]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/events/uprobes.c
mm: replace vma prio_tree with an interval tree
[mirror_ubuntu-artful-kernel.git] / kernel / events / uprobes.c
1 /*
2 * User-space Probes (UProbes)
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright (C) IBM Corporation, 2008-2012
19 * Authors:
20 * Srikar Dronamraju
21 * Jim Keniston
22 * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
23 */
24
25 #include <linux/kernel.h>
26 #include <linux/highmem.h>
27 #include <linux/pagemap.h> /* read_mapping_page */
28 #include <linux/slab.h>
29 #include <linux/sched.h>
30 #include <linux/rmap.h> /* anon_vma_prepare */
31 #include <linux/mmu_notifier.h> /* set_pte_at_notify */
32 #include <linux/swap.h> /* try_to_free_swap */
33 #include <linux/ptrace.h> /* user_enable_single_step */
34 #include <linux/kdebug.h> /* notifier mechanism */
35 #include "../../mm/internal.h" /* munlock_vma_page */
36
37 #include <linux/uprobes.h>
38
39 #define UINSNS_PER_PAGE (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
40 #define MAX_UPROBE_XOL_SLOTS UINSNS_PER_PAGE
41
42 static struct rb_root uprobes_tree = RB_ROOT;
43
44 static DEFINE_SPINLOCK(uprobes_treelock); /* serialize rbtree access */
45
46 #define UPROBES_HASH_SZ 13
47
48 /*
49 * We need separate register/unregister and mmap/munmap lock hashes because
50 * of mmap_sem nesting.
51 *
52 * uprobe_register() needs to install probes on (potentially) all processes
53 * and thus needs to acquire multiple mmap_sems (consequtively, not
54 * concurrently), whereas uprobe_mmap() is called while holding mmap_sem
55 * for the particular process doing the mmap.
56 *
57 * uprobe_register()->register_for_each_vma() needs to drop/acquire mmap_sem
58 * because of lock order against i_mmap_mutex. This means there's a hole in
59 * the register vma iteration where a mmap() can happen.
60 *
61 * Thus uprobe_register() can race with uprobe_mmap() and we can try and
62 * install a probe where one is already installed.
63 */
64
65 /* serialize (un)register */
66 static struct mutex uprobes_mutex[UPROBES_HASH_SZ];
67
68 #define uprobes_hash(v) (&uprobes_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
69
70 /* serialize uprobe->pending_list */
71 static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
72 #define uprobes_mmap_hash(v) (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
73
74 /*
75 * uprobe_events allows us to skip the uprobe_mmap if there are no uprobe
76 * events active at this time. Probably a fine grained per inode count is
77 * better?
78 */
79 static atomic_t uprobe_events = ATOMIC_INIT(0);
80
81 struct uprobe {
82 struct rb_node rb_node; /* node in the rb tree */
83 atomic_t ref;
84 struct rw_semaphore consumer_rwsem;
85 struct list_head pending_list;
86 struct uprobe_consumer *consumers;
87 struct inode *inode; /* Also hold a ref to inode */
88 loff_t offset;
89 int flags;
90 struct arch_uprobe arch;
91 };
92
93 /*
94 * valid_vma: Verify if the specified vma is an executable vma
95 * Relax restrictions while unregistering: vm_flags might have
96 * changed after breakpoint was inserted.
97 * - is_register: indicates if we are in register context.
98 * - Return 1 if the specified virtual address is in an
99 * executable vma.
100 */
101 static bool valid_vma(struct vm_area_struct *vma, bool is_register)
102 {
103 if (!vma->vm_file)
104 return false;
105
106 if (!is_register)
107 return true;
108
109 if ((vma->vm_flags & (VM_HUGETLB|VM_READ|VM_WRITE|VM_EXEC|VM_SHARED))
110 == (VM_READ|VM_EXEC))
111 return true;
112
113 return false;
114 }
115
116 static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset)
117 {
118 return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
119 }
120
121 static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr)
122 {
123 return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start);
124 }
125
126 /**
127 * __replace_page - replace page in vma by new page.
128 * based on replace_page in mm/ksm.c
129 *
130 * @vma: vma that holds the pte pointing to page
131 * @addr: address the old @page is mapped at
132 * @page: the cowed page we are replacing by kpage
133 * @kpage: the modified page we replace page by
134 *
135 * Returns 0 on success, -EFAULT on failure.
136 */
137 static int __replace_page(struct vm_area_struct *vma, unsigned long addr,
138 struct page *page, struct page *kpage)
139 {
140 struct mm_struct *mm = vma->vm_mm;
141 spinlock_t *ptl;
142 pte_t *ptep;
143 int err;
144
145 /* For try_to_free_swap() and munlock_vma_page() below */
146 lock_page(page);
147
148 err = -EAGAIN;
149 ptep = page_check_address(page, mm, addr, &ptl, 0);
150 if (!ptep)
151 goto unlock;
152
153 get_page(kpage);
154 page_add_new_anon_rmap(kpage, vma, addr);
155
156 if (!PageAnon(page)) {
157 dec_mm_counter(mm, MM_FILEPAGES);
158 inc_mm_counter(mm, MM_ANONPAGES);
159 }
160
161 flush_cache_page(vma, addr, pte_pfn(*ptep));
162 ptep_clear_flush(vma, addr, ptep);
163 set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
164
165 page_remove_rmap(page);
166 if (!page_mapped(page))
167 try_to_free_swap(page);
168 pte_unmap_unlock(ptep, ptl);
169
170 if (vma->vm_flags & VM_LOCKED)
171 munlock_vma_page(page);
172 put_page(page);
173
174 err = 0;
175 unlock:
176 unlock_page(page);
177 return err;
178 }
179
180 /**
181 * is_swbp_insn - check if instruction is breakpoint instruction.
182 * @insn: instruction to be checked.
183 * Default implementation of is_swbp_insn
184 * Returns true if @insn is a breakpoint instruction.
185 */
186 bool __weak is_swbp_insn(uprobe_opcode_t *insn)
187 {
188 return *insn == UPROBE_SWBP_INSN;
189 }
190
191 /*
192 * NOTE:
193 * Expect the breakpoint instruction to be the smallest size instruction for
194 * the architecture. If an arch has variable length instruction and the
195 * breakpoint instruction is not of the smallest length instruction
196 * supported by that architecture then we need to modify read_opcode /
197 * write_opcode accordingly. This would never be a problem for archs that
198 * have fixed length instructions.
