]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - kernel/events/uprobes.c
Merge branch 'uprobes/core' of git://git.kernel.org/pub/scm/linux/kernel/git/oleg...
[mirror_ubuntu-zesty-kernel.git] / kernel / events / uprobes.c
1 /*
2 * User-space Probes (UProbes)
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright (C) IBM Corporation, 2008-2012
19 * Authors:
20 * Srikar Dronamraju
21 * Jim Keniston
22 * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
23 */
24
25 #include <linux/kernel.h>
26 #include <linux/highmem.h>
27 #include <linux/pagemap.h> /* read_mapping_page */
28 #include <linux/slab.h>
29 #include <linux/sched.h>
30 #include <linux/rmap.h> /* anon_vma_prepare */
31 #include <linux/mmu_notifier.h> /* set_pte_at_notify */
32 #include <linux/swap.h> /* try_to_free_swap */
33 #include <linux/ptrace.h> /* user_enable_single_step */
34 #include <linux/kdebug.h> /* notifier mechanism */
35 #include "../../mm/internal.h" /* munlock_vma_page */
36
37 #include <linux/uprobes.h>
38
39 #define UINSNS_PER_PAGE (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
40 #define MAX_UPROBE_XOL_SLOTS UINSNS_PER_PAGE
41
42 static struct rb_root uprobes_tree = RB_ROOT;
43
44 static DEFINE_SPINLOCK(uprobes_treelock); /* serialize rbtree access */
45
46 #define UPROBES_HASH_SZ 13
47
48 /*
49 * We need separate register/unregister and mmap/munmap lock hashes because
50 * of mmap_sem nesting.
51 *
52 * uprobe_register() needs to install probes on (potentially) all processes
53 * and thus needs to acquire multiple mmap_sems (consequtively, not
54 * concurrently), whereas uprobe_mmap() is called while holding mmap_sem
55 * for the particular process doing the mmap.
56 *
57 * uprobe_register()->register_for_each_vma() needs to drop/acquire mmap_sem
58 * because of lock order against i_mmap_mutex. This means there's a hole in
59 * the register vma iteration where a mmap() can happen.
60 *
61 * Thus uprobe_register() can race with uprobe_mmap() and we can try and
62 * install a probe where one is already installed.
63 */
64
65 /* serialize (un)register */
66 static struct mutex uprobes_mutex[UPROBES_HASH_SZ];
67
68 #define uprobes_hash(v) (&uprobes_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
69
70 /* serialize uprobe->pending_list */
71 static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
72 #define uprobes_mmap_hash(v) (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
73
74 /*
75 * uprobe_events allows us to skip the uprobe_mmap if there are no uprobe
76 * events active at this time. Probably a fine grained per inode count is
77 * better?
78 */
79 static atomic_t uprobe_events = ATOMIC_INIT(0);
80
81 /* Have a copy of original instruction */
82 #define UPROBE_COPY_INSN 0
83 /* Dont run handlers when first register/ last unregister in progress*/
84 #define UPROBE_RUN_HANDLER 1
85 /* Can skip singlestep */
86 #define UPROBE_SKIP_SSTEP 2
87
88 struct uprobe {
89 struct rb_node rb_node; /* node in the rb tree */
90 atomic_t ref;
91 struct rw_semaphore consumer_rwsem;
92 struct mutex copy_mutex; /* TODO: kill me and UPROBE_COPY_INSN */
93 struct list_head pending_list;
94 struct uprobe_consumer *consumers;
95 struct inode *inode; /* Also hold a ref to inode */
96 loff_t offset;
97 unsigned long flags;
98 struct arch_uprobe arch;
99 };
100
101 /*
102 * valid_vma: Verify if the specified vma is an executable vma
103 * Relax restrictions while unregistering: vm_flags might have
104 * changed after breakpoint was inserted.
105 * - is_register: indicates if we are in register context.
106 * - Return 1 if the specified virtual address is in an
107 * executable vma.
108 */
109 static bool valid_vma(struct vm_area_struct *vma, bool is_register)
110 {
111 vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_SHARED;
112
113 if (is_register)
114 flags |= VM_WRITE;
115
116 return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC;
117 }
118
119 static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset)
120 {
121 return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
122 }
123
124 static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr)
125 {
126 return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start);
127 }
128
129 /**
130 * __replace_page - replace page in vma by new page.
131 * based on replace_page in mm/ksm.c
132 *
133 * @vma: vma that holds the pte pointing to page
134 * @addr: address the old @page is mapped at
135 * @page: the cowed page we are replacing by kpage
136 * @kpage: the modified page we replace page by
137 *
138 * Returns 0 on success, -EFAULT on failure.
139 */
140 static int __replace_page(struct vm_area_struct *vma, unsigned long addr,
141 struct page *page, struct page *kpage)
142 {
143 struct mm_struct *mm = vma->vm_mm;
144 spinlock_t *ptl;
145 pte_t *ptep;
146 int err;
147 /* For mmu_notifiers */
148 const unsigned long mmun_start = addr;
149 const unsigned long mmun_end = addr + PAGE_SIZE;
150
151 /* For try_to_free_swap() and munlock_vma_page() below */
152 lock_page(page);
153
154 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
155 err = -EAGAIN;
156 ptep = page_check_address(page, mm, addr, &ptl, 0);
157 if (!ptep)
158 goto unlock;
159
160 get_page(kpage);
161 page_add_new_anon_rmap(kpage, vma, addr);
162
163 if (!PageAnon(page)) {
164 dec_mm_counter(mm, MM_FILEPAGES);
165 inc_mm_counter(mm, MM_ANONPAGES);
166 }
167
168 flush_cache_page(vma, addr, pte_pfn(*ptep));
169 ptep_clear_flush(vma, addr, ptep);
170 set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
171
172 page_remove_rmap(page);
173 if (!page_mapped(page))
174 try_to_free_swap(page);
175 pte_unmap_unlock(ptep, ptl);
176
177 if (vma->vm_flags & VM_LOCKED)
178 munlock_vma_page(page);
179 put_page(page);
180
181 err = 0;
182 unlock:
183 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
184 unlock_page(page);
185 return err;
186 }
187
188 /**
189 * is_swbp_insn - check if instruction is breakpoint instruction.
