266 perf_mux_hrtimer_restart(cpuctx);
2267 }
2268 if (leader->attr.pinned) {
2269 update_group_times(leader);
2270 leader->state = PERF_EVENT_STATE_ERROR;
2271 }
2272 }
2273
2274 unlock:
2275 raw_spin_unlock(&ctx->lock);
2276
2277 return 0;
2278 }
2279
2280 /*
2281 * Enable a event.
2282 *
2283 * If event->ctx is a cloned context, callers must make sure that
2284 * every task struct that event->ctx->task could possibly point to
2285 * remains valid. This condition is satisfied when called through
2286 * perf_event_for_each_child or perf_event_for_each as described
2287 * for perf_event_disable.
2288 */
2289 static void _perf_event_enable(struct perf_event *event)
2290 {
2291 struct perf_event_context *ctx = event->ctx;
2292 struct task_struct *task = ctx->task;
2293
2294 if (!task) {
2295 /*
2296 * Enable the event on the cpu that it's on
2297 */
2298 cpu_function_call(event->cpu, __perf_event_enable, event);
2299 return;
2300 }
2301
2302 raw_spin_lock_irq(&ctx->lock);
2303 if (event->state >= PERF_EVENT_STATE_INACTIVE)
2304 goto out;
2305
2306 /*
2307 * If the event is in error state, clear that first.
2308 * That way, if we see the event in error state below, we
2309 * know that it has gone back into error state, as distinct
2310 * from the task having been scheduled away before the
2311 * cross-call arrived.
2312 */
2313 if (event->state == PERF_EVENT_STATE_ERROR)
2314 event->state = PERF_EVENT_STATE_OFF;
2315
2316 retry:
2317 if (!ctx->is_active) {
2318 __perf_event_mark_enabled(event);
2319 goto out;
2320 }
2321
2322 raw_spin_unlock_irq(&ctx->lock);
2323
2324 if (!task_function_call(task, __perf_event_enable, event))
2325 return;
2326
2327 raw_spin_lock_irq(&ctx->lock);
2328
2329 /*
2330 * If the context is active and the event is still off,
2331 * we need to retry the cross-call.
2332 */
2333 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
2334 /*
2335 * task could have been flipped by a concurrent
2336 * perf_event_context_sched_out()
2337 */
2338 task = ctx->task;
2339 goto retry;
2340 }
2341
2342 out:
2343 raw_spin_unlock_irq(&ctx->lock);
2344 }
2345
2346 /*
2347 * See perf_event_disable();
2348 */
2349 void perf_event_enable(struct perf_event *event)
2350 {
2351 struct perf_event_context *ctx;
2352
2353 ctx = perf_event_ctx_lock(event);
2354 _perf_event_enable(event);
2355 perf_event_ctx_unlock(event, ctx);
2356 }
2357 EXPORT_SYMBOL_GPL(perf_event_enable);
2358
2359 static int _perf_event_refresh(struct perf_event *event, int refresh)
2360 {
2361 /*
2362 * not supported on inherited events
2363 */
2364 if (event->attr.inherit || !is_sampling_event(event))
2365 return -EINVAL;
2366
2367 atomic_add(refresh, &event->event_limit);
2368 _perf_event_enable(event);
2369
2370 return 0;
2371 }
2372
2373 /*
2374 * See perf_event_disable()
2375 */
2376 int perf_event_refresh(struct perf_event *event, int refresh)
2377 {
2378 struct perf_event_context *ctx;
2379 int ret;
2380
2381 ctx = perf_event_ctx_lock(event);
2382 ret = _perf_event_refresh(event, refresh);
2383 perf_event_ctx_unlock(event, ctx);
2384
2385 return ret;
2386 }
2387 EXPORT_SYMBOL_GPL(perf_event_refresh);
2388
2389 static void ctx_sched_out(struct perf_event_context *ctx,
2390 struct perf_cpu_context *cpuctx,
2391 enum event_type_t event_type)
2392 {
2393 struct perf_event *event;
2394 int is_active = ctx->is_active;
2395
2396 ctx->is_active &= ~event_type;
2397 if (likely(!ctx->nr_events))
2398 return;
2399
2400 update_context_time(ctx);
2401 update_cgrp_time_from_cpuctx(cpuctx);
2402 if (!ctx->nr_active)
2403 return;
2404
2405 perf_pmu_disable(ctx->pmu);
2406 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
2407 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2408 group_sched_out(event, cpuctx, ctx);
2409 }
2410
2411 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
2412 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2413 group_sched_out(event, cpuctx, ctx);
2414 }
2415 perf_pmu_enable(ctx->pmu);
2416 }
2417
2418 /*
2419 * Test whether two contexts are equivalent, i.e. whether they have both been
2420 * cloned from the same version of the same context.
2421 *
2422 * Equivalence is measured using a generation number in the context that is
2423 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2424 * and list_del_event().
2425 */
2426 static int context_equiv(struct perf_event_context *ctx1,
2427 struct perf_event_context *ctx2)
2428 {
2429 lockdep_assert_held(&ctx1->lock);
2430 lockdep_assert_held(&ctx2->lock);
2431
2432 /* Pinning disables the swap optimization */
2433 if (ctx1->pin_count || ctx2->pin_count)
2434 return 0;
2435
2436 /* If ctx1 is the parent of ctx2 */
2437 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2438 return 1;
2439
2440 /* If ctx2 is the parent of ctx1 */
2441 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2442 return 1;
2443
2444 /*
2445 * If ctx1 and ctx2 have the same parent; we flatten the parent
2446 * hierarchy, see perf_event_init_context().
2447 */
2448 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2449 ctx1->parent_gen == ctx2->parent_gen)
2450 return 1;
2451
2452 /* Unmatched */
2453 return 0;
2454 }
2455
2456 static void __perf_event_sync_stat(struct perf_event *event,
2457 struct perf_event *next_event)
2458 {
2459 u64 value;
2460
2461 if (!event->attr.inherit_stat)
2462 return;
2463
2464 /*
2465 * Update the event value, we cannot use perf_event_read()
2466 * because we're in the middle of a context switch and have IRQs
2467 * disabled, which upsets smp_call_function_single(), however
2468 * we know the event must be on the current CPU, therefore we
2469 * don't need to use it.
2470 */
2471 switch (event->state) {
2472 case PERF_EVENT_STATE_ACTIVE:
2473 event->pmu->read(event);
2474 /* fall-through */
2475
2476 case PERF_EVENT_STATE_INACTIVE:
2477 update_event_times(event);
2478 break;
2479
2480 default:
2481 break;
2482 }
2483
2484 /*
2485 * In order to keep per-task stats reliable we need to flip the event
2486 * values when we flip the contexts.
2487 */
2488 value = local64_read(&next_event->count);
2489 value = local64_xchg(&event->count, value);
2490 local64_set(&next_event->count, value);
2491
2492 swap(event->total_time_enabled, next_event->total_time_enabled);
2493 swap(event->total_time_running, next_event->total_time_running);
2494
2495 /*
2496 * Since we swizzled the values, update the user visible data too.
2497 */
2498 perf_event_update_userpage(event);
2499 perf_event_update_userpage(next_event);
2500 }
2501
2502 static void perf_event_sync_stat(struct perf_event_context *ctx,
2503 struct perf_event_context *next_ctx)
2504 {
2505 struct perf_event *event, *next_event;
2506
2507 if (!ctx->nr_stat)
2508 return;
2509
2510 update_context_time(ctx);
2511
2512 event = list_first_entry(&ctx->event_list,
2513 struct perf_event, event_entry);
2514
2515 next_event = list_first_entry(&next_ctx->event_list,
2516 struct perf_event, event_entry);
2517
2518 while (&event->event_entry != &ctx->event_list &&
2519 &next_event->event_entry != &next_ctx->event_list) {
2520
2521 __perf_event_sync_stat(event, next_event);
2522
2523 event = list_next_entry(event, event_entry);
2524 next_event = list_next_entry(next_event, event_entry);
2525 }
2526 }
2527
2528 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2529 struct task_struct *next)
2530 {
2531 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2532 struct perf_event_context *next_ctx;
2533 struct perf_event_context *parent, *next_parent;
2534 struct perf_cpu_context *cpuctx;
2535 int do_switch = 1;
2536
2537 if (likely(!ctx))
2538 return;
2539
2540 cpuctx = __get_cpu_context(ctx);
2541 if (!cpuctx->task_ctx)
2542 return;
2543
2544 rcu_read_lock();
2545 next_ctx = next->perf_event_ctxp[ctxn];
2546 if (!next_ctx)
2547 goto unlock;
2548
2549 parent = rcu_dereference(ctx->parent_ctx);
2550 next_parent = rcu_dereference(next_ctx->parent_ctx);
2551
2552 /* If neither context have a parent context; they cannot be clones. */
2553 if (!parent && !next_parent)
2554 goto unlock;
2555
2556 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2557 /*
2558 * Looks like the two contexts are clones, so we might be
2559 * able to optimize the context switch. We lock both
2560 * contexts and check that they are clones under the
2561 * lock (including re-checking that neither has been
2562 * uncloned in the meantime). It doesn't matter which
2563 * order we take the locks because no other cpu could
2564 * be trying to lock both of these tasks.
2565 */
2566 raw_spin_lock(&ctx->lock);
2567 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2568 if (context_equiv(ctx, next_ctx)) {
2569 /*
2570 * XXX do we need a memory barrier of sorts
2571 * wrt to rcu_dereference() of perf_event_ctxp
2572 */
2573 task->perf_event_ctxp[ctxn] = next_ctx;
2574 next->perf_event_ctxp[ctxn] = ctx;
2575 ctx->task = next;
2576 next_ctx->task = task;
2577
2578 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2579
2580 do_switch = 0;
2581
2582 perf_event_sync_stat(ctx, next_ctx);
2583 }
2584 raw_spin_unlock(&next_ctx->lock);
2585 raw_spin_unlock(&ctx->lock);
2586 }
2587 unlock:
2588 rcu_read_unlock();
2589
2590 if (do_switch) {
2591 raw_spin_lock(&ctx->lock);
2592 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2593 cpuctx->task_ctx = NULL;
2594 raw_spin_unlock(&ctx->lock);
2595 }
2596 }
2597
2598 void perf_sched_cb_dec(struct pmu *pmu)
2599 {
2600 this_cpu_dec(perf_sched_cb_usages);
2601 }
2602
2603 void perf_sched_cb_inc(struct pmu *pmu)
2604 {
2605 this_cpu_inc(perf_sched_cb_usages);
2606 }
2607
2608 /*
2609 * This function provides the context switch callback to the lower code
2610 * layer. It is invoked ONLY when the context switch callback is enabled.
2611 */
2612 static void perf_pmu_sched_task(struct task_struct *prev,
2613 struct task_struct *next,
2614 bool sched_in)
2615 {
2616 struct perf_cpu_context *cpuctx;
2617 struct pmu *pmu;
2618 unsigned long flags;
2619
2620 if (prev == next)
2621 return;
2622
2623 local_irq_save(flags);
2624
2625 rcu_read_lock();
2626
2627 list_for_each_entry_rcu(pmu, &pmus, entry) {
2628 if (pmu->sched_task) {
2629 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2630
2631 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2632
2633 perf_pmu_disable(pmu);
2634
2635 pmu->sched_task(cpuctx->task_ctx, sched_in);
2636
2637 perf_pmu_enable(pmu);
2638
2639 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2640 }
2641 }
2642
2643 rcu_read_unlock();
2644
2645 local_irq_restore(flags);
2646 }
2647
2648 static void perf_event_switch(struct task_struct *task,
2649 struct task_struct *next_prev, bool sched_in);
2650
2651 #define for_each_task_context_nr(ctxn) \
2652 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2653
2654 /*
2655 * Called from scheduler to remove the events of the current task,
2656 * with interrupts disabled.
2657 *
2658 * We stop each event and update the event value in event->count.
2659 *
2660 * This does not protect us against NMI, but disable()
2661 * sets the disabled bit in the control field of event _before_
2662 * accessing the event control register. If a NMI hits, then it will
2663 * not restart the event.
2664 */
2665 void __perf_event_task_sched_out(struct task_struct *task,
2666 struct task_struct *next)
2667 {
2668 int ctxn;
2669
2670 if (__this_cpu_read(perf_sched_cb_usages))
2671 perf_pmu_sched_task(task, next, false);
2672
2673 if (atomic_read(&nr_switch_events))
2674 perf_event_switch(task, next, false);
2675
2676 for_each_task_context_nr(ctxn)
2677 perf_event_context_sched_out(task, ctxn, next);
2678
2679 /*
2680 * if cgroup events exist on this CPU, then we need
2681 * to check if we have to switch out PMU state.
2682 * cgroup event are system-wide mode only
2683 */
2684 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2685 perf_cgroup_sched_out(task, next);
2686 }
2687
2688 static void task_ctx_sched_out(struct perf_event_context *ctx)
2689 {
2690 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2691
2692 if (!cpuctx->task_ctx)
2693 return;
2694
2695 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2696 return;
2697
2698 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2699 cpuctx->task_ctx = NULL;
2700 }
2701
2702 /*
2703 * Called with IRQs disabled
2704 */
2705 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2706 enum event_type_t event_type)
2707 {
2708 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2709 }
2710
2711 static void
2712 ctx_pinned_sched_in(struct perf_event_context *ctx,
2713 struct perf_cpu_context *cpuctx)
2714 {
2715 struct perf_event *event;
2716
2717 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2718 if (event->state <= PERF_EVENT_STATE_OFF)
2719 continue;
2720 if (!event_filter_match(event))
2721 continue;
2722
2723 /* may need to reset tstamp_enabled */
2724 if (is_cgroup_event(event))
2725 perf_cgroup_mark_enabled(event, ctx);
2726
2727 if (group_can_go_on(event, cpuctx, 1))
2728 group_sched_in(event, cpuctx, ctx);
2729
2730 /*
2731 * If this pinned group hasn't been scheduled,
2732 * put it in error state.
2733 */
2734 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2735 update_group_times(event);
2736 event->state = PERF_EVENT_STATE_ERROR;
2737 }
2738 }
2739 }
2740
2741 static void
2742 ctx_flexible_sched_in(struct perf_event_context *ctx,
2743 struct perf_cpu_context *cpuctx)
2744 {
2745 struct perf_event *event;
2746 int can_add_hw = 1;
2747
2748 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2749 /* Ignore events in OFF or ERROR state */
2750 if (event->state <= PERF_EVENT_STATE_OFF)
2751 continue;
2752 /*
2753 * Listen to the 'cpu' scheduling filter constraint
2754 * of events:
2755 */
2756 if (!event_filter_match(event))
2757 continue;
2758
2759 /* may need to reset tstamp_enabled */
2760 if (is_cgroup_event(event))
2761 perf_cgroup_mark_enabled(event, ctx);
2762
2763 if (group_can_go_on(event, cpuctx, can_add_hw)) {
2764 if (group_sched_in(event, cpuctx, ctx))
2765 can_add_hw = 0;
2766 }
2767 }
2768 }
2769
2770 static void
2771 ctx_sched_in(struct perf_event_context *ctx,
2772 struct perf_cpu_context *cpuctx,
2773 enum event_type_t event_type,
2774 struct task_struct *task)
2775 {
2776 u64 now;
2777 int is_active = ctx->is_active;
2778
2779 ctx->is_active |= event_type;
2780 if (likely(!ctx->nr_events))
2781 return;
2782
2783 now = perf_clock();
2784 ctx->timestamp = now;
2785 perf_cgroup_set_timestamp(task, ctx);
2786 /*
2787 * First go through the list and put on any pinned groups
2788 * in order to give them the best chance of going on.
2789 */
2790 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2791 ctx_pinned_sched_in(ctx, cpuctx);
2792
2793 /* Then walk through the lower prio flexible groups */
2794 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2795 ctx_flexible_sched_in(ctx, cpuctx);
2796 }
2797
2798 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
2799 enum event_type_t event_type,
2800 struct task_struct *task)
2801 {
2802 struct perf_event_context *ctx = &cpuctx->ctx;
2803
2804 ctx_sched_in(ctx, cpuctx, event_type, task);
2805 }
2806
2807 static void perf_event_context_sched_in(struct perf_event_context *ctx,
2808 struct task_struct *task)
2809 {
2810 struct perf_cpu_context *cpuctx;
2811
2812 cpuctx = __get_cpu_context(ctx);
2813 if (cpuctx->task_ctx == ctx)
2814 return;
2815
2816 perf_ctx_lock(cpuctx, ctx);
2817 perf_pmu_disable(ctx->pmu);
2818 /*
2819 * We want to keep the following priority order:
2820 * cpu pinned (that don't need to move), task pinned,
2821 * cpu flexible, task flexible.
2822 */
2823 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2824
2825 if (ctx->nr_events)
2826 cpuctx->task_ctx = ctx;
2827
2828 perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2829
2830 perf_pmu_enable(ctx->pmu);
2831 perf_ctx_unlock(cpuctx, ctx);
2832 }
2833
2834 /*
2835 * Called from scheduler to add the events of the current task
2836 * with interrupts disabled.
2837 *
2838 * We restore the event value and then enable it.
2839 *
2840 * This does not protect us against NMI, but enable()
2841 * sets the enabled bit in the control field of event _before_
2842 * accessing the event control register. If a NMI hits, then it will
2843 * keep the event running.
2844 */
2845 void __perf_event_task_sched_in(struct task_struct *prev,
2846 struct task_struct *task)
2847 {
2848 struct perf_event_context *ctx;
2849 int ctxn;
2850
2851 for_each_task_context_nr(ctxn) {
2852 ctx = task->perf_event_ctxp[ctxn];
2853 if (likely(!ctx))
2854 continue;
2855
2856 perf_event_context_sched_in(ctx, task);
2857 }
2858 /*
2859 * if cgroup events exist on this CPU, then we need
2860 * to check if we have to switch in PMU state.
2861 * cgroup event are system-wide mode only
2862 */
2863 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2864 perf_cgroup_sched_in(prev, task);
2865
2866 if (atomic_read(&nr_switch_events))
2867 perf_event_switch(task, prev, true);
2868
2869 if (__this_cpu_read(perf_sched_cb_usages))
2870 perf_pmu_sched_task(prev, task, true);
2871 }
2872
2873 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2874 {
2875 u64 frequency = event->attr.sample_freq;
2876 u64 sec = NSEC_PER_SEC;
2877 u64 divisor, dividend;
2878
2879 int count_fls, nsec_fls, frequency_fls, sec_fls;
2880
2881 count_fls = fls64(count);
2882 nsec_fls = fls64(nsec);
2883 frequency_fls = fls64(frequency);
2884 sec_fls = 30;
2885
2886 /*
2887 * We got @count in @nsec, with a target of sample_freq HZ
2888 * the target period becomes:
2889 *
2890 * @count * 10^9
2891 * period = -------------------
2892 * @nsec * sample_freq
2893 *
2894 */
2895
2896 /*
2897 * Reduce accuracy by one bit such that @a and @b converge
2898 * to a similar magnitude.
2899 */
2900 #define REDUCE_FLS(a, b) \
2901 do { \
2902 if (a##_fls > b##_fls) { \
2903 a >>= 1; \
2904 a##_fls--; \
2905 } else { \
2906 b >>= 1; \
2907 b##_fls--; \
2908 } \
2909 } while (0)
2910
2911 /*
2912 * Reduce accuracy until either term fits in a u64, then proceed with
2913 * the other, so that finally we can do a u64/u64 division.
2914 */
2915 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2916 REDUCE_FLS(nsec, frequency);
2917 REDUCE_FLS(sec, count);
2918 }
2919
2920 if (count_fls + sec_fls > 64) {
2921 divisor = nsec * frequency;
2922
2923 while (count_fls + sec_fls > 64) {
2924 REDUCE_FLS(count, sec);
2925 divisor >>= 1;
2926 }
2927
2928 dividend = count * sec;
2929 } else {
2930 dividend = count * sec;
2931
2932 while (nsec_fls + frequency_fls > 64) {
2933 REDUCE_FLS(nsec, frequency);
2934 dividend >>= 1;
2935 }
2936
2937 divisor = nsec * frequency;
2938 }
2939
2940 if (!divisor)
2941 return dividend;
2942
2943 return div64_u64(dividend, divisor);
2944 }
2945
2946 static DEFINE_PER_CPU(int, perf_throttled_count);
2947 static DEFINE_PER_CPU(u64, perf_throttled_seq);
2948
2949 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2950 {
2951 struct hw_perf_event *hwc = &event->hw;
2952 s64 period, sample_period;
2953 s64 delta;
2954
2955 period = perf_calculate_period(event, nsec, count);
2956
2957 delta = (s64)(period - hwc->sample_period);
2958 delta = (delta + 7) / 8; /* low pass filter */
2959
2960 sample_period = hwc->sample_period + delta;
2961
2962 if (!sample_period)
2963 sample_period = 1;
2964
2965 hwc->sample_period = sample_period;
2966
2967 if (local64_read(&hwc->period_left) > 8*sample_period) {
2968 if (disable)
2969 event->pmu->stop(event, PERF_EF_UPDATE);
2970
2971 local64_set(&hwc->period_left, 0);
2972
2973 if (disable)
2974 event->pmu->start(event, PERF_EF_RELOAD);
2975 }
2976 }
2977
2978 /*
2979 * combine freq adjustment with unthrottling to avoid two passes over the
2980 * events. At the same time, make sure, having freq events does not change
2981 * the rate of unthrottling as that would introduce bias.
2982 */
2983 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2984 int needs_unthr)
2985 {
2986 struct perf_event *event;
2987 struct hw_perf_event *hwc;
2988 u64 now, period = TICK_NSEC;
2989 s64 delta;
2990
2991 /*
2992 * only need to iterate over all events iff:
2993 * - context have events in frequency mode (needs freq adjust)
2994 * - there are events to unthrottle on this cpu
2995 */
2996 if (!(ctx->nr_freq || needs_unthr))
2997 return;
2998
2999 raw_spin_lock(&ctx->lock);
3000 perf_pmu_disable(ctx->pmu);
3001
3002 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3003 if (event->state != PERF_EVENT_STATE_ACTIVE)
3004 continue;
3005
3006 if (!event_filter_match(event))
3007 continue;
3008
3009 perf_pmu_disable(event->pmu);
3010
3011 hwc = &event->hw;
3012
3013 if (hwc->interrupts == MAX_INTERRUPTS) {
3014 hwc->interrupts = 0;
3015 perf_log_throttle(event, 1);
3016 event->pmu->start(event, 0);
3017 }
3018
3019 if (!event->attr.freq || !event->attr.sample_freq)
3020 goto next;
3021
3022 /*
3023 * stop the event and update event->count
3024 */
3025 event->pmu->stop(event, PERF_EF_UPDATE);
3026
3027 now = local64_read(&event->count);
3028 delta = now - hwc->freq_count_stamp;
3029 hwc->freq_count_stamp = now;
3030
3031 /*
3032 * restart the event
3033 * reload only if value has changed
3034 * we have stopped the event so tell that
3035 * to perf_adjust_period() to avoid stopping it
3036 * twice.
3037 */
3038 if (delta > 0)
3039 perf_adjust_period(event, period, delta, false);
3040
3041 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3042 next:
3043 perf_pmu_enable(event->pmu);
3044 }
3045
3046 perf_pmu_enable(ctx->pmu);
3047 raw_spin_unlock(&ctx->lock);
3048 }
3049
3050 /*
3051 * Round-robin a context's events:
3052 */
3053 static void rotate_ctx(struct perf_event_context *ctx)
3054 {
3055 /*
3056 * Rotate the first entry last of non-pinned groups. Rotation might be
3057 * disabled by the inheritance code.
3058 */
3059 if (!ctx->rotate_disable)
3060 list_rotate_left(&ctx->flexible_groups);
3061 }
3062
3063 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3064 {
3065 struct perf_event_context *ctx = NULL;
3066 int rotate = 0;
3067
3068 if (cpuctx->ctx.nr_events) {
3069 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3070 rotate = 1;
3071 }
3072
3073 ctx = cpuctx->task_ctx;
3074 if (ctx && ctx->nr_events) {
3075 if (ctx->nr_events != ctx->nr_active)
3076 rotate = 1;
3077 }
3078
3079 if (!rotate)
3080 goto done;
3081
3082 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3083 perf_pmu_disable(cpuctx->ctx.pmu);
3084
3085 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3086 if (ctx)
3087 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3088
3089 rotate_ctx(&cpuctx->ctx);
3090 if (ctx)
3091 rotate_ctx(ctx);
3092
3093 perf_event_sched_in(cpuctx, ctx, current);
3094
3095 perf_pmu_enable(cpuctx->ctx.pmu);
3096 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3097 done:
3098
3099 return rotate;
3100 }
3101
3102 #ifdef CONFIG_NO_HZ_FULL
3103 bool perf_event_can_stop_tick(void)
3104 {
3105 if (atomic_read(&nr_freq_events) ||
3106 __this_cpu_read(perf_throttled_count))
3107 return false;
3108 else
3109 return true;
3110 }
3111 #endif
3112
3113 void perf_event_task_tick(void)
3114 {
3115 struct list_head *head = this_cpu_ptr(&active_ctx_list);
3116 struct perf_event_context *ctx, *tmp;
3117 int throttled;
3118
3119 WARN_ON(!irqs_disabled());
3120
3121 __this_cpu_inc(perf_throttled_seq);
3122 throttled = __this_cpu_xchg(perf_throttled_count, 0);
3123
3124 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3125 perf_adjust_freq_unthr_context(ctx, throttled);
3126 }
3127
3128 static int event_enable_on_exec(struct perf_event *event,
3129 struct perf_event_context *ctx)
3130 {
3131 if (!event->attr.enable_on_exec)
3132 return 0;
3133
3134 event->attr.enable_on_exec = 0;
3135 if (event->state >= PERF_EVENT_STATE_INACTIVE)
3136 return 0;
3137
3138 __perf_event_mark_enabled(event);
3139
3140 return 1;
3141 }
3142
3143 /*
3144 * Enable all of a task's events that have been marked enable-on-exec.
3145 * This expects task == current.
3146 */
3147 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
3148 {
3149 struct perf_event_context *clone_ctx = NULL;
3150 struct perf_event *event;
3151 unsigned long flags;
3152 int enabled = 0;
3153 int ret;
3154
3155 local_irq_save(flags);
3156 if (!ctx || !ctx->nr_events)
3157 goto out;
3158
3159 /*
3160 * We must ctxsw out cgroup events to avoid conflict
3161 * when invoking perf_task_event_sched_in() later on
3162 * in this function. Otherwise we end up trying to
3163 * ctxswin cgroup events which are already scheduled
3164 * in.