199 */
200
201 /*
202 * write_opcode - write the opcode at a given virtual address.
203 * @auprobe: arch breakpointing information.
204 * @mm: the probed process address space.
205 * @vaddr: the virtual address to store the opcode.
206 * @opcode: opcode to be written at @vaddr.
207 *
208 * Called with mm->mmap_sem held (for read and with a reference to
209 * mm).
210 *
211 * For mm @mm, write the opcode at @vaddr.
212 * Return 0 (success) or a negative errno.
213 */
214 static int write_opcode(struct arch_uprobe *auprobe, struct mm_struct *mm,
215 unsigned long vaddr, uprobe_opcode_t opcode)
216 {
217 struct page *old_page, *new_page;
218 void *vaddr_old, *vaddr_new;
219 struct vm_area_struct *vma;
220 int ret;
221
222 retry:
223 /* Read the page with vaddr into memory */
224 ret = get_user_pages(NULL, mm, vaddr, 1, 0, 0, &old_page, &vma);
225 if (ret <= 0)
226 return ret;
227
228 ret = -ENOMEM;
229 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
230 if (!new_page)
231 goto put_old;
232
233 __SetPageUptodate(new_page);
234
235 /* copy the page now that we've got it stable */
236 vaddr_old = kmap_atomic(old_page);
237 vaddr_new = kmap_atomic(new_page);
238
239 memcpy(vaddr_new, vaddr_old, PAGE_SIZE);
240 memcpy(vaddr_new + (vaddr & ~PAGE_MASK), &opcode, UPROBE_SWBP_INSN_SIZE);
241
242 kunmap_atomic(vaddr_new);
243 kunmap_atomic(vaddr_old);
244
245 ret = anon_vma_prepare(vma);
246 if (ret)
247 goto put_new;
248
249 ret = __replace_page(vma, vaddr, old_page, new_page);
250
251 put_new:
252 page_cache_release(new_page);
253 put_old:
254 put_page(old_page);
255
256 if (unlikely(ret == -EAGAIN))
257 goto retry;
258 return ret;
259 }
260
261 /**
262 * read_opcode - read the opcode at a given virtual address.
263 * @mm: the probed process address space.
264 * @vaddr: the virtual address to read the opcode.
265 * @opcode: location to store the read opcode.
266 *
267 * Called with mm->mmap_sem held (for read and with a reference to
268 * mm.
269 *
270 * For mm @mm, read the opcode at @vaddr and store it in @opcode.
271 * Return 0 (success) or a negative errno.
272 */
273 static int read_opcode(struct mm_struct *mm, unsigned long vaddr, uprobe_opcode_t *opcode)
274 {
275 struct page *page;
276 void *vaddr_new;
277 int ret;
278
279 ret = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &page, NULL);
280 if (ret <= 0)
281 return ret;
282
283 vaddr_new = kmap_atomic(page);
284 vaddr &= ~PAGE_MASK;
285 memcpy(opcode, vaddr_new + vaddr, UPROBE_SWBP_INSN_SIZE);
286 kunmap_atomic(vaddr_new);
287
288 put_page(page);
289
290 return 0;
291 }
292
293 static int is_swbp_at_addr(struct mm_struct *mm, unsigned long vaddr)
294 {
295 uprobe_opcode_t opcode;
296 int result;
297
298 if (current->mm == mm) {
299 pagefault_disable();
300 result = __copy_from_user_inatomic(&opcode, (void __user*)vaddr,
301 sizeof(opcode));
302 pagefault_enable();
303
304 if (likely(result == 0))
305 goto out;
306 }
307
308 result = read_opcode(mm, vaddr, &opcode);
309 if (result)
310 return result;
311 out:
312 if (is_swbp_insn(&opcode))
313 return 1;
314
315 return 0;
316 }
317
318 /**
319 * set_swbp - store breakpoint at a given address.
320 * @auprobe: arch specific probepoint information.
321 * @mm: the probed process address space.
322 * @vaddr: the virtual address to insert the opcode.
323 *
324 * For mm @mm, store the breakpoint instruction at @vaddr.
325 * Return 0 (success) or a negative errno.
326 */
327 int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
328 {
329 int result;
330 /*
331 * See the comment near uprobes_hash().
332 */
333 result = is_swbp_at_addr(mm, vaddr);
334 if (result == 1)
335 return 0;
336
337 if (result)
338 return result;
339
340 return write_opcode(auprobe, mm, vaddr, UPROBE_SWBP_INSN);
341 }
342
343 /**
344 * set_orig_insn - Restore the original instruction.
345 * @mm: the probed process address space.
346 * @auprobe: arch specific probepoint information.
347 * @vaddr: the virtual address to insert the opcode.
348 *
349 * For mm @mm, restore the original opcode (opcode) at @vaddr.
350 * Return 0 (success) or a negative errno.
351 */
352 int __weak
353 set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
354 {
355 int result;
356
357 result = is_swbp_at_addr(mm, vaddr);
358 if (!result)
359 return -EINVAL;
360
361 if (result != 1)
362 return result;
363
364 return write_opcode(auprobe, mm, vaddr, *(uprobe_opcode_t *)auprobe->insn);
365 }
366
367 static int match_uprobe(struct uprobe *l, struct uprobe *r)
368 {
369 if (l->inode < r->inode)
370 return -1;
371
372 if (l->inode > r->inode)
373 return 1;
374
375 if (l->offset < r->offset)
376 return -1;
377
378 if (l->offset > r->offset)
379 return 1;
380
381 return 0;
382 }
383
384 static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
385 {
386 struct uprobe u = { .inode = inode, .offset = offset };
387 struct rb_node *n = uprobes_tree.rb_node;
388 struct uprobe *uprobe;
389 int match;
390
391 while (n) {
392 uprobe = rb_entry(n, struct uprobe, rb_node);
393 match = match_uprobe(&u, uprobe);
394 if (!match) {
395 atomic_inc(&uprobe->ref);
396 return uprobe;
397 }
398
399 if (match < 0)
400 n = n->rb_left;
401 else
402 n = n->rb_right;
403 }
404 return NULL;
405 }
406
407 /*
408 * Find a uprobe corresponding to a given inode:offset
409 * Acquires uprobes_treelock
410 */
411 static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
412 {
413 struct uprobe *uprobe;
414
415 spin_lock(&uprobes_treelock);
416 uprobe = __find_uprobe(inode, offset);
417 spin_unlock(&uprobes_treelock);
418
419 return uprobe;
420 }
421
422 static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
423 {
424 struct rb_node **p = &uprobes_tree.rb_node;
425 struct rb_node *parent = NULL;
426 struct uprobe *u;
427 int match;
428
429 while (*p) {
430 parent = *p;
431 u = rb_entry(parent, struct uprobe, rb_node);
432 match = match_uprobe(uprobe, u);
433 if (!match) {
434 atomic_inc(&u->ref);
435 return u;
436 }
437
438 if (match < 0)
439 p = &parent->rb_left;
440 else
441 p = &parent->rb_right;
442
443 }
444
445 u = NULL;
446 rb_link_node(&uprobe->rb_node, parent, p);
447 rb_insert_color(&uprobe->rb_node, &uprobes_tree);
448 /* get access + creation ref */
449 atomic_set(&uprobe->ref, 2);
450
451 return u;
452 }
453
454 /*
455 * Acquire uprobes_treelock.
