]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/events/uprobes.c
Merge tag 'efi-urgent' of git://git.kernel.org/pub/scm/linux/kernel/git/efi/efi into...
[mirror_ubuntu-artful-kernel.git] / kernel / events / uprobes.c
1 /*
2 * User-space Probes (UProbes)
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright (C) IBM Corporation, 2008-2012
19 * Authors:
20 * Srikar Dronamraju
21 * Jim Keniston
22 * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra
23 */
24
25 #include <linux/kernel.h>
26 #include <linux/highmem.h>
27 #include <linux/pagemap.h> /* read_mapping_page */
28 #include <linux/slab.h>
29 #include <linux/sched.h>
30 #include <linux/sched/mm.h>
31 #include <linux/sched/coredump.h>
32 #include <linux/export.h>
33 #include <linux/rmap.h> /* anon_vma_prepare */
34 #include <linux/mmu_notifier.h> /* set_pte_at_notify */
35 #include <linux/swap.h> /* try_to_free_swap */
36 #include <linux/ptrace.h> /* user_enable_single_step */
37 #include <linux/kdebug.h> /* notifier mechanism */
38 #include "../../mm/internal.h" /* munlock_vma_page */
39 #include <linux/percpu-rwsem.h>
40 #include <linux/task_work.h>
41 #include <linux/shmem_fs.h>
42
43 #include <linux/uprobes.h>
44
45 #define UINSNS_PER_PAGE (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
46 #define MAX_UPROBE_XOL_SLOTS UINSNS_PER_PAGE
47
48 static struct rb_root uprobes_tree = RB_ROOT;
49 /*
50 * allows us to skip the uprobe_mmap if there are no uprobe events active
51 * at this time. Probably a fine grained per inode count is better?
52 */
53 #define no_uprobe_events() RB_EMPTY_ROOT(&uprobes_tree)
54
55 static DEFINE_SPINLOCK(uprobes_treelock); /* serialize rbtree access */
56
57 #define UPROBES_HASH_SZ 13
58 /* serialize uprobe->pending_list */
59 static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
60 #define uprobes_mmap_hash(v) (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
61
62 static struct percpu_rw_semaphore dup_mmap_sem;
63
64 /* Have a copy of original instruction */
65 #define UPROBE_COPY_INSN 0
66
67 struct uprobe {
68 struct rb_node rb_node; /* node in the rb tree */
69 atomic_t ref;
70 struct rw_semaphore register_rwsem;
71 struct rw_semaphore consumer_rwsem;
72 struct list_head pending_list;
73 struct uprobe_consumer *consumers;
74 struct inode *inode; /* Also hold a ref to inode */
75 loff_t offset;
76 unsigned long flags;
77
78 /*
79 * The generic code assumes that it has two members of unknown type
80 * owned by the arch-specific code:
81 *
82 * insn - copy_insn() saves the original instruction here for
83 * arch_uprobe_analyze_insn().
84 *
85 * ixol - potentially modified instruction to execute out of
86 * line, copied to xol_area by xol_get_insn_slot().
87 */
88 struct arch_uprobe arch;
89 };
90
91 /*
92 * Execute out of line area: anonymous executable mapping installed
93 * by the probed task to execute the copy of the original instruction
94 * mangled by set_swbp().
95 *
96 * On a breakpoint hit, thread contests for a slot. It frees the
97 * slot after singlestep. Currently a fixed number of slots are
98 * allocated.
99 */
100 struct xol_area {
101 wait_queue_head_t wq; /* if all slots are busy */
102 atomic_t slot_count; /* number of in-use slots */
103 unsigned long *bitmap; /* 0 = free slot */
104
105 struct vm_special_mapping xol_mapping;
106 struct page *pages[2];
107 /*
108 * We keep the vma's vm_start rather than a pointer to the vma
109 * itself. The probed process or a naughty kernel module could make
110 * the vma go away, and we must handle that reasonably gracefully.
111 */
112 unsigned long vaddr; /* Page(s) of instruction slots */
113 };
114
115 /*
116 * valid_vma: Verify if the specified vma is an executable vma
117 * Relax restrictions while unregistering: vm_flags might have
118 * changed after breakpoint was inserted.
119 * - is_register: indicates if we are in register context.
120 * - Return 1 if the specified virtual address is in an
121 * executable vma.
122 */
123 static bool valid_vma(struct vm_area_struct *vma, bool is_register)
124 {
125 vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_MAYSHARE;
126
127 if (is_register)
128 flags |= VM_WRITE;
129
130 return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC;
131 }
132
133 static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset)
134 {
135 return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
136 }
137
138 static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr)
139 {
140 return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start);
141 }
142
143 /**
144 * __replace_page - replace page in vma by new page.
145 * based on replace_page in mm/ksm.c
146 *
147 * @vma: vma that holds the pte pointing to page
148 * @addr: address the old @page is mapped at
149 * @page: the cowed page we are replacing by kpage
150 * @kpage: the modified page we replace page by
151 *
152 * Returns 0 on success, -EFAULT on failure.
153 */
154 static int __replace_page(struct vm_area_struct *vma, unsigned long addr,
155 struct page *old_page, struct page *new_page)
156 {
157 struct mm_struct *mm = vma->vm_mm;
158 struct page_vma_mapped_walk pvmw = {
159 .page = old_page,
160 .vma = vma,
161 .address = addr,
162 };
163 int err;
164 /* For mmu_notifiers */
165 const unsigned long mmun_start = addr;
166 const unsigned long mmun_end = addr + PAGE_SIZE;
167 struct mem_cgroup *memcg;
168
169 VM_BUG_ON_PAGE(PageTransHuge(old_page), old_page);
170
171 err = mem_cgroup_try_charge(new_page, vma->vm_mm, GFP_KERNEL, &memcg,
172 false);
173 if (err)
174 return err;
175
176 /* For try_to_free_swap() and munlock_vma_page() below */
177 lock_page(old_page);
178
179 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
180 err = -EAGAIN;
181 if (!page_vma_mapped_walk(&pvmw)) {
182 mem_cgroup_cancel_charge(new_page, memcg, false);
183 goto unlock;
184 }
185 VM_BUG_ON_PAGE(addr != pvmw.address, old_page);
186
187 get_page(new_page);
188 page_add_new_anon_rmap(new_page, vma, addr, false);
189 mem_cgroup_commit_charge(new_page, memcg, false, false);
190 lru_cache_add_active_or_unevictable(new_page, vma);
191
192 if (!PageAnon(old_page)) {
193 dec_mm_counter(mm, mm_counter_file(old_page));
194 inc_mm_counter(mm, MM_ANONPAGES);
195 }
196
197 flush_cache_page(vma, addr, pte_pfn(*pvmw.pte));
198 ptep_clear_flush_notify(vma, addr, pvmw.pte);
199 set_pte_at_notify(mm, addr, pvmw.pte,
200 mk_pte(new_page, vma->vm_page_prot));
201
202 page_remove_rmap(old_page, false);
203 if (!page_mapped(old_page))
204 try_to_free_swap(old_page);
205 page_vma_mapped_walk_done(&pvmw);
206
207 if (vma->vm_flags & VM_LOCKED)
208 munlock_vma_page(old_page);
209 put_page(old_page);
210
211 err = 0;
212 unlock:
213 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
214 unlock_page(old_page);
215 return err;
216 }
217
218 /**
219 * is_swbp_insn - check if instruction is breakpoint instruction.
220 * @insn: instruction to be checked.
221 * Default implementation of is_swbp_insn
222 * Returns true if @insn is a breakpoint instruction.
223 */
224 bool __weak is_swbp_insn(uprobe_opcode_t *insn)
225 {
226 return *insn == UPROBE_SWBP_INSN;
227 }
228
229 /**
230 * is_trap_insn - check if instruction is breakpoint instruction.
231 * @insn: instruction to be checked.
232 * Default implementation of is_trap_insn
233 * Returns true if @insn is a breakpoint instruction.
234 *
235 * This function is needed for the case where an architecture has multiple
236 * trap instructions (like powerpc).