3165 */
3166 perf_cgroup_sched_out(current, NULL);
3167
3168 raw_spin_lock(&ctx->lock);
3169 task_ctx_sched_out(ctx);
3170
3171 list_for_each_entry(event, &ctx->event_list, event_entry) {
3172 ret = event_enable_on_exec(event, ctx);
3173 if (ret)
3174 enabled = 1;
3175 }
3176
3177 /*
3178 * Unclone this context if we enabled any event.
3179 */
3180 if (enabled)
3181 clone_ctx = unclone_ctx(ctx);
3182
3183 raw_spin_unlock(&ctx->lock);
3184
3185 /*
3186 * Also calls ctxswin for cgroup events, if any:
3187 */
3188 perf_event_context_sched_in(ctx, ctx->task);
3189 out:
3190 local_irq_restore(flags);
3191
3192 if (clone_ctx)
3193 put_ctx(clone_ctx);
3194 }
3195
3196 void perf_event_exec(void)
3197 {
3198 struct perf_event_context *ctx;
3199 int ctxn;
3200
3201 rcu_read_lock();
3202 for_each_task_context_nr(ctxn) {
3203 ctx = current->perf_event_ctxp[ctxn];
3204 if (!ctx)
3205 continue;
3206
3207 perf_event_enable_on_exec(ctx);
3208 }
3209 rcu_read_unlock();
3210 }
3211
3212 struct perf_read_data {
3213 struct perf_event *event;
3214 bool group;
3215 int ret;
3216 };
3217
3218 /*
3219 * Cross CPU call to read the hardware event
3220 */
3221 static void __perf_event_read(void *info)
3222 {
3223 struct perf_read_data *data = info;
3224 struct perf_event *sub, *event = data->event;
3225 struct perf_event_context *ctx = event->ctx;
3226 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3227 struct pmu *pmu = event->pmu;
3228
3229 /*
3230 * If this is a task context, we need to check whether it is
3231 * the current task context of this cpu. If not it has been
3232 * scheduled out before the smp call arrived. In that case
3233 * event->count would have been updated to a recent sample
3234 * when the event was scheduled out.
3235 */
3236 if (ctx->task && cpuctx->task_ctx != ctx)
3237 return;
3238
3239 raw_spin_lock(&ctx->lock);
3240 if (ctx->is_active) {
3241 update_context_time(ctx);
3242 update_cgrp_time_from_event(event);
3243 }
3244
3245 update_event_times(event);
3246 if (event->state != PERF_EVENT_STATE_ACTIVE)
3247 goto unlock;
3248
3249 if (!data->group) {
3250 pmu->read(event);
3251 data->ret = 0;
3252 goto unlock;
3253 }
3254
3255 pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3256
3257 pmu->read(event);
3258
3259 list_for_each_entry(sub, &event->sibling_list, group_entry) {
3260 update_event_times(sub);
3261 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3262 /*
3263 * Use sibling's PMU rather than @event's since
3264 * sibling could be on different (eg: software) PMU.
3265 */
3266 sub->pmu->read(sub);
3267 }
3268 }
3269
3270 data->ret = pmu->commit_txn(pmu);
3271
3272 unlock:
3273 raw_spin_unlock(&ctx->lock);
3274 }
3275
3276 static inline u64 perf_event_count(struct perf_event *event)
3277 {
3278 if (event->pmu->count)
3279 return event->pmu->count(event);
3280
3281 return __perf_event_count(event);
3282 }
3283
3284 /*
3285 * NMI-safe method to read a local event, that is an event that
3286 * is:
3287 * - either for the current task, or for this CPU
3288 * - does not have inherit set, for inherited task events
3289 * will not be local and we cannot read them atomically
3290 * - must not have a pmu::count method
3291 */
3292 u64 perf_event_read_local(struct perf_event *event)
3293 {
3294 unsigned long flags;
3295 u64 val;
3296
3297 /*
3298 * Disabling interrupts avoids all counter scheduling (context
3299 * switches, timer based rotation and IPIs).
3300 */
3301 local_irq_save(flags);
3302
3303 /* If this is a per-task event, it must be for current */
3304 WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
3305 event->hw.target != current);
3306
3307 /* If this is a per-CPU event, it must be for this CPU */
3308 WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
3309 event->cpu != smp_processor_id());
3310
3311 /*
3312 * It must not be an event with inherit set, we cannot read
3313 * all child counters from atomic context.
3314 */
3315 WARN_ON_ONCE(event->attr.inherit);
3316
3317 /*
3318 * It must not have a pmu::count method, those are not
3319 * NMI safe.
3320 */
3321 WARN_ON_ONCE(event->pmu->count);
3322
3323 /*
3324 * If the event is currently on this CPU, its either a per-task event,
3325 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3326 * oncpu == -1).
3327 */
3328 if (event->oncpu == smp_processor_id())
3329 event->pmu->read(event);
3330
3331 val = local64_read(&event->count);
3332 local_irq_restore(flags);
3333
3334 return val;
3335 }
3336
3337 static int perf_event_read(struct perf_event *event, bool group)
3338 {
3339 int ret = 0;
3340
3341 /*
3342 * If event is enabled and currently active on a CPU, update the
3343 * value in the event structure:
3344 */
3345 if (event->state == PERF_EVENT_STATE_ACTIVE) {
3346 struct perf_read_data data = {
3347 .event = event,
3348 .group = group,
3349 .ret = 0,
3350 };
3351 smp_call_function_single(event->oncpu,
3352 __perf_event_read, &data, 1);
3353 ret = data.ret;
3354 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
3355 struct perf_event_context *ctx = event->ctx;
3356 unsigned long flags;
3357
3358 raw_spin_lock_irqsave(&ctx->lock, flags);
3359 /*
3360 * may read while context is not active
3361 * (e.g., thread is blocked), in that case
3362 * we cannot update context time
3363 */
3364 if (ctx->is_active) {
3365 update_context_time(ctx);
3366 update_cgrp_time_from_event(event);
3367 }
3368 if (group)
3369 update_group_times(event);
3370 else
3371 update_event_times(event);
3372 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3373 }
3374
3375 return ret;
3376 }
3377
3378 /*
3379 * Initialize the perf_event context in a task_struct:
3380 */
3381 static void __perf_event_init_context(struct perf_event_context *ctx)
3382 {
3383 raw_spin_lock_init(&ctx->lock);
3384 mutex_init(&ctx->mutex);
3385 INIT_LIST_HEAD(&ctx->active_ctx_list);
3386 INIT_LIST_HEAD(&ctx->pinned_groups);
3387 INIT_LIST_HEAD(&ctx->flexible_groups);
3388 INIT_LIST_HEAD(&ctx->event_list);
3389 atomic_set(&ctx->refcount, 1);
3390 INIT_DELAYED_WORK(&ctx->orphans_remove, orphans_remove_work);
3391 }
3392
3393 static struct perf_event_context *
3394 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3395 {
3396 struct perf_event_context *ctx;
3397
3398 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3399 if (!ctx)
3400 return NULL;
3401
3402 __perf_event_init_context(ctx);
3403 if (task) {
3404 ctx->task = task;
3405 get_task_struct(task);
3406 }
3407 ctx->pmu = pmu;
3408
3409 return ctx;
3410 }
3411
3412 static struct task_struct *
3413 find_lively_task_by_vpid(pid_t vpid)
3414 {
3415 struct task_struct *task;
3416 int err;
3417
3418 rcu_read_lock();
3419 if (!vpid)
3420 task = current;
3421 else
3422 task = find_task_by_vpid(vpid);
3423 if (task)
3424 get_task_struct(task);
3425 rcu_read_unlock();
3426
3427 if (!task)
3428 return ERR_PTR(-ESRCH);
3429
3430 /* Reuse ptrace permission checks for now. */
3431 err = -EACCES;
3432 if (!ptrace_may_access(task, PTRACE_MODE_READ))
3433 goto errout;
3434
3435 return task;
3436 errout:
3437 put_task_struct(task);
3438 return ERR_PTR(err);
3439
3440 }
3441
3442 /*
3443 * Returns a matching context with refcount and pincount.
3444 */
3445 static struct perf_event_context *
3446 find_get_context(struct pmu *pmu, struct task_struct *task,
3447 struct perf_event *event)
3448 {
3449 struct perf_event_context *ctx, *clone_ctx = NULL;
3450 struct perf_cpu_context *cpuctx;
3451 void *task_ctx_data = NULL;
3452 unsigned long flags;
3453 int ctxn, err;
3454 int cpu = event->cpu;
3455
3456 if (!task) {
3457 /* Must be root to operate on a CPU event: */
3458 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3459 return ERR_PTR(-EACCES);
3460
3461 /*
3462 * We could be clever and allow to attach a event to an
3463 * offline CPU and activate it when the CPU comes up, but
3464 * that's for later.
3465 */
3466 if (!cpu_online(cpu))
3467 return ERR_PTR(-ENODEV);
3468
3469 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3470 ctx = &cpuctx->ctx;
3471 get_ctx(ctx);
3472 ++ctx->pin_count;
3473
3474 return ctx;
3475 }
3476
3477 err = -EINVAL;
3478 ctxn = pmu->task_ctx_nr;
3479 if (ctxn < 0)
3480 goto errout;
3481
3482 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3483 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3484 if (!task_ctx_data) {
3485 err = -ENOMEM;
3486 goto errout;
3487 }
3488 }
3489
3490 retry:
3491 ctx = perf_lock_task_context(task, ctxn, &flags);
3492 if (ctx) {
3493 clone_ctx = unclone_ctx(ctx);
3494 ++ctx->pin_count;
3495
3496 if (task_ctx_data && !ctx->task_ctx_data) {
3497 ctx->task_ctx_data = task_ctx_data;
3498 task_ctx_data = NULL;
3499 }
3500 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3501
3502 if (clone_ctx)
3503 put_ctx(clone_ctx);
3504 } else {
3505 ctx = alloc_perf_context(pmu, task);
3506 err = -ENOMEM;
3507 if (!ctx)
3508 goto errout;
3509
3510 if (task_ctx_data) {
3511 ctx->task_ctx_data = task_ctx_data;
3512 task_ctx_data = NULL;
3513 }
3514
3515 err = 0;
3516 mutex_lock(&task->perf_event_mutex);
3517 /*
3518 * If it has already passed perf_event_exit_task().
3519 * we must see PF_EXITING, it takes this mutex too.
3520 */
3521 if (task->flags & PF_EXITING)
3522 err = -ESRCH;
3523 else if (task->perf_event_ctxp[ctxn])
3524 err = -EAGAIN;
3525 else {
3526 get_ctx(ctx);
3527 ++ctx->pin_count;
3528 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3529 }
3530 mutex_unlock(&task->perf_event_mutex);
3531
3532 if (unlikely(err)) {
3533 put_ctx(ctx);
3534
3535 if (err == -EAGAIN)
3536 goto retry;
3537 goto errout;
3538 }
3539 }
3540
3541 kfree(task_ctx_data);
3542 return ctx;
3543
3544 errout:
3545 kfree(task_ctx_data);
3546 return ERR_PTR(err);
3547 }
3548
3549 static void perf_event_free_filter(struct perf_event *event);
3550 static void perf_event_free_bpf_prog(struct perf_event *event);
3551
3552 static void free_event_rcu(struct rcu_head *head)
3553 {
3554 struct perf_event *event;
3555
3556 event = container_of(head, struct perf_event, rcu_head);
3557 if (event->ns)
3558 put_pid_ns(event->ns);
3559 perf_event_free_filter(event);
3560 kfree(event);
3561 }
3562
3563 static void ring_buffer_attach(struct perf_event *event,
3564 struct ring_buffer *rb);
3565
3566 static void unaccount_event_cpu(struct perf_event *event, int cpu)
3567 {
3568 if (event->parent)
3569 return;
3570
3571 if (is_cgroup_event(event))
3572 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3573 }
3574
3575 static void unaccount_event(struct perf_event *event)
3576 {
3577 if (event->parent)
3578 return;
3579
3580 if (event->attach_state & PERF_ATTACH_TASK)
3581 static_key_slow_dec_deferred(&perf_sched_events);
3582 if (event->attr.mmap || event->attr.mmap_data)
3583 atomic_dec(&nr_mmap_events);
3584 if (event->attr.comm)
3585 atomic_dec(&nr_comm_events);
3586 if (event->attr.task)
3587 atomic_dec(&nr_task_events);
3588 if (event->attr.freq)
3589 atomic_dec(&nr_freq_events);
3590 if (event->attr.context_switch) {
3591 static_key_slow_dec_deferred(&perf_sched_events);
3592 atomic_dec(&nr_switch_events);
3593 }
3594 if (is_cgroup_event(event))
3595 static_key_slow_dec_deferred(&perf_sched_events);
3596 if (has_branch_stack(event))
3597 static_key_slow_dec_deferred(&perf_sched_events);
3598
3599 unaccount_event_cpu(event, event->cpu);
3600 }
3601
3602 /*
3603 * The following implement mutual exclusion of events on "exclusive" pmus
3604 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3605 * at a time, so we disallow creating events that might conflict, namely:
3606 *
3607 * 1) cpu-wide events in the presence of per-task events,
3608 * 2) per-task events in the presence of cpu-wide events,
3609 * 3) two matching events on the same context.
3610 *
3611 * The former two cases are handled in the allocation path (perf_event_alloc(),
3612 * __free_event()), the latter -- before the first perf_install_in_context().
3613 */
3614 static int exclusive_event_init(struct perf_event *event)
3615 {
3616 struct pmu *pmu = event->pmu;
3617
3618 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3619 return 0;
3620
3621 /*
3622 * Prevent co-existence of per-task and cpu-wide events on the
3623 * same exclusive pmu.
3624 *
3625 * Negative pmu::exclusive_cnt means there are cpu-wide
3626 * events on this "exclusive" pmu, positive means there are
3627 * per-task events.
3628 *
3629 * Since this is called in perf_event_alloc() path, event::ctx
3630 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
3631 * to mean "per-task event", because unlike other attach states it
3632 * never gets cleared.
3633 */
3634 if (event->attach_state & PERF_ATTACH_TASK) {
3635 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
3636 return -EBUSY;
3637 } else {
3638 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
3639 return -EBUSY;
3640 }
3641
3642 return 0;
3643 }
3644
3645 static void exclusive_event_destroy(struct perf_event *event)
3646 {
3647 struct pmu *pmu = event->pmu;
3648
3649 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3650 return;
3651
3652 /* see comment in exclusive_event_init() */
3653 if (event->attach_state & PERF_ATTACH_TASK)
3654 atomic_dec(&pmu->exclusive_cnt);
3655 else
3656 atomic_inc(&pmu->exclusive_cnt);
3657 }
3658
3659 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
3660 {
3661 if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) &&
3662 (e1->cpu == e2->cpu ||
3663 e1->cpu == -1 ||
3664 e2->cpu == -1))
3665 return true;
3666 return false;
3667 }
3668
3669 /* Called under the same ctx::mutex as perf_install_in_context() */
3670 static bool exclusive_event_installable(struct perf_event *event,
3671 struct perf_event_context *ctx)
3672 {
3673 struct perf_event *iter_event;
3674 struct pmu *pmu = event->pmu;
3675
3676 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3677 return true;
3678
3679 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
3680 if (exclusive_event_match(iter_event, event))
3681 return false;
3682 }
3683
3684 return true;
3685 }
3686
3687 static void __free_event(struct perf_event *event)
3688 {
3689 if (!event->parent) {
3690 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3691 put_callchain_buffers();
3692 }
3693
3694 perf_event_free_bpf_prog(event);
3695
3696 if (event->destroy)
3697 event->destroy(event);
3698
3699 if (event->ctx)
3700 put_ctx(event->ctx);
3701
3702 if (event->pmu) {
3703 exclusive_event_destroy(event);
3704 module_put(event->pmu->module);
3705 }
3706
3707 call_rcu(&event->rcu_head, free_event_rcu);
3708 }
3709
3710 static void _free_event(struct perf_event *event)
3711 {
3712 irq_work_sync(&event->pending);
3713
3714 unaccount_event(event);
3715
3716 if (event->rb) {
3717 /*
3718 * Can happen when we close an event with re-directed output.
3719 *
3720 * Since we have a 0 refcount, perf_mmap_close() will skip
3721 * over us; possibly making our ring_buffer_put() the last.
3722 */
3723 mutex_lock(&event->mmap_mutex);
3724 ring_buffer_attach(event, NULL);
3725 mutex_unlock(&event->mmap_mutex);
3726 }
3727
3728 if (is_cgroup_event(event))
3729 perf_detach_cgroup(event);
3730
3731 __free_event(event);
3732 }
3733
3734 /*
3735 * Used to free events which have a known refcount of 1, such as in error paths
3736 * where the event isn't exposed yet and inherited events.
3737 */
3738 static void free_event(struct perf_event *event)
3739 {
3740 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
3741 "unexpected event refcount: %ld; ptr=%p\n",
3742 atomic_long_read(&event->refcount), event)) {
3743 /* leak to avoid use-after-free */
3744 return;
3745 }
3746
3747 _free_event(event);
3748 }
3749
3750 /*
3751 * Remove user event from the owner task.
3752 */
3753 static void perf_remove_from_owner(struct perf_event *event)
3754 {
3755 struct task_struct *owner;
3756
3757 rcu_read_lock();
3758 owner = ACCESS_ONCE(event->owner);
3759 /*
3760 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
3761 * !owner it means the list deletion is complete and we can indeed
3762 * free this event, otherwise we need to serialize on
3763 * owner->perf_event_mutex.
3764 */
3765 smp_read_barrier_depends();
3766 if (owner) {
3767 /*
3768 * Since delayed_put_task_struct() also drops the last
3769 * task reference we can safely take a new reference
3770 * while holding the rcu_read_lock().
3771 */
3772 get_task_struct(owner);
3773 }
3774 rcu_read_unlock();
3775
3776 if (owner) {
3777 /*
3778 * If we're here through perf_event_exit_task() we're already
3779 * holding ctx->mutex which would be an inversion wrt. the
3780 * normal lock order.
3781 *
3782 * However we can safely take this lock because its the child
3783 * ctx->mutex.
3784 */
3785 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
3786
3787 /*
3788 * We have to re-check the event->owner field, if it is cleared
3789 * we raced with perf_event_exit_task(), acquiring the mutex
3790 * ensured they're done, and we can proceed with freeing the
3791 * event.
3792 */
3793 if (event->owner)
3794 list_del_init(&event->owner_entry);
3795 mutex_unlock(&owner->perf_event_mutex);
3796 put_task_struct(owner);
3797 }
3798 }
3799
3800 static void put_event(struct perf_event *event)
3801 {
3802 struct perf_event_context *ctx;
3803
3804 if (!atomic_long_dec_and_test(&event->refcount))
3805 return;
3806
3807 if (!is_kernel_event(event))
3808 perf_remove_from_owner(event);
3809
3810 /*
3811 * There are two ways this annotation is useful:
3812 *
3813 * 1) there is a lock recursion from perf_event_exit_task
3814 * see the comment there.
3815 *
3816 * 2) there is a lock-inversion with mmap_sem through
3817 * perf_read_group(), which takes faults while
3818 * holding ctx->mutex, however this is called after
3819 * the last filedesc died, so there is no possibility
3820 * to trigger the AB-BA case.
3821 */
3822 ctx = perf_event_ctx_lock_nested(event, SINGLE_DEPTH_NESTING);
3823 WARN_ON_ONCE(ctx->parent_ctx);
3824 perf_remove_from_context(event, true);
3825 perf_event_ctx_unlock(event, ctx);
3826
3827 _free_event(event);
3828 }
3829
3830 int perf_event_release_kernel(struct perf_event *event)
3831 {
3832 put_event(event);
3833 return 0;
3834 }
3835 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
3836
3837 /*
3838 * Called when the last reference to the file is gone.
3839 */
3840 static int perf_release(struct inode *inode, struct file *file)
3841 {
3842 put_event(file->private_data);
3843 return 0;
3844 }
3845
3846 /*
3847 * Remove all orphanes events from the context.
3848 */
3849 static void orphans_remove_work(struct work_struct *work)
3850 {
3851 struct perf_event_context *ctx;
3852 struct perf_event *event, *tmp;
3853
3854 ctx = container_of(work, struct perf_event_context,
3855 orphans_remove.work);
3856
3857 mutex_lock(&ctx->mutex);
3858 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) {
3859 struct perf_event *parent_event = event->parent;
3860
3861 if (!is_orphaned_child(event))
3862 continue;
3863
3864 perf_remove_from_context(event, true);
3865
3866 mutex_lock(&parent_event->child_mutex);
3867 list_del_init(&event->child_list);
3868 mutex_unlock(&parent_event->child_mutex);
3869
3870 free_event(event);
3871 put_event(parent_event);
3872 }
3873
3874 raw_spin_lock_irq(&ctx->lock);
3875 ctx->orphans_remove_sched = false;
3876 raw_spin_unlock_irq(&ctx->lock);
3877 mutex_unlock(&ctx->mutex);
3878
3879 put_ctx(ctx);
3880 }
3881
3882 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3883 {
3884 struct perf_event *child;
3885 u64 total = 0;
3886
3887 *enabled = 0;
3888 *running = 0;
3889
3890 mutex_lock(&event->child_mutex);
3891
3892 (void)perf_event_read(event, false);
3893 total += perf_event_count(event);
3894
3895 *enabled += event->total_time_enabled +
3896 atomic64_read(&event->child_total_time_enabled);
3897 *running += event->total_time_running +
3898 atomic64_read(&event->child_total_time_running);
3899
3900 list_for_each_entry(child, &event->child_list, child_list) {
3901 (void)perf_event_read(child, false);
3902 total += perf_event_count(child);
3903 *enabled += child->total_time_enabled;
3904 *running += child->total_time_running;
3905 }
3906 mutex_unlock(&event->child_mutex);
3907
3908 return total;
3909 }
3910 EXPORT_SYMBOL_GPL(perf_event_read_value);
3911
3912 static int __perf_read_group_add(struct perf_event *leader,
3913 u64 read_format, u64 *values)
3914 {
3915 struct perf_event *sub;
3916 int n = 1; /* skip @nr */
3917 int ret;
3918
3919 ret = perf_event_read(leader, true);
3920 if (ret)
3921 return ret;
3922
3923 /*
3924 * Since we co-schedule groups, {enabled,running} times of siblings
3925 * will be identical to those of the leader, so we only publish one
3926 * set.
3927 */
3928 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3929 values[n++] += leader->total_time_enabled +
3930 atomic64_read(&leader->child_total_time_enabled);
3931 }
3932
3933 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3934 values[n++] += leader->total_time_running +
3935 atomic64_read(&leader->child_total_time_running);
3936 }
3937
3938 /*
3939 * Write {count,id} tuples for every sibling.
3940 */
3941 values[n++] += perf_event_count(leader);
3942 if (read_format & PERF_FORMAT_ID)
3943 values[n++] = primary_event_id(leader);
3944
3945 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3946 values[n++] += perf_event_count(sub);
3947 if (read_format & PERF_FORMAT_ID)
3948 values[n++] = primary_event_id(sub);
3949 }
3950
3951 return 0;
3952 }
3953
3954 static int perf_read_group(struct perf_event *event,
3955 u64 read_format, char __user *buf)
3956 {
3957 struct perf_event *leader = event->group_leader, *child;
3958 struct perf_event_context *ctx = leader->ctx;
3959 int ret;
3960 u64 *values;
3961
3962 lockdep_assert_held(&ctx->mutex);
3963
3964 values = kzalloc(event->read_size, GFP_KERNEL);
3965 if (!values)
3966 return -ENOMEM;
3967
3968 values[0] = 1 + leader->nr_siblings;
3969
3970 /*
3971 * By locking the child_mutex of the leader we effectively
3972 * lock the child list of all siblings.. XXX explain how.
3973 */
3974 mutex_lock(&leader->child_mutex);
3975
3976 ret = __perf_read_group_add(leader, read_format, values);
3977 if (ret)
3978 goto unlock;
3979
3980 list_for_each_entry(child, &leader->child_list, child_list) {
3981 ret = __perf_read_group_add(child, read_format, values);
3982 if (ret)
3983 goto unlock;
3984 }
3985
3986 mutex_unlock(&leader->child_mutex);
3987
3988 ret = event->read_size;
3989 if (copy_to_user(buf, values, event->read_size))
3990 ret = -EFAULT;
3991 goto out;
3992
3993 unlock:
3994 mutex_unlock(&leader->child_mutex);
3995 out:
3996 kfree(values);
3997 return ret;
3998 }
3999
4000 static int perf_read_one(struct perf_event *event,
4001 u64 read_format, char __user *buf)
4002 {
4003 u64 enabled, running;
4004 u64 values[4];
4005 int n = 0;
4006
4007 values[n++] = perf_event_read_value(event, &enabled, &running);
4008 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4009 values[n++] = enabled;
4010 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4011 values[n++] = running;
4012 if (read_format & PERF_FORMAT_ID)
4013 values[n++] = primary_event_id(event);
4014
4015 if (copy_to_user(buf, values, n * sizeof(u64)))
4016 return -EFAULT;
4017
4018 return n * sizeof(u64);
4019 }
4020
4021 static bool is_event_hup(struct perf_event *event)
4022 {
4023 bool no_children;
4024
4025 if (event->state != PERF_EVENT_STATE_EXIT)
4026 return false;
4027
4028 mutex_lock(&event->child_mutex);
4029 no_children = list_empty(&event->child_list);
4030 mutex_unlock(&event->child_mutex);
4031 return no_children;
4032 }
4033
4034 /*
4035 * Read the performance event - simple non blocking version for now
4036 */
4037 static ssize_t
4038 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4039 {
4040 u64 read_format = event->attr.read_format;
4041 int ret;
4042
4043 /*
4044 * Return end-of-file for a read on a event that is in
4045 * error state (i.e. because it was pinned but it couldn't be
4046 * scheduled on to the CPU at some point).