456 * Matching uprobe already exists in rbtree;
457 * increment (access refcount) and return the matching uprobe.
458 *
459 * No matching uprobe; insert the uprobe in rb_tree;
460 * get a double refcount (access + creation) and return NULL.
461 */
462 static struct uprobe *insert_uprobe(struct uprobe *uprobe)
463 {
464 struct uprobe *u;
465
466 spin_lock(&uprobes_treelock);
467 u = __insert_uprobe(uprobe);
468 spin_unlock(&uprobes_treelock);
469
470 /* For now assume that the instruction need not be single-stepped */
471 uprobe->flags |= UPROBE_SKIP_SSTEP;
472
473 return u;
474 }
475
476 static void put_uprobe(struct uprobe *uprobe)
477 {
478 if (atomic_dec_and_test(&uprobe->ref))
479 kfree(uprobe);
480 }
481
482 static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset)
483 {
484 struct uprobe *uprobe, *cur_uprobe;
485
486 uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
487 if (!uprobe)
488 return NULL;
489
490 uprobe->inode = igrab(inode);
491 uprobe->offset = offset;
492 init_rwsem(&uprobe->consumer_rwsem);
493
494 /* add to uprobes_tree, sorted on inode:offset */
495 cur_uprobe = insert_uprobe(uprobe);
496
497 /* a uprobe exists for this inode:offset combination */
498 if (cur_uprobe) {
499 kfree(uprobe);
500 uprobe = cur_uprobe;
501 iput(inode);
502 } else {
503 atomic_inc(&uprobe_events);
504 }
505
506 return uprobe;
507 }
508
509 static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
510 {
511 struct uprobe_consumer *uc;
512
513 if (!(uprobe->flags & UPROBE_RUN_HANDLER))
514 return;
515
516 down_read(&uprobe->consumer_rwsem);
517 for (uc = uprobe->consumers; uc; uc = uc->next) {
518 if (!uc->filter || uc->filter(uc, current))
519 uc->handler(uc, regs);
520 }
521 up_read(&uprobe->consumer_rwsem);
522 }
523
524 /* Returns the previous consumer */
525 static struct uprobe_consumer *
526 consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
527 {
528 down_write(&uprobe->consumer_rwsem);
529 uc->next = uprobe->consumers;
530 uprobe->consumers = uc;
531 up_write(&uprobe->consumer_rwsem);
532
533 return uc->next;
534 }
535
536 /*
537 * For uprobe @uprobe, delete the consumer @uc.
538 * Return true if the @uc is deleted successfully
539 * or return false.
540 */
541 static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
542 {
543 struct uprobe_consumer **con;
544 bool ret = false;
545
546 down_write(&uprobe->consumer_rwsem);
547 for (con = &uprobe->consumers; *con; con = &(*con)->next) {
548 if (*con == uc) {
549 *con = uc->next;
550 ret = true;
551 break;
552 }
553 }
554 up_write(&uprobe->consumer_rwsem);
555
556 return ret;
557 }
558
559 static int
560 __copy_insn(struct address_space *mapping, struct file *filp, char *insn,
561 unsigned long nbytes, loff_t offset)
562 {
563 struct page *page;
564 void *vaddr;
565 unsigned long off;
566 pgoff_t idx;
567
568 if (!filp)
569 return -EINVAL;
570
571 if (!mapping->a_ops->readpage)
572 return -EIO;
573
574 idx = offset >> PAGE_CACHE_SHIFT;
575 off = offset & ~PAGE_MASK;
576
577 /*
578 * Ensure that the page that has the original instruction is
579 * populated and in page-cache.
580 */
581 page = read_mapping_page(mapping, idx, filp);
582 if (IS_ERR(page))
583 return PTR_ERR(page);
584
585 vaddr = kmap_atomic(page);
586 memcpy(insn, vaddr + off, nbytes);
587 kunmap_atomic(vaddr);
588 page_cache_release(page);
589
590 return 0;
591 }
592
593 static int copy_insn(struct uprobe *uprobe, struct file *filp)
594 {
595 struct address_space *mapping;
596 unsigned long nbytes;
597 int bytes;
598
599 nbytes = PAGE_SIZE - (uprobe->offset & ~PAGE_MASK);
600 mapping = uprobe->inode->i_mapping;
601
602 /* Instruction at end of binary; copy only available bytes */
603 if (uprobe->offset + MAX_UINSN_BYTES > uprobe->inode->i_size)
604 bytes = uprobe->inode->i_size - uprobe->offset;
605 else
606 bytes = MAX_UINSN_BYTES;
607
608 /* Instruction at the page-boundary; copy bytes in second page */
609 if (nbytes < bytes) {
610 int err = __copy_insn(mapping, filp, uprobe->arch.insn + nbytes,
611 bytes - nbytes, uprobe->offset + nbytes);
612 if (err)
613 return err;
614 bytes = nbytes;
615 }
616 return __copy_insn(mapping, filp, uprobe->arch.insn, bytes, uprobe->offset);
617 }
618
619 /*
620 * How mm->uprobes_state.count gets updated
621 * uprobe_mmap() increments the count if
622 * - it successfully adds a breakpoint.
