]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - kernel/events/uprobes.c
Merge tag 'powerpc-5.2-2' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc...
[mirror_ubuntu-hirsute-kernel.git] / kernel / events / uprobes.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * User-space Probes (UProbes)
4 *
5 * Copyright (C) IBM Corporation, 2008-2012
6 * Authors:
7 * Srikar Dronamraju
8 * Jim Keniston
9 * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra
10 */
11
12 #include <linux/kernel.h>
13 #include <linux/highmem.h>
14 #include <linux/pagemap.h> /* read_mapping_page */
15 #include <linux/slab.h>
16 #include <linux/sched.h>
17 #include <linux/sched/mm.h>
18 #include <linux/sched/coredump.h>
19 #include <linux/export.h>
20 #include <linux/rmap.h> /* anon_vma_prepare */
21 #include <linux/mmu_notifier.h> /* set_pte_at_notify */
22 #include <linux/swap.h> /* try_to_free_swap */
23 #include <linux/ptrace.h> /* user_enable_single_step */
24 #include <linux/kdebug.h> /* notifier mechanism */
25 #include "../../mm/internal.h" /* munlock_vma_page */
26 #include <linux/percpu-rwsem.h>
27 #include <linux/task_work.h>
28 #include <linux/shmem_fs.h>
29
30 #include <linux/uprobes.h>
31
32 #define UINSNS_PER_PAGE (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
33 #define MAX_UPROBE_XOL_SLOTS UINSNS_PER_PAGE
34
35 static struct rb_root uprobes_tree = RB_ROOT;
36 /*
37 * allows us to skip the uprobe_mmap if there are no uprobe events active
38 * at this time. Probably a fine grained per inode count is better?
39 */
40 #define no_uprobe_events() RB_EMPTY_ROOT(&uprobes_tree)
41
42 static DEFINE_SPINLOCK(uprobes_treelock); /* serialize rbtree access */
43
44 #define UPROBES_HASH_SZ 13
45 /* serialize uprobe->pending_list */
46 static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
47 #define uprobes_mmap_hash(v) (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
48
49 static struct percpu_rw_semaphore dup_mmap_sem;
50
51 /* Have a copy of original instruction */
52 #define UPROBE_COPY_INSN 0
53
54 struct uprobe {
55 struct rb_node rb_node; /* node in the rb tree */
56 refcount_t ref;
57 struct rw_semaphore register_rwsem;
58 struct rw_semaphore consumer_rwsem;
59 struct list_head pending_list;
60 struct uprobe_consumer *consumers;
61 struct inode *inode; /* Also hold a ref to inode */
62 loff_t offset;
63 loff_t ref_ctr_offset;
64 unsigned long flags;
65
66 /*
67 * The generic code assumes that it has two members of unknown type
68 * owned by the arch-specific code:
69 *
70 * insn - copy_insn() saves the original instruction here for
71 * arch_uprobe_analyze_insn().
72 *
73 * ixol - potentially modified instruction to execute out of
74 * line, copied to xol_area by xol_get_insn_slot().
75 */
76 struct arch_uprobe arch;
77 };
78
79 struct delayed_uprobe {
80 struct list_head list;
81 struct uprobe *uprobe;
82 struct mm_struct *mm;
83 };
84
85 static DEFINE_MUTEX(delayed_uprobe_lock);
86 static LIST_HEAD(delayed_uprobe_list);
87
88 /*
89 * Execute out of line area: anonymous executable mapping installed
90 * by the probed task to execute the copy of the original instruction
91 * mangled by set_swbp().
92 *
93 * On a breakpoint hit, thread contests for a slot. It frees the
94 * slot after singlestep. Currently a fixed number of slots are
95 * allocated.
96 */
97 struct xol_area {
98 wait_queue_head_t wq; /* if all slots are busy */
99 atomic_t slot_count; /* number of in-use slots */
100 unsigned long *bitmap; /* 0 = free slot */
101
102 struct vm_special_mapping xol_mapping;
103 struct page *pages[2];
104 /*
105 * We keep the vma's vm_start rather than a pointer to the vma
106 * itself. The probed process or a naughty kernel module could make
107 * the vma go away, and we must handle that reasonably gracefully.
108 */
109 unsigned long vaddr; /* Page(s) of instruction slots */
110 };
111
112 /*
113 * valid_vma: Verify if the specified vma is an executable vma
114 * Relax restrictions while unregistering: vm_flags might have
115 * changed after breakpoint was inserted.
116 * - is_register: indicates if we are in register context.
117 * - Return 1 if the specified virtual address is in an
118 * executable vma.
119 */
120 static bool valid_vma(struct vm_area_struct *vma, bool is_register)
121 {
122 vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_MAYSHARE;
123
124 if (is_register)
125 flags |= VM_WRITE;
126
127 return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC;
128 }
129
130 static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset)
131 {
132 return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
133 }
134
135 static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr)
136 {
137 return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start);
138 }
139
140 /**
141 * __replace_page - replace page in vma by new page.
142 * based on replace_page in mm/ksm.c
143 *
144 * @vma: vma that holds the pte pointing to page
145 * @addr: address the old @page is mapped at
146 * @page: the cowed page we are replacing by kpage
147 * @kpage: the modified page we replace page by
148 *
149 * Returns 0 on success, -EFAULT on failure.
150 */
151 static int __replace_page(struct vm_area_struct *vma, unsigned long addr,
152 struct page *old_page, struct page *new_page)
153 {
154 struct mm_struct *mm = vma->vm_mm;
155 struct page_vma_mapped_walk pvmw = {
156 .page = old_page,
157 .vma = vma,
158 .address = addr,
159 };
160 int err;
161 struct mmu_notifier_range range;
162 struct mem_cgroup *memcg;
163
164 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, addr,
165 addr + PAGE_SIZE);
166
167 VM_BUG_ON_PAGE(PageTransHuge(old_page), old_page);
168
169 err = mem_cgroup_try_charge(new_page, vma->vm_mm, GFP_KERNEL, &memcg,
170 false);
171 if (err)
172 return err;
173
174 /* For try_to_free_swap() and munlock_vma_page() below */
175 lock_page(old_page);
176
177 mmu_notifier_invalidate_range_start(&range);
178 err = -EAGAIN;
179 if (!page_vma_mapped_walk(&pvmw)) {
180 mem_cgroup_cancel_charge(new_page, memcg, false);
181 goto unlock;
182 }
183 VM_BUG_ON_PAGE(addr != pvmw.address, old_page);
184
185 get_page(new_page);
186 page_add_new_anon_rmap(new_page, vma, addr, false);
187 mem_cgroup_commit_charge(new_page, memcg, false, false);
188 lru_cache_add_active_or_unevictable(new_page, vma);
189
190 if (!PageAnon(old_page)) {
191 dec_mm_counter(mm, mm_counter_file(old_page));
192 inc_mm_counter(mm, MM_ANONPAGES);
193 }
194
195 flush_cache_page(vma, addr, pte_pfn(*pvmw.pte));
196 ptep_clear_flush_notify(vma, addr, pvmw.pte);
197 set_pte_at_notify(mm, addr, pvmw.pte,
198 mk_pte(new_page, vma->vm_page_prot));
199
200 page_remove_rmap(old_page, false);
201 if (!page_mapped(old_page))
202 try_to_free_swap(old_page);
203 page_vma_mapped_walk_done(&pvmw);
204
205 if (vma->vm_flags & VM_LOCKED)
206 munlock_vma_page(old_page);
207 put_page(old_page);
208
209 err = 0;
210 unlock:
211 mmu_notifier_invalidate_range_end(&range);
212 unlock_page(old_page);
213 return err;
214 }
215
216 /**
217 * is_swbp_insn - check if instruction is breakpoint instruction.
