]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/events/core.c
Merge branch 'linus' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6
[mirror_ubuntu-artful-kernel.git] / kernel / events / core.c
1 /*
2 * Performance events core code:
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47
48 #include "internal.h"
49
50 #include <asm/irq_regs.h>
51
52 static struct workqueue_struct *perf_wq;
53
54 typedef int (*remote_function_f)(void *);
55
56 struct remote_function_call {
57 struct task_struct *p;
58 remote_function_f func;
59 void *info;
60 int ret;
61 };
62
63 static void remote_function(void *data)
64 {
65 struct remote_function_call *tfc = data;
66 struct task_struct *p = tfc->p;
67
68 if (p) {
69 tfc->ret = -EAGAIN;
70 if (task_cpu(p) != smp_processor_id() || !task_curr(p))
71 return;
72 }
73
74 tfc->ret = tfc->func(tfc->info);
75 }
76
77 /**
78 * task_function_call - call a function on the cpu on which a task runs
79 * @p: the task to evaluate
80 * @func: the function to be called
81 * @info: the function call argument
82 *
83 * Calls the function @func when the task is currently running. This might
84 * be on the current CPU, which just calls the function directly
85 *
86 * returns: @func return value, or
87 * -ESRCH - when the process isn't running
88 * -EAGAIN - when the process moved away
89 */
90 static int
91 task_function_call(struct task_struct *p, remote_function_f func, void *info)
92 {
93 struct remote_function_call data = {
94 .p = p,
95 .func = func,
96 .info = info,
97 .ret = -ESRCH, /* No such (running) process */
98 };
99
100 if (task_curr(p))
101 smp_call_function_single(task_cpu(p), remote_function, &data, 1);
102
103 return data.ret;
104 }
105
106 /**
107 * cpu_function_call - call a function on the cpu
108 * @func: the function to be called
109 * @info: the function call argument
110 *
111 * Calls the function @func on the remote cpu.
112 *
113 * returns: @func return value or -ENXIO when the cpu is offline
114 */
115 static int cpu_function_call(int cpu, remote_function_f func, void *info)
116 {
117 struct remote_function_call data = {
118 .p = NULL,
119 .func = func,
120 .info = info,
121 .ret = -ENXIO, /* No such CPU */
122 };
123
124 smp_call_function_single(cpu, remote_function, &data, 1);
125
126 return data.ret;
127 }
128
129 #define EVENT_OWNER_KERNEL ((void *) -1)
130
131 static bool is_kernel_event(struct perf_event *event)
132 {
133 return event->owner == EVENT_OWNER_KERNEL;
134 }
135
136 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
137 PERF_FLAG_FD_OUTPUT |\
138 PERF_FLAG_PID_CGROUP |\
139 PERF_FLAG_FD_CLOEXEC)
140
141 /*
142 * branch priv levels that need permission checks
143 */
144 #define PERF_SAMPLE_BRANCH_PERM_PLM \
145 (PERF_SAMPLE_BRANCH_KERNEL |\
146 PERF_SAMPLE_BRANCH_HV)
147
148 enum event_type_t {
149 EVENT_FLEXIBLE = 0x1,
150 EVENT_PINNED = 0x2,
151 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
152 };
153
154 /*
155 * perf_sched_events : >0 events exist
156 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
157 */
158 struct static_key_deferred perf_sched_events __read_mostly;
159 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
160 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
161
162 static atomic_t nr_mmap_events __read_mostly;
163 static atomic_t nr_comm_events __read_mostly;
164 static atomic_t nr_task_events __read_mostly;
165 static atomic_t nr_freq_events __read_mostly;
166 static atomic_t nr_switch_events __read_mostly;
167
168 static LIST_HEAD(pmus);
169 static DEFINE_MUTEX(pmus_lock);
170 static struct srcu_struct pmus_srcu;
171
172 /*
173 * perf event paranoia level:
174 * -1 - not paranoid at all
175 * 0 - disallow raw tracepoint access for unpriv
176 * 1 - disallow cpu events for unpriv
177 * 2 - disallow kernel profiling for unpriv
178 */
179 int sysctl_perf_event_paranoid __read_mostly = 1;
180
181 /* Minimum for 512 kiB + 1 user control page */
182 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
183
184 /*
185 * max perf event sample rate
186 */
187 #define DEFAULT_MAX_SAMPLE_RATE 100000
188 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
189 #define DEFAULT_CPU_TIME_MAX_PERCENT 25
190
191 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
192
193 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
194 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
195
196 static int perf_sample_allowed_ns __read_mostly =
197 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
198
199 static void update_perf_cpu_limits(void)
200 {
201 u64 tmp = perf_sample_period_ns;
202
203 tmp *= sysctl_perf_cpu_time_max_percent;
204 do_div(tmp, 100);
205 ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
206 }
207
208 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
209
210 int perf_proc_update_handler(struct ctl_table *table, int write,
211 void __user *buffer, size_t *lenp,
212 loff_t *ppos)
213 {
214 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
215
216 if (ret || !write)
217 return ret;
218
219 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
220 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
221 update_perf_cpu_limits();
222
223 return 0;
224 }
225
226 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
227
228 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
229 void __user *buffer, size_t *lenp,
230 loff_t *ppos)
231 {
232 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
233
234 if (ret || !write)
235 return ret;
236
237 update_perf_cpu_limits();
238
239 return 0;
240 }
241
242 /*
243 * perf samples are done in some very critical code paths (NMIs).
244 * If they take too much CPU time, the system can lock up and not
245 * get any real work done. This will drop the sample rate when
246 * we detect that events are taking too long.
247 */
248 #define NR_ACCUMULATED_SAMPLES 128
249 static DEFINE_PER_CPU(u64, running_sample_length);
250
251 static void perf_duration_warn(struct irq_work *w)
252 {
253 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
254 u64 avg_local_sample_len;
255 u64 local_samples_len;
256
257 local_samples_len = __this_cpu_read(running_sample_length);
258 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
259
260 printk_ratelimited(KERN_WARNING
261 "perf interrupt took too long (%lld > %lld), lowering "
262 "kernel.perf_event_max_sample_rate to %d\n",
263 avg_local_sample_len, allowed_ns >> 1,
264 sysctl_perf_event_sample_rate);
265 }
266
267 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
268
269 void perf_sample_event_took(u64 sample_len_ns)
270 {
271 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
272 u64 avg_local_sample_len;
273 u64 local_samples_len;
274
275 if (allowed_ns == 0)
276 return;
277
278 /* decay the counter by 1 average sample */
279 local_samples_len = __this_cpu_read(running_sample_length);
280 local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
281 local_samples_len += sample_len_ns;
282 __this_cpu_write(running_sample_length, local_samples_len);
283
284 /*
285 * note: this will be biased artifically low until we have
286 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
287 * from having to maintain a count.
288 */
289 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
290
291 if (avg_local_sample_len <= allowed_ns)
292 return;
293
294 if (max_samples_per_tick <= 1)
295 return;
296
297 max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
298 sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
299 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
300
301 update_perf_cpu_limits();
302
303 if (!irq_work_queue(&perf_duration_work)) {
304 early_printk("perf interrupt took too long (%lld > %lld), lowering "
305 "kernel.perf_event_max_sample_rate to %d\n",
306 avg_local_sample_len, allowed_ns >> 1,
307 sysctl_perf_event_sample_rate);
308 }
309 }
310
311 static atomic64_t perf_event_id;
312
313 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
314 enum event_type_t event_type);
315
316 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
317 enum event_type_t event_type,
318 struct task_struct *task);
319
320 static void update_context_time(struct perf_event_context *ctx);
321 static u64 perf_event_time(struct perf_event *event);
322
323 void __weak perf_event_print_debug(void) { }
324
325 extern __weak const char *perf_pmu_name(void)
326 {
327 return "pmu";
328 }
329
330 static inline u64 perf_clock(void)
331 {
332 return local_clock();
333 }
334
335 static inline u64 perf_event_clock(struct perf_event *event)
336 {
337 return event->clock();
338 }
339
340 static inline struct perf_cpu_context *
341 __get_cpu_context(struct perf_event_context *ctx)
342 {
343 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
344 }
345
346 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
347 struct perf_event_context *ctx)
348 {
349 raw_spin_lock(&cpuctx->ctx.lock);
350 if (ctx)
351 raw_spin_lock(&ctx->lock);
352 }
353
354 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
355 struct perf_event_context *ctx)
356 {
357 if (ctx)
358 raw_spin_unlock(&ctx->lock);
359 raw_spin_unlock(&cpuctx->ctx.lock);
360 }
361
362 #ifdef CONFIG_CGROUP_PERF
363
364 static inline bool
365 perf_cgroup_match(struct perf_event *event)
366 {
367 struct perf_event_context *ctx = event->ctx;
368 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
369
370 /* @event doesn't care about cgroup */
371 if (!event->cgrp)
372 return true;
373
374 /* wants specific cgroup scope but @cpuctx isn't associated with any */
375 if (!cpuctx->cgrp)
376 return false;
377
378 /*
379 * Cgroup scoping is recursive. An event enabled for a cgroup is
380 * also enabled for all its descendant cgroups. If @cpuctx's
381 * cgroup is a descendant of @event's (the test covers identity
382 * case), it's a match.
383 */
384 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
385 event->cgrp->css.cgroup);
386 }
387
388 static inline void perf_detach_cgroup(struct perf_event *event)
389 {
390 css_put(&event->cgrp->css);
391 event->cgrp = NULL;
392 }
393
394 static inline int is_cgroup_event(struct perf_event *event)
395 {
396 return event->cgrp != NULL;
397 }
398
399 static inline u64 perf_cgroup_event_time(struct perf_event *event)
400 {
401 struct perf_cgroup_info *t;
402
403 t = per_cpu_ptr(event->cgrp->info, event->cpu);
404 return t->time;
405 }
406
407 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
408 {
409 struct perf_cgroup_info *info;
410 u64 now;
411
412 now = perf_clock();
413
414 info = this_cpu_ptr(cgrp->info);
415
416 info->time += now - info->timestamp;
417 info->timestamp = now;
418 }
419
420 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
421 {
422 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
423 if (cgrp_out)
424 __update_cgrp_time(cgrp_out);
425 }
426
427 static inline void update_cgrp_time_from_event(struct perf_event *event)
428 {
429 struct perf_cgroup *cgrp;
430
431 /*
432 * ensure we access cgroup data only when needed and
433 * when we know the cgroup is pinned (css_get)
434 */
435 if (!is_cgroup_event(event))
436 return;
437
438 cgrp = perf_cgroup_from_task(current, event->ctx);
439 /*
440 * Do not update time when cgroup is not active
441 */
442 if (cgrp == event->cgrp)
443 __update_cgrp_time(event->cgrp);
444 }
445
446 static inline void
447 perf_cgroup_set_timestamp(struct task_struct *task,
448 struct perf_event_context *ctx)
449 {
450 struct perf_cgroup *cgrp;
451 struct perf_cgroup_info *info;
452
453 /*
454 * ctx->lock held by caller
455 * ensure we do not access cgroup data
456 * unless we have the cgroup pinned (css_get)
457 */
458 if (!task || !ctx->nr_cgroups)
459 return;
460
461 cgrp = perf_cgroup_from_task(task, ctx);
462 info = this_cpu_ptr(cgrp->info);
463 info->timestamp = ctx->timestamp;
464 }
465
466 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
467 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
468
469 /*
470 * reschedule events based on the cgroup constraint of task.
471 *
472 * mode SWOUT : schedule out everything
473 * mode SWIN : schedule in based on cgroup for next
474 */
475 static void perf_cgroup_switch(struct task_struct *task, int mode)
476 {
477 struct perf_cpu_context *cpuctx;
478 struct pmu *pmu;
479 unsigned long flags;
480
481 /*
482 * disable interrupts to avoid geting nr_cgroup
483 * changes via __perf_event_disable(). Also
484 * avoids preemption.
485 */
486 local_irq_save(flags);
487
488 /*
489 * we reschedule only in the presence of cgroup
490 * constrained events.
491 */
492
493 list_for_each_entry_rcu(pmu, &pmus, entry) {
494 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
495 if (cpuctx->unique_pmu != pmu)
496 continue; /* ensure we process each cpuctx once */
497
498 /*
499 * perf_cgroup_events says at least one
500 * context on this CPU has cgroup events.
501 *
502 * ctx->nr_cgroups reports the number of cgroup
503 * events for a context.
504 */
505 if (cpuctx->ctx.nr_cgroups > 0) {
506 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
507 perf_pmu_disable(cpuctx->ctx.pmu);
508
509 if (mode & PERF_CGROUP_SWOUT) {
510 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
511 /*
512 * must not be done before ctxswout due
513 * to event_filter_match() in event_sched_out()
514 */
515 cpuctx->cgrp = NULL;
516 }
517
518 if (mode & PERF_CGROUP_SWIN) {
519 WARN_ON_ONCE(cpuctx->cgrp);
520 /*
521 * set cgrp before ctxsw in to allow
522 * event_filter_match() to not have to pass
523 * task around
524 * we pass the cpuctx->ctx to perf_cgroup_from_task()
525 * because cgorup events are only per-cpu
526 */
527 cpuctx->cgrp = perf_cgroup_from_task(task, &cpuctx->ctx);
528 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
529 }
530 perf_pmu_enable(cpuctx->ctx.pmu);
531 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
532 }
533 }
534
535 local_irq_restore(flags);
536 }
537
538 static inline void perf_cgroup_sched_out(struct task_struct *task,
539 struct task_struct *next)
540 {
541 struct perf_cgroup *cgrp1;
542 struct perf_cgroup *cgrp2 = NULL;
543
544 rcu_read_lock();
545 /*
546 * we come here when we know perf_cgroup_events > 0
547 * we do not need to pass the ctx here because we know
548 * we are holding the rcu lock
549 */
550 cgrp1 = perf_cgroup_from_task(task, NULL);
551
552 /*
553 * next is NULL when called from perf_event_enable_on_exec()
554 * that will systematically cause a cgroup_switch()
555 */
556 if (next)
557 cgrp2 = perf_cgroup_from_task(next, NULL);
558
559 /*
560 * only schedule out current cgroup events if we know
561 * that we are switching to a different cgroup. Otherwise,
562 * do no touch the cgroup events.
563 */
564 if (cgrp1 != cgrp2)
565 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
566
567 rcu_read_unlock();
568 }
569
570 static inline void perf_cgroup_sched_in(struct task_struct *prev,
571 struct task_struct *task)
572 {
573 struct perf_cgroup *cgrp1;
574 struct perf_cgroup *cgrp2 = NULL;
575
576 rcu_read_lock();
577 /*
578 * we come here when we know perf_cgroup_events > 0
579 * we do not need to pass the ctx here because we know
580 * we are holding the rcu lock
581 */
582 cgrp1 = perf_cgroup_from_task(task, NULL);
583
584 /* prev can never be NULL */
585 cgrp2 = perf_cgroup_from_task(prev, NULL);
586
587 /*
588 * only need to schedule in cgroup events if we are changing
589 * cgroup during ctxsw. Cgroup events were not scheduled
590 * out of ctxsw out if that was not the case.
591 */
592 if (cgrp1 != cgrp2)
593 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
594
595 rcu_read_unlock();
596 }
597
598 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
599 struct perf_event_attr *attr,
600 struct perf_event *group_leader)
601 {
602 struct perf_cgroup *cgrp;
603 struct cgroup_subsys_state *css;
604 struct fd f = fdget(fd);
605 int ret = 0;
606
607 if (!f.file)
608 return -EBADF;
609
610 css = css_tryget_online_from_dir(f.file->f_path.dentry,
611 &perf_event_cgrp_subsys);
612 if (IS_ERR(css)) {
613 ret = PTR_ERR(css);
614 goto out;
615 }
616
617 cgrp = container_of(css, struct perf_cgroup, css);
618 event->cgrp = cgrp;
619
620 /*
621 * all events in a group must monitor
622 * the same cgroup because a task belongs
623 * to only one perf cgroup at a time
624 */
625 if (group_leader && group_leader->cgrp != cgrp) {
626 perf_detach_cgroup(event);
627 ret = -EINVAL;
628 }
629 out:
630 fdput(f);
631 return ret;
632 }
633
634 static inline void
635 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
636 {
637 struct perf_cgroup_info *t;
638 t = per_cpu_ptr(event->cgrp->info, event->cpu);
639 event->shadow_ctx_time = now - t->timestamp;
640 }
641
642 static inline void
643 perf_cgroup_defer_enabled(struct perf_event *event)
644 {
645 /*
646 * when the current task's perf cgroup does not match
647 * the event's, we need to remember to call the
648 * perf_mark_enable() function the first time a task with
649 * a matching perf cgroup is scheduled in.
650 */
651 if (is_cgroup_event(event) && !perf_cgroup_match(event))
652 event->cgrp_defer_enabled = 1;
653 }
654
655 static inline void
656 perf_cgroup_mark_enabled(struct perf_event *event,
657 struct perf_event_context *ctx)
658 {
659 struct perf_event *sub;
660 u64 tstamp = perf_event_time(event);
661
662 if (!event->cgrp_defer_enabled)
663 return;
664
665 event->cgrp_defer_enabled = 0;
666
667 event->tstamp_enabled = tstamp - event->total_time_enabled;
668 list_for_each_entry(sub, &event->sibling_list, group_entry) {
669 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
670 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
671 sub->cgrp_defer_enabled = 0;
672 }
673 }
674 }
675 #else /* !CONFIG_CGROUP_PERF */
676
677 static inline bool
678 perf_cgroup_match(struct perf_event *event)
679 {
680 return true;
681 }
682
683 static inline void perf_detach_cgroup(struct perf_event *event)
684 {}
685
686 static inline int is_cgroup_event(struct perf_event *event)
687 {
688 return 0;
689 }
690
691 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
692 {
693 return 0;
694 }
695
696 static inline void update_cgrp_time_from_event(struct perf_event *event)
697 {
698 }
699
700 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
701 {
702 }
703
704 static inline void perf_cgroup_sched_out(struct task_struct *task,
705 struct task_struct *next)
706 {
707 }
708
709 static inline void perf_cgroup_sched_in(struct task_struct *prev,
710 struct task_struct *task)
711 {
712 }
713
714 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
715 struct perf_event_attr *attr,
716 struct perf_event *group_leader)
717 {
718 return -EINVAL;
719 }
720
721 static inline void
722 perf_cgroup_set_timestamp(struct task_struct *task,
723 struct perf_event_context *ctx)
724 {
725 }
726
727 void
728 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
729 {
730 }
731
732 static inline void
733 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
734 {
735 }
736
737 static inline u64 perf_cgroup_event_time(struct perf_event *event)
738 {
739 return 0;
740 }
741
742 static inline void
743 perf_cgroup_defer_enabled(struct perf_event *event)
744 {
745 }
746
747 static inline void
748 perf_cgroup_mark_enabled(struct perf_event *event,
749 struct perf_event_context *ctx)
750 {
751 }
752 #endif
753
754 /*
755 * set default to be dependent on timer tick just
756 * like original code
757 */
758 #define PERF_CPU_HRTIMER (1000 / HZ)
759 /*
760 * function must be called with interrupts disbled
761 */
762 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
763 {
764 struct perf_cpu_context *cpuctx;
765 int rotations = 0;
766
767 WARN_ON(!irqs_disabled());
768
769 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
770 rotations = perf_rotate_context(cpuctx);
771
772 raw_spin_lock(&cpuctx->hrtimer_lock);
773 if (rotations)
774 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
775 else
776 cpuctx->hrtimer_active = 0;
777 raw_spin_unlock(&cpuctx->hrtimer_lock);
778
779 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
780 }
781
782 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
783 {
784 struct hrtimer *timer = &cpuctx->hrtimer;
785 struct pmu *pmu = cpuctx->ctx.pmu;
786 u64 interval;
787
788 /* no multiplexing needed for SW PMU */
789 if (pmu->task_ctx_nr == perf_sw_context)
790 return;
791
792 /*
793 * check default is sane, if not set then force to
794 * default interval (1/tick)
795 */
796 interval = pmu->hrtimer_interval_ms;
797 if (interval < 1)
798 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
799
800 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
801
802 raw_spin_lock_init(&cpuctx->hrtimer_lock);
803 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
804 timer->function = perf_mux_hrtimer_handler;
805 }
806
807 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
808 {
809 struct hrtimer *timer = &cpuctx->hrtimer;
810 struct pmu *pmu = cpuctx->ctx.pmu;
811 unsigned long flags;
812
813 /* not for SW PMU */
814 if (pmu->task_ctx_nr == perf_sw_context)
815 return 0;
816
817 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
818 if (!cpuctx->hrtimer_active) {
819 cpuctx->hrtimer_active = 1;
820 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
821 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
822 }
823 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
824
825 return 0;
826 }
827
828 void perf_pmu_disable(struct pmu *pmu)
829 {
830 int *count = this_cpu_ptr(pmu->pmu_disable_count);
831 if (!(*count)++)
832 pmu->pmu_disable(pmu);
833 }
834
835 void perf_pmu_enable(struct pmu *pmu)
836 {
837 int *count = this_cpu_ptr(pmu->pmu_disable_count);
838 if (!--(*count))
839 pmu->pmu_enable(pmu);
840 }
841
842 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
843
844 /*
845 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
846 * perf_event_task_tick() are fully serialized because they're strictly cpu
847 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
848 * disabled, while perf_event_task_tick is called from IRQ context.
849 */
850 static void perf_event_ctx_activate(struct perf_event_context *ctx)
851 {
852 struct list_head *head = this_cpu_ptr(&active_ctx_list);
853
854 WARN_ON(!irqs_disabled());
855
856 WARN_ON(!list_empty(&ctx->active_ctx_list));
857
858 list_add(&ctx->active_ctx_list, head);
859 }
860
861 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
862 {
863 WARN_ON(!irqs_disabled());
864
865 WARN_ON(list_empty(&ctx->active_ctx_list));
866
867 list_del_init(&ctx->active_ctx_list);
868 }
869
870 static void get_ctx(struct perf_event_context *ctx)
871 {
872 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
873 }
874
875 static void free_ctx(struct rcu_head *head)
876 {
877 struct perf_event_context *ctx;
878
879 ctx = container_of(head, struct perf_event_context, rcu_head);
880 kfree(ctx->task_ctx_data);
881 kfree(ctx);
882 }
883
884 static void put_ctx(struct perf_event_context *ctx)
885 {
886 if (atomic_dec_and_test(&ctx->refcount)) {
887 if (ctx->parent_ctx)
888 put_ctx(ctx->parent_ctx);
889 if (ctx->task)
890 put_task_struct(ctx->task);
891 call_rcu(&ctx->rcu_head, free_ctx);
892 }
893 }
894
895 /*
896 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
897 * perf_pmu_migrate_context() we need some magic.
898 *
899 * Those places that change perf_event::ctx will hold both
900 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
901 *
902 * Lock ordering is by mutex address. There are two other sites where
903 * perf_event_context::mutex nests and those are:
904 *
905 * - perf_event_exit_task_context() [ child , 0 ]
906 * __perf_event_exit_task()
907 * sync_child_event()
908 * put_event() [ parent, 1 ]
909 *
910 * - perf_event_init_context() [ parent, 0 ]
911 * inherit_task_group()
912 * inherit_group()
913 * inherit_event()
914 * perf_event_alloc()
915 * perf_init_event()
916 * perf_try_init_event() [ child , 1 ]
917 *
918 * While it appears there is an obvious deadlock here -- the parent and child
919 * nesting levels are inverted between the two. This is in fact safe because
920 * life-time rules separate them. That is an exiting task cannot fork, and a
921 * spawning task cannot (yet) exit.
922 *
923 * But remember that that these are parent<->child context relations, and
924 * migration does not affect children, therefore these two orderings should not
925 * interact.
926 *
927 * The change in perf_event::ctx does not affect children (as claimed above)
928 * because the sys_perf_event_open() case will install a new event and break
929 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
930 * concerned with cpuctx and that doesn't have children.
931 *
932 * The places that change perf_event::ctx will issue:
933 *
934 * perf_remove_from_context();
935 * synchronize_rcu();
936 * perf_install_in_context();
937 *
938 * to affect the change. The remove_from_context() + synchronize_rcu() should
939 * quiesce the event, after which we can install it in the new location. This
940 * means that only external vectors (perf_fops, prctl) can perturb the event
941 * while in transit. Therefore all such accessors should also acquire
942 * perf_event_context::mutex to serialize against this.
943 *
944 * However; because event->ctx can change while we're waiting to acquire
945 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
946 * function.
947 *
948 * Lock order:
949 * task_struct::perf_event_mutex
950 * perf_event_context::mutex
951 * perf_event_context::lock
952 * perf_event::child_mutex;
953 * perf_event::mmap_mutex
954 * mmap_sem
955 */
956 static struct perf_event_context *
957 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
958 {
959 struct perf_event_context *ctx;
960
961 again:
962 rcu_read_lock();
963 ctx = ACCESS_ONCE(event->ctx);
964 if (!atomic_inc_not_zero(&ctx->refcount)) {
965 rcu_read_unlock();
966 goto again;
967 }
968 rcu_read_unlock();
969
970 mutex_lock_nested(&ctx->mutex, nesting);
971 if (event->ctx != ctx) {
972 mutex_unlock(&ctx->mutex);
973 put_ctx(ctx);
974 goto again;
975 }
976
977 return ctx;
978 }
979
980 static inline struct perf_event_context *
981 perf_event_ctx_lock(struct perf_event *event)
982 {
983 return perf_event_ctx_lock_nested(event, 0);
984 }
985
986 static void perf_event_ctx_unlock(struct perf_event *event,
987 struct perf_event_context *ctx)
988 {
989 mutex_unlock(&ctx->mutex);
990 put_ctx(ctx);
991 }
992
993 /*
994 * This must be done under the ctx->lock, such as to serialize against
995 * context_equiv(), therefore we cannot call put_ctx() since that might end up
996 * calling scheduler related locks and ctx->lock nests inside those.
997 */
998 static __must_check struct perf_event_context *
999 unclone_ctx(struct perf_event_context *ctx)
1000 {
1001 struct perf_event_context *parent_ctx = ctx->parent_ctx;
1002
1003 lockdep_assert_held(&ctx->lock);
1004
1005 if (parent_ctx)
1006 ctx->parent_ctx = NULL;
1007 ctx->generation++;
1008
1009 return parent_ctx;
1010 }
1011
1012 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1013 {
1014 /*
1015 * only top level events have the pid namespace they were created in
1016 */
1017 if (event->parent)
1018 event = event->parent;
1019
1020 return task_tgid_nr_ns(p, event->ns);
1021 }
1022
1023 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1024 {
1025 /*
1026 * only top level events have the pid namespace they were created in
1027 */
1028 if (event->parent)
1029 event = event->parent;
1030
1031 return task_pid_nr_ns(p, event->ns);
1032 }
1033
1034 /*
1035 * If we inherit events we want to return the parent event id
1036 * to userspace.
1037 */
1038 static u64 primary_event_id(struct perf_event *event)
1039 {
1040 u64 id = event->id;
1041
1042 if (event->parent)
1043 id = event->parent->id;
1044
1045 return id;
1046 }
1047
1048 /*
1049 * Get the perf_event_context for a task and lock it.
1050 * This has to cope with with the fact that until it is locked,
1051 * the context could get moved to another task.
1052 */
1053 static struct perf_event_context *
1054 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1055 {
1056 struct perf_event_context *ctx;
1057
1058 retry:
1059 /*
1060 * One of the few rules of preemptible RCU is that one cannot do
1061 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1062 * part of the read side critical section was irqs-enabled -- see
1063 * rcu_read_unlock_special().
1064 *
1065 * Since ctx->lock nests under rq->lock we must ensure the entire read
1066 * side critical section has interrupts disabled.
1067 */
1068 local_irq_save(*flags);
1069 rcu_read_lock();
1070 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1071 if (ctx) {
1072 /*
1073 * If this context is a clone of another, it might
1074 * get swapped for another underneath us by
1075 * perf_event_task_sched_out, though the
1076 * rcu_read_lock() protects us from any context
1077 * getting freed. Lock the context and check if it
1078 * got swapped before we could get the lock, and retry
1079 * if so. If we locked the right context, then it
1080 * can't get swapped on us any more.
1081 */
1082 raw_spin_lock(&ctx->lock);
1083 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1084 raw_spin_unlock(&ctx->lock);
1085 rcu_read_unlock();
1086 local_irq_restore(*flags);
1087 goto retry;
1088 }
1089
1090 if (!atomic_inc_not_zero(&ctx->refcount)) {
1091 raw_spin_unlock(&ctx->lock);
1092 ctx = NULL;
1093 }
1094 }
1095 rcu_read_unlock();
1096 if (!ctx)
1097 local_irq_restore(*flags);
1098 return ctx;
1099 }
1100
1101 /*
1102 * Get the context for a task and increment its pin_count so it
1103 * can't get swapped to another task. This also increments its
1104 * reference count so that the context can't get freed.
1105 */
1106 static struct perf_event_context *
1107 perf_pin_task_context(struct task_struct *task, int ctxn)
1108 {
1109 struct perf_event_context *ctx;
1110 unsigned long flags;
1111
1112 ctx = perf_lock_task_context(task, ctxn, &flags);
1113 if (ctx) {
1114 ++ctx->pin_count;
1115 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1116 }
1117 return ctx;
1118 }
1119
1120 static void perf_unpin_context(struct perf_event_context *ctx)
1121 {
1122 unsigned long flags;
1123
1124 raw_spin_lock_irqsave(&ctx->lock, flags);
1125 --ctx->pin_count;
1126 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1127 }
1128
1129 /*
1130 * Update the record of the current time in a context.
1131 */
1132 static void update_context_time(struct perf_event_context *ctx)
1133 {
1134 u64 now = perf_clock();
1135
1136 ctx->time += now - ctx->timestamp;
1137 ctx->timestamp = now;
1138 }
1139
1140 static u64 perf_event_time(struct perf_event *event)
1141 {
1142 struct perf_event_context *ctx = event->ctx;
1143
1144 if (is_cgroup_event(event))
1145 return perf_cgroup_event_time(event);
1146
1147 return ctx ? ctx->time : 0;
1148 }
1149
1150 /*
1151 * Update the total_time_enabled and total_time_running fields for a event.
1152 * The caller of this function needs to hold the ctx->lock.
1153 */
1154 static void update_event_times(struct perf_event *event)
1155 {
1156 struct perf_event_context *ctx = event->ctx;
1157 u64 run_end;
1158
1159 if (event->state < PERF_EVENT_STATE_INACTIVE ||
1160 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1161 return;
1162 /*
1163 * in cgroup mode, time_enabled represents
1164 * the time the event was enabled AND active
1165 * tasks were in the monitored cgroup. This is
1166 * independent of the activity of the context as
1167 * there may be a mix of cgroup and non-cgroup events.
1168 *
1169 * That is why we treat cgroup events differently
1170 * here.
1171 */
1172 if (is_cgroup_event(event))
1173 run_end = perf_cgroup_event_time(event);
1174 else if (ctx->is_active)
1175 run_end = ctx->time;
1176 else
1177 run_end = event->tstamp_stopped;
1178
1179 event->total_time_enabled = run_end - event->tstamp_enabled;
1180
1181 if (event->state == PERF_EVENT_STATE_INACTIVE)
1182 run_end = event->tstamp_stopped;
1183 else
1184 run_end = perf_event_time(event);
1185
1186 event->total_time_running = run_end - event->tstamp_running;
1187
1188 }
1189
1190 /*
1191 * Update total_time_enabled and total_time_running for all events in a group.
1192 */
1193 static void update_group_times(struct perf_event *leader)
1194 {
1195 struct perf_event *event;
1196
1197 update_event_times(leader);
1198 list_for_each_entry(event, &leader->sibling_list, group_entry)
1199 update_event_times(event);
1200 }
1201
1202 static struct list_head *
1203 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1204 {
1205 if (event->attr.pinned)
1206 return &ctx->pinned_groups;
1207 else
1208 return &ctx->flexible_groups;
1209 }
1210
1211 /*
1212 * Add a event from the lists for its context.
1213 * Must be called with ctx->mutex and ctx->lock held.
1214 */
1215 static void
1216 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1217 {
1218 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1219 event->attach_state |= PERF_ATTACH_CONTEXT;
1220
1221 /*
1222 * If we're a stand alone event or group leader, we go to the context
1223 * list, group events are kept attached to the group so that
1224 * perf_group_detach can, at all times, locate all siblings.
1225 */
1226 if (event->group_leader == event) {
1227 struct list_head *list;
1228
1229 if (is_software_event(event))
1230 event->group_flags |= PERF_GROUP_SOFTWARE;
1231
1232 list = ctx_group_list(event, ctx);
1233 list_add_tail(&event->group_entry, list);
1234 }
1235
1236 if (is_cgroup_event(event))
1237 ctx->nr_cgroups++;
1238
1239 list_add_rcu(&event->event_entry, &ctx->event_list);
1240 ctx->nr_events++;
1241 if (event->attr.inherit_stat)
1242 ctx->nr_stat++;
1243
1244 ctx->generation++;
1245 }
1246
1247 /*
1248 * Initialize event state based on the perf_event_attr::disabled.
1249 */
1250 static inline void perf_event__state_init(struct perf_event *event)
1251 {
1252 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1253 PERF_EVENT_STATE_INACTIVE;
1254 }
1255
1256 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1257 {
1258 int entry = sizeof(u64); /* value */
1259 int size = 0;
1260 int nr = 1;
1261
1262 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1263 size += sizeof(u64);
1264
1265 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1266 size += sizeof(u64);
1267
1268 if (event->attr.read_format & PERF_FORMAT_ID)
1269 entry += sizeof(u64);
1270
1271 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1272 nr += nr_siblings;
1273 size += sizeof(u64);
1274 }
1275
1276 size += entry * nr;
1277 event->read_size = size;
1278 }
1279
1280 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1281 {
1282 struct perf_sample_data *data;
1283 u16 size = 0;
1284
1285 if (sample_type & PERF_SAMPLE_IP)
1286 size += sizeof(data->ip);
1287
1288 if (sample_type & PERF_SAMPLE_ADDR)
1289 size += sizeof(data->addr);
1290
1291 if (sample_type & PERF_SAMPLE_PERIOD)
1292 size += sizeof(data->period);
1293
1294 if (sample_type & PERF_SAMPLE_WEIGHT)
1295 size += sizeof(data->weight);
1296
1297 if (sample_type & PERF_SAMPLE_READ)
1298 size += event->read_size;
1299
1300 if (sample_type & PERF_SAMPLE_DATA_SRC)
1301 size += sizeof(data->data_src.val);
1302
1303 if (sample_type & PERF_SAMPLE_TRANSACTION)
1304 size += sizeof(data->txn);
1305
1306 event->header_size = size;
1307 }
1308
1309 /*
1310 * Called at perf_event creation and when events are attached/detached from a
1311 * group.
