]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - kernel/events/ring_buffer.c
Merge branches 'for-5.1/upstream-fixes', 'for-5.2/core', 'for-5.2/ish', 'for-5.2...
[mirror_ubuntu-kernels.git] / kernel / events / ring_buffer.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Performance events ring-buffer code:
4 *
5 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9 */
10
11 #include <linux/perf_event.h>
12 #include <linux/vmalloc.h>
13 #include <linux/slab.h>
14 #include <linux/circ_buf.h>
15 #include <linux/poll.h>
16 #include <linux/nospec.h>
17
18 #include "internal.h"
19
20 static void perf_output_wakeup(struct perf_output_handle *handle)
21 {
22 atomic_set(&handle->rb->poll, EPOLLIN);
23
24 handle->event->pending_wakeup = 1;
25 irq_work_queue(&handle->event->pending);
26 }
27
28 /*
29 * We need to ensure a later event_id doesn't publish a head when a former
30 * event isn't done writing. However since we need to deal with NMIs we
31 * cannot fully serialize things.
32 *
33 * We only publish the head (and generate a wakeup) when the outer-most
34 * event completes.
35 */
36 static void perf_output_get_handle(struct perf_output_handle *handle)
37 {
38 struct ring_buffer *rb = handle->rb;
39
40 preempt_disable();
41 local_inc(&rb->nest);
42 handle->wakeup = local_read(&rb->wakeup);
43 }
44
45 static void perf_output_put_handle(struct perf_output_handle *handle)
46 {
47 struct ring_buffer *rb = handle->rb;
48 unsigned long head;
49
50 again:
51 head = local_read(&rb->head);
52
53 /*
54 * IRQ/NMI can happen here, which means we can miss a head update.
55 */
56
57 if (!local_dec_and_test(&rb->nest))
58 goto out;
59
60 /*
61 * Since the mmap() consumer (userspace) can run on a different CPU:
62 *
63 * kernel user
64 *
65 * if (LOAD ->data_tail) { LOAD ->data_head
66 * (A) smp_rmb() (C)
67 * STORE $data LOAD $data
68 * smp_wmb() (B) smp_mb() (D)
69 * STORE ->data_head STORE ->data_tail
70 * }
71 *
72 * Where A pairs with D, and B pairs with C.
73 *
74 * In our case (A) is a control dependency that separates the load of
75 * the ->data_tail and the stores of $data. In case ->data_tail
76 * indicates there is no room in the buffer to store $data we do not.
77 *
78 * D needs to be a full barrier since it separates the data READ
79 * from the tail WRITE.
80 *
81 * For B a WMB is sufficient since it separates two WRITEs, and for C
82 * an RMB is sufficient since it separates two READs.
83 *
84 * See perf_output_begin().
85 */
86 smp_wmb(); /* B, matches C */
87 rb->user_page->data_head = head;
88
89 /*
90 * Now check if we missed an update -- rely on previous implied
91 * compiler barriers to force a re-read.
92 */
93 if (unlikely(head != local_read(&rb->head))) {
94 local_inc(&rb->nest);
95 goto again;
96 }
97
98 if (handle->wakeup != local_read(&rb->wakeup))
99 perf_output_wakeup(handle);
100
101 out:
102 preempt_enable();
103 }
104
105 static __always_inline bool
106 ring_buffer_has_space(unsigned long head, unsigned long tail,
107 unsigned long data_size, unsigned int size,
108 bool backward)
109 {
110 if (!backward)
111 return CIRC_SPACE(head, tail, data_size) >= size;
112 else
113 return CIRC_SPACE(tail, head, data_size) >= size;
114 }
115
116 static __always_inline int
117 __perf_output_begin(struct perf_output_handle *handle,
118 struct perf_event *event, unsigned int size,
119 bool backward)
120 {
121 struct ring_buffer *rb;
122 unsigned long tail, offset, head;
123 int have_lost, page_shift;
124 struct {
125 struct perf_event_header header;
126 u64 id;
127 u64 lost;
128 } lost_event;
129
130 rcu_read_lock();
131 /*
132 * For inherited events we send all the output towards the parent.
