]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/events/core.c
Merge remote-tracking branch 'wireless/master' into mac80211
[mirror_ubuntu-artful-kernel.git] / kernel / events / core.c
1 /*
2 * Performance events core code:
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/rculist.h>
32 #include <linux/uaccess.h>
33 #include <linux/syscalls.h>
34 #include <linux/anon_inodes.h>
35 #include <linux/kernel_stat.h>
36 #include <linux/perf_event.h>
37 #include <linux/ftrace_event.h>
38 #include <linux/hw_breakpoint.h>
39 #include <linux/mm_types.h>
40
41 #include "internal.h"
42
43 #include <asm/irq_regs.h>
44
45 struct remote_function_call {
46 struct task_struct *p;
47 int (*func)(void *info);
48 void *info;
49 int ret;
50 };
51
52 static void remote_function(void *data)
53 {
54 struct remote_function_call *tfc = data;
55 struct task_struct *p = tfc->p;
56
57 if (p) {
58 tfc->ret = -EAGAIN;
59 if (task_cpu(p) != smp_processor_id() || !task_curr(p))
60 return;
61 }
62
63 tfc->ret = tfc->func(tfc->info);
64 }
65
66 /**
67 * task_function_call - call a function on the cpu on which a task runs
68 * @p: the task to evaluate
69 * @func: the function to be called
70 * @info: the function call argument
71 *
72 * Calls the function @func when the task is currently running. This might
73 * be on the current CPU, which just calls the function directly
74 *
75 * returns: @func return value, or
76 * -ESRCH - when the process isn't running
77 * -EAGAIN - when the process moved away
78 */
79 static int
80 task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
81 {
82 struct remote_function_call data = {
83 .p = p,
84 .func = func,
85 .info = info,
86 .ret = -ESRCH, /* No such (running) process */
87 };
88
89 if (task_curr(p))
90 smp_call_function_single(task_cpu(p), remote_function, &data, 1);
91
92 return data.ret;
93 }
94
95 /**
96 * cpu_function_call - call a function on the cpu
97 * @func: the function to be called
98 * @info: the function call argument
99 *
100 * Calls the function @func on the remote cpu.
101 *
102 * returns: @func return value or -ENXIO when the cpu is offline
103 */
104 static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
105 {
106 struct remote_function_call data = {
107 .p = NULL,
108 .func = func,
109 .info = info,
110 .ret = -ENXIO, /* No such CPU */
111 };
112
113 smp_call_function_single(cpu, remote_function, &data, 1);
114
115 return data.ret;
116 }
117
118 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
119 PERF_FLAG_FD_OUTPUT |\
120 PERF_FLAG_PID_CGROUP)
121
122 /*
123 * branch priv levels that need permission checks
124 */
125 #define PERF_SAMPLE_BRANCH_PERM_PLM \
126 (PERF_SAMPLE_BRANCH_KERNEL |\
127 PERF_SAMPLE_BRANCH_HV)
128
129 enum event_type_t {
130 EVENT_FLEXIBLE = 0x1,
131 EVENT_PINNED = 0x2,
132 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
133 };
134
135 /*
136 * perf_sched_events : >0 events exist
137 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
138 */
139 struct static_key_deferred perf_sched_events __read_mostly;
140 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
141 static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events);
142
143 static atomic_t nr_mmap_events __read_mostly;
144 static atomic_t nr_comm_events __read_mostly;
145 static atomic_t nr_task_events __read_mostly;
146
147 static LIST_HEAD(pmus);
148 static DEFINE_MUTEX(pmus_lock);
149 static struct srcu_struct pmus_srcu;
150
151 /*
152 * perf event paranoia level:
153 * -1 - not paranoid at all
154 * 0 - disallow raw tracepoint access for unpriv
155 * 1 - disallow cpu events for unpriv
156 * 2 - disallow kernel profiling for unpriv
157 */
158 int sysctl_perf_event_paranoid __read_mostly = 1;
159
160 /* Minimum for 512 kiB + 1 user control page */
161 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
162
163 /*
164 * max perf event sample rate
165 */
166 #define DEFAULT_MAX_SAMPLE_RATE 100000
167 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
168 static int max_samples_per_tick __read_mostly =
169 DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
170
171 int perf_proc_update_handler(struct ctl_table *table, int write,
172 void __user *buffer, size_t *lenp,
173 loff_t *ppos)
174 {
175 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
176
177 if (ret || !write)
178 return ret;
179
180 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
181
182 return 0;
183 }
184
185 static atomic64_t perf_event_id;
186
187 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
188 enum event_type_t event_type);
189
190 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
191 enum event_type_t event_type,
192 struct task_struct *task);
193
194 static void update_context_time(struct perf_event_context *ctx);
195 static u64 perf_event_time(struct perf_event *event);
196
197 static void ring_buffer_attach(struct perf_event *event,
198 struct ring_buffer *rb);
199
200 void __weak perf_event_print_debug(void) { }
201
202 extern __weak const char *perf_pmu_name(void)
203 {
204 return "pmu";
205 }
206
207 static inline u64 perf_clock(void)
208 {
209 return local_clock();
210 }
211
212 static inline struct perf_cpu_context *
213 __get_cpu_context(struct perf_event_context *ctx)
214 {
215 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
216 }
217
218 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
219 struct perf_event_context *ctx)
220 {
221 raw_spin_lock(&cpuctx->ctx.lock);
222 if (ctx)
223 raw_spin_lock(&ctx->lock);
224 }
225
226 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
227 struct perf_event_context *ctx)
228 {
229 if (ctx)
230 raw_spin_unlock(&ctx->lock);
231 raw_spin_unlock(&cpuctx->ctx.lock);
232 }
233
234 #ifdef CONFIG_CGROUP_PERF
235
236 /*
237 * Must ensure cgroup is pinned (css_get) before calling
238 * this function. In other words, we cannot call this function
239 * if there is no cgroup event for the current CPU context.
240 */
241 static inline struct perf_cgroup *
242 perf_cgroup_from_task(struct task_struct *task)
243 {
244 return container_of(task_subsys_state(task, perf_subsys_id),
245 struct perf_cgroup, css);
246 }
247
248 static inline bool
249 perf_cgroup_match(struct perf_event *event)
250 {
251 struct perf_event_context *ctx = event->ctx;
252 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
253
254 return !event->cgrp || event->cgrp == cpuctx->cgrp;
255 }
256
257 static inline bool perf_tryget_cgroup(struct perf_event *event)
258 {
259 return css_tryget(&event->cgrp->css);
260 }
261
262 static inline void perf_put_cgroup(struct perf_event *event)
263 {
264 css_put(&event->cgrp->css);
265 }
266
267 static inline void perf_detach_cgroup(struct perf_event *event)
268 {
269 perf_put_cgroup(event);
270 event->cgrp = NULL;
271 }
272
273 static inline int is_cgroup_event(struct perf_event *event)
274 {
275 return event->cgrp != NULL;
276 }
277
278 static inline u64 perf_cgroup_event_time(struct perf_event *event)
279 {
280 struct perf_cgroup_info *t;
281
282 t = per_cpu_ptr(event->cgrp->info, event->cpu);
283 return t->time;
284 }
285
286 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
287 {
288 struct perf_cgroup_info *info;
289 u64 now;
290
291 now = perf_clock();
292
293 info = this_cpu_ptr(cgrp->info);
294
295 info->time += now - info->timestamp;
296 info->timestamp = now;
297 }
298
299 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
300 {
301 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
302 if (cgrp_out)
303 __update_cgrp_time(cgrp_out);
304 }
305
306 static inline void update_cgrp_time_from_event(struct perf_event *event)
307 {
308 struct perf_cgroup *cgrp;
309
310 /*
311 * ensure we access cgroup data only when needed and
312 * when we know the cgroup is pinned (css_get)
313 */
314 if (!is_cgroup_event(event))
315 return;
316
317 cgrp = perf_cgroup_from_task(current);
318 /*
319 * Do not update time when cgroup is not active
320 */
321 if (cgrp == event->cgrp)
322 __update_cgrp_time(event->cgrp);
323 }
324
325 static inline void
326 perf_cgroup_set_timestamp(struct task_struct *task,
327 struct perf_event_context *ctx)
328 {
329 struct perf_cgroup *cgrp;
330 struct perf_cgroup_info *info;
331
332 /*
333 * ctx->lock held by caller
334 * ensure we do not access cgroup data
335 * unless we have the cgroup pinned (css_get)
336 */
337 if (!task || !ctx->nr_cgroups)
338 return;
339
340 cgrp = perf_cgroup_from_task(task);
341 info = this_cpu_ptr(cgrp->info);
342 info->timestamp = ctx->timestamp;
343 }
344
345 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
346 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
347
348 /*
349 * reschedule events based on the cgroup constraint of task.
350 *
351 * mode SWOUT : schedule out everything
352 * mode SWIN : schedule in based on cgroup for next
353 */
354 void perf_cgroup_switch(struct task_struct *task, int mode)
355 {
356 struct perf_cpu_context *cpuctx;
357 struct pmu *pmu;
358 unsigned long flags;
359
360 /*
361 * disable interrupts to avoid geting nr_cgroup
362 * changes via __perf_event_disable(). Also
363 * avoids preemption.
364 */
365 local_irq_save(flags);
366
367 /*
368 * we reschedule only in the presence of cgroup
369 * constrained events.
370 */
371 rcu_read_lock();
372
373 list_for_each_entry_rcu(pmu, &pmus, entry) {
374 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
375
376 /*
377 * perf_cgroup_events says at least one
378 * context on this CPU has cgroup events.
379 *
380 * ctx->nr_cgroups reports the number of cgroup
381 * events for a context.
382 */
383 if (cpuctx->ctx.nr_cgroups > 0) {
384 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
385 perf_pmu_disable(cpuctx->ctx.pmu);
386
387 if (mode & PERF_CGROUP_SWOUT) {
388 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
389 /*
390 * must not be done before ctxswout due
391 * to event_filter_match() in event_sched_out()
392 */
393 cpuctx->cgrp = NULL;
394 }
395
396 if (mode & PERF_CGROUP_SWIN) {
397 WARN_ON_ONCE(cpuctx->cgrp);
398 /* set cgrp before ctxsw in to
399 * allow event_filter_match() to not
400 * have to pass task around
401 */
402 cpuctx->cgrp = perf_cgroup_from_task(task);
403 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
404 }
405 perf_pmu_enable(cpuctx->ctx.pmu);
406 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
407 }
408 }
409
410 rcu_read_unlock();
411
412 local_irq_restore(flags);
413 }
414
415 static inline void perf_cgroup_sched_out(struct task_struct *task,
416 struct task_struct *next)
417 {
418 struct perf_cgroup *cgrp1;
419 struct perf_cgroup *cgrp2 = NULL;
420
421 /*
422 * we come here when we know perf_cgroup_events > 0
423 */
424 cgrp1 = perf_cgroup_from_task(task);
425
426 /*
427 * next is NULL when called from perf_event_enable_on_exec()
428 * that will systematically cause a cgroup_switch()
429 */
430 if (next)
431 cgrp2 = perf_cgroup_from_task(next);
432
433 /*
434 * only schedule out current cgroup events if we know
435 * that we are switching to a different cgroup. Otherwise,
436 * do no touch the cgroup events.
437 */
438 if (cgrp1 != cgrp2)
439 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
440 }
441
442 static inline void perf_cgroup_sched_in(struct task_struct *prev,
443 struct task_struct *task)
444 {
445 struct perf_cgroup *cgrp1;
446 struct perf_cgroup *cgrp2 = NULL;
447
448 /*
449 * we come here when we know perf_cgroup_events > 0
450 */
451 cgrp1 = perf_cgroup_from_task(task);
452
453 /* prev can never be NULL */
454 cgrp2 = perf_cgroup_from_task(prev);
455
456 /*
457 * only need to schedule in cgroup events if we are changing
458 * cgroup during ctxsw. Cgroup events were not scheduled
459 * out of ctxsw out if that was not the case.
460 */
461 if (cgrp1 != cgrp2)
462 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
463 }
464
465 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
466 struct perf_event_attr *attr,
467 struct perf_event *group_leader)
468 {
469 struct perf_cgroup *cgrp;
470 struct cgroup_subsys_state *css;
471 struct file *file;
472 int ret = 0, fput_needed;
473
474 file = fget_light(fd, &fput_needed);
475 if (!file)
476 return -EBADF;
477
478 css = cgroup_css_from_dir(file, perf_subsys_id);
479 if (IS_ERR(css)) {
480 ret = PTR_ERR(css);
481 goto out;
482 }
483
484 cgrp = container_of(css, struct perf_cgroup, css);
485 event->cgrp = cgrp;
486
487 /* must be done before we fput() the file */
488 if (!perf_tryget_cgroup(event)) {
489 event->cgrp = NULL;
490 ret = -ENOENT;
491 goto out;
492 }
493
494 /*
495 * all events in a group must monitor
496 * the same cgroup because a task belongs
497 * to only one perf cgroup at a time
498 */
499 if (group_leader && group_leader->cgrp != cgrp) {
500 perf_detach_cgroup(event);
501 ret = -EINVAL;
502 }
503 out:
504 fput_light(file, fput_needed);
505 return ret;
506 }
507
508 static inline void
509 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
510 {
511 struct perf_cgroup_info *t;
512 t = per_cpu_ptr(event->cgrp->info, event->cpu);
513 event->shadow_ctx_time = now - t->timestamp;
514 }
515
516 static inline void
517 perf_cgroup_defer_enabled(struct perf_event *event)
518 {
519 /*
520 * when the current task's perf cgroup does not match
521 * the event's, we need to remember to call the
522 * perf_mark_enable() function the first time a task with
523 * a matching perf cgroup is scheduled in.
524 */
525 if (is_cgroup_event(event) && !perf_cgroup_match(event))
526 event->cgrp_defer_enabled = 1;
527 }
528
529 static inline void
530 perf_cgroup_mark_enabled(struct perf_event *event,
531 struct perf_event_context *ctx)
532 {
533 struct perf_event *sub;
534 u64 tstamp = perf_event_time(event);
535
536 if (!event->cgrp_defer_enabled)
537 return;
538
539 event->cgrp_defer_enabled = 0;
540
541 event->tstamp_enabled = tstamp - event->total_time_enabled;
542 list_for_each_entry(sub, &event->sibling_list, group_entry) {
543 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
544 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
545 sub->cgrp_defer_enabled = 0;
546 }
547 }
548 }
549 #else /* !CONFIG_CGROUP_PERF */
550
551 static inline bool
552 perf_cgroup_match(struct perf_event *event)
553 {
554 return true;
555 }
556
557 static inline void perf_detach_cgroup(struct perf_event *event)
558 {}
559
560 static inline int is_cgroup_event(struct perf_event *event)
561 {
562 return 0;
563 }
564
565 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
566 {
567 return 0;
568 }
569
570 static inline void update_cgrp_time_from_event(struct perf_event *event)
571 {
572 }
573
574 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
575 {
576 }
577
578 static inline void perf_cgroup_sched_out(struct task_struct *task,
579 struct task_struct *next)
580 {
581 }
582
583 static inline void perf_cgroup_sched_in(struct task_struct *prev,
584 struct task_struct *task)
585 {
586 }
587
588 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
589 struct perf_event_attr *attr,
590 struct perf_event *group_leader)
591 {
592 return -EINVAL;
593 }
594
595 static inline void
596 perf_cgroup_set_timestamp(struct task_struct *task,
597 struct perf_event_context *ctx)
598 {
599 }
600
601 void
602 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
603 {
604 }
605
606 static inline void
607 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
608 {
609 }
610
611 static inline u64 perf_cgroup_event_time(struct perf_event *event)
612 {
613 return 0;
614 }
615
616 static inline void
617 perf_cgroup_defer_enabled(struct perf_event *event)
618 {
619 }
620
621 static inline void
622 perf_cgroup_mark_enabled(struct perf_event *event,
623 struct perf_event_context *ctx)
624 {
625 }
626 #endif
627
628 void perf_pmu_disable(struct pmu *pmu)
629 {
630 int *count = this_cpu_ptr(pmu->pmu_disable_count);
631 if (!(*count)++)
632 pmu->pmu_disable(pmu);
633 }
634
635 void perf_pmu_enable(struct pmu *pmu)
636 {
637 int *count = this_cpu_ptr(pmu->pmu_disable_count);
638 if (!--(*count))
639 pmu->pmu_enable(pmu);
640 }
641
642 static DEFINE_PER_CPU(struct list_head, rotation_list);
643
644 /*
645 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
646 * because they're strictly cpu affine and rotate_start is called with IRQs
647 * disabled, while rotate_context is called from IRQ context.
648 */
649 static void perf_pmu_rotate_start(struct pmu *pmu)
650 {
651 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
652 struct list_head *head = &__get_cpu_var(rotation_list);
653
654 WARN_ON(!irqs_disabled());
655
656 if (list_empty(&cpuctx->rotation_list))
657 list_add(&cpuctx->rotation_list, head);
658 }
659
660 static void get_ctx(struct perf_event_context *ctx)
661 {
662 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
663 }
664
665 static void put_ctx(struct perf_event_context *ctx)
666 {
667 if (atomic_dec_and_test(&ctx->refcount)) {
668 if (ctx->parent_ctx)
669 put_ctx(ctx->parent_ctx);
670 if (ctx->task)
671 put_task_struct(ctx->task);
672 kfree_rcu(ctx, rcu_head);
673 }
674 }
675
676 static void unclone_ctx(struct perf_event_context *ctx)
677 {
678 if (ctx->parent_ctx) {
679 put_ctx(ctx->parent_ctx);
680 ctx->parent_ctx = NULL;
681 }
682 }
683
684 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
685 {
686 /*
687 * only top level events have the pid namespace they were created in
688 */
689 if (event->parent)
690 event = event->parent;
691
692 return task_tgid_nr_ns(p, event->ns);
693 }
694
695 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
696 {
697 /*
698 * only top level events have the pid namespace they were created in
699 */
700 if (event->parent)
701 event = event->parent;
702
703 return task_pid_nr_ns(p, event->ns);
704 }
705
706 /*
707 * If we inherit events we want to return the parent event id
708 * to userspace.
709 */
710 static u64 primary_event_id(struct perf_event *event)
711 {
712 u64 id = event->id;
713
714 if (event->parent)
715 id = event->parent->id;
716
717 return id;
718 }
719
720 /*
721 * Get the perf_event_context for a task and lock it.
722 * This has to cope with with the fact that until it is locked,
723 * the context could get moved to another task.
724 */
725 static struct perf_event_context *
726 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
727 {
728 struct perf_event_context *ctx;
729
730 rcu_read_lock();
731 retry:
732 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
733 if (ctx) {
734 /*
735 * If this context is a clone of another, it might
736 * get swapped for another underneath us by
737 * perf_event_task_sched_out, though the
738 * rcu_read_lock() protects us from any context
739 * getting freed. Lock the context and check if it
740 * got swapped before we could get the lock, and retry
741 * if so. If we locked the right context, then it
742 * can't get swapped on us any more.
743 */
744 raw_spin_lock_irqsave(&ctx->lock, *flags);
745 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
746 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
747 goto retry;
748 }
749
750 if (!atomic_inc_not_zero(&ctx->refcount)) {
751 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
752 ctx = NULL;
753 }
754 }
755 rcu_read_unlock();
756 return ctx;
757 }
758
759 /*
760 * Get the context for a task and increment its pin_count so it
761 * can't get swapped to another task. This also increments its
762 * reference count so that the context can't get freed.
763 */
764 static struct perf_event_context *
765 perf_pin_task_context(struct task_struct *task, int ctxn)
766 {
767 struct perf_event_context *ctx;
768 unsigned long flags;
769
770 ctx = perf_lock_task_context(task, ctxn, &flags);
771 if (ctx) {
772 ++ctx->pin_count;
773 raw_spin_unlock_irqrestore(&ctx->lock, flags);
774 }
775 return ctx;
776 }
777
778 static void perf_unpin_context(struct perf_event_context *ctx)
779 {
780 unsigned long flags;
781
782 raw_spin_lock_irqsave(&ctx->lock, flags);
783 --ctx->pin_count;
784 raw_spin_unlock_irqrestore(&ctx->lock, flags);
785 }
786
787 /*
788 * Update the record of the current time in a context.
789 */
790 static void update_context_time(struct perf_event_context *ctx)
791 {
792 u64 now = perf_clock();
793
794 ctx->time += now - ctx->timestamp;
795 ctx->timestamp = now;
796 }
797
798 static u64 perf_event_time(struct perf_event *event)
799 {
800 struct perf_event_context *ctx = event->ctx;
801
802 if (is_cgroup_event(event))
803 return perf_cgroup_event_time(event);
804
805 return ctx ? ctx->time : 0;
806 }
807
808 /*
809 * Update the total_time_enabled and total_time_running fields for a event.
810 * The caller of this function needs to hold the ctx->lock.
811 */
812 static void update_event_times(struct perf_event *event)
813 {
814 struct perf_event_context *ctx = event->ctx;
815 u64 run_end;
816
817 if (event->state < PERF_EVENT_STATE_INACTIVE ||
818 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
819 return;
820 /*
821 * in cgroup mode, time_enabled represents
822 * the time the event was enabled AND active
823 * tasks were in the monitored cgroup. This is
824 * independent of the activity of the context as
825 * there may be a mix of cgroup and non-cgroup events.
826 *
827 * That is why we treat cgroup events differently
828 * here.
829 */
830 if (is_cgroup_event(event))
831 run_end = perf_cgroup_event_time(event);
832 else if (ctx->is_active)
833 run_end = ctx->time;
834 else
835 run_end = event->tstamp_stopped;
836
837 event->total_time_enabled = run_end - event->tstamp_enabled;
838
839 if (event->state == PERF_EVENT_STATE_INACTIVE)
840 run_end = event->tstamp_stopped;
841 else
842 run_end = perf_event_time(event);
843
844 event->total_time_running = run_end - event->tstamp_running;
845
846 }
847
848 /*
849 * Update total_time_enabled and total_time_running for all events in a group.
850 */
851 static void update_group_times(struct perf_event *leader)
852 {
853 struct perf_event *event;
854
855 update_event_times(leader);
856 list_for_each_entry(event, &leader->sibling_list, group_entry)
857 update_event_times(event);
858 }
859
860 static struct list_head *
861 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
862 {
863 if (event->attr.pinned)
864 return &ctx->pinned_groups;
865 else
866 return &ctx->flexible_groups;
867 }
868
869 /*
870 * Add a event from the lists for its context.
871 * Must be called with ctx->mutex and ctx->lock held.
872 */
873 static void
874 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
875 {
876 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
877 event->attach_state |= PERF_ATTACH_CONTEXT;
878
879 /*
880 * If we're a stand alone event or group leader, we go to the context
881 * list, group events are kept attached to the group so that
882 * perf_group_detach can, at all times, locate all siblings.
883 */
884 if (event->group_leader == event) {
885 struct list_head *list;
886
887 if (is_software_event(event))
888 event->group_flags |= PERF_GROUP_SOFTWARE;
889
890 list = ctx_group_list(event, ctx);
891 list_add_tail(&event->group_entry, list);
892 }
893
894 if (is_cgroup_event(event))
895 ctx->nr_cgroups++;
896
897 if (has_branch_stack(event))
898 ctx->nr_branch_stack++;
899
900 list_add_rcu(&event->event_entry, &ctx->event_list);
901 if (!ctx->nr_events)
902 perf_pmu_rotate_start(ctx->pmu);
903 ctx->nr_events++;
904 if (event->attr.inherit_stat)
905 ctx->nr_stat++;
906 }
907
908 /*
909 * Called at perf_event creation and when events are attached/detached from a
910 * group.
911 */
912 static void perf_event__read_size(struct perf_event *event)
913 {
914 int entry = sizeof(u64); /* value */
915 int size = 0;
916 int nr = 1;
917
918 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
919 size += sizeof(u64);
920
921 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
922 size += sizeof(u64);
923
924 if (event->attr.read_format & PERF_FORMAT_ID)
925 entry += sizeof(u64);
926
927 if (event->attr.read_format & PERF_FORMAT_GROUP) {
928 nr += event->group_leader->nr_siblings;
929 size += sizeof(u64);
930 }
931
932 size += entry * nr;
933 event->read_size = size;
934 }
935
936 static void perf_event__header_size(struct perf_event *event)
937 {
938 struct perf_sample_data *data;
939 u64 sample_type = event->attr.sample_type;
940 u16 size = 0;
941
942 perf_event__read_size(event);
943
944 if (sample_type & PERF_SAMPLE_IP)
945 size += sizeof(data->ip);
946
947 if (sample_type & PERF_SAMPLE_ADDR)
948 size += sizeof(data->addr);
949
950 if (sample_type & PERF_SAMPLE_PERIOD)
951 size += sizeof(data->period);
952
953 if (sample_type & PERF_SAMPLE_READ)
954 size += event->read_size;
955
956 event->header_size = size;
957 }
958
959 static void perf_event__id_header_size(struct perf_event *event)
960 {
961 struct perf_sample_data *data;
962 u64 sample_type = event->attr.sample_type;
963 u16 size = 0;
964
965 if (sample_type & PERF_SAMPLE_TID)
966 size += sizeof(data->tid_entry);
967
968 if (sample_type & PERF_SAMPLE_TIME)
969 size += sizeof(data->time);
970
971 if (sample_type & PERF_SAMPLE_ID)
972 size += sizeof(data->id);
973
974 if (sample_type & PERF_SAMPLE_STREAM_ID)
975 size += sizeof(data->stream_id);
976
977 if (sample_type & PERF_SAMPLE_CPU)
978 size += sizeof(data->cpu_entry);
979
980 event->id_header_size = size;
981 }
982
983 static void perf_group_attach(struct perf_event *event)
984 {
985 struct perf_event *group_leader = event->group_leader, *pos;
986
987 /*
988 * We can have double attach due to group movement in perf_event_open.
989 */
990 if (event->attach_state & PERF_ATTACH_GROUP)
991 return;
992
993 event->attach_state |= PERF_ATTACH_GROUP;
994
995 if (group_leader == event)
996 return;
997
998 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
999 !is_software_event(event))
1000 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1001
1002 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1003 group_leader->nr_siblings++;
1004
1005 perf_event__header_size(group_leader);
1006
1007 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1008 perf_event__header_size(pos);
1009 }
1010
1011 /*
1012 * Remove a event from the lists for its context.
1013 * Must be called with ctx->mutex and ctx->lock held.
1014 */
1015 static void
1016 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1017 {
1018 struct perf_cpu_context *cpuctx;
1019 /*
1020 * We can have double detach due to exit/hot-unplug + close.
1021 */
1022 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1023 return;
1024
1025 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1026
1027 if (is_cgroup_event(event)) {
1028 ctx->nr_cgroups--;
1029 cpuctx = __get_cpu_context(ctx);
1030 /*
1031 * if there are no more cgroup events
1032 * then cler cgrp to avoid stale pointer
1033 * in update_cgrp_time_from_cpuctx()
1034 */
1035 if (!ctx->nr_cgroups)
1036 cpuctx->cgrp = NULL;
1037 }
1038
1039 if (has_branch_stack(event))
1040 ctx->nr_branch_stack--;
1041
1042 ctx->nr_events--;
1043 if (event->attr.inherit_stat)
1044 ctx->nr_stat--;
1045
1046 list_del_rcu(&event->event_entry);
1047
1048 if (event->group_leader == event)
1049 list_del_init(&event->group_entry);
1050
1051 update_group_times(event);
1052
1053 /*
1054 * If event was in error state, then keep it
1055 * that way, otherwise bogus counts will be
1056 * returned on read(). The only way to get out
1057 * of error state is by explicit re-enabling
1058 * of the event
1059 */
1060 if (event->state > PERF_EVENT_STATE_OFF)
1061 event->state = PERF_EVENT_STATE_OFF;
1062 }
1063
1064 static void perf_group_detach(struct perf_event *event)
1065 {
1066 struct perf_event *sibling, *tmp;
1067 struct list_head *list = NULL;
1068
1069 /*
1070 * We can have double detach due to exit/hot-unplug + close.