1312 */
1313 static void perf_event__header_size(struct perf_event *event)
1314 {
1315 __perf_event_read_size(event,
1316 event->group_leader->nr_siblings);
1317 __perf_event_header_size(event, event->attr.sample_type);
1318 }
1319
1320 static void perf_event__id_header_size(struct perf_event *event)
1321 {
1322 struct perf_sample_data *data;
1323 u64 sample_type = event->attr.sample_type;
1324 u16 size = 0;
1325
1326 if (sample_type & PERF_SAMPLE_TID)
1327 size += sizeof(data->tid_entry);
1328
1329 if (sample_type & PERF_SAMPLE_TIME)
1330 size += sizeof(data->time);
1331
1332 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1333 size += sizeof(data->id);
1334
1335 if (sample_type & PERF_SAMPLE_ID)
1336 size += sizeof(data->id);
1337
1338 if (sample_type & PERF_SAMPLE_STREAM_ID)
1339 size += sizeof(data->stream_id);
1340
1341 if (sample_type & PERF_SAMPLE_CPU)
1342 size += sizeof(data->cpu_entry);
1343
1344 event->id_header_size = size;
1345 }
1346
1347 static bool perf_event_validate_size(struct perf_event *event)
1348 {
1349 /*
1350 * The values computed here will be over-written when we actually
1351 * attach the event.
1352 */
1353 __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1354 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1355 perf_event__id_header_size(event);
1356
1357 /*
1358 * Sum the lot; should not exceed the 64k limit we have on records.
1359 * Conservative limit to allow for callchains and other variable fields.
1360 */
1361 if (event->read_size + event->header_size +
1362 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1363 return false;
1364
1365 return true;
1366 }
1367
1368 static void perf_group_attach(struct perf_event *event)
1369 {
1370 struct perf_event *group_leader = event->group_leader, *pos;
1371
1372 /*
1373 * We can have double attach due to group movement in perf_event_open.
1374 */
1375 if (event->attach_state & PERF_ATTACH_GROUP)
1376 return;
1377
1378 event->attach_state |= PERF_ATTACH_GROUP;
1379
1380 if (group_leader == event)
1381 return;
1382
1383 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1384
1385 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1386 !is_software_event(event))
1387 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1388
1389 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1390 group_leader->nr_siblings++;
1391
1392 perf_event__header_size(group_leader);
1393
1394 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1395 perf_event__header_size(pos);
1396 }
1397
1398 /*
1399 * Remove a event from the lists for its context.
1400 * Must be called with ctx->mutex and ctx->lock held.
1401 */
1402 static void
1403 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1404 {
1405 struct perf_cpu_context *cpuctx;
1406
1407 WARN_ON_ONCE(event->ctx != ctx);
1408 lockdep_assert_held(&ctx->lock);
1409
1410 /*
1411 * We can have double detach due to exit/hot-unplug + close.
1412 */
1413 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1414 return;
1415
1416 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1417
1418 if (is_cgroup_event(event)) {
1419 ctx->nr_cgroups--;
1420 cpuctx = __get_cpu_context(ctx);
1421 /*
1422 * if there are no more cgroup events
1423 * then cler cgrp to avoid stale pointer
1424 * in update_cgrp_time_from_cpuctx()
1425 */
1426 if (!ctx->nr_cgroups)
1427 cpuctx->cgrp = NULL;
1428 }
1429
1430 ctx->nr_events--;
1431 if (event->attr.inherit_stat)
1432 ctx->nr_stat--;
1433
1434 list_del_rcu(&event->event_entry);
1435
1436 if (event->group_leader == event)
1437 list_del_init(&event->group_entry);
1438
1439 update_group_times(event);
1440
1441 /*
1442 * If event was in error state, then keep it
1443 * that way, otherwise bogus counts will be
1444 * returned on read(). The only way to get out
1445 * of error state is by explicit re-enabling
1446 * of the event
1447 */
1448 if (event->state > PERF_EVENT_STATE_OFF)
1449 event->state = PERF_EVENT_STATE_OFF;
1450
1451 ctx->generation++;
1452 }
1453
1454 static void perf_group_detach(struct perf_event *event)
1455 {
1456 struct perf_event *sibling, *tmp;
1457 struct list_head *list = NULL;
1458
1459 /*
1460 * We can have double detach due to exit/hot-unplug + close.
1461 */
1462 if (!(event->attach_state & PERF_ATTACH_GROUP))
1463 return;
1464
1465 event->attach_state &= ~PERF_ATTACH_GROUP;
1466
1467 /*
1468 * If this is a sibling, remove it from its group.
1469 */
1470 if (event->group_leader != event) {
1471 list_del_init(&event->group_entry);
1472 event->group_leader->nr_siblings--;
1473 goto out;
1474 }
1475
1476 if (!list_empty(&event->group_entry))
1477 list = &event->group_entry;
1478
1479 /*
1480 * If this was a group event with sibling events then
1481 * upgrade the siblings to singleton events by adding them
1482 * to whatever list we are on.
1483 */
1484 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1485 if (list)
1486 list_move_tail(&sibling->group_entry, list);
1487 sibling->group_leader = sibling;
1488
1489 /* Inherit group flags from the previous leader */
1490 sibling->group_flags = event->group_flags;
1491
1492 WARN_ON_ONCE(sibling->ctx != event->ctx);
1493 }
1494
1495 out:
1496 perf_event__header_size(event->group_leader);
1497
1498 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1499 perf_event__header_size(tmp);
1500 }
1501
1502 /*
1503 * User event without the task.
1504 */
1505 static bool is_orphaned_event(struct perf_event *event)
1506 {
1507 return event && !is_kernel_event(event) && !event->owner;
1508 }
1509
1510 /*
1511 * Event has a parent but parent's task finished and it's
1512 * alive only because of children holding refference.
1513 */
1514 static bool is_orphaned_child(struct perf_event *event)
1515 {
1516 return is_orphaned_event(event->parent);
1517 }
1518
1519 static void orphans_remove_work(struct work_struct *work);
1520
1521 static void schedule_orphans_remove(struct perf_event_context *ctx)
1522 {
1523 if (!ctx->task || ctx->orphans_remove_sched || !perf_wq)
1524 return;
1525
1526 if (queue_delayed_work(perf_wq, &ctx->orphans_remove, 1)) {
1527 get_ctx(ctx);
1528 ctx->orphans_remove_sched = true;
1529 }
1530 }
1531
1532 static int __init perf_workqueue_init(void)
1533 {
1534 perf_wq = create_singlethread_workqueue("perf");
1535 WARN(!perf_wq, "failed to create perf workqueue\n");
1536 return perf_wq ? 0 : -1;
1537 }
1538
1539 core_initcall(perf_workqueue_init);
1540
1541 static inline int pmu_filter_match(struct perf_event *event)
1542 {
1543 struct pmu *pmu = event->pmu;
1544 return pmu->filter_match ? pmu->filter_match(event) : 1;
1545 }
1546
1547 static inline int
1548 event_filter_match(struct perf_event *event)
1549 {
1550 return (event->cpu == -1 || event->cpu == smp_processor_id())
1551 && perf_cgroup_match(event) && pmu_filter_match(event);
1552 }
1553
1554 static void
1555 event_sched_out(struct perf_event *event,
1556 struct perf_cpu_context *cpuctx,
1557 struct perf_event_context *ctx)
1558 {
1559 u64 tstamp = perf_event_time(event);
1560 u64 delta;
1561
1562 WARN_ON_ONCE(event->ctx != ctx);
1563 lockdep_assert_held(&ctx->lock);
1564
1565 /*
1566 * An event which could not be activated because of
1567 * filter mismatch still needs to have its timings
1568 * maintained, otherwise bogus information is return
1569 * via read() for time_enabled, time_running:
1570 */
1571 if (event->state == PERF_EVENT_STATE_INACTIVE
1572 && !event_filter_match(event)) {
1573 delta = tstamp - event->tstamp_stopped;
1574 event->tstamp_running += delta;
1575 event->tstamp_stopped = tstamp;
1576 }
1577
1578 if (event->state != PERF_EVENT_STATE_ACTIVE)
1579 return;
1580
1581 perf_pmu_disable(event->pmu);
1582
1583 event->state = PERF_EVENT_STATE_INACTIVE;
1584 if (event->pending_disable) {
1585 event->pending_disable = 0;
1586 event->state = PERF_EVENT_STATE_OFF;
1587 }
1588 event->tstamp_stopped = tstamp;
1589 event->pmu->del(event, 0);
1590 event->oncpu = -1;
1591
1592 if (!is_software_event(event))
1593 cpuctx->active_oncpu--;
1594 if (!--ctx->nr_active)
1595 perf_event_ctx_deactivate(ctx);
1596 if (event->attr.freq && event->attr.sample_freq)
1597 ctx->nr_freq--;
1598 if (event->attr.exclusive || !cpuctx->active_oncpu)
1599 cpuctx->exclusive = 0;
1600
1601 if (is_orphaned_child(event))
1602 schedule_orphans_remove(ctx);
1603
1604 perf_pmu_enable(event->pmu);
1605 }
1606
1607 static void
1608 group_sched_out(struct perf_event *group_event,
1609 struct perf_cpu_context *cpuctx,
1610 struct perf_event_context *ctx)
1611 {
1612 struct perf_event *event;
1613 int state = group_event->state;
1614
1615 event_sched_out(group_event, cpuctx, ctx);
1616
1617 /*
1618 * Schedule out siblings (if any):
1619 */
1620 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1621 event_sched_out(event, cpuctx, ctx);
1622
1623 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1624 cpuctx->exclusive = 0;
1625 }
1626
1627 struct remove_event {
1628 struct perf_event *event;
1629 bool detach_group;
1630 };
1631
1632 /*
1633 * Cross CPU call to remove a performance event
1634 *
1635 * We disable the event on the hardware level first. After that we
1636 * remove it from the context list.
1637 */
1638 static int __perf_remove_from_context(void *info)
1639 {
1640 struct remove_event *re = info;
1641 struct perf_event *event = re->event;
1642 struct perf_event_context *ctx = event->ctx;
1643 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1644
1645 raw_spin_lock(&ctx->lock);
1646 event_sched_out(event, cpuctx, ctx);
1647 if (re->detach_group)
1648 perf_group_detach(event);
1649 list_del_event(event, ctx);
1650 if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1651 ctx->is_active = 0;
1652 cpuctx->task_ctx = NULL;
1653 }
1654 raw_spin_unlock(&ctx->lock);
1655
1656 return 0;
1657 }
1658
1659
1660 /*
1661 * Remove the event from a task's (or a CPU's) list of events.
1662 *
1663 * CPU events are removed with a smp call. For task events we only
1664 * call when the task is on a CPU.
1665 *
1666 * If event->ctx is a cloned context, callers must make sure that
1667 * every task struct that event->ctx->task could possibly point to
1668 * remains valid. This is OK when called from perf_release since
1669 * that only calls us on the top-level context, which can't be a clone.
1670 * When called from perf_event_exit_task, it's OK because the
1671 * context has been detached from its task.
1672 */
1673 static void perf_remove_from_context(struct perf_event *event, bool detach_group)
1674 {
1675 struct perf_event_context *ctx = event->ctx;
1676 struct task_struct *task = ctx->task;
1677 struct remove_event re = {
1678 .event = event,
1679 .detach_group = detach_group,
1680 };
1681
1682 lockdep_assert_held(&ctx->mutex);
1683
1684 if (!task) {
1685 /*
1686 * Per cpu events are removed via an smp call. The removal can
1687 * fail if the CPU is currently offline, but in that case we
1688 * already called __perf_remove_from_context from
1689 * perf_event_exit_cpu.
1690 */
1691 cpu_function_call(event->cpu, __perf_remove_from_context, &re);
1692 return;
1693 }
1694
1695 retry:
1696 if (!task_function_call(task, __perf_remove_from_context, &re))
1697 return;
1698
1699 raw_spin_lock_irq(&ctx->lock);
1700 /*
1701 * If we failed to find a running task, but find the context active now
1702 * that we've acquired the ctx->lock, retry.
1703 */
1704 if (ctx->is_active) {
1705 raw_spin_unlock_irq(&ctx->lock);
1706 /*
1707 * Reload the task pointer, it might have been changed by
1708 * a concurrent perf_event_context_sched_out().
1709 */
1710 task = ctx->task;
1711 goto retry;
1712 }
1713
1714 /*
1715 * Since the task isn't running, its safe to remove the event, us
1716 * holding the ctx->lock ensures the task won't get scheduled in.
1717 */
1718 if (detach_group)
1719 perf_group_detach(event);
1720 list_del_event(event, ctx);
1721 raw_spin_unlock_irq(&ctx->lock);
1722 }
1723
1724 /*
1725 * Cross CPU call to disable a performance event
1726 */
1727 int __perf_event_disable(void *info)
1728 {
1729 struct perf_event *event = info;
1730 struct perf_event_context *ctx = event->ctx;
1731 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1732
1733 /*
1734 * If this is a per-task event, need to check whether this
1735 * event's task is the current task on this cpu.
1736 *
1737 * Can trigger due to concurrent perf_event_context_sched_out()
1738 * flipping contexts around.
1739 */
1740 if (ctx->task && cpuctx->task_ctx != ctx)
1741 return -EINVAL;
1742
1743 raw_spin_lock(&ctx->lock);
1744
1745 /*
1746 * If the event is on, turn it off.
1747 * If it is in error state, leave it in error state.
1748 */
1749 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1750 update_context_time(ctx);
1751 update_cgrp_time_from_event(event);
1752 update_group_times(event);
1753 if (event == event->group_leader)
1754 group_sched_out(event, cpuctx, ctx);
1755 else
1756 event_sched_out(event, cpuctx, ctx);
1757 event->state = PERF_EVENT_STATE_OFF;
1758 }
1759
1760 raw_spin_unlock(&ctx->lock);
1761
1762 return 0;
1763 }
1764
1765 /*
1766 * Disable a event.
1767 *
1768 * If event->ctx is a cloned context, callers must make sure that
1769 * every task struct that event->ctx->task could possibly point to
1770 * remains valid. This condition is satisifed when called through
1771 * perf_event_for_each_child or perf_event_for_each because they
1772 * hold the top-level event's child_mutex, so any descendant that
1773 * goes to exit will block in sync_child_event.
1774 * When called from perf_pending_event it's OK because event->ctx
1775 * is the current context on this CPU and preemption is disabled,
1776 * hence we can't get into perf_event_task_sched_out for this context.
1777 */
1778 static void _perf_event_disable(struct perf_event *event)
1779 {
1780 struct perf_event_context *ctx = event->ctx;
1781 struct task_struct *task = ctx->task;
1782
1783 if (!task) {
1784 /*
1785 * Disable the event on the cpu that it's on
1786 */
1787 cpu_function_call(event->cpu, __perf_event_disable, event);
1788 return;
1789 }
1790
1791 retry:
1792 if (!task_function_call(task, __perf_event_disable, event))
1793 return;
1794
1795 raw_spin_lock_irq(&ctx->lock);
1796 /*
1797 * If the event is still active, we need to retry the cross-call.
1798 */
1799 if (event->state == PERF_EVENT_STATE_ACTIVE) {
1800 raw_spin_unlock_irq(&ctx->lock);
1801 /*
1802 * Reload the task pointer, it might have been changed by
1803 * a concurrent perf_event_context_sched_out().
1804 */
1805 task = ctx->task;
1806 goto retry;
1807 }
1808
1809 /*
1810 * Since we have the lock this context can't be scheduled
1811 * in, so we can change the state safely.
1812 */
1813 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1814 update_group_times(event);
1815 event->state = PERF_EVENT_STATE_OFF;
1816 }
1817 raw_spin_unlock_irq(&ctx->lock);
1818 }
1819
1820 /*
1821 * Strictly speaking kernel users cannot create groups and therefore this
1822 * interface does not need the perf_event_ctx_lock() magic.
1823 */
1824 void perf_event_disable(struct perf_event *event)
1825 {
1826 struct perf_event_context *ctx;
1827
1828 ctx = perf_event_ctx_lock(event);
1829 _perf_event_disable(event);
1830 perf_event_ctx_unlock(event, ctx);
1831 }
1832 EXPORT_SYMBOL_GPL(perf_event_disable);
1833
1834 static void perf_set_shadow_time(struct perf_event *event,
1835 struct perf_event_context *ctx,
1836 u64 tstamp)
1837 {
1838 /*
1839 * use the correct time source for the time snapshot
1840 *
1841 * We could get by without this by leveraging the
1842 * fact that to get to this function, the caller
1843 * has most likely already called update_context_time()
1844 * and update_cgrp_time_xx() and thus both timestamp
1845 * are identical (or very close). Given that tstamp is,
1846 * already adjusted for cgroup, we could say that:
1847 * tstamp - ctx->timestamp
1848 * is equivalent to
1849 * tstamp - cgrp->timestamp.
1850 *
1851 * Then, in perf_output_read(), the calculation would
1852 * work with no changes because:
1853 * - event is guaranteed scheduled in
1854 * - no scheduled out in between
1855 * - thus the timestamp would be the same
1856 *
1857 * But this is a bit hairy.
1858 *
1859 * So instead, we have an explicit cgroup call to remain
1860 * within the time time source all along. We believe it
1861 * is cleaner and simpler to understand.
1862 */
1863 if (is_cgroup_event(event))
1864 perf_cgroup_set_shadow_time(event, tstamp);
1865 else
1866 event->shadow_ctx_time = tstamp - ctx->timestamp;
1867 }
1868
1869 #define MAX_INTERRUPTS (~0ULL)
1870
1871 static void perf_log_throttle(struct perf_event *event, int enable);
1872 static void perf_log_itrace_start(struct perf_event *event);
1873
1874 static int
1875 event_sched_in(struct perf_event *event,
1876 struct perf_cpu_context *cpuctx,
1877 struct perf_event_context *ctx)
1878 {
1879 u64 tstamp = perf_event_time(event);
1880 int ret = 0;
1881
1882 lockdep_assert_held(&ctx->lock);
1883
1884 if (event->state <= PERF_EVENT_STATE_OFF)
1885 return 0;
1886
1887 event->state = PERF_EVENT_STATE_ACTIVE;
1888 event->oncpu = smp_processor_id();
1889
1890 /*
1891 * Unthrottle events, since we scheduled we might have missed several
1892 * ticks already, also for a heavily scheduling task there is little
1893 * guarantee it'll get a tick in a timely manner.
1894 */
1895 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1896 perf_log_throttle(event, 1);
1897 event->hw.interrupts = 0;
1898 }
1899
1900 /*
1901 * The new state must be visible before we turn it on in the hardware:
1902 */
1903 smp_wmb();
1904
1905 perf_pmu_disable(event->pmu);
1906
1907 perf_set_shadow_time(event, ctx, tstamp);
1908
1909 perf_log_itrace_start(event);
1910
1911 if (event->pmu->add(event, PERF_EF_START)) {
1912 event->state = PERF_EVENT_STATE_INACTIVE;
1913 event->oncpu = -1;
1914 ret = -EAGAIN;
1915 goto out;
1916 }
1917
1918 event->tstamp_running += tstamp - event->tstamp_stopped;
1919
1920 if (!is_software_event(event))
1921 cpuctx->active_oncpu++;
1922 if (!ctx->nr_active++)
1923 perf_event_ctx_activate(ctx);
1924 if (event->attr.freq && event->attr.sample_freq)
1925 ctx->nr_freq++;
1926
1927 if (event->attr.exclusive)
1928 cpuctx->exclusive = 1;
1929
1930 if (is_orphaned_child(event))
1931 schedule_orphans_remove(ctx);
1932
1933 out:
1934 perf_pmu_enable(event->pmu);
1935
1936 return ret;
1937 }
1938
1939 static int
1940 group_sched_in(struct perf_event *group_event,
1941 struct perf_cpu_context *cpuctx,
1942 struct perf_event_context *ctx)
1943 {
1944 struct perf_event *event, *partial_group = NULL;
1945 struct pmu *pmu = ctx->pmu;
1946 u64 now = ctx->time;
1947 bool simulate = false;
1948
1949 if (group_event->state == PERF_EVENT_STATE_OFF)
1950 return 0;
1951
1952 pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
1953
1954 if (event_sched_in(group_event, cpuctx, ctx)) {
1955 pmu->cancel_txn(pmu);
1956 perf_mux_hrtimer_restart(cpuctx);
1957 return -EAGAIN;
1958 }
1959
1960 /*
1961 * Schedule in siblings as one group (if any):
1962 */
1963 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1964 if (event_sched_in(event, cpuctx, ctx)) {
1965 partial_group = event;
1966 goto group_error;
1967 }
1968 }
1969
1970 if (!pmu->commit_txn(pmu))
1971 return 0;
1972
1973 group_error:
1974 /*
1975 * Groups can be scheduled in as one unit only, so undo any
1976 * partial group before returning:
1977 * The events up to the failed event are scheduled out normally,
1978 * tstamp_stopped will be updated.
1979 *
1980 * The failed events and the remaining siblings need to have
1981 * their timings updated as if they had gone thru event_sched_in()
1982 * and event_sched_out(). This is required to get consistent timings
1983 * across the group. This also takes care of the case where the group
1984 * could never be scheduled by ensuring tstamp_stopped is set to mark
1985 * the time the event was actually stopped, such that time delta
1986 * calculation in update_event_times() is correct.
1987 */
1988 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1989 if (event == partial_group)
1990 simulate = true;
1991
1992 if (simulate) {
1993 event->tstamp_running += now - event->tstamp_stopped;
1994 event->tstamp_stopped = now;
1995 } else {
1996 event_sched_out(event, cpuctx, ctx);
1997 }
1998 }
1999 event_sched_out(group_event, cpuctx, ctx);
2000
2001 pmu->cancel_txn(pmu);
2002
2003 perf_mux_hrtimer_restart(cpuctx);
2004
2005 return -EAGAIN;
2006 }
2007
2008 /*
2009 * Work out whether we can put this event group on the CPU now.
2010 */
2011 static int group_can_go_on(struct perf_event *event,
2012 struct perf_cpu_context *cpuctx,
2013 int can_add_hw)
2014 {
2015 /*
2016 * Groups consisting entirely of software events can always go on.
2017 */
2018 if (event->group_flags & PERF_GROUP_SOFTWARE)
2019 return 1;
2020 /*
2021 * If an exclusive group is already on, no other hardware
2022 * events can go on.
2023 */
2024 if (cpuctx->exclusive)
2025 return 0;
2026 /*
2027 * If this group is exclusive and there are already
2028 * events on the CPU, it can't go on.
2029 */
2030 if (event->attr.exclusive && cpuctx->active_oncpu)
2031 return 0;
2032 /*
2033 * Otherwise, try to add it if all previous groups were able
2034 * to go on.
2035 */
2036 return can_add_hw;
2037 }
2038
2039 static void add_event_to_ctx(struct perf_event *event,
2040 struct perf_event_context *ctx)
2041 {
2042 u64 tstamp = perf_event_time(event);
2043
2044 list_add_event(event, ctx);
2045 perf_group_attach(event);
2046 event->tstamp_enabled = tstamp;
2047 event->tstamp_running = tstamp;
2048 event->tstamp_stopped = tstamp;
2049 }
2050
2051 static void task_ctx_sched_out(struct perf_event_context *ctx);
2052 static void
2053 ctx_sched_in(struct perf_event_context *ctx,
2054 struct perf_cpu_context *cpuctx,
2055 enum event_type_t event_type,
2056 struct task_struct *task);
2057
2058 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2059 struct perf_event_context *ctx,
2060 struct task_struct *task)
2061 {
2062 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2063 if (ctx)
2064 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2065 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2066 if (ctx)
2067 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2068 }
2069
2070 /*
2071 * Cross CPU call to install and enable a performance event
2072 *
2073 * Must be called with ctx->mutex held
2074 */
2075 static int __perf_install_in_context(void *info)
2076 {
2077 struct perf_event *event = info;
2078 struct perf_event_context *ctx = event->ctx;
2079 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2080 struct perf_event_context *task_ctx = cpuctx->task_ctx;
2081 struct task_struct *task = current;
2082
2083 perf_ctx_lock(cpuctx, task_ctx);
2084 perf_pmu_disable(cpuctx->ctx.pmu);
2085
2086 /*
2087 * If there was an active task_ctx schedule it out.
2088 */
2089 if (task_ctx)
2090 task_ctx_sched_out(task_ctx);
2091
2092 /*
2093 * If the context we're installing events in is not the
2094 * active task_ctx, flip them.
2095 */
2096 if (ctx->task && task_ctx != ctx) {
2097 if (task_ctx)
2098 raw_spin_unlock(&task_ctx->lock);
2099 raw_spin_lock(&ctx->lock);
2100 task_ctx = ctx;
2101 }
2102
2103 if (task_ctx) {
2104 cpuctx->task_ctx = task_ctx;
2105 task = task_ctx->task;
2106 }
2107
2108 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
2109
2110 update_context_time(ctx);
2111 /*
2112 * update cgrp time only if current cgrp
2113 * matches event->cgrp. Must be done before
2114 * calling add_event_to_ctx()
2115 */
2116 update_cgrp_time_from_event(event);
2117
2118 add_event_to_ctx(event, ctx);
2119
2120 /*
2121 * Schedule everything back in
2122 */
2123 perf_event_sched_in(cpuctx, task_ctx, task);
2124
2125 perf_pmu_enable(cpuctx->ctx.pmu);
2126 perf_ctx_unlock(cpuctx, task_ctx);
2127
2128 return 0;
2129 }
2130
2131 /*
2132 * Attach a performance event to a context
2133 *
2134 * First we add the event to the list with the hardware enable bit
2135 * in event->hw_config cleared.
2136 *
2137 * If the event is attached to a task which is on a CPU we use a smp
2138 * call to enable it in the task context. The task might have been
2139 * scheduled away, but we check this in the smp call again.
2140 */
2141 static void
2142 perf_install_in_context(struct perf_event_context *ctx,
2143 struct perf_event *event,
2144 int cpu)
2145 {
2146 struct task_struct *task = ctx->task;
2147
2148 lockdep_assert_held(&ctx->mutex);
2149
2150 event->ctx = ctx;
2151 if (event->cpu != -1)
2152 event->cpu = cpu;
2153
2154 if (!task) {
2155 /*
2156 * Per cpu events are installed via an smp call and
2157 * the install is always successful.
2158 */
2159 cpu_function_call(cpu, __perf_install_in_context, event);
2160 return;
2161 }
2162
2163 retry:
2164 if (!task_function_call(task, __perf_install_in_context, event))
2165 return;
2166
2167 raw_spin_lock_irq(&ctx->lock);
2168 /*
2169 * If we failed to find a running task, but find the context active now
2170 * that we've acquired the ctx->lock, retry.
2171 */
2172 if (ctx->is_active) {
2173 raw_spin_unlock_irq(&ctx->lock);
2174 /*
2175 * Reload the task pointer, it might have been changed by
2176 * a concurrent perf_event_context_sched_out().
2177 */
2178 task = ctx->task;
2179 goto retry;
2180 }
2181
2182 /*
2183 * Since the task isn't running, its safe to add the event, us holding
2184 * the ctx->lock ensures the task won't get scheduled in.
2185 */
2186 add_event_to_ctx(event, ctx);
2187 raw_spin_unlock_irq(&ctx->lock);
2188 }
2189
2190 /*
2191 * Put a event into inactive state and update time fields.
2192 * Enabling the leader of a group effectively enables all
2193 * the group members that aren't explicitly disabled, so we
2194 * have to update their ->tstamp_enabled also.
2195 * Note: this works for group members as well as group leaders
2196 * since the non-leader members' sibling_lists will be empty.
2197 */
2198 static void __perf_event_mark_enabled(struct perf_event *event)
2199 {
2200 struct perf_event *sub;
2201 u64 tstamp = perf_event_time(event);
2202
2203 event->state = PERF_EVENT_STATE_INACTIVE;
2204 event->tstamp_enabled = tstamp - event->total_time_enabled;
2205 list_for_each_entry(sub, &event->sibling_list, group_entry) {
2206 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2207 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
2208 }
2209 }
2210
2211 /*
2212 * Cross CPU call to enable a performance event
2213 */
2214 static int __perf_event_enable(void *info)
2215 {
2216 struct perf_event *event = info;
2217 struct perf_event_context *ctx = event->ctx;
2218 struct perf_event *leader = event->group_leader;
2219 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2220 int err;
2221
2222 /*
2223 * There's a time window between 'ctx->is_active' check
2224 * in perf_event_enable function and this place having:
2225 * - IRQs on
2226 * - ctx->lock unlocked
2227 *
2228 * where the task could be killed and 'ctx' deactivated
2229 * by perf_event_exit_task.
2230 */
2231 if (!ctx->is_active)
2232 return -EINVAL;
2233
2234 raw_spin_lock(&ctx->lock);
2235 update_context_time(ctx);
2236
2237 if (event->state >= PERF_EVENT_STATE_INACTIVE)
2238 goto unlock;
2239
2240 /*
2241 * set current task's cgroup time reference point
2242 */
2243 perf_cgroup_set_timestamp(current, ctx);
2244
2245 __perf_event_mark_enabled(event);
2246
2247 if (!event_filter_match(event)) {
2248 if (is_cgroup_event(event))
2249 perf_cgroup_defer_enabled(event);
2250 goto unlock;
2251 }
2252
2253 /*
2254 * If the event is in a group and isn't the group leader,
2255 * then don't put it on unless the group is on.
2256 */
2257 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
2258 goto unlock;
2259
2260 if (!group_can_go_on(event, cpuctx, 1)) {
2261 err = -EEXIST;
2262 } else {
2263 if (event == leader)
2264 err = group_sched_in(event, cpuctx, ctx);
2265 else
2266 err = event_sched_in(event, cpuctx, ctx);
2267 }
2268
2269 if (err) {
2270 /*
2271 * If this event can't go on and it's part of a
2272 * group, then the whole group has to come off.
2273 */
2274 if (leader != event) {
2275 group_sched_out(leader, cpuctx, ctx);
2276 perf_mux_hrtimer_restart(cpuctx);
2277 }
2278 if (leader->attr.pinned) {
2279 update_group_times(leader);
2280 leader->state = PERF_EVENT_STATE_ERROR;
2281 }
2282 }
2283
2284 unlock:
2285 raw_spin_unlock(&ctx->lock);
2286
2287 return 0;
2288 }
2289
2290 /*
2291 * Enable a event.
2292 *
2293 * If event->ctx is a cloned context, callers must make sure that
2294 * every task struct that event->ctx->task could possibly point to
2295 * remains valid. This condition is satisfied when called through
2296 * perf_event_for_each_child or perf_event_for_each as described
2297 * for perf_event_disable.
2298 */
2299 static void _perf_event_enable(struct perf_event *event)
2300 {
2301 struct perf_event_context *ctx = event->ctx;
2302 struct task_struct *task = ctx->task;
2303
2304 if (!task) {
2305 /*
2306 * Enable the event on the cpu that it's on
2307 */
2308 cpu_function_call(event->cpu, __perf_event_enable, event);
2309 return;
2310 }
2311
2312 raw_spin_lock_irq(&ctx->lock);
2313 if (event->state >= PERF_EVENT_STATE_INACTIVE)
2314 goto out;
2315
2316 /*
2317 * If the event is in error state, clear that first.
2318 * That way, if we see the event in error state below, we
2319 * know that it has gone back into error state, as distinct
2320 * from the task having been scheduled away before the
2321 * cross-call arrived.
2322 */
2323 if (event->state == PERF_EVENT_STATE_ERROR)
2324 event->state = PERF_EVENT_STATE_OFF;
2325
2326 retry:
2327 if (!ctx->is_active) {
2328 __perf_event_mark_enabled(event);
2329 goto out;
2330 }
2331
2332 raw_spin_unlock_irq(&ctx->lock);
2333
2334 if (!task_function_call(task, __perf_event_enable, event))
2335 return;
2336
2337 raw_spin_lock_irq(&ctx->lock);
2338
2339 /*
2340 * If the context is active and the event is still off,
2341 * we need to retry the cross-call.
2342 */
2343 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
2344 /*
2345 * task could have been flipped by a concurrent
2346 * perf_event_context_sched_out()
2347 */
2348 task = ctx->task;
2349 goto retry;
2350 }
2351
2352 out:
2353 raw_spin_unlock_irq(&ctx->lock);
2354 }
2355
2356 /*
2357 * See perf_event_disable();
2358 */
2359 void perf_event_enable(struct perf_event *event)
2360 {
2361 struct perf_event_context *ctx;
2362
2363 ctx = perf_event_ctx_lock(event);
2364 _perf_event_enable(event);
2365 perf_event_ctx_unlock(event, ctx);
2366 }
2367 EXPORT_SYMBOL_GPL(perf_event_enable);
2368
2369 static int _perf_event_refresh(struct perf_event *event, int refresh)
2370 {
2371 /*
2372 * not supported on inherited events
2373 */
2374 if (event->attr.inherit || !is_sampling_event(event))
2375 return -EINVAL;
2376
2377 atomic_add(refresh, &event->event_limit);
2378 _perf_event_enable(event);
2379
2380 return 0;
2381 }
2382
2383 /*
2384 * See perf_event_disable()
2385 */
2386 int perf_event_refresh(struct perf_event *event, int refresh)
2387 {
2388 struct perf_event_context *ctx;
2389 int ret;
2390
2391 ctx = perf_event_ctx_lock(event);
2392 ret = _perf_event_refresh(event, refresh);
2393 perf_event_ctx_unlock(event, ctx);
2394
2395 return ret;
2396 }
2397 EXPORT_SYMBOL_GPL(perf_event_refresh);
2398
2399 static void ctx_sched_out(struct perf_event_context *ctx,
2400 struct perf_cpu_context *cpuctx,
2401 enum event_type_t event_type)
2402 {
2403 struct perf_event *event;
2404 int is_active = ctx->is_active;
2405
2406 ctx->is_active &= ~event_type;
2407 if (likely(!ctx->nr_events))
2408 return;
2409
2410 update_context_time(ctx);
2411 update_cgrp_time_from_cpuctx(cpuctx);
2412 if (!ctx->nr_active)
2413 return;
2414
2415 perf_pmu_disable(ctx->pmu);
2416 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
2417 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2418 group_sched_out(event, cpuctx, ctx);
2419 }
2420
2421 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
2422 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2423 group_sched_out(event, cpuctx, ctx);
2424 }
2425 perf_pmu_enable(ctx->pmu);
2426 }
2427
2428 /*
2429 * Test whether two contexts are equivalent, i.e. whether they have both been
2430 * cloned from the same version of the same context.