190 * @insn: instruction to be checked.
191 * Default implementation of is_swbp_insn
192 * Returns true if @insn is a breakpoint instruction.
193 */
194 bool __weak is_swbp_insn(uprobe_opcode_t *insn)
195 {
196 return *insn == UPROBE_SWBP_INSN;
197 }
198
199 static void copy_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *opcode)
200 {
201 void *kaddr = kmap_atomic(page);
202 memcpy(opcode, kaddr + (vaddr & ~PAGE_MASK), UPROBE_SWBP_INSN_SIZE);
203 kunmap_atomic(kaddr);
204 }
205
206 static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode)
207 {
208 uprobe_opcode_t old_opcode;
209 bool is_swbp;
210
211 copy_opcode(page, vaddr, &old_opcode);
212 is_swbp = is_swbp_insn(&old_opcode);
213
214 if (is_swbp_insn(new_opcode)) {
215 if (is_swbp) /* register: already installed? */
216 return 0;
217 } else {
218 if (!is_swbp) /* unregister: was it changed by us? */
219 return 0;
220 }
221
222 return 1;
223 }
224
225 /*
226 * NOTE:
227 * Expect the breakpoint instruction to be the smallest size instruction for
228 * the architecture. If an arch has variable length instruction and the
229 * breakpoint instruction is not of the smallest length instruction
230 * supported by that architecture then we need to modify is_swbp_at_addr and
231 * write_opcode accordingly. This would never be a problem for archs that
232 * have fixed length instructions.
233 */
234
235 /*
236 * write_opcode - write the opcode at a given virtual address.
237 * @mm: the probed process address space.
238 * @vaddr: the virtual address to store the opcode.
239 * @opcode: opcode to be written at @vaddr.
240 *
241 * Called with mm->mmap_sem held (for read and with a reference to
242 * mm).
243 *
244 * For mm @mm, write the opcode at @vaddr.
245 * Return 0 (success) or a negative errno.
246 */
247 static int write_opcode(struct mm_struct *mm, unsigned long vaddr,
248 uprobe_opcode_t opcode)
249 {
250 struct page *old_page, *new_page;
251 void *vaddr_old, *vaddr_new;
252 struct vm_area_struct *vma;
253 int ret;
254
255 retry:
256 /* Read the page with vaddr into memory */
257 ret = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &old_page, &vma);
258 if (ret <= 0)
259 return ret;
260
261 ret = verify_opcode(old_page, vaddr, &opcode);
262 if (ret <= 0)
263 goto put_old;
264
265 ret = -ENOMEM;
266 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
267 if (!new_page)
268 goto put_old;
269
270 __SetPageUptodate(new_page);
271
272 /* copy the page now that we've got it stable */
273 vaddr_old = kmap_atomic(old_page);
274 vaddr_new = kmap_atomic(new_page);
275
276 memcpy(vaddr_new, vaddr_old, PAGE_SIZE);
277 memcpy(vaddr_new + (vaddr & ~PAGE_MASK), &opcode, UPROBE_SWBP_INSN_SIZE);
278
279 kunmap_atomic(vaddr_new);
280 kunmap_atomic(vaddr_old);
281
282 ret = anon_vma_prepare(vma);
283 if (ret)
284 goto put_new;
285
286 ret = __replace_page(vma, vaddr, old_page, new_page);
287
288 put_new:
289 page_cache_release(new_page);
290 put_old:
291 put_page(old_page);
292
293 if (unlikely(ret == -EAGAIN))
294 goto retry;
295 return ret;
296 }
297
298 /**
299 * set_swbp - store breakpoint at a given address.
300 * @auprobe: arch specific probepoint information.
301 * @mm: the probed process address space.
302 * @vaddr: the virtual address to insert the opcode.
303 *
304 * For mm @mm, store the breakpoint instruction at @vaddr.
305 * Return 0 (success) or a negative errno.
306 */
307 int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
308 {
309 return write_opcode(mm, vaddr, UPROBE_SWBP_INSN);
310 }
311
312 /**
313 * set_orig_insn - Restore the original instruction.
314 * @mm: the probed process address space.
315 * @auprobe: arch specific probepoint information.
316 * @vaddr: the virtual address to insert the opcode.
317 *
318 * For mm @mm, restore the original opcode (opcode) at @vaddr.
319 * Return 0 (success) or a negative errno.
320 */
321 int __weak
322 set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
323 {
324 return write_opcode(mm, vaddr, *(uprobe_opcode_t *)auprobe->insn);
325 }
326
327 static int match_uprobe(struct uprobe *l, struct uprobe *r)
328 {
329 if (l->inode < r->inode)
330 return -1;
331
332 if (l->inode > r->inode)
333 return 1;
334
335 if (l->offset < r->offset)
336 return -1;
337
338 if (l->offset > r->offset)
339 return 1;
340
341 return 0;
342 }
343
344 static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
345 {
346 struct uprobe u = { .inode = inode, .offset = offset };
347 struct rb_node *n = uprobes_tree.rb_node;
348 struct uprobe *uprobe;
349 int match;
350
351 while (n) {
352 uprobe = rb_entry(n, struct uprobe, rb_node);
353 match = match_uprobe(&u, uprobe);
354 if (!match) {
355 atomic_inc(&uprobe->ref);
356 return uprobe;
357 }
358
359 if (match < 0)
360 n = n->rb_left;
361 else
362 n = n->rb_right;
363 }
364 return NULL;
365 }
366
367 /*
368 * Find a uprobe corresponding to a given inode:offset
369 * Acquires uprobes_treelock
370 */
371 static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
372 {
373 struct uprobe *uprobe;
374
375 spin_lock(&uprobes_treelock);
376 uprobe = __find_uprobe(inode, offset);
377 spin_unlock(&uprobes_treelock);
378
379 return uprobe;
380 }
381
382 static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
383 {
384 struct rb_node **p = &uprobes_tree.rb_node;
385 struct rb_node *parent = NULL;
386 struct uprobe *u;
387 int match;
388
389 while (*p) {
390 parent = *p;
391 u = rb_entry(parent, struct uprobe, rb_node);
392 match = match_uprobe(uprobe, u);
393 if (!match) {
394 atomic_inc(&u->ref);
395 return u;
396 }
397
398 if (match < 0)
399 p = &parent->rb_left;
400 else
401 p = &parent->rb_right;
402
403 }
404
405 u = NULL;
406 rb_link_node(&uprobe->rb_node, parent, p);
407 rb_insert_color(&uprobe->rb_node, &uprobes_tree);
408 /* get access + creation ref */
409 atomic_set(&uprobe->ref, 2);
410
411 return u;
412 }
413
414 /*
415 * Acquire uprobes_treelock.