218 * @insn: instruction to be checked.
219 * Default implementation of is_swbp_insn
220 * Returns true if @insn is a breakpoint instruction.
221 */
222 bool __weak is_swbp_insn(uprobe_opcode_t *insn)
223 {
224 return *insn == UPROBE_SWBP_INSN;
225 }
226
227 /**
228 * is_trap_insn - check if instruction is breakpoint instruction.
229 * @insn: instruction to be checked.
230 * Default implementation of is_trap_insn
231 * Returns true if @insn is a breakpoint instruction.
232 *
233 * This function is needed for the case where an architecture has multiple
234 * trap instructions (like powerpc).
235 */
236 bool __weak is_trap_insn(uprobe_opcode_t *insn)
237 {
238 return is_swbp_insn(insn);
239 }
240
241 static void copy_from_page(struct page *page, unsigned long vaddr, void *dst, int len)
242 {
243 void *kaddr = kmap_atomic(page);
244 memcpy(dst, kaddr + (vaddr & ~PAGE_MASK), len);
245 kunmap_atomic(kaddr);
246 }
247
248 static void copy_to_page(struct page *page, unsigned long vaddr, const void *src, int len)
249 {
250 void *kaddr = kmap_atomic(page);
251 memcpy(kaddr + (vaddr & ~PAGE_MASK), src, len);
252 kunmap_atomic(kaddr);
253 }
254
255 static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode)
256 {
257 uprobe_opcode_t old_opcode;
258 bool is_swbp;
259
260 /*
261 * Note: We only check if the old_opcode is UPROBE_SWBP_INSN here.
262 * We do not check if it is any other 'trap variant' which could
263 * be conditional trap instruction such as the one powerpc supports.
264 *
265 * The logic is that we do not care if the underlying instruction
266 * is a trap variant; uprobes always wins over any other (gdb)
267 * breakpoint.
268 */
269 copy_from_page(page, vaddr, &old_opcode, UPROBE_SWBP_INSN_SIZE);
270 is_swbp = is_swbp_insn(&old_opcode);
271
272 if (is_swbp_insn(new_opcode)) {
273 if (is_swbp) /* register: already installed? */
274 return 0;
275 } else {
276 if (!is_swbp) /* unregister: was it changed by us? */
277 return 0;
278 }
279
280 return 1;
281 }
282
283 static struct delayed_uprobe *
284 delayed_uprobe_check(struct uprobe *uprobe, struct mm_struct *mm)
285 {
286 struct delayed_uprobe *du;
287
288 list_for_each_entry(du, &delayed_uprobe_list, list)
289 if (du->uprobe == uprobe && du->mm == mm)
290 return du;
291 return NULL;
292 }
293
294 static int delayed_uprobe_add(struct uprobe *uprobe, struct mm_struct *mm)
295 {
296 struct delayed_uprobe *du;
297
298 if (delayed_uprobe_check(uprobe, mm))
299 return 0;
300
301 du = kzalloc(sizeof(*du), GFP_KERNEL);
302 if (!du)
303 return -ENOMEM;
304
305 du->uprobe = uprobe;
306 du->mm = mm;
307 list_add(&du->list, &delayed_uprobe_list);
308 return 0;
309 }
310
311 static void delayed_uprobe_delete(struct delayed_uprobe *du)
312 {
313 if (WARN_ON(!du))
314 return;
315 list_del(&du->list);
316 kfree(du);
317 }
318
319 static void delayed_uprobe_remove(struct uprobe *uprobe, struct mm_struct *mm)
320 {
321 struct list_head *pos, *q;
322 struct delayed_uprobe *du;
323
324 if (!uprobe && !mm)
325 return;
326
327 list_for_each_safe(pos, q, &delayed_uprobe_list) {
328 du = list_entry(pos, struct delayed_uprobe, list);
329
330 if (uprobe && du->uprobe != uprobe)
331 continue;
332 if (mm && du->mm != mm)
333 continue;
334
335 delayed_uprobe_delete(du);
336 }
337 }
338
339 static bool valid_ref_ctr_vma(struct uprobe *uprobe,
340 struct vm_area_struct *vma)
341 {
342 unsigned long vaddr = offset_to_vaddr(vma, uprobe->ref_ctr_offset);
343
344 return uprobe->ref_ctr_offset &&
345 vma->vm_file &&
346 file_inode(vma->vm_file) == uprobe->inode &&
347 (vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE &&
348 vma->vm_start <= vaddr &&
349 vma->vm_end > vaddr;
350 }
351
352 static struct vm_area_struct *
353 find_ref_ctr_vma(struct uprobe *uprobe, struct mm_struct *mm)
354 {
355 struct vm_area_struct *tmp;
356
357 for (tmp = mm->mmap; tmp; tmp = tmp->vm_next)
358 if (valid_ref_ctr_vma(uprobe, tmp))
359 return tmp;
360
361 return NULL;
362 }
363
364 static int
365 __update_ref_ctr(struct mm_struct *mm, unsigned long vaddr, short d)
366 {
367 void *kaddr;
368 struct page *page;
369 struct vm_area_struct *vma;
370 int ret;
371 short *ptr;
372
373 if (!vaddr || !d)
374 return -EINVAL;
375
376 ret = get_user_pages_remote(NULL, mm, vaddr, 1,
377 FOLL_WRITE, &page, &vma, NULL);
378 if (unlikely(ret <= 0)) {
379 /*
380 * We are asking for 1 page. If get_user_pages_remote() fails,
381 * it may return 0, in that case we have to return error.