4047 */
4048 if (event->state == PERF_EVENT_STATE_ERROR)
4049 return 0;
4050
4051 if (count < event->read_size)
4052 return -ENOSPC;
4053
4054 WARN_ON_ONCE(event->ctx->parent_ctx);
4055 if (read_format & PERF_FORMAT_GROUP)
4056 ret = perf_read_group(event, read_format, buf);
4057 else
4058 ret = perf_read_one(event, read_format, buf);
4059
4060 return ret;
4061 }
4062
4063 static ssize_t
4064 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4065 {
4066 struct perf_event *event = file->private_data;
4067 struct perf_event_context *ctx;
4068 int ret;
4069
4070 ctx = perf_event_ctx_lock(event);
4071 ret = __perf_read(event, buf, count);
4072 perf_event_ctx_unlock(event, ctx);
4073
4074 return ret;
4075 }
4076
4077 static unsigned int perf_poll(struct file *file, poll_table *wait)
4078 {
4079 struct perf_event *event = file->private_data;
4080 struct ring_buffer *rb;
4081 unsigned int events = POLLHUP;
4082
4083 poll_wait(file, &event->waitq, wait);
4084
4085 if (is_event_hup(event))
4086 return events;
4087
4088 /*
4089 * Pin the event->rb by taking event->mmap_mutex; otherwise
4090 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4091 */
4092 mutex_lock(&event->mmap_mutex);
4093 rb = event->rb;
4094 if (rb)
4095 events = atomic_xchg(&rb->poll, 0);
4096 mutex_unlock(&event->mmap_mutex);
4097 return events;
4098 }
4099
4100 static void _perf_event_reset(struct perf_event *event)
4101 {
4102 (void)perf_event_read(event, false);
4103 local64_set(&event->count, 0);
4104 perf_event_update_userpage(event);
4105 }
4106
4107 /*
4108 * Holding the top-level event's child_mutex means that any
4109 * descendant process that has inherited this event will block
4110 * in sync_child_event if it goes to exit, thus satisfying the
4111 * task existence requirements of perf_event_enable/disable.
4112 */
4113 static void perf_event_for_each_child(struct perf_event *event,
4114 void (*func)(struct perf_event *))
4115 {
4116 struct perf_event *child;
4117
4118 WARN_ON_ONCE(event->ctx->parent_ctx);
4119
4120 mutex_lock(&event->child_mutex);
4121 func(event);
4122 list_for_each_entry(child, &event->child_list, child_list)
4123 func(child);
4124 mutex_unlock(&event->child_mutex);
4125 }
4126
4127 static void perf_event_for_each(struct perf_event *event,
4128 void (*func)(struct perf_event *))
4129 {
4130 struct perf_event_context *ctx = event->ctx;
4131 struct perf_event *sibling;
4132
4133 lockdep_assert_held(&ctx->mutex);
4134
4135 event = event->group_leader;
4136
4137 perf_event_for_each_child(event, func);
4138 list_for_each_entry(sibling, &event->sibling_list, group_entry)
4139 perf_event_for_each_child(sibling, func);
4140 }
4141
4142 struct period_event {
4143 struct perf_event *event;
4144 u64 value;
4145 };
4146
4147 static int __perf_event_period(void *info)
4148 {
4149 struct period_event *pe = info;
4150 struct perf_event *event = pe->event;
4151 struct perf_event_context *ctx = event->ctx;
4152 u64 value = pe->value;
4153 bool active;
4154
4155 raw_spin_lock(&ctx->lock);
4156 if (event->attr.freq) {
4157 event->attr.sample_freq = value;
4158 } else {
4159 event->attr.sample_period = value;
4160 event->hw.sample_period = value;
4161 }
4162
4163 active = (event->state == PERF_EVENT_STATE_ACTIVE);
4164 if (active) {
4165 perf_pmu_disable(ctx->pmu);
4166 event->pmu->stop(event, PERF_EF_UPDATE);
4167 }
4168
4169 local64_set(&event->hw.period_left, 0);
4170
4171 if (active) {
4172 event->pmu->start(event, PERF_EF_RELOAD);
4173 perf_pmu_enable(ctx->pmu);
4174 }
4175 raw_spin_unlock(&ctx->lock);
4176
4177 return 0;
4178 }
4179
4180 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4181 {
4182 struct period_event pe = { .event = event, };
4183 struct perf_event_context *ctx = event->ctx;
4184 struct task_struct *task;
4185 u64 value;
4186
4187 if (!is_sampling_event(event))
4188 return -EINVAL;
4189
4190 if (copy_from_user(&value, arg, sizeof(value)))
4191 return -EFAULT;
4192
4193 if (!value)
4194 return -EINVAL;
4195
4196 if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4197 return -EINVAL;
4198
4199 task = ctx->task;
4200 pe.value = value;
4201
4202 if (!task) {
4203 cpu_function_call(event->cpu, __perf_event_period, &pe);
4204 return 0;
4205 }
4206
4207 retry:
4208 if (!task_function_call(task, __perf_event_period, &pe))
4209 return 0;
4210
4211 raw_spin_lock_irq(&ctx->lock);
4212 if (ctx->is_active) {
4213 raw_spin_unlock_irq(&ctx->lock);
4214 task = ctx->task;
4215 goto retry;
4216 }
4217
4218 __perf_event_period(&pe);
4219 raw_spin_unlock_irq(&ctx->lock);
4220
4221 return 0;
4222 }
4223
4224 static const struct file_operations perf_fops;
4225
4226 static inline int perf_fget_light(int fd, struct fd *p)
4227 {
4228 struct fd f = fdget(fd);
4229 if (!f.file)
4230 return -EBADF;
4231
4232 if (f.file->f_op != &perf_fops) {
4233 fdput(f);
4234 return -EBADF;
4235 }
4236 *p = f;
4237 return 0;
4238 }
4239
4240 static int perf_event_set_output(struct perf_event *event,
4241 struct perf_event *output_event);
4242 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4243 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4244
4245 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4246 {
4247 void (*func)(struct perf_event *);
4248 u32 flags = arg;
4249
4250 switch (cmd) {
4251 case PERF_EVENT_IOC_ENABLE:
4252 func = _perf_event_enable;
4253 break;
4254 case PERF_EVENT_IOC_DISABLE:
4255 func = _perf_event_disable;
4256 break;
4257 case PERF_EVENT_IOC_RESET:
4258 func = _perf_event_reset;
4259 break;
4260
4261 case PERF_EVENT_IOC_REFRESH:
4262 return _perf_event_refresh(event, arg);
4263
4264 case PERF_EVENT_IOC_PERIOD:
4265 return perf_event_period(event, (u64 __user *)arg);
4266
4267 case PERF_EVENT_IOC_ID:
4268 {
4269 u64 id = primary_event_id(event);
4270
4271 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4272 return -EFAULT;
4273 return 0;
4274 }
4275
4276 case PERF_EVENT_IOC_SET_OUTPUT:
4277 {
4278 int ret;
4279 if (arg != -1) {
4280 struct perf_event *output_event;
4281 struct fd output;
4282 ret = perf_fget_light(arg, &output);
4283 if (ret)
4284 return ret;
4285 output_event = output.file->private_data;
4286 ret = perf_event_set_output(event, output_event);
4287 fdput(output);
4288 } else {
4289 ret = perf_event_set_output(event, NULL);
4290 }
4291 return ret;
4292 }
4293
4294 case PERF_EVENT_IOC_SET_FILTER:
4295 return perf_event_set_filter(event, (void __user *)arg);
4296
4297 case PERF_EVENT_IOC_SET_BPF:
4298 return perf_event_set_bpf_prog(event, arg);
4299
4300 default:
4301 return -ENOTTY;
4302 }
4303
4304 if (flags & PERF_IOC_FLAG_GROUP)
4305 perf_event_for_each(event, func);
4306 else
4307 perf_event_for_each_child(event, func);
4308
4309 return 0;
4310 }
4311
4312 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4313 {
4314 struct perf_event *event = file->private_data;
4315 struct perf_event_context *ctx;
4316 long ret;
4317
4318 ctx = perf_event_ctx_lock(event);
4319 ret = _perf_ioctl(event, cmd, arg);
4320 perf_event_ctx_unlock(event, ctx);
4321
4322 return ret;
4323 }
4324
4325 #ifdef CONFIG_COMPAT
4326 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4327 unsigned long arg)
4328 {
4329 switch (_IOC_NR(cmd)) {
4330 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4331 case _IOC_NR(PERF_EVENT_IOC_ID):
4332 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4333 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4334 cmd &= ~IOCSIZE_MASK;
4335 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4336 }
4337 break;
4338 }
4339 return perf_ioctl(file, cmd, arg);
4340 }
4341 #else
4342 # define perf_compat_ioctl NULL
4343 #endif
4344
4345 int perf_event_task_enable(void)
4346 {
4347 struct perf_event_context *ctx;
4348 struct perf_event *event;
4349
4350 mutex_lock(&current->perf_event_mutex);
4351 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4352 ctx = perf_event_ctx_lock(event);
4353 perf_event_for_each_child(event, _perf_event_enable);
4354 perf_event_ctx_unlock(event, ctx);
4355 }
4356 mutex_unlock(&current->perf_event_mutex);
4357
4358 return 0;
4359 }
4360
4361 int perf_event_task_disable(void)
4362 {
4363 struct perf_event_context *ctx;
4364 struct perf_event *event;
4365
4366 mutex_lock(&current->perf_event_mutex);
4367 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4368 ctx = perf_event_ctx_lock(event);
4369 perf_event_for_each_child(event, _perf_event_disable);
4370 perf_event_ctx_unlock(event, ctx);
4371 }
4372 mutex_unlock(&current->perf_event_mutex);
4373
4374 return 0;
4375 }
4376
4377 static int perf_event_index(struct perf_event *event)
4378 {
4379 if (event->hw.state & PERF_HES_STOPPED)
4380 return 0;
4381
4382 if (event->state != PERF_EVENT_STATE_ACTIVE)
4383 return 0;
4384
4385 return event->pmu->event_idx(event);
4386 }
4387
4388 static void calc_timer_values(struct perf_event *event,
4389 u64 *now,
4390 u64 *enabled,
4391 u64 *running)
4392 {
4393 u64 ctx_time;
4394
4395 *now = perf_clock();
4396 ctx_time = event->shadow_ctx_time + *now;
4397 *enabled = ctx_time - event->tstamp_enabled;
4398 *running = ctx_time - event->tstamp_running;
4399 }
4400
4401 static void perf_event_init_userpage(struct perf_event *event)
4402 {
4403 struct perf_event_mmap_page *userpg;
4404 struct ring_buffer *rb;
4405
4406 rcu_read_lock();
4407 rb = rcu_dereference(event->rb);
4408 if (!rb)
4409 goto unlock;
4410
4411 userpg = rb->user_page;
4412
4413 /* Allow new userspace to detect that bit 0 is deprecated */
4414 userpg->cap_bit0_is_deprecated = 1;
4415 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4416 userpg->data_offset = PAGE_SIZE;
4417 userpg->data_size = perf_data_size(rb);
4418
4419 unlock:
4420 rcu_read_unlock();
4421 }
4422
4423 void __weak arch_perf_update_userpage(
4424 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4425 {
4426 }
4427
4428 /*
4429 * Callers need to ensure there can be no nesting of this function, otherwise
4430 * the seqlock logic goes bad. We can not serialize this because the arch
4431 * code calls this from NMI context.
4432 */
4433 void perf_event_update_userpage(struct perf_event *event)
4434 {
4435 struct perf_event_mmap_page *userpg;
4436 struct ring_buffer *rb;
4437 u64 enabled, running, now;
4438
4439 rcu_read_lock();
4440 rb = rcu_dereference(event->rb);
4441 if (!rb)
4442 goto unlock;
4443
4444 /*
4445 * compute total_time_enabled, total_time_running
4446 * based on snapshot values taken when the event
4447 * was last scheduled in.
4448 *
4449 * we cannot simply called update_context_time()
4450 * because of locking issue as we can be called in
4451 * NMI context
4452 */
4453 calc_timer_values(event, &now, &enabled, &running);
4454
4455 userpg = rb->user_page;
4456 /*
4457 * Disable preemption so as to not let the corresponding user-space
4458 * spin too long if we get preempted.
4459 */
4460 preempt_disable();
4461 ++userpg->lock;
4462 barrier();
4463 userpg->index = perf_event_index(event);
4464 userpg->offset = perf_event_count(event);
4465 if (userpg->index)
4466 userpg->offset -= local64_read(&event->hw.prev_count);
4467
4468 userpg->time_enabled = enabled +
4469 atomic64_read(&event->child_total_time_enabled);
4470
4471 userpg->time_running = running +
4472 atomic64_read(&event->child_total_time_running);
4473
4474 arch_perf_update_userpage(event, userpg, now);
4475
4476 barrier();
4477 ++userpg->lock;
4478 preempt_enable();
4479 unlock:
4480 rcu_read_unlock();
4481 }
4482
4483 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
4484 {
4485 struct perf_event *event = vma->vm_file->private_data;
4486 struct ring_buffer *rb;
4487 int ret = VM_FAULT_SIGBUS;
4488
4489 if (vmf->flags & FAULT_FLAG_MKWRITE) {
4490 if (vmf->pgoff == 0)
4491 ret = 0;
4492 return ret;
4493 }
4494
4495 rcu_read_lock();
4496 rb = rcu_dereference(event->rb);
4497 if (!rb)
4498 goto unlock;
4499
4500 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4501 goto unlock;
4502
4503 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4504 if (!vmf->page)
4505 goto unlock;
4506
4507 get_page(vmf->page);
4508 vmf->page->mapping = vma->vm_file->f_mapping;
4509 vmf->page->index = vmf->pgoff;
4510
4511 ret = 0;
4512 unlock:
4513 rcu_read_unlock();
4514
4515 return ret;
4516 }
4517
4518 static void ring_buffer_attach(struct perf_event *event,
4519 struct ring_buffer *rb)
4520 {
4521 struct ring_buffer *old_rb = NULL;
4522 unsigned long flags;
4523
4524 if (event->rb) {
4525 /*
4526 * Should be impossible, we set this when removing
4527 * event->rb_entry and wait/clear when adding event->rb_entry.
4528 */
4529 WARN_ON_ONCE(event->rcu_pending);
4530
4531 old_rb = event->rb;
4532 spin_lock_irqsave(&old_rb->event_lock, flags);
4533 list_del_rcu(&event->rb_entry);
4534 spin_unlock_irqrestore(&old_rb->event_lock, flags);
4535
4536 event->rcu_batches = get_state_synchronize_rcu();
4537 event->rcu_pending = 1;
4538 }
4539
4540 if (rb) {
4541 if (event->rcu_pending) {
4542 cond_synchronize_rcu(event->rcu_batches);
4543 event->rcu_pending = 0;
4544 }
4545
4546 spin_lock_irqsave(&rb->event_lock, flags);
4547 list_add_rcu(&event->rb_entry, &rb->event_list);
4548 spin_unlock_irqrestore(&rb->event_lock, flags);
4549 }
4550
4551 rcu_assign_pointer(event->rb, rb);
4552
4553 if (old_rb) {
4554 ring_buffer_put(old_rb);
4555 /*
4556 * Since we detached before setting the new rb, so that we
4557 * could attach the new rb, we could have missed a wakeup.
4558 * Provide it now.
4559 */
4560 wake_up_all(&event->waitq);
4561 }
4562 }
4563
4564 static void ring_buffer_wakeup(struct perf_event *event)
4565 {
4566 struct ring_buffer *rb;
4567
4568 rcu_read_lock();
4569 rb = rcu_dereference(event->rb);
4570 if (rb) {
4571 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
4572 wake_up_all(&event->waitq);
4573 }
4574 rcu_read_unlock();
4575 }
4576
4577 struct ring_buffer *ring_buffer_get(struct perf_event *event)
4578 {
4579 struct ring_buffer *rb;
4580
4581 rcu_read_lock();
4582 rb = rcu_dereference(event->rb);
4583 if (rb) {
4584 if (!atomic_inc_not_zero(&rb->refcount))
4585 rb = NULL;
4586 }
4587 rcu_read_unlock();
4588
4589 return rb;
4590 }
4591
4592 void ring_buffer_put(struct ring_buffer *rb)
4593 {
4594 if (!atomic_dec_and_test(&rb->refcount))
4595 return;
4596
4597 WARN_ON_ONCE(!list_empty(&rb->event_list));
4598
4599 call_rcu(&rb->rcu_head, rb_free_rcu);
4600 }
4601
4602 static void perf_mmap_open(struct vm_area_struct *vma)
4603 {
4604 struct perf_event *event = vma->vm_file->private_data;
4605
4606 atomic_inc(&event->mmap_count);
4607 atomic_inc(&event->rb->mmap_count);
4608
4609 if (vma->vm_pgoff)
4610 atomic_inc(&event->rb->aux_mmap_count);
4611
4612 if (event->pmu->event_mapped)
4613 event->pmu->event_mapped(event);
4614 }
4615
4616 /*
4617 * A buffer can be mmap()ed multiple times; either directly through the same
4618 * event, or through other events by use of perf_event_set_output().
4619 *
4620 * In order to undo the VM accounting done by perf_mmap() we need to destroy
4621 * the buffer here, where we still have a VM context. This means we need
4622 * to detach all events redirecting to us.
4623 */
4624 static void perf_mmap_close(struct vm_area_struct *vma)
4625 {
4626 struct perf_event *event = vma->vm_file->private_data;
4627
4628 struct ring_buffer *rb = ring_buffer_get(event);
4629 struct user_struct *mmap_user = rb->mmap_user;
4630 int mmap_locked = rb->mmap_locked;
4631 unsigned long size = perf_data_size(rb);
4632
4633 if (event->pmu->event_unmapped)
4634 event->pmu->event_unmapped(event);
4635
4636 /*
4637 * rb->aux_mmap_count will always drop before rb->mmap_count and
4638 * event->mmap_count, so it is ok to use event->mmap_mutex to
4639 * serialize with perf_mmap here.
4640 */
4641 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
4642 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
4643 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
4644 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
4645
4646 rb_free_aux(rb);
4647 mutex_unlock(&event->mmap_mutex);
4648 }
4649
4650 atomic_dec(&rb->mmap_count);
4651
4652 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
4653 goto out_put;
4654
4655 ring_buffer_attach(event, NULL);
4656 mutex_unlock(&event->mmap_mutex);
4657
4658 /* If there's still other mmap()s of this buffer, we're done. */
4659 if (atomic_read(&rb->mmap_count))
4660 goto out_put;
4661
4662 /*
4663 * No other mmap()s, detach from all other events that might redirect
4664 * into the now unreachable buffer. Somewhat complicated by the
4665 * fact that rb::event_lock otherwise nests inside mmap_mutex.
4666 */
4667 again:
4668 rcu_read_lock();
4669 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
4670 if (!atomic_long_inc_not_zero(&event->refcount)) {
4671 /*
4672 * This event is en-route to free_event() which will
4673 * detach it and remove it from the list.
4674 */
4675 continue;
4676 }
4677 rcu_read_unlock();
4678
4679 mutex_lock(&event->mmap_mutex);
4680 /*
4681 * Check we didn't race with perf_event_set_output() which can
4682 * swizzle the rb from under us while we were waiting to
4683 * acquire mmap_mutex.
4684 *
4685 * If we find a different rb; ignore this event, a next
4686 * iteration will no longer find it on the list. We have to
4687 * still restart the iteration to make sure we're not now
4688 * iterating the wrong list.
4689 */
4690 if (event->rb == rb)
4691 ring_buffer_attach(event, NULL);
4692
4693 mutex_unlock(&event->mmap_mutex);
4694 put_event(event);
4695
4696 /*
4697 * Restart the iteration; either we're on the wrong list or
4698 * destroyed its integrity by doing a deletion.
4699 */
4700 goto again;
4701 }
4702 rcu_read_unlock();
4703
4704 /*
4705 * It could be there's still a few 0-ref events on the list; they'll
4706 * get cleaned up by free_event() -- they'll also still have their
4707 * ref on the rb and will free it whenever they are done with it.
4708 *
4709 * Aside from that, this buffer is 'fully' detached and unmapped,
4710 * undo the VM accounting.
4711 */
4712
4713 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
4714 vma->vm_mm->pinned_vm -= mmap_locked;
4715 free_uid(mmap_user);
4716
4717 out_put:
4718 ring_buffer_put(rb); /* could be last */
4719 }
4720
4721 static const struct vm_operations_struct perf_mmap_vmops = {
4722 .open = perf_mmap_open,
4723 .close = perf_mmap_close, /* non mergable */
4724 .fault = perf_mmap_fault,
4725 .page_mkwrite = perf_mmap_fault,
4726 };
4727
4728 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
4729 {
4730 struct perf_event *event = file->private_data;
4731 unsigned long user_locked, user_lock_limit;
4732 struct user_struct *user = current_user();
4733 unsigned long locked, lock_limit;
4734 struct ring_buffer *rb = NULL;
4735 unsigned long vma_size;
4736 unsigned long nr_pages;
4737 long user_extra = 0, extra = 0;
4738 int ret = 0, flags = 0;
4739
4740 /*
4741 * Don't allow mmap() of inherited per-task counters. This would
4742 * create a performance issue due to all children writing to the
4743 * same rb.
4744 */
4745 if (event->cpu == -1 && event->attr.inherit)
4746 return -EINVAL;
4747
4748 if (!(vma->vm_flags & VM_SHARED))
4749 return -EINVAL;
4750
4751 vma_size = vma->vm_end - vma->vm_start;
4752
4753 if (vma->vm_pgoff == 0) {
4754 nr_pages = (vma_size / PAGE_SIZE) - 1;
4755 } else {
4756 /*
4757 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
4758 * mapped, all subsequent mappings should have the same size
4759 * and offset. Must be above the normal perf buffer.
4760 */
4761 u64 aux_offset, aux_size;
4762
4763 if (!event->rb)
4764 return -EINVAL;
4765
4766 nr_pages = vma_size / PAGE_SIZE;
4767
4768 mutex_lock(&event->mmap_mutex);
4769 ret = -EINVAL;
4770
4771 rb = event->rb;
4772 if (!rb)
4773 goto aux_unlock;
4774
4775 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
4776 aux_size = ACCESS_ONCE(rb->user_page->aux_size);
4777
4778 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
4779 goto aux_unlock;
4780
4781 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
4782 goto aux_unlock;
4783
4784 /* already mapped with a different offset */
4785 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
4786 goto aux_unlock;
4787
4788 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
4789 goto aux_unlock;
4790
4791 /* already mapped with a different size */
4792 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
4793 goto aux_unlock;
4794
4795 if (!is_power_of_2(nr_pages))
4796 goto aux_unlock;
4797
4798 if (!atomic_inc_not_zero(&rb->mmap_count))
4799 goto aux_unlock;
4800
4801 if (rb_has_aux(rb)) {
4802 atomic_inc(&rb->aux_mmap_count);
4803 ret = 0;
4804 goto unlock;
4805 }
4806
4807 atomic_set(&rb->aux_mmap_count, 1);
4808 user_extra = nr_pages;
4809
4810 goto accounting;
4811 }
4812
4813 /*
4814 * If we have rb pages ensure they're a power-of-two number, so we
4815 * can do bitmasks instead of modulo.
4816 */
4817 if (nr_pages != 0 && !is_power_of_2(nr_pages))
4818 return -EINVAL;
4819
4820 if (vma_size != PAGE_SIZE * (1 + nr_pages))
4821 return -EINVAL;
4822
4823 WARN_ON_ONCE(event->ctx->parent_ctx);
4824 again:
4825 mutex_lock(&event->mmap_mutex);
4826 if (event->rb) {
4827 if (event->rb->nr_pages != nr_pages) {
4828 ret = -EINVAL;
4829 goto unlock;
4830 }
4831
4832 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
4833 /*
4834 * Raced against perf_mmap_close() through
4835 * perf_event_set_output(). Try again, hope for better
4836 * luck.
4837 */
4838 mutex_unlock(&event->mmap_mutex);
4839 goto again;
4840 }
4841
4842 goto unlock;
4843 }
4844
4845 user_extra = nr_pages + 1;
4846
4847 accounting:
4848 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
4849
4850 /*
4851 * Increase the limit linearly with more CPUs:
4852 */
4853 user_lock_limit *= num_online_cpus();
4854
4855 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
4856
4857 if (user_locked > user_lock_limit)
4858 extra = user_locked - user_lock_limit;
4859
4860 lock_limit = rlimit(RLIMIT_MEMLOCK);
4861 lock_limit >>= PAGE_SHIFT;
4862 locked = vma->vm_mm->pinned_vm + extra;
4863
4864 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
4865 !capable(CAP_IPC_LOCK)) {
4866 ret = -EPERM;
4867 goto unlock;
4868 }
4869
4870 WARN_ON(!rb && event->rb);
4871
4872 if (vma->vm_flags & VM_WRITE)
4873 flags |= RING_BUFFER_WRITABLE;
4874
4875 if (!rb) {
4876 rb = rb_alloc(nr_pages,
4877 event->attr.watermark ? event->attr.wakeup_watermark : 0,
4878 event->cpu, flags);
4879
4880 if (!rb) {
4881 ret = -ENOMEM;
4882 goto unlock;
4883 }
4884
4885 atomic_set(&rb->mmap_count, 1);
4886 rb->mmap_user = get_current_user();
4887 rb->mmap_locked = extra;
4888
4889 ring_buffer_attach(event, rb);
4890
4891 perf_event_init_userpage(event);
4892 perf_event_update_userpage(event);
4893 } else {
4894 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
4895 event->attr.aux_watermark, flags);
4896 if (!ret)
4897 rb->aux_mmap_locked = extra;
4898 }
4899
4900 unlock:
4901 if (!ret) {
4902 atomic_long_add(user_extra, &user->locked_vm);
4903 vma->vm_mm->pinned_vm += extra;
4904
4905 atomic_inc(&event->mmap_count);
4906 } else if (rb) {
4907 atomic_dec(&rb->mmap_count);
4908 }
4909 aux_unlock:
4910 mutex_unlock(&event->mmap_mutex);
4911
4912 /*
4913 * Since pinned accounting is per vm we cannot allow fork() to copy our
4914 * vma.
4915 */
4916 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
4917 vma->vm_ops = &perf_mmap_vmops;
4918
4919 if (event->pmu->event_mapped)
4920 event->pmu->event_mapped(event);
4921
4922 return ret;
4923 }
4924
4925 static int perf_fasync(int fd, struct file *filp, int on)
4926 {
4927 struct inode *inode = file_inode(filp);
4928 struct perf_event *event = filp->private_data;
4929 int retval;
4930
4931 mutex_lock(&inode->i_mutex);
4932 retval = fasync_helper(fd, filp, on, &event->fasync);
4933 mutex_unlock(&inode->i_mutex);
4934
4935 if (retval < 0)
4936 return retval;
4937
4938 return 0;
4939 }
4940
4941 static const struct file_operations perf_fops = {
4942 .llseek = no_llseek,
4943 .release = perf_release,
4944 .read = perf_read,
4945 .poll = perf_poll,
4946 .unlocked_ioctl = perf_ioctl,
4947 .compat_ioctl = perf_compat_ioctl,
4948 .mmap = perf_mmap,
4949 .fasync = perf_fasync,
4950 };
4951
4952 /*
4953 * Perf event wakeup
4954 *
4955 * If there's data, ensure we set the poll() state and publish everything
4956 * to user-space before waking everybody up.