2431 *
2432 * Equivalence is measured using a generation number in the context that is
2433 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2434 * and list_del_event().
2435 */
2436 static int context_equiv(struct perf_event_context *ctx1,
2437 struct perf_event_context *ctx2)
2438 {
2439 lockdep_assert_held(&ctx1->lock);
2440 lockdep_assert_held(&ctx2->lock);
2441
2442 /* Pinning disables the swap optimization */
2443 if (ctx1->pin_count || ctx2->pin_count)
2444 return 0;
2445
2446 /* If ctx1 is the parent of ctx2 */
2447 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2448 return 1;
2449
2450 /* If ctx2 is the parent of ctx1 */
2451 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2452 return 1;
2453
2454 /*
2455 * If ctx1 and ctx2 have the same parent; we flatten the parent
2456 * hierarchy, see perf_event_init_context().
2457 */
2458 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2459 ctx1->parent_gen == ctx2->parent_gen)
2460 return 1;
2461
2462 /* Unmatched */
2463 return 0;
2464 }
2465
2466 static void __perf_event_sync_stat(struct perf_event *event,
2467 struct perf_event *next_event)
2468 {
2469 u64 value;
2470
2471 if (!event->attr.inherit_stat)
2472 return;
2473
2474 /*
2475 * Update the event value, we cannot use perf_event_read()
2476 * because we're in the middle of a context switch and have IRQs
2477 * disabled, which upsets smp_call_function_single(), however
2478 * we know the event must be on the current CPU, therefore we
2479 * don't need to use it.
2480 */
2481 switch (event->state) {
2482 case PERF_EVENT_STATE_ACTIVE:
2483 event->pmu->read(event);
2484 /* fall-through */
2485
2486 case PERF_EVENT_STATE_INACTIVE:
2487 update_event_times(event);
2488 break;
2489
2490 default:
2491 break;
2492 }
2493
2494 /*
2495 * In order to keep per-task stats reliable we need to flip the event
2496 * values when we flip the contexts.
2497 */
2498 value = local64_read(&next_event->count);
2499 value = local64_xchg(&event->count, value);
2500 local64_set(&next_event->count, value);
2501
2502 swap(event->total_time_enabled, next_event->total_time_enabled);
2503 swap(event->total_time_running, next_event->total_time_running);
2504
2505 /*
2506 * Since we swizzled the values, update the user visible data too.
2507 */
2508 perf_event_update_userpage(event);
2509 perf_event_update_userpage(next_event);
2510 }
2511
2512 static void perf_event_sync_stat(struct perf_event_context *ctx,
2513 struct perf_event_context *next_ctx)
2514 {
2515 struct perf_event *event, *next_event;
2516
2517 if (!ctx->nr_stat)
2518 return;
2519
2520 update_context_time(ctx);
2521
2522 event = list_first_entry(&ctx->event_list,
2523 struct perf_event, event_entry);
2524
2525 next_event = list_first_entry(&next_ctx->event_list,
2526 struct perf_event, event_entry);
2527
2528 while (&event->event_entry != &ctx->event_list &&
2529 &next_event->event_entry != &next_ctx->event_list) {
2530
2531 __perf_event_sync_stat(event, next_event);
2532
2533 event = list_next_entry(event, event_entry);
2534 next_event = list_next_entry(next_event, event_entry);
2535 }
2536 }
2537
2538 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2539 struct task_struct *next)
2540 {
2541 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2542 struct perf_event_context *next_ctx;
2543 struct perf_event_context *parent, *next_parent;
2544 struct perf_cpu_context *cpuctx;
2545 int do_switch = 1;
2546
2547 if (likely(!ctx))
2548 return;
2549
2550 cpuctx = __get_cpu_context(ctx);
2551 if (!cpuctx->task_ctx)
2552 return;
2553
2554 rcu_read_lock();
2555 next_ctx = next->perf_event_ctxp[ctxn];
2556 if (!next_ctx)
2557 goto unlock;
2558
2559 parent = rcu_dereference(ctx->parent_ctx);
2560 next_parent = rcu_dereference(next_ctx->parent_ctx);
2561
2562 /* If neither context have a parent context; they cannot be clones. */
2563 if (!parent && !next_parent)
2564 goto unlock;
2565
2566 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2567 /*
2568 * Looks like the two contexts are clones, so we might be
2569 * able to optimize the context switch. We lock both
2570 * contexts and check that they are clones under the
2571 * lock (including re-checking that neither has been
2572 * uncloned in the meantime). It doesn't matter which
2573 * order we take the locks because no other cpu could
2574 * be trying to lock both of these tasks.
2575 */
2576 raw_spin_lock(&ctx->lock);
2577 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2578 if (context_equiv(ctx, next_ctx)) {
2579 /*
2580 * XXX do we need a memory barrier of sorts
2581 * wrt to rcu_dereference() of perf_event_ctxp
2582 */
2583 task->perf_event_ctxp[ctxn] = next_ctx;
2584 next->perf_event_ctxp[ctxn] = ctx;
2585 ctx->task = next;
2586 next_ctx->task = task;
2587
2588 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2589
2590 do_switch = 0;
2591
2592 perf_event_sync_stat(ctx, next_ctx);
2593 }
2594 raw_spin_unlock(&next_ctx->lock);
2595 raw_spin_unlock(&ctx->lock);
2596 }
2597 unlock:
2598 rcu_read_unlock();
2599
2600 if (do_switch) {
2601 raw_spin_lock(&ctx->lock);
2602 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2603 cpuctx->task_ctx = NULL;
2604 raw_spin_unlock(&ctx->lock);
2605 }
2606 }
2607
2608 void perf_sched_cb_dec(struct pmu *pmu)
2609 {
2610 this_cpu_dec(perf_sched_cb_usages);
2611 }
2612
2613 void perf_sched_cb_inc(struct pmu *pmu)
2614 {
2615 this_cpu_inc(perf_sched_cb_usages);
2616 }
2617
2618 /*
2619 * This function provides the context switch callback to the lower code
2620 * layer. It is invoked ONLY when the context switch callback is enabled.
2621 */
2622 static void perf_pmu_sched_task(struct task_struct *prev,
2623 struct task_struct *next,
2624 bool sched_in)
2625 {
2626 struct perf_cpu_context *cpuctx;
2627 struct pmu *pmu;
2628 unsigned long flags;
2629
2630 if (prev == next)
2631 return;
2632
2633 local_irq_save(flags);
2634
2635 rcu_read_lock();
2636
2637 list_for_each_entry_rcu(pmu, &pmus, entry) {
2638 if (pmu->sched_task) {
2639 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2640
2641 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2642
2643 perf_pmu_disable(pmu);
2644
2645 pmu->sched_task(cpuctx->task_ctx, sched_in);
2646
2647 perf_pmu_enable(pmu);
2648
2649 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2650 }
2651 }
2652
2653 rcu_read_unlock();
2654
2655 local_irq_restore(flags);
2656 }
2657
2658 static void perf_event_switch(struct task_struct *task,
2659 struct task_struct *next_prev, bool sched_in);
2660
2661 #define for_each_task_context_nr(ctxn) \
2662 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2663
2664 /*
2665 * Called from scheduler to remove the events of the current task,
2666 * with interrupts disabled.
2667 *
2668 * We stop each event and update the event value in event->count.
2669 *
2670 * This does not protect us against NMI, but disable()
2671 * sets the disabled bit in the control field of event _before_
2672 * accessing the event control register. If a NMI hits, then it will
2673 * not restart the event.
2674 */
2675 void __perf_event_task_sched_out(struct task_struct *task,
2676 struct task_struct *next)
2677 {
2678 int ctxn;
2679
2680 if (__this_cpu_read(perf_sched_cb_usages))
2681 perf_pmu_sched_task(task, next, false);
2682
2683 if (atomic_read(&nr_switch_events))
2684 perf_event_switch(task, next, false);
2685
2686 for_each_task_context_nr(ctxn)
2687 perf_event_context_sched_out(task, ctxn, next);
2688
2689 /*
2690 * if cgroup events exist on this CPU, then we need
2691 * to check if we have to switch out PMU state.
2692 * cgroup event are system-wide mode only
2693 */
2694 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2695 perf_cgroup_sched_out(task, next);
2696 }
2697
2698 static void task_ctx_sched_out(struct perf_event_context *ctx)
2699 {
2700 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2701
2702 if (!cpuctx->task_ctx)
2703 return;
2704
2705 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2706 return;
2707
2708 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2709 cpuctx->task_ctx = NULL;
2710 }
2711
2712 /*
2713 * Called with IRQs disabled
2714 */
2715 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2716 enum event_type_t event_type)
2717 {
2718 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2719 }
2720
2721 static void
2722 ctx_pinned_sched_in(struct perf_event_context *ctx,
2723 struct perf_cpu_context *cpuctx)
2724 {
2725 struct perf_event *event;
2726
2727 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2728 if (event->state <= PERF_EVENT_STATE_OFF)
2729 continue;
2730 if (!event_filter_match(event))
2731 continue;
2732
2733 /* may need to reset tstamp_enabled */
2734 if (is_cgroup_event(event))
2735 perf_cgroup_mark_enabled(event, ctx);
2736
2737 if (group_can_go_on(event, cpuctx, 1))
2738 group_sched_in(event, cpuctx, ctx);
2739
2740 /*
2741 * If this pinned group hasn't been scheduled,
2742 * put it in error state.
2743 */
2744 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2745 update_group_times(event);
2746 event->state = PERF_EVENT_STATE_ERROR;
2747 }
2748 }
2749 }
2750
2751 static void
2752 ctx_flexible_sched_in(struct perf_event_context *ctx,
2753 struct perf_cpu_context *cpuctx)
2754 {
2755 struct perf_event *event;
2756 int can_add_hw = 1;
2757
2758 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2759 /* Ignore events in OFF or ERROR state */
2760 if (event->state <= PERF_EVENT_STATE_OFF)
2761 continue;
2762 /*
2763 * Listen to the 'cpu' scheduling filter constraint
2764 * of events:
2765 */
2766 if (!event_filter_match(event))
2767 continue;
2768
2769 /* may need to reset tstamp_enabled */
2770 if (is_cgroup_event(event))
2771 perf_cgroup_mark_enabled(event, ctx);
2772
2773 if (group_can_go_on(event, cpuctx, can_add_hw)) {
2774 if (group_sched_in(event, cpuctx, ctx))
2775 can_add_hw = 0;
2776 }
2777 }
2778 }
2779
2780 static void
2781 ctx_sched_in(struct perf_event_context *ctx,
2782 struct perf_cpu_context *cpuctx,
2783 enum event_type_t event_type,
2784 struct task_struct *task)
2785 {
2786 u64 now;
2787 int is_active = ctx->is_active;
2788
2789 ctx->is_active |= event_type;
2790 if (likely(!ctx->nr_events))
2791 return;
2792
2793 now = perf_clock();
2794 ctx->timestamp = now;
2795 perf_cgroup_set_timestamp(task, ctx);
2796 /*
2797 * First go through the list and put on any pinned groups
2798 * in order to give them the best chance of going on.
2799 */
2800 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2801 ctx_pinned_sched_in(ctx, cpuctx);
2802
2803 /* Then walk through the lower prio flexible groups */
2804 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2805 ctx_flexible_sched_in(ctx, cpuctx);
2806 }
2807
2808 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
2809 enum event_type_t event_type,
2810 struct task_struct *task)
2811 {
2812 struct perf_event_context *ctx = &cpuctx->ctx;
2813
2814 ctx_sched_in(ctx, cpuctx, event_type, task);
2815 }
2816
2817 static void perf_event_context_sched_in(struct perf_event_context *ctx,
2818 struct task_struct *task)
2819 {
2820 struct perf_cpu_context *cpuctx;
2821
2822 cpuctx = __get_cpu_context(ctx);
2823 if (cpuctx->task_ctx == ctx)
2824 return;
2825
2826 perf_ctx_lock(cpuctx, ctx);
2827 perf_pmu_disable(ctx->pmu);
2828 /*
2829 * We want to keep the following priority order:
2830 * cpu pinned (that don't need to move), task pinned,
2831 * cpu flexible, task flexible.
2832 */
2833 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2834
2835 if (ctx->nr_events)
2836 cpuctx->task_ctx = ctx;
2837
2838 perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2839
2840 perf_pmu_enable(ctx->pmu);
2841 perf_ctx_unlock(cpuctx, ctx);
2842 }
2843
2844 /*
2845 * Called from scheduler to add the events of the current task
2846 * with interrupts disabled.
2847 *
2848 * We restore the event value and then enable it.
2849 *
2850 * This does not protect us against NMI, but enable()
2851 * sets the enabled bit in the control field of event _before_
2852 * accessing the event control register. If a NMI hits, then it will
2853 * keep the event running.
2854 */
2855 void __perf_event_task_sched_in(struct task_struct *prev,
2856 struct task_struct *task)
2857 {
2858 struct perf_event_context *ctx;
2859 int ctxn;
2860
2861 for_each_task_context_nr(ctxn) {
2862 ctx = task->perf_event_ctxp[ctxn];
2863 if (likely(!ctx))
2864 continue;
2865
2866 perf_event_context_sched_in(ctx, task);
2867 }
2868 /*
2869 * if cgroup events exist on this CPU, then we need
2870 * to check if we have to switch in PMU state.
2871 * cgroup event are system-wide mode only
2872 */
2873 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2874 perf_cgroup_sched_in(prev, task);
2875
2876 if (atomic_read(&nr_switch_events))
2877 perf_event_switch(task, prev, true);
2878
2879 if (__this_cpu_read(perf_sched_cb_usages))
2880 perf_pmu_sched_task(prev, task, true);
2881 }
2882
2883 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2884 {
2885 u64 frequency = event->attr.sample_freq;
2886 u64 sec = NSEC_PER_SEC;
2887 u64 divisor, dividend;
2888
2889 int count_fls, nsec_fls, frequency_fls, sec_fls;
2890
2891 count_fls = fls64(count);
2892 nsec_fls = fls64(nsec);
2893 frequency_fls = fls64(frequency);
2894 sec_fls = 30;
2895
2896 /*
2897 * We got @count in @nsec, with a target of sample_freq HZ
2898 * the target period becomes:
2899 *
2900 * @count * 10^9
2901 * period = -------------------
2902 * @nsec * sample_freq
2903 *
2904 */
2905
2906 /*
2907 * Reduce accuracy by one bit such that @a and @b converge
2908 * to a similar magnitude.
2909 */
2910 #define REDUCE_FLS(a, b) \
2911 do { \
2912 if (a##_fls > b##_fls) { \
2913 a >>= 1; \
2914 a##_fls--; \
2915 } else { \
2916 b >>= 1; \
2917 b##_fls--; \
2918 } \
2919 } while (0)
2920
2921 /*
2922 * Reduce accuracy until either term fits in a u64, then proceed with
2923 * the other, so that finally we can do a u64/u64 division.
2924 */
2925 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2926 REDUCE_FLS(nsec, frequency);
2927 REDUCE_FLS(sec, count);
2928 }
2929
2930 if (count_fls + sec_fls > 64) {
2931 divisor = nsec * frequency;
2932
2933 while (count_fls + sec_fls > 64) {
2934 REDUCE_FLS(count, sec);
2935 divisor >>= 1;
2936 }
2937
2938 dividend = count * sec;
2939 } else {
2940 dividend = count * sec;
2941
2942 while (nsec_fls + frequency_fls > 64) {
2943 REDUCE_FLS(nsec, frequency);
2944 dividend >>= 1;
2945 }
2946
2947 divisor = nsec * frequency;
2948 }
2949
2950 if (!divisor)
2951 return dividend;
2952
2953 return div64_u64(dividend, divisor);
2954 }
2955
2956 static DEFINE_PER_CPU(int, perf_throttled_count);
2957 static DEFINE_PER_CPU(u64, perf_throttled_seq);
2958
2959 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2960 {
2961 struct hw_perf_event *hwc = &event->hw;
2962 s64 period, sample_period;
2963 s64 delta;
2964
2965 period = perf_calculate_period(event, nsec, count);
2966
2967 delta = (s64)(period - hwc->sample_period);
2968 delta = (delta + 7) / 8; /* low pass filter */
2969
2970 sample_period = hwc->sample_period + delta;
2971
2972 if (!sample_period)
2973 sample_period = 1;
2974
2975 hwc->sample_period = sample_period;
2976
2977 if (local64_read(&hwc->period_left) > 8*sample_period) {
2978 if (disable)
2979 event->pmu->stop(event, PERF_EF_UPDATE);
2980
2981 local64_set(&hwc->period_left, 0);
2982
2983 if (disable)
2984 event->pmu->start(event, PERF_EF_RELOAD);
2985 }
2986 }
2987
2988 /*
2989 * combine freq adjustment with unthrottling to avoid two passes over the
2990 * events. At the same time, make sure, having freq events does not change
2991 * the rate of unthrottling as that would introduce bias.
2992 */
2993 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2994 int needs_unthr)
2995 {
2996 struct perf_event *event;
2997 struct hw_perf_event *hwc;
2998 u64 now, period = TICK_NSEC;
2999 s64 delta;
3000
3001 /*
3002 * only need to iterate over all events iff:
3003 * - context have events in frequency mode (needs freq adjust)
3004 * - there are events to unthrottle on this cpu
3005 */
3006 if (!(ctx->nr_freq || needs_unthr))
3007 return;
3008
3009 raw_spin_lock(&ctx->lock);
3010 perf_pmu_disable(ctx->pmu);
3011
3012 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3013 if (event->state != PERF_EVENT_STATE_ACTIVE)
3014 continue;
3015
3016 if (!event_filter_match(event))
3017 continue;
3018
3019 perf_pmu_disable(event->pmu);
3020
3021 hwc = &event->hw;
3022
3023 if (hwc->interrupts == MAX_INTERRUPTS) {
3024 hwc->interrupts = 0;
3025 perf_log_throttle(event, 1);
3026 event->pmu->start(event, 0);
3027 }
3028
3029 if (!event->attr.freq || !event->attr.sample_freq)
3030 goto next;
3031
3032 /*
3033 * stop the event and update event->count
3034 */
3035 event->pmu->stop(event, PERF_EF_UPDATE);
3036
3037 now = local64_read(&event->count);
3038 delta = now - hwc->freq_count_stamp;
3039 hwc->freq_count_stamp = now;
3040
3041 /*
3042 * restart the event
3043 * reload only if value has changed
3044 * we have stopped the event so tell that
3045 * to perf_adjust_period() to avoid stopping it
3046 * twice.
3047 */
3048 if (delta > 0)
3049 perf_adjust_period(event, period, delta, false);
3050
3051 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3052 next:
3053 perf_pmu_enable(event->pmu);
3054 }
3055
3056 perf_pmu_enable(ctx->pmu);
3057 raw_spin_unlock(&ctx->lock);
3058 }
3059
3060 /*
3061 * Round-robin a context's events:
3062 */
3063 static void rotate_ctx(struct perf_event_context *ctx)
3064 {
3065 /*
3066 * Rotate the first entry last of non-pinned groups. Rotation might be
3067 * disabled by the inheritance code.
3068 */
3069 if (!ctx->rotate_disable)
3070 list_rotate_left(&ctx->flexible_groups);
3071 }
3072
3073 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3074 {
3075 struct perf_event_context *ctx = NULL;
3076 int rotate = 0;
3077
3078 if (cpuctx->ctx.nr_events) {
3079 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3080 rotate = 1;
3081 }
3082
3083 ctx = cpuctx->task_ctx;
3084 if (ctx && ctx->nr_events) {
3085 if (ctx->nr_events != ctx->nr_active)
3086 rotate = 1;
3087 }
3088
3089 if (!rotate)
3090 goto done;
3091
3092 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3093 perf_pmu_disable(cpuctx->ctx.pmu);
3094
3095 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3096 if (ctx)
3097 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3098
3099 rotate_ctx(&cpuctx->ctx);
3100 if (ctx)
3101 rotate_ctx(ctx);
3102
3103 perf_event_sched_in(cpuctx, ctx, current);
3104
3105 perf_pmu_enable(cpuctx->ctx.pmu);
3106 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3107 done:
3108
3109 return rotate;
3110 }
3111
3112 #ifdef CONFIG_NO_HZ_FULL
3113 bool perf_event_can_stop_tick(void)
3114 {
3115 if (atomic_read(&nr_freq_events) ||
3116 __this_cpu_read(perf_throttled_count))
3117 return false;
3118 else
3119 return true;
3120 }
3121 #endif
3122
3123 void perf_event_task_tick(void)
3124 {
3125 struct list_head *head = this_cpu_ptr(&active_ctx_list);
3126 struct perf_event_context *ctx, *tmp;
3127 int throttled;
3128
3129 WARN_ON(!irqs_disabled());
3130
3131 __this_cpu_inc(perf_throttled_seq);
3132 throttled = __this_cpu_xchg(perf_throttled_count, 0);
3133
3134 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3135 perf_adjust_freq_unthr_context(ctx, throttled);
3136 }
3137
3138 static int event_enable_on_exec(struct perf_event *event,
3139 struct perf_event_context *ctx)
3140 {
3141 if (!event->attr.enable_on_exec)
3142 return 0;
3143
3144 event->attr.enable_on_exec = 0;
3145 if (event->state >= PERF_EVENT_STATE_INACTIVE)
3146 return 0;
3147
3148 __perf_event_mark_enabled(event);
3149
3150 return 1;
3151 }
3152
3153 /*
3154 * Enable all of a task's events that have been marked enable-on-exec.
3155 * This expects task == current.
3156 */
3157 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
3158 {
3159 struct perf_event_context *clone_ctx = NULL;
3160 struct perf_event *event;
3161 unsigned long flags;
3162 int enabled = 0;
3163 int ret;
3164
3165 local_irq_save(flags);
3166 if (!ctx || !ctx->nr_events)
3167 goto out;
3168
3169 /*
3170 * We must ctxsw out cgroup events to avoid conflict
3171 * when invoking perf_task_event_sched_in() later on
3172 * in this function. Otherwise we end up trying to
3173 * ctxswin cgroup events which are already scheduled
3174 * in.
3175 */
3176 perf_cgroup_sched_out(current, NULL);
3177
3178 raw_spin_lock(&ctx->lock);
3179 task_ctx_sched_out(ctx);
3180
3181 list_for_each_entry(event, &ctx->event_list, event_entry) {
3182 ret = event_enable_on_exec(event, ctx);
3183 if (ret)
3184 enabled = 1;
3185 }
3186
3187 /*
3188 * Unclone this context if we enabled any event.
3189 */
3190 if (enabled)
3191 clone_ctx = unclone_ctx(ctx);
3192
3193 raw_spin_unlock(&ctx->lock);
3194
3195 /*
3196 * Also calls ctxswin for cgroup events, if any:
3197 */
3198 perf_event_context_sched_in(ctx, ctx->task);
3199 out:
3200 local_irq_restore(flags);
3201
3202 if (clone_ctx)
3203 put_ctx(clone_ctx);
3204 }
3205
3206 void perf_event_exec(void)
3207 {
3208 struct perf_event_context *ctx;
3209 int ctxn;
3210
3211 rcu_read_lock();
3212 for_each_task_context_nr(ctxn) {
3213 ctx = current->perf_event_ctxp[ctxn];
3214 if (!ctx)
3215 continue;
3216
3217 perf_event_enable_on_exec(ctx);
3218 }
3219 rcu_read_unlock();
3220 }
3221
3222 struct perf_read_data {
3223 struct perf_event *event;
3224 bool group;
3225 int ret;
3226 };
3227
3228 /*
3229 * Cross CPU call to read the hardware event
3230 */
3231 static void __perf_event_read(void *info)
3232 {
3233 struct perf_read_data *data = info;
3234 struct perf_event *sub, *event = data->event;
3235 struct perf_event_context *ctx = event->ctx;
3236 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3237 struct pmu *pmu = event->pmu;
3238
3239 /*
3240 * If this is a task context, we need to check whether it is
3241 * the current task context of this cpu. If not it has been
3242 * scheduled out before the smp call arrived. In that case
3243 * event->count would have been updated to a recent sample
3244 * when the event was scheduled out.
3245 */
3246 if (ctx->task && cpuctx->task_ctx != ctx)
3247 return;
3248
3249 raw_spin_lock(&ctx->lock);
3250 if (ctx->is_active) {
3251 update_context_time(ctx);
3252 update_cgrp_time_from_event(event);
3253 }
3254
3255 update_event_times(event);
3256 if (event->state != PERF_EVENT_STATE_ACTIVE)
3257 goto unlock;
3258
3259 if (!data->group) {
3260 pmu->read(event);
3261 data->ret = 0;
3262 goto unlock;
3263 }
3264
3265 pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3266
3267 pmu->read(event);
3268
3269 list_for_each_entry(sub, &event->sibling_list, group_entry) {
3270 update_event_times(sub);
3271 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3272 /*
3273 * Use sibling's PMU rather than @event's since
3274 * sibling could be on different (eg: software) PMU.
3275 */
3276 sub->pmu->read(sub);
3277 }
3278 }
3279
3280 data->ret = pmu->commit_txn(pmu);
3281
3282 unlock:
3283 raw_spin_unlock(&ctx->lock);
3284 }
3285
3286 static inline u64 perf_event_count(struct perf_event *event)
3287 {
3288 if (event->pmu->count)
3289 return event->pmu->count(event);
3290
3291 return __perf_event_count(event);
3292 }
3293
3294 /*
3295 * NMI-safe method to read a local event, that is an event that
3296 * is:
3297 * - either for the current task, or for this CPU
3298 * - does not have inherit set, for inherited task events
3299 * will not be local and we cannot read them atomically
3300 * - must not have a pmu::count method
3301 */
3302 u64 perf_event_read_local(struct perf_event *event)
3303 {
3304 unsigned long flags;
3305 u64 val;
3306
3307 /*
3308 * Disabling interrupts avoids all counter scheduling (context
3309 * switches, timer based rotation and IPIs).
3310 */
3311 local_irq_save(flags);
3312
3313 /* If this is a per-task event, it must be for current */
3314 WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
3315 event->hw.target != current);
3316
3317 /* If this is a per-CPU event, it must be for this CPU */
3318 WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
3319 event->cpu != smp_processor_id());
3320
3321 /*
3322 * It must not be an event with inherit set, we cannot read
3323 * all child counters from atomic context.
3324 */
3325 WARN_ON_ONCE(event->attr.inherit);
3326
3327 /*
3328 * It must not have a pmu::count method, those are not
3329 * NMI safe.
3330 */
3331 WARN_ON_ONCE(event->pmu->count);
3332
3333 /*
3334 * If the event is currently on this CPU, its either a per-task event,
3335 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3336 * oncpu == -1).
3337 */
3338 if (event->oncpu == smp_processor_id())
3339 event->pmu->read(event);
3340
3341 val = local64_read(&event->count);
3342 local_irq_restore(flags);
3343
3344 return val;
3345 }
3346
3347 static int perf_event_read(struct perf_event *event, bool group)
3348 {
3349 int ret = 0;
3350
3351 /*
3352 * If event is enabled and currently active on a CPU, update the
3353 * value in the event structure:
3354 */
3355 if (event->state == PERF_EVENT_STATE_ACTIVE) {
3356 struct perf_read_data data = {
3357 .event = event,
3358 .group = group,
3359 .ret = 0,
3360 };
3361 smp_call_function_single(event->oncpu,
3362 __perf_event_read, &data, 1);
3363 ret = data.ret;
3364 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
3365 struct perf_event_context *ctx = event->ctx;
3366 unsigned long flags;
3367
3368 raw_spin_lock_irqsave(&ctx->lock, flags);
3369 /*
3370 * may read while context is not active
3371 * (e.g., thread is blocked), in that case
3372 * we cannot update context time
3373 */
3374 if (ctx->is_active) {
3375 update_context_time(ctx);
3376 update_cgrp_time_from_event(event);
3377 }
3378 if (group)
3379 update_group_times(event);
3380 else
3381 update_event_times(event);
3382 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3383 }
3384
3385 return ret;
3386 }
3387
3388 /*
3389 * Initialize the perf_event context in a task_struct:
3390 */
3391 static void __perf_event_init_context(struct perf_event_context *ctx)
3392 {
3393 raw_spin_lock_init(&ctx->lock);
3394 mutex_init(&ctx->mutex);
3395 INIT_LIST_HEAD(&ctx->active_ctx_list);
3396 INIT_LIST_HEAD(&ctx->pinned_groups);
3397 INIT_LIST_HEAD(&ctx->flexible_groups);
3398 INIT_LIST_HEAD(&ctx->event_list);
3399 atomic_set(&ctx->refcount, 1);
3400 INIT_DELAYED_WORK(&ctx->orphans_remove, orphans_remove_work);
3401 }
3402
3403 static struct perf_event_context *
3404 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3405 {
3406 struct perf_event_context *ctx;
3407
3408 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3409 if (!ctx)
3410 return NULL;
3411
3412 __perf_event_init_context(ctx);
3413 if (task) {
3414 ctx->task = task;
3415 get_task_struct(task);
3416 }
3417 ctx->pmu = pmu;
3418
3419 return ctx;
3420 }
3421
3422 static struct task_struct *
3423 find_lively_task_by_vpid(pid_t vpid)
3424 {
3425 struct task_struct *task;
3426 int err;
3427
3428 rcu_read_lock();
3429 if (!vpid)
3430 task = current;
3431 else
3432 task = find_task_by_vpid(vpid);
3433 if (task)
3434 get_task_struct(task);
3435 rcu_read_unlock();
3436
3437 if (!task)
3438 return ERR_PTR(-ESRCH);
3439
3440 /* Reuse ptrace permission checks for now. */
3441 err = -EACCES;
3442 if (!ptrace_may_access(task, PTRACE_MODE_READ))
3443 goto errout;
3444
3445 return task;
3446 errout:
3447 put_task_struct(task);
3448 return ERR_PTR(err);
3449
3450 }
3451
3452 /*
3453 * Returns a matching context with refcount and pincount.
3454 */
3455 static struct perf_event_context *
3456 find_get_context(struct pmu *pmu, struct task_struct *task,
3457 struct perf_event *event)
3458 {
3459 struct perf_event_context *ctx, *clone_ctx = NULL;
3460 struct perf_cpu_context *cpuctx;
3461 void *task_ctx_data = NULL;
3462 unsigned long flags;
3463 int ctxn, err;
3464 int cpu = event->cpu;
3465
3466 if (!task) {
3467 /* Must be root to operate on a CPU event: */
3468 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3469 return ERR_PTR(-EACCES);
3470
3471 /*
3472 * We could be clever and allow to attach a event to an
3473 * offline CPU and activate it when the CPU comes up, but
3474 * that's for later.
3475 */
3476 if (!cpu_online(cpu))
3477 return ERR_PTR(-ENODEV);
3478
3479 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3480 ctx = &cpuctx->ctx;
3481 get_ctx(ctx);
3482 ++ctx->pin_count;
3483
3484 return ctx;
3485 }
3486
3487 err = -EINVAL;
3488 ctxn = pmu->task_ctx_nr;
3489 if (ctxn < 0)
3490 goto errout;
3491
3492 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3493 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3494 if (!task_ctx_data) {
3495 err = -ENOMEM;
3496 goto errout;
3497 }
3498 }
3499
3500 retry:
3501 ctx = perf_lock_task_context(task, ctxn, &flags);
3502 if (ctx) {
3503 clone_ctx = unclone_ctx(ctx);
3504 ++ctx->pin_count;
3505
3506 if (task_ctx_data && !ctx->task_ctx_data) {
3507 ctx->task_ctx_data = task_ctx_data;
3508 task_ctx_data = NULL;
3509 }
3510 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3511
3512 if (clone_ctx)
3513 put_ctx(clone_ctx);
3514 } else {
3515 ctx = alloc_perf_context(pmu, task);
3516 err = -ENOMEM;
3517 if (!ctx)
3518 goto errout;
3519
3520 if (task_ctx_data) {
3521 ctx->task_ctx_data = task_ctx_data;
3522 task_ctx_data = NULL;
3523 }
3524
3525 err = 0;
3526 mutex_lock(&task->perf_event_mutex);
3527 /*
3528 * If it has already passed perf_event_exit_task().
3529 * we must see PF_EXITING, it takes this mutex too.
3530 */
3531 if (task->flags & PF_EXITING)
3532 err = -ESRCH;
3533 else if (task->perf_event_ctxp[ctxn])
3534 err = -EAGAIN;
3535 else {
3536 get_ctx(ctx);
3537 ++ctx->pin_count;
3538 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3539 }
3540 mutex_unlock(&task->perf_event_mutex);
3541
3542 if (unlikely(err)) {
3543 put_ctx(ctx);
3544
3545 if (err == -EAGAIN)
3546 goto retry;
3547 goto errout;
3548 }
3549 }
3550
3551 kfree(task_ctx_data);
3552 return ctx;
3553
3554 errout:
3555 kfree(task_ctx_data);
3556 return ERR_PTR(err);
3557 }
3558
3559 static void perf_event_free_filter(struct perf_event *event);
3560 static void perf_event_free_bpf_prog(struct perf_event *event);
3561
3562 static void free_event_rcu(struct rcu_head *head)
3563 {
3564 struct perf_event *event;
3565
3566 event = container_of(head, struct perf_event, rcu_head);
3567 if (event->ns)
3568 put_pid_ns(event->ns);
3569 perf_event_free_filter(event);
3570 kfree(event);
3571 }
3572
3573 static void ring_buffer_attach(struct perf_event *event,
3574 struct ring_buffer *rb);
3575
3576 static void unaccount_event_cpu(struct perf_event *event, int cpu)
3577 {
3578 if (event->parent)
3579 return;
3580
3581 if (is_cgroup_event(event))
3582 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3583 }
3584
3585 static void unaccount_event(struct perf_event *event)
3586 {
3587 if (event->parent)
3588 return;
3589
3590 if (event->attach_state & PERF_ATTACH_TASK)
3591 static_key_slow_dec_deferred(&perf_sched_events);
3592 if (event->attr.mmap || event->attr.mmap_data)
3593 atomic_dec(&nr_mmap_events);
3594 if (event->attr.comm)
3595 atomic_dec(&nr_comm_events);
3596 if (event->attr.task)
3597 atomic_dec(&nr_task_events);
3598 if (event->attr.freq)
3599 atomic_dec(&nr_freq_events);
3600 if (event->attr.context_switch) {
3601 static_key_slow_dec_deferred(&perf_sched_events);
3602 atomic_dec(&nr_switch_events);
3603 }
3604 if (is_cgroup_event(event))
3605 static_key_slow_dec_deferred(&perf_sched_events);
3606 if (has_branch_stack(event))
3607 static_key_slow_dec_deferred(&perf_sched_events);
3608
3609 unaccount_event_cpu(event, event->cpu);
3610 }
3611
3612 /*
3613 * The following implement mutual exclusion of events on "exclusive" pmus
3614 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3615 * at a time, so we disallow creating events that might conflict, namely:
3616 *
3617 * 1) cpu-wide events in the presence of per-task events,
3618 * 2) per-task events in the presence of cpu-wide events,
3619 * 3) two matching events on the same context.
