]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - kernel/events/core.c
Merge tag 'md/4.10-rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/shli/md
[mirror_ubuntu-zesty-kernel.git] / kernel / events / core.c
1 /*
2 * Performance events core code:
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49
50 #include "internal.h"
51
52 #include <asm/irq_regs.h>
53
54 typedef int (*remote_function_f)(void *);
55
56 struct remote_function_call {
57 struct task_struct *p;
58 remote_function_f func;
59 void *info;
60 int ret;
61 };
62
63 static void remote_function(void *data)
64 {
65 struct remote_function_call *tfc = data;
66 struct task_struct *p = tfc->p;
67
68 if (p) {
69 /* -EAGAIN */
70 if (task_cpu(p) != smp_processor_id())
71 return;
72
73 /*
74 * Now that we're on right CPU with IRQs disabled, we can test
75 * if we hit the right task without races.
76 */
77
78 tfc->ret = -ESRCH; /* No such (running) process */
79 if (p != current)
80 return;
81 }
82
83 tfc->ret = tfc->func(tfc->info);
84 }
85
86 /**
87 * task_function_call - call a function on the cpu on which a task runs
88 * @p: the task to evaluate
89 * @func: the function to be called
90 * @info: the function call argument
91 *
92 * Calls the function @func when the task is currently running. This might
93 * be on the current CPU, which just calls the function directly
94 *
95 * returns: @func return value, or
96 * -ESRCH - when the process isn't running
97 * -EAGAIN - when the process moved away
98 */
99 static int
100 task_function_call(struct task_struct *p, remote_function_f func, void *info)
101 {
102 struct remote_function_call data = {
103 .p = p,
104 .func = func,
105 .info = info,
106 .ret = -EAGAIN,
107 };
108 int ret;
109
110 do {
111 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
112 if (!ret)
113 ret = data.ret;
114 } while (ret == -EAGAIN);
115
116 return ret;
117 }
118
119 /**
120 * cpu_function_call - call a function on the cpu
121 * @func: the function to be called
122 * @info: the function call argument
123 *
124 * Calls the function @func on the remote cpu.
125 *
126 * returns: @func return value or -ENXIO when the cpu is offline
127 */
128 static int cpu_function_call(int cpu, remote_function_f func, void *info)
129 {
130 struct remote_function_call data = {
131 .p = NULL,
132 .func = func,
133 .info = info,
134 .ret = -ENXIO, /* No such CPU */
135 };
136
137 smp_call_function_single(cpu, remote_function, &data, 1);
138
139 return data.ret;
140 }
141
142 static inline struct perf_cpu_context *
143 __get_cpu_context(struct perf_event_context *ctx)
144 {
145 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
146 }
147
148 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
149 struct perf_event_context *ctx)
150 {
151 raw_spin_lock(&cpuctx->ctx.lock);
152 if (ctx)
153 raw_spin_lock(&ctx->lock);
154 }
155
156 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
157 struct perf_event_context *ctx)
158 {
159 if (ctx)
160 raw_spin_unlock(&ctx->lock);
161 raw_spin_unlock(&cpuctx->ctx.lock);
162 }
163
164 #define TASK_TOMBSTONE ((void *)-1L)
165
166 static bool is_kernel_event(struct perf_event *event)
167 {
168 return READ_ONCE(event->owner) == TASK_TOMBSTONE;
169 }
170
171 /*
172 * On task ctx scheduling...
173 *
174 * When !ctx->nr_events a task context will not be scheduled. This means
175 * we can disable the scheduler hooks (for performance) without leaving
176 * pending task ctx state.
177 *
178 * This however results in two special cases:
179 *
180 * - removing the last event from a task ctx; this is relatively straight
181 * forward and is done in __perf_remove_from_context.
182 *
183 * - adding the first event to a task ctx; this is tricky because we cannot
184 * rely on ctx->is_active and therefore cannot use event_function_call().
185 * See perf_install_in_context().
186 *
187 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
188 */
189
190 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
191 struct perf_event_context *, void *);
192
193 struct event_function_struct {
194 struct perf_event *event;
195 event_f func;
196 void *data;
197 };
198
199 static int event_function(void *info)
200 {
201 struct event_function_struct *efs = info;
202 struct perf_event *event = efs->event;
203 struct perf_event_context *ctx = event->ctx;
204 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
205 struct perf_event_context *task_ctx = cpuctx->task_ctx;
206 int ret = 0;
207
208 WARN_ON_ONCE(!irqs_disabled());
209
210 perf_ctx_lock(cpuctx, task_ctx);
211 /*
212 * Since we do the IPI call without holding ctx->lock things can have
213 * changed, double check we hit the task we set out to hit.
214 */
215 if (ctx->task) {
216 if (ctx->task != current) {
217 ret = -ESRCH;
218 goto unlock;
219 }
220
221 /*
222 * We only use event_function_call() on established contexts,
223 * and event_function() is only ever called when active (or
224 * rather, we'll have bailed in task_function_call() or the
225 * above ctx->task != current test), therefore we must have
226 * ctx->is_active here.
227 */
228 WARN_ON_ONCE(!ctx->is_active);
229 /*
230 * And since we have ctx->is_active, cpuctx->task_ctx must
231 * match.
232 */
233 WARN_ON_ONCE(task_ctx != ctx);
234 } else {
235 WARN_ON_ONCE(&cpuctx->ctx != ctx);
236 }
237
238 efs->func(event, cpuctx, ctx, efs->data);
239 unlock:
240 perf_ctx_unlock(cpuctx, task_ctx);
241
242 return ret;
243 }
244
245 static void event_function_call(struct perf_event *event, event_f func, void *data)
246 {
247 struct perf_event_context *ctx = event->ctx;
248 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
249 struct event_function_struct efs = {
250 .event = event,
251 .func = func,
252 .data = data,
253 };
254
255 if (!event->parent) {
256 /*
257 * If this is a !child event, we must hold ctx::mutex to
258 * stabilize the the event->ctx relation. See
259 * perf_event_ctx_lock().
260 */
261 lockdep_assert_held(&ctx->mutex);
262 }
263
264 if (!task) {
265 cpu_function_call(event->cpu, event_function, &efs);
266 return;
267 }
268
269 if (task == TASK_TOMBSTONE)
270 return;
271
272 again:
273 if (!task_function_call(task, event_function, &efs))
274 return;
275
276 raw_spin_lock_irq(&ctx->lock);
277 /*
278 * Reload the task pointer, it might have been changed by
279 * a concurrent perf_event_context_sched_out().
280 */
281 task = ctx->task;
282 if (task == TASK_TOMBSTONE) {
283 raw_spin_unlock_irq(&ctx->lock);
284 return;
285 }
286 if (ctx->is_active) {
287 raw_spin_unlock_irq(&ctx->lock);
288 goto again;
289 }
290 func(event, NULL, ctx, data);
291 raw_spin_unlock_irq(&ctx->lock);
292 }
293
294 /*
295 * Similar to event_function_call() + event_function(), but hard assumes IRQs
296 * are already disabled and we're on the right CPU.
297 */
298 static void event_function_local(struct perf_event *event, event_f func, void *data)
299 {
300 struct perf_event_context *ctx = event->ctx;
301 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
302 struct task_struct *task = READ_ONCE(ctx->task);
303 struct perf_event_context *task_ctx = NULL;
304
305 WARN_ON_ONCE(!irqs_disabled());
306
307 if (task) {
308 if (task == TASK_TOMBSTONE)
309 return;
310
311 task_ctx = ctx;
312 }
313
314 perf_ctx_lock(cpuctx, task_ctx);
315
316 task = ctx->task;
317 if (task == TASK_TOMBSTONE)
318 goto unlock;
319
320 if (task) {
321 /*
322 * We must be either inactive or active and the right task,
323 * otherwise we're screwed, since we cannot IPI to somewhere
324 * else.
325 */
326 if (ctx->is_active) {
327 if (WARN_ON_ONCE(task != current))
328 goto unlock;
329
330 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
331 goto unlock;
332 }
333 } else {
334 WARN_ON_ONCE(&cpuctx->ctx != ctx);
335 }
336
337 func(event, cpuctx, ctx, data);
338 unlock:
339 perf_ctx_unlock(cpuctx, task_ctx);
340 }
341
342 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
343 PERF_FLAG_FD_OUTPUT |\
344 PERF_FLAG_PID_CGROUP |\
345 PERF_FLAG_FD_CLOEXEC)
346
347 /*
348 * branch priv levels that need permission checks
349 */
350 #define PERF_SAMPLE_BRANCH_PERM_PLM \
351 (PERF_SAMPLE_BRANCH_KERNEL |\
352 PERF_SAMPLE_BRANCH_HV)
353
354 enum event_type_t {
355 EVENT_FLEXIBLE = 0x1,
356 EVENT_PINNED = 0x2,
357 EVENT_TIME = 0x4,
358 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
359 };
360
361 /*
362 * perf_sched_events : >0 events exist
363 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
364 */
365
366 static void perf_sched_delayed(struct work_struct *work);
367 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
368 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
369 static DEFINE_MUTEX(perf_sched_mutex);
370 static atomic_t perf_sched_count;
371
372 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
373 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
374 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
375
376 static atomic_t nr_mmap_events __read_mostly;
377 static atomic_t nr_comm_events __read_mostly;
378 static atomic_t nr_task_events __read_mostly;
379 static atomic_t nr_freq_events __read_mostly;
380 static atomic_t nr_switch_events __read_mostly;
381
382 static LIST_HEAD(pmus);
383 static DEFINE_MUTEX(pmus_lock);
384 static struct srcu_struct pmus_srcu;
385
386 /*
387 * perf event paranoia level:
388 * -1 - not paranoid at all
389 * 0 - disallow raw tracepoint access for unpriv
390 * 1 - disallow cpu events for unpriv
391 * 2 - disallow kernel profiling for unpriv
392 */
393 int sysctl_perf_event_paranoid __read_mostly = 2;
394
395 /* Minimum for 512 kiB + 1 user control page */
396 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
397
398 /*
399 * max perf event sample rate
400 */
401 #define DEFAULT_MAX_SAMPLE_RATE 100000
402 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
403 #define DEFAULT_CPU_TIME_MAX_PERCENT 25
404
405 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
406
407 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
408 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
409
410 static int perf_sample_allowed_ns __read_mostly =
411 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
412
413 static void update_perf_cpu_limits(void)
414 {
415 u64 tmp = perf_sample_period_ns;
416
417 tmp *= sysctl_perf_cpu_time_max_percent;
418 tmp = div_u64(tmp, 100);
419 if (!tmp)
420 tmp = 1;
421
422 WRITE_ONCE(perf_sample_allowed_ns, tmp);
423 }
424
425 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
426
427 int perf_proc_update_handler(struct ctl_table *table, int write,
428 void __user *buffer, size_t *lenp,
429 loff_t *ppos)
430 {
431 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
432
433 if (ret || !write)
434 return ret;
435
436 /*
437 * If throttling is disabled don't allow the write:
438 */
439 if (sysctl_perf_cpu_time_max_percent == 100 ||
440 sysctl_perf_cpu_time_max_percent == 0)
441 return -EINVAL;
442
443 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
444 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
445 update_perf_cpu_limits();
446
447 return 0;
448 }
449
450 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
451
452 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
453 void __user *buffer, size_t *lenp,
454 loff_t *ppos)
455 {
456 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
457
458 if (ret || !write)
459 return ret;
460
461 if (sysctl_perf_cpu_time_max_percent == 100 ||
462 sysctl_perf_cpu_time_max_percent == 0) {
463 printk(KERN_WARNING
464 "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
465 WRITE_ONCE(perf_sample_allowed_ns, 0);
466 } else {
467 update_perf_cpu_limits();
468 }
469
470 return 0;
471 }
472
473 /*
474 * perf samples are done in some very critical code paths (NMIs).
475 * If they take too much CPU time, the system can lock up and not
476 * get any real work done. This will drop the sample rate when
477 * we detect that events are taking too long.
478 */
479 #define NR_ACCUMULATED_SAMPLES 128
480 static DEFINE_PER_CPU(u64, running_sample_length);
481
482 static u64 __report_avg;
483 static u64 __report_allowed;
484
485 static void perf_duration_warn(struct irq_work *w)
486 {
487 printk_ratelimited(KERN_INFO
488 "perf: interrupt took too long (%lld > %lld), lowering "
489 "kernel.perf_event_max_sample_rate to %d\n",
490 __report_avg, __report_allowed,
491 sysctl_perf_event_sample_rate);
492 }
493
494 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
495
496 void perf_sample_event_took(u64 sample_len_ns)
497 {
498 u64 max_len = READ_ONCE(perf_sample_allowed_ns);
499 u64 running_len;
500 u64 avg_len;
501 u32 max;
502
503 if (max_len == 0)
504 return;
505
506 /* Decay the counter by 1 average sample. */
507 running_len = __this_cpu_read(running_sample_length);
508 running_len -= running_len/NR_ACCUMULATED_SAMPLES;
509 running_len += sample_len_ns;
510 __this_cpu_write(running_sample_length, running_len);
511
512 /*
513 * Note: this will be biased artifically low until we have
514 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
515 * from having to maintain a count.
516 */
517 avg_len = running_len/NR_ACCUMULATED_SAMPLES;
518 if (avg_len <= max_len)
519 return;
520
521 __report_avg = avg_len;
522 __report_allowed = max_len;
523
524 /*
525 * Compute a throttle threshold 25% below the current duration.
526 */
527 avg_len += avg_len / 4;
528 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
529 if (avg_len < max)
530 max /= (u32)avg_len;
531 else
532 max = 1;
533
534 WRITE_ONCE(perf_sample_allowed_ns, avg_len);
535 WRITE_ONCE(max_samples_per_tick, max);
536
537 sysctl_perf_event_sample_rate = max * HZ;
538 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
539
540 if (!irq_work_queue(&perf_duration_work)) {
541 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
542 "kernel.perf_event_max_sample_rate to %d\n",
543 __report_avg, __report_allowed,
544 sysctl_perf_event_sample_rate);
545 }
546 }
547
548 static atomic64_t perf_event_id;
549
550 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
551 enum event_type_t event_type);
552
553 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
554 enum event_type_t event_type,
555 struct task_struct *task);
556
557 static void update_context_time(struct perf_event_context *ctx);
558 static u64 perf_event_time(struct perf_event *event);
559
560 void __weak perf_event_print_debug(void) { }
561
562 extern __weak const char *perf_pmu_name(void)
563 {
564 return "pmu";
565 }
566
567 static inline u64 perf_clock(void)
568 {
569 return local_clock();
570 }
571
572 static inline u64 perf_event_clock(struct perf_event *event)
573 {
574 return event->clock();
575 }
576
577 #ifdef CONFIG_CGROUP_PERF
578
579 static inline bool
580 perf_cgroup_match(struct perf_event *event)
581 {
582 struct perf_event_context *ctx = event->ctx;
583 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
584
585 /* @event doesn't care about cgroup */
586 if (!event->cgrp)
587 return true;
588
589 /* wants specific cgroup scope but @cpuctx isn't associated with any */
590 if (!cpuctx->cgrp)
591 return false;
592
593 /*
594 * Cgroup scoping is recursive. An event enabled for a cgroup is
595 * also enabled for all its descendant cgroups. If @cpuctx's
596 * cgroup is a descendant of @event's (the test covers identity
597 * case), it's a match.
598 */
599 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
600 event->cgrp->css.cgroup);
601 }
602
603 static inline void perf_detach_cgroup(struct perf_event *event)
604 {
605 css_put(&event->cgrp->css);
606 event->cgrp = NULL;
607 }
608
609 static inline int is_cgroup_event(struct perf_event *event)
610 {
611 return event->cgrp != NULL;
612 }
613
614 static inline u64 perf_cgroup_event_time(struct perf_event *event)
615 {
616 struct perf_cgroup_info *t;
617
618 t = per_cpu_ptr(event->cgrp->info, event->cpu);
619 return t->time;
620 }
621
622 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
623 {
624 struct perf_cgroup_info *info;
625 u64 now;
626
627 now = perf_clock();
628
629 info = this_cpu_ptr(cgrp->info);
630
631 info->time += now - info->timestamp;
632 info->timestamp = now;
633 }
634
635 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
636 {
637 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
638 if (cgrp_out)
639 __update_cgrp_time(cgrp_out);
640 }
641
642 static inline void update_cgrp_time_from_event(struct perf_event *event)
643 {
644 struct perf_cgroup *cgrp;
645
646 /*
647 * ensure we access cgroup data only when needed and
648 * when we know the cgroup is pinned (css_get)
649 */
650 if (!is_cgroup_event(event))
651 return;
652
653 cgrp = perf_cgroup_from_task(current, event->ctx);
654 /*
655 * Do not update time when cgroup is not active
656 */
657 if (cgrp == event->cgrp)
658 __update_cgrp_time(event->cgrp);
659 }
660
661 static inline void
662 perf_cgroup_set_timestamp(struct task_struct *task,
663 struct perf_event_context *ctx)
664 {
665 struct perf_cgroup *cgrp;
666 struct perf_cgroup_info *info;
667
668 /*
669 * ctx->lock held by caller
670 * ensure we do not access cgroup data
671 * unless we have the cgroup pinned (css_get)
672 */
673 if (!task || !ctx->nr_cgroups)
674 return;
675
676 cgrp = perf_cgroup_from_task(task, ctx);
677 info = this_cpu_ptr(cgrp->info);
678 info->timestamp = ctx->timestamp;
679 }
680
681 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
682 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
683
684 /*
685 * reschedule events based on the cgroup constraint of task.
686 *
687 * mode SWOUT : schedule out everything
688 * mode SWIN : schedule in based on cgroup for next
689 */
690 static void perf_cgroup_switch(struct task_struct *task, int mode)
691 {
692 struct perf_cpu_context *cpuctx;
693 struct pmu *pmu;
694 unsigned long flags;
695
696 /*
697 * disable interrupts to avoid geting nr_cgroup
698 * changes via __perf_event_disable(). Also
699 * avoids preemption.
700 */
701 local_irq_save(flags);
702
703 /*
704 * we reschedule only in the presence of cgroup
705 * constrained events.
706 */
707
708 list_for_each_entry_rcu(pmu, &pmus, entry) {
709 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
710 if (cpuctx->unique_pmu != pmu)
711 continue; /* ensure we process each cpuctx once */
712
713 /*
714 * perf_cgroup_events says at least one
715 * context on this CPU has cgroup events.
716 *
717 * ctx->nr_cgroups reports the number of cgroup
718 * events for a context.
719 */
720 if (cpuctx->ctx.nr_cgroups > 0) {
721 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
722 perf_pmu_disable(cpuctx->ctx.pmu);
723
724 if (mode & PERF_CGROUP_SWOUT) {
725 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
726 /*
727 * must not be done before ctxswout due
728 * to event_filter_match() in event_sched_out()
729 */
730 cpuctx->cgrp = NULL;
731 }
732
733 if (mode & PERF_CGROUP_SWIN) {
734 WARN_ON_ONCE(cpuctx->cgrp);
735 /*
736 * set cgrp before ctxsw in to allow
737 * event_filter_match() to not have to pass
738 * task around
739 * we pass the cpuctx->ctx to perf_cgroup_from_task()
740 * because cgorup events are only per-cpu
741 */
742 cpuctx->cgrp = perf_cgroup_from_task(task, &cpuctx->ctx);
743 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
744 }
745 perf_pmu_enable(cpuctx->ctx.pmu);
746 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
747 }
748 }
749
750 local_irq_restore(flags);
751 }
752
753 static inline void perf_cgroup_sched_out(struct task_struct *task,
754 struct task_struct *next)
755 {
756 struct perf_cgroup *cgrp1;
757 struct perf_cgroup *cgrp2 = NULL;
758
759 rcu_read_lock();
760 /*
761 * we come here when we know perf_cgroup_events > 0
762 * we do not need to pass the ctx here because we know
763 * we are holding the rcu lock
764 */
765 cgrp1 = perf_cgroup_from_task(task, NULL);
766 cgrp2 = perf_cgroup_from_task(next, NULL);
767
768 /*
769 * only schedule out current cgroup events if we know
770 * that we are switching to a different cgroup. Otherwise,
771 * do no touch the cgroup events.
772 */
773 if (cgrp1 != cgrp2)
774 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
775
776 rcu_read_unlock();
777 }
778
779 static inline void perf_cgroup_sched_in(struct task_struct *prev,
780 struct task_struct *task)
781 {
782 struct perf_cgroup *cgrp1;
783 struct perf_cgroup *cgrp2 = NULL;
784
785 rcu_read_lock();
786 /*
787 * we come here when we know perf_cgroup_events > 0
788 * we do not need to pass the ctx here because we know
789 * we are holding the rcu lock
790 */
791 cgrp1 = perf_cgroup_from_task(task, NULL);
792 cgrp2 = perf_cgroup_from_task(prev, NULL);
793
794 /*
795 * only need to schedule in cgroup events if we are changing
796 * cgroup during ctxsw. Cgroup events were not scheduled
797 * out of ctxsw out if that was not the case.
798 */
799 if (cgrp1 != cgrp2)
800 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
801
802 rcu_read_unlock();
803 }
804
805 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
806 struct perf_event_attr *attr,
807 struct perf_event *group_leader)
808 {
809 struct perf_cgroup *cgrp;
810 struct cgroup_subsys_state *css;
811 struct fd f = fdget(fd);
812 int ret = 0;
813
814 if (!f.file)
815 return -EBADF;
816
817 css = css_tryget_online_from_dir(f.file->f_path.dentry,
818 &perf_event_cgrp_subsys);
819 if (IS_ERR(css)) {
820 ret = PTR_ERR(css);
821 goto out;
822 }
823
824 cgrp = container_of(css, struct perf_cgroup, css);
825 event->cgrp = cgrp;
826
827 /*
828 * all events in a group must monitor
829 * the same cgroup because a task belongs
830 * to only one perf cgroup at a time
831 */
832 if (group_leader && group_leader->cgrp != cgrp) {
833 perf_detach_cgroup(event);
834 ret = -EINVAL;
835 }
836 out:
837 fdput(f);
838 return ret;
839 }
840
841 static inline void
842 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
843 {
844 struct perf_cgroup_info *t;
845 t = per_cpu_ptr(event->cgrp->info, event->cpu);
846 event->shadow_ctx_time = now - t->timestamp;
847 }
848
849 static inline void
850 perf_cgroup_defer_enabled(struct perf_event *event)
851 {
852 /*
853 * when the current task's perf cgroup does not match
854 * the event's, we need to remember to call the
855 * perf_mark_enable() function the first time a task with
856 * a matching perf cgroup is scheduled in.
857 */
858 if (is_cgroup_event(event) && !perf_cgroup_match(event))
859 event->cgrp_defer_enabled = 1;
860 }
861
862 static inline void
863 perf_cgroup_mark_enabled(struct perf_event *event,
864 struct perf_event_context *ctx)
865 {
866 struct perf_event *sub;
867 u64 tstamp = perf_event_time(event);
868
869 if (!event->cgrp_defer_enabled)
870 return;
871
872 event->cgrp_defer_enabled = 0;
873
874 event->tstamp_enabled = tstamp - event->total_time_enabled;
875 list_for_each_entry(sub, &event->sibling_list, group_entry) {
876 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
877 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
878 sub->cgrp_defer_enabled = 0;
879 }
880 }
881 }
882
883 /*
884 * Update cpuctx->cgrp so that it is set when first cgroup event is added and
885 * cleared when last cgroup event is removed.
886 */
887 static inline void
888 list_update_cgroup_event(struct perf_event *event,
889 struct perf_event_context *ctx, bool add)
890 {
891 struct perf_cpu_context *cpuctx;
892
893 if (!is_cgroup_event(event))
894 return;
895
896 if (add && ctx->nr_cgroups++)
897 return;
898 else if (!add && --ctx->nr_cgroups)
899 return;
900 /*
901 * Because cgroup events are always per-cpu events,
902 * this will always be called from the right CPU.
903 */
904 cpuctx = __get_cpu_context(ctx);
905
906 /*
907 * cpuctx->cgrp is NULL until a cgroup event is sched in or
908 * ctx->nr_cgroup == 0 .
909 */
910 if (add && perf_cgroup_from_task(current, ctx) == event->cgrp)
911 cpuctx->cgrp = event->cgrp;
912 else if (!add)
913 cpuctx->cgrp = NULL;
914 }
915
916 #else /* !CONFIG_CGROUP_PERF */
917
918 static inline bool
919 perf_cgroup_match(struct perf_event *event)
920 {
921 return true;
922 }
923
924 static inline void perf_detach_cgroup(struct perf_event *event)
925 {}
926
927 static inline int is_cgroup_event(struct perf_event *event)
928 {
929 return 0;
930 }
931
932 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
933 {
934 return 0;
935 }
936
937 static inline void update_cgrp_time_from_event(struct perf_event *event)
938 {
939 }
940
941 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
942 {
943 }
944
945 static inline void perf_cgroup_sched_out(struct task_struct *task,
946 struct task_struct *next)
947 {
948 }
949
950 static inline void perf_cgroup_sched_in(struct task_struct *prev,
951 struct task_struct *task)
952 {
953 }
954
955 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
956 struct perf_event_attr *attr,
957 struct perf_event *group_leader)
958 {
959 return -EINVAL;
960 }
961
962 static inline void
963 perf_cgroup_set_timestamp(struct task_struct *task,
964 struct perf_event_context *ctx)
965 {
966 }
967
968 void
969 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
970 {
971 }
972
973 static inline void
974 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
975 {
976 }
977
978 static inline u64 perf_cgroup_event_time(struct perf_event *event)
979 {
980 return 0;
981 }
982
983 static inline void
984 perf_cgroup_defer_enabled(struct perf_event *event)
985 {
986 }
987
988 static inline void
989 perf_cgroup_mark_enabled(struct perf_event *event,
990 struct perf_event_context *ctx)
991 {
992 }
993
994 static inline void
995 list_update_cgroup_event(struct perf_event *event,
996 struct perf_event_context *ctx, bool add)
997 {
998 }
999
1000 #endif
1001
1002 /*
1003 * set default to be dependent on timer tick just
1004 * like original code
1005 */
1006 #define PERF_CPU_HRTIMER (1000 / HZ)
1007 /*
1008 * function must be called with interrupts disbled
1009 */
1010 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1011 {
1012 struct perf_cpu_context *cpuctx;
1013 int rotations = 0;
1014
1015 WARN_ON(!irqs_disabled());
1016
1017 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1018 rotations = perf_rotate_context(cpuctx);
1019
1020 raw_spin_lock(&cpuctx->hrtimer_lock);
1021 if (rotations)
1022 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1023 else
1024 cpuctx->hrtimer_active = 0;
1025 raw_spin_unlock(&cpuctx->hrtimer_lock);
1026
1027 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1028 }
1029
1030 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1031 {
1032 struct hrtimer *timer = &cpuctx->hrtimer;
1033 struct pmu *pmu = cpuctx->ctx.pmu;
1034 u64 interval;
1035
1036 /* no multiplexing needed for SW PMU */
1037 if (pmu->task_ctx_nr == perf_sw_context)
1038 return;
1039
1040 /*
1041 * check default is sane, if not set then force to
1042 * default interval (1/tick)
1043 */
1044 interval = pmu->hrtimer_interval_ms;
1045 if (interval < 1)
1046 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1047
1048 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1049
1050 raw_spin_lock_init(&cpuctx->hrtimer_lock);
1051 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
1052 timer->function = perf_mux_hrtimer_handler;
1053 }
1054
1055 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1056 {
1057 struct hrtimer *timer = &cpuctx->hrtimer;
1058 struct pmu *pmu = cpuctx->ctx.pmu;
1059 unsigned long flags;
1060
1061 /* not for SW PMU */
1062 if (pmu->task_ctx_nr == perf_sw_context)
1063 return 0;
1064
1065 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1066 if (!cpuctx->hrtimer_active) {
1067 cpuctx->hrtimer_active = 1;
1068 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1069 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1070 }
1071 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1072
1073 return 0;
1074 }
1075
1076 void perf_pmu_disable(struct pmu *pmu)
1077 {
1078 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1079 if (!(*count)++)
1080 pmu->pmu_disable(pmu);
1081 }
1082
1083 void perf_pmu_enable(struct pmu *pmu)
1084 {
1085 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1086 if (!--(*count))
1087 pmu->pmu_enable(pmu);
1088 }
1089
1090 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1091
1092 /*
1093 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1094 * perf_event_task_tick() are fully serialized because they're strictly cpu
1095 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1096 * disabled, while perf_event_task_tick is called from IRQ context.
1097 */
1098 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1099 {
1100 struct list_head *head = this_cpu_ptr(&active_ctx_list);
1101
1102 WARN_ON(!irqs_disabled());
1103
1104 WARN_ON(!list_empty(&ctx->active_ctx_list));
1105
1106 list_add(&ctx->active_ctx_list, head);
1107 }
1108
1109 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1110 {
1111 WARN_ON(!irqs_disabled());
1112
1113 WARN_ON(list_empty(&ctx->active_ctx_list));
1114
1115 list_del_init(&ctx->active_ctx_list);
1116 }
1117
1118 static void get_ctx(struct perf_event_context *ctx)
1119 {
1120 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1121 }
1122
1123 static void free_ctx(struct rcu_head *head)
1124 {
1125 struct perf_event_context *ctx;
1126
1127 ctx = container_of(head, struct perf_event_context, rcu_head);
1128 kfree(ctx->task_ctx_data);
1129 kfree(ctx);
1130 }
1131
1132 static void put_ctx(struct perf_event_context *ctx)
1133 {
1134 if (atomic_dec_and_test(&ctx->refcount)) {
1135 if (ctx->parent_ctx)
1136 put_ctx(ctx->parent_ctx);
1137 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1138 put_task_struct(ctx->task);
1139 call_rcu(&ctx->rcu_head, free_ctx);
1140 }
1141 }
1142
1143 /*
1144 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1145 * perf_pmu_migrate_context() we need some magic.
1146 *
1147 * Those places that change perf_event::ctx will hold both
1148 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1149 *
1150 * Lock ordering is by mutex address. There are two other sites where
1151 * perf_event_context::mutex nests and those are:
1152 *
1153 * - perf_event_exit_task_context() [ child , 0 ]
1154 * perf_event_exit_event()
1155 * put_event() [ parent, 1 ]
1156 *
1157 * - perf_event_init_context() [ parent, 0 ]
1158 * inherit_task_group()
1159 * inherit_group()
1160 * inherit_event()
1161 * perf_event_alloc()
1162 * perf_init_event()
1163 * perf_try_init_event() [ child , 1 ]
1164 *
1165 * While it appears there is an obvious deadlock here -- the parent and child
1166 * nesting levels are inverted between the two. This is in fact safe because
1167 * life-time rules separate them. That is an exiting task cannot fork, and a
1168 * spawning task cannot (yet) exit.
1169 *
1170 * But remember that that these are parent<->child context relations, and
1171 * migration does not affect children, therefore these two orderings should not
1172 * interact.
1173 *
1174 * The change in perf_event::ctx does not affect children (as claimed above)
1175 * because the sys_perf_event_open() case will install a new event and break
1176 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1177 * concerned with cpuctx and that doesn't have children.
1178 *
1179 * The places that change perf_event::ctx will issue:
1180 *
1181 * perf_remove_from_context();
1182 * synchronize_rcu();
1183 * perf_install_in_context();
1184 *
1185 * to affect the change. The remove_from_context() + synchronize_rcu() should
1186 * quiesce the event, after which we can install it in the new location. This
1187 * means that only external vectors (perf_fops, prctl) can perturb the event
1188 * while in transit. Therefore all such accessors should also acquire
1189 * perf_event_context::mutex to serialize against this.
1190 *
1191 * However; because event->ctx can change while we're waiting to acquire
1192 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1193 * function.
1194 *
1195 * Lock order:
1196 * cred_guard_mutex
1197 * task_struct::perf_event_mutex
1198 * perf_event_context::mutex
1199 * perf_event::child_mutex;
1200 * perf_event_context::lock
1201 * perf_event::mmap_mutex
1202 * mmap_sem
1203 */
1204 static struct perf_event_context *
1205 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1206 {
1207 struct perf_event_context *ctx;
1208
1209 again:
1210 rcu_read_lock();
1211 ctx = ACCESS_ONCE(event->ctx);
1212 if (!atomic_inc_not_zero(&ctx->refcount)) {
1213 rcu_read_unlock();
1214 goto again;
1215 }
1216 rcu_read_unlock();
1217
1218 mutex_lock_nested(&ctx->mutex, nesting);
1219 if (event->ctx != ctx) {
1220 mutex_unlock(&ctx->mutex);
1221 put_ctx(ctx);
1222 goto again;
1223 }
1224
1225 return ctx;
1226 }
1227
1228 static inline struct perf_event_context *
1229 perf_event_ctx_lock(struct perf_event *event)
1230 {
1231 return perf_event_ctx_lock_nested(event, 0);
1232 }
1233
1234 static void perf_event_ctx_unlock(struct perf_event *event,
1235 struct perf_event_context *ctx)
1236 {
1237 mutex_unlock(&ctx->mutex);
1238 put_ctx(ctx);
1239 }
1240
1241 /*
1242 * This must be done under the ctx->lock, such as to serialize against
1243 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1244 * calling scheduler related locks and ctx->lock nests inside those.
1245 */
1246 static __must_check struct perf_event_context *
1247 unclone_ctx(struct perf_event_context *ctx)
1248 {
1249 struct perf_event_context *parent_ctx = ctx->parent_ctx;
1250
1251 lockdep_assert_held(&ctx->lock);
1252
1253 if (parent_ctx)
1254 ctx->parent_ctx = NULL;
1255 ctx->generation++;
1256
1257 return parent_ctx;
1258 }
1259
1260 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1261 {
1262 /*
1263 * only top level events have the pid namespace they were created in
1264 */
1265 if (event->parent)
1266 event = event->parent;
1267
1268 return task_tgid_nr_ns(p, event->ns);
1269 }
1270
1271 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1272 {
1273 /*
1274 * only top level events have the pid namespace they were created in
1275 */
1276 if (event->parent)
1277 event = event->parent;
1278
1279 return task_pid_nr_ns(p, event->ns);
1280 }
1281
1282 /*
1283 * If we inherit events we want to return the parent event id
1284 * to userspace.
1285 */
1286 static u64 primary_event_id(struct perf_event *event)
1287 {
1288 u64 id = event->id;
1289
1290 if (event->parent)
1291 id = event->parent->id;
1292
1293 return id;
1294 }
1295
1296 /*
1297 * Get the perf_event_context for a task and lock it.
1298 *
1299 * This has to cope with with the fact that until it is locked,
1300 * the context could get moved to another task.
1301 */
1302 static struct perf_event_context *
1303 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1304 {
1305 struct perf_event_context *ctx;
1306
1307 retry:
1308 /*
1309 * One of the few rules of preemptible RCU is that one cannot do
1310 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1311 * part of the read side critical section was irqs-enabled -- see
1312 * rcu_read_unlock_special().
1313 *
1314 * Since ctx->lock nests under rq->lock we must ensure the entire read
1315 * side critical section has interrupts disabled.
1316 */
1317 local_irq_save(*flags);
1318 rcu_read_lock();
1319 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1320 if (ctx) {
1321 /*
1322 * If this context is a clone of another, it might
1323 * get swapped for another underneath us by
1324 * perf_event_task_sched_out, though the
1325 * rcu_read_lock() protects us from any context
1326 * getting freed. Lock the context and check if it
1327 * got swapped before we could get the lock, and retry
1328 * if so. If we locked the right context, then it
1329 * can't get swapped on us any more.
1330 */
1331 raw_spin_lock(&ctx->lock);
1332 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1333 raw_spin_unlock(&ctx->lock);
1334 rcu_read_unlock();
1335 local_irq_restore(*flags);
1336 goto retry;
1337 }
1338
1339 if (ctx->task == TASK_TOMBSTONE ||
1340 !atomic_inc_not_zero(&ctx->refcount)) {
1341 raw_spin_unlock(&ctx->lock);
1342 ctx = NULL;
1343 } else {
1344 WARN_ON_ONCE(ctx->task != task);
1345 }
1346 }
1347 rcu_read_unlock();
1348 if (!ctx)
1349 local_irq_restore(*flags);
1350 return ctx;
1351 }
1352
1353 /*
1354 * Get the context for a task and increment its pin_count so it
1355 * can't get swapped to another task. This also increments its
1356 * reference count so that the context can't get freed.
1357 */
1358 static struct perf_event_context *
1359 perf_pin_task_context(struct task_struct *task, int ctxn)
1360 {
1361 struct perf_event_context *ctx;
1362 unsigned long flags;
1363
1364 ctx = perf_lock_task_context(task, ctxn, &flags);
1365 if (ctx) {
1366 ++ctx->pin_count;
1367 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1368 }
1369 return ctx;
1370 }
1371
1372 static void perf_unpin_context(struct perf_event_context *ctx)
1373 {
1374 unsigned long flags;
1375
1376 raw_spin_lock_irqsave(&ctx->lock, flags);
1377 --ctx->pin_count;
1378 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1379 }
1380
1381 /*
1382 * Update the record of the current time in a context.
1383 */
1384 static void update_context_time(struct perf_event_context *ctx)
1385 {
1386 u64 now = perf_clock();
1387
1388 ctx->time += now - ctx->timestamp;
1389 ctx->timestamp = now;
1390 }
1391
1392 static u64 perf_event_time(struct perf_event *event)
1393 {
1394 struct perf_event_context *ctx = event->ctx;
1395
1396 if (is_cgroup_event(event))
1397 return perf_cgroup_event_time(event);
1398
1399 return ctx ? ctx->time : 0;
1400 }
1401
1402 /*
1403 * Update the total_time_enabled and total_time_running fields for a event.
1404 */
1405 static void update_event_times(struct perf_event *event)
1406 {
1407 struct perf_event_context *ctx = event->ctx;
1408 u64 run_end;
1409
1410 lockdep_assert_held(&ctx->lock);
1411
1412 if (event->state < PERF_EVENT_STATE_INACTIVE ||
1413 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1414 return;
1415
1416 /*
1417 * in cgroup mode, time_enabled represents
1418 * the time the event was enabled AND active
1419 * tasks were in the monitored cgroup. This is
1420 * independent of the activity of the context as
1421 * there may be a mix of cgroup and non-cgroup events.
1422 *
1423 * That is why we treat cgroup events differently
1424 * here.
1425 */
1426 if (is_cgroup_event(event))
1427 run_end = perf_cgroup_event_time(event);
1428 else if (ctx->is_active)
1429 run_end = ctx->time;
1430 else
1431 run_end = event->tstamp_stopped;
1432
1433 event->total_time_enabled = run_end - event->tstamp_enabled;
1434
1435 if (event->state == PERF_EVENT_STATE_INACTIVE)
1436 run_end = event->tstamp_stopped;
1437 else
1438 run_end = perf_event_time(event);
1439
1440 event->total_time_running = run_end - event->tstamp_running;
1441
1442 }
1443
1444 /*
1445 * Update total_time_enabled and total_time_running for all events in a group.
1446 */
1447 static void update_group_times(struct perf_event *leader)
1448 {
1449 struct perf_event *event;
1450
1451 update_event_times(leader);
1452 list_for_each_entry(event, &leader->sibling_list, group_entry)
1453 update_event_times(event);
1454 }
1455
1456 static struct list_head *
1457 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1458 {
1459 if (event->attr.pinned)
1460 return &ctx->pinned_groups;
1461 else
1462 return &ctx->flexible_groups;
1463 }
1464
1465 /*
1466 * Add a event from the lists for its context.
1467 * Must be called with ctx->mutex and ctx->lock held.