237 */
238 bool __weak is_trap_insn(uprobe_opcode_t *insn)
239 {
240 return is_swbp_insn(insn);
241 }
242
243 static void copy_from_page(struct page *page, unsigned long vaddr, void *dst, int len)
244 {
245 void *kaddr = kmap_atomic(page);
246 memcpy(dst, kaddr + (vaddr & ~PAGE_MASK), len);
247 kunmap_atomic(kaddr);
248 }
249
250 static void copy_to_page(struct page *page, unsigned long vaddr, const void *src, int len)
251 {
252 void *kaddr = kmap_atomic(page);
253 memcpy(kaddr + (vaddr & ~PAGE_MASK), src, len);
254 kunmap_atomic(kaddr);
255 }
256
257 static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode)
258 {
259 uprobe_opcode_t old_opcode;
260 bool is_swbp;
261
262 /*
263 * Note: We only check if the old_opcode is UPROBE_SWBP_INSN here.
264 * We do not check if it is any other 'trap variant' which could
265 * be conditional trap instruction such as the one powerpc supports.
266 *
267 * The logic is that we do not care if the underlying instruction
268 * is a trap variant; uprobes always wins over any other (gdb)
269 * breakpoint.
270 */
271 copy_from_page(page, vaddr, &old_opcode, UPROBE_SWBP_INSN_SIZE);
272 is_swbp = is_swbp_insn(&old_opcode);
273
274 if (is_swbp_insn(new_opcode)) {
275 if (is_swbp) /* register: already installed? */
276 return 0;
277 } else {
278 if (!is_swbp) /* unregister: was it changed by us? */
279 return 0;
280 }
281
282 return 1;
283 }
284
285 /*
286 * NOTE:
287 * Expect the breakpoint instruction to be the smallest size instruction for
288 * the architecture. If an arch has variable length instruction and the
289 * breakpoint instruction is not of the smallest length instruction
290 * supported by that architecture then we need to modify is_trap_at_addr and
291 * uprobe_write_opcode accordingly. This would never be a problem for archs
292 * that have fixed length instructions.
293 *
294 * uprobe_write_opcode - write the opcode at a given virtual address.
295 * @mm: the probed process address space.
296 * @vaddr: the virtual address to store the opcode.
297 * @opcode: opcode to be written at @vaddr.
298 *
299 * Called with mm->mmap_sem held for write.
300 * Return 0 (success) or a negative errno.
301 */
302 int uprobe_write_opcode(struct mm_struct *mm, unsigned long vaddr,
303 uprobe_opcode_t opcode)
304 {
305 struct page *old_page, *new_page;
306 struct vm_area_struct *vma;
307 int ret;
308
309 retry:
310 /* Read the page with vaddr into memory */
311 ret = get_user_pages_remote(NULL, mm, vaddr, 1,
312 FOLL_FORCE | FOLL_SPLIT, &old_page, &vma, NULL);
313 if (ret <= 0)
314 return ret;
315
316 ret = verify_opcode(old_page, vaddr, &opcode);
317 if (ret <= 0)
318 goto put_old;
319
320 ret = anon_vma_prepare(vma);
321 if (ret)
322 goto put_old;
323
324 ret = -ENOMEM;
325 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
326 if (!new_page)
327 goto put_old;
328
329 __SetPageUptodate(new_page);
330 copy_highpage(new_page, old_page);
331 copy_to_page(new_page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
332
333 ret = __replace_page(vma, vaddr, old_page, new_page);
334 put_page(new_page);
335 put_old:
336 put_page(old_page);
337
338 if (unlikely(ret == -EAGAIN))
339 goto retry;
340 return ret;
341 }
342
343 /**
344 * set_swbp - store breakpoint at a given address.
345 * @auprobe: arch specific probepoint information.
346 * @mm: the probed process address space.
347 * @vaddr: the virtual address to insert the opcode.
348 *
349 * For mm @mm, store the breakpoint instruction at @vaddr.
350 * Return 0 (success) or a negative errno.
351 */
352 int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
353 {
354 return uprobe_write_opcode(mm, vaddr, UPROBE_SWBP_INSN);
355 }
356
357 /**
358 * set_orig_insn - Restore the original instruction.
359 * @mm: the probed process address space.
360 * @auprobe: arch specific probepoint information.
361 * @vaddr: the virtual address to insert the opcode.
362 *
363 * For mm @mm, restore the original opcode (opcode) at @vaddr.
364 * Return 0 (success) or a negative errno.
365 */
366 int __weak
367 set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
368 {
369 return uprobe_write_opcode(mm, vaddr, *(uprobe_opcode_t *)&auprobe->insn);
370 }
371
372 static struct uprobe *get_uprobe(struct uprobe *uprobe)
373 {
374 atomic_inc(&uprobe->ref);
375 return uprobe;
376 }
377
378 static void put_uprobe(struct uprobe *uprobe)
379 {
380 if (atomic_dec_and_test(&uprobe->ref))
381 kfree(uprobe);
382 }
383
384 static int match_uprobe(struct uprobe *l, struct uprobe *r)
385 {
386 if (l->inode < r->inode)
387 return -1;
388
389 if (l->inode > r->inode)
390 return 1;
391
392 if (l->offset < r->offset)
393 return -1;
394
395 if (l->offset > r->offset)
396 return 1;
397
398 return 0;
399 }
400
401 static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
402 {
403 struct uprobe u = { .inode = inode, .offset = offset };
404 struct rb_node *n = uprobes_tree.rb_node;
405 struct uprobe *uprobe;
406 int match;
407
408 while (n) {
409 uprobe = rb_entry(n, struct uprobe, rb_node);
410 match = match_uprobe(&u, uprobe);
411 if (!match)
412 return get_uprobe(uprobe);
413
414 if (match < 0)
415 n = n->rb_left;
416 else
417 n = n->rb_right;
418 }
419 return NULL;
420 }
421
422 /*
423 * Find a uprobe corresponding to a given inode:offset
424 * Acquires uprobes_treelock
425 */
426 static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
427 {
428 struct uprobe *uprobe;
429
430 spin_lock(&uprobes_treelock);
431 uprobe = __find_uprobe(inode, offset);
432 spin_unlock(&uprobes_treelock);
433
434 return uprobe;
435 }
436
437 static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
438 {
439 struct rb_node **p = &uprobes_tree.rb_node;
440 struct rb_node *parent = NULL;
441 struct uprobe *u;
442 int match;
443
444 while (*p) {
445 parent = *p;
446 u = rb_entry(parent, struct uprobe, rb_node);
447 match = match_uprobe(uprobe, u);
448 if (!match)
449 return get_uprobe(u);
450
451 if (match < 0)
452 p = &parent->rb_left;
453 else
454 p = &parent->rb_right;
455
456 }
457
458 u = NULL;
459 rb_link_node(&uprobe->rb_node, parent, p);
460 rb_insert_color(&uprobe->rb_node, &uprobes_tree);
461 /* get access + creation ref */
462 atomic_set(&uprobe->ref, 2);
463
464 return u;
465 }
466
467 /*
468 * Acquire uprobes_treelock.
469 * Matching uprobe already exists in rbtree;
470 * increment (access refcount) and return the matching uprobe.
471 *
472 * No matching uprobe; insert the uprobe in rb_tree;
473 * get a double refcount (access + creation) and return NULL.
474 */
475 static struct uprobe *insert_uprobe(struct uprobe *uprobe)
476 {
477 struct uprobe *u;
478
479 spin_lock(&uprobes_treelock);
480 u = __insert_uprobe(uprobe);
481 spin_unlock(&uprobes_treelock);
482
483 return u;
484 }
485
486 static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset)
487 {
488 struct uprobe *uprobe, *cur_uprobe;
489
490 uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
491 if (!uprobe)
492 return NULL;
493
494 uprobe->inode = igrab(inode);
495 uprobe->offset = offset;
496 init_rwsem(&uprobe->register_rwsem);
497 init_rwsem(&uprobe->consumer_rwsem);
498
499 /* add to uprobes_tree, sorted on inode:offset */
500 cur_uprobe = insert_uprobe(uprobe);
501 /* a uprobe exists for this inode:offset combination */
502 if (cur_uprobe) {
503 kfree(uprobe);
504 uprobe = cur_uprobe;
505 iput(inode);
506 }
507
508 return uprobe;
509 }
510
511 static void consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
512 {
513 down_write(&uprobe->consumer_rwsem);
514 uc->next = uprobe->consumers;
515 uprobe->consumers = uc;
516 up_write(&uprobe->consumer_rwsem);
517 }
518
519 /*
520 * For uprobe @uprobe, delete the consumer @uc.