1071 */
1072 if (!(event->attach_state & PERF_ATTACH_GROUP))
1073 return;
1074
1075 event->attach_state &= ~PERF_ATTACH_GROUP;
1076
1077 /*
1078 * If this is a sibling, remove it from its group.
1079 */
1080 if (event->group_leader != event) {
1081 list_del_init(&event->group_entry);
1082 event->group_leader->nr_siblings--;
1083 goto out;
1084 }
1085
1086 if (!list_empty(&event->group_entry))
1087 list = &event->group_entry;
1088
1089 /*
1090 * If this was a group event with sibling events then
1091 * upgrade the siblings to singleton events by adding them
1092 * to whatever list we are on.
1093 */
1094 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1095 if (list)
1096 list_move_tail(&sibling->group_entry, list);
1097 sibling->group_leader = sibling;
1098
1099 /* Inherit group flags from the previous leader */
1100 sibling->group_flags = event->group_flags;
1101 }
1102
1103 out:
1104 perf_event__header_size(event->group_leader);
1105
1106 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1107 perf_event__header_size(tmp);
1108 }
1109
1110 static inline int
1111 event_filter_match(struct perf_event *event)
1112 {
1113 return (event->cpu == -1 || event->cpu == smp_processor_id())
1114 && perf_cgroup_match(event);
1115 }
1116
1117 static void
1118 event_sched_out(struct perf_event *event,
1119 struct perf_cpu_context *cpuctx,
1120 struct perf_event_context *ctx)
1121 {
1122 u64 tstamp = perf_event_time(event);
1123 u64 delta;
1124 /*
1125 * An event which could not be activated because of
1126 * filter mismatch still needs to have its timings
1127 * maintained, otherwise bogus information is return
1128 * via read() for time_enabled, time_running:
1129 */
1130 if (event->state == PERF_EVENT_STATE_INACTIVE
1131 && !event_filter_match(event)) {
1132 delta = tstamp - event->tstamp_stopped;
1133 event->tstamp_running += delta;
1134 event->tstamp_stopped = tstamp;
1135 }
1136
1137 if (event->state != PERF_EVENT_STATE_ACTIVE)
1138 return;
1139
1140 event->state = PERF_EVENT_STATE_INACTIVE;
1141 if (event->pending_disable) {
1142 event->pending_disable = 0;
1143 event->state = PERF_EVENT_STATE_OFF;
1144 }
1145 event->tstamp_stopped = tstamp;
1146 event->pmu->del(event, 0);
1147 event->oncpu = -1;
1148
1149 if (!is_software_event(event))
1150 cpuctx->active_oncpu--;
1151 ctx->nr_active--;
1152 if (event->attr.freq && event->attr.sample_freq)
1153 ctx->nr_freq--;
1154 if (event->attr.exclusive || !cpuctx->active_oncpu)
1155 cpuctx->exclusive = 0;
1156 }
1157
1158 static void
1159 group_sched_out(struct perf_event *group_event,
1160 struct perf_cpu_context *cpuctx,
1161 struct perf_event_context *ctx)
1162 {
1163 struct perf_event *event;
1164 int state = group_event->state;
1165
1166 event_sched_out(group_event, cpuctx, ctx);
1167
1168 /*
1169 * Schedule out siblings (if any):
1170 */
1171 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1172 event_sched_out(event, cpuctx, ctx);
1173
1174 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1175 cpuctx->exclusive = 0;
1176 }
1177
1178 /*
1179 * Cross CPU call to remove a performance event
1180 *
1181 * We disable the event on the hardware level first. After that we
1182 * remove it from the context list.
1183 */
1184 static int __perf_remove_from_context(void *info)
1185 {
1186 struct perf_event *event = info;
1187 struct perf_event_context *ctx = event->ctx;
1188 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1189
1190 raw_spin_lock(&ctx->lock);
1191 event_sched_out(event, cpuctx, ctx);
1192 list_del_event(event, ctx);
1193 if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1194 ctx->is_active = 0;
1195 cpuctx->task_ctx = NULL;
1196 }
1197 raw_spin_unlock(&ctx->lock);
1198
1199 return 0;
1200 }
1201
1202
1203 /*
1204 * Remove the event from a task's (or a CPU's) list of events.
1205 *
1206 * CPU events are removed with a smp call. For task events we only
1207 * call when the task is on a CPU.
1208 *
1209 * If event->ctx is a cloned context, callers must make sure that
1210 * every task struct that event->ctx->task could possibly point to
1211 * remains valid. This is OK when called from perf_release since
1212 * that only calls us on the top-level context, which can't be a clone.
1213 * When called from perf_event_exit_task, it's OK because the
1214 * context has been detached from its task.
1215 */
1216 static void perf_remove_from_context(struct perf_event *event)
1217 {
1218 struct perf_event_context *ctx = event->ctx;
1219 struct task_struct *task = ctx->task;
1220
1221 lockdep_assert_held(&ctx->mutex);
1222
1223 if (!task) {
1224 /*
1225 * Per cpu events are removed via an smp call and
1226 * the removal is always successful.
1227 */
1228 cpu_function_call(event->cpu, __perf_remove_from_context, event);
1229 return;
1230 }
1231
1232 retry:
1233 if (!task_function_call(task, __perf_remove_from_context, event))
1234 return;
1235
1236 raw_spin_lock_irq(&ctx->lock);
1237 /*
1238 * If we failed to find a running task, but find the context active now
1239 * that we've acquired the ctx->lock, retry.
1240 */
1241 if (ctx->is_active) {
1242 raw_spin_unlock_irq(&ctx->lock);
1243 goto retry;
1244 }
1245
1246 /*
1247 * Since the task isn't running, its safe to remove the event, us
1248 * holding the ctx->lock ensures the task won't get scheduled in.
1249 */
1250 list_del_event(event, ctx);
1251 raw_spin_unlock_irq(&ctx->lock);
1252 }
1253
1254 /*
1255 * Cross CPU call to disable a performance event
1256 */
1257 int __perf_event_disable(void *info)
1258 {
1259 struct perf_event *event = info;
1260 struct perf_event_context *ctx = event->ctx;
1261 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1262
1263 /*
1264 * If this is a per-task event, need to check whether this
1265 * event's task is the current task on this cpu.
1266 *
1267 * Can trigger due to concurrent perf_event_context_sched_out()
1268 * flipping contexts around.
1269 */
1270 if (ctx->task && cpuctx->task_ctx != ctx)
1271 return -EINVAL;
1272
1273 raw_spin_lock(&ctx->lock);
1274
1275 /*
1276 * If the event is on, turn it off.
1277 * If it is in error state, leave it in error state.
1278 */
1279 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1280 update_context_time(ctx);
1281 update_cgrp_time_from_event(event);
1282 update_group_times(event);
1283 if (event == event->group_leader)
1284 group_sched_out(event, cpuctx, ctx);
1285 else
1286 event_sched_out(event, cpuctx, ctx);
1287 event->state = PERF_EVENT_STATE_OFF;
1288 }
1289
1290 raw_spin_unlock(&ctx->lock);
1291
1292 return 0;
1293 }
1294
1295 /*
1296 * Disable a event.
1297 *
1298 * If event->ctx is a cloned context, callers must make sure that
1299 * every task struct that event->ctx->task could possibly point to
1300 * remains valid. This condition is satisifed when called through
1301 * perf_event_for_each_child or perf_event_for_each because they
1302 * hold the top-level event's child_mutex, so any descendant that
1303 * goes to exit will block in sync_child_event.
1304 * When called from perf_pending_event it's OK because event->ctx
1305 * is the current context on this CPU and preemption is disabled,
1306 * hence we can't get into perf_event_task_sched_out for this context.
1307 */
1308 void perf_event_disable(struct perf_event *event)
1309 {
1310 struct perf_event_context *ctx = event->ctx;
1311 struct task_struct *task = ctx->task;
1312
1313 if (!task) {
1314 /*
1315 * Disable the event on the cpu that it's on
1316 */
1317 cpu_function_call(event->cpu, __perf_event_disable, event);
1318 return;
1319 }
1320
1321 retry:
1322 if (!task_function_call(task, __perf_event_disable, event))
1323 return;
1324
1325 raw_spin_lock_irq(&ctx->lock);
1326 /*
1327 * If the event is still active, we need to retry the cross-call.
1328 */
1329 if (event->state == PERF_EVENT_STATE_ACTIVE) {
1330 raw_spin_unlock_irq(&ctx->lock);
1331 /*
1332 * Reload the task pointer, it might have been changed by
1333 * a concurrent perf_event_context_sched_out().
1334 */
1335 task = ctx->task;
1336 goto retry;
1337 }
1338
1339 /*
1340 * Since we have the lock this context can't be scheduled
1341 * in, so we can change the state safely.
1342 */
1343 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1344 update_group_times(event);
1345 event->state = PERF_EVENT_STATE_OFF;
1346 }
1347 raw_spin_unlock_irq(&ctx->lock);
1348 }
1349 EXPORT_SYMBOL_GPL(perf_event_disable);
1350
1351 static void perf_set_shadow_time(struct perf_event *event,
1352 struct perf_event_context *ctx,
1353 u64 tstamp)
1354 {
1355 /*
1356 * use the correct time source for the time snapshot
1357 *
1358 * We could get by without this by leveraging the
1359 * fact that to get to this function, the caller
1360 * has most likely already called update_context_time()
1361 * and update_cgrp_time_xx() and thus both timestamp
1362 * are identical (or very close). Given that tstamp is,
1363 * already adjusted for cgroup, we could say that:
1364 * tstamp - ctx->timestamp
1365 * is equivalent to
1366 * tstamp - cgrp->timestamp.
1367 *
1368 * Then, in perf_output_read(), the calculation would
1369 * work with no changes because:
1370 * - event is guaranteed scheduled in
1371 * - no scheduled out in between
1372 * - thus the timestamp would be the same
1373 *
1374 * But this is a bit hairy.
1375 *
1376 * So instead, we have an explicit cgroup call to remain
1377 * within the time time source all along. We believe it
1378 * is cleaner and simpler to understand.
1379 */
1380 if (is_cgroup_event(event))
1381 perf_cgroup_set_shadow_time(event, tstamp);
1382 else
1383 event->shadow_ctx_time = tstamp - ctx->timestamp;
1384 }
1385
1386 #define MAX_INTERRUPTS (~0ULL)
1387
1388 static void perf_log_throttle(struct perf_event *event, int enable);
1389
1390 static int
1391 event_sched_in(struct perf_event *event,
1392 struct perf_cpu_context *cpuctx,
1393 struct perf_event_context *ctx)
1394 {
1395 u64 tstamp = perf_event_time(event);
1396
1397 if (event->state <= PERF_EVENT_STATE_OFF)
1398 return 0;
1399
1400 event->state = PERF_EVENT_STATE_ACTIVE;
1401 event->oncpu = smp_processor_id();
1402
1403 /*
1404 * Unthrottle events, since we scheduled we might have missed several
1405 * ticks already, also for a heavily scheduling task there is little
1406 * guarantee it'll get a tick in a timely manner.
1407 */
1408 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1409 perf_log_throttle(event, 1);
1410 event->hw.interrupts = 0;
1411 }
1412
1413 /*
1414 * The new state must be visible before we turn it on in the hardware:
1415 */
1416 smp_wmb();
1417
1418 if (event->pmu->add(event, PERF_EF_START)) {
1419 event->state = PERF_EVENT_STATE_INACTIVE;
1420 event->oncpu = -1;
1421 return -EAGAIN;
1422 }
1423
1424 event->tstamp_running += tstamp - event->tstamp_stopped;
1425
1426 perf_set_shadow_time(event, ctx, tstamp);
1427
1428 if (!is_software_event(event))
1429 cpuctx->active_oncpu++;
1430 ctx->nr_active++;
1431 if (event->attr.freq && event->attr.sample_freq)
1432 ctx->nr_freq++;
1433
1434 if (event->attr.exclusive)
1435 cpuctx->exclusive = 1;
1436
1437 return 0;
1438 }
1439
1440 static int
1441 group_sched_in(struct perf_event *group_event,
1442 struct perf_cpu_context *cpuctx,
1443 struct perf_event_context *ctx)
1444 {
1445 struct perf_event *event, *partial_group = NULL;
1446 struct pmu *pmu = group_event->pmu;
1447 u64 now = ctx->time;
1448 bool simulate = false;
1449
1450 if (group_event->state == PERF_EVENT_STATE_OFF)
1451 return 0;
1452
1453 pmu->start_txn(pmu);
1454
1455 if (event_sched_in(group_event, cpuctx, ctx)) {
1456 pmu->cancel_txn(pmu);
1457 return -EAGAIN;
1458 }
1459
1460 /*
1461 * Schedule in siblings as one group (if any):
1462 */
1463 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1464 if (event_sched_in(event, cpuctx, ctx)) {
1465 partial_group = event;
1466 goto group_error;
1467 }
1468 }
1469
1470 if (!pmu->commit_txn(pmu))
1471 return 0;
1472
1473 group_error:
1474 /*
1475 * Groups can be scheduled in as one unit only, so undo any
1476 * partial group before returning:
1477 * The events up to the failed event are scheduled out normally,
1478 * tstamp_stopped will be updated.
1479 *
1480 * The failed events and the remaining siblings need to have
1481 * their timings updated as if they had gone thru event_sched_in()
1482 * and event_sched_out(). This is required to get consistent timings
1483 * across the group. This also takes care of the case where the group
1484 * could never be scheduled by ensuring tstamp_stopped is set to mark
1485 * the time the event was actually stopped, such that time delta
1486 * calculation in update_event_times() is correct.
1487 */
1488 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1489 if (event == partial_group)
1490 simulate = true;
1491
1492 if (simulate) {
1493 event->tstamp_running += now - event->tstamp_stopped;
1494 event->tstamp_stopped = now;
1495 } else {
1496 event_sched_out(event, cpuctx, ctx);
1497 }
1498 }
1499 event_sched_out(group_event, cpuctx, ctx);
1500
1501 pmu->cancel_txn(pmu);
1502
1503 return -EAGAIN;
1504 }
1505
1506 /*
1507 * Work out whether we can put this event group on the CPU now.
1508 */
1509 static int group_can_go_on(struct perf_event *event,
1510 struct perf_cpu_context *cpuctx,
1511 int can_add_hw)
1512 {
1513 /*
1514 * Groups consisting entirely of software events can always go on.
1515 */
1516 if (event->group_flags & PERF_GROUP_SOFTWARE)
1517 return 1;
1518 /*
1519 * If an exclusive group is already on, no other hardware
1520 * events can go on.
1521 */
1522 if (cpuctx->exclusive)
1523 return 0;
1524 /*
1525 * If this group is exclusive and there are already
1526 * events on the CPU, it can't go on.
1527 */
1528 if (event->attr.exclusive && cpuctx->active_oncpu)
1529 return 0;
1530 /*
1531 * Otherwise, try to add it if all previous groups were able
1532 * to go on.
1533 */
1534 return can_add_hw;
1535 }
1536
1537 static void add_event_to_ctx(struct perf_event *event,
1538 struct perf_event_context *ctx)
1539 {
1540 u64 tstamp = perf_event_time(event);
1541
1542 list_add_event(event, ctx);
1543 perf_group_attach(event);
1544 event->tstamp_enabled = tstamp;
1545 event->tstamp_running = tstamp;
1546 event->tstamp_stopped = tstamp;
1547 }
1548
1549 static void task_ctx_sched_out(struct perf_event_context *ctx);
1550 static void
1551 ctx_sched_in(struct perf_event_context *ctx,
1552 struct perf_cpu_context *cpuctx,
1553 enum event_type_t event_type,
1554 struct task_struct *task);
1555
1556 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
1557 struct perf_event_context *ctx,
1558 struct task_struct *task)
1559 {
1560 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
1561 if (ctx)
1562 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
1563 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
1564 if (ctx)
1565 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
1566 }
1567
1568 /*
1569 * Cross CPU call to install and enable a performance event
1570 *
1571 * Must be called with ctx->mutex held
1572 */
1573 static int __perf_install_in_context(void *info)
1574 {
1575 struct perf_event *event = info;
1576 struct perf_event_context *ctx = event->ctx;
1577 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1578 struct perf_event_context *task_ctx = cpuctx->task_ctx;
1579 struct task_struct *task = current;
1580
1581 perf_ctx_lock(cpuctx, task_ctx);
1582 perf_pmu_disable(cpuctx->ctx.pmu);
1583
1584 /*
1585 * If there was an active task_ctx schedule it out.
1586 */
1587 if (task_ctx)
1588 task_ctx_sched_out(task_ctx);
1589
1590 /*
1591 * If the context we're installing events in is not the
1592 * active task_ctx, flip them.
1593 */
1594 if (ctx->task && task_ctx != ctx) {
1595 if (task_ctx)
1596 raw_spin_unlock(&task_ctx->lock);
1597 raw_spin_lock(&ctx->lock);
1598 task_ctx = ctx;
1599 }
1600
1601 if (task_ctx) {
1602 cpuctx->task_ctx = task_ctx;
1603 task = task_ctx->task;
1604 }
1605
1606 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
1607
1608 update_context_time(ctx);
1609 /*
1610 * update cgrp time only if current cgrp
1611 * matches event->cgrp. Must be done before
1612 * calling add_event_to_ctx()
1613 */
1614 update_cgrp_time_from_event(event);
1615
1616 add_event_to_ctx(event, ctx);
1617
1618 /*
1619 * Schedule everything back in
1620 */
1621 perf_event_sched_in(cpuctx, task_ctx, task);
1622
1623 perf_pmu_enable(cpuctx->ctx.pmu);
1624 perf_ctx_unlock(cpuctx, task_ctx);
1625
1626 return 0;
1627 }
1628
1629 /*
1630 * Attach a performance event to a context
1631 *
1632 * First we add the event to the list with the hardware enable bit
1633 * in event->hw_config cleared.
1634 *
1635 * If the event is attached to a task which is on a CPU we use a smp
1636 * call to enable it in the task context. The task might have been
1637 * scheduled away, but we check this in the smp call again.
1638 */
1639 static void
1640 perf_install_in_context(struct perf_event_context *ctx,
1641 struct perf_event *event,
1642 int cpu)
1643 {
1644 struct task_struct *task = ctx->task;
1645
1646 lockdep_assert_held(&ctx->mutex);
1647
1648 event->ctx = ctx;
1649 if (event->cpu != -1)
1650 event->cpu = cpu;
1651
1652 if (!task) {
1653 /*
1654 * Per cpu events are installed via an smp call and
1655 * the install is always successful.
1656 */
1657 cpu_function_call(cpu, __perf_install_in_context, event);
1658 return;
1659 }
1660
1661 retry:
1662 if (!task_function_call(task, __perf_install_in_context, event))
1663 return;
1664
1665 raw_spin_lock_irq(&ctx->lock);
1666 /*
1667 * If we failed to find a running task, but find the context active now
1668 * that we've acquired the ctx->lock, retry.
1669 */
1670 if (ctx->is_active) {
1671 raw_spin_unlock_irq(&ctx->lock);
1672 goto retry;
1673 }
1674
1675 /*
1676 * Since the task isn't running, its safe to add the event, us holding
1677 * the ctx->lock ensures the task won't get scheduled in.
1678 */
1679 add_event_to_ctx(event, ctx);
1680 raw_spin_unlock_irq(&ctx->lock);
1681 }
1682
1683 /*
1684 * Put a event into inactive state and update time fields.
1685 * Enabling the leader of a group effectively enables all
1686 * the group members that aren't explicitly disabled, so we
1687 * have to update their ->tstamp_enabled also.
1688 * Note: this works for group members as well as group leaders
1689 * since the non-leader members' sibling_lists will be empty.
1690 */
1691 static void __perf_event_mark_enabled(struct perf_event *event)
1692 {
1693 struct perf_event *sub;
1694 u64 tstamp = perf_event_time(event);
1695
1696 event->state = PERF_EVENT_STATE_INACTIVE;
1697 event->tstamp_enabled = tstamp - event->total_time_enabled;
1698 list_for_each_entry(sub, &event->sibling_list, group_entry) {
1699 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
1700 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
1701 }
1702 }
1703
1704 /*
1705 * Cross CPU call to enable a performance event
1706 */
1707 static int __perf_event_enable(void *info)
1708 {
1709 struct perf_event *event = info;
1710 struct perf_event_context *ctx = event->ctx;
1711 struct perf_event *leader = event->group_leader;
1712 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1713 int err;
1714
1715 if (WARN_ON_ONCE(!ctx->is_active))
1716 return -EINVAL;
1717
1718 raw_spin_lock(&ctx->lock);
1719 update_context_time(ctx);
1720
1721 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1722 goto unlock;
1723
1724 /*
1725 * set current task's cgroup time reference point
1726 */
1727 perf_cgroup_set_timestamp(current, ctx);
1728
1729 __perf_event_mark_enabled(event);
1730
1731 if (!event_filter_match(event)) {
1732 if (is_cgroup_event(event))
1733 perf_cgroup_defer_enabled(event);
1734 goto unlock;
1735 }
1736
1737 /*
1738 * If the event is in a group and isn't the group leader,
1739 * then don't put it on unless the group is on.
1740 */
1741 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
1742 goto unlock;
1743
1744 if (!group_can_go_on(event, cpuctx, 1)) {
1745 err = -EEXIST;
1746 } else {
1747 if (event == leader)
1748 err = group_sched_in(event, cpuctx, ctx);
1749 else
1750 err = event_sched_in(event, cpuctx, ctx);
1751 }
1752
1753 if (err) {
1754 /*
1755 * If this event can't go on and it's part of a
1756 * group, then the whole group has to come off.
1757 */
1758 if (leader != event)
1759 group_sched_out(leader, cpuctx, ctx);
1760 if (leader->attr.pinned) {
1761 update_group_times(leader);
1762 leader->state = PERF_EVENT_STATE_ERROR;
1763 }
1764 }
1765
1766 unlock:
1767 raw_spin_unlock(&ctx->lock);
1768
1769 return 0;
1770 }
1771
1772 /*
1773 * Enable a event.
1774 *
1775 * If event->ctx is a cloned context, callers must make sure that
1776 * every task struct that event->ctx->task could possibly point to
1777 * remains valid. This condition is satisfied when called through
1778 * perf_event_for_each_child or perf_event_for_each as described
1779 * for perf_event_disable.
1780 */
1781 void perf_event_enable(struct perf_event *event)
1782 {
1783 struct perf_event_context *ctx = event->ctx;
1784 struct task_struct *task = ctx->task;
1785
1786 if (!task) {
1787 /*
1788 * Enable the event on the cpu that it's on
1789 */
1790 cpu_function_call(event->cpu, __perf_event_enable, event);
1791 return;
1792 }
1793
1794 raw_spin_lock_irq(&ctx->lock);
1795 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1796 goto out;
1797
1798 /*
1799 * If the event is in error state, clear that first.
1800 * That way, if we see the event in error state below, we
1801 * know that it has gone back into error state, as distinct
1802 * from the task having been scheduled away before the
1803 * cross-call arrived.
1804 */
1805 if (event->state == PERF_EVENT_STATE_ERROR)
1806 event->state = PERF_EVENT_STATE_OFF;
1807
1808 retry:
1809 if (!ctx->is_active) {
1810 __perf_event_mark_enabled(event);
1811 goto out;
1812 }
1813
1814 raw_spin_unlock_irq(&ctx->lock);
1815
1816 if (!task_function_call(task, __perf_event_enable, event))
1817 return;
1818
1819 raw_spin_lock_irq(&ctx->lock);
1820
1821 /*
1822 * If the context is active and the event is still off,
1823 * we need to retry the cross-call.
1824 */
1825 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
1826 /*
1827 * task could have been flipped by a concurrent
1828 * perf_event_context_sched_out()
1829 */
1830 task = ctx->task;
1831 goto retry;
1832 }
1833
1834 out:
1835 raw_spin_unlock_irq(&ctx->lock);
1836 }
1837 EXPORT_SYMBOL_GPL(perf_event_enable);
1838
1839 int perf_event_refresh(struct perf_event *event, int refresh)
1840 {
1841 /*
1842 * not supported on inherited events
1843 */
1844 if (event->attr.inherit || !is_sampling_event(event))
1845 return -EINVAL;
1846
1847 atomic_add(refresh, &event->event_limit);
1848 perf_event_enable(event);
1849
1850 return 0;
1851 }
1852 EXPORT_SYMBOL_GPL(perf_event_refresh);
1853
1854 static void ctx_sched_out(struct perf_event_context *ctx,
1855 struct perf_cpu_context *cpuctx,
1856 enum event_type_t event_type)
1857 {
1858 struct perf_event *event;
1859 int is_active = ctx->is_active;
1860
1861 ctx->is_active &= ~event_type;
1862 if (likely(!ctx->nr_events))
1863 return;
1864
1865 update_context_time(ctx);
1866 update_cgrp_time_from_cpuctx(cpuctx);
1867 if (!ctx->nr_active)
1868 return;
1869
1870 perf_pmu_disable(ctx->pmu);
1871 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
1872 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1873 group_sched_out(event, cpuctx, ctx);
1874 }
1875
1876 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
1877 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1878 group_sched_out(event, cpuctx, ctx);
1879 }
1880 perf_pmu_enable(ctx->pmu);
1881 }
1882
1883 /*
1884 * Test whether two contexts are equivalent, i.e. whether they
1885 * have both been cloned from the same version of the same context
1886 * and they both have the same number of enabled events.
1887 * If the number of enabled events is the same, then the set
1888 * of enabled events should be the same, because these are both
1889 * inherited contexts, therefore we can't access individual events
1890 * in them directly with an fd; we can only enable/disable all
1891 * events via prctl, or enable/disable all events in a family
1892 * via ioctl, which will have the same effect on both contexts.
1893 */
1894 static int context_equiv(struct perf_event_context *ctx1,
1895 struct perf_event_context *ctx2)
1896 {
1897 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1898 && ctx1->parent_gen == ctx2->parent_gen
1899 && !ctx1->pin_count && !ctx2->pin_count;
1900 }
1901
1902 static void __perf_event_sync_stat(struct perf_event *event,
1903 struct perf_event *next_event)
1904 {
1905 u64 value;
1906
1907 if (!event->attr.inherit_stat)
1908 return;
1909
1910 /*
1911 * Update the event value, we cannot use perf_event_read()
1912 * because we're in the middle of a context switch and have IRQs
1913 * disabled, which upsets smp_call_function_single(), however
1914 * we know the event must be on the current CPU, therefore we
1915 * don't need to use it.
1916 */
1917 switch (event->state) {
1918 case PERF_EVENT_STATE_ACTIVE:
1919 event->pmu->read(event);
1920 /* fall-through */
1921
1922 case PERF_EVENT_STATE_INACTIVE:
1923 update_event_times(event);
1924 break;
1925
1926 default:
1927 break;
1928 }
1929
1930 /*
1931 * In order to keep per-task stats reliable we need to flip the event
1932 * values when we flip the contexts.
1933 */
1934 value = local64_read(&next_event->count);
1935 value = local64_xchg(&event->count, value);
1936 local64_set(&next_event->count, value);
1937
1938 swap(event->total_time_enabled, next_event->total_time_enabled);
1939 swap(event->total_time_running, next_event->total_time_running);
1940
1941 /*
1942 * Since we swizzled the values, update the user visible data too.