133 */
134 if (event->parent)
135 event = event->parent;
136
137 rb = rcu_dereference(event->rb);
138 if (unlikely(!rb))
139 goto out;
140
141 if (unlikely(rb->paused)) {
142 if (rb->nr_pages)
143 local_inc(&rb->lost);
144 goto out;
145 }
146
147 handle->rb = rb;
148 handle->event = event;
149
150 have_lost = local_read(&rb->lost);
151 if (unlikely(have_lost)) {
152 size += sizeof(lost_event);
153 if (event->attr.sample_id_all)
154 size += event->id_header_size;
155 }
156
157 perf_output_get_handle(handle);
158
159 do {
160 tail = READ_ONCE(rb->user_page->data_tail);
161 offset = head = local_read(&rb->head);
162 if (!rb->overwrite) {
163 if (unlikely(!ring_buffer_has_space(head, tail,
164 perf_data_size(rb),
165 size, backward)))
166 goto fail;
167 }
168
169 /*
170 * The above forms a control dependency barrier separating the
171 * @tail load above from the data stores below. Since the @tail
172 * load is required to compute the branch to fail below.
173 *
174 * A, matches D; the full memory barrier userspace SHOULD issue
175 * after reading the data and before storing the new tail
176 * position.
177 *
178 * See perf_output_put_handle().
179 */
180
181 if (!backward)
182 head += size;
183 else
184 head -= size;
185 } while (local_cmpxchg(&rb->head, offset, head) != offset);
186
187 if (backward) {
188 offset = head;
189 head = (u64)(-head);
190 }
191
192 /*
193 * We rely on the implied barrier() by local_cmpxchg() to ensure
194 * none of the data stores below can be lifted up by the compiler.
195 */
196
197 if (unlikely(head - local_read(&rb->wakeup) > rb->watermark))
198 local_add(rb->watermark, &rb->wakeup);
199
200 page_shift = PAGE_SHIFT + page_order(rb);
201
202 handle->page = (offset >> page_shift) & (rb->nr_pages - 1);
203 offset &= (1UL << page_shift) - 1;
204 handle->addr = rb->data_pages[handle->page] + offset;
205 handle->size = (1UL << page_shift) - offset;
206
207 if (unlikely(have_lost)) {
208 struct perf_sample_data sample_data;
209
210 lost_event.header.size = sizeof(lost_event);
211 lost_event.header.type = PERF_RECORD_LOST;
212 lost_event.header.misc = 0;
213 lost_event.id = event->id;
214 lost_event.lost = local_xchg(&rb->lost, 0);
215
216 perf_event_header__init_id(&lost_event.header,
217 &sample_data, event);
218 perf_output_put(handle, lost_event);
219 perf_event__output_id_sample(event, handle, &sample_data);
220 }
221
222 return 0;
223
224 fail:
225 local_inc(&rb->lost);
226 perf_output_put_handle(handle);
227 out:
228 rcu_read_unlock();
229
230 return -ENOSPC;
231 }
232
233 int perf_output_begin_forward(struct perf_output_handle *handle,
234 struct perf_event *event, unsigned int size)
235 {
236 return __perf_output_begin(handle, event, size, false);
237 }
238
239 int perf_output_begin_backward(struct perf_output_handle *handle,
240 struct perf_event *event, unsigned int size)
241 {
242 return __perf_output_begin(handle, event, size, true);
243 }
244
245 int perf_output_begin(struct perf_output_handle *handle,
246 struct perf_event *event, unsigned int size)
247 {
248
249 return __perf_output_begin(handle, event, size,
250 unlikely(is_write_backward(event)));
251 }
252
253 unsigned int perf_output_copy(struct perf_output_handle *handle,
254 const void *buf, unsigned int len)
255 {
256 return __output_copy(handle, buf, len);
257 }
258
259 unsigned int perf_output_skip(struct perf_output_handle *handle,
260 unsigned int len)
261 {
262 return __output_skip(handle, NULL, len);
263 }
264
265 void perf_output_end(struct perf_output_handle *handle)
266 {
267 perf_output_put_handle(handle);
268 rcu_read_unlock();
269 }
270
271 static void
272 ring_buffer_init(struct ring_buffer *rb, long watermark, int flags)
273 {
274 long max_size = perf_data_size(rb);
275
276 if (watermark)
277 rb->watermark = min(max_size, watermark);
278
279 if (!rb->watermark)
280 rb->watermark = max_size / 2;
281
282 if (flags & RING_BUFFER_WRITABLE)
283 rb->overwrite = 0;
284 else
285 rb->overwrite = 1;
286
287 refcount_set(&rb->refcount, 1);
288
289 INIT_LIST_HEAD(&rb->event_list);
290 spin_lock_init(&rb->event_lock);
291
292 /*
293 * perf_output_begin() only checks rb->paused, therefore
294 * rb->paused must be true if we have no pages for output.