382 */
383 return ret == 0 ? -EBUSY : ret;
384 }
385
386 kaddr = kmap_atomic(page);
387 ptr = kaddr + (vaddr & ~PAGE_MASK);
388
389 if (unlikely(*ptr + d < 0)) {
390 pr_warn("ref_ctr going negative. vaddr: 0x%lx, "
391 "curr val: %d, delta: %d\n", vaddr, *ptr, d);
392 ret = -EINVAL;
393 goto out;
394 }
395
396 *ptr += d;
397 ret = 0;
398 out:
399 kunmap_atomic(kaddr);
400 put_page(page);
401 return ret;
402 }
403
404 static void update_ref_ctr_warn(struct uprobe *uprobe,
405 struct mm_struct *mm, short d)
406 {
407 pr_warn("ref_ctr %s failed for inode: 0x%lx offset: "
408 "0x%llx ref_ctr_offset: 0x%llx of mm: 0x%pK\n",
409 d > 0 ? "increment" : "decrement", uprobe->inode->i_ino,
410 (unsigned long long) uprobe->offset,
411 (unsigned long long) uprobe->ref_ctr_offset, mm);
412 }
413
414 static int update_ref_ctr(struct uprobe *uprobe, struct mm_struct *mm,
415 short d)
416 {
417 struct vm_area_struct *rc_vma;
418 unsigned long rc_vaddr;
419 int ret = 0;
420
421 rc_vma = find_ref_ctr_vma(uprobe, mm);
422
423 if (rc_vma) {
424 rc_vaddr = offset_to_vaddr(rc_vma, uprobe->ref_ctr_offset);
425 ret = __update_ref_ctr(mm, rc_vaddr, d);
426 if (ret)
427 update_ref_ctr_warn(uprobe, mm, d);
428
429 if (d > 0)
430 return ret;
431 }
432
433 mutex_lock(&delayed_uprobe_lock);
434 if (d > 0)
435 ret = delayed_uprobe_add(uprobe, mm);
436 else
437 delayed_uprobe_remove(uprobe, mm);
438 mutex_unlock(&delayed_uprobe_lock);
439
440 return ret;
441 }
442
443 /*
444 * NOTE:
445 * Expect the breakpoint instruction to be the smallest size instruction for
446 * the architecture. If an arch has variable length instruction and the
447 * breakpoint instruction is not of the smallest length instruction
448 * supported by that architecture then we need to modify is_trap_at_addr and
449 * uprobe_write_opcode accordingly. This would never be a problem for archs
450 * that have fixed length instructions.
451 *
452 * uprobe_write_opcode - write the opcode at a given virtual address.
453 * @mm: the probed process address space.
454 * @vaddr: the virtual address to store the opcode.
455 * @opcode: opcode to be written at @vaddr.
456 *
457 * Called with mm->mmap_sem held for write.
458 * Return 0 (success) or a negative errno.
459 */
460 int uprobe_write_opcode(struct arch_uprobe *auprobe, struct mm_struct *mm,
461 unsigned long vaddr, uprobe_opcode_t opcode)
462 {
463 struct uprobe *uprobe;
464 struct page *old_page, *new_page;
465 struct vm_area_struct *vma;
466 int ret, is_register, ref_ctr_updated = 0;
467
468 is_register = is_swbp_insn(&opcode);
469 uprobe = container_of(auprobe, struct uprobe, arch);
470
471 retry:
472 /* Read the page with vaddr into memory */
473 ret = get_user_pages_remote(NULL, mm, vaddr, 1,
474 FOLL_FORCE | FOLL_SPLIT, &old_page, &vma, NULL);
475 if (ret <= 0)
476 return ret;
477
478 ret = verify_opcode(old_page, vaddr, &opcode);
479 if (ret <= 0)
480 goto put_old;
481
482 /* We are going to replace instruction, update ref_ctr. */
483 if (!ref_ctr_updated && uprobe->ref_ctr_offset) {
484 ret = update_ref_ctr(uprobe, mm, is_register ? 1 : -1);
485 if (ret)
486 goto put_old;
487
488 ref_ctr_updated = 1;
489 }
490
491 ret = anon_vma_prepare(vma);
492 if (ret)
493 goto put_old;
494
495 ret = -ENOMEM;
496 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
497 if (!new_page)
498 goto put_old;
499
500 __SetPageUptodate(new_page);
501 copy_highpage(new_page, old_page);
502 copy_to_page(new_page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
503
504 ret = __replace_page(vma, vaddr, old_page, new_page);
505 put_page(new_page);
506 put_old:
507 put_page(old_page);
508
509 if (unlikely(ret == -EAGAIN))
510 goto retry;
511
512 /* Revert back reference counter if instruction update failed. */
513 if (ret && is_register && ref_ctr_updated)
514 update_ref_ctr(uprobe, mm, -1);
515
516 return ret;
517 }
518
519 /**
520 * set_swbp - store breakpoint at a given address.
521 * @auprobe: arch specific probepoint information.
522 * @mm: the probed process address space.
523 * @vaddr: the virtual address to insert the opcode.
524 *
525 * For mm @mm, store the breakpoint instruction at @vaddr.
526 * Return 0 (success) or a negative errno.
527 */
528 int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
529 {
530 return uprobe_write_opcode(auprobe, mm, vaddr, UPROBE_SWBP_INSN);
531 }
532
533 /**
534 * set_orig_insn - Restore the original instruction.
535 * @mm: the probed process address space.
536 * @auprobe: arch specific probepoint information.
537 * @vaddr: the virtual address to insert the opcode.
538 *
539 * For mm @mm, restore the original opcode (opcode) at @vaddr.
540 * Return 0 (success) or a negative errno.
541 */
542 int __weak
543 set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
544 {
545 return uprobe_write_opcode(auprobe, mm, vaddr,
546 *(uprobe_opcode_t *)&auprobe->insn);
547 }
548
549 static struct uprobe *get_uprobe(struct uprobe *uprobe)
550 {
551 refcount_inc(&uprobe->ref);
552 return uprobe;
553 }
554
555 static void put_uprobe(struct uprobe *uprobe)
556 {
557 if (refcount_dec_and_test(&uprobe->ref)) {
558 /*
559 * If application munmap(exec_vma) before uprobe_unregister()
560 * gets called, we don't get a chance to remove uprobe from
561 * delayed_uprobe_list from remove_breakpoint(). Do it here.
562 */
563 mutex_lock(&delayed_uprobe_lock);
564 delayed_uprobe_remove(uprobe, NULL);
565 mutex_unlock(&delayed_uprobe_lock);
566 kfree(uprobe);
567 }
568 }
569
570 static int match_uprobe(struct uprobe *l, struct uprobe *r)
571 {
572 if (l->inode < r->inode)
573 return -1;
574
575 if (l->inode > r->inode)
576 return 1;
577
578 if (l->offset < r->offset)
579 return -1;
580
581 if (l->offset > r->offset)
582 return 1;
583
584 return 0;
585 }
586
587 static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
588 {
589 struct uprobe u = { .inode = inode, .offset = offset };
590 struct rb_node *n = uprobes_tree.rb_node;
591 struct uprobe *uprobe;
592 int match;
593
594 while (n) {
595 uprobe = rb_entry(n, struct uprobe, rb_node);
596 match = match_uprobe(&u, uprobe);
597 if (!match)
598 return get_uprobe(uprobe);
599
600 if (match < 0)
601 n = n->rb_left;
602 else
603 n = n->rb_right;
604 }
605 return NULL;
606 }
607
608 /*
609 * Find a uprobe corresponding to a given inode:offset
610 * Acquires uprobes_treelock
611 */
612 static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
613 {
614 struct uprobe *uprobe;
615
616 spin_lock(&uprobes_treelock);
617 uprobe = __find_uprobe(inode, offset);
618 spin_unlock(&uprobes_treelock);
619
620 return uprobe;
621 }
622
623 static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
624 {
625 struct rb_node **p = &uprobes_tree.rb_node;
626 struct rb_node *parent = NULL;
627 struct uprobe *u;
628 int match;
629
630 while (*p) {
631 parent = *p;
632 u = rb_entry(parent, struct uprobe, rb_node);
633 match = match_uprobe(uprobe, u);
634 if (!match)
635 return get_uprobe(u);
636
637 if (match < 0)
638 p = &parent->rb_left;
639 else
640 p = &parent->rb_right;
641
642 }
643
644 u = NULL;
645 rb_link_node(&uprobe->rb_node, parent, p);
646 rb_insert_color(&uprobe->rb_node, &uprobes_tree);
647 /* get access + creation ref */
648 refcount_set(&uprobe->ref, 2);
649
650 return u;
651 }
652
653 /*
654 * Acquire uprobes_treelock.