3620 *
3621 * The former two cases are handled in the allocation path (perf_event_alloc(),
3622 * __free_event()), the latter -- before the first perf_install_in_context().
3623 */
3624 static int exclusive_event_init(struct perf_event *event)
3625 {
3626 struct pmu *pmu = event->pmu;
3627
3628 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3629 return 0;
3630
3631 /*
3632 * Prevent co-existence of per-task and cpu-wide events on the
3633 * same exclusive pmu.
3634 *
3635 * Negative pmu::exclusive_cnt means there are cpu-wide
3636 * events on this "exclusive" pmu, positive means there are
3637 * per-task events.
3638 *
3639 * Since this is called in perf_event_alloc() path, event::ctx
3640 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
3641 * to mean "per-task event", because unlike other attach states it
3642 * never gets cleared.
3643 */
3644 if (event->attach_state & PERF_ATTACH_TASK) {
3645 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
3646 return -EBUSY;
3647 } else {
3648 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
3649 return -EBUSY;
3650 }
3651
3652 return 0;
3653 }
3654
3655 static void exclusive_event_destroy(struct perf_event *event)
3656 {
3657 struct pmu *pmu = event->pmu;
3658
3659 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3660 return;
3661
3662 /* see comment in exclusive_event_init() */
3663 if (event->attach_state & PERF_ATTACH_TASK)
3664 atomic_dec(&pmu->exclusive_cnt);
3665 else
3666 atomic_inc(&pmu->exclusive_cnt);
3667 }
3668
3669 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
3670 {
3671 if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) &&
3672 (e1->cpu == e2->cpu ||
3673 e1->cpu == -1 ||
3674 e2->cpu == -1))
3675 return true;
3676 return false;
3677 }
3678
3679 /* Called under the same ctx::mutex as perf_install_in_context() */
3680 static bool exclusive_event_installable(struct perf_event *event,
3681 struct perf_event_context *ctx)
3682 {
3683 struct perf_event *iter_event;
3684 struct pmu *pmu = event->pmu;
3685
3686 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3687 return true;
3688
3689 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
3690 if (exclusive_event_match(iter_event, event))
3691 return false;
3692 }
3693
3694 return true;
3695 }
3696
3697 static void __free_event(struct perf_event *event)
3698 {
3699 if (!event->parent) {
3700 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3701 put_callchain_buffers();
3702 }
3703
3704 perf_event_free_bpf_prog(event);
3705
3706 if (event->destroy)
3707 event->destroy(event);
3708
3709 if (event->ctx)
3710 put_ctx(event->ctx);
3711
3712 if (event->pmu) {
3713 exclusive_event_destroy(event);
3714 module_put(event->pmu->module);
3715 }
3716
3717 call_rcu(&event->rcu_head, free_event_rcu);
3718 }
3719
3720 static void _free_event(struct perf_event *event)
3721 {
3722 irq_work_sync(&event->pending);
3723
3724 unaccount_event(event);
3725
3726 if (event->rb) {
3727 /*
3728 * Can happen when we close an event with re-directed output.
3729 *
3730 * Since we have a 0 refcount, perf_mmap_close() will skip
3731 * over us; possibly making our ring_buffer_put() the last.
3732 */
3733 mutex_lock(&event->mmap_mutex);
3734 ring_buffer_attach(event, NULL);
3735 mutex_unlock(&event->mmap_mutex);
3736 }
3737
3738 if (is_cgroup_event(event))
3739 perf_detach_cgroup(event);
3740
3741 __free_event(event);
3742 }
3743
3744 /*
3745 * Used to free events which have a known refcount of 1, such as in error paths
3746 * where the event isn't exposed yet and inherited events.
3747 */
3748 static void free_event(struct perf_event *event)
3749 {
3750 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
3751 "unexpected event refcount: %ld; ptr=%p\n",
3752 atomic_long_read(&event->refcount), event)) {
3753 /* leak to avoid use-after-free */
3754 return;
3755 }
3756
3757 _free_event(event);
3758 }
3759
3760 /*
3761 * Remove user event from the owner task.
3762 */
3763 static void perf_remove_from_owner(struct perf_event *event)
3764 {
3765 struct task_struct *owner;
3766
3767 rcu_read_lock();
3768 owner = ACCESS_ONCE(event->owner);
3769 /*
3770 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
3771 * !owner it means the list deletion is complete and we can indeed
3772 * free this event, otherwise we need to serialize on
3773 * owner->perf_event_mutex.
3774 */
3775 smp_read_barrier_depends();
3776 if (owner) {
3777 /*
3778 * Since delayed_put_task_struct() also drops the last
3779 * task reference we can safely take a new reference
3780 * while holding the rcu_read_lock().
3781 */
3782 get_task_struct(owner);
3783 }
3784 rcu_read_unlock();
3785
3786 if (owner) {
3787 /*
3788 * If we're here through perf_event_exit_task() we're already
3789 * holding ctx->mutex which would be an inversion wrt. the
3790 * normal lock order.
3791 *
3792 * However we can safely take this lock because its the child
3793 * ctx->mutex.
3794 */
3795 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
3796
3797 /*
3798 * We have to re-check the event->owner field, if it is cleared
3799 * we raced with perf_event_exit_task(), acquiring the mutex
3800 * ensured they're done, and we can proceed with freeing the
3801 * event.
3802 */
3803 if (event->owner)
3804 list_del_init(&event->owner_entry);
3805 mutex_unlock(&owner->perf_event_mutex);
3806 put_task_struct(owner);
3807 }
3808 }
3809
3810 static void put_event(struct perf_event *event)
3811 {
3812 struct perf_event_context *ctx;
3813
3814 if (!atomic_long_dec_and_test(&event->refcount))
3815 return;
3816
3817 if (!is_kernel_event(event))
3818 perf_remove_from_owner(event);
3819
3820 /*
3821 * There are two ways this annotation is useful:
3822 *
3823 * 1) there is a lock recursion from perf_event_exit_task
3824 * see the comment there.
3825 *
3826 * 2) there is a lock-inversion with mmap_sem through
3827 * perf_read_group(), which takes faults while
3828 * holding ctx->mutex, however this is called after
3829 * the last filedesc died, so there is no possibility
3830 * to trigger the AB-BA case.
3831 */
3832 ctx = perf_event_ctx_lock_nested(event, SINGLE_DEPTH_NESTING);
3833 WARN_ON_ONCE(ctx->parent_ctx);
3834 perf_remove_from_context(event, true);
3835 perf_event_ctx_unlock(event, ctx);
3836
3837 _free_event(event);
3838 }
3839
3840 int perf_event_release_kernel(struct perf_event *event)
3841 {
3842 put_event(event);
3843 return 0;
3844 }
3845 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
3846
3847 /*
3848 * Called when the last reference to the file is gone.
3849 */
3850 static int perf_release(struct inode *inode, struct file *file)
3851 {
3852 put_event(file->private_data);
3853 return 0;
3854 }
3855
3856 /*
3857 * Remove all orphanes events from the context.
3858 */
3859 static void orphans_remove_work(struct work_struct *work)
3860 {
3861 struct perf_event_context *ctx;
3862 struct perf_event *event, *tmp;
3863
3864 ctx = container_of(work, struct perf_event_context,
3865 orphans_remove.work);
3866
3867 mutex_lock(&ctx->mutex);
3868 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) {
3869 struct perf_event *parent_event = event->parent;
3870
3871 if (!is_orphaned_child(event))
3872 continue;
3873
3874 perf_remove_from_context(event, true);
3875
3876 mutex_lock(&parent_event->child_mutex);
3877 list_del_init(&event->child_list);
3878 mutex_unlock(&parent_event->child_mutex);
3879
3880 free_event(event);
3881 put_event(parent_event);
3882 }
3883
3884 raw_spin_lock_irq(&ctx->lock);
3885 ctx->orphans_remove_sched = false;
3886 raw_spin_unlock_irq(&ctx->lock);
3887 mutex_unlock(&ctx->mutex);
3888
3889 put_ctx(ctx);
3890 }
3891
3892 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3893 {
3894 struct perf_event *child;
3895 u64 total = 0;
3896
3897 *enabled = 0;
3898 *running = 0;
3899
3900 mutex_lock(&event->child_mutex);
3901
3902 (void)perf_event_read(event, false);
3903 total += perf_event_count(event);
3904
3905 *enabled += event->total_time_enabled +
3906 atomic64_read(&event->child_total_time_enabled);
3907 *running += event->total_time_running +
3908 atomic64_read(&event->child_total_time_running);
3909
3910 list_for_each_entry(child, &event->child_list, child_list) {
3911 (void)perf_event_read(child, false);
3912 total += perf_event_count(child);
3913 *enabled += child->total_time_enabled;
3914 *running += child->total_time_running;
3915 }
3916 mutex_unlock(&event->child_mutex);
3917
3918 return total;
3919 }
3920 EXPORT_SYMBOL_GPL(perf_event_read_value);
3921
3922 static int __perf_read_group_add(struct perf_event *leader,
3923 u64 read_format, u64 *values)
3924 {
3925 struct perf_event *sub;
3926 int n = 1; /* skip @nr */
3927 int ret;
3928
3929 ret = perf_event_read(leader, true);
3930 if (ret)
3931 return ret;
3932
3933 /*
3934 * Since we co-schedule groups, {enabled,running} times of siblings
3935 * will be identical to those of the leader, so we only publish one
3936 * set.
3937 */
3938 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3939 values[n++] += leader->total_time_enabled +
3940 atomic64_read(&leader->child_total_time_enabled);
3941 }
3942
3943 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3944 values[n++] += leader->total_time_running +
3945 atomic64_read(&leader->child_total_time_running);
3946 }
3947
3948 /*
3949 * Write {count,id} tuples for every sibling.
3950 */
3951 values[n++] += perf_event_count(leader);
3952 if (read_format & PERF_FORMAT_ID)
3953 values[n++] = primary_event_id(leader);
3954
3955 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3956 values[n++] += perf_event_count(sub);
3957 if (read_format & PERF_FORMAT_ID)
3958 values[n++] = primary_event_id(sub);
3959 }
3960
3961 return 0;
3962 }
3963
3964 static int perf_read_group(struct perf_event *event,
3965 u64 read_format, char __user *buf)
3966 {
3967 struct perf_event *leader = event->group_leader, *child;
3968 struct perf_event_context *ctx = leader->ctx;
3969 int ret;
3970 u64 *values;
3971
3972 lockdep_assert_held(&ctx->mutex);
3973
3974 values = kzalloc(event->read_size, GFP_KERNEL);
3975 if (!values)
3976 return -ENOMEM;
3977
3978 values[0] = 1 + leader->nr_siblings;
3979
3980 /*
3981 * By locking the child_mutex of the leader we effectively
3982 * lock the child list of all siblings.. XXX explain how.
3983 */
3984 mutex_lock(&leader->child_mutex);
3985
3986 ret = __perf_read_group_add(leader, read_format, values);
3987 if (ret)
3988 goto unlock;
3989
3990 list_for_each_entry(child, &leader->child_list, child_list) {
3991 ret = __perf_read_group_add(child, read_format, values);
3992 if (ret)
3993 goto unlock;
3994 }
3995
3996 mutex_unlock(&leader->child_mutex);
3997
3998 ret = event->read_size;
3999 if (copy_to_user(buf, values, event->read_size))
4000 ret = -EFAULT;
4001 goto out;
4002
4003 unlock:
4004 mutex_unlock(&leader->child_mutex);
4005 out:
4006 kfree(values);
4007 return ret;
4008 }
4009
4010 static int perf_read_one(struct perf_event *event,
4011 u64 read_format, char __user *buf)
4012 {
4013 u64 enabled, running;
4014 u64 values[4];
4015 int n = 0;
4016
4017 values[n++] = perf_event_read_value(event, &enabled, &running);
4018 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4019 values[n++] = enabled;
4020 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4021 values[n++] = running;
4022 if (read_format & PERF_FORMAT_ID)
4023 values[n++] = primary_event_id(event);
4024
4025 if (copy_to_user(buf, values, n * sizeof(u64)))
4026 return -EFAULT;
4027
4028 return n * sizeof(u64);
4029 }
4030
4031 static bool is_event_hup(struct perf_event *event)
4032 {
4033 bool no_children;
4034
4035 if (event->state != PERF_EVENT_STATE_EXIT)
4036 return false;
4037
4038 mutex_lock(&event->child_mutex);
4039 no_children = list_empty(&event->child_list);
4040 mutex_unlock(&event->child_mutex);
4041 return no_children;
4042 }
4043
4044 /*
4045 * Read the performance event - simple non blocking version for now
4046 */
4047 static ssize_t
4048 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4049 {
4050 u64 read_format = event->attr.read_format;
4051 int ret;
4052
4053 /*
4054 * Return end-of-file for a read on a event that is in
4055 * error state (i.e. because it was pinned but it couldn't be
4056 * scheduled on to the CPU at some point).
4057 */
4058 if (event->state == PERF_EVENT_STATE_ERROR)
4059 return 0;
4060
4061 if (count < event->read_size)
4062 return -ENOSPC;
4063
4064 WARN_ON_ONCE(event->ctx->parent_ctx);
4065 if (read_format & PERF_FORMAT_GROUP)
4066 ret = perf_read_group(event, read_format, buf);
4067 else
4068 ret = perf_read_one(event, read_format, buf);
4069
4070 return ret;
4071 }
4072
4073 static ssize_t
4074 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4075 {
4076 struct perf_event *event = file->private_data;
4077 struct perf_event_context *ctx;
4078 int ret;
4079
4080 ctx = perf_event_ctx_lock(event);
4081 ret = __perf_read(event, buf, count);
4082 perf_event_ctx_unlock(event, ctx);
4083
4084 return ret;
4085 }
4086
4087 static unsigned int perf_poll(struct file *file, poll_table *wait)
4088 {
4089 struct perf_event *event = file->private_data;
4090 struct ring_buffer *rb;
4091 unsigned int events = POLLHUP;
4092
4093 poll_wait(file, &event->waitq, wait);
4094
4095 if (is_event_hup(event))
4096 return events;
4097
4098 /*
4099 * Pin the event->rb by taking event->mmap_mutex; otherwise
4100 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4101 */
4102 mutex_lock(&event->mmap_mutex);
4103 rb = event->rb;
4104 if (rb)
4105 events = atomic_xchg(&rb->poll, 0);
4106 mutex_unlock(&event->mmap_mutex);
4107 return events;
4108 }
4109
4110 static void _perf_event_reset(struct perf_event *event)
4111 {
4112 (void)perf_event_read(event, false);
4113 local64_set(&event->count, 0);
4114 perf_event_update_userpage(event);
4115 }
4116
4117 /*
4118 * Holding the top-level event's child_mutex means that any
4119 * descendant process that has inherited this event will block
4120 * in sync_child_event if it goes to exit, thus satisfying the
4121 * task existence requirements of perf_event_enable/disable.
4122 */
4123 static void perf_event_for_each_child(struct perf_event *event,
4124 void (*func)(struct perf_event *))
4125 {
4126 struct perf_event *child;
4127
4128 WARN_ON_ONCE(event->ctx->parent_ctx);
4129
4130 mutex_lock(&event->child_mutex);
4131 func(event);
4132 list_for_each_entry(child, &event->child_list, child_list)
4133 func(child);
4134 mutex_unlock(&event->child_mutex);
4135 }
4136
4137 static void perf_event_for_each(struct perf_event *event,
4138 void (*func)(struct perf_event *))
4139 {
4140 struct perf_event_context *ctx = event->ctx;
4141 struct perf_event *sibling;
4142
4143 lockdep_assert_held(&ctx->mutex);
4144
4145 event = event->group_leader;
4146
4147 perf_event_for_each_child(event, func);
4148 list_for_each_entry(sibling, &event->sibling_list, group_entry)
4149 perf_event_for_each_child(sibling, func);
4150 }
4151
4152 struct period_event {
4153 struct perf_event *event;
4154 u64 value;
4155 };
4156
4157 static int __perf_event_period(void *info)
4158 {
4159 struct period_event *pe = info;
4160 struct perf_event *event = pe->event;
4161 struct perf_event_context *ctx = event->ctx;
4162 u64 value = pe->value;
4163 bool active;
4164
4165 raw_spin_lock(&ctx->lock);
4166 if (event->attr.freq) {
4167 event->attr.sample_freq = value;
4168 } else {
4169 event->attr.sample_period = value;
4170 event->hw.sample_period = value;
4171 }
4172
4173 active = (event->state == PERF_EVENT_STATE_ACTIVE);
4174 if (active) {
4175 perf_pmu_disable(ctx->pmu);
4176 event->pmu->stop(event, PERF_EF_UPDATE);
4177 }
4178
4179 local64_set(&event->hw.period_left, 0);
4180
4181 if (active) {
4182 event->pmu->start(event, PERF_EF_RELOAD);
4183 perf_pmu_enable(ctx->pmu);
4184 }
4185 raw_spin_unlock(&ctx->lock);
4186
4187 return 0;
4188 }
4189
4190 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4191 {
4192 struct period_event pe = { .event = event, };
4193 struct perf_event_context *ctx = event->ctx;
4194 struct task_struct *task;
4195 u64 value;
4196
4197 if (!is_sampling_event(event))
4198 return -EINVAL;
4199
4200 if (copy_from_user(&value, arg, sizeof(value)))
4201 return -EFAULT;
4202
4203 if (!value)
4204 return -EINVAL;
4205
4206 if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4207 return -EINVAL;
4208
4209 task = ctx->task;
4210 pe.value = value;
4211
4212 if (!task) {
4213 cpu_function_call(event->cpu, __perf_event_period, &pe);
4214 return 0;
4215 }
4216
4217 retry:
4218 if (!task_function_call(task, __perf_event_period, &pe))
4219 return 0;
4220
4221 raw_spin_lock_irq(&ctx->lock);
4222 if (ctx->is_active) {
4223 raw_spin_unlock_irq(&ctx->lock);
4224 task = ctx->task;
4225 goto retry;
4226 }
4227
4228 if (event->attr.freq) {
4229 event->attr.sample_freq = value;
4230 } else {
4231 event->attr.sample_period = value;
4232 event->hw.sample_period = value;
4233 }
4234
4235 local64_set(&event->hw.period_left, 0);
4236 raw_spin_unlock_irq(&ctx->lock);
4237
4238 return 0;
4239 }
4240
4241 static const struct file_operations perf_fops;
4242
4243 static inline int perf_fget_light(int fd, struct fd *p)
4244 {
4245 struct fd f = fdget(fd);
4246 if (!f.file)
4247 return -EBADF;
4248
4249 if (f.file->f_op != &perf_fops) {
4250 fdput(f);
4251 return -EBADF;
4252 }
4253 *p = f;
4254 return 0;
4255 }
4256
4257 static int perf_event_set_output(struct perf_event *event,
4258 struct perf_event *output_event);
4259 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4260 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4261
4262 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4263 {
4264 void (*func)(struct perf_event *);
4265 u32 flags = arg;
4266
4267 switch (cmd) {
4268 case PERF_EVENT_IOC_ENABLE:
4269 func = _perf_event_enable;
4270 break;
4271 case PERF_EVENT_IOC_DISABLE:
4272 func = _perf_event_disable;
4273 break;
4274 case PERF_EVENT_IOC_RESET:
4275 func = _perf_event_reset;
4276 break;
4277
4278 case PERF_EVENT_IOC_REFRESH:
4279 return _perf_event_refresh(event, arg);
4280
4281 case PERF_EVENT_IOC_PERIOD:
4282 return perf_event_period(event, (u64 __user *)arg);
4283
4284 case PERF_EVENT_IOC_ID:
4285 {
4286 u64 id = primary_event_id(event);
4287
4288 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4289 return -EFAULT;
4290 return 0;
4291 }
4292
4293 case PERF_EVENT_IOC_SET_OUTPUT:
4294 {
4295 int ret;
4296 if (arg != -1) {
4297 struct perf_event *output_event;
4298 struct fd output;
4299 ret = perf_fget_light(arg, &output);
4300 if (ret)
4301 return ret;
4302 output_event = output.file->private_data;
4303 ret = perf_event_set_output(event, output_event);
4304 fdput(output);
4305 } else {
4306 ret = perf_event_set_output(event, NULL);
4307 }
4308 return ret;
4309 }
4310
4311 case PERF_EVENT_IOC_SET_FILTER:
4312 return perf_event_set_filter(event, (void __user *)arg);
4313
4314 case PERF_EVENT_IOC_SET_BPF:
4315 return perf_event_set_bpf_prog(event, arg);
4316
4317 default:
4318 return -ENOTTY;
4319 }
4320
4321 if (flags & PERF_IOC_FLAG_GROUP)
4322 perf_event_for_each(event, func);
4323 else
4324 perf_event_for_each_child(event, func);
4325
4326 return 0;
4327 }
4328
4329 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4330 {
4331 struct perf_event *event = file->private_data;
4332 struct perf_event_context *ctx;
4333 long ret;
4334
4335 ctx = perf_event_ctx_lock(event);
4336 ret = _perf_ioctl(event, cmd, arg);
4337 perf_event_ctx_unlock(event, ctx);
4338
4339 return ret;
4340 }
4341
4342 #ifdef CONFIG_COMPAT
4343 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4344 unsigned long arg)
4345 {
4346 switch (_IOC_NR(cmd)) {
4347 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4348 case _IOC_NR(PERF_EVENT_IOC_ID):
4349 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4350 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4351 cmd &= ~IOCSIZE_MASK;
4352 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4353 }
4354 break;
4355 }
4356 return perf_ioctl(file, cmd, arg);
4357 }
4358 #else
4359 # define perf_compat_ioctl NULL
4360 #endif
4361
4362 int perf_event_task_enable(void)
4363 {
4364 struct perf_event_context *ctx;
4365 struct perf_event *event;
4366
4367 mutex_lock(&current->perf_event_mutex);
4368 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4369 ctx = perf_event_ctx_lock(event);
4370 perf_event_for_each_child(event, _perf_event_enable);
4371 perf_event_ctx_unlock(event, ctx);
4372 }
4373 mutex_unlock(&current->perf_event_mutex);
4374
4375 return 0;
4376 }
4377
4378 int perf_event_task_disable(void)
4379 {
4380 struct perf_event_context *ctx;
4381 struct perf_event *event;
4382
4383 mutex_lock(&current->perf_event_mutex);
4384 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4385 ctx = perf_event_ctx_lock(event);
4386 perf_event_for_each_child(event, _perf_event_disable);
4387 perf_event_ctx_unlock(event, ctx);
4388 }
4389 mutex_unlock(&current->perf_event_mutex);
4390
4391 return 0;
4392 }
4393
4394 static int perf_event_index(struct perf_event *event)
4395 {
4396 if (event->hw.state & PERF_HES_STOPPED)
4397 return 0;
4398
4399 if (event->state != PERF_EVENT_STATE_ACTIVE)
4400 return 0;
4401
4402 return event->pmu->event_idx(event);
4403 }
4404
4405 static void calc_timer_values(struct perf_event *event,
4406 u64 *now,
4407 u64 *enabled,
4408 u64 *running)
4409 {
4410 u64 ctx_time;
4411
4412 *now = perf_clock();
4413 ctx_time = event->shadow_ctx_time + *now;
4414 *enabled = ctx_time - event->tstamp_enabled;
4415 *running = ctx_time - event->tstamp_running;
4416 }
4417
4418 static void perf_event_init_userpage(struct perf_event *event)
4419 {
4420 struct perf_event_mmap_page *userpg;
4421 struct ring_buffer *rb;
4422
4423 rcu_read_lock();
4424 rb = rcu_dereference(event->rb);
4425 if (!rb)
4426 goto unlock;
4427
4428 userpg = rb->user_page;
4429
4430 /* Allow new userspace to detect that bit 0 is deprecated */
4431 userpg->cap_bit0_is_deprecated = 1;
4432 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4433 userpg->data_offset = PAGE_SIZE;
4434 userpg->data_size = perf_data_size(rb);
4435
4436 unlock:
4437 rcu_read_unlock();
4438 }
4439
4440 void __weak arch_perf_update_userpage(
4441 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4442 {
4443 }
4444
4445 /*
4446 * Callers need to ensure there can be no nesting of this function, otherwise
4447 * the seqlock logic goes bad. We can not serialize this because the arch
4448 * code calls this from NMI context.
4449 */
4450 void perf_event_update_userpage(struct perf_event *event)
4451 {
4452 struct perf_event_mmap_page *userpg;
4453 struct ring_buffer *rb;
4454 u64 enabled, running, now;
4455
4456 rcu_read_lock();
4457 rb = rcu_dereference(event->rb);
4458 if (!rb)
4459 goto unlock;
4460
4461 /*
4462 * compute total_time_enabled, total_time_running
4463 * based on snapshot values taken when the event
4464 * was last scheduled in.
4465 *
4466 * we cannot simply called update_context_time()
4467 * because of locking issue as we can be called in
4468 * NMI context
4469 */
4470 calc_timer_values(event, &now, &enabled, &running);
4471
4472 userpg = rb->user_page;
4473 /*
4474 * Disable preemption so as to not let the corresponding user-space
4475 * spin too long if we get preempted.
4476 */
4477 preempt_disable();
4478 ++userpg->lock;
4479 barrier();
4480 userpg->index = perf_event_index(event);
4481 userpg->offset = perf_event_count(event);
4482 if (userpg->index)
4483 userpg->offset -= local64_read(&event->hw.prev_count);
4484
4485 userpg->time_enabled = enabled +
4486 atomic64_read(&event->child_total_time_enabled);
4487
4488 userpg->time_running = running +
4489 atomic64_read(&event->child_total_time_running);
4490
4491 arch_perf_update_userpage(event, userpg, now);
4492
4493 barrier();
4494 ++userpg->lock;
4495 preempt_enable();
4496 unlock:
4497 rcu_read_unlock();
4498 }
4499
4500 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
4501 {
4502 struct perf_event *event = vma->vm_file->private_data;
4503 struct ring_buffer *rb;
4504 int ret = VM_FAULT_SIGBUS;
4505
4506 if (vmf->flags & FAULT_FLAG_MKWRITE) {
4507 if (vmf->pgoff == 0)
4508 ret = 0;
4509 return ret;
4510 }
4511
4512 rcu_read_lock();
4513 rb = rcu_dereference(event->rb);
4514 if (!rb)
4515 goto unlock;
4516
4517 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4518 goto unlock;
4519
4520 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4521 if (!vmf->page)
4522 goto unlock;
4523
4524 get_page(vmf->page);
4525 vmf->page->mapping = vma->vm_file->f_mapping;
4526 vmf->page->index = vmf->pgoff;
4527
4528 ret = 0;
4529 unlock:
4530 rcu_read_unlock();
4531
4532 return ret;
4533 }
4534
4535 static void ring_buffer_attach(struct perf_event *event,
4536 struct ring_buffer *rb)
4537 {
4538 struct ring_buffer *old_rb = NULL;
4539 unsigned long flags;
4540
4541 if (event->rb) {
4542 /*
4543 * Should be impossible, we set this when removing
4544 * event->rb_entry and wait/clear when adding event->rb_entry.
4545 */
4546 WARN_ON_ONCE(event->rcu_pending);
4547
4548 old_rb = event->rb;
4549 spin_lock_irqsave(&old_rb->event_lock, flags);
4550 list_del_rcu(&event->rb_entry);
4551 spin_unlock_irqrestore(&old_rb->event_lock, flags);
4552
4553 event->rcu_batches = get_state_synchronize_rcu();
4554 event->rcu_pending = 1;
4555 }
4556
4557 if (rb) {
4558 if (event->rcu_pending) {
4559 cond_synchronize_rcu(event->rcu_batches);
4560 event->rcu_pending = 0;
4561 }
4562
4563 spin_lock_irqsave(&rb->event_lock, flags);
4564 list_add_rcu(&event->rb_entry, &rb->event_list);
4565 spin_unlock_irqrestore(&rb->event_lock, flags);
4566 }
4567
4568 rcu_assign_pointer(event->rb, rb);
4569
4570 if (old_rb) {
4571 ring_buffer_put(old_rb);
4572 /*
4573 * Since we detached before setting the new rb, so that we
4574 * could attach the new rb, we could have missed a wakeup.
4575 * Provide it now.
4576 */
4577 wake_up_all(&event->waitq);
4578 }
4579 }
4580
4581 static void ring_buffer_wakeup(struct perf_event *event)
4582 {
4583 struct ring_buffer *rb;
4584
4585 rcu_read_lock();
4586 rb = rcu_dereference(event->rb);
4587 if (rb) {
4588 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
4589 wake_up_all(&event->waitq);
4590 }
4591 rcu_read_unlock();
4592 }
4593
4594 struct ring_buffer *ring_buffer_get(struct perf_event *event)
4595 {
4596 struct ring_buffer *rb;
4597
4598 rcu_read_lock();
4599 rb = rcu_dereference(event->rb);
4600 if (rb) {
4601 if (!atomic_inc_not_zero(&rb->refcount))
4602 rb = NULL;
4603 }
4604 rcu_read_unlock();
4605
4606 return rb;
4607 }
4608
4609 void ring_buffer_put(struct ring_buffer *rb)
4610 {
4611 if (!atomic_dec_and_test(&rb->refcount))
4612 return;
4613
4614 WARN_ON_ONCE(!list_empty(&rb->event_list));
4615
4616 call_rcu(&rb->rcu_head, rb_free_rcu);
4617 }
4618
4619 static void perf_mmap_open(struct vm_area_struct *vma)
4620 {
4621 struct perf_event *event = vma->vm_file->private_data;
4622
4623 atomic_inc(&event->mmap_count);
4624 atomic_inc(&event->rb->mmap_count);
4625
4626 if (vma->vm_pgoff)
4627 atomic_inc(&event->rb->aux_mmap_count);
4628
4629 if (event->pmu->event_mapped)
4630 event->pmu->event_mapped(event);
4631 }
4632
4633 /*
4634 * A buffer can be mmap()ed multiple times; either directly through the same
4635 * event, or through other events by use of perf_event_set_output().
4636 *
4637 * In order to undo the VM accounting done by perf_mmap() we need to destroy
4638 * the buffer here, where we still have a VM context. This means we need
4639 * to detach all events redirecting to us.
4640 */
4641 static void perf_mmap_close(struct vm_area_struct *vma)
4642 {
4643 struct perf_event *event = vma->vm_file->private_data;
4644
4645 struct ring_buffer *rb = ring_buffer_get(event);
4646 struct user_struct *mmap_user = rb->mmap_user;
4647 int mmap_locked = rb->mmap_locked;
4648 unsigned long size = perf_data_size(rb);
4649
4650 if (event->pmu->event_unmapped)
4651 event->pmu->event_unmapped(event);
4652
4653 /*
4654 * rb->aux_mmap_count will always drop before rb->mmap_count and
4655 * event->mmap_count, so it is ok to use event->mmap_mutex to
4656 * serialize with perf_mmap here.
4657 */
4658 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
4659 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
4660 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
4661 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
4662
4663 rb_free_aux(rb);
4664 mutex_unlock(&event->mmap_mutex);
4665 }
4666
4667 atomic_dec(&rb->mmap_count);
4668
4669 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
4670 goto out_put;
4671
4672 ring_buffer_attach(event, NULL);
4673 mutex_unlock(&event->mmap_mutex);
4674
4675 /* If there's still other mmap()s of this buffer, we're done. */
4676 if (atomic_read(&rb->mmap_count))
4677 goto out_put;
4678
4679 /*
4680 * No other mmap()s, detach from all other events that might redirect
4681 * into the now unreachable buffer. Somewhat complicated by the
4682 * fact that rb::event_lock otherwise nests inside mmap_mutex.
4683 */
4684 again:
4685 rcu_read_lock();
4686 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
4687 if (!atomic_long_inc_not_zero(&event->refcount)) {
4688 /*
4689 * This event is en-route to free_event() which will
4690 * detach it and remove it from the list.
4691 */
4692 continue;
4693 }
4694 rcu_read_unlock();
4695
4696 mutex_lock(&event->mmap_mutex);
4697 /*
4698 * Check we didn't race with perf_event_set_output() which can
4699 * swizzle the rb from under us while we were waiting to
4700 * acquire mmap_mutex.
4701 *
4702 * If we find a different rb; ignore this event, a next
4703 * iteration will no longer find it on the list. We have to
4704 * still restart the iteration to make sure we're not now
4705 * iterating the wrong list.
4706 */
4707 if (event->rb == rb)
4708 ring_buffer_attach(event, NULL);
4709
4710 mutex_unlock(&event->mmap_mutex);
4711 put_event(event);
4712
4713 /*
4714 * Restart the iteration; either we're on the wrong list or
4715 * destroyed its integrity by doing a deletion.
4716 */
4717 goto again;
4718 }
4719 rcu_read_unlock();
4720
4721 /*
4722 * It could be there's still a few 0-ref events on the list; they'll
4723 * get cleaned up by free_event() -- they'll also still have their
4724 * ref on the rb and will free it whenever they are done with it.
4725 *
4726 * Aside from that, this buffer is 'fully' detached and unmapped,
4727 * undo the VM accounting.
4728 */
4729
4730 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
4731 vma->vm_mm->pinned_vm -= mmap_locked;
4732 free_uid(mmap_user);
4733
4734 out_put:
4735 ring_buffer_put(rb); /* could be last */
4736 }
4737
4738 static const struct vm_operations_struct perf_mmap_vmops = {
4739 .open = perf_mmap_open,
4740 .close = perf_mmap_close, /* non mergable */
4741 .fault = perf_mmap_fault,
4742 .page_mkwrite = perf_mmap_fault,
4743 };
4744
4745 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
4746 {
4747 struct perf_event *event = file->private_data;
4748 unsigned long user_locked, user_lock_limit;
4749 struct user_struct *user = current_user();
4750 unsigned long locked, lock_limit;
4751 struct ring_buffer *rb = NULL;
4752 unsigned long vma_size;
4753 unsigned long nr_pages;
4754 long user_extra = 0, extra = 0;
4755 int ret = 0, flags = 0;
4756
4757 /*
4758 * Don't allow mmap() of inherited per-task counters. This would
4759 * create a performance issue due to all children writing to the
4760 * same rb.