416 * Matching uprobe already exists in rbtree;
417 * increment (access refcount) and return the matching uprobe.
418 *
419 * No matching uprobe; insert the uprobe in rb_tree;
420 * get a double refcount (access + creation) and return NULL.
421 */
422 static struct uprobe *insert_uprobe(struct uprobe *uprobe)
423 {
424 struct uprobe *u;
425
426 spin_lock(&uprobes_treelock);
427 u = __insert_uprobe(uprobe);
428 spin_unlock(&uprobes_treelock);
429
430 /* For now assume that the instruction need not be single-stepped */
431 __set_bit(UPROBE_SKIP_SSTEP, &uprobe->flags);
432
433 return u;
434 }
435
436 static void put_uprobe(struct uprobe *uprobe)
437 {
438 if (atomic_dec_and_test(&uprobe->ref))
439 kfree(uprobe);
440 }
441
442 static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset)
443 {
444 struct uprobe *uprobe, *cur_uprobe;
445
446 uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
447 if (!uprobe)
448 return NULL;
449
450 uprobe->inode = igrab(inode);
451 uprobe->offset = offset;
452 init_rwsem(&uprobe->consumer_rwsem);
453 mutex_init(&uprobe->copy_mutex);
454
455 /* add to uprobes_tree, sorted on inode:offset */
456 cur_uprobe = insert_uprobe(uprobe);
457
458 /* a uprobe exists for this inode:offset combination */
459 if (cur_uprobe) {
460 kfree(uprobe);
461 uprobe = cur_uprobe;
462 iput(inode);
463 } else {
464 atomic_inc(&uprobe_events);
465 }
466
467 return uprobe;
468 }
469
470 static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
471 {
472 struct uprobe_consumer *uc;
473
474 if (!test_bit(UPROBE_RUN_HANDLER, &uprobe->flags))
475 return;
476
477 down_read(&uprobe->consumer_rwsem);
478 for (uc = uprobe->consumers; uc; uc = uc->next) {
479 if (!uc->filter || uc->filter(uc, current))
480 uc->handler(uc, regs);
481 }
482 up_read(&uprobe->consumer_rwsem);
483 }
484
485 /* Returns the previous consumer */
486 static struct uprobe_consumer *
487 consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
488 {
489 down_write(&uprobe->consumer_rwsem);
490 uc->next = uprobe->consumers;
491 uprobe->consumers = uc;
492 up_write(&uprobe->consumer_rwsem);
493
494 return uc->next;
495 }
496
497 /*
498 * For uprobe @uprobe, delete the consumer @uc.
499 * Return true if the @uc is deleted successfully
500 * or return false.
501 */
502 static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
503 {
504 struct uprobe_consumer **con;
505 bool ret = false;
506
507 down_write(&uprobe->consumer_rwsem);
508 for (con = &uprobe->consumers; *con; con = &(*con)->next) {
509 if (*con == uc) {
510 *con = uc->next;
511 ret = true;
512 break;
513 }
514 }
515 up_write(&uprobe->consumer_rwsem);
516
517 return ret;
518 }
519
520 static int
521 __copy_insn(struct address_space *mapping, struct file *filp, char *insn,
522 unsigned long nbytes, loff_t offset)
523 {
524 struct page *page;
525 void *vaddr;
526 unsigned long off;
527 pgoff_t idx;
528
529 if (!filp)
530 return -EINVAL;
531
532 if (!mapping->a_ops->readpage)
533 return -EIO;
534
535 idx = offset >> PAGE_CACHE_SHIFT;
536 off = offset & ~PAGE_MASK;
537
538 /*
539 * Ensure that the page that has the original instruction is
540 * populated and in page-cache.
541 */
542 page = read_mapping_page(mapping, idx, filp);
543 if (IS_ERR(page))
544 return PTR_ERR(page);
545
546 vaddr = kmap_atomic(page);
547 memcpy(insn, vaddr + off, nbytes);
548 kunmap_atomic(vaddr);
549 page_cache_release(page);
550
551 return 0;
552 }
553
554 static int copy_insn(struct uprobe *uprobe, struct file *filp)
555 {
556 struct address_space *mapping;
557 unsigned long nbytes;
558 int bytes;
559
560 nbytes = PAGE_SIZE - (uprobe->offset & ~PAGE_MASK);
561 mapping = uprobe->inode->i_mapping;
562
563 /* Instruction at end of binary; copy only available bytes */
564 if (uprobe->offset + MAX_UINSN_BYTES > uprobe->inode->i_size)
565 bytes = uprobe->inode->i_size - uprobe->offset;
566 else
567 bytes = MAX_UINSN_BYTES;
568
569 /* Instruction at the page-boundary; copy bytes in second page */
570 if (nbytes < bytes) {
571 int err = __copy_insn(mapping, filp, uprobe->arch.insn + nbytes,
572 bytes - nbytes, uprobe->offset + nbytes);
573 if (err)
574 return err;
575 bytes = nbytes;
576 }
577 return __copy_insn(mapping, filp, uprobe->arch.insn, bytes, uprobe->offset);
578 }
579
580 static int prepare_uprobe(struct uprobe *uprobe, struct file *file,
581 struct mm_struct *mm, unsigned long vaddr)
582 {
583 int ret = 0;
584
585 if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
586 return ret;
587
588 mutex_lock(&uprobe->copy_mutex);
589 if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
590 goto out;
591
592 ret = copy_insn(uprobe, file);
593 if (ret)
594 goto out;
595
596 ret = -ENOTSUPP;
597 if (is_swbp_insn((uprobe_opcode_t *)uprobe->arch.insn))
598 goto out;
599
600 ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
601 if (ret)
602 goto out;
603
604 /* write_opcode() assumes we don't cross page boundary */
605 BUG_ON((uprobe->offset & ~PAGE_MASK) +
606 UPROBE_SWBP_INSN_SIZE > PAGE_SIZE);
607
608 smp_wmb(); /* pairs with rmb() in find_active_uprobe() */
609 set_bit(UPROBE_COPY_INSN, &uprobe->flags);
610
611 out:
612 mutex_unlock(&uprobe->copy_mutex);
613
614 return ret;
615 }
616
617 static int
618 install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
619 struct vm_area_struct *vma, unsigned long vaddr)
620 {
621 bool first_uprobe;
622 int ret;
623
624 /*
625 * If probe is being deleted, unregister thread could be done with
626 * the vma-rmap-walk through. Adding a probe now can be fatal since
627 * nobody will be able to cleanup. Also we could be from fork or
628 * mremap path, where the probe might have already been inserted.