1943 */
1944 perf_event_update_userpage(event);
1945 perf_event_update_userpage(next_event);
1946 }
1947
1948 #define list_next_entry(pos, member) \
1949 list_entry(pos->member.next, typeof(*pos), member)
1950
1951 static void perf_event_sync_stat(struct perf_event_context *ctx,
1952 struct perf_event_context *next_ctx)
1953 {
1954 struct perf_event *event, *next_event;
1955
1956 if (!ctx->nr_stat)
1957 return;
1958
1959 update_context_time(ctx);
1960
1961 event = list_first_entry(&ctx->event_list,
1962 struct perf_event, event_entry);
1963
1964 next_event = list_first_entry(&next_ctx->event_list,
1965 struct perf_event, event_entry);
1966
1967 while (&event->event_entry != &ctx->event_list &&
1968 &next_event->event_entry != &next_ctx->event_list) {
1969
1970 __perf_event_sync_stat(event, next_event);
1971
1972 event = list_next_entry(event, event_entry);
1973 next_event = list_next_entry(next_event, event_entry);
1974 }
1975 }
1976
1977 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
1978 struct task_struct *next)
1979 {
1980 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
1981 struct perf_event_context *next_ctx;
1982 struct perf_event_context *parent;
1983 struct perf_cpu_context *cpuctx;
1984 int do_switch = 1;
1985
1986 if (likely(!ctx))
1987 return;
1988
1989 cpuctx = __get_cpu_context(ctx);
1990 if (!cpuctx->task_ctx)
1991 return;
1992
1993 rcu_read_lock();
1994 parent = rcu_dereference(ctx->parent_ctx);
1995 next_ctx = next->perf_event_ctxp[ctxn];
1996 if (parent && next_ctx &&
1997 rcu_dereference(next_ctx->parent_ctx) == parent) {
1998 /*
1999 * Looks like the two contexts are clones, so we might be
2000 * able to optimize the context switch. We lock both
2001 * contexts and check that they are clones under the
2002 * lock (including re-checking that neither has been
2003 * uncloned in the meantime). It doesn't matter which
2004 * order we take the locks because no other cpu could
2005 * be trying to lock both of these tasks.
2006 */
2007 raw_spin_lock(&ctx->lock);
2008 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2009 if (context_equiv(ctx, next_ctx)) {
2010 /*
2011 * XXX do we need a memory barrier of sorts
2012 * wrt to rcu_dereference() of perf_event_ctxp
2013 */
2014 task->perf_event_ctxp[ctxn] = next_ctx;
2015 next->perf_event_ctxp[ctxn] = ctx;
2016 ctx->task = next;
2017 next_ctx->task = task;
2018 do_switch = 0;
2019
2020 perf_event_sync_stat(ctx, next_ctx);
2021 }
2022 raw_spin_unlock(&next_ctx->lock);
2023 raw_spin_unlock(&ctx->lock);
2024 }
2025 rcu_read_unlock();
2026
2027 if (do_switch) {
2028 raw_spin_lock(&ctx->lock);
2029 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2030 cpuctx->task_ctx = NULL;
2031 raw_spin_unlock(&ctx->lock);
2032 }
2033 }
2034
2035 #define for_each_task_context_nr(ctxn) \
2036 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2037
2038 /*
2039 * Called from scheduler to remove the events of the current task,
2040 * with interrupts disabled.
2041 *
2042 * We stop each event and update the event value in event->count.
2043 *
2044 * This does not protect us against NMI, but disable()
2045 * sets the disabled bit in the control field of event _before_
2046 * accessing the event control register. If a NMI hits, then it will
2047 * not restart the event.
2048 */
2049 void __perf_event_task_sched_out(struct task_struct *task,
2050 struct task_struct *next)
2051 {
2052 int ctxn;
2053
2054 for_each_task_context_nr(ctxn)
2055 perf_event_context_sched_out(task, ctxn, next);
2056
2057 /*
2058 * if cgroup events exist on this CPU, then we need
2059 * to check if we have to switch out PMU state.
2060 * cgroup event are system-wide mode only
2061 */
2062 if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2063 perf_cgroup_sched_out(task, next);
2064 }
2065
2066 static void task_ctx_sched_out(struct perf_event_context *ctx)
2067 {
2068 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2069
2070 if (!cpuctx->task_ctx)
2071 return;
2072
2073 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2074 return;
2075
2076 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2077 cpuctx->task_ctx = NULL;
2078 }
2079
2080 /*
2081 * Called with IRQs disabled
2082 */
2083 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2084 enum event_type_t event_type)
2085 {
2086 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2087 }
2088
2089 static void
2090 ctx_pinned_sched_in(struct perf_event_context *ctx,
2091 struct perf_cpu_context *cpuctx)
2092 {
2093 struct perf_event *event;
2094
2095 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2096 if (event->state <= PERF_EVENT_STATE_OFF)
2097 continue;
2098 if (!event_filter_match(event))
2099 continue;
2100
2101 /* may need to reset tstamp_enabled */
2102 if (is_cgroup_event(event))
2103 perf_cgroup_mark_enabled(event, ctx);
2104
2105 if (group_can_go_on(event, cpuctx, 1))
2106 group_sched_in(event, cpuctx, ctx);
2107
2108 /*
2109 * If this pinned group hasn't been scheduled,
2110 * put it in error state.
2111 */
2112 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2113 update_group_times(event);
2114 event->state = PERF_EVENT_STATE_ERROR;
2115 }
2116 }
2117 }
2118
2119 static void
2120 ctx_flexible_sched_in(struct perf_event_context *ctx,
2121 struct perf_cpu_context *cpuctx)
2122 {
2123 struct perf_event *event;
2124 int can_add_hw = 1;
2125
2126 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2127 /* Ignore events in OFF or ERROR state */
2128 if (event->state <= PERF_EVENT_STATE_OFF)
2129 continue;
2130 /*
2131 * Listen to the 'cpu' scheduling filter constraint
2132 * of events:
2133 */
2134 if (!event_filter_match(event))
2135 continue;
2136
2137 /* may need to reset tstamp_enabled */
2138 if (is_cgroup_event(event))
2139 perf_cgroup_mark_enabled(event, ctx);
2140
2141 if (group_can_go_on(event, cpuctx, can_add_hw)) {
2142 if (group_sched_in(event, cpuctx, ctx))
2143 can_add_hw = 0;
2144 }
2145 }
2146 }
2147
2148 static void
2149 ctx_sched_in(struct perf_event_context *ctx,
2150 struct perf_cpu_context *cpuctx,
2151 enum event_type_t event_type,
2152 struct task_struct *task)
2153 {
2154 u64 now;
2155 int is_active = ctx->is_active;
2156
2157 ctx->is_active |= event_type;
2158 if (likely(!ctx->nr_events))
2159 return;
2160
2161 now = perf_clock();
2162 ctx->timestamp = now;
2163 perf_cgroup_set_timestamp(task, ctx);
2164 /*
2165 * First go through the list and put on any pinned groups
2166 * in order to give them the best chance of going on.
2167 */
2168 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2169 ctx_pinned_sched_in(ctx, cpuctx);
2170
2171 /* Then walk through the lower prio flexible groups */
2172 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2173 ctx_flexible_sched_in(ctx, cpuctx);
2174 }
2175
2176 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
2177 enum event_type_t event_type,
2178 struct task_struct *task)
2179 {
2180 struct perf_event_context *ctx = &cpuctx->ctx;
2181
2182 ctx_sched_in(ctx, cpuctx, event_type, task);
2183 }
2184
2185 static void perf_event_context_sched_in(struct perf_event_context *ctx,
2186 struct task_struct *task)
2187 {
2188 struct perf_cpu_context *cpuctx;
2189
2190 cpuctx = __get_cpu_context(ctx);
2191 if (cpuctx->task_ctx == ctx)
2192 return;
2193
2194 perf_ctx_lock(cpuctx, ctx);
2195 perf_pmu_disable(ctx->pmu);
2196 /*
2197 * We want to keep the following priority order:
2198 * cpu pinned (that don't need to move), task pinned,
2199 * cpu flexible, task flexible.
2200 */
2201 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2202
2203 if (ctx->nr_events)
2204 cpuctx->task_ctx = ctx;
2205
2206 perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2207
2208 perf_pmu_enable(ctx->pmu);
2209 perf_ctx_unlock(cpuctx, ctx);
2210
2211 /*
2212 * Since these rotations are per-cpu, we need to ensure the
2213 * cpu-context we got scheduled on is actually rotating.
2214 */
2215 perf_pmu_rotate_start(ctx->pmu);
2216 }
2217
2218 /*
2219 * When sampling the branck stack in system-wide, it may be necessary
2220 * to flush the stack on context switch. This happens when the branch
2221 * stack does not tag its entries with the pid of the current task.
2222 * Otherwise it becomes impossible to associate a branch entry with a
2223 * task. This ambiguity is more likely to appear when the branch stack
2224 * supports priv level filtering and the user sets it to monitor only
2225 * at the user level (which could be a useful measurement in system-wide
2226 * mode). In that case, the risk is high of having a branch stack with
2227 * branch from multiple tasks. Flushing may mean dropping the existing
2228 * entries or stashing them somewhere in the PMU specific code layer.
2229 *
2230 * This function provides the context switch callback to the lower code
2231 * layer. It is invoked ONLY when there is at least one system-wide context
2232 * with at least one active event using taken branch sampling.
2233 */
2234 static void perf_branch_stack_sched_in(struct task_struct *prev,
2235 struct task_struct *task)
2236 {
2237 struct perf_cpu_context *cpuctx;
2238 struct pmu *pmu;
2239 unsigned long flags;
2240
2241 /* no need to flush branch stack if not changing task */
2242 if (prev == task)
2243 return;
2244
2245 local_irq_save(flags);
2246
2247 rcu_read_lock();
2248
2249 list_for_each_entry_rcu(pmu, &pmus, entry) {
2250 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2251
2252 /*
2253 * check if the context has at least one
2254 * event using PERF_SAMPLE_BRANCH_STACK
2255 */
2256 if (cpuctx->ctx.nr_branch_stack > 0
2257 && pmu->flush_branch_stack) {
2258
2259 pmu = cpuctx->ctx.pmu;
2260
2261 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2262
2263 perf_pmu_disable(pmu);
2264
2265 pmu->flush_branch_stack();
2266
2267 perf_pmu_enable(pmu);
2268
2269 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2270 }
2271 }
2272
2273 rcu_read_unlock();
2274
2275 local_irq_restore(flags);
2276 }
2277
2278 /*
2279 * Called from scheduler to add the events of the current task
2280 * with interrupts disabled.
2281 *
2282 * We restore the event value and then enable it.
2283 *
2284 * This does not protect us against NMI, but enable()
2285 * sets the enabled bit in the control field of event _before_
2286 * accessing the event control register. If a NMI hits, then it will
2287 * keep the event running.
2288 */
2289 void __perf_event_task_sched_in(struct task_struct *prev,
2290 struct task_struct *task)
2291 {
2292 struct perf_event_context *ctx;
2293 int ctxn;
2294
2295 for_each_task_context_nr(ctxn) {
2296 ctx = task->perf_event_ctxp[ctxn];
2297 if (likely(!ctx))
2298 continue;
2299
2300 perf_event_context_sched_in(ctx, task);
2301 }
2302 /*
2303 * if cgroup events exist on this CPU, then we need
2304 * to check if we have to switch in PMU state.
2305 * cgroup event are system-wide mode only
2306 */
2307 if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2308 perf_cgroup_sched_in(prev, task);
2309
2310 /* check for system-wide branch_stack events */
2311 if (atomic_read(&__get_cpu_var(perf_branch_stack_events)))
2312 perf_branch_stack_sched_in(prev, task);
2313 }
2314
2315 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2316 {
2317 u64 frequency = event->attr.sample_freq;
2318 u64 sec = NSEC_PER_SEC;
2319 u64 divisor, dividend;
2320
2321 int count_fls, nsec_fls, frequency_fls, sec_fls;
2322
2323 count_fls = fls64(count);
2324 nsec_fls = fls64(nsec);
2325 frequency_fls = fls64(frequency);
2326 sec_fls = 30;
2327
2328 /*
2329 * We got @count in @nsec, with a target of sample_freq HZ
2330 * the target period becomes:
2331 *
2332 * @count * 10^9
2333 * period = -------------------
2334 * @nsec * sample_freq
2335 *
2336 */
2337
2338 /*
2339 * Reduce accuracy by one bit such that @a and @b converge
2340 * to a similar magnitude.
2341 */
2342 #define REDUCE_FLS(a, b) \
2343 do { \
2344 if (a##_fls > b##_fls) { \
2345 a >>= 1; \
2346 a##_fls--; \
2347 } else { \
2348 b >>= 1; \
2349 b##_fls--; \
2350 } \
2351 } while (0)
2352
2353 /*
2354 * Reduce accuracy until either term fits in a u64, then proceed with
2355 * the other, so that finally we can do a u64/u64 division.
2356 */
2357 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2358 REDUCE_FLS(nsec, frequency);
2359 REDUCE_FLS(sec, count);
2360 }
2361
2362 if (count_fls + sec_fls > 64) {
2363 divisor = nsec * frequency;
2364
2365 while (count_fls + sec_fls > 64) {
2366 REDUCE_FLS(count, sec);
2367 divisor >>= 1;
2368 }
2369
2370 dividend = count * sec;
2371 } else {
2372 dividend = count * sec;
2373
2374 while (nsec_fls + frequency_fls > 64) {
2375 REDUCE_FLS(nsec, frequency);
2376 dividend >>= 1;
2377 }
2378
2379 divisor = nsec * frequency;
2380 }
2381
2382 if (!divisor)
2383 return dividend;
2384
2385 return div64_u64(dividend, divisor);
2386 }
2387
2388 static DEFINE_PER_CPU(int, perf_throttled_count);
2389 static DEFINE_PER_CPU(u64, perf_throttled_seq);
2390
2391 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2392 {
2393 struct hw_perf_event *hwc = &event->hw;
2394 s64 period, sample_period;
2395 s64 delta;
2396
2397 period = perf_calculate_period(event, nsec, count);
2398
2399 delta = (s64)(period - hwc->sample_period);
2400 delta = (delta + 7) / 8; /* low pass filter */
2401
2402 sample_period = hwc->sample_period + delta;
2403
2404 if (!sample_period)
2405 sample_period = 1;
2406
2407 hwc->sample_period = sample_period;
2408
2409 if (local64_read(&hwc->period_left) > 8*sample_period) {
2410 if (disable)
2411 event->pmu->stop(event, PERF_EF_UPDATE);
2412
2413 local64_set(&hwc->period_left, 0);
2414
2415 if (disable)
2416 event->pmu->start(event, PERF_EF_RELOAD);
2417 }
2418 }
2419
2420 /*
2421 * combine freq adjustment with unthrottling to avoid two passes over the
2422 * events. At the same time, make sure, having freq events does not change
2423 * the rate of unthrottling as that would introduce bias.
2424 */
2425 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2426 int needs_unthr)
2427 {
2428 struct perf_event *event;
2429 struct hw_perf_event *hwc;
2430 u64 now, period = TICK_NSEC;
2431 s64 delta;
2432
2433 /*
2434 * only need to iterate over all events iff:
2435 * - context have events in frequency mode (needs freq adjust)
2436 * - there are events to unthrottle on this cpu
2437 */
2438 if (!(ctx->nr_freq || needs_unthr))
2439 return;
2440
2441 raw_spin_lock(&ctx->lock);
2442 perf_pmu_disable(ctx->pmu);
2443
2444 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2445 if (event->state != PERF_EVENT_STATE_ACTIVE)
2446 continue;
2447
2448 if (!event_filter_match(event))
2449 continue;
2450
2451 hwc = &event->hw;
2452
2453 if (needs_unthr && hwc->interrupts == MAX_INTERRUPTS) {
2454 hwc->interrupts = 0;
2455 perf_log_throttle(event, 1);
2456 event->pmu->start(event, 0);
2457 }
2458
2459 if (!event->attr.freq || !event->attr.sample_freq)
2460 continue;
2461
2462 /*
2463 * stop the event and update event->count
2464 */
2465 event->pmu->stop(event, PERF_EF_UPDATE);
2466
2467 now = local64_read(&event->count);
2468 delta = now - hwc->freq_count_stamp;
2469 hwc->freq_count_stamp = now;
2470
2471 /*
2472 * restart the event
2473 * reload only if value has changed
2474 * we have stopped the event so tell that
2475 * to perf_adjust_period() to avoid stopping it
2476 * twice.
2477 */
2478 if (delta > 0)
2479 perf_adjust_period(event, period, delta, false);
2480
2481 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
2482 }
2483
2484 perf_pmu_enable(ctx->pmu);
2485 raw_spin_unlock(&ctx->lock);
2486 }
2487
2488 /*
2489 * Round-robin a context's events:
2490 */
2491 static void rotate_ctx(struct perf_event_context *ctx)
2492 {
2493 /*
2494 * Rotate the first entry last of non-pinned groups. Rotation might be
2495 * disabled by the inheritance code.
2496 */
2497 if (!ctx->rotate_disable)
2498 list_rotate_left(&ctx->flexible_groups);
2499 }
2500
2501 /*
2502 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
2503 * because they're strictly cpu affine and rotate_start is called with IRQs
2504 * disabled, while rotate_context is called from IRQ context.
2505 */
2506 static void perf_rotate_context(struct perf_cpu_context *cpuctx)
2507 {
2508 struct perf_event_context *ctx = NULL;
2509 int rotate = 0, remove = 1;
2510
2511 if (cpuctx->ctx.nr_events) {
2512 remove = 0;
2513 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
2514 rotate = 1;
2515 }
2516
2517 ctx = cpuctx->task_ctx;
2518 if (ctx && ctx->nr_events) {
2519 remove = 0;
2520 if (ctx->nr_events != ctx->nr_active)
2521 rotate = 1;
2522 }
2523
2524 if (!rotate)
2525 goto done;
2526
2527 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2528 perf_pmu_disable(cpuctx->ctx.pmu);
2529
2530 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2531 if (ctx)
2532 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
2533
2534 rotate_ctx(&cpuctx->ctx);
2535 if (ctx)
2536 rotate_ctx(ctx);
2537
2538 perf_event_sched_in(cpuctx, ctx, current);
2539
2540 perf_pmu_enable(cpuctx->ctx.pmu);
2541 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2542 done:
2543 if (remove)
2544 list_del_init(&cpuctx->rotation_list);
2545 }
2546
2547 void perf_event_task_tick(void)
2548 {
2549 struct list_head *head = &__get_cpu_var(rotation_list);
2550 struct perf_cpu_context *cpuctx, *tmp;
2551 struct perf_event_context *ctx;
2552 int throttled;
2553
2554 WARN_ON(!irqs_disabled());
2555
2556 __this_cpu_inc(perf_throttled_seq);
2557 throttled = __this_cpu_xchg(perf_throttled_count, 0);
2558
2559 list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
2560 ctx = &cpuctx->ctx;
2561 perf_adjust_freq_unthr_context(ctx, throttled);
2562
2563 ctx = cpuctx->task_ctx;
2564 if (ctx)
2565 perf_adjust_freq_unthr_context(ctx, throttled);
2566
2567 if (cpuctx->jiffies_interval == 1 ||
2568 !(jiffies % cpuctx->jiffies_interval))
2569 perf_rotate_context(cpuctx);
2570 }
2571 }
2572
2573 static int event_enable_on_exec(struct perf_event *event,
2574 struct perf_event_context *ctx)
2575 {
2576 if (!event->attr.enable_on_exec)
2577 return 0;
2578
2579 event->attr.enable_on_exec = 0;
2580 if (event->state >= PERF_EVENT_STATE_INACTIVE)
2581 return 0;
2582
2583 __perf_event_mark_enabled(event);
2584
2585 return 1;
2586 }
2587
2588 /*
2589 * Enable all of a task's events that have been marked enable-on-exec.
2590 * This expects task == current.
2591 */
2592 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
2593 {
2594 struct perf_event *event;
2595 unsigned long flags;
2596 int enabled = 0;
2597 int ret;
2598
2599 local_irq_save(flags);
2600 if (!ctx || !ctx->nr_events)
2601 goto out;
2602
2603 /*
2604 * We must ctxsw out cgroup events to avoid conflict
2605 * when invoking perf_task_event_sched_in() later on
2606 * in this function. Otherwise we end up trying to
2607 * ctxswin cgroup events which are already scheduled
2608 * in.
2609 */
2610 perf_cgroup_sched_out(current, NULL);
2611
2612 raw_spin_lock(&ctx->lock);
2613 task_ctx_sched_out(ctx);
2614
2615 list_for_each_entry(event, &ctx->event_list, event_entry) {
2616 ret = event_enable_on_exec(event, ctx);
2617 if (ret)
2618 enabled = 1;
2619 }
2620
2621 /*
2622 * Unclone this context if we enabled any event.
2623 */
2624 if (enabled)
2625 unclone_ctx(ctx);
2626
2627 raw_spin_unlock(&ctx->lock);
2628
2629 /*
2630 * Also calls ctxswin for cgroup events, if any:
2631 */
2632 perf_event_context_sched_in(ctx, ctx->task);
2633 out:
2634 local_irq_restore(flags);
2635 }
2636
2637 /*
2638 * Cross CPU call to read the hardware event
2639 */
2640 static void __perf_event_read(void *info)
2641 {
2642 struct perf_event *event = info;
2643 struct perf_event_context *ctx = event->ctx;
2644 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2645
2646 /*
2647 * If this is a task context, we need to check whether it is
2648 * the current task context of this cpu. If not it has been
2649 * scheduled out before the smp call arrived. In that case
2650 * event->count would have been updated to a recent sample
2651 * when the event was scheduled out.
2652 */
2653 if (ctx->task && cpuctx->task_ctx != ctx)
2654 return;
2655
2656 raw_spin_lock(&ctx->lock);
2657 if (ctx->is_active) {
2658 update_context_time(ctx);
2659 update_cgrp_time_from_event(event);
2660 }
2661 update_event_times(event);
2662 if (event->state == PERF_EVENT_STATE_ACTIVE)
2663 event->pmu->read(event);
2664 raw_spin_unlock(&ctx->lock);
2665 }
2666
2667 static inline u64 perf_event_count(struct perf_event *event)
2668 {
2669 return local64_read(&event->count) + atomic64_read(&event->child_count);
2670 }
2671
2672 static u64 perf_event_read(struct perf_event *event)
2673 {
2674 /*
2675 * If event is enabled and currently active on a CPU, update the
2676 * value in the event structure:
2677 */
2678 if (event->state == PERF_EVENT_STATE_ACTIVE) {
2679 smp_call_function_single(event->oncpu,
2680 __perf_event_read, event, 1);
2681 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2682 struct perf_event_context *ctx = event->ctx;
2683 unsigned long flags;
2684
2685 raw_spin_lock_irqsave(&ctx->lock, flags);
2686 /*
2687 * may read while context is not active
2688 * (e.g., thread is blocked), in that case
2689 * we cannot update context time
2690 */
2691 if (ctx->is_active) {
2692 update_context_time(ctx);
2693 update_cgrp_time_from_event(event);
2694 }
2695 update_event_times(event);
2696 raw_spin_unlock_irqrestore(&ctx->lock, flags);
2697 }
2698
2699 return perf_event_count(event);
2700 }
2701
2702 /*
2703 * Initialize the perf_event context in a task_struct:
2704 */
2705 static void __perf_event_init_context(struct perf_event_context *ctx)
2706 {
2707 raw_spin_lock_init(&ctx->lock);
2708 mutex_init(&ctx->mutex);
2709 INIT_LIST_HEAD(&ctx->pinned_groups);
2710 INIT_LIST_HEAD(&ctx->flexible_groups);
2711 INIT_LIST_HEAD(&ctx->event_list);
2712 atomic_set(&ctx->refcount, 1);
2713 }
2714
2715 static struct perf_event_context *
2716 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
2717 {
2718 struct perf_event_context *ctx;
2719
2720 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
2721 if (!ctx)
2722 return NULL;
2723
2724 __perf_event_init_context(ctx);
2725 if (task) {
2726 ctx->task = task;
2727 get_task_struct(task);
2728 }
2729 ctx->pmu = pmu;
2730
2731 return ctx;
2732 }
2733
2734 static struct task_struct *
2735 find_lively_task_by_vpid(pid_t vpid)
2736 {
2737 struct task_struct *task;
2738 int err;
2739
2740 rcu_read_lock();
2741 if (!vpid)
2742 task = current;
2743 else
2744 task = find_task_by_vpid(vpid);
2745 if (task)
2746 get_task_struct(task);
2747 rcu_read_unlock();
2748
2749 if (!task)
2750 return ERR_PTR(-ESRCH);
2751
2752 /* Reuse ptrace permission checks for now. */
2753 err = -EACCES;
2754 if (!ptrace_may_access(task, PTRACE_MODE_READ))
2755 goto errout;
2756
2757 return task;
2758 errout:
2759 put_task_struct(task);
2760 return ERR_PTR(err);
2761
2762 }
2763
2764 /*
2765 * Returns a matching context with refcount and pincount.
2766 */
2767 static struct perf_event_context *
2768 find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
2769 {
2770 struct perf_event_context *ctx;
2771 struct perf_cpu_context *cpuctx;
2772 unsigned long flags;
2773 int ctxn, err;
2774
2775 if (!task) {
2776 /* Must be root to operate on a CPU event: */
2777 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
2778 return ERR_PTR(-EACCES);
2779
2780 /*
2781 * We could be clever and allow to attach a event to an
2782 * offline CPU and activate it when the CPU comes up, but
2783 * that's for later.
2784 */
2785 if (!cpu_online(cpu))
2786 return ERR_PTR(-ENODEV);
2787
2788 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
2789 ctx = &cpuctx->ctx;
2790 get_ctx(ctx);
2791 ++ctx->pin_count;
2792
2793 return ctx;
2794 }
2795
2796 err = -EINVAL;
2797 ctxn = pmu->task_ctx_nr;
2798 if (ctxn < 0)
2799 goto errout;
2800
2801 retry:
2802 ctx = perf_lock_task_context(task, ctxn, &flags);
2803 if (ctx) {
2804 unclone_ctx(ctx);
2805 ++ctx->pin_count;
2806 raw_spin_unlock_irqrestore(&ctx->lock, flags);
2807 } else {
2808 ctx = alloc_perf_context(pmu, task);
2809 err = -ENOMEM;
2810 if (!ctx)
2811 goto errout;
2812
2813 err = 0;
2814 mutex_lock(&task->perf_event_mutex);
2815 /*
2816 * If it has already passed perf_event_exit_task().
2817 * we must see PF_EXITING, it takes this mutex too.