4957 */
4958
4959 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
4960 {
4961 /* only the parent has fasync state */
4962 if (event->parent)
4963 event = event->parent;
4964 return &event->fasync;
4965 }
4966
4967 void perf_event_wakeup(struct perf_event *event)
4968 {
4969 ring_buffer_wakeup(event);
4970
4971 if (event->pending_kill) {
4972 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
4973 event->pending_kill = 0;
4974 }
4975 }
4976
4977 static void perf_pending_event(struct irq_work *entry)
4978 {
4979 struct perf_event *event = container_of(entry,
4980 struct perf_event, pending);
4981 int rctx;
4982
4983 rctx = perf_swevent_get_recursion_context();
4984 /*
4985 * If we 'fail' here, that's OK, it means recursion is already disabled
4986 * and we won't recurse 'further'.
4987 */
4988
4989 if (event->pending_disable) {
4990 event->pending_disable = 0;
4991 __perf_event_disable(event);
4992 }
4993
4994 if (event->pending_wakeup) {
4995 event->pending_wakeup = 0;
4996 perf_event_wakeup(event);
4997 }
4998
4999 if (rctx >= 0)
5000 perf_swevent_put_recursion_context(rctx);
5001 }
5002
5003 /*
5004 * We assume there is only KVM supporting the callbacks.
5005 * Later on, we might change it to a list if there is
5006 * another virtualization implementation supporting the callbacks.
5007 */
5008 struct perf_guest_info_callbacks *perf_guest_cbs;
5009
5010 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5011 {
5012 perf_guest_cbs = cbs;
5013 return 0;
5014 }
5015 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5016
5017 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5018 {
5019 perf_guest_cbs = NULL;
5020 return 0;
5021 }
5022 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5023
5024 static void
5025 perf_output_sample_regs(struct perf_output_handle *handle,
5026 struct pt_regs *regs, u64 mask)
5027 {
5028 int bit;
5029
5030 for_each_set_bit(bit, (const unsigned long *) &mask,
5031 sizeof(mask) * BITS_PER_BYTE) {
5032 u64 val;
5033
5034 val = perf_reg_value(regs, bit);
5035 perf_output_put(handle, val);
5036 }
5037 }
5038
5039 static void perf_sample_regs_user(struct perf_regs *regs_user,
5040 struct pt_regs *regs,
5041 struct pt_regs *regs_user_copy)
5042 {
5043 if (user_mode(regs)) {
5044 regs_user->abi = perf_reg_abi(current);
5045 regs_user->regs = regs;
5046 } else if (current->mm) {
5047 perf_get_regs_user(regs_user, regs, regs_user_copy);
5048 } else {
5049 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5050 regs_user->regs = NULL;
5051 }
5052 }
5053
5054 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5055 struct pt_regs *regs)
5056 {
5057 regs_intr->regs = regs;
5058 regs_intr->abi = perf_reg_abi(current);
5059 }
5060
5061
5062 /*
5063 * Get remaining task size from user stack pointer.
5064 *
5065 * It'd be better to take stack vma map and limit this more
5066 * precisly, but there's no way to get it safely under interrupt,
5067 * so using TASK_SIZE as limit.
5068 */
5069 static u64 perf_ustack_task_size(struct pt_regs *regs)
5070 {
5071 unsigned long addr = perf_user_stack_pointer(regs);
5072
5073 if (!addr || addr >= TASK_SIZE)
5074 return 0;
5075
5076 return TASK_SIZE - addr;
5077 }
5078
5079 static u16
5080 perf_sample_ustack_size(u16 stack_size, u16 header_size,
5081 struct pt_regs *regs)
5082 {
5083 u64 task_size;
5084
5085 /* No regs, no stack pointer, no dump. */
5086 if (!regs)
5087 return 0;
5088
5089 /*
5090 * Check if we fit in with the requested stack size into the:
5091 * - TASK_SIZE
5092 * If we don't, we limit the size to the TASK_SIZE.
5093 *
5094 * - remaining sample size
5095 * If we don't, we customize the stack size to
5096 * fit in to the remaining sample size.
5097 */
5098
5099 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5100 stack_size = min(stack_size, (u16) task_size);
5101
5102 /* Current header size plus static size and dynamic size. */
5103 header_size += 2 * sizeof(u64);
5104
5105 /* Do we fit in with the current stack dump size? */
5106 if ((u16) (header_size + stack_size) < header_size) {
5107 /*
5108 * If we overflow the maximum size for the sample,
5109 * we customize the stack dump size to fit in.
5110 */
5111 stack_size = USHRT_MAX - header_size - sizeof(u64);
5112 stack_size = round_up(stack_size, sizeof(u64));
5113 }
5114
5115 return stack_size;
5116 }
5117
5118 static void
5119 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5120 struct pt_regs *regs)
5121 {
5122 /* Case of a kernel thread, nothing to dump */
5123 if (!regs) {
5124 u64 size = 0;
5125 perf_output_put(handle, size);
5126 } else {
5127 unsigned long sp;
5128 unsigned int rem;
5129 u64 dyn_size;
5130
5131 /*
5132 * We dump:
5133 * static size
5134 * - the size requested by user or the best one we can fit
5135 * in to the sample max size
5136 * data
5137 * - user stack dump data
5138 * dynamic size
5139 * - the actual dumped size
5140 */
5141
5142 /* Static size. */
5143 perf_output_put(handle, dump_size);
5144
5145 /* Data. */
5146 sp = perf_user_stack_pointer(regs);
5147 rem = __output_copy_user(handle, (void *) sp, dump_size);
5148 dyn_size = dump_size - rem;
5149
5150 perf_output_skip(handle, rem);
5151
5152 /* Dynamic size. */
5153 perf_output_put(handle, dyn_size);
5154 }
5155 }
5156
5157 static void __perf_event_header__init_id(struct perf_event_header *header,
5158 struct perf_sample_data *data,
5159 struct perf_event *event)
5160 {
5161 u64 sample_type = event->attr.sample_type;
5162
5163 data->type = sample_type;
5164 header->size += event->id_header_size;
5165
5166 if (sample_type & PERF_SAMPLE_TID) {
5167 /* namespace issues */
5168 data->tid_entry.pid = perf_event_pid(event, current);
5169 data->tid_entry.tid = perf_event_tid(event, current);
5170 }
5171
5172 if (sample_type & PERF_SAMPLE_TIME)
5173 data->time = perf_event_clock(event);
5174
5175 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5176 data->id = primary_event_id(event);
5177
5178 if (sample_type & PERF_SAMPLE_STREAM_ID)
5179 data->stream_id = event->id;
5180
5181 if (sample_type & PERF_SAMPLE_CPU) {
5182 data->cpu_entry.cpu = raw_smp_processor_id();
5183 data->cpu_entry.reserved = 0;
5184 }
5185 }
5186
5187 void perf_event_header__init_id(struct perf_event_header *header,
5188 struct perf_sample_data *data,
5189 struct perf_event *event)
5190 {
5191 if (event->attr.sample_id_all)
5192 __perf_event_header__init_id(header, data, event);
5193 }
5194
5195 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5196 struct perf_sample_data *data)
5197 {
5198 u64 sample_type = data->type;
5199
5200 if (sample_type & PERF_SAMPLE_TID)
5201 perf_output_put(handle, data->tid_entry);
5202
5203 if (sample_type & PERF_SAMPLE_TIME)
5204 perf_output_put(handle, data->time);
5205
5206 if (sample_type & PERF_SAMPLE_ID)
5207 perf_output_put(handle, data->id);
5208
5209 if (sample_type & PERF_SAMPLE_STREAM_ID)
5210 perf_output_put(handle, data->stream_id);
5211
5212 if (sample_type & PERF_SAMPLE_CPU)
5213 perf_output_put(handle, data->cpu_entry);
5214
5215 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5216 perf_output_put(handle, data->id);
5217 }
5218
5219 void perf_event__output_id_sample(struct perf_event *event,
5220 struct perf_output_handle *handle,
5221 struct perf_sample_data *sample)
5222 {
5223 if (event->attr.sample_id_all)
5224 __perf_event__output_id_sample(handle, sample);
5225 }
5226
5227 static void perf_output_read_one(struct perf_output_handle *handle,
5228 struct perf_event *event,
5229 u64 enabled, u64 running)
5230 {
5231 u64 read_format = event->attr.read_format;
5232 u64 values[4];
5233 int n = 0;
5234
5235 values[n++] = perf_event_count(event);
5236 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5237 values[n++] = enabled +
5238 atomic64_read(&event->child_total_time_enabled);
5239 }
5240 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5241 values[n++] = running +
5242 atomic64_read(&event->child_total_time_running);
5243 }
5244 if (read_format & PERF_FORMAT_ID)
5245 values[n++] = primary_event_id(event);
5246
5247 __output_copy(handle, values, n * sizeof(u64));
5248 }
5249
5250 /*
5251 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
5252 */
5253 static void perf_output_read_group(struct perf_output_handle *handle,
5254 struct perf_event *event,
5255 u64 enabled, u64 running)
5256 {
5257 struct perf_event *leader = event->group_leader, *sub;
5258 u64 read_format = event->attr.read_format;
5259 u64 values[5];
5260 int n = 0;
5261
5262 values[n++] = 1 + leader->nr_siblings;
5263
5264 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5265 values[n++] = enabled;
5266
5267 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5268 values[n++] = running;
5269
5270 if (leader != event)
5271 leader->pmu->read(leader);
5272
5273 values[n++] = perf_event_count(leader);
5274 if (read_format & PERF_FORMAT_ID)
5275 values[n++] = primary_event_id(leader);
5276
5277 __output_copy(handle, values, n * sizeof(u64));
5278
5279 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5280 n = 0;
5281
5282 if ((sub != event) &&
5283 (sub->state == PERF_EVENT_STATE_ACTIVE))
5284 sub->pmu->read(sub);
5285
5286 values[n++] = perf_event_count(sub);
5287 if (read_format & PERF_FORMAT_ID)
5288 values[n++] = primary_event_id(sub);
5289
5290 __output_copy(handle, values, n * sizeof(u64));
5291 }
5292 }
5293
5294 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5295 PERF_FORMAT_TOTAL_TIME_RUNNING)
5296
5297 static void perf_output_read(struct perf_output_handle *handle,
5298 struct perf_event *event)
5299 {
5300 u64 enabled = 0, running = 0, now;
5301 u64 read_format = event->attr.read_format;
5302
5303 /*
5304 * compute total_time_enabled, total_time_running
5305 * based on snapshot values taken when the event
5306 * was last scheduled in.
5307 *
5308 * we cannot simply called update_context_time()
5309 * because of locking issue as we are called in
5310 * NMI context
5311 */
5312 if (read_format & PERF_FORMAT_TOTAL_TIMES)
5313 calc_timer_values(event, &now, &enabled, &running);
5314
5315 if (event->attr.read_format & PERF_FORMAT_GROUP)
5316 perf_output_read_group(handle, event, enabled, running);
5317 else
5318 perf_output_read_one(handle, event, enabled, running);
5319 }
5320
5321 void perf_output_sample(struct perf_output_handle *handle,
5322 struct perf_event_header *header,
5323 struct perf_sample_data *data,
5324 struct perf_event *event)
5325 {
5326 u64 sample_type = data->type;
5327
5328 perf_output_put(handle, *header);
5329
5330 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5331 perf_output_put(handle, data->id);
5332
5333 if (sample_type & PERF_SAMPLE_IP)
5334 perf_output_put(handle, data->ip);
5335
5336 if (sample_type & PERF_SAMPLE_TID)
5337 perf_output_put(handle, data->tid_entry);
5338
5339 if (sample_type & PERF_SAMPLE_TIME)
5340 perf_output_put(handle, data->time);
5341
5342 if (sample_type & PERF_SAMPLE_ADDR)
5343 perf_output_put(handle, data->addr);
5344
5345 if (sample_type & PERF_SAMPLE_ID)
5346 perf_output_put(handle, data->id);
5347
5348 if (sample_type & PERF_SAMPLE_STREAM_ID)
5349 perf_output_put(handle, data->stream_id);
5350
5351 if (sample_type & PERF_SAMPLE_CPU)
5352 perf_output_put(handle, data->cpu_entry);
5353
5354 if (sample_type & PERF_SAMPLE_PERIOD)
5355 perf_output_put(handle, data->period);
5356
5357 if (sample_type & PERF_SAMPLE_READ)
5358 perf_output_read(handle, event);
5359
5360 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5361 if (data->callchain) {
5362 int size = 1;
5363
5364 if (data->callchain)
5365 size += data->callchain->nr;
5366
5367 size *= sizeof(u64);
5368
5369 __output_copy(handle, data->callchain, size);
5370 } else {
5371 u64 nr = 0;
5372 perf_output_put(handle, nr);
5373 }
5374 }
5375
5376 if (sample_type & PERF_SAMPLE_RAW) {
5377 if (data->raw) {
5378 perf_output_put(handle, data->raw->size);
5379 __output_copy(handle, data->raw->data,
5380 data->raw->size);
5381 } else {
5382 struct {
5383 u32 size;
5384 u32 data;
5385 } raw = {
5386 .size = sizeof(u32),
5387 .data = 0,
5388 };
5389 perf_output_put(handle, raw);
5390 }
5391 }
5392
5393 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5394 if (data->br_stack) {
5395 size_t size;
5396
5397 size = data->br_stack->nr
5398 * sizeof(struct perf_branch_entry);
5399
5400 perf_output_put(handle, data->br_stack->nr);
5401 perf_output_copy(handle, data->br_stack->entries, size);
5402 } else {
5403 /*
5404 * we always store at least the value of nr
5405 */
5406 u64 nr = 0;
5407 perf_output_put(handle, nr);
5408 }
5409 }
5410
5411 if (sample_type & PERF_SAMPLE_REGS_USER) {
5412 u64 abi = data->regs_user.abi;
5413
5414 /*
5415 * If there are no regs to dump, notice it through
5416 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5417 */
5418 perf_output_put(handle, abi);
5419
5420 if (abi) {
5421 u64 mask = event->attr.sample_regs_user;
5422 perf_output_sample_regs(handle,
5423 data->regs_user.regs,
5424 mask);
5425 }
5426 }
5427
5428 if (sample_type & PERF_SAMPLE_STACK_USER) {
5429 perf_output_sample_ustack(handle,
5430 data->stack_user_size,
5431 data->regs_user.regs);
5432 }
5433
5434 if (sample_type & PERF_SAMPLE_WEIGHT)
5435 perf_output_put(handle, data->weight);
5436
5437 if (sample_type & PERF_SAMPLE_DATA_SRC)
5438 perf_output_put(handle, data->data_src.val);
5439
5440 if (sample_type & PERF_SAMPLE_TRANSACTION)
5441 perf_output_put(handle, data->txn);
5442
5443 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5444 u64 abi = data->regs_intr.abi;
5445 /*
5446 * If there are no regs to dump, notice it through
5447 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5448 */
5449 perf_output_put(handle, abi);
5450
5451 if (abi) {
5452 u64 mask = event->attr.sample_regs_intr;
5453
5454 perf_output_sample_regs(handle,
5455 data->regs_intr.regs,
5456 mask);
5457 }
5458 }
5459
5460 if (!event->attr.watermark) {
5461 int wakeup_events = event->attr.wakeup_events;
5462
5463 if (wakeup_events) {
5464 struct ring_buffer *rb = handle->rb;
5465 int events = local_inc_return(&rb->events);
5466
5467 if (events >= wakeup_events) {
5468 local_sub(wakeup_events, &rb->events);
5469 local_inc(&rb->wakeup);
5470 }
5471 }
5472 }
5473 }
5474
5475 void perf_prepare_sample(struct perf_event_header *header,
5476 struct perf_sample_data *data,
5477 struct perf_event *event,
5478 struct pt_regs *regs)
5479 {
5480 u64 sample_type = event->attr.sample_type;
5481
5482 header->type = PERF_RECORD_SAMPLE;
5483 header->size = sizeof(*header) + event->header_size;
5484
5485 header->misc = 0;
5486 header->misc |= perf_misc_flags(regs);
5487
5488 __perf_event_header__init_id(header, data, event);
5489
5490 if (sample_type & PERF_SAMPLE_IP)
5491 data->ip = perf_instruction_pointer(regs);
5492
5493 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5494 int size = 1;
5495
5496 data->callchain = perf_callchain(event, regs);
5497
5498 if (data->callchain)
5499 size += data->callchain->nr;
5500
5501 header->size += size * sizeof(u64);
5502 }
5503
5504 if (sample_type & PERF_SAMPLE_RAW) {
5505 int size = sizeof(u32);
5506
5507 if (data->raw)
5508 size += data->raw->size;
5509 else
5510 size += sizeof(u32);
5511
5512 WARN_ON_ONCE(size & (sizeof(u64)-1));
5513 header->size += size;
5514 }
5515
5516 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5517 int size = sizeof(u64); /* nr */
5518 if (data->br_stack) {
5519 size += data->br_stack->nr
5520 * sizeof(struct perf_branch_entry);
5521 }
5522 header->size += size;
5523 }
5524
5525 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
5526 perf_sample_regs_user(&data->regs_user, regs,
5527 &data->regs_user_copy);
5528
5529 if (sample_type & PERF_SAMPLE_REGS_USER) {
5530 /* regs dump ABI info */
5531 int size = sizeof(u64);
5532
5533 if (data->regs_user.regs) {
5534 u64 mask = event->attr.sample_regs_user;
5535 size += hweight64(mask) * sizeof(u64);
5536 }
5537
5538 header->size += size;
5539 }
5540
5541 if (sample_type & PERF_SAMPLE_STACK_USER) {
5542 /*
5543 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
5544 * processed as the last one or have additional check added
5545 * in case new sample type is added, because we could eat
5546 * up the rest of the sample size.
5547 */
5548 u16 stack_size = event->attr.sample_stack_user;
5549 u16 size = sizeof(u64);
5550
5551 stack_size = perf_sample_ustack_size(stack_size, header->size,
5552 data->regs_user.regs);
5553
5554 /*
5555 * If there is something to dump, add space for the dump
5556 * itself and for the field that tells the dynamic size,
5557 * which is how many have been actually dumped.
5558 */
5559 if (stack_size)
5560 size += sizeof(u64) + stack_size;
5561
5562 data->stack_user_size = stack_size;
5563 header->size += size;
5564 }
5565
5566 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5567 /* regs dump ABI info */
5568 int size = sizeof(u64);
5569
5570 perf_sample_regs_intr(&data->regs_intr, regs);
5571
5572 if (data->regs_intr.regs) {
5573 u64 mask = event->attr.sample_regs_intr;
5574
5575 size += hweight64(mask) * sizeof(u64);
5576 }
5577
5578 header->size += size;
5579 }
5580 }
5581
5582 void perf_event_output(struct perf_event *event,
5583 struct perf_sample_data *data,
5584 struct pt_regs *regs)
5585 {
5586 struct perf_output_handle handle;
5587 struct perf_event_header header;
5588
5589 /* protect the callchain buffers */
5590 rcu_read_lock();
5591
5592 perf_prepare_sample(&header, data, event, regs);
5593
5594 if (perf_output_begin(&handle, event, header.size))
5595 goto exit;
5596
5597 perf_output_sample(&handle, &header, data, event);
5598
5599 perf_output_end(&handle);
5600
5601 exit:
5602 rcu_read_unlock();
5603 }
5604
5605 /*
5606 * read event_id
5607 */
5608
5609 struct perf_read_event {
5610 struct perf_event_header header;
5611
5612 u32 pid;
5613 u32 tid;
5614 };
5615
5616 static void
5617 perf_event_read_event(struct perf_event *event,
5618 struct task_struct *task)
5619 {
5620 struct perf_output_handle handle;
5621 struct perf_sample_data sample;
5622 struct perf_read_event read_event = {
5623 .header = {
5624 .type = PERF_RECORD_READ,
5625 .misc = 0,
5626 .size = sizeof(read_event) + event->read_size,
5627 },
5628 .pid = perf_event_pid(event, task),
5629 .tid = perf_event_tid(event, task),
5630 };
5631 int ret;
5632
5633 perf_event_header__init_id(&read_event.header, &sample, event);
5634 ret = perf_output_begin(&handle, event, read_event.header.size);
5635 if (ret)
5636 return;
5637
5638 perf_output_put(&handle, read_event);
5639 perf_output_read(&handle, event);
5640 perf_event__output_id_sample(event, &handle, &sample);
5641
5642 perf_output_end(&handle);
5643 }
5644
5645 typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
5646
5647 static void
5648 perf_event_aux_ctx(struct perf_event_context *ctx,
5649 perf_event_aux_output_cb output,
5650 void *data)
5651 {
5652 struct perf_event *event;
5653
5654 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5655 if (event->state < PERF_EVENT_STATE_INACTIVE)
5656 continue;
5657 if (!event_filter_match(event))
5658 continue;
5659 output(event, data);
5660 }
5661 }
5662
5663 static void
5664 perf_event_aux(perf_event_aux_output_cb output, void *data,
5665 struct perf_event_context *task_ctx)
5666 {
5667 struct perf_cpu_context *cpuctx;
5668 struct perf_event_context *ctx;
5669 struct pmu *pmu;
5670 int ctxn;
5671
5672 rcu_read_lock();
5673 list_for_each_entry_rcu(pmu, &pmus, entry) {
5674 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
5675 if (cpuctx->unique_pmu != pmu)
5676 goto next;
5677 perf_event_aux_ctx(&cpuctx->ctx, output, data);
5678 if (task_ctx)
5679 goto next;
5680 ctxn = pmu->task_ctx_nr;
5681 if (ctxn < 0)
5682 goto next;
5683 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
5684 if (ctx)
5685 perf_event_aux_ctx(ctx, output, data);
5686 next:
5687 put_cpu_ptr(pmu->pmu_cpu_context);
5688 }
5689
5690 if (task_ctx) {
5691 preempt_disable();
5692 perf_event_aux_ctx(task_ctx, output, data);
5693 preempt_enable();
5694 }
5695 rcu_read_unlock();
5696 }
5697
5698 /*
5699 * task tracking -- fork/exit
5700 *
5701 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
5702 */
5703
5704 struct perf_task_event {
5705 struct task_struct *task;
5706 struct perf_event_context *task_ctx;
5707
5708 struct {
5709 struct perf_event_header header;
5710
5711 u32 pid;
5712 u32 ppid;
5713 u32 tid;
5714 u32 ptid;
5715 u64 time;
5716 } event_id;
5717 };
5718
5719 static int perf_event_task_match(struct perf_event *event)
5720 {
5721 return event->attr.comm || event->attr.mmap ||
5722 event->attr.mmap2 || event->attr.mmap_data ||
5723 event->attr.task;
5724 }
5725
5726 static void perf_event_task_output(struct perf_event *event,
5727 void *data)
5728 {
5729 struct perf_task_event *task_event = data;
5730 struct perf_output_handle handle;
5731 struct perf_sample_data sample;
5732 struct task_struct *task = task_event->task;
5733 int ret, size = task_event->event_id.header.size;
5734
5735 if (!perf_event_task_match(event))
5736 return;
5737
5738 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
5739
5740 ret = perf_output_begin(&handle, event,
5741 task_event->event_id.header.size);
5742 if (ret)
5743 goto out;
5744
5745 task_event->event_id.pid = perf_event_pid(event, task);
5746 task_event->event_id.ppid = perf_event_pid(event, current);
5747
5748 task_event->event_id.tid = perf_event_tid(event, task);
5749 task_event->event_id.ptid = perf_event_tid(event, current);
5750
5751 task_event->event_id.time = perf_event_clock(event);
5752
5753 perf_output_put(&handle, task_event->event_id);
5754
5755 perf_event__output_id_sample(event, &handle, &sample);
5756
5757 perf_output_end(&handle);
5758 out:
5759 task_event->event_id.header.size = size;
5760 }
5761
5762 static void perf_event_task(struct task_struct *task,
5763 struct perf_event_context *task_ctx,
5764 int new)
5765 {
5766 struct perf_task_event task_event;
5767
5768 if (!atomic_read(&nr_comm_events) &&
5769 !atomic_read(&nr_mmap_events) &&
5770 !atomic_read(&nr_task_events))
5771 return;
5772
5773 task_event = (struct perf_task_event){
5774 .task = task,
5775 .task_ctx = task_ctx,
5776 .event_id = {
5777 .header = {
5778 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
5779 .misc = 0,
5780 .size = sizeof(task_event.event_id),
5781 },
5782 /* .pid */
5783 /* .ppid */
5784 /* .tid */
5785 /* .ptid */
5786 /* .time */
5787 },
5788 };
5789
5790 perf_event_aux(perf_event_task_output,
5791 &task_event,
5792 task_ctx);
5793 }
5794
5795 void perf_event_fork(struct task_struct *task)
5796 {
5797 perf_event_task(task, NULL, 1);
5798 }
5799
5800 /*
5801 * comm tracking
5802 */
5803
5804 struct perf_comm_event {
5805 struct task_struct *task;
5806 char *comm;
5807 int comm_size;
5808
5809 struct {
5810 struct perf_event_header header;
5811
5812 u32 pid;
5813 u32 tid;
5814 } event_id;
5815 };
5816
5817 static int perf_event_comm_match(struct perf_event *event)
5818 {
5819 return event->attr.comm;
5820 }
5821
5822 static void perf_event_comm_output(struct perf_event *event,
5823 void *data)
5824 {
5825 struct perf_comm_event *comm_event = data;
5826 struct perf_output_handle handle;
5827 struct perf_sample_data sample;
5828 int size = comm_event->event_id.header.size;
5829 int ret;
5830
5831 if (!perf_event_comm_match(event))
5832 return;
5833
5834 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
5835 ret = perf_output_begin(&handle, event,
5836 comm_event->event_id.header.size);
5837
5838 if (ret)
5839 goto out;
5840
5841 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
5842 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
5843
5844 perf_output_put(&handle, comm_event->event_id);
5845 __output_copy(&handle, comm_event->comm,
5846 comm_event->comm_size);
5847
5848 perf_event__output_id_sample(event, &handle, &sample);
5849
5850 perf_output_end(&handle);
5851 out:
5852 comm_event->event_id.header.size = size;
5853 }
5854
5855 static void perf_event_comm_event(struct perf_comm_event *comm_event)
5856 {
5857 char comm[TASK_COMM_LEN];
5858 unsigned int size;
5859
5860 memset(comm, 0, sizeof(comm));
5861 strlcpy(comm, comm_event->task->comm, sizeof(comm));
5862 size = ALIGN(strlen(comm)+1, sizeof(u64));
5863
5864 comm_event->comm = comm;
5865 comm_event->comm_size = size;
5866
5867 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
5868
5869 perf_event_aux(perf_event_comm_output,
5870 comm_event,
5871 NULL);
5872 }
5873
5874 void perf_event_comm(struct task_struct *task, bool exec)
5875 {
5876 struct perf_comm_event comm_event;
5877
5878 if (!atomic_read(&nr_comm_events))
5879 return;
5880
5881 comm_event = (struct perf_comm_event){
5882 .task = task,
5883 /* .comm */
5884 /* .comm_size */
5885 .event_id = {
5886 .header = {
5887 .type = PERF_RECORD_COMM,
5888 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
5889 /* .size */
5890 },
5891 /* .pid */
5892 /* .tid */
5893 },
5894 };
5895
5896 perf_event_comm_event(&comm_event);
5897 }
5898
5899 /*
5900 * mmap tracking
5901 */
5902
5903 struct perf_mmap_event {
5904 struct vm_area_struct *vma;
5905
5906 const char *file_name;
5907 int file_size;
5908 int maj, min;
5909 u64 ino;
5910 u64 ino_generation;
5911 u32 prot, flags;
5912
5913 struct {
5914 struct perf_event_header header;
5915
5916 u32 pid;
5917 u32 tid;
5918 u64 start;
5919 u64 len;
5920 u64 pgoff;
5921 } event_id;
5922 };
5923
5924 static int perf_event_mmap_match(struct perf_event *event,
5925 void *data)
5926 {
5927 struct perf_mmap_event *mmap_event = data;
5928 struct vm_area_struct *vma = mmap_event->vma;
5929 int executable = vma->vm_flags & VM_EXEC;
5930
5931 return (!executable && event->attr.mmap_data) ||
5932 (executable && (event->attr.mmap || event->attr.mmap2));
5933 }
5934
5935 static void perf_event_mmap_output(struct perf_event *event,
5936 void *data)
5937 {
5938 struct perf_mmap_event *mmap_event = data;
5939 struct perf_output_handle handle;
5940 struct perf_sample_data sample;
5941 int size = mmap_event->event_id.header.size;
5942 int ret;
5943
5944 if (!perf_event_mmap_match(event, data))
5945 return;
5946
5947 if (event->attr.mmap2) {
5948 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
5949 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
5950 mmap_event->event_id.header.size += sizeof(mmap_event->min);
5951 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
5952 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
5953 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
5954 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
5955 }
5956
5957 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
5958 ret = perf_output_begin(&handle, event,
5959 mmap_event->event_id.header.size);
5960 if (ret)
5961 goto out;
5962
5963 mmap_event->event_id.pid = perf_event_pid(event, current);
5964 mmap_event->event_id.tid = perf_event_tid(event, current);
5965
5966 perf_output_put(&handle, mmap_event->event_id);
5967
5968 if (event->attr.mmap2) {
5969 perf_output_put(&handle, mmap_event->maj);
5970 perf_output_put(&handle, mmap_event->min);
5971 perf_output_put(&handle, mmap_event->ino);
5972 perf_output_put(&handle, mmap_event->ino_generation);
5973 perf_output_put(&handle, mmap_event->prot);
5974 perf_output_put(&handle, mmap_event->flags);
5975 }
5976
5977 __output_copy(&handle, mmap_event->file_name,
5978 mmap_event->file_size);
5979
5980 perf_event__output_id_sample(event, &handle, &sample);
5981
5982 perf_output_end(&handle);
5983 out:
5984 mmap_event->event_id.header.size = size;
5985 }
5986
5987 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
5988 {
5989 struct vm_area_struct *vma = mmap_event->vma;
5990 struct file *file = vma->vm_file;
5991 int maj = 0, min = 0;
5992 u64 ino = 0, gen = 0;
5993 u32 prot = 0, flags = 0;
5994 unsigned int size;
5995 char tmp[16];
5996 char *buf = NULL;
5997 char *name;
5998
5999 if (file) {
6000 struct inode *inode;
6001 dev_t dev;
6002
6003 buf = kmalloc(PATH_MAX, GFP_KERNEL);
6004 if (!buf) {
6005 name = "//enomem";
6006 goto cpy_name;
6007 }
6008 /*
6009 * d_path() works from the end of the rb backwards, so we
6010 * need to add enough zero bytes after the string to handle
6011 * the 64bit alignment we do later.