1468 */
1469 static void
1470 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1471 {
1472
1473 lockdep_assert_held(&ctx->lock);
1474
1475 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1476 event->attach_state |= PERF_ATTACH_CONTEXT;
1477
1478 /*
1479 * If we're a stand alone event or group leader, we go to the context
1480 * list, group events are kept attached to the group so that
1481 * perf_group_detach can, at all times, locate all siblings.
1482 */
1483 if (event->group_leader == event) {
1484 struct list_head *list;
1485
1486 event->group_caps = event->event_caps;
1487
1488 list = ctx_group_list(event, ctx);
1489 list_add_tail(&event->group_entry, list);
1490 }
1491
1492 list_update_cgroup_event(event, ctx, true);
1493
1494 list_add_rcu(&event->event_entry, &ctx->event_list);
1495 ctx->nr_events++;
1496 if (event->attr.inherit_stat)
1497 ctx->nr_stat++;
1498
1499 ctx->generation++;
1500 }
1501
1502 /*
1503 * Initialize event state based on the perf_event_attr::disabled.
1504 */
1505 static inline void perf_event__state_init(struct perf_event *event)
1506 {
1507 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1508 PERF_EVENT_STATE_INACTIVE;
1509 }
1510
1511 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1512 {
1513 int entry = sizeof(u64); /* value */
1514 int size = 0;
1515 int nr = 1;
1516
1517 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1518 size += sizeof(u64);
1519
1520 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1521 size += sizeof(u64);
1522
1523 if (event->attr.read_format & PERF_FORMAT_ID)
1524 entry += sizeof(u64);
1525
1526 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1527 nr += nr_siblings;
1528 size += sizeof(u64);
1529 }
1530
1531 size += entry * nr;
1532 event->read_size = size;
1533 }
1534
1535 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1536 {
1537 struct perf_sample_data *data;
1538 u16 size = 0;
1539
1540 if (sample_type & PERF_SAMPLE_IP)
1541 size += sizeof(data->ip);
1542
1543 if (sample_type & PERF_SAMPLE_ADDR)
1544 size += sizeof(data->addr);
1545
1546 if (sample_type & PERF_SAMPLE_PERIOD)
1547 size += sizeof(data->period);
1548
1549 if (sample_type & PERF_SAMPLE_WEIGHT)
1550 size += sizeof(data->weight);
1551
1552 if (sample_type & PERF_SAMPLE_READ)
1553 size += event->read_size;
1554
1555 if (sample_type & PERF_SAMPLE_DATA_SRC)
1556 size += sizeof(data->data_src.val);
1557
1558 if (sample_type & PERF_SAMPLE_TRANSACTION)
1559 size += sizeof(data->txn);
1560
1561 event->header_size = size;
1562 }
1563
1564 /*
1565 * Called at perf_event creation and when events are attached/detached from a
1566 * group.
1567 */
1568 static void perf_event__header_size(struct perf_event *event)
1569 {
1570 __perf_event_read_size(event,
1571 event->group_leader->nr_siblings);
1572 __perf_event_header_size(event, event->attr.sample_type);
1573 }
1574
1575 static void perf_event__id_header_size(struct perf_event *event)
1576 {
1577 struct perf_sample_data *data;
1578 u64 sample_type = event->attr.sample_type;
1579 u16 size = 0;
1580
1581 if (sample_type & PERF_SAMPLE_TID)
1582 size += sizeof(data->tid_entry);
1583
1584 if (sample_type & PERF_SAMPLE_TIME)
1585 size += sizeof(data->time);
1586
1587 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1588 size += sizeof(data->id);
1589
1590 if (sample_type & PERF_SAMPLE_ID)
1591 size += sizeof(data->id);
1592
1593 if (sample_type & PERF_SAMPLE_STREAM_ID)
1594 size += sizeof(data->stream_id);
1595
1596 if (sample_type & PERF_SAMPLE_CPU)
1597 size += sizeof(data->cpu_entry);
1598
1599 event->id_header_size = size;
1600 }
1601
1602 static bool perf_event_validate_size(struct perf_event *event)
1603 {
1604 /*
1605 * The values computed here will be over-written when we actually
1606 * attach the event.
1607 */
1608 __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1609 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1610 perf_event__id_header_size(event);
1611
1612 /*
1613 * Sum the lot; should not exceed the 64k limit we have on records.
1614 * Conservative limit to allow for callchains and other variable fields.
1615 */
1616 if (event->read_size + event->header_size +
1617 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1618 return false;
1619
1620 return true;
1621 }
1622
1623 static void perf_group_attach(struct perf_event *event)
1624 {
1625 struct perf_event *group_leader = event->group_leader, *pos;
1626
1627 /*
1628 * We can have double attach due to group movement in perf_event_open.
1629 */
1630 if (event->attach_state & PERF_ATTACH_GROUP)
1631 return;
1632
1633 event->attach_state |= PERF_ATTACH_GROUP;
1634
1635 if (group_leader == event)
1636 return;
1637
1638 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1639
1640 group_leader->group_caps &= event->event_caps;
1641
1642 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1643 group_leader->nr_siblings++;
1644
1645 perf_event__header_size(group_leader);
1646
1647 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1648 perf_event__header_size(pos);
1649 }
1650
1651 /*
1652 * Remove a event from the lists for its context.
1653 * Must be called with ctx->mutex and ctx->lock held.
1654 */
1655 static void
1656 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1657 {
1658 WARN_ON_ONCE(event->ctx != ctx);
1659 lockdep_assert_held(&ctx->lock);
1660
1661 /*
1662 * We can have double detach due to exit/hot-unplug + close.
1663 */
1664 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1665 return;
1666
1667 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1668
1669 list_update_cgroup_event(event, ctx, false);
1670
1671 ctx->nr_events--;
1672 if (event->attr.inherit_stat)
1673 ctx->nr_stat--;
1674
1675 list_del_rcu(&event->event_entry);
1676
1677 if (event->group_leader == event)
1678 list_del_init(&event->group_entry);
1679
1680 update_group_times(event);
1681
1682 /*
1683 * If event was in error state, then keep it
1684 * that way, otherwise bogus counts will be
1685 * returned on read(). The only way to get out
1686 * of error state is by explicit re-enabling
1687 * of the event
1688 */
1689 if (event->state > PERF_EVENT_STATE_OFF)
1690 event->state = PERF_EVENT_STATE_OFF;
1691
1692 ctx->generation++;
1693 }
1694
1695 static void perf_group_detach(struct perf_event *event)
1696 {
1697 struct perf_event *sibling, *tmp;
1698 struct list_head *list = NULL;
1699
1700 /*
1701 * We can have double detach due to exit/hot-unplug + close.
1702 */
1703 if (!(event->attach_state & PERF_ATTACH_GROUP))
1704 return;
1705
1706 event->attach_state &= ~PERF_ATTACH_GROUP;
1707
1708 /*
1709 * If this is a sibling, remove it from its group.
1710 */
1711 if (event->group_leader != event) {
1712 list_del_init(&event->group_entry);
1713 event->group_leader->nr_siblings--;
1714 goto out;
1715 }
1716
1717 if (!list_empty(&event->group_entry))
1718 list = &event->group_entry;
1719
1720 /*
1721 * If this was a group event with sibling events then
1722 * upgrade the siblings to singleton events by adding them
1723 * to whatever list we are on.
1724 */
1725 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1726 if (list)
1727 list_move_tail(&sibling->group_entry, list);
1728 sibling->group_leader = sibling;
1729
1730 /* Inherit group flags from the previous leader */
1731 sibling->group_caps = event->group_caps;
1732
1733 WARN_ON_ONCE(sibling->ctx != event->ctx);
1734 }
1735
1736 out:
1737 perf_event__header_size(event->group_leader);
1738
1739 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1740 perf_event__header_size(tmp);
1741 }
1742
1743 static bool is_orphaned_event(struct perf_event *event)
1744 {
1745 return event->state == PERF_EVENT_STATE_DEAD;
1746 }
1747
1748 static inline int __pmu_filter_match(struct perf_event *event)
1749 {
1750 struct pmu *pmu = event->pmu;
1751 return pmu->filter_match ? pmu->filter_match(event) : 1;
1752 }
1753
1754 /*
1755 * Check whether we should attempt to schedule an event group based on
1756 * PMU-specific filtering. An event group can consist of HW and SW events,
1757 * potentially with a SW leader, so we must check all the filters, to
1758 * determine whether a group is schedulable:
1759 */
1760 static inline int pmu_filter_match(struct perf_event *event)
1761 {
1762 struct perf_event *child;
1763
1764 if (!__pmu_filter_match(event))
1765 return 0;
1766
1767 list_for_each_entry(child, &event->sibling_list, group_entry) {
1768 if (!__pmu_filter_match(child))
1769 return 0;
1770 }
1771
1772 return 1;
1773 }
1774
1775 static inline int
1776 event_filter_match(struct perf_event *event)
1777 {
1778 return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1779 perf_cgroup_match(event) && pmu_filter_match(event);
1780 }
1781
1782 static void
1783 event_sched_out(struct perf_event *event,
1784 struct perf_cpu_context *cpuctx,
1785 struct perf_event_context *ctx)
1786 {
1787 u64 tstamp = perf_event_time(event);
1788 u64 delta;
1789
1790 WARN_ON_ONCE(event->ctx != ctx);
1791 lockdep_assert_held(&ctx->lock);
1792
1793 /*
1794 * An event which could not be activated because of
1795 * filter mismatch still needs to have its timings
1796 * maintained, otherwise bogus information is return
1797 * via read() for time_enabled, time_running:
1798 */
1799 if (event->state == PERF_EVENT_STATE_INACTIVE &&
1800 !event_filter_match(event)) {
1801 delta = tstamp - event->tstamp_stopped;
1802 event->tstamp_running += delta;
1803 event->tstamp_stopped = tstamp;
1804 }
1805
1806 if (event->state != PERF_EVENT_STATE_ACTIVE)
1807 return;
1808
1809 perf_pmu_disable(event->pmu);
1810
1811 event->tstamp_stopped = tstamp;
1812 event->pmu->del(event, 0);
1813 event->oncpu = -1;
1814 event->state = PERF_EVENT_STATE_INACTIVE;
1815 if (event->pending_disable) {
1816 event->pending_disable = 0;
1817 event->state = PERF_EVENT_STATE_OFF;
1818 }
1819
1820 if (!is_software_event(event))
1821 cpuctx->active_oncpu--;
1822 if (!--ctx->nr_active)
1823 perf_event_ctx_deactivate(ctx);
1824 if (event->attr.freq && event->attr.sample_freq)
1825 ctx->nr_freq--;
1826 if (event->attr.exclusive || !cpuctx->active_oncpu)
1827 cpuctx->exclusive = 0;
1828
1829 perf_pmu_enable(event->pmu);
1830 }
1831
1832 static void
1833 group_sched_out(struct perf_event *group_event,
1834 struct perf_cpu_context *cpuctx,
1835 struct perf_event_context *ctx)
1836 {
1837 struct perf_event *event;
1838 int state = group_event->state;
1839
1840 perf_pmu_disable(ctx->pmu);
1841
1842 event_sched_out(group_event, cpuctx, ctx);
1843
1844 /*
1845 * Schedule out siblings (if any):
1846 */
1847 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1848 event_sched_out(event, cpuctx, ctx);
1849
1850 perf_pmu_enable(ctx->pmu);
1851
1852 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1853 cpuctx->exclusive = 0;
1854 }
1855
1856 #define DETACH_GROUP 0x01UL
1857
1858 /*
1859 * Cross CPU call to remove a performance event
1860 *
1861 * We disable the event on the hardware level first. After that we
1862 * remove it from the context list.
1863 */
1864 static void
1865 __perf_remove_from_context(struct perf_event *event,
1866 struct perf_cpu_context *cpuctx,
1867 struct perf_event_context *ctx,
1868 void *info)
1869 {
1870 unsigned long flags = (unsigned long)info;
1871
1872 event_sched_out(event, cpuctx, ctx);
1873 if (flags & DETACH_GROUP)
1874 perf_group_detach(event);
1875 list_del_event(event, ctx);
1876
1877 if (!ctx->nr_events && ctx->is_active) {
1878 ctx->is_active = 0;
1879 if (ctx->task) {
1880 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1881 cpuctx->task_ctx = NULL;
1882 }
1883 }
1884 }
1885
1886 /*
1887 * Remove the event from a task's (or a CPU's) list of events.
1888 *
1889 * If event->ctx is a cloned context, callers must make sure that
1890 * every task struct that event->ctx->task could possibly point to
1891 * remains valid. This is OK when called from perf_release since
1892 * that only calls us on the top-level context, which can't be a clone.
1893 * When called from perf_event_exit_task, it's OK because the
1894 * context has been detached from its task.
1895 */
1896 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
1897 {
1898 lockdep_assert_held(&event->ctx->mutex);
1899
1900 event_function_call(event, __perf_remove_from_context, (void *)flags);
1901 }
1902
1903 /*
1904 * Cross CPU call to disable a performance event
1905 */
1906 static void __perf_event_disable(struct perf_event *event,
1907 struct perf_cpu_context *cpuctx,
1908 struct perf_event_context *ctx,
1909 void *info)
1910 {
1911 if (event->state < PERF_EVENT_STATE_INACTIVE)
1912 return;
1913
1914 update_context_time(ctx);
1915 update_cgrp_time_from_event(event);
1916 update_group_times(event);
1917 if (event == event->group_leader)
1918 group_sched_out(event, cpuctx, ctx);
1919 else
1920 event_sched_out(event, cpuctx, ctx);
1921 event->state = PERF_EVENT_STATE_OFF;
1922 }
1923
1924 /*
1925 * Disable a event.
1926 *
1927 * If event->ctx is a cloned context, callers must make sure that
1928 * every task struct that event->ctx->task could possibly point to
1929 * remains valid. This condition is satisifed when called through
1930 * perf_event_for_each_child or perf_event_for_each because they
1931 * hold the top-level event's child_mutex, so any descendant that
1932 * goes to exit will block in perf_event_exit_event().
1933 *
1934 * When called from perf_pending_event it's OK because event->ctx
1935 * is the current context on this CPU and preemption is disabled,
1936 * hence we can't get into perf_event_task_sched_out for this context.
1937 */
1938 static void _perf_event_disable(struct perf_event *event)
1939 {
1940 struct perf_event_context *ctx = event->ctx;
1941
1942 raw_spin_lock_irq(&ctx->lock);
1943 if (event->state <= PERF_EVENT_STATE_OFF) {
1944 raw_spin_unlock_irq(&ctx->lock);
1945 return;
1946 }
1947 raw_spin_unlock_irq(&ctx->lock);
1948
1949 event_function_call(event, __perf_event_disable, NULL);
1950 }
1951
1952 void perf_event_disable_local(struct perf_event *event)
1953 {
1954 event_function_local(event, __perf_event_disable, NULL);
1955 }
1956
1957 /*
1958 * Strictly speaking kernel users cannot create groups and therefore this
1959 * interface does not need the perf_event_ctx_lock() magic.
1960 */
1961 void perf_event_disable(struct perf_event *event)
1962 {
1963 struct perf_event_context *ctx;
1964
1965 ctx = perf_event_ctx_lock(event);
1966 _perf_event_disable(event);
1967 perf_event_ctx_unlock(event, ctx);
1968 }
1969 EXPORT_SYMBOL_GPL(perf_event_disable);
1970
1971 void perf_event_disable_inatomic(struct perf_event *event)
1972 {
1973 event->pending_disable = 1;
1974 irq_work_queue(&event->pending);
1975 }
1976
1977 static void perf_set_shadow_time(struct perf_event *event,
1978 struct perf_event_context *ctx,
1979 u64 tstamp)
1980 {
1981 /*
1982 * use the correct time source for the time snapshot
1983 *
1984 * We could get by without this by leveraging the
1985 * fact that to get to this function, the caller
1986 * has most likely already called update_context_time()
1987 * and update_cgrp_time_xx() and thus both timestamp
1988 * are identical (or very close). Given that tstamp is,
1989 * already adjusted for cgroup, we could say that:
1990 * tstamp - ctx->timestamp
1991 * is equivalent to
1992 * tstamp - cgrp->timestamp.
1993 *
1994 * Then, in perf_output_read(), the calculation would
1995 * work with no changes because:
1996 * - event is guaranteed scheduled in
1997 * - no scheduled out in between
1998 * - thus the timestamp would be the same
1999 *
2000 * But this is a bit hairy.
2001 *
2002 * So instead, we have an explicit cgroup call to remain
2003 * within the time time source all along. We believe it
2004 * is cleaner and simpler to understand.
2005 */
2006 if (is_cgroup_event(event))
2007 perf_cgroup_set_shadow_time(event, tstamp);
2008 else
2009 event->shadow_ctx_time = tstamp - ctx->timestamp;
2010 }
2011
2012 #define MAX_INTERRUPTS (~0ULL)
2013
2014 static void perf_log_throttle(struct perf_event *event, int enable);
2015 static void perf_log_itrace_start(struct perf_event *event);
2016
2017 static int
2018 event_sched_in(struct perf_event *event,
2019 struct perf_cpu_context *cpuctx,
2020 struct perf_event_context *ctx)
2021 {
2022 u64 tstamp = perf_event_time(event);
2023 int ret = 0;
2024
2025 lockdep_assert_held(&ctx->lock);
2026
2027 if (event->state <= PERF_EVENT_STATE_OFF)
2028 return 0;
2029
2030 WRITE_ONCE(event->oncpu, smp_processor_id());
2031 /*
2032 * Order event::oncpu write to happen before the ACTIVE state
2033 * is visible.
2034 */
2035 smp_wmb();
2036 WRITE_ONCE(event->state, PERF_EVENT_STATE_ACTIVE);
2037
2038 /*
2039 * Unthrottle events, since we scheduled we might have missed several
2040 * ticks already, also for a heavily scheduling task there is little
2041 * guarantee it'll get a tick in a timely manner.
2042 */
2043 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2044 perf_log_throttle(event, 1);
2045 event->hw.interrupts = 0;
2046 }
2047
2048 /*
2049 * The new state must be visible before we turn it on in the hardware:
2050 */
2051 smp_wmb();
2052
2053 perf_pmu_disable(event->pmu);
2054
2055 perf_set_shadow_time(event, ctx, tstamp);
2056
2057 perf_log_itrace_start(event);
2058
2059 if (event->pmu->add(event, PERF_EF_START)) {
2060 event->state = PERF_EVENT_STATE_INACTIVE;
2061 event->oncpu = -1;
2062 ret = -EAGAIN;
2063 goto out;
2064 }
2065
2066 event->tstamp_running += tstamp - event->tstamp_stopped;
2067
2068 if (!is_software_event(event))
2069 cpuctx->active_oncpu++;
2070 if (!ctx->nr_active++)
2071 perf_event_ctx_activate(ctx);
2072 if (event->attr.freq && event->attr.sample_freq)
2073 ctx->nr_freq++;
2074
2075 if (event->attr.exclusive)
2076 cpuctx->exclusive = 1;
2077
2078 out:
2079 perf_pmu_enable(event->pmu);
2080
2081 return ret;
2082 }
2083
2084 static int
2085 group_sched_in(struct perf_event *group_event,
2086 struct perf_cpu_context *cpuctx,
2087 struct perf_event_context *ctx)
2088 {
2089 struct perf_event *event, *partial_group = NULL;
2090 struct pmu *pmu = ctx->pmu;
2091 u64 now = ctx->time;
2092 bool simulate = false;
2093
2094 if (group_event->state == PERF_EVENT_STATE_OFF)
2095 return 0;
2096
2097 pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2098
2099 if (event_sched_in(group_event, cpuctx, ctx)) {
2100 pmu->cancel_txn(pmu);
2101 perf_mux_hrtimer_restart(cpuctx);
2102 return -EAGAIN;
2103 }
2104
2105 /*
2106 * Schedule in siblings as one group (if any):
2107 */
2108 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2109 if (event_sched_in(event, cpuctx, ctx)) {
2110 partial_group = event;
2111 goto group_error;
2112 }
2113 }
2114
2115 if (!pmu->commit_txn(pmu))
2116 return 0;
2117
2118 group_error:
2119 /*
2120 * Groups can be scheduled in as one unit only, so undo any
2121 * partial group before returning:
2122 * The events up to the failed event are scheduled out normally,
2123 * tstamp_stopped will be updated.
2124 *
2125 * The failed events and the remaining siblings need to have
2126 * their timings updated as if they had gone thru event_sched_in()
2127 * and event_sched_out(). This is required to get consistent timings
2128 * across the group. This also takes care of the case where the group
2129 * could never be scheduled by ensuring tstamp_stopped is set to mark
2130 * the time the event was actually stopped, such that time delta
2131 * calculation in update_event_times() is correct.
2132 */
2133 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2134 if (event == partial_group)
2135 simulate = true;
2136
2137 if (simulate) {
2138 event->tstamp_running += now - event->tstamp_stopped;
2139 event->tstamp_stopped = now;
2140 } else {
2141 event_sched_out(event, cpuctx, ctx);
2142 }
2143 }
2144 event_sched_out(group_event, cpuctx, ctx);
2145
2146 pmu->cancel_txn(pmu);
2147
2148 perf_mux_hrtimer_restart(cpuctx);
2149
2150 return -EAGAIN;
2151 }
2152
2153 /*
2154 * Work out whether we can put this event group on the CPU now.
2155 */
2156 static int group_can_go_on(struct perf_event *event,
2157 struct perf_cpu_context *cpuctx,
2158 int can_add_hw)
2159 {
2160 /*
2161 * Groups consisting entirely of software events can always go on.
2162 */
2163 if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2164 return 1;
2165 /*
2166 * If an exclusive group is already on, no other hardware
2167 * events can go on.
2168 */
2169 if (cpuctx->exclusive)
2170 return 0;
2171 /*
2172 * If this group is exclusive and there are already
2173 * events on the CPU, it can't go on.
2174 */
2175 if (event->attr.exclusive && cpuctx->active_oncpu)
2176 return 0;
2177 /*
2178 * Otherwise, try to add it if all previous groups were able
2179 * to go on.
2180 */
2181 return can_add_hw;
2182 }
2183
2184 static void add_event_to_ctx(struct perf_event *event,
2185 struct perf_event_context *ctx)
2186 {
2187 u64 tstamp = perf_event_time(event);
2188
2189 list_add_event(event, ctx);
2190 perf_group_attach(event);
2191 event->tstamp_enabled = tstamp;
2192 event->tstamp_running = tstamp;
2193 event->tstamp_stopped = tstamp;
2194 }
2195
2196 static void ctx_sched_out(struct perf_event_context *ctx,
2197 struct perf_cpu_context *cpuctx,
2198 enum event_type_t event_type);
2199 static void
2200 ctx_sched_in(struct perf_event_context *ctx,
2201 struct perf_cpu_context *cpuctx,
2202 enum event_type_t event_type,
2203 struct task_struct *task);
2204
2205 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2206 struct perf_event_context *ctx)
2207 {
2208 if (!cpuctx->task_ctx)
2209 return;
2210
2211 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2212 return;
2213
2214 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2215 }
2216
2217 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2218 struct perf_event_context *ctx,
2219 struct task_struct *task)
2220 {
2221 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2222 if (ctx)
2223 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2224 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2225 if (ctx)
2226 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2227 }
2228
2229 static void ctx_resched(struct perf_cpu_context *cpuctx,
2230 struct perf_event_context *task_ctx)
2231 {
2232 perf_pmu_disable(cpuctx->ctx.pmu);
2233 if (task_ctx)
2234 task_ctx_sched_out(cpuctx, task_ctx);
2235 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
2236 perf_event_sched_in(cpuctx, task_ctx, current);
2237 perf_pmu_enable(cpuctx->ctx.pmu);
2238 }
2239
2240 /*
2241 * Cross CPU call to install and enable a performance event
2242 *
2243 * Very similar to remote_function() + event_function() but cannot assume that
2244 * things like ctx->is_active and cpuctx->task_ctx are set.
2245 */
2246 static int __perf_install_in_context(void *info)
2247 {
2248 struct perf_event *event = info;
2249 struct perf_event_context *ctx = event->ctx;
2250 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2251 struct perf_event_context *task_ctx = cpuctx->task_ctx;
2252 bool reprogram = true;
2253 int ret = 0;
2254
2255 raw_spin_lock(&cpuctx->ctx.lock);
2256 if (ctx->task) {
2257 raw_spin_lock(&ctx->lock);
2258 task_ctx = ctx;
2259
2260 reprogram = (ctx->task == current);
2261
2262 /*
2263 * If the task is running, it must be running on this CPU,
2264 * otherwise we cannot reprogram things.
2265 *
2266 * If its not running, we don't care, ctx->lock will
2267 * serialize against it becoming runnable.
2268 */
2269 if (task_curr(ctx->task) && !reprogram) {
2270 ret = -ESRCH;
2271 goto unlock;
2272 }
2273
2274 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2275 } else if (task_ctx) {
2276 raw_spin_lock(&task_ctx->lock);
2277 }
2278
2279 if (reprogram) {
2280 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2281 add_event_to_ctx(event, ctx);
2282 ctx_resched(cpuctx, task_ctx);
2283 } else {
2284 add_event_to_ctx(event, ctx);
2285 }
2286
2287 unlock:
2288 perf_ctx_unlock(cpuctx, task_ctx);
2289
2290 return ret;
2291 }
2292
2293 /*
2294 * Attach a performance event to a context.
2295 *
2296 * Very similar to event_function_call, see comment there.
2297 */
2298 static void
2299 perf_install_in_context(struct perf_event_context *ctx,
2300 struct perf_event *event,
2301 int cpu)
2302 {
2303 struct task_struct *task = READ_ONCE(ctx->task);
2304
2305 lockdep_assert_held(&ctx->mutex);
2306
2307 if (event->cpu != -1)
2308 event->cpu = cpu;
2309
2310 /*
2311 * Ensures that if we can observe event->ctx, both the event and ctx
2312 * will be 'complete'. See perf_iterate_sb_cpu().
2313 */
2314 smp_store_release(&event->ctx, ctx);
2315
2316 if (!task) {
2317 cpu_function_call(cpu, __perf_install_in_context, event);
2318 return;
2319 }
2320
2321 /*
2322 * Should not happen, we validate the ctx is still alive before calling.
2323 */
2324 if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2325 return;
2326
2327 /*
2328 * Installing events is tricky because we cannot rely on ctx->is_active
2329 * to be set in case this is the nr_events 0 -> 1 transition.
2330 *
2331 * Instead we use task_curr(), which tells us if the task is running.
2332 * However, since we use task_curr() outside of rq::lock, we can race
2333 * against the actual state. This means the result can be wrong.
2334 *
2335 * If we get a false positive, we retry, this is harmless.
2336 *
2337 * If we get a false negative, things are complicated. If we are after
2338 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2339 * value must be correct. If we're before, it doesn't matter since
2340 * perf_event_context_sched_in() will program the counter.
2341 *
2342 * However, this hinges on the remote context switch having observed
2343 * our task->perf_event_ctxp[] store, such that it will in fact take
2344 * ctx::lock in perf_event_context_sched_in().
2345 *
2346 * We do this by task_function_call(), if the IPI fails to hit the task
2347 * we know any future context switch of task must see the
2348 * perf_event_ctpx[] store.
2349 */
2350
2351 /*
2352 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2353 * task_cpu() load, such that if the IPI then does not find the task
2354 * running, a future context switch of that task must observe the
2355 * store.
2356 */
2357 smp_mb();
2358 again:
2359 if (!task_function_call(task, __perf_install_in_context, event))
2360 return;
2361
2362 raw_spin_lock_irq(&ctx->lock);
2363 task = ctx->task;
2364 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2365 /*
2366 * Cannot happen because we already checked above (which also
2367 * cannot happen), and we hold ctx->mutex, which serializes us
2368 * against perf_event_exit_task_context().
2369 */
2370 raw_spin_unlock_irq(&ctx->lock);
2371 return;
2372 }
2373 /*
2374 * If the task is not running, ctx->lock will avoid it becoming so,
2375 * thus we can safely install the event.
2376 */
2377 if (task_curr(task)) {
2378 raw_spin_unlock_irq(&ctx->lock);
2379 goto again;
2380 }
2381 add_event_to_ctx(event, ctx);
2382 raw_spin_unlock_irq(&ctx->lock);
2383 }
2384
2385 /*
2386 * Put a event into inactive state and update time fields.
2387 * Enabling the leader of a group effectively enables all
2388 * the group members that aren't explicitly disabled, so we
2389 * have to update their ->tstamp_enabled also.
2390 * Note: this works for group members as well as group leaders
2391 * since the non-leader members' sibling_lists will be empty.
2392 */
2393 static void __perf_event_mark_enabled(struct perf_event *event)
2394 {
2395 struct perf_event *sub;
2396 u64 tstamp = perf_event_time(event);
2397
2398 event->state = PERF_EVENT_STATE_INACTIVE;
2399 event->tstamp_enabled = tstamp - event->total_time_enabled;
2400 list_for_each_entry(sub, &event->sibling_list, group_entry) {
2401 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2402 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
2403 }
2404 }
2405
2406 /*
2407 * Cross CPU call to enable a performance event
2408 */
2409 static void __perf_event_enable(struct perf_event *event,
2410 struct perf_cpu_context *cpuctx,
2411 struct perf_event_context *ctx,
2412 void *info)
2413 {
2414 struct perf_event *leader = event->group_leader;
2415 struct perf_event_context *task_ctx;
2416
2417 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2418 event->state <= PERF_EVENT_STATE_ERROR)
2419 return;
2420
2421 if (ctx->is_active)
2422 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2423
2424 __perf_event_mark_enabled(event);
2425
2426 if (!ctx->is_active)
2427 return;
2428
2429 if (!event_filter_match(event)) {
2430 if (is_cgroup_event(event))
2431 perf_cgroup_defer_enabled(event);
2432 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2433 return;
2434 }
2435
2436 /*
2437 * If the event is in a group and isn't the group leader,
2438 * then don't put it on unless the group is on.
2439 */
2440 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2441 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2442 return;
2443 }
2444
2445 task_ctx = cpuctx->task_ctx;
2446 if (ctx->task)
2447 WARN_ON_ONCE(task_ctx != ctx);
2448
2449 ctx_resched(cpuctx, task_ctx);
2450 }
2451
2452 /*
2453 * Enable a event.
2454 *
2455 * If event->ctx is a cloned context, callers must make sure that
2456 * every task struct that event->ctx->task could possibly point to
2457 * remains valid. This condition is satisfied when called through
2458 * perf_event_for_each_child or perf_event_for_each as described
2459 * for perf_event_disable.
2460 */
2461 static void _perf_event_enable(struct perf_event *event)
2462 {
2463 struct perf_event_context *ctx = event->ctx;
2464
2465 raw_spin_lock_irq(&ctx->lock);
2466 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2467 event->state < PERF_EVENT_STATE_ERROR) {
2468 raw_spin_unlock_irq(&ctx->lock);
2469 return;
2470 }
2471
2472 /*
2473 * If the event is in error state, clear that first.
2474 *
2475 * That way, if we see the event in error state below, we know that it
2476 * has gone back into error state, as distinct from the task having
2477 * been scheduled away before the cross-call arrived.
2478 */
2479 if (event->state == PERF_EVENT_STATE_ERROR)
2480 event->state = PERF_EVENT_STATE_OFF;
2481 raw_spin_unlock_irq(&ctx->lock);
2482
2483 event_function_call(event, __perf_event_enable, NULL);
2484 }
2485
2486 /*
2487 * See perf_event_disable();
2488 */
2489 void perf_event_enable(struct perf_event *event)
2490 {
2491 struct perf_event_context *ctx;
2492
2493 ctx = perf_event_ctx_lock(event);
2494 _perf_event_enable(event);
2495 perf_event_ctx_unlock(event, ctx);
2496 }
2497 EXPORT_SYMBOL_GPL(perf_event_enable);
2498
2499 struct stop_event_data {
2500 struct perf_event *event;
2501 unsigned int restart;
2502 };
2503
2504 static int __perf_event_stop(void *info)
2505 {
2506 struct stop_event_data *sd = info;
2507 struct perf_event *event = sd->event;
2508
2509 /* if it's already INACTIVE, do nothing */
2510 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2511 return 0;
2512
2513 /* matches smp_wmb() in event_sched_in() */
2514 smp_rmb();
2515
2516 /*
2517 * There is a window with interrupts enabled before we get here,
2518 * so we need to check again lest we try to stop another CPU's event.
2519 */
2520 if (READ_ONCE(event->oncpu) != smp_processor_id())
2521 return -EAGAIN;
2522
2523 event->pmu->stop(event, PERF_EF_UPDATE);
2524
2525 /*
2526 * May race with the actual stop (through perf_pmu_output_stop()),
2527 * but it is only used for events with AUX ring buffer, and such
2528 * events will refuse to restart because of rb::aux_mmap_count==0,
2529 * see comments in perf_aux_output_begin().
2530 *
2531 * Since this is happening on a event-local CPU, no trace is lost
2532 * while restarting.
2533 */
2534 if (sd->restart)
2535 event->pmu->start(event, 0);
2536
2537 return 0;
2538 }
2539
2540 static int perf_event_stop(struct perf_event *event, int restart)
2541 {
2542 struct stop_event_data sd = {
2543 .event = event,
2544 .restart = restart,
2545 };
2546 int ret = 0;
2547
2548 do {
2549 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2550 return 0;
2551
2552 /* matches smp_wmb() in event_sched_in() */
2553 smp_rmb();
2554
2555 /*
2556 * We only want to restart ACTIVE events, so if the event goes
2557 * inactive here (event->oncpu==-1), there's nothing more to do;
2558 * fall through with ret==-ENXIO.
2559 */
2560 ret = cpu_function_call(READ_ONCE(event->oncpu),
2561 __perf_event_stop, &sd);
2562 } while (ret == -EAGAIN);
2563
2564 return ret;
2565 }
2566
2567 /*
2568 * In order to contain the amount of racy and tricky in the address filter
2569 * configuration management, it is a two part process:
2570 *
2571 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2572 * we update the addresses of corresponding vmas in
2573 * event::addr_filters_offs array and bump the event::addr_filters_gen;
2574 * (p2) when an event is scheduled in (pmu::add), it calls
2575 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2576 * if the generation has changed since the previous call.
2577 *
2578 * If (p1) happens while the event is active, we restart it to force (p2).
2579 *
2580 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2581 * pre-existing mappings, called once when new filters arrive via SET_FILTER
2582 * ioctl;
2583 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2584 * registered mapping, called for every new mmap(), with mm::mmap_sem down
2585 * for reading;
2586 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2587 * of exec.
2588 */
2589 void perf_event_addr_filters_sync(struct perf_event *event)
2590 {
2591 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2592
2593 if (!has_addr_filter(event))
2594 return;
2595
2596 raw_spin_lock(&ifh->lock);
2597 if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2598 event->pmu->addr_filters_sync(event);
2599 event->hw.addr_filters_gen = event->addr_filters_gen;
2600 }
2601 raw_spin_unlock(&ifh->lock);
2602 }
2603 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2604
2605 static int _perf_event_refresh(struct perf_event *event, int refresh)
2606 {
2607 /*
2608 * not supported on inherited events
2609 */
2610 if (event->attr.inherit || !is_sampling_event(event))
2611 return -EINVAL;
2612
2613 atomic_add(refresh, &event->event_limit);
2614 _perf_event_enable(event);
2615
2616 return 0;
2617 }
2618
2619 /*
2620 * See perf_event_disable()
2621 */
2622 int perf_event_refresh(struct perf_event *event, int refresh)
2623 {
2624 struct perf_event_context *ctx;
2625 int ret;
2626
2627 ctx = perf_event_ctx_lock(event);
2628 ret = _perf_event_refresh(event, refresh);
2629 perf_event_ctx_unlock(event, ctx);
2630
2631 return ret;
2632 }
2633 EXPORT_SYMBOL_GPL(perf_event_refresh);
2634
2635 static void ctx_sched_out(struct perf_event_context *ctx,
2636 struct perf_cpu_context *cpuctx,
2637 enum event_type_t event_type)
2638 {
2639 int is_active = ctx->is_active;
2640 struct perf_event *event;
2641
2642 lockdep_assert_held(&ctx->lock);
2643
2644 if (likely(!ctx->nr_events)) {
2645 /*
2646 * See __perf_remove_from_context().
2647 */
2648 WARN_ON_ONCE(ctx->is_active);
2649 if (ctx->task)
2650 WARN_ON_ONCE(cpuctx->task_ctx);
2651 return;
2652 }
2653
2654 ctx->is_active &= ~event_type;
2655 if (!(ctx->is_active & EVENT_ALL))
2656 ctx->is_active = 0;
2657
2658 if (ctx->task) {
2659 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2660 if (!ctx->is_active)
2661 cpuctx->task_ctx = NULL;
2662 }
2663
2664 /*
2665 * Always update time if it was set; not only when it changes.
2666 * Otherwise we can 'forget' to update time for any but the last
2667 * context we sched out. For example:
2668 *
2669 * ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2670 * ctx_sched_out(.event_type = EVENT_PINNED)
2671 *
2672 * would only update time for the pinned events.
2673 */
2674 if (is_active & EVENT_TIME) {
2675 /* update (and stop) ctx time */
2676 update_context_time(ctx);
2677 update_cgrp_time_from_cpuctx(cpuctx);
2678 }
2679
2680 is_active ^= ctx->is_active; /* changed bits */
2681
2682 if (!ctx->nr_active || !(is_active & EVENT_ALL))
2683 return;
2684
2685 perf_pmu_disable(ctx->pmu);
2686 if (is_active & EVENT_PINNED) {
2687 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2688 group_sched_out(event, cpuctx, ctx);
2689 }
2690
2691 if (is_active & EVENT_FLEXIBLE) {
2692 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2693 group_sched_out(event, cpuctx, ctx);
2694 }
2695 perf_pmu_enable(ctx->pmu);
2696 }
2697
2698 /*
2699 * Test whether two contexts are equivalent, i.e. whether they have both been
2700 * cloned from the same version of the same context.
2701 *
2702 * Equivalence is measured using a generation number in the context that is
2703 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2704 * and list_del_event().
2705 */
2706 static int context_equiv(struct perf_event_context *ctx1,
2707 struct perf_event_context *ctx2)
2708 {
2709 lockdep_assert_held(&ctx1->lock);
2710 lockdep_assert_held(&ctx2->lock);
2711
2712 /* Pinning disables the swap optimization */
2713 if (ctx1->pin_count || ctx2->pin_count)
2714 return 0;
2715
2716 /* If ctx1 is the parent of ctx2 */
2717 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2718 return 1;
2719
2720 /* If ctx2 is the parent of ctx1 */
2721 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2722 return 1;
2723
2724 /*
2725 * If ctx1 and ctx2 have the same parent; we flatten the parent
2726 * hierarchy, see perf_event_init_context().
2727 */
2728 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2729 ctx1->parent_gen == ctx2->parent_gen)
2730 return 1;
2731
2732 /* Unmatched */
2733 return 0;
2734 }
2735
2736 static void __perf_event_sync_stat(struct perf_event *event,
2737 struct perf_event *next_event)
2738 {
2739 u64 value;
2740
2741 if (!event->attr.inherit_stat)
2742 return;
2743
2744 /*
2745 * Update the event value, we cannot use perf_event_read()
2746 * because we're in the middle of a context switch and have IRQs
2747 * disabled, which upsets smp_call_function_single(), however
2748 * we know the event must be on the current CPU, therefore we
2749 * don't need to use it.
2750 */
2751 switch (event->state) {
2752 case PERF_EVENT_STATE_ACTIVE:
2753 event->pmu->read(event);
2754 /* fall-through */
2755
2756 case PERF_EVENT_STATE_INACTIVE:
2757 update_event_times(event);
2758 break;
2759
2760 default:
2761 break;
2762 }
2763
2764 /*
2765 * In order to keep per-task stats reliable we need to flip the event
2766 * values when we flip the contexts.