2818 */
2819 if (task->flags & PF_EXITING)
2820 err = -ESRCH;
2821 else if (task->perf_event_ctxp[ctxn])
2822 err = -EAGAIN;
2823 else {
2824 get_ctx(ctx);
2825 ++ctx->pin_count;
2826 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
2827 }
2828 mutex_unlock(&task->perf_event_mutex);
2829
2830 if (unlikely(err)) {
2831 put_ctx(ctx);
2832
2833 if (err == -EAGAIN)
2834 goto retry;
2835 goto errout;
2836 }
2837 }
2838
2839 return ctx;
2840
2841 errout:
2842 return ERR_PTR(err);
2843 }
2844
2845 static void perf_event_free_filter(struct perf_event *event);
2846
2847 static void free_event_rcu(struct rcu_head *head)
2848 {
2849 struct perf_event *event;
2850
2851 event = container_of(head, struct perf_event, rcu_head);
2852 if (event->ns)
2853 put_pid_ns(event->ns);
2854 perf_event_free_filter(event);
2855 kfree(event);
2856 }
2857
2858 static void ring_buffer_put(struct ring_buffer *rb);
2859
2860 static void free_event(struct perf_event *event)
2861 {
2862 irq_work_sync(&event->pending);
2863
2864 if (!event->parent) {
2865 if (event->attach_state & PERF_ATTACH_TASK)
2866 static_key_slow_dec_deferred(&perf_sched_events);
2867 if (event->attr.mmap || event->attr.mmap_data)
2868 atomic_dec(&nr_mmap_events);
2869 if (event->attr.comm)
2870 atomic_dec(&nr_comm_events);
2871 if (event->attr.task)
2872 atomic_dec(&nr_task_events);
2873 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
2874 put_callchain_buffers();
2875 if (is_cgroup_event(event)) {
2876 atomic_dec(&per_cpu(perf_cgroup_events, event->cpu));
2877 static_key_slow_dec_deferred(&perf_sched_events);
2878 }
2879
2880 if (has_branch_stack(event)) {
2881 static_key_slow_dec_deferred(&perf_sched_events);
2882 /* is system-wide event */
2883 if (!(event->attach_state & PERF_ATTACH_TASK))
2884 atomic_dec(&per_cpu(perf_branch_stack_events,
2885 event->cpu));
2886 }
2887 }
2888
2889 if (event->rb) {
2890 ring_buffer_put(event->rb);
2891 event->rb = NULL;
2892 }
2893
2894 if (is_cgroup_event(event))
2895 perf_detach_cgroup(event);
2896
2897 if (event->destroy)
2898 event->destroy(event);
2899
2900 if (event->ctx)
2901 put_ctx(event->ctx);
2902
2903 call_rcu(&event->rcu_head, free_event_rcu);
2904 }
2905
2906 int perf_event_release_kernel(struct perf_event *event)
2907 {
2908 struct perf_event_context *ctx = event->ctx;
2909
2910 WARN_ON_ONCE(ctx->parent_ctx);
2911 /*
2912 * There are two ways this annotation is useful:
2913 *
2914 * 1) there is a lock recursion from perf_event_exit_task
2915 * see the comment there.
2916 *
2917 * 2) there is a lock-inversion with mmap_sem through
2918 * perf_event_read_group(), which takes faults while
2919 * holding ctx->mutex, however this is called after
2920 * the last filedesc died, so there is no possibility
2921 * to trigger the AB-BA case.
2922 */
2923 mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
2924 raw_spin_lock_irq(&ctx->lock);
2925 perf_group_detach(event);
2926 raw_spin_unlock_irq(&ctx->lock);
2927 perf_remove_from_context(event);
2928 mutex_unlock(&ctx->mutex);
2929
2930 free_event(event);
2931
2932 return 0;
2933 }
2934 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
2935
2936 /*
2937 * Called when the last reference to the file is gone.
2938 */
2939 static void put_event(struct perf_event *event)
2940 {
2941 struct task_struct *owner;
2942
2943 if (!atomic_long_dec_and_test(&event->refcount))
2944 return;
2945
2946 rcu_read_lock();
2947 owner = ACCESS_ONCE(event->owner);
2948 /*
2949 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
2950 * !owner it means the list deletion is complete and we can indeed
2951 * free this event, otherwise we need to serialize on
2952 * owner->perf_event_mutex.
2953 */
2954 smp_read_barrier_depends();
2955 if (owner) {
2956 /*
2957 * Since delayed_put_task_struct() also drops the last
2958 * task reference we can safely take a new reference
2959 * while holding the rcu_read_lock().
2960 */
2961 get_task_struct(owner);
2962 }
2963 rcu_read_unlock();
2964
2965 if (owner) {
2966 mutex_lock(&owner->perf_event_mutex);
2967 /*
2968 * We have to re-check the event->owner field, if it is cleared
2969 * we raced with perf_event_exit_task(), acquiring the mutex
2970 * ensured they're done, and we can proceed with freeing the
2971 * event.
2972 */
2973 if (event->owner)
2974 list_del_init(&event->owner_entry);
2975 mutex_unlock(&owner->perf_event_mutex);
2976 put_task_struct(owner);
2977 }
2978
2979 perf_event_release_kernel(event);
2980 }
2981
2982 static int perf_release(struct inode *inode, struct file *file)
2983 {
2984 put_event(file->private_data);
2985 return 0;
2986 }
2987
2988 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
2989 {
2990 struct perf_event *child;
2991 u64 total = 0;
2992
2993 *enabled = 0;
2994 *running = 0;
2995
2996 mutex_lock(&event->child_mutex);
2997 total += perf_event_read(event);
2998 *enabled += event->total_time_enabled +
2999 atomic64_read(&event->child_total_time_enabled);
3000 *running += event->total_time_running +
3001 atomic64_read(&event->child_total_time_running);
3002
3003 list_for_each_entry(child, &event->child_list, child_list) {
3004 total += perf_event_read(child);
3005 *enabled += child->total_time_enabled;
3006 *running += child->total_time_running;
3007 }
3008 mutex_unlock(&event->child_mutex);
3009
3010 return total;
3011 }
3012 EXPORT_SYMBOL_GPL(perf_event_read_value);
3013
3014 static int perf_event_read_group(struct perf_event *event,
3015 u64 read_format, char __user *buf)
3016 {
3017 struct perf_event *leader = event->group_leader, *sub;
3018 int n = 0, size = 0, ret = -EFAULT;
3019 struct perf_event_context *ctx = leader->ctx;
3020 u64 values[5];
3021 u64 count, enabled, running;
3022
3023 mutex_lock(&ctx->mutex);
3024 count = perf_event_read_value(leader, &enabled, &running);
3025
3026 values[n++] = 1 + leader->nr_siblings;
3027 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3028 values[n++] = enabled;
3029 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3030 values[n++] = running;
3031 values[n++] = count;
3032 if (read_format & PERF_FORMAT_ID)
3033 values[n++] = primary_event_id(leader);
3034
3035 size = n * sizeof(u64);
3036
3037 if (copy_to_user(buf, values, size))
3038 goto unlock;
3039
3040 ret = size;
3041
3042 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3043 n = 0;
3044
3045 values[n++] = perf_event_read_value(sub, &enabled, &running);
3046 if (read_format & PERF_FORMAT_ID)
3047 values[n++] = primary_event_id(sub);
3048
3049 size = n * sizeof(u64);
3050
3051 if (copy_to_user(buf + ret, values, size)) {
3052 ret = -EFAULT;
3053 goto unlock;
3054 }
3055
3056 ret += size;
3057 }
3058 unlock:
3059 mutex_unlock(&ctx->mutex);
3060
3061 return ret;
3062 }
3063
3064 static int perf_event_read_one(struct perf_event *event,
3065 u64 read_format, char __user *buf)
3066 {
3067 u64 enabled, running;
3068 u64 values[4];
3069 int n = 0;
3070
3071 values[n++] = perf_event_read_value(event, &enabled, &running);
3072 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3073 values[n++] = enabled;
3074 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3075 values[n++] = running;
3076 if (read_format & PERF_FORMAT_ID)
3077 values[n++] = primary_event_id(event);
3078
3079 if (copy_to_user(buf, values, n * sizeof(u64)))
3080 return -EFAULT;
3081
3082 return n * sizeof(u64);
3083 }
3084
3085 /*
3086 * Read the performance event - simple non blocking version for now
3087 */
3088 static ssize_t
3089 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
3090 {
3091 u64 read_format = event->attr.read_format;
3092 int ret;
3093
3094 /*
3095 * Return end-of-file for a read on a event that is in
3096 * error state (i.e. because it was pinned but it couldn't be
3097 * scheduled on to the CPU at some point).
3098 */
3099 if (event->state == PERF_EVENT_STATE_ERROR)
3100 return 0;
3101
3102 if (count < event->read_size)
3103 return -ENOSPC;
3104
3105 WARN_ON_ONCE(event->ctx->parent_ctx);
3106 if (read_format & PERF_FORMAT_GROUP)
3107 ret = perf_event_read_group(event, read_format, buf);
3108 else
3109 ret = perf_event_read_one(event, read_format, buf);
3110
3111 return ret;
3112 }
3113
3114 static ssize_t
3115 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
3116 {
3117 struct perf_event *event = file->private_data;
3118
3119 return perf_read_hw(event, buf, count);
3120 }
3121
3122 static unsigned int perf_poll(struct file *file, poll_table *wait)
3123 {
3124 struct perf_event *event = file->private_data;
3125 struct ring_buffer *rb;
3126 unsigned int events = POLL_HUP;
3127
3128 /*
3129 * Race between perf_event_set_output() and perf_poll(): perf_poll()
3130 * grabs the rb reference but perf_event_set_output() overrides it.
3131 * Here is the timeline for two threads T1, T2:
3132 * t0: T1, rb = rcu_dereference(event->rb)
3133 * t1: T2, old_rb = event->rb
3134 * t2: T2, event->rb = new rb
3135 * t3: T2, ring_buffer_detach(old_rb)
3136 * t4: T1, ring_buffer_attach(rb1)
3137 * t5: T1, poll_wait(event->waitq)
3138 *
3139 * To avoid this problem, we grab mmap_mutex in perf_poll()
3140 * thereby ensuring that the assignment of the new ring buffer
3141 * and the detachment of the old buffer appear atomic to perf_poll()
3142 */
3143 mutex_lock(&event->mmap_mutex);
3144
3145 rcu_read_lock();
3146 rb = rcu_dereference(event->rb);
3147 if (rb) {
3148 ring_buffer_attach(event, rb);
3149 events = atomic_xchg(&rb->poll, 0);
3150 }
3151 rcu_read_unlock();
3152
3153 mutex_unlock(&event->mmap_mutex);
3154
3155 poll_wait(file, &event->waitq, wait);
3156
3157 return events;
3158 }
3159
3160 static void perf_event_reset(struct perf_event *event)
3161 {
3162 (void)perf_event_read(event);
3163 local64_set(&event->count, 0);
3164 perf_event_update_userpage(event);
3165 }
3166
3167 /*
3168 * Holding the top-level event's child_mutex means that any
3169 * descendant process that has inherited this event will block
3170 * in sync_child_event if it goes to exit, thus satisfying the
3171 * task existence requirements of perf_event_enable/disable.
3172 */
3173 static void perf_event_for_each_child(struct perf_event *event,
3174 void (*func)(struct perf_event *))
3175 {
3176 struct perf_event *child;
3177
3178 WARN_ON_ONCE(event->ctx->parent_ctx);
3179 mutex_lock(&event->child_mutex);
3180 func(event);
3181 list_for_each_entry(child, &event->child_list, child_list)
3182 func(child);
3183 mutex_unlock(&event->child_mutex);
3184 }
3185
3186 static void perf_event_for_each(struct perf_event *event,
3187 void (*func)(struct perf_event *))
3188 {
3189 struct perf_event_context *ctx = event->ctx;
3190 struct perf_event *sibling;
3191
3192 WARN_ON_ONCE(ctx->parent_ctx);
3193 mutex_lock(&ctx->mutex);
3194 event = event->group_leader;
3195
3196 perf_event_for_each_child(event, func);
3197 list_for_each_entry(sibling, &event->sibling_list, group_entry)
3198 perf_event_for_each_child(sibling, func);
3199 mutex_unlock(&ctx->mutex);
3200 }
3201
3202 static int perf_event_period(struct perf_event *event, u64 __user *arg)
3203 {
3204 struct perf_event_context *ctx = event->ctx;
3205 int ret = 0;
3206 u64 value;
3207
3208 if (!is_sampling_event(event))
3209 return -EINVAL;
3210
3211 if (copy_from_user(&value, arg, sizeof(value)))
3212 return -EFAULT;
3213
3214 if (!value)
3215 return -EINVAL;
3216
3217 raw_spin_lock_irq(&ctx->lock);
3218 if (event->attr.freq) {
3219 if (value > sysctl_perf_event_sample_rate) {
3220 ret = -EINVAL;
3221 goto unlock;
3222 }
3223
3224 event->attr.sample_freq = value;
3225 } else {
3226 event->attr.sample_period = value;
3227 event->hw.sample_period = value;
3228 }
3229 unlock:
3230 raw_spin_unlock_irq(&ctx->lock);
3231
3232 return ret;
3233 }
3234
3235 static const struct file_operations perf_fops;
3236
3237 static struct file *perf_fget_light(int fd, int *fput_needed)
3238 {
3239 struct file *file;
3240
3241 file = fget_light(fd, fput_needed);
3242 if (!file)
3243 return ERR_PTR(-EBADF);
3244
3245 if (file->f_op != &perf_fops) {
3246 fput_light(file, *fput_needed);
3247 *fput_needed = 0;
3248 return ERR_PTR(-EBADF);
3249 }
3250
3251 return file;
3252 }
3253
3254 static int perf_event_set_output(struct perf_event *event,
3255 struct perf_event *output_event);
3256 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3257
3258 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3259 {
3260 struct perf_event *event = file->private_data;
3261 void (*func)(struct perf_event *);
3262 u32 flags = arg;
3263
3264 switch (cmd) {
3265 case PERF_EVENT_IOC_ENABLE:
3266 func = perf_event_enable;
3267 break;
3268 case PERF_EVENT_IOC_DISABLE:
3269 func = perf_event_disable;
3270 break;
3271 case PERF_EVENT_IOC_RESET:
3272 func = perf_event_reset;
3273 break;
3274
3275 case PERF_EVENT_IOC_REFRESH:
3276 return perf_event_refresh(event, arg);
3277
3278 case PERF_EVENT_IOC_PERIOD:
3279 return perf_event_period(event, (u64 __user *)arg);
3280
3281 case PERF_EVENT_IOC_SET_OUTPUT:
3282 {
3283 struct file *output_file = NULL;
3284 struct perf_event *output_event = NULL;
3285 int fput_needed = 0;
3286 int ret;
3287
3288 if (arg != -1) {
3289 output_file = perf_fget_light(arg, &fput_needed);
3290 if (IS_ERR(output_file))
3291 return PTR_ERR(output_file);
3292 output_event = output_file->private_data;
3293 }
3294
3295 ret = perf_event_set_output(event, output_event);
3296 if (output_event)
3297 fput_light(output_file, fput_needed);
3298
3299 return ret;
3300 }
3301
3302 case PERF_EVENT_IOC_SET_FILTER:
3303 return perf_event_set_filter(event, (void __user *)arg);
3304
3305 default:
3306 return -ENOTTY;
3307 }
3308
3309 if (flags & PERF_IOC_FLAG_GROUP)
3310 perf_event_for_each(event, func);
3311 else
3312 perf_event_for_each_child(event, func);
3313
3314 return 0;
3315 }
3316
3317 int perf_event_task_enable(void)
3318 {
3319 struct perf_event *event;
3320
3321 mutex_lock(&current->perf_event_mutex);
3322 list_for_each_entry(event, &current->perf_event_list, owner_entry)
3323 perf_event_for_each_child(event, perf_event_enable);
3324 mutex_unlock(&current->perf_event_mutex);
3325
3326 return 0;
3327 }
3328
3329 int perf_event_task_disable(void)
3330 {
3331 struct perf_event *event;
3332
3333 mutex_lock(&current->perf_event_mutex);
3334 list_for_each_entry(event, &current->perf_event_list, owner_entry)
3335 perf_event_for_each_child(event, perf_event_disable);
3336 mutex_unlock(&current->perf_event_mutex);
3337
3338 return 0;
3339 }
3340
3341 static int perf_event_index(struct perf_event *event)
3342 {
3343 if (event->hw.state & PERF_HES_STOPPED)
3344 return 0;
3345
3346 if (event->state != PERF_EVENT_STATE_ACTIVE)
3347 return 0;
3348
3349 return event->pmu->event_idx(event);
3350 }
3351
3352 static void calc_timer_values(struct perf_event *event,
3353 u64 *now,
3354 u64 *enabled,
3355 u64 *running)
3356 {
3357 u64 ctx_time;
3358
3359 *now = perf_clock();
3360 ctx_time = event->shadow_ctx_time + *now;
3361 *enabled = ctx_time - event->tstamp_enabled;
3362 *running = ctx_time - event->tstamp_running;
3363 }
3364
3365 void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
3366 {
3367 }
3368
3369 /*
3370 * Callers need to ensure there can be no nesting of this function, otherwise
3371 * the seqlock logic goes bad. We can not serialize this because the arch
3372 * code calls this from NMI context.
3373 */
3374 void perf_event_update_userpage(struct perf_event *event)
3375 {
3376 struct perf_event_mmap_page *userpg;
3377 struct ring_buffer *rb;
3378 u64 enabled, running, now;
3379
3380 rcu_read_lock();
3381 /*
3382 * compute total_time_enabled, total_time_running
3383 * based on snapshot values taken when the event
3384 * was last scheduled in.
3385 *
3386 * we cannot simply called update_context_time()
3387 * because of locking issue as we can be called in
3388 * NMI context
3389 */
3390 calc_timer_values(event, &now, &enabled, &running);
3391 rb = rcu_dereference(event->rb);
3392 if (!rb)
3393 goto unlock;
3394
3395 userpg = rb->user_page;
3396
3397 /*
3398 * Disable preemption so as to not let the corresponding user-space
3399 * spin too long if we get preempted.
3400 */
3401 preempt_disable();
3402 ++userpg->lock;
3403 barrier();
3404 userpg->index = perf_event_index(event);
3405 userpg->offset = perf_event_count(event);
3406 if (userpg->index)
3407 userpg->offset -= local64_read(&event->hw.prev_count);
3408
3409 userpg->time_enabled = enabled +
3410 atomic64_read(&event->child_total_time_enabled);
3411
3412 userpg->time_running = running +
3413 atomic64_read(&event->child_total_time_running);
3414
3415 arch_perf_update_userpage(userpg, now);
3416
3417 barrier();
3418 ++userpg->lock;
3419 preempt_enable();
3420 unlock:
3421 rcu_read_unlock();
3422 }
3423
3424 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
3425 {
3426 struct perf_event *event = vma->vm_file->private_data;
3427 struct ring_buffer *rb;
3428 int ret = VM_FAULT_SIGBUS;
3429
3430 if (vmf->flags & FAULT_FLAG_MKWRITE) {
3431 if (vmf->pgoff == 0)
3432 ret = 0;
3433 return ret;
3434 }
3435
3436 rcu_read_lock();
3437 rb = rcu_dereference(event->rb);
3438 if (!rb)
3439 goto unlock;
3440
3441 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
3442 goto unlock;
3443
3444 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
3445 if (!vmf->page)
3446 goto unlock;
3447
3448 get_page(vmf->page);
3449 vmf->page->mapping = vma->vm_file->f_mapping;
3450 vmf->page->index = vmf->pgoff;
3451
3452 ret = 0;
3453 unlock:
3454 rcu_read_unlock();
3455
3456 return ret;
3457 }
3458
3459 static void ring_buffer_attach(struct perf_event *event,
3460 struct ring_buffer *rb)
3461 {
3462 unsigned long flags;
3463
3464 if (!list_empty(&event->rb_entry))
3465 return;
3466
3467 spin_lock_irqsave(&rb->event_lock, flags);
3468 if (!list_empty(&event->rb_entry))
3469 goto unlock;
3470
3471 list_add(&event->rb_entry, &rb->event_list);
3472 unlock:
3473 spin_unlock_irqrestore(&rb->event_lock, flags);
3474 }
3475
3476 static void ring_buffer_detach(struct perf_event *event,
3477 struct ring_buffer *rb)
3478 {
3479 unsigned long flags;
3480
3481 if (list_empty(&event->rb_entry))
3482 return;
3483
3484 spin_lock_irqsave(&rb->event_lock, flags);
3485 list_del_init(&event->rb_entry);
3486 wake_up_all(&event->waitq);
3487 spin_unlock_irqrestore(&rb->event_lock, flags);
3488 }
3489
3490 static void ring_buffer_wakeup(struct perf_event *event)
3491 {
3492 struct ring_buffer *rb;
3493
3494 rcu_read_lock();
3495 rb = rcu_dereference(event->rb);
3496 if (!rb)
3497 goto unlock;
3498
3499 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
3500 wake_up_all(&event->waitq);
3501
3502 unlock:
3503 rcu_read_unlock();
3504 }
3505
3506 static void rb_free_rcu(struct rcu_head *rcu_head)
3507 {
3508 struct ring_buffer *rb;
3509
3510 rb = container_of(rcu_head, struct ring_buffer, rcu_head);
3511 rb_free(rb);
3512 }
3513
3514 static struct ring_buffer *ring_buffer_get(struct perf_event *event)
3515 {
3516 struct ring_buffer *rb;
3517
3518 rcu_read_lock();
3519 rb = rcu_dereference(event->rb);
3520 if (rb) {
3521 if (!atomic_inc_not_zero(&rb->refcount))
3522 rb = NULL;
3523 }
3524 rcu_read_unlock();
3525
3526 return rb;
3527 }
3528
3529 static void ring_buffer_put(struct ring_buffer *rb)
3530 {
3531 struct perf_event *event, *n;
3532 unsigned long flags;
3533
3534 if (!atomic_dec_and_test(&rb->refcount))
3535 return;
3536
3537 spin_lock_irqsave(&rb->event_lock, flags);
3538 list_for_each_entry_safe(event, n, &rb->event_list, rb_entry) {
3539 list_del_init(&event->rb_entry);
3540 wake_up_all(&event->waitq);
3541 }
3542 spin_unlock_irqrestore(&rb->event_lock, flags);
3543
3544 call_rcu(&rb->rcu_head, rb_free_rcu);
3545 }
3546
3547 static void perf_mmap_open(struct vm_area_struct *vma)
3548 {
3549 struct perf_event *event = vma->vm_file->private_data;
3550
3551 atomic_inc(&event->mmap_count);
3552 }
3553
3554 static void perf_mmap_close(struct vm_area_struct *vma)
3555 {
3556 struct perf_event *event = vma->vm_file->private_data;
3557
3558 if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
3559 unsigned long size = perf_data_size(event->rb);
3560 struct user_struct *user = event->mmap_user;
3561 struct ring_buffer *rb = event->rb;
3562
3563 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
3564 vma->vm_mm->pinned_vm -= event->mmap_locked;
3565 rcu_assign_pointer(event->rb, NULL);
3566 ring_buffer_detach(event, rb);
3567 mutex_unlock(&event->mmap_mutex);
3568
3569 ring_buffer_put(rb);
3570 free_uid(user);
3571 }
3572 }
3573
3574 static const struct vm_operations_struct perf_mmap_vmops = {
3575 .open = perf_mmap_open,
3576 .close = perf_mmap_close,
3577 .fault = perf_mmap_fault,
3578 .page_mkwrite = perf_mmap_fault,
3579 };
3580
3581 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
3582 {
3583 struct perf_event *event = file->private_data;
3584 unsigned long user_locked, user_lock_limit;
3585 struct user_struct *user = current_user();
3586 unsigned long locked, lock_limit;
3587 struct ring_buffer *rb;
3588 unsigned long vma_size;
3589 unsigned long nr_pages;
3590 long user_extra, extra;
3591 int ret = 0, flags = 0;
3592
3593 /*
3594 * Don't allow mmap() of inherited per-task counters. This would
3595 * create a performance issue due to all children writing to the
3596 * same rb.
3597 */
3598 if (event->cpu == -1 && event->attr.inherit)
3599 return -EINVAL;
3600
3601 if (!(vma->vm_flags & VM_SHARED))
3602 return -EINVAL;
3603
3604 vma_size = vma->vm_end - vma->vm_start;
3605 nr_pages = (vma_size / PAGE_SIZE) - 1;
3606
3607 /*
3608 * If we have rb pages ensure they're a power-of-two number, so we
3609 * can do bitmasks instead of modulo.
3610 */
3611 if (nr_pages != 0 && !is_power_of_2(nr_pages))
3612 return -EINVAL;
3613
3614 if (vma_size != PAGE_SIZE * (1 + nr_pages))
3615 return -EINVAL;
3616
3617 if (vma->vm_pgoff != 0)
3618 return -EINVAL;
3619
3620 WARN_ON_ONCE(event->ctx->parent_ctx);
3621 mutex_lock(&event->mmap_mutex);
3622 if (event->rb) {
3623 if (event->rb->nr_pages == nr_pages)
3624 atomic_inc(&event->rb->refcount);
3625 else
3626 ret = -EINVAL;
3627 goto unlock;
3628 }
3629
3630 user_extra = nr_pages + 1;
3631 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
3632
3633 /*
3634 * Increase the limit linearly with more CPUs:
3635 */
3636 user_lock_limit *= num_online_cpus();
3637
3638 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
3639
3640 extra = 0;
3641 if (user_locked > user_lock_limit)
3642 extra = user_locked - user_lock_limit;
3643
3644 lock_limit = rlimit(RLIMIT_MEMLOCK);
3645 lock_limit >>= PAGE_SHIFT;
3646 locked = vma->vm_mm->pinned_vm + extra;
3647
3648 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
3649 !capable(CAP_IPC_LOCK)) {
3650 ret = -EPERM;
3651 goto unlock;
3652 }
3653
3654 WARN_ON(event->rb);
3655
3656 if (vma->vm_flags & VM_WRITE)
3657 flags |= RING_BUFFER_WRITABLE;
3658
3659 rb = rb_alloc(nr_pages,
3660 event->attr.watermark ? event->attr.wakeup_watermark : 0,
3661 event->cpu, flags);
3662
3663 if (!rb) {
3664 ret = -ENOMEM;
3665 goto unlock;
3666 }
3667 rcu_assign_pointer(event->rb, rb);
3668
3669 atomic_long_add(user_extra, &user->locked_vm);
3670 event->mmap_locked = extra;
3671 event->mmap_user = get_current_user();
3672 vma->vm_mm->pinned_vm += event->mmap_locked;
3673
3674 perf_event_update_userpage(event);
3675
3676 unlock:
3677 if (!ret)
3678 atomic_inc(&event->mmap_count);
3679 mutex_unlock(&event->mmap_mutex);
3680
3681 vma->vm_flags |= VM_RESERVED;
3682 vma->vm_ops = &perf_mmap_vmops;
3683
3684 return ret;
3685 }
3686
3687 static int perf_fasync(int fd, struct file *filp, int on)
3688 {
3689 struct inode *inode = filp->f_path.dentry->d_inode;
3690 struct perf_event *event = filp->private_data;
3691 int retval;
3692
3693 mutex_lock(&inode->i_mutex);
3694 retval = fasync_helper(fd, filp, on, &event->fasync);
3695 mutex_unlock(&inode->i_mutex);
3696
3697 if (retval < 0)
3698 return retval;
3699
3700 return 0;
3701 }
3702
3703 static const struct file_operations perf_fops = {
3704 .llseek = no_llseek,
3705 .release = perf_release,
3706 .read = perf_read,
3707 .poll = perf_poll,
3708 .unlocked_ioctl = perf_ioctl,
3709 .compat_ioctl = perf_ioctl,
3710 .mmap = perf_mmap,
3711 .fasync = perf_fasync,
3712 };
3713
3714 /*
3715 * Perf event wakeup
3716 *
3717 * If there's data, ensure we set the poll() state and publish everything
3718 * to user-space before waking everybody up.
3719 */
3720
3721 void perf_event_wakeup(struct perf_event *event)
3722 {
3723 ring_buffer_wakeup(event);
3724
3725 if (event->pending_kill) {
3726 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
3727 event->pending_kill = 0;
3728 }
3729 }
3730
3731 static void perf_pending_event(struct irq_work *entry)
3732 {
3733 struct perf_event *event = container_of(entry,
3734 struct perf_event, pending);
3735
3736 if (event->pending_disable) {
3737 event->pending_disable = 0;
3738 __perf_event_disable(event);
3739 }
3740
3741 if (event->pending_wakeup) {
3742 event->pending_wakeup = 0;
3743 perf_event_wakeup(event);
3744 }
3745 }
3746
3747 /*
3748 * We assume there is only KVM supporting the callbacks.