623 * - it cannot add a breakpoint, but sees that there is a underlying
624 * breakpoint (via a is_swbp_at_addr()).
625 *
626 * uprobe_munmap() decrements the count if
627 * - it sees a underlying breakpoint, (via is_swbp_at_addr)
628 * (Subsequent uprobe_unregister wouldnt find the breakpoint
629 * unless a uprobe_mmap kicks in, since the old vma would be
630 * dropped just after uprobe_munmap.)
631 *
632 * uprobe_register increments the count if:
633 * - it successfully adds a breakpoint.
634 *
635 * uprobe_unregister decrements the count if:
636 * - it sees a underlying breakpoint and removes successfully.
637 * (via is_swbp_at_addr)
638 * (Subsequent uprobe_munmap wouldnt find the breakpoint
639 * since there is no underlying breakpoint after the
640 * breakpoint removal.)
641 */
642 static int
643 install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
644 struct vm_area_struct *vma, unsigned long vaddr)
645 {
646 bool first_uprobe;
647 int ret;
648
649 /*
650 * If probe is being deleted, unregister thread could be done with
651 * the vma-rmap-walk through. Adding a probe now can be fatal since
652 * nobody will be able to cleanup. Also we could be from fork or
653 * mremap path, where the probe might have already been inserted.
654 * Hence behave as if probe already existed.
655 */
656 if (!uprobe->consumers)
657 return 0;
658
659 if (!(uprobe->flags & UPROBE_COPY_INSN)) {
660 ret = copy_insn(uprobe, vma->vm_file);
661 if (ret)
662 return ret;
663
664 if (is_swbp_insn((uprobe_opcode_t *)uprobe->arch.insn))
665 return -ENOTSUPP;
666
667 ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
668 if (ret)
669 return ret;
670
671 /* write_opcode() assumes we don't cross page boundary */
672 BUG_ON((uprobe->offset & ~PAGE_MASK) +
673 UPROBE_SWBP_INSN_SIZE > PAGE_SIZE);
674
675 uprobe->flags |= UPROBE_COPY_INSN;
676 }
677
678 /*
679 * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(),
680 * the task can hit this breakpoint right after __replace_page().
681 */
682 first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags);
683 if (first_uprobe)
684 set_bit(MMF_HAS_UPROBES, &mm->flags);
685
686 ret = set_swbp(&uprobe->arch, mm, vaddr);
687 if (!ret)
688 clear_bit(MMF_RECALC_UPROBES, &mm->flags);
689 else if (first_uprobe)
690 clear_bit(MMF_HAS_UPROBES, &mm->flags);
691
692 return ret;
693 }
694
695 static void
696 remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr)
697 {
698 /* can happen if uprobe_register() fails */
699 if (!test_bit(MMF_HAS_UPROBES, &mm->flags))
700 return;
701
702 set_bit(MMF_RECALC_UPROBES, &mm->flags);
703 set_orig_insn(&uprobe->arch, mm, vaddr);
704 }
705
706 /*
707 * There could be threads that have already hit the breakpoint. They
708 * will recheck the current insn and restart if find_uprobe() fails.
709 * See find_active_uprobe().
710 */
711 static void delete_uprobe(struct uprobe *uprobe)
712 {
713 spin_lock(&uprobes_treelock);
714 rb_erase(&uprobe->rb_node, &uprobes_tree);
715 spin_unlock(&uprobes_treelock);
716 iput(uprobe->inode);
717 put_uprobe(uprobe);
718 atomic_dec(&uprobe_events);
719 }
720
721 struct map_info {
722 struct map_info *next;
723 struct mm_struct *mm;
724 unsigned long vaddr;
725 };
726
727 static inline struct map_info *free_map_info(struct map_info *info)
728 {
729 struct map_info *next = info->next;
730 kfree(info);
731 return next;
732 }
733
734 static struct map_info *
735 build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
736 {
737 unsigned long pgoff = offset >> PAGE_SHIFT;
738 struct vm_area_struct *vma;
739 struct map_info *curr = NULL;
740 struct map_info *prev = NULL;
741 struct map_info *info;
742 int more = 0;
743
744 again:
745 mutex_lock(&mapping->i_mmap_mutex);
746 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
747 if (!valid_vma(vma, is_register))
748 continue;
749
750 if (!prev && !more) {
751 /*
752 * Needs GFP_NOWAIT to avoid i_mmap_mutex recursion through
753 * reclaim. This is optimistic, no harm done if it fails.
754 */
755 prev = kmalloc(sizeof(struct map_info),
756 GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
757 if (prev)
758 prev->next = NULL;
759 }
760 if (!prev) {
761 more++;
762 continue;
763 }
764
765 if (!atomic_inc_not_zero(&vma->vm_mm->mm_users))
766 continue;
767
768 info = prev;
769 prev = prev->next;
770 info->next = curr;
771 curr = info;
772
773 info->mm = vma->vm_mm;
774 info->vaddr = offset_to_vaddr(vma, offset);
775 }
776 mutex_unlock(&mapping->i_mmap_mutex);
777
778 if (!more)
779 goto out;
780
781 prev = curr;
782 while (curr) {
783 mmput(curr->mm);
784 curr = curr->next;
785 }
786
787 do {
788 info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
789 if (!info) {
790 curr = ERR_PTR(-ENOMEM);
791 goto out;
792 }
793 info->next = prev;
794 prev = info;
795 } while (--more);
796
797 goto again;
798 out:
799 while (prev)
800 prev = free_map_info(prev);
801 return curr;
802 }
803
804 static int register_for_each_vma(struct uprobe *uprobe, bool is_register)
805 {
806 struct map_info *info;
807 int err = 0;
808
809 info = build_map_info(uprobe->inode->i_mapping,
810 uprobe->offset, is_register);
811 if (IS_ERR(info))
812 return PTR_ERR(info);
813
814 while (info) {
815 struct mm_struct *mm = info->mm;
816 struct vm_area_struct *vma;
817
818 if (err)
819 goto free;
820
821 down_write(&mm->mmap_sem);
822 vma = find_vma(mm, info->vaddr);
823 if (!vma || !valid_vma(vma, is_register) ||
824 vma->vm_file->f_mapping->host != uprobe->inode)
825 goto unlock;
826
827 if (vma->vm_start > info->vaddr ||
828 vaddr_to_offset(vma, info->vaddr) != uprobe->offset)
829 goto unlock;
830
831 if (is_register)
832 err = install_breakpoint(uprobe, mm, vma, info->vaddr);
833 else
834 remove_breakpoint(uprobe, mm, info->vaddr);
835
836 unlock:
837 up_write(&mm->mmap_sem);
838 free:
839 mmput(mm);
840 info = free_map_info(info);
841 }
842
843 return err;
844 }
845
846 static int __uprobe_register(struct uprobe *uprobe)
847 {
848 return register_for_each_vma(uprobe, true);
849 }
850
851 static void __uprobe_unregister(struct uprobe *uprobe)
852 {
853 if (!register_for_each_vma(uprobe, false))
854 delete_uprobe(uprobe);
855
856 /* TODO : cant unregister? schedule a worker thread */
857 }
858
859 /*
860 * uprobe_register - register a probe
861 * @inode: the file in which the probe has to be placed.