295 */
296 if (!rb->nr_pages)
297 rb->paused = 1;
298 }
299
300 void perf_aux_output_flag(struct perf_output_handle *handle, u64 flags)
301 {
302 /*
303 * OVERWRITE is determined by perf_aux_output_end() and can't
304 * be passed in directly.
305 */
306 if (WARN_ON_ONCE(flags & PERF_AUX_FLAG_OVERWRITE))
307 return;
308
309 handle->aux_flags |= flags;
310 }
311 EXPORT_SYMBOL_GPL(perf_aux_output_flag);
312
313 /*
314 * This is called before hardware starts writing to the AUX area to
315 * obtain an output handle and make sure there's room in the buffer.
316 * When the capture completes, call perf_aux_output_end() to commit
317 * the recorded data to the buffer.
318 *
319 * The ordering is similar to that of perf_output_{begin,end}, with
320 * the exception of (B), which should be taken care of by the pmu
321 * driver, since ordering rules will differ depending on hardware.
322 *
323 * Call this from pmu::start(); see the comment in perf_aux_output_end()
324 * about its use in pmu callbacks. Both can also be called from the PMI
325 * handler if needed.
326 */
327 void *perf_aux_output_begin(struct perf_output_handle *handle,
328 struct perf_event *event)
329 {
330 struct perf_event *output_event = event;
331 unsigned long aux_head, aux_tail;
332 struct ring_buffer *rb;
333
334 if (output_event->parent)
335 output_event = output_event->parent;
336
337 /*
338 * Since this will typically be open across pmu::add/pmu::del, we
339 * grab ring_buffer's refcount instead of holding rcu read lock
340 * to make sure it doesn't disappear under us.
341 */
342 rb = ring_buffer_get(output_event);
343 if (!rb)
344 return NULL;
345
346 if (!rb_has_aux(rb))
347 goto err;
348
349 /*
350 * If aux_mmap_count is zero, the aux buffer is in perf_mmap_close(),
351 * about to get freed, so we leave immediately.
352 *
353 * Checking rb::aux_mmap_count and rb::refcount has to be done in
354 * the same order, see perf_mmap_close. Otherwise we end up freeing
355 * aux pages in this path, which is a bug, because in_atomic().
356 */
357 if (!atomic_read(&rb->aux_mmap_count))
358 goto err;
359
360 if (!refcount_inc_not_zero(&rb->aux_refcount))
361 goto err;
362
363 /*
364 * Nesting is not supported for AUX area, make sure nested
365 * writers are caught early
366 */
367 if (WARN_ON_ONCE(local_xchg(&rb->aux_nest, 1)))
368 goto err_put;
369
370 aux_head = rb->aux_head;
371
372 handle->rb = rb;
373 handle->event = event;
374 handle->head = aux_head;
375 handle->size = 0;
376 handle->aux_flags = 0;
377
378 /*
379 * In overwrite mode, AUX data stores do not depend on aux_tail,
380 * therefore (A) control dependency barrier does not exist. The
381 * (B) <-> (C) ordering is still observed by the pmu driver.