655 * Matching uprobe already exists in rbtree;
656 * increment (access refcount) and return the matching uprobe.
657 *
658 * No matching uprobe; insert the uprobe in rb_tree;
659 * get a double refcount (access + creation) and return NULL.
660 */
661 static struct uprobe *insert_uprobe(struct uprobe *uprobe)
662 {
663 struct uprobe *u;
664
665 spin_lock(&uprobes_treelock);
666 u = __insert_uprobe(uprobe);
667 spin_unlock(&uprobes_treelock);
668
669 return u;
670 }
671
672 static void
673 ref_ctr_mismatch_warn(struct uprobe *cur_uprobe, struct uprobe *uprobe)
674 {
675 pr_warn("ref_ctr_offset mismatch. inode: 0x%lx offset: 0x%llx "
676 "ref_ctr_offset(old): 0x%llx ref_ctr_offset(new): 0x%llx\n",
677 uprobe->inode->i_ino, (unsigned long long) uprobe->offset,
678 (unsigned long long) cur_uprobe->ref_ctr_offset,
679 (unsigned long long) uprobe->ref_ctr_offset);
680 }
681
682 static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset,
683 loff_t ref_ctr_offset)
684 {
685 struct uprobe *uprobe, *cur_uprobe;
686
687 uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
688 if (!uprobe)
689 return NULL;
690
691 uprobe->inode = inode;
692 uprobe->offset = offset;
693 uprobe->ref_ctr_offset = ref_ctr_offset;
694 init_rwsem(&uprobe->register_rwsem);
695 init_rwsem(&uprobe->consumer_rwsem);
696
697 /* add to uprobes_tree, sorted on inode:offset */
698 cur_uprobe = insert_uprobe(uprobe);
699 /* a uprobe exists for this inode:offset combination */
700 if (cur_uprobe) {
701 if (cur_uprobe->ref_ctr_offset != uprobe->ref_ctr_offset) {
702 ref_ctr_mismatch_warn(cur_uprobe, uprobe);
703 put_uprobe(cur_uprobe);
704 kfree(uprobe);
705 return ERR_PTR(-EINVAL);
706 }
707 kfree(uprobe);
708 uprobe = cur_uprobe;
709 }
710
711 return uprobe;
712 }
713
714 static void consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
715 {
716 down_write(&uprobe->consumer_rwsem);
717 uc->next = uprobe->consumers;
718 uprobe->consumers = uc;
719 up_write(&uprobe->consumer_rwsem);
720 }
721
722 /*
723 * For uprobe @uprobe, delete the consumer @uc.
724 * Return true if the @uc is deleted successfully
725 * or return false.
726 */
727 static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
728 {
729 struct uprobe_consumer **con;
730 bool ret = false;
731
732 down_write(&uprobe->consumer_rwsem);
733 for (con = &uprobe->consumers; *con; con = &(*con)->next) {
734 if (*con == uc) {
735 *con = uc->next;
736 ret = true;
737 break;
738 }
739 }
740 up_write(&uprobe->consumer_rwsem);
741
742 return ret;
743 }
744
745 static int __copy_insn(struct address_space *mapping, struct file *filp,
746 void *insn, int nbytes, loff_t offset)
747 {
748 struct page *page;
749 /*
750 * Ensure that the page that has the original instruction is populated
751 * and in page-cache. If ->readpage == NULL it must be shmem_mapping(),
752 * see uprobe_register().
753 */
754 if (mapping->a_ops->readpage)
755 page = read_mapping_page(mapping, offset >> PAGE_SHIFT, filp);
756 else
757 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
758 if (IS_ERR(page))
759 return PTR_ERR(page);
760
761 copy_from_page(page, offset, insn, nbytes);
762 put_page(page);
763
764 return 0;
765 }
766
767 static int copy_insn(struct uprobe *uprobe, struct file *filp)
768 {
769 struct address_space *mapping = uprobe->inode->i_mapping;
770 loff_t offs = uprobe->offset;
771 void *insn = &uprobe->arch.insn;
772 int size = sizeof(uprobe->arch.insn);
773 int len, err = -EIO;
774
775 /* Copy only available bytes, -EIO if nothing was read */
776 do {
777 if (offs >= i_size_read(uprobe->inode))
778 break;
779
780 len = min_t(int, size, PAGE_SIZE - (offs & ~PAGE_MASK));
781 err = __copy_insn(mapping, filp, insn, len, offs);
782 if (err)
783 break;
784
785 insn += len;
786 offs += len;
787 size -= len;
788 } while (size);
789
790 return err;
791 }
792
793 static int prepare_uprobe(struct uprobe *uprobe, struct file *file,
794 struct mm_struct *mm, unsigned long vaddr)
795 {
796 int ret = 0;
797
798 if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
799 return ret;
800
801 /* TODO: move this into _register, until then we abuse this sem. */
802 down_write(&uprobe->consumer_rwsem);
803 if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
804 goto out;
805
806 ret = copy_insn(uprobe, file);
807 if (ret)
808 goto out;
809
810 ret = -ENOTSUPP;
811 if (is_trap_insn((uprobe_opcode_t *)&uprobe->arch.insn))
812 goto out;
813
814 ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
815 if (ret)
816 goto out;
817
818 /* uprobe_write_opcode() assumes we don't cross page boundary */
819 BUG_ON((uprobe->offset & ~PAGE_MASK) +
820 UPROBE_SWBP_INSN_SIZE > PAGE_SIZE);
821
822 smp_wmb(); /* pairs with the smp_rmb() in handle_swbp() */
823 set_bit(UPROBE_COPY_INSN, &uprobe->flags);
824
825 out:
826 up_write(&uprobe->consumer_rwsem);
827
828 return ret;
829 }
830
831 static inline bool consumer_filter(struct uprobe_consumer *uc,
832 enum uprobe_filter_ctx ctx, struct mm_struct *mm)
833 {
834 return !uc->filter || uc->filter(uc, ctx, mm);
835 }
836
837 static bool filter_chain(struct uprobe *uprobe,
838 enum uprobe_filter_ctx ctx, struct mm_struct *mm)
839 {
840 struct uprobe_consumer *uc;
841 bool ret = false;
842
843 down_read(&uprobe->consumer_rwsem);
844 for (uc = uprobe->consumers; uc; uc = uc->next) {
845 ret = consumer_filter(uc, ctx, mm);
846 if (ret)
847 break;
848 }
849 up_read(&uprobe->consumer_rwsem);
850
851 return ret;
852 }
853
854 static int
855 install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
856 struct vm_area_struct *vma, unsigned long vaddr)
857 {
858 bool first_uprobe;
859 int ret;
860
861 ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr);
862 if (ret)
863 return ret;
864
865 /*
866 * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(),
867 * the task can hit this breakpoint right after __replace_page().