3749 * Later on, we might change it to a list if there is
3750 * another virtualization implementation supporting the callbacks.
3751 */
3752 struct perf_guest_info_callbacks *perf_guest_cbs;
3753
3754 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3755 {
3756 perf_guest_cbs = cbs;
3757 return 0;
3758 }
3759 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
3760
3761 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3762 {
3763 perf_guest_cbs = NULL;
3764 return 0;
3765 }
3766 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
3767
3768 static void
3769 perf_output_sample_regs(struct perf_output_handle *handle,
3770 struct pt_regs *regs, u64 mask)
3771 {
3772 int bit;
3773
3774 for_each_set_bit(bit, (const unsigned long *) &mask,
3775 sizeof(mask) * BITS_PER_BYTE) {
3776 u64 val;
3777
3778 val = perf_reg_value(regs, bit);
3779 perf_output_put(handle, val);
3780 }
3781 }
3782
3783 static void perf_sample_regs_user(struct perf_regs_user *regs_user,
3784 struct pt_regs *regs)
3785 {
3786 if (!user_mode(regs)) {
3787 if (current->mm)
3788 regs = task_pt_regs(current);
3789 else
3790 regs = NULL;
3791 }
3792
3793 if (regs) {
3794 regs_user->regs = regs;
3795 regs_user->abi = perf_reg_abi(current);
3796 }
3797 }
3798
3799 /*
3800 * Get remaining task size from user stack pointer.
3801 *
3802 * It'd be better to take stack vma map and limit this more
3803 * precisly, but there's no way to get it safely under interrupt,
3804 * so using TASK_SIZE as limit.
3805 */
3806 static u64 perf_ustack_task_size(struct pt_regs *regs)
3807 {
3808 unsigned long addr = perf_user_stack_pointer(regs);
3809
3810 if (!addr || addr >= TASK_SIZE)
3811 return 0;
3812
3813 return TASK_SIZE - addr;
3814 }
3815
3816 static u16
3817 perf_sample_ustack_size(u16 stack_size, u16 header_size,
3818 struct pt_regs *regs)
3819 {
3820 u64 task_size;
3821
3822 /* No regs, no stack pointer, no dump. */
3823 if (!regs)
3824 return 0;
3825
3826 /*
3827 * Check if we fit in with the requested stack size into the:
3828 * - TASK_SIZE
3829 * If we don't, we limit the size to the TASK_SIZE.
3830 *
3831 * - remaining sample size
3832 * If we don't, we customize the stack size to
3833 * fit in to the remaining sample size.
3834 */
3835
3836 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
3837 stack_size = min(stack_size, (u16) task_size);
3838
3839 /* Current header size plus static size and dynamic size. */
3840 header_size += 2 * sizeof(u64);
3841
3842 /* Do we fit in with the current stack dump size? */
3843 if ((u16) (header_size + stack_size) < header_size) {
3844 /*
3845 * If we overflow the maximum size for the sample,
3846 * we customize the stack dump size to fit in.
3847 */
3848 stack_size = USHRT_MAX - header_size - sizeof(u64);
3849 stack_size = round_up(stack_size, sizeof(u64));
3850 }
3851
3852 return stack_size;
3853 }
3854
3855 static void
3856 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
3857 struct pt_regs *regs)
3858 {
3859 /* Case of a kernel thread, nothing to dump */
3860 if (!regs) {
3861 u64 size = 0;
3862 perf_output_put(handle, size);
3863 } else {
3864 unsigned long sp;
3865 unsigned int rem;
3866 u64 dyn_size;
3867
3868 /*
3869 * We dump:
3870 * static size
3871 * - the size requested by user or the best one we can fit
3872 * in to the sample max size
3873 * data
3874 * - user stack dump data
3875 * dynamic size
3876 * - the actual dumped size
3877 */
3878
3879 /* Static size. */
3880 perf_output_put(handle, dump_size);
3881
3882 /* Data. */
3883 sp = perf_user_stack_pointer(regs);
3884 rem = __output_copy_user(handle, (void *) sp, dump_size);
3885 dyn_size = dump_size - rem;
3886
3887 perf_output_skip(handle, rem);
3888
3889 /* Dynamic size. */
3890 perf_output_put(handle, dyn_size);
3891 }
3892 }
3893
3894 static void __perf_event_header__init_id(struct perf_event_header *header,
3895 struct perf_sample_data *data,
3896 struct perf_event *event)
3897 {
3898 u64 sample_type = event->attr.sample_type;
3899
3900 data->type = sample_type;
3901 header->size += event->id_header_size;
3902
3903 if (sample_type & PERF_SAMPLE_TID) {
3904 /* namespace issues */
3905 data->tid_entry.pid = perf_event_pid(event, current);
3906 data->tid_entry.tid = perf_event_tid(event, current);
3907 }
3908
3909 if (sample_type & PERF_SAMPLE_TIME)
3910 data->time = perf_clock();
3911
3912 if (sample_type & PERF_SAMPLE_ID)
3913 data->id = primary_event_id(event);
3914
3915 if (sample_type & PERF_SAMPLE_STREAM_ID)
3916 data->stream_id = event->id;
3917
3918 if (sample_type & PERF_SAMPLE_CPU) {
3919 data->cpu_entry.cpu = raw_smp_processor_id();
3920 data->cpu_entry.reserved = 0;
3921 }
3922 }
3923
3924 void perf_event_header__init_id(struct perf_event_header *header,
3925 struct perf_sample_data *data,
3926 struct perf_event *event)
3927 {
3928 if (event->attr.sample_id_all)
3929 __perf_event_header__init_id(header, data, event);
3930 }
3931
3932 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
3933 struct perf_sample_data *data)
3934 {
3935 u64 sample_type = data->type;
3936
3937 if (sample_type & PERF_SAMPLE_TID)
3938 perf_output_put(handle, data->tid_entry);
3939
3940 if (sample_type & PERF_SAMPLE_TIME)
3941 perf_output_put(handle, data->time);
3942
3943 if (sample_type & PERF_SAMPLE_ID)
3944 perf_output_put(handle, data->id);
3945
3946 if (sample_type & PERF_SAMPLE_STREAM_ID)
3947 perf_output_put(handle, data->stream_id);
3948
3949 if (sample_type & PERF_SAMPLE_CPU)
3950 perf_output_put(handle, data->cpu_entry);
3951 }
3952
3953 void perf_event__output_id_sample(struct perf_event *event,
3954 struct perf_output_handle *handle,
3955 struct perf_sample_data *sample)
3956 {
3957 if (event->attr.sample_id_all)
3958 __perf_event__output_id_sample(handle, sample);
3959 }
3960
3961 static void perf_output_read_one(struct perf_output_handle *handle,
3962 struct perf_event *event,
3963 u64 enabled, u64 running)
3964 {
3965 u64 read_format = event->attr.read_format;
3966 u64 values[4];
3967 int n = 0;
3968
3969 values[n++] = perf_event_count(event);
3970 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3971 values[n++] = enabled +
3972 atomic64_read(&event->child_total_time_enabled);
3973 }
3974 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3975 values[n++] = running +
3976 atomic64_read(&event->child_total_time_running);
3977 }
3978 if (read_format & PERF_FORMAT_ID)
3979 values[n++] = primary_event_id(event);
3980
3981 __output_copy(handle, values, n * sizeof(u64));
3982 }
3983
3984 /*
3985 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3986 */
3987 static void perf_output_read_group(struct perf_output_handle *handle,
3988 struct perf_event *event,
3989 u64 enabled, u64 running)
3990 {
3991 struct perf_event *leader = event->group_leader, *sub;
3992 u64 read_format = event->attr.read_format;
3993 u64 values[5];
3994 int n = 0;
3995
3996 values[n++] = 1 + leader->nr_siblings;
3997
3998 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3999 values[n++] = enabled;
4000
4001 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4002 values[n++] = running;
4003
4004 if (leader != event)
4005 leader->pmu->read(leader);
4006
4007 values[n++] = perf_event_count(leader);
4008 if (read_format & PERF_FORMAT_ID)
4009 values[n++] = primary_event_id(leader);
4010
4011 __output_copy(handle, values, n * sizeof(u64));
4012
4013 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4014 n = 0;
4015
4016 if (sub != event)
4017 sub->pmu->read(sub);
4018
4019 values[n++] = perf_event_count(sub);
4020 if (read_format & PERF_FORMAT_ID)
4021 values[n++] = primary_event_id(sub);
4022
4023 __output_copy(handle, values, n * sizeof(u64));
4024 }
4025 }
4026
4027 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
4028 PERF_FORMAT_TOTAL_TIME_RUNNING)
4029
4030 static void perf_output_read(struct perf_output_handle *handle,
4031 struct perf_event *event)
4032 {
4033 u64 enabled = 0, running = 0, now;
4034 u64 read_format = event->attr.read_format;
4035
4036 /*
4037 * compute total_time_enabled, total_time_running
4038 * based on snapshot values taken when the event
4039 * was last scheduled in.
4040 *
4041 * we cannot simply called update_context_time()
4042 * because of locking issue as we are called in
4043 * NMI context
4044 */
4045 if (read_format & PERF_FORMAT_TOTAL_TIMES)
4046 calc_timer_values(event, &now, &enabled, &running);
4047
4048 if (event->attr.read_format & PERF_FORMAT_GROUP)
4049 perf_output_read_group(handle, event, enabled, running);
4050 else
4051 perf_output_read_one(handle, event, enabled, running);
4052 }
4053
4054 void perf_output_sample(struct perf_output_handle *handle,
4055 struct perf_event_header *header,
4056 struct perf_sample_data *data,
4057 struct perf_event *event)
4058 {
4059 u64 sample_type = data->type;
4060
4061 perf_output_put(handle, *header);
4062
4063 if (sample_type & PERF_SAMPLE_IP)
4064 perf_output_put(handle, data->ip);
4065
4066 if (sample_type & PERF_SAMPLE_TID)
4067 perf_output_put(handle, data->tid_entry);
4068
4069 if (sample_type & PERF_SAMPLE_TIME)
4070 perf_output_put(handle, data->time);
4071
4072 if (sample_type & PERF_SAMPLE_ADDR)
4073 perf_output_put(handle, data->addr);
4074
4075 if (sample_type & PERF_SAMPLE_ID)
4076 perf_output_put(handle, data->id);
4077
4078 if (sample_type & PERF_SAMPLE_STREAM_ID)
4079 perf_output_put(handle, data->stream_id);
4080
4081 if (sample_type & PERF_SAMPLE_CPU)
4082 perf_output_put(handle, data->cpu_entry);
4083
4084 if (sample_type & PERF_SAMPLE_PERIOD)
4085 perf_output_put(handle, data->period);
4086
4087 if (sample_type & PERF_SAMPLE_READ)
4088 perf_output_read(handle, event);
4089
4090 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4091 if (data->callchain) {
4092 int size = 1;
4093
4094 if (data->callchain)
4095 size += data->callchain->nr;
4096
4097 size *= sizeof(u64);
4098
4099 __output_copy(handle, data->callchain, size);
4100 } else {
4101 u64 nr = 0;
4102 perf_output_put(handle, nr);
4103 }
4104 }
4105
4106 if (sample_type & PERF_SAMPLE_RAW) {
4107 if (data->raw) {
4108 perf_output_put(handle, data->raw->size);
4109 __output_copy(handle, data->raw->data,
4110 data->raw->size);
4111 } else {
4112 struct {
4113 u32 size;
4114 u32 data;
4115 } raw = {
4116 .size = sizeof(u32),
4117 .data = 0,
4118 };
4119 perf_output_put(handle, raw);
4120 }
4121 }
4122
4123 if (!event->attr.watermark) {
4124 int wakeup_events = event->attr.wakeup_events;
4125
4126 if (wakeup_events) {
4127 struct ring_buffer *rb = handle->rb;
4128 int events = local_inc_return(&rb->events);
4129
4130 if (events >= wakeup_events) {
4131 local_sub(wakeup_events, &rb->events);
4132 local_inc(&rb->wakeup);
4133 }
4134 }
4135 }
4136
4137 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4138 if (data->br_stack) {
4139 size_t size;
4140
4141 size = data->br_stack->nr
4142 * sizeof(struct perf_branch_entry);
4143
4144 perf_output_put(handle, data->br_stack->nr);
4145 perf_output_copy(handle, data->br_stack->entries, size);
4146 } else {
4147 /*
4148 * we always store at least the value of nr
4149 */
4150 u64 nr = 0;
4151 perf_output_put(handle, nr);
4152 }
4153 }
4154
4155 if (sample_type & PERF_SAMPLE_REGS_USER) {
4156 u64 abi = data->regs_user.abi;
4157
4158 /*
4159 * If there are no regs to dump, notice it through
4160 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
4161 */
4162 perf_output_put(handle, abi);
4163
4164 if (abi) {
4165 u64 mask = event->attr.sample_regs_user;
4166 perf_output_sample_regs(handle,
4167 data->regs_user.regs,
4168 mask);
4169 }
4170 }
4171
4172 if (sample_type & PERF_SAMPLE_STACK_USER)
4173 perf_output_sample_ustack(handle,
4174 data->stack_user_size,
4175 data->regs_user.regs);
4176 }
4177
4178 void perf_prepare_sample(struct perf_event_header *header,
4179 struct perf_sample_data *data,
4180 struct perf_event *event,
4181 struct pt_regs *regs)
4182 {
4183 u64 sample_type = event->attr.sample_type;
4184
4185 header->type = PERF_RECORD_SAMPLE;
4186 header->size = sizeof(*header) + event->header_size;
4187
4188 header->misc = 0;
4189 header->misc |= perf_misc_flags(regs);
4190
4191 __perf_event_header__init_id(header, data, event);
4192
4193 if (sample_type & PERF_SAMPLE_IP)
4194 data->ip = perf_instruction_pointer(regs);
4195
4196 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4197 int size = 1;
4198
4199 data->callchain = perf_callchain(event, regs);
4200
4201 if (data->callchain)
4202 size += data->callchain->nr;
4203
4204 header->size += size * sizeof(u64);
4205 }
4206
4207 if (sample_type & PERF_SAMPLE_RAW) {
4208 int size = sizeof(u32);
4209
4210 if (data->raw)
4211 size += data->raw->size;
4212 else
4213 size += sizeof(u32);
4214
4215 WARN_ON_ONCE(size & (sizeof(u64)-1));
4216 header->size += size;
4217 }
4218
4219 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4220 int size = sizeof(u64); /* nr */
4221 if (data->br_stack) {
4222 size += data->br_stack->nr
4223 * sizeof(struct perf_branch_entry);
4224 }
4225 header->size += size;
4226 }
4227
4228 if (sample_type & PERF_SAMPLE_REGS_USER) {
4229 /* regs dump ABI info */
4230 int size = sizeof(u64);
4231
4232 perf_sample_regs_user(&data->regs_user, regs);
4233
4234 if (data->regs_user.regs) {
4235 u64 mask = event->attr.sample_regs_user;
4236 size += hweight64(mask) * sizeof(u64);
4237 }
4238
4239 header->size += size;
4240 }
4241
4242 if (sample_type & PERF_SAMPLE_STACK_USER) {
4243 /*
4244 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
4245 * processed as the last one or have additional check added
4246 * in case new sample type is added, because we could eat
4247 * up the rest of the sample size.
4248 */
4249 struct perf_regs_user *uregs = &data->regs_user;
4250 u16 stack_size = event->attr.sample_stack_user;
4251 u16 size = sizeof(u64);
4252
4253 if (!uregs->abi)
4254 perf_sample_regs_user(uregs, regs);
4255
4256 stack_size = perf_sample_ustack_size(stack_size, header->size,
4257 uregs->regs);
4258
4259 /*
4260 * If there is something to dump, add space for the dump
4261 * itself and for the field that tells the dynamic size,
4262 * which is how many have been actually dumped.
4263 */
4264 if (stack_size)
4265 size += sizeof(u64) + stack_size;
4266
4267 data->stack_user_size = stack_size;
4268 header->size += size;
4269 }
4270 }
4271
4272 static void perf_event_output(struct perf_event *event,
4273 struct perf_sample_data *data,
4274 struct pt_regs *regs)
4275 {
4276 struct perf_output_handle handle;
4277 struct perf_event_header header;
4278
4279 /* protect the callchain buffers */
4280 rcu_read_lock();
4281
4282 perf_prepare_sample(&header, data, event, regs);
4283
4284 if (perf_output_begin(&handle, event, header.size))
4285 goto exit;
4286
4287 perf_output_sample(&handle, &header, data, event);
4288
4289 perf_output_end(&handle);
4290
4291 exit:
4292 rcu_read_unlock();
4293 }
4294
4295 /*
4296 * read event_id
4297 */
4298
4299 struct perf_read_event {
4300 struct perf_event_header header;
4301
4302 u32 pid;
4303 u32 tid;
4304 };
4305
4306 static void
4307 perf_event_read_event(struct perf_event *event,
4308 struct task_struct *task)
4309 {
4310 struct perf_output_handle handle;
4311 struct perf_sample_data sample;
4312 struct perf_read_event read_event = {
4313 .header = {
4314 .type = PERF_RECORD_READ,
4315 .misc = 0,
4316 .size = sizeof(read_event) + event->read_size,
4317 },
4318 .pid = perf_event_pid(event, task),
4319 .tid = perf_event_tid(event, task),
4320 };
4321 int ret;
4322
4323 perf_event_header__init_id(&read_event.header, &sample, event);
4324 ret = perf_output_begin(&handle, event, read_event.header.size);
4325 if (ret)
4326 return;
4327
4328 perf_output_put(&handle, read_event);
4329 perf_output_read(&handle, event);
4330 perf_event__output_id_sample(event, &handle, &sample);
4331
4332 perf_output_end(&handle);
4333 }
4334
4335 /*
4336 * task tracking -- fork/exit
4337 *
4338 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
4339 */
4340
4341 struct perf_task_event {
4342 struct task_struct *task;
4343 struct perf_event_context *task_ctx;
4344
4345 struct {
4346 struct perf_event_header header;
4347
4348 u32 pid;
4349 u32 ppid;
4350 u32 tid;
4351 u32 ptid;
4352 u64 time;
4353 } event_id;
4354 };
4355
4356 static void perf_event_task_output(struct perf_event *event,
4357 struct perf_task_event *task_event)
4358 {
4359 struct perf_output_handle handle;
4360 struct perf_sample_data sample;
4361 struct task_struct *task = task_event->task;
4362 int ret, size = task_event->event_id.header.size;
4363
4364 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
4365
4366 ret = perf_output_begin(&handle, event,
4367 task_event->event_id.header.size);
4368 if (ret)
4369 goto out;
4370
4371 task_event->event_id.pid = perf_event_pid(event, task);
4372 task_event->event_id.ppid = perf_event_pid(event, current);
4373
4374 task_event->event_id.tid = perf_event_tid(event, task);
4375 task_event->event_id.ptid = perf_event_tid(event, current);
4376
4377 perf_output_put(&handle, task_event->event_id);
4378
4379 perf_event__output_id_sample(event, &handle, &sample);
4380
4381 perf_output_end(&handle);
4382 out:
4383 task_event->event_id.header.size = size;
4384 }
4385
4386 static int perf_event_task_match(struct perf_event *event)
4387 {
4388 if (event->state < PERF_EVENT_STATE_INACTIVE)
4389 return 0;
4390
4391 if (!event_filter_match(event))
4392 return 0;
4393
4394 if (event->attr.comm || event->attr.mmap ||
4395 event->attr.mmap_data || event->attr.task)
4396 return 1;
4397
4398 return 0;
4399 }
4400
4401 static void perf_event_task_ctx(struct perf_event_context *ctx,
4402 struct perf_task_event *task_event)
4403 {
4404 struct perf_event *event;
4405
4406 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4407 if (perf_event_task_match(event))
4408 perf_event_task_output(event, task_event);
4409 }
4410 }
4411
4412 static void perf_event_task_event(struct perf_task_event *task_event)
4413 {
4414 struct perf_cpu_context *cpuctx;
4415 struct perf_event_context *ctx;
4416 struct pmu *pmu;
4417 int ctxn;
4418
4419 rcu_read_lock();
4420 list_for_each_entry_rcu(pmu, &pmus, entry) {
4421 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4422 if (cpuctx->active_pmu != pmu)
4423 goto next;
4424 perf_event_task_ctx(&cpuctx->ctx, task_event);
4425
4426 ctx = task_event->task_ctx;
4427 if (!ctx) {
4428 ctxn = pmu->task_ctx_nr;
4429 if (ctxn < 0)
4430 goto next;
4431 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4432 }
4433 if (ctx)
4434 perf_event_task_ctx(ctx, task_event);
4435 next:
4436 put_cpu_ptr(pmu->pmu_cpu_context);
4437 }
4438 rcu_read_unlock();
4439 }
4440
4441 static void perf_event_task(struct task_struct *task,
4442 struct perf_event_context *task_ctx,
4443 int new)
4444 {
4445 struct perf_task_event task_event;
4446
4447 if (!atomic_read(&nr_comm_events) &&
4448 !atomic_read(&nr_mmap_events) &&
4449 !atomic_read(&nr_task_events))
4450 return;
4451
4452 task_event = (struct perf_task_event){
4453 .task = task,
4454 .task_ctx = task_ctx,
4455 .event_id = {
4456 .header = {
4457 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
4458 .misc = 0,
4459 .size = sizeof(task_event.event_id),
4460 },
4461 /* .pid */
4462 /* .ppid */
4463 /* .tid */
4464 /* .ptid */
4465 .time = perf_clock(),
4466 },
4467 };
4468
4469 perf_event_task_event(&task_event);
4470 }
4471
4472 void perf_event_fork(struct task_struct *task)
4473 {
4474 perf_event_task(task, NULL, 1);
4475 }
4476
4477 /*
4478 * comm tracking
4479 */
4480
4481 struct perf_comm_event {
4482 struct task_struct *task;
4483 char *comm;
4484 int comm_size;
4485
4486 struct {
4487 struct perf_event_header header;
4488
4489 u32 pid;
4490 u32 tid;
4491 } event_id;
4492 };
4493
4494 static void perf_event_comm_output(struct perf_event *event,
4495 struct perf_comm_event *comm_event)
4496 {
4497 struct perf_output_handle handle;
4498 struct perf_sample_data sample;
4499 int size = comm_event->event_id.header.size;
4500 int ret;
4501
4502 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
4503 ret = perf_output_begin(&handle, event,
4504 comm_event->event_id.header.size);
4505
4506 if (ret)
4507 goto out;
4508
4509 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
4510 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
4511
4512 perf_output_put(&handle, comm_event->event_id);
4513 __output_copy(&handle, comm_event->comm,
4514 comm_event->comm_size);
4515
4516 perf_event__output_id_sample(event, &handle, &sample);
4517
4518 perf_output_end(&handle);
4519 out:
4520 comm_event->event_id.header.size = size;
4521 }
4522
4523 static int perf_event_comm_match(struct perf_event *event)
4524 {
4525 if (event->state < PERF_EVENT_STATE_INACTIVE)
4526 return 0;
4527
4528 if (!event_filter_match(event))
4529 return 0;
4530
4531 if (event->attr.comm)
4532 return 1;
4533
4534 return 0;
4535 }
4536
4537 static void perf_event_comm_ctx(struct perf_event_context *ctx,
4538 struct perf_comm_event *comm_event)
4539 {
4540 struct perf_event *event;
4541
4542 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4543 if (perf_event_comm_match(event))
4544 perf_event_comm_output(event, comm_event);
4545 }
4546 }
4547
4548 static void perf_event_comm_event(struct perf_comm_event *comm_event)
4549 {
4550 struct perf_cpu_context *cpuctx;
4551 struct perf_event_context *ctx;
4552 char comm[TASK_COMM_LEN];
4553 unsigned int size;
4554 struct pmu *pmu;
4555 int ctxn;
4556
4557 memset(comm, 0, sizeof(comm));
4558 strlcpy(comm, comm_event->task->comm, sizeof(comm));
4559 size = ALIGN(strlen(comm)+1, sizeof(u64));
4560
4561 comm_event->comm = comm;
4562 comm_event->comm_size = size;
4563
4564 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
4565 rcu_read_lock();
4566 list_for_each_entry_rcu(pmu, &pmus, entry) {
4567 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4568 if (cpuctx->active_pmu != pmu)
4569 goto next;
4570 perf_event_comm_ctx(&cpuctx->ctx, comm_event);
4571
4572 ctxn = pmu->task_ctx_nr;
4573 if (ctxn < 0)
4574 goto next;
4575
4576 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4577 if (ctx)
4578 perf_event_comm_ctx(ctx, comm_event);
4579 next:
4580 put_cpu_ptr(pmu->pmu_cpu_context);
4581 }
4582 rcu_read_unlock();
4583 }
4584
4585 void perf_event_comm(struct task_struct *task)
4586 {
4587 struct perf_comm_event comm_event;
4588 struct perf_event_context *ctx;
4589 int ctxn;
4590
4591 for_each_task_context_nr(ctxn) {
4592 ctx = task->perf_event_ctxp[ctxn];
4593 if (!ctx)
4594 continue;
4595
4596 perf_event_enable_on_exec(ctx);
4597 }
4598
4599 if (!atomic_read(&nr_comm_events))
4600 return;
4601
4602 comm_event = (struct perf_comm_event){
4603 .task = task,
4604 /* .comm */
4605 /* .comm_size */
4606 .event_id = {
4607 .header = {
4608 .type = PERF_RECORD_COMM,
4609 .misc = 0,
4610 /* .size */
4611 },
4612 /* .pid */
4613 /* .tid */
4614 },
4615 };
4616
4617 perf_event_comm_event(&comm_event);
4618 }
4619
4620 /*
4621 * mmap tracking
4622 */
4623
4624 struct perf_mmap_event {
4625 struct vm_area_struct *vma;
4626
4627 const char *file_name;
4628 int file_size;
4629
4630 struct {
4631 struct perf_event_header header;
4632
4633 u32 pid;
4634 u32 tid;
4635 u64 start;
4636 u64 len;
4637 u64 pgoff;
4638 } event_id;
4639 };
4640
4641 static void perf_event_mmap_output(struct perf_event *event,
4642 struct perf_mmap_event *mmap_event)
4643 {
4644 struct perf_output_handle handle;
4645 struct perf_sample_data sample;
4646 int size = mmap_event->event_id.header.size;
4647 int ret;
4648
4649 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
4650 ret = perf_output_begin(&handle, event,
4651 mmap_event->event_id.header.size);
4652 if (ret)
4653 goto out;
4654
4655 mmap_event->event_id.pid = perf_event_pid(event, current);
4656 mmap_event->event_id.tid = perf_event_tid(event, current);
4657
4658 perf_output_put(&handle, mmap_event->event_id);
4659 __output_copy(&handle, mmap_event->file_name,
4660 mmap_event->file_size);
4661
4662 perf_event__output_id_sample(event, &handle, &sample);
4663
4664 perf_output_end(&handle);
4665 out:
4666 mmap_event->event_id.header.size = size;
4667 }
4668
4669 static int perf_event_mmap_match(struct perf_event *event,
4670 struct perf_mmap_event *mmap_event,
4671 int executable)
4672 {
4673 if (event->state < PERF_EVENT_STATE_INACTIVE)
4674 return 0;
4675
4676 if (!event_filter_match(event))
4677 return 0;
4678
4679 if ((!executable && event->attr.mmap_data) ||
4680 (executable && event->attr.mmap))
4681 return 1;
4682
4683 return 0;
4684 }
4685
4686 static void perf_event_mmap_ctx(struct perf_event_context *ctx,
4687 struct perf_mmap_event *mmap_event,
4688 int executable)
4689 {
4690 struct perf_event *event;
4691
4692 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4693 if (perf_event_mmap_match(event, mmap_event, executable))
4694 perf_event_mmap_output(event, mmap_event);
4695 }
4696 }
4697
4698 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
4699 {
4700 struct perf_cpu_context *cpuctx;
4701 struct perf_event_context *ctx;
4702 struct vm_area_struct *vma = mmap_event->vma;
4703 struct file *file = vma->vm_file;
4704 unsigned int size;
4705 char tmp[16];
4706 char *buf = NULL;
4707 const char *name;
4708 struct pmu *pmu;
4709 int ctxn;
4710
4711 memset(tmp, 0, sizeof(tmp));
4712
4713 if (file) {
4714 /*
4715 * d_path works from the end of the rb backwards, so we
4716 * need to add enough zero bytes after the string to handle
4717 * the 64bit alignment we do later.