521 * Return true if the @uc is deleted successfully
522 * or return false.
523 */
524 static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
525 {
526 struct uprobe_consumer **con;
527 bool ret = false;
528
529 down_write(&uprobe->consumer_rwsem);
530 for (con = &uprobe->consumers; *con; con = &(*con)->next) {
531 if (*con == uc) {
532 *con = uc->next;
533 ret = true;
534 break;
535 }
536 }
537 up_write(&uprobe->consumer_rwsem);
538
539 return ret;
540 }
541
542 static int __copy_insn(struct address_space *mapping, struct file *filp,
543 void *insn, int nbytes, loff_t offset)
544 {
545 struct page *page;
546 /*
547 * Ensure that the page that has the original instruction is populated
548 * and in page-cache. If ->readpage == NULL it must be shmem_mapping(),
549 * see uprobe_register().
550 */
551 if (mapping->a_ops->readpage)
552 page = read_mapping_page(mapping, offset >> PAGE_SHIFT, filp);
553 else
554 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
555 if (IS_ERR(page))
556 return PTR_ERR(page);
557
558 copy_from_page(page, offset, insn, nbytes);
559 put_page(page);
560
561 return 0;
562 }
563
564 static int copy_insn(struct uprobe *uprobe, struct file *filp)
565 {
566 struct address_space *mapping = uprobe->inode->i_mapping;
567 loff_t offs = uprobe->offset;
568 void *insn = &uprobe->arch.insn;
569 int size = sizeof(uprobe->arch.insn);
570 int len, err = -EIO;
571
572 /* Copy only available bytes, -EIO if nothing was read */
573 do {
574 if (offs >= i_size_read(uprobe->inode))
575 break;
576
577 len = min_t(int, size, PAGE_SIZE - (offs & ~PAGE_MASK));
578 err = __copy_insn(mapping, filp, insn, len, offs);
579 if (err)
580 break;
581
582 insn += len;
583 offs += len;
584 size -= len;
585 } while (size);
586
587 return err;
588 }
589
590 static int prepare_uprobe(struct uprobe *uprobe, struct file *file,
591 struct mm_struct *mm, unsigned long vaddr)
592 {
593 int ret = 0;
594
595 if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
596 return ret;
597
598 /* TODO: move this into _register, until then we abuse this sem. */
599 down_write(&uprobe->consumer_rwsem);
600 if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
601 goto out;
602
603 ret = copy_insn(uprobe, file);
604 if (ret)
605 goto out;
606
607 ret = -ENOTSUPP;
608 if (is_trap_insn((uprobe_opcode_t *)&uprobe->arch.insn))
609 goto out;
610
611 ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
612 if (ret)
613 goto out;
614
615 /* uprobe_write_opcode() assumes we don't cross page boundary */
616 BUG_ON((uprobe->offset & ~PAGE_MASK) +
617 UPROBE_SWBP_INSN_SIZE > PAGE_SIZE);
618
619 smp_wmb(); /* pairs with rmb() in find_active_uprobe() */
620 set_bit(UPROBE_COPY_INSN, &uprobe->flags);
621
622 out:
623 up_write(&uprobe->consumer_rwsem);
624
625 return ret;
626 }
627
628 static inline bool consumer_filter(struct uprobe_consumer *uc,
629 enum uprobe_filter_ctx ctx, struct mm_struct *mm)
630 {
631 return !uc->filter || uc->filter(uc, ctx, mm);
632 }
633
634 static bool filter_chain(struct uprobe *uprobe,
635 enum uprobe_filter_ctx ctx, struct mm_struct *mm)
636 {
637 struct uprobe_consumer *uc;
638 bool ret = false;
639
640 down_read(&uprobe->consumer_rwsem);
641 for (uc = uprobe->consumers; uc; uc = uc->next) {
642 ret = consumer_filter(uc, ctx, mm);
643 if (ret)
644 break;
645 }
646 up_read(&uprobe->consumer_rwsem);
647
648 return ret;
649 }
650
651 static int
652 install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
653 struct vm_area_struct *vma, unsigned long vaddr)
654 {
655 bool first_uprobe;
656 int ret;
657
658 ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr);
659 if (ret)
660 return ret;
661
662 /*
663 * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(),
664 * the task can hit this breakpoint right after __replace_page().
665 */
666 first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags);
667 if (first_uprobe)
668 set_bit(MMF_HAS_UPROBES, &mm->flags);
669
670 ret = set_swbp(&uprobe->arch, mm, vaddr);
671 if (!ret)
672 clear_bit(MMF_RECALC_UPROBES, &mm->flags);
673 else if (first_uprobe)
674 clear_bit(MMF_HAS_UPROBES, &mm->flags);
675
676 return ret;
677 }
678
679 static int
680 remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr)
681 {
682 set_bit(MMF_RECALC_UPROBES, &mm->flags);
683 return set_orig_insn(&uprobe->arch, mm, vaddr);
684 }
685
686 static inline bool uprobe_is_active(struct uprobe *uprobe)
687 {
688 return !RB_EMPTY_NODE(&uprobe->rb_node);
689 }
690 /*
691 * There could be threads that have already hit the breakpoint. They
692 * will recheck the current insn and restart if find_uprobe() fails.
693 * See find_active_uprobe().
694 */
695 static void delete_uprobe(struct uprobe *uprobe)
696 {
697 if (WARN_ON(!uprobe_is_active(uprobe)))
698 return;
699
700 spin_lock(&uprobes_treelock);
701 rb_erase(&uprobe->rb_node, &uprobes_tree);
702 spin_unlock(&uprobes_treelock);
703 RB_CLEAR_NODE(&uprobe->rb_node); /* for uprobe_is_active() */
704 iput(uprobe->inode);
705 put_uprobe(uprobe);
706 }
707
708 struct map_info {
709 struct map_info *next;
710 struct mm_struct *mm;
711 unsigned long vaddr;
712 };
713
714 static inline struct map_info *free_map_info(struct map_info *info)
715 {
716 struct map_info *next = info->next;
717 kfree(info);
718 return next;
719 }
720
721 static struct map_info *
722 build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
723 {
724 unsigned long pgoff = offset >> PAGE_SHIFT;
725 struct vm_area_struct *vma;
726 struct map_info *curr = NULL;
727 struct map_info *prev = NULL;
728 struct map_info *info;
729 int more = 0;
730
731 again:
732 i_mmap_lock_read(mapping);
733 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
734 if (!valid_vma(vma, is_register))
735 continue;
736
737 if (!prev && !more) {
738 /*
739 * Needs GFP_NOWAIT to avoid i_mmap_rwsem recursion through
740 * reclaim. This is optimistic, no harm done if it fails.