4761 */
4762 if (event->cpu == -1 && event->attr.inherit)
4763 return -EINVAL;
4764
4765 if (!(vma->vm_flags & VM_SHARED))
4766 return -EINVAL;
4767
4768 vma_size = vma->vm_end - vma->vm_start;
4769
4770 if (vma->vm_pgoff == 0) {
4771 nr_pages = (vma_size / PAGE_SIZE) - 1;
4772 } else {
4773 /*
4774 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
4775 * mapped, all subsequent mappings should have the same size
4776 * and offset. Must be above the normal perf buffer.
4777 */
4778 u64 aux_offset, aux_size;
4779
4780 if (!event->rb)
4781 return -EINVAL;
4782
4783 nr_pages = vma_size / PAGE_SIZE;
4784
4785 mutex_lock(&event->mmap_mutex);
4786 ret = -EINVAL;
4787
4788 rb = event->rb;
4789 if (!rb)
4790 goto aux_unlock;
4791
4792 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
4793 aux_size = ACCESS_ONCE(rb->user_page->aux_size);
4794
4795 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
4796 goto aux_unlock;
4797
4798 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
4799 goto aux_unlock;
4800
4801 /* already mapped with a different offset */
4802 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
4803 goto aux_unlock;
4804
4805 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
4806 goto aux_unlock;
4807
4808 /* already mapped with a different size */
4809 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
4810 goto aux_unlock;
4811
4812 if (!is_power_of_2(nr_pages))
4813 goto aux_unlock;
4814
4815 if (!atomic_inc_not_zero(&rb->mmap_count))
4816 goto aux_unlock;
4817
4818 if (rb_has_aux(rb)) {
4819 atomic_inc(&rb->aux_mmap_count);
4820 ret = 0;
4821 goto unlock;
4822 }
4823
4824 atomic_set(&rb->aux_mmap_count, 1);
4825 user_extra = nr_pages;
4826
4827 goto accounting;
4828 }
4829
4830 /*
4831 * If we have rb pages ensure they're a power-of-two number, so we
4832 * can do bitmasks instead of modulo.
4833 */
4834 if (nr_pages != 0 && !is_power_of_2(nr_pages))
4835 return -EINVAL;
4836
4837 if (vma_size != PAGE_SIZE * (1 + nr_pages))
4838 return -EINVAL;
4839
4840 WARN_ON_ONCE(event->ctx->parent_ctx);
4841 again:
4842 mutex_lock(&event->mmap_mutex);
4843 if (event->rb) {
4844 if (event->rb->nr_pages != nr_pages) {
4845 ret = -EINVAL;
4846 goto unlock;
4847 }
4848
4849 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
4850 /*
4851 * Raced against perf_mmap_close() through
4852 * perf_event_set_output(). Try again, hope for better
4853 * luck.
4854 */
4855 mutex_unlock(&event->mmap_mutex);
4856 goto again;
4857 }
4858
4859 goto unlock;
4860 }
4861
4862 user_extra = nr_pages + 1;
4863
4864 accounting:
4865 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
4866
4867 /*
4868 * Increase the limit linearly with more CPUs:
4869 */
4870 user_lock_limit *= num_online_cpus();
4871
4872 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
4873
4874 if (user_locked > user_lock_limit)
4875 extra = user_locked - user_lock_limit;
4876
4877 lock_limit = rlimit(RLIMIT_MEMLOCK);
4878 lock_limit >>= PAGE_SHIFT;
4879 locked = vma->vm_mm->pinned_vm + extra;
4880
4881 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
4882 !capable(CAP_IPC_LOCK)) {
4883 ret = -EPERM;
4884 goto unlock;
4885 }
4886
4887 WARN_ON(!rb && event->rb);
4888
4889 if (vma->vm_flags & VM_WRITE)
4890 flags |= RING_BUFFER_WRITABLE;
4891
4892 if (!rb) {
4893 rb = rb_alloc(nr_pages,
4894 event->attr.watermark ? event->attr.wakeup_watermark : 0,
4895 event->cpu, flags);
4896
4897 if (!rb) {
4898 ret = -ENOMEM;
4899 goto unlock;
4900 }
4901
4902 atomic_set(&rb->mmap_count, 1);
4903 rb->mmap_user = get_current_user();
4904 rb->mmap_locked = extra;
4905
4906 ring_buffer_attach(event, rb);
4907
4908 perf_event_init_userpage(event);
4909 perf_event_update_userpage(event);
4910 } else {
4911 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
4912 event->attr.aux_watermark, flags);
4913 if (!ret)
4914 rb->aux_mmap_locked = extra;
4915 }
4916
4917 unlock:
4918 if (!ret) {
4919 atomic_long_add(user_extra, &user->locked_vm);
4920 vma->vm_mm->pinned_vm += extra;
4921
4922 atomic_inc(&event->mmap_count);
4923 } else if (rb) {
4924 atomic_dec(&rb->mmap_count);
4925 }
4926 aux_unlock:
4927 mutex_unlock(&event->mmap_mutex);
4928
4929 /*
4930 * Since pinned accounting is per vm we cannot allow fork() to copy our
4931 * vma.
4932 */
4933 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
4934 vma->vm_ops = &perf_mmap_vmops;
4935
4936 if (event->pmu->event_mapped)
4937 event->pmu->event_mapped(event);
4938
4939 return ret;
4940 }
4941
4942 static int perf_fasync(int fd, struct file *filp, int on)
4943 {
4944 struct inode *inode = file_inode(filp);
4945 struct perf_event *event = filp->private_data;
4946 int retval;
4947
4948 mutex_lock(&inode->i_mutex);
4949 retval = fasync_helper(fd, filp, on, &event->fasync);
4950 mutex_unlock(&inode->i_mutex);
4951
4952 if (retval < 0)
4953 return retval;
4954
4955 return 0;
4956 }
4957
4958 static const struct file_operations perf_fops = {
4959 .llseek = no_llseek,
4960 .release = perf_release,
4961 .read = perf_read,
4962 .poll = perf_poll,
4963 .unlocked_ioctl = perf_ioctl,
4964 .compat_ioctl = perf_compat_ioctl,
4965 .mmap = perf_mmap,
4966 .fasync = perf_fasync,
4967 };
4968
4969 /*
4970 * Perf event wakeup
4971 *
4972 * If there's data, ensure we set the poll() state and publish everything
4973 * to user-space before waking everybody up.
4974 */
4975
4976 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
4977 {
4978 /* only the parent has fasync state */
4979 if (event->parent)
4980 event = event->parent;
4981 return &event->fasync;
4982 }
4983
4984 void perf_event_wakeup(struct perf_event *event)
4985 {
4986 ring_buffer_wakeup(event);
4987
4988 if (event->pending_kill) {
4989 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
4990 event->pending_kill = 0;
4991 }
4992 }
4993
4994 static void perf_pending_event(struct irq_work *entry)
4995 {
4996 struct perf_event *event = container_of(entry,
4997 struct perf_event, pending);
4998 int rctx;
4999
5000 rctx = perf_swevent_get_recursion_context();
5001 /*
5002 * If we 'fail' here, that's OK, it means recursion is already disabled
5003 * and we won't recurse 'further'.
5004 */
5005
5006 if (event->pending_disable) {
5007 event->pending_disable = 0;
5008 __perf_event_disable(event);
5009 }
5010
5011 if (event->pending_wakeup) {
5012 event->pending_wakeup = 0;
5013 perf_event_wakeup(event);
5014 }
5015
5016 if (rctx >= 0)
5017 perf_swevent_put_recursion_context(rctx);
5018 }
5019
5020 /*
5021 * We assume there is only KVM supporting the callbacks.
5022 * Later on, we might change it to a list if there is
5023 * another virtualization implementation supporting the callbacks.
5024 */
5025 struct perf_guest_info_callbacks *perf_guest_cbs;
5026
5027 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5028 {
5029 perf_guest_cbs = cbs;
5030 return 0;
5031 }
5032 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5033
5034 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5035 {
5036 perf_guest_cbs = NULL;
5037 return 0;
5038 }
5039 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5040
5041 static void
5042 perf_output_sample_regs(struct perf_output_handle *handle,
5043 struct pt_regs *regs, u64 mask)
5044 {
5045 int bit;
5046
5047 for_each_set_bit(bit, (const unsigned long *) &mask,
5048 sizeof(mask) * BITS_PER_BYTE) {
5049 u64 val;
5050
5051 val = perf_reg_value(regs, bit);
5052 perf_output_put(handle, val);
5053 }
5054 }
5055
5056 static void perf_sample_regs_user(struct perf_regs *regs_user,
5057 struct pt_regs *regs,
5058 struct pt_regs *regs_user_copy)
5059 {
5060 if (user_mode(regs)) {
5061 regs_user->abi = perf_reg_abi(current);
5062 regs_user->regs = regs;
5063 } else if (current->mm) {
5064 perf_get_regs_user(regs_user, regs, regs_user_copy);
5065 } else {
5066 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5067 regs_user->regs = NULL;
5068 }
5069 }
5070
5071 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5072 struct pt_regs *regs)
5073 {
5074 regs_intr->regs = regs;
5075 regs_intr->abi = perf_reg_abi(current);
5076 }
5077
5078
5079 /*
5080 * Get remaining task size from user stack pointer.
5081 *
5082 * It'd be better to take stack vma map and limit this more
5083 * precisly, but there's no way to get it safely under interrupt,
5084 * so using TASK_SIZE as limit.
5085 */
5086 static u64 perf_ustack_task_size(struct pt_regs *regs)
5087 {
5088 unsigned long addr = perf_user_stack_pointer(regs);
5089
5090 if (!addr || addr >= TASK_SIZE)
5091 return 0;
5092
5093 return TASK_SIZE - addr;
5094 }
5095
5096 static u16
5097 perf_sample_ustack_size(u16 stack_size, u16 header_size,
5098 struct pt_regs *regs)
5099 {
5100 u64 task_size;
5101
5102 /* No regs, no stack pointer, no dump. */
5103 if (!regs)
5104 return 0;
5105
5106 /*
5107 * Check if we fit in with the requested stack size into the:
5108 * - TASK_SIZE
5109 * If we don't, we limit the size to the TASK_SIZE.
5110 *
5111 * - remaining sample size
5112 * If we don't, we customize the stack size to
5113 * fit in to the remaining sample size.
5114 */
5115
5116 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5117 stack_size = min(stack_size, (u16) task_size);
5118
5119 /* Current header size plus static size and dynamic size. */
5120 header_size += 2 * sizeof(u64);
5121
5122 /* Do we fit in with the current stack dump size? */
5123 if ((u16) (header_size + stack_size) < header_size) {
5124 /*
5125 * If we overflow the maximum size for the sample,
5126 * we customize the stack dump size to fit in.
5127 */
5128 stack_size = USHRT_MAX - header_size - sizeof(u64);
5129 stack_size = round_up(stack_size, sizeof(u64));
5130 }
5131
5132 return stack_size;
5133 }
5134
5135 static void
5136 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5137 struct pt_regs *regs)
5138 {
5139 /* Case of a kernel thread, nothing to dump */
5140 if (!regs) {
5141 u64 size = 0;
5142 perf_output_put(handle, size);
5143 } else {
5144 unsigned long sp;
5145 unsigned int rem;
5146 u64 dyn_size;
5147
5148 /*
5149 * We dump:
5150 * static size
5151 * - the size requested by user or the best one we can fit
5152 * in to the sample max size
5153 * data
5154 * - user stack dump data
5155 * dynamic size
5156 * - the actual dumped size
5157 */
5158
5159 /* Static size. */
5160 perf_output_put(handle, dump_size);
5161
5162 /* Data. */
5163 sp = perf_user_stack_pointer(regs);
5164 rem = __output_copy_user(handle, (void *) sp, dump_size);
5165 dyn_size = dump_size - rem;
5166
5167 perf_output_skip(handle, rem);
5168
5169 /* Dynamic size. */
5170 perf_output_put(handle, dyn_size);
5171 }
5172 }
5173
5174 static void __perf_event_header__init_id(struct perf_event_header *header,
5175 struct perf_sample_data *data,
5176 struct perf_event *event)
5177 {
5178 u64 sample_type = event->attr.sample_type;
5179
5180 data->type = sample_type;
5181 header->size += event->id_header_size;
5182
5183 if (sample_type & PERF_SAMPLE_TID) {
5184 /* namespace issues */
5185 data->tid_entry.pid = perf_event_pid(event, current);
5186 data->tid_entry.tid = perf_event_tid(event, current);
5187 }
5188
5189 if (sample_type & PERF_SAMPLE_TIME)
5190 data->time = perf_event_clock(event);
5191
5192 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5193 data->id = primary_event_id(event);
5194
5195 if (sample_type & PERF_SAMPLE_STREAM_ID)
5196 data->stream_id = event->id;
5197
5198 if (sample_type & PERF_SAMPLE_CPU) {
5199 data->cpu_entry.cpu = raw_smp_processor_id();
5200 data->cpu_entry.reserved = 0;
5201 }
5202 }
5203
5204 void perf_event_header__init_id(struct perf_event_header *header,
5205 struct perf_sample_data *data,
5206 struct perf_event *event)
5207 {
5208 if (event->attr.sample_id_all)
5209 __perf_event_header__init_id(header, data, event);
5210 }
5211
5212 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5213 struct perf_sample_data *data)
5214 {
5215 u64 sample_type = data->type;
5216
5217 if (sample_type & PERF_SAMPLE_TID)
5218 perf_output_put(handle, data->tid_entry);
5219
5220 if (sample_type & PERF_SAMPLE_TIME)
5221 perf_output_put(handle, data->time);
5222
5223 if (sample_type & PERF_SAMPLE_ID)
5224 perf_output_put(handle, data->id);
5225
5226 if (sample_type & PERF_SAMPLE_STREAM_ID)
5227 perf_output_put(handle, data->stream_id);
5228
5229 if (sample_type & PERF_SAMPLE_CPU)
5230 perf_output_put(handle, data->cpu_entry);
5231
5232 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5233 perf_output_put(handle, data->id);
5234 }
5235
5236 void perf_event__output_id_sample(struct perf_event *event,
5237 struct perf_output_handle *handle,
5238 struct perf_sample_data *sample)
5239 {
5240 if (event->attr.sample_id_all)
5241 __perf_event__output_id_sample(handle, sample);
5242 }
5243
5244 static void perf_output_read_one(struct perf_output_handle *handle,
5245 struct perf_event *event,
5246 u64 enabled, u64 running)
5247 {
5248 u64 read_format = event->attr.read_format;
5249 u64 values[4];
5250 int n = 0;
5251
5252 values[n++] = perf_event_count(event);
5253 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5254 values[n++] = enabled +
5255 atomic64_read(&event->child_total_time_enabled);
5256 }
5257 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5258 values[n++] = running +
5259 atomic64_read(&event->child_total_time_running);
5260 }
5261 if (read_format & PERF_FORMAT_ID)
5262 values[n++] = primary_event_id(event);
5263
5264 __output_copy(handle, values, n * sizeof(u64));
5265 }
5266
5267 /*
5268 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
5269 */
5270 static void perf_output_read_group(struct perf_output_handle *handle,
5271 struct perf_event *event,
5272 u64 enabled, u64 running)
5273 {
5274 struct perf_event *leader = event->group_leader, *sub;
5275 u64 read_format = event->attr.read_format;
5276 u64 values[5];
5277 int n = 0;
5278
5279 values[n++] = 1 + leader->nr_siblings;
5280
5281 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5282 values[n++] = enabled;
5283
5284 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5285 values[n++] = running;
5286
5287 if (leader != event)
5288 leader->pmu->read(leader);
5289
5290 values[n++] = perf_event_count(leader);
5291 if (read_format & PERF_FORMAT_ID)
5292 values[n++] = primary_event_id(leader);
5293
5294 __output_copy(handle, values, n * sizeof(u64));
5295
5296 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5297 n = 0;
5298
5299 if ((sub != event) &&
5300 (sub->state == PERF_EVENT_STATE_ACTIVE))
5301 sub->pmu->read(sub);
5302
5303 values[n++] = perf_event_count(sub);
5304 if (read_format & PERF_FORMAT_ID)
5305 values[n++] = primary_event_id(sub);
5306
5307 __output_copy(handle, values, n * sizeof(u64));
5308 }
5309 }
5310
5311 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5312 PERF_FORMAT_TOTAL_TIME_RUNNING)
5313
5314 static void perf_output_read(struct perf_output_handle *handle,
5315 struct perf_event *event)
5316 {
5317 u64 enabled = 0, running = 0, now;
5318 u64 read_format = event->attr.read_format;
5319
5320 /*
5321 * compute total_time_enabled, total_time_running
5322 * based on snapshot values taken when the event
5323 * was last scheduled in.
5324 *
5325 * we cannot simply called update_context_time()
5326 * because of locking issue as we are called in
5327 * NMI context
5328 */
5329 if (read_format & PERF_FORMAT_TOTAL_TIMES)
5330 calc_timer_values(event, &now, &enabled, &running);
5331
5332 if (event->attr.read_format & PERF_FORMAT_GROUP)
5333 perf_output_read_group(handle, event, enabled, running);
5334 else
5335 perf_output_read_one(handle, event, enabled, running);
5336 }
5337
5338 void perf_output_sample(struct perf_output_handle *handle,
5339 struct perf_event_header *header,
5340 struct perf_sample_data *data,
5341 struct perf_event *event)
5342 {
5343 u64 sample_type = data->type;
5344
5345 perf_output_put(handle, *header);
5346
5347 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5348 perf_output_put(handle, data->id);
5349
5350 if (sample_type & PERF_SAMPLE_IP)
5351 perf_output_put(handle, data->ip);
5352
5353 if (sample_type & PERF_SAMPLE_TID)
5354 perf_output_put(handle, data->tid_entry);
5355
5356 if (sample_type & PERF_SAMPLE_TIME)
5357 perf_output_put(handle, data->time);
5358
5359 if (sample_type & PERF_SAMPLE_ADDR)
5360 perf_output_put(handle, data->addr);
5361
5362 if (sample_type & PERF_SAMPLE_ID)
5363 perf_output_put(handle, data->id);
5364
5365 if (sample_type & PERF_SAMPLE_STREAM_ID)
5366 perf_output_put(handle, data->stream_id);
5367
5368 if (sample_type & PERF_SAMPLE_CPU)
5369 perf_output_put(handle, data->cpu_entry);
5370
5371 if (sample_type & PERF_SAMPLE_PERIOD)
5372 perf_output_put(handle, data->period);
5373
5374 if (sample_type & PERF_SAMPLE_READ)
5375 perf_output_read(handle, event);
5376
5377 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5378 if (data->callchain) {
5379 int size = 1;
5380
5381 if (data->callchain)
5382 size += data->callchain->nr;
5383
5384 size *= sizeof(u64);
5385
5386 __output_copy(handle, data->callchain, size);
5387 } else {
5388 u64 nr = 0;
5389 perf_output_put(handle, nr);
5390 }
5391 }
5392
5393 if (sample_type & PERF_SAMPLE_RAW) {
5394 if (data->raw) {
5395 u32 raw_size = data->raw->size;
5396 u32 real_size = round_up(raw_size + sizeof(u32),
5397 sizeof(u64)) - sizeof(u32);
5398 u64 zero = 0;
5399
5400 perf_output_put(handle, real_size);
5401 __output_copy(handle, data->raw->data, raw_size);
5402 if (real_size - raw_size)
5403 __output_copy(handle, &zero, real_size - raw_size);
5404 } else {
5405 struct {
5406 u32 size;
5407 u32 data;
5408 } raw = {
5409 .size = sizeof(u32),
5410 .data = 0,
5411 };
5412 perf_output_put(handle, raw);
5413 }
5414 }
5415
5416 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5417 if (data->br_stack) {
5418 size_t size;
5419
5420 size = data->br_stack->nr
5421 * sizeof(struct perf_branch_entry);
5422
5423 perf_output_put(handle, data->br_stack->nr);
5424 perf_output_copy(handle, data->br_stack->entries, size);
5425 } else {
5426 /*
5427 * we always store at least the value of nr
5428 */
5429 u64 nr = 0;
5430 perf_output_put(handle, nr);
5431 }
5432 }
5433
5434 if (sample_type & PERF_SAMPLE_REGS_USER) {
5435 u64 abi = data->regs_user.abi;
5436
5437 /*
5438 * If there are no regs to dump, notice it through
5439 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5440 */
5441 perf_output_put(handle, abi);
5442
5443 if (abi) {
5444 u64 mask = event->attr.sample_regs_user;
5445 perf_output_sample_regs(handle,
5446 data->regs_user.regs,
5447 mask);
5448 }
5449 }
5450
5451 if (sample_type & PERF_SAMPLE_STACK_USER) {
5452 perf_output_sample_ustack(handle,
5453 data->stack_user_size,
5454 data->regs_user.regs);
5455 }
5456
5457 if (sample_type & PERF_SAMPLE_WEIGHT)
5458 perf_output_put(handle, data->weight);
5459
5460 if (sample_type & PERF_SAMPLE_DATA_SRC)
5461 perf_output_put(handle, data->data_src.val);
5462
5463 if (sample_type & PERF_SAMPLE_TRANSACTION)
5464 perf_output_put(handle, data->txn);
5465
5466 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5467 u64 abi = data->regs_intr.abi;
5468 /*
5469 * If there are no regs to dump, notice it through
5470 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5471 */
5472 perf_output_put(handle, abi);
5473
5474 if (abi) {
5475 u64 mask = event->attr.sample_regs_intr;
5476
5477 perf_output_sample_regs(handle,
5478 data->regs_intr.regs,
5479 mask);
5480 }
5481 }
5482
5483 if (!event->attr.watermark) {
5484 int wakeup_events = event->attr.wakeup_events;
5485
5486 if (wakeup_events) {
5487 struct ring_buffer *rb = handle->rb;
5488 int events = local_inc_return(&rb->events);
5489
5490 if (events >= wakeup_events) {
5491 local_sub(wakeup_events, &rb->events);
5492 local_inc(&rb->wakeup);
5493 }
5494 }
5495 }
5496 }
5497
5498 void perf_prepare_sample(struct perf_event_header *header,
5499 struct perf_sample_data *data,
5500 struct perf_event *event,
5501 struct pt_regs *regs)
5502 {
5503 u64 sample_type = event->attr.sample_type;
5504
5505 header->type = PERF_RECORD_SAMPLE;
5506 header->size = sizeof(*header) + event->header_size;
5507
5508 header->misc = 0;
5509 header->misc |= perf_misc_flags(regs);
5510
5511 __perf_event_header__init_id(header, data, event);
5512
5513 if (sample_type & PERF_SAMPLE_IP)
5514 data->ip = perf_instruction_pointer(regs);
5515
5516 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5517 int size = 1;
5518
5519 data->callchain = perf_callchain(event, regs);
5520
5521 if (data->callchain)
5522 size += data->callchain->nr;
5523
5524 header->size += size * sizeof(u64);
5525 }
5526
5527 if (sample_type & PERF_SAMPLE_RAW) {
5528 int size = sizeof(u32);
5529
5530 if (data->raw)
5531 size += data->raw->size;
5532 else
5533 size += sizeof(u32);
5534
5535 header->size += round_up(size, sizeof(u64));
5536 }
5537
5538 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5539 int size = sizeof(u64); /* nr */
5540 if (data->br_stack) {
5541 size += data->br_stack->nr
5542 * sizeof(struct perf_branch_entry);
5543 }
5544 header->size += size;
5545 }
5546
5547 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
5548 perf_sample_regs_user(&data->regs_user, regs,
5549 &data->regs_user_copy);
5550
5551 if (sample_type & PERF_SAMPLE_REGS_USER) {
5552 /* regs dump ABI info */
5553 int size = sizeof(u64);
5554
5555 if (data->regs_user.regs) {
5556 u64 mask = event->attr.sample_regs_user;
5557 size += hweight64(mask) * sizeof(u64);
5558 }
5559
5560 header->size += size;
5561 }
5562
5563 if (sample_type & PERF_SAMPLE_STACK_USER) {
5564 /*
5565 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
5566 * processed as the last one or have additional check added
5567 * in case new sample type is added, because we could eat
5568 * up the rest of the sample size.
5569 */
5570 u16 stack_size = event->attr.sample_stack_user;
5571 u16 size = sizeof(u64);
5572
5573 stack_size = perf_sample_ustack_size(stack_size, header->size,
5574 data->regs_user.regs);
5575
5576 /*
5577 * If there is something to dump, add space for the dump
5578 * itself and for the field that tells the dynamic size,
5579 * which is how many have been actually dumped.
5580 */
5581 if (stack_size)
5582 size += sizeof(u64) + stack_size;
5583
5584 data->stack_user_size = stack_size;
5585 header->size += size;
5586 }
5587
5588 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5589 /* regs dump ABI info */
5590 int size = sizeof(u64);
5591
5592 perf_sample_regs_intr(&data->regs_intr, regs);
5593
5594 if (data->regs_intr.regs) {
5595 u64 mask = event->attr.sample_regs_intr;
5596
5597 size += hweight64(mask) * sizeof(u64);
5598 }
5599
5600 header->size += size;
5601 }
5602 }
5603
5604 void perf_event_output(struct perf_event *event,
5605 struct perf_sample_data *data,
5606 struct pt_regs *regs)
5607 {
5608 struct perf_output_handle handle;
5609 struct perf_event_header header;
5610
5611 /* protect the callchain buffers */
5612 rcu_read_lock();
5613
5614 perf_prepare_sample(&header, data, event, regs);
5615
5616 if (perf_output_begin(&handle, event, header.size))
5617 goto exit;
5618
5619 perf_output_sample(&handle, &header, data, event);
5620
5621 perf_output_end(&handle);
5622
5623 exit:
5624 rcu_read_unlock();
5625 }
5626
5627 /*
5628 * read event_id
5629 */
5630
5631 struct perf_read_event {
5632 struct perf_event_header header;
5633
5634 u32 pid;
5635 u32 tid;
5636 };
5637
5638 static void
5639 perf_event_read_event(struct perf_event *event,
5640 struct task_struct *task)
5641 {
5642 struct perf_output_handle handle;
5643 struct perf_sample_data sample;
5644 struct perf_read_event read_event = {
5645 .header = {
5646 .type = PERF_RECORD_READ,
5647 .misc = 0,
5648 .size = sizeof(read_event) + event->read_size,
5649 },
5650 .pid = perf_event_pid(event, task),
5651 .tid = perf_event_tid(event, task),
5652 };
5653 int ret;
5654
5655 perf_event_header__init_id(&read_event.header, &sample, event);
5656 ret = perf_output_begin(&handle, event, read_event.header.size);
5657 if (ret)
5658 return;
5659
5660 perf_output_put(&handle, read_event);
5661 perf_output_read(&handle, event);
5662 perf_event__output_id_sample(event, &handle, &sample);
5663
5664 perf_output_end(&handle);
5665 }
5666
5667 typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
5668
5669 static void
5670 perf_event_aux_ctx(struct perf_event_context *ctx,
5671 perf_event_aux_output_cb output,
5672 void *data)
5673 {
5674 struct perf_event *event;
5675
5676 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5677 if (event->state < PERF_EVENT_STATE_INACTIVE)
5678 continue;
5679 if (!event_filter_match(event))
5680 continue;
5681 output(event, data);
5682 }
5683 }
5684
5685 static void
5686 perf_event_aux_task_ctx(perf_event_aux_output_cb output, void *data,
5687 struct perf_event_context *task_ctx)
5688 {
5689 rcu_read_lock();
5690 preempt_disable();
5691 perf_event_aux_ctx(task_ctx, output, data);
5692 preempt_enable();
5693 rcu_read_unlock();
5694 }
5695
5696 static void
5697 perf_event_aux(perf_event_aux_output_cb output, void *data,
5698 struct perf_event_context *task_ctx)
5699 {
5700 struct perf_cpu_context *cpuctx;
5701 struct perf_event_context *ctx;
5702 struct pmu *pmu;
5703 int ctxn;
5704
5705 /*
5706 * If we have task_ctx != NULL we only notify
5707 * the task context itself. The task_ctx is set
5708 * only for EXIT events before releasing task
5709 * context.
5710 */
5711 if (task_ctx) {
5712 perf_event_aux_task_ctx(output, data, task_ctx);
5713 return;
5714 }
5715
5716 rcu_read_lock();
5717 list_for_each_entry_rcu(pmu, &pmus, entry) {
5718 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
5719 if (cpuctx->unique_pmu != pmu)
5720 goto next;
5721 perf_event_aux_ctx(&cpuctx->ctx, output, data);
5722 ctxn = pmu->task_ctx_nr;
5723 if (ctxn < 0)
5724 goto next;
5725 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
5726 if (ctx)
5727 perf_event_aux_ctx(ctx, output, data);
5728 next:
5729 put_cpu_ptr(pmu->pmu_cpu_context);
5730 }
5731 rcu_read_unlock();
5732 }
5733
5734 /*
5735 * task tracking -- fork/exit
5736 *
5737 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
5738 */
5739
5740 struct perf_task_event {
5741 struct task_struct *task;
5742 struct perf_event_context *task_ctx;
5743
5744 struct {
5745 struct perf_event_header header;
5746
5747 u32 pid;
5748 u32 ppid;
5749 u32 tid;
5750 u32 ptid;
5751 u64 time;
5752 } event_id;
5753 };
5754
5755 static int perf_event_task_match(struct perf_event *event)
5756 {
5757 return event->attr.comm || event->attr.mmap ||
5758 event->attr.mmap2 || event->attr.mmap_data ||
5759 event->attr.task;
5760 }
5761
5762 static void perf_event_task_output(struct perf_event *event,
5763 void *data)
5764 {
5765 struct perf_task_event *task_event = data;
5766 struct perf_output_handle handle;
5767 struct perf_sample_data sample;
5768 struct task_struct *task = task_event->task;
5769 int ret, size = task_event->event_id.header.size;
5770
5771 if (!perf_event_task_match(event))
5772 return;
5773
5774 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
5775
5776 ret = perf_output_begin(&handle, event,
5777 task_event->event_id.header.size);
5778 if (ret)
5779 goto out;
5780
5781 task_event->event_id.pid = perf_event_pid(event, task);
5782 task_event->event_id.ppid = perf_event_pid(event, current);
5783
5784 task_event->event_id.tid = perf_event_tid(event, task);
5785 task_event->event_id.ptid = perf_event_tid(event, current);
5786
5787 task_event->event_id.time = perf_event_clock(event);
5788
5789 perf_output_put(&handle, task_event->event_id);
5790
5791 perf_event__output_id_sample(event, &handle, &sample);
5792
5793 perf_output_end(&handle);
5794 out:
5795 task_event->event_id.header.size = size;
5796 }
5797
5798 static void perf_event_task(struct task_struct *task,
5799 struct perf_event_context *task_ctx,
5800 int new)
5801 {
5802 struct perf_task_event task_event;
5803
5804 if (!atomic_read(&nr_comm_events) &&
5805 !atomic_read(&nr_mmap_events) &&
5806 !atomic_read(&nr_task_events))
5807 return;
5808
5809 task_event = (struct perf_task_event){
5810 .task = task,
5811 .task_ctx = task_ctx,
5812 .event_id = {
5813 .header = {
5814 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
5815 .misc = 0,
5816 .size = sizeof(task_event.event_id),
5817 },
5818 /* .pid */
5819 /* .ppid */
5820 /* .tid */
5821 /* .ptid */
5822 /* .time */
5823 },
5824 };
5825
5826 perf_event_aux(perf_event_task_output,
5827 &task_event,
5828 task_ctx);
5829 }
5830
5831 void perf_event_fork(struct task_struct *task)
5832 {
5833 perf_event_task(task, NULL, 1);
5834 }
5835
5836 /*
5837 * comm tracking
5838 */
5839
5840 struct perf_comm_event {
5841 struct task_struct *task;
5842 char *comm;
5843 int comm_size;
5844
5845 struct {
5846 struct perf_event_header header;
5847
5848 u32 pid;
5849 u32 tid;
5850 } event_id;
5851 };
5852
5853 static int perf_event_comm_match(struct perf_event *event)
5854 {
5855 return event->attr.comm;
5856 }
5857
5858 static void perf_event_comm_output(struct perf_event *event,
5859 void *data)
5860 {
5861 struct perf_comm_event *comm_event = data;
5862 struct perf_output_handle handle;
5863 struct perf_sample_data sample;
5864 int size = comm_event->event_id.header.size;
5865 int ret;
5866
5867 if (!perf_event_comm_match(event))
5868 return;
5869
5870 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
5871 ret = perf_output_begin(&handle, event,
5872 comm_event->event_id.header.size);
5873
5874 if (ret)
5875 goto out;
5876
5877 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
5878 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
5879
5880 perf_output_put(&handle, comm_event->event_id);
5881 __output_copy(&handle, comm_event->comm,
5882 comm_event->comm_size);
5883
5884 perf_event__output_id_sample(event, &handle, &sample);
5885
5886 perf_output_end(&handle);
5887 out:
5888 comm_event->event_id.header.size = size;
5889 }
5890
5891 static void perf_event_comm_event(struct perf_comm_event *comm_event)
5892 {
5893 char comm[TASK_COMM_LEN];
5894 unsigned int size;
5895
5896 memset(comm, 0, sizeof(comm));
5897 strlcpy(comm, comm_event->task->comm, sizeof(comm));
5898 size = ALIGN(strlen(comm)+1, sizeof(u64));
5899
5900 comm_event->comm = comm;
5901 comm_event->comm_size = size;
5902
5903 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
5904
5905 perf_event_aux(perf_event_comm_output,
5906 comm_event,
5907 NULL);
5908 }
5909
5910 void perf_event_comm(struct task_struct *task, bool exec)
5911 {
5912 struct perf_comm_event comm_event;
5913
5914 if (!atomic_read(&nr_comm_events))
5915 return;
5916
5917 comm_event = (struct perf_comm_event){
5918 .task = task,
5919 /* .comm */
5920 /* .comm_size */
5921 .event_id = {
5922 .header = {
5923 .type = PERF_RECORD_COMM,
5924 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
5925 /* .size */
5926 },
5927 /* .pid */
5928 /* .tid */
5929 },
5930 };
5931
5932 perf_event_comm_event(&comm_event);
5933 }
5934
5935 /*
5936 * mmap tracking
5937 */
5938
5939 struct perf_mmap_event {
5940 struct vm_area_struct *vma;
5941
5942 const char *file_name;
5943 int file_size;
5944 int maj, min;
5945 u64 ino;
5946 u64 ino_generation;
5947 u32 prot, flags;
5948
5949 struct {
5950 struct perf_event_header header;
5951
5952 u32 pid;
5953 u32 tid;
5954 u64 start;
5955 u64 len;
5956 u64 pgoff;
5957 } event_id;
5958 };
5959
5960 static int perf_event_mmap_match(struct perf_event *event,
5961 void *data)
5962 {
5963 struct perf_mmap_event *mmap_event = data;
5964 struct vm_area_struct *vma = mmap_event->vma;
5965 int executable = vma->vm_flags & VM_EXEC;
5966
5967 return (!executable && event->attr.mmap_data) ||
5968 (executable && (event->attr.mmap || event->attr.mmap2));
5969 }
5970
5971 static void perf_event_mmap_output(struct perf_event *event,
5972 void *data)
5973 {
5974 struct perf_mmap_event *mmap_event = data;
5975 struct perf_output_handle handle;
5976 struct perf_sample_data sample;
5977 int size = mmap_event->event_id.header.size;
5978 int ret;
5979
5980 if (!perf_event_mmap_match(event, data))
5981 return;
5982
5983 if (event->attr.mmap2) {
5984 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
5985 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
5986 mmap_event->event_id.header.size += sizeof(mmap_event->min);
5987 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
5988 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
5989 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
5990 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
5991 }
5992
5993 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
5994 ret = perf_output_begin(&handle, event,
5995 mmap_event->event_id.header.size);
5996 if (ret)
5997 goto out;
5998
5999 mmap_event->event_id.pid = perf_event_pid(event, current);
6000 mmap_event->event_id.tid = perf_event_tid(event, current);
6001
6002 perf_output_put(&handle, mmap_event->event_id);
6003
6004 if (event->attr.mmap2) {
6005 perf_output_put(&handle, mmap_event->maj);
6006 perf_output_put(&handle, mmap_event->min);
6007 perf_output_put(&handle, mmap_event->ino);
6008 perf_output_put(&handle, mmap_event->ino_generation);
6009 perf_output_put(&handle, mmap_event->prot);
6010 perf_output_put(&handle, mmap_event->flags);
6011 }
6012
6013 __output_copy(&handle, mmap_event->file_name,
6014 mmap_event->file_size);
6015
6016 perf_event__output_id_sample(event, &handle, &sample);
6017
6018 perf_output_end(&handle);
6019 out:
6020 mmap_event->event_id.header.size = size;
6021 }
6022
6023 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
6024 {
6025 struct vm_area_struct *vma = mmap_event->vma;
6026 struct file *file = vma->vm_file;
6027 int maj = 0, min = 0;
6028 u64 ino = 0, gen = 0;
6029 u32 prot = 0, flags = 0;
6030 unsigned int size;
6031 char tmp[16];
6032 char *buf = NULL;
6033 char *name;
6034
6035 if (file) {
6036 struct inode *inode;
6037 dev_t dev;
6038
6039 buf = kmalloc(PATH_MAX, GFP_KERNEL);
6040 if (!buf) {
6041 name = "//enomem";
6042 goto cpy_name;
6043 }
6044 /*
6045 * d_path() works from the end of the rb backwards, so we
6046 * need to add enough zero bytes after the string to handle
6047 * the 64bit alignment we do later.