6012 */
6013 name = file_path(file, buf, PATH_MAX - sizeof(u64));
6014 if (IS_ERR(name)) {
6015 name = "//toolong";
6016 goto cpy_name;
6017 }
6018 inode = file_inode(vma->vm_file);
6019 dev = inode->i_sb->s_dev;
6020 ino = inode->i_ino;
6021 gen = inode->i_generation;
6022 maj = MAJOR(dev);
6023 min = MINOR(dev);
6024
6025 if (vma->vm_flags & VM_READ)
6026 prot |= PROT_READ;
6027 if (vma->vm_flags & VM_WRITE)
6028 prot |= PROT_WRITE;
6029 if (vma->vm_flags & VM_EXEC)
6030 prot |= PROT_EXEC;
6031
6032 if (vma->vm_flags & VM_MAYSHARE)
6033 flags = MAP_SHARED;
6034 else
6035 flags = MAP_PRIVATE;
6036
6037 if (vma->vm_flags & VM_DENYWRITE)
6038 flags |= MAP_DENYWRITE;
6039 if (vma->vm_flags & VM_MAYEXEC)
6040 flags |= MAP_EXECUTABLE;
6041 if (vma->vm_flags & VM_LOCKED)
6042 flags |= MAP_LOCKED;
6043 if (vma->vm_flags & VM_HUGETLB)
6044 flags |= MAP_HUGETLB;
6045
6046 goto got_name;
6047 } else {
6048 if (vma->vm_ops && vma->vm_ops->name) {
6049 name = (char *) vma->vm_ops->name(vma);
6050 if (name)
6051 goto cpy_name;
6052 }
6053
6054 name = (char *)arch_vma_name(vma);
6055 if (name)
6056 goto cpy_name;
6057
6058 if (vma->vm_start <= vma->vm_mm->start_brk &&
6059 vma->vm_end >= vma->vm_mm->brk) {
6060 name = "[heap]";
6061 goto cpy_name;
6062 }
6063 if (vma->vm_start <= vma->vm_mm->start_stack &&
6064 vma->vm_end >= vma->vm_mm->start_stack) {
6065 name = "[stack]";
6066 goto cpy_name;
6067 }
6068
6069 name = "//anon";
6070 goto cpy_name;
6071 }
6072
6073 cpy_name:
6074 strlcpy(tmp, name, sizeof(tmp));
6075 name = tmp;
6076 got_name:
6077 /*
6078 * Since our buffer works in 8 byte units we need to align our string
6079 * size to a multiple of 8. However, we must guarantee the tail end is
6080 * zero'd out to avoid leaking random bits to userspace.
6081 */
6082 size = strlen(name)+1;
6083 while (!IS_ALIGNED(size, sizeof(u64)))
6084 name[size++] = '\0';
6085
6086 mmap_event->file_name = name;
6087 mmap_event->file_size = size;
6088 mmap_event->maj = maj;
6089 mmap_event->min = min;
6090 mmap_event->ino = ino;
6091 mmap_event->ino_generation = gen;
6092 mmap_event->prot = prot;
6093 mmap_event->flags = flags;
6094
6095 if (!(vma->vm_flags & VM_EXEC))
6096 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6097
6098 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
6099
6100 perf_event_aux(perf_event_mmap_output,
6101 mmap_event,
6102 NULL);
6103
6104 kfree(buf);
6105 }
6106
6107 void perf_event_mmap(struct vm_area_struct *vma)
6108 {
6109 struct perf_mmap_event mmap_event;
6110
6111 if (!atomic_read(&nr_mmap_events))
6112 return;
6113
6114 mmap_event = (struct perf_mmap_event){
6115 .vma = vma,
6116 /* .file_name */
6117 /* .file_size */
6118 .event_id = {
6119 .header = {
6120 .type = PERF_RECORD_MMAP,
6121 .misc = PERF_RECORD_MISC_USER,
6122 /* .size */
6123 },
6124 /* .pid */
6125 /* .tid */
6126 .start = vma->vm_start,
6127 .len = vma->vm_end - vma->vm_start,
6128 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
6129 },
6130 /* .maj (attr_mmap2 only) */
6131 /* .min (attr_mmap2 only) */
6132 /* .ino (attr_mmap2 only) */
6133 /* .ino_generation (attr_mmap2 only) */
6134 /* .prot (attr_mmap2 only) */
6135 /* .flags (attr_mmap2 only) */
6136 };
6137
6138 perf_event_mmap_event(&mmap_event);
6139 }
6140
6141 void perf_event_aux_event(struct perf_event *event, unsigned long head,
6142 unsigned long size, u64 flags)
6143 {
6144 struct perf_output_handle handle;
6145 struct perf_sample_data sample;
6146 struct perf_aux_event {
6147 struct perf_event_header header;
6148 u64 offset;
6149 u64 size;
6150 u64 flags;
6151 } rec = {
6152 .header = {
6153 .type = PERF_RECORD_AUX,
6154 .misc = 0,
6155 .size = sizeof(rec),
6156 },
6157 .offset = head,
6158 .size = size,
6159 .flags = flags,
6160 };
6161 int ret;
6162
6163 perf_event_header__init_id(&rec.header, &sample, event);
6164 ret = perf_output_begin(&handle, event, rec.header.size);
6165
6166 if (ret)
6167 return;
6168
6169 perf_output_put(&handle, rec);
6170 perf_event__output_id_sample(event, &handle, &sample);
6171
6172 perf_output_end(&handle);
6173 }
6174
6175 /*
6176 * Lost/dropped samples logging
6177 */
6178 void perf_log_lost_samples(struct perf_event *event, u64 lost)
6179 {
6180 struct perf_output_handle handle;
6181 struct perf_sample_data sample;
6182 int ret;
6183
6184 struct {
6185 struct perf_event_header header;
6186 u64 lost;
6187 } lost_samples_event = {
6188 .header = {
6189 .type = PERF_RECORD_LOST_SAMPLES,
6190 .misc = 0,
6191 .size = sizeof(lost_samples_event),
6192 },
6193 .lost = lost,
6194 };
6195
6196 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
6197
6198 ret = perf_output_begin(&handle, event,
6199 lost_samples_event.header.size);
6200 if (ret)
6201 return;
6202
6203 perf_output_put(&handle, lost_samples_event);
6204 perf_event__output_id_sample(event, &handle, &sample);
6205 perf_output_end(&handle);
6206 }
6207
6208 /*
6209 * context_switch tracking
6210 */
6211
6212 struct perf_switch_event {
6213 struct task_struct *task;
6214 struct task_struct *next_prev;
6215
6216 struct {
6217 struct perf_event_header header;
6218 u32 next_prev_pid;
6219 u32 next_prev_tid;
6220 } event_id;
6221 };
6222
6223 static int perf_event_switch_match(struct perf_event *event)
6224 {
6225 return event->attr.context_switch;
6226 }
6227
6228 static void perf_event_switch_output(struct perf_event *event, void *data)
6229 {
6230 struct perf_switch_event *se = data;
6231 struct perf_output_handle handle;
6232 struct perf_sample_data sample;
6233 int ret;
6234
6235 if (!perf_event_switch_match(event))
6236 return;
6237
6238 /* Only CPU-wide events are allowed to see next/prev pid/tid */
6239 if (event->ctx->task) {
6240 se->event_id.header.type = PERF_RECORD_SWITCH;
6241 se->event_id.header.size = sizeof(se->event_id.header);
6242 } else {
6243 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
6244 se->event_id.header.size = sizeof(se->event_id);
6245 se->event_id.next_prev_pid =
6246 perf_event_pid(event, se->next_prev);
6247 se->event_id.next_prev_tid =
6248 perf_event_tid(event, se->next_prev);
6249 }
6250
6251 perf_event_header__init_id(&se->event_id.header, &sample, event);
6252
6253 ret = perf_output_begin(&handle, event, se->event_id.header.size);
6254 if (ret)
6255 return;
6256
6257 if (event->ctx->task)
6258 perf_output_put(&handle, se->event_id.header);
6259 else
6260 perf_output_put(&handle, se->event_id);
6261
6262 perf_event__output_id_sample(event, &handle, &sample);
6263
6264 perf_output_end(&handle);
6265 }
6266
6267 static void perf_event_switch(struct task_struct *task,
6268 struct task_struct *next_prev, bool sched_in)
6269 {
6270 struct perf_switch_event switch_event;
6271
6272 /* N.B. caller checks nr_switch_events != 0 */
6273
6274 switch_event = (struct perf_switch_event){
6275 .task = task,
6276 .next_prev = next_prev,
6277 .event_id = {
6278 .header = {
6279 /* .type */
6280 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
6281 /* .size */
6282 },
6283 /* .next_prev_pid */
6284 /* .next_prev_tid */
6285 },
6286 };
6287
6288 perf_event_aux(perf_event_switch_output,
6289 &switch_event,
6290 NULL);
6291 }
6292
6293 /*
6294 * IRQ throttle logging
6295 */
6296
6297 static void perf_log_throttle(struct perf_event *event, int enable)
6298 {
6299 struct perf_output_handle handle;
6300 struct perf_sample_data sample;
6301 int ret;
6302
6303 struct {
6304 struct perf_event_header header;
6305 u64 time;
6306 u64 id;
6307 u64 stream_id;
6308 } throttle_event = {
6309 .header = {
6310 .type = PERF_RECORD_THROTTLE,
6311 .misc = 0,
6312 .size = sizeof(throttle_event),
6313 },
6314 .time = perf_event_clock(event),
6315 .id = primary_event_id(event),
6316 .stream_id = event->id,
6317 };
6318
6319 if (enable)
6320 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
6321
6322 perf_event_header__init_id(&throttle_event.header, &sample, event);
6323
6324 ret = perf_output_begin(&handle, event,
6325 throttle_event.header.size);
6326 if (ret)
6327 return;
6328
6329 perf_output_put(&handle, throttle_event);
6330 perf_event__output_id_sample(event, &handle, &sample);
6331 perf_output_end(&handle);
6332 }
6333
6334 static void perf_log_itrace_start(struct perf_event *event)
6335 {
6336 struct perf_output_handle handle;
6337 struct perf_sample_data sample;
6338 struct perf_aux_event {
6339 struct perf_event_header header;
6340 u32 pid;
6341 u32 tid;
6342 } rec;
6343 int ret;
6344
6345 if (event->parent)
6346 event = event->parent;
6347
6348 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
6349 event->hw.itrace_started)
6350 return;
6351
6352 rec.header.type = PERF_RECORD_ITRACE_START;
6353 rec.header.misc = 0;
6354 rec.header.size = sizeof(rec);
6355 rec.pid = perf_event_pid(event, current);
6356 rec.tid = perf_event_tid(event, current);
6357
6358 perf_event_header__init_id(&rec.header, &sample, event);
6359 ret = perf_output_begin(&handle, event, rec.header.size);
6360
6361 if (ret)
6362 return;
6363
6364 perf_output_put(&handle, rec);
6365 perf_event__output_id_sample(event, &handle, &sample);
6366
6367 perf_output_end(&handle);
6368 }
6369
6370 /*
6371 * Generic event overflow handling, sampling.
6372 */
6373
6374 static int __perf_event_overflow(struct perf_event *event,
6375 int throttle, struct perf_sample_data *data,
6376 struct pt_regs *regs)
6377 {
6378 int events = atomic_read(&event->event_limit);
6379 struct hw_perf_event *hwc = &event->hw;
6380 u64 seq;
6381 int ret = 0;
6382
6383 /*
6384 * Non-sampling counters might still use the PMI to fold short
6385 * hardware counters, ignore those.
6386 */
6387 if (unlikely(!is_sampling_event(event)))
6388 return 0;
6389
6390 seq = __this_cpu_read(perf_throttled_seq);
6391 if (seq != hwc->interrupts_seq) {
6392 hwc->interrupts_seq = seq;
6393 hwc->interrupts = 1;
6394 } else {
6395 hwc->interrupts++;
6396 if (unlikely(throttle
6397 && hwc->interrupts >= max_samples_per_tick)) {
6398 __this_cpu_inc(perf_throttled_count);
6399 hwc->interrupts = MAX_INTERRUPTS;
6400 perf_log_throttle(event, 0);
6401 tick_nohz_full_kick();
6402 ret = 1;
6403 }
6404 }
6405
6406 if (event->attr.freq) {
6407 u64 now = perf_clock();
6408 s64 delta = now - hwc->freq_time_stamp;
6409
6410 hwc->freq_time_stamp = now;
6411
6412 if (delta > 0 && delta < 2*TICK_NSEC)
6413 perf_adjust_period(event, delta, hwc->last_period, true);
6414 }
6415
6416 /*
6417 * XXX event_limit might not quite work as expected on inherited
6418 * events
6419 */
6420
6421 event->pending_kill = POLL_IN;
6422 if (events && atomic_dec_and_test(&event->event_limit)) {
6423 ret = 1;
6424 event->pending_kill = POLL_HUP;
6425 event->pending_disable = 1;
6426 irq_work_queue(&event->pending);
6427 }
6428
6429 if (event->overflow_handler)
6430 event->overflow_handler(event, data, regs);
6431 else
6432 perf_event_output(event, data, regs);
6433
6434 if (*perf_event_fasync(event) && event->pending_kill) {
6435 event->pending_wakeup = 1;
6436 irq_work_queue(&event->pending);
6437 }
6438
6439 return ret;
6440 }
6441
6442 int perf_event_overflow(struct perf_event *event,
6443 struct perf_sample_data *data,
6444 struct pt_regs *regs)
6445 {
6446 return __perf_event_overflow(event, 1, data, regs);
6447 }
6448
6449 /*
6450 * Generic software event infrastructure
6451 */
6452
6453 struct swevent_htable {
6454 struct swevent_hlist *swevent_hlist;
6455 struct mutex hlist_mutex;
6456 int hlist_refcount;
6457
6458 /* Recursion avoidance in each contexts */
6459 int recursion[PERF_NR_CONTEXTS];
6460
6461 /* Keeps track of cpu being initialized/exited */
6462 bool online;
6463 };
6464
6465 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
6466
6467 /*
6468 * We directly increment event->count and keep a second value in
6469 * event->hw.period_left to count intervals. This period event
6470 * is kept in the range [-sample_period, 0] so that we can use the
6471 * sign as trigger.
6472 */
6473
6474 u64 perf_swevent_set_period(struct perf_event *event)
6475 {
6476 struct hw_perf_event *hwc = &event->hw;
6477 u64 period = hwc->last_period;
6478 u64 nr, offset;
6479 s64 old, val;
6480
6481 hwc->last_period = hwc->sample_period;
6482
6483 again:
6484 old = val = local64_read(&hwc->period_left);
6485 if (val < 0)
6486 return 0;
6487
6488 nr = div64_u64(period + val, period);
6489 offset = nr * period;
6490 val -= offset;
6491 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
6492 goto again;
6493
6494 return nr;
6495 }
6496
6497 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
6498 struct perf_sample_data *data,
6499 struct pt_regs *regs)
6500 {
6501 struct hw_perf_event *hwc = &event->hw;
6502 int throttle = 0;
6503
6504 if (!overflow)
6505 overflow = perf_swevent_set_period(event);
6506
6507 if (hwc->interrupts == MAX_INTERRUPTS)
6508 return;
6509
6510 for (; overflow; overflow--) {
6511 if (__perf_event_overflow(event, throttle,
6512 data, regs)) {
6513 /*
6514 * We inhibit the overflow from happening when
6515 * hwc->interrupts == MAX_INTERRUPTS.
6516 */
6517 break;
6518 }
6519 throttle = 1;
6520 }
6521 }
6522
6523 static void perf_swevent_event(struct perf_event *event, u64 nr,
6524 struct perf_sample_data *data,
6525 struct pt_regs *regs)
6526 {
6527 struct hw_perf_event *hwc = &event->hw;
6528
6529 local64_add(nr, &event->count);
6530
6531 if (!regs)
6532 return;
6533
6534 if (!is_sampling_event(event))
6535 return;
6536
6537 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
6538 data->period = nr;
6539 return perf_swevent_overflow(event, 1, data, regs);
6540 } else
6541 data->period = event->hw.last_period;
6542
6543 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
6544 return perf_swevent_overflow(event, 1, data, regs);
6545
6546 if (local64_add_negative(nr, &hwc->period_left))
6547 return;
6548
6549 perf_swevent_overflow(event, 0, data, regs);
6550 }
6551
6552 static int perf_exclude_event(struct perf_event *event,
6553 struct pt_regs *regs)
6554 {
6555 if (event->hw.state & PERF_HES_STOPPED)
6556 return 1;
6557
6558 if (regs) {
6559 if (event->attr.exclude_user && user_mode(regs))
6560 return 1;
6561
6562 if (event->attr.exclude_kernel && !user_mode(regs))
6563 return 1;
6564 }
6565
6566 return 0;
6567 }
6568
6569 static int perf_swevent_match(struct perf_event *event,
6570 enum perf_type_id type,
6571 u32 event_id,
6572 struct perf_sample_data *data,
6573 struct pt_regs *regs)
6574 {
6575 if (event->attr.type != type)
6576 return 0;
6577
6578 if (event->attr.config != event_id)
6579 return 0;
6580
6581 if (perf_exclude_event(event, regs))
6582 return 0;
6583
6584 return 1;
6585 }
6586
6587 static inline u64 swevent_hash(u64 type, u32 event_id)
6588 {
6589 u64 val = event_id | (type << 32);
6590
6591 return hash_64(val, SWEVENT_HLIST_BITS);
6592 }
6593
6594 static inline struct hlist_head *
6595 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
6596 {
6597 u64 hash = swevent_hash(type, event_id);
6598
6599 return &hlist->heads[hash];
6600 }
6601
6602 /* For the read side: events when they trigger */
6603 static inline struct hlist_head *
6604 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
6605 {
6606 struct swevent_hlist *hlist;
6607
6608 hlist = rcu_dereference(swhash->swevent_hlist);
6609 if (!hlist)
6610 return NULL;
6611
6612 return __find_swevent_head(hlist, type, event_id);
6613 }
6614
6615 /* For the event head insertion and removal in the hlist */
6616 static inline struct hlist_head *
6617 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
6618 {
6619 struct swevent_hlist *hlist;
6620 u32 event_id = event->attr.config;
6621 u64 type = event->attr.type;
6622
6623 /*
6624 * Event scheduling is always serialized against hlist allocation
6625 * and release. Which makes the protected version suitable here.
6626 * The context lock guarantees that.
6627 */
6628 hlist = rcu_dereference_protected(swhash->swevent_hlist,
6629 lockdep_is_held(&event->ctx->lock));
6630 if (!hlist)
6631 return NULL;
6632
6633 return __find_swevent_head(hlist, type, event_id);
6634 }
6635
6636 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
6637 u64 nr,
6638 struct perf_sample_data *data,
6639 struct pt_regs *regs)
6640 {
6641 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6642 struct perf_event *event;
6643 struct hlist_head *head;
6644
6645 rcu_read_lock();
6646 head = find_swevent_head_rcu(swhash, type, event_id);
6647 if (!head)
6648 goto end;
6649
6650 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6651 if (perf_swevent_match(event, type, event_id, data, regs))
6652 perf_swevent_event(event, nr, data, regs);
6653 }
6654 end:
6655 rcu_read_unlock();
6656 }
6657
6658 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
6659
6660 int perf_swevent_get_recursion_context(void)
6661 {
6662 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6663
6664 return get_recursion_context(swhash->recursion);
6665 }
6666 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
6667
6668 inline void perf_swevent_put_recursion_context(int rctx)
6669 {
6670 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6671
6672 put_recursion_context(swhash->recursion, rctx);
6673 }
6674
6675 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6676 {
6677 struct perf_sample_data data;
6678
6679 if (WARN_ON_ONCE(!regs))
6680 return;
6681
6682 perf_sample_data_init(&data, addr, 0);
6683 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
6684 }
6685
6686 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6687 {
6688 int rctx;
6689
6690 preempt_disable_notrace();
6691 rctx = perf_swevent_get_recursion_context();
6692 if (unlikely(rctx < 0))
6693 goto fail;
6694
6695 ___perf_sw_event(event_id, nr, regs, addr);
6696
6697 perf_swevent_put_recursion_context(rctx);
6698 fail:
6699 preempt_enable_notrace();
6700 }
6701
6702 static void perf_swevent_read(struct perf_event *event)
6703 {
6704 }
6705
6706 static int perf_swevent_add(struct perf_event *event, int flags)
6707 {
6708 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6709 struct hw_perf_event *hwc = &event->hw;
6710 struct hlist_head *head;
6711
6712 if (is_sampling_event(event)) {
6713 hwc->last_period = hwc->sample_period;
6714 perf_swevent_set_period(event);
6715 }
6716
6717 hwc->state = !(flags & PERF_EF_START);
6718
6719 head = find_swevent_head(swhash, event);
6720 if (!head) {
6721 /*
6722 * We can race with cpu hotplug code. Do not
6723 * WARN if the cpu just got unplugged.