2767 */
2768 value = local64_read(&next_event->count);
2769 value = local64_xchg(&event->count, value);
2770 local64_set(&next_event->count, value);
2771
2772 swap(event->total_time_enabled, next_event->total_time_enabled);
2773 swap(event->total_time_running, next_event->total_time_running);
2774
2775 /*
2776 * Since we swizzled the values, update the user visible data too.
2777 */
2778 perf_event_update_userpage(event);
2779 perf_event_update_userpage(next_event);
2780 }
2781
2782 static void perf_event_sync_stat(struct perf_event_context *ctx,
2783 struct perf_event_context *next_ctx)
2784 {
2785 struct perf_event *event, *next_event;
2786
2787 if (!ctx->nr_stat)
2788 return;
2789
2790 update_context_time(ctx);
2791
2792 event = list_first_entry(&ctx->event_list,
2793 struct perf_event, event_entry);
2794
2795 next_event = list_first_entry(&next_ctx->event_list,
2796 struct perf_event, event_entry);
2797
2798 while (&event->event_entry != &ctx->event_list &&
2799 &next_event->event_entry != &next_ctx->event_list) {
2800
2801 __perf_event_sync_stat(event, next_event);
2802
2803 event = list_next_entry(event, event_entry);
2804 next_event = list_next_entry(next_event, event_entry);
2805 }
2806 }
2807
2808 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2809 struct task_struct *next)
2810 {
2811 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2812 struct perf_event_context *next_ctx;
2813 struct perf_event_context *parent, *next_parent;
2814 struct perf_cpu_context *cpuctx;
2815 int do_switch = 1;
2816
2817 if (likely(!ctx))
2818 return;
2819
2820 cpuctx = __get_cpu_context(ctx);
2821 if (!cpuctx->task_ctx)
2822 return;
2823
2824 rcu_read_lock();
2825 next_ctx = next->perf_event_ctxp[ctxn];
2826 if (!next_ctx)
2827 goto unlock;
2828
2829 parent = rcu_dereference(ctx->parent_ctx);
2830 next_parent = rcu_dereference(next_ctx->parent_ctx);
2831
2832 /* If neither context have a parent context; they cannot be clones. */
2833 if (!parent && !next_parent)
2834 goto unlock;
2835
2836 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2837 /*
2838 * Looks like the two contexts are clones, so we might be
2839 * able to optimize the context switch. We lock both
2840 * contexts and check that they are clones under the
2841 * lock (including re-checking that neither has been
2842 * uncloned in the meantime). It doesn't matter which
2843 * order we take the locks because no other cpu could
2844 * be trying to lock both of these tasks.
2845 */
2846 raw_spin_lock(&ctx->lock);
2847 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2848 if (context_equiv(ctx, next_ctx)) {
2849 WRITE_ONCE(ctx->task, next);
2850 WRITE_ONCE(next_ctx->task, task);
2851
2852 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2853
2854 /*
2855 * RCU_INIT_POINTER here is safe because we've not
2856 * modified the ctx and the above modification of
2857 * ctx->task and ctx->task_ctx_data are immaterial
2858 * since those values are always verified under
2859 * ctx->lock which we're now holding.
2860 */
2861 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
2862 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
2863
2864 do_switch = 0;
2865
2866 perf_event_sync_stat(ctx, next_ctx);
2867 }
2868 raw_spin_unlock(&next_ctx->lock);
2869 raw_spin_unlock(&ctx->lock);
2870 }
2871 unlock:
2872 rcu_read_unlock();
2873
2874 if (do_switch) {
2875 raw_spin_lock(&ctx->lock);
2876 task_ctx_sched_out(cpuctx, ctx);
2877 raw_spin_unlock(&ctx->lock);
2878 }
2879 }
2880
2881 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
2882
2883 void perf_sched_cb_dec(struct pmu *pmu)
2884 {
2885 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2886
2887 this_cpu_dec(perf_sched_cb_usages);
2888
2889 if (!--cpuctx->sched_cb_usage)
2890 list_del(&cpuctx->sched_cb_entry);
2891 }
2892
2893
2894 void perf_sched_cb_inc(struct pmu *pmu)
2895 {
2896 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2897
2898 if (!cpuctx->sched_cb_usage++)
2899 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
2900
2901 this_cpu_inc(perf_sched_cb_usages);
2902 }
2903
2904 /*
2905 * This function provides the context switch callback to the lower code
2906 * layer. It is invoked ONLY when the context switch callback is enabled.
2907 *
2908 * This callback is relevant even to per-cpu events; for example multi event
2909 * PEBS requires this to provide PID/TID information. This requires we flush
2910 * all queued PEBS records before we context switch to a new task.
2911 */
2912 static void perf_pmu_sched_task(struct task_struct *prev,
2913 struct task_struct *next,
2914 bool sched_in)
2915 {
2916 struct perf_cpu_context *cpuctx;
2917 struct pmu *pmu;
2918
2919 if (prev == next)
2920 return;
2921
2922 list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
2923 pmu = cpuctx->unique_pmu; /* software PMUs will not have sched_task */
2924
2925 if (WARN_ON_ONCE(!pmu->sched_task))
2926 continue;
2927
2928 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2929 perf_pmu_disable(pmu);
2930
2931 pmu->sched_task(cpuctx->task_ctx, sched_in);
2932
2933 perf_pmu_enable(pmu);
2934 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2935 }
2936 }
2937
2938 static void perf_event_switch(struct task_struct *task,
2939 struct task_struct *next_prev, bool sched_in);
2940
2941 #define for_each_task_context_nr(ctxn) \
2942 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2943
2944 /*
2945 * Called from scheduler to remove the events of the current task,
2946 * with interrupts disabled.
2947 *
2948 * We stop each event and update the event value in event->count.
2949 *
2950 * This does not protect us against NMI, but disable()
2951 * sets the disabled bit in the control field of event _before_
2952 * accessing the event control register. If a NMI hits, then it will
2953 * not restart the event.
2954 */
2955 void __perf_event_task_sched_out(struct task_struct *task,
2956 struct task_struct *next)
2957 {
2958 int ctxn;
2959
2960 if (__this_cpu_read(perf_sched_cb_usages))
2961 perf_pmu_sched_task(task, next, false);
2962
2963 if (atomic_read(&nr_switch_events))
2964 perf_event_switch(task, next, false);
2965
2966 for_each_task_context_nr(ctxn)
2967 perf_event_context_sched_out(task, ctxn, next);
2968
2969 /*
2970 * if cgroup events exist on this CPU, then we need
2971 * to check if we have to switch out PMU state.
2972 * cgroup event are system-wide mode only
2973 */
2974 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2975 perf_cgroup_sched_out(task, next);
2976 }
2977
2978 /*
2979 * Called with IRQs disabled
2980 */
2981 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2982 enum event_type_t event_type)
2983 {
2984 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2985 }
2986
2987 static void
2988 ctx_pinned_sched_in(struct perf_event_context *ctx,
2989 struct perf_cpu_context *cpuctx)
2990 {
2991 struct perf_event *event;
2992
2993 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2994 if (event->state <= PERF_EVENT_STATE_OFF)
2995 continue;
2996 if (!event_filter_match(event))
2997 continue;
2998
2999 /* may need to reset tstamp_enabled */
3000 if (is_cgroup_event(event))
3001 perf_cgroup_mark_enabled(event, ctx);
3002
3003 if (group_can_go_on(event, cpuctx, 1))
3004 group_sched_in(event, cpuctx, ctx);
3005
3006 /*
3007 * If this pinned group hasn't been scheduled,
3008 * put it in error state.
3009 */
3010 if (event->state == PERF_EVENT_STATE_INACTIVE) {
3011 update_group_times(event);
3012 event->state = PERF_EVENT_STATE_ERROR;
3013 }
3014 }
3015 }
3016
3017 static void
3018 ctx_flexible_sched_in(struct perf_event_context *ctx,
3019 struct perf_cpu_context *cpuctx)
3020 {
3021 struct perf_event *event;
3022 int can_add_hw = 1;
3023
3024 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
3025 /* Ignore events in OFF or ERROR state */
3026 if (event->state <= PERF_EVENT_STATE_OFF)
3027 continue;
3028 /*
3029 * Listen to the 'cpu' scheduling filter constraint
3030 * of events:
3031 */
3032 if (!event_filter_match(event))
3033 continue;
3034
3035 /* may need to reset tstamp_enabled */
3036 if (is_cgroup_event(event))
3037 perf_cgroup_mark_enabled(event, ctx);
3038
3039 if (group_can_go_on(event, cpuctx, can_add_hw)) {
3040 if (group_sched_in(event, cpuctx, ctx))
3041 can_add_hw = 0;
3042 }
3043 }
3044 }
3045
3046 static void
3047 ctx_sched_in(struct perf_event_context *ctx,
3048 struct perf_cpu_context *cpuctx,
3049 enum event_type_t event_type,
3050 struct task_struct *task)
3051 {
3052 int is_active = ctx->is_active;
3053 u64 now;
3054
3055 lockdep_assert_held(&ctx->lock);
3056
3057 if (likely(!ctx->nr_events))
3058 return;
3059
3060 ctx->is_active |= (event_type | EVENT_TIME);
3061 if (ctx->task) {
3062 if (!is_active)
3063 cpuctx->task_ctx = ctx;
3064 else
3065 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3066 }
3067
3068 is_active ^= ctx->is_active; /* changed bits */
3069
3070 if (is_active & EVENT_TIME) {
3071 /* start ctx time */
3072 now = perf_clock();
3073 ctx->timestamp = now;
3074 perf_cgroup_set_timestamp(task, ctx);
3075 }
3076
3077 /*
3078 * First go through the list and put on any pinned groups
3079 * in order to give them the best chance of going on.
3080 */
3081 if (is_active & EVENT_PINNED)
3082 ctx_pinned_sched_in(ctx, cpuctx);
3083
3084 /* Then walk through the lower prio flexible groups */
3085 if (is_active & EVENT_FLEXIBLE)
3086 ctx_flexible_sched_in(ctx, cpuctx);
3087 }
3088
3089 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3090 enum event_type_t event_type,
3091 struct task_struct *task)
3092 {
3093 struct perf_event_context *ctx = &cpuctx->ctx;
3094
3095 ctx_sched_in(ctx, cpuctx, event_type, task);
3096 }
3097
3098 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3099 struct task_struct *task)
3100 {
3101 struct perf_cpu_context *cpuctx;
3102
3103 cpuctx = __get_cpu_context(ctx);
3104 if (cpuctx->task_ctx == ctx)
3105 return;
3106
3107 perf_ctx_lock(cpuctx, ctx);
3108 perf_pmu_disable(ctx->pmu);
3109 /*
3110 * We want to keep the following priority order:
3111 * cpu pinned (that don't need to move), task pinned,
3112 * cpu flexible, task flexible.
3113 */
3114 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3115 perf_event_sched_in(cpuctx, ctx, task);
3116 perf_pmu_enable(ctx->pmu);
3117 perf_ctx_unlock(cpuctx, ctx);
3118 }
3119
3120 /*
3121 * Called from scheduler to add the events of the current task
3122 * with interrupts disabled.
3123 *
3124 * We restore the event value and then enable it.
3125 *
3126 * This does not protect us against NMI, but enable()
3127 * sets the enabled bit in the control field of event _before_
3128 * accessing the event control register. If a NMI hits, then it will
3129 * keep the event running.
3130 */
3131 void __perf_event_task_sched_in(struct task_struct *prev,
3132 struct task_struct *task)
3133 {
3134 struct perf_event_context *ctx;
3135 int ctxn;
3136
3137 /*
3138 * If cgroup events exist on this CPU, then we need to check if we have
3139 * to switch in PMU state; cgroup event are system-wide mode only.
3140 *
3141 * Since cgroup events are CPU events, we must schedule these in before
3142 * we schedule in the task events.
3143 */
3144 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3145 perf_cgroup_sched_in(prev, task);
3146
3147 for_each_task_context_nr(ctxn) {
3148 ctx = task->perf_event_ctxp[ctxn];
3149 if (likely(!ctx))
3150 continue;
3151
3152 perf_event_context_sched_in(ctx, task);
3153 }
3154
3155 if (atomic_read(&nr_switch_events))
3156 perf_event_switch(task, prev, true);
3157
3158 if (__this_cpu_read(perf_sched_cb_usages))
3159 perf_pmu_sched_task(prev, task, true);
3160 }
3161
3162 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3163 {
3164 u64 frequency = event->attr.sample_freq;
3165 u64 sec = NSEC_PER_SEC;
3166 u64 divisor, dividend;
3167
3168 int count_fls, nsec_fls, frequency_fls, sec_fls;
3169
3170 count_fls = fls64(count);
3171 nsec_fls = fls64(nsec);
3172 frequency_fls = fls64(frequency);
3173 sec_fls = 30;
3174
3175 /*
3176 * We got @count in @nsec, with a target of sample_freq HZ
3177 * the target period becomes:
3178 *
3179 * @count * 10^9
3180 * period = -------------------
3181 * @nsec * sample_freq
3182 *
3183 */
3184
3185 /*
3186 * Reduce accuracy by one bit such that @a and @b converge
3187 * to a similar magnitude.
3188 */
3189 #define REDUCE_FLS(a, b) \
3190 do { \
3191 if (a##_fls > b##_fls) { \
3192 a >>= 1; \
3193 a##_fls--; \
3194 } else { \
3195 b >>= 1; \
3196 b##_fls--; \
3197 } \
3198 } while (0)
3199
3200 /*
3201 * Reduce accuracy until either term fits in a u64, then proceed with
3202 * the other, so that finally we can do a u64/u64 division.
3203 */
3204 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3205 REDUCE_FLS(nsec, frequency);
3206 REDUCE_FLS(sec, count);
3207 }
3208
3209 if (count_fls + sec_fls > 64) {
3210 divisor = nsec * frequency;
3211
3212 while (count_fls + sec_fls > 64) {
3213 REDUCE_FLS(count, sec);
3214 divisor >>= 1;
3215 }
3216
3217 dividend = count * sec;
3218 } else {
3219 dividend = count * sec;
3220
3221 while (nsec_fls + frequency_fls > 64) {
3222 REDUCE_FLS(nsec, frequency);
3223 dividend >>= 1;
3224 }
3225
3226 divisor = nsec * frequency;
3227 }
3228
3229 if (!divisor)
3230 return dividend;
3231
3232 return div64_u64(dividend, divisor);
3233 }
3234
3235 static DEFINE_PER_CPU(int, perf_throttled_count);
3236 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3237
3238 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3239 {
3240 struct hw_perf_event *hwc = &event->hw;
3241 s64 period, sample_period;
3242 s64 delta;
3243
3244 period = perf_calculate_period(event, nsec, count);
3245
3246 delta = (s64)(period - hwc->sample_period);
3247 delta = (delta + 7) / 8; /* low pass filter */
3248
3249 sample_period = hwc->sample_period + delta;
3250
3251 if (!sample_period)
3252 sample_period = 1;
3253
3254 hwc->sample_period = sample_period;
3255
3256 if (local64_read(&hwc->period_left) > 8*sample_period) {
3257 if (disable)
3258 event->pmu->stop(event, PERF_EF_UPDATE);
3259
3260 local64_set(&hwc->period_left, 0);
3261
3262 if (disable)
3263 event->pmu->start(event, PERF_EF_RELOAD);
3264 }
3265 }
3266
3267 /*
3268 * combine freq adjustment with unthrottling to avoid two passes over the
3269 * events. At the same time, make sure, having freq events does not change
3270 * the rate of unthrottling as that would introduce bias.
3271 */
3272 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3273 int needs_unthr)
3274 {
3275 struct perf_event *event;
3276 struct hw_perf_event *hwc;
3277 u64 now, period = TICK_NSEC;
3278 s64 delta;
3279
3280 /*
3281 * only need to iterate over all events iff:
3282 * - context have events in frequency mode (needs freq adjust)
3283 * - there are events to unthrottle on this cpu
3284 */
3285 if (!(ctx->nr_freq || needs_unthr))
3286 return;
3287
3288 raw_spin_lock(&ctx->lock);
3289 perf_pmu_disable(ctx->pmu);
3290
3291 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3292 if (event->state != PERF_EVENT_STATE_ACTIVE)
3293 continue;
3294
3295 if (!event_filter_match(event))
3296 continue;
3297
3298 perf_pmu_disable(event->pmu);
3299
3300 hwc = &event->hw;
3301
3302 if (hwc->interrupts == MAX_INTERRUPTS) {
3303 hwc->interrupts = 0;
3304 perf_log_throttle(event, 1);
3305 event->pmu->start(event, 0);
3306 }
3307
3308 if (!event->attr.freq || !event->attr.sample_freq)
3309 goto next;
3310
3311 /*
3312 * stop the event and update event->count
3313 */
3314 event->pmu->stop(event, PERF_EF_UPDATE);
3315
3316 now = local64_read(&event->count);
3317 delta = now - hwc->freq_count_stamp;
3318 hwc->freq_count_stamp = now;
3319
3320 /*
3321 * restart the event
3322 * reload only if value has changed
3323 * we have stopped the event so tell that
3324 * to perf_adjust_period() to avoid stopping it
3325 * twice.
3326 */
3327 if (delta > 0)
3328 perf_adjust_period(event, period, delta, false);
3329
3330 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3331 next:
3332 perf_pmu_enable(event->pmu);
3333 }
3334
3335 perf_pmu_enable(ctx->pmu);
3336 raw_spin_unlock(&ctx->lock);
3337 }
3338
3339 /*
3340 * Round-robin a context's events:
3341 */
3342 static void rotate_ctx(struct perf_event_context *ctx)
3343 {
3344 /*
3345 * Rotate the first entry last of non-pinned groups. Rotation might be
3346 * disabled by the inheritance code.
3347 */
3348 if (!ctx->rotate_disable)
3349 list_rotate_left(&ctx->flexible_groups);
3350 }
3351
3352 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3353 {
3354 struct perf_event_context *ctx = NULL;
3355 int rotate = 0;
3356
3357 if (cpuctx->ctx.nr_events) {
3358 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3359 rotate = 1;
3360 }
3361
3362 ctx = cpuctx->task_ctx;
3363 if (ctx && ctx->nr_events) {
3364 if (ctx->nr_events != ctx->nr_active)
3365 rotate = 1;
3366 }
3367
3368 if (!rotate)
3369 goto done;
3370
3371 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3372 perf_pmu_disable(cpuctx->ctx.pmu);
3373
3374 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3375 if (ctx)
3376 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3377
3378 rotate_ctx(&cpuctx->ctx);
3379 if (ctx)
3380 rotate_ctx(ctx);
3381
3382 perf_event_sched_in(cpuctx, ctx, current);
3383
3384 perf_pmu_enable(cpuctx->ctx.pmu);
3385 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3386 done:
3387
3388 return rotate;
3389 }
3390
3391 void perf_event_task_tick(void)
3392 {
3393 struct list_head *head = this_cpu_ptr(&active_ctx_list);
3394 struct perf_event_context *ctx, *tmp;
3395 int throttled;
3396
3397 WARN_ON(!irqs_disabled());
3398
3399 __this_cpu_inc(perf_throttled_seq);
3400 throttled = __this_cpu_xchg(perf_throttled_count, 0);
3401 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3402
3403 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3404 perf_adjust_freq_unthr_context(ctx, throttled);
3405 }
3406
3407 static int event_enable_on_exec(struct perf_event *event,
3408 struct perf_event_context *ctx)
3409 {
3410 if (!event->attr.enable_on_exec)
3411 return 0;
3412
3413 event->attr.enable_on_exec = 0;
3414 if (event->state >= PERF_EVENT_STATE_INACTIVE)
3415 return 0;
3416
3417 __perf_event_mark_enabled(event);
3418
3419 return 1;
3420 }
3421
3422 /*
3423 * Enable all of a task's events that have been marked enable-on-exec.
3424 * This expects task == current.
3425 */
3426 static void perf_event_enable_on_exec(int ctxn)
3427 {
3428 struct perf_event_context *ctx, *clone_ctx = NULL;
3429 struct perf_cpu_context *cpuctx;
3430 struct perf_event *event;
3431 unsigned long flags;
3432 int enabled = 0;
3433
3434 local_irq_save(flags);
3435 ctx = current->perf_event_ctxp[ctxn];
3436 if (!ctx || !ctx->nr_events)
3437 goto out;
3438
3439 cpuctx = __get_cpu_context(ctx);
3440 perf_ctx_lock(cpuctx, ctx);
3441 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3442 list_for_each_entry(event, &ctx->event_list, event_entry)
3443 enabled |= event_enable_on_exec(event, ctx);
3444
3445 /*
3446 * Unclone and reschedule this context if we enabled any event.
3447 */
3448 if (enabled) {
3449 clone_ctx = unclone_ctx(ctx);
3450 ctx_resched(cpuctx, ctx);
3451 }
3452 perf_ctx_unlock(cpuctx, ctx);
3453
3454 out:
3455 local_irq_restore(flags);
3456
3457 if (clone_ctx)
3458 put_ctx(clone_ctx);
3459 }
3460
3461 struct perf_read_data {
3462 struct perf_event *event;
3463 bool group;
3464 int ret;
3465 };
3466
3467 static int find_cpu_to_read(struct perf_event *event, int local_cpu)
3468 {
3469 int event_cpu = event->oncpu;
3470 u16 local_pkg, event_pkg;
3471
3472 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
3473 event_pkg = topology_physical_package_id(event_cpu);
3474 local_pkg = topology_physical_package_id(local_cpu);
3475
3476 if (event_pkg == local_pkg)
3477 return local_cpu;
3478 }
3479
3480 return event_cpu;
3481 }
3482
3483 /*
3484 * Cross CPU call to read the hardware event
3485 */
3486 static void __perf_event_read(void *info)
3487 {
3488 struct perf_read_data *data = info;
3489 struct perf_event *sub, *event = data->event;
3490 struct perf_event_context *ctx = event->ctx;
3491 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3492 struct pmu *pmu = event->pmu;
3493
3494 /*
3495 * If this is a task context, we need to check whether it is
3496 * the current task context of this cpu. If not it has been
3497 * scheduled out before the smp call arrived. In that case
3498 * event->count would have been updated to a recent sample
3499 * when the event was scheduled out.
3500 */
3501 if (ctx->task && cpuctx->task_ctx != ctx)
3502 return;
3503
3504 raw_spin_lock(&ctx->lock);
3505 if (ctx->is_active) {
3506 update_context_time(ctx);
3507 update_cgrp_time_from_event(event);
3508 }
3509
3510 update_event_times(event);
3511 if (event->state != PERF_EVENT_STATE_ACTIVE)
3512 goto unlock;
3513
3514 if (!data->group) {
3515 pmu->read(event);
3516 data->ret = 0;
3517 goto unlock;
3518 }
3519
3520 pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3521
3522 pmu->read(event);
3523
3524 list_for_each_entry(sub, &event->sibling_list, group_entry) {
3525 update_event_times(sub);
3526 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3527 /*
3528 * Use sibling's PMU rather than @event's since
3529 * sibling could be on different (eg: software) PMU.
3530 */
3531 sub->pmu->read(sub);
3532 }
3533 }
3534
3535 data->ret = pmu->commit_txn(pmu);
3536
3537 unlock:
3538 raw_spin_unlock(&ctx->lock);
3539 }
3540
3541 static inline u64 perf_event_count(struct perf_event *event)
3542 {
3543 if (event->pmu->count)
3544 return event->pmu->count(event);
3545
3546 return __perf_event_count(event);
3547 }
3548
3549 /*
3550 * NMI-safe method to read a local event, that is an event that
3551 * is:
3552 * - either for the current task, or for this CPU
3553 * - does not have inherit set, for inherited task events
3554 * will not be local and we cannot read them atomically
3555 * - must not have a pmu::count method
3556 */
3557 u64 perf_event_read_local(struct perf_event *event)
3558 {
3559 unsigned long flags;
3560 u64 val;
3561
3562 /*
3563 * Disabling interrupts avoids all counter scheduling (context
3564 * switches, timer based rotation and IPIs).
3565 */
3566 local_irq_save(flags);
3567
3568 /* If this is a per-task event, it must be for current */
3569 WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
3570 event->hw.target != current);
3571
3572 /* If this is a per-CPU event, it must be for this CPU */
3573 WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
3574 event->cpu != smp_processor_id());
3575
3576 /*
3577 * It must not be an event with inherit set, we cannot read
3578 * all child counters from atomic context.
3579 */
3580 WARN_ON_ONCE(event->attr.inherit);
3581
3582 /*
3583 * It must not have a pmu::count method, those are not
3584 * NMI safe.
3585 */
3586 WARN_ON_ONCE(event->pmu->count);
3587
3588 /*
3589 * If the event is currently on this CPU, its either a per-task event,
3590 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3591 * oncpu == -1).
3592 */
3593 if (event->oncpu == smp_processor_id())
3594 event->pmu->read(event);
3595
3596 val = local64_read(&event->count);
3597 local_irq_restore(flags);
3598
3599 return val;
3600 }
3601
3602 static int perf_event_read(struct perf_event *event, bool group)
3603 {
3604 int ret = 0, cpu_to_read, local_cpu;
3605
3606 /*
3607 * If event is enabled and currently active on a CPU, update the
3608 * value in the event structure:
3609 */
3610 if (event->state == PERF_EVENT_STATE_ACTIVE) {
3611 struct perf_read_data data = {
3612 .event = event,
3613 .group = group,
3614 .ret = 0,
3615 };
3616
3617 local_cpu = get_cpu();
3618 cpu_to_read = find_cpu_to_read(event, local_cpu);
3619 put_cpu();
3620
3621 /*
3622 * Purposely ignore the smp_call_function_single() return
3623 * value.
3624 *
3625 * If event->oncpu isn't a valid CPU it means the event got
3626 * scheduled out and that will have updated the event count.
3627 *
3628 * Therefore, either way, we'll have an up-to-date event count
3629 * after this.
3630 */
3631 (void)smp_call_function_single(cpu_to_read, __perf_event_read, &data, 1);
3632 ret = data.ret;
3633 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
3634 struct perf_event_context *ctx = event->ctx;
3635 unsigned long flags;
3636
3637 raw_spin_lock_irqsave(&ctx->lock, flags);
3638 /*
3639 * may read while context is not active
3640 * (e.g., thread is blocked), in that case
3641 * we cannot update context time
3642 */
3643 if (ctx->is_active) {
3644 update_context_time(ctx);
3645 update_cgrp_time_from_event(event);
3646 }
3647 if (group)
3648 update_group_times(event);
3649 else
3650 update_event_times(event);
3651 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3652 }
3653
3654 return ret;
3655 }
3656
3657 /*
3658 * Initialize the perf_event context in a task_struct:
3659 */
3660 static void __perf_event_init_context(struct perf_event_context *ctx)
3661 {
3662 raw_spin_lock_init(&ctx->lock);
3663 mutex_init(&ctx->mutex);
3664 INIT_LIST_HEAD(&ctx->active_ctx_list);
3665 INIT_LIST_HEAD(&ctx->pinned_groups);
3666 INIT_LIST_HEAD(&ctx->flexible_groups);
3667 INIT_LIST_HEAD(&ctx->event_list);
3668 atomic_set(&ctx->refcount, 1);
3669 }
3670
3671 static struct perf_event_context *
3672 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3673 {
3674 struct perf_event_context *ctx;
3675
3676 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3677 if (!ctx)
3678 return NULL;
3679
3680 __perf_event_init_context(ctx);
3681 if (task) {
3682 ctx->task = task;
3683 get_task_struct(task);
3684 }
3685 ctx->pmu = pmu;
3686
3687 return ctx;
3688 }
3689
3690 static struct task_struct *
3691 find_lively_task_by_vpid(pid_t vpid)
3692 {
3693 struct task_struct *task;
3694
3695 rcu_read_lock();
3696 if (!vpid)
3697 task = current;
3698 else
3699 task = find_task_by_vpid(vpid);
3700 if (task)
3701 get_task_struct(task);
3702 rcu_read_unlock();
3703
3704 if (!task)
3705 return ERR_PTR(-ESRCH);
3706
3707 return task;
3708 }
3709
3710 /*
3711 * Returns a matching context with refcount and pincount.
3712 */
3713 static struct perf_event_context *
3714 find_get_context(struct pmu *pmu, struct task_struct *task,
3715 struct perf_event *event)
3716 {
3717 struct perf_event_context *ctx, *clone_ctx = NULL;
3718 struct perf_cpu_context *cpuctx;
3719 void *task_ctx_data = NULL;
3720 unsigned long flags;
3721 int ctxn, err;
3722 int cpu = event->cpu;
3723
3724 if (!task) {
3725 /* Must be root to operate on a CPU event: */
3726 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3727 return ERR_PTR(-EACCES);
3728
3729 /*
3730 * We could be clever and allow to attach a event to an
3731 * offline CPU and activate it when the CPU comes up, but
3732 * that's for later.
3733 */
3734 if (!cpu_online(cpu))
3735 return ERR_PTR(-ENODEV);
3736
3737 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3738 ctx = &cpuctx->ctx;
3739 get_ctx(ctx);
3740 ++ctx->pin_count;
3741
3742 return ctx;
3743 }
3744
3745 err = -EINVAL;
3746 ctxn = pmu->task_ctx_nr;
3747 if (ctxn < 0)
3748 goto errout;
3749
3750 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3751 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3752 if (!task_ctx_data) {
3753 err = -ENOMEM;
3754 goto errout;
3755 }
3756 }
3757
3758 retry:
3759 ctx = perf_lock_task_context(task, ctxn, &flags);
3760 if (ctx) {
3761 clone_ctx = unclone_ctx(ctx);
3762 ++ctx->pin_count;
3763
3764 if (task_ctx_data && !ctx->task_ctx_data) {
3765 ctx->task_ctx_data = task_ctx_data;
3766 task_ctx_data = NULL;
3767 }
3768 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3769
3770 if (clone_ctx)
3771 put_ctx(clone_ctx);
3772 } else {
3773 ctx = alloc_perf_context(pmu, task);
3774 err = -ENOMEM;
3775 if (!ctx)
3776 goto errout;
3777
3778 if (task_ctx_data) {
3779 ctx->task_ctx_data = task_ctx_data;
3780 task_ctx_data = NULL;
3781 }
3782
3783 err = 0;
3784 mutex_lock(&task->perf_event_mutex);
3785 /*
3786 * If it has already passed perf_event_exit_task().
3787 * we must see PF_EXITING, it takes this mutex too.
3788 */
3789 if (task->flags & PF_EXITING)
3790 err = -ESRCH;
3791 else if (task->perf_event_ctxp[ctxn])
3792 err = -EAGAIN;
3793 else {
3794 get_ctx(ctx);
3795 ++ctx->pin_count;
3796 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3797 }
3798 mutex_unlock(&task->perf_event_mutex);
3799
3800 if (unlikely(err)) {
3801 put_ctx(ctx);
3802
3803 if (err == -EAGAIN)
3804 goto retry;
3805 goto errout;
3806 }
3807 }
3808
3809 kfree(task_ctx_data);
3810 return ctx;
3811
3812 errout:
3813 kfree(task_ctx_data);
3814 return ERR_PTR(err);
3815 }
3816
3817 static void perf_event_free_filter(struct perf_event *event);
3818 static void perf_event_free_bpf_prog(struct perf_event *event);
3819
3820 static void free_event_rcu(struct rcu_head *head)
3821 {
3822 struct perf_event *event;
3823
3824 event = container_of(head, struct perf_event, rcu_head);
3825 if (event->ns)
3826 put_pid_ns(event->ns);
3827 perf_event_free_filter(event);
3828 kfree(event);
3829 }
3830
3831 static void ring_buffer_attach(struct perf_event *event,
3832 struct ring_buffer *rb);
3833
3834 static void detach_sb_event(struct perf_event *event)
3835 {
3836 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
3837
3838 raw_spin_lock(&pel->lock);
3839 list_del_rcu(&event->sb_list);
3840 raw_spin_unlock(&pel->lock);
3841 }
3842
3843 static bool is_sb_event(struct perf_event *event)
3844 {
3845 struct perf_event_attr *attr = &event->attr;
3846
3847 if (event->parent)
3848 return false;
3849
3850 if (event->attach_state & PERF_ATTACH_TASK)
3851 return false;
3852
3853 if (attr->mmap || attr->mmap_data || attr->mmap2 ||
3854 attr->comm || attr->comm_exec ||
3855 attr->task ||
3856 attr->context_switch)
3857 return true;
3858 return false;
3859 }
3860
3861 static void unaccount_pmu_sb_event(struct perf_event *event)
3862 {
3863 if (is_sb_event(event))
3864 detach_sb_event(event);
3865 }
3866
3867 static void unaccount_event_cpu(struct perf_event *event, int cpu)
3868 {
3869 if (event->parent)
3870 return;
3871
3872 if (is_cgroup_event(event))
3873 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3874 }
3875
3876 #ifdef CONFIG_NO_HZ_FULL
3877 static DEFINE_SPINLOCK(nr_freq_lock);
3878 #endif
3879
3880 static void unaccount_freq_event_nohz(void)
3881 {
3882 #ifdef CONFIG_NO_HZ_FULL
3883 spin_lock(&nr_freq_lock);
3884 if (atomic_dec_and_test(&nr_freq_events))
3885 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
3886 spin_unlock(&nr_freq_lock);
3887 #endif
3888 }
3889
3890 static void unaccount_freq_event(void)
3891 {
3892 if (tick_nohz_full_enabled())
3893 unaccount_freq_event_nohz();
3894 else
3895 atomic_dec(&nr_freq_events);
3896 }
3897
3898 static void unaccount_event(struct perf_event *event)
3899 {
3900 bool dec = false;
3901
3902 if (event->parent)
3903 return;
3904
3905 if (event->attach_state & PERF_ATTACH_TASK)
3906 dec = true;
3907 if (event->attr.mmap || event->attr.mmap_data)
3908 atomic_dec(&nr_mmap_events);
3909 if (event->attr.comm)
3910 atomic_dec(&nr_comm_events);
3911 if (event->attr.task)
3912 atomic_dec(&nr_task_events);
3913 if (event->attr.freq)
3914 unaccount_freq_event();
3915 if (event->attr.context_switch) {
3916 dec = true;
3917 atomic_dec(&nr_switch_events);
3918 }
3919 if (is_cgroup_event(event))
3920 dec = true;
3921 if (has_branch_stack(event))
3922 dec = true;
3923
3924 if (dec) {
3925 if (!atomic_add_unless(&perf_sched_count, -1, 1))
3926 schedule_delayed_work(&perf_sched_work, HZ);
3927 }
3928
3929 unaccount_event_cpu(event, event->cpu);
3930
3931 unaccount_pmu_sb_event(event);
3932 }
3933
3934 static void perf_sched_delayed(struct work_struct *work)
3935 {
3936 mutex_lock(&perf_sched_mutex);
3937 if (atomic_dec_and_test(&perf_sched_count))
3938 static_branch_disable(&perf_sched_events);
3939 mutex_unlock(&perf_sched_mutex);
3940 }
3941
3942 /*
3943 * The following implement mutual exclusion of events on "exclusive" pmus
3944 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3945 * at a time, so we disallow creating events that might conflict, namely:
3946 *
3947 * 1) cpu-wide events in the presence of per-task events,
3948 * 2) per-task events in the presence of cpu-wide events,
3949 * 3) two matching events on the same context.
3950 *
3951 * The former two cases are handled in the allocation path (perf_event_alloc(),
3952 * _free_event()), the latter -- before the first perf_install_in_context().
3953 */
3954 static int exclusive_event_init(struct perf_event *event)
3955 {
3956 struct pmu *pmu = event->pmu;
3957
3958 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3959 return 0;
3960
3961 /*
3962 * Prevent co-existence of per-task and cpu-wide events on the
3963 * same exclusive pmu.
3964 *
3965 * Negative pmu::exclusive_cnt means there are cpu-wide
3966 * events on this "exclusive" pmu, positive means there are
3967 * per-task events.
3968 *
3969 * Since this is called in perf_event_alloc() path, event::ctx
3970 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
3971 * to mean "per-task event", because unlike other attach states it
3972 * never gets cleared.
3973 */
3974 if (event->attach_state & PERF_ATTACH_TASK) {
3975 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
3976 return -EBUSY;
3977 } else {
3978 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
3979 return -EBUSY;
3980 }
3981
3982 return 0;
3983 }
3984
3985 static void exclusive_event_destroy(struct perf_event *event)
3986 {
3987 struct pmu *pmu = event->pmu;
3988
3989 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3990 return;
3991
3992 /* see comment in exclusive_event_init() */
3993 if (event->attach_state & PERF_ATTACH_TASK)
3994 atomic_dec(&pmu->exclusive_cnt);
3995 else
3996 atomic_inc(&pmu->exclusive_cnt);
3997 }
3998
3999 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4000 {
4001 if ((e1->pmu == e2->pmu) &&
4002 (e1->cpu == e2->cpu ||
4003 e1->cpu == -1 ||
4004 e2->cpu == -1))
4005 return true;
4006 return false;
4007 }
4008
4009 /* Called under the same ctx::mutex as perf_install_in_context() */
4010 static bool exclusive_event_installable(struct perf_event *event,
4011 struct perf_event_context *ctx)
4012 {
4013 struct perf_event *iter_event;
4014 struct pmu *pmu = event->pmu;
4015
4016 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4017 return true;
4018
4019 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4020 if (exclusive_event_match(iter_event, event))
4021 return false;
4022 }
4023
4024 return true;
4025 }
4026
4027 static void perf_addr_filters_splice(struct perf_event *event,
4028 struct list_head *head);
4029
4030 static void _free_event(struct perf_event *event)
4031 {
4032 irq_work_sync(&event->pending);
4033
4034 unaccount_event(event);
4035
4036 if (event->rb) {
4037 /*
4038 * Can happen when we close an event with re-directed output.
4039 *
4040 * Since we have a 0 refcount, perf_mmap_close() will skip
4041 * over us; possibly making our ring_buffer_put() the last.
4042 */
4043 mutex_lock(&event->mmap_mutex);
4044 ring_buffer_attach(event, NULL);
4045 mutex_unlock(&event->mmap_mutex);
4046 }
4047
4048 if (is_cgroup_event(event))
4049 perf_detach_cgroup(event);
4050
4051 if (!event->parent) {
4052 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4053 put_callchain_buffers();
4054 }
4055
4056 perf_event_free_bpf_prog(event);
4057 perf_addr_filters_splice(event, NULL);
4058 kfree(event->addr_filters_offs);
4059
4060 if (event->destroy)
4061 event->destroy(event);
4062
4063 if (event->ctx)
4064 put_ctx(event->ctx);
4065
4066 exclusive_event_destroy(event);
4067 module_put(event->pmu->module);
4068
4069 call_rcu(&event->rcu_head, free_event_rcu);
4070 }
4071
4072 /*
4073 * Used to free events which have a known refcount of 1, such as in error paths
4074 * where the event isn't exposed yet and inherited events.
4075 */
4076 static void free_event(struct perf_event *event)
4077 {
4078 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4079 "unexpected event refcount: %ld; ptr=%p\n",
4080 atomic_long_read(&event->refcount), event)) {
4081 /* leak to avoid use-after-free */
4082 return;
4083 }
4084
4085 _free_event(event);
4086 }
4087
4088 /*
4089 * Remove user event from the owner task.
4090 */
4091 static void perf_remove_from_owner(struct perf_event *event)
4092 {
4093 struct task_struct *owner;
4094
4095 rcu_read_lock();
4096 /*
4097 * Matches the smp_store_release() in perf_event_exit_task(). If we
4098 * observe !owner it means the list deletion is complete and we can
4099 * indeed free this event, otherwise we need to serialize on
4100 * owner->perf_event_mutex.