6048 */
6049 name = file_path(file, buf, PATH_MAX - sizeof(u64));
6050 if (IS_ERR(name)) {
6051 name = "//toolong";
6052 goto cpy_name;
6053 }
6054 inode = file_inode(vma->vm_file);
6055 dev = inode->i_sb->s_dev;
6056 ino = inode->i_ino;
6057 gen = inode->i_generation;
6058 maj = MAJOR(dev);
6059 min = MINOR(dev);
6060
6061 if (vma->vm_flags & VM_READ)
6062 prot |= PROT_READ;
6063 if (vma->vm_flags & VM_WRITE)
6064 prot |= PROT_WRITE;
6065 if (vma->vm_flags & VM_EXEC)
6066 prot |= PROT_EXEC;
6067
6068 if (vma->vm_flags & VM_MAYSHARE)
6069 flags = MAP_SHARED;
6070 else
6071 flags = MAP_PRIVATE;
6072
6073 if (vma->vm_flags & VM_DENYWRITE)
6074 flags |= MAP_DENYWRITE;
6075 if (vma->vm_flags & VM_MAYEXEC)
6076 flags |= MAP_EXECUTABLE;
6077 if (vma->vm_flags & VM_LOCKED)
6078 flags |= MAP_LOCKED;
6079 if (vma->vm_flags & VM_HUGETLB)
6080 flags |= MAP_HUGETLB;
6081
6082 goto got_name;
6083 } else {
6084 if (vma->vm_ops && vma->vm_ops->name) {
6085 name = (char *) vma->vm_ops->name(vma);
6086 if (name)
6087 goto cpy_name;
6088 }
6089
6090 name = (char *)arch_vma_name(vma);
6091 if (name)
6092 goto cpy_name;
6093
6094 if (vma->vm_start <= vma->vm_mm->start_brk &&
6095 vma->vm_end >= vma->vm_mm->brk) {
6096 name = "[heap]";
6097 goto cpy_name;
6098 }
6099 if (vma->vm_start <= vma->vm_mm->start_stack &&
6100 vma->vm_end >= vma->vm_mm->start_stack) {
6101 name = "[stack]";
6102 goto cpy_name;
6103 }
6104
6105 name = "//anon";
6106 goto cpy_name;
6107 }
6108
6109 cpy_name:
6110 strlcpy(tmp, name, sizeof(tmp));
6111 name = tmp;
6112 got_name:
6113 /*
6114 * Since our buffer works in 8 byte units we need to align our string
6115 * size to a multiple of 8. However, we must guarantee the tail end is
6116 * zero'd out to avoid leaking random bits to userspace.
6117 */
6118 size = strlen(name)+1;
6119 while (!IS_ALIGNED(size, sizeof(u64)))
6120 name[size++] = '\0';
6121
6122 mmap_event->file_name = name;
6123 mmap_event->file_size = size;
6124 mmap_event->maj = maj;
6125 mmap_event->min = min;
6126 mmap_event->ino = ino;
6127 mmap_event->ino_generation = gen;
6128 mmap_event->prot = prot;
6129 mmap_event->flags = flags;
6130
6131 if (!(vma->vm_flags & VM_EXEC))
6132 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6133
6134 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
6135
6136 perf_event_aux(perf_event_mmap_output,
6137 mmap_event,
6138 NULL);
6139
6140 kfree(buf);
6141 }
6142
6143 void perf_event_mmap(struct vm_area_struct *vma)
6144 {
6145 struct perf_mmap_event mmap_event;
6146
6147 if (!atomic_read(&nr_mmap_events))
6148 return;
6149
6150 mmap_event = (struct perf_mmap_event){
6151 .vma = vma,
6152 /* .file_name */
6153 /* .file_size */
6154 .event_id = {
6155 .header = {
6156 .type = PERF_RECORD_MMAP,
6157 .misc = PERF_RECORD_MISC_USER,
6158 /* .size */
6159 },
6160 /* .pid */
6161 /* .tid */
6162 .start = vma->vm_start,
6163 .len = vma->vm_end - vma->vm_start,
6164 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
6165 },
6166 /* .maj (attr_mmap2 only) */
6167 /* .min (attr_mmap2 only) */
6168 /* .ino (attr_mmap2 only) */
6169 /* .ino_generation (attr_mmap2 only) */
6170 /* .prot (attr_mmap2 only) */
6171 /* .flags (attr_mmap2 only) */
6172 };
6173
6174 perf_event_mmap_event(&mmap_event);
6175 }
6176
6177 void perf_event_aux_event(struct perf_event *event, unsigned long head,
6178 unsigned long size, u64 flags)
6179 {
6180 struct perf_output_handle handle;
6181 struct perf_sample_data sample;
6182 struct perf_aux_event {
6183 struct perf_event_header header;
6184 u64 offset;
6185 u64 size;
6186 u64 flags;
6187 } rec = {
6188 .header = {
6189 .type = PERF_RECORD_AUX,
6190 .misc = 0,
6191 .size = sizeof(rec),
6192 },
6193 .offset = head,
6194 .size = size,
6195 .flags = flags,
6196 };
6197 int ret;
6198
6199 perf_event_header__init_id(&rec.header, &sample, event);
6200 ret = perf_output_begin(&handle, event, rec.header.size);
6201
6202 if (ret)
6203 return;
6204
6205 perf_output_put(&handle, rec);
6206 perf_event__output_id_sample(event, &handle, &sample);
6207
6208 perf_output_end(&handle);
6209 }
6210
6211 /*
6212 * Lost/dropped samples logging
6213 */
6214 void perf_log_lost_samples(struct perf_event *event, u64 lost)
6215 {
6216 struct perf_output_handle handle;
6217 struct perf_sample_data sample;
6218 int ret;
6219
6220 struct {
6221 struct perf_event_header header;
6222 u64 lost;
6223 } lost_samples_event = {
6224 .header = {
6225 .type = PERF_RECORD_LOST_SAMPLES,
6226 .misc = 0,
6227 .size = sizeof(lost_samples_event),
6228 },
6229 .lost = lost,
6230 };
6231
6232 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
6233
6234 ret = perf_output_begin(&handle, event,
6235 lost_samples_event.header.size);
6236 if (ret)
6237 return;
6238
6239 perf_output_put(&handle, lost_samples_event);
6240 perf_event__output_id_sample(event, &handle, &sample);
6241 perf_output_end(&handle);
6242 }
6243
6244 /*
6245 * context_switch tracking
6246 */
6247
6248 struct perf_switch_event {
6249 struct task_struct *task;
6250 struct task_struct *next_prev;
6251
6252 struct {
6253 struct perf_event_header header;
6254 u32 next_prev_pid;
6255 u32 next_prev_tid;
6256 } event_id;
6257 };
6258
6259 static int perf_event_switch_match(struct perf_event *event)
6260 {
6261 return event->attr.context_switch;
6262 }
6263
6264 static void perf_event_switch_output(struct perf_event *event, void *data)
6265 {
6266 struct perf_switch_event *se = data;
6267 struct perf_output_handle handle;
6268 struct perf_sample_data sample;
6269 int ret;
6270
6271 if (!perf_event_switch_match(event))
6272 return;
6273
6274 /* Only CPU-wide events are allowed to see next/prev pid/tid */
6275 if (event->ctx->task) {
6276 se->event_id.header.type = PERF_RECORD_SWITCH;
6277 se->event_id.header.size = sizeof(se->event_id.header);
6278 } else {
6279 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
6280 se->event_id.header.size = sizeof(se->event_id);
6281 se->event_id.next_prev_pid =
6282 perf_event_pid(event, se->next_prev);
6283 se->event_id.next_prev_tid =
6284 perf_event_tid(event, se->next_prev);
6285 }
6286
6287 perf_event_header__init_id(&se->event_id.header, &sample, event);
6288
6289 ret = perf_output_begin(&handle, event, se->event_id.header.size);
6290 if (ret)
6291 return;
6292
6293 if (event->ctx->task)
6294 perf_output_put(&handle, se->event_id.header);
6295 else
6296 perf_output_put(&handle, se->event_id);
6297
6298 perf_event__output_id_sample(event, &handle, &sample);
6299
6300 perf_output_end(&handle);
6301 }
6302
6303 static void perf_event_switch(struct task_struct *task,
6304 struct task_struct *next_prev, bool sched_in)
6305 {
6306 struct perf_switch_event switch_event;
6307
6308 /* N.B. caller checks nr_switch_events != 0 */
6309
6310 switch_event = (struct perf_switch_event){
6311 .task = task,
6312 .next_prev = next_prev,
6313 .event_id = {
6314 .header = {
6315 /* .type */
6316 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
6317 /* .size */
6318 },
6319 /* .next_prev_pid */
6320 /* .next_prev_tid */
6321 },
6322 };
6323
6324 perf_event_aux(perf_event_switch_output,
6325 &switch_event,
6326 NULL);
6327 }
6328
6329 /*
6330 * IRQ throttle logging
6331 */
6332
6333 static void perf_log_throttle(struct perf_event *event, int enable)
6334 {
6335 struct perf_output_handle handle;
6336 struct perf_sample_data sample;
6337 int ret;
6338
6339 struct {
6340 struct perf_event_header header;
6341 u64 time;
6342 u64 id;
6343 u64 stream_id;
6344 } throttle_event = {
6345 .header = {
6346 .type = PERF_RECORD_THROTTLE,
6347 .misc = 0,
6348 .size = sizeof(throttle_event),
6349 },
6350 .time = perf_event_clock(event),
6351 .id = primary_event_id(event),
6352 .stream_id = event->id,
6353 };
6354
6355 if (enable)
6356 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
6357
6358 perf_event_header__init_id(&throttle_event.header, &sample, event);
6359
6360 ret = perf_output_begin(&handle, event,
6361 throttle_event.header.size);
6362 if (ret)
6363 return;
6364
6365 perf_output_put(&handle, throttle_event);
6366 perf_event__output_id_sample(event, &handle, &sample);
6367 perf_output_end(&handle);
6368 }
6369
6370 static void perf_log_itrace_start(struct perf_event *event)
6371 {
6372 struct perf_output_handle handle;
6373 struct perf_sample_data sample;
6374 struct perf_aux_event {
6375 struct perf_event_header header;
6376 u32 pid;
6377 u32 tid;
6378 } rec;
6379 int ret;
6380
6381 if (event->parent)
6382 event = event->parent;
6383
6384 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
6385 event->hw.itrace_started)
6386 return;
6387
6388 rec.header.type = PERF_RECORD_ITRACE_START;
6389 rec.header.misc = 0;
6390 rec.header.size = sizeof(rec);
6391 rec.pid = perf_event_pid(event, current);
6392 rec.tid = perf_event_tid(event, current);
6393
6394 perf_event_header__init_id(&rec.header, &sample, event);
6395 ret = perf_output_begin(&handle, event, rec.header.size);
6396
6397 if (ret)
6398 return;
6399
6400 perf_output_put(&handle, rec);
6401 perf_event__output_id_sample(event, &handle, &sample);
6402
6403 perf_output_end(&handle);
6404 }
6405
6406 /*
6407 * Generic event overflow handling, sampling.
6408 */
6409
6410 static int __perf_event_overflow(struct perf_event *event,
6411 int throttle, struct perf_sample_data *data,
6412 struct pt_regs *regs)
6413 {
6414 int events = atomic_read(&event->event_limit);
6415 struct hw_perf_event *hwc = &event->hw;
6416 u64 seq;
6417 int ret = 0;
6418
6419 /*
6420 * Non-sampling counters might still use the PMI to fold short
6421 * hardware counters, ignore those.
6422 */
6423 if (unlikely(!is_sampling_event(event)))
6424 return 0;
6425
6426 seq = __this_cpu_read(perf_throttled_seq);
6427 if (seq != hwc->interrupts_seq) {
6428 hwc->interrupts_seq = seq;
6429 hwc->interrupts = 1;
6430 } else {
6431 hwc->interrupts++;
6432 if (unlikely(throttle
6433 && hwc->interrupts >= max_samples_per_tick)) {
6434 __this_cpu_inc(perf_throttled_count);
6435 hwc->interrupts = MAX_INTERRUPTS;
6436 perf_log_throttle(event, 0);
6437 tick_nohz_full_kick();
6438 ret = 1;
6439 }
6440 }
6441
6442 if (event->attr.freq) {
6443 u64 now = perf_clock();
6444 s64 delta = now - hwc->freq_time_stamp;
6445
6446 hwc->freq_time_stamp = now;
6447
6448 if (delta > 0 && delta < 2*TICK_NSEC)
6449 perf_adjust_period(event, delta, hwc->last_period, true);
6450 }
6451
6452 /*
6453 * XXX event_limit might not quite work as expected on inherited
6454 * events
6455 */
6456
6457 event->pending_kill = POLL_IN;
6458 if (events && atomic_dec_and_test(&event->event_limit)) {
6459 ret = 1;
6460 event->pending_kill = POLL_HUP;
6461 event->pending_disable = 1;
6462 irq_work_queue(&event->pending);
6463 }
6464
6465 if (event->overflow_handler)
6466 event->overflow_handler(event, data, regs);
6467 else
6468 perf_event_output(event, data, regs);
6469
6470 if (*perf_event_fasync(event) && event->pending_kill) {
6471 event->pending_wakeup = 1;
6472 irq_work_queue(&event->pending);
6473 }
6474
6475 return ret;
6476 }
6477
6478 int perf_event_overflow(struct perf_event *event,
6479 struct perf_sample_data *data,
6480 struct pt_regs *regs)
6481 {
6482 return __perf_event_overflow(event, 1, data, regs);
6483 }
6484
6485 /*
6486 * Generic software event infrastructure
6487 */
6488
6489 struct swevent_htable {
6490 struct swevent_hlist *swevent_hlist;
6491 struct mutex hlist_mutex;
6492 int hlist_refcount;
6493
6494 /* Recursion avoidance in each contexts */
6495 int recursion[PERF_NR_CONTEXTS];
6496
6497 /* Keeps track of cpu being initialized/exited */
6498 bool online;
6499 };
6500
6501 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
6502
6503 /*
6504 * We directly increment event->count and keep a second value in
6505 * event->hw.period_left to count intervals. This period event
6506 * is kept in the range [-sample_period, 0] so that we can use the
6507 * sign as trigger.
6508 */
6509
6510 u64 perf_swevent_set_period(struct perf_event *event)
6511 {
6512 struct hw_perf_event *hwc = &event->hw;
6513 u64 period = hwc->last_period;
6514 u64 nr, offset;
6515 s64 old, val;
6516
6517 hwc->last_period = hwc->sample_period;
6518
6519 again:
6520 old = val = local64_read(&hwc->period_left);
6521 if (val < 0)
6522 return 0;
6523
6524 nr = div64_u64(period + val, period);
6525 offset = nr * period;
6526 val -= offset;
6527 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
6528 goto again;
6529
6530 return nr;
6531 }
6532
6533 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
6534 struct perf_sample_data *data,
6535 struct pt_regs *regs)
6536 {
6537 struct hw_perf_event *hwc = &event->hw;
6538 int throttle = 0;
6539
6540 if (!overflow)
6541 overflow = perf_swevent_set_period(event);
6542
6543 if (hwc->interrupts == MAX_INTERRUPTS)
6544 return;
6545
6546 for (; overflow; overflow--) {
6547 if (__perf_event_overflow(event, throttle,
6548 data, regs)) {
6549 /*
6550 * We inhibit the overflow from happening when
6551 * hwc->interrupts == MAX_INTERRUPTS.
6552 */
6553 break;
6554 }
6555 throttle = 1;
6556 }
6557 }
6558
6559 static void perf_swevent_event(struct perf_event *event, u64 nr,
6560 struct perf_sample_data *data,
6561 struct pt_regs *regs)
6562 {
6563 struct hw_perf_event *hwc = &event->hw;
6564
6565 local64_add(nr, &event->count);
6566
6567 if (!regs)
6568 return;
6569
6570 if (!is_sampling_event(event))
6571 return;
6572
6573 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
6574 data->period = nr;
6575 return perf_swevent_overflow(event, 1, data, regs);
6576 } else
6577 data->period = event->hw.last_period;
6578
6579 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
6580 return perf_swevent_overflow(event, 1, data, regs);
6581
6582 if (local64_add_negative(nr, &hwc->period_left))
6583 return;
6584
6585 perf_swevent_overflow(event, 0, data, regs);
6586 }
6587
6588 static int perf_exclude_event(struct perf_event *event,
6589 struct pt_regs *regs)
6590 {
6591 if (event->hw.state & PERF_HES_STOPPED)
6592 return 1;
6593
6594 if (regs) {
6595 if (event->attr.exclude_user && user_mode(regs))
6596 return 1;
6597
6598 if (event->attr.exclude_kernel && !user_mode(regs))
6599 return 1;
6600 }
6601
6602 return 0;
6603 }
6604
6605 static int perf_swevent_match(struct perf_event *event,
6606 enum perf_type_id type,
6607 u32 event_id,
6608 struct perf_sample_data *data,
6609 struct pt_regs *regs)
6610 {
6611 if (event->attr.type != type)
6612 return 0;
6613
6614 if (event->attr.config != event_id)
6615 return 0;
6616
6617 if (perf_exclude_event(event, regs))
6618 return 0;
6619
6620 return 1;
6621 }
6622
6623 static inline u64 swevent_hash(u64 type, u32 event_id)
6624 {
6625 u64 val = event_id | (type << 32);
6626
6627 return hash_64(val, SWEVENT_HLIST_BITS);
6628 }
6629
6630 static inline struct hlist_head *
6631 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
6632 {
6633 u64 hash = swevent_hash(type, event_id);
6634
6635 return &hlist->heads[hash];
6636 }
6637
6638 /* For the read side: events when they trigger */
6639 static inline struct hlist_head *
6640 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
6641 {
6642 struct swevent_hlist *hlist;
6643
6644 hlist = rcu_dereference(swhash->swevent_hlist);
6645 if (!hlist)
6646 return NULL;
6647
6648 return __find_swevent_head(hlist, type, event_id);
6649 }
6650
6651 /* For the event head insertion and removal in the hlist */
6652 static inline struct hlist_head *
6653 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
6654 {
6655 struct swevent_hlist *hlist;
6656 u32 event_id = event->attr.config;
6657 u64 type = event->attr.type;
6658
6659 /*
6660 * Event scheduling is always serialized against hlist allocation
6661 * and release. Which makes the protected version suitable here.
6662 * The context lock guarantees that.
6663 */
6664 hlist = rcu_dereference_protected(swhash->swevent_hlist,
6665 lockdep_is_held(&event->ctx->lock));
6666 if (!hlist)
6667 return NULL;
6668
6669 return __find_swevent_head(hlist, type, event_id);
6670 }
6671
6672 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
6673 u64 nr,
6674 struct perf_sample_data *data,
6675 struct pt_regs *regs)
6676 {
6677 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6678 struct perf_event *event;
6679 struct hlist_head *head;
6680
6681 rcu_read_lock();
6682 head = find_swevent_head_rcu(swhash, type, event_id);
6683 if (!head)
6684 goto end;
6685
6686 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6687 if (perf_swevent_match(event, type, event_id, data, regs))
6688 perf_swevent_event(event, nr, data, regs);
6689 }
6690 end:
6691 rcu_read_unlock();
6692 }
6693
6694 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
6695
6696 int perf_swevent_get_recursion_context(void)
6697 {
6698 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6699
6700 return get_recursion_context(swhash->recursion);
6701 }
6702 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
6703
6704 inline void perf_swevent_put_recursion_context(int rctx)
6705 {
6706 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6707
6708 put_recursion_context(swhash->recursion, rctx);
6709 }
6710
6711 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6712 {
6713 struct perf_sample_data data;
6714
6715 if (WARN_ON_ONCE(!regs))
6716 return;
6717
6718 perf_sample_data_init(&data, addr, 0);
6719 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
6720 }
6721
6722 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6723 {
6724 int rctx;
6725
6726 preempt_disable_notrace();
6727 rctx = perf_swevent_get_recursion_context();
6728 if (unlikely(rctx < 0))
6729 goto fail;
6730
6731 ___perf_sw_event(event_id, nr, regs, addr);
6732
6733 perf_swevent_put_recursion_context(rctx);
6734 fail:
6735 preempt_enable_notrace();
6736 }
6737
6738 static void perf_swevent_read(struct perf_event *event)
6739 {
6740 }
6741
6742 static int perf_swevent_add(struct perf_event *event, int flags)
6743 {
6744 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6745 struct hw_perf_event *hwc = &event->hw;
6746 struct hlist_head *head;
6747
6748 if (is_sampling_event(event)) {
6749 hwc->last_period = hwc->sample_period;
6750 perf_swevent_set_period(event);
6751 }
6752
6753 hwc->state = !(flags & PERF_EF_START);
6754
6755 head = find_swevent_head(swhash, event);
6756 if (!head) {
6757 /*
6758 * We can race with cpu hotplug code. Do not
6759 * WARN if the cpu just got unplugged.
6760 */
6761 WARN_ON_ONCE(swhash->online);
6762 return -EINVAL;
6763 }
6764
6765 hlist_add_head_rcu(&event->hlist_entry, head);
6766 perf_event_update_userpage(event);
6767
6768 return 0;
6769 }
6770
6771 static void perf_swevent_del(struct perf_event *event, int flags)
6772 {
6773 hlist_del_rcu(&event->hlist_entry);
6774 }
6775
6776 static void perf_swevent_start(struct perf_event *event, int flags)
6777 {
6778 event->hw.state = 0;
6779 }
6780
6781 static void perf_swevent_stop(struct perf_event *event, int flags)
6782 {
6783 event->hw.state = PERF_HES_STOPPED;
6784 }
6785
6786 /* Deref the hlist from the update side */
6787 static inline struct swevent_hlist *
6788 swevent_hlist_deref(struct swevent_htable *swhash)
6789 {
6790 return rcu_dereference_protected(swhash->swevent_hlist,
6791 lockdep_is_held(&swhash->hlist_mutex));
6792 }
6793
6794 static void swevent_hlist_release(struct swevent_htable *swhash)
6795 {
6796 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
6797
6798 if (!hlist)
6799 return;
6800
6801 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
6802 kfree_rcu(hlist, rcu_head);
6803 }
6804
6805 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
6806 {
6807 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6808
6809 mutex_lock(&swhash->hlist_mutex);
6810
6811 if (!--swhash->hlist_refcount)
6812 swevent_hlist_release(swhash);
6813
6814 mutex_unlock(&swhash->hlist_mutex);
6815 }
6816
6817 static void swevent_hlist_put(struct perf_event *event)
6818 {
6819 int cpu;
6820
6821 for_each_possible_cpu(cpu)
6822 swevent_hlist_put_cpu(event, cpu);
6823 }
6824
6825 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
6826 {
6827 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6828 int err = 0;
6829
6830 mutex_lock(&swhash->hlist_mutex);
6831
6832 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
6833 struct swevent_hlist *hlist;
6834
6835 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
6836 if (!hlist) {
6837 err = -ENOMEM;
6838 goto exit;
6839 }
6840 rcu_assign_pointer(swhash->swevent_hlist, hlist);
6841 }
6842 swhash->hlist_refcount++;
6843 exit:
6844 mutex_unlock(&swhash->hlist_mutex);
6845
6846 return err;
6847 }
6848
6849 static int swevent_hlist_get(struct perf_event *event)
6850 {
6851 int err;
6852 int cpu, failed_cpu;
6853
6854 get_online_cpus();
6855 for_each_possible_cpu(cpu) {
6856 err = swevent_hlist_get_cpu(event, cpu);
6857 if (err) {
6858 failed_cpu = cpu;
6859 goto fail;
6860 }
6861 }
6862 put_online_cpus();
6863
6864 return 0;
6865 fail:
6866 for_each_possible_cpu(cpu) {
6867 if (cpu == failed_cpu)
6868 break;
6869 swevent_hlist_put_cpu(event, cpu);
6870 }
6871
6872 put_online_cpus();
6873 return err;
6874 }
6875
6876 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
6877
6878 static void sw_perf_event_destroy(struct perf_event *event)
6879 {
6880 u64 event_id = event->attr.config;
6881
6882 WARN_ON(event->parent);
6883
6884 static_key_slow_dec(&perf_swevent_enabled[event_id]);
6885 swevent_hlist_put(event);
6886 }
6887
6888 static int perf_swevent_init(struct perf_event *event)
6889 {
6890 u64 event_id = event->attr.config;
6891
6892 if (event->attr.type != PERF_TYPE_SOFTWARE)
6893 return -ENOENT;
6894
6895 /*
6896 * no branch sampling for software events
6897 */
6898 if (has_branch_stack(event))
6899 return -EOPNOTSUPP;
6900
6901 switch (event_id) {
6902 case PERF_COUNT_SW_CPU_CLOCK:
6903 case PERF_COUNT_SW_TASK_CLOCK:
6904 return -ENOENT;
6905
6906 default:
6907 break;
6908 }
6909
6910 if (event_id >= PERF_COUNT_SW_MAX)
6911 return -ENOENT;
6912
6913 if (!event->parent) {
6914 int err;
6915
6916 err = swevent_hlist_get(event);
6917 if (err)
6918 return err;
6919
6920 static_key_slow_inc(&perf_swevent_enabled[event_id]);
6921 event->destroy = sw_perf_event_destroy;
6922 }
6923
6924 return 0;
6925 }
6926
6927 static struct pmu perf_swevent = {
6928 .task_ctx_nr = perf_sw_context,
6929
6930 .capabilities = PERF_PMU_CAP_NO_NMI,
6931
6932 .event_init = perf_swevent_init,
6933 .add = perf_swevent_add,
6934 .del = perf_swevent_del,
6935 .start = perf_swevent_start,
6936 .stop = perf_swevent_stop,
6937 .read = perf_swevent_read,
6938 };
6939
6940 #ifdef CONFIG_EVENT_TRACING
6941
6942 static int perf_tp_filter_match(struct perf_event *event,
6943 struct perf_sample_data *data)
6944 {
6945 void *record = data->raw->data;
6946
6947 /* only top level events have filters set */
6948 if (event->parent)
6949 event = event->parent;
6950
6951 if (likely(!event->filter) || filter_match_preds(event->filter, record))
6952 return 1;
6953 return 0;
6954 }
6955
6956 static int perf_tp_event_match(struct perf_event *event,
6957 struct perf_sample_data *data,
6958 struct pt_regs *regs)
6959 {
6960 if (event->hw.state & PERF_HES_STOPPED)
6961 return 0;
6962 /*
6963 * All tracepoints are from kernel-space.
6964 */
6965 if (event->attr.exclude_kernel)
6966 return 0;
6967
6968 if (!perf_tp_filter_match(event, data))
6969 return 0;
6970
6971 return 1;
6972 }
6973
6974 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
6975 struct pt_regs *regs, struct hlist_head *head, int rctx,
6976 struct task_struct *task)
6977 {
6978 struct perf_sample_data data;
6979 struct perf_event *event;
6980
6981 struct perf_raw_record raw = {
6982 .size = entry_size,
6983 .data = record,
6984 };
6985
6986 perf_sample_data_init(&data, addr, 0);
6987 data.raw = &raw;
6988
6989 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6990 if (perf_tp_event_match(event, &data, regs))
6991 perf_swevent_event(event, count, &data, regs);
6992 }
6993
6994 /*
6995 * If we got specified a target task, also iterate its context and
6996 * deliver this event there too.
6997 */
6998 if (task && task != current) {
6999 struct perf_event_context *ctx;
7000 struct trace_entry *entry = record;
7001
7002 rcu_read_lock();
7003 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
7004 if (!ctx)
7005 goto unlock;
7006
7007 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7008 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7009 continue;
7010 if (event->attr.config != entry->type)
7011 continue;
7012 if (perf_tp_event_match(event, &data, regs))
7013 perf_swevent_event(event, count, &data, regs);
7014 }
7015 unlock:
7016 rcu_read_unlock();
7017 }
7018
7019 perf_swevent_put_recursion_context(rctx);
7020 }
7021 EXPORT_SYMBOL_GPL(perf_tp_event);
7022
7023 static void tp_perf_event_destroy(struct perf_event *event)
7024 {
7025 perf_trace_destroy(event);
7026 }
7027
7028 static int perf_tp_event_init(struct perf_event *event)
7029 {
7030 int err;
7031
7032 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7033 return -ENOENT;
7034
7035 /*
7036 * no branch sampling for tracepoint events
7037 */
7038 if (has_branch_stack(event))
7039 return -EOPNOTSUPP;
7040
7041 err = perf_trace_init(event);
7042 if (err)
7043 return err;
7044
7045 event->destroy = tp_perf_event_destroy;
7046
7047 return 0;
7048 }
7049
7050 static struct pmu perf_tracepoint = {
7051 .task_ctx_nr = perf_sw_context,
7052
7053 .event_init = perf_tp_event_init,
7054 .add = perf_trace_add,
7055 .del = perf_trace_del,
7056 .start = perf_swevent_start,
7057 .stop = perf_swevent_stop,
7058 .read = perf_swevent_read,
7059 };
7060
7061 static inline void perf_tp_register(void)
7062 {
7063 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
7064 }
7065
7066 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
7067 {
7068 char *filter_str;
7069 int ret;
7070
7071 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7072 return -EINVAL;
7073
7074 filter_str = strndup_user(arg, PAGE_SIZE);
7075 if (IS_ERR(filter_str))
7076 return PTR_ERR(filter_str);
7077
7078 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
7079
7080 kfree(filter_str);
7081 return ret;
7082 }
7083
7084 static void perf_event_free_filter(struct perf_event *event)
7085 {
7086 ftrace_profile_free_filter(event);
7087 }
7088
7089 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7090 {
7091 struct bpf_prog *prog;
7092
7093 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7094 return -EINVAL;
7095
7096 if (event->tp_event->prog)
7097 return -EEXIST;
7098
7099 if (!(event->tp_event->flags & TRACE_EVENT_FL_UKPROBE))
7100 /* bpf programs can only be attached to u/kprobes */
7101 return -EINVAL;
7102
7103 prog = bpf_prog_get(prog_fd);
7104 if (IS_ERR(prog))
7105 return PTR_ERR(prog);
7106
7107 if (prog->type != BPF_PROG_TYPE_KPROBE) {
7108 /* valid fd, but invalid bpf program type */
7109 bpf_prog_put(prog);
7110 return -EINVAL;
7111 }
7112
7113 event->tp_event->prog = prog;
7114
7115 return 0;
7116 }
7117
7118 static void perf_event_free_bpf_prog(struct perf_event *event)
7119 {
7120 struct bpf_prog *prog;
7121
7122 if (!event->tp_event)
7123 return;
7124
7125 prog = event->tp_event->prog;
7126 if (prog) {
7127 event->tp_event->prog = NULL;
7128 bpf_prog_put(prog);
7129 }
7130 }
7131
7132 #else
7133
7134 static inline void perf_tp_register(void)
7135 {
7136 }
7137
7138 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
7139 {
7140 return -ENOENT;
7141 }
7142
7143 static void perf_event_free_filter(struct perf_event *event)
7144 {
7145 }
7146
7147 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7148 {
7149 return -ENOENT;
7150 }
7151
7152 static void perf_event_free_bpf_prog(struct perf_event *event)
7153 {
7154 }
7155 #endif /* CONFIG_EVENT_TRACING */
7156
7157 #ifdef CONFIG_HAVE_HW_BREAKPOINT
7158 void perf_bp_event(struct perf_event *bp, void *data)
7159 {
7160 struct perf_sample_data sample;
7161 struct pt_regs *regs = data;
7162
7163 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
7164
7165 if (!bp->hw.state && !perf_exclude_event(bp, regs))
7166 perf_swevent_event(bp, 1, &sample, regs);
7167 }
7168 #endif
7169
7170 /*
7171 * hrtimer based swevent callback
7172 */
7173
7174 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
7175 {
7176 enum hrtimer_restart ret = HRTIMER_RESTART;
7177 struct perf_sample_data data;
7178 struct pt_regs *regs;
7179 struct perf_event *event;
7180 u64 period;
7181
7182 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
7183
7184 if (event->state != PERF_EVENT_STATE_ACTIVE)
7185 return HRTIMER_NORESTART;
7186
7187 event->pmu->read(event);
7188
7189 perf_sample_data_init(&data, 0, event->hw.last_period);
7190 regs = get_irq_regs();
7191
7192 if (regs && !perf_exclude_event(event, regs)) {
7193 if (!(event->attr.exclude_idle && is_idle_task(current)))
7194 if (__perf_event_overflow(event, 1, &data, regs))
7195 ret = HRTIMER_NORESTART;
7196 }
7197
7198 period = max_t(u64, 10000, event->hw.sample_period);
7199 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
7200
7201 return ret;
7202 }
7203
7204 static void perf_swevent_start_hrtimer(struct perf_event *event)
7205 {
7206 struct hw_perf_event *hwc = &event->hw;
7207 s64 period;
7208
7209 if (!is_sampling_event(event))
7210 return;
7211
7212 period = local64_read(&hwc->period_left);
7213 if (period) {
7214 if (period < 0)
7215 period = 10000;
7216
7217 local64_set(&hwc->period_left, 0);
7218 } else {
7219 period = max_t(u64, 10000, hwc->sample_period);
7220 }
7221 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
7222 HRTIMER_MODE_REL_PINNED);
7223 }
7224
7225 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
7226 {
7227 struct hw_perf_event *hwc = &event->hw;
7228
7229 if (is_sampling_event(event)) {
7230 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
7231 local64_set(&hwc->period_left, ktime_to_ns(remaining));
7232
7233 hrtimer_cancel(&hwc->hrtimer);
7234 }
7235 }
7236
7237 static void perf_swevent_init_hrtimer(struct perf_event *event)
7238 {
7239 struct hw_perf_event *hwc = &event->hw;
7240
7241 if (!is_sampling_event(event))
7242 return;
7243
7244 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
7245 hwc->hrtimer.function = perf_swevent_hrtimer;
7246
7247 /*
7248 * Since hrtimers have a fixed rate, we can do a static freq->period
7249 * mapping and avoid the whole period adjust feedback stuff.