6724 */
6725 WARN_ON_ONCE(swhash->online);
6726 return -EINVAL;
6727 }
6728
6729 hlist_add_head_rcu(&event->hlist_entry, head);
6730 perf_event_update_userpage(event);
6731
6732 return 0;
6733 }
6734
6735 static void perf_swevent_del(struct perf_event *event, int flags)
6736 {
6737 hlist_del_rcu(&event->hlist_entry);
6738 }
6739
6740 static void perf_swevent_start(struct perf_event *event, int flags)
6741 {
6742 event->hw.state = 0;
6743 }
6744
6745 static void perf_swevent_stop(struct perf_event *event, int flags)
6746 {
6747 event->hw.state = PERF_HES_STOPPED;
6748 }
6749
6750 /* Deref the hlist from the update side */
6751 static inline struct swevent_hlist *
6752 swevent_hlist_deref(struct swevent_htable *swhash)
6753 {
6754 return rcu_dereference_protected(swhash->swevent_hlist,
6755 lockdep_is_held(&swhash->hlist_mutex));
6756 }
6757
6758 static void swevent_hlist_release(struct swevent_htable *swhash)
6759 {
6760 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
6761
6762 if (!hlist)
6763 return;
6764
6765 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
6766 kfree_rcu(hlist, rcu_head);
6767 }
6768
6769 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
6770 {
6771 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6772
6773 mutex_lock(&swhash->hlist_mutex);
6774
6775 if (!--swhash->hlist_refcount)
6776 swevent_hlist_release(swhash);
6777
6778 mutex_unlock(&swhash->hlist_mutex);
6779 }
6780
6781 static void swevent_hlist_put(struct perf_event *event)
6782 {
6783 int cpu;
6784
6785 for_each_possible_cpu(cpu)
6786 swevent_hlist_put_cpu(event, cpu);
6787 }
6788
6789 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
6790 {
6791 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6792 int err = 0;
6793
6794 mutex_lock(&swhash->hlist_mutex);
6795
6796 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
6797 struct swevent_hlist *hlist;
6798
6799 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
6800 if (!hlist) {
6801 err = -ENOMEM;
6802 goto exit;
6803 }
6804 rcu_assign_pointer(swhash->swevent_hlist, hlist);
6805 }
6806 swhash->hlist_refcount++;
6807 exit:
6808 mutex_unlock(&swhash->hlist_mutex);
6809
6810 return err;
6811 }
6812
6813 static int swevent_hlist_get(struct perf_event *event)
6814 {
6815 int err;
6816 int cpu, failed_cpu;
6817
6818 get_online_cpus();
6819 for_each_possible_cpu(cpu) {
6820 err = swevent_hlist_get_cpu(event, cpu);
6821 if (err) {
6822 failed_cpu = cpu;
6823 goto fail;
6824 }
6825 }
6826 put_online_cpus();
6827
6828 return 0;
6829 fail:
6830 for_each_possible_cpu(cpu) {
6831 if (cpu == failed_cpu)
6832 break;
6833 swevent_hlist_put_cpu(event, cpu);
6834 }
6835
6836 put_online_cpus();
6837 return err;
6838 }
6839
6840 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
6841
6842 static void sw_perf_event_destroy(struct perf_event *event)
6843 {
6844 u64 event_id = event->attr.config;
6845
6846 WARN_ON(event->parent);
6847
6848 static_key_slow_dec(&perf_swevent_enabled[event_id]);
6849 swevent_hlist_put(event);
6850 }
6851
6852 static int perf_swevent_init(struct perf_event *event)
6853 {
6854 u64 event_id = event->attr.config;
6855
6856 if (event->attr.type != PERF_TYPE_SOFTWARE)
6857 return -ENOENT;
6858
6859 /*
6860 * no branch sampling for software events
6861 */
6862 if (has_branch_stack(event))
6863 return -EOPNOTSUPP;
6864
6865 switch (event_id) {
6866 case PERF_COUNT_SW_CPU_CLOCK:
6867 case PERF_COUNT_SW_TASK_CLOCK:
6868 return -ENOENT;
6869
6870 default:
6871 break;
6872 }
6873
6874 if (event_id >= PERF_COUNT_SW_MAX)
6875 return -ENOENT;
6876
6877 if (!event->parent) {
6878 int err;
6879
6880 err = swevent_hlist_get(event);
6881 if (err)
6882 return err;
6883
6884 static_key_slow_inc(&perf_swevent_enabled[event_id]);
6885 event->destroy = sw_perf_event_destroy;
6886 }
6887
6888 return 0;
6889 }
6890
6891 static struct pmu perf_swevent = {
6892 .task_ctx_nr = perf_sw_context,
6893
6894 .capabilities = PERF_PMU_CAP_NO_NMI,
6895
6896 .event_init = perf_swevent_init,
6897 .add = perf_swevent_add,
6898 .del = perf_swevent_del,
6899 .start = perf_swevent_start,
6900 .stop = perf_swevent_stop,
6901 .read = perf_swevent_read,
6902 };
6903
6904 #ifdef CONFIG_EVENT_TRACING
6905
6906 static int perf_tp_filter_match(struct perf_event *event,
6907 struct perf_sample_data *data)
6908 {
6909 void *record = data->raw->data;
6910
6911 if (likely(!event->filter) || filter_match_preds(event->filter, record))
6912 return 1;
6913 return 0;
6914 }
6915
6916 static int perf_tp_event_match(struct perf_event *event,
6917 struct perf_sample_data *data,
6918 struct pt_regs *regs)
6919 {
6920 if (event->hw.state & PERF_HES_STOPPED)
6921 return 0;
6922 /*
6923 * All tracepoints are from kernel-space.
6924 */
6925 if (event->attr.exclude_kernel)
6926 return 0;
6927
6928 if (!perf_tp_filter_match(event, data))
6929 return 0;
6930
6931 return 1;
6932 }
6933
6934 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
6935 struct pt_regs *regs, struct hlist_head *head, int rctx,
6936 struct task_struct *task)
6937 {
6938 struct perf_sample_data data;
6939 struct perf_event *event;
6940
6941 struct perf_raw_record raw = {
6942 .size = entry_size,
6943 .data = record,
6944 };
6945
6946 perf_sample_data_init(&data, addr, 0);
6947 data.raw = &raw;
6948
6949 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6950 if (perf_tp_event_match(event, &data, regs))
6951 perf_swevent_event(event, count, &data, regs);
6952 }
6953
6954 /*
6955 * If we got specified a target task, also iterate its context and
6956 * deliver this event there too.
6957 */
6958 if (task && task != current) {
6959 struct perf_event_context *ctx;
6960 struct trace_entry *entry = record;
6961
6962 rcu_read_lock();
6963 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
6964 if (!ctx)
6965 goto unlock;
6966
6967 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6968 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6969 continue;
6970 if (event->attr.config != entry->type)
6971 continue;
6972 if (perf_tp_event_match(event, &data, regs))
6973 perf_swevent_event(event, count, &data, regs);
6974 }
6975 unlock:
6976 rcu_read_unlock();
6977 }
6978
6979 perf_swevent_put_recursion_context(rctx);
6980 }
6981 EXPORT_SYMBOL_GPL(perf_tp_event);
6982
6983 static void tp_perf_event_destroy(struct perf_event *event)
6984 {
6985 perf_trace_destroy(event);
6986 }
6987
6988 static int perf_tp_event_init(struct perf_event *event)
6989 {
6990 int err;
6991
6992 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6993 return -ENOENT;
6994
6995 /*
6996 * no branch sampling for tracepoint events
6997 */
6998 if (has_branch_stack(event))
6999 return -EOPNOTSUPP;
7000
7001 err = perf_trace_init(event);
7002 if (err)
7003 return err;
7004
7005 event->destroy = tp_perf_event_destroy;
7006
7007 return 0;
7008 }
7009
7010 static struct pmu perf_tracepoint = {
7011 .task_ctx_nr = perf_sw_context,
7012
7013 .event_init = perf_tp_event_init,
7014 .add = perf_trace_add,
7015 .del = perf_trace_del,
7016 .start = perf_swevent_start,
7017 .stop = perf_swevent_stop,
7018 .read = perf_swevent_read,
7019 };
7020
7021 static inline void perf_tp_register(void)
7022 {
7023 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
7024 }
7025
7026 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
7027 {
7028 char *filter_str;
7029 int ret;
7030
7031 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7032 return -EINVAL;
7033
7034 filter_str = strndup_user(arg, PAGE_SIZE);
7035 if (IS_ERR(filter_str))
7036 return PTR_ERR(filter_str);
7037
7038 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
7039
7040 kfree(filter_str);
7041 return ret;
7042 }
7043
7044 static void perf_event_free_filter(struct perf_event *event)
7045 {
7046 ftrace_profile_free_filter(event);
7047 }
7048
7049 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7050 {
7051 struct bpf_prog *prog;
7052
7053 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7054 return -EINVAL;
7055
7056 if (event->tp_event->prog)
7057 return -EEXIST;
7058
7059 if (!(event->tp_event->flags & TRACE_EVENT_FL_UKPROBE))
7060 /* bpf programs can only be attached to u/kprobes */
7061 return -EINVAL;
7062
7063 prog = bpf_prog_get(prog_fd);
7064 if (IS_ERR(prog))
7065 return PTR_ERR(prog);
7066
7067 if (prog->type != BPF_PROG_TYPE_KPROBE) {
7068 /* valid fd, but invalid bpf program type */
7069 bpf_prog_put(prog);
7070 return -EINVAL;
7071 }
7072
7073 event->tp_event->prog = prog;
7074
7075 return 0;
7076 }
7077
7078 static void perf_event_free_bpf_prog(struct perf_event *event)
7079 {
7080 struct bpf_prog *prog;
7081
7082 if (!event->tp_event)
7083 return;
7084
7085 prog = event->tp_event->prog;
7086 if (prog) {
7087 event->tp_event->prog = NULL;
7088 bpf_prog_put(prog);
7089 }
7090 }
7091
7092 #else
7093
7094 static inline void perf_tp_register(void)
7095 {
7096 }
7097
7098 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
7099 {
7100 return -ENOENT;
7101 }
7102
7103 static void perf_event_free_filter(struct perf_event *event)
7104 {
7105 }
7106
7107 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7108 {
7109 return -ENOENT;
7110 }
7111
7112 static void perf_event_free_bpf_prog(struct perf_event *event)
7113 {
7114 }
7115 #endif /* CONFIG_EVENT_TRACING */
7116
7117 #ifdef CONFIG_HAVE_HW_BREAKPOINT
7118 void perf_bp_event(struct perf_event *bp, void *data)
7119 {
7120 struct perf_sample_data sample;
7121 struct pt_regs *regs = data;
7122
7123 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
7124
7125 if (!bp->hw.state && !perf_exclude_event(bp, regs))
7126 perf_swevent_event(bp, 1, &sample, regs);
7127 }
7128 #endif
7129
7130 /*
7131 * hrtimer based swevent callback
7132 */
7133
7134 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
7135 {
7136 enum hrtimer_restart ret = HRTIMER_RESTART;
7137 struct perf_sample_data data;
7138 struct pt_regs *regs;
7139 struct perf_event *event;
7140 u64 period;
7141
7142 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
7143
7144 if (event->state != PERF_EVENT_STATE_ACTIVE)
7145 return HRTIMER_NORESTART;
7146
7147 event->pmu->read(event);
7148
7149 perf_sample_data_init(&data, 0, event->hw.last_period);
7150 regs = get_irq_regs();
7151
7152 if (regs && !perf_exclude_event(event, regs)) {
7153 if (!(event->attr.exclude_idle && is_idle_task(current)))
7154 if (__perf_event_overflow(event, 1, &data, regs))
7155 ret = HRTIMER_NORESTART;
7156 }
7157
7158 period = max_t(u64, 10000, event->hw.sample_period);
7159 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
7160
7161 return ret;
7162 }
7163
7164 static void perf_swevent_start_hrtimer(struct perf_event *event)
7165 {
7166 struct hw_perf_event *hwc = &event->hw;
7167 s64 period;
7168
7169 if (!is_sampling_event(event))
7170 return;
7171
7172 period = local64_read(&hwc->period_left);
7173 if (period) {
7174 if (period < 0)
7175 period = 10000;
7176
7177 local64_set(&hwc->period_left, 0);
7178 } else {
7179 period = max_t(u64, 10000, hwc->sample_period);
7180 }
7181 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
7182 HRTIMER_MODE_REL_PINNED);
7183 }
7184
7185 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
7186 {
7187 struct hw_perf_event *hwc = &event->hw;
7188
7189 if (is_sampling_event(event)) {
7190 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
7191 local64_set(&hwc->period_left, ktime_to_ns(remaining));
7192
7193 hrtimer_cancel(&hwc->hrtimer);
7194 }
7195 }
7196
7197 static void perf_swevent_init_hrtimer(struct perf_event *event)
7198 {
7199 struct hw_perf_event *hwc = &event->hw;
7200
7201 if (!is_sampling_event(event))
7202 return;
7203
7204 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
7205 hwc->hrtimer.function = perf_swevent_hrtimer;
7206
7207 /*
7208 * Since hrtimers have a fixed rate, we can do a static freq->period
7209 * mapping and avoid the whole period adjust feedback stuff.
7210 */
7211 if (event->attr.freq) {
7212 long freq = event->attr.sample_freq;
7213
7214 event->attr.sample_period = NSEC_PER_SEC / freq;
7215 hwc->sample_period = event->attr.sample_period;
7216 local64_set(&hwc->period_left, hwc->sample_period);
7217 hwc->last_period = hwc->sample_period;
7218 event->attr.freq = 0;
7219 }
7220 }
7221
7222 /*
7223 * Software event: cpu wall time clock
7224 */
7225
7226 static void cpu_clock_event_update(struct perf_event *event)
7227 {
7228 s64 prev;
7229 u64 now;
7230
7231 now = local_clock();
7232 prev = local64_xchg(&event->hw.prev_count, now);
7233 local64_add(now - prev, &event->count);
7234 }
7235
7236 static void cpu_clock_event_start(struct perf_event *event, int flags)
7237 {
7238 local64_set(&event->hw.prev_count, local_clock());
7239 perf_swevent_start_hrtimer(event);
7240 }
7241
7242 static void cpu_clock_event_stop(struct perf_event *event, int flags)
7243 {
7244 perf_swevent_cancel_hrtimer(event);
7245 cpu_clock_event_update(event);
7246 }
7247
7248 static int cpu_clock_event_add(struct perf_event *event, int flags)
7249 {
7250 if (flags & PERF_EF_START)
7251 cpu_clock_event_start(event, flags);
7252 perf_event_update_userpage(event);
7253
7254 return 0;
7255 }
7256
7257 static void cpu_clock_event_del(struct perf_event *event, int flags)
7258 {
7259 cpu_clock_event_stop(event, flags);
7260 }
7261
7262 static void cpu_clock_event_read(struct perf_event *event)
7263 {
7264 cpu_clock_event_update(event);
7265 }
7266
7267 static int cpu_clock_event_init(struct perf_event *event)
7268 {
7269 if (event->attr.type != PERF_TYPE_SOFTWARE)
7270 return -ENOENT;
7271
7272 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
7273 return -ENOENT;
7274
7275 /*
7276 * no branch sampling for software events
7277 */
7278 if (has_branch_stack(event))
7279 return -EOPNOTSUPP;
7280
7281 perf_swevent_init_hrtimer(event);
7282
7283 return 0;
7284 }
7285
7286 static struct pmu perf_cpu_clock = {
7287 .task_ctx_nr = perf_sw_context,
7288
7289 .capabilities = PERF_PMU_CAP_NO_NMI,
7290
7291 .event_init = cpu_clock_event_init,
7292 .add = cpu_clock_event_add,
7293 .del = cpu_clock_event_del,
7294 .start = cpu_clock_event_start,
7295 .stop = cpu_clock_event_stop,
7296 .read = cpu_clock_event_read,
7297 };
7298
7299 /*
7300 * Software event: task time clock
7301 */
7302
7303 static void task_clock_event_update(struct perf_event *event, u64 now)
7304 {
7305 u64 prev;
7306 s64 delta;
7307
7308 prev = local64_xchg(&event->hw.prev_count, now);
7309 delta = now - prev;
7310 local64_add(delta, &event->count);
7311 }
7312
7313 static void task_clock_event_start(struct perf_event *event, int flags)
7314 {
7315 local64_set(&event->hw.prev_count, event->ctx->time);
7316 perf_swevent_start_hrtimer(event);
7317 }
7318
7319 static void task_clock_event_stop(struct perf_event *event, int flags)
7320 {
7321 perf_swevent_cancel_hrtimer(event);
7322 task_clock_event_update(event, event->ctx->time);
7323 }
7324
7325 static int task_clock_event_add(struct perf_event *event, int flags)
7326 {
7327 if (flags & PERF_EF_START)
7328 task_clock_event_start(event, flags);
7329 perf_event_update_userpage(event);
7330
7331 return 0;
7332 }
7333
7334 static void task_clock_event_del(struct perf_event *event, int flags)
7335 {
7336 task_clock_event_stop(event, PERF_EF_UPDATE);
7337 }
7338
7339 static void task_clock_event_read(struct perf_event *event)
7340 {
7341 u64 now = perf_clock();
7342 u64 delta = now - event->ctx->timestamp;
7343 u64 time = event->ctx->time + delta;
7344
7345 task_clock_event_update(event, time);
7346 }
7347
7348 static int task_clock_event_init(struct perf_event *event)
7349 {
7350 if (event->attr.type != PERF_TYPE_SOFTWARE)
7351 return -ENOENT;
7352
7353 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
7354 return -ENOENT;
7355
7356 /*
7357 * no branch sampling for software events
7358 */
7359 if (has_branch_stack(event))
7360 return -EOPNOTSUPP;
7361
7362 perf_swevent_init_hrtimer(event);
7363
7364 return 0;
7365 }
7366
7367 static struct pmu perf_task_clock = {
7368 .task_ctx_nr = perf_sw_context,
7369
7370 .capabilities = PERF_PMU_CAP_NO_NMI,
7371
7372 .event_init = task_clock_event_init,
7373 .add = task_clock_event_add,
7374 .del = task_clock_event_del,
7375 .start = task_clock_event_start,
7376 .stop = task_clock_event_stop,
7377 .read = task_clock_event_read,
7378 };
7379
7380 static void perf_pmu_nop_void(struct pmu *pmu)
7381 {
7382 }
7383
7384 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
7385 {
7386 }
7387
7388 static int perf_pmu_nop_int(struct pmu *pmu)
7389 {
7390 return 0;
7391 }
7392
7393 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
7394
7395 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
7396 {
7397 __this_cpu_write(nop_txn_flags, flags);
7398
7399 if (flags & ~PERF_PMU_TXN_ADD)
7400 return;
7401
7402 perf_pmu_disable(pmu);
7403 }
7404
7405 static int perf_pmu_commit_txn(struct pmu *pmu)
7406 {
7407 unsigned int flags = __this_cpu_read(nop_txn_flags);
7408
7409 __this_cpu_write(nop_txn_flags, 0);
7410
7411 if (flags & ~PERF_PMU_TXN_ADD)
7412 return 0;
7413
7414 perf_pmu_enable(pmu);
7415 return 0;
7416 }
7417
7418 static void perf_pmu_cancel_txn(struct pmu *pmu)
7419 {
7420 unsigned int flags = __this_cpu_read(nop_txn_flags);
7421
7422 __this_cpu_write(nop_txn_flags, 0);
7423
7424 if (flags & ~PERF_PMU_TXN_ADD)
7425 return;
7426
7427 perf_pmu_enable(pmu);
7428 }
7429
7430 static int perf_event_idx_default(struct perf_event *event)
7431 {
7432 return 0;
7433 }
7434
7435 /*
7436 * Ensures all contexts with the same task_ctx_nr have the same
7437 * pmu_cpu_context too.
7438 */
7439 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
7440 {
7441 struct pmu *pmu;
7442
7443 if (ctxn < 0)
7444 return NULL;
7445
7446 list_for_each_entry(pmu, &pmus, entry) {
7447 if (pmu->task_ctx_nr == ctxn)
7448 return pmu->pmu_cpu_context;
7449 }
7450
7451 return NULL;
7452 }
7453
7454 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
7455 {
7456 int cpu;
7457
7458 for_each_possible_cpu(cpu) {
7459 struct perf_cpu_context *cpuctx;
7460
7461 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7462
7463 if (cpuctx->unique_pmu == old_pmu)
7464 cpuctx->unique_pmu = pmu;
7465 }
7466 }
7467
7468 static void free_pmu_context(struct pmu *pmu)
7469 {
7470 struct pmu *i;
7471
7472 mutex_lock(&pmus_lock);
7473 /*
7474 * Like a real lame refcount.
7475 */
7476 list_for_each_entry(i, &pmus, entry) {
7477 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
7478 update_pmu_context(i, pmu);
7479 goto out;
7480 }
7481 }
7482
7483 free_percpu(pmu->pmu_cpu_context);
7484 out:
7485 mutex_unlock(&pmus_lock);
7486 }
7487 static struct idr pmu_idr;
7488
7489 static ssize_t
7490 type_show(struct device *dev, struct device_attribute *attr, char *page)
7491 {
7492 struct pmu *pmu = dev_get_drvdata(dev);
7493
7494 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
7495 }
7496 static DEVICE_ATTR_RO(type);
7497
7498 static ssize_t
7499 perf_event_mux_interval_ms_show(struct device *dev,
7500 struct device_attribute *attr,
7501 char *page)
7502 {
7503 struct pmu *pmu = dev_get_drvdata(dev);
7504
7505 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
7506 }
7507
7508 static DEFINE_MUTEX(mux_interval_mutex);
7509
7510 static ssize_t
7511 perf_event_mux_interval_ms_store(struct device *dev,
7512 struct device_attribute *attr,
7513 const char *buf, size_t count)
7514 {
7515 struct pmu *pmu = dev_get_drvdata(dev);
7516 int timer, cpu, ret;
7517
7518 ret = kstrtoint(buf, 0, &timer);
7519 if (ret)
7520 return ret;
7521
7522 if (timer < 1)
7523 return -EINVAL;
7524
7525 /* same value, noting to do */
7526 if (timer == pmu->hrtimer_interval_ms)
7527 return count;
7528
7529 mutex_lock(&mux_interval_mutex);
7530 pmu->hrtimer_interval_ms = timer;
7531
7532 /* update all cpuctx for this PMU */
7533 get_online_cpus();
7534 for_each_online_cpu(cpu) {
7535 struct perf_cpu_context *cpuctx;
7536 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7537 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
7538
7539 cpu_function_call(cpu,
7540 (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
7541 }
7542 put_online_cpus();
7543 mutex_unlock(&mux_interval_mutex);
7544
7545 return count;
7546 }
7547 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
7548
7549 static struct attribute *pmu_dev_attrs[] = {
7550 &dev_attr_type.attr,
7551 &dev_attr_perf_event_mux_interval_ms.attr,
7552 NULL,
7553 };
7554 ATTRIBUTE_GROUPS(pmu_dev);
7555
7556 static int pmu_bus_running;
7557 static struct bus_type pmu_bus = {
7558 .name = "event_source",
7559 .dev_groups = pmu_dev_groups,
7560 };
7561
7562 static void pmu_dev_release(struct device *dev)
7563 {
7564 kfree(dev);
7565 }
7566
7567 static int pmu_dev_alloc(struct pmu *pmu)
7568 {
7569 int ret = -ENOMEM;
7570
7571 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
7572 if (!pmu->dev)
7573 goto out;
7574
7575 pmu->dev->groups = pmu->attr_groups;
7576 device_initialize(pmu->dev);
7577 ret = dev_set_name(pmu->dev, "%s", pmu->name);
7578 if (ret)
7579 goto free_dev;
7580
7581 dev_set_drvdata(pmu->dev, pmu);
7582 pmu->dev->bus = &pmu_bus;
7583 pmu->dev->release = pmu_dev_release;
7584 ret = device_add(pmu->dev);
7585 if (ret)
7586 goto free_dev;
7587
7588 out:
7589 return ret;
7590
7591 free_dev:
7592 put_device(pmu->dev);
7593 goto out;
7594 }
7595
7596 static struct lock_class_key cpuctx_mutex;
7597 static struct lock_class_key cpuctx_lock;
7598
7599 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
7600 {
7601 int cpu, ret;
7602
7603 mutex_lock(&pmus_lock);
7604 ret = -ENOMEM;
7605 pmu->pmu_disable_count = alloc_percpu(int);
7606 if (!pmu->pmu_disable_count)
7607 goto unlock;
7608
7609 pmu->type = -1;
7610 if (!name)
7611 goto skip_type;
7612 pmu->name = name;
7613
7614 if (type < 0) {
7615 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
7616 if (type < 0) {
7617 ret = type;
7618 goto free_pdc;
7619 }
7620 }
7621 pmu->type = type;
7622
7623 if (pmu_bus_running) {
7624 ret = pmu_dev_alloc(pmu);
7625 if (ret)
7626 goto free_idr;
7627 }
7628
7629 skip_type:
7630 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
7631 if (pmu->pmu_cpu_context)
7632 goto got_cpu_context;
7633
7634 ret = -ENOMEM;
7635 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
7636 if (!pmu->pmu_cpu_context)
7637 goto free_dev;
7638
7639 for_each_possible_cpu(cpu) {
7640 struct perf_cpu_context *cpuctx;
7641
7642 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7643 __perf_event_init_context(&cpuctx->ctx);
7644 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
7645 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
7646 cpuctx->ctx.pmu = pmu;
7647
7648 __perf_mux_hrtimer_init(cpuctx, cpu);
7649
7650 cpuctx->unique_pmu = pmu;
7651 }
7652
7653 got_cpu_context:
7654 if (!pmu->start_txn) {
7655 if (pmu->pmu_enable) {
7656 /*
7657 * If we have pmu_enable/pmu_disable calls, install
7658 * transaction stubs that use that to try and batch
7659 * hardware accesses.
7660 */
7661 pmu->start_txn = perf_pmu_start_txn;
7662 pmu->commit_txn = perf_pmu_commit_txn;
7663 pmu->cancel_txn = perf_pmu_cancel_txn;
7664 } else {
7665 pmu->start_txn = perf_pmu_nop_txn;
7666 pmu->commit_txn = perf_pmu_nop_int;
7667 pmu->cancel_txn = perf_pmu_nop_void;
7668 }
7669 }
7670
7671 if (!pmu->pmu_enable) {
7672 pmu->pmu_enable = perf_pmu_nop_void;
7673 pmu->pmu_disable = perf_pmu_nop_void;
7674 }
7675
7676 if (!pmu->event_idx)
7677 pmu->event_idx = perf_event_idx_default;
7678
7679 list_add_rcu(&pmu->entry, &pmus);
7680 atomic_set(&pmu->exclusive_cnt, 0);
7681 ret = 0;
7682 unlock:
7683 mutex_unlock(&pmus_lock);
7684
7685 return ret;
7686
7687 free_dev:
7688 device_del(pmu->dev);
7689 put_device(pmu->dev);
7690
7691 free_idr:
7692 if (pmu->type >= PERF_TYPE_MAX)
7693 idr_remove(&pmu_idr, pmu->type);
7694
7695 free_pdc:
7696 free_percpu(pmu->pmu_disable_count);
7697 goto unlock;
7698 }
7699 EXPORT_SYMBOL_GPL(perf_pmu_register);
7700
7701 void perf_pmu_unregister(struct pmu *pmu)
7702 {
7703 mutex_lock(&pmus_lock);
7704 list_del_rcu(&pmu->entry);
7705 mutex_unlock(&pmus_lock);
7706
7707 /*
7708 * We dereference the pmu list under both SRCU and regular RCU, so
7709 * synchronize against both of those.