741 */
742 prev = kmalloc(sizeof(struct map_info),
743 GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
744 if (prev)
745 prev->next = NULL;
746 }
747 if (!prev) {
748 more++;
749 continue;
750 }
751
752 if (!mmget_not_zero(vma->vm_mm))
753 continue;
754
755 info = prev;
756 prev = prev->next;
757 info->next = curr;
758 curr = info;
759
760 info->mm = vma->vm_mm;
761 info->vaddr = offset_to_vaddr(vma, offset);
762 }
763 i_mmap_unlock_read(mapping);
764
765 if (!more)
766 goto out;
767
768 prev = curr;
769 while (curr) {
770 mmput(curr->mm);
771 curr = curr->next;
772 }
773
774 do {
775 info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
776 if (!info) {
777 curr = ERR_PTR(-ENOMEM);
778 goto out;
779 }
780 info->next = prev;
781 prev = info;
782 } while (--more);
783
784 goto again;
785 out:
786 while (prev)
787 prev = free_map_info(prev);
788 return curr;
789 }
790
791 static int
792 register_for_each_vma(struct uprobe *uprobe, struct uprobe_consumer *new)
793 {
794 bool is_register = !!new;
795 struct map_info *info;
796 int err = 0;
797
798 percpu_down_write(&dup_mmap_sem);
799 info = build_map_info(uprobe->inode->i_mapping,
800 uprobe->offset, is_register);
801 if (IS_ERR(info)) {
802 err = PTR_ERR(info);
803 goto out;
804 }
805
806 while (info) {
807 struct mm_struct *mm = info->mm;
808 struct vm_area_struct *vma;
809
810 if (err && is_register)
811 goto free;
812
813 down_write(&mm->mmap_sem);
814 vma = find_vma(mm, info->vaddr);
815 if (!vma || !valid_vma(vma, is_register) ||
816 file_inode(vma->vm_file) != uprobe->inode)
817 goto unlock;
818
819 if (vma->vm_start > info->vaddr ||
820 vaddr_to_offset(vma, info->vaddr) != uprobe->offset)
821 goto unlock;
822
823 if (is_register) {
824 /* consult only the "caller", new consumer. */
825 if (consumer_filter(new,
826 UPROBE_FILTER_REGISTER, mm))
827 err = install_breakpoint(uprobe, mm, vma, info->vaddr);
828 } else if (test_bit(MMF_HAS_UPROBES, &mm->flags)) {
829 if (!filter_chain(uprobe,
830 UPROBE_FILTER_UNREGISTER, mm))
831 err |= remove_breakpoint(uprobe, mm, info->vaddr);
832 }
833
834 unlock:
835 up_write(&mm->mmap_sem);
836 free:
837 mmput(mm);
838 info = free_map_info(info);
839 }
840 out:
841 percpu_up_write(&dup_mmap_sem);
842 return err;
843 }
844
845 static int __uprobe_register(struct uprobe *uprobe, struct uprobe_consumer *uc)
846 {
847 consumer_add(uprobe, uc);
848 return register_for_each_vma(uprobe, uc);
849 }
850
851 static void __uprobe_unregister(struct uprobe *uprobe, struct uprobe_consumer *uc)
852 {
853 int err;
854
855 if (WARN_ON(!consumer_del(uprobe, uc)))
856 return;
857
858 err = register_for_each_vma(uprobe, NULL);
859 /* TODO : cant unregister? schedule a worker thread */
860 if (!uprobe->consumers && !err)
861 delete_uprobe(uprobe);
862 }
863
864 /*
865 * uprobe_register - register a probe
866 * @inode: the file in which the probe has to be placed.
867 * @offset: offset from the start of the file.
868 * @uc: information on howto handle the probe..
869 *
870 * Apart from the access refcount, uprobe_register() takes a creation
871 * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
872 * inserted into the rbtree (i.e first consumer for a @inode:@offset
873 * tuple). Creation refcount stops uprobe_unregister from freeing the
874 * @uprobe even before the register operation is complete. Creation
875 * refcount is released when the last @uc for the @uprobe
876 * unregisters.
877 *
878 * Return errno if it cannot successully install probes
879 * else return 0 (success)
880 */
881 int uprobe_register(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
882 {
883 struct uprobe *uprobe;
884 int ret;
885
886 /* Uprobe must have at least one set consumer */
887 if (!uc->handler && !uc->ret_handler)
888 return -EINVAL;
889
890 /* copy_insn() uses read_mapping_page() or shmem_read_mapping_page() */
891 if (!inode->i_mapping->a_ops->readpage && !shmem_mapping(inode->i_mapping))
892 return -EIO;
893 /* Racy, just to catch the obvious mistakes */
894 if (offset > i_size_read(inode))
895 return -EINVAL;
896
897 retry:
898 uprobe = alloc_uprobe(inode, offset);
899 if (!uprobe)
900 return -ENOMEM;
901 /*
902 * We can race with uprobe_unregister()->delete_uprobe().
903 * Check uprobe_is_active() and retry if it is false.
904 */
905 down_write(&uprobe->register_rwsem);
906 ret = -EAGAIN;
907 if (likely(uprobe_is_active(uprobe))) {
908 ret = __uprobe_register(uprobe, uc);
909 if (ret)
910 __uprobe_unregister(uprobe, uc);
911 }
912 up_write(&uprobe->register_rwsem);
913 put_uprobe(uprobe);
914
915 if (unlikely(ret == -EAGAIN))
916 goto retry;
917 return ret;
918 }
919 EXPORT_SYMBOL_GPL(uprobe_register);
920
921 /*
922 * uprobe_apply - unregister a already registered probe.
923 * @inode: the file in which the probe has to be removed.
924 * @offset: offset from the start of the file.
925 * @uc: consumer which wants to add more or remove some breakpoints
926 * @add: add or remove the breakpoints
927 */
928 int uprobe_apply(struct inode *inode, loff_t offset,
929 struct uprobe_consumer *uc, bool add)
930 {
931 struct uprobe *uprobe;
932 struct uprobe_consumer *con;
933 int ret = -ENOENT;
934
935 uprobe = find_uprobe(inode, offset);
936 if (WARN_ON(!uprobe))
937 return ret;
938
939 down_write(&uprobe->register_rwsem);
940 for (con = uprobe->consumers; con && con != uc ; con = con->next)
941 ;
942 if (con)
943 ret = register_for_each_vma(uprobe, add ? uc : NULL);
944 up_write(&uprobe->register_rwsem);
945 put_uprobe(uprobe);
946
947 return ret;
948 }
949
950 /*
951 * uprobe_unregister - unregister a already registered probe.
952 * @inode: the file in which the probe has to be removed.
953 * @offset: offset from the start of the file.
954 * @uc: identify which probe if multiple probes are colocated.
955 */
956 void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
957 {
958 struct uprobe *uprobe;
959
960 uprobe = find_uprobe(inode, offset);
961 if (WARN_ON(!uprobe))
962 return;
963
964 down_write(&uprobe->register_rwsem);
965 __uprobe_unregister(uprobe, uc);
966 up_write(&uprobe->register_rwsem);
967 put_uprobe(uprobe);
968 }
969 EXPORT_SYMBOL_GPL(uprobe_unregister);
970
971 static int unapply_uprobe(struct uprobe *uprobe, struct mm_struct *mm)
972 {
973 struct vm_area_struct *vma;
974 int err = 0;
975
976 down_read(&mm->mmap_sem);
977 for (vma = mm->mmap; vma; vma = vma->vm_next) {
978 unsigned long vaddr;
979 loff_t offset;
980
981 if (!valid_vma(vma, false) ||
982 file_inode(vma->vm_file) != uprobe->inode)
983 continue;
984
985 offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT;
986 if (uprobe->offset < offset ||
987 uprobe->offset >= offset + vma->vm_end - vma->vm_start)
988 continue;
989
990 vaddr = offset_to_vaddr(vma, uprobe->offset);
991 err |= remove_breakpoint(uprobe, mm, vaddr);
992 }
993 up_read(&mm->mmap_sem);
994
995 return err;
996 }
997
998 static struct rb_node *
999 find_node_in_range(struct inode *inode, loff_t min, loff_t max)
1000 {
1001 struct rb_node *n = uprobes_tree.rb_node;
1002
1003 while (n) {
1004 struct uprobe *u = rb_entry(n, struct uprobe, rb_node);
1005
1006 if (inode < u->inode) {
1007 n = n->rb_left;
1008 } else if (inode > u->inode) {
1009 n = n->rb_right;
1010 } else {
1011 if (max < u->offset)
1012 n = n->rb_left;
1013 else if (min > u->offset)
1014 n = n->rb_right;
1015 else
1016 break;
1017 }
1018 }
1019
1020 return n;
1021 }
1022
1023 /*
1024 * For a given range in vma, build a list of probes that need to be inserted.