382 */
383 if (!rb->aux_overwrite) {
384 aux_tail = READ_ONCE(rb->user_page->aux_tail);
385 handle->wakeup = rb->aux_wakeup + rb->aux_watermark;
386 if (aux_head - aux_tail < perf_aux_size(rb))
387 handle->size = CIRC_SPACE(aux_head, aux_tail, perf_aux_size(rb));
388
389 /*
390 * handle->size computation depends on aux_tail load; this forms a
391 * control dependency barrier separating aux_tail load from aux data
392 * store that will be enabled on successful return
393 */
394 if (!handle->size) { /* A, matches D */
395 event->pending_disable = 1;
396 perf_output_wakeup(handle);
397 local_set(&rb->aux_nest, 0);
398 goto err_put;
399 }
400 }
401
402 return handle->rb->aux_priv;
403
404 err_put:
405 /* can't be last */
406 rb_free_aux(rb);
407
408 err:
409 ring_buffer_put(rb);
410 handle->event = NULL;
411
412 return NULL;
413 }
414 EXPORT_SYMBOL_GPL(perf_aux_output_begin);
415
416 static __always_inline bool rb_need_aux_wakeup(struct ring_buffer *rb)
417 {
418 if (rb->aux_overwrite)
419 return false;
420
421 if (rb->aux_head - rb->aux_wakeup >= rb->aux_watermark) {
422 rb->aux_wakeup = rounddown(rb->aux_head, rb->aux_watermark);
423 return true;
424 }
425
426 return false;
427 }
428
429 /*
430 * Commit the data written by hardware into the ring buffer by adjusting
431 * aux_head and posting a PERF_RECORD_AUX into the perf buffer. It is the
432 * pmu driver's responsibility to observe ordering rules of the hardware,
433 * so that all the data is externally visible before this is called.
434 *
435 * Note: this has to be called from pmu::stop() callback, as the assumption
436 * of the AUX buffer management code is that after pmu::stop(), the AUX
437 * transaction must be stopped and therefore drop the AUX reference count.
438 */
439 void perf_aux_output_end(struct perf_output_handle *handle, unsigned long size)
440 {
441 bool wakeup = !!(handle->aux_flags & PERF_AUX_FLAG_TRUNCATED);
442 struct ring_buffer *rb = handle->rb;
443 unsigned long aux_head;
444
445 /* in overwrite mode, driver provides aux_head via handle */
446 if (rb->aux_overwrite) {
447 handle->aux_flags |= PERF_AUX_FLAG_OVERWRITE;
448
449 aux_head = handle->head;
450 rb->aux_head = aux_head;
451 } else {
452 handle->aux_flags &= ~PERF_AUX_FLAG_OVERWRITE;
453
454 aux_head = rb->aux_head;
455 rb->aux_head += size;
456 }
457
458 if (size || handle->aux_flags) {
459 /*
460 * Only send RECORD_AUX if we have something useful to communicate
461 *
462 * Note: the OVERWRITE records by themselves are not considered
463 * useful, as they don't communicate any *new* information,
464 * aside from the short-lived offset, that becomes history at
465 * the next event sched-in and therefore isn't useful.
466 * The userspace that needs to copy out AUX data in overwrite
467 * mode should know to use user_page::aux_head for the actual
468 * offset. So, from now on we don't output AUX records that
469 * have *only* OVERWRITE flag set.
470 */
471
472 if (handle->aux_flags & ~(u64)PERF_AUX_FLAG_OVERWRITE)
473 perf_event_aux_event(handle->event, aux_head, size,
474 handle->aux_flags);
475 }
476
477 rb->user_page->aux_head = rb->aux_head;
478 if (rb_need_aux_wakeup(rb))
479 wakeup = true;
480
481 if (wakeup) {
482 if (handle->aux_flags & PERF_AUX_FLAG_TRUNCATED)
483 handle->event->pending_disable = 1;
484 perf_output_wakeup(handle);
485 }
486
487 handle->event = NULL;
488
489 local_set(&rb->aux_nest, 0);
490 /* can't be last */
491 rb_free_aux(rb);
492 ring_buffer_put(rb);
493 }
494 EXPORT_SYMBOL_GPL(perf_aux_output_end);
495
496 /*
497 * Skip over a given number of bytes in the AUX buffer, due to, for example,
498 * hardware's alignment constraints.