7710 */
7711 synchronize_srcu(&pmus_srcu);
7712 synchronize_rcu();
7713
7714 free_percpu(pmu->pmu_disable_count);
7715 if (pmu->type >= PERF_TYPE_MAX)
7716 idr_remove(&pmu_idr, pmu->type);
7717 device_del(pmu->dev);
7718 put_device(pmu->dev);
7719 free_pmu_context(pmu);
7720 }
7721 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
7722
7723 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
7724 {
7725 struct perf_event_context *ctx = NULL;
7726 int ret;
7727
7728 if (!try_module_get(pmu->module))
7729 return -ENODEV;
7730
7731 if (event->group_leader != event) {
7732 /*
7733 * This ctx->mutex can nest when we're called through
7734 * inheritance. See the perf_event_ctx_lock_nested() comment.
7735 */
7736 ctx = perf_event_ctx_lock_nested(event->group_leader,
7737 SINGLE_DEPTH_NESTING);
7738 BUG_ON(!ctx);
7739 }
7740
7741 event->pmu = pmu;
7742 ret = pmu->event_init(event);
7743
7744 if (ctx)
7745 perf_event_ctx_unlock(event->group_leader, ctx);
7746
7747 if (ret)
7748 module_put(pmu->module);
7749
7750 return ret;
7751 }
7752
7753 static struct pmu *perf_init_event(struct perf_event *event)
7754 {
7755 struct pmu *pmu = NULL;
7756 int idx;
7757 int ret;
7758
7759 idx = srcu_read_lock(&pmus_srcu);
7760
7761 rcu_read_lock();
7762 pmu = idr_find(&pmu_idr, event->attr.type);
7763 rcu_read_unlock();
7764 if (pmu) {
7765 ret = perf_try_init_event(pmu, event);
7766 if (ret)
7767 pmu = ERR_PTR(ret);
7768 goto unlock;
7769 }
7770
7771 list_for_each_entry_rcu(pmu, &pmus, entry) {
7772 ret = perf_try_init_event(pmu, event);
7773 if (!ret)
7774 goto unlock;
7775
7776 if (ret != -ENOENT) {
7777 pmu = ERR_PTR(ret);
7778 goto unlock;
7779 }
7780 }
7781 pmu = ERR_PTR(-ENOENT);
7782 unlock:
7783 srcu_read_unlock(&pmus_srcu, idx);
7784
7785 return pmu;
7786 }
7787
7788 static void account_event_cpu(struct perf_event *event, int cpu)
7789 {
7790 if (event->parent)
7791 return;
7792
7793 if (is_cgroup_event(event))
7794 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
7795 }
7796
7797 static void account_event(struct perf_event *event)
7798 {
7799 if (event->parent)
7800 return;
7801
7802 if (event->attach_state & PERF_ATTACH_TASK)
7803 static_key_slow_inc(&perf_sched_events.key);
7804 if (event->attr.mmap || event->attr.mmap_data)
7805 atomic_inc(&nr_mmap_events);
7806 if (event->attr.comm)
7807 atomic_inc(&nr_comm_events);
7808 if (event->attr.task)
7809 atomic_inc(&nr_task_events);
7810 if (event->attr.freq) {
7811 if (atomic_inc_return(&nr_freq_events) == 1)
7812 tick_nohz_full_kick_all();
7813 }
7814 if (event->attr.context_switch) {
7815 atomic_inc(&nr_switch_events);
7816 static_key_slow_inc(&perf_sched_events.key);
7817 }
7818 if (has_branch_stack(event))
7819 static_key_slow_inc(&perf_sched_events.key);
7820 if (is_cgroup_event(event))
7821 static_key_slow_inc(&perf_sched_events.key);
7822
7823 account_event_cpu(event, event->cpu);
7824 }
7825
7826 /*
7827 * Allocate and initialize a event structure
7828 */
7829 static struct perf_event *
7830 perf_event_alloc(struct perf_event_attr *attr, int cpu,
7831 struct task_struct *task,
7832 struct perf_event *group_leader,
7833 struct perf_event *parent_event,
7834 perf_overflow_handler_t overflow_handler,
7835 void *context, int cgroup_fd)
7836 {
7837 struct pmu *pmu;
7838 struct perf_event *event;
7839 struct hw_perf_event *hwc;
7840 long err = -EINVAL;
7841
7842 if ((unsigned)cpu >= nr_cpu_ids) {
7843 if (!task || cpu != -1)
7844 return ERR_PTR(-EINVAL);
7845 }
7846
7847 event = kzalloc(sizeof(*event), GFP_KERNEL);
7848 if (!event)
7849 return ERR_PTR(-ENOMEM);
7850
7851 /*
7852 * Single events are their own group leaders, with an
7853 * empty sibling list:
7854 */
7855 if (!group_leader)
7856 group_leader = event;
7857
7858 mutex_init(&event->child_mutex);
7859 INIT_LIST_HEAD(&event->child_list);
7860
7861 INIT_LIST_HEAD(&event->group_entry);
7862 INIT_LIST_HEAD(&event->event_entry);
7863 INIT_LIST_HEAD(&event->sibling_list);
7864 INIT_LIST_HEAD(&event->rb_entry);
7865 INIT_LIST_HEAD(&event->active_entry);
7866 INIT_HLIST_NODE(&event->hlist_entry);
7867
7868
7869 init_waitqueue_head(&event->waitq);
7870 init_irq_work(&event->pending, perf_pending_event);
7871
7872 mutex_init(&event->mmap_mutex);
7873
7874 atomic_long_set(&event->refcount, 1);
7875 event->cpu = cpu;
7876 event->attr = *attr;
7877 event->group_leader = group_leader;
7878 event->pmu = NULL;
7879 event->oncpu = -1;
7880
7881 event->parent = parent_event;
7882
7883 event->ns = get_pid_ns(task_active_pid_ns(current));
7884 event->id = atomic64_inc_return(&perf_event_id);
7885
7886 event->state = PERF_EVENT_STATE_INACTIVE;
7887
7888 if (task) {
7889 event->attach_state = PERF_ATTACH_TASK;
7890 /*
7891 * XXX pmu::event_init needs to know what task to account to
7892 * and we cannot use the ctx information because we need the
7893 * pmu before we get a ctx.
7894 */
7895 event->hw.target = task;
7896 }
7897
7898 event->clock = &local_clock;
7899 if (parent_event)
7900 event->clock = parent_event->clock;
7901
7902 if (!overflow_handler && parent_event) {
7903 overflow_handler = parent_event->overflow_handler;
7904 context = parent_event->overflow_handler_context;
7905 }
7906
7907 event->overflow_handler = overflow_handler;
7908 event->overflow_handler_context = context;
7909
7910 perf_event__state_init(event);
7911
7912 pmu = NULL;
7913
7914 hwc = &event->hw;
7915 hwc->sample_period = attr->sample_period;
7916 if (attr->freq && attr->sample_freq)
7917 hwc->sample_period = 1;
7918 hwc->last_period = hwc->sample_period;
7919
7920 local64_set(&hwc->period_left, hwc->sample_period);
7921
7922 /*
7923 * we currently do not support PERF_FORMAT_GROUP on inherited events
7924 */
7925 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
7926 goto err_ns;
7927
7928 if (!has_branch_stack(event))
7929 event->attr.branch_sample_type = 0;
7930
7931 if (cgroup_fd != -1) {
7932 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
7933 if (err)
7934 goto err_ns;
7935 }
7936
7937 pmu = perf_init_event(event);
7938 if (!pmu)
7939 goto err_ns;
7940 else if (IS_ERR(pmu)) {
7941 err = PTR_ERR(pmu);
7942 goto err_ns;
7943 }
7944
7945 err = exclusive_event_init(event);
7946 if (err)
7947 goto err_pmu;
7948
7949 if (!event->parent) {
7950 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
7951 err = get_callchain_buffers();
7952 if (err)
7953 goto err_per_task;
7954 }
7955 }
7956
7957 return event;
7958
7959 err_per_task:
7960 exclusive_event_destroy(event);
7961
7962 err_pmu:
7963 if (event->destroy)
7964 event->destroy(event);
7965 module_put(pmu->module);
7966 err_ns:
7967 if (is_cgroup_event(event))
7968 perf_detach_cgroup(event);
7969 if (event->ns)
7970 put_pid_ns(event->ns);
7971 kfree(event);
7972
7973 return ERR_PTR(err);
7974 }
7975
7976 static int perf_copy_attr(struct perf_event_attr __user *uattr,
7977 struct perf_event_attr *attr)
7978 {
7979 u32 size;
7980 int ret;
7981
7982 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
7983 return -EFAULT;
7984
7985 /*
7986 * zero the full structure, so that a short copy will be nice.
7987 */
7988 memset(attr, 0, sizeof(*attr));
7989
7990 ret = get_user(size, &uattr->size);
7991 if (ret)
7992 return ret;
7993
7994 if (size > PAGE_SIZE) /* silly large */
7995 goto err_size;
7996
7997 if (!size) /* abi compat */
7998 size = PERF_ATTR_SIZE_VER0;
7999
8000 if (size < PERF_ATTR_SIZE_VER0)
8001 goto err_size;
8002
8003 /*
8004 * If we're handed a bigger struct than we know of,
8005 * ensure all the unknown bits are 0 - i.e. new
8006 * user-space does not rely on any kernel feature
8007 * extensions we dont know about yet.
8008 */
8009 if (size > sizeof(*attr)) {
8010 unsigned char __user *addr;
8011 unsigned char __user *end;
8012 unsigned char val;
8013
8014 addr = (void __user *)uattr + sizeof(*attr);
8015 end = (void __user *)uattr + size;
8016
8017 for (; addr < end; addr++) {
8018 ret = get_user(val, addr);
8019 if (ret)
8020 return ret;
8021 if (val)
8022 goto err_size;
8023 }
8024 size = sizeof(*attr);
8025 }
8026
8027 ret = copy_from_user(attr, uattr, size);
8028 if (ret)
8029 return -EFAULT;
8030
8031 if (attr->__reserved_1)
8032 return -EINVAL;
8033
8034 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
8035 return -EINVAL;
8036
8037 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
8038 return -EINVAL;
8039
8040 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
8041 u64 mask = attr->branch_sample_type;
8042
8043 /* only using defined bits */
8044 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
8045 return -EINVAL;
8046
8047 /* at least one branch bit must be set */
8048 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
8049 return -EINVAL;
8050
8051 /* propagate priv level, when not set for branch */
8052 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
8053
8054 /* exclude_kernel checked on syscall entry */
8055 if (!attr->exclude_kernel)
8056 mask |= PERF_SAMPLE_BRANCH_KERNEL;
8057
8058 if (!attr->exclude_user)
8059 mask |= PERF_SAMPLE_BRANCH_USER;
8060
8061 if (!attr->exclude_hv)
8062 mask |= PERF_SAMPLE_BRANCH_HV;
8063 /*
8064 * adjust user setting (for HW filter setup)
8065 */
8066 attr->branch_sample_type = mask;
8067 }
8068 /* privileged levels capture (kernel, hv): check permissions */
8069 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
8070 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
8071 return -EACCES;
8072 }
8073
8074 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
8075 ret = perf_reg_validate(attr->sample_regs_user);
8076 if (ret)
8077 return ret;
8078 }
8079
8080 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
8081 if (!arch_perf_have_user_stack_dump())
8082 return -ENOSYS;
8083
8084 /*
8085 * We have __u32 type for the size, but so far
8086 * we can only use __u16 as maximum due to the
8087 * __u16 sample size limit.
8088 */
8089 if (attr->sample_stack_user >= USHRT_MAX)
8090 ret = -EINVAL;
8091 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
8092 ret = -EINVAL;
8093 }
8094
8095 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
8096 ret = perf_reg_validate(attr->sample_regs_intr);
8097 out:
8098 return ret;
8099
8100 err_size:
8101 put_user(sizeof(*attr), &uattr->size);
8102 ret = -E2BIG;
8103 goto out;
8104 }
8105
8106 static int
8107 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
8108 {
8109 struct ring_buffer *rb = NULL;
8110 int ret = -EINVAL;
8111
8112 if (!output_event)
8113 goto set;
8114
8115 /* don't allow circular references */
8116 if (event == output_event)
8117 goto out;
8118
8119 /*
8120 * Don't allow cross-cpu buffers
8121 */
8122 if (output_event->cpu != event->cpu)
8123 goto out;
8124
8125 /*
8126 * If its not a per-cpu rb, it must be the same task.
8127 */
8128 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
8129 goto out;
8130
8131 /*
8132 * Mixing clocks in the same buffer is trouble you don't need.
8133 */
8134 if (output_event->clock != event->clock)
8135 goto out;
8136
8137 /*
8138 * If both events generate aux data, they must be on the same PMU
8139 */
8140 if (has_aux(event) && has_aux(output_event) &&
8141 event->pmu != output_event->pmu)
8142 goto out;
8143
8144 set:
8145 mutex_lock(&event->mmap_mutex);
8146 /* Can't redirect output if we've got an active mmap() */
8147 if (atomic_read(&event->mmap_count))
8148 goto unlock;
8149
8150 if (output_event) {
8151 /* get the rb we want to redirect to */
8152 rb = ring_buffer_get(output_event);
8153 if (!rb)
8154 goto unlock;
8155 }
8156
8157 ring_buffer_attach(event, rb);
8158
8159 ret = 0;
8160 unlock:
8161 mutex_unlock(&event->mmap_mutex);
8162
8163 out:
8164 return ret;
8165 }
8166
8167 static void mutex_lock_double(struct mutex *a, struct mutex *b)
8168 {
8169 if (b < a)
8170 swap(a, b);
8171
8172 mutex_lock(a);
8173 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
8174 }
8175
8176 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
8177 {
8178 bool nmi_safe = false;
8179
8180 switch (clk_id) {
8181 case CLOCK_MONOTONIC:
8182 event->clock = &ktime_get_mono_fast_ns;
8183 nmi_safe = true;
8184 break;
8185
8186 case CLOCK_MONOTONIC_RAW:
8187 event->clock = &ktime_get_raw_fast_ns;
8188 nmi_safe = true;
8189 break;
8190
8191 case CLOCK_REALTIME:
8192 event->clock = &ktime_get_real_ns;
8193 break;
8194
8195 case CLOCK_BOOTTIME:
8196 event->clock = &ktime_get_boot_ns;
8197 break;
8198
8199 case CLOCK_TAI:
8200 event->clock = &ktime_get_tai_ns;
8201 break;
8202
8203 default:
8204 return -EINVAL;
8205 }
8206
8207 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
8208 return -EINVAL;
8209
8210 return 0;
8211 }
8212
8213 /**
8214 * sys_perf_event_open - open a performance event, associate it to a task/cpu
8215 *
8216 * @attr_uptr: event_id type attributes for monitoring/sampling
8217 * @pid: target pid
8218 * @cpu: target cpu
8219 * @group_fd: group leader event fd
8220 */
8221 SYSCALL_DEFINE5(perf_event_open,
8222 struct perf_event_attr __user *, attr_uptr,
8223 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
8224 {
8225 struct perf_event *group_leader = NULL, *output_event = NULL;
8226 struct perf_event *event, *sibling;
8227 struct perf_event_attr attr;
8228 struct perf_event_context *ctx, *uninitialized_var(gctx);
8229 struct file *event_file = NULL;
8230 struct fd group = {NULL, 0};
8231 struct task_struct *task = NULL;
8232 struct pmu *pmu;
8233 int event_fd;
8234 int move_group = 0;
8235 int err;
8236 int f_flags = O_RDWR;
8237 int cgroup_fd = -1;
8238
8239 /* for future expandability... */
8240 if (flags & ~PERF_FLAG_ALL)
8241 return -EINVAL;
8242
8243 err = perf_copy_attr(attr_uptr, &attr);
8244 if (err)
8245 return err;
8246
8247 if (!attr.exclude_kernel) {
8248 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
8249 return -EACCES;
8250 }
8251
8252 if (attr.freq) {
8253 if (attr.sample_freq > sysctl_perf_event_sample_rate)
8254 return -EINVAL;
8255 } else {
8256 if (attr.sample_period & (1ULL << 63))
8257 return -EINVAL;
8258 }
8259
8260 /*
8261 * In cgroup mode, the pid argument is used to pass the fd
8262 * opened to the cgroup directory in cgroupfs. The cpu argument
8263 * designates the cpu on which to monitor threads from that
8264 * cgroup.
8265 */
8266 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
8267 return -EINVAL;
8268
8269 if (flags & PERF_FLAG_FD_CLOEXEC)
8270 f_flags |= O_CLOEXEC;
8271
8272 event_fd = get_unused_fd_flags(f_flags);
8273 if (event_fd < 0)
8274 return event_fd;
8275
8276 if (group_fd != -1) {
8277 err = perf_fget_light(group_fd, &group);
8278 if (err)
8279 goto err_fd;
8280 group_leader = group.file->private_data;
8281 if (flags & PERF_FLAG_FD_OUTPUT)
8282 output_event = group_leader;
8283 if (flags & PERF_FLAG_FD_NO_GROUP)
8284 group_leader = NULL;
8285 }
8286
8287 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
8288 task = find_lively_task_by_vpid(pid);
8289 if (IS_ERR(task)) {
8290 err = PTR_ERR(task);
8291 goto err_group_fd;
8292 }
8293 }
8294
8295 if (task && group_leader &&
8296 group_leader->attr.inherit != attr.inherit) {
8297 err = -EINVAL;
8298 goto err_task;
8299 }
8300
8301 get_online_cpus();
8302
8303 if (flags & PERF_FLAG_PID_CGROUP)
8304 cgroup_fd = pid;
8305
8306 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
8307 NULL, NULL, cgroup_fd);
8308 if (IS_ERR(event)) {
8309 err = PTR_ERR(event);
8310 goto err_cpus;
8311 }
8312
8313 if (is_sampling_event(event)) {
8314 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
8315 err = -ENOTSUPP;
8316 goto err_alloc;
8317 }
8318 }
8319
8320 account_event(event);
8321
8322 /*
8323 * Special case software events and allow them to be part of
8324 * any hardware group.
8325 */
8326 pmu = event->pmu;
8327
8328 if (attr.use_clockid) {
8329 err = perf_event_set_clock(event, attr.clockid);
8330 if (err)
8331 goto err_alloc;
8332 }
8333
8334 if (group_leader &&
8335 (is_software_event(event) != is_software_event(group_leader))) {
8336 if (is_software_event(event)) {
8337 /*
8338 * If event and group_leader are not both a software
8339 * event, and event is, then group leader is not.
8340 *
8341 * Allow the addition of software events to !software
8342 * groups, this is safe because software events never
8343 * fail to schedule.
8344 */
8345 pmu = group_leader->pmu;
8346 } else if (is_software_event(group_leader) &&
8347 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
8348 /*
8349 * In case the group is a pure software group, and we
8350 * try to add a hardware event, move the whole group to
8351 * the hardware context.
8352 */
8353 move_group = 1;
8354 }
8355 }
8356
8357 /*
8358 * Get the target context (task or percpu):
8359 */
8360 ctx = find_get_context(pmu, task, event);
8361 if (IS_ERR(ctx)) {
8362 err = PTR_ERR(ctx);
8363 goto err_alloc;
8364 }
8365
8366 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
8367 err = -EBUSY;
8368 goto err_context;
8369 }
8370
8371 if (task) {
8372 put_task_struct(task);
8373 task = NULL;
8374 }
8375
8376 /*
8377 * Look up the group leader (we will attach this event to it):
8378 */
8379 if (group_leader) {
8380 err = -EINVAL;
8381
8382 /*
8383 * Do not allow a recursive hierarchy (this new sibling
8384 * becoming part of another group-sibling):
8385 */
8386 if (group_leader->group_leader != group_leader)
8387 goto err_context;
8388
8389 /* All events in a group should have the same clock */
8390 if (group_leader->clock != event->clock)
8391 goto err_context;
8392
8393 /*
8394 * Do not allow to attach to a group in a different
8395 * task or CPU context:
8396 */
8397 if (move_group) {
8398 /*
8399 * Make sure we're both on the same task, or both
8400 * per-cpu events.
8401 */
8402 if (group_leader->ctx->task != ctx->task)
8403 goto err_context;
8404
8405 /*
8406 * Make sure we're both events for the same CPU;
8407 * grouping events for different CPUs is broken; since
8408 * you can never concurrently schedule them anyhow.
8409 */
8410 if (group_leader->cpu != event->cpu)
8411 goto err_context;
8412 } else {
8413 if (group_leader->ctx != ctx)
8414 goto err_context;
8415 }
8416
8417 /*
8418 * Only a group leader can be exclusive or pinned
8419 */
8420 if (attr.exclusive || attr.pinned)
8421 goto err_context;
8422 }
8423
8424 if (output_event) {
8425 err = perf_event_set_output(event, output_event);
8426 if (err)
8427 goto err_context;
8428 }
8429
8430 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
8431 f_flags);
8432 if (IS_ERR(event_file)) {
8433 err = PTR_ERR(event_file);
8434 goto err_context;
8435 }
8436
8437 if (move_group) {
8438 gctx = group_leader->ctx;
8439 mutex_lock_double(&gctx->mutex, &ctx->mutex);
8440 } else {
8441 mutex_lock(&ctx->mutex);
8442 }
8443
8444 if (!perf_event_validate_size(event)) {
8445 err = -E2BIG;
8446 goto err_locked;
8447 }
8448
8449 /*
8450 * Must be under the same ctx::mutex as perf_install_in_context(),
8451 * because we need to serialize with concurrent event creation.
8452 */
8453 if (!exclusive_event_installable(event, ctx)) {
8454 /* exclusive and group stuff are assumed mutually exclusive */
8455 WARN_ON_ONCE(move_group);
8456
8457 err = -EBUSY;
8458 goto err_locked;
8459 }
8460
8461 WARN_ON_ONCE(ctx->parent_ctx);
8462
8463 if (move_group) {
8464 /*
8465 * See perf_event_ctx_lock() for comments on the details
8466 * of swizzling perf_event::ctx.
8467 */
8468 perf_remove_from_context(group_leader, false);
8469
8470 list_for_each_entry(sibling, &group_leader->sibling_list,
8471 group_entry) {
8472 perf_remove_from_context(sibling, false);
8473 put_ctx(gctx);
8474 }
8475
8476 /*
8477 * Wait for everybody to stop referencing the events through
8478 * the old lists, before installing it on new lists.
8479 */
8480 synchronize_rcu();
8481
8482 /*
8483 * Install the group siblings before the group leader.
8484 *
8485 * Because a group leader will try and install the entire group
8486 * (through the sibling list, which is still in-tact), we can
8487 * end up with siblings installed in the wrong context.
8488 *
8489 * By installing siblings first we NO-OP because they're not
8490 * reachable through the group lists.
8491 */
8492 list_for_each_entry(sibling, &group_leader->sibling_list,
8493 group_entry) {
8494 perf_event__state_init(sibling);
8495 perf_install_in_context(ctx, sibling, sibling->cpu);
8496 get_ctx(ctx);
8497 }
8498
8499 /*
8500 * Removing from the context ends up with disabled
8501 * event. What we want here is event in the initial
8502 * startup state, ready to be add into new context.
8503 */
8504 perf_event__state_init(group_leader);
8505 perf_install_in_context(ctx, group_leader, group_leader->cpu);
8506 get_ctx(ctx);
8507
8508 /*
8509 * Now that all events are installed in @ctx, nothing
8510 * references @gctx anymore, so drop the last reference we have
8511 * on it.
8512 */
8513 put_ctx(gctx);
8514 }
8515
8516 /*
8517 * Precalculate sample_data sizes; do while holding ctx::mutex such
8518 * that we're serialized against further additions and before
8519 * perf_install_in_context() which is the point the event is active and
8520 * can use these values.
8521 */
8522 perf_event__header_size(event);
8523 perf_event__id_header_size(event);
8524
8525 perf_install_in_context(ctx, event, event->cpu);
8526 perf_unpin_context(ctx);
8527
8528 if (move_group)
8529 mutex_unlock(&gctx->mutex);
8530 mutex_unlock(&ctx->mutex);
8531
8532 put_online_cpus();
8533
8534 event->owner = current;
8535
8536 mutex_lock(&current->perf_event_mutex);
8537 list_add_tail(&event->owner_entry, &current->perf_event_list);
8538 mutex_unlock(&current->perf_event_mutex);
8539
8540 /*
8541 * Drop the reference on the group_event after placing the
8542 * new event on the sibling_list. This ensures destruction
8543 * of the group leader will find the pointer to itself in
8544 * perf_group_detach().