1025 */
1026 static void build_probe_list(struct inode *inode,
1027 struct vm_area_struct *vma,
1028 unsigned long start, unsigned long end,
1029 struct list_head *head)
1030 {
1031 loff_t min, max;
1032 struct rb_node *n, *t;
1033 struct uprobe *u;
1034
1035 INIT_LIST_HEAD(head);
1036 min = vaddr_to_offset(vma, start);
1037 max = min + (end - start) - 1;
1038
1039 spin_lock(&uprobes_treelock);
1040 n = find_node_in_range(inode, min, max);
1041 if (n) {
1042 for (t = n; t; t = rb_prev(t)) {
1043 u = rb_entry(t, struct uprobe, rb_node);
1044 if (u->inode != inode || u->offset < min)
1045 break;
1046 list_add(&u->pending_list, head);
1047 get_uprobe(u);
1048 }
1049 for (t = n; (t = rb_next(t)); ) {
1050 u = rb_entry(t, struct uprobe, rb_node);
1051 if (u->inode != inode || u->offset > max)
1052 break;
1053 list_add(&u->pending_list, head);
1054 get_uprobe(u);
1055 }
1056 }
1057 spin_unlock(&uprobes_treelock);
1058 }
1059
1060 /*
1061 * Called from mmap_region/vma_adjust with mm->mmap_sem acquired.
1062 *
1063 * Currently we ignore all errors and always return 0, the callers
1064 * can't handle the failure anyway.
1065 */
1066 int uprobe_mmap(struct vm_area_struct *vma)
1067 {
1068 struct list_head tmp_list;
1069 struct uprobe *uprobe, *u;
1070 struct inode *inode;
1071
1072 if (no_uprobe_events() || !valid_vma(vma, true))
1073 return 0;
1074
1075 inode = file_inode(vma->vm_file);
1076 if (!inode)
1077 return 0;
1078
1079 mutex_lock(uprobes_mmap_hash(inode));
1080 build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list);
1081 /*
1082 * We can race with uprobe_unregister(), this uprobe can be already
1083 * removed. But in this case filter_chain() must return false, all
1084 * consumers have gone away.
1085 */
1086 list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
1087 if (!fatal_signal_pending(current) &&
1088 filter_chain(uprobe, UPROBE_FILTER_MMAP, vma->vm_mm)) {
1089 unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset);
1090 install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
1091 }
1092 put_uprobe(uprobe);
1093 }
1094 mutex_unlock(uprobes_mmap_hash(inode));
1095
1096 return 0;
1097 }
1098
1099 static bool
1100 vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1101 {
1102 loff_t min, max;
1103 struct inode *inode;
1104 struct rb_node *n;
1105
1106 inode = file_inode(vma->vm_file);
1107
1108 min = vaddr_to_offset(vma, start);
1109 max = min + (end - start) - 1;
1110
1111 spin_lock(&uprobes_treelock);
1112 n = find_node_in_range(inode, min, max);
1113 spin_unlock(&uprobes_treelock);
1114
1115 return !!n;
1116 }
1117
1118 /*
1119 * Called in context of a munmap of a vma.
1120 */
1121 void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1122 {
1123 if (no_uprobe_events() || !valid_vma(vma, false))
1124 return;
1125
1126 if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */
1127 return;
1128
1129 if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) ||
1130 test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags))
1131 return;
1132
1133 if (vma_has_uprobes(vma, start, end))
1134 set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags);
1135 }
1136
1137 /* Slot allocation for XOL */
1138 static int xol_add_vma(struct mm_struct *mm, struct xol_area *area)
1139 {
1140 struct vm_area_struct *vma;
1141 int ret;
1142
1143 if (down_write_killable(&mm->mmap_sem))
1144 return -EINTR;
1145
1146 if (mm->uprobes_state.xol_area) {
1147 ret = -EALREADY;
1148 goto fail;
1149 }
1150
1151 if (!area->vaddr) {
1152 /* Try to map as high as possible, this is only a hint. */
1153 area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE,
1154 PAGE_SIZE, 0, 0);
1155 if (area->vaddr & ~PAGE_MASK) {
1156 ret = area->vaddr;
1157 goto fail;
1158 }
1159 }
1160
1161 vma = _install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1162 VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO,
1163 &area->xol_mapping);
1164 if (IS_ERR(vma)) {
1165 ret = PTR_ERR(vma);
1166 goto fail;
1167 }
1168
1169 ret = 0;
1170 smp_wmb(); /* pairs with get_xol_area() */
1171 mm->uprobes_state.xol_area = area;
1172 fail:
1173 up_write(&mm->mmap_sem);
1174
1175 return ret;
1176 }
1177
1178 static struct xol_area *__create_xol_area(unsigned long vaddr)
1179 {
1180 struct mm_struct *mm = current->mm;
1181 uprobe_opcode_t insn = UPROBE_SWBP_INSN;
1182 struct xol_area *area;
1183
1184 area = kmalloc(sizeof(*area), GFP_KERNEL);
1185 if (unlikely(!area))
1186 goto out;
1187
1188 area->bitmap = kzalloc(BITS_TO_LONGS(UINSNS_PER_PAGE) * sizeof(long), GFP_KERNEL);
1189 if (!area->bitmap)
1190 goto free_area;
1191
1192 area->xol_mapping.name = "[uprobes]";
1193 area->xol_mapping.fault = NULL;
1194 area->xol_mapping.pages = area->pages;
1195 area->pages[0] = alloc_page(GFP_HIGHUSER);
1196 if (!area->pages[0])
1197 goto free_bitmap;
1198 area->pages[1] = NULL;
1199
1200 area->vaddr = vaddr;
1201 init_waitqueue_head(&area->wq);
1202 /* Reserve the 1st slot for get_trampoline_vaddr() */
1203 set_bit(0, area->bitmap);
1204 atomic_set(&area->slot_count, 1);
1205 arch_uprobe_copy_ixol(area->pages[0], 0, &insn, UPROBE_SWBP_INSN_SIZE);
1206
1207 if (!xol_add_vma(mm, area))
1208 return area;
1209
1210 __free_page(area->pages[0]);
1211 free_bitmap:
1212 kfree(area->bitmap);
1213 free_area:
1214 kfree(area);
1215 out:
1216 return NULL;
1217 }
1218
1219 /*
1220 * get_xol_area - Allocate process's xol_area if necessary.
1221 * This area will be used for storing instructions for execution out of line.
1222 *
1223 * Returns the allocated area or NULL.
1224 */
1225 static struct xol_area *get_xol_area(void)
1226 {
1227 struct mm_struct *mm = current->mm;
1228 struct xol_area *area;
1229
1230 if (!mm->uprobes_state.xol_area)
1231 __create_xol_area(0);
1232
1233 area = mm->uprobes_state.xol_area;
1234 smp_read_barrier_depends(); /* pairs with wmb in xol_add_vma() */
1235 return area;
1236 }
1237
1238 /*
1239 * uprobe_clear_state - Free the area allocated for slots.
1240 */
1241 void uprobe_clear_state(struct mm_struct *mm)
1242 {
1243 struct xol_area *area = mm->uprobes_state.xol_area;
1244
1245 if (!area)
1246 return;
1247
1248 put_page(area->pages[0]);
1249 kfree(area->bitmap);
1250 kfree(area);
1251 }
1252
1253 void uprobe_start_dup_mmap(void)
1254 {
1255 percpu_down_read(&dup_mmap_sem);
1256 }
1257
1258 void uprobe_end_dup_mmap(void)
1259 {
1260 percpu_up_read(&dup_mmap_sem);
1261 }
1262
1263 void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm)
1264 {
1265 newmm->uprobes_state.xol_area = NULL;
1266
1267 if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) {
1268 set_bit(MMF_HAS_UPROBES, &newmm->flags);
1269 /* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */
1270 set_bit(MMF_RECALC_UPROBES, &newmm->flags);
1271 }
1272 }
1273
1274 /*
1275 * - search for a free slot.
1276 */
1277 static unsigned long xol_take_insn_slot(struct xol_area *area)
1278 {
1279 unsigned long slot_addr;
1280 int slot_nr;
1281
1282 do {
1283 slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1284 if (slot_nr < UINSNS_PER_PAGE) {
1285 if (!test_and_set_bit(slot_nr, area->bitmap))
1286 break;
1287
1288 slot_nr = UINSNS_PER_PAGE;
1289 continue;
1290 }
1291 wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
1292 } while (slot_nr >= UINSNS_PER_PAGE);
1293
1294 slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
1295 atomic_inc(&area->slot_count);
1296
1297 return slot_addr;
1298 }
1299
1300 /*
1301 * xol_get_insn_slot - allocate a slot for xol.
1302 * Returns the allocated slot address or 0.