499 */
500 int perf_aux_output_skip(struct perf_output_handle *handle, unsigned long size)
501 {
502 struct ring_buffer *rb = handle->rb;
503
504 if (size > handle->size)
505 return -ENOSPC;
506
507 rb->aux_head += size;
508
509 rb->user_page->aux_head = rb->aux_head;
510 if (rb_need_aux_wakeup(rb)) {
511 perf_output_wakeup(handle);
512 handle->wakeup = rb->aux_wakeup + rb->aux_watermark;
513 }
514
515 handle->head = rb->aux_head;
516 handle->size -= size;
517
518 return 0;
519 }
520 EXPORT_SYMBOL_GPL(perf_aux_output_skip);
521
522 void *perf_get_aux(struct perf_output_handle *handle)
523 {
524 /* this is only valid between perf_aux_output_begin and *_end */
525 if (!handle->event)
526 return NULL;
527
528 return handle->rb->aux_priv;
529 }
530 EXPORT_SYMBOL_GPL(perf_get_aux);
531
532 #define PERF_AUX_GFP (GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN | __GFP_NORETRY)
533
534 static struct page *rb_alloc_aux_page(int node, int order)
535 {
536 struct page *page;
537
538 if (order > MAX_ORDER)
539 order = MAX_ORDER;
540
541 do {
542 page = alloc_pages_node(node, PERF_AUX_GFP, order);
543 } while (!page && order--);
544
545 if (page && order) {
546 /*
547 * Communicate the allocation size to the driver:
548 * if we managed to secure a high-order allocation,
549 * set its first page's private to this order;
550 * !PagePrivate(page) means it's just a normal page.
551 */
552 split_page(page, order);
553 SetPagePrivate(page);
554 set_page_private(page, order);
555 }
556
557 return page;
558 }
559
560 static void rb_free_aux_page(struct ring_buffer *rb, int idx)
561 {
562 struct page *page = virt_to_page(rb->aux_pages[idx]);
563
564 ClearPagePrivate(page);
565 page->mapping = NULL;
566 __free_page(page);
567 }
568
569 static void __rb_free_aux(struct ring_buffer *rb)
570 {
571 int pg;
572
573 /*
574 * Should never happen, the last reference should be dropped from
575 * perf_mmap_close() path, which first stops aux transactions (which
576 * in turn are the atomic holders of aux_refcount) and then does the
577 * last rb_free_aux().
578 */
579 WARN_ON_ONCE(in_atomic());
580
581 if (rb->aux_priv) {
582 rb->free_aux(rb->aux_priv);
583 rb->free_aux = NULL;
584 rb->aux_priv = NULL;
585 }
586
587 if (rb->aux_nr_pages) {
588 for (pg = 0; pg < rb->aux_nr_pages; pg++)
589 rb_free_aux_page(rb, pg);
590
591 kfree(rb->aux_pages);
592 rb->aux_nr_pages = 0;
593 }
594 }
595
596 int rb_alloc_aux(struct ring_buffer *rb, struct perf_event *event,
597 pgoff_t pgoff, int nr_pages, long watermark, int flags)
598 {
599 bool overwrite = !(flags & RING_BUFFER_WRITABLE);
600 int node = (event->cpu == -1) ? -1 : cpu_to_node(event->cpu);
601 int ret = -ENOMEM, max_order;
602
603 if (!has_aux(event))
604 return -EOPNOTSUPP;
605
606 /*
607 * We need to start with the max_order that fits in nr_pages,
608 * not the other way around, hence ilog2() and not get_order.