4101 */
4102 owner = lockless_dereference(event->owner);
4103 if (owner) {
4104 /*
4105 * Since delayed_put_task_struct() also drops the last
4106 * task reference we can safely take a new reference
4107 * while holding the rcu_read_lock().
4108 */
4109 get_task_struct(owner);
4110 }
4111 rcu_read_unlock();
4112
4113 if (owner) {
4114 /*
4115 * If we're here through perf_event_exit_task() we're already
4116 * holding ctx->mutex which would be an inversion wrt. the
4117 * normal lock order.
4118 *
4119 * However we can safely take this lock because its the child
4120 * ctx->mutex.
4121 */
4122 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4123
4124 /*
4125 * We have to re-check the event->owner field, if it is cleared
4126 * we raced with perf_event_exit_task(), acquiring the mutex
4127 * ensured they're done, and we can proceed with freeing the
4128 * event.
4129 */
4130 if (event->owner) {
4131 list_del_init(&event->owner_entry);
4132 smp_store_release(&event->owner, NULL);
4133 }
4134 mutex_unlock(&owner->perf_event_mutex);
4135 put_task_struct(owner);
4136 }
4137 }
4138
4139 static void put_event(struct perf_event *event)
4140 {
4141 if (!atomic_long_dec_and_test(&event->refcount))
4142 return;
4143
4144 _free_event(event);
4145 }
4146
4147 /*
4148 * Kill an event dead; while event:refcount will preserve the event
4149 * object, it will not preserve its functionality. Once the last 'user'
4150 * gives up the object, we'll destroy the thing.
4151 */
4152 int perf_event_release_kernel(struct perf_event *event)
4153 {
4154 struct perf_event_context *ctx = event->ctx;
4155 struct perf_event *child, *tmp;
4156
4157 /*
4158 * If we got here through err_file: fput(event_file); we will not have
4159 * attached to a context yet.
4160 */
4161 if (!ctx) {
4162 WARN_ON_ONCE(event->attach_state &
4163 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4164 goto no_ctx;
4165 }
4166
4167 if (!is_kernel_event(event))
4168 perf_remove_from_owner(event);
4169
4170 ctx = perf_event_ctx_lock(event);
4171 WARN_ON_ONCE(ctx->parent_ctx);
4172 perf_remove_from_context(event, DETACH_GROUP);
4173
4174 raw_spin_lock_irq(&ctx->lock);
4175 /*
4176 * Mark this even as STATE_DEAD, there is no external reference to it
4177 * anymore.
4178 *
4179 * Anybody acquiring event->child_mutex after the below loop _must_
4180 * also see this, most importantly inherit_event() which will avoid
4181 * placing more children on the list.
4182 *
4183 * Thus this guarantees that we will in fact observe and kill _ALL_
4184 * child events.
4185 */
4186 event->state = PERF_EVENT_STATE_DEAD;
4187 raw_spin_unlock_irq(&ctx->lock);
4188
4189 perf_event_ctx_unlock(event, ctx);
4190
4191 again:
4192 mutex_lock(&event->child_mutex);
4193 list_for_each_entry(child, &event->child_list, child_list) {
4194
4195 /*
4196 * Cannot change, child events are not migrated, see the
4197 * comment with perf_event_ctx_lock_nested().
4198 */
4199 ctx = lockless_dereference(child->ctx);
4200 /*
4201 * Since child_mutex nests inside ctx::mutex, we must jump
4202 * through hoops. We start by grabbing a reference on the ctx.
4203 *
4204 * Since the event cannot get freed while we hold the
4205 * child_mutex, the context must also exist and have a !0
4206 * reference count.
4207 */
4208 get_ctx(ctx);
4209
4210 /*
4211 * Now that we have a ctx ref, we can drop child_mutex, and
4212 * acquire ctx::mutex without fear of it going away. Then we
4213 * can re-acquire child_mutex.
4214 */
4215 mutex_unlock(&event->child_mutex);
4216 mutex_lock(&ctx->mutex);
4217 mutex_lock(&event->child_mutex);
4218
4219 /*
4220 * Now that we hold ctx::mutex and child_mutex, revalidate our
4221 * state, if child is still the first entry, it didn't get freed
4222 * and we can continue doing so.
4223 */
4224 tmp = list_first_entry_or_null(&event->child_list,
4225 struct perf_event, child_list);
4226 if (tmp == child) {
4227 perf_remove_from_context(child, DETACH_GROUP);
4228 list_del(&child->child_list);
4229 free_event(child);
4230 /*
4231 * This matches the refcount bump in inherit_event();
4232 * this can't be the last reference.
4233 */
4234 put_event(event);
4235 }
4236
4237 mutex_unlock(&event->child_mutex);
4238 mutex_unlock(&ctx->mutex);
4239 put_ctx(ctx);
4240 goto again;
4241 }
4242 mutex_unlock(&event->child_mutex);
4243
4244 no_ctx:
4245 put_event(event); /* Must be the 'last' reference */
4246 return 0;
4247 }
4248 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4249
4250 /*
4251 * Called when the last reference to the file is gone.
4252 */
4253 static int perf_release(struct inode *inode, struct file *file)
4254 {
4255 perf_event_release_kernel(file->private_data);
4256 return 0;
4257 }
4258
4259 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4260 {
4261 struct perf_event *child;
4262 u64 total = 0;
4263
4264 *enabled = 0;
4265 *running = 0;
4266
4267 mutex_lock(&event->child_mutex);
4268
4269 (void)perf_event_read(event, false);
4270 total += perf_event_count(event);
4271
4272 *enabled += event->total_time_enabled +
4273 atomic64_read(&event->child_total_time_enabled);
4274 *running += event->total_time_running +
4275 atomic64_read(&event->child_total_time_running);
4276
4277 list_for_each_entry(child, &event->child_list, child_list) {
4278 (void)perf_event_read(child, false);
4279 total += perf_event_count(child);
4280 *enabled += child->total_time_enabled;
4281 *running += child->total_time_running;
4282 }
4283 mutex_unlock(&event->child_mutex);
4284
4285 return total;
4286 }
4287 EXPORT_SYMBOL_GPL(perf_event_read_value);
4288
4289 static int __perf_read_group_add(struct perf_event *leader,
4290 u64 read_format, u64 *values)
4291 {
4292 struct perf_event *sub;
4293 int n = 1; /* skip @nr */
4294 int ret;
4295
4296 ret = perf_event_read(leader, true);
4297 if (ret)
4298 return ret;
4299
4300 /*
4301 * Since we co-schedule groups, {enabled,running} times of siblings
4302 * will be identical to those of the leader, so we only publish one
4303 * set.
4304 */
4305 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4306 values[n++] += leader->total_time_enabled +
4307 atomic64_read(&leader->child_total_time_enabled);
4308 }
4309
4310 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4311 values[n++] += leader->total_time_running +
4312 atomic64_read(&leader->child_total_time_running);
4313 }
4314
4315 /*
4316 * Write {count,id} tuples for every sibling.
4317 */
4318 values[n++] += perf_event_count(leader);
4319 if (read_format & PERF_FORMAT_ID)
4320 values[n++] = primary_event_id(leader);
4321
4322 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4323 values[n++] += perf_event_count(sub);
4324 if (read_format & PERF_FORMAT_ID)
4325 values[n++] = primary_event_id(sub);
4326 }
4327
4328 return 0;
4329 }
4330
4331 static int perf_read_group(struct perf_event *event,
4332 u64 read_format, char __user *buf)
4333 {
4334 struct perf_event *leader = event->group_leader, *child;
4335 struct perf_event_context *ctx = leader->ctx;
4336 int ret;
4337 u64 *values;
4338
4339 lockdep_assert_held(&ctx->mutex);
4340
4341 values = kzalloc(event->read_size, GFP_KERNEL);
4342 if (!values)
4343 return -ENOMEM;
4344
4345 values[0] = 1 + leader->nr_siblings;
4346
4347 /*
4348 * By locking the child_mutex of the leader we effectively
4349 * lock the child list of all siblings.. XXX explain how.
4350 */
4351 mutex_lock(&leader->child_mutex);
4352
4353 ret = __perf_read_group_add(leader, read_format, values);
4354 if (ret)
4355 goto unlock;
4356
4357 list_for_each_entry(child, &leader->child_list, child_list) {
4358 ret = __perf_read_group_add(child, read_format, values);
4359 if (ret)
4360 goto unlock;
4361 }
4362
4363 mutex_unlock(&leader->child_mutex);
4364
4365 ret = event->read_size;
4366 if (copy_to_user(buf, values, event->read_size))
4367 ret = -EFAULT;
4368 goto out;
4369
4370 unlock:
4371 mutex_unlock(&leader->child_mutex);
4372 out:
4373 kfree(values);
4374 return ret;
4375 }
4376
4377 static int perf_read_one(struct perf_event *event,
4378 u64 read_format, char __user *buf)
4379 {
4380 u64 enabled, running;
4381 u64 values[4];
4382 int n = 0;
4383
4384 values[n++] = perf_event_read_value(event, &enabled, &running);
4385 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4386 values[n++] = enabled;
4387 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4388 values[n++] = running;
4389 if (read_format & PERF_FORMAT_ID)
4390 values[n++] = primary_event_id(event);
4391
4392 if (copy_to_user(buf, values, n * sizeof(u64)))
4393 return -EFAULT;
4394
4395 return n * sizeof(u64);
4396 }
4397
4398 static bool is_event_hup(struct perf_event *event)
4399 {
4400 bool no_children;
4401
4402 if (event->state > PERF_EVENT_STATE_EXIT)
4403 return false;
4404
4405 mutex_lock(&event->child_mutex);
4406 no_children = list_empty(&event->child_list);
4407 mutex_unlock(&event->child_mutex);
4408 return no_children;
4409 }
4410
4411 /*
4412 * Read the performance event - simple non blocking version for now
4413 */
4414 static ssize_t
4415 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4416 {
4417 u64 read_format = event->attr.read_format;
4418 int ret;
4419
4420 /*
4421 * Return end-of-file for a read on a event that is in
4422 * error state (i.e. because it was pinned but it couldn't be
4423 * scheduled on to the CPU at some point).
4424 */
4425 if (event->state == PERF_EVENT_STATE_ERROR)
4426 return 0;
4427
4428 if (count < event->read_size)
4429 return -ENOSPC;
4430
4431 WARN_ON_ONCE(event->ctx->parent_ctx);
4432 if (read_format & PERF_FORMAT_GROUP)
4433 ret = perf_read_group(event, read_format, buf);
4434 else
4435 ret = perf_read_one(event, read_format, buf);
4436
4437 return ret;
4438 }
4439
4440 static ssize_t
4441 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4442 {
4443 struct perf_event *event = file->private_data;
4444 struct perf_event_context *ctx;
4445 int ret;
4446
4447 ctx = perf_event_ctx_lock(event);
4448 ret = __perf_read(event, buf, count);
4449 perf_event_ctx_unlock(event, ctx);
4450
4451 return ret;
4452 }
4453
4454 static unsigned int perf_poll(struct file *file, poll_table *wait)
4455 {
4456 struct perf_event *event = file->private_data;
4457 struct ring_buffer *rb;
4458 unsigned int events = POLLHUP;
4459
4460 poll_wait(file, &event->waitq, wait);
4461
4462 if (is_event_hup(event))
4463 return events;
4464
4465 /*
4466 * Pin the event->rb by taking event->mmap_mutex; otherwise
4467 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4468 */
4469 mutex_lock(&event->mmap_mutex);
4470 rb = event->rb;
4471 if (rb)
4472 events = atomic_xchg(&rb->poll, 0);
4473 mutex_unlock(&event->mmap_mutex);
4474 return events;
4475 }
4476
4477 static void _perf_event_reset(struct perf_event *event)
4478 {
4479 (void)perf_event_read(event, false);
4480 local64_set(&event->count, 0);
4481 perf_event_update_userpage(event);
4482 }
4483
4484 /*
4485 * Holding the top-level event's child_mutex means that any
4486 * descendant process that has inherited this event will block
4487 * in perf_event_exit_event() if it goes to exit, thus satisfying the
4488 * task existence requirements of perf_event_enable/disable.
4489 */
4490 static void perf_event_for_each_child(struct perf_event *event,
4491 void (*func)(struct perf_event *))
4492 {
4493 struct perf_event *child;
4494
4495 WARN_ON_ONCE(event->ctx->parent_ctx);
4496
4497 mutex_lock(&event->child_mutex);
4498 func(event);
4499 list_for_each_entry(child, &event->child_list, child_list)
4500 func(child);
4501 mutex_unlock(&event->child_mutex);
4502 }
4503
4504 static void perf_event_for_each(struct perf_event *event,
4505 void (*func)(struct perf_event *))
4506 {
4507 struct perf_event_context *ctx = event->ctx;
4508 struct perf_event *sibling;
4509
4510 lockdep_assert_held(&ctx->mutex);
4511
4512 event = event->group_leader;
4513
4514 perf_event_for_each_child(event, func);
4515 list_for_each_entry(sibling, &event->sibling_list, group_entry)
4516 perf_event_for_each_child(sibling, func);
4517 }
4518
4519 static void __perf_event_period(struct perf_event *event,
4520 struct perf_cpu_context *cpuctx,
4521 struct perf_event_context *ctx,
4522 void *info)
4523 {
4524 u64 value = *((u64 *)info);
4525 bool active;
4526
4527 if (event->attr.freq) {
4528 event->attr.sample_freq = value;
4529 } else {
4530 event->attr.sample_period = value;
4531 event->hw.sample_period = value;
4532 }
4533
4534 active = (event->state == PERF_EVENT_STATE_ACTIVE);
4535 if (active) {
4536 perf_pmu_disable(ctx->pmu);
4537 /*
4538 * We could be throttled; unthrottle now to avoid the tick
4539 * trying to unthrottle while we already re-started the event.
4540 */
4541 if (event->hw.interrupts == MAX_INTERRUPTS) {
4542 event->hw.interrupts = 0;
4543 perf_log_throttle(event, 1);
4544 }
4545 event->pmu->stop(event, PERF_EF_UPDATE);
4546 }
4547
4548 local64_set(&event->hw.period_left, 0);
4549
4550 if (active) {
4551 event->pmu->start(event, PERF_EF_RELOAD);
4552 perf_pmu_enable(ctx->pmu);
4553 }
4554 }
4555
4556 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4557 {
4558 u64 value;
4559
4560 if (!is_sampling_event(event))
4561 return -EINVAL;
4562
4563 if (copy_from_user(&value, arg, sizeof(value)))
4564 return -EFAULT;
4565
4566 if (!value)
4567 return -EINVAL;
4568
4569 if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4570 return -EINVAL;
4571
4572 event_function_call(event, __perf_event_period, &value);
4573
4574 return 0;
4575 }
4576
4577 static const struct file_operations perf_fops;
4578
4579 static inline int perf_fget_light(int fd, struct fd *p)
4580 {
4581 struct fd f = fdget(fd);
4582 if (!f.file)
4583 return -EBADF;
4584
4585 if (f.file->f_op != &perf_fops) {
4586 fdput(f);
4587 return -EBADF;
4588 }
4589 *p = f;
4590 return 0;
4591 }
4592
4593 static int perf_event_set_output(struct perf_event *event,
4594 struct perf_event *output_event);
4595 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4596 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4597
4598 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4599 {
4600 void (*func)(struct perf_event *);
4601 u32 flags = arg;
4602
4603 switch (cmd) {
4604 case PERF_EVENT_IOC_ENABLE:
4605 func = _perf_event_enable;
4606 break;
4607 case PERF_EVENT_IOC_DISABLE:
4608 func = _perf_event_disable;
4609 break;
4610 case PERF_EVENT_IOC_RESET:
4611 func = _perf_event_reset;
4612 break;
4613
4614 case PERF_EVENT_IOC_REFRESH:
4615 return _perf_event_refresh(event, arg);
4616
4617 case PERF_EVENT_IOC_PERIOD:
4618 return perf_event_period(event, (u64 __user *)arg);
4619
4620 case PERF_EVENT_IOC_ID:
4621 {
4622 u64 id = primary_event_id(event);
4623
4624 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4625 return -EFAULT;
4626 return 0;
4627 }
4628
4629 case PERF_EVENT_IOC_SET_OUTPUT:
4630 {
4631 int ret;
4632 if (arg != -1) {
4633 struct perf_event *output_event;
4634 struct fd output;
4635 ret = perf_fget_light(arg, &output);
4636 if (ret)
4637 return ret;
4638 output_event = output.file->private_data;
4639 ret = perf_event_set_output(event, output_event);
4640 fdput(output);
4641 } else {
4642 ret = perf_event_set_output(event, NULL);
4643 }
4644 return ret;
4645 }
4646
4647 case PERF_EVENT_IOC_SET_FILTER:
4648 return perf_event_set_filter(event, (void __user *)arg);
4649
4650 case PERF_EVENT_IOC_SET_BPF:
4651 return perf_event_set_bpf_prog(event, arg);
4652
4653 case PERF_EVENT_IOC_PAUSE_OUTPUT: {
4654 struct ring_buffer *rb;
4655
4656 rcu_read_lock();
4657 rb = rcu_dereference(event->rb);
4658 if (!rb || !rb->nr_pages) {
4659 rcu_read_unlock();
4660 return -EINVAL;
4661 }
4662 rb_toggle_paused(rb, !!arg);
4663 rcu_read_unlock();
4664 return 0;
4665 }
4666 default:
4667 return -ENOTTY;
4668 }
4669
4670 if (flags & PERF_IOC_FLAG_GROUP)
4671 perf_event_for_each(event, func);
4672 else
4673 perf_event_for_each_child(event, func);
4674
4675 return 0;
4676 }
4677
4678 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4679 {
4680 struct perf_event *event = file->private_data;
4681 struct perf_event_context *ctx;
4682 long ret;
4683
4684 ctx = perf_event_ctx_lock(event);
4685 ret = _perf_ioctl(event, cmd, arg);
4686 perf_event_ctx_unlock(event, ctx);
4687
4688 return ret;
4689 }
4690
4691 #ifdef CONFIG_COMPAT
4692 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4693 unsigned long arg)
4694 {
4695 switch (_IOC_NR(cmd)) {
4696 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4697 case _IOC_NR(PERF_EVENT_IOC_ID):
4698 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4699 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4700 cmd &= ~IOCSIZE_MASK;
4701 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4702 }
4703 break;
4704 }
4705 return perf_ioctl(file, cmd, arg);
4706 }
4707 #else
4708 # define perf_compat_ioctl NULL
4709 #endif
4710
4711 int perf_event_task_enable(void)
4712 {
4713 struct perf_event_context *ctx;
4714 struct perf_event *event;
4715
4716 mutex_lock(&current->perf_event_mutex);
4717 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4718 ctx = perf_event_ctx_lock(event);
4719 perf_event_for_each_child(event, _perf_event_enable);
4720 perf_event_ctx_unlock(event, ctx);
4721 }
4722 mutex_unlock(&current->perf_event_mutex);
4723
4724 return 0;
4725 }
4726
4727 int perf_event_task_disable(void)
4728 {
4729 struct perf_event_context *ctx;
4730 struct perf_event *event;
4731
4732 mutex_lock(&current->perf_event_mutex);
4733 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4734 ctx = perf_event_ctx_lock(event);
4735 perf_event_for_each_child(event, _perf_event_disable);
4736 perf_event_ctx_unlock(event, ctx);
4737 }
4738 mutex_unlock(&current->perf_event_mutex);
4739
4740 return 0;
4741 }
4742
4743 static int perf_event_index(struct perf_event *event)
4744 {
4745 if (event->hw.state & PERF_HES_STOPPED)
4746 return 0;
4747
4748 if (event->state != PERF_EVENT_STATE_ACTIVE)
4749 return 0;
4750
4751 return event->pmu->event_idx(event);
4752 }
4753
4754 static void calc_timer_values(struct perf_event *event,
4755 u64 *now,
4756 u64 *enabled,
4757 u64 *running)
4758 {
4759 u64 ctx_time;
4760
4761 *now = perf_clock();
4762 ctx_time = event->shadow_ctx_time + *now;
4763 *enabled = ctx_time - event->tstamp_enabled;
4764 *running = ctx_time - event->tstamp_running;
4765 }
4766
4767 static void perf_event_init_userpage(struct perf_event *event)
4768 {
4769 struct perf_event_mmap_page *userpg;
4770 struct ring_buffer *rb;
4771
4772 rcu_read_lock();
4773 rb = rcu_dereference(event->rb);
4774 if (!rb)
4775 goto unlock;
4776
4777 userpg = rb->user_page;
4778
4779 /* Allow new userspace to detect that bit 0 is deprecated */
4780 userpg->cap_bit0_is_deprecated = 1;
4781 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4782 userpg->data_offset = PAGE_SIZE;
4783 userpg->data_size = perf_data_size(rb);
4784
4785 unlock:
4786 rcu_read_unlock();
4787 }
4788
4789 void __weak arch_perf_update_userpage(
4790 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4791 {
4792 }
4793
4794 /*
4795 * Callers need to ensure there can be no nesting of this function, otherwise
4796 * the seqlock logic goes bad. We can not serialize this because the arch
4797 * code calls this from NMI context.
4798 */
4799 void perf_event_update_userpage(struct perf_event *event)
4800 {
4801 struct perf_event_mmap_page *userpg;
4802 struct ring_buffer *rb;
4803 u64 enabled, running, now;
4804
4805 rcu_read_lock();
4806 rb = rcu_dereference(event->rb);
4807 if (!rb)
4808 goto unlock;
4809
4810 /*
4811 * compute total_time_enabled, total_time_running
4812 * based on snapshot values taken when the event
4813 * was last scheduled in.
4814 *
4815 * we cannot simply called update_context_time()
4816 * because of locking issue as we can be called in
4817 * NMI context
4818 */
4819 calc_timer_values(event, &now, &enabled, &running);
4820
4821 userpg = rb->user_page;
4822 /*
4823 * Disable preemption so as to not let the corresponding user-space
4824 * spin too long if we get preempted.
4825 */
4826 preempt_disable();
4827 ++userpg->lock;
4828 barrier();
4829 userpg->index = perf_event_index(event);
4830 userpg->offset = perf_event_count(event);
4831 if (userpg->index)
4832 userpg->offset -= local64_read(&event->hw.prev_count);
4833
4834 userpg->time_enabled = enabled +
4835 atomic64_read(&event->child_total_time_enabled);
4836
4837 userpg->time_running = running +
4838 atomic64_read(&event->child_total_time_running);
4839
4840 arch_perf_update_userpage(event, userpg, now);
4841
4842 barrier();
4843 ++userpg->lock;
4844 preempt_enable();
4845 unlock:
4846 rcu_read_unlock();
4847 }
4848
4849 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
4850 {
4851 struct perf_event *event = vma->vm_file->private_data;
4852 struct ring_buffer *rb;
4853 int ret = VM_FAULT_SIGBUS;
4854
4855 if (vmf->flags & FAULT_FLAG_MKWRITE) {
4856 if (vmf->pgoff == 0)
4857 ret = 0;
4858 return ret;
4859 }
4860
4861 rcu_read_lock();
4862 rb = rcu_dereference(event->rb);
4863 if (!rb)
4864 goto unlock;
4865
4866 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4867 goto unlock;
4868
4869 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4870 if (!vmf->page)
4871 goto unlock;
4872
4873 get_page(vmf->page);
4874 vmf->page->mapping = vma->vm_file->f_mapping;
4875 vmf->page->index = vmf->pgoff;
4876
4877 ret = 0;
4878 unlock:
4879 rcu_read_unlock();
4880
4881 return ret;
4882 }
4883
4884 static void ring_buffer_attach(struct perf_event *event,
4885 struct ring_buffer *rb)
4886 {
4887 struct ring_buffer *old_rb = NULL;
4888 unsigned long flags;
4889
4890 if (event->rb) {
4891 /*
4892 * Should be impossible, we set this when removing
4893 * event->rb_entry and wait/clear when adding event->rb_entry.
4894 */
4895 WARN_ON_ONCE(event->rcu_pending);
4896
4897 old_rb = event->rb;
4898 spin_lock_irqsave(&old_rb->event_lock, flags);
4899 list_del_rcu(&event->rb_entry);
4900 spin_unlock_irqrestore(&old_rb->event_lock, flags);
4901
4902 event->rcu_batches = get_state_synchronize_rcu();
4903 event->rcu_pending = 1;
4904 }
4905
4906 if (rb) {
4907 if (event->rcu_pending) {
4908 cond_synchronize_rcu(event->rcu_batches);
4909 event->rcu_pending = 0;
4910 }
4911
4912 spin_lock_irqsave(&rb->event_lock, flags);
4913 list_add_rcu(&event->rb_entry, &rb->event_list);
4914 spin_unlock_irqrestore(&rb->event_lock, flags);
4915 }
4916
4917 /*
4918 * Avoid racing with perf_mmap_close(AUX): stop the event
4919 * before swizzling the event::rb pointer; if it's getting
4920 * unmapped, its aux_mmap_count will be 0 and it won't
4921 * restart. See the comment in __perf_pmu_output_stop().
4922 *
4923 * Data will inevitably be lost when set_output is done in
4924 * mid-air, but then again, whoever does it like this is
4925 * not in for the data anyway.
4926 */
4927 if (has_aux(event))
4928 perf_event_stop(event, 0);
4929
4930 rcu_assign_pointer(event->rb, rb);
4931
4932 if (old_rb) {
4933 ring_buffer_put(old_rb);
4934 /*
4935 * Since we detached before setting the new rb, so that we
4936 * could attach the new rb, we could have missed a wakeup.
4937 * Provide it now.
4938 */
4939 wake_up_all(&event->waitq);
4940 }
4941 }
4942
4943 static void ring_buffer_wakeup(struct perf_event *event)
4944 {
4945 struct ring_buffer *rb;
4946
4947 rcu_read_lock();
4948 rb = rcu_dereference(event->rb);
4949 if (rb) {
4950 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
4951 wake_up_all(&event->waitq);
4952 }
4953 rcu_read_unlock();
4954 }
4955
4956 struct ring_buffer *ring_buffer_get(struct perf_event *event)
4957 {
4958 struct ring_buffer *rb;
4959
4960 rcu_read_lock();
4961 rb = rcu_dereference(event->rb);
4962 if (rb) {
4963 if (!atomic_inc_not_zero(&rb->refcount))
4964 rb = NULL;
4965 }
4966 rcu_read_unlock();
4967
4968 return rb;
4969 }
4970
4971 void ring_buffer_put(struct ring_buffer *rb)
4972 {
4973 if (!atomic_dec_and_test(&rb->refcount))
4974 return;
4975
4976 WARN_ON_ONCE(!list_empty(&rb->event_list));
4977
4978 call_rcu(&rb->rcu_head, rb_free_rcu);
4979 }
4980
4981 static void perf_mmap_open(struct vm_area_struct *vma)
4982 {
4983 struct perf_event *event = vma->vm_file->private_data;
4984
4985 atomic_inc(&event->mmap_count);
4986 atomic_inc(&event->rb->mmap_count);
4987
4988 if (vma->vm_pgoff)
4989 atomic_inc(&event->rb->aux_mmap_count);
4990
4991 if (event->pmu->event_mapped)
4992 event->pmu->event_mapped(event);
4993 }
4994
4995 static void perf_pmu_output_stop(struct perf_event *event);
4996
4997 /*
4998 * A buffer can be mmap()ed multiple times; either directly through the same
4999 * event, or through other events by use of perf_event_set_output().
5000 *
5001 * In order to undo the VM accounting done by perf_mmap() we need to destroy
5002 * the buffer here, where we still have a VM context. This means we need
5003 * to detach all events redirecting to us.
5004 */
5005 static void perf_mmap_close(struct vm_area_struct *vma)
5006 {
5007 struct perf_event *event = vma->vm_file->private_data;
5008
5009 struct ring_buffer *rb = ring_buffer_get(event);
5010 struct user_struct *mmap_user = rb->mmap_user;
5011 int mmap_locked = rb->mmap_locked;
5012 unsigned long size = perf_data_size(rb);
5013
5014 if (event->pmu->event_unmapped)
5015 event->pmu->event_unmapped(event);
5016
5017 /*
5018 * rb->aux_mmap_count will always drop before rb->mmap_count and
5019 * event->mmap_count, so it is ok to use event->mmap_mutex to
5020 * serialize with perf_mmap here.
5021 */
5022 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5023 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
5024 /*
5025 * Stop all AUX events that are writing to this buffer,
5026 * so that we can free its AUX pages and corresponding PMU
5027 * data. Note that after rb::aux_mmap_count dropped to zero,
5028 * they won't start any more (see perf_aux_output_begin()).
5029 */
5030 perf_pmu_output_stop(event);
5031
5032 /* now it's safe to free the pages */
5033 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
5034 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
5035
5036 /* this has to be the last one */
5037 rb_free_aux(rb);
5038 WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
5039
5040 mutex_unlock(&event->mmap_mutex);
5041 }
5042
5043 atomic_dec(&rb->mmap_count);
5044
5045 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5046 goto out_put;
5047
5048 ring_buffer_attach(event, NULL);
5049 mutex_unlock(&event->mmap_mutex);
5050
5051 /* If there's still other mmap()s of this buffer, we're done. */
5052 if (atomic_read(&rb->mmap_count))
5053 goto out_put;
5054
5055 /*
5056 * No other mmap()s, detach from all other events that might redirect
5057 * into the now unreachable buffer. Somewhat complicated by the
5058 * fact that rb::event_lock otherwise nests inside mmap_mutex.
5059 */
5060 again:
5061 rcu_read_lock();
5062 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5063 if (!atomic_long_inc_not_zero(&event->refcount)) {
5064 /*
5065 * This event is en-route to free_event() which will
5066 * detach it and remove it from the list.
5067 */
5068 continue;
5069 }
5070 rcu_read_unlock();
5071
5072 mutex_lock(&event->mmap_mutex);
5073 /*
5074 * Check we didn't race with perf_event_set_output() which can
5075 * swizzle the rb from under us while we were waiting to
5076 * acquire mmap_mutex.
5077 *
5078 * If we find a different rb; ignore this event, a next
5079 * iteration will no longer find it on the list. We have to
5080 * still restart the iteration to make sure we're not now
5081 * iterating the wrong list.
5082 */
5083 if (event->rb == rb)
5084 ring_buffer_attach(event, NULL);
5085
5086 mutex_unlock(&event->mmap_mutex);
5087 put_event(event);
5088
5089 /*
5090 * Restart the iteration; either we're on the wrong list or
5091 * destroyed its integrity by doing a deletion.
5092 */
5093 goto again;
5094 }
5095 rcu_read_unlock();
5096
5097 /*
5098 * It could be there's still a few 0-ref events on the list; they'll
5099 * get cleaned up by free_event() -- they'll also still have their
5100 * ref on the rb and will free it whenever they are done with it.
5101 *
5102 * Aside from that, this buffer is 'fully' detached and unmapped,
5103 * undo the VM accounting.
5104 */
5105
5106 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
5107 vma->vm_mm->pinned_vm -= mmap_locked;
5108 free_uid(mmap_user);
5109
5110 out_put:
5111 ring_buffer_put(rb); /* could be last */
5112 }
5113
5114 static const struct vm_operations_struct perf_mmap_vmops = {
5115 .open = perf_mmap_open,
5116 .close = perf_mmap_close, /* non mergable */
5117 .fault = perf_mmap_fault,
5118 .page_mkwrite = perf_mmap_fault,
5119 };
5120
5121 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5122 {
5123 struct perf_event *event = file->private_data;
5124 unsigned long user_locked, user_lock_limit;
5125 struct user_struct *user = current_user();
5126 unsigned long locked, lock_limit;
5127 struct ring_buffer *rb = NULL;
5128 unsigned long vma_size;
5129 unsigned long nr_pages;
5130 long user_extra = 0, extra = 0;
5131 int ret = 0, flags = 0;
5132
5133 /*
5134 * Don't allow mmap() of inherited per-task counters. This would
5135 * create a performance issue due to all children writing to the
5136 * same rb.
5137 */
5138 if (event->cpu == -1 && event->attr.inherit)
5139 return -EINVAL;
5140
5141 if (!(vma->vm_flags & VM_SHARED))
5142 return -EINVAL;
5143
5144 vma_size = vma->vm_end - vma->vm_start;
5145
5146 if (vma->vm_pgoff == 0) {
5147 nr_pages = (vma_size / PAGE_SIZE) - 1;
5148 } else {
5149 /*
5150 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5151 * mapped, all subsequent mappings should have the same size
5152 * and offset. Must be above the normal perf buffer.
5153 */
5154 u64 aux_offset, aux_size;
5155
5156 if (!event->rb)
5157 return -EINVAL;
5158
5159 nr_pages = vma_size / PAGE_SIZE;
5160
5161 mutex_lock(&event->mmap_mutex);
5162 ret = -EINVAL;
5163
5164 rb = event->rb;
5165 if (!rb)
5166 goto aux_unlock;
5167
5168 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
5169 aux_size = ACCESS_ONCE(rb->user_page->aux_size);
5170
5171 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5172 goto aux_unlock;
5173
5174 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5175 goto aux_unlock;
5176
5177 /* already mapped with a different offset */
5178 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5179 goto aux_unlock;
5180
5181 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5182 goto aux_unlock;
5183
5184 /* already mapped with a different size */
5185 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5186 goto aux_unlock;
5187
5188 if (!is_power_of_2(nr_pages))
5189 goto aux_unlock;
5190
5191 if (!atomic_inc_not_zero(&rb->mmap_count))
5192 goto aux_unlock;
5193
5194 if (rb_has_aux(rb)) {
5195 atomic_inc(&rb->aux_mmap_count);
5196 ret = 0;
5197 goto unlock;
5198 }
5199
5200 atomic_set(&rb->aux_mmap_count, 1);
5201 user_extra = nr_pages;
5202
5203 goto accounting;
5204 }
5205
5206 /*
5207 * If we have rb pages ensure they're a power-of-two number, so we
5208 * can do bitmasks instead of modulo.
5209 */
5210 if (nr_pages != 0 && !is_power_of_2(nr_pages))
5211 return -EINVAL;
5212
5213 if (vma_size != PAGE_SIZE * (1 + nr_pages))
5214 return -EINVAL;
5215
5216 WARN_ON_ONCE(event->ctx->parent_ctx);
5217 again:
5218 mutex_lock(&event->mmap_mutex);
5219 if (event->rb) {
5220 if (event->rb->nr_pages != nr_pages) {
5221 ret = -EINVAL;
5222 goto unlock;
5223 }
5224
5225 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5226 /*
5227 * Raced against perf_mmap_close() through
5228 * perf_event_set_output(). Try again, hope for better
5229 * luck.
5230 */
5231 mutex_unlock(&event->mmap_mutex);
5232 goto again;
5233 }
5234
5235 goto unlock;
5236 }
5237
5238 user_extra = nr_pages + 1;
5239
5240 accounting:
5241 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
5242
5243 /*
5244 * Increase the limit linearly with more CPUs:
5245 */
5246 user_lock_limit *= num_online_cpus();
5247
5248 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
5249
5250 if (user_locked > user_lock_limit)
5251 extra = user_locked - user_lock_limit;
5252
5253 lock_limit = rlimit(RLIMIT_MEMLOCK);
5254 lock_limit >>= PAGE_SHIFT;
5255 locked = vma->vm_mm->pinned_vm + extra;
5256
5257 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5258 !capable(CAP_IPC_LOCK)) {
5259 ret = -EPERM;
5260 goto unlock;
5261 }
5262
5263 WARN_ON(!rb && event->rb);
5264
5265 if (vma->vm_flags & VM_WRITE)
5266 flags |= RING_BUFFER_WRITABLE;
5267
5268 if (!rb) {
5269 rb = rb_alloc(nr_pages,
5270 event->attr.watermark ? event->attr.wakeup_watermark : 0,
5271 event->cpu, flags);
5272
5273 if (!rb) {
5274 ret = -ENOMEM;
5275 goto unlock;
5276 }
5277
5278 atomic_set(&rb->mmap_count, 1);
5279 rb->mmap_user = get_current_user();
5280 rb->mmap_locked = extra;
5281
5282 ring_buffer_attach(event, rb);
5283
5284 perf_event_init_userpage(event);
5285 perf_event_update_userpage(event);
5286 } else {
5287 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5288 event->attr.aux_watermark, flags);
5289 if (!ret)
5290 rb->aux_mmap_locked = extra;
5291 }
5292
5293 unlock:
5294 if (!ret) {
5295 atomic_long_add(user_extra, &user->locked_vm);
5296 vma->vm_mm->pinned_vm += extra;
5297
5298 atomic_inc(&event->mmap_count);
5299 } else if (rb) {
5300 atomic_dec(&rb->mmap_count);
5301 }
5302 aux_unlock:
5303 mutex_unlock(&event->mmap_mutex);
5304
5305 /*
5306 * Since pinned accounting is per vm we cannot allow fork() to copy our
5307 * vma.
5308 */
5309 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5310 vma->vm_ops = &perf_mmap_vmops;
5311
5312 if (event->pmu->event_mapped)
5313 event->pmu->event_mapped(event);
5314
5315 return ret;
5316 }
5317
5318 static int perf_fasync(int fd, struct file *filp, int on)
5319 {
5320 struct inode *inode = file_inode(filp);
5321 struct perf_event *event = filp->private_data;
5322 int retval;
5323
5324 inode_lock(inode);
5325 retval = fasync_helper(fd, filp, on, &event->fasync);
5326 inode_unlock(inode);
5327
5328 if (retval < 0)
5329 return retval;
5330
5331 return 0;
5332 }
5333
5334 static const struct file_operations perf_fops = {
5335 .llseek = no_llseek,
5336 .release = perf_release,
5337 .read = perf_read,
5338 .poll = perf_poll,
5339 .unlocked_ioctl = perf_ioctl,
5340 .compat_ioctl = perf_compat_ioctl,
5341 .mmap = perf_mmap,
5342 .fasync = perf_fasync,
5343 };
5344
5345 /*
5346 * Perf event wakeup
5347 *
5348 * If there's data, ensure we set the poll() state and publish everything
5349 * to user-space before waking everybody up.
5350 */
5351
5352 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5353 {
5354 /* only the parent has fasync state */
5355 if (event->parent)
5356 event = event->parent;
5357 return &event->fasync;
5358 }
5359
5360 void perf_event_wakeup(struct perf_event *event)
5361 {
5362 ring_buffer_wakeup(event);
5363
5364 if (event->pending_kill) {
5365 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5366 event->pending_kill = 0;
5367 }
5368 }
5369
5370 static void perf_pending_event(struct irq_work *entry)
5371 {
5372 struct perf_event *event = container_of(entry,
5373 struct perf_event, pending);
5374 int rctx;
5375
5376 rctx = perf_swevent_get_recursion_context();
5377 /*
5378 * If we 'fail' here, that's OK, it means recursion is already disabled
5379 * and we won't recurse 'further'.
5380 */
5381
5382 if (event->pending_disable) {
5383 event->pending_disable = 0;
5384 perf_event_disable_local(event);
5385 }
5386
5387 if (event->pending_wakeup) {
5388 event->pending_wakeup = 0;
5389 perf_event_wakeup(event);
5390 }
5391
5392 if (rctx >= 0)
5393 perf_swevent_put_recursion_context(rctx);
5394 }
5395
5396 /*
5397 * We assume there is only KVM supporting the callbacks.
5398 * Later on, we might change it to a list if there is
5399 * another virtualization implementation supporting the callbacks.