629 * Hence behave as if probe already existed.
630 */
631 if (!uprobe->consumers)
632 return 0;
633
634 ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr);
635 if (ret)
636 return ret;
637
638 /*
639 * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(),
640 * the task can hit this breakpoint right after __replace_page().
641 */
642 first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags);
643 if (first_uprobe)
644 set_bit(MMF_HAS_UPROBES, &mm->flags);
645
646 ret = set_swbp(&uprobe->arch, mm, vaddr);
647 if (!ret)
648 clear_bit(MMF_RECALC_UPROBES, &mm->flags);
649 else if (first_uprobe)
650 clear_bit(MMF_HAS_UPROBES, &mm->flags);
651
652 return ret;
653 }
654
655 static int
656 remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr)
657 {
658 /* can happen if uprobe_register() fails */
659 if (!test_bit(MMF_HAS_UPROBES, &mm->flags))
660 return 0;
661
662 set_bit(MMF_RECALC_UPROBES, &mm->flags);
663 return set_orig_insn(&uprobe->arch, mm, vaddr);
664 }
665
666 /*
667 * There could be threads that have already hit the breakpoint. They
668 * will recheck the current insn and restart if find_uprobe() fails.
669 * See find_active_uprobe().
670 */
671 static void delete_uprobe(struct uprobe *uprobe)
672 {
673 spin_lock(&uprobes_treelock);
674 rb_erase(&uprobe->rb_node, &uprobes_tree);
675 spin_unlock(&uprobes_treelock);
676 iput(uprobe->inode);
677 put_uprobe(uprobe);
678 atomic_dec(&uprobe_events);
679 }
680
681 struct map_info {
682 struct map_info *next;
683 struct mm_struct *mm;
684 unsigned long vaddr;
685 };
686
687 static inline struct map_info *free_map_info(struct map_info *info)
688 {
689 struct map_info *next = info->next;
690 kfree(info);
691 return next;
692 }
693
694 static struct map_info *
695 build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
696 {
697 unsigned long pgoff = offset >> PAGE_SHIFT;
698 struct vm_area_struct *vma;
699 struct map_info *curr = NULL;
700 struct map_info *prev = NULL;
701 struct map_info *info;
702 int more = 0;
703
704 again:
705 mutex_lock(&mapping->i_mmap_mutex);
706 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
707 if (!valid_vma(vma, is_register))
708 continue;
709
710 if (!prev && !more) {
711 /*
712 * Needs GFP_NOWAIT to avoid i_mmap_mutex recursion through
713 * reclaim. This is optimistic, no harm done if it fails.
714 */
715 prev = kmalloc(sizeof(struct map_info),
716 GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
717 if (prev)
718 prev->next = NULL;
719 }
720 if (!prev) {
721 more++;
722 continue;
723 }
724
725 if (!atomic_inc_not_zero(&vma->vm_mm->mm_users))
726 continue;
727
728 info = prev;
729 prev = prev->next;
730 info->next = curr;
731 curr = info;
732
733 info->mm = vma->vm_mm;
734 info->vaddr = offset_to_vaddr(vma, offset);
735 }
736 mutex_unlock(&mapping->i_mmap_mutex);
737
738 if (!more)
739 goto out;
740
741 prev = curr;
742 while (curr) {
743 mmput(curr->mm);
744 curr = curr->next;
745 }
746
747 do {
748 info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
749 if (!info) {
750 curr = ERR_PTR(-ENOMEM);
751 goto out;
752 }
753 info->next = prev;
754 prev = info;
755 } while (--more);
756
757 goto again;
758 out:
759 while (prev)
760 prev = free_map_info(prev);
761 return curr;
762 }
763
764 static int register_for_each_vma(struct uprobe *uprobe, bool is_register)
765 {
766 struct map_info *info;
767 int err = 0;
768
769 info = build_map_info(uprobe->inode->i_mapping,
770 uprobe->offset, is_register);
771 if (IS_ERR(info))
772 return PTR_ERR(info);
773
774 while (info) {
775 struct mm_struct *mm = info->mm;
776 struct vm_area_struct *vma;
777
778 if (err && is_register)
779 goto free;
780
781 down_write(&mm->mmap_sem);
782 vma = find_vma(mm, info->vaddr);
783 if (!vma || !valid_vma(vma, is_register) ||
784 vma->vm_file->f_mapping->host != uprobe->inode)
785 goto unlock;
786
787 if (vma->vm_start > info->vaddr ||
788 vaddr_to_offset(vma, info->vaddr) != uprobe->offset)
789 goto unlock;
790
791 if (is_register)
792 err = install_breakpoint(uprobe, mm, vma, info->vaddr);
793 else
794 err |= remove_breakpoint(uprobe, mm, info->vaddr);
795
796 unlock:
797 up_write(&mm->mmap_sem);
798 free:
799 mmput(mm);
800 info = free_map_info(info);
801 }
802
803 return err;
804 }
805
806 static int __uprobe_register(struct uprobe *uprobe)
807 {
808 return register_for_each_vma(uprobe, true);
809 }
810
811 static void __uprobe_unregister(struct uprobe *uprobe)
812 {
813 if (!register_for_each_vma(uprobe, false))
814 delete_uprobe(uprobe);
815
816 /* TODO : cant unregister? schedule a worker thread */
817 }
818
819 /*
820 * uprobe_register - register a probe
821 * @inode: the file in which the probe has to be placed.