609 */
610 max_order = ilog2(nr_pages);
611
612 /*
613 * PMU requests more than one contiguous chunks of memory
614 * for SW double buffering
615 */
616 if ((event->pmu->capabilities & PERF_PMU_CAP_AUX_SW_DOUBLEBUF) &&
617 !overwrite) {
618 if (!max_order)
619 return -EINVAL;
620
621 max_order--;
622 }
623
624 rb->aux_pages = kcalloc_node(nr_pages, sizeof(void *), GFP_KERNEL,
625 node);
626 if (!rb->aux_pages)
627 return -ENOMEM;
628
629 rb->free_aux = event->pmu->free_aux;
630 for (rb->aux_nr_pages = 0; rb->aux_nr_pages < nr_pages;) {
631 struct page *page;
632 int last, order;
633
634 order = min(max_order, ilog2(nr_pages - rb->aux_nr_pages));
635 page = rb_alloc_aux_page(node, order);
636 if (!page)
637 goto out;
638
639 for (last = rb->aux_nr_pages + (1 << page_private(page));
640 last > rb->aux_nr_pages; rb->aux_nr_pages++)
641 rb->aux_pages[rb->aux_nr_pages] = page_address(page++);
642 }
643
644 /*
645 * In overwrite mode, PMUs that don't support SG may not handle more
646 * than one contiguous allocation, since they rely on PMI to do double
647 * buffering. In this case, the entire buffer has to be one contiguous
648 * chunk.
649 */
650 if ((event->pmu->capabilities & PERF_PMU_CAP_AUX_NO_SG) &&
651 overwrite) {
652 struct page *page = virt_to_page(rb->aux_pages[0]);
653
654 if (page_private(page) != max_order)
655 goto out;
656 }
657
658 rb->aux_priv = event->pmu->setup_aux(event, rb->aux_pages, nr_pages,
659 overwrite);
660 if (!rb->aux_priv)
661 goto out;
662
663 ret = 0;
664
665 /*
666 * aux_pages (and pmu driver's private data, aux_priv) will be
667 * referenced in both producer's and consumer's contexts, thus
668 * we keep a refcount here to make sure either of the two can
669 * reference them safely.
670 */
671 refcount_set(&rb->aux_refcount, 1);
672
673 rb->aux_overwrite = overwrite;
674 rb->aux_watermark = watermark;
675
676 if (!rb->aux_watermark && !rb->aux_overwrite)
677 rb->aux_watermark = nr_pages << (PAGE_SHIFT - 1);
678
679 out:
680 if (!ret)
681 rb->aux_pgoff = pgoff;
682 else
683 __rb_free_aux(rb);
684
685 return ret;
686 }
687
688 void rb_free_aux(struct ring_buffer *rb)
689 {
690 if (refcount_dec_and_test(&rb->aux_refcount))
691 __rb_free_aux(rb);
692 }
693
694 #ifndef CONFIG_PERF_USE_VMALLOC
695
696 /*
697 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
698 */
699
700 static struct page *
701 __perf_mmap_to_page(struct ring_buffer *rb, unsigned long pgoff)
702 {
703 if (pgoff > rb->nr_pages)
704 return NULL;
705
706 if (pgoff == 0)
707 return virt_to_page(rb->user_page);
708
709 return virt_to_page(rb->data_pages[pgoff - 1]);
710 }
711
712 static void *perf_mmap_alloc_page(int cpu)
713 {
714 struct page *page;
715 int node;
716
717 node = (cpu == -1) ? cpu : cpu_to_node(cpu);
718 page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
719 if (!page)
720 return NULL;
721
722 return page_address(page);
723 }
724
725 struct ring_buffer *rb_alloc(int nr_pages, long watermark, int cpu, int flags)
726 {
727 struct ring_buffer *rb;
728 unsigned long size;
729 int i;
730
731 size = sizeof(struct ring_buffer);
732 size += nr_pages * sizeof(void *);
733
734 if (order_base_2(size) >= PAGE_SHIFT+MAX_ORDER)
735 goto fail;
736
737 rb = kzalloc(size, GFP_KERNEL);
738 if (!rb)
739 goto fail;
740