5400 */
5401 struct perf_guest_info_callbacks *perf_guest_cbs;
5402
5403 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5404 {
5405 perf_guest_cbs = cbs;
5406 return 0;
5407 }
5408 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5409
5410 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5411 {
5412 perf_guest_cbs = NULL;
5413 return 0;
5414 }
5415 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5416
5417 static void
5418 perf_output_sample_regs(struct perf_output_handle *handle,
5419 struct pt_regs *regs, u64 mask)
5420 {
5421 int bit;
5422 DECLARE_BITMAP(_mask, 64);
5423
5424 bitmap_from_u64(_mask, mask);
5425 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
5426 u64 val;
5427
5428 val = perf_reg_value(regs, bit);
5429 perf_output_put(handle, val);
5430 }
5431 }
5432
5433 static void perf_sample_regs_user(struct perf_regs *regs_user,
5434 struct pt_regs *regs,
5435 struct pt_regs *regs_user_copy)
5436 {
5437 if (user_mode(regs)) {
5438 regs_user->abi = perf_reg_abi(current);
5439 regs_user->regs = regs;
5440 } else if (current->mm) {
5441 perf_get_regs_user(regs_user, regs, regs_user_copy);
5442 } else {
5443 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5444 regs_user->regs = NULL;
5445 }
5446 }
5447
5448 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5449 struct pt_regs *regs)
5450 {
5451 regs_intr->regs = regs;
5452 regs_intr->abi = perf_reg_abi(current);
5453 }
5454
5455
5456 /*
5457 * Get remaining task size from user stack pointer.
5458 *
5459 * It'd be better to take stack vma map and limit this more
5460 * precisly, but there's no way to get it safely under interrupt,
5461 * so using TASK_SIZE as limit.
5462 */
5463 static u64 perf_ustack_task_size(struct pt_regs *regs)
5464 {
5465 unsigned long addr = perf_user_stack_pointer(regs);
5466
5467 if (!addr || addr >= TASK_SIZE)
5468 return 0;
5469
5470 return TASK_SIZE - addr;
5471 }
5472
5473 static u16
5474 perf_sample_ustack_size(u16 stack_size, u16 header_size,
5475 struct pt_regs *regs)
5476 {
5477 u64 task_size;
5478
5479 /* No regs, no stack pointer, no dump. */
5480 if (!regs)
5481 return 0;
5482
5483 /*
5484 * Check if we fit in with the requested stack size into the:
5485 * - TASK_SIZE
5486 * If we don't, we limit the size to the TASK_SIZE.
5487 *
5488 * - remaining sample size
5489 * If we don't, we customize the stack size to
5490 * fit in to the remaining sample size.
5491 */
5492
5493 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5494 stack_size = min(stack_size, (u16) task_size);
5495
5496 /* Current header size plus static size and dynamic size. */
5497 header_size += 2 * sizeof(u64);
5498
5499 /* Do we fit in with the current stack dump size? */
5500 if ((u16) (header_size + stack_size) < header_size) {
5501 /*
5502 * If we overflow the maximum size for the sample,
5503 * we customize the stack dump size to fit in.
5504 */
5505 stack_size = USHRT_MAX - header_size - sizeof(u64);
5506 stack_size = round_up(stack_size, sizeof(u64));
5507 }
5508
5509 return stack_size;
5510 }
5511
5512 static void
5513 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5514 struct pt_regs *regs)
5515 {
5516 /* Case of a kernel thread, nothing to dump */
5517 if (!regs) {
5518 u64 size = 0;
5519 perf_output_put(handle, size);
5520 } else {
5521 unsigned long sp;
5522 unsigned int rem;
5523 u64 dyn_size;
5524
5525 /*
5526 * We dump:
5527 * static size
5528 * - the size requested by user or the best one we can fit
5529 * in to the sample max size
5530 * data
5531 * - user stack dump data
5532 * dynamic size
5533 * - the actual dumped size
5534 */
5535
5536 /* Static size. */
5537 perf_output_put(handle, dump_size);
5538
5539 /* Data. */
5540 sp = perf_user_stack_pointer(regs);
5541 rem = __output_copy_user(handle, (void *) sp, dump_size);
5542 dyn_size = dump_size - rem;
5543
5544 perf_output_skip(handle, rem);
5545
5546 /* Dynamic size. */
5547 perf_output_put(handle, dyn_size);
5548 }
5549 }
5550
5551 static void __perf_event_header__init_id(struct perf_event_header *header,
5552 struct perf_sample_data *data,
5553 struct perf_event *event)
5554 {
5555 u64 sample_type = event->attr.sample_type;
5556
5557 data->type = sample_type;
5558 header->size += event->id_header_size;
5559
5560 if (sample_type & PERF_SAMPLE_TID) {
5561 /* namespace issues */
5562 data->tid_entry.pid = perf_event_pid(event, current);
5563 data->tid_entry.tid = perf_event_tid(event, current);
5564 }
5565
5566 if (sample_type & PERF_SAMPLE_TIME)
5567 data->time = perf_event_clock(event);
5568
5569 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5570 data->id = primary_event_id(event);
5571
5572 if (sample_type & PERF_SAMPLE_STREAM_ID)
5573 data->stream_id = event->id;
5574
5575 if (sample_type & PERF_SAMPLE_CPU) {
5576 data->cpu_entry.cpu = raw_smp_processor_id();
5577 data->cpu_entry.reserved = 0;
5578 }
5579 }
5580
5581 void perf_event_header__init_id(struct perf_event_header *header,
5582 struct perf_sample_data *data,
5583 struct perf_event *event)
5584 {
5585 if (event->attr.sample_id_all)
5586 __perf_event_header__init_id(header, data, event);
5587 }
5588
5589 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5590 struct perf_sample_data *data)
5591 {
5592 u64 sample_type = data->type;
5593
5594 if (sample_type & PERF_SAMPLE_TID)
5595 perf_output_put(handle, data->tid_entry);
5596
5597 if (sample_type & PERF_SAMPLE_TIME)
5598 perf_output_put(handle, data->time);
5599
5600 if (sample_type & PERF_SAMPLE_ID)
5601 perf_output_put(handle, data->id);
5602
5603 if (sample_type & PERF_SAMPLE_STREAM_ID)
5604 perf_output_put(handle, data->stream_id);
5605
5606 if (sample_type & PERF_SAMPLE_CPU)
5607 perf_output_put(handle, data->cpu_entry);
5608
5609 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5610 perf_output_put(handle, data->id);
5611 }
5612
5613 void perf_event__output_id_sample(struct perf_event *event,
5614 struct perf_output_handle *handle,
5615 struct perf_sample_data *sample)
5616 {
5617 if (event->attr.sample_id_all)
5618 __perf_event__output_id_sample(handle, sample);
5619 }
5620
5621 static void perf_output_read_one(struct perf_output_handle *handle,
5622 struct perf_event *event,
5623 u64 enabled, u64 running)
5624 {
5625 u64 read_format = event->attr.read_format;
5626 u64 values[4];
5627 int n = 0;
5628
5629 values[n++] = perf_event_count(event);
5630 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5631 values[n++] = enabled +
5632 atomic64_read(&event->child_total_time_enabled);
5633 }
5634 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5635 values[n++] = running +
5636 atomic64_read(&event->child_total_time_running);
5637 }
5638 if (read_format & PERF_FORMAT_ID)
5639 values[n++] = primary_event_id(event);
5640
5641 __output_copy(handle, values, n * sizeof(u64));
5642 }
5643
5644 /*
5645 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
5646 */
5647 static void perf_output_read_group(struct perf_output_handle *handle,
5648 struct perf_event *event,
5649 u64 enabled, u64 running)
5650 {
5651 struct perf_event *leader = event->group_leader, *sub;
5652 u64 read_format = event->attr.read_format;
5653 u64 values[5];
5654 int n = 0;
5655
5656 values[n++] = 1 + leader->nr_siblings;
5657
5658 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5659 values[n++] = enabled;
5660
5661 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5662 values[n++] = running;
5663
5664 if (leader != event)
5665 leader->pmu->read(leader);
5666
5667 values[n++] = perf_event_count(leader);
5668 if (read_format & PERF_FORMAT_ID)
5669 values[n++] = primary_event_id(leader);
5670
5671 __output_copy(handle, values, n * sizeof(u64));
5672
5673 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5674 n = 0;
5675
5676 if ((sub != event) &&
5677 (sub->state == PERF_EVENT_STATE_ACTIVE))
5678 sub->pmu->read(sub);
5679
5680 values[n++] = perf_event_count(sub);
5681 if (read_format & PERF_FORMAT_ID)
5682 values[n++] = primary_event_id(sub);
5683
5684 __output_copy(handle, values, n * sizeof(u64));
5685 }
5686 }
5687
5688 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5689 PERF_FORMAT_TOTAL_TIME_RUNNING)
5690
5691 static void perf_output_read(struct perf_output_handle *handle,
5692 struct perf_event *event)
5693 {
5694 u64 enabled = 0, running = 0, now;
5695 u64 read_format = event->attr.read_format;
5696
5697 /*
5698 * compute total_time_enabled, total_time_running
5699 * based on snapshot values taken when the event
5700 * was last scheduled in.
5701 *
5702 * we cannot simply called update_context_time()
5703 * because of locking issue as we are called in
5704 * NMI context
5705 */
5706 if (read_format & PERF_FORMAT_TOTAL_TIMES)
5707 calc_timer_values(event, &now, &enabled, &running);
5708
5709 if (event->attr.read_format & PERF_FORMAT_GROUP)
5710 perf_output_read_group(handle, event, enabled, running);
5711 else
5712 perf_output_read_one(handle, event, enabled, running);
5713 }
5714
5715 void perf_output_sample(struct perf_output_handle *handle,
5716 struct perf_event_header *header,
5717 struct perf_sample_data *data,
5718 struct perf_event *event)
5719 {
5720 u64 sample_type = data->type;
5721
5722 perf_output_put(handle, *header);
5723
5724 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5725 perf_output_put(handle, data->id);
5726
5727 if (sample_type & PERF_SAMPLE_IP)
5728 perf_output_put(handle, data->ip);
5729
5730 if (sample_type & PERF_SAMPLE_TID)
5731 perf_output_put(handle, data->tid_entry);
5732
5733 if (sample_type & PERF_SAMPLE_TIME)
5734 perf_output_put(handle, data->time);
5735
5736 if (sample_type & PERF_SAMPLE_ADDR)
5737 perf_output_put(handle, data->addr);
5738
5739 if (sample_type & PERF_SAMPLE_ID)
5740 perf_output_put(handle, data->id);
5741
5742 if (sample_type & PERF_SAMPLE_STREAM_ID)
5743 perf_output_put(handle, data->stream_id);
5744
5745 if (sample_type & PERF_SAMPLE_CPU)
5746 perf_output_put(handle, data->cpu_entry);
5747
5748 if (sample_type & PERF_SAMPLE_PERIOD)
5749 perf_output_put(handle, data->period);
5750
5751 if (sample_type & PERF_SAMPLE_READ)
5752 perf_output_read(handle, event);
5753
5754 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5755 if (data->callchain) {
5756 int size = 1;
5757
5758 if (data->callchain)
5759 size += data->callchain->nr;
5760
5761 size *= sizeof(u64);
5762
5763 __output_copy(handle, data->callchain, size);
5764 } else {
5765 u64 nr = 0;
5766 perf_output_put(handle, nr);
5767 }
5768 }
5769
5770 if (sample_type & PERF_SAMPLE_RAW) {
5771 struct perf_raw_record *raw = data->raw;
5772
5773 if (raw) {
5774 struct perf_raw_frag *frag = &raw->frag;
5775
5776 perf_output_put(handle, raw->size);
5777 do {
5778 if (frag->copy) {
5779 __output_custom(handle, frag->copy,
5780 frag->data, frag->size);
5781 } else {
5782 __output_copy(handle, frag->data,
5783 frag->size);
5784 }
5785 if (perf_raw_frag_last(frag))
5786 break;
5787 frag = frag->next;
5788 } while (1);
5789 if (frag->pad)
5790 __output_skip(handle, NULL, frag->pad);
5791 } else {
5792 struct {
5793 u32 size;
5794 u32 data;
5795 } raw = {
5796 .size = sizeof(u32),
5797 .data = 0,
5798 };
5799 perf_output_put(handle, raw);
5800 }
5801 }
5802
5803 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5804 if (data->br_stack) {
5805 size_t size;
5806
5807 size = data->br_stack->nr
5808 * sizeof(struct perf_branch_entry);
5809
5810 perf_output_put(handle, data->br_stack->nr);
5811 perf_output_copy(handle, data->br_stack->entries, size);
5812 } else {
5813 /*
5814 * we always store at least the value of nr
5815 */
5816 u64 nr = 0;
5817 perf_output_put(handle, nr);
5818 }
5819 }
5820
5821 if (sample_type & PERF_SAMPLE_REGS_USER) {
5822 u64 abi = data->regs_user.abi;
5823
5824 /*
5825 * If there are no regs to dump, notice it through
5826 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5827 */
5828 perf_output_put(handle, abi);
5829
5830 if (abi) {
5831 u64 mask = event->attr.sample_regs_user;
5832 perf_output_sample_regs(handle,
5833 data->regs_user.regs,
5834 mask);
5835 }
5836 }
5837
5838 if (sample_type & PERF_SAMPLE_STACK_USER) {
5839 perf_output_sample_ustack(handle,
5840 data->stack_user_size,
5841 data->regs_user.regs);
5842 }
5843
5844 if (sample_type & PERF_SAMPLE_WEIGHT)
5845 perf_output_put(handle, data->weight);
5846
5847 if (sample_type & PERF_SAMPLE_DATA_SRC)
5848 perf_output_put(handle, data->data_src.val);
5849
5850 if (sample_type & PERF_SAMPLE_TRANSACTION)
5851 perf_output_put(handle, data->txn);
5852
5853 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5854 u64 abi = data->regs_intr.abi;
5855 /*
5856 * If there are no regs to dump, notice it through
5857 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5858 */
5859 perf_output_put(handle, abi);
5860
5861 if (abi) {
5862 u64 mask = event->attr.sample_regs_intr;
5863
5864 perf_output_sample_regs(handle,
5865 data->regs_intr.regs,
5866 mask);
5867 }
5868 }
5869
5870 if (!event->attr.watermark) {
5871 int wakeup_events = event->attr.wakeup_events;
5872
5873 if (wakeup_events) {
5874 struct ring_buffer *rb = handle->rb;
5875 int events = local_inc_return(&rb->events);
5876
5877 if (events >= wakeup_events) {
5878 local_sub(wakeup_events, &rb->events);
5879 local_inc(&rb->wakeup);
5880 }
5881 }
5882 }
5883 }
5884
5885 void perf_prepare_sample(struct perf_event_header *header,
5886 struct perf_sample_data *data,
5887 struct perf_event *event,
5888 struct pt_regs *regs)
5889 {
5890 u64 sample_type = event->attr.sample_type;
5891
5892 header->type = PERF_RECORD_SAMPLE;
5893 header->size = sizeof(*header) + event->header_size;
5894
5895 header->misc = 0;
5896 header->misc |= perf_misc_flags(regs);
5897
5898 __perf_event_header__init_id(header, data, event);
5899
5900 if (sample_type & PERF_SAMPLE_IP)
5901 data->ip = perf_instruction_pointer(regs);
5902
5903 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5904 int size = 1;
5905
5906 data->callchain = perf_callchain(event, regs);
5907
5908 if (data->callchain)
5909 size += data->callchain->nr;
5910
5911 header->size += size * sizeof(u64);
5912 }
5913
5914 if (sample_type & PERF_SAMPLE_RAW) {
5915 struct perf_raw_record *raw = data->raw;
5916 int size;
5917
5918 if (raw) {
5919 struct perf_raw_frag *frag = &raw->frag;
5920 u32 sum = 0;
5921
5922 do {
5923 sum += frag->size;
5924 if (perf_raw_frag_last(frag))
5925 break;
5926 frag = frag->next;
5927 } while (1);
5928
5929 size = round_up(sum + sizeof(u32), sizeof(u64));
5930 raw->size = size - sizeof(u32);
5931 frag->pad = raw->size - sum;
5932 } else {
5933 size = sizeof(u64);
5934 }
5935
5936 header->size += size;
5937 }
5938
5939 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5940 int size = sizeof(u64); /* nr */
5941 if (data->br_stack) {
5942 size += data->br_stack->nr
5943 * sizeof(struct perf_branch_entry);
5944 }
5945 header->size += size;
5946 }
5947
5948 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
5949 perf_sample_regs_user(&data->regs_user, regs,
5950 &data->regs_user_copy);
5951
5952 if (sample_type & PERF_SAMPLE_REGS_USER) {
5953 /* regs dump ABI info */
5954 int size = sizeof(u64);
5955
5956 if (data->regs_user.regs) {
5957 u64 mask = event->attr.sample_regs_user;
5958 size += hweight64(mask) * sizeof(u64);
5959 }
5960
5961 header->size += size;
5962 }
5963
5964 if (sample_type & PERF_SAMPLE_STACK_USER) {
5965 /*
5966 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
5967 * processed as the last one or have additional check added
5968 * in case new sample type is added, because we could eat
5969 * up the rest of the sample size.
5970 */
5971 u16 stack_size = event->attr.sample_stack_user;
5972 u16 size = sizeof(u64);
5973
5974 stack_size = perf_sample_ustack_size(stack_size, header->size,
5975 data->regs_user.regs);
5976
5977 /*
5978 * If there is something to dump, add space for the dump
5979 * itself and for the field that tells the dynamic size,
5980 * which is how many have been actually dumped.
5981 */
5982 if (stack_size)
5983 size += sizeof(u64) + stack_size;
5984
5985 data->stack_user_size = stack_size;
5986 header->size += size;
5987 }
5988
5989 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5990 /* regs dump ABI info */
5991 int size = sizeof(u64);
5992
5993 perf_sample_regs_intr(&data->regs_intr, regs);
5994
5995 if (data->regs_intr.regs) {
5996 u64 mask = event->attr.sample_regs_intr;
5997
5998 size += hweight64(mask) * sizeof(u64);
5999 }
6000
6001 header->size += size;
6002 }
6003 }
6004
6005 static void __always_inline
6006 __perf_event_output(struct perf_event *event,
6007 struct perf_sample_data *data,
6008 struct pt_regs *regs,
6009 int (*output_begin)(struct perf_output_handle *,
6010 struct perf_event *,
6011 unsigned int))
6012 {
6013 struct perf_output_handle handle;
6014 struct perf_event_header header;
6015
6016 /* protect the callchain buffers */
6017 rcu_read_lock();
6018
6019 perf_prepare_sample(&header, data, event, regs);
6020
6021 if (output_begin(&handle, event, header.size))
6022 goto exit;
6023
6024 perf_output_sample(&handle, &header, data, event);
6025
6026 perf_output_end(&handle);
6027
6028 exit:
6029 rcu_read_unlock();
6030 }
6031
6032 void
6033 perf_event_output_forward(struct perf_event *event,
6034 struct perf_sample_data *data,
6035 struct pt_regs *regs)
6036 {
6037 __perf_event_output(event, data, regs, perf_output_begin_forward);
6038 }
6039
6040 void
6041 perf_event_output_backward(struct perf_event *event,
6042 struct perf_sample_data *data,
6043 struct pt_regs *regs)
6044 {
6045 __perf_event_output(event, data, regs, perf_output_begin_backward);
6046 }
6047
6048 void
6049 perf_event_output(struct perf_event *event,
6050 struct perf_sample_data *data,
6051 struct pt_regs *regs)
6052 {
6053 __perf_event_output(event, data, regs, perf_output_begin);
6054 }
6055
6056 /*
6057 * read event_id
6058 */
6059
6060 struct perf_read_event {
6061 struct perf_event_header header;
6062
6063 u32 pid;
6064 u32 tid;
6065 };
6066
6067 static void
6068 perf_event_read_event(struct perf_event *event,
6069 struct task_struct *task)
6070 {
6071 struct perf_output_handle handle;
6072 struct perf_sample_data sample;
6073 struct perf_read_event read_event = {
6074 .header = {
6075 .type = PERF_RECORD_READ,
6076 .misc = 0,
6077 .size = sizeof(read_event) + event->read_size,
6078 },
6079 .pid = perf_event_pid(event, task),
6080 .tid = perf_event_tid(event, task),
6081 };
6082 int ret;
6083
6084 perf_event_header__init_id(&read_event.header, &sample, event);
6085 ret = perf_output_begin(&handle, event, read_event.header.size);
6086 if (ret)
6087 return;
6088
6089 perf_output_put(&handle, read_event);
6090 perf_output_read(&handle, event);
6091 perf_event__output_id_sample(event, &handle, &sample);
6092
6093 perf_output_end(&handle);
6094 }
6095
6096 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
6097
6098 static void
6099 perf_iterate_ctx(struct perf_event_context *ctx,
6100 perf_iterate_f output,
6101 void *data, bool all)
6102 {
6103 struct perf_event *event;
6104
6105 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6106 if (!all) {
6107 if (event->state < PERF_EVENT_STATE_INACTIVE)
6108 continue;
6109 if (!event_filter_match(event))
6110 continue;
6111 }
6112
6113 output(event, data);
6114 }
6115 }
6116
6117 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
6118 {
6119 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6120 struct perf_event *event;
6121
6122 list_for_each_entry_rcu(event, &pel->list, sb_list) {
6123 /*
6124 * Skip events that are not fully formed yet; ensure that
6125 * if we observe event->ctx, both event and ctx will be
6126 * complete enough. See perf_install_in_context().
6127 */
6128 if (!smp_load_acquire(&event->ctx))
6129 continue;
6130
6131 if (event->state < PERF_EVENT_STATE_INACTIVE)
6132 continue;
6133 if (!event_filter_match(event))
6134 continue;
6135 output(event, data);
6136 }
6137 }
6138
6139 /*
6140 * Iterate all events that need to receive side-band events.
6141 *
6142 * For new callers; ensure that account_pmu_sb_event() includes
6143 * your event, otherwise it might not get delivered.
6144 */
6145 static void
6146 perf_iterate_sb(perf_iterate_f output, void *data,
6147 struct perf_event_context *task_ctx)
6148 {
6149 struct perf_event_context *ctx;
6150 int ctxn;
6151
6152 rcu_read_lock();
6153 preempt_disable();
6154
6155 /*
6156 * If we have task_ctx != NULL we only notify the task context itself.
6157 * The task_ctx is set only for EXIT events before releasing task
6158 * context.
6159 */
6160 if (task_ctx) {
6161 perf_iterate_ctx(task_ctx, output, data, false);
6162 goto done;
6163 }
6164
6165 perf_iterate_sb_cpu(output, data);
6166
6167 for_each_task_context_nr(ctxn) {
6168 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6169 if (ctx)
6170 perf_iterate_ctx(ctx, output, data, false);
6171 }
6172 done:
6173 preempt_enable();
6174 rcu_read_unlock();
6175 }
6176
6177 /*
6178 * Clear all file-based filters at exec, they'll have to be
6179 * re-instated when/if these objects are mmapped again.
6180 */
6181 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6182 {
6183 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6184 struct perf_addr_filter *filter;
6185 unsigned int restart = 0, count = 0;
6186 unsigned long flags;
6187
6188 if (!has_addr_filter(event))
6189 return;
6190
6191 raw_spin_lock_irqsave(&ifh->lock, flags);
6192 list_for_each_entry(filter, &ifh->list, entry) {
6193 if (filter->inode) {
6194 event->addr_filters_offs[count] = 0;
6195 restart++;
6196 }
6197
6198 count++;
6199 }
6200
6201 if (restart)
6202 event->addr_filters_gen++;
6203 raw_spin_unlock_irqrestore(&ifh->lock, flags);
6204
6205 if (restart)
6206 perf_event_stop(event, 1);
6207 }
6208
6209 void perf_event_exec(void)
6210 {
6211 struct perf_event_context *ctx;
6212 int ctxn;
6213
6214 rcu_read_lock();
6215 for_each_task_context_nr(ctxn) {
6216 ctx = current->perf_event_ctxp[ctxn];
6217 if (!ctx)
6218 continue;
6219
6220 perf_event_enable_on_exec(ctxn);
6221
6222 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
6223 true);
6224 }
6225 rcu_read_unlock();
6226 }
6227
6228 struct remote_output {
6229 struct ring_buffer *rb;
6230 int err;
6231 };
6232
6233 static void __perf_event_output_stop(struct perf_event *event, void *data)
6234 {
6235 struct perf_event *parent = event->parent;
6236 struct remote_output *ro = data;
6237 struct ring_buffer *rb = ro->rb;
6238 struct stop_event_data sd = {
6239 .event = event,
6240 };
6241
6242 if (!has_aux(event))
6243 return;
6244
6245 if (!parent)
6246 parent = event;
6247
6248 /*
6249 * In case of inheritance, it will be the parent that links to the
6250 * ring-buffer, but it will be the child that's actually using it.
6251 *
6252 * We are using event::rb to determine if the event should be stopped,
6253 * however this may race with ring_buffer_attach() (through set_output),
6254 * which will make us skip the event that actually needs to be stopped.
6255 * So ring_buffer_attach() has to stop an aux event before re-assigning
6256 * its rb pointer.
6257 */
6258 if (rcu_dereference(parent->rb) == rb)
6259 ro->err = __perf_event_stop(&sd);
6260 }
6261
6262 static int __perf_pmu_output_stop(void *info)
6263 {
6264 struct perf_event *event = info;
6265 struct pmu *pmu = event->pmu;
6266 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6267 struct remote_output ro = {
6268 .rb = event->rb,
6269 };
6270
6271 rcu_read_lock();
6272 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6273 if (cpuctx->task_ctx)
6274 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6275 &ro, false);
6276 rcu_read_unlock();
6277
6278 return ro.err;
6279 }
6280
6281 static void perf_pmu_output_stop(struct perf_event *event)
6282 {
6283 struct perf_event *iter;
6284 int err, cpu;
6285
6286 restart:
6287 rcu_read_lock();
6288 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6289 /*
6290 * For per-CPU events, we need to make sure that neither they
6291 * nor their children are running; for cpu==-1 events it's
6292 * sufficient to stop the event itself if it's active, since
6293 * it can't have children.
6294 */
6295 cpu = iter->cpu;
6296 if (cpu == -1)
6297 cpu = READ_ONCE(iter->oncpu);
6298
6299 if (cpu == -1)
6300 continue;
6301
6302 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6303 if (err == -EAGAIN) {
6304 rcu_read_unlock();
6305 goto restart;
6306 }
6307 }
6308 rcu_read_unlock();
6309 }
6310
6311 /*
6312 * task tracking -- fork/exit
6313 *
6314 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
6315 */
6316
6317 struct perf_task_event {
6318 struct task_struct *task;
6319 struct perf_event_context *task_ctx;
6320
6321 struct {
6322 struct perf_event_header header;
6323
6324 u32 pid;
6325 u32 ppid;
6326 u32 tid;
6327 u32 ptid;
6328 u64 time;
6329 } event_id;
6330 };
6331
6332 static int perf_event_task_match(struct perf_event *event)
6333 {
6334 return event->attr.comm || event->attr.mmap ||
6335 event->attr.mmap2 || event->attr.mmap_data ||
6336 event->attr.task;
6337 }
6338
6339 static void perf_event_task_output(struct perf_event *event,
6340 void *data)
6341 {
6342 struct perf_task_event *task_event = data;
6343 struct perf_output_handle handle;
6344 struct perf_sample_data sample;
6345 struct task_struct *task = task_event->task;
6346 int ret, size = task_event->event_id.header.size;
6347
6348 if (!perf_event_task_match(event))
6349 return;
6350
6351 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
6352
6353 ret = perf_output_begin(&handle, event,
6354 task_event->event_id.header.size);
6355 if (ret)
6356 goto out;
6357
6358 task_event->event_id.pid = perf_event_pid(event, task);
6359 task_event->event_id.ppid = perf_event_pid(event, current);
6360
6361 task_event->event_id.tid = perf_event_tid(event, task);
6362 task_event->event_id.ptid = perf_event_tid(event, current);
6363
6364 task_event->event_id.time = perf_event_clock(event);
6365
6366 perf_output_put(&handle, task_event->event_id);
6367
6368 perf_event__output_id_sample(event, &handle, &sample);
6369
6370 perf_output_end(&handle);
6371 out:
6372 task_event->event_id.header.size = size;
6373 }
6374
6375 static void perf_event_task(struct task_struct *task,
6376 struct perf_event_context *task_ctx,
6377 int new)
6378 {
6379 struct perf_task_event task_event;
6380
6381 if (!atomic_read(&nr_comm_events) &&
6382 !atomic_read(&nr_mmap_events) &&
6383 !atomic_read(&nr_task_events))
6384 return;
6385
6386 task_event = (struct perf_task_event){
6387 .task = task,
6388 .task_ctx = task_ctx,
6389 .event_id = {
6390 .header = {
6391 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
6392 .misc = 0,
6393 .size = sizeof(task_event.event_id),
6394 },
6395 /* .pid */
6396 /* .ppid */
6397 /* .tid */
6398 /* .ptid */
6399 /* .time */
6400 },
6401 };
6402
6403 perf_iterate_sb(perf_event_task_output,
6404 &task_event,
6405 task_ctx);
6406 }
6407
6408 void perf_event_fork(struct task_struct *task)
6409 {
6410 perf_event_task(task, NULL, 1);
6411 }
6412
6413 /*
6414 * comm tracking
6415 */
6416
6417 struct perf_comm_event {
6418 struct task_struct *task;
6419 char *comm;
6420 int comm_size;
6421
6422 struct {
6423 struct perf_event_header header;
6424
6425 u32 pid;
6426 u32 tid;
6427 } event_id;
6428 };
6429
6430 static int perf_event_comm_match(struct perf_event *event)
6431 {
6432 return event->attr.comm;
6433 }
6434
6435 static void perf_event_comm_output(struct perf_event *event,
6436 void *data)
6437 {
6438 struct perf_comm_event *comm_event = data;
6439 struct perf_output_handle handle;
6440 struct perf_sample_data sample;
6441 int size = comm_event->event_id.header.size;
6442 int ret;
6443
6444 if (!perf_event_comm_match(event))
6445 return;
6446
6447 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6448 ret = perf_output_begin(&handle, event,
6449 comm_event->event_id.header.size);
6450
6451 if (ret)
6452 goto out;
6453
6454 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6455 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
6456
6457 perf_output_put(&handle, comm_event->event_id);
6458 __output_copy(&handle, comm_event->comm,
6459 comm_event->comm_size);
6460
6461 perf_event__output_id_sample(event, &handle, &sample);
6462
6463 perf_output_end(&handle);
6464 out:
6465 comm_event->event_id.header.size = size;
6466 }
6467
6468 static void perf_event_comm_event(struct perf_comm_event *comm_event)
6469 {
6470 char comm[TASK_COMM_LEN];
6471 unsigned int size;
6472
6473 memset(comm, 0, sizeof(comm));
6474 strlcpy(comm, comm_event->task->comm, sizeof(comm));
6475 size = ALIGN(strlen(comm)+1, sizeof(u64));
6476
6477 comm_event->comm = comm;
6478 comm_event->comm_size = size;
6479
6480 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
6481
6482 perf_iterate_sb(perf_event_comm_output,
6483 comm_event,
6484 NULL);
6485 }
6486
6487 void perf_event_comm(struct task_struct *task, bool exec)
6488 {
6489 struct perf_comm_event comm_event;
6490
6491 if (!atomic_read(&nr_comm_events))
6492 return;
6493
6494 comm_event = (struct perf_comm_event){
6495 .task = task,
6496 /* .comm */
6497 /* .comm_size */
6498 .event_id = {
6499 .header = {
6500 .type = PERF_RECORD_COMM,
6501 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
6502 /* .size */
6503 },
6504 /* .pid */
6505 /* .tid */
6506 },
6507 };
6508
6509 perf_event_comm_event(&comm_event);
6510 }
6511
6512 /*
6513 * mmap tracking
6514 */
6515
6516 struct perf_mmap_event {
6517 struct vm_area_struct *vma;
6518
6519 const char *file_name;
6520 int file_size;
6521 int maj, min;
6522 u64 ino;
6523 u64 ino_generation;
6524 u32 prot, flags;
6525
6526 struct {
6527 struct perf_event_header header;
6528
6529 u32 pid;
6530 u32 tid;
6531 u64 start;
6532 u64 len;
6533 u64 pgoff;
6534 } event_id;
6535 };
6536
6537 static int perf_event_mmap_match(struct perf_event *event,
6538 void *data)
6539 {
6540 struct perf_mmap_event *mmap_event = data;
6541 struct vm_area_struct *vma = mmap_event->vma;
6542 int executable = vma->vm_flags & VM_EXEC;
6543
6544 return (!executable && event->attr.mmap_data) ||
6545 (executable && (event->attr.mmap || event->attr.mmap2));
6546 }
6547
6548 static void perf_event_mmap_output(struct perf_event *event,
6549 void *data)
6550 {
6551 struct perf_mmap_event *mmap_event = data;
6552 struct perf_output_handle handle;
6553 struct perf_sample_data sample;
6554 int size = mmap_event->event_id.header.size;
6555 int ret;
6556
6557 if (!perf_event_mmap_match(event, data))
6558 return;
6559
6560 if (event->attr.mmap2) {
6561 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
6562 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
6563 mmap_event->event_id.header.size += sizeof(mmap_event->min);
6564 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
6565 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
6566 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
6567 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
6568 }
6569
6570 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
6571 ret = perf_output_begin(&handle, event,
6572 mmap_event->event_id.header.size);
6573 if (ret)
6574 goto out;
6575
6576 mmap_event->event_id.pid = perf_event_pid(event, current);
6577 mmap_event->event_id.tid = perf_event_tid(event, current);
6578
6579 perf_output_put(&handle, mmap_event->event_id);
6580
6581 if (event->attr.mmap2) {
6582 perf_output_put(&handle, mmap_event->maj);
6583 perf_output_put(&handle, mmap_event->min);
6584 perf_output_put(&handle, mmap_event->ino);
6585 perf_output_put(&handle, mmap_event->ino_generation);
6586 perf_output_put(&handle, mmap_event->prot);
6587 perf_output_put(&handle, mmap_event->flags);
6588 }
6589
6590 __output_copy(&handle, mmap_event->file_name,
6591 mmap_event->file_size);
6592
6593 perf_event__output_id_sample(event, &handle, &sample);
6594
6595 perf_output_end(&handle);
6596 out:
6597 mmap_event->event_id.header.size = size;
6598 }
6599
6600 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
6601 {
6602 struct vm_area_struct *vma = mmap_event->vma;
6603 struct file *file = vma->vm_file;
6604 int maj = 0, min = 0;
6605 u64 ino = 0, gen = 0;
6606 u32 prot = 0, flags = 0;
6607 unsigned int size;
6608 char tmp[16];
6609 char *buf = NULL;
6610 char *name;
6611
6612 if (file) {
6613 struct inode *inode;
6614 dev_t dev;
6615
6616 buf = kmalloc(PATH_MAX, GFP_KERNEL);
6617 if (!buf) {
6618 name = "//enomem";
6619 goto cpy_name;
6620 }
6621 /*
6622 * d_path() works from the end of the rb backwards, so we
6623 * need to add enough zero bytes after the string to handle
6624 * the 64bit alignment we do later.
6625 */
6626 name = file_path(file, buf, PATH_MAX - sizeof(u64));
6627 if (IS_ERR(name)) {
6628 name = "//toolong";
6629 goto cpy_name;
6630 }
6631 inode = file_inode(vma->vm_file);
6632 dev = inode->i_sb->s_dev;
6633 ino = inode->i_ino;
6634 gen = inode->i_generation;
6635 maj = MAJOR(dev);
6636 min = MINOR(dev);
6637
6638 if (vma->vm_flags & VM_READ)
6639 prot |= PROT_READ;
6640 if (vma->vm_flags & VM_WRITE)
6641 prot |= PROT_WRITE;
6642 if (vma->vm_flags & VM_EXEC)
6643 prot |= PROT_EXEC;
6644
6645 if (vma->vm_flags & VM_MAYSHARE)
6646 flags = MAP_SHARED;
6647 else
6648 flags = MAP_PRIVATE;
6649
6650 if (vma->vm_flags & VM_DENYWRITE)
6651 flags |= MAP_DENYWRITE;
6652 if (vma->vm_flags & VM_MAYEXEC)
6653 flags |= MAP_EXECUTABLE;
6654 if (vma->vm_flags & VM_LOCKED)
6655 flags |= MAP_LOCKED;
6656 if (vma->vm_flags & VM_HUGETLB)
6657 flags |= MAP_HUGETLB;
6658
6659 goto got_name;
6660 } else {
6661 if (vma->vm_ops && vma->vm_ops->name) {
6662 name = (char *) vma->vm_ops->name(vma);
6663 if (name)
6664 goto cpy_name;
6665 }
6666
6667 name = (char *)arch_vma_name(vma);
6668 if (name)
6669 goto cpy_name;
6670
6671 if (vma->vm_start <= vma->vm_mm->start_brk &&
6672 vma->vm_end >= vma->vm_mm->brk) {
6673 name = "[heap]";
6674 goto cpy_name;
6675 }
6676 if (vma->vm_start <= vma->vm_mm->start_stack &&
6677 vma->vm_end >= vma->vm_mm->start_stack) {
6678 name = "[stack]";
6679 goto cpy_name;
6680 }
6681
6682 name = "//anon";
6683 goto cpy_name;
6684 }
6685
6686 cpy_name:
6687 strlcpy(tmp, name, sizeof(tmp));
6688 name = tmp;
6689 got_name:
6690 /*
6691 * Since our buffer works in 8 byte units we need to align our string
6692 * size to a multiple of 8. However, we must guarantee the tail end is
6693 * zero'd out to avoid leaking random bits to userspace.
6694 */
6695 size = strlen(name)+1;
6696 while (!IS_ALIGNED(size, sizeof(u64)))
6697 name[size++] = '\0';
6698
6699 mmap_event->file_name = name;
6700 mmap_event->file_size = size;
6701 mmap_event->maj = maj;
6702 mmap_event->min = min;
6703 mmap_event->ino = ino;
6704 mmap_event->ino_generation = gen;
6705 mmap_event->prot = prot;
6706 mmap_event->flags = flags;
6707
6708 if (!(vma->vm_flags & VM_EXEC))
6709 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6710
6711 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
6712
6713 perf_iterate_sb(perf_event_mmap_output,
6714 mmap_event,
6715 NULL);
6716
6717 kfree(buf);
6718 }
6719
6720 /*
6721 * Check whether inode and address range match filter criteria.