1303 */
1304 static unsigned long xol_get_insn_slot(struct uprobe *uprobe)
1305 {
1306 struct xol_area *area;
1307 unsigned long xol_vaddr;
1308
1309 area = get_xol_area();
1310 if (!area)
1311 return 0;
1312
1313 xol_vaddr = xol_take_insn_slot(area);
1314 if (unlikely(!xol_vaddr))
1315 return 0;
1316
1317 arch_uprobe_copy_ixol(area->pages[0], xol_vaddr,
1318 &uprobe->arch.ixol, sizeof(uprobe->arch.ixol));
1319
1320 return xol_vaddr;
1321 }
1322
1323 /*
1324 * xol_free_insn_slot - If slot was earlier allocated by
1325 * @xol_get_insn_slot(), make the slot available for
1326 * subsequent requests.
1327 */
1328 static void xol_free_insn_slot(struct task_struct *tsk)
1329 {
1330 struct xol_area *area;
1331 unsigned long vma_end;
1332 unsigned long slot_addr;
1333
1334 if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
1335 return;
1336
1337 slot_addr = tsk->utask->xol_vaddr;
1338 if (unlikely(!slot_addr))
1339 return;
1340
1341 area = tsk->mm->uprobes_state.xol_area;
1342 vma_end = area->vaddr + PAGE_SIZE;
1343 if (area->vaddr <= slot_addr && slot_addr < vma_end) {
1344 unsigned long offset;
1345 int slot_nr;
1346
1347 offset = slot_addr - area->vaddr;
1348 slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1349 if (slot_nr >= UINSNS_PER_PAGE)
1350 return;
1351
1352 clear_bit(slot_nr, area->bitmap);
1353 atomic_dec(&area->slot_count);
1354 smp_mb__after_atomic(); /* pairs with prepare_to_wait() */
1355 if (waitqueue_active(&area->wq))
1356 wake_up(&area->wq);
1357
1358 tsk->utask->xol_vaddr = 0;
1359 }
1360 }
1361
1362 void __weak arch_uprobe_copy_ixol(struct page *page, unsigned long vaddr,
1363 void *src, unsigned long len)
1364 {
1365 /* Initialize the slot */
1366 copy_to_page(page, vaddr, src, len);
1367
1368 /*
1369 * We probably need flush_icache_user_range() but it needs vma.
1370 * This should work on most of architectures by default. If
1371 * architecture needs to do something different it can define
1372 * its own version of the function.
1373 */
1374 flush_dcache_page(page);
1375 }
1376
1377 /**
1378 * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1379 * @regs: Reflects the saved state of the task after it has hit a breakpoint
1380 * instruction.
1381 * Return the address of the breakpoint instruction.
1382 */
1383 unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1384 {
1385 return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1386 }
1387
1388 unsigned long uprobe_get_trap_addr(struct pt_regs *regs)
1389 {
1390 struct uprobe_task *utask = current->utask;
1391
1392 if (unlikely(utask && utask->active_uprobe))
1393 return utask->vaddr;
1394
1395 return instruction_pointer(regs);
1396 }
1397
1398 static struct return_instance *free_ret_instance(struct return_instance *ri)
1399 {
1400 struct return_instance *next = ri->next;
1401 put_uprobe(ri->uprobe);
1402 kfree(ri);
1403 return next;
1404 }
1405
1406 /*
1407 * Called with no locks held.
1408 * Called in context of a exiting or a exec-ing thread.
1409 */
1410 void uprobe_free_utask(struct task_struct *t)
1411 {
1412 struct uprobe_task *utask = t->utask;
1413 struct return_instance *ri;
1414
1415 if (!utask)
1416 return;
1417
1418 if (utask->active_uprobe)
1419 put_uprobe(utask->active_uprobe);
1420
1421 ri = utask->return_instances;
1422 while (ri)
1423 ri = free_ret_instance(ri);
1424
1425 xol_free_insn_slot(t);
1426 kfree(utask);
1427 t->utask = NULL;
1428 }
1429
1430 /*
1431 * Allocate a uprobe_task object for the task if if necessary.
1432 * Called when the thread hits a breakpoint.
1433 *
1434 * Returns:
1435 * - pointer to new uprobe_task on success
1436 * - NULL otherwise
1437 */
1438 static struct uprobe_task *get_utask(void)
1439 {
1440 if (!current->utask)
1441 current->utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1442 return current->utask;
1443 }
1444
1445 static int dup_utask(struct task_struct *t, struct uprobe_task *o_utask)
1446 {
1447 struct uprobe_task *n_utask;
1448 struct return_instance **p, *o, *n;
1449
1450 n_utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1451 if (!n_utask)
1452 return -ENOMEM;
1453 t->utask = n_utask;
1454
1455 p = &n_utask->return_instances;
1456 for (o = o_utask->return_instances; o; o = o->next) {
1457 n = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1458 if (!n)
1459 return -ENOMEM;
1460
1461 *n = *o;
1462 get_uprobe(n->uprobe);
1463 n->next = NULL;
1464
1465 *p = n;
1466 p = &n->next;
1467 n_utask->depth++;
1468 }
1469
1470 return 0;
1471 }
1472
1473 static void uprobe_warn(struct task_struct *t, const char *msg)
1474 {
1475 pr_warn("uprobe: %s:%d failed to %s\n",
1476 current->comm, current->pid, msg);
1477 }
1478
1479 static void dup_xol_work(struct callback_head *work)
1480 {
1481 if (current->flags & PF_EXITING)
1482 return;
1483
1484 if (!__create_xol_area(current->utask->dup_xol_addr) &&
1485 !fatal_signal_pending(current))
1486 uprobe_warn(current, "dup xol area");
1487 }
1488
1489 /*
1490 * Called in context of a new clone/fork from copy_process.
1491 */
1492 void uprobe_copy_process(struct task_struct *t, unsigned long flags)
1493 {
1494 struct uprobe_task *utask = current->utask;
1495 struct mm_struct *mm = current->mm;
1496 struct xol_area *area;
1497
1498 t->utask = NULL;
1499
1500 if (!utask || !utask->return_instances)
1501 return;
1502
1503 if (mm == t->mm && !(flags & CLONE_VFORK))
1504 return;
1505
1506 if (dup_utask(t, utask))
1507 return uprobe_warn(t, "dup ret instances");
1508
1509 /* The task can fork() after dup_xol_work() fails */
1510 area = mm->uprobes_state.xol_area;
1511 if (!area)
1512 return uprobe_warn(t, "dup xol area");
1513
1514 if (mm == t->mm)
1515 return;
1516
1517 t->utask->dup_xol_addr = area->vaddr;
1518 init_task_work(&t->utask->dup_xol_work, dup_xol_work);
1519 task_work_add(t, &t->utask->dup_xol_work, true);
1520 }
1521
1522 /*
1523 * Current area->vaddr notion assume the trampoline address is always
1524 * equal area->vaddr.
1525 *
1526 * Returns -1 in case the xol_area is not allocated.
1527 */
1528 static unsigned long get_trampoline_vaddr(void)
1529 {
1530 struct xol_area *area;
1531 unsigned long trampoline_vaddr = -1;
1532
1533 area = current->mm->uprobes_state.xol_area;
1534 smp_read_barrier_depends();
1535 if (area)
1536 trampoline_vaddr = area->vaddr;
1537
1538 return trampoline_vaddr;
1539 }
1540
1541 static void cleanup_return_instances(struct uprobe_task *utask, bool chained,
1542 struct pt_regs *regs)
1543 {
1544 struct return_instance *ri = utask->return_instances;
1545 enum rp_check ctx = chained ? RP_CHECK_CHAIN_CALL : RP_CHECK_CALL;
1546
1547 while (ri && !arch_uretprobe_is_alive(ri, ctx, regs)) {
1548 ri = free_ret_instance(ri);
1549 utask->depth--;
1550 }
1551 utask->return_instances = ri;
1552 }
1553
1554 static void prepare_uretprobe(struct uprobe *uprobe, struct pt_regs *regs)
1555 {
1556 struct return_instance *ri;
1557 struct uprobe_task *utask;
1558 unsigned long orig_ret_vaddr, trampoline_vaddr;
1559 bool chained;
1560
1561 if (!get_xol_area())
1562 return;
1563
1564 utask = get_utask();
1565 if (!utask)
1566 return;
1567
1568 if (utask->depth >= MAX_URETPROBE_DEPTH) {
1569 printk_ratelimited(KERN_INFO "uprobe: omit uretprobe due to"
1570 " nestedness limit pid/tgid=%d/%d\n",
1571 current->pid, current->tgid);
1572 return;
1573 }
1574
1575 ri = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1576 if (!ri)
1577 return;
1578
1579 trampoline_vaddr = get_trampoline_vaddr();
1580 orig_ret_vaddr = arch_uretprobe_hijack_return_addr(trampoline_vaddr, regs);
1581 if (orig_ret_vaddr == -1)
1582 goto fail;
1583
1584 /* drop the entries invalidated by longjmp() */
1585 chained = (orig_ret_vaddr == trampoline_vaddr);
1586 cleanup_return_instances(utask, chained, regs);
1587
1588 /*
1589 * We don't want to keep trampoline address in stack, rather keep the
1590 * original return address of first caller thru all the consequent
1591 * instances. This also makes breakpoint unwrapping easier.