741 rb->user_page = perf_mmap_alloc_page(cpu);
742 if (!rb->user_page)
743 goto fail_user_page;
744
745 for (i = 0; i < nr_pages; i++) {
746 rb->data_pages[i] = perf_mmap_alloc_page(cpu);
747 if (!rb->data_pages[i])
748 goto fail_data_pages;
749 }
750
751 rb->nr_pages = nr_pages;
752
753 ring_buffer_init(rb, watermark, flags);
754
755 return rb;
756
757 fail_data_pages:
758 for (i--; i >= 0; i--)
759 free_page((unsigned long)rb->data_pages[i]);
760
761 free_page((unsigned long)rb->user_page);
762
763 fail_user_page:
764 kfree(rb);
765
766 fail:
767 return NULL;
768 }
769
770 static void perf_mmap_free_page(unsigned long addr)
771 {
772 struct page *page = virt_to_page((void *)addr);
773
774 page->mapping = NULL;
775 __free_page(page);
776 }
777
778 void rb_free(struct ring_buffer *rb)
779 {
780 int i;
781
782 perf_mmap_free_page((unsigned long)rb->user_page);
783 for (i = 0; i < rb->nr_pages; i++)
784 perf_mmap_free_page((unsigned long)rb->data_pages[i]);
785 kfree(rb);
786 }
787
788 #else
789 static int data_page_nr(struct ring_buffer *rb)
790 {
791 return rb->nr_pages << page_order(rb);
792 }
793
794 static struct page *
795 __perf_mmap_to_page(struct ring_buffer *rb, unsigned long pgoff)
796 {
797 /* The '>' counts in the user page. */
798 if (pgoff > data_page_nr(rb))
799 return NULL;
800
801 return vmalloc_to_page((void *)rb->user_page + pgoff * PAGE_SIZE);
802 }
803
804 static void perf_mmap_unmark_page(void *addr)
805 {
806 struct page *page = vmalloc_to_page(addr);
807
808 page->mapping = NULL;
809 }
810
811 static void rb_free_work(struct work_struct *work)
812 {
813 struct ring_buffer *rb;
814 void *base;
815 int i, nr;
816
817 rb = container_of(work, struct ring_buffer, work);
818 nr = data_page_nr(rb);
819
820 base = rb->user_page;
821 /* The '<=' counts in the user page. */
822 for (i = 0; i <= nr; i++)
823 perf_mmap_unmark_page(base + (i * PAGE_SIZE));
824
825 vfree(base);
826 kfree(rb);
827 }
828
829 void rb_free(struct ring_buffer *rb)
830 {
831 schedule_work(&rb->work);
832 }
833
834 struct ring_buffer *rb_alloc(int nr_pages, long watermark, int cpu, int flags)
835 {
836 struct ring_buffer *rb;
837 unsigned long size;
838 void *all_buf;
839
840 size = sizeof(struct ring_buffer);
841 size += sizeof(void *);
842
843 rb = kzalloc(size, GFP_KERNEL);
844 if (!rb)
845 goto fail;
846
847 INIT_WORK(&rb->work, rb_free_work);
848
849 all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
850 if (!all_buf)
851 goto fail_all_buf;
852
853 rb->user_page = all_buf;
854 rb->data_pages[0] = all_buf + PAGE_SIZE;
855 if (nr_pages) {
856 rb->nr_pages = 1;
857 rb->page_order = ilog2(nr_pages);
858 }
859
860 ring_buffer_init(rb, watermark, flags);
861
862 return rb;
863
864 fail_all_buf:
865 kfree(rb);
866
867 fail:
868 return NULL;
869 }
870
871 #endif
872
873 struct page *
874 perf_mmap_to_page(struct ring_buffer *rb, unsigned long pgoff)
875 {
876 if (rb->aux_nr_pages) {
877 /* above AUX space */
878 if (pgoff > rb->aux_pgoff + rb->aux_nr_pages)
879 return NULL;
880
881 /* AUX space */
882 if (pgoff >= rb->aux_pgoff) {
883 int aux_pgoff = array_index_nospec(pgoff - rb->aux_pgoff, rb->aux_nr_pages);
884 return virt_to_page(rb->aux_pages[aux_pgoff]);
885 }
886 }
887
888 return __perf_mmap_to_page(rb, pgoff);
889 }