6722 */
6723 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
6724 struct file *file, unsigned long offset,
6725 unsigned long size)
6726 {
6727 if (filter->inode != file_inode(file))
6728 return false;
6729
6730 if (filter->offset > offset + size)
6731 return false;
6732
6733 if (filter->offset + filter->size < offset)
6734 return false;
6735
6736 return true;
6737 }
6738
6739 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
6740 {
6741 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6742 struct vm_area_struct *vma = data;
6743 unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
6744 struct file *file = vma->vm_file;
6745 struct perf_addr_filter *filter;
6746 unsigned int restart = 0, count = 0;
6747
6748 if (!has_addr_filter(event))
6749 return;
6750
6751 if (!file)
6752 return;
6753
6754 raw_spin_lock_irqsave(&ifh->lock, flags);
6755 list_for_each_entry(filter, &ifh->list, entry) {
6756 if (perf_addr_filter_match(filter, file, off,
6757 vma->vm_end - vma->vm_start)) {
6758 event->addr_filters_offs[count] = vma->vm_start;
6759 restart++;
6760 }
6761
6762 count++;
6763 }
6764
6765 if (restart)
6766 event->addr_filters_gen++;
6767 raw_spin_unlock_irqrestore(&ifh->lock, flags);
6768
6769 if (restart)
6770 perf_event_stop(event, 1);
6771 }
6772
6773 /*
6774 * Adjust all task's events' filters to the new vma
6775 */
6776 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
6777 {
6778 struct perf_event_context *ctx;
6779 int ctxn;
6780
6781 /*
6782 * Data tracing isn't supported yet and as such there is no need
6783 * to keep track of anything that isn't related to executable code:
6784 */
6785 if (!(vma->vm_flags & VM_EXEC))
6786 return;
6787
6788 rcu_read_lock();
6789 for_each_task_context_nr(ctxn) {
6790 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6791 if (!ctx)
6792 continue;
6793
6794 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
6795 }
6796 rcu_read_unlock();
6797 }
6798
6799 void perf_event_mmap(struct vm_area_struct *vma)
6800 {
6801 struct perf_mmap_event mmap_event;
6802
6803 if (!atomic_read(&nr_mmap_events))
6804 return;
6805
6806 mmap_event = (struct perf_mmap_event){
6807 .vma = vma,
6808 /* .file_name */
6809 /* .file_size */
6810 .event_id = {
6811 .header = {
6812 .type = PERF_RECORD_MMAP,
6813 .misc = PERF_RECORD_MISC_USER,
6814 /* .size */
6815 },
6816 /* .pid */
6817 /* .tid */
6818 .start = vma->vm_start,
6819 .len = vma->vm_end - vma->vm_start,
6820 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
6821 },
6822 /* .maj (attr_mmap2 only) */
6823 /* .min (attr_mmap2 only) */
6824 /* .ino (attr_mmap2 only) */
6825 /* .ino_generation (attr_mmap2 only) */
6826 /* .prot (attr_mmap2 only) */
6827 /* .flags (attr_mmap2 only) */
6828 };
6829
6830 perf_addr_filters_adjust(vma);
6831 perf_event_mmap_event(&mmap_event);
6832 }
6833
6834 void perf_event_aux_event(struct perf_event *event, unsigned long head,
6835 unsigned long size, u64 flags)
6836 {
6837 struct perf_output_handle handle;
6838 struct perf_sample_data sample;
6839 struct perf_aux_event {
6840 struct perf_event_header header;
6841 u64 offset;
6842 u64 size;
6843 u64 flags;
6844 } rec = {
6845 .header = {
6846 .type = PERF_RECORD_AUX,
6847 .misc = 0,
6848 .size = sizeof(rec),
6849 },
6850 .offset = head,
6851 .size = size,
6852 .flags = flags,
6853 };
6854 int ret;
6855
6856 perf_event_header__init_id(&rec.header, &sample, event);
6857 ret = perf_output_begin(&handle, event, rec.header.size);
6858
6859 if (ret)
6860 return;
6861
6862 perf_output_put(&handle, rec);
6863 perf_event__output_id_sample(event, &handle, &sample);
6864
6865 perf_output_end(&handle);
6866 }
6867
6868 /*
6869 * Lost/dropped samples logging
6870 */
6871 void perf_log_lost_samples(struct perf_event *event, u64 lost)
6872 {
6873 struct perf_output_handle handle;
6874 struct perf_sample_data sample;
6875 int ret;
6876
6877 struct {
6878 struct perf_event_header header;
6879 u64 lost;
6880 } lost_samples_event = {
6881 .header = {
6882 .type = PERF_RECORD_LOST_SAMPLES,
6883 .misc = 0,
6884 .size = sizeof(lost_samples_event),
6885 },
6886 .lost = lost,
6887 };
6888
6889 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
6890
6891 ret = perf_output_begin(&handle, event,
6892 lost_samples_event.header.size);
6893 if (ret)
6894 return;
6895
6896 perf_output_put(&handle, lost_samples_event);
6897 perf_event__output_id_sample(event, &handle, &sample);
6898 perf_output_end(&handle);
6899 }
6900
6901 /*
6902 * context_switch tracking
6903 */
6904
6905 struct perf_switch_event {
6906 struct task_struct *task;
6907 struct task_struct *next_prev;
6908
6909 struct {
6910 struct perf_event_header header;
6911 u32 next_prev_pid;
6912 u32 next_prev_tid;
6913 } event_id;
6914 };
6915
6916 static int perf_event_switch_match(struct perf_event *event)
6917 {
6918 return event->attr.context_switch;
6919 }
6920
6921 static void perf_event_switch_output(struct perf_event *event, void *data)
6922 {
6923 struct perf_switch_event *se = data;
6924 struct perf_output_handle handle;
6925 struct perf_sample_data sample;
6926 int ret;
6927
6928 if (!perf_event_switch_match(event))
6929 return;
6930
6931 /* Only CPU-wide events are allowed to see next/prev pid/tid */
6932 if (event->ctx->task) {
6933 se->event_id.header.type = PERF_RECORD_SWITCH;
6934 se->event_id.header.size = sizeof(se->event_id.header);
6935 } else {
6936 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
6937 se->event_id.header.size = sizeof(se->event_id);
6938 se->event_id.next_prev_pid =
6939 perf_event_pid(event, se->next_prev);
6940 se->event_id.next_prev_tid =
6941 perf_event_tid(event, se->next_prev);
6942 }
6943
6944 perf_event_header__init_id(&se->event_id.header, &sample, event);
6945
6946 ret = perf_output_begin(&handle, event, se->event_id.header.size);
6947 if (ret)
6948 return;
6949
6950 if (event->ctx->task)
6951 perf_output_put(&handle, se->event_id.header);
6952 else
6953 perf_output_put(&handle, se->event_id);
6954
6955 perf_event__output_id_sample(event, &handle, &sample);
6956
6957 perf_output_end(&handle);
6958 }
6959
6960 static void perf_event_switch(struct task_struct *task,
6961 struct task_struct *next_prev, bool sched_in)
6962 {
6963 struct perf_switch_event switch_event;
6964
6965 /* N.B. caller checks nr_switch_events != 0 */
6966
6967 switch_event = (struct perf_switch_event){
6968 .task = task,
6969 .next_prev = next_prev,
6970 .event_id = {
6971 .header = {
6972 /* .type */
6973 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
6974 /* .size */
6975 },
6976 /* .next_prev_pid */
6977 /* .next_prev_tid */
6978 },
6979 };
6980
6981 perf_iterate_sb(perf_event_switch_output,
6982 &switch_event,
6983 NULL);
6984 }
6985
6986 /*
6987 * IRQ throttle logging
6988 */
6989
6990 static void perf_log_throttle(struct perf_event *event, int enable)
6991 {
6992 struct perf_output_handle handle;
6993 struct perf_sample_data sample;
6994 int ret;
6995
6996 struct {
6997 struct perf_event_header header;
6998 u64 time;
6999 u64 id;
7000 u64 stream_id;
7001 } throttle_event = {
7002 .header = {
7003 .type = PERF_RECORD_THROTTLE,
7004 .misc = 0,
7005 .size = sizeof(throttle_event),
7006 },
7007 .time = perf_event_clock(event),
7008 .id = primary_event_id(event),
7009 .stream_id = event->id,
7010 };
7011
7012 if (enable)
7013 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
7014
7015 perf_event_header__init_id(&throttle_event.header, &sample, event);
7016
7017 ret = perf_output_begin(&handle, event,
7018 throttle_event.header.size);
7019 if (ret)
7020 return;
7021
7022 perf_output_put(&handle, throttle_event);
7023 perf_event__output_id_sample(event, &handle, &sample);
7024 perf_output_end(&handle);
7025 }
7026
7027 static void perf_log_itrace_start(struct perf_event *event)
7028 {
7029 struct perf_output_handle handle;
7030 struct perf_sample_data sample;
7031 struct perf_aux_event {
7032 struct perf_event_header header;
7033 u32 pid;
7034 u32 tid;
7035 } rec;
7036 int ret;
7037
7038 if (event->parent)
7039 event = event->parent;
7040
7041 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
7042 event->hw.itrace_started)
7043 return;
7044
7045 rec.header.type = PERF_RECORD_ITRACE_START;
7046 rec.header.misc = 0;
7047 rec.header.size = sizeof(rec);
7048 rec.pid = perf_event_pid(event, current);
7049 rec.tid = perf_event_tid(event, current);
7050
7051 perf_event_header__init_id(&rec.header, &sample, event);
7052 ret = perf_output_begin(&handle, event, rec.header.size);
7053
7054 if (ret)
7055 return;
7056
7057 perf_output_put(&handle, rec);
7058 perf_event__output_id_sample(event, &handle, &sample);
7059
7060 perf_output_end(&handle);
7061 }
7062
7063 static int
7064 __perf_event_account_interrupt(struct perf_event *event, int throttle)
7065 {
7066 struct hw_perf_event *hwc = &event->hw;
7067 int ret = 0;
7068 u64 seq;
7069
7070 seq = __this_cpu_read(perf_throttled_seq);
7071 if (seq != hwc->interrupts_seq) {
7072 hwc->interrupts_seq = seq;
7073 hwc->interrupts = 1;
7074 } else {
7075 hwc->interrupts++;
7076 if (unlikely(throttle
7077 && hwc->interrupts >= max_samples_per_tick)) {
7078 __this_cpu_inc(perf_throttled_count);
7079 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
7080 hwc->interrupts = MAX_INTERRUPTS;
7081 perf_log_throttle(event, 0);
7082 ret = 1;
7083 }
7084 }
7085
7086 if (event->attr.freq) {
7087 u64 now = perf_clock();
7088 s64 delta = now - hwc->freq_time_stamp;
7089
7090 hwc->freq_time_stamp = now;
7091
7092 if (delta > 0 && delta < 2*TICK_NSEC)
7093 perf_adjust_period(event, delta, hwc->last_period, true);
7094 }
7095
7096 return ret;
7097 }
7098
7099 int perf_event_account_interrupt(struct perf_event *event)
7100 {
7101 return __perf_event_account_interrupt(event, 1);
7102 }
7103
7104 /*
7105 * Generic event overflow handling, sampling.
7106 */
7107
7108 static int __perf_event_overflow(struct perf_event *event,
7109 int throttle, struct perf_sample_data *data,
7110 struct pt_regs *regs)
7111 {
7112 int events = atomic_read(&event->event_limit);
7113 int ret = 0;
7114
7115 /*
7116 * Non-sampling counters might still use the PMI to fold short
7117 * hardware counters, ignore those.
7118 */
7119 if (unlikely(!is_sampling_event(event)))
7120 return 0;
7121
7122 ret = __perf_event_account_interrupt(event, throttle);
7123
7124 /*
7125 * XXX event_limit might not quite work as expected on inherited
7126 * events
7127 */
7128
7129 event->pending_kill = POLL_IN;
7130 if (events && atomic_dec_and_test(&event->event_limit)) {
7131 ret = 1;
7132 event->pending_kill = POLL_HUP;
7133
7134 perf_event_disable_inatomic(event);
7135 }
7136
7137 READ_ONCE(event->overflow_handler)(event, data, regs);
7138
7139 if (*perf_event_fasync(event) && event->pending_kill) {
7140 event->pending_wakeup = 1;
7141 irq_work_queue(&event->pending);
7142 }
7143
7144 return ret;
7145 }
7146
7147 int perf_event_overflow(struct perf_event *event,
7148 struct perf_sample_data *data,
7149 struct pt_regs *regs)
7150 {
7151 return __perf_event_overflow(event, 1, data, regs);
7152 }
7153
7154 /*
7155 * Generic software event infrastructure
7156 */
7157
7158 struct swevent_htable {
7159 struct swevent_hlist *swevent_hlist;
7160 struct mutex hlist_mutex;
7161 int hlist_refcount;
7162
7163 /* Recursion avoidance in each contexts */
7164 int recursion[PERF_NR_CONTEXTS];
7165 };
7166
7167 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
7168
7169 /*
7170 * We directly increment event->count and keep a second value in
7171 * event->hw.period_left to count intervals. This period event
7172 * is kept in the range [-sample_period, 0] so that we can use the
7173 * sign as trigger.
7174 */
7175
7176 u64 perf_swevent_set_period(struct perf_event *event)
7177 {
7178 struct hw_perf_event *hwc = &event->hw;
7179 u64 period = hwc->last_period;
7180 u64 nr, offset;
7181 s64 old, val;
7182
7183 hwc->last_period = hwc->sample_period;
7184
7185 again:
7186 old = val = local64_read(&hwc->period_left);
7187 if (val < 0)
7188 return 0;
7189
7190 nr = div64_u64(period + val, period);
7191 offset = nr * period;
7192 val -= offset;
7193 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7194 goto again;
7195
7196 return nr;
7197 }
7198
7199 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
7200 struct perf_sample_data *data,
7201 struct pt_regs *regs)
7202 {
7203 struct hw_perf_event *hwc = &event->hw;
7204 int throttle = 0;
7205
7206 if (!overflow)
7207 overflow = perf_swevent_set_period(event);
7208
7209 if (hwc->interrupts == MAX_INTERRUPTS)
7210 return;
7211
7212 for (; overflow; overflow--) {
7213 if (__perf_event_overflow(event, throttle,
7214 data, regs)) {
7215 /*
7216 * We inhibit the overflow from happening when
7217 * hwc->interrupts == MAX_INTERRUPTS.
7218 */
7219 break;
7220 }
7221 throttle = 1;
7222 }
7223 }
7224
7225 static void perf_swevent_event(struct perf_event *event, u64 nr,
7226 struct perf_sample_data *data,
7227 struct pt_regs *regs)
7228 {
7229 struct hw_perf_event *hwc = &event->hw;
7230
7231 local64_add(nr, &event->count);
7232
7233 if (!regs)
7234 return;
7235
7236 if (!is_sampling_event(event))
7237 return;
7238
7239 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
7240 data->period = nr;
7241 return perf_swevent_overflow(event, 1, data, regs);
7242 } else
7243 data->period = event->hw.last_period;
7244
7245 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
7246 return perf_swevent_overflow(event, 1, data, regs);
7247
7248 if (local64_add_negative(nr, &hwc->period_left))
7249 return;
7250
7251 perf_swevent_overflow(event, 0, data, regs);
7252 }
7253
7254 static int perf_exclude_event(struct perf_event *event,
7255 struct pt_regs *regs)
7256 {
7257 if (event->hw.state & PERF_HES_STOPPED)
7258 return 1;
7259
7260 if (regs) {
7261 if (event->attr.exclude_user && user_mode(regs))
7262 return 1;
7263
7264 if (event->attr.exclude_kernel && !user_mode(regs))
7265 return 1;
7266 }
7267
7268 return 0;
7269 }
7270
7271 static int perf_swevent_match(struct perf_event *event,
7272 enum perf_type_id type,
7273 u32 event_id,
7274 struct perf_sample_data *data,
7275 struct pt_regs *regs)
7276 {
7277 if (event->attr.type != type)
7278 return 0;
7279
7280 if (event->attr.config != event_id)
7281 return 0;
7282
7283 if (perf_exclude_event(event, regs))
7284 return 0;
7285
7286 return 1;
7287 }
7288
7289 static inline u64 swevent_hash(u64 type, u32 event_id)
7290 {
7291 u64 val = event_id | (type << 32);
7292
7293 return hash_64(val, SWEVENT_HLIST_BITS);
7294 }
7295
7296 static inline struct hlist_head *
7297 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
7298 {
7299 u64 hash = swevent_hash(type, event_id);
7300
7301 return &hlist->heads[hash];
7302 }
7303
7304 /* For the read side: events when they trigger */
7305 static inline struct hlist_head *
7306 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
7307 {
7308 struct swevent_hlist *hlist;
7309
7310 hlist = rcu_dereference(swhash->swevent_hlist);
7311 if (!hlist)
7312 return NULL;
7313
7314 return __find_swevent_head(hlist, type, event_id);
7315 }
7316
7317 /* For the event head insertion and removal in the hlist */
7318 static inline struct hlist_head *
7319 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
7320 {
7321 struct swevent_hlist *hlist;
7322 u32 event_id = event->attr.config;
7323 u64 type = event->attr.type;
7324
7325 /*
7326 * Event scheduling is always serialized against hlist allocation
7327 * and release. Which makes the protected version suitable here.
7328 * The context lock guarantees that.
7329 */
7330 hlist = rcu_dereference_protected(swhash->swevent_hlist,
7331 lockdep_is_held(&event->ctx->lock));
7332 if (!hlist)
7333 return NULL;
7334
7335 return __find_swevent_head(hlist, type, event_id);
7336 }
7337
7338 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
7339 u64 nr,
7340 struct perf_sample_data *data,
7341 struct pt_regs *regs)
7342 {
7343 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7344 struct perf_event *event;
7345 struct hlist_head *head;
7346
7347 rcu_read_lock();
7348 head = find_swevent_head_rcu(swhash, type, event_id);
7349 if (!head)
7350 goto end;
7351
7352 hlist_for_each_entry_rcu(event, head, hlist_entry) {
7353 if (perf_swevent_match(event, type, event_id, data, regs))
7354 perf_swevent_event(event, nr, data, regs);
7355 }
7356 end:
7357 rcu_read_unlock();
7358 }
7359
7360 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
7361
7362 int perf_swevent_get_recursion_context(void)
7363 {
7364 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7365
7366 return get_recursion_context(swhash->recursion);
7367 }
7368 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
7369
7370 void perf_swevent_put_recursion_context(int rctx)
7371 {
7372 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7373
7374 put_recursion_context(swhash->recursion, rctx);
7375 }
7376
7377 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7378 {
7379 struct perf_sample_data data;
7380
7381 if (WARN_ON_ONCE(!regs))
7382 return;
7383
7384 perf_sample_data_init(&data, addr, 0);
7385 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
7386 }
7387
7388 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7389 {
7390 int rctx;
7391
7392 preempt_disable_notrace();
7393 rctx = perf_swevent_get_recursion_context();
7394 if (unlikely(rctx < 0))
7395 goto fail;
7396
7397 ___perf_sw_event(event_id, nr, regs, addr);
7398
7399 perf_swevent_put_recursion_context(rctx);
7400 fail:
7401 preempt_enable_notrace();
7402 }
7403
7404 static void perf_swevent_read(struct perf_event *event)
7405 {
7406 }
7407
7408 static int perf_swevent_add(struct perf_event *event, int flags)
7409 {
7410 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7411 struct hw_perf_event *hwc = &event->hw;
7412 struct hlist_head *head;
7413
7414 if (is_sampling_event(event)) {
7415 hwc->last_period = hwc->sample_period;
7416 perf_swevent_set_period(event);
7417 }
7418
7419 hwc->state = !(flags & PERF_EF_START);
7420
7421 head = find_swevent_head(swhash, event);
7422 if (WARN_ON_ONCE(!head))
7423 return -EINVAL;
7424
7425 hlist_add_head_rcu(&event->hlist_entry, head);
7426 perf_event_update_userpage(event);
7427
7428 return 0;
7429 }
7430
7431 static void perf_swevent_del(struct perf_event *event, int flags)
7432 {
7433 hlist_del_rcu(&event->hlist_entry);
7434 }
7435
7436 static void perf_swevent_start(struct perf_event *event, int flags)
7437 {
7438 event->hw.state = 0;
7439 }
7440
7441 static void perf_swevent_stop(struct perf_event *event, int flags)
7442 {
7443 event->hw.state = PERF_HES_STOPPED;
7444 }
7445
7446 /* Deref the hlist from the update side */
7447 static inline struct swevent_hlist *
7448 swevent_hlist_deref(struct swevent_htable *swhash)
7449 {
7450 return rcu_dereference_protected(swhash->swevent_hlist,
7451 lockdep_is_held(&swhash->hlist_mutex));
7452 }
7453
7454 static void swevent_hlist_release(struct swevent_htable *swhash)
7455 {
7456 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
7457
7458 if (!hlist)
7459 return;
7460
7461 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
7462 kfree_rcu(hlist, rcu_head);
7463 }
7464
7465 static void swevent_hlist_put_cpu(int cpu)
7466 {
7467 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7468
7469 mutex_lock(&swhash->hlist_mutex);
7470
7471 if (!--swhash->hlist_refcount)
7472 swevent_hlist_release(swhash);
7473
7474 mutex_unlock(&swhash->hlist_mutex);
7475 }
7476
7477 static void swevent_hlist_put(void)
7478 {
7479 int cpu;
7480
7481 for_each_possible_cpu(cpu)
7482 swevent_hlist_put_cpu(cpu);
7483 }
7484
7485 static int swevent_hlist_get_cpu(int cpu)
7486 {
7487 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7488 int err = 0;
7489
7490 mutex_lock(&swhash->hlist_mutex);
7491 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
7492 struct swevent_hlist *hlist;
7493
7494 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
7495 if (!hlist) {
7496 err = -ENOMEM;
7497 goto exit;
7498 }
7499 rcu_assign_pointer(swhash->swevent_hlist, hlist);
7500 }
7501 swhash->hlist_refcount++;
7502 exit:
7503 mutex_unlock(&swhash->hlist_mutex);
7504
7505 return err;
7506 }
7507
7508 static int swevent_hlist_get(void)
7509 {
7510 int err, cpu, failed_cpu;
7511
7512 get_online_cpus();
7513 for_each_possible_cpu(cpu) {
7514 err = swevent_hlist_get_cpu(cpu);
7515 if (err) {
7516 failed_cpu = cpu;
7517 goto fail;
7518 }
7519 }
7520 put_online_cpus();
7521
7522 return 0;
7523 fail:
7524 for_each_possible_cpu(cpu) {
7525 if (cpu == failed_cpu)
7526 break;
7527 swevent_hlist_put_cpu(cpu);
7528 }
7529
7530 put_online_cpus();
7531 return err;
7532 }
7533
7534 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
7535
7536 static void sw_perf_event_destroy(struct perf_event *event)
7537 {
7538 u64 event_id = event->attr.config;
7539
7540 WARN_ON(event->parent);
7541
7542 static_key_slow_dec(&perf_swevent_enabled[event_id]);
7543 swevent_hlist_put();
7544 }
7545
7546 static int perf_swevent_init(struct perf_event *event)
7547 {
7548 u64 event_id = event->attr.config;
7549
7550 if (event->attr.type != PERF_TYPE_SOFTWARE)
7551 return -ENOENT;
7552
7553 /*
7554 * no branch sampling for software events
7555 */
7556 if (has_branch_stack(event))
7557 return -EOPNOTSUPP;
7558
7559 switch (event_id) {
7560 case PERF_COUNT_SW_CPU_CLOCK:
7561 case PERF_COUNT_SW_TASK_CLOCK:
7562 return -ENOENT;
7563
7564 default:
7565 break;
7566 }
7567
7568 if (event_id >= PERF_COUNT_SW_MAX)
7569 return -ENOENT;
7570
7571 if (!event->parent) {
7572 int err;
7573
7574 err = swevent_hlist_get();
7575 if (err)
7576 return err;
7577
7578 static_key_slow_inc(&perf_swevent_enabled[event_id]);
7579 event->destroy = sw_perf_event_destroy;
7580 }
7581
7582 return 0;
7583 }
7584
7585 static struct pmu perf_swevent = {
7586 .task_ctx_nr = perf_sw_context,
7587
7588 .capabilities = PERF_PMU_CAP_NO_NMI,
7589
7590 .event_init = perf_swevent_init,
7591 .add = perf_swevent_add,
7592 .del = perf_swevent_del,
7593 .start = perf_swevent_start,
7594 .stop = perf_swevent_stop,
7595 .read = perf_swevent_read,
7596 };
7597
7598 #ifdef CONFIG_EVENT_TRACING
7599
7600 static int perf_tp_filter_match(struct perf_event *event,
7601 struct perf_sample_data *data)
7602 {
7603 void *record = data->raw->frag.data;
7604
7605 /* only top level events have filters set */
7606 if (event->parent)
7607 event = event->parent;
7608
7609 if (likely(!event->filter) || filter_match_preds(event->filter, record))
7610 return 1;
7611 return 0;
7612 }
7613
7614 static int perf_tp_event_match(struct perf_event *event,
7615 struct perf_sample_data *data,
7616 struct pt_regs *regs)
7617 {
7618 if (event->hw.state & PERF_HES_STOPPED)
7619 return 0;
7620 /*
7621 * All tracepoints are from kernel-space.
7622 */
7623 if (event->attr.exclude_kernel)
7624 return 0;
7625
7626 if (!perf_tp_filter_match(event, data))
7627 return 0;
7628
7629 return 1;
7630 }
7631
7632 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
7633 struct trace_event_call *call, u64 count,
7634 struct pt_regs *regs, struct hlist_head *head,
7635 struct task_struct *task)
7636 {
7637 struct bpf_prog *prog = call->prog;
7638
7639 if (prog) {
7640 *(struct pt_regs **)raw_data = regs;
7641 if (!trace_call_bpf(prog, raw_data) || hlist_empty(head)) {
7642 perf_swevent_put_recursion_context(rctx);
7643 return;
7644 }
7645 }
7646 perf_tp_event(call->event.type, count, raw_data, size, regs, head,
7647 rctx, task);
7648 }
7649 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
7650
7651 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
7652 struct pt_regs *regs, struct hlist_head *head, int rctx,
7653 struct task_struct *task)
7654 {
7655 struct perf_sample_data data;
7656 struct perf_event *event;
7657
7658 struct perf_raw_record raw = {
7659 .frag = {
7660 .size = entry_size,
7661 .data = record,
7662 },
7663 };
7664
7665 perf_sample_data_init(&data, 0, 0);
7666 data.raw = &raw;
7667
7668 perf_trace_buf_update(record, event_type);
7669
7670 hlist_for_each_entry_rcu(event, head, hlist_entry) {
7671 if (perf_tp_event_match(event, &data, regs))
7672 perf_swevent_event(event, count, &data, regs);
7673 }
7674
7675 /*
7676 * If we got specified a target task, also iterate its context and
7677 * deliver this event there too.
7678 */
7679 if (task && task != current) {
7680 struct perf_event_context *ctx;
7681 struct trace_entry *entry = record;
7682
7683 rcu_read_lock();
7684 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
7685 if (!ctx)
7686 goto unlock;
7687
7688 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7689 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7690 continue;
7691 if (event->attr.config != entry->type)
7692 continue;
7693 if (perf_tp_event_match(event, &data, regs))
7694 perf_swevent_event(event, count, &data, regs);
7695 }
7696 unlock:
7697 rcu_read_unlock();
7698 }
7699
7700 perf_swevent_put_recursion_context(rctx);
7701 }
7702 EXPORT_SYMBOL_GPL(perf_tp_event);
7703
7704 static void tp_perf_event_destroy(struct perf_event *event)
7705 {
7706 perf_trace_destroy(event);
7707 }
7708
7709 static int perf_tp_event_init(struct perf_event *event)
7710 {
7711 int err;
7712
7713 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7714 return -ENOENT;
7715
7716 /*
7717 * no branch sampling for tracepoint events
7718 */
7719 if (has_branch_stack(event))
7720 return -EOPNOTSUPP;
7721
7722 err = perf_trace_init(event);
7723 if (err)
7724 return err;
7725
7726 event->destroy = tp_perf_event_destroy;
7727
7728 return 0;
7729 }
7730
7731 static struct pmu perf_tracepoint = {
7732 .task_ctx_nr = perf_sw_context,
7733
7734 .event_init = perf_tp_event_init,
7735 .add = perf_trace_add,
7736 .del = perf_trace_del,
7737 .start = perf_swevent_start,
7738 .stop = perf_swevent_stop,
7739 .read = perf_swevent_read,
7740 };
7741
7742 static inline void perf_tp_register(void)
7743 {
7744 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
7745 }
7746
7747 static void perf_event_free_filter(struct perf_event *event)
7748 {
7749 ftrace_profile_free_filter(event);
7750 }
7751
7752 #ifdef CONFIG_BPF_SYSCALL
7753 static void bpf_overflow_handler(struct perf_event *event,
7754 struct perf_sample_data *data,
7755 struct pt_regs *regs)
7756 {
7757 struct bpf_perf_event_data_kern ctx = {
7758 .data = data,
7759 .regs = regs,
7760 };
7761 int ret = 0;
7762
7763 preempt_disable();
7764 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
7765 goto out;
7766 rcu_read_lock();
7767 ret = BPF_PROG_RUN(event->prog, &ctx);
7768 rcu_read_unlock();
7769 out:
7770 __this_cpu_dec(bpf_prog_active);
7771 preempt_enable();
7772 if (!ret)
7773 return;
7774
7775 event->orig_overflow_handler(event, data, regs);
7776 }
7777
7778 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
7779 {
7780 struct bpf_prog *prog;
7781
7782 if (event->overflow_handler_context)
7783 /* hw breakpoint or kernel counter */
7784 return -EINVAL;
7785
7786 if (event->prog)
7787 return -EEXIST;
7788
7789 prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
7790 if (IS_ERR(prog))
7791 return PTR_ERR(prog);
7792
7793 event->prog = prog;
7794 event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
7795 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
7796 return 0;
7797 }
7798
7799 static void perf_event_free_bpf_handler(struct perf_event *event)
7800 {
7801 struct bpf_prog *prog = event->prog;
7802
7803 if (!prog)
7804 return;
7805
7806 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
7807 event->prog = NULL;
7808 bpf_prog_put(prog);
7809 }
7810 #else
7811 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
7812 {
7813 return -EOPNOTSUPP;
7814 }
7815 static void perf_event_free_bpf_handler(struct perf_event *event)
7816 {
7817 }
7818 #endif
7819
7820 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7821 {
7822 bool is_kprobe, is_tracepoint;
7823 struct bpf_prog *prog;
7824
7825 if (event->attr.type == PERF_TYPE_HARDWARE ||
7826 event->attr.type == PERF_TYPE_SOFTWARE)
7827 return perf_event_set_bpf_handler(event, prog_fd);
7828
7829 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7830 return -EINVAL;
7831
7832 if (event->tp_event->prog)
7833 return -EEXIST;
7834
7835 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
7836 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
7837 if (!is_kprobe && !is_tracepoint)
7838 /* bpf programs can only be attached to u/kprobe or tracepoint */
7839 return -EINVAL;
7840
7841 prog = bpf_prog_get(prog_fd);
7842 if (IS_ERR(prog))
7843 return PTR_ERR(prog);
7844
7845 if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
7846 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
7847 /* valid fd, but invalid bpf program type */
7848 bpf_prog_put(prog);
7849 return -EINVAL;
7850 }
7851
7852 if (is_tracepoint) {
7853 int off = trace_event_get_offsets(event->tp_event);
7854
7855 if (prog->aux->max_ctx_offset > off) {
7856 bpf_prog_put(prog);
7857 return -EACCES;
7858 }
7859 }
7860 event->tp_event->prog = prog;
7861
7862 return 0;
7863 }
7864
7865 static void perf_event_free_bpf_prog(struct perf_event *event)
7866 {
7867 struct bpf_prog *prog;
7868
7869 perf_event_free_bpf_handler(event);
7870
7871 if (!event->tp_event)
7872 return;
7873
7874 prog = event->tp_event->prog;
7875 if (prog) {
7876 event->tp_event->prog = NULL;
7877 bpf_prog_put(prog);
7878 }
7879 }
7880
7881 #else
7882
7883 static inline void perf_tp_register(void)
7884 {
7885 }
7886
7887 static void perf_event_free_filter(struct perf_event *event)
7888 {
7889 }
7890
7891 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7892 {
7893 return -ENOENT;
7894 }
7895
7896 static void perf_event_free_bpf_prog(struct perf_event *event)
7897 {
7898 }
7899 #endif /* CONFIG_EVENT_TRACING */
7900
7901 #ifdef CONFIG_HAVE_HW_BREAKPOINT
7902 void perf_bp_event(struct perf_event *bp, void *data)
7903 {
7904 struct perf_sample_data sample;
7905 struct pt_regs *regs = data;
7906
7907 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
7908
7909 if (!bp->hw.state && !perf_exclude_event(bp, regs))
7910 perf_swevent_event(bp, 1, &sample, regs);
7911 }
7912 #endif
7913
7914 /*
7915 * Allocate a new address filter
7916 */
7917 static struct perf_addr_filter *
7918 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
7919 {
7920 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
7921 struct perf_addr_filter *filter;
7922
7923 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
7924 if (!filter)
7925 return NULL;
7926
7927 INIT_LIST_HEAD(&filter->entry);
7928 list_add_tail(&filter->entry, filters);
7929
7930 return filter;
7931 }
7932
7933 static void free_filters_list(struct list_head *filters)
7934 {
7935 struct perf_addr_filter *filter, *iter;
7936
7937 list_for_each_entry_safe(filter, iter, filters, entry) {
7938 if (filter->inode)
7939 iput(filter->inode);
7940 list_del(&filter->entry);
7941 kfree(filter);
7942 }
7943 }
7944
7945 /*
7946 * Free existing address filters and optionally install new ones
7947 */
7948 static void perf_addr_filters_splice(struct perf_event *event,
7949 struct list_head *head)
7950 {
7951 unsigned long flags;
7952 LIST_HEAD(list);
7953
7954 if (!has_addr_filter(event))
7955 return;
7956
7957 /* don't bother with children, they don't have their own filters */
7958 if (event->parent)
7959 return;
7960
7961 raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
7962
7963 list_splice_init(&event->addr_filters.list, &list);
7964 if (head)
7965 list_splice(head, &event->addr_filters.list);
7966
7967 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
7968
7969 free_filters_list(&list);
7970 }
7971
7972 /*
7973 * Scan through mm's vmas and see if one of them matches the
7974 * @filter; if so, adjust filter's address range.
7975 * Called with mm::mmap_sem down for reading.
7976 */
7977 static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
7978 struct mm_struct *mm)
7979 {
7980 struct vm_area_struct *vma;
7981
7982 for (vma = mm->mmap; vma; vma = vma->vm_next) {
7983 struct file *file = vma->vm_file;
7984 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
7985 unsigned long vma_size = vma->vm_end - vma->vm_start;
7986
7987 if (!file)
7988 continue;
7989
7990 if (!perf_addr_filter_match(filter, file, off, vma_size))
7991 continue;
7992
7993 return vma->vm_start;
7994 }
7995
7996 return 0;
7997 }
7998
7999 /*
8000 * Update event's address range filters based on the
8001 * task's existing mappings, if any.
8002 */
8003 static void perf_event_addr_filters_apply(struct perf_event *event)
8004 {
8005 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8006 struct task_struct *task = READ_ONCE(event->ctx->task);
8007 struct perf_addr_filter *filter;
8008 struct mm_struct *mm = NULL;
8009 unsigned int count = 0;
8010 unsigned long flags;
8011
8012 /*
8013 * We may observe TASK_TOMBSTONE, which means that the event tear-down
8014 * will stop on the parent's child_mutex that our caller is also holding
8015 */
8016 if (task == TASK_TOMBSTONE)
8017 return;
8018
8019 mm = get_task_mm(event->ctx->task);
8020 if (!mm)
8021 goto restart;
8022
8023 down_read(&mm->mmap_sem);
8024
8025 raw_spin_lock_irqsave(&ifh->lock, flags);
8026 list_for_each_entry(filter, &ifh->list, entry) {
8027 event->addr_filters_offs[count] = 0;
8028
8029 /*
8030 * Adjust base offset if the filter is associated to a binary
8031 * that needs to be mapped:
8032 */
8033 if (filter->inode)
8034 event->addr_filters_offs[count] =
8035 perf_addr_filter_apply(filter, mm);
8036
8037 count++;
8038 }
8039
8040 event->addr_filters_gen++;
8041 raw_spin_unlock_irqrestore(&ifh->lock, flags);
8042
8043 up_read(&mm->mmap_sem);
8044
8045 mmput(mm);
8046
8047 restart:
8048 perf_event_stop(event, 1);
8049 }
8050
8051 /*
8052 * Address range filtering: limiting the data to certain
8053 * instruction address ranges. Filters are ioctl()ed to us from
8054 * userspace as ascii strings.
8055 *
8056 * Filter string format:
8057 *
8058 * ACTION RANGE_SPEC
8059 * where ACTION is one of the
8060 * * "filter": limit the trace to this region
8061 * * "start": start tracing from this address
8062 * * "stop": stop tracing at this address/region;
8063 * RANGE_SPEC is
8064 * * for kernel addresses: <start address>[/<size>]
8065 * * for object files: <start address>[/<size>]@</path/to/object/file>
8066 *
8067 * if <size> is not specified, the range is treated as a single address.
8068 */
8069 enum {
8070 IF_ACT_NONE = -1,
8071 IF_ACT_FILTER,
8072 IF_ACT_START,
8073 IF_ACT_STOP,
8074 IF_SRC_FILE,
8075 IF_SRC_KERNEL,
8076 IF_SRC_FILEADDR,
8077 IF_SRC_KERNELADDR,
8078 };
8079
8080 enum {
8081 IF_STATE_ACTION = 0,
8082 IF_STATE_SOURCE,
8083 IF_STATE_END,
8084 };
8085
8086 static const match_table_t if_tokens = {
8087 { IF_ACT_FILTER, "filter" },
8088 { IF_ACT_START, "start" },
8089 { IF_ACT_STOP, "stop" },
8090 { IF_SRC_FILE, "%u/%u@%s" },
8091 { IF_SRC_KERNEL, "%u/%u" },
8092 { IF_SRC_FILEADDR, "%u@%s" },
8093 { IF_SRC_KERNELADDR, "%u" },
8094 { IF_ACT_NONE, NULL },
8095 };
8096
8097 /*
8098 * Address filter string parser
8099 */
8100 static int
8101 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
8102 struct list_head *filters)
8103 {
8104 struct perf_addr_filter *filter = NULL;
8105 char *start, *orig, *filename = NULL;
8106 struct path path;
8107 substring_t args[MAX_OPT_ARGS];
8108 int state = IF_STATE_ACTION, token;
8109 unsigned int kernel = 0;
8110 int ret = -EINVAL;
8111
8112 orig = fstr = kstrdup(fstr, GFP_KERNEL);
8113 if (!fstr)
8114 return -ENOMEM;
8115
8116 while ((start = strsep(&fstr, " ,\n")) != NULL) {
8117 ret = -EINVAL;
8118
8119 if (!*start)
8120 continue;
8121
8122 /* filter definition begins */
8123 if (state == IF_STATE_ACTION) {
8124 filter = perf_addr_filter_new(event, filters);
8125 if (!filter)
8126 goto fail;
8127 }
8128
8129 token = match_token(start, if_tokens, args);
8130 switch (token) {
8131 case IF_ACT_FILTER:
8132 case IF_ACT_START:
8133 filter->filter = 1;
8134
8135 case IF_ACT_STOP:
8136 if (state != IF_STATE_ACTION)
8137 goto fail;
8138
8139 state = IF_STATE_SOURCE;
8140 break;
8141
8142 case IF_SRC_KERNELADDR:
8143 case IF_SRC_KERNEL:
8144 kernel = 1;
8145
8146 case IF_SRC_FILEADDR:
8147 case IF_SRC_FILE:
8148 if (state != IF_STATE_SOURCE)
8149 goto fail;
8150
8151 if (token == IF_SRC_FILE || token == IF_SRC_KERNEL)
8152 filter->range = 1;
8153
8154 *args[0].to = 0;
8155 ret = kstrtoul(args[0].from, 0, &filter->offset);
8156 if (ret)
8157 goto fail;
8158
8159 if (filter->range) {
8160 *args[1].to = 0;
8161 ret = kstrtoul(args[1].from, 0, &filter->size);
8162 if (ret)
8163 goto fail;
8164 }
8165
8166 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
8167 int fpos = filter->range ? 2 : 1;
8168
8169 filename = match_strdup(&args[fpos]);
8170 if (!filename) {
8171 ret = -ENOMEM;
8172 goto fail;
8173 }
8174 }
8175
8176 state = IF_STATE_END;
8177 break;
8178
8179 default:
8180 goto fail;
8181 }
8182
8183 /*
8184 * Filter definition is fully parsed, validate and install it.
8185 * Make sure that it doesn't contradict itself or the event's
8186 * attribute.