4718 */
4719 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
4720 if (!buf) {
4721 name = strncpy(tmp, "//enomem", sizeof(tmp));
4722 goto got_name;
4723 }
4724 name = d_path(&file->f_path, buf, PATH_MAX);
4725 if (IS_ERR(name)) {
4726 name = strncpy(tmp, "//toolong", sizeof(tmp));
4727 goto got_name;
4728 }
4729 } else {
4730 if (arch_vma_name(mmap_event->vma)) {
4731 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
4732 sizeof(tmp));
4733 goto got_name;
4734 }
4735
4736 if (!vma->vm_mm) {
4737 name = strncpy(tmp, "[vdso]", sizeof(tmp));
4738 goto got_name;
4739 } else if (vma->vm_start <= vma->vm_mm->start_brk &&
4740 vma->vm_end >= vma->vm_mm->brk) {
4741 name = strncpy(tmp, "[heap]", sizeof(tmp));
4742 goto got_name;
4743 } else if (vma->vm_start <= vma->vm_mm->start_stack &&
4744 vma->vm_end >= vma->vm_mm->start_stack) {
4745 name = strncpy(tmp, "[stack]", sizeof(tmp));
4746 goto got_name;
4747 }
4748
4749 name = strncpy(tmp, "//anon", sizeof(tmp));
4750 goto got_name;
4751 }
4752
4753 got_name:
4754 size = ALIGN(strlen(name)+1, sizeof(u64));
4755
4756 mmap_event->file_name = name;
4757 mmap_event->file_size = size;
4758
4759 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
4760
4761 rcu_read_lock();
4762 list_for_each_entry_rcu(pmu, &pmus, entry) {
4763 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4764 if (cpuctx->active_pmu != pmu)
4765 goto next;
4766 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event,
4767 vma->vm_flags & VM_EXEC);
4768
4769 ctxn = pmu->task_ctx_nr;
4770 if (ctxn < 0)
4771 goto next;
4772
4773 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4774 if (ctx) {
4775 perf_event_mmap_ctx(ctx, mmap_event,
4776 vma->vm_flags & VM_EXEC);
4777 }
4778 next:
4779 put_cpu_ptr(pmu->pmu_cpu_context);
4780 }
4781 rcu_read_unlock();
4782
4783 kfree(buf);
4784 }
4785
4786 void perf_event_mmap(struct vm_area_struct *vma)
4787 {
4788 struct perf_mmap_event mmap_event;
4789
4790 if (!atomic_read(&nr_mmap_events))
4791 return;
4792
4793 mmap_event = (struct perf_mmap_event){
4794 .vma = vma,
4795 /* .file_name */
4796 /* .file_size */
4797 .event_id = {
4798 .header = {
4799 .type = PERF_RECORD_MMAP,
4800 .misc = PERF_RECORD_MISC_USER,
4801 /* .size */
4802 },
4803 /* .pid */
4804 /* .tid */
4805 .start = vma->vm_start,
4806 .len = vma->vm_end - vma->vm_start,
4807 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
4808 },
4809 };
4810
4811 perf_event_mmap_event(&mmap_event);
4812 }
4813
4814 /*
4815 * IRQ throttle logging
4816 */
4817
4818 static void perf_log_throttle(struct perf_event *event, int enable)
4819 {
4820 struct perf_output_handle handle;
4821 struct perf_sample_data sample;
4822 int ret;
4823
4824 struct {
4825 struct perf_event_header header;
4826 u64 time;
4827 u64 id;
4828 u64 stream_id;
4829 } throttle_event = {
4830 .header = {
4831 .type = PERF_RECORD_THROTTLE,
4832 .misc = 0,
4833 .size = sizeof(throttle_event),
4834 },
4835 .time = perf_clock(),
4836 .id = primary_event_id(event),
4837 .stream_id = event->id,
4838 };
4839
4840 if (enable)
4841 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
4842
4843 perf_event_header__init_id(&throttle_event.header, &sample, event);
4844
4845 ret = perf_output_begin(&handle, event,
4846 throttle_event.header.size);
4847 if (ret)
4848 return;
4849
4850 perf_output_put(&handle, throttle_event);
4851 perf_event__output_id_sample(event, &handle, &sample);
4852 perf_output_end(&handle);
4853 }
4854
4855 /*
4856 * Generic event overflow handling, sampling.
4857 */
4858
4859 static int __perf_event_overflow(struct perf_event *event,
4860 int throttle, struct perf_sample_data *data,
4861 struct pt_regs *regs)
4862 {
4863 int events = atomic_read(&event->event_limit);
4864 struct hw_perf_event *hwc = &event->hw;
4865 u64 seq;
4866 int ret = 0;
4867
4868 /*
4869 * Non-sampling counters might still use the PMI to fold short
4870 * hardware counters, ignore those.
4871 */
4872 if (unlikely(!is_sampling_event(event)))
4873 return 0;
4874
4875 seq = __this_cpu_read(perf_throttled_seq);
4876 if (seq != hwc->interrupts_seq) {
4877 hwc->interrupts_seq = seq;
4878 hwc->interrupts = 1;
4879 } else {
4880 hwc->interrupts++;
4881 if (unlikely(throttle
4882 && hwc->interrupts >= max_samples_per_tick)) {
4883 __this_cpu_inc(perf_throttled_count);
4884 hwc->interrupts = MAX_INTERRUPTS;
4885 perf_log_throttle(event, 0);
4886 ret = 1;
4887 }
4888 }
4889
4890 if (event->attr.freq) {
4891 u64 now = perf_clock();
4892 s64 delta = now - hwc->freq_time_stamp;
4893
4894 hwc->freq_time_stamp = now;
4895
4896 if (delta > 0 && delta < 2*TICK_NSEC)
4897 perf_adjust_period(event, delta, hwc->last_period, true);
4898 }
4899
4900 /*
4901 * XXX event_limit might not quite work as expected on inherited
4902 * events
4903 */
4904
4905 event->pending_kill = POLL_IN;
4906 if (events && atomic_dec_and_test(&event->event_limit)) {
4907 ret = 1;
4908 event->pending_kill = POLL_HUP;
4909 event->pending_disable = 1;
4910 irq_work_queue(&event->pending);
4911 }
4912
4913 if (event->overflow_handler)
4914 event->overflow_handler(event, data, regs);
4915 else
4916 perf_event_output(event, data, regs);
4917
4918 if (event->fasync && event->pending_kill) {
4919 event->pending_wakeup = 1;
4920 irq_work_queue(&event->pending);
4921 }
4922
4923 return ret;
4924 }
4925
4926 int perf_event_overflow(struct perf_event *event,
4927 struct perf_sample_data *data,
4928 struct pt_regs *regs)
4929 {
4930 return __perf_event_overflow(event, 1, data, regs);
4931 }
4932
4933 /*
4934 * Generic software event infrastructure
4935 */
4936
4937 struct swevent_htable {
4938 struct swevent_hlist *swevent_hlist;
4939 struct mutex hlist_mutex;
4940 int hlist_refcount;
4941
4942 /* Recursion avoidance in each contexts */
4943 int recursion[PERF_NR_CONTEXTS];
4944 };
4945
4946 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
4947
4948 /*
4949 * We directly increment event->count and keep a second value in
4950 * event->hw.period_left to count intervals. This period event
4951 * is kept in the range [-sample_period, 0] so that we can use the
4952 * sign as trigger.
4953 */
4954
4955 static u64 perf_swevent_set_period(struct perf_event *event)
4956 {
4957 struct hw_perf_event *hwc = &event->hw;
4958 u64 period = hwc->last_period;
4959 u64 nr, offset;
4960 s64 old, val;
4961
4962 hwc->last_period = hwc->sample_period;
4963
4964 again:
4965 old = val = local64_read(&hwc->period_left);
4966 if (val < 0)
4967 return 0;
4968
4969 nr = div64_u64(period + val, period);
4970 offset = nr * period;
4971 val -= offset;
4972 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
4973 goto again;
4974
4975 return nr;
4976 }
4977
4978 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
4979 struct perf_sample_data *data,
4980 struct pt_regs *regs)
4981 {
4982 struct hw_perf_event *hwc = &event->hw;
4983 int throttle = 0;
4984
4985 if (!overflow)
4986 overflow = perf_swevent_set_period(event);
4987
4988 if (hwc->interrupts == MAX_INTERRUPTS)
4989 return;
4990
4991 for (; overflow; overflow--) {
4992 if (__perf_event_overflow(event, throttle,
4993 data, regs)) {
4994 /*
4995 * We inhibit the overflow from happening when
4996 * hwc->interrupts == MAX_INTERRUPTS.
4997 */
4998 break;
4999 }
5000 throttle = 1;
5001 }
5002 }
5003
5004 static void perf_swevent_event(struct perf_event *event, u64 nr,
5005 struct perf_sample_data *data,
5006 struct pt_regs *regs)
5007 {
5008 struct hw_perf_event *hwc = &event->hw;
5009
5010 local64_add(nr, &event->count);
5011
5012 if (!regs)
5013 return;
5014
5015 if (!is_sampling_event(event))
5016 return;
5017
5018 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
5019 data->period = nr;
5020 return perf_swevent_overflow(event, 1, data, regs);
5021 } else
5022 data->period = event->hw.last_period;
5023
5024 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
5025 return perf_swevent_overflow(event, 1, data, regs);
5026
5027 if (local64_add_negative(nr, &hwc->period_left))
5028 return;
5029
5030 perf_swevent_overflow(event, 0, data, regs);
5031 }
5032
5033 static int perf_exclude_event(struct perf_event *event,
5034 struct pt_regs *regs)
5035 {
5036 if (event->hw.state & PERF_HES_STOPPED)
5037 return 1;
5038
5039 if (regs) {
5040 if (event->attr.exclude_user && user_mode(regs))
5041 return 1;
5042
5043 if (event->attr.exclude_kernel && !user_mode(regs))
5044 return 1;
5045 }
5046
5047 return 0;
5048 }
5049
5050 static int perf_swevent_match(struct perf_event *event,
5051 enum perf_type_id type,
5052 u32 event_id,
5053 struct perf_sample_data *data,
5054 struct pt_regs *regs)
5055 {
5056 if (event->attr.type != type)
5057 return 0;
5058
5059 if (event->attr.config != event_id)
5060 return 0;
5061
5062 if (perf_exclude_event(event, regs))
5063 return 0;
5064
5065 return 1;
5066 }
5067
5068 static inline u64 swevent_hash(u64 type, u32 event_id)
5069 {
5070 u64 val = event_id | (type << 32);
5071
5072 return hash_64(val, SWEVENT_HLIST_BITS);
5073 }
5074
5075 static inline struct hlist_head *
5076 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
5077 {
5078 u64 hash = swevent_hash(type, event_id);
5079
5080 return &hlist->heads[hash];
5081 }
5082
5083 /* For the read side: events when they trigger */
5084 static inline struct hlist_head *
5085 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
5086 {
5087 struct swevent_hlist *hlist;
5088
5089 hlist = rcu_dereference(swhash->swevent_hlist);
5090 if (!hlist)
5091 return NULL;
5092
5093 return __find_swevent_head(hlist, type, event_id);
5094 }
5095
5096 /* For the event head insertion and removal in the hlist */
5097 static inline struct hlist_head *
5098 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
5099 {
5100 struct swevent_hlist *hlist;
5101 u32 event_id = event->attr.config;
5102 u64 type = event->attr.type;
5103
5104 /*
5105 * Event scheduling is always serialized against hlist allocation
5106 * and release. Which makes the protected version suitable here.
5107 * The context lock guarantees that.
5108 */
5109 hlist = rcu_dereference_protected(swhash->swevent_hlist,
5110 lockdep_is_held(&event->ctx->lock));
5111 if (!hlist)
5112 return NULL;
5113
5114 return __find_swevent_head(hlist, type, event_id);
5115 }
5116
5117 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
5118 u64 nr,
5119 struct perf_sample_data *data,
5120 struct pt_regs *regs)
5121 {
5122 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5123 struct perf_event *event;
5124 struct hlist_node *node;
5125 struct hlist_head *head;
5126
5127 rcu_read_lock();
5128 head = find_swevent_head_rcu(swhash, type, event_id);
5129 if (!head)
5130 goto end;
5131
5132 hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
5133 if (perf_swevent_match(event, type, event_id, data, regs))
5134 perf_swevent_event(event, nr, data, regs);
5135 }
5136 end:
5137 rcu_read_unlock();
5138 }
5139
5140 int perf_swevent_get_recursion_context(void)
5141 {
5142 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5143
5144 return get_recursion_context(swhash->recursion);
5145 }
5146 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
5147
5148 inline void perf_swevent_put_recursion_context(int rctx)
5149 {
5150 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5151
5152 put_recursion_context(swhash->recursion, rctx);
5153 }
5154
5155 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
5156 {
5157 struct perf_sample_data data;
5158 int rctx;
5159
5160 preempt_disable_notrace();
5161 rctx = perf_swevent_get_recursion_context();
5162 if (rctx < 0)
5163 return;
5164
5165 perf_sample_data_init(&data, addr, 0);
5166
5167 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
5168
5169 perf_swevent_put_recursion_context(rctx);
5170 preempt_enable_notrace();
5171 }
5172
5173 static void perf_swevent_read(struct perf_event *event)
5174 {
5175 }
5176
5177 static int perf_swevent_add(struct perf_event *event, int flags)
5178 {
5179 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5180 struct hw_perf_event *hwc = &event->hw;
5181 struct hlist_head *head;
5182
5183 if (is_sampling_event(event)) {
5184 hwc->last_period = hwc->sample_period;
5185 perf_swevent_set_period(event);
5186 }
5187
5188 hwc->state = !(flags & PERF_EF_START);
5189
5190 head = find_swevent_head(swhash, event);
5191 if (WARN_ON_ONCE(!head))
5192 return -EINVAL;
5193
5194 hlist_add_head_rcu(&event->hlist_entry, head);
5195
5196 return 0;
5197 }
5198
5199 static void perf_swevent_del(struct perf_event *event, int flags)
5200 {
5201 hlist_del_rcu(&event->hlist_entry);
5202 }
5203
5204 static void perf_swevent_start(struct perf_event *event, int flags)
5205 {
5206 event->hw.state = 0;
5207 }
5208
5209 static void perf_swevent_stop(struct perf_event *event, int flags)
5210 {
5211 event->hw.state = PERF_HES_STOPPED;
5212 }
5213
5214 /* Deref the hlist from the update side */
5215 static inline struct swevent_hlist *
5216 swevent_hlist_deref(struct swevent_htable *swhash)
5217 {
5218 return rcu_dereference_protected(swhash->swevent_hlist,
5219 lockdep_is_held(&swhash->hlist_mutex));
5220 }
5221
5222 static void swevent_hlist_release(struct swevent_htable *swhash)
5223 {
5224 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
5225
5226 if (!hlist)
5227 return;
5228
5229 rcu_assign_pointer(swhash->swevent_hlist, NULL);
5230 kfree_rcu(hlist, rcu_head);
5231 }
5232
5233 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
5234 {
5235 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5236
5237 mutex_lock(&swhash->hlist_mutex);
5238
5239 if (!--swhash->hlist_refcount)
5240 swevent_hlist_release(swhash);
5241
5242 mutex_unlock(&swhash->hlist_mutex);
5243 }
5244
5245 static void swevent_hlist_put(struct perf_event *event)
5246 {
5247 int cpu;
5248
5249 if (event->cpu != -1) {
5250 swevent_hlist_put_cpu(event, event->cpu);
5251 return;
5252 }
5253
5254 for_each_possible_cpu(cpu)
5255 swevent_hlist_put_cpu(event, cpu);
5256 }
5257
5258 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
5259 {
5260 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5261 int err = 0;
5262
5263 mutex_lock(&swhash->hlist_mutex);
5264
5265 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
5266 struct swevent_hlist *hlist;
5267
5268 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
5269 if (!hlist) {
5270 err = -ENOMEM;
5271 goto exit;
5272 }
5273 rcu_assign_pointer(swhash->swevent_hlist, hlist);
5274 }
5275 swhash->hlist_refcount++;
5276 exit:
5277 mutex_unlock(&swhash->hlist_mutex);
5278
5279 return err;
5280 }
5281
5282 static int swevent_hlist_get(struct perf_event *event)
5283 {
5284 int err;
5285 int cpu, failed_cpu;
5286
5287 if (event->cpu != -1)
5288 return swevent_hlist_get_cpu(event, event->cpu);
5289
5290 get_online_cpus();
5291 for_each_possible_cpu(cpu) {
5292 err = swevent_hlist_get_cpu(event, cpu);
5293 if (err) {
5294 failed_cpu = cpu;
5295 goto fail;
5296 }
5297 }
5298 put_online_cpus();
5299
5300 return 0;
5301 fail:
5302 for_each_possible_cpu(cpu) {
5303 if (cpu == failed_cpu)
5304 break;
5305 swevent_hlist_put_cpu(event, cpu);
5306 }
5307
5308 put_online_cpus();
5309 return err;
5310 }
5311
5312 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
5313
5314 static void sw_perf_event_destroy(struct perf_event *event)
5315 {
5316 u64 event_id = event->attr.config;
5317
5318 WARN_ON(event->parent);
5319
5320 static_key_slow_dec(&perf_swevent_enabled[event_id]);
5321 swevent_hlist_put(event);
5322 }
5323
5324 static int perf_swevent_init(struct perf_event *event)
5325 {
5326 int event_id = event->attr.config;
5327
5328 if (event->attr.type != PERF_TYPE_SOFTWARE)
5329 return -ENOENT;
5330
5331 /*
5332 * no branch sampling for software events
5333 */
5334 if (has_branch_stack(event))
5335 return -EOPNOTSUPP;
5336
5337 switch (event_id) {
5338 case PERF_COUNT_SW_CPU_CLOCK:
5339 case PERF_COUNT_SW_TASK_CLOCK:
5340 return -ENOENT;
5341
5342 default:
5343 break;
5344 }
5345
5346 if (event_id >= PERF_COUNT_SW_MAX)
5347 return -ENOENT;
5348
5349 if (!event->parent) {
5350 int err;
5351
5352 err = swevent_hlist_get(event);
5353 if (err)
5354 return err;
5355
5356 static_key_slow_inc(&perf_swevent_enabled[event_id]);
5357 event->destroy = sw_perf_event_destroy;
5358 }
5359
5360 return 0;
5361 }
5362
5363 static int perf_swevent_event_idx(struct perf_event *event)
5364 {
5365 return 0;
5366 }
5367
5368 static struct pmu perf_swevent = {
5369 .task_ctx_nr = perf_sw_context,
5370
5371 .event_init = perf_swevent_init,
5372 .add = perf_swevent_add,
5373 .del = perf_swevent_del,
5374 .start = perf_swevent_start,
5375 .stop = perf_swevent_stop,
5376 .read = perf_swevent_read,
5377
5378 .event_idx = perf_swevent_event_idx,
5379 };
5380
5381 #ifdef CONFIG_EVENT_TRACING
5382
5383 static int perf_tp_filter_match(struct perf_event *event,
5384 struct perf_sample_data *data)
5385 {
5386 void *record = data->raw->data;
5387
5388 if (likely(!event->filter) || filter_match_preds(event->filter, record))
5389 return 1;
5390 return 0;
5391 }
5392
5393 static int perf_tp_event_match(struct perf_event *event,
5394 struct perf_sample_data *data,
5395 struct pt_regs *regs)
5396 {
5397 if (event->hw.state & PERF_HES_STOPPED)
5398 return 0;
5399 /*
5400 * All tracepoints are from kernel-space.
5401 */
5402 if (event->attr.exclude_kernel)
5403 return 0;
5404
5405 if (!perf_tp_filter_match(event, data))
5406 return 0;
5407
5408 return 1;
5409 }
5410
5411 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
5412 struct pt_regs *regs, struct hlist_head *head, int rctx,
5413 struct task_struct *task)
5414 {
5415 struct perf_sample_data data;
5416 struct perf_event *event;
5417 struct hlist_node *node;
5418
5419 struct perf_raw_record raw = {
5420 .size = entry_size,
5421 .data = record,
5422 };
5423
5424 perf_sample_data_init(&data, addr, 0);
5425 data.raw = &raw;
5426
5427 hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
5428 if (perf_tp_event_match(event, &data, regs))
5429 perf_swevent_event(event, count, &data, regs);
5430 }
5431
5432 /*
5433 * If we got specified a target task, also iterate its context and
5434 * deliver this event there too.
5435 */
5436 if (task && task != current) {
5437 struct perf_event_context *ctx;
5438 struct trace_entry *entry = record;
5439
5440 rcu_read_lock();
5441 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
5442 if (!ctx)
5443 goto unlock;
5444
5445 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5446 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5447 continue;
5448 if (event->attr.config != entry->type)
5449 continue;
5450 if (perf_tp_event_match(event, &data, regs))
5451 perf_swevent_event(event, count, &data, regs);
5452 }
5453 unlock:
5454 rcu_read_unlock();
5455 }
5456
5457 perf_swevent_put_recursion_context(rctx);
5458 }
5459 EXPORT_SYMBOL_GPL(perf_tp_event);
5460
5461 static void tp_perf_event_destroy(struct perf_event *event)
5462 {
5463 perf_trace_destroy(event);
5464 }
5465
5466 static int perf_tp_event_init(struct perf_event *event)
5467 {
5468 int err;
5469
5470 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5471 return -ENOENT;
5472
5473 /*
5474 * no branch sampling for tracepoint events
5475 */
5476 if (has_branch_stack(event))
5477 return -EOPNOTSUPP;
5478
5479 err = perf_trace_init(event);
5480 if (err)
5481 return err;
5482
5483 event->destroy = tp_perf_event_destroy;
5484
5485 return 0;
5486 }
5487
5488 static struct pmu perf_tracepoint = {
5489 .task_ctx_nr = perf_sw_context,
5490
5491 .event_init = perf_tp_event_init,
5492 .add = perf_trace_add,
5493 .del = perf_trace_del,
5494 .start = perf_swevent_start,
5495 .stop = perf_swevent_stop,
5496 .read = perf_swevent_read,
5497
5498 .event_idx = perf_swevent_event_idx,
5499 };
5500
5501 static inline void perf_tp_register(void)
5502 {
5503 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
5504 }
5505
5506 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5507 {
5508 char *filter_str;
5509 int ret;
5510
5511 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5512 return -EINVAL;
5513
5514 filter_str = strndup_user(arg, PAGE_SIZE);
5515 if (IS_ERR(filter_str))
5516 return PTR_ERR(filter_str);
5517
5518 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
5519
5520 kfree(filter_str);
5521 return ret;
5522 }
5523
5524 static void perf_event_free_filter(struct perf_event *event)
5525 {
5526 ftrace_profile_free_filter(event);
5527 }
5528
5529 #else
5530
5531 static inline void perf_tp_register(void)
5532 {
5533 }
5534
5535 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5536 {
5537 return -ENOENT;
5538 }
5539
5540 static void perf_event_free_filter(struct perf_event *event)
5541 {
5542 }
5543
5544 #endif /* CONFIG_EVENT_TRACING */
5545
5546 #ifdef CONFIG_HAVE_HW_BREAKPOINT
5547 void perf_bp_event(struct perf_event *bp, void *data)
5548 {
5549 struct perf_sample_data sample;
5550 struct pt_regs *regs = data;
5551
5552 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
5553
5554 if (!bp->hw.state && !perf_exclude_event(bp, regs))
5555 perf_swevent_event(bp, 1, &sample, regs);
5556 }
5557 #endif
5558
5559 /*
5560 * hrtimer based swevent callback
5561 */
5562
5563 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
5564 {
5565 enum hrtimer_restart ret = HRTIMER_RESTART;
5566 struct perf_sample_data data;
5567 struct pt_regs *regs;
5568 struct perf_event *event;
5569 u64 period;
5570
5571 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
5572
5573 if (event->state != PERF_EVENT_STATE_ACTIVE)
5574 return HRTIMER_NORESTART;
5575
5576 event->pmu->read(event);
5577
5578 perf_sample_data_init(&data, 0, event->hw.last_period);
5579 regs = get_irq_regs();
5580
5581 if (regs && !perf_exclude_event(event, regs)) {
5582 if (!(event->attr.exclude_idle && is_idle_task(current)))
5583 if (__perf_event_overflow(event, 1, &data, regs))
5584 ret = HRTIMER_NORESTART;
5585 }
5586
5587 period = max_t(u64, 10000, event->hw.sample_period);
5588 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
5589
5590 return ret;
5591 }
5592
5593 static void perf_swevent_start_hrtimer(struct perf_event *event)
5594 {
5595 struct hw_perf_event *hwc = &event->hw;
5596 s64 period;
5597
5598 if (!is_sampling_event(event))
5599 return;
5600
5601 period = local64_read(&hwc->period_left);
5602 if (period) {
5603 if (period < 0)
5604 period = 10000;
5605
5606 local64_set(&hwc->period_left, 0);
5607 } else {
5608 period = max_t(u64, 10000, hwc->sample_period);
5609 }
5610 __hrtimer_start_range_ns(&hwc->hrtimer,
5611 ns_to_ktime(period), 0,
5612 HRTIMER_MODE_REL_PINNED, 0);
5613 }
5614
5615 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
5616 {
5617 struct hw_perf_event *hwc = &event->hw;
5618
5619 if (is_sampling_event(event)) {
5620 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
5621 local64_set(&hwc->period_left, ktime_to_ns(remaining));
5622
5623 hrtimer_cancel(&hwc->hrtimer);
5624 }
5625 }
5626
5627 static void perf_swevent_init_hrtimer(struct perf_event *event)
5628 {
5629 struct hw_perf_event *hwc = &event->hw;
5630
5631 if (!is_sampling_event(event))
5632 return;
5633
5634 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5635 hwc->hrtimer.function = perf_swevent_hrtimer;
5636
5637 /*
5638 * Since hrtimers have a fixed rate, we can do a static freq->period
5639 * mapping and avoid the whole period adjust feedback stuff.