1592 */
1593 if (chained) {
1594 if (!utask->return_instances) {
1595 /*
1596 * This situation is not possible. Likely we have an
1597 * attack from user-space.
1598 */
1599 uprobe_warn(current, "handle tail call");
1600 goto fail;
1601 }
1602 orig_ret_vaddr = utask->return_instances->orig_ret_vaddr;
1603 }
1604
1605 ri->uprobe = get_uprobe(uprobe);
1606 ri->func = instruction_pointer(regs);
1607 ri->stack = user_stack_pointer(regs);
1608 ri->orig_ret_vaddr = orig_ret_vaddr;
1609 ri->chained = chained;
1610
1611 utask->depth++;
1612 ri->next = utask->return_instances;
1613 utask->return_instances = ri;
1614
1615 return;
1616 fail:
1617 kfree(ri);
1618 }
1619
1620 /* Prepare to single-step probed instruction out of line. */
1621 static int
1622 pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long bp_vaddr)
1623 {
1624 struct uprobe_task *utask;
1625 unsigned long xol_vaddr;
1626 int err;
1627
1628 utask = get_utask();
1629 if (!utask)
1630 return -ENOMEM;
1631
1632 xol_vaddr = xol_get_insn_slot(uprobe);
1633 if (!xol_vaddr)
1634 return -ENOMEM;
1635
1636 utask->xol_vaddr = xol_vaddr;
1637 utask->vaddr = bp_vaddr;
1638
1639 err = arch_uprobe_pre_xol(&uprobe->arch, regs);
1640 if (unlikely(err)) {
1641 xol_free_insn_slot(current);
1642 return err;
1643 }
1644
1645 utask->active_uprobe = uprobe;
1646 utask->state = UTASK_SSTEP;
1647 return 0;
1648 }
1649
1650 /*
1651 * If we are singlestepping, then ensure this thread is not connected to
1652 * non-fatal signals until completion of singlestep. When xol insn itself
1653 * triggers the signal, restart the original insn even if the task is
1654 * already SIGKILL'ed (since coredump should report the correct ip). This
1655 * is even more important if the task has a handler for SIGSEGV/etc, The
1656 * _same_ instruction should be repeated again after return from the signal
1657 * handler, and SSTEP can never finish in this case.
1658 */
1659 bool uprobe_deny_signal(void)
1660 {
1661 struct task_struct *t = current;
1662 struct uprobe_task *utask = t->utask;
1663
1664 if (likely(!utask || !utask->active_uprobe))
1665 return false;
1666
1667 WARN_ON_ONCE(utask->state != UTASK_SSTEP);
1668
1669 if (signal_pending(t)) {
1670 spin_lock_irq(&t->sighand->siglock);
1671 clear_tsk_thread_flag(t, TIF_SIGPENDING);
1672 spin_unlock_irq(&t->sighand->siglock);
1673
1674 if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
1675 utask->state = UTASK_SSTEP_TRAPPED;
1676 set_tsk_thread_flag(t, TIF_UPROBE);
1677 }
1678 }
1679
1680 return true;
1681 }
1682
1683 static void mmf_recalc_uprobes(struct mm_struct *mm)
1684 {
1685 struct vm_area_struct *vma;
1686
1687 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1688 if (!valid_vma(vma, false))
1689 continue;
1690 /*
1691 * This is not strictly accurate, we can race with
1692 * uprobe_unregister() and see the already removed
1693 * uprobe if delete_uprobe() was not yet called.
1694 * Or this uprobe can be filtered out.
1695 */
1696 if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end))
1697 return;
1698 }
1699
1700 clear_bit(MMF_HAS_UPROBES, &mm->flags);
1701 }
1702
1703 static int is_trap_at_addr(struct mm_struct *mm, unsigned long vaddr)
1704 {
1705 struct page *page;
1706 uprobe_opcode_t opcode;
1707 int result;
1708
1709 pagefault_disable();
1710 result = __get_user(opcode, (uprobe_opcode_t __user *)vaddr);
1711 pagefault_enable();
1712
1713 if (likely(result == 0))
1714 goto out;
1715
1716 /*
1717 * The NULL 'tsk' here ensures that any faults that occur here
1718 * will not be accounted to the task. 'mm' *is* current->mm,
1719 * but we treat this as a 'remote' access since it is
1720 * essentially a kernel access to the memory.
1721 */
1722 result = get_user_pages_remote(NULL, mm, vaddr, 1, FOLL_FORCE, &page,
1723 NULL, NULL);
1724 if (result < 0)
1725 return result;
1726
1727 copy_from_page(page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
1728 put_page(page);
1729 out:
1730 /* This needs to return true for any variant of the trap insn */
1731 return is_trap_insn(&opcode);
1732 }
1733
1734 static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
1735 {
1736 struct mm_struct *mm = current->mm;
1737 struct uprobe *uprobe = NULL;
1738 struct vm_area_struct *vma;
1739
1740 down_read(&mm->mmap_sem);
1741 vma = find_vma(mm, bp_vaddr);
1742 if (vma && vma->vm_start <= bp_vaddr) {
1743 if (valid_vma(vma, false)) {
1744 struct inode *inode = file_inode(vma->vm_file);
1745 loff_t offset = vaddr_to_offset(vma, bp_vaddr);
1746
1747 uprobe = find_uprobe(inode, offset);
1748 }
1749
1750 if (!uprobe)
1751 *is_swbp = is_trap_at_addr(mm, bp_vaddr);
1752 } else {
1753 *is_swbp = -EFAULT;
1754 }
1755
1756 if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags))
1757 mmf_recalc_uprobes(mm);
1758 up_read(&mm->mmap_sem);
1759
1760 return uprobe;
1761 }
1762
1763 static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
1764 {
1765 struct uprobe_consumer *uc;
1766 int remove = UPROBE_HANDLER_REMOVE;
1767 bool need_prep = false; /* prepare return uprobe, when needed */
1768
1769 down_read(&uprobe->register_rwsem);
1770 for (uc = uprobe->consumers; uc; uc = uc->next) {
1771 int rc = 0;
1772
1773 if (uc->handler) {
1774 rc = uc->handler(uc, regs);
1775 WARN(rc & ~UPROBE_HANDLER_MASK,
1776 "bad rc=0x%x from %pf()\n", rc, uc->handler);
1777 }
1778
1779 if (uc->ret_handler)
1780 need_prep = true;
1781
1782 remove &= rc;
1783 }
1784
1785 if (need_prep && !remove)
1786 prepare_uretprobe(uprobe, regs); /* put bp at return */
1787
1788 if (remove && uprobe->consumers) {
1789 WARN_ON(!uprobe_is_active(uprobe));
1790 unapply_uprobe(uprobe, current->mm);
1791 }
1792 up_read(&uprobe->register_rwsem);
1793 }
1794
1795 static void
1796 handle_uretprobe_chain(struct return_instance *ri, struct pt_regs *regs)
1797 {
1798 struct uprobe *uprobe = ri->uprobe;
1799 struct uprobe_consumer *uc;
1800
1801 down_read(&uprobe->register_rwsem);
1802 for (uc = uprobe->consumers; uc; uc = uc->next) {
1803 if (uc->ret_handler)
1804 uc->ret_handler(uc, ri->func, regs);
1805 }
1806 up_read(&uprobe->register_rwsem);
1807 }
1808
1809 static struct return_instance *find_next_ret_chain(struct return_instance *ri)
1810 {
1811 bool chained;
1812
1813 do {
1814 chained = ri->chained;
1815 ri = ri->next; /* can't be NULL if chained */
1816 } while (chained);
1817
1818 return ri;
1819 }
1820
1821 static void handle_trampoline(struct pt_regs *regs)
1822 {
1823 struct uprobe_task *utask;
1824 struct return_instance *ri, *next;
1825 bool valid;
1826
1827 utask = current->utask;
1828 if (!utask)
1829 goto sigill;
1830
1831 ri = utask->return_instances;
1832 if (!ri)
1833 goto sigill;
1834
1835 do {
1836 /*
1837 * We should throw out the frames invalidated by longjmp().