8187 */
8188 if (state == IF_STATE_END) {
8189 if (kernel && event->attr.exclude_kernel)
8190 goto fail;
8191
8192 if (!kernel) {
8193 if (!filename)
8194 goto fail;
8195
8196 /* look up the path and grab its inode */
8197 ret = kern_path(filename, LOOKUP_FOLLOW, &path);
8198 if (ret)
8199 goto fail_free_name;
8200
8201 filter->inode = igrab(d_inode(path.dentry));
8202 path_put(&path);
8203 kfree(filename);
8204 filename = NULL;
8205
8206 ret = -EINVAL;
8207 if (!filter->inode ||
8208 !S_ISREG(filter->inode->i_mode))
8209 /* free_filters_list() will iput() */
8210 goto fail;
8211 }
8212
8213 /* ready to consume more filters */
8214 state = IF_STATE_ACTION;
8215 filter = NULL;
8216 }
8217 }
8218
8219 if (state != IF_STATE_ACTION)
8220 goto fail;
8221
8222 kfree(orig);
8223
8224 return 0;
8225
8226 fail_free_name:
8227 kfree(filename);
8228 fail:
8229 free_filters_list(filters);
8230 kfree(orig);
8231
8232 return ret;
8233 }
8234
8235 static int
8236 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
8237 {
8238 LIST_HEAD(filters);
8239 int ret;
8240
8241 /*
8242 * Since this is called in perf_ioctl() path, we're already holding
8243 * ctx::mutex.
8244 */
8245 lockdep_assert_held(&event->ctx->mutex);
8246
8247 if (WARN_ON_ONCE(event->parent))
8248 return -EINVAL;
8249
8250 /*
8251 * For now, we only support filtering in per-task events; doing so
8252 * for CPU-wide events requires additional context switching trickery,
8253 * since same object code will be mapped at different virtual
8254 * addresses in different processes.
8255 */
8256 if (!event->ctx->task)
8257 return -EOPNOTSUPP;
8258
8259 ret = perf_event_parse_addr_filter(event, filter_str, &filters);
8260 if (ret)
8261 return ret;
8262
8263 ret = event->pmu->addr_filters_validate(&filters);
8264 if (ret) {
8265 free_filters_list(&filters);
8266 return ret;
8267 }
8268
8269 /* remove existing filters, if any */
8270 perf_addr_filters_splice(event, &filters);
8271
8272 /* install new filters */
8273 perf_event_for_each_child(event, perf_event_addr_filters_apply);
8274
8275 return ret;
8276 }
8277
8278 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
8279 {
8280 char *filter_str;
8281 int ret = -EINVAL;
8282
8283 if ((event->attr.type != PERF_TYPE_TRACEPOINT ||
8284 !IS_ENABLED(CONFIG_EVENT_TRACING)) &&
8285 !has_addr_filter(event))
8286 return -EINVAL;
8287
8288 filter_str = strndup_user(arg, PAGE_SIZE);
8289 if (IS_ERR(filter_str))
8290 return PTR_ERR(filter_str);
8291
8292 if (IS_ENABLED(CONFIG_EVENT_TRACING) &&
8293 event->attr.type == PERF_TYPE_TRACEPOINT)
8294 ret = ftrace_profile_set_filter(event, event->attr.config,
8295 filter_str);
8296 else if (has_addr_filter(event))
8297 ret = perf_event_set_addr_filter(event, filter_str);
8298
8299 kfree(filter_str);
8300 return ret;
8301 }
8302
8303 /*
8304 * hrtimer based swevent callback
8305 */
8306
8307 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
8308 {
8309 enum hrtimer_restart ret = HRTIMER_RESTART;
8310 struct perf_sample_data data;
8311 struct pt_regs *regs;
8312 struct perf_event *event;
8313 u64 period;
8314
8315 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
8316
8317 if (event->state != PERF_EVENT_STATE_ACTIVE)
8318 return HRTIMER_NORESTART;
8319
8320 event->pmu->read(event);
8321
8322 perf_sample_data_init(&data, 0, event->hw.last_period);
8323 regs = get_irq_regs();
8324
8325 if (regs && !perf_exclude_event(event, regs)) {
8326 if (!(event->attr.exclude_idle && is_idle_task(current)))
8327 if (__perf_event_overflow(event, 1, &data, regs))
8328 ret = HRTIMER_NORESTART;
8329 }
8330
8331 period = max_t(u64, 10000, event->hw.sample_period);
8332 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
8333
8334 return ret;
8335 }
8336
8337 static void perf_swevent_start_hrtimer(struct perf_event *event)
8338 {
8339 struct hw_perf_event *hwc = &event->hw;
8340 s64 period;
8341
8342 if (!is_sampling_event(event))
8343 return;
8344
8345 period = local64_read(&hwc->period_left);
8346 if (period) {
8347 if (period < 0)
8348 period = 10000;
8349
8350 local64_set(&hwc->period_left, 0);
8351 } else {
8352 period = max_t(u64, 10000, hwc->sample_period);
8353 }
8354 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
8355 HRTIMER_MODE_REL_PINNED);
8356 }
8357
8358 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
8359 {
8360 struct hw_perf_event *hwc = &event->hw;
8361
8362 if (is_sampling_event(event)) {
8363 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
8364 local64_set(&hwc->period_left, ktime_to_ns(remaining));
8365
8366 hrtimer_cancel(&hwc->hrtimer);
8367 }
8368 }
8369
8370 static void perf_swevent_init_hrtimer(struct perf_event *event)
8371 {
8372 struct hw_perf_event *hwc = &event->hw;
8373
8374 if (!is_sampling_event(event))
8375 return;
8376
8377 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
8378 hwc->hrtimer.function = perf_swevent_hrtimer;
8379
8380 /*
8381 * Since hrtimers have a fixed rate, we can do a static freq->period
8382 * mapping and avoid the whole period adjust feedback stuff.
8383 */
8384 if (event->attr.freq) {
8385 long freq = event->attr.sample_freq;
8386
8387 event->attr.sample_period = NSEC_PER_SEC / freq;
8388 hwc->sample_period = event->attr.sample_period;
8389 local64_set(&hwc->period_left, hwc->sample_period);
8390 hwc->last_period = hwc->sample_period;
8391 event->attr.freq = 0;
8392 }
8393 }
8394
8395 /*
8396 * Software event: cpu wall time clock
8397 */
8398
8399 static void cpu_clock_event_update(struct perf_event *event)
8400 {
8401 s64 prev;
8402 u64 now;
8403
8404 now = local_clock();
8405 prev = local64_xchg(&event->hw.prev_count, now);
8406 local64_add(now - prev, &event->count);
8407 }
8408
8409 static void cpu_clock_event_start(struct perf_event *event, int flags)
8410 {
8411 local64_set(&event->hw.prev_count, local_clock());
8412 perf_swevent_start_hrtimer(event);
8413 }
8414
8415 static void cpu_clock_event_stop(struct perf_event *event, int flags)
8416 {
8417 perf_swevent_cancel_hrtimer(event);
8418 cpu_clock_event_update(event);
8419 }
8420
8421 static int cpu_clock_event_add(struct perf_event *event, int flags)
8422 {
8423 if (flags & PERF_EF_START)
8424 cpu_clock_event_start(event, flags);
8425 perf_event_update_userpage(event);
8426
8427 return 0;
8428 }
8429
8430 static void cpu_clock_event_del(struct perf_event *event, int flags)
8431 {
8432 cpu_clock_event_stop(event, flags);
8433 }
8434
8435 static void cpu_clock_event_read(struct perf_event *event)
8436 {
8437 cpu_clock_event_update(event);
8438 }
8439
8440 static int cpu_clock_event_init(struct perf_event *event)
8441 {
8442 if (event->attr.type != PERF_TYPE_SOFTWARE)
8443 return -ENOENT;
8444
8445 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
8446 return -ENOENT;
8447
8448 /*
8449 * no branch sampling for software events
8450 */
8451 if (has_branch_stack(event))
8452 return -EOPNOTSUPP;
8453
8454 perf_swevent_init_hrtimer(event);
8455
8456 return 0;
8457 }
8458
8459 static struct pmu perf_cpu_clock = {
8460 .task_ctx_nr = perf_sw_context,
8461
8462 .capabilities = PERF_PMU_CAP_NO_NMI,
8463
8464 .event_init = cpu_clock_event_init,
8465 .add = cpu_clock_event_add,
8466 .del = cpu_clock_event_del,
8467 .start = cpu_clock_event_start,
8468 .stop = cpu_clock_event_stop,
8469 .read = cpu_clock_event_read,
8470 };
8471
8472 /*
8473 * Software event: task time clock
8474 */
8475
8476 static void task_clock_event_update(struct perf_event *event, u64 now)
8477 {
8478 u64 prev;
8479 s64 delta;
8480
8481 prev = local64_xchg(&event->hw.prev_count, now);
8482 delta = now - prev;
8483 local64_add(delta, &event->count);
8484 }
8485
8486 static void task_clock_event_start(struct perf_event *event, int flags)
8487 {
8488 local64_set(&event->hw.prev_count, event->ctx->time);
8489 perf_swevent_start_hrtimer(event);
8490 }
8491
8492 static void task_clock_event_stop(struct perf_event *event, int flags)
8493 {
8494 perf_swevent_cancel_hrtimer(event);
8495 task_clock_event_update(event, event->ctx->time);
8496 }
8497
8498 static int task_clock_event_add(struct perf_event *event, int flags)
8499 {
8500 if (flags & PERF_EF_START)
8501 task_clock_event_start(event, flags);
8502 perf_event_update_userpage(event);
8503
8504 return 0;
8505 }
8506
8507 static void task_clock_event_del(struct perf_event *event, int flags)
8508 {
8509 task_clock_event_stop(event, PERF_EF_UPDATE);
8510 }
8511
8512 static void task_clock_event_read(struct perf_event *event)
8513 {
8514 u64 now = perf_clock();
8515 u64 delta = now - event->ctx->timestamp;
8516 u64 time = event->ctx->time + delta;
8517
8518 task_clock_event_update(event, time);
8519 }
8520
8521 static int task_clock_event_init(struct perf_event *event)
8522 {
8523 if (event->attr.type != PERF_TYPE_SOFTWARE)
8524 return -ENOENT;
8525
8526 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
8527 return -ENOENT;
8528
8529 /*
8530 * no branch sampling for software events
8531 */
8532 if (has_branch_stack(event))
8533 return -EOPNOTSUPP;
8534
8535 perf_swevent_init_hrtimer(event);
8536
8537 return 0;
8538 }
8539
8540 static struct pmu perf_task_clock = {
8541 .task_ctx_nr = perf_sw_context,
8542
8543 .capabilities = PERF_PMU_CAP_NO_NMI,
8544
8545 .event_init = task_clock_event_init,
8546 .add = task_clock_event_add,
8547 .del = task_clock_event_del,
8548 .start = task_clock_event_start,
8549 .stop = task_clock_event_stop,
8550 .read = task_clock_event_read,
8551 };
8552
8553 static void perf_pmu_nop_void(struct pmu *pmu)
8554 {
8555 }
8556
8557 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
8558 {
8559 }
8560
8561 static int perf_pmu_nop_int(struct pmu *pmu)
8562 {
8563 return 0;
8564 }
8565
8566 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
8567
8568 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
8569 {
8570 __this_cpu_write(nop_txn_flags, flags);
8571
8572 if (flags & ~PERF_PMU_TXN_ADD)
8573 return;
8574
8575 perf_pmu_disable(pmu);
8576 }
8577
8578 static int perf_pmu_commit_txn(struct pmu *pmu)
8579 {
8580 unsigned int flags = __this_cpu_read(nop_txn_flags);
8581
8582 __this_cpu_write(nop_txn_flags, 0);
8583
8584 if (flags & ~PERF_PMU_TXN_ADD)
8585 return 0;
8586
8587 perf_pmu_enable(pmu);
8588 return 0;
8589 }
8590
8591 static void perf_pmu_cancel_txn(struct pmu *pmu)
8592 {
8593 unsigned int flags = __this_cpu_read(nop_txn_flags);
8594
8595 __this_cpu_write(nop_txn_flags, 0);
8596
8597 if (flags & ~PERF_PMU_TXN_ADD)
8598 return;
8599
8600 perf_pmu_enable(pmu);
8601 }
8602
8603 static int perf_event_idx_default(struct perf_event *event)
8604 {
8605 return 0;
8606 }
8607
8608 /*
8609 * Ensures all contexts with the same task_ctx_nr have the same
8610 * pmu_cpu_context too.
8611 */
8612 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
8613 {
8614 struct pmu *pmu;
8615
8616 if (ctxn < 0)
8617 return NULL;
8618
8619 list_for_each_entry(pmu, &pmus, entry) {
8620 if (pmu->task_ctx_nr == ctxn)
8621 return pmu->pmu_cpu_context;
8622 }
8623
8624 return NULL;
8625 }
8626
8627 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
8628 {
8629 int cpu;
8630
8631 for_each_possible_cpu(cpu) {
8632 struct perf_cpu_context *cpuctx;
8633
8634 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8635
8636 if (cpuctx->unique_pmu == old_pmu)
8637 cpuctx->unique_pmu = pmu;
8638 }
8639 }
8640
8641 static void free_pmu_context(struct pmu *pmu)
8642 {
8643 struct pmu *i;
8644
8645 mutex_lock(&pmus_lock);
8646 /*
8647 * Like a real lame refcount.
8648 */
8649 list_for_each_entry(i, &pmus, entry) {
8650 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
8651 update_pmu_context(i, pmu);
8652 goto out;
8653 }
8654 }
8655
8656 free_percpu(pmu->pmu_cpu_context);
8657 out:
8658 mutex_unlock(&pmus_lock);
8659 }
8660
8661 /*
8662 * Let userspace know that this PMU supports address range filtering:
8663 */
8664 static ssize_t nr_addr_filters_show(struct device *dev,
8665 struct device_attribute *attr,
8666 char *page)
8667 {
8668 struct pmu *pmu = dev_get_drvdata(dev);
8669
8670 return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
8671 }
8672 DEVICE_ATTR_RO(nr_addr_filters);
8673
8674 static struct idr pmu_idr;
8675
8676 static ssize_t
8677 type_show(struct device *dev, struct device_attribute *attr, char *page)
8678 {
8679 struct pmu *pmu = dev_get_drvdata(dev);
8680
8681 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
8682 }
8683 static DEVICE_ATTR_RO(type);
8684
8685 static ssize_t
8686 perf_event_mux_interval_ms_show(struct device *dev,
8687 struct device_attribute *attr,
8688 char *page)
8689 {
8690 struct pmu *pmu = dev_get_drvdata(dev);
8691
8692 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
8693 }
8694
8695 static DEFINE_MUTEX(mux_interval_mutex);
8696
8697 static ssize_t
8698 perf_event_mux_interval_ms_store(struct device *dev,
8699 struct device_attribute *attr,
8700 const char *buf, size_t count)
8701 {
8702 struct pmu *pmu = dev_get_drvdata(dev);
8703 int timer, cpu, ret;
8704
8705 ret = kstrtoint(buf, 0, &timer);
8706 if (ret)
8707 return ret;
8708
8709 if (timer < 1)
8710 return -EINVAL;
8711
8712 /* same value, noting to do */
8713 if (timer == pmu->hrtimer_interval_ms)
8714 return count;
8715
8716 mutex_lock(&mux_interval_mutex);
8717 pmu->hrtimer_interval_ms = timer;
8718
8719 /* update all cpuctx for this PMU */
8720 get_online_cpus();
8721 for_each_online_cpu(cpu) {
8722 struct perf_cpu_context *cpuctx;
8723 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8724 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
8725
8726 cpu_function_call(cpu,
8727 (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
8728 }
8729 put_online_cpus();
8730 mutex_unlock(&mux_interval_mutex);
8731
8732 return count;
8733 }
8734 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
8735
8736 static struct attribute *pmu_dev_attrs[] = {
8737 &dev_attr_type.attr,
8738 &dev_attr_perf_event_mux_interval_ms.attr,
8739 NULL,
8740 };
8741 ATTRIBUTE_GROUPS(pmu_dev);
8742
8743 static int pmu_bus_running;
8744 static struct bus_type pmu_bus = {
8745 .name = "event_source",
8746 .dev_groups = pmu_dev_groups,
8747 };
8748
8749 static void pmu_dev_release(struct device *dev)
8750 {
8751 kfree(dev);
8752 }
8753
8754 static int pmu_dev_alloc(struct pmu *pmu)
8755 {
8756 int ret = -ENOMEM;
8757
8758 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
8759 if (!pmu->dev)
8760 goto out;
8761
8762 pmu->dev->groups = pmu->attr_groups;
8763 device_initialize(pmu->dev);
8764 ret = dev_set_name(pmu->dev, "%s", pmu->name);
8765 if (ret)
8766 goto free_dev;
8767
8768 dev_set_drvdata(pmu->dev, pmu);
8769 pmu->dev->bus = &pmu_bus;
8770 pmu->dev->release = pmu_dev_release;
8771 ret = device_add(pmu->dev);
8772 if (ret)
8773 goto free_dev;
8774
8775 /* For PMUs with address filters, throw in an extra attribute: */
8776 if (pmu->nr_addr_filters)
8777 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
8778
8779 if (ret)
8780 goto del_dev;
8781
8782 out:
8783 return ret;
8784
8785 del_dev:
8786 device_del(pmu->dev);
8787
8788 free_dev:
8789 put_device(pmu->dev);
8790 goto out;
8791 }
8792
8793 static struct lock_class_key cpuctx_mutex;
8794 static struct lock_class_key cpuctx_lock;
8795
8796 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
8797 {
8798 int cpu, ret;
8799
8800 mutex_lock(&pmus_lock);
8801 ret = -ENOMEM;
8802 pmu->pmu_disable_count = alloc_percpu(int);
8803 if (!pmu->pmu_disable_count)
8804 goto unlock;
8805
8806 pmu->type = -1;
8807 if (!name)
8808 goto skip_type;
8809 pmu->name = name;
8810
8811 if (type < 0) {
8812 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
8813 if (type < 0) {
8814 ret = type;
8815 goto free_pdc;
8816 }
8817 }
8818 pmu->type = type;
8819
8820 if (pmu_bus_running) {
8821 ret = pmu_dev_alloc(pmu);
8822 if (ret)
8823 goto free_idr;
8824 }
8825
8826 skip_type:
8827 if (pmu->task_ctx_nr == perf_hw_context) {
8828 static int hw_context_taken = 0;
8829
8830 /*
8831 * Other than systems with heterogeneous CPUs, it never makes
8832 * sense for two PMUs to share perf_hw_context. PMUs which are
8833 * uncore must use perf_invalid_context.
8834 */
8835 if (WARN_ON_ONCE(hw_context_taken &&
8836 !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
8837 pmu->task_ctx_nr = perf_invalid_context;
8838
8839 hw_context_taken = 1;
8840 }
8841
8842 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
8843 if (pmu->pmu_cpu_context)
8844 goto got_cpu_context;
8845
8846 ret = -ENOMEM;
8847 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
8848 if (!pmu->pmu_cpu_context)
8849 goto free_dev;
8850
8851 for_each_possible_cpu(cpu) {
8852 struct perf_cpu_context *cpuctx;
8853
8854 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8855 __perf_event_init_context(&cpuctx->ctx);
8856 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
8857 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
8858 cpuctx->ctx.pmu = pmu;
8859
8860 __perf_mux_hrtimer_init(cpuctx, cpu);
8861
8862 cpuctx->unique_pmu = pmu;
8863 }
8864
8865 got_cpu_context:
8866 if (!pmu->start_txn) {
8867 if (pmu->pmu_enable) {
8868 /*
8869 * If we have pmu_enable/pmu_disable calls, install
8870 * transaction stubs that use that to try and batch
8871 * hardware accesses.
8872 */
8873 pmu->start_txn = perf_pmu_start_txn;
8874 pmu->commit_txn = perf_pmu_commit_txn;
8875 pmu->cancel_txn = perf_pmu_cancel_txn;
8876 } else {
8877 pmu->start_txn = perf_pmu_nop_txn;
8878 pmu->commit_txn = perf_pmu_nop_int;
8879 pmu->cancel_txn = perf_pmu_nop_void;
8880 }
8881 }
8882
8883 if (!pmu->pmu_enable) {
8884 pmu->pmu_enable = perf_pmu_nop_void;
8885 pmu->pmu_disable = perf_pmu_nop_void;
8886 }
8887
8888 if (!pmu->event_idx)
8889 pmu->event_idx = perf_event_idx_default;
8890
8891 list_add_rcu(&pmu->entry, &pmus);
8892 atomic_set(&pmu->exclusive_cnt, 0);
8893 ret = 0;
8894 unlock:
8895 mutex_unlock(&pmus_lock);
8896
8897 return ret;
8898
8899 free_dev:
8900 device_del(pmu->dev);
8901 put_device(pmu->dev);
8902
8903 free_idr:
8904 if (pmu->type >= PERF_TYPE_MAX)
8905 idr_remove(&pmu_idr, pmu->type);
8906
8907 free_pdc:
8908 free_percpu(pmu->pmu_disable_count);
8909 goto unlock;
8910 }
8911 EXPORT_SYMBOL_GPL(perf_pmu_register);
8912
8913 void perf_pmu_unregister(struct pmu *pmu)
8914 {
8915 int remove_device;
8916
8917 mutex_lock(&pmus_lock);
8918 remove_device = pmu_bus_running;
8919 list_del_rcu(&pmu->entry);
8920 mutex_unlock(&pmus_lock);
8921
8922 /*
8923 * We dereference the pmu list under both SRCU and regular RCU, so
8924 * synchronize against both of those.
8925 */
8926 synchronize_srcu(&pmus_srcu);
8927 synchronize_rcu();
8928
8929 free_percpu(pmu->pmu_disable_count);
8930 if (pmu->type >= PERF_TYPE_MAX)
8931 idr_remove(&pmu_idr, pmu->type);
8932 if (remove_device) {
8933 if (pmu->nr_addr_filters)
8934 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
8935 device_del(pmu->dev);
8936 put_device(pmu->dev);
8937 }
8938 free_pmu_context(pmu);
8939 }
8940 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
8941
8942 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
8943 {
8944 struct perf_event_context *ctx = NULL;
8945 int ret;
8946
8947 if (!try_module_get(pmu->module))
8948 return -ENODEV;
8949
8950 if (event->group_leader != event) {
8951 /*
8952 * This ctx->mutex can nest when we're called through
8953 * inheritance. See the perf_event_ctx_lock_nested() comment.
8954 */
8955 ctx = perf_event_ctx_lock_nested(event->group_leader,
8956 SINGLE_DEPTH_NESTING);
8957 BUG_ON(!ctx);
8958 }
8959
8960 event->pmu = pmu;
8961 ret = pmu->event_init(event);
8962
8963 if (ctx)
8964 perf_event_ctx_unlock(event->group_leader, ctx);
8965
8966 if (ret)
8967 module_put(pmu->module);
8968
8969 return ret;
8970 }
8971
8972 static struct pmu *perf_init_event(struct perf_event *event)
8973 {
8974 struct pmu *pmu = NULL;
8975 int idx;
8976 int ret;
8977
8978 idx = srcu_read_lock(&pmus_srcu);
8979
8980 rcu_read_lock();
8981 pmu = idr_find(&pmu_idr, event->attr.type);
8982 rcu_read_unlock();
8983 if (pmu) {
8984 ret = perf_try_init_event(pmu, event);
8985 if (ret)
8986 pmu = ERR_PTR(ret);
8987 goto unlock;
8988 }
8989
8990 list_for_each_entry_rcu(pmu, &pmus, entry) {
8991 ret = perf_try_init_event(pmu, event);
8992 if (!ret)
8993 goto unlock;
8994
8995 if (ret != -ENOENT) {
8996 pmu = ERR_PTR(ret);
8997 goto unlock;
8998 }
8999 }
9000 pmu = ERR_PTR(-ENOENT);
9001 unlock:
9002 srcu_read_unlock(&pmus_srcu, idx);
9003
9004 return pmu;
9005 }
9006
9007 static void attach_sb_event(struct perf_event *event)
9008 {
9009 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
9010
9011 raw_spin_lock(&pel->lock);
9012 list_add_rcu(&event->sb_list, &pel->list);
9013 raw_spin_unlock(&pel->lock);
9014 }
9015
9016 /*
9017 * We keep a list of all !task (and therefore per-cpu) events
9018 * that need to receive side-band records.
9019 *
9020 * This avoids having to scan all the various PMU per-cpu contexts
9021 * looking for them.
9022 */
9023 static void account_pmu_sb_event(struct perf_event *event)
9024 {
9025 if (is_sb_event(event))
9026 attach_sb_event(event);
9027 }
9028
9029 static void account_event_cpu(struct perf_event *event, int cpu)
9030 {
9031 if (event->parent)
9032 return;
9033
9034 if (is_cgroup_event(event))
9035 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
9036 }
9037
9038 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
9039 static void account_freq_event_nohz(void)
9040 {
9041 #ifdef CONFIG_NO_HZ_FULL
9042 /* Lock so we don't race with concurrent unaccount */
9043 spin_lock(&nr_freq_lock);
9044 if (atomic_inc_return(&nr_freq_events) == 1)
9045 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
9046 spin_unlock(&nr_freq_lock);
9047 #endif
9048 }
9049
9050 static void account_freq_event(void)
9051 {
9052 if (tick_nohz_full_enabled())
9053 account_freq_event_nohz();
9054 else
9055 atomic_inc(&nr_freq_events);
9056 }
9057
9058
9059 static void account_event(struct perf_event *event)
9060 {
9061 bool inc = false;
9062
9063 if (event->parent)
9064 return;
9065
9066 if (event->attach_state & PERF_ATTACH_TASK)
9067 inc = true;
9068 if (event->attr.mmap || event->attr.mmap_data)
9069 atomic_inc(&nr_mmap_events);
9070 if (event->attr.comm)
9071 atomic_inc(&nr_comm_events);
9072 if (event->attr.task)
9073 atomic_inc(&nr_task_events);
9074 if (event->attr.freq)
9075 account_freq_event();
9076 if (event->attr.context_switch) {
9077 atomic_inc(&nr_switch_events);
9078 inc = true;
9079 }
9080 if (has_branch_stack(event))
9081 inc = true;
9082 if (is_cgroup_event(event))
9083 inc = true;
9084
9085 if (inc) {
9086 if (atomic_inc_not_zero(&perf_sched_count))
9087 goto enabled;
9088
9089 mutex_lock(&perf_sched_mutex);
9090 if (!atomic_read(&perf_sched_count)) {
9091 static_branch_enable(&perf_sched_events);
9092 /*
9093 * Guarantee that all CPUs observe they key change and
9094 * call the perf scheduling hooks before proceeding to
9095 * install events that need them.
9096 */
9097 synchronize_sched();
9098 }
9099 /*
9100 * Now that we have waited for the sync_sched(), allow further
9101 * increments to by-pass the mutex.
9102 */
9103 atomic_inc(&perf_sched_count);
9104 mutex_unlock(&perf_sched_mutex);
9105 }
9106 enabled:
9107
9108 account_event_cpu(event, event->cpu);
9109
9110 account_pmu_sb_event(event);
9111 }
9112
9113 /*
9114 * Allocate and initialize a event structure
9115 */
9116 static struct perf_event *
9117 perf_event_alloc(struct perf_event_attr *attr, int cpu,
9118 struct task_struct *task,
9119 struct perf_event *group_leader,
9120 struct perf_event *parent_event,
9121 perf_overflow_handler_t overflow_handler,
9122 void *context, int cgroup_fd)
9123 {
9124 struct pmu *pmu;
9125 struct perf_event *event;
9126 struct hw_perf_event *hwc;
9127 long err = -EINVAL;
9128
9129 if ((unsigned)cpu >= nr_cpu_ids) {
9130 if (!task || cpu != -1)
9131 return ERR_PTR(-EINVAL);
9132 }
9133
9134 event = kzalloc(sizeof(*event), GFP_KERNEL);
9135 if (!event)
9136 return ERR_PTR(-ENOMEM);
9137
9138 /*
9139 * Single events are their own group leaders, with an
9140 * empty sibling list:
9141 */
9142 if (!group_leader)
9143 group_leader = event;
9144
9145 mutex_init(&event->child_mutex);
9146 INIT_LIST_HEAD(&event->child_list);
9147
9148 INIT_LIST_HEAD(&event->group_entry);
9149 INIT_LIST_HEAD(&event->event_entry);
9150 INIT_LIST_HEAD(&event->sibling_list);
9151 INIT_LIST_HEAD(&event->rb_entry);
9152 INIT_LIST_HEAD(&event->active_entry);
9153 INIT_LIST_HEAD(&event->addr_filters.list);
9154 INIT_HLIST_NODE(&event->hlist_entry);
9155
9156
9157 init_waitqueue_head(&event->waitq);
9158 init_irq_work(&event->pending, perf_pending_event);
9159
9160 mutex_init(&event->mmap_mutex);
9161 raw_spin_lock_init(&event->addr_filters.lock);
9162
9163 atomic_long_set(&event->refcount, 1);
9164 event->cpu = cpu;
9165 event->attr = *attr;
9166 event->group_leader = group_leader;
9167 event->pmu = NULL;
9168 event->oncpu = -1;
9169
9170 event->parent = parent_event;
9171
9172 event->ns = get_pid_ns(task_active_pid_ns(current));
9173 event->id = atomic64_inc_return(&perf_event_id);
9174
9175 event->state = PERF_EVENT_STATE_INACTIVE;
9176
9177 if (task) {
9178 event->attach_state = PERF_ATTACH_TASK;
9179 /*
9180 * XXX pmu::event_init needs to know what task to account to
9181 * and we cannot use the ctx information because we need the
9182 * pmu before we get a ctx.
9183 */
9184 event->hw.target = task;
9185 }
9186
9187 event->clock = &local_clock;
9188 if (parent_event)
9189 event->clock = parent_event->clock;
9190
9191 if (!overflow_handler && parent_event) {
9192 overflow_handler = parent_event->overflow_handler;
9193 context = parent_event->overflow_handler_context;
9194 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
9195 if (overflow_handler == bpf_overflow_handler) {
9196 struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
9197
9198 if (IS_ERR(prog)) {
9199 err = PTR_ERR(prog);
9200 goto err_ns;
9201 }
9202 event->prog = prog;
9203 event->orig_overflow_handler =
9204 parent_event->orig_overflow_handler;
9205 }
9206 #endif
9207 }
9208
9209 if (overflow_handler) {
9210 event->overflow_handler = overflow_handler;
9211 event->overflow_handler_context = context;
9212 } else if (is_write_backward(event)){
9213 event->overflow_handler = perf_event_output_backward;
9214 event->overflow_handler_context = NULL;
9215 } else {
9216 event->overflow_handler = perf_event_output_forward;
9217 event->overflow_handler_context = NULL;
9218 }
9219
9220 perf_event__state_init(event);
9221
9222 pmu = NULL;
9223
9224 hwc = &event->hw;
9225 hwc->sample_period = attr->sample_period;
9226 if (attr->freq && attr->sample_freq)
9227 hwc->sample_period = 1;
9228 hwc->last_period = hwc->sample_period;
9229
9230 local64_set(&hwc->period_left, hwc->sample_period);
9231
9232 /*
9233 * we currently do not support PERF_FORMAT_GROUP on inherited events
9234 */
9235 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
9236 goto err_ns;
9237
9238 if (!has_branch_stack(event))
9239 event->attr.branch_sample_type = 0;
9240
9241 if (cgroup_fd != -1) {
9242 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
9243 if (err)
9244 goto err_ns;
9245 }
9246
9247 pmu = perf_init_event(event);
9248 if (!pmu)
9249 goto err_ns;
9250 else if (IS_ERR(pmu)) {
9251 err = PTR_ERR(pmu);
9252 goto err_ns;
9253 }
9254
9255 err = exclusive_event_init(event);
9256 if (err)
9257 goto err_pmu;
9258
9259 if (has_addr_filter(event)) {
9260 event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
9261 sizeof(unsigned long),
9262 GFP_KERNEL);
9263 if (!event->addr_filters_offs)
9264 goto err_per_task;
9265
9266 /* force hw sync on the address filters */
9267 event->addr_filters_gen = 1;
9268 }
9269
9270 if (!event->parent) {
9271 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
9272 err = get_callchain_buffers(attr->sample_max_stack);
9273 if (err)
9274 goto err_addr_filters;
9275 }
9276 }
9277
9278 /* symmetric to unaccount_event() in _free_event() */
9279 account_event(event);
9280
9281 return event;
9282
9283 err_addr_filters:
9284 kfree(event->addr_filters_offs);
9285
9286 err_per_task:
9287 exclusive_event_destroy(event);
9288
9289 err_pmu:
9290 if (event->destroy)
9291 event->destroy(event);
9292 module_put(pmu->module);
9293 err_ns:
9294 if (is_cgroup_event(event))
9295 perf_detach_cgroup(event);
9296 if (event->ns)
9297 put_pid_ns(event->ns);
9298 kfree(event);
9299
9300 return ERR_PTR(err);
9301 }
9302
9303 static int perf_copy_attr(struct perf_event_attr __user *uattr,
9304 struct perf_event_attr *attr)
9305 {
9306 u32 size;
9307 int ret;
9308
9309 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
9310 return -EFAULT;
9311
9312 /*
9313 * zero the full structure, so that a short copy will be nice.
9314 */
9315 memset(attr, 0, sizeof(*attr));
9316
9317 ret = get_user(size, &uattr->size);
9318 if (ret)
9319 return ret;
9320
9321 if (size > PAGE_SIZE) /* silly large */
9322 goto err_size;
9323
9324 if (!size) /* abi compat */
9325 size = PERF_ATTR_SIZE_VER0;
9326
9327 if (size < PERF_ATTR_SIZE_VER0)
9328 goto err_size;
9329
9330 /*
9331 * If we're handed a bigger struct than we know of,
9332 * ensure all the unknown bits are 0 - i.e. new
9333 * user-space does not rely on any kernel feature
9334 * extensions we dont know about yet.
9335 */
9336 if (size > sizeof(*attr)) {
9337 unsigned char __user *addr;
9338 unsigned char __user *end;
9339 unsigned char val;
9340
9341 addr = (void __user *)uattr + sizeof(*attr);
9342 end = (void __user *)uattr + size;
9343
9344 for (; addr < end; addr++) {
9345 ret = get_user(val, addr);
9346 if (ret)
9347 return ret;
9348 if (val)
9349 goto err_size;
9350 }
9351 size = sizeof(*attr);
9352 }
9353
9354 ret = copy_from_user(attr, uattr, size);
9355 if (ret)
9356 return -EFAULT;
9357
9358 if (attr->__reserved_1)
9359 return -EINVAL;
9360
9361 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
9362 return -EINVAL;
9363
9364 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
9365 return -EINVAL;
9366
9367 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
9368 u64 mask = attr->branch_sample_type;
9369
9370 /* only using defined bits */
9371 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
9372 return -EINVAL;
9373
9374 /* at least one branch bit must be set */
9375 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
9376 return -EINVAL;
9377
9378 /* propagate priv level, when not set for branch */
9379 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
9380
9381 /* exclude_kernel checked on syscall entry */
9382 if (!attr->exclude_kernel)
9383 mask |= PERF_SAMPLE_BRANCH_KERNEL;
9384
9385 if (!attr->exclude_user)
9386 mask |= PERF_SAMPLE_BRANCH_USER;
9387
9388 if (!attr->exclude_hv)
9389 mask |= PERF_SAMPLE_BRANCH_HV;
9390 /*
9391 * adjust user setting (for HW filter setup)
9392 */
9393 attr->branch_sample_type = mask;
9394 }
9395 /* privileged levels capture (kernel, hv): check permissions */
9396 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
9397 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9398 return -EACCES;
9399 }
9400
9401 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
9402 ret = perf_reg_validate(attr->sample_regs_user);
9403 if (ret)
9404 return ret;
9405 }
9406
9407 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
9408 if (!arch_perf_have_user_stack_dump())
9409 return -ENOSYS;
9410
9411 /*
9412 * We have __u32 type for the size, but so far
9413 * we can only use __u16 as maximum due to the
9414 * __u16 sample size limit.
9415 */
9416 if (attr->sample_stack_user >= USHRT_MAX)
9417 ret = -EINVAL;
9418 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
9419 ret = -EINVAL;
9420 }
9421
9422 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
9423 ret = perf_reg_validate(attr->sample_regs_intr);
9424 out:
9425 return ret;
9426
9427 err_size:
9428 put_user(sizeof(*attr), &uattr->size);
9429 ret = -E2BIG;
9430 goto out;
9431 }
9432
9433 static int
9434 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
9435 {
9436 struct ring_buffer *rb = NULL;
9437 int ret = -EINVAL;
9438
9439 if (!output_event)
9440 goto set;
9441
9442 /* don't allow circular references */
9443 if (event == output_event)
9444 goto out;
9445
9446 /*
9447 * Don't allow cross-cpu buffers
9448 */
9449 if (output_event->cpu != event->cpu)
9450 goto out;
9451
9452 /*
9453 * If its not a per-cpu rb, it must be the same task.
9454 */
9455 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
9456 goto out;
9457
9458 /*
9459 * Mixing clocks in the same buffer is trouble you don't need.
9460 */
9461 if (output_event->clock != event->clock)
9462 goto out;
9463
9464 /*
9465 * Either writing ring buffer from beginning or from end.
9466 * Mixing is not allowed.
9467 */
9468 if (is_write_backward(output_event) != is_write_backward(event))
9469 goto out;
9470
9471 /*
9472 * If both events generate aux data, they must be on the same PMU
9473 */
9474 if (has_aux(event) && has_aux(output_event) &&
9475 event->pmu != output_event->pmu)
9476 goto out;
9477
9478 set:
9479 mutex_lock(&event->mmap_mutex);
9480 /* Can't redirect output if we've got an active mmap() */
9481 if (atomic_read(&event->mmap_count))
9482 goto unlock;
9483
9484 if (output_event) {
9485 /* get the rb we want to redirect to */
9486 rb = ring_buffer_get(output_event);
9487 if (!rb)
9488 goto unlock;
9489 }
9490
9491 ring_buffer_attach(event, rb);
9492
9493 ret = 0;
9494 unlock:
9495 mutex_unlock(&event->mmap_mutex);
9496
9497 out:
9498 return ret;
9499 }
9500
9501 static void mutex_lock_double(struct mutex *a, struct mutex *b)
9502 {
9503 if (b < a)
9504 swap(a, b);
9505
9506 mutex_lock(a);
9507 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
9508 }
9509
9510 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
9511 {
9512 bool nmi_safe = false;
9513
9514 switch (clk_id) {
9515 case CLOCK_MONOTONIC:
9516 event->clock = &ktime_get_mono_fast_ns;
9517 nmi_safe = true;
9518 break;
9519
9520 case CLOCK_MONOTONIC_RAW:
9521 event->clock = &ktime_get_raw_fast_ns;
9522 nmi_safe = true;
9523 break;
9524
9525 case CLOCK_REALTIME:
9526 event->clock = &ktime_get_real_ns;
9527 break;
9528
9529 case CLOCK_BOOTTIME:
9530 event->clock = &ktime_get_boot_ns;
9531 break;
9532
9533 case CLOCK_TAI:
9534 event->clock = &ktime_get_tai_ns;
9535 break;
9536
9537 default:
9538 return -EINVAL;
9539 }
9540
9541 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
9542 return -EINVAL;
9543
9544 return 0;
9545 }
9546
9547 /*
9548 * Variation on perf_event_ctx_lock_nested(), except we take two context
9549 * mutexes.