862 * @offset: offset from the start of the file.
863 * @uc: information on howto handle the probe..
864 *
865 * Apart from the access refcount, uprobe_register() takes a creation
866 * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
867 * inserted into the rbtree (i.e first consumer for a @inode:@offset
868 * tuple). Creation refcount stops uprobe_unregister from freeing the
869 * @uprobe even before the register operation is complete. Creation
870 * refcount is released when the last @uc for the @uprobe
871 * unregisters.
872 *
873 * Return errno if it cannot successully install probes
874 * else return 0 (success)
875 */
876 int uprobe_register(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
877 {
878 struct uprobe *uprobe;
879 int ret;
880
881 if (!inode || !uc || uc->next)
882 return -EINVAL;
883
884 if (offset > i_size_read(inode))
885 return -EINVAL;
886
887 ret = 0;
888 mutex_lock(uprobes_hash(inode));
889 uprobe = alloc_uprobe(inode, offset);
890
891 if (uprobe && !consumer_add(uprobe, uc)) {
892 ret = __uprobe_register(uprobe);
893 if (ret) {
894 uprobe->consumers = NULL;
895 __uprobe_unregister(uprobe);
896 } else {
897 uprobe->flags |= UPROBE_RUN_HANDLER;
898 }
899 }
900
901 mutex_unlock(uprobes_hash(inode));
902 if (uprobe)
903 put_uprobe(uprobe);
904
905 return ret;
906 }
907
908 /*
909 * uprobe_unregister - unregister a already registered probe.
910 * @inode: the file in which the probe has to be removed.
911 * @offset: offset from the start of the file.
912 * @uc: identify which probe if multiple probes are colocated.
913 */
914 void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
915 {
916 struct uprobe *uprobe;
917
918 if (!inode || !uc)
919 return;
920
921 uprobe = find_uprobe(inode, offset);
922 if (!uprobe)
923 return;
924
925 mutex_lock(uprobes_hash(inode));
926
927 if (consumer_del(uprobe, uc)) {
928 if (!uprobe->consumers) {
929 __uprobe_unregister(uprobe);
930 uprobe->flags &= ~UPROBE_RUN_HANDLER;
931 }
932 }
933
934 mutex_unlock(uprobes_hash(inode));
935 if (uprobe)
936 put_uprobe(uprobe);
937 }
938
939 static struct rb_node *
940 find_node_in_range(struct inode *inode, loff_t min, loff_t max)
941 {
942 struct rb_node *n = uprobes_tree.rb_node;
943
944 while (n) {
945 struct uprobe *u = rb_entry(n, struct uprobe, rb_node);
946
947 if (inode < u->inode) {
948 n = n->rb_left;
949 } else if (inode > u->inode) {
950 n = n->rb_right;
951 } else {
952 if (max < u->offset)
953 n = n->rb_left;
954 else if (min > u->offset)
955 n = n->rb_right;
956 else
957 break;
958 }
959 }
960
961 return n;
962 }
963
964 /*
965 * For a given range in vma, build a list of probes that need to be inserted.
966 */
967 static void build_probe_list(struct inode *inode,
968 struct vm_area_struct *vma,
969 unsigned long start, unsigned long end,
970 struct list_head *head)
971 {
972 loff_t min, max;
973 struct rb_node *n, *t;
974 struct uprobe *u;
975
976 INIT_LIST_HEAD(head);
977 min = vaddr_to_offset(vma, start);
978 max = min + (end - start) - 1;
979
980 spin_lock(&uprobes_treelock);
981 n = find_node_in_range(inode, min, max);
982 if (n) {
983 for (t = n; t; t = rb_prev(t)) {
984 u = rb_entry(t, struct uprobe, rb_node);
985 if (u->inode != inode || u->offset < min)
986 break;
987 list_add(&u->pending_list, head);
988 atomic_inc(&u->ref);
989 }
990 for (t = n; (t = rb_next(t)); ) {
991 u = rb_entry(t, struct uprobe, rb_node);
992 if (u->inode != inode || u->offset > max)
993 break;
994 list_add(&u->pending_list, head);
995 atomic_inc(&u->ref);
996 }
997 }
998 spin_unlock(&uprobes_treelock);
999 }
1000
1001 /*
1002 * Called from mmap_region/vma_adjust with mm->mmap_sem acquired.
1003 *
1004 * Currently we ignore all errors and always return 0, the callers
1005 * can't handle the failure anyway.
1006 */
1007 int uprobe_mmap(struct vm_area_struct *vma)
1008 {
1009 struct list_head tmp_list;
1010 struct uprobe *uprobe, *u;
1011 struct inode *inode;
1012
1013 if (!atomic_read(&uprobe_events) || !valid_vma(vma, true))
1014 return 0;
1015
1016 inode = vma->vm_file->f_mapping->host;
1017 if (!inode)
1018 return 0;
1019
1020 mutex_lock(uprobes_mmap_hash(inode));
1021 build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list);
1022
1023 list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
1024 if (!fatal_signal_pending(current)) {
1025 unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset);
1026 install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
1027 }
1028 put_uprobe(uprobe);
1029 }
1030 mutex_unlock(uprobes_mmap_hash(inode));
1031
1032 return 0;
1033 }
1034
1035 static bool
1036 vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1037 {
1038 loff_t min, max;
1039 struct inode *inode;
1040 struct rb_node *n;
1041
1042 inode = vma->vm_file->f_mapping->host;
1043
1044 min = vaddr_to_offset(vma, start);
1045 max = min + (end - start) - 1;
1046
1047 spin_lock(&uprobes_treelock);
1048 n = find_node_in_range(inode, min, max);
1049 spin_unlock(&uprobes_treelock);
1050
1051 return !!n;
1052 }
1053
1054 /*
1055 * Called in context of a munmap of a vma.