822 * @offset: offset from the start of the file.
823 * @uc: information on howto handle the probe..
824 *
825 * Apart from the access refcount, uprobe_register() takes a creation
826 * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
827 * inserted into the rbtree (i.e first consumer for a @inode:@offset
828 * tuple). Creation refcount stops uprobe_unregister from freeing the
829 * @uprobe even before the register operation is complete. Creation
830 * refcount is released when the last @uc for the @uprobe
831 * unregisters.
832 *
833 * Return errno if it cannot successully install probes
834 * else return 0 (success)
835 */
836 int uprobe_register(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
837 {
838 struct uprobe *uprobe;
839 int ret;
840
841 if (!inode || !uc || uc->next)
842 return -EINVAL;
843
844 if (offset > i_size_read(inode))
845 return -EINVAL;
846
847 ret = 0;
848 mutex_lock(uprobes_hash(inode));
849 uprobe = alloc_uprobe(inode, offset);
850
851 if (!uprobe) {
852 ret = -ENOMEM;
853 } else if (!consumer_add(uprobe, uc)) {
854 ret = __uprobe_register(uprobe);
855 if (ret) {
856 uprobe->consumers = NULL;
857 __uprobe_unregister(uprobe);
858 } else {
859 set_bit(UPROBE_RUN_HANDLER, &uprobe->flags);
860 }
861 }
862
863 mutex_unlock(uprobes_hash(inode));
864 if (uprobe)
865 put_uprobe(uprobe);
866
867 return ret;
868 }
869
870 /*
871 * uprobe_unregister - unregister a already registered probe.
872 * @inode: the file in which the probe has to be removed.
873 * @offset: offset from the start of the file.
874 * @uc: identify which probe if multiple probes are colocated.
875 */
876 void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
877 {
878 struct uprobe *uprobe;
879
880 if (!inode || !uc)
881 return;
882
883 uprobe = find_uprobe(inode, offset);
884 if (!uprobe)
885 return;
886
887 mutex_lock(uprobes_hash(inode));
888
889 if (consumer_del(uprobe, uc)) {
890 if (!uprobe->consumers) {
891 __uprobe_unregister(uprobe);
892 clear_bit(UPROBE_RUN_HANDLER, &uprobe->flags);
893 }
894 }
895
896 mutex_unlock(uprobes_hash(inode));
897 if (uprobe)
898 put_uprobe(uprobe);
899 }
900
901 static struct rb_node *
902 find_node_in_range(struct inode *inode, loff_t min, loff_t max)
903 {
904 struct rb_node *n = uprobes_tree.rb_node;
905
906 while (n) {
907 struct uprobe *u = rb_entry(n, struct uprobe, rb_node);
908
909 if (inode < u->inode) {
910 n = n->rb_left;
911 } else if (inode > u->inode) {
912 n = n->rb_right;
913 } else {
914 if (max < u->offset)
915 n = n->rb_left;
916 else if (min > u->offset)
917 n = n->rb_right;
918 else
919 break;
920 }
921 }
922
923 return n;
924 }
925
926 /*
927 * For a given range in vma, build a list of probes that need to be inserted.
928 */
929 static void build_probe_list(struct inode *inode,
930 struct vm_area_struct *vma,
931 unsigned long start, unsigned long end,
932 struct list_head *head)
933 {
934 loff_t min, max;
935 struct rb_node *n, *t;
936 struct uprobe *u;
937
938 INIT_LIST_HEAD(head);
939 min = vaddr_to_offset(vma, start);
940 max = min + (end - start) - 1;
941
942 spin_lock(&uprobes_treelock);
943 n = find_node_in_range(inode, min, max);
944 if (n) {
945 for (t = n; t; t = rb_prev(t)) {
946 u = rb_entry(t, struct uprobe, rb_node);
947 if (u->inode != inode || u->offset < min)
948 break;
949 list_add(&u->pending_list, head);
950 atomic_inc(&u->ref);
951 }
952 for (t = n; (t = rb_next(t)); ) {
953 u = rb_entry(t, struct uprobe, rb_node);
954 if (u->inode != inode || u->offset > max)
955 break;
956 list_add(&u->pending_list, head);
957 atomic_inc(&u->ref);
958 }
959 }
960 spin_unlock(&uprobes_treelock);
961 }
962
963 /*
964 * Called from mmap_region/vma_adjust with mm->mmap_sem acquired.
965 *
966 * Currently we ignore all errors and always return 0, the callers
967 * can't handle the failure anyway.
968 */
969 int uprobe_mmap(struct vm_area_struct *vma)
970 {
971 struct list_head tmp_list;
972 struct uprobe *uprobe, *u;
973 struct inode *inode;
974
975 if (!atomic_read(&uprobe_events) || !valid_vma(vma, true))
976 return 0;
977
978 inode = vma->vm_file->f_mapping->host;
979 if (!inode)
980 return 0;
981
982 mutex_lock(uprobes_mmap_hash(inode));
983 build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list);
984
985 list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
986 if (!fatal_signal_pending(current)) {
987 unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset);
988 install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
989 }
990 put_uprobe(uprobe);
991 }
992 mutex_unlock(uprobes_mmap_hash(inode));
993
994 return 0;
995 }
996
997 static bool
998 vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end)
999 {
1000 loff_t min, max;
1001 struct inode *inode;
1002 struct rb_node *n;
1003
1004 inode = vma->vm_file->f_mapping->host;
1005
1006 min = vaddr_to_offset(vma, start);
1007 max = min + (end - start) - 1;
1008
1009 spin_lock(&uprobes_treelock);
1010 n = find_node_in_range(inode, min, max);
1011 spin_unlock(&uprobes_treelock);
1012
1013 return !!n;
1014 }
1015
1016 /*
1017 * Called in context of a munmap of a vma.