7250 */
7251 if (event->attr.freq) {
7252 long freq = event->attr.sample_freq;
7253
7254 event->attr.sample_period = NSEC_PER_SEC / freq;
7255 hwc->sample_period = event->attr.sample_period;
7256 local64_set(&hwc->period_left, hwc->sample_period);
7257 hwc->last_period = hwc->sample_period;
7258 event->attr.freq = 0;
7259 }
7260 }
7261
7262 /*
7263 * Software event: cpu wall time clock
7264 */
7265
7266 static void cpu_clock_event_update(struct perf_event *event)
7267 {
7268 s64 prev;
7269 u64 now;
7270
7271 now = local_clock();
7272 prev = local64_xchg(&event->hw.prev_count, now);
7273 local64_add(now - prev, &event->count);
7274 }
7275
7276 static void cpu_clock_event_start(struct perf_event *event, int flags)
7277 {
7278 local64_set(&event->hw.prev_count, local_clock());
7279 perf_swevent_start_hrtimer(event);
7280 }
7281
7282 static void cpu_clock_event_stop(struct perf_event *event, int flags)
7283 {
7284 perf_swevent_cancel_hrtimer(event);
7285 cpu_clock_event_update(event);
7286 }
7287
7288 static int cpu_clock_event_add(struct perf_event *event, int flags)
7289 {
7290 if (flags & PERF_EF_START)
7291 cpu_clock_event_start(event, flags);
7292 perf_event_update_userpage(event);
7293
7294 return 0;
7295 }
7296
7297 static void cpu_clock_event_del(struct perf_event *event, int flags)
7298 {
7299 cpu_clock_event_stop(event, flags);
7300 }
7301
7302 static void cpu_clock_event_read(struct perf_event *event)
7303 {
7304 cpu_clock_event_update(event);
7305 }
7306
7307 static int cpu_clock_event_init(struct perf_event *event)
7308 {
7309 if (event->attr.type != PERF_TYPE_SOFTWARE)
7310 return -ENOENT;
7311
7312 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
7313 return -ENOENT;
7314
7315 /*
7316 * no branch sampling for software events
7317 */
7318 if (has_branch_stack(event))
7319 return -EOPNOTSUPP;
7320
7321 perf_swevent_init_hrtimer(event);
7322
7323 return 0;
7324 }
7325
7326 static struct pmu perf_cpu_clock = {
7327 .task_ctx_nr = perf_sw_context,
7328
7329 .capabilities = PERF_PMU_CAP_NO_NMI,
7330
7331 .event_init = cpu_clock_event_init,
7332 .add = cpu_clock_event_add,
7333 .del = cpu_clock_event_del,
7334 .start = cpu_clock_event_start,
7335 .stop = cpu_clock_event_stop,
7336 .read = cpu_clock_event_read,
7337 };
7338
7339 /*
7340 * Software event: task time clock
7341 */
7342
7343 static void task_clock_event_update(struct perf_event *event, u64 now)
7344 {
7345 u64 prev;
7346 s64 delta;
7347
7348 prev = local64_xchg(&event->hw.prev_count, now);
7349 delta = now - prev;
7350 local64_add(delta, &event->count);
7351 }
7352
7353 static void task_clock_event_start(struct perf_event *event, int flags)
7354 {
7355 local64_set(&event->hw.prev_count, event->ctx->time);
7356 perf_swevent_start_hrtimer(event);
7357 }
7358
7359 static void task_clock_event_stop(struct perf_event *event, int flags)
7360 {
7361 perf_swevent_cancel_hrtimer(event);
7362 task_clock_event_update(event, event->ctx->time);
7363 }
7364
7365 static int task_clock_event_add(struct perf_event *event, int flags)
7366 {
7367 if (flags & PERF_EF_START)
7368 task_clock_event_start(event, flags);
7369 perf_event_update_userpage(event);
7370
7371 return 0;
7372 }
7373
7374 static void task_clock_event_del(struct perf_event *event, int flags)
7375 {
7376 task_clock_event_stop(event, PERF_EF_UPDATE);
7377 }
7378
7379 static void task_clock_event_read(struct perf_event *event)
7380 {
7381 u64 now = perf_clock();
7382 u64 delta = now - event->ctx->timestamp;
7383 u64 time = event->ctx->time + delta;
7384
7385 task_clock_event_update(event, time);
7386 }
7387
7388 static int task_clock_event_init(struct perf_event *event)
7389 {
7390 if (event->attr.type != PERF_TYPE_SOFTWARE)
7391 return -ENOENT;
7392
7393 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
7394 return -ENOENT;
7395
7396 /*
7397 * no branch sampling for software events
7398 */
7399 if (has_branch_stack(event))
7400 return -EOPNOTSUPP;
7401
7402 perf_swevent_init_hrtimer(event);
7403
7404 return 0;
7405 }
7406
7407 static struct pmu perf_task_clock = {
7408 .task_ctx_nr = perf_sw_context,
7409
7410 .capabilities = PERF_PMU_CAP_NO_NMI,
7411
7412 .event_init = task_clock_event_init,
7413 .add = task_clock_event_add,
7414 .del = task_clock_event_del,
7415 .start = task_clock_event_start,
7416 .stop = task_clock_event_stop,
7417 .read = task_clock_event_read,
7418 };
7419
7420 static void perf_pmu_nop_void(struct pmu *pmu)
7421 {
7422 }
7423
7424 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
7425 {
7426 }
7427
7428 static int perf_pmu_nop_int(struct pmu *pmu)
7429 {
7430 return 0;
7431 }
7432
7433 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
7434
7435 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
7436 {
7437 __this_cpu_write(nop_txn_flags, flags);
7438
7439 if (flags & ~PERF_PMU_TXN_ADD)
7440 return;
7441
7442 perf_pmu_disable(pmu);
7443 }
7444
7445 static int perf_pmu_commit_txn(struct pmu *pmu)
7446 {
7447 unsigned int flags = __this_cpu_read(nop_txn_flags);
7448
7449 __this_cpu_write(nop_txn_flags, 0);
7450
7451 if (flags & ~PERF_PMU_TXN_ADD)
7452 return 0;
7453
7454 perf_pmu_enable(pmu);
7455 return 0;
7456 }
7457
7458 static void perf_pmu_cancel_txn(struct pmu *pmu)
7459 {
7460 unsigned int flags = __this_cpu_read(nop_txn_flags);
7461
7462 __this_cpu_write(nop_txn_flags, 0);
7463
7464 if (flags & ~PERF_PMU_TXN_ADD)
7465 return;
7466
7467 perf_pmu_enable(pmu);
7468 }
7469
7470 static int perf_event_idx_default(struct perf_event *event)
7471 {
7472 return 0;
7473 }
7474
7475 /*
7476 * Ensures all contexts with the same task_ctx_nr have the same
7477 * pmu_cpu_context too.
7478 */
7479 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
7480 {
7481 struct pmu *pmu;
7482
7483 if (ctxn < 0)
7484 return NULL;
7485
7486 list_for_each_entry(pmu, &pmus, entry) {
7487 if (pmu->task_ctx_nr == ctxn)
7488 return pmu->pmu_cpu_context;
7489 }
7490
7491 return NULL;
7492 }
7493
7494 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
7495 {
7496 int cpu;
7497
7498 for_each_possible_cpu(cpu) {
7499 struct perf_cpu_context *cpuctx;
7500
7501 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7502
7503 if (cpuctx->unique_pmu == old_pmu)
7504 cpuctx->unique_pmu = pmu;
7505 }
7506 }
7507
7508 static void free_pmu_context(struct pmu *pmu)
7509 {
7510 struct pmu *i;
7511
7512 mutex_lock(&pmus_lock);
7513 /*
7514 * Like a real lame refcount.
7515 */
7516 list_for_each_entry(i, &pmus, entry) {
7517 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
7518 update_pmu_context(i, pmu);
7519 goto out;
7520 }
7521 }
7522
7523 free_percpu(pmu->pmu_cpu_context);
7524 out:
7525 mutex_unlock(&pmus_lock);
7526 }
7527 static struct idr pmu_idr;
7528
7529 static ssize_t
7530 type_show(struct device *dev, struct device_attribute *attr, char *page)
7531 {
7532 struct pmu *pmu = dev_get_drvdata(dev);
7533
7534 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
7535 }
7536 static DEVICE_ATTR_RO(type);
7537
7538 static ssize_t
7539 perf_event_mux_interval_ms_show(struct device *dev,
7540 struct device_attribute *attr,
7541 char *page)
7542 {
7543 struct pmu *pmu = dev_get_drvdata(dev);
7544
7545 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
7546 }
7547
7548 static DEFINE_MUTEX(mux_interval_mutex);
7549
7550 static ssize_t
7551 perf_event_mux_interval_ms_store(struct device *dev,
7552 struct device_attribute *attr,
7553 const char *buf, size_t count)
7554 {
7555 struct pmu *pmu = dev_get_drvdata(dev);
7556 int timer, cpu, ret;
7557
7558 ret = kstrtoint(buf, 0, &timer);
7559 if (ret)
7560 return ret;
7561
7562 if (timer < 1)
7563 return -EINVAL;
7564
7565 /* same value, noting to do */
7566 if (timer == pmu->hrtimer_interval_ms)
7567 return count;
7568
7569 mutex_lock(&mux_interval_mutex);
7570 pmu->hrtimer_interval_ms = timer;
7571
7572 /* update all cpuctx for this PMU */
7573 get_online_cpus();
7574 for_each_online_cpu(cpu) {
7575 struct perf_cpu_context *cpuctx;
7576 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7577 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
7578
7579 cpu_function_call(cpu,
7580 (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
7581 }
7582 put_online_cpus();
7583 mutex_unlock(&mux_interval_mutex);
7584
7585 return count;
7586 }
7587 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
7588
7589 static struct attribute *pmu_dev_attrs[] = {
7590 &dev_attr_type.attr,
7591 &dev_attr_perf_event_mux_interval_ms.attr,
7592 NULL,
7593 };
7594 ATTRIBUTE_GROUPS(pmu_dev);
7595
7596 static int pmu_bus_running;
7597 static struct bus_type pmu_bus = {
7598 .name = "event_source",
7599 .dev_groups = pmu_dev_groups,
7600 };
7601
7602 static void pmu_dev_release(struct device *dev)
7603 {
7604 kfree(dev);
7605 }
7606
7607 static int pmu_dev_alloc(struct pmu *pmu)
7608 {
7609 int ret = -ENOMEM;
7610
7611 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
7612 if (!pmu->dev)
7613 goto out;
7614
7615 pmu->dev->groups = pmu->attr_groups;
7616 device_initialize(pmu->dev);
7617 ret = dev_set_name(pmu->dev, "%s", pmu->name);
7618 if (ret)
7619 goto free_dev;
7620
7621 dev_set_drvdata(pmu->dev, pmu);
7622 pmu->dev->bus = &pmu_bus;
7623 pmu->dev->release = pmu_dev_release;
7624 ret = device_add(pmu->dev);
7625 if (ret)
7626 goto free_dev;
7627
7628 out:
7629 return ret;
7630
7631 free_dev:
7632 put_device(pmu->dev);
7633 goto out;
7634 }
7635
7636 static struct lock_class_key cpuctx_mutex;
7637 static struct lock_class_key cpuctx_lock;
7638
7639 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
7640 {
7641 int cpu, ret;
7642
7643 mutex_lock(&pmus_lock);
7644 ret = -ENOMEM;
7645 pmu->pmu_disable_count = alloc_percpu(int);
7646 if (!pmu->pmu_disable_count)
7647 goto unlock;
7648
7649 pmu->type = -1;
7650 if (!name)
7651 goto skip_type;
7652 pmu->name = name;
7653
7654 if (type < 0) {
7655 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
7656 if (type < 0) {
7657 ret = type;
7658 goto free_pdc;
7659 }
7660 }
7661 pmu->type = type;
7662
7663 if (pmu_bus_running) {
7664 ret = pmu_dev_alloc(pmu);
7665 if (ret)
7666 goto free_idr;
7667 }
7668
7669 skip_type:
7670 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
7671 if (pmu->pmu_cpu_context)
7672 goto got_cpu_context;
7673
7674 ret = -ENOMEM;
7675 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
7676 if (!pmu->pmu_cpu_context)
7677 goto free_dev;
7678
7679 for_each_possible_cpu(cpu) {
7680 struct perf_cpu_context *cpuctx;
7681
7682 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7683 __perf_event_init_context(&cpuctx->ctx);
7684 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
7685 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
7686 cpuctx->ctx.pmu = pmu;
7687
7688 __perf_mux_hrtimer_init(cpuctx, cpu);
7689
7690 cpuctx->unique_pmu = pmu;
7691 }
7692
7693 got_cpu_context:
7694 if (!pmu->start_txn) {
7695 if (pmu->pmu_enable) {
7696 /*
7697 * If we have pmu_enable/pmu_disable calls, install
7698 * transaction stubs that use that to try and batch
7699 * hardware accesses.
7700 */
7701 pmu->start_txn = perf_pmu_start_txn;
7702 pmu->commit_txn = perf_pmu_commit_txn;
7703 pmu->cancel_txn = perf_pmu_cancel_txn;
7704 } else {
7705 pmu->start_txn = perf_pmu_nop_txn;
7706 pmu->commit_txn = perf_pmu_nop_int;
7707 pmu->cancel_txn = perf_pmu_nop_void;
7708 }
7709 }
7710
7711 if (!pmu->pmu_enable) {
7712 pmu->pmu_enable = perf_pmu_nop_void;
7713 pmu->pmu_disable = perf_pmu_nop_void;
7714 }
7715
7716 if (!pmu->event_idx)
7717 pmu->event_idx = perf_event_idx_default;
7718
7719 list_add_rcu(&pmu->entry, &pmus);
7720 atomic_set(&pmu->exclusive_cnt, 0);
7721 ret = 0;
7722 unlock:
7723 mutex_unlock(&pmus_lock);
7724
7725 return ret;
7726
7727 free_dev:
7728 device_del(pmu->dev);
7729 put_device(pmu->dev);
7730
7731 free_idr:
7732 if (pmu->type >= PERF_TYPE_MAX)
7733 idr_remove(&pmu_idr, pmu->type);
7734
7735 free_pdc:
7736 free_percpu(pmu->pmu_disable_count);
7737 goto unlock;
7738 }
7739 EXPORT_SYMBOL_GPL(perf_pmu_register);
7740
7741 void perf_pmu_unregister(struct pmu *pmu)
7742 {
7743 mutex_lock(&pmus_lock);
7744 list_del_rcu(&pmu->entry);
7745 mutex_unlock(&pmus_lock);
7746
7747 /*
7748 * We dereference the pmu list under both SRCU and regular RCU, so
7749 * synchronize against both of those.
7750 */
7751 synchronize_srcu(&pmus_srcu);
7752 synchronize_rcu();
7753
7754 free_percpu(pmu->pmu_disable_count);
7755 if (pmu->type >= PERF_TYPE_MAX)
7756 idr_remove(&pmu_idr, pmu->type);
7757 device_del(pmu->dev);
7758 put_device(pmu->dev);
7759 free_pmu_context(pmu);
7760 }
7761 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
7762
7763 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
7764 {
7765 struct perf_event_context *ctx = NULL;
7766 int ret;
7767
7768 if (!try_module_get(pmu->module))
7769 return -ENODEV;
7770
7771 if (event->group_leader != event) {
7772 /*
7773 * This ctx->mutex can nest when we're called through
7774 * inheritance. See the perf_event_ctx_lock_nested() comment.
7775 */
7776 ctx = perf_event_ctx_lock_nested(event->group_leader,
7777 SINGLE_DEPTH_NESTING);
7778 BUG_ON(!ctx);
7779 }
7780
7781 event->pmu = pmu;
7782 ret = pmu->event_init(event);
7783
7784 if (ctx)
7785 perf_event_ctx_unlock(event->group_leader, ctx);
7786
7787 if (ret)
7788 module_put(pmu->module);
7789
7790 return ret;
7791 }
7792
7793 static struct pmu *perf_init_event(struct perf_event *event)
7794 {
7795 struct pmu *pmu = NULL;
7796 int idx;
7797 int ret;
7798
7799 idx = srcu_read_lock(&pmus_srcu);
7800
7801 rcu_read_lock();
7802 pmu = idr_find(&pmu_idr, event->attr.type);
7803 rcu_read_unlock();
7804 if (pmu) {
7805 ret = perf_try_init_event(pmu, event);
7806 if (ret)
7807 pmu = ERR_PTR(ret);
7808 goto unlock;
7809 }
7810
7811 list_for_each_entry_rcu(pmu, &pmus, entry) {
7812 ret = perf_try_init_event(pmu, event);
7813 if (!ret)
7814 goto unlock;
7815
7816 if (ret != -ENOENT) {
7817 pmu = ERR_PTR(ret);
7818 goto unlock;
7819 }
7820 }
7821 pmu = ERR_PTR(-ENOENT);
7822 unlock:
7823 srcu_read_unlock(&pmus_srcu, idx);
7824
7825 return pmu;
7826 }
7827
7828 static void account_event_cpu(struct perf_event *event, int cpu)
7829 {
7830 if (event->parent)
7831 return;
7832
7833 if (is_cgroup_event(event))
7834 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
7835 }
7836
7837 static void account_event(struct perf_event *event)
7838 {
7839 if (event->parent)
7840 return;
7841
7842 if (event->attach_state & PERF_ATTACH_TASK)
7843 static_key_slow_inc(&perf_sched_events.key);
7844 if (event->attr.mmap || event->attr.mmap_data)
7845 atomic_inc(&nr_mmap_events);
7846 if (event->attr.comm)
7847 atomic_inc(&nr_comm_events);
7848 if (event->attr.task)
7849 atomic_inc(&nr_task_events);
7850 if (event->attr.freq) {
7851 if (atomic_inc_return(&nr_freq_events) == 1)
7852 tick_nohz_full_kick_all();
7853 }
7854 if (event->attr.context_switch) {
7855 atomic_inc(&nr_switch_events);
7856 static_key_slow_inc(&perf_sched_events.key);
7857 }
7858 if (has_branch_stack(event))
7859 static_key_slow_inc(&perf_sched_events.key);
7860 if (is_cgroup_event(event))
7861 static_key_slow_inc(&perf_sched_events.key);
7862
7863 account_event_cpu(event, event->cpu);
7864 }
7865
7866 /*
7867 * Allocate and initialize a event structure
7868 */
7869 static struct perf_event *
7870 perf_event_alloc(struct perf_event_attr *attr, int cpu,
7871 struct task_struct *task,
7872 struct perf_event *group_leader,
7873 struct perf_event *parent_event,
7874 perf_overflow_handler_t overflow_handler,
7875 void *context, int cgroup_fd)
7876 {
7877 struct pmu *pmu;
7878 struct perf_event *event;
7879 struct hw_perf_event *hwc;
7880 long err = -EINVAL;
7881
7882 if ((unsigned)cpu >= nr_cpu_ids) {
7883 if (!task || cpu != -1)
7884 return ERR_PTR(-EINVAL);
7885 }
7886
7887 event = kzalloc(sizeof(*event), GFP_KERNEL);
7888 if (!event)
7889 return ERR_PTR(-ENOMEM);
7890
7891 /*
7892 * Single events are their own group leaders, with an
7893 * empty sibling list:
7894 */
7895 if (!group_leader)
7896 group_leader = event;
7897
7898 mutex_init(&event->child_mutex);
7899 INIT_LIST_HEAD(&event->child_list);
7900
7901 INIT_LIST_HEAD(&event->group_entry);
7902 INIT_LIST_HEAD(&event->event_entry);
7903 INIT_LIST_HEAD(&event->sibling_list);
7904 INIT_LIST_HEAD(&event->rb_entry);
7905 INIT_LIST_HEAD(&event->active_entry);
7906 INIT_HLIST_NODE(&event->hlist_entry);
7907
7908
7909 init_waitqueue_head(&event->waitq);
7910 init_irq_work(&event->pending, perf_pending_event);
7911
7912 mutex_init(&event->mmap_mutex);
7913
7914 atomic_long_set(&event->refcount, 1);
7915 event->cpu = cpu;
7916 event->attr = *attr;
7917 event->group_leader = group_leader;
7918 event->pmu = NULL;
7919 event->oncpu = -1;
7920
7921 event->parent = parent_event;
7922
7923 event->ns = get_pid_ns(task_active_pid_ns(current));
7924 event->id = atomic64_inc_return(&perf_event_id);
7925
7926 event->state = PERF_EVENT_STATE_INACTIVE;
7927
7928 if (task) {
7929 event->attach_state = PERF_ATTACH_TASK;
7930 /*
7931 * XXX pmu::event_init needs to know what task to account to
7932 * and we cannot use the ctx information because we need the
7933 * pmu before we get a ctx.
7934 */
7935 event->hw.target = task;
7936 }
7937
7938 event->clock = &local_clock;
7939 if (parent_event)
7940 event->clock = parent_event->clock;
7941
7942 if (!overflow_handler && parent_event) {
7943 overflow_handler = parent_event->overflow_handler;
7944 context = parent_event->overflow_handler_context;
7945 }
7946
7947 event->overflow_handler = overflow_handler;
7948 event->overflow_handler_context = context;
7949
7950 perf_event__state_init(event);
7951
7952 pmu = NULL;
7953
7954 hwc = &event->hw;
7955 hwc->sample_period = attr->sample_period;
7956 if (attr->freq && attr->sample_freq)
7957 hwc->sample_period = 1;
7958 hwc->last_period = hwc->sample_period;
7959
7960 local64_set(&hwc->period_left, hwc->sample_period);
7961
7962 /*
7963 * we currently do not support PERF_FORMAT_GROUP on inherited events
7964 */
7965 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
7966 goto err_ns;
7967
7968 if (!has_branch_stack(event))
7969 event->attr.branch_sample_type = 0;
7970
7971 if (cgroup_fd != -1) {
7972 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
7973 if (err)
7974 goto err_ns;
7975 }
7976
7977 pmu = perf_init_event(event);
7978 if (!pmu)
7979 goto err_ns;
7980 else if (IS_ERR(pmu)) {
7981 err = PTR_ERR(pmu);
7982 goto err_ns;
7983 }
7984
7985 err = exclusive_event_init(event);
7986 if (err)
7987 goto err_pmu;
7988
7989 if (!event->parent) {
7990 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
7991 err = get_callchain_buffers();
7992 if (err)
7993 goto err_per_task;
7994 }
7995 }
7996
7997 return event;
7998
7999 err_per_task:
8000 exclusive_event_destroy(event);
8001
8002 err_pmu:
8003 if (event->destroy)
8004 event->destroy(event);
8005 module_put(pmu->module);
8006 err_ns:
8007 if (is_cgroup_event(event))
8008 perf_detach_cgroup(event);
8009 if (event->ns)
8010 put_pid_ns(event->ns);
8011 kfree(event);
8012
8013 return ERR_PTR(err);
8014 }
8015
8016 static int perf_copy_attr(struct perf_event_attr __user *uattr,
8017 struct perf_event_attr *attr)
8018 {
8019 u32 size;
8020 int ret;
8021
8022 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
8023 return -EFAULT;
8024
8025 /*
8026 * zero the full structure, so that a short copy will be nice.
8027 */
8028 memset(attr, 0, sizeof(*attr));
8029
8030 ret = get_user(size, &uattr->size);
8031 if (ret)
8032 return ret;
8033
8034 if (size > PAGE_SIZE) /* silly large */
8035 goto err_size;
8036
8037 if (!size) /* abi compat */
8038 size = PERF_ATTR_SIZE_VER0;
8039
8040 if (size < PERF_ATTR_SIZE_VER0)
8041 goto err_size;
8042
8043 /*
8044 * If we're handed a bigger struct than we know of,
8045 * ensure all the unknown bits are 0 - i.e. new
8046 * user-space does not rely on any kernel feature
8047 * extensions we dont know about yet.
8048 */
8049 if (size > sizeof(*attr)) {
8050 unsigned char __user *addr;
8051 unsigned char __user *end;
8052 unsigned char val;
8053
8054 addr = (void __user *)uattr + sizeof(*attr);
8055 end = (void __user *)uattr + size;
8056
8057 for (; addr < end; addr++) {
8058 ret = get_user(val, addr);
8059 if (ret)
8060 return ret;
8061 if (val)
8062 goto err_size;
8063 }
8064 size = sizeof(*attr);
8065 }
8066
8067 ret = copy_from_user(attr, uattr, size);
8068 if (ret)
8069 return -EFAULT;
8070
8071 if (attr->__reserved_1)
8072 return -EINVAL;
8073
8074 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
8075 return -EINVAL;
8076
8077 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
8078 return -EINVAL;
8079
8080 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
8081 u64 mask = attr->branch_sample_type;
8082
8083 /* only using defined bits */
8084 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
8085 return -EINVAL;
8086
8087 /* at least one branch bit must be set */
8088 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
8089 return -EINVAL;
8090
8091 /* propagate priv level, when not set for branch */
8092 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
8093
8094 /* exclude_kernel checked on syscall entry */
8095 if (!attr->exclude_kernel)
8096 mask |= PERF_SAMPLE_BRANCH_KERNEL;
8097
8098 if (!attr->exclude_user)
8099 mask |= PERF_SAMPLE_BRANCH_USER;
8100
8101 if (!attr->exclude_hv)
8102 mask |= PERF_SAMPLE_BRANCH_HV;
8103 /*
8104 * adjust user setting (for HW filter setup)
8105 */
8106 attr->branch_sample_type = mask;
8107 }
8108 /* privileged levels capture (kernel, hv): check permissions */
8109 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
8110 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
8111 return -EACCES;
8112 }
8113
8114 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
8115 ret = perf_reg_validate(attr->sample_regs_user);
8116 if (ret)
8117 return ret;
8118 }
8119
8120 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
8121 if (!arch_perf_have_user_stack_dump())
8122 return -ENOSYS;
8123
8124 /*
8125 * We have __u32 type for the size, but so far
8126 * we can only use __u16 as maximum due to the
8127 * __u16 sample size limit.
8128 */
8129 if (attr->sample_stack_user >= USHRT_MAX)
8130 ret = -EINVAL;
8131 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
8132 ret = -EINVAL;
8133 }
8134
8135 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
8136 ret = perf_reg_validate(attr->sample_regs_intr);
8137 out:
8138 return ret;
8139
8140 err_size:
8141 put_user(sizeof(*attr), &uattr->size);
8142 ret = -E2BIG;
8143 goto out;
8144 }
8145
8146 static int
8147 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
8148 {
8149 struct ring_buffer *rb = NULL;
8150 int ret = -EINVAL;
8151
8152 if (!output_event)
8153 goto set;
8154
8155 /* don't allow circular references */
8156 if (event == output_event)
8157 goto out;
8158
8159 /*
8160 * Don't allow cross-cpu buffers
8161 */
8162 if (output_event->cpu != event->cpu)
8163 goto out;
8164
8165 /*
8166 * If its not a per-cpu rb, it must be the same task.
8167 */
8168 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
8169 goto out;
8170
8171 /*
8172 * Mixing clocks in the same buffer is trouble you don't need.
8173 */
8174 if (output_event->clock != event->clock)
8175 goto out;
8176
8177 /*
8178 * If both events generate aux data, they must be on the same PMU
8179 */
8180 if (has_aux(event) && has_aux(output_event) &&
8181 event->pmu != output_event->pmu)
8182 goto out;
8183
8184 set:
8185 mutex_lock(&event->mmap_mutex);
8186 /* Can't redirect output if we've got an active mmap() */
8187 if (atomic_read(&event->mmap_count))
8188 goto unlock;
8189
8190 if (output_event) {
8191 /* get the rb we want to redirect to */
8192 rb = ring_buffer_get(output_event);
8193 if (!rb)
8194 goto unlock;
8195 }
8196
8197 ring_buffer_attach(event, rb);
8198
8199 ret = 0;
8200 unlock:
8201 mutex_unlock(&event->mmap_mutex);
8202
8203 out:
8204 return ret;
8205 }
8206
8207 static void mutex_lock_double(struct mutex *a, struct mutex *b)
8208 {
8209 if (b < a)
8210 swap(a, b);
8211
8212 mutex_lock(a);
8213 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
8214 }
8215
8216 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
8217 {
8218 bool nmi_safe = false;
8219
8220 switch (clk_id) {
8221 case CLOCK_MONOTONIC:
8222 event->clock = &ktime_get_mono_fast_ns;
8223 nmi_safe = true;
8224 break;
8225
8226 case CLOCK_MONOTONIC_RAW:
8227 event->clock = &ktime_get_raw_fast_ns;
8228 nmi_safe = true;
8229 break;
8230
8231 case CLOCK_REALTIME:
8232 event->clock = &ktime_get_real_ns;
8233 break;
8234
8235 case CLOCK_BOOTTIME:
8236 event->clock = &ktime_get_boot_ns;
8237 break;
8238
8239 case CLOCK_TAI:
8240 event->clock = &ktime_get_tai_ns;
8241 break;
8242
8243 default:
8244 return -EINVAL;
8245 }
8246
8247 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
8248 return -EINVAL;
8249
8250 return 0;
8251 }
8252
8253 /**
8254 * sys_perf_event_open - open a performance event, associate it to a task/cpu
8255 *
8256 * @attr_uptr: event_id type attributes for monitoring/sampling
8257 * @pid: target pid
8258 * @cpu: target cpu
8259 * @group_fd: group leader event fd
8260 */
8261 SYSCALL_DEFINE5(perf_event_open,
8262 struct perf_event_attr __user *, attr_uptr,
8263 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
8264 {
8265 struct perf_event *group_leader = NULL, *output_event = NULL;
8266 struct perf_event *event, *sibling;
8267 struct perf_event_attr attr;
8268 struct perf_event_context *ctx, *uninitialized_var(gctx);
8269 struct file *event_file = NULL;
8270 struct fd group = {NULL, 0};
8271 struct task_struct *task = NULL;
8272 struct pmu *pmu;
8273 int event_fd;
8274 int move_group = 0;
8275 int err;
8276 int f_flags = O_RDWR;
8277 int cgroup_fd = -1;
8278
8279 /* for future expandability... */
8280 if (flags & ~PERF_FLAG_ALL)
8281 return -EINVAL;
8282
8283 err = perf_copy_attr(attr_uptr, &attr);
8284 if (err)
8285 return err;
8286
8287 if (!attr.exclude_kernel) {
8288 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
8289 return -EACCES;
8290 }
8291
8292 if (attr.freq) {
8293 if (attr.sample_freq > sysctl_perf_event_sample_rate)
8294 return -EINVAL;
8295 } else {
8296 if (attr.sample_period & (1ULL << 63))
8297 return -EINVAL;
8298 }
8299
8300 /*
8301 * In cgroup mode, the pid argument is used to pass the fd
8302 * opened to the cgroup directory in cgroupfs. The cpu argument
8303 * designates the cpu on which to monitor threads from that
8304 * cgroup.
8305 */
8306 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
8307 return -EINVAL;
8308
8309 if (flags & PERF_FLAG_FD_CLOEXEC)
8310 f_flags |= O_CLOEXEC;
8311
8312 event_fd = get_unused_fd_flags(f_flags);
8313 if (event_fd < 0)
8314 return event_fd;
8315
8316 if (group_fd != -1) {
8317 err = perf_fget_light(group_fd, &group);
8318 if (err)
8319 goto err_fd;
8320 group_leader = group.file->private_data;
8321 if (flags & PERF_FLAG_FD_OUTPUT)
8322 output_event = group_leader;
8323 if (flags & PERF_FLAG_FD_NO_GROUP)
8324 group_leader = NULL;
8325 }
8326
8327 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
8328 task = find_lively_task_by_vpid(pid);
8329 if (IS_ERR(task)) {
8330 err = PTR_ERR(task);
8331 goto err_group_fd;
8332 }
8333 }
8334
8335 if (task && group_leader &&
8336 group_leader->attr.inherit != attr.inherit) {
8337 err = -EINVAL;
8338 goto err_task;
8339 }
8340
8341 get_online_cpus();
8342
8343 if (flags & PERF_FLAG_PID_CGROUP)
8344 cgroup_fd = pid;
8345
8346 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
8347 NULL, NULL, cgroup_fd);
8348 if (IS_ERR(event)) {
8349 err = PTR_ERR(event);
8350 goto err_cpus;
8351 }
8352
8353 if (is_sampling_event(event)) {
8354 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
8355 err = -ENOTSUPP;
8356 goto err_alloc;
8357 }
8358 }
8359
8360 account_event(event);
8361
8362 /*
8363 * Special case software events and allow them to be part of
8364 * any hardware group.