1056 */
1057 void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1058 {
1059 if (!atomic_read(&uprobe_events) || !valid_vma(vma, false))
1060 return;
1061
1062 if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */
1063 return;
1064
1065 if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) ||
1066 test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags))
1067 return;
1068
1069 if (vma_has_uprobes(vma, start, end))
1070 set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags);
1071 }
1072
1073 /* Slot allocation for XOL */
1074 static int xol_add_vma(struct xol_area *area)
1075 {
1076 struct mm_struct *mm;
1077 int ret;
1078
1079 area->page = alloc_page(GFP_HIGHUSER);
1080 if (!area->page)
1081 return -ENOMEM;
1082
1083 ret = -EALREADY;
1084 mm = current->mm;
1085
1086 down_write(&mm->mmap_sem);
1087 if (mm->uprobes_state.xol_area)
1088 goto fail;
1089
1090 ret = -ENOMEM;
1091
1092 /* Try to map as high as possible, this is only a hint. */
1093 area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE, PAGE_SIZE, 0, 0);
1094 if (area->vaddr & ~PAGE_MASK) {
1095 ret = area->vaddr;
1096 goto fail;
1097 }
1098
1099 ret = install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1100 VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO, &area->page);
1101 if (ret)
1102 goto fail;
1103
1104 smp_wmb(); /* pairs with get_xol_area() */
1105 mm->uprobes_state.xol_area = area;
1106 ret = 0;
1107
1108 fail:
1109 up_write(&mm->mmap_sem);
1110 if (ret)
1111 __free_page(area->page);
1112
1113 return ret;
1114 }
1115
1116 static struct xol_area *get_xol_area(struct mm_struct *mm)
1117 {
1118 struct xol_area *area;
1119
1120 area = mm->uprobes_state.xol_area;
1121 smp_read_barrier_depends(); /* pairs with wmb in xol_add_vma() */
1122
1123 return area;
1124 }
1125
1126 /*
1127 * xol_alloc_area - Allocate process's xol_area.
1128 * This area will be used for storing instructions for execution out of
1129 * line.
1130 *
1131 * Returns the allocated area or NULL.
1132 */
1133 static struct xol_area *xol_alloc_area(void)
1134 {
1135 struct xol_area *area;
1136
1137 area = kzalloc(sizeof(*area), GFP_KERNEL);
1138 if (unlikely(!area))
1139 return NULL;
1140
1141 area->bitmap = kzalloc(BITS_TO_LONGS(UINSNS_PER_PAGE) * sizeof(long), GFP_KERNEL);
1142
1143 if (!area->bitmap)
1144 goto fail;
1145
1146 init_waitqueue_head(&area->wq);
1147 if (!xol_add_vma(area))
1148 return area;
1149
1150 fail:
1151 kfree(area->bitmap);
1152 kfree(area);
1153
1154 return get_xol_area(current->mm);
1155 }
1156
1157 /*
1158 * uprobe_clear_state - Free the area allocated for slots.
1159 */
1160 void uprobe_clear_state(struct mm_struct *mm)
1161 {
1162 struct xol_area *area = mm->uprobes_state.xol_area;
1163
1164 if (!area)
1165 return;
1166
1167 put_page(area->page);
1168 kfree(area->bitmap);
1169 kfree(area);
1170 }
1171
1172 void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm)
1173 {
1174 newmm->uprobes_state.xol_area = NULL;
1175
1176 if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) {
1177 set_bit(MMF_HAS_UPROBES, &newmm->flags);
1178 /* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */
1179 set_bit(MMF_RECALC_UPROBES, &newmm->flags);
1180 }
1181 }
1182
1183 /*
1184 * - search for a free slot.
1185 */
1186 static unsigned long xol_take_insn_slot(struct xol_area *area)
1187 {
1188 unsigned long slot_addr;
1189 int slot_nr;
1190
1191 do {
1192 slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1193 if (slot_nr < UINSNS_PER_PAGE) {
1194 if (!test_and_set_bit(slot_nr, area->bitmap))
1195 break;
1196
1197 slot_nr = UINSNS_PER_PAGE;
1198 continue;
1199 }
1200 wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
1201 } while (slot_nr >= UINSNS_PER_PAGE);
1202
1203 slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
1204 atomic_inc(&area->slot_count);
1205
1206 return slot_addr;
1207 }
1208
1209 /*
1210 * xol_get_insn_slot - If was not allocated a slot, then
1211 * allocate a slot.
1212 * Returns the allocated slot address or 0.
1213 */
1214 static unsigned long xol_get_insn_slot(struct uprobe *uprobe, unsigned long slot_addr)
1215 {
1216 struct xol_area *area;
1217 unsigned long offset;
1218 void *vaddr;
1219
1220 area = get_xol_area(current->mm);
1221 if (!area) {
1222 area = xol_alloc_area();
1223 if (!area)
1224 return 0;
1225 }
1226 current->utask->xol_vaddr = xol_take_insn_slot(area);
1227
1228 /*
1229 * Initialize the slot if xol_vaddr points to valid
1230 * instruction slot.
1231 */
1232 if (unlikely(!current->utask->xol_vaddr))
1233 return 0;
1234
1235 current->utask->vaddr = slot_addr;
1236 offset = current->utask->xol_vaddr & ~PAGE_MASK;
1237 vaddr = kmap_atomic(area->page);
1238 memcpy(vaddr + offset, uprobe->arch.insn, MAX_UINSN_BYTES);
1239 kunmap_atomic(vaddr);
1240
1241 return current->utask->xol_vaddr;
1242 }
1243
1244 /*
1245 * xol_free_insn_slot - If slot was earlier allocated by
1246 * @xol_get_insn_slot(), make the slot available for
1247 * subsequent requests.