1018 */
1019 void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1020 {
1021 if (!atomic_read(&uprobe_events) || !valid_vma(vma, false))
1022 return;
1023
1024 if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */
1025 return;
1026
1027 if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) ||
1028 test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags))
1029 return;
1030
1031 if (vma_has_uprobes(vma, start, end))
1032 set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags);
1033 }
1034
1035 /* Slot allocation for XOL */
1036 static int xol_add_vma(struct xol_area *area)
1037 {
1038 struct mm_struct *mm;
1039 int ret;
1040
1041 area->page = alloc_page(GFP_HIGHUSER);
1042 if (!area->page)
1043 return -ENOMEM;
1044
1045 ret = -EALREADY;
1046 mm = current->mm;
1047
1048 down_write(&mm->mmap_sem);
1049 if (mm->uprobes_state.xol_area)
1050 goto fail;
1051
1052 ret = -ENOMEM;
1053
1054 /* Try to map as high as possible, this is only a hint. */
1055 area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE, PAGE_SIZE, 0, 0);
1056 if (area->vaddr & ~PAGE_MASK) {
1057 ret = area->vaddr;
1058 goto fail;
1059 }
1060
1061 ret = install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1062 VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO, &area->page);
1063 if (ret)
1064 goto fail;
1065
1066 smp_wmb(); /* pairs with get_xol_area() */
1067 mm->uprobes_state.xol_area = area;
1068 ret = 0;
1069
1070 fail:
1071 up_write(&mm->mmap_sem);
1072 if (ret)
1073 __free_page(area->page);
1074
1075 return ret;
1076 }
1077
1078 static struct xol_area *get_xol_area(struct mm_struct *mm)
1079 {
1080 struct xol_area *area;
1081
1082 area = mm->uprobes_state.xol_area;
1083 smp_read_barrier_depends(); /* pairs with wmb in xol_add_vma() */
1084
1085 return area;
1086 }
1087
1088 /*
1089 * xol_alloc_area - Allocate process's xol_area.
1090 * This area will be used for storing instructions for execution out of
1091 * line.
1092 *
1093 * Returns the allocated area or NULL.
1094 */
1095 static struct xol_area *xol_alloc_area(void)
1096 {
1097 struct xol_area *area;
1098
1099 area = kzalloc(sizeof(*area), GFP_KERNEL);
1100 if (unlikely(!area))
1101 return NULL;
1102
1103 area->bitmap = kzalloc(BITS_TO_LONGS(UINSNS_PER_PAGE) * sizeof(long), GFP_KERNEL);
1104
1105 if (!area->bitmap)
1106 goto fail;
1107
1108 init_waitqueue_head(&area->wq);
1109 if (!xol_add_vma(area))
1110 return area;
1111
1112 fail:
1113 kfree(area->bitmap);
1114 kfree(area);
1115
1116 return get_xol_area(current->mm);
1117 }
1118
1119 /*
1120 * uprobe_clear_state - Free the area allocated for slots.
1121 */
1122 void uprobe_clear_state(struct mm_struct *mm)
1123 {
1124 struct xol_area *area = mm->uprobes_state.xol_area;
1125
1126 if (!area)
1127 return;
1128
1129 put_page(area->page);
1130 kfree(area->bitmap);
1131 kfree(area);
1132 }
1133
1134 void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm)
1135 {
1136 newmm->uprobes_state.xol_area = NULL;
1137
1138 if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) {
1139 set_bit(MMF_HAS_UPROBES, &newmm->flags);
1140 /* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */
1141 set_bit(MMF_RECALC_UPROBES, &newmm->flags);
1142 }
1143 }
1144
1145 /*
1146 * - search for a free slot.
1147 */
1148 static unsigned long xol_take_insn_slot(struct xol_area *area)
1149 {
1150 unsigned long slot_addr;
1151 int slot_nr;
1152
1153 do {
1154 slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1155 if (slot_nr < UINSNS_PER_PAGE) {
1156 if (!test_and_set_bit(slot_nr, area->bitmap))
1157 break;
1158
1159 slot_nr = UINSNS_PER_PAGE;
1160 continue;
1161 }
1162 wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
1163 } while (slot_nr >= UINSNS_PER_PAGE);
1164
1165 slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
1166 atomic_inc(&area->slot_count);
1167
1168 return slot_addr;
1169 }
1170
1171 /*
1172 * xol_get_insn_slot - If was not allocated a slot, then
1173 * allocate a slot.
1174 * Returns the allocated slot address or 0.
1175 */
1176 static unsigned long xol_get_insn_slot(struct uprobe *uprobe, unsigned long slot_addr)
1177 {
1178 struct xol_area *area;
1179 unsigned long offset;
1180 void *vaddr;
1181
1182 area = get_xol_area(current->mm);
1183 if (!area) {
1184 area = xol_alloc_area();
1185 if (!area)
1186 return 0;
1187 }
1188 current->utask->xol_vaddr = xol_take_insn_slot(area);
1189
1190 /*
1191 * Initialize the slot if xol_vaddr points to valid
1192 * instruction slot.
1193 */
1194 if (unlikely(!current->utask->xol_vaddr))
1195 return 0;
1196
1197 current->utask->vaddr = slot_addr;
1198 offset = current->utask->xol_vaddr & ~PAGE_MASK;
1199 vaddr = kmap_atomic(area->page);
1200 memcpy(vaddr + offset, uprobe->arch.insn, MAX_UINSN_BYTES);
1201 kunmap_atomic(vaddr);
1202
1203 return current->utask->xol_vaddr;
1204 }
1205
1206 /*
1207 * xol_free_insn_slot - If slot was earlier allocated by
1208 * @xol_get_insn_slot(), make the slot available for
1209 * subsequent requests.
1210 */
1211 static void xol_free_insn_slot(struct task_struct *tsk)
1212 {
1213 struct xol_area *area;
1214 unsigned long vma_end;
1215 unsigned long slot_addr;
1216
1217 if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
1218 return;
1219
1220 slot_addr = tsk->utask->xol_vaddr;
1221
1222 if (unlikely(!slot_addr || IS_ERR_VALUE(slot_addr)))
1223 return;
1224
1225 area = tsk->mm->uprobes_state.xol_area;
1226 vma_end = area->vaddr + PAGE_SIZE;
1227 if (area->vaddr <= slot_addr && slot_addr < vma_end) {
1228 unsigned long offset;
1229 int slot_nr;
1230
1231 offset = slot_addr - area->vaddr;
1232 slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1233 if (slot_nr >= UINSNS_PER_PAGE)
1234 return;
1235
1236 clear_bit(slot_nr, area->bitmap);
1237 atomic_dec(&area->slot_count);
1238 if (waitqueue_active(&area->wq))
1239 wake_up(&area->wq);
1240
1241 tsk->utask->xol_vaddr = 0;
1242 }
1243 }
1244
1245 /**
1246 * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1247 * @regs: Reflects the saved state of the task after it has hit a breakpoint
1248 * instruction.