1838 * If this chain is valid, then the next one should be alive
1839 * or NULL; the latter case means that nobody but ri->func
1840 * could hit this trampoline on return. TODO: sigaltstack().
1841 */
1842 next = find_next_ret_chain(ri);
1843 valid = !next || arch_uretprobe_is_alive(next, RP_CHECK_RET, regs);
1844
1845 instruction_pointer_set(regs, ri->orig_ret_vaddr);
1846 do {
1847 if (valid)
1848 handle_uretprobe_chain(ri, regs);
1849 ri = free_ret_instance(ri);
1850 utask->depth--;
1851 } while (ri != next);
1852 } while (!valid);
1853
1854 utask->return_instances = ri;
1855 return;
1856
1857 sigill:
1858 uprobe_warn(current, "handle uretprobe, sending SIGILL.");
1859 force_sig_info(SIGILL, SEND_SIG_FORCED, current);
1860
1861 }
1862
1863 bool __weak arch_uprobe_ignore(struct arch_uprobe *aup, struct pt_regs *regs)
1864 {
1865 return false;
1866 }
1867
1868 bool __weak arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx,
1869 struct pt_regs *regs)
1870 {
1871 return true;
1872 }
1873
1874 /*
1875 * Run handler and ask thread to singlestep.
1876 * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
1877 */
1878 static void handle_swbp(struct pt_regs *regs)
1879 {
1880 struct uprobe *uprobe;
1881 unsigned long bp_vaddr;
1882 int uninitialized_var(is_swbp);
1883
1884 bp_vaddr = uprobe_get_swbp_addr(regs);
1885 if (bp_vaddr == get_trampoline_vaddr())
1886 return handle_trampoline(regs);
1887
1888 uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
1889 if (!uprobe) {
1890 if (is_swbp > 0) {
1891 /* No matching uprobe; signal SIGTRAP. */
1892 send_sig(SIGTRAP, current, 0);
1893 } else {
1894 /*
1895 * Either we raced with uprobe_unregister() or we can't
1896 * access this memory. The latter is only possible if
1897 * another thread plays with our ->mm. In both cases
1898 * we can simply restart. If this vma was unmapped we
1899 * can pretend this insn was not executed yet and get
1900 * the (correct) SIGSEGV after restart.
1901 */
1902 instruction_pointer_set(regs, bp_vaddr);
1903 }
1904 return;
1905 }
1906
1907 /* change it in advance for ->handler() and restart */
1908 instruction_pointer_set(regs, bp_vaddr);
1909
1910 /*
1911 * TODO: move copy_insn/etc into _register and remove this hack.
1912 * After we hit the bp, _unregister + _register can install the
1913 * new and not-yet-analyzed uprobe at the same address, restart.
1914 */
1915 smp_rmb(); /* pairs with wmb() in install_breakpoint() */
1916 if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags)))
1917 goto out;
1918
1919 /* Tracing handlers use ->utask to communicate with fetch methods */
1920 if (!get_utask())
1921 goto out;
1922
1923 if (arch_uprobe_ignore(&uprobe->arch, regs))
1924 goto out;
1925
1926 handler_chain(uprobe, regs);
1927
1928 if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
1929 goto out;
1930
1931 if (!pre_ssout(uprobe, regs, bp_vaddr))
1932 return;
1933
1934 /* arch_uprobe_skip_sstep() succeeded, or restart if can't singlestep */
1935 out:
1936 put_uprobe(uprobe);
1937 }
1938
1939 /*
1940 * Perform required fix-ups and disable singlestep.
1941 * Allow pending signals to take effect.
1942 */
1943 static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
1944 {
1945 struct uprobe *uprobe;
1946 int err = 0;
1947
1948 uprobe = utask->active_uprobe;
1949 if (utask->state == UTASK_SSTEP_ACK)
1950 err = arch_uprobe_post_xol(&uprobe->arch, regs);
1951 else if (utask->state == UTASK_SSTEP_TRAPPED)
1952 arch_uprobe_abort_xol(&uprobe->arch, regs);
1953 else
1954 WARN_ON_ONCE(1);
1955
1956 put_uprobe(uprobe);
1957 utask->active_uprobe = NULL;
1958 utask->state = UTASK_RUNNING;
1959 xol_free_insn_slot(current);
1960
1961 spin_lock_irq(&current->sighand->siglock);
1962 recalc_sigpending(); /* see uprobe_deny_signal() */
1963 spin_unlock_irq(&current->sighand->siglock);
1964
1965 if (unlikely(err)) {
1966 uprobe_warn(current, "execute the probed insn, sending SIGILL.");
1967 force_sig_info(SIGILL, SEND_SIG_FORCED, current);
1968 }
1969 }
1970
1971 /*
1972 * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and
1973 * allows the thread to return from interrupt. After that handle_swbp()
1974 * sets utask->active_uprobe.
1975 *
1976 * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag
1977 * and allows the thread to return from interrupt.
1978 *
1979 * While returning to userspace, thread notices the TIF_UPROBE flag and calls
1980 * uprobe_notify_resume().
1981 */
1982 void uprobe_notify_resume(struct pt_regs *regs)
1983 {
1984 struct uprobe_task *utask;
1985
1986 clear_thread_flag(TIF_UPROBE);
1987
1988 utask = current->utask;
1989 if (utask && utask->active_uprobe)
1990 handle_singlestep(utask, regs);
1991 else
1992 handle_swbp(regs);
1993 }
1994
1995 /*
1996 * uprobe_pre_sstep_notifier gets called from interrupt context as part of
1997 * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
1998 */
1999 int uprobe_pre_sstep_notifier(struct pt_regs *regs)
2000 {
2001 if (!current->mm)
2002 return 0;
2003
2004 if (!test_bit(MMF_HAS_UPROBES, &current->mm->flags) &&
2005 (!current->utask || !current->utask->return_instances))
2006 return 0;
2007
2008 set_thread_flag(TIF_UPROBE);
2009 return 1;
2010 }
2011
2012 /*
2013 * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
2014 * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
2015 */
2016 int uprobe_post_sstep_notifier(struct pt_regs *regs)
2017 {
2018 struct uprobe_task *utask = current->utask;
2019
2020 if (!current->mm || !utask || !utask->active_uprobe)
2021 /* task is currently not uprobed */
2022 return 0;
2023
2024 utask->state = UTASK_SSTEP_ACK;
2025 set_thread_flag(TIF_UPROBE);
2026 return 1;
2027 }
2028
2029 static struct notifier_block uprobe_exception_nb = {
2030 .notifier_call = arch_uprobe_exception_notify,
2031 .priority = INT_MAX-1, /* notified after kprobes, kgdb */
2032 };
2033
2034 static int __init init_uprobes(void)
2035 {
2036 int i;
2037
2038 for (i = 0; i < UPROBES_HASH_SZ; i++)
2039 mutex_init(&uprobes_mmap_mutex[i]);
2040
2041 if (percpu_init_rwsem(&dup_mmap_sem))
2042 return -ENOMEM;
2043
2044 return register_die_notifier(&uprobe_exception_nb);
2045 }
2046 __initcall(init_uprobes);