8545 */
8546 fdput(group);
8547 fd_install(event_fd, event_file);
8548 return event_fd;
8549
8550 err_locked:
8551 if (move_group)
8552 mutex_unlock(&gctx->mutex);
8553 mutex_unlock(&ctx->mutex);
8554 /* err_file: */
8555 fput(event_file);
8556 err_context:
8557 perf_unpin_context(ctx);
8558 put_ctx(ctx);
8559 err_alloc:
8560 free_event(event);
8561 err_cpus:
8562 put_online_cpus();
8563 err_task:
8564 if (task)
8565 put_task_struct(task);
8566 err_group_fd:
8567 fdput(group);
8568 err_fd:
8569 put_unused_fd(event_fd);
8570 return err;
8571 }
8572
8573 /**
8574 * perf_event_create_kernel_counter
8575 *
8576 * @attr: attributes of the counter to create
8577 * @cpu: cpu in which the counter is bound
8578 * @task: task to profile (NULL for percpu)
8579 */
8580 struct perf_event *
8581 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
8582 struct task_struct *task,
8583 perf_overflow_handler_t overflow_handler,
8584 void *context)
8585 {
8586 struct perf_event_context *ctx;
8587 struct perf_event *event;
8588 int err;
8589
8590 /*
8591 * Get the target context (task or percpu):
8592 */
8593
8594 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
8595 overflow_handler, context, -1);
8596 if (IS_ERR(event)) {
8597 err = PTR_ERR(event);
8598 goto err;
8599 }
8600
8601 /* Mark owner so we could distinguish it from user events. */
8602 event->owner = EVENT_OWNER_KERNEL;
8603
8604 account_event(event);
8605
8606 ctx = find_get_context(event->pmu, task, event);
8607 if (IS_ERR(ctx)) {
8608 err = PTR_ERR(ctx);
8609 goto err_free;
8610 }
8611
8612 WARN_ON_ONCE(ctx->parent_ctx);
8613 mutex_lock(&ctx->mutex);
8614 if (!exclusive_event_installable(event, ctx)) {
8615 mutex_unlock(&ctx->mutex);
8616 perf_unpin_context(ctx);
8617 put_ctx(ctx);
8618 err = -EBUSY;
8619 goto err_free;
8620 }
8621
8622 perf_install_in_context(ctx, event, cpu);
8623 perf_unpin_context(ctx);
8624 mutex_unlock(&ctx->mutex);
8625
8626 return event;
8627
8628 err_free:
8629 free_event(event);
8630 err:
8631 return ERR_PTR(err);
8632 }
8633 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
8634
8635 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
8636 {
8637 struct perf_event_context *src_ctx;
8638 struct perf_event_context *dst_ctx;
8639 struct perf_event *event, *tmp;
8640 LIST_HEAD(events);
8641
8642 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
8643 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
8644
8645 /*
8646 * See perf_event_ctx_lock() for comments on the details
8647 * of swizzling perf_event::ctx.
8648 */
8649 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
8650 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
8651 event_entry) {
8652 perf_remove_from_context(event, false);
8653 unaccount_event_cpu(event, src_cpu);
8654 put_ctx(src_ctx);
8655 list_add(&event->migrate_entry, &events);
8656 }
8657
8658 /*
8659 * Wait for the events to quiesce before re-instating them.
8660 */
8661 synchronize_rcu();
8662
8663 /*
8664 * Re-instate events in 2 passes.
8665 *
8666 * Skip over group leaders and only install siblings on this first
8667 * pass, siblings will not get enabled without a leader, however a
8668 * leader will enable its siblings, even if those are still on the old
8669 * context.
8670 */
8671 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8672 if (event->group_leader == event)
8673 continue;
8674
8675 list_del(&event->migrate_entry);
8676 if (event->state >= PERF_EVENT_STATE_OFF)
8677 event->state = PERF_EVENT_STATE_INACTIVE;
8678 account_event_cpu(event, dst_cpu);
8679 perf_install_in_context(dst_ctx, event, dst_cpu);
8680 get_ctx(dst_ctx);
8681 }
8682
8683 /*
8684 * Once all the siblings are setup properly, install the group leaders
8685 * to make it go.
8686 */
8687 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8688 list_del(&event->migrate_entry);
8689 if (event->state >= PERF_EVENT_STATE_OFF)
8690 event->state = PERF_EVENT_STATE_INACTIVE;
8691 account_event_cpu(event, dst_cpu);
8692 perf_install_in_context(dst_ctx, event, dst_cpu);
8693 get_ctx(dst_ctx);
8694 }
8695 mutex_unlock(&dst_ctx->mutex);
8696 mutex_unlock(&src_ctx->mutex);
8697 }
8698 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
8699
8700 static void sync_child_event(struct perf_event *child_event,
8701 struct task_struct *child)
8702 {
8703 struct perf_event *parent_event = child_event->parent;
8704 u64 child_val;
8705
8706 if (child_event->attr.inherit_stat)
8707 perf_event_read_event(child_event, child);
8708
8709 child_val = perf_event_count(child_event);
8710
8711 /*
8712 * Add back the child's count to the parent's count:
8713 */
8714 atomic64_add(child_val, &parent_event->child_count);
8715 atomic64_add(child_event->total_time_enabled,
8716 &parent_event->child_total_time_enabled);
8717 atomic64_add(child_event->total_time_running,
8718 &parent_event->child_total_time_running);
8719
8720 /*
8721 * Remove this event from the parent's list
8722 */
8723 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
8724 mutex_lock(&parent_event->child_mutex);
8725 list_del_init(&child_event->child_list);
8726 mutex_unlock(&parent_event->child_mutex);
8727
8728 /*
8729 * Make sure user/parent get notified, that we just
8730 * lost one event.
8731 */
8732 perf_event_wakeup(parent_event);
8733
8734 /*
8735 * Release the parent event, if this was the last
8736 * reference to it.
8737 */
8738 put_event(parent_event);
8739 }
8740
8741 static void
8742 __perf_event_exit_task(struct perf_event *child_event,
8743 struct perf_event_context *child_ctx,
8744 struct task_struct *child)
8745 {
8746 /*
8747 * Do not destroy the 'original' grouping; because of the context
8748 * switch optimization the original events could've ended up in a
8749 * random child task.
8750 *
8751 * If we were to destroy the original group, all group related
8752 * operations would cease to function properly after this random
8753 * child dies.
8754 *
8755 * Do destroy all inherited groups, we don't care about those
8756 * and being thorough is better.
8757 */
8758 perf_remove_from_context(child_event, !!child_event->parent);
8759
8760 /*
8761 * It can happen that the parent exits first, and has events
8762 * that are still around due to the child reference. These
8763 * events need to be zapped.
8764 */
8765 if (child_event->parent) {
8766 sync_child_event(child_event, child);
8767 free_event(child_event);
8768 } else {
8769 child_event->state = PERF_EVENT_STATE_EXIT;
8770 perf_event_wakeup(child_event);
8771 }
8772 }
8773
8774 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
8775 {
8776 struct perf_event *child_event, *next;
8777 struct perf_event_context *child_ctx, *clone_ctx = NULL;
8778 unsigned long flags;
8779
8780 if (likely(!child->perf_event_ctxp[ctxn])) {
8781 perf_event_task(child, NULL, 0);
8782 return;
8783 }
8784
8785 local_irq_save(flags);
8786 /*
8787 * We can't reschedule here because interrupts are disabled,
8788 * and either child is current or it is a task that can't be
8789 * scheduled, so we are now safe from rescheduling changing
8790 * our context.
8791 */
8792 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
8793
8794 /*
8795 * Take the context lock here so that if find_get_context is
8796 * reading child->perf_event_ctxp, we wait until it has
8797 * incremented the context's refcount before we do put_ctx below.
8798 */
8799 raw_spin_lock(&child_ctx->lock);
8800 task_ctx_sched_out(child_ctx);
8801 child->perf_event_ctxp[ctxn] = NULL;
8802
8803 /*
8804 * If this context is a clone; unclone it so it can't get
8805 * swapped to another process while we're removing all
8806 * the events from it.
8807 */
8808 clone_ctx = unclone_ctx(child_ctx);
8809 update_context_time(child_ctx);
8810 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
8811
8812 if (clone_ctx)
8813 put_ctx(clone_ctx);
8814
8815 /*
8816 * Report the task dead after unscheduling the events so that we
8817 * won't get any samples after PERF_RECORD_EXIT. We can however still
8818 * get a few PERF_RECORD_READ events.
8819 */
8820 perf_event_task(child, child_ctx, 0);
8821
8822 /*
8823 * We can recurse on the same lock type through:
8824 *
8825 * __perf_event_exit_task()
8826 * sync_child_event()
8827 * put_event()
8828 * mutex_lock(&ctx->mutex)
8829 *
8830 * But since its the parent context it won't be the same instance.
8831 */
8832 mutex_lock(&child_ctx->mutex);
8833
8834 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
8835 __perf_event_exit_task(child_event, child_ctx, child);
8836
8837 mutex_unlock(&child_ctx->mutex);
8838
8839 put_ctx(child_ctx);
8840 }
8841
8842 /*
8843 * When a child task exits, feed back event values to parent events.
8844 */
8845 void perf_event_exit_task(struct task_struct *child)
8846 {
8847 struct perf_event *event, *tmp;
8848 int ctxn;
8849
8850 mutex_lock(&child->perf_event_mutex);
8851 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
8852 owner_entry) {
8853 list_del_init(&event->owner_entry);
8854
8855 /*
8856 * Ensure the list deletion is visible before we clear
8857 * the owner, closes a race against perf_release() where
8858 * we need to serialize on the owner->perf_event_mutex.
8859 */
8860 smp_wmb();
8861 event->owner = NULL;
8862 }
8863 mutex_unlock(&child->perf_event_mutex);
8864
8865 for_each_task_context_nr(ctxn)
8866 perf_event_exit_task_context(child, ctxn);
8867 }
8868
8869 static void perf_free_event(struct perf_event *event,
8870 struct perf_event_context *ctx)
8871 {
8872 struct perf_event *parent = event->parent;
8873
8874 if (WARN_ON_ONCE(!parent))
8875 return;
8876
8877 mutex_lock(&parent->child_mutex);
8878 list_del_init(&event->child_list);
8879 mutex_unlock(&parent->child_mutex);
8880
8881 put_event(parent);
8882
8883 raw_spin_lock_irq(&ctx->lock);
8884 perf_group_detach(event);
8885 list_del_event(event, ctx);
8886 raw_spin_unlock_irq(&ctx->lock);
8887 free_event(event);
8888 }
8889
8890 /*
8891 * Free an unexposed, unused context as created by inheritance by
8892 * perf_event_init_task below, used by fork() in case of fail.
8893 *
8894 * Not all locks are strictly required, but take them anyway to be nice and
8895 * help out with the lockdep assertions.
8896 */
8897 void perf_event_free_task(struct task_struct *task)
8898 {
8899 struct perf_event_context *ctx;
8900 struct perf_event *event, *tmp;
8901 int ctxn;
8902
8903 for_each_task_context_nr(ctxn) {
8904 ctx = task->perf_event_ctxp[ctxn];
8905 if (!ctx)
8906 continue;
8907
8908 mutex_lock(&ctx->mutex);
8909 again:
8910 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
8911 group_entry)
8912 perf_free_event(event, ctx);
8913
8914 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
8915 group_entry)
8916 perf_free_event(event, ctx);
8917
8918 if (!list_empty(&ctx->pinned_groups) ||
8919 !list_empty(&ctx->flexible_groups))
8920 goto again;
8921
8922 mutex_unlock(&ctx->mutex);
8923
8924 put_ctx(ctx);
8925 }
8926 }
8927
8928 void perf_event_delayed_put(struct task_struct *task)
8929 {
8930 int ctxn;
8931
8932 for_each_task_context_nr(ctxn)
8933 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
8934 }
8935
8936 struct perf_event *perf_event_get(unsigned int fd)
8937 {
8938 int err;
8939 struct fd f;
8940 struct perf_event *event;
8941
8942 err = perf_fget_light(fd, &f);
8943 if (err)
8944 return ERR_PTR(err);
8945
8946 event = f.file->private_data;
8947 atomic_long_inc(&event->refcount);
8948 fdput(f);
8949
8950 return event;
8951 }
8952
8953 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
8954 {
8955 if (!event)
8956 return ERR_PTR(-EINVAL);
8957
8958 return &event->attr;
8959 }
8960
8961 /*
8962 * inherit a event from parent task to child task:
8963 */
8964 static struct perf_event *
8965 inherit_event(struct perf_event *parent_event,
8966 struct task_struct *parent,
8967 struct perf_event_context *parent_ctx,
8968 struct task_struct *child,
8969 struct perf_event *group_leader,
8970 struct perf_event_context *child_ctx)
8971 {
8972 enum perf_event_active_state parent_state = parent_event->state;
8973 struct perf_event *child_event;
8974 unsigned long flags;
8975
8976 /*
8977 * Instead of creating recursive hierarchies of events,
8978 * we link inherited events back to the original parent,
8979 * which has a filp for sure, which we use as the reference
8980 * count:
8981 */
8982 if (parent_event->parent)
8983 parent_event = parent_event->parent;
8984
8985 child_event = perf_event_alloc(&parent_event->attr,
8986 parent_event->cpu,
8987 child,
8988 group_leader, parent_event,
8989 NULL, NULL, -1);
8990 if (IS_ERR(child_event))
8991 return child_event;
8992
8993 if (is_orphaned_event(parent_event) ||
8994 !atomic_long_inc_not_zero(&parent_event->refcount)) {
8995 free_event(child_event);
8996 return NULL;
8997 }
8998
8999 get_ctx(child_ctx);
9000
9001 /*
9002 * Make the child state follow the state of the parent event,
9003 * not its attr.disabled bit. We hold the parent's mutex,
9004 * so we won't race with perf_event_{en, dis}able_family.
9005 */
9006 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
9007 child_event->state = PERF_EVENT_STATE_INACTIVE;
9008 else
9009 child_event->state = PERF_EVENT_STATE_OFF;
9010
9011 if (parent_event->attr.freq) {
9012 u64 sample_period = parent_event->hw.sample_period;
9013 struct hw_perf_event *hwc = &child_event->hw;
9014
9015 hwc->sample_period = sample_period;
9016 hwc->last_period = sample_period;
9017
9018 local64_set(&hwc->period_left, sample_period);
9019 }
9020
9021 child_event->ctx = child_ctx;
9022 child_event->overflow_handler = parent_event->overflow_handler;
9023 child_event->overflow_handler_context
9024 = parent_event->overflow_handler_context;
9025
9026 /*
9027 * Precalculate sample_data sizes
9028 */
9029 perf_event__header_size(child_event);
9030 perf_event__id_header_size(child_event);
9031
9032 /*
9033 * Link it up in the child's context:
9034 */
9035 raw_spin_lock_irqsave(&child_ctx->lock, flags);
9036 add_event_to_ctx(child_event, child_ctx);
9037 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
9038
9039 /*
9040 * Link this into the parent event's child list
9041 */
9042 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
9043 mutex_lock(&parent_event->child_mutex);
9044 list_add_tail(&child_event->child_list, &parent_event->child_list);
9045 mutex_unlock(&parent_event->child_mutex);
9046
9047 return child_event;
9048 }
9049
9050 static int inherit_group(struct perf_event *parent_event,
9051 struct task_struct *parent,
9052 struct perf_event_context *parent_ctx,
9053 struct task_struct *child,
9054 struct perf_event_context *child_ctx)
9055 {
9056 struct perf_event *leader;
9057 struct perf_event *sub;
9058 struct perf_event *child_ctr;
9059
9060 leader = inherit_event(parent_event, parent, parent_ctx,
9061 child, NULL, child_ctx);
9062 if (IS_ERR(leader))
9063 return PTR_ERR(leader);
9064 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
9065 child_ctr = inherit_event(sub, parent, parent_ctx,
9066 child, leader, child_ctx);
9067 if (IS_ERR(child_ctr))
9068 return PTR_ERR(child_ctr);
9069 }
9070 return 0;
9071 }
9072
9073 static int
9074 inherit_task_group(struct perf_event *event, struct task_struct *parent,
9075 struct perf_event_context *parent_ctx,
9076 struct task_struct *child, int ctxn,
9077 int *inherited_all)
9078 {
9079 int ret;
9080 struct perf_event_context *child_ctx;
9081
9082 if (!event->attr.inherit) {
9083 *inherited_all = 0;
9084 return 0;
9085 }
9086
9087 child_ctx = child->perf_event_ctxp[ctxn];
9088 if (!child_ctx) {
9089 /*
9090 * This is executed from the parent task context, so
9091 * inherit events that have been marked for cloning.
9092 * First allocate and initialize a context for the
9093 * child.
9094 */
9095
9096 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
9097 if (!child_ctx)
9098 return -ENOMEM;
9099
9100 child->perf_event_ctxp[ctxn] = child_ctx;
9101 }
9102
9103 ret = inherit_group(event, parent, parent_ctx,
9104 child, child_ctx);
9105
9106 if (ret)
9107 *inherited_all = 0;
9108
9109 return ret;
9110 }
9111
9112 /*
9113 * Initialize the perf_event context in task_struct
9114 */
9115 static int perf_event_init_context(struct task_struct *child, int ctxn)
9116 {
9117 struct perf_event_context *child_ctx, *parent_ctx;
9118 struct perf_event_context *cloned_ctx;
9119 struct perf_event *event;
9120 struct task_struct *parent = current;
9121 int inherited_all = 1;
9122 unsigned long flags;
9123 int ret = 0;
9124
9125 if (likely(!parent->perf_event_ctxp[ctxn]))
9126 return 0;
9127
9128 /*
9129 * If the parent's context is a clone, pin it so it won't get
9130 * swapped under us.
9131 */
9132 parent_ctx = perf_pin_task_context(parent, ctxn);
9133 if (!parent_ctx)
9134 return 0;
9135
9136 /*
9137 * No need to check if parent_ctx != NULL here; since we saw
9138 * it non-NULL earlier, the only reason for it to become NULL
9139 * is if we exit, and since we're currently in the middle of
9140 * a fork we can't be exiting at the same time.
9141 */
9142
9143 /*
9144 * Lock the parent list. No need to lock the child - not PID
9145 * hashed yet and not running, so nobody can access it.
9146 */
9147 mutex_lock(&parent_ctx->mutex);
9148
9149 /*
9150 * We dont have to disable NMIs - we are only looking at
9151 * the list, not manipulating it:
9152 */
9153 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
9154 ret = inherit_task_group(event, parent, parent_ctx,
9155 child, ctxn, &inherited_all);
9156 if (ret)
9157 break;
9158 }
9159
9160 /*
9161 * We can't hold ctx->lock when iterating the ->flexible_group list due
9162 * to allocations, but we need to prevent rotation because
9163 * rotate_ctx() will change the list from interrupt context.
9164 */
9165 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
9166 parent_ctx->rotate_disable = 1;
9167 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
9168
9169 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
9170 ret = inherit_task_group(event, parent, parent_ctx,
9171 child, ctxn, &inherited_all);
9172 if (ret)
9173 break;
9174 }
9175
9176 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
9177 parent_ctx->rotate_disable = 0;
9178
9179 child_ctx = child->perf_event_ctxp[ctxn];
9180
9181 if (child_ctx && inherited_all) {
9182 /*
9183 * Mark the child context as a clone of the parent
9184 * context, or of whatever the parent is a clone of.
9185 *
9186 * Note that if the parent is a clone, the holding of
9187 * parent_ctx->lock avoids it from being uncloned.
9188 */
9189 cloned_ctx = parent_ctx->parent_ctx;
9190 if (cloned_ctx) {
9191 child_ctx->parent_ctx = cloned_ctx;
9192 child_ctx->parent_gen = parent_ctx->parent_gen;
9193 } else {
9194 child_ctx->parent_ctx = parent_ctx;
9195 child_ctx->parent_gen = parent_ctx->generation;
9196 }
9197 get_ctx(child_ctx->parent_ctx);
9198 }
9199
9200 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
9201 mutex_unlock(&parent_ctx->mutex);
9202
9203 perf_unpin_context(parent_ctx);
9204 put_ctx(parent_ctx);
9205
9206 return ret;
9207 }
9208
9209 /*
9210 * Initialize the perf_event context in task_struct
9211 */
9212 int perf_event_init_task(struct task_struct *child)
9213 {
9214 int ctxn, ret;
9215
9216 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
9217 mutex_init(&child->perf_event_mutex);
9218 INIT_LIST_HEAD(&child->perf_event_list);
9219
9220 for_each_task_context_nr(ctxn) {
9221 ret = perf_event_init_context(child, ctxn);
9222 if (ret) {
9223 perf_event_free_task(child);
9224 return ret;
9225 }
9226 }
9227
9228 return 0;
9229 }
9230
9231 static void __init perf_event_init_all_cpus(void)
9232 {
9233 struct swevent_htable *swhash;
9234 int cpu;
9235
9236 for_each_possible_cpu(cpu) {
9237 swhash = &per_cpu(swevent_htable, cpu);
9238 mutex_init(&swhash->hlist_mutex);
9239 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
9240 }
9241 }
9242
9243 static void perf_event_init_cpu(int cpu)
9244 {
9245 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9246
9247 mutex_lock(&swhash->hlist_mutex);
9248 swhash->online = true;
9249 if (swhash->hlist_refcount > 0) {
9250 struct swevent_hlist *hlist;
9251
9252 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
9253 WARN_ON(!hlist);
9254 rcu_assign_pointer(swhash->swevent_hlist, hlist);
9255 }
9256 mutex_unlock(&swhash->hlist_mutex);
9257 }
9258
9259 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
9260 static void __perf_event_exit_context(void *__info)
9261 {
9262 struct remove_event re = { .detach_group = true };
9263 struct perf_event_context *ctx = __info;
9264
9265 rcu_read_lock();
9266 list_for_each_entry_rcu(re.event, &ctx->event_list, event_entry)
9267 __perf_remove_from_context(&re);
9268 rcu_read_unlock();
9269 }
9270
9271 static void perf_event_exit_cpu_context(int cpu)
9272 {
9273 struct perf_event_context *ctx;
9274 struct pmu *pmu;
9275 int idx;
9276
9277 idx = srcu_read_lock(&pmus_srcu);
9278 list_for_each_entry_rcu(pmu, &pmus, entry) {
9279 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
9280
9281 mutex_lock(&ctx->mutex);
9282 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
9283 mutex_unlock(&ctx->mutex);
9284 }
9285 srcu_read_unlock(&pmus_srcu, idx);
9286 }
9287
9288 static void perf_event_exit_cpu(int cpu)
9289 {
9290 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9291
9292 perf_event_exit_cpu_context(cpu);
9293
9294 mutex_lock(&swhash->hlist_mutex);
9295 swhash->online = false;
9296 swevent_hlist_release(swhash);
9297 mutex_unlock(&swhash->hlist_mutex);
9298 }
9299 #else
9300 static inline void perf_event_exit_cpu(int cpu) { }
9301 #endif
9302
9303 static int
9304 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
9305 {
9306 int cpu;
9307
9308 for_each_online_cpu(cpu)
9309 perf_event_exit_cpu(cpu);
9310
9311 return NOTIFY_OK;
9312 }
9313
9314 /*
9315 * Run the perf reboot notifier at the very last possible moment so that
9316 * the generic watchdog code runs as long as possible.
9317 */
9318 static struct notifier_block perf_reboot_notifier = {
9319 .notifier_call = perf_reboot,
9320 .priority = INT_MIN,
9321 };
9322
9323 static int
9324 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
9325 {
9326 unsigned int cpu = (long)hcpu;
9327
9328 switch (action & ~CPU_TASKS_FROZEN) {
9329
9330 case CPU_UP_PREPARE:
9331 case CPU_DOWN_FAILED:
9332 perf_event_init_cpu(cpu);
9333 break;
9334
9335 case CPU_UP_CANCELED:
9336 case CPU_DOWN_PREPARE:
9337 perf_event_exit_cpu(cpu);
9338 break;
9339 default:
9340 break;
9341 }
9342
9343 return NOTIFY_OK;
9344 }
9345
9346 void __init perf_event_init(void)
9347 {
9348 int ret;
9349
9350 idr_init(&pmu_idr);
9351
9352 perf_event_init_all_cpus();
9353 init_srcu_struct(&pmus_srcu);
9354 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
9355 perf_pmu_register(&perf_cpu_clock, NULL, -1);
9356 perf_pmu_register(&perf_task_clock, NULL, -1);
9357 perf_tp_register();
9358 perf_cpu_notifier(perf_cpu_notify);
9359 register_reboot_notifier(&perf_reboot_notifier);
9360
9361 ret = init_hw_breakpoint();
9362 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
9363
9364 /* do not patch jump label more than once per second */
9365 jump_label_rate_limit(&perf_sched_events, HZ);
9366
9367 /*
9368 * Build time assertion that we keep the data_head at the intended
9369 * location. IOW, validation we got the __reserved[] size right.
9370 */
9371 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
9372 != 1024);
9373 }
9374
9375 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
9376 char *page)
9377 {
9378 struct perf_pmu_events_attr *pmu_attr =
9379 container_of(attr, struct perf_pmu_events_attr, attr);
9380
9381 if (pmu_attr->event_str)
9382 return sprintf(page, "%s\n", pmu_attr->event_str);
9383
9384 return 0;
9385 }
9386
9387 static int __init perf_event_sysfs_init(void)
9388 {
9389 struct pmu *pmu;
9390 int ret;
9391
9392 mutex_lock(&pmus_lock);
9393
9394 ret = bus_register(&pmu_bus);
9395 if (ret)
9396 goto unlock;
9397
9398 list_for_each_entry(pmu, &pmus, entry) {
9399 if (!pmu->name || pmu->type < 0)
9400 continue;
9401
9402 ret = pmu_dev_alloc(pmu);
9403 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
9404 }
9405 pmu_bus_running = 1;
9406 ret = 0;
9407
9408 unlock:
9409 mutex_unlock(&pmus_lock);
9410
9411 return ret;
9412 }
9413 device_initcall(perf_event_sysfs_init);
9414
9415 #ifdef CONFIG_CGROUP_PERF
9416 static struct cgroup_subsys_state *
9417 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
9418 {
9419 struct perf_cgroup *jc;
9420
9421 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
9422 if (!jc)
9423 return ERR_PTR(-ENOMEM);
9424
9425 jc->info = alloc_percpu(struct perf_cgroup_info);
9426 if (!jc->info) {
9427 kfree(jc);
9428 return ERR_PTR(-ENOMEM);
9429 }
9430
9431 return &jc->css;
9432 }
9433
9434 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
9435 {
9436 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
9437
9438 free_percpu(jc->info);
9439 kfree(jc);
9440 }
9441
9442 static int __perf_cgroup_move(void *info)
9443 {
9444 struct task_struct *task = info;
9445 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
9446 return 0;
9447 }
9448
9449 static void perf_cgroup_attach(struct cgroup_subsys_state *css,
9450 struct cgroup_taskset *tset)
9451 {
9452 struct task_struct *task;
9453
9454 cgroup_taskset_for_each(task, tset)
9455 task_function_call(task, __perf_cgroup_move, task);
9456 }
9457
9458 static void perf_cgroup_exit(struct cgroup_subsys_state *css,
9459 struct cgroup_subsys_state *old_css,
9460 struct task_struct *task)
9461 {
9462 task_function_call(task, __perf_cgroup_move, task);
9463 }
9464
9465 struct cgroup_subsys perf_event_cgrp_subsys = {
9466 .css_alloc = perf_cgroup_css_alloc,
9467 .css_free = perf_cgroup_css_free,
9468 .exit = perf_cgroup_exit,
9469 .attach = perf_cgroup_attach,
9470 };
9471 #endif /* CONFIG_CGROUP_PERF */