1249 * Return the address of the breakpoint instruction.
1250 */
1251 unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1252 {
1253 return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1254 }
1255
1256 /*
1257 * Called with no locks held.
1258 * Called in context of a exiting or a exec-ing thread.
1259 */
1260 void uprobe_free_utask(struct task_struct *t)
1261 {
1262 struct uprobe_task *utask = t->utask;
1263
1264 if (!utask)
1265 return;
1266
1267 if (utask->active_uprobe)
1268 put_uprobe(utask->active_uprobe);
1269
1270 xol_free_insn_slot(t);
1271 kfree(utask);
1272 t->utask = NULL;
1273 }
1274
1275 /*
1276 * Called in context of a new clone/fork from copy_process.
1277 */
1278 void uprobe_copy_process(struct task_struct *t)
1279 {
1280 t->utask = NULL;
1281 }
1282
1283 /*
1284 * Allocate a uprobe_task object for the task.
1285 * Called when the thread hits a breakpoint for the first time.
1286 *
1287 * Returns:
1288 * - pointer to new uprobe_task on success
1289 * - NULL otherwise
1290 */
1291 static struct uprobe_task *add_utask(void)
1292 {
1293 struct uprobe_task *utask;
1294
1295 utask = kzalloc(sizeof *utask, GFP_KERNEL);
1296 if (unlikely(!utask))
1297 return NULL;
1298
1299 current->utask = utask;
1300 return utask;
1301 }
1302
1303 /* Prepare to single-step probed instruction out of line. */
1304 static int
1305 pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long vaddr)
1306 {
1307 if (xol_get_insn_slot(uprobe, vaddr) && !arch_uprobe_pre_xol(&uprobe->arch, regs))
1308 return 0;
1309
1310 return -EFAULT;
1311 }
1312
1313 /*
1314 * If we are singlestepping, then ensure this thread is not connected to
1315 * non-fatal signals until completion of singlestep. When xol insn itself
1316 * triggers the signal, restart the original insn even if the task is
1317 * already SIGKILL'ed (since coredump should report the correct ip). This
1318 * is even more important if the task has a handler for SIGSEGV/etc, The
1319 * _same_ instruction should be repeated again after return from the signal
1320 * handler, and SSTEP can never finish in this case.
1321 */
1322 bool uprobe_deny_signal(void)
1323 {
1324 struct task_struct *t = current;
1325 struct uprobe_task *utask = t->utask;
1326
1327 if (likely(!utask || !utask->active_uprobe))
1328 return false;
1329
1330 WARN_ON_ONCE(utask->state != UTASK_SSTEP);
1331
1332 if (signal_pending(t)) {
1333 spin_lock_irq(&t->sighand->siglock);
1334 clear_tsk_thread_flag(t, TIF_SIGPENDING);
1335 spin_unlock_irq(&t->sighand->siglock);
1336
1337 if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
1338 utask->state = UTASK_SSTEP_TRAPPED;
1339 set_tsk_thread_flag(t, TIF_UPROBE);
1340 set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
1341 }
1342 }
1343
1344 return true;
1345 }
1346
1347 /*
1348 * Avoid singlestepping the original instruction if the original instruction
1349 * is a NOP or can be emulated.
1350 */
1351 static bool can_skip_sstep(struct uprobe *uprobe, struct pt_regs *regs)
1352 {
1353 if (test_bit(UPROBE_SKIP_SSTEP, &uprobe->flags)) {
1354 if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
1355 return true;
1356 clear_bit(UPROBE_SKIP_SSTEP, &uprobe->flags);
1357 }
1358 return false;
1359 }
1360
1361 static void mmf_recalc_uprobes(struct mm_struct *mm)
1362 {
1363 struct vm_area_struct *vma;
1364
1365 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1366 if (!valid_vma(vma, false))
1367 continue;
1368 /*
1369 * This is not strictly accurate, we can race with
1370 * uprobe_unregister() and see the already removed
1371 * uprobe if delete_uprobe() was not yet called.
1372 */
1373 if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end))
1374 return;
1375 }
1376
1377 clear_bit(MMF_HAS_UPROBES, &mm->flags);
1378 }
1379
1380 static int is_swbp_at_addr(struct mm_struct *mm, unsigned long vaddr)
1381 {
1382 struct page *page;
1383 uprobe_opcode_t opcode;
1384 int result;
1385
1386 pagefault_disable();
1387 result = __copy_from_user_inatomic(&opcode, (void __user*)vaddr,
1388 sizeof(opcode));
1389 pagefault_enable();
1390
1391 if (likely(result == 0))
1392 goto out;
1393
1394 result = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &page, NULL);
1395 if (result < 0)
1396 return result;
1397
1398 copy_opcode(page, vaddr, &opcode);
1399 put_page(page);
1400 out:
1401 return is_swbp_insn(&opcode);
1402 }
1403
1404 static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
1405 {
1406 struct mm_struct *mm = current->mm;
1407 struct uprobe *uprobe = NULL;
1408 struct vm_area_struct *vma;
1409
1410 down_read(&mm->mmap_sem);
1411 vma = find_vma(mm, bp_vaddr);
1412 if (vma && vma->vm_start <= bp_vaddr) {
1413 if (valid_vma(vma, false)) {
1414 struct inode *inode = vma->vm_file->f_mapping->host;
1415 loff_t offset = vaddr_to_offset(vma, bp_vaddr);
1416
1417 uprobe = find_uprobe(inode, offset);
1418 }
1419
1420 if (!uprobe)
1421 *is_swbp = is_swbp_at_addr(mm, bp_vaddr);
1422 } else {
1423 *is_swbp = -EFAULT;
1424 }
1425
1426 if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags))
1427 mmf_recalc_uprobes(mm);
1428 up_read(&mm->mmap_sem);
1429
1430 return uprobe;
1431 }
1432
1433 void __weak arch_uprobe_enable_step(struct arch_uprobe *arch)
1434 {
1435 user_enable_single_step(current);
1436 }
1437
1438 void __weak arch_uprobe_disable_step(struct arch_uprobe *arch)
1439 {
1440 user_disable_single_step(current);
1441 }
1442
1443 /*
1444 * Run handler and ask thread to singlestep.