868 */
869 first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags);
870 if (first_uprobe)
871 set_bit(MMF_HAS_UPROBES, &mm->flags);
872
873 ret = set_swbp(&uprobe->arch, mm, vaddr);
874 if (!ret)
875 clear_bit(MMF_RECALC_UPROBES, &mm->flags);
876 else if (first_uprobe)
877 clear_bit(MMF_HAS_UPROBES, &mm->flags);
878
879 return ret;
880 }
881
882 static int
883 remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr)
884 {
885 set_bit(MMF_RECALC_UPROBES, &mm->flags);
886 return set_orig_insn(&uprobe->arch, mm, vaddr);
887 }
888
889 static inline bool uprobe_is_active(struct uprobe *uprobe)
890 {
891 return !RB_EMPTY_NODE(&uprobe->rb_node);
892 }
893 /*
894 * There could be threads that have already hit the breakpoint. They
895 * will recheck the current insn and restart if find_uprobe() fails.
896 * See find_active_uprobe().
897 */
898 static void delete_uprobe(struct uprobe *uprobe)
899 {
900 if (WARN_ON(!uprobe_is_active(uprobe)))
901 return;
902
903 spin_lock(&uprobes_treelock);
904 rb_erase(&uprobe->rb_node, &uprobes_tree);
905 spin_unlock(&uprobes_treelock);
906 RB_CLEAR_NODE(&uprobe->rb_node); /* for uprobe_is_active() */
907 put_uprobe(uprobe);
908 }
909
910 struct map_info {
911 struct map_info *next;
912 struct mm_struct *mm;
913 unsigned long vaddr;
914 };
915
916 static inline struct map_info *free_map_info(struct map_info *info)
917 {
918 struct map_info *next = info->next;
919 kfree(info);
920 return next;
921 }
922
923 static struct map_info *
924 build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
925 {
926 unsigned long pgoff = offset >> PAGE_SHIFT;
927 struct vm_area_struct *vma;
928 struct map_info *curr = NULL;
929 struct map_info *prev = NULL;
930 struct map_info *info;
931 int more = 0;
932
933 again:
934 i_mmap_lock_read(mapping);
935 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
936 if (!valid_vma(vma, is_register))
937 continue;
938
939 if (!prev && !more) {
940 /*
941 * Needs GFP_NOWAIT to avoid i_mmap_rwsem recursion through
942 * reclaim. This is optimistic, no harm done if it fails.
943 */
944 prev = kmalloc(sizeof(struct map_info),
945 GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
946 if (prev)
947 prev->next = NULL;
948 }
949 if (!prev) {
950 more++;
951 continue;
952 }
953
954 if (!mmget_not_zero(vma->vm_mm))
955 continue;
956
957 info = prev;
958 prev = prev->next;
959 info->next = curr;
960 curr = info;
961
962 info->mm = vma->vm_mm;
963 info->vaddr = offset_to_vaddr(vma, offset);
964 }
965 i_mmap_unlock_read(mapping);
966
967 if (!more)
968 goto out;
969
970 prev = curr;
971 while (curr) {
972 mmput(curr->mm);
973 curr = curr->next;
974 }
975
976 do {
977 info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
978 if (!info) {
979 curr = ERR_PTR(-ENOMEM);
980 goto out;
981 }
982 info->next = prev;
983 prev = info;
984 } while (--more);
985
986 goto again;
987 out:
988 while (prev)
989 prev = free_map_info(prev);
990 return curr;
991 }
992
993 static int
994 register_for_each_vma(struct uprobe *uprobe, struct uprobe_consumer *new)
995 {
996 bool is_register = !!new;
997 struct map_info *info;
998 int err = 0;
999
1000 percpu_down_write(&dup_mmap_sem);
1001 info = build_map_info(uprobe->inode->i_mapping,
1002 uprobe->offset, is_register);
1003 if (IS_ERR(info)) {
1004 err = PTR_ERR(info);
1005 goto out;
1006 }
1007
1008 while (info) {
1009 struct mm_struct *mm = info->mm;
1010 struct vm_area_struct *vma;
1011
1012 if (err && is_register)
1013 goto free;
1014
1015 down_write(&mm->mmap_sem);
1016 vma = find_vma(mm, info->vaddr);
1017 if (!vma || !valid_vma(vma, is_register) ||
1018 file_inode(vma->vm_file) != uprobe->inode)
1019 goto unlock;
1020
1021 if (vma->vm_start > info->vaddr ||
1022 vaddr_to_offset(vma, info->vaddr) != uprobe->offset)
1023 goto unlock;
1024
1025 if (is_register) {
1026 /* consult only the "caller", new consumer. */
1027 if (consumer_filter(new,
1028 UPROBE_FILTER_REGISTER, mm))
1029 err = install_breakpoint(uprobe, mm, vma, info->vaddr);
1030 } else if (test_bit(MMF_HAS_UPROBES, &mm->flags)) {
1031 if (!filter_chain(uprobe,
1032 UPROBE_FILTER_UNREGISTER, mm))
1033 err |= remove_breakpoint(uprobe, mm, info->vaddr);
1034 }
1035
1036 unlock:
1037 up_write(&mm->mmap_sem);
1038 free:
1039 mmput(mm);
1040 info = free_map_info(info);
1041 }
1042 out:
1043 percpu_up_write(&dup_mmap_sem);
1044 return err;
1045 }
1046
1047 static void
1048 __uprobe_unregister(struct uprobe *uprobe, struct uprobe_consumer *uc)
1049 {
1050 int err;
1051
1052 if (WARN_ON(!consumer_del(uprobe, uc)))
1053 return;
1054
1055 err = register_for_each_vma(uprobe, NULL);
1056 /* TODO : cant unregister? schedule a worker thread */
1057 if (!uprobe->consumers && !err)
1058 delete_uprobe(uprobe);
1059 }
1060
1061 /*
1062 * uprobe_unregister - unregister an already registered probe.
1063 * @inode: the file in which the probe has to be removed.
1064 * @offset: offset from the start of the file.
1065 * @uc: identify which probe if multiple probes are colocated.
1066 */
1067 void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
1068 {
1069 struct uprobe *uprobe;
1070
1071 uprobe = find_uprobe(inode, offset);
1072 if (WARN_ON(!uprobe))
1073 return;
1074
1075 down_write(&uprobe->register_rwsem);
1076 __uprobe_unregister(uprobe, uc);
1077 up_write(&uprobe->register_rwsem);
1078 put_uprobe(uprobe);
1079 }
1080 EXPORT_SYMBOL_GPL(uprobe_unregister);
1081
1082 /*
1083 * __uprobe_register - register a probe
1084 * @inode: the file in which the probe has to be placed.
1085 * @offset: offset from the start of the file.
1086 * @uc: information on howto handle the probe..