5640 */
5641 if (event->attr.freq) {
5642 long freq = event->attr.sample_freq;
5643
5644 event->attr.sample_period = NSEC_PER_SEC / freq;
5645 hwc->sample_period = event->attr.sample_period;
5646 local64_set(&hwc->period_left, hwc->sample_period);
5647 event->attr.freq = 0;
5648 }
5649 }
5650
5651 /*
5652 * Software event: cpu wall time clock
5653 */
5654
5655 static void cpu_clock_event_update(struct perf_event *event)
5656 {
5657 s64 prev;
5658 u64 now;
5659
5660 now = local_clock();
5661 prev = local64_xchg(&event->hw.prev_count, now);
5662 local64_add(now - prev, &event->count);
5663 }
5664
5665 static void cpu_clock_event_start(struct perf_event *event, int flags)
5666 {
5667 local64_set(&event->hw.prev_count, local_clock());
5668 perf_swevent_start_hrtimer(event);
5669 }
5670
5671 static void cpu_clock_event_stop(struct perf_event *event, int flags)
5672 {
5673 perf_swevent_cancel_hrtimer(event);
5674 cpu_clock_event_update(event);
5675 }
5676
5677 static int cpu_clock_event_add(struct perf_event *event, int flags)
5678 {
5679 if (flags & PERF_EF_START)
5680 cpu_clock_event_start(event, flags);
5681
5682 return 0;
5683 }
5684
5685 static void cpu_clock_event_del(struct perf_event *event, int flags)
5686 {
5687 cpu_clock_event_stop(event, flags);
5688 }
5689
5690 static void cpu_clock_event_read(struct perf_event *event)
5691 {
5692 cpu_clock_event_update(event);
5693 }
5694
5695 static int cpu_clock_event_init(struct perf_event *event)
5696 {
5697 if (event->attr.type != PERF_TYPE_SOFTWARE)
5698 return -ENOENT;
5699
5700 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
5701 return -ENOENT;
5702
5703 /*
5704 * no branch sampling for software events
5705 */
5706 if (has_branch_stack(event))
5707 return -EOPNOTSUPP;
5708
5709 perf_swevent_init_hrtimer(event);
5710
5711 return 0;
5712 }
5713
5714 static struct pmu perf_cpu_clock = {
5715 .task_ctx_nr = perf_sw_context,
5716
5717 .event_init = cpu_clock_event_init,
5718 .add = cpu_clock_event_add,
5719 .del = cpu_clock_event_del,
5720 .start = cpu_clock_event_start,
5721 .stop = cpu_clock_event_stop,
5722 .read = cpu_clock_event_read,
5723
5724 .event_idx = perf_swevent_event_idx,
5725 };
5726
5727 /*
5728 * Software event: task time clock
5729 */
5730
5731 static void task_clock_event_update(struct perf_event *event, u64 now)
5732 {
5733 u64 prev;
5734 s64 delta;
5735
5736 prev = local64_xchg(&event->hw.prev_count, now);
5737 delta = now - prev;
5738 local64_add(delta, &event->count);
5739 }
5740
5741 static void task_clock_event_start(struct perf_event *event, int flags)
5742 {
5743 local64_set(&event->hw.prev_count, event->ctx->time);
5744 perf_swevent_start_hrtimer(event);
5745 }
5746
5747 static void task_clock_event_stop(struct perf_event *event, int flags)
5748 {
5749 perf_swevent_cancel_hrtimer(event);
5750 task_clock_event_update(event, event->ctx->time);
5751 }
5752
5753 static int task_clock_event_add(struct perf_event *event, int flags)
5754 {
5755 if (flags & PERF_EF_START)
5756 task_clock_event_start(event, flags);
5757
5758 return 0;
5759 }
5760
5761 static void task_clock_event_del(struct perf_event *event, int flags)
5762 {
5763 task_clock_event_stop(event, PERF_EF_UPDATE);
5764 }
5765
5766 static void task_clock_event_read(struct perf_event *event)
5767 {
5768 u64 now = perf_clock();
5769 u64 delta = now - event->ctx->timestamp;
5770 u64 time = event->ctx->time + delta;
5771
5772 task_clock_event_update(event, time);
5773 }
5774
5775 static int task_clock_event_init(struct perf_event *event)
5776 {
5777 if (event->attr.type != PERF_TYPE_SOFTWARE)
5778 return -ENOENT;
5779
5780 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
5781 return -ENOENT;
5782
5783 /*
5784 * no branch sampling for software events
5785 */
5786 if (has_branch_stack(event))
5787 return -EOPNOTSUPP;
5788
5789 perf_swevent_init_hrtimer(event);
5790
5791 return 0;
5792 }
5793
5794 static struct pmu perf_task_clock = {
5795 .task_ctx_nr = perf_sw_context,
5796
5797 .event_init = task_clock_event_init,
5798 .add = task_clock_event_add,
5799 .del = task_clock_event_del,
5800 .start = task_clock_event_start,
5801 .stop = task_clock_event_stop,
5802 .read = task_clock_event_read,
5803
5804 .event_idx = perf_swevent_event_idx,
5805 };
5806
5807 static void perf_pmu_nop_void(struct pmu *pmu)
5808 {
5809 }
5810
5811 static int perf_pmu_nop_int(struct pmu *pmu)
5812 {
5813 return 0;
5814 }
5815
5816 static void perf_pmu_start_txn(struct pmu *pmu)
5817 {
5818 perf_pmu_disable(pmu);
5819 }
5820
5821 static int perf_pmu_commit_txn(struct pmu *pmu)
5822 {
5823 perf_pmu_enable(pmu);
5824 return 0;
5825 }
5826
5827 static void perf_pmu_cancel_txn(struct pmu *pmu)
5828 {
5829 perf_pmu_enable(pmu);
5830 }
5831
5832 static int perf_event_idx_default(struct perf_event *event)
5833 {
5834 return event->hw.idx + 1;
5835 }
5836
5837 /*
5838 * Ensures all contexts with the same task_ctx_nr have the same
5839 * pmu_cpu_context too.
5840 */
5841 static void *find_pmu_context(int ctxn)
5842 {
5843 struct pmu *pmu;
5844
5845 if (ctxn < 0)
5846 return NULL;
5847
5848 list_for_each_entry(pmu, &pmus, entry) {
5849 if (pmu->task_ctx_nr == ctxn)
5850 return pmu->pmu_cpu_context;
5851 }
5852
5853 return NULL;
5854 }
5855
5856 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
5857 {
5858 int cpu;
5859
5860 for_each_possible_cpu(cpu) {
5861 struct perf_cpu_context *cpuctx;
5862
5863 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5864
5865 if (cpuctx->active_pmu == old_pmu)
5866 cpuctx->active_pmu = pmu;
5867 }
5868 }
5869
5870 static void free_pmu_context(struct pmu *pmu)
5871 {
5872 struct pmu *i;
5873
5874 mutex_lock(&pmus_lock);
5875 /*
5876 * Like a real lame refcount.
5877 */
5878 list_for_each_entry(i, &pmus, entry) {
5879 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
5880 update_pmu_context(i, pmu);
5881 goto out;
5882 }
5883 }
5884
5885 free_percpu(pmu->pmu_cpu_context);
5886 out:
5887 mutex_unlock(&pmus_lock);
5888 }
5889 static struct idr pmu_idr;
5890
5891 static ssize_t
5892 type_show(struct device *dev, struct device_attribute *attr, char *page)
5893 {
5894 struct pmu *pmu = dev_get_drvdata(dev);
5895
5896 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
5897 }
5898
5899 static struct device_attribute pmu_dev_attrs[] = {
5900 __ATTR_RO(type),
5901 __ATTR_NULL,
5902 };
5903
5904 static int pmu_bus_running;
5905 static struct bus_type pmu_bus = {
5906 .name = "event_source",
5907 .dev_attrs = pmu_dev_attrs,
5908 };
5909
5910 static void pmu_dev_release(struct device *dev)
5911 {
5912 kfree(dev);
5913 }
5914
5915 static int pmu_dev_alloc(struct pmu *pmu)
5916 {
5917 int ret = -ENOMEM;
5918
5919 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
5920 if (!pmu->dev)
5921 goto out;
5922
5923 pmu->dev->groups = pmu->attr_groups;
5924 device_initialize(pmu->dev);
5925 ret = dev_set_name(pmu->dev, "%s", pmu->name);
5926 if (ret)
5927 goto free_dev;
5928
5929 dev_set_drvdata(pmu->dev, pmu);
5930 pmu->dev->bus = &pmu_bus;
5931 pmu->dev->release = pmu_dev_release;
5932 ret = device_add(pmu->dev);
5933 if (ret)
5934 goto free_dev;
5935
5936 out:
5937 return ret;
5938
5939 free_dev:
5940 put_device(pmu->dev);
5941 goto out;
5942 }
5943
5944 static struct lock_class_key cpuctx_mutex;
5945 static struct lock_class_key cpuctx_lock;
5946
5947 int perf_pmu_register(struct pmu *pmu, char *name, int type)
5948 {
5949 int cpu, ret;
5950
5951 mutex_lock(&pmus_lock);
5952 ret = -ENOMEM;
5953 pmu->pmu_disable_count = alloc_percpu(int);
5954 if (!pmu->pmu_disable_count)
5955 goto unlock;
5956
5957 pmu->type = -1;
5958 if (!name)
5959 goto skip_type;
5960 pmu->name = name;
5961
5962 if (type < 0) {
5963 int err = idr_pre_get(&pmu_idr, GFP_KERNEL);
5964 if (!err)
5965 goto free_pdc;
5966
5967 err = idr_get_new_above(&pmu_idr, pmu, PERF_TYPE_MAX, &type);
5968 if (err) {
5969 ret = err;
5970 goto free_pdc;
5971 }
5972 }
5973 pmu->type = type;
5974
5975 if (pmu_bus_running) {
5976 ret = pmu_dev_alloc(pmu);
5977 if (ret)
5978 goto free_idr;
5979 }
5980
5981 skip_type:
5982 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
5983 if (pmu->pmu_cpu_context)
5984 goto got_cpu_context;
5985
5986 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
5987 if (!pmu->pmu_cpu_context)
5988 goto free_dev;
5989
5990 for_each_possible_cpu(cpu) {
5991 struct perf_cpu_context *cpuctx;
5992
5993 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5994 __perf_event_init_context(&cpuctx->ctx);
5995 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
5996 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
5997 cpuctx->ctx.type = cpu_context;
5998 cpuctx->ctx.pmu = pmu;
5999 cpuctx->jiffies_interval = 1;
6000 INIT_LIST_HEAD(&cpuctx->rotation_list);
6001 cpuctx->active_pmu = pmu;
6002 }
6003
6004 got_cpu_context:
6005 if (!pmu->start_txn) {
6006 if (pmu->pmu_enable) {
6007 /*
6008 * If we have pmu_enable/pmu_disable calls, install
6009 * transaction stubs that use that to try and batch
6010 * hardware accesses.
6011 */
6012 pmu->start_txn = perf_pmu_start_txn;
6013 pmu->commit_txn = perf_pmu_commit_txn;
6014 pmu->cancel_txn = perf_pmu_cancel_txn;
6015 } else {
6016 pmu->start_txn = perf_pmu_nop_void;
6017 pmu->commit_txn = perf_pmu_nop_int;
6018 pmu->cancel_txn = perf_pmu_nop_void;
6019 }
6020 }
6021
6022 if (!pmu->pmu_enable) {
6023 pmu->pmu_enable = perf_pmu_nop_void;
6024 pmu->pmu_disable = perf_pmu_nop_void;
6025 }
6026
6027 if (!pmu->event_idx)
6028 pmu->event_idx = perf_event_idx_default;
6029
6030 list_add_rcu(&pmu->entry, &pmus);
6031 ret = 0;
6032 unlock:
6033 mutex_unlock(&pmus_lock);
6034
6035 return ret;
6036
6037 free_dev:
6038 device_del(pmu->dev);
6039 put_device(pmu->dev);
6040
6041 free_idr:
6042 if (pmu->type >= PERF_TYPE_MAX)
6043 idr_remove(&pmu_idr, pmu->type);
6044
6045 free_pdc:
6046 free_percpu(pmu->pmu_disable_count);
6047 goto unlock;
6048 }
6049
6050 void perf_pmu_unregister(struct pmu *pmu)
6051 {
6052 mutex_lock(&pmus_lock);
6053 list_del_rcu(&pmu->entry);
6054 mutex_unlock(&pmus_lock);
6055
6056 /*
6057 * We dereference the pmu list under both SRCU and regular RCU, so
6058 * synchronize against both of those.
6059 */
6060 synchronize_srcu(&pmus_srcu);
6061 synchronize_rcu();
6062
6063 free_percpu(pmu->pmu_disable_count);
6064 if (pmu->type >= PERF_TYPE_MAX)
6065 idr_remove(&pmu_idr, pmu->type);
6066 device_del(pmu->dev);
6067 put_device(pmu->dev);
6068 free_pmu_context(pmu);
6069 }
6070
6071 struct pmu *perf_init_event(struct perf_event *event)
6072 {
6073 struct pmu *pmu = NULL;
6074 int idx;
6075 int ret;
6076
6077 idx = srcu_read_lock(&pmus_srcu);
6078
6079 rcu_read_lock();
6080 pmu = idr_find(&pmu_idr, event->attr.type);
6081 rcu_read_unlock();
6082 if (pmu) {
6083 event->pmu = pmu;
6084 ret = pmu->event_init(event);
6085 if (ret)
6086 pmu = ERR_PTR(ret);
6087 goto unlock;
6088 }
6089
6090 list_for_each_entry_rcu(pmu, &pmus, entry) {
6091 event->pmu = pmu;
6092 ret = pmu->event_init(event);
6093 if (!ret)
6094 goto unlock;
6095
6096 if (ret != -ENOENT) {
6097 pmu = ERR_PTR(ret);
6098 goto unlock;
6099 }
6100 }
6101 pmu = ERR_PTR(-ENOENT);
6102 unlock:
6103 srcu_read_unlock(&pmus_srcu, idx);
6104
6105 return pmu;
6106 }
6107
6108 /*
6109 * Allocate and initialize a event structure
6110 */
6111 static struct perf_event *
6112 perf_event_alloc(struct perf_event_attr *attr, int cpu,
6113 struct task_struct *task,
6114 struct perf_event *group_leader,
6115 struct perf_event *parent_event,
6116 perf_overflow_handler_t overflow_handler,
6117 void *context)
6118 {
6119 struct pmu *pmu;
6120 struct perf_event *event;
6121 struct hw_perf_event *hwc;
6122 long err;
6123
6124 if ((unsigned)cpu >= nr_cpu_ids) {
6125 if (!task || cpu != -1)
6126 return ERR_PTR(-EINVAL);
6127 }
6128
6129 event = kzalloc(sizeof(*event), GFP_KERNEL);
6130 if (!event)
6131 return ERR_PTR(-ENOMEM);
6132
6133 /*
6134 * Single events are their own group leaders, with an
6135 * empty sibling list:
6136 */
6137 if (!group_leader)
6138 group_leader = event;
6139
6140 mutex_init(&event->child_mutex);
6141 INIT_LIST_HEAD(&event->child_list);
6142
6143 INIT_LIST_HEAD(&event->group_entry);
6144 INIT_LIST_HEAD(&event->event_entry);
6145 INIT_LIST_HEAD(&event->sibling_list);
6146 INIT_LIST_HEAD(&event->rb_entry);
6147
6148 init_waitqueue_head(&event->waitq);
6149 init_irq_work(&event->pending, perf_pending_event);
6150
6151 mutex_init(&event->mmap_mutex);
6152
6153 atomic_long_set(&event->refcount, 1);
6154 event->cpu = cpu;
6155 event->attr = *attr;
6156 event->group_leader = group_leader;
6157 event->pmu = NULL;
6158 event->oncpu = -1;
6159
6160 event->parent = parent_event;
6161
6162 event->ns = get_pid_ns(current->nsproxy->pid_ns);
6163 event->id = atomic64_inc_return(&perf_event_id);
6164
6165 event->state = PERF_EVENT_STATE_INACTIVE;
6166
6167 if (task) {
6168 event->attach_state = PERF_ATTACH_TASK;
6169 #ifdef CONFIG_HAVE_HW_BREAKPOINT
6170 /*
6171 * hw_breakpoint is a bit difficult here..
6172 */
6173 if (attr->type == PERF_TYPE_BREAKPOINT)
6174 event->hw.bp_target = task;
6175 #endif
6176 }
6177
6178 if (!overflow_handler && parent_event) {
6179 overflow_handler = parent_event->overflow_handler;
6180 context = parent_event->overflow_handler_context;
6181 }
6182
6183 event->overflow_handler = overflow_handler;
6184 event->overflow_handler_context = context;
6185
6186 if (attr->disabled)
6187 event->state = PERF_EVENT_STATE_OFF;
6188
6189 pmu = NULL;
6190
6191 hwc = &event->hw;
6192 hwc->sample_period = attr->sample_period;
6193 if (attr->freq && attr->sample_freq)
6194 hwc->sample_period = 1;
6195 hwc->last_period = hwc->sample_period;
6196
6197 local64_set(&hwc->period_left, hwc->sample_period);
6198
6199 /*
6200 * we currently do not support PERF_FORMAT_GROUP on inherited events
6201 */
6202 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
6203 goto done;
6204
6205 pmu = perf_init_event(event);
6206
6207 done:
6208 err = 0;
6209 if (!pmu)
6210 err = -EINVAL;
6211 else if (IS_ERR(pmu))
6212 err = PTR_ERR(pmu);
6213
6214 if (err) {
6215 if (event->ns)
6216 put_pid_ns(event->ns);
6217 kfree(event);
6218 return ERR_PTR(err);
6219 }
6220
6221 if (!event->parent) {
6222 if (event->attach_state & PERF_ATTACH_TASK)
6223 static_key_slow_inc(&perf_sched_events.key);
6224 if (event->attr.mmap || event->attr.mmap_data)
6225 atomic_inc(&nr_mmap_events);
6226 if (event->attr.comm)
6227 atomic_inc(&nr_comm_events);
6228 if (event->attr.task)
6229 atomic_inc(&nr_task_events);
6230 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
6231 err = get_callchain_buffers();
6232 if (err) {
6233 free_event(event);
6234 return ERR_PTR(err);
6235 }
6236 }
6237 if (has_branch_stack(event)) {
6238 static_key_slow_inc(&perf_sched_events.key);
6239 if (!(event->attach_state & PERF_ATTACH_TASK))
6240 atomic_inc(&per_cpu(perf_branch_stack_events,
6241 event->cpu));
6242 }
6243 }
6244
6245 return event;
6246 }
6247
6248 static int perf_copy_attr(struct perf_event_attr __user *uattr,
6249 struct perf_event_attr *attr)
6250 {
6251 u32 size;
6252 int ret;
6253
6254 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
6255 return -EFAULT;
6256
6257 /*
6258 * zero the full structure, so that a short copy will be nice.
6259 */
6260 memset(attr, 0, sizeof(*attr));
6261
6262 ret = get_user(size, &uattr->size);
6263 if (ret)
6264 return ret;
6265
6266 if (size > PAGE_SIZE) /* silly large */
6267 goto err_size;
6268
6269 if (!size) /* abi compat */
6270 size = PERF_ATTR_SIZE_VER0;
6271
6272 if (size < PERF_ATTR_SIZE_VER0)
6273 goto err_size;
6274
6275 /*
6276 * If we're handed a bigger struct than we know of,
6277 * ensure all the unknown bits are 0 - i.e. new
6278 * user-space does not rely on any kernel feature
6279 * extensions we dont know about yet.
6280 */
6281 if (size > sizeof(*attr)) {
6282 unsigned char __user *addr;
6283 unsigned char __user *end;
6284 unsigned char val;
6285
6286 addr = (void __user *)uattr + sizeof(*attr);
6287 end = (void __user *)uattr + size;
6288
6289 for (; addr < end; addr++) {
6290 ret = get_user(val, addr);
6291 if (ret)
6292 return ret;
6293 if (val)
6294 goto err_size;
6295 }
6296 size = sizeof(*attr);
6297 }
6298
6299 ret = copy_from_user(attr, uattr, size);
6300 if (ret)
6301 return -EFAULT;
6302
6303 if (attr->__reserved_1)
6304 return -EINVAL;
6305
6306 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
6307 return -EINVAL;
6308
6309 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
6310 return -EINVAL;
6311
6312 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
6313 u64 mask = attr->branch_sample_type;
6314
6315 /* only using defined bits */
6316 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
6317 return -EINVAL;
6318
6319 /* at least one branch bit must be set */
6320 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
6321 return -EINVAL;
6322
6323 /* kernel level capture: check permissions */
6324 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
6325 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6326 return -EACCES;
6327
6328 /* propagate priv level, when not set for branch */
6329 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
6330
6331 /* exclude_kernel checked on syscall entry */
6332 if (!attr->exclude_kernel)
6333 mask |= PERF_SAMPLE_BRANCH_KERNEL;
6334
6335 if (!attr->exclude_user)
6336 mask |= PERF_SAMPLE_BRANCH_USER;
6337
6338 if (!attr->exclude_hv)
6339 mask |= PERF_SAMPLE_BRANCH_HV;
6340 /*
6341 * adjust user setting (for HW filter setup)
6342 */
6343 attr->branch_sample_type = mask;
6344 }
6345 }
6346
6347 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
6348 ret = perf_reg_validate(attr->sample_regs_user);
6349 if (ret)
6350 return ret;
6351 }
6352
6353 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
6354 if (!arch_perf_have_user_stack_dump())
6355 return -ENOSYS;
6356
6357 /*
6358 * We have __u32 type for the size, but so far
6359 * we can only use __u16 as maximum due to the
6360 * __u16 sample size limit.
6361 */
6362 if (attr->sample_stack_user >= USHRT_MAX)
6363 ret = -EINVAL;
6364 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
6365 ret = -EINVAL;
6366 }
6367
6368 out:
6369 return ret;
6370
6371 err_size:
6372 put_user(sizeof(*attr), &uattr->size);
6373 ret = -E2BIG;
6374 goto out;
6375 }
6376
6377 static int
6378 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
6379 {
6380 struct ring_buffer *rb = NULL, *old_rb = NULL;
6381 int ret = -EINVAL;
6382
6383 if (!output_event)
6384 goto set;
6385
6386 /* don't allow circular references */
6387 if (event == output_event)
6388 goto out;
6389
6390 /*
6391 * Don't allow cross-cpu buffers
6392 */
6393 if (output_event->cpu != event->cpu)
6394 goto out;
6395
6396 /*
6397 * If its not a per-cpu rb, it must be the same task.
6398 */
6399 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
6400 goto out;
6401
6402 set:
6403 mutex_lock(&event->mmap_mutex);
6404 /* Can't redirect output if we've got an active mmap() */
6405 if (atomic_read(&event->mmap_count))
6406 goto unlock;
6407
6408 if (output_event) {
6409 /* get the rb we want to redirect to */
6410 rb = ring_buffer_get(output_event);
6411 if (!rb)
6412 goto unlock;
6413 }
6414
6415 old_rb = event->rb;
6416 rcu_assign_pointer(event->rb, rb);
6417 if (old_rb)
6418 ring_buffer_detach(event, old_rb);
6419 ret = 0;
6420 unlock:
6421 mutex_unlock(&event->mmap_mutex);
6422
6423 if (old_rb)
6424 ring_buffer_put(old_rb);
6425 out:
6426 return ret;
6427 }
6428
6429 /**
6430 * sys_perf_event_open - open a performance event, associate it to a task/cpu
6431 *
6432 * @attr_uptr: event_id type attributes for monitoring/sampling
6433 * @pid: target pid
6434 * @cpu: target cpu
6435 * @group_fd: group leader event fd
6436 */
6437 SYSCALL_DEFINE5(perf_event_open,
6438 struct perf_event_attr __user *, attr_uptr,
6439 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
6440 {
6441 struct perf_event *group_leader = NULL, *output_event = NULL;
6442 struct perf_event *event, *sibling;
6443 struct perf_event_attr attr;
6444 struct perf_event_context *ctx;
6445 struct file *event_file = NULL;
6446 struct file *group_file = NULL;
6447 struct task_struct *task = NULL;
6448 struct pmu *pmu;
6449 int event_fd;
6450 int move_group = 0;
6451 int fput_needed = 0;
6452 int err;
6453
6454 /* for future expandability... */
6455 if (flags & ~PERF_FLAG_ALL)
6456 return -EINVAL;
6457
6458 err = perf_copy_attr(attr_uptr, &attr);
6459 if (err)
6460 return err;
6461
6462 if (!attr.exclude_kernel) {
6463 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6464 return -EACCES;
6465 }
6466
6467 if (attr.freq) {
6468 if (attr.sample_freq > sysctl_perf_event_sample_rate)
6469 return -EINVAL;
6470 }
6471
6472 /*
6473 * In cgroup mode, the pid argument is used to pass the fd
6474 * opened to the cgroup directory in cgroupfs. The cpu argument
6475 * designates the cpu on which to monitor threads from that
6476 * cgroup.
6477 */
6478 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
6479 return -EINVAL;
6480
6481 event_fd = get_unused_fd_flags(O_RDWR);
6482 if (event_fd < 0)
6483 return event_fd;
6484
6485 if (group_fd != -1) {
6486 group_file = perf_fget_light(group_fd, &fput_needed);
6487 if (IS_ERR(group_file)) {
6488 err = PTR_ERR(group_file);
6489 goto err_fd;
6490 }
6491 group_leader = group_file->private_data;
6492 if (flags & PERF_FLAG_FD_OUTPUT)
6493 output_event = group_leader;
6494 if (flags & PERF_FLAG_FD_NO_GROUP)
6495 group_leader = NULL;
6496 }
6497
6498 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
6499 task = find_lively_task_by_vpid(pid);
6500 if (IS_ERR(task)) {
6501 err = PTR_ERR(task);
6502 goto err_group_fd;
6503 }
6504 }
6505
6506 get_online_cpus();
6507
6508 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
6509 NULL, NULL);
6510 if (IS_ERR(event)) {
6511 err = PTR_ERR(event);
6512 goto err_task;
6513 }
6514
6515 if (flags & PERF_FLAG_PID_CGROUP) {
6516 err = perf_cgroup_connect(pid, event, &attr, group_leader);
6517 if (err)
6518 goto err_alloc;
6519 /*
6520 * one more event:
6521 * - that has cgroup constraint on event->cpu
6522 * - that may need work on context switch
6523 */
6524 atomic_inc(&per_cpu(perf_cgroup_events, event->cpu));
6525 static_key_slow_inc(&perf_sched_events.key);
6526 }
6527
6528 /*
6529 * Special case software events and allow them to be part of
6530 * any hardware group.
6531 */
6532 pmu = event->pmu;
6533
6534 if (group_leader &&
6535 (is_software_event(event) != is_software_event(group_leader))) {
6536 if (is_software_event(event)) {
6537 /*
6538 * If event and group_leader are not both a software
6539 * event, and event is, then group leader is not.
6540 *
6541 * Allow the addition of software events to !software
6542 * groups, this is safe because software events never
6543 * fail to schedule.
6544 */
6545 pmu = group_leader->pmu;
6546 } else if (is_software_event(group_leader) &&
6547 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
6548 /*
6549 * In case the group is a pure software group, and we
6550 * try to add a hardware event, move the whole group to
6551 * the hardware context.