1248 */
1249 static void xol_free_insn_slot(struct task_struct *tsk)
1250 {
1251 struct xol_area *area;
1252 unsigned long vma_end;
1253 unsigned long slot_addr;
1254
1255 if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
1256 return;
1257
1258 slot_addr = tsk->utask->xol_vaddr;
1259
1260 if (unlikely(!slot_addr || IS_ERR_VALUE(slot_addr)))
1261 return;
1262
1263 area = tsk->mm->uprobes_state.xol_area;
1264 vma_end = area->vaddr + PAGE_SIZE;
1265 if (area->vaddr <= slot_addr && slot_addr < vma_end) {
1266 unsigned long offset;
1267 int slot_nr;
1268
1269 offset = slot_addr - area->vaddr;
1270 slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1271 if (slot_nr >= UINSNS_PER_PAGE)
1272 return;
1273
1274 clear_bit(slot_nr, area->bitmap);
1275 atomic_dec(&area->slot_count);
1276 if (waitqueue_active(&area->wq))
1277 wake_up(&area->wq);
1278
1279 tsk->utask->xol_vaddr = 0;
1280 }
1281 }
1282
1283 /**
1284 * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1285 * @regs: Reflects the saved state of the task after it has hit a breakpoint
1286 * instruction.
1287 * Return the address of the breakpoint instruction.
1288 */
1289 unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1290 {
1291 return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1292 }
1293
1294 /*
1295 * Called with no locks held.
1296 * Called in context of a exiting or a exec-ing thread.
1297 */
1298 void uprobe_free_utask(struct task_struct *t)
1299 {
1300 struct uprobe_task *utask = t->utask;
1301
1302 if (!utask)
1303 return;
1304
1305 if (utask->active_uprobe)
1306 put_uprobe(utask->active_uprobe);
1307
1308 xol_free_insn_slot(t);
1309 kfree(utask);
1310 t->utask = NULL;
1311 }
1312
1313 /*
1314 * Called in context of a new clone/fork from copy_process.
1315 */
1316 void uprobe_copy_process(struct task_struct *t)
1317 {
1318 t->utask = NULL;
1319 }
1320
1321 /*
1322 * Allocate a uprobe_task object for the task.
1323 * Called when the thread hits a breakpoint for the first time.
1324 *
1325 * Returns:
1326 * - pointer to new uprobe_task on success
1327 * - NULL otherwise
1328 */
1329 static struct uprobe_task *add_utask(void)
1330 {
1331 struct uprobe_task *utask;
1332
1333 utask = kzalloc(sizeof *utask, GFP_KERNEL);
1334 if (unlikely(!utask))
1335 return NULL;
1336
1337 current->utask = utask;
1338 return utask;
1339 }
1340
1341 /* Prepare to single-step probed instruction out of line. */
1342 static int
1343 pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long vaddr)
1344 {
1345 if (xol_get_insn_slot(uprobe, vaddr) && !arch_uprobe_pre_xol(&uprobe->arch, regs))
1346 return 0;
1347
1348 return -EFAULT;
1349 }
1350
1351 /*
1352 * If we are singlestepping, then ensure this thread is not connected to
1353 * non-fatal signals until completion of singlestep. When xol insn itself
1354 * triggers the signal, restart the original insn even if the task is
1355 * already SIGKILL'ed (since coredump should report the correct ip). This
1356 * is even more important if the task has a handler for SIGSEGV/etc, The
1357 * _same_ instruction should be repeated again after return from the signal
1358 * handler, and SSTEP can never finish in this case.
1359 */
1360 bool uprobe_deny_signal(void)
1361 {
1362 struct task_struct *t = current;
1363 struct uprobe_task *utask = t->utask;
1364
1365 if (likely(!utask || !utask->active_uprobe))
1366 return false;
1367
1368 WARN_ON_ONCE(utask->state != UTASK_SSTEP);
1369
1370 if (signal_pending(t)) {
1371 spin_lock_irq(&t->sighand->siglock);
1372 clear_tsk_thread_flag(t, TIF_SIGPENDING);
1373 spin_unlock_irq(&t->sighand->siglock);
1374
1375 if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
1376 utask->state = UTASK_SSTEP_TRAPPED;
1377 set_tsk_thread_flag(t, TIF_UPROBE);
1378 set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
1379 }
1380 }
1381
1382 return true;
1383 }
1384
1385 /*
1386 * Avoid singlestepping the original instruction if the original instruction
1387 * is a NOP or can be emulated.
1388 */
1389 static bool can_skip_sstep(struct uprobe *uprobe, struct pt_regs *regs)
1390 {
1391 if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
1392 return true;
1393
1394 uprobe->flags &= ~UPROBE_SKIP_SSTEP;
1395 return false;
1396 }
1397
1398 static void mmf_recalc_uprobes(struct mm_struct *mm)
1399 {
1400 struct vm_area_struct *vma;
1401
1402 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1403 if (!valid_vma(vma, false))
1404 continue;
1405 /*
1406 * This is not strictly accurate, we can race with
1407 * uprobe_unregister() and see the already removed
1408 * uprobe if delete_uprobe() was not yet called.
1409 */
1410 if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end))
1411 return;
1412 }
1413
1414 clear_bit(MMF_HAS_UPROBES, &mm->flags);
1415 }
1416
1417 static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
1418 {
1419 struct mm_struct *mm = current->mm;
1420 struct uprobe *uprobe = NULL;
1421 struct vm_area_struct *vma;
1422
1423 down_read(&mm->mmap_sem);
1424 vma = find_vma(mm, bp_vaddr);
1425 if (vma && vma->vm_start <= bp_vaddr) {
1426 if (valid_vma(vma, false)) {
1427 struct inode *inode = vma->vm_file->f_mapping->host;
1428 loff_t offset = vaddr_to_offset(vma, bp_vaddr);
1429
1430 uprobe = find_uprobe(inode, offset);
1431 }
1432
1433 if (!uprobe)
1434 *is_swbp = is_swbp_at_addr(mm, bp_vaddr);
1435 } else {
1436 *is_swbp = -EFAULT;
1437 }
1438
1439 if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags))
1440 mmf_recalc_uprobes(mm);
1441 up_read(&mm->mmap_sem);
1442
1443 return uprobe;
1444 }
1445
1446 void __weak arch_uprobe_enable_step(struct arch_uprobe *arch)
1447 {
1448 user_enable_single_step(current);
1449 }
1450
1451 void __weak arch_uprobe_disable_step(struct arch_uprobe *arch)
1452 {
1453 user_disable_single_step(current);
1454 }
1455
1456 /*
1457 * Run handler and ask thread to singlestep.