1087 *
1088 * Apart from the access refcount, __uprobe_register() takes a creation
1089 * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
1090 * inserted into the rbtree (i.e first consumer for a @inode:@offset
1091 * tuple). Creation refcount stops uprobe_unregister from freeing the
1092 * @uprobe even before the register operation is complete. Creation
1093 * refcount is released when the last @uc for the @uprobe
1094 * unregisters. Caller of __uprobe_register() is required to keep @inode
1095 * (and the containing mount) referenced.
1096 *
1097 * Return errno if it cannot successully install probes
1098 * else return 0 (success)
1099 */
1100 static int __uprobe_register(struct inode *inode, loff_t offset,
1101 loff_t ref_ctr_offset, struct uprobe_consumer *uc)
1102 {
1103 struct uprobe *uprobe;
1104 int ret;
1105
1106 /* Uprobe must have at least one set consumer */
1107 if (!uc->handler && !uc->ret_handler)
1108 return -EINVAL;
1109
1110 /* copy_insn() uses read_mapping_page() or shmem_read_mapping_page() */
1111 if (!inode->i_mapping->a_ops->readpage && !shmem_mapping(inode->i_mapping))
1112 return -EIO;
1113 /* Racy, just to catch the obvious mistakes */
1114 if (offset > i_size_read(inode))
1115 return -EINVAL;
1116
1117 retry:
1118 uprobe = alloc_uprobe(inode, offset, ref_ctr_offset);
1119 if (!uprobe)
1120 return -ENOMEM;
1121 if (IS_ERR(uprobe))
1122 return PTR_ERR(uprobe);
1123
1124 /*
1125 * We can race with uprobe_unregister()->delete_uprobe().
1126 * Check uprobe_is_active() and retry if it is false.
1127 */
1128 down_write(&uprobe->register_rwsem);
1129 ret = -EAGAIN;
1130 if (likely(uprobe_is_active(uprobe))) {
1131 consumer_add(uprobe, uc);
1132 ret = register_for_each_vma(uprobe, uc);
1133 if (ret)
1134 __uprobe_unregister(uprobe, uc);
1135 }
1136 up_write(&uprobe->register_rwsem);
1137 put_uprobe(uprobe);
1138
1139 if (unlikely(ret == -EAGAIN))
1140 goto retry;
1141 return ret;
1142 }
1143
1144 int uprobe_register(struct inode *inode, loff_t offset,
1145 struct uprobe_consumer *uc)
1146 {
1147 return __uprobe_register(inode, offset, 0, uc);
1148 }
1149 EXPORT_SYMBOL_GPL(uprobe_register);
1150
1151 int uprobe_register_refctr(struct inode *inode, loff_t offset,
1152 loff_t ref_ctr_offset, struct uprobe_consumer *uc)
1153 {
1154 return __uprobe_register(inode, offset, ref_ctr_offset, uc);
1155 }
1156 EXPORT_SYMBOL_GPL(uprobe_register_refctr);
1157
1158 /*
1159 * uprobe_apply - unregister an already registered probe.
1160 * @inode: the file in which the probe has to be removed.
1161 * @offset: offset from the start of the file.
1162 * @uc: consumer which wants to add more or remove some breakpoints
1163 * @add: add or remove the breakpoints
1164 */
1165 int uprobe_apply(struct inode *inode, loff_t offset,
1166 struct uprobe_consumer *uc, bool add)
1167 {
1168 struct uprobe *uprobe;
1169 struct uprobe_consumer *con;
1170 int ret = -ENOENT;
1171
1172 uprobe = find_uprobe(inode, offset);
1173 if (WARN_ON(!uprobe))
1174 return ret;
1175
1176 down_write(&uprobe->register_rwsem);
1177 for (con = uprobe->consumers; con && con != uc ; con = con->next)
1178 ;
1179 if (con)
1180 ret = register_for_each_vma(uprobe, add ? uc : NULL);
1181 up_write(&uprobe->register_rwsem);
1182 put_uprobe(uprobe);
1183
1184 return ret;
1185 }
1186
1187 static int unapply_uprobe(struct uprobe *uprobe, struct mm_struct *mm)
1188 {
1189 struct vm_area_struct *vma;
1190 int err = 0;
1191
1192 down_read(&mm->mmap_sem);
1193 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1194 unsigned long vaddr;
1195 loff_t offset;
1196
1197 if (!valid_vma(vma, false) ||
1198 file_inode(vma->vm_file) != uprobe->inode)
1199 continue;
1200
1201 offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT;
1202 if (uprobe->offset < offset ||
1203 uprobe->offset >= offset + vma->vm_end - vma->vm_start)
1204 continue;
1205
1206 vaddr = offset_to_vaddr(vma, uprobe->offset);
1207 err |= remove_breakpoint(uprobe, mm, vaddr);
1208 }
1209 up_read(&mm->mmap_sem);
1210
1211 return err;
1212 }
1213
1214 static struct rb_node *
1215 find_node_in_range(struct inode *inode, loff_t min, loff_t max)
1216 {
1217 struct rb_node *n = uprobes_tree.rb_node;
1218
1219 while (n) {
1220 struct uprobe *u = rb_entry(n, struct uprobe, rb_node);
1221
1222 if (inode < u->inode) {
1223 n = n->rb_left;
1224 } else if (inode > u->inode) {
1225 n = n->rb_right;
1226 } else {
1227 if (max < u->offset)
1228 n = n->rb_left;
1229 else if (min > u->offset)
1230 n = n->rb_right;
1231 else
1232 break;
1233 }
1234 }
1235
1236 return n;
1237 }
1238
1239 /*
1240 * For a given range in vma, build a list of probes that need to be inserted.
1241 */
1242 static void build_probe_list(struct inode *inode,
1243 struct vm_area_struct *vma,
1244 unsigned long start, unsigned long end,
1245 struct list_head *head)
1246 {
1247 loff_t min, max;
1248 struct rb_node *n, *t;
1249 struct uprobe *u;
1250
1251 INIT_LIST_HEAD(head);
1252 min = vaddr_to_offset(vma, start);
1253 max = min + (end - start) - 1;
1254
1255 spin_lock(&uprobes_treelock);
1256 n = find_node_in_range(inode, min, max);
1257 if (n) {
1258 for (t = n; t; t = rb_prev(t)) {
1259 u = rb_entry(t, struct uprobe, rb_node);
1260 if (u->inode != inode || u->offset < min)
1261 break;
1262 list_add(&u->pending_list, head);
1263 get_uprobe(u);
1264 }
1265 for (t = n; (t = rb_next(t)); ) {
1266 u = rb_entry(t, struct uprobe, rb_node);
1267 if (u->inode != inode || u->offset > max)
1268 break;
1269 list_add(&u->pending_list, head);
1270 get_uprobe(u);
1271 }
1272 }
1273 spin_unlock(&uprobes_treelock);
1274 }
1275
1276 /* @vma contains reference counter, not the probed instruction. */
1277 static int delayed_ref_ctr_inc(struct vm_area_struct *vma)
1278 {
1279 struct list_head *pos, *q;
1280 struct delayed_uprobe *du;
1281 unsigned long vaddr;
1282 int ret = 0, err = 0;
1283
1284 mutex_lock(&delayed_uprobe_lock);
1285 list_for_each_safe(pos, q, &delayed_uprobe_list) {
1286 du = list_entry(pos, struct delayed_uprobe, list);
1287
1288 if (du->mm != vma->vm_mm ||
1289 !valid_ref_ctr_vma(du->uprobe, vma))
1290 continue;
1291
1292 vaddr = offset_to_vaddr(vma, du->uprobe->ref_ctr_offset);
1293 ret = __update_ref_ctr(vma->vm_mm, vaddr, 1);
1294 if (ret) {
1295 update_ref_ctr_warn(du->uprobe, vma->vm_mm, 1);
1296 if (!err)
1297 err = ret;
1298 }
1299 delayed_uprobe_delete(du);
1300 }
1301 mutex_unlock(&delayed_uprobe_lock);
1302 return err;
1303 }
1304
1305 /*
1306 * Called from mmap_region/vma_adjust with mm->mmap_sem acquired.