6552 */
6553 move_group = 1;
6554 }
6555 }
6556
6557 /*
6558 * Get the target context (task or percpu):
6559 */
6560 ctx = find_get_context(pmu, task, event->cpu);
6561 if (IS_ERR(ctx)) {
6562 err = PTR_ERR(ctx);
6563 goto err_alloc;
6564 }
6565
6566 if (task) {
6567 put_task_struct(task);
6568 task = NULL;
6569 }
6570
6571 /*
6572 * Look up the group leader (we will attach this event to it):
6573 */
6574 if (group_leader) {
6575 err = -EINVAL;
6576
6577 /*
6578 * Do not allow a recursive hierarchy (this new sibling
6579 * becoming part of another group-sibling):
6580 */
6581 if (group_leader->group_leader != group_leader)
6582 goto err_context;
6583 /*
6584 * Do not allow to attach to a group in a different
6585 * task or CPU context:
6586 */
6587 if (move_group) {
6588 if (group_leader->ctx->type != ctx->type)
6589 goto err_context;
6590 } else {
6591 if (group_leader->ctx != ctx)
6592 goto err_context;
6593 }
6594
6595 /*
6596 * Only a group leader can be exclusive or pinned
6597 */
6598 if (attr.exclusive || attr.pinned)
6599 goto err_context;
6600 }
6601
6602 if (output_event) {
6603 err = perf_event_set_output(event, output_event);
6604 if (err)
6605 goto err_context;
6606 }
6607
6608 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
6609 if (IS_ERR(event_file)) {
6610 err = PTR_ERR(event_file);
6611 goto err_context;
6612 }
6613
6614 if (move_group) {
6615 struct perf_event_context *gctx = group_leader->ctx;
6616
6617 mutex_lock(&gctx->mutex);
6618 perf_remove_from_context(group_leader);
6619 list_for_each_entry(sibling, &group_leader->sibling_list,
6620 group_entry) {
6621 perf_remove_from_context(sibling);
6622 put_ctx(gctx);
6623 }
6624 mutex_unlock(&gctx->mutex);
6625 put_ctx(gctx);
6626 }
6627
6628 WARN_ON_ONCE(ctx->parent_ctx);
6629 mutex_lock(&ctx->mutex);
6630
6631 if (move_group) {
6632 synchronize_rcu();
6633 perf_install_in_context(ctx, group_leader, event->cpu);
6634 get_ctx(ctx);
6635 list_for_each_entry(sibling, &group_leader->sibling_list,
6636 group_entry) {
6637 perf_install_in_context(ctx, sibling, event->cpu);
6638 get_ctx(ctx);
6639 }
6640 }
6641
6642 perf_install_in_context(ctx, event, event->cpu);
6643 ++ctx->generation;
6644 perf_unpin_context(ctx);
6645 mutex_unlock(&ctx->mutex);
6646
6647 put_online_cpus();
6648
6649 event->owner = current;
6650
6651 mutex_lock(&current->perf_event_mutex);
6652 list_add_tail(&event->owner_entry, &current->perf_event_list);
6653 mutex_unlock(&current->perf_event_mutex);
6654
6655 /*
6656 * Precalculate sample_data sizes
6657 */
6658 perf_event__header_size(event);
6659 perf_event__id_header_size(event);
6660
6661 /*
6662 * Drop the reference on the group_event after placing the
6663 * new event on the sibling_list. This ensures destruction
6664 * of the group leader will find the pointer to itself in
6665 * perf_group_detach().
6666 */
6667 fput_light(group_file, fput_needed);
6668 fd_install(event_fd, event_file);
6669 return event_fd;
6670
6671 err_context:
6672 perf_unpin_context(ctx);
6673 put_ctx(ctx);
6674 err_alloc:
6675 free_event(event);
6676 err_task:
6677 put_online_cpus();
6678 if (task)
6679 put_task_struct(task);
6680 err_group_fd:
6681 fput_light(group_file, fput_needed);
6682 err_fd:
6683 put_unused_fd(event_fd);
6684 return err;
6685 }
6686
6687 /**
6688 * perf_event_create_kernel_counter
6689 *
6690 * @attr: attributes of the counter to create
6691 * @cpu: cpu in which the counter is bound
6692 * @task: task to profile (NULL for percpu)
6693 */
6694 struct perf_event *
6695 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
6696 struct task_struct *task,
6697 perf_overflow_handler_t overflow_handler,
6698 void *context)
6699 {
6700 struct perf_event_context *ctx;
6701 struct perf_event *event;
6702 int err;
6703
6704 /*
6705 * Get the target context (task or percpu):
6706 */
6707
6708 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
6709 overflow_handler, context);
6710 if (IS_ERR(event)) {
6711 err = PTR_ERR(event);
6712 goto err;
6713 }
6714
6715 ctx = find_get_context(event->pmu, task, cpu);
6716 if (IS_ERR(ctx)) {
6717 err = PTR_ERR(ctx);
6718 goto err_free;
6719 }
6720
6721 WARN_ON_ONCE(ctx->parent_ctx);
6722 mutex_lock(&ctx->mutex);
6723 perf_install_in_context(ctx, event, cpu);
6724 ++ctx->generation;
6725 perf_unpin_context(ctx);
6726 mutex_unlock(&ctx->mutex);
6727
6728 return event;
6729
6730 err_free:
6731 free_event(event);
6732 err:
6733 return ERR_PTR(err);
6734 }
6735 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
6736
6737 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
6738 {
6739 struct perf_event_context *src_ctx;
6740 struct perf_event_context *dst_ctx;
6741 struct perf_event *event, *tmp;
6742 LIST_HEAD(events);
6743
6744 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
6745 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
6746
6747 mutex_lock(&src_ctx->mutex);
6748 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
6749 event_entry) {
6750 perf_remove_from_context(event);
6751 put_ctx(src_ctx);
6752 list_add(&event->event_entry, &events);
6753 }
6754 mutex_unlock(&src_ctx->mutex);
6755
6756 synchronize_rcu();
6757
6758 mutex_lock(&dst_ctx->mutex);
6759 list_for_each_entry_safe(event, tmp, &events, event_entry) {
6760 list_del(&event->event_entry);
6761 if (event->state >= PERF_EVENT_STATE_OFF)
6762 event->state = PERF_EVENT_STATE_INACTIVE;
6763 perf_install_in_context(dst_ctx, event, dst_cpu);
6764 get_ctx(dst_ctx);
6765 }
6766 mutex_unlock(&dst_ctx->mutex);
6767 }
6768 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
6769
6770 static void sync_child_event(struct perf_event *child_event,
6771 struct task_struct *child)
6772 {
6773 struct perf_event *parent_event = child_event->parent;
6774 u64 child_val;
6775
6776 if (child_event->attr.inherit_stat)
6777 perf_event_read_event(child_event, child);
6778
6779 child_val = perf_event_count(child_event);
6780
6781 /*
6782 * Add back the child's count to the parent's count:
6783 */
6784 atomic64_add(child_val, &parent_event->child_count);
6785 atomic64_add(child_event->total_time_enabled,
6786 &parent_event->child_total_time_enabled);
6787 atomic64_add(child_event->total_time_running,
6788 &parent_event->child_total_time_running);
6789
6790 /*
6791 * Remove this event from the parent's list
6792 */
6793 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
6794 mutex_lock(&parent_event->child_mutex);
6795 list_del_init(&child_event->child_list);
6796 mutex_unlock(&parent_event->child_mutex);
6797
6798 /*
6799 * Release the parent event, if this was the last
6800 * reference to it.
6801 */
6802 put_event(parent_event);
6803 }
6804
6805 static void
6806 __perf_event_exit_task(struct perf_event *child_event,
6807 struct perf_event_context *child_ctx,
6808 struct task_struct *child)
6809 {
6810 if (child_event->parent) {
6811 raw_spin_lock_irq(&child_ctx->lock);
6812 perf_group_detach(child_event);
6813 raw_spin_unlock_irq(&child_ctx->lock);
6814 }
6815
6816 perf_remove_from_context(child_event);
6817
6818 /*
6819 * It can happen that the parent exits first, and has events
6820 * that are still around due to the child reference. These
6821 * events need to be zapped.
6822 */
6823 if (child_event->parent) {
6824 sync_child_event(child_event, child);
6825 free_event(child_event);
6826 }
6827 }
6828
6829 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
6830 {
6831 struct perf_event *child_event, *tmp;
6832 struct perf_event_context *child_ctx;
6833 unsigned long flags;
6834
6835 if (likely(!child->perf_event_ctxp[ctxn])) {
6836 perf_event_task(child, NULL, 0);
6837 return;
6838 }
6839
6840 local_irq_save(flags);
6841 /*
6842 * We can't reschedule here because interrupts are disabled,
6843 * and either child is current or it is a task that can't be
6844 * scheduled, so we are now safe from rescheduling changing
6845 * our context.
6846 */
6847 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
6848
6849 /*
6850 * Take the context lock here so that if find_get_context is
6851 * reading child->perf_event_ctxp, we wait until it has
6852 * incremented the context's refcount before we do put_ctx below.
6853 */
6854 raw_spin_lock(&child_ctx->lock);
6855 task_ctx_sched_out(child_ctx);
6856 child->perf_event_ctxp[ctxn] = NULL;
6857 /*
6858 * If this context is a clone; unclone it so it can't get
6859 * swapped to another process while we're removing all
6860 * the events from it.
6861 */
6862 unclone_ctx(child_ctx);
6863 update_context_time(child_ctx);
6864 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
6865
6866 /*
6867 * Report the task dead after unscheduling the events so that we
6868 * won't get any samples after PERF_RECORD_EXIT. We can however still
6869 * get a few PERF_RECORD_READ events.
6870 */
6871 perf_event_task(child, child_ctx, 0);
6872
6873 /*
6874 * We can recurse on the same lock type through:
6875 *
6876 * __perf_event_exit_task()
6877 * sync_child_event()
6878 * put_event()
6879 * mutex_lock(&ctx->mutex)
6880 *
6881 * But since its the parent context it won't be the same instance.
6882 */
6883 mutex_lock(&child_ctx->mutex);
6884
6885 again:
6886 list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
6887 group_entry)
6888 __perf_event_exit_task(child_event, child_ctx, child);
6889
6890 list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
6891 group_entry)
6892 __perf_event_exit_task(child_event, child_ctx, child);
6893
6894 /*
6895 * If the last event was a group event, it will have appended all
6896 * its siblings to the list, but we obtained 'tmp' before that which
6897 * will still point to the list head terminating the iteration.
6898 */
6899 if (!list_empty(&child_ctx->pinned_groups) ||
6900 !list_empty(&child_ctx->flexible_groups))
6901 goto again;
6902
6903 mutex_unlock(&child_ctx->mutex);
6904
6905 put_ctx(child_ctx);
6906 }
6907
6908 /*
6909 * When a child task exits, feed back event values to parent events.
6910 */
6911 void perf_event_exit_task(struct task_struct *child)
6912 {
6913 struct perf_event *event, *tmp;
6914 int ctxn;
6915
6916 mutex_lock(&child->perf_event_mutex);
6917 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
6918 owner_entry) {
6919 list_del_init(&event->owner_entry);
6920
6921 /*
6922 * Ensure the list deletion is visible before we clear
6923 * the owner, closes a race against perf_release() where
6924 * we need to serialize on the owner->perf_event_mutex.
6925 */
6926 smp_wmb();
6927 event->owner = NULL;
6928 }
6929 mutex_unlock(&child->perf_event_mutex);
6930
6931 for_each_task_context_nr(ctxn)
6932 perf_event_exit_task_context(child, ctxn);
6933 }
6934
6935 static void perf_free_event(struct perf_event *event,
6936 struct perf_event_context *ctx)
6937 {
6938 struct perf_event *parent = event->parent;
6939
6940 if (WARN_ON_ONCE(!parent))
6941 return;
6942
6943 mutex_lock(&parent->child_mutex);
6944 list_del_init(&event->child_list);
6945 mutex_unlock(&parent->child_mutex);
6946
6947 put_event(parent);
6948
6949 perf_group_detach(event);
6950 list_del_event(event, ctx);
6951 free_event(event);
6952 }
6953
6954 /*
6955 * free an unexposed, unused context as created by inheritance by
6956 * perf_event_init_task below, used by fork() in case of fail.
6957 */
6958 void perf_event_free_task(struct task_struct *task)
6959 {
6960 struct perf_event_context *ctx;
6961 struct perf_event *event, *tmp;
6962 int ctxn;
6963
6964 for_each_task_context_nr(ctxn) {
6965 ctx = task->perf_event_ctxp[ctxn];
6966 if (!ctx)
6967 continue;
6968
6969 mutex_lock(&ctx->mutex);
6970 again:
6971 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
6972 group_entry)
6973 perf_free_event(event, ctx);
6974
6975 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
6976 group_entry)
6977 perf_free_event(event, ctx);
6978
6979 if (!list_empty(&ctx->pinned_groups) ||
6980 !list_empty(&ctx->flexible_groups))
6981 goto again;
6982
6983 mutex_unlock(&ctx->mutex);
6984
6985 put_ctx(ctx);
6986 }
6987 }
6988
6989 void perf_event_delayed_put(struct task_struct *task)
6990 {
6991 int ctxn;
6992
6993 for_each_task_context_nr(ctxn)
6994 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
6995 }
6996
6997 /*
6998 * inherit a event from parent task to child task:
6999 */
7000 static struct perf_event *
7001 inherit_event(struct perf_event *parent_event,
7002 struct task_struct *parent,
7003 struct perf_event_context *parent_ctx,
7004 struct task_struct *child,
7005 struct perf_event *group_leader,
7006 struct perf_event_context *child_ctx)
7007 {
7008 struct perf_event *child_event;
7009 unsigned long flags;
7010
7011 /*
7012 * Instead of creating recursive hierarchies of events,
7013 * we link inherited events back to the original parent,
7014 * which has a filp for sure, which we use as the reference
7015 * count:
7016 */
7017 if (parent_event->parent)
7018 parent_event = parent_event->parent;
7019
7020 child_event = perf_event_alloc(&parent_event->attr,
7021 parent_event->cpu,
7022 child,
7023 group_leader, parent_event,
7024 NULL, NULL);
7025 if (IS_ERR(child_event))
7026 return child_event;
7027
7028 if (!atomic_long_inc_not_zero(&parent_event->refcount)) {
7029 free_event(child_event);
7030 return NULL;
7031 }
7032
7033 get_ctx(child_ctx);
7034
7035 /*
7036 * Make the child state follow the state of the parent event,
7037 * not its attr.disabled bit. We hold the parent's mutex,
7038 * so we won't race with perf_event_{en, dis}able_family.
7039 */
7040 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
7041 child_event->state = PERF_EVENT_STATE_INACTIVE;
7042 else
7043 child_event->state = PERF_EVENT_STATE_OFF;
7044
7045 if (parent_event->attr.freq) {
7046 u64 sample_period = parent_event->hw.sample_period;
7047 struct hw_perf_event *hwc = &child_event->hw;
7048
7049 hwc->sample_period = sample_period;
7050 hwc->last_period = sample_period;
7051
7052 local64_set(&hwc->period_left, sample_period);
7053 }
7054
7055 child_event->ctx = child_ctx;
7056 child_event->overflow_handler = parent_event->overflow_handler;
7057 child_event->overflow_handler_context
7058 = parent_event->overflow_handler_context;
7059
7060 /*
7061 * Precalculate sample_data sizes
7062 */
7063 perf_event__header_size(child_event);
7064 perf_event__id_header_size(child_event);
7065
7066 /*
7067 * Link it up in the child's context:
7068 */
7069 raw_spin_lock_irqsave(&child_ctx->lock, flags);
7070 add_event_to_ctx(child_event, child_ctx);
7071 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
7072
7073 /*
7074 * Link this into the parent event's child list
7075 */
7076 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
7077 mutex_lock(&parent_event->child_mutex);
7078 list_add_tail(&child_event->child_list, &parent_event->child_list);
7079 mutex_unlock(&parent_event->child_mutex);
7080
7081 return child_event;
7082 }
7083
7084 static int inherit_group(struct perf_event *parent_event,
7085 struct task_struct *parent,
7086 struct perf_event_context *parent_ctx,
7087 struct task_struct *child,
7088 struct perf_event_context *child_ctx)
7089 {
7090 struct perf_event *leader;
7091 struct perf_event *sub;
7092 struct perf_event *child_ctr;
7093
7094 leader = inherit_event(parent_event, parent, parent_ctx,
7095 child, NULL, child_ctx);
7096 if (IS_ERR(leader))
7097 return PTR_ERR(leader);
7098 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
7099 child_ctr = inherit_event(sub, parent, parent_ctx,
7100 child, leader, child_ctx);
7101 if (IS_ERR(child_ctr))
7102 return PTR_ERR(child_ctr);
7103 }
7104 return 0;
7105 }
7106
7107 static int
7108 inherit_task_group(struct perf_event *event, struct task_struct *parent,
7109 struct perf_event_context *parent_ctx,
7110 struct task_struct *child, int ctxn,
7111 int *inherited_all)
7112 {
7113 int ret;
7114 struct perf_event_context *child_ctx;
7115
7116 if (!event->attr.inherit) {
7117 *inherited_all = 0;
7118 return 0;
7119 }
7120
7121 child_ctx = child->perf_event_ctxp[ctxn];
7122 if (!child_ctx) {
7123 /*
7124 * This is executed from the parent task context, so
7125 * inherit events that have been marked for cloning.
7126 * First allocate and initialize a context for the
7127 * child.
7128 */
7129
7130 child_ctx = alloc_perf_context(event->pmu, child);
7131 if (!child_ctx)
7132 return -ENOMEM;
7133
7134 child->perf_event_ctxp[ctxn] = child_ctx;
7135 }
7136
7137 ret = inherit_group(event, parent, parent_ctx,
7138 child, child_ctx);
7139
7140 if (ret)
7141 *inherited_all = 0;
7142
7143 return ret;
7144 }
7145
7146 /*
7147 * Initialize the perf_event context in task_struct
7148 */
7149 int perf_event_init_context(struct task_struct *child, int ctxn)
7150 {
7151 struct perf_event_context *child_ctx, *parent_ctx;
7152 struct perf_event_context *cloned_ctx;
7153 struct perf_event *event;
7154 struct task_struct *parent = current;
7155 int inherited_all = 1;
7156 unsigned long flags;
7157 int ret = 0;
7158
7159 if (likely(!parent->perf_event_ctxp[ctxn]))
7160 return 0;
7161
7162 /*
7163 * If the parent's context is a clone, pin it so it won't get
7164 * swapped under us.
7165 */
7166 parent_ctx = perf_pin_task_context(parent, ctxn);
7167
7168 /*
7169 * No need to check if parent_ctx != NULL here; since we saw
7170 * it non-NULL earlier, the only reason for it to become NULL
7171 * is if we exit, and since we're currently in the middle of
7172 * a fork we can't be exiting at the same time.
7173 */
7174
7175 /*
7176 * Lock the parent list. No need to lock the child - not PID
7177 * hashed yet and not running, so nobody can access it.
7178 */
7179 mutex_lock(&parent_ctx->mutex);
7180
7181 /*
7182 * We dont have to disable NMIs - we are only looking at
7183 * the list, not manipulating it:
7184 */
7185 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
7186 ret = inherit_task_group(event, parent, parent_ctx,
7187 child, ctxn, &inherited_all);
7188 if (ret)
7189 break;
7190 }
7191
7192 /*
7193 * We can't hold ctx->lock when iterating the ->flexible_group list due
7194 * to allocations, but we need to prevent rotation because
7195 * rotate_ctx() will change the list from interrupt context.
7196 */
7197 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
7198 parent_ctx->rotate_disable = 1;
7199 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7200
7201 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
7202 ret = inherit_task_group(event, parent, parent_ctx,
7203 child, ctxn, &inherited_all);
7204 if (ret)
7205 break;
7206 }
7207
7208 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
7209 parent_ctx->rotate_disable = 0;
7210
7211 child_ctx = child->perf_event_ctxp[ctxn];
7212
7213 if (child_ctx && inherited_all) {
7214 /*
7215 * Mark the child context as a clone of the parent
7216 * context, or of whatever the parent is a clone of.
7217 *
7218 * Note that if the parent is a clone, the holding of
7219 * parent_ctx->lock avoids it from being uncloned.
7220 */
7221 cloned_ctx = parent_ctx->parent_ctx;
7222 if (cloned_ctx) {
7223 child_ctx->parent_ctx = cloned_ctx;
7224 child_ctx->parent_gen = parent_ctx->parent_gen;
7225 } else {
7226 child_ctx->parent_ctx = parent_ctx;
7227 child_ctx->parent_gen = parent_ctx->generation;
7228 }
7229 get_ctx(child_ctx->parent_ctx);
7230 }
7231
7232 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7233 mutex_unlock(&parent_ctx->mutex);
7234
7235 perf_unpin_context(parent_ctx);
7236 put_ctx(parent_ctx);
7237
7238 return ret;
7239 }
7240
7241 /*
7242 * Initialize the perf_event context in task_struct
7243 */
7244 int perf_event_init_task(struct task_struct *child)
7245 {
7246 int ctxn, ret;
7247
7248 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
7249 mutex_init(&child->perf_event_mutex);
7250 INIT_LIST_HEAD(&child->perf_event_list);
7251
7252 for_each_task_context_nr(ctxn) {
7253 ret = perf_event_init_context(child, ctxn);
7254 if (ret)
7255 return ret;
7256 }
7257
7258 return 0;
7259 }
7260
7261 static void __init perf_event_init_all_cpus(void)
7262 {
7263 struct swevent_htable *swhash;
7264 int cpu;
7265
7266 for_each_possible_cpu(cpu) {
7267 swhash = &per_cpu(swevent_htable, cpu);
7268 mutex_init(&swhash->hlist_mutex);
7269 INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
7270 }
7271 }
7272
7273 static void __cpuinit perf_event_init_cpu(int cpu)
7274 {
7275 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7276
7277 mutex_lock(&swhash->hlist_mutex);
7278 if (swhash->hlist_refcount > 0) {
7279 struct swevent_hlist *hlist;
7280
7281 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
7282 WARN_ON(!hlist);
7283 rcu_assign_pointer(swhash->swevent_hlist, hlist);
7284 }
7285 mutex_unlock(&swhash->hlist_mutex);
7286 }
7287
7288 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
7289 static void perf_pmu_rotate_stop(struct pmu *pmu)
7290 {
7291 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7292
7293 WARN_ON(!irqs_disabled());
7294
7295 list_del_init(&cpuctx->rotation_list);
7296 }
7297
7298 static void __perf_event_exit_context(void *__info)
7299 {
7300 struct perf_event_context *ctx = __info;
7301 struct perf_event *event, *tmp;
7302
7303 perf_pmu_rotate_stop(ctx->pmu);
7304
7305 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
7306 __perf_remove_from_context(event);
7307 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
7308 __perf_remove_from_context(event);
7309 }
7310
7311 static void perf_event_exit_cpu_context(int cpu)
7312 {
7313 struct perf_event_context *ctx;
7314 struct pmu *pmu;
7315 int idx;
7316
7317 idx = srcu_read_lock(&pmus_srcu);
7318 list_for_each_entry_rcu(pmu, &pmus, entry) {
7319 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
7320
7321 mutex_lock(&ctx->mutex);
7322 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
7323 mutex_unlock(&ctx->mutex);
7324 }
7325 srcu_read_unlock(&pmus_srcu, idx);
7326 }
7327
7328 static void perf_event_exit_cpu(int cpu)
7329 {
7330 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7331
7332 mutex_lock(&swhash->hlist_mutex);
7333 swevent_hlist_release(swhash);
7334 mutex_unlock(&swhash->hlist_mutex);
7335
7336 perf_event_exit_cpu_context(cpu);
7337 }
7338 #else
7339 static inline void perf_event_exit_cpu(int cpu) { }
7340 #endif
7341
7342 static int
7343 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
7344 {
7345 int cpu;
7346
7347 for_each_online_cpu(cpu)
7348 perf_event_exit_cpu(cpu);
7349
7350 return NOTIFY_OK;
7351 }
7352
7353 /*
7354 * Run the perf reboot notifier at the very last possible moment so that
7355 * the generic watchdog code runs as long as possible.
7356 */
7357 static struct notifier_block perf_reboot_notifier = {
7358 .notifier_call = perf_reboot,
7359 .priority = INT_MIN,
7360 };
7361
7362 static int __cpuinit
7363 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
7364 {
7365 unsigned int cpu = (long)hcpu;
7366
7367 switch (action & ~CPU_TASKS_FROZEN) {
7368
7369 case CPU_UP_PREPARE:
7370 case CPU_DOWN_FAILED:
7371 perf_event_init_cpu(cpu);
7372 break;
7373
7374 case CPU_UP_CANCELED:
7375 case CPU_DOWN_PREPARE:
7376 perf_event_exit_cpu(cpu);
7377 break;
7378
7379 default:
7380 break;
7381 }
7382
7383 return NOTIFY_OK;
7384 }
7385
7386 void __init perf_event_init(void)
7387 {
7388 int ret;
7389
7390 idr_init(&pmu_idr);
7391
7392 perf_event_init_all_cpus();
7393 init_srcu_struct(&pmus_srcu);
7394 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
7395 perf_pmu_register(&perf_cpu_clock, NULL, -1);
7396 perf_pmu_register(&perf_task_clock, NULL, -1);
7397 perf_tp_register();
7398 perf_cpu_notifier(perf_cpu_notify);
7399 register_reboot_notifier(&perf_reboot_notifier);
7400
7401 ret = init_hw_breakpoint();
7402 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
7403
7404 /* do not patch jump label more than once per second */
7405 jump_label_rate_limit(&perf_sched_events, HZ);
7406
7407 /*
7408 * Build time assertion that we keep the data_head at the intended
7409 * location. IOW, validation we got the __reserved[] size right.
7410 */
7411 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
7412 != 1024);
7413 }
7414
7415 static int __init perf_event_sysfs_init(void)
7416 {
7417 struct pmu *pmu;
7418 int ret;
7419
7420 mutex_lock(&pmus_lock);
7421
7422 ret = bus_register(&pmu_bus);
7423 if (ret)
7424 goto unlock;
7425
7426 list_for_each_entry(pmu, &pmus, entry) {
7427 if (!pmu->name || pmu->type < 0)
7428 continue;
7429
7430 ret = pmu_dev_alloc(pmu);
7431 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
7432 }
7433 pmu_bus_running = 1;
7434 ret = 0;
7435
7436 unlock:
7437 mutex_unlock(&pmus_lock);
7438
7439 return ret;
7440 }
7441 device_initcall(perf_event_sysfs_init);
7442
7443 #ifdef CONFIG_CGROUP_PERF
7444 static struct cgroup_subsys_state *perf_cgroup_create(struct cgroup *cont)
7445 {
7446 struct perf_cgroup *jc;
7447
7448 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
7449 if (!jc)
7450 return ERR_PTR(-ENOMEM);
7451
7452 jc->info = alloc_percpu(struct perf_cgroup_info);
7453 if (!jc->info) {
7454 kfree(jc);
7455 return ERR_PTR(-ENOMEM);
7456 }
7457
7458 return &jc->css;
7459 }
7460
7461 static void perf_cgroup_destroy(struct cgroup *cont)
7462 {
7463 struct perf_cgroup *jc;
7464 jc = container_of(cgroup_subsys_state(cont, perf_subsys_id),
7465 struct perf_cgroup, css);
7466 free_percpu(jc->info);
7467 kfree(jc);
7468 }
7469
7470 static int __perf_cgroup_move(void *info)
7471 {
7472 struct task_struct *task = info;
7473 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
7474 return 0;
7475 }
7476
7477 static void perf_cgroup_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
7478 {
7479 struct task_struct *task;
7480
7481 cgroup_taskset_for_each(task, cgrp, tset)
7482 task_function_call(task, __perf_cgroup_move, task);
7483 }
7484
7485 static void perf_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
7486 struct task_struct *task)
7487 {
7488 /*
7489 * cgroup_exit() is called in the copy_process() failure path.
7490 * Ignore this case since the task hasn't ran yet, this avoids
7491 * trying to poke a half freed task state from generic code.
7492 */
7493 if (!(task->flags & PF_EXITING))
7494 return;
7495
7496 task_function_call(task, __perf_cgroup_move, task);
7497 }
7498
7499 struct cgroup_subsys perf_subsys = {
7500 .name = "perf_event",
7501 .subsys_id = perf_subsys_id,
7502 .create = perf_cgroup_create,
7503 .destroy = perf_cgroup_destroy,
7504 .exit = perf_cgroup_exit,
7505 .attach = perf_cgroup_attach,
7506
7507 /*
7508 * perf_event cgroup doesn't handle nesting correctly.
7509 * ctx->nr_cgroups adjustments should be propagated through the
7510 * cgroup hierarchy. Fix it and remove the following.
7511 */
7512 .broken_hierarchy = true,
7513 };
7514 #endif /* CONFIG_CGROUP_PERF */