8365 */
8366 pmu = event->pmu;
8367
8368 if (attr.use_clockid) {
8369 err = perf_event_set_clock(event, attr.clockid);
8370 if (err)
8371 goto err_alloc;
8372 }
8373
8374 if (group_leader &&
8375 (is_software_event(event) != is_software_event(group_leader))) {
8376 if (is_software_event(event)) {
8377 /*
8378 * If event and group_leader are not both a software
8379 * event, and event is, then group leader is not.
8380 *
8381 * Allow the addition of software events to !software
8382 * groups, this is safe because software events never
8383 * fail to schedule.
8384 */
8385 pmu = group_leader->pmu;
8386 } else if (is_software_event(group_leader) &&
8387 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
8388 /*
8389 * In case the group is a pure software group, and we
8390 * try to add a hardware event, move the whole group to
8391 * the hardware context.
8392 */
8393 move_group = 1;
8394 }
8395 }
8396
8397 /*
8398 * Get the target context (task or percpu):
8399 */
8400 ctx = find_get_context(pmu, task, event);
8401 if (IS_ERR(ctx)) {
8402 err = PTR_ERR(ctx);
8403 goto err_alloc;
8404 }
8405
8406 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
8407 err = -EBUSY;
8408 goto err_context;
8409 }
8410
8411 if (task) {
8412 put_task_struct(task);
8413 task = NULL;
8414 }
8415
8416 /*
8417 * Look up the group leader (we will attach this event to it):
8418 */
8419 if (group_leader) {
8420 err = -EINVAL;
8421
8422 /*
8423 * Do not allow a recursive hierarchy (this new sibling
8424 * becoming part of another group-sibling):
8425 */
8426 if (group_leader->group_leader != group_leader)
8427 goto err_context;
8428
8429 /* All events in a group should have the same clock */
8430 if (group_leader->clock != event->clock)
8431 goto err_context;
8432
8433 /*
8434 * Do not allow to attach to a group in a different
8435 * task or CPU context:
8436 */
8437 if (move_group) {
8438 /*
8439 * Make sure we're both on the same task, or both
8440 * per-cpu events.
8441 */
8442 if (group_leader->ctx->task != ctx->task)
8443 goto err_context;
8444
8445 /*
8446 * Make sure we're both events for the same CPU;
8447 * grouping events for different CPUs is broken; since
8448 * you can never concurrently schedule them anyhow.
8449 */
8450 if (group_leader->cpu != event->cpu)
8451 goto err_context;
8452 } else {
8453 if (group_leader->ctx != ctx)
8454 goto err_context;
8455 }
8456
8457 /*
8458 * Only a group leader can be exclusive or pinned
8459 */
8460 if (attr.exclusive || attr.pinned)
8461 goto err_context;
8462 }
8463
8464 if (output_event) {
8465 err = perf_event_set_output(event, output_event);
8466 if (err)
8467 goto err_context;
8468 }
8469
8470 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
8471 f_flags);
8472 if (IS_ERR(event_file)) {
8473 err = PTR_ERR(event_file);
8474 goto err_context;
8475 }
8476
8477 if (move_group) {
8478 gctx = group_leader->ctx;
8479 mutex_lock_double(&gctx->mutex, &ctx->mutex);
8480 } else {
8481 mutex_lock(&ctx->mutex);
8482 }
8483
8484 if (!perf_event_validate_size(event)) {
8485 err = -E2BIG;
8486 goto err_locked;
8487 }
8488
8489 /*
8490 * Must be under the same ctx::mutex as perf_install_in_context(),
8491 * because we need to serialize with concurrent event creation.
8492 */
8493 if (!exclusive_event_installable(event, ctx)) {
8494 /* exclusive and group stuff are assumed mutually exclusive */
8495 WARN_ON_ONCE(move_group);
8496
8497 err = -EBUSY;
8498 goto err_locked;
8499 }
8500
8501 WARN_ON_ONCE(ctx->parent_ctx);
8502
8503 if (move_group) {
8504 /*
8505 * See perf_event_ctx_lock() for comments on the details
8506 * of swizzling perf_event::ctx.
8507 */
8508 perf_remove_from_context(group_leader, false);
8509
8510 list_for_each_entry(sibling, &group_leader->sibling_list,
8511 group_entry) {
8512 perf_remove_from_context(sibling, false);
8513 put_ctx(gctx);
8514 }
8515
8516 /*
8517 * Wait for everybody to stop referencing the events through
8518 * the old lists, before installing it on new lists.
8519 */
8520 synchronize_rcu();
8521
8522 /*
8523 * Install the group siblings before the group leader.
8524 *
8525 * Because a group leader will try and install the entire group
8526 * (through the sibling list, which is still in-tact), we can
8527 * end up with siblings installed in the wrong context.
8528 *
8529 * By installing siblings first we NO-OP because they're not
8530 * reachable through the group lists.
8531 */
8532 list_for_each_entry(sibling, &group_leader->sibling_list,
8533 group_entry) {
8534 perf_event__state_init(sibling);
8535 perf_install_in_context(ctx, sibling, sibling->cpu);
8536 get_ctx(ctx);
8537 }
8538
8539 /*
8540 * Removing from the context ends up with disabled
8541 * event. What we want here is event in the initial
8542 * startup state, ready to be add into new context.
8543 */
8544 perf_event__state_init(group_leader);
8545 perf_install_in_context(ctx, group_leader, group_leader->cpu);
8546 get_ctx(ctx);
8547
8548 /*
8549 * Now that all events are installed in @ctx, nothing
8550 * references @gctx anymore, so drop the last reference we have
8551 * on it.
8552 */
8553 put_ctx(gctx);
8554 }
8555
8556 /*
8557 * Precalculate sample_data sizes; do while holding ctx::mutex such
8558 * that we're serialized against further additions and before
8559 * perf_install_in_context() which is the point the event is active and
8560 * can use these values.
8561 */
8562 perf_event__header_size(event);
8563 perf_event__id_header_size(event);
8564
8565 perf_install_in_context(ctx, event, event->cpu);
8566 perf_unpin_context(ctx);
8567
8568 if (move_group)
8569 mutex_unlock(&gctx->mutex);
8570 mutex_unlock(&ctx->mutex);
8571
8572 put_online_cpus();
8573
8574 event->owner = current;
8575
8576 mutex_lock(&current->perf_event_mutex);
8577 list_add_tail(&event->owner_entry, &current->perf_event_list);
8578 mutex_unlock(&current->perf_event_mutex);
8579
8580 /*
8581 * Drop the reference on the group_event after placing the
8582 * new event on the sibling_list. This ensures destruction
8583 * of the group leader will find the pointer to itself in
8584 * perf_group_detach().
8585 */
8586 fdput(group);
8587 fd_install(event_fd, event_file);
8588 return event_fd;
8589
8590 err_locked:
8591 if (move_group)
8592 mutex_unlock(&gctx->mutex);
8593 mutex_unlock(&ctx->mutex);
8594 /* err_file: */
8595 fput(event_file);
8596 err_context:
8597 perf_unpin_context(ctx);
8598 put_ctx(ctx);
8599 err_alloc:
8600 free_event(event);
8601 err_cpus:
8602 put_online_cpus();
8603 err_task:
8604 if (task)
8605 put_task_struct(task);
8606 err_group_fd:
8607 fdput(group);
8608 err_fd:
8609 put_unused_fd(event_fd);
8610 return err;
8611 }
8612
8613 /**
8614 * perf_event_create_kernel_counter
8615 *
8616 * @attr: attributes of the counter to create
8617 * @cpu: cpu in which the counter is bound
8618 * @task: task to profile (NULL for percpu)
8619 */
8620 struct perf_event *
8621 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
8622 struct task_struct *task,
8623 perf_overflow_handler_t overflow_handler,
8624 void *context)
8625 {
8626 struct perf_event_context *ctx;
8627 struct perf_event *event;
8628 int err;
8629
8630 /*
8631 * Get the target context (task or percpu):
8632 */
8633
8634 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
8635 overflow_handler, context, -1);
8636 if (IS_ERR(event)) {
8637 err = PTR_ERR(event);
8638 goto err;
8639 }
8640
8641 /* Mark owner so we could distinguish it from user events. */
8642 event->owner = EVENT_OWNER_KERNEL;
8643
8644 account_event(event);
8645
8646 ctx = find_get_context(event->pmu, task, event);
8647 if (IS_ERR(ctx)) {
8648 err = PTR_ERR(ctx);
8649 goto err_free;
8650 }
8651
8652 WARN_ON_ONCE(ctx->parent_ctx);
8653 mutex_lock(&ctx->mutex);
8654 if (!exclusive_event_installable(event, ctx)) {
8655 mutex_unlock(&ctx->mutex);
8656 perf_unpin_context(ctx);
8657 put_ctx(ctx);
8658 err = -EBUSY;
8659 goto err_free;
8660 }
8661
8662 perf_install_in_context(ctx, event, cpu);
8663 perf_unpin_context(ctx);
8664 mutex_unlock(&ctx->mutex);
8665
8666 return event;
8667
8668 err_free:
8669 free_event(event);
8670 err:
8671 return ERR_PTR(err);
8672 }
8673 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
8674
8675 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
8676 {
8677 struct perf_event_context *src_ctx;
8678 struct perf_event_context *dst_ctx;
8679 struct perf_event *event, *tmp;
8680 LIST_HEAD(events);
8681
8682 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
8683 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
8684
8685 /*
8686 * See perf_event_ctx_lock() for comments on the details
8687 * of swizzling perf_event::ctx.
8688 */
8689 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
8690 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
8691 event_entry) {
8692 perf_remove_from_context(event, false);
8693 unaccount_event_cpu(event, src_cpu);
8694 put_ctx(src_ctx);
8695 list_add(&event->migrate_entry, &events);
8696 }
8697
8698 /*
8699 * Wait for the events to quiesce before re-instating them.
8700 */
8701 synchronize_rcu();
8702
8703 /*
8704 * Re-instate events in 2 passes.
8705 *
8706 * Skip over group leaders and only install siblings on this first
8707 * pass, siblings will not get enabled without a leader, however a
8708 * leader will enable its siblings, even if those are still on the old
8709 * context.
8710 */
8711 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8712 if (event->group_leader == event)
8713 continue;
8714
8715 list_del(&event->migrate_entry);
8716 if (event->state >= PERF_EVENT_STATE_OFF)
8717 event->state = PERF_EVENT_STATE_INACTIVE;
8718 account_event_cpu(event, dst_cpu);
8719 perf_install_in_context(dst_ctx, event, dst_cpu);
8720 get_ctx(dst_ctx);
8721 }
8722
8723 /*
8724 * Once all the siblings are setup properly, install the group leaders
8725 * to make it go.
8726 */
8727 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8728 list_del(&event->migrate_entry);
8729 if (event->state >= PERF_EVENT_STATE_OFF)
8730 event->state = PERF_EVENT_STATE_INACTIVE;
8731 account_event_cpu(event, dst_cpu);
8732 perf_install_in_context(dst_ctx, event, dst_cpu);
8733 get_ctx(dst_ctx);
8734 }
8735 mutex_unlock(&dst_ctx->mutex);
8736 mutex_unlock(&src_ctx->mutex);
8737 }
8738 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
8739
8740 static void sync_child_event(struct perf_event *child_event,
8741 struct task_struct *child)
8742 {
8743 struct perf_event *parent_event = child_event->parent;
8744 u64 child_val;
8745
8746 if (child_event->attr.inherit_stat)
8747 perf_event_read_event(child_event, child);
8748
8749 child_val = perf_event_count(child_event);
8750
8751 /*
8752 * Add back the child's count to the parent's count:
8753 */
8754 atomic64_add(child_val, &parent_event->child_count);
8755 atomic64_add(child_event->total_time_enabled,
8756 &parent_event->child_total_time_enabled);
8757 atomic64_add(child_event->total_time_running,
8758 &parent_event->child_total_time_running);
8759
8760 /*
8761 * Remove this event from the parent's list
8762 */
8763 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
8764 mutex_lock(&parent_event->child_mutex);
8765 list_del_init(&child_event->child_list);
8766 mutex_unlock(&parent_event->child_mutex);
8767
8768 /*
8769 * Make sure user/parent get notified, that we just
8770 * lost one event.
8771 */
8772 perf_event_wakeup(parent_event);
8773
8774 /*
8775 * Release the parent event, if this was the last
8776 * reference to it.
8777 */
8778 put_event(parent_event);
8779 }
8780
8781 static void
8782 __perf_event_exit_task(struct perf_event *child_event,
8783 struct perf_event_context *child_ctx,
8784 struct task_struct *child)
8785 {
8786 /*
8787 * Do not destroy the 'original' grouping; because of the context
8788 * switch optimization the original events could've ended up in a
8789 * random child task.
8790 *
8791 * If we were to destroy the original group, all group related
8792 * operations would cease to function properly after this random
8793 * child dies.
8794 *
8795 * Do destroy all inherited groups, we don't care about those
8796 * and being thorough is better.
8797 */
8798 perf_remove_from_context(child_event, !!child_event->parent);
8799
8800 /*
8801 * It can happen that the parent exits first, and has events
8802 * that are still around due to the child reference. These
8803 * events need to be zapped.
8804 */
8805 if (child_event->parent) {
8806 sync_child_event(child_event, child);
8807 free_event(child_event);
8808 } else {
8809 child_event->state = PERF_EVENT_STATE_EXIT;
8810 perf_event_wakeup(child_event);
8811 }
8812 }
8813
8814 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
8815 {
8816 struct perf_event *child_event, *next;
8817 struct perf_event_context *child_ctx, *clone_ctx = NULL;
8818 unsigned long flags;
8819
8820 if (likely(!child->perf_event_ctxp[ctxn]))
8821 return;
8822
8823 local_irq_save(flags);
8824 /*
8825 * We can't reschedule here because interrupts are disabled,
8826 * and either child is current or it is a task that can't be
8827 * scheduled, so we are now safe from rescheduling changing
8828 * our context.
8829 */
8830 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
8831
8832 /*
8833 * Take the context lock here so that if find_get_context is
8834 * reading child->perf_event_ctxp, we wait until it has
8835 * incremented the context's refcount before we do put_ctx below.
8836 */
8837 raw_spin_lock(&child_ctx->lock);
8838 task_ctx_sched_out(child_ctx);
8839 child->perf_event_ctxp[ctxn] = NULL;
8840
8841 /*
8842 * If this context is a clone; unclone it so it can't get
8843 * swapped to another process while we're removing all
8844 * the events from it.
8845 */
8846 clone_ctx = unclone_ctx(child_ctx);
8847 update_context_time(child_ctx);
8848 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
8849
8850 if (clone_ctx)
8851 put_ctx(clone_ctx);
8852
8853 /*
8854 * Report the task dead after unscheduling the events so that we
8855 * won't get any samples after PERF_RECORD_EXIT. We can however still
8856 * get a few PERF_RECORD_READ events.
8857 */
8858 perf_event_task(child, child_ctx, 0);
8859
8860 /*
8861 * We can recurse on the same lock type through:
8862 *
8863 * __perf_event_exit_task()
8864 * sync_child_event()
8865 * put_event()
8866 * mutex_lock(&ctx->mutex)
8867 *
8868 * But since its the parent context it won't be the same instance.
8869 */
8870 mutex_lock(&child_ctx->mutex);
8871
8872 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
8873 __perf_event_exit_task(child_event, child_ctx, child);
8874
8875 mutex_unlock(&child_ctx->mutex);
8876
8877 put_ctx(child_ctx);
8878 }
8879
8880 /*
8881 * When a child task exits, feed back event values to parent events.
8882 */
8883 void perf_event_exit_task(struct task_struct *child)
8884 {
8885 struct perf_event *event, *tmp;
8886 int ctxn;
8887
8888 mutex_lock(&child->perf_event_mutex);
8889 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
8890 owner_entry) {
8891 list_del_init(&event->owner_entry);
8892
8893 /*
8894 * Ensure the list deletion is visible before we clear
8895 * the owner, closes a race against perf_release() where
8896 * we need to serialize on the owner->perf_event_mutex.
8897 */
8898 smp_wmb();
8899 event->owner = NULL;
8900 }
8901 mutex_unlock(&child->perf_event_mutex);
8902
8903 for_each_task_context_nr(ctxn)
8904 perf_event_exit_task_context(child, ctxn);
8905
8906 /*
8907 * The perf_event_exit_task_context calls perf_event_task
8908 * with child's task_ctx, which generates EXIT events for
8909 * child contexts and sets child->perf_event_ctxp[] to NULL.
8910 * At this point we need to send EXIT events to cpu contexts.
8911 */
8912 perf_event_task(child, NULL, 0);
8913 }
8914
8915 static void perf_free_event(struct perf_event *event,
8916 struct perf_event_context *ctx)
8917 {
8918 struct perf_event *parent = event->parent;
8919
8920 if (WARN_ON_ONCE(!parent))
8921 return;
8922
8923 mutex_lock(&parent->child_mutex);
8924 list_del_init(&event->child_list);
8925 mutex_unlock(&parent->child_mutex);
8926
8927 put_event(parent);
8928
8929 raw_spin_lock_irq(&ctx->lock);
8930 perf_group_detach(event);
8931 list_del_event(event, ctx);
8932 raw_spin_unlock_irq(&ctx->lock);
8933 free_event(event);
8934 }
8935
8936 /*
8937 * Free an unexposed, unused context as created by inheritance by
8938 * perf_event_init_task below, used by fork() in case of fail.
8939 *
8940 * Not all locks are strictly required, but take them anyway to be nice and
8941 * help out with the lockdep assertions.
8942 */
8943 void perf_event_free_task(struct task_struct *task)
8944 {
8945 struct perf_event_context *ctx;
8946 struct perf_event *event, *tmp;
8947 int ctxn;
8948
8949 for_each_task_context_nr(ctxn) {
8950 ctx = task->perf_event_ctxp[ctxn];
8951 if (!ctx)
8952 continue;
8953
8954 mutex_lock(&ctx->mutex);
8955 again:
8956 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
8957 group_entry)
8958 perf_free_event(event, ctx);
8959
8960 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
8961 group_entry)
8962 perf_free_event(event, ctx);
8963
8964 if (!list_empty(&ctx->pinned_groups) ||
8965 !list_empty(&ctx->flexible_groups))
8966 goto again;
8967
8968 mutex_unlock(&ctx->mutex);
8969
8970 put_ctx(ctx);
8971 }
8972 }
8973
8974 void perf_event_delayed_put(struct task_struct *task)
8975 {
8976 int ctxn;
8977
8978 for_each_task_context_nr(ctxn)
8979 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
8980 }
8981
8982 struct perf_event *perf_event_get(unsigned int fd)
8983 {
8984 int err;
8985 struct fd f;
8986 struct perf_event *event;
8987
8988 err = perf_fget_light(fd, &f);
8989 if (err)
8990 return ERR_PTR(err);
8991
8992 event = f.file->private_data;
8993 atomic_long_inc(&event->refcount);
8994 fdput(f);
8995
8996 return event;
8997 }
8998
8999 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
9000 {
9001 if (!event)
9002 return ERR_PTR(-EINVAL);
9003
9004 return &event->attr;
9005 }
9006
9007 /*
9008 * inherit a event from parent task to child task:
9009 */
9010 static struct perf_event *
9011 inherit_event(struct perf_event *parent_event,
9012 struct task_struct *parent,
9013 struct perf_event_context *parent_ctx,
9014 struct task_struct *child,
9015 struct perf_event *group_leader,
9016 struct perf_event_context *child_ctx)
9017 {
9018 enum perf_event_active_state parent_state = parent_event->state;
9019 struct perf_event *child_event;
9020 unsigned long flags;
9021
9022 /*
9023 * Instead of creating recursive hierarchies of events,
9024 * we link inherited events back to the original parent,
9025 * which has a filp for sure, which we use as the reference
9026 * count:
9027 */
9028 if (parent_event->parent)
9029 parent_event = parent_event->parent;
9030
9031 child_event = perf_event_alloc(&parent_event->attr,
9032 parent_event->cpu,
9033 child,
9034 group_leader, parent_event,
9035 NULL, NULL, -1);
9036 if (IS_ERR(child_event))
9037 return child_event;
9038
9039 if (is_orphaned_event(parent_event) ||
9040 !atomic_long_inc_not_zero(&parent_event->refcount)) {
9041 free_event(child_event);
9042 return NULL;
9043 }
9044
9045 get_ctx(child_ctx);
9046
9047 /*
9048 * Make the child state follow the state of the parent event,
9049 * not its attr.disabled bit. We hold the parent's mutex,
9050 * so we won't race with perf_event_{en, dis}able_family.
9051 */
9052 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
9053 child_event->state = PERF_EVENT_STATE_INACTIVE;
9054 else
9055 child_event->state = PERF_EVENT_STATE_OFF;
9056
9057 if (parent_event->attr.freq) {
9058 u64 sample_period = parent_event->hw.sample_period;
9059 struct hw_perf_event *hwc = &child_event->hw;
9060
9061 hwc->sample_period = sample_period;
9062 hwc->last_period = sample_period;
9063
9064 local64_set(&hwc->period_left, sample_period);
9065 }
9066
9067 child_event->ctx = child_ctx;
9068 child_event->overflow_handler = parent_event->overflow_handler;
9069 child_event->overflow_handler_context
9070 = parent_event->overflow_handler_context;
9071
9072 /*
9073 * Precalculate sample_data sizes
9074 */
9075 perf_event__header_size(child_event);
9076 perf_event__id_header_size(child_event);
9077
9078 /*
9079 * Link it up in the child's context:
9080 */
9081 raw_spin_lock_irqsave(&child_ctx->lock, flags);
9082 add_event_to_ctx(child_event, child_ctx);
9083 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
9084
9085 /*
9086 * Link this into the parent event's child list
9087 */
9088 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
9089 mutex_lock(&parent_event->child_mutex);
9090 list_add_tail(&child_event->child_list, &parent_event->child_list);
9091 mutex_unlock(&parent_event->child_mutex);
9092
9093 return child_event;
9094 }
9095
9096 static int inherit_group(struct perf_event *parent_event,
9097 struct task_struct *parent,
9098 struct perf_event_context *parent_ctx,
9099 struct task_struct *child,
9100 struct perf_event_context *child_ctx)
9101 {
9102 struct perf_event *leader;
9103 struct perf_event *sub;
9104 struct perf_event *child_ctr;
9105
9106 leader = inherit_event(parent_event, parent, parent_ctx,
9107 child, NULL, child_ctx);
9108 if (IS_ERR(leader))
9109 return PTR_ERR(leader);
9110 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
9111 child_ctr = inherit_event(sub, parent, parent_ctx,
9112 child, leader, child_ctx);
9113 if (IS_ERR(child_ctr))
9114 return PTR_ERR(child_ctr);
9115 }
9116 return 0;
9117 }
9118
9119 static int
9120 inherit_task_group(struct perf_event *event, struct task_struct *parent,
9121 struct perf_event_context *parent_ctx,
9122 struct task_struct *child, int ctxn,
9123 int *inherited_all)
9124 {
9125 int ret;
9126 struct perf_event_context *child_ctx;
9127
9128 if (!event->attr.inherit) {
9129 *inherited_all = 0;
9130 return 0;
9131 }
9132
9133 child_ctx = child->perf_event_ctxp[ctxn];
9134 if (!child_ctx) {
9135 /*
9136 * This is executed from the parent task context, so
9137 * inherit events that have been marked for cloning.
9138 * First allocate and initialize a context for the
9139 * child.
9140 */
9141
9142 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
9143 if (!child_ctx)
9144 return -ENOMEM;
9145
9146 child->perf_event_ctxp[ctxn] = child_ctx;
9147 }
9148
9149 ret = inherit_group(event, parent, parent_ctx,
9150 child, child_ctx);
9151
9152 if (ret)
9153 *inherited_all = 0;
9154
9155 return ret;
9156 }
9157
9158 /*
9159 * Initialize the perf_event context in task_struct
9160 */
9161 static int perf_event_init_context(struct task_struct *child, int ctxn)
9162 {
9163 struct perf_event_context *child_ctx, *parent_ctx;
9164 struct perf_event_context *cloned_ctx;
9165 struct perf_event *event;
9166 struct task_struct *parent = current;
9167 int inherited_all = 1;
9168 unsigned long flags;
9169 int ret = 0;
9170
9171 if (likely(!parent->perf_event_ctxp[ctxn]))
9172 return 0;
9173
9174 /*
9175 * If the parent's context is a clone, pin it so it won't get
9176 * swapped under us.
9177 */
9178 parent_ctx = perf_pin_task_context(parent, ctxn);
9179 if (!parent_ctx)
9180 return 0;
9181
9182 /*
9183 * No need to check if parent_ctx != NULL here; since we saw
9184 * it non-NULL earlier, the only reason for it to become NULL
9185 * is if we exit, and since we're currently in the middle of
9186 * a fork we can't be exiting at the same time.
9187 */
9188
9189 /*
9190 * Lock the parent list. No need to lock the child - not PID
9191 * hashed yet and not running, so nobody can access it.
9192 */
9193 mutex_lock(&parent_ctx->mutex);
9194
9195 /*
9196 * We dont have to disable NMIs - we are only looking at
9197 * the list, not manipulating it:
9198 */
9199 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
9200 ret = inherit_task_group(event, parent, parent_ctx,
9201 child, ctxn, &inherited_all);
9202 if (ret)
9203 break;
9204 }
9205
9206 /*
9207 * We can't hold ctx->lock when iterating the ->flexible_group list due
9208 * to allocations, but we need to prevent rotation because
9209 * rotate_ctx() will change the list from interrupt context.
9210 */
9211 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
9212 parent_ctx->rotate_disable = 1;
9213 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
9214
9215 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
9216 ret = inherit_task_group(event, parent, parent_ctx,
9217 child, ctxn, &inherited_all);
9218 if (ret)
9219 break;
9220 }
9221
9222 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
9223 parent_ctx->rotate_disable = 0;
9224
9225 child_ctx = child->perf_event_ctxp[ctxn];
9226
9227 if (child_ctx && inherited_all) {
9228 /*
9229 * Mark the child context as a clone of the parent
9230 * context, or of whatever the parent is a clone of.
9231 *
9232 * Note that if the parent is a clone, the holding of
9233 * parent_ctx->lock avoids it from being uncloned.
9234 */
9235 cloned_ctx = parent_ctx->parent_ctx;
9236 if (cloned_ctx) {
9237 child_ctx->parent_ctx = cloned_ctx;
9238 child_ctx->parent_gen = parent_ctx->parent_gen;
9239 } else {
9240 child_ctx->parent_ctx = parent_ctx;
9241 child_ctx->parent_gen = parent_ctx->generation;
9242 }
9243 get_ctx(child_ctx->parent_ctx);
9244 }
9245
9246 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
9247 mutex_unlock(&parent_ctx->mutex);
9248
9249 perf_unpin_context(parent_ctx);
9250 put_ctx(parent_ctx);
9251
9252 return ret;
9253 }
9254
9255 /*
9256 * Initialize the perf_event context in task_struct
9257 */
9258 int perf_event_init_task(struct task_struct *child)
9259 {
9260 int ctxn, ret;
9261
9262 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
9263 mutex_init(&child->perf_event_mutex);
9264 INIT_LIST_HEAD(&child->perf_event_list);
9265
9266 for_each_task_context_nr(ctxn) {
9267 ret = perf_event_init_context(child, ctxn);
9268 if (ret) {
9269 perf_event_free_task(child);
9270 return ret;
9271 }
9272 }
9273
9274 return 0;
9275 }
9276
9277 static void __init perf_event_init_all_cpus(void)
9278 {
9279 struct swevent_htable *swhash;
9280 int cpu;
9281
9282 for_each_possible_cpu(cpu) {
9283 swhash = &per_cpu(swevent_htable, cpu);
9284 mutex_init(&swhash->hlist_mutex);
9285 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
9286 }
9287 }
9288
9289 static void perf_event_init_cpu(int cpu)
9290 {
9291 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9292
9293 mutex_lock(&swhash->hlist_mutex);
9294 swhash->online = true;
9295 if (swhash->hlist_refcount > 0) {
9296 struct swevent_hlist *hlist;
9297
9298 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
9299 WARN_ON(!hlist);
9300 rcu_assign_pointer(swhash->swevent_hlist, hlist);
9301 }
9302 mutex_unlock(&swhash->hlist_mutex);
9303 }
9304
9305 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
9306 static void __perf_event_exit_context(void *__info)
9307 {
9308 struct remove_event re = { .detach_group = true };
9309 struct perf_event_context *ctx = __info;
9310
9311 rcu_read_lock();
9312 list_for_each_entry_rcu(re.event, &ctx->event_list, event_entry)
9313 __perf_remove_from_context(&re);
9314 rcu_read_unlock();
9315 }
9316
9317 static void perf_event_exit_cpu_context(int cpu)
9318 {
9319 struct perf_event_context *ctx;
9320 struct pmu *pmu;
9321 int idx;
9322
9323 idx = srcu_read_lock(&pmus_srcu);
9324 list_for_each_entry_rcu(pmu, &pmus, entry) {
9325 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
9326
9327 mutex_lock(&ctx->mutex);
9328 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
9329 mutex_unlock(&ctx->mutex);
9330 }
9331 srcu_read_unlock(&pmus_srcu, idx);
9332 }
9333
9334 static void perf_event_exit_cpu(int cpu)
9335 {
9336 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9337
9338 perf_event_exit_cpu_context(cpu);
9339
9340 mutex_lock(&swhash->hlist_mutex);
9341 swhash->online = false;
9342 swevent_hlist_release(swhash);
9343 mutex_unlock(&swhash->hlist_mutex);
9344 }
9345 #else
9346 static inline void perf_event_exit_cpu(int cpu) { }
9347 #endif
9348
9349 static int
9350 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
9351 {
9352 int cpu;
9353
9354 for_each_online_cpu(cpu)
9355 perf_event_exit_cpu(cpu);
9356
9357 return NOTIFY_OK;
9358 }
9359
9360 /*
9361 * Run the perf reboot notifier at the very last possible moment so that
9362 * the generic watchdog code runs as long as possible.
9363 */
9364 static struct notifier_block perf_reboot_notifier = {
9365 .notifier_call = perf_reboot,
9366 .priority = INT_MIN,
9367 };
9368
9369 static int
9370 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
9371 {
9372 unsigned int cpu = (long)hcpu;
9373
9374 switch (action & ~CPU_TASKS_FROZEN) {
9375
9376 case CPU_UP_PREPARE:
9377 case CPU_DOWN_FAILED:
9378 perf_event_init_cpu(cpu);
9379 break;
9380
9381 case CPU_UP_CANCELED:
9382 case CPU_DOWN_PREPARE:
9383 perf_event_exit_cpu(cpu);
9384 break;
9385 default:
9386 break;
9387 }
9388
9389 return NOTIFY_OK;
9390 }
9391
9392 void __init perf_event_init(void)
9393 {
9394 int ret;
9395
9396 idr_init(&pmu_idr);
9397
9398 perf_event_init_all_cpus();
9399 init_srcu_struct(&pmus_srcu);
9400 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
9401 perf_pmu_register(&perf_cpu_clock, NULL, -1);
9402 perf_pmu_register(&perf_task_clock, NULL, -1);
9403 perf_tp_register();
9404 perf_cpu_notifier(perf_cpu_notify);
9405 register_reboot_notifier(&perf_reboot_notifier);
9406
9407 ret = init_hw_breakpoint();
9408 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
9409
9410 /* do not patch jump label more than once per second */
9411 jump_label_rate_limit(&perf_sched_events, HZ);
9412
9413 /*
9414 * Build time assertion that we keep the data_head at the intended
9415 * location. IOW, validation we got the __reserved[] size right.
9416 */
9417 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
9418 != 1024);
9419 }
9420
9421 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
9422 char *page)
9423 {
9424 struct perf_pmu_events_attr *pmu_attr =
9425 container_of(attr, struct perf_pmu_events_attr, attr);
9426
9427 if (pmu_attr->event_str)
9428 return sprintf(page, "%s\n", pmu_attr->event_str);
9429
9430 return 0;
9431 }
9432
9433 static int __init perf_event_sysfs_init(void)
9434 {
9435 struct pmu *pmu;
9436 int ret;
9437
9438 mutex_lock(&pmus_lock);
9439
9440 ret = bus_register(&pmu_bus);
9441 if (ret)
9442 goto unlock;
9443
9444 list_for_each_entry(pmu, &pmus, entry) {
9445 if (!pmu->name || pmu->type < 0)
9446 continue;
9447
9448 ret = pmu_dev_alloc(pmu);
9449 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
9450 }
9451 pmu_bus_running = 1;
9452 ret = 0;
9453
9454 unlock:
9455 mutex_unlock(&pmus_lock);
9456
9457 return ret;
9458 }
9459 device_initcall(perf_event_sysfs_init);
9460
9461 #ifdef CONFIG_CGROUP_PERF
9462 static struct cgroup_subsys_state *
9463 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
9464 {
9465 struct perf_cgroup *jc;
9466
9467 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
9468 if (!jc)
9469 return ERR_PTR(-ENOMEM);
9470
9471 jc->info = alloc_percpu(struct perf_cgroup_info);
9472 if (!jc->info) {
9473 kfree(jc);
9474 return ERR_PTR(-ENOMEM);
9475 }
9476
9477 return &jc->css;
9478 }
9479
9480 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
9481 {
9482 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
9483
9484 free_percpu(jc->info);
9485 kfree(jc);
9486 }
9487
9488 static int __perf_cgroup_move(void *info)
9489 {
9490 struct task_struct *task = info;
9491 rcu_read_lock();
9492 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
9493 rcu_read_unlock();
9494 return 0;
9495 }
9496
9497 static void perf_cgroup_attach(struct cgroup_taskset *tset)
9498 {
9499 struct task_struct *task;
9500 struct cgroup_subsys_state *css;
9501
9502 cgroup_taskset_for_each(task, css, tset)
9503 task_function_call(task, __perf_cgroup_move, task);
9504 }
9505
9506 struct cgroup_subsys perf_event_cgrp_subsys = {
9507 .css_alloc = perf_cgroup_css_alloc,
9508 .css_free = perf_cgroup_css_free,
9509 .attach = perf_cgroup_attach,
9510 };
9511 #endif /* CONFIG_CGROUP_PERF */