1307 *
1308 * Currently we ignore all errors and always return 0, the callers
1309 * can't handle the failure anyway.
1310 */
1311 int uprobe_mmap(struct vm_area_struct *vma)
1312 {
1313 struct list_head tmp_list;
1314 struct uprobe *uprobe, *u;
1315 struct inode *inode;
1316
1317 if (no_uprobe_events())
1318 return 0;
1319
1320 if (vma->vm_file &&
1321 (vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE &&
1322 test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags))
1323 delayed_ref_ctr_inc(vma);
1324
1325 if (!valid_vma(vma, true))
1326 return 0;
1327
1328 inode = file_inode(vma->vm_file);
1329 if (!inode)
1330 return 0;
1331
1332 mutex_lock(uprobes_mmap_hash(inode));
1333 build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list);
1334 /*
1335 * We can race with uprobe_unregister(), this uprobe can be already
1336 * removed. But in this case filter_chain() must return false, all
1337 * consumers have gone away.
1338 */
1339 list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
1340 if (!fatal_signal_pending(current) &&
1341 filter_chain(uprobe, UPROBE_FILTER_MMAP, vma->vm_mm)) {
1342 unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset);
1343 install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
1344 }
1345 put_uprobe(uprobe);
1346 }
1347 mutex_unlock(uprobes_mmap_hash(inode));
1348
1349 return 0;
1350 }
1351
1352 static bool
1353 vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1354 {
1355 loff_t min, max;
1356 struct inode *inode;
1357 struct rb_node *n;
1358
1359 inode = file_inode(vma->vm_file);
1360
1361 min = vaddr_to_offset(vma, start);
1362 max = min + (end - start) - 1;
1363
1364 spin_lock(&uprobes_treelock);
1365 n = find_node_in_range(inode, min, max);
1366 spin_unlock(&uprobes_treelock);
1367
1368 return !!n;
1369 }
1370
1371 /*
1372 * Called in context of a munmap of a vma.
1373 */
1374 void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1375 {
1376 if (no_uprobe_events() || !valid_vma(vma, false))
1377 return;
1378
1379 if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */
1380 return;
1381
1382 if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) ||
1383 test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags))
1384 return;
1385
1386 if (vma_has_uprobes(vma, start, end))
1387 set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags);
1388 }
1389
1390 /* Slot allocation for XOL */
1391 static int xol_add_vma(struct mm_struct *mm, struct xol_area *area)
1392 {
1393 struct vm_area_struct *vma;
1394 int ret;
1395
1396 if (down_write_killable(&mm->mmap_sem))
1397 return -EINTR;
1398
1399 if (mm->uprobes_state.xol_area) {
1400 ret = -EALREADY;
1401 goto fail;
1402 }
1403
1404 if (!area->vaddr) {
1405 /* Try to map as high as possible, this is only a hint. */
1406 area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE,
1407 PAGE_SIZE, 0, 0);
1408 if (area->vaddr & ~PAGE_MASK) {
1409 ret = area->vaddr;
1410 goto fail;
1411 }
1412 }
1413
1414 vma = _install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1415 VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO,
1416 &area->xol_mapping);
1417 if (IS_ERR(vma)) {
1418 ret = PTR_ERR(vma);
1419 goto fail;
1420 }
1421
1422 ret = 0;
1423 /* pairs with get_xol_area() */
1424 smp_store_release(&mm->uprobes_state.xol_area, area); /* ^^^ */
1425 fail:
1426 up_write(&mm->mmap_sem);
1427
1428 return ret;
1429 }
1430
1431 static struct xol_area *__create_xol_area(unsigned long vaddr)
1432 {
1433 struct mm_struct *mm = current->mm;
1434 uprobe_opcode_t insn = UPROBE_SWBP_INSN;
1435 struct xol_area *area;
1436
1437 area = kmalloc(sizeof(*area), GFP_KERNEL);
1438 if (unlikely(!area))
1439 goto out;
1440
1441 area->bitmap = kcalloc(BITS_TO_LONGS(UINSNS_PER_PAGE), sizeof(long),
1442 GFP_KERNEL);
1443 if (!area->bitmap)
1444 goto free_area;
1445
1446 area->xol_mapping.name = "[uprobes]";
1447 area->xol_mapping.fault = NULL;
1448 area->xol_mapping.pages = area->pages;
1449 area->pages[0] = alloc_page(GFP_HIGHUSER);
1450 if (!area->pages[0])
1451 goto free_bitmap;
1452 area->pages[1] = NULL;
1453
1454 area->vaddr = vaddr;
1455 init_waitqueue_head(&area->wq);
1456 /* Reserve the 1st slot for get_trampoline_vaddr() */
1457 set_bit(0, area->bitmap);
1458 atomic_set(&area->slot_count, 1);
1459 arch_uprobe_copy_ixol(area->pages[0], 0, &insn, UPROBE_SWBP_INSN_SIZE);
1460
1461 if (!xol_add_vma(mm, area))
1462 return area;
1463
1464 __free_page(area->pages[0]);
1465 free_bitmap:
1466 kfree(area->bitmap);
1467 free_area:
1468 kfree(area);
1469 out:
1470 return NULL;
1471 }
1472
1473 /*
1474 * get_xol_area - Allocate process's xol_area if necessary.
1475 * This area will be used for storing instructions for execution out of line.
1476 *
1477 * Returns the allocated area or NULL.
1478 */
1479 static struct xol_area *get_xol_area(void)
1480 {
1481 struct mm_struct *mm = current->mm;
1482 struct xol_area *area;
1483
1484 if (!mm->uprobes_state.xol_area)
1485 __create_xol_area(0);
1486
1487 /* Pairs with xol_add_vma() smp_store_release() */
1488 area = READ_ONCE(mm->uprobes_state.xol_area); /* ^^^ */
1489 return area;
1490 }
1491
1492 /*
1493 * uprobe_clear_state - Free the area allocated for slots.