1458 * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
1459 */
1460 static void handle_swbp(struct pt_regs *regs)
1461 {
1462 struct uprobe_task *utask;
1463 struct uprobe *uprobe;
1464 unsigned long bp_vaddr;
1465 int uninitialized_var(is_swbp);
1466
1467 bp_vaddr = uprobe_get_swbp_addr(regs);
1468 uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
1469
1470 if (!uprobe) {
1471 if (is_swbp > 0) {
1472 /* No matching uprobe; signal SIGTRAP. */
1473 send_sig(SIGTRAP, current, 0);
1474 } else {
1475 /*
1476 * Either we raced with uprobe_unregister() or we can't
1477 * access this memory. The latter is only possible if
1478 * another thread plays with our ->mm. In both cases
1479 * we can simply restart. If this vma was unmapped we
1480 * can pretend this insn was not executed yet and get
1481 * the (correct) SIGSEGV after restart.
1482 */
1483 instruction_pointer_set(regs, bp_vaddr);
1484 }
1485 return;
1486 }
1487
1488 utask = current->utask;
1489 if (!utask) {
1490 utask = add_utask();
1491 /* Cannot allocate; re-execute the instruction. */
1492 if (!utask)
1493 goto cleanup_ret;
1494 }
1495 utask->active_uprobe = uprobe;
1496 handler_chain(uprobe, regs);
1497 if (uprobe->flags & UPROBE_SKIP_SSTEP && can_skip_sstep(uprobe, regs))
1498 goto cleanup_ret;
1499
1500 utask->state = UTASK_SSTEP;
1501 if (!pre_ssout(uprobe, regs, bp_vaddr)) {
1502 arch_uprobe_enable_step(&uprobe->arch);
1503 return;
1504 }
1505
1506 cleanup_ret:
1507 if (utask) {
1508 utask->active_uprobe = NULL;
1509 utask->state = UTASK_RUNNING;
1510 }
1511 if (!(uprobe->flags & UPROBE_SKIP_SSTEP))
1512
1513 /*
1514 * cannot singlestep; cannot skip instruction;
1515 * re-execute the instruction.
1516 */
1517 instruction_pointer_set(regs, bp_vaddr);
1518
1519 put_uprobe(uprobe);
1520 }
1521
1522 /*
1523 * Perform required fix-ups and disable singlestep.
1524 * Allow pending signals to take effect.
1525 */
1526 static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
1527 {
1528 struct uprobe *uprobe;
1529
1530 uprobe = utask->active_uprobe;
1531 if (utask->state == UTASK_SSTEP_ACK)
1532 arch_uprobe_post_xol(&uprobe->arch, regs);
1533 else if (utask->state == UTASK_SSTEP_TRAPPED)
1534 arch_uprobe_abort_xol(&uprobe->arch, regs);
1535 else
1536 WARN_ON_ONCE(1);
1537
1538 arch_uprobe_disable_step(&uprobe->arch);
1539 put_uprobe(uprobe);
1540 utask->active_uprobe = NULL;
1541 utask->state = UTASK_RUNNING;
1542 xol_free_insn_slot(current);
1543
1544 spin_lock_irq(&current->sighand->siglock);
1545 recalc_sigpending(); /* see uprobe_deny_signal() */
1546 spin_unlock_irq(&current->sighand->siglock);
1547 }
1548
1549 /*
1550 * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag. (and on
1551 * subsequent probe hits on the thread sets the state to UTASK_BP_HIT) and
1552 * allows the thread to return from interrupt.
1553 *
1554 * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag and
1555 * also sets the state to UTASK_SSTEP_ACK and allows the thread to return from
1556 * interrupt.
1557 *
1558 * While returning to userspace, thread notices the TIF_UPROBE flag and calls
1559 * uprobe_notify_resume().
1560 */
1561 void uprobe_notify_resume(struct pt_regs *regs)
1562 {
1563 struct uprobe_task *utask;
1564
1565 utask = current->utask;
1566 if (!utask || utask->state == UTASK_BP_HIT)
1567 handle_swbp(regs);
1568 else
1569 handle_singlestep(utask, regs);
1570 }
1571
1572 /*
1573 * uprobe_pre_sstep_notifier gets called from interrupt context as part of
1574 * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
1575 */
1576 int uprobe_pre_sstep_notifier(struct pt_regs *regs)
1577 {
1578 struct uprobe_task *utask;
1579
1580 if (!current->mm || !test_bit(MMF_HAS_UPROBES, &current->mm->flags))
1581 return 0;
1582
1583 utask = current->utask;
1584 if (utask)
1585 utask->state = UTASK_BP_HIT;
1586
1587 set_thread_flag(TIF_UPROBE);
1588
1589 return 1;
1590 }
1591
1592 /*
1593 * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
1594 * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
1595 */
1596 int uprobe_post_sstep_notifier(struct pt_regs *regs)
1597 {
1598 struct uprobe_task *utask = current->utask;
1599
1600 if (!current->mm || !utask || !utask->active_uprobe)
1601 /* task is currently not uprobed */
1602 return 0;
1603
1604 utask->state = UTASK_SSTEP_ACK;
1605 set_thread_flag(TIF_UPROBE);
1606 return 1;
1607 }
1608
1609 static struct notifier_block uprobe_exception_nb = {
1610 .notifier_call = arch_uprobe_exception_notify,
1611 .priority = INT_MAX-1, /* notified after kprobes, kgdb */
1612 };
1613
1614 static int __init init_uprobes(void)
1615 {
1616 int i;
1617
1618 for (i = 0; i < UPROBES_HASH_SZ; i++) {
1619 mutex_init(&uprobes_mutex[i]);
1620 mutex_init(&uprobes_mmap_mutex[i]);
1621 }
1622
1623 return register_die_notifier(&uprobe_exception_nb);
1624 }
1625 module_init(init_uprobes);
1626
1627 static void __exit exit_uprobes(void)
1628 {
1629 }
1630 module_exit(exit_uprobes);