9550 */
9551 static struct perf_event_context *
9552 __perf_event_ctx_lock_double(struct perf_event *group_leader,
9553 struct perf_event_context *ctx)
9554 {
9555 struct perf_event_context *gctx;
9556
9557 again:
9558 rcu_read_lock();
9559 gctx = READ_ONCE(group_leader->ctx);
9560 if (!atomic_inc_not_zero(&gctx->refcount)) {
9561 rcu_read_unlock();
9562 goto again;
9563 }
9564 rcu_read_unlock();
9565
9566 mutex_lock_double(&gctx->mutex, &ctx->mutex);
9567
9568 if (group_leader->ctx != gctx) {
9569 mutex_unlock(&ctx->mutex);
9570 mutex_unlock(&gctx->mutex);
9571 put_ctx(gctx);
9572 goto again;
9573 }
9574
9575 return gctx;
9576 }
9577
9578 /**
9579 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9580 *
9581 * @attr_uptr: event_id type attributes for monitoring/sampling
9582 * @pid: target pid
9583 * @cpu: target cpu
9584 * @group_fd: group leader event fd
9585 */
9586 SYSCALL_DEFINE5(perf_event_open,
9587 struct perf_event_attr __user *, attr_uptr,
9588 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
9589 {
9590 struct perf_event *group_leader = NULL, *output_event = NULL;
9591 struct perf_event *event, *sibling;
9592 struct perf_event_attr attr;
9593 struct perf_event_context *ctx, *uninitialized_var(gctx);
9594 struct file *event_file = NULL;
9595 struct fd group = {NULL, 0};
9596 struct task_struct *task = NULL;
9597 struct pmu *pmu;
9598 int event_fd;
9599 int move_group = 0;
9600 int err;
9601 int f_flags = O_RDWR;
9602 int cgroup_fd = -1;
9603
9604 /* for future expandability... */
9605 if (flags & ~PERF_FLAG_ALL)
9606 return -EINVAL;
9607
9608 err = perf_copy_attr(attr_uptr, &attr);
9609 if (err)
9610 return err;
9611
9612 if (!attr.exclude_kernel) {
9613 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9614 return -EACCES;
9615 }
9616
9617 if (attr.freq) {
9618 if (attr.sample_freq > sysctl_perf_event_sample_rate)
9619 return -EINVAL;
9620 } else {
9621 if (attr.sample_period & (1ULL << 63))
9622 return -EINVAL;
9623 }
9624
9625 if (!attr.sample_max_stack)
9626 attr.sample_max_stack = sysctl_perf_event_max_stack;
9627
9628 /*
9629 * In cgroup mode, the pid argument is used to pass the fd
9630 * opened to the cgroup directory in cgroupfs. The cpu argument
9631 * designates the cpu on which to monitor threads from that
9632 * cgroup.
9633 */
9634 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
9635 return -EINVAL;
9636
9637 if (flags & PERF_FLAG_FD_CLOEXEC)
9638 f_flags |= O_CLOEXEC;
9639
9640 event_fd = get_unused_fd_flags(f_flags);
9641 if (event_fd < 0)
9642 return event_fd;
9643
9644 if (group_fd != -1) {
9645 err = perf_fget_light(group_fd, &group);
9646 if (err)
9647 goto err_fd;
9648 group_leader = group.file->private_data;
9649 if (flags & PERF_FLAG_FD_OUTPUT)
9650 output_event = group_leader;
9651 if (flags & PERF_FLAG_FD_NO_GROUP)
9652 group_leader = NULL;
9653 }
9654
9655 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
9656 task = find_lively_task_by_vpid(pid);
9657 if (IS_ERR(task)) {
9658 err = PTR_ERR(task);
9659 goto err_group_fd;
9660 }
9661 }
9662
9663 if (task && group_leader &&
9664 group_leader->attr.inherit != attr.inherit) {
9665 err = -EINVAL;
9666 goto err_task;
9667 }
9668
9669 get_online_cpus();
9670
9671 if (task) {
9672 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
9673 if (err)
9674 goto err_cpus;
9675
9676 /*
9677 * Reuse ptrace permission checks for now.
9678 *
9679 * We must hold cred_guard_mutex across this and any potential
9680 * perf_install_in_context() call for this new event to
9681 * serialize against exec() altering our credentials (and the
9682 * perf_event_exit_task() that could imply).
9683 */
9684 err = -EACCES;
9685 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
9686 goto err_cred;
9687 }
9688
9689 if (flags & PERF_FLAG_PID_CGROUP)
9690 cgroup_fd = pid;
9691
9692 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
9693 NULL, NULL, cgroup_fd);
9694 if (IS_ERR(event)) {
9695 err = PTR_ERR(event);
9696 goto err_cred;
9697 }
9698
9699 if (is_sampling_event(event)) {
9700 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
9701 err = -EOPNOTSUPP;
9702 goto err_alloc;
9703 }
9704 }
9705
9706 /*
9707 * Special case software events and allow them to be part of
9708 * any hardware group.
9709 */
9710 pmu = event->pmu;
9711
9712 if (attr.use_clockid) {
9713 err = perf_event_set_clock(event, attr.clockid);
9714 if (err)
9715 goto err_alloc;
9716 }
9717
9718 if (pmu->task_ctx_nr == perf_sw_context)
9719 event->event_caps |= PERF_EV_CAP_SOFTWARE;
9720
9721 if (group_leader &&
9722 (is_software_event(event) != is_software_event(group_leader))) {
9723 if (is_software_event(event)) {
9724 /*
9725 * If event and group_leader are not both a software
9726 * event, and event is, then group leader is not.
9727 *
9728 * Allow the addition of software events to !software
9729 * groups, this is safe because software events never
9730 * fail to schedule.
9731 */
9732 pmu = group_leader->pmu;
9733 } else if (is_software_event(group_leader) &&
9734 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
9735 /*
9736 * In case the group is a pure software group, and we
9737 * try to add a hardware event, move the whole group to
9738 * the hardware context.
9739 */
9740 move_group = 1;
9741 }
9742 }
9743
9744 /*
9745 * Get the target context (task or percpu):
9746 */
9747 ctx = find_get_context(pmu, task, event);
9748 if (IS_ERR(ctx)) {
9749 err = PTR_ERR(ctx);
9750 goto err_alloc;
9751 }
9752
9753 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
9754 err = -EBUSY;
9755 goto err_context;
9756 }
9757
9758 /*
9759 * Look up the group leader (we will attach this event to it):
9760 */
9761 if (group_leader) {
9762 err = -EINVAL;
9763
9764 /*
9765 * Do not allow a recursive hierarchy (this new sibling
9766 * becoming part of another group-sibling):
9767 */
9768 if (group_leader->group_leader != group_leader)
9769 goto err_context;
9770
9771 /* All events in a group should have the same clock */
9772 if (group_leader->clock != event->clock)
9773 goto err_context;
9774
9775 /*
9776 * Do not allow to attach to a group in a different
9777 * task or CPU context:
9778 */
9779 if (move_group) {
9780 /*
9781 * Make sure we're both on the same task, or both
9782 * per-cpu events.
9783 */
9784 if (group_leader->ctx->task != ctx->task)
9785 goto err_context;
9786
9787 /*
9788 * Make sure we're both events for the same CPU;
9789 * grouping events for different CPUs is broken; since
9790 * you can never concurrently schedule them anyhow.
9791 */
9792 if (group_leader->cpu != event->cpu)
9793 goto err_context;
9794 } else {
9795 if (group_leader->ctx != ctx)
9796 goto err_context;
9797 }
9798
9799 /*
9800 * Only a group leader can be exclusive or pinned
9801 */
9802 if (attr.exclusive || attr.pinned)
9803 goto err_context;
9804 }
9805
9806 if (output_event) {
9807 err = perf_event_set_output(event, output_event);
9808 if (err)
9809 goto err_context;
9810 }
9811
9812 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
9813 f_flags);
9814 if (IS_ERR(event_file)) {
9815 err = PTR_ERR(event_file);
9816 event_file = NULL;
9817 goto err_context;
9818 }
9819
9820 if (move_group) {
9821 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
9822
9823 if (gctx->task == TASK_TOMBSTONE) {
9824 err = -ESRCH;
9825 goto err_locked;
9826 }
9827
9828 /*
9829 * Check if we raced against another sys_perf_event_open() call
9830 * moving the software group underneath us.
9831 */
9832 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
9833 /*
9834 * If someone moved the group out from under us, check
9835 * if this new event wound up on the same ctx, if so
9836 * its the regular !move_group case, otherwise fail.
9837 */
9838 if (gctx != ctx) {
9839 err = -EINVAL;
9840 goto err_locked;
9841 } else {
9842 perf_event_ctx_unlock(group_leader, gctx);
9843 move_group = 0;
9844 }
9845 }
9846 } else {
9847 mutex_lock(&ctx->mutex);
9848 }
9849
9850 if (ctx->task == TASK_TOMBSTONE) {
9851 err = -ESRCH;
9852 goto err_locked;
9853 }
9854
9855 if (!perf_event_validate_size(event)) {
9856 err = -E2BIG;
9857 goto err_locked;
9858 }
9859
9860 /*
9861 * Must be under the same ctx::mutex as perf_install_in_context(),
9862 * because we need to serialize with concurrent event creation.
9863 */
9864 if (!exclusive_event_installable(event, ctx)) {
9865 /* exclusive and group stuff are assumed mutually exclusive */
9866 WARN_ON_ONCE(move_group);
9867
9868 err = -EBUSY;
9869 goto err_locked;
9870 }
9871
9872 WARN_ON_ONCE(ctx->parent_ctx);
9873
9874 /*
9875 * This is the point on no return; we cannot fail hereafter. This is
9876 * where we start modifying current state.
9877 */
9878
9879 if (move_group) {
9880 /*
9881 * See perf_event_ctx_lock() for comments on the details
9882 * of swizzling perf_event::ctx.
9883 */
9884 perf_remove_from_context(group_leader, 0);
9885
9886 list_for_each_entry(sibling, &group_leader->sibling_list,
9887 group_entry) {
9888 perf_remove_from_context(sibling, 0);
9889 put_ctx(gctx);
9890 }
9891
9892 /*
9893 * Wait for everybody to stop referencing the events through
9894 * the old lists, before installing it on new lists.
9895 */
9896 synchronize_rcu();
9897
9898 /*
9899 * Install the group siblings before the group leader.
9900 *
9901 * Because a group leader will try and install the entire group
9902 * (through the sibling list, which is still in-tact), we can
9903 * end up with siblings installed in the wrong context.
9904 *
9905 * By installing siblings first we NO-OP because they're not
9906 * reachable through the group lists.
9907 */
9908 list_for_each_entry(sibling, &group_leader->sibling_list,
9909 group_entry) {
9910 perf_event__state_init(sibling);
9911 perf_install_in_context(ctx, sibling, sibling->cpu);
9912 get_ctx(ctx);
9913 }
9914
9915 /*
9916 * Removing from the context ends up with disabled
9917 * event. What we want here is event in the initial
9918 * startup state, ready to be add into new context.
9919 */
9920 perf_event__state_init(group_leader);
9921 perf_install_in_context(ctx, group_leader, group_leader->cpu);
9922 get_ctx(ctx);
9923
9924 /*
9925 * Now that all events are installed in @ctx, nothing
9926 * references @gctx anymore, so drop the last reference we have
9927 * on it.
9928 */
9929 put_ctx(gctx);
9930 }
9931
9932 /*
9933 * Precalculate sample_data sizes; do while holding ctx::mutex such
9934 * that we're serialized against further additions and before
9935 * perf_install_in_context() which is the point the event is active and
9936 * can use these values.
9937 */
9938 perf_event__header_size(event);
9939 perf_event__id_header_size(event);
9940
9941 event->owner = current;
9942
9943 perf_install_in_context(ctx, event, event->cpu);
9944 perf_unpin_context(ctx);
9945
9946 if (move_group)
9947 perf_event_ctx_unlock(group_leader, gctx);
9948 mutex_unlock(&ctx->mutex);
9949
9950 if (task) {
9951 mutex_unlock(&task->signal->cred_guard_mutex);
9952 put_task_struct(task);
9953 }
9954
9955 put_online_cpus();
9956
9957 mutex_lock(&current->perf_event_mutex);
9958 list_add_tail(&event->owner_entry, &current->perf_event_list);
9959 mutex_unlock(&current->perf_event_mutex);
9960
9961 /*
9962 * Drop the reference on the group_event after placing the
9963 * new event on the sibling_list. This ensures destruction
9964 * of the group leader will find the pointer to itself in
9965 * perf_group_detach().
9966 */
9967 fdput(group);
9968 fd_install(event_fd, event_file);
9969 return event_fd;
9970
9971 err_locked:
9972 if (move_group)
9973 perf_event_ctx_unlock(group_leader, gctx);
9974 mutex_unlock(&ctx->mutex);
9975 /* err_file: */
9976 fput(event_file);
9977 err_context:
9978 perf_unpin_context(ctx);
9979 put_ctx(ctx);
9980 err_alloc:
9981 /*
9982 * If event_file is set, the fput() above will have called ->release()
9983 * and that will take care of freeing the event.
9984 */
9985 if (!event_file)
9986 free_event(event);
9987 err_cred:
9988 if (task)
9989 mutex_unlock(&task->signal->cred_guard_mutex);
9990 err_cpus:
9991 put_online_cpus();
9992 err_task:
9993 if (task)
9994 put_task_struct(task);
9995 err_group_fd:
9996 fdput(group);
9997 err_fd:
9998 put_unused_fd(event_fd);
9999 return err;
10000 }
10001
10002 /**
10003 * perf_event_create_kernel_counter
10004 *
10005 * @attr: attributes of the counter to create
10006 * @cpu: cpu in which the counter is bound
10007 * @task: task to profile (NULL for percpu)
10008 */
10009 struct perf_event *
10010 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
10011 struct task_struct *task,
10012 perf_overflow_handler_t overflow_handler,
10013 void *context)
10014 {
10015 struct perf_event_context *ctx;
10016 struct perf_event *event;
10017 int err;
10018
10019 /*
10020 * Get the target context (task or percpu):
10021 */
10022
10023 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
10024 overflow_handler, context, -1);
10025 if (IS_ERR(event)) {
10026 err = PTR_ERR(event);
10027 goto err;
10028 }
10029
10030 /* Mark owner so we could distinguish it from user events. */
10031 event->owner = TASK_TOMBSTONE;
10032
10033 ctx = find_get_context(event->pmu, task, event);
10034 if (IS_ERR(ctx)) {
10035 err = PTR_ERR(ctx);
10036 goto err_free;
10037 }
10038
10039 WARN_ON_ONCE(ctx->parent_ctx);
10040 mutex_lock(&ctx->mutex);
10041 if (ctx->task == TASK_TOMBSTONE) {
10042 err = -ESRCH;
10043 goto err_unlock;
10044 }
10045
10046 if (!exclusive_event_installable(event, ctx)) {
10047 err = -EBUSY;
10048 goto err_unlock;
10049 }
10050
10051 perf_install_in_context(ctx, event, cpu);
10052 perf_unpin_context(ctx);
10053 mutex_unlock(&ctx->mutex);
10054
10055 return event;
10056
10057 err_unlock:
10058 mutex_unlock(&ctx->mutex);
10059 perf_unpin_context(ctx);
10060 put_ctx(ctx);
10061 err_free:
10062 free_event(event);
10063 err:
10064 return ERR_PTR(err);
10065 }
10066 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
10067
10068 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
10069 {
10070 struct perf_event_context *src_ctx;
10071 struct perf_event_context *dst_ctx;
10072 struct perf_event *event, *tmp;
10073 LIST_HEAD(events);
10074
10075 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
10076 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
10077
10078 /*
10079 * See perf_event_ctx_lock() for comments on the details
10080 * of swizzling perf_event::ctx.
10081 */
10082 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
10083 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
10084 event_entry) {
10085 perf_remove_from_context(event, 0);
10086 unaccount_event_cpu(event, src_cpu);
10087 put_ctx(src_ctx);
10088 list_add(&event->migrate_entry, &events);
10089 }
10090
10091 /*
10092 * Wait for the events to quiesce before re-instating them.
10093 */
10094 synchronize_rcu();
10095
10096 /*
10097 * Re-instate events in 2 passes.
10098 *
10099 * Skip over group leaders and only install siblings on this first
10100 * pass, siblings will not get enabled without a leader, however a
10101 * leader will enable its siblings, even if those are still on the old
10102 * context.
10103 */
10104 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10105 if (event->group_leader == event)
10106 continue;
10107
10108 list_del(&event->migrate_entry);
10109 if (event->state >= PERF_EVENT_STATE_OFF)
10110 event->state = PERF_EVENT_STATE_INACTIVE;
10111 account_event_cpu(event, dst_cpu);
10112 perf_install_in_context(dst_ctx, event, dst_cpu);
10113 get_ctx(dst_ctx);
10114 }
10115
10116 /*
10117 * Once all the siblings are setup properly, install the group leaders
10118 * to make it go.
10119 */
10120 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10121 list_del(&event->migrate_entry);
10122 if (event->state >= PERF_EVENT_STATE_OFF)
10123 event->state = PERF_EVENT_STATE_INACTIVE;
10124 account_event_cpu(event, dst_cpu);
10125 perf_install_in_context(dst_ctx, event, dst_cpu);
10126 get_ctx(dst_ctx);
10127 }
10128 mutex_unlock(&dst_ctx->mutex);
10129 mutex_unlock(&src_ctx->mutex);
10130 }
10131 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
10132
10133 static void sync_child_event(struct perf_event *child_event,
10134 struct task_struct *child)
10135 {
10136 struct perf_event *parent_event = child_event->parent;
10137 u64 child_val;
10138
10139 if (child_event->attr.inherit_stat)
10140 perf_event_read_event(child_event, child);
10141
10142 child_val = perf_event_count(child_event);
10143
10144 /*
10145 * Add back the child's count to the parent's count:
10146 */
10147 atomic64_add(child_val, &parent_event->child_count);
10148 atomic64_add(child_event->total_time_enabled,
10149 &parent_event->child_total_time_enabled);
10150 atomic64_add(child_event->total_time_running,
10151 &parent_event->child_total_time_running);
10152 }
10153
10154 static void
10155 perf_event_exit_event(struct perf_event *child_event,
10156 struct perf_event_context *child_ctx,
10157 struct task_struct *child)
10158 {
10159 struct perf_event *parent_event = child_event->parent;
10160
10161 /*
10162 * Do not destroy the 'original' grouping; because of the context
10163 * switch optimization the original events could've ended up in a
10164 * random child task.
10165 *
10166 * If we were to destroy the original group, all group related
10167 * operations would cease to function properly after this random
10168 * child dies.
10169 *
10170 * Do destroy all inherited groups, we don't care about those
10171 * and being thorough is better.
10172 */
10173 raw_spin_lock_irq(&child_ctx->lock);
10174 WARN_ON_ONCE(child_ctx->is_active);
10175
10176 if (parent_event)
10177 perf_group_detach(child_event);
10178 list_del_event(child_event, child_ctx);
10179 child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */
10180 raw_spin_unlock_irq(&child_ctx->lock);
10181
10182 /*
10183 * Parent events are governed by their filedesc, retain them.
10184 */
10185 if (!parent_event) {
10186 perf_event_wakeup(child_event);
10187 return;
10188 }
10189 /*
10190 * Child events can be cleaned up.
10191 */
10192
10193 sync_child_event(child_event, child);
10194
10195 /*
10196 * Remove this event from the parent's list
10197 */
10198 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
10199 mutex_lock(&parent_event->child_mutex);
10200 list_del_init(&child_event->child_list);
10201 mutex_unlock(&parent_event->child_mutex);
10202
10203 /*
10204 * Kick perf_poll() for is_event_hup().
10205 */
10206 perf_event_wakeup(parent_event);
10207 free_event(child_event);
10208 put_event(parent_event);
10209 }
10210
10211 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
10212 {
10213 struct perf_event_context *child_ctx, *clone_ctx = NULL;
10214 struct perf_event *child_event, *next;
10215
10216 WARN_ON_ONCE(child != current);
10217
10218 child_ctx = perf_pin_task_context(child, ctxn);
10219 if (!child_ctx)
10220 return;
10221
10222 /*
10223 * In order to reduce the amount of tricky in ctx tear-down, we hold
10224 * ctx::mutex over the entire thing. This serializes against almost
10225 * everything that wants to access the ctx.
10226 *
10227 * The exception is sys_perf_event_open() /
10228 * perf_event_create_kernel_count() which does find_get_context()
10229 * without ctx::mutex (it cannot because of the move_group double mutex
10230 * lock thing). See the comments in perf_install_in_context().
10231 */
10232 mutex_lock(&child_ctx->mutex);
10233
10234 /*
10235 * In a single ctx::lock section, de-schedule the events and detach the
10236 * context from the task such that we cannot ever get it scheduled back
10237 * in.
10238 */
10239 raw_spin_lock_irq(&child_ctx->lock);
10240 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx);
10241
10242 /*
10243 * Now that the context is inactive, destroy the task <-> ctx relation
10244 * and mark the context dead.
10245 */
10246 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
10247 put_ctx(child_ctx); /* cannot be last */
10248 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
10249 put_task_struct(current); /* cannot be last */
10250
10251 clone_ctx = unclone_ctx(child_ctx);
10252 raw_spin_unlock_irq(&child_ctx->lock);
10253
10254 if (clone_ctx)
10255 put_ctx(clone_ctx);
10256
10257 /*
10258 * Report the task dead after unscheduling the events so that we
10259 * won't get any samples after PERF_RECORD_EXIT. We can however still
10260 * get a few PERF_RECORD_READ events.
10261 */
10262 perf_event_task(child, child_ctx, 0);
10263
10264 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
10265 perf_event_exit_event(child_event, child_ctx, child);
10266
10267 mutex_unlock(&child_ctx->mutex);
10268
10269 put_ctx(child_ctx);
10270 }
10271
10272 /*
10273 * When a child task exits, feed back event values to parent events.
10274 *
10275 * Can be called with cred_guard_mutex held when called from
10276 * install_exec_creds().
10277 */
10278 void perf_event_exit_task(struct task_struct *child)
10279 {
10280 struct perf_event *event, *tmp;
10281 int ctxn;
10282
10283 mutex_lock(&child->perf_event_mutex);
10284 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
10285 owner_entry) {
10286 list_del_init(&event->owner_entry);
10287
10288 /*
10289 * Ensure the list deletion is visible before we clear
10290 * the owner, closes a race against perf_release() where
10291 * we need to serialize on the owner->perf_event_mutex.
10292 */
10293 smp_store_release(&event->owner, NULL);
10294 }
10295 mutex_unlock(&child->perf_event_mutex);
10296
10297 for_each_task_context_nr(ctxn)
10298 perf_event_exit_task_context(child, ctxn);
10299
10300 /*
10301 * The perf_event_exit_task_context calls perf_event_task
10302 * with child's task_ctx, which generates EXIT events for
10303 * child contexts and sets child->perf_event_ctxp[] to NULL.
10304 * At this point we need to send EXIT events to cpu contexts.
10305 */
10306 perf_event_task(child, NULL, 0);
10307 }
10308
10309 static void perf_free_event(struct perf_event *event,
10310 struct perf_event_context *ctx)
10311 {
10312 struct perf_event *parent = event->parent;
10313
10314 if (WARN_ON_ONCE(!parent))
10315 return;
10316
10317 mutex_lock(&parent->child_mutex);
10318 list_del_init(&event->child_list);
10319 mutex_unlock(&parent->child_mutex);
10320
10321 put_event(parent);
10322
10323 raw_spin_lock_irq(&ctx->lock);
10324 perf_group_detach(event);
10325 list_del_event(event, ctx);
10326 raw_spin_unlock_irq(&ctx->lock);
10327 free_event(event);
10328 }
10329
10330 /*
10331 * Free an unexposed, unused context as created by inheritance by
10332 * perf_event_init_task below, used by fork() in case of fail.
10333 *
10334 * Not all locks are strictly required, but take them anyway to be nice and
10335 * help out with the lockdep assertions.
10336 */
10337 void perf_event_free_task(struct task_struct *task)
10338 {
10339 struct perf_event_context *ctx;
10340 struct perf_event *event, *tmp;
10341 int ctxn;
10342
10343 for_each_task_context_nr(ctxn) {
10344 ctx = task->perf_event_ctxp[ctxn];
10345 if (!ctx)
10346 continue;
10347
10348 mutex_lock(&ctx->mutex);
10349 again:
10350 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
10351 group_entry)
10352 perf_free_event(event, ctx);
10353
10354 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
10355 group_entry)
10356 perf_free_event(event, ctx);
10357
10358 if (!list_empty(&ctx->pinned_groups) ||
10359 !list_empty(&ctx->flexible_groups))
10360 goto again;
10361
10362 mutex_unlock(&ctx->mutex);
10363
10364 put_ctx(ctx);
10365 }
10366 }
10367
10368 void perf_event_delayed_put(struct task_struct *task)
10369 {
10370 int ctxn;
10371
10372 for_each_task_context_nr(ctxn)
10373 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
10374 }
10375
10376 struct file *perf_event_get(unsigned int fd)
10377 {
10378 struct file *file;
10379
10380 file = fget_raw(fd);
10381 if (!file)
10382 return ERR_PTR(-EBADF);
10383
10384 if (file->f_op != &perf_fops) {
10385 fput(file);
10386 return ERR_PTR(-EBADF);
10387 }
10388
10389 return file;
10390 }
10391
10392 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
10393 {
10394 if (!event)
10395 return ERR_PTR(-EINVAL);
10396
10397 return &event->attr;
10398 }
10399
10400 /*
10401 * inherit a event from parent task to child task:
10402 */
10403 static struct perf_event *
10404 inherit_event(struct perf_event *parent_event,
10405 struct task_struct *parent,
10406 struct perf_event_context *parent_ctx,
10407 struct task_struct *child,
10408 struct perf_event *group_leader,
10409 struct perf_event_context *child_ctx)
10410 {
10411 enum perf_event_active_state parent_state = parent_event->state;
10412 struct perf_event *child_event;
10413 unsigned long flags;
10414
10415 /*
10416 * Instead of creating recursive hierarchies of events,
10417 * we link inherited events back to the original parent,
10418 * which has a filp for sure, which we use as the reference
10419 * count:
10420 */
10421 if (parent_event->parent)
10422 parent_event = parent_event->parent;
10423
10424 child_event = perf_event_alloc(&parent_event->attr,
10425 parent_event->cpu,
10426 child,
10427 group_leader, parent_event,
10428 NULL, NULL, -1);
10429 if (IS_ERR(child_event))
10430 return child_event;
10431
10432 /*
10433 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
10434 * must be under the same lock in order to serialize against
10435 * perf_event_release_kernel(), such that either we must observe
10436 * is_orphaned_event() or they will observe us on the child_list.
10437 */
10438 mutex_lock(&parent_event->child_mutex);
10439 if (is_orphaned_event(parent_event) ||
10440 !atomic_long_inc_not_zero(&parent_event->refcount)) {
10441 mutex_unlock(&parent_event->child_mutex);
10442 free_event(child_event);
10443 return NULL;
10444 }
10445
10446 get_ctx(child_ctx);
10447
10448 /*
10449 * Make the child state follow the state of the parent event,
10450 * not its attr.disabled bit. We hold the parent's mutex,
10451 * so we won't race with perf_event_{en, dis}able_family.
10452 */
10453 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
10454 child_event->state = PERF_EVENT_STATE_INACTIVE;
10455 else
10456 child_event->state = PERF_EVENT_STATE_OFF;
10457
10458 if (parent_event->attr.freq) {
10459 u64 sample_period = parent_event->hw.sample_period;
10460 struct hw_perf_event *hwc = &child_event->hw;
10461
10462 hwc->sample_period = sample_period;
10463 hwc->last_period = sample_period;
10464
10465 local64_set(&hwc->period_left, sample_period);
10466 }
10467
10468 child_event->ctx = child_ctx;
10469 child_event->overflow_handler = parent_event->overflow_handler;
10470 child_event->overflow_handler_context
10471 = parent_event->overflow_handler_context;
10472
10473 /*
10474 * Precalculate sample_data sizes
10475 */
10476 perf_event__header_size(child_event);
10477 perf_event__id_header_size(child_event);
10478
10479 /*
10480 * Link it up in the child's context:
10481 */
10482 raw_spin_lock_irqsave(&child_ctx->lock, flags);
10483 add_event_to_ctx(child_event, child_ctx);
10484 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
10485
10486 /*
10487 * Link this into the parent event's child list
10488 */
10489 list_add_tail(&child_event->child_list, &parent_event->child_list);
10490 mutex_unlock(&parent_event->child_mutex);
10491
10492 return child_event;
10493 }
10494
10495 static int inherit_group(struct perf_event *parent_event,
10496 struct task_struct *parent,
10497 struct perf_event_context *parent_ctx,
10498 struct task_struct *child,
10499 struct perf_event_context *child_ctx)
10500 {
10501 struct perf_event *leader;
10502 struct perf_event *sub;
10503 struct perf_event *child_ctr;
10504
10505 leader = inherit_event(parent_event, parent, parent_ctx,
10506 child, NULL, child_ctx);
10507 if (IS_ERR(leader))
10508 return PTR_ERR(leader);
10509 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
10510 child_ctr = inherit_event(sub, parent, parent_ctx,
10511 child, leader, child_ctx);
10512 if (IS_ERR(child_ctr))
10513 return PTR_ERR(child_ctr);
10514 }
10515 return 0;
10516 }
10517
10518 static int
10519 inherit_task_group(struct perf_event *event, struct task_struct *parent,
10520 struct perf_event_context *parent_ctx,
10521 struct task_struct *child, int ctxn,
10522 int *inherited_all)
10523 {
10524 int ret;
10525 struct perf_event_context *child_ctx;
10526
10527 if (!event->attr.inherit) {
10528 *inherited_all = 0;
10529 return 0;
10530 }
10531
10532 child_ctx = child->perf_event_ctxp[ctxn];
10533 if (!child_ctx) {
10534 /*
10535 * This is executed from the parent task context, so
10536 * inherit events that have been marked for cloning.
10537 * First allocate and initialize a context for the
10538 * child.
10539 */
10540
10541 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
10542 if (!child_ctx)
10543 return -ENOMEM;
10544
10545 child->perf_event_ctxp[ctxn] = child_ctx;
10546 }
10547
10548 ret = inherit_group(event, parent, parent_ctx,
10549 child, child_ctx);
10550
10551 if (ret)
10552 *inherited_all = 0;
10553
10554 return ret;
10555 }
10556
10557 /*
10558 * Initialize the perf_event context in task_struct
10559 */
10560 static int perf_event_init_context(struct task_struct *child, int ctxn)
10561 {
10562 struct perf_event_context *child_ctx, *parent_ctx;
10563 struct perf_event_context *cloned_ctx;
10564 struct perf_event *event;
10565 struct task_struct *parent = current;
10566 int inherited_all = 1;
10567 unsigned long flags;
10568 int ret = 0;
10569
10570 if (likely(!parent->perf_event_ctxp[ctxn]))
10571 return 0;
10572
10573 /*
10574 * If the parent's context is a clone, pin it so it won't get
10575 * swapped under us.
10576 */
10577 parent_ctx = perf_pin_task_context(parent, ctxn);
10578 if (!parent_ctx)
10579 return 0;
10580
10581 /*
10582 * No need to check if parent_ctx != NULL here; since we saw
10583 * it non-NULL earlier, the only reason for it to become NULL
10584 * is if we exit, and since we're currently in the middle of
10585 * a fork we can't be exiting at the same time.
10586 */
10587
10588 /*
10589 * Lock the parent list. No need to lock the child - not PID
10590 * hashed yet and not running, so nobody can access it.
10591 */
10592 mutex_lock(&parent_ctx->mutex);
10593
10594 /*
10595 * We dont have to disable NMIs - we are only looking at
10596 * the list, not manipulating it:
10597 */
10598 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
10599 ret = inherit_task_group(event, parent, parent_ctx,
10600 child, ctxn, &inherited_all);
10601 if (ret)
10602 break;
10603 }
10604
10605 /*
10606 * We can't hold ctx->lock when iterating the ->flexible_group list due
10607 * to allocations, but we need to prevent rotation because
10608 * rotate_ctx() will change the list from interrupt context.
10609 */
10610 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10611 parent_ctx->rotate_disable = 1;
10612 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10613
10614 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
10615 ret = inherit_task_group(event, parent, parent_ctx,
10616 child, ctxn, &inherited_all);
10617 if (ret)
10618 break;
10619 }
10620
10621 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10622 parent_ctx->rotate_disable = 0;
10623
10624 child_ctx = child->perf_event_ctxp[ctxn];
10625
10626 if (child_ctx && inherited_all) {
10627 /*
10628 * Mark the child context as a clone of the parent
10629 * context, or of whatever the parent is a clone of.
10630 *
10631 * Note that if the parent is a clone, the holding of
10632 * parent_ctx->lock avoids it from being uncloned.
10633 */
10634 cloned_ctx = parent_ctx->parent_ctx;
10635 if (cloned_ctx) {
10636 child_ctx->parent_ctx = cloned_ctx;
10637 child_ctx->parent_gen = parent_ctx->parent_gen;
10638 } else {
10639 child_ctx->parent_ctx = parent_ctx;
10640 child_ctx->parent_gen = parent_ctx->generation;
10641 }
10642 get_ctx(child_ctx->parent_ctx);
10643 }
10644
10645 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10646 mutex_unlock(&parent_ctx->mutex);
10647
10648 perf_unpin_context(parent_ctx);
10649 put_ctx(parent_ctx);
10650
10651 return ret;
10652 }
10653
10654 /*
10655 * Initialize the perf_event context in task_struct
10656 */
10657 int perf_event_init_task(struct task_struct *child)
10658 {
10659 int ctxn, ret;
10660
10661 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
10662 mutex_init(&child->perf_event_mutex);
10663 INIT_LIST_HEAD(&child->perf_event_list);
10664
10665 for_each_task_context_nr(ctxn) {
10666 ret = perf_event_init_context(child, ctxn);
10667 if (ret) {
10668 perf_event_free_task(child);
10669 return ret;
10670 }
10671 }
10672
10673 return 0;
10674 }
10675
10676 static void __init perf_event_init_all_cpus(void)
10677 {
10678 struct swevent_htable *swhash;
10679 int cpu;
10680
10681 for_each_possible_cpu(cpu) {
10682 swhash = &per_cpu(swevent_htable, cpu);
10683 mutex_init(&swhash->hlist_mutex);
10684 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
10685
10686 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
10687 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
10688
10689 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
10690 }
10691 }
10692
10693 int perf_event_init_cpu(unsigned int cpu)
10694 {
10695 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
10696
10697 mutex_lock(&swhash->hlist_mutex);
10698 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
10699 struct swevent_hlist *hlist;
10700
10701 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
10702 WARN_ON(!hlist);
10703 rcu_assign_pointer(swhash->swevent_hlist, hlist);
10704 }
10705 mutex_unlock(&swhash->hlist_mutex);
10706 return 0;
10707 }
10708
10709 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
10710 static void __perf_event_exit_context(void *__info)
10711 {
10712 struct perf_event_context *ctx = __info;
10713 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
10714 struct perf_event *event;
10715
10716 raw_spin_lock(&ctx->lock);
10717 list_for_each_entry(event, &ctx->event_list, event_entry)
10718 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
10719 raw_spin_unlock(&ctx->lock);
10720 }
10721
10722 static void perf_event_exit_cpu_context(int cpu)
10723 {
10724 struct perf_event_context *ctx;
10725 struct pmu *pmu;
10726 int idx;
10727
10728 idx = srcu_read_lock(&pmus_srcu);
10729 list_for_each_entry_rcu(pmu, &pmus, entry) {
10730 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
10731
10732 mutex_lock(&ctx->mutex);
10733 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
10734 mutex_unlock(&ctx->mutex);
10735 }
10736 srcu_read_unlock(&pmus_srcu, idx);
10737 }
10738 #else
10739
10740 static void perf_event_exit_cpu_context(int cpu) { }
10741
10742 #endif
10743
10744 int perf_event_exit_cpu(unsigned int cpu)
10745 {
10746 perf_event_exit_cpu_context(cpu);
10747 return 0;
10748 }
10749
10750 static int
10751 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
10752 {
10753 int cpu;
10754
10755 for_each_online_cpu(cpu)
10756 perf_event_exit_cpu(cpu);
10757
10758 return NOTIFY_OK;
10759 }
10760
10761 /*
10762 * Run the perf reboot notifier at the very last possible moment so that
10763 * the generic watchdog code runs as long as possible.
10764 */
10765 static struct notifier_block perf_reboot_notifier = {
10766 .notifier_call = perf_reboot,
10767 .priority = INT_MIN,
10768 };
10769
10770 void __init perf_event_init(void)
10771 {
10772 int ret;
10773
10774 idr_init(&pmu_idr);
10775
10776 perf_event_init_all_cpus();
10777 init_srcu_struct(&pmus_srcu);
10778 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
10779 perf_pmu_register(&perf_cpu_clock, NULL, -1);
10780 perf_pmu_register(&perf_task_clock, NULL, -1);
10781 perf_tp_register();
10782 perf_event_init_cpu(smp_processor_id());
10783 register_reboot_notifier(&perf_reboot_notifier);
10784
10785 ret = init_hw_breakpoint();
10786 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
10787
10788 /*
10789 * Build time assertion that we keep the data_head at the intended
10790 * location. IOW, validation we got the __reserved[] size right.
10791 */
10792 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
10793 != 1024);
10794 }
10795
10796 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
10797 char *page)
10798 {
10799 struct perf_pmu_events_attr *pmu_attr =
10800 container_of(attr, struct perf_pmu_events_attr, attr);
10801
10802 if (pmu_attr->event_str)
10803 return sprintf(page, "%s\n", pmu_attr->event_str);
10804
10805 return 0;
10806 }
10807 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
10808
10809 static int __init perf_event_sysfs_init(void)
10810 {
10811 struct pmu *pmu;
10812 int ret;
10813
10814 mutex_lock(&pmus_lock);
10815
10816 ret = bus_register(&pmu_bus);
10817 if (ret)
10818 goto unlock;
10819
10820 list_for_each_entry(pmu, &pmus, entry) {
10821 if (!pmu->name || pmu->type < 0)
10822 continue;
10823
10824 ret = pmu_dev_alloc(pmu);
10825 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
10826 }
10827 pmu_bus_running = 1;
10828 ret = 0;
10829
10830 unlock:
10831 mutex_unlock(&pmus_lock);
10832
10833 return ret;
10834 }
10835 device_initcall(perf_event_sysfs_init);
10836
10837 #ifdef CONFIG_CGROUP_PERF
10838 static struct cgroup_subsys_state *
10839 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
10840 {
10841 struct perf_cgroup *jc;
10842
10843 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
10844 if (!jc)
10845 return ERR_PTR(-ENOMEM);
10846
10847 jc->info = alloc_percpu(struct perf_cgroup_info);
10848 if (!jc->info) {
10849 kfree(jc);
10850 return ERR_PTR(-ENOMEM);
10851 }
10852
10853 return &jc->css;
10854 }
10855
10856 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
10857 {
10858 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
10859
10860 free_percpu(jc->info);
10861 kfree(jc);
10862 }
10863
10864 static int __perf_cgroup_move(void *info)
10865 {
10866 struct task_struct *task = info;
10867 rcu_read_lock();
10868 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
10869 rcu_read_unlock();
10870 return 0;
10871 }
10872
10873 static void perf_cgroup_attach(struct cgroup_taskset *tset)
10874 {
10875 struct task_struct *task;
10876 struct cgroup_subsys_state *css;
10877
10878 cgroup_taskset_for_each(task, css, tset)
10879 task_function_call(task, __perf_cgroup_move, task);
10880 }
10881
10882 struct cgroup_subsys perf_event_cgrp_subsys = {
10883 .css_alloc = perf_cgroup_css_alloc,
10884 .css_free = perf_cgroup_css_free,
10885 .attach = perf_cgroup_attach,
10886 };
10887 #endif /* CONFIG_CGROUP_PERF */