1445 * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
1446 */
1447 static void handle_swbp(struct pt_regs *regs)
1448 {
1449 struct uprobe_task *utask;
1450 struct uprobe *uprobe;
1451 unsigned long bp_vaddr;
1452 int uninitialized_var(is_swbp);
1453
1454 bp_vaddr = uprobe_get_swbp_addr(regs);
1455 uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
1456
1457 if (!uprobe) {
1458 if (is_swbp > 0) {
1459 /* No matching uprobe; signal SIGTRAP. */
1460 send_sig(SIGTRAP, current, 0);
1461 } else {
1462 /*
1463 * Either we raced with uprobe_unregister() or we can't
1464 * access this memory. The latter is only possible if
1465 * another thread plays with our ->mm. In both cases
1466 * we can simply restart. If this vma was unmapped we
1467 * can pretend this insn was not executed yet and get
1468 * the (correct) SIGSEGV after restart.
1469 */
1470 instruction_pointer_set(regs, bp_vaddr);
1471 }
1472 return;
1473 }
1474 /*
1475 * TODO: move copy_insn/etc into _register and remove this hack.
1476 * After we hit the bp, _unregister + _register can install the
1477 * new and not-yet-analyzed uprobe at the same address, restart.
1478 */
1479 smp_rmb(); /* pairs with wmb() in install_breakpoint() */
1480 if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags)))
1481 goto restart;
1482
1483 utask = current->utask;
1484 if (!utask) {
1485 utask = add_utask();
1486 /* Cannot allocate; re-execute the instruction. */
1487 if (!utask)
1488 goto restart;
1489 }
1490
1491 handler_chain(uprobe, regs);
1492 if (can_skip_sstep(uprobe, regs))
1493 goto out;
1494
1495 if (!pre_ssout(uprobe, regs, bp_vaddr)) {
1496 arch_uprobe_enable_step(&uprobe->arch);
1497 utask->active_uprobe = uprobe;
1498 utask->state = UTASK_SSTEP;
1499 return;
1500 }
1501
1502 restart:
1503 /*
1504 * cannot singlestep; cannot skip instruction;
1505 * re-execute the instruction.
1506 */
1507 instruction_pointer_set(regs, bp_vaddr);
1508 out:
1509 put_uprobe(uprobe);
1510 }
1511
1512 /*
1513 * Perform required fix-ups and disable singlestep.
1514 * Allow pending signals to take effect.
1515 */
1516 static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
1517 {
1518 struct uprobe *uprobe;
1519
1520 uprobe = utask->active_uprobe;
1521 if (utask->state == UTASK_SSTEP_ACK)
1522 arch_uprobe_post_xol(&uprobe->arch, regs);
1523 else if (utask->state == UTASK_SSTEP_TRAPPED)
1524 arch_uprobe_abort_xol(&uprobe->arch, regs);
1525 else
1526 WARN_ON_ONCE(1);
1527
1528 arch_uprobe_disable_step(&uprobe->arch);
1529 put_uprobe(uprobe);
1530 utask->active_uprobe = NULL;
1531 utask->state = UTASK_RUNNING;
1532 xol_free_insn_slot(current);
1533
1534 spin_lock_irq(&current->sighand->siglock);
1535 recalc_sigpending(); /* see uprobe_deny_signal() */
1536 spin_unlock_irq(&current->sighand->siglock);
1537 }
1538
1539 /*
1540 * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and
1541 * allows the thread to return from interrupt. After that handle_swbp()
1542 * sets utask->active_uprobe.
1543 *
1544 * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag
1545 * and allows the thread to return from interrupt.
1546 *
1547 * While returning to userspace, thread notices the TIF_UPROBE flag and calls
1548 * uprobe_notify_resume().
1549 */
1550 void uprobe_notify_resume(struct pt_regs *regs)
1551 {
1552 struct uprobe_task *utask;
1553
1554 clear_thread_flag(TIF_UPROBE);
1555
1556 utask = current->utask;
1557 if (utask && utask->active_uprobe)
1558 handle_singlestep(utask, regs);
1559 else
1560 handle_swbp(regs);
1561 }
1562
1563 /*
1564 * uprobe_pre_sstep_notifier gets called from interrupt context as part of
1565 * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
1566 */
1567 int uprobe_pre_sstep_notifier(struct pt_regs *regs)
1568 {
1569 if (!current->mm || !test_bit(MMF_HAS_UPROBES, &current->mm->flags))
1570 return 0;
1571
1572 set_thread_flag(TIF_UPROBE);
1573 return 1;
1574 }
1575
1576 /*
1577 * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
1578 * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
1579 */
1580 int uprobe_post_sstep_notifier(struct pt_regs *regs)
1581 {
1582 struct uprobe_task *utask = current->utask;
1583
1584 if (!current->mm || !utask || !utask->active_uprobe)
1585 /* task is currently not uprobed */
1586 return 0;
1587
1588 utask->state = UTASK_SSTEP_ACK;
1589 set_thread_flag(TIF_UPROBE);
1590 return 1;
1591 }
1592
1593 static struct notifier_block uprobe_exception_nb = {
1594 .notifier_call = arch_uprobe_exception_notify,
1595 .priority = INT_MAX-1, /* notified after kprobes, kgdb */
1596 };
1597
1598 static int __init init_uprobes(void)
1599 {
1600 int i;
1601
1602 for (i = 0; i < UPROBES_HASH_SZ; i++) {
1603 mutex_init(&uprobes_mutex[i]);
1604 mutex_init(&uprobes_mmap_mutex[i]);
1605 }
1606
1607 return register_die_notifier(&uprobe_exception_nb);
1608 }
1609 module_init(init_uprobes);
1610
1611 static void __exit exit_uprobes(void)
1612 {
1613 }
1614 module_exit(exit_uprobes);