1494 */
1495 void uprobe_clear_state(struct mm_struct *mm)
1496 {
1497 struct xol_area *area = mm->uprobes_state.xol_area;
1498
1499 mutex_lock(&delayed_uprobe_lock);
1500 delayed_uprobe_remove(NULL, mm);
1501 mutex_unlock(&delayed_uprobe_lock);
1502
1503 if (!area)
1504 return;
1505
1506 put_page(area->pages[0]);
1507 kfree(area->bitmap);
1508 kfree(area);
1509 }
1510
1511 void uprobe_start_dup_mmap(void)
1512 {
1513 percpu_down_read(&dup_mmap_sem);
1514 }
1515
1516 void uprobe_end_dup_mmap(void)
1517 {
1518 percpu_up_read(&dup_mmap_sem);
1519 }
1520
1521 void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm)
1522 {
1523 if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) {
1524 set_bit(MMF_HAS_UPROBES, &newmm->flags);
1525 /* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */
1526 set_bit(MMF_RECALC_UPROBES, &newmm->flags);
1527 }
1528 }
1529
1530 /*
1531 * - search for a free slot.
1532 */
1533 static unsigned long xol_take_insn_slot(struct xol_area *area)
1534 {
1535 unsigned long slot_addr;
1536 int slot_nr;
1537
1538 do {
1539 slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1540 if (slot_nr < UINSNS_PER_PAGE) {
1541 if (!test_and_set_bit(slot_nr, area->bitmap))
1542 break;
1543
1544 slot_nr = UINSNS_PER_PAGE;
1545 continue;
1546 }
1547 wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
1548 } while (slot_nr >= UINSNS_PER_PAGE);
1549
1550 slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
1551 atomic_inc(&area->slot_count);
1552
1553 return slot_addr;
1554 }
1555
1556 /*
1557 * xol_get_insn_slot - allocate a slot for xol.
1558 * Returns the allocated slot address or 0.
1559 */
1560 static unsigned long xol_get_insn_slot(struct uprobe *uprobe)
1561 {
1562 struct xol_area *area;
1563 unsigned long xol_vaddr;
1564
1565 area = get_xol_area();
1566 if (!area)
1567 return 0;
1568
1569 xol_vaddr = xol_take_insn_slot(area);
1570 if (unlikely(!xol_vaddr))
1571 return 0;
1572
1573 arch_uprobe_copy_ixol(area->pages[0], xol_vaddr,
1574 &uprobe->arch.ixol, sizeof(uprobe->arch.ixol));
1575
1576 return xol_vaddr;
1577 }
1578
1579 /*
1580 * xol_free_insn_slot - If slot was earlier allocated by
1581 * @xol_get_insn_slot(), make the slot available for
1582 * subsequent requests.
1583 */
1584 static void xol_free_insn_slot(struct task_struct *tsk)
1585 {
1586 struct xol_area *area;
1587 unsigned long vma_end;
1588 unsigned long slot_addr;
1589
1590 if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
1591 return;
1592
1593 slot_addr = tsk->utask->xol_vaddr;
1594 if (unlikely(!slot_addr))
1595 return;
1596
1597 area = tsk->mm->uprobes_state.xol_area;
1598 vma_end = area->vaddr + PAGE_SIZE;
1599 if (area->vaddr <= slot_addr && slot_addr < vma_end) {
1600 unsigned long offset;
1601 int slot_nr;
1602
1603 offset = slot_addr - area->vaddr;
1604 slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1605 if (slot_nr >= UINSNS_PER_PAGE)
1606 return;
1607
1608 clear_bit(slot_nr, area->bitmap);
1609 atomic_dec(&area->slot_count);
1610 smp_mb__after_atomic(); /* pairs with prepare_to_wait() */
1611 if (waitqueue_active(&area->wq))
1612 wake_up(&area->wq);
1613
1614 tsk->utask->xol_vaddr = 0;
1615 }
1616 }
1617
1618 void __weak arch_uprobe_copy_ixol(struct page *page, unsigned long vaddr,
1619 void *src, unsigned long len)
1620 {
1621 /* Initialize the slot */
1622 copy_to_page(page, vaddr, src, len);
1623
1624 /*
1625 * We probably need flush_icache_user_range() but it needs vma.
1626 * This should work on most of architectures by default. If
1627 * architecture needs to do something different it can define
1628 * its own version of the function.
1629 */
1630 flush_dcache_page(page);
1631 }
1632
1633 /**
1634 * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1635 * @regs: Reflects the saved state of the task after it has hit a breakpoint
1636 * instruction.
1637 * Return the address of the breakpoint instruction.
1638 */
1639 unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1640 {
1641 return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1642 }
1643
1644 unsigned long uprobe_get_trap_addr(struct pt_regs *regs)
1645 {
1646 struct uprobe_task *utask = current->utask;
1647
1648 if (unlikely(utask && utask->active_uprobe))
1649 return utask->vaddr;
1650
1651 return instruction_pointer(regs);
1652 }
1653
1654 static struct return_instance *free_ret_instance(struct return_instance *ri)
1655 {
1656 struct return_instance *next = ri->next;
1657 put_uprobe(ri->uprobe);
1658 kfree(ri);
1659 return next;
1660 }
1661
1662 /*
1663 * Called with no locks held.
1664 * Called in context of an exiting or an exec-ing thread.
1665 */
1666 void uprobe_free_utask(struct task_struct *t)
1667 {
1668 struct uprobe_task *utask = t->utask;
1669 struct return_instance *ri;
1670
1671 if (!utask)
1672 return;
1673
1674 if (utask->active_uprobe)
1675 put_uprobe(utask->active_uprobe);
1676
1677 ri = utask->return_instances;
1678 while (ri)
1679 ri = free_ret_instance(ri);
1680
1681 xol_free_insn_slot(t);
1682 kfree(utask);
1683 t->utask = NULL;
1684 }
1685
1686 /*
1687 * Allocate a uprobe_task object for the task if if necessary.
1688 * Called when the thread hits a breakpoint.
1689 *
1690 * Returns:
1691 * - pointer to new uprobe_task on success
1692 * - NULL otherwise
1693 */
1694 static struct uprobe_task *get_utask(void)
1695 {
1696 if (!current->utask)
1697 current->utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1698 return current->utask;
1699 }
1700
1701 static int dup_utask(struct task_struct *t, struct uprobe_task *o_utask)
1702 {
1703 struct uprobe_task *n_utask;
1704 struct return_instance **p, *o, *n;
1705
1706 n_utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1707 if (!n_utask)
1708 return -ENOMEM;
1709 t->utask = n_utask;
1710
1711 p = &n_utask->return_instances;
1712 for (o = o_utask->return_instances; o; o = o->next) {
1713 n = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1714 if (!n)
1715 return -ENOMEM;
1716
1717 *n = *o;
1718 get_uprobe(n->uprobe);
1719 n->next = NULL;
1720
1721 *p = n;
1722 p = &n->next;
1723 n_utask->depth++;
1724 }
1725
1726 return 0;
1727 }
1728
1729 static void uprobe_warn(struct task_struct *t, const char *msg)
1730 {
1731 pr_warn("uprobe: %s:%d failed to %s\n",
1732 current->comm, current->pid, msg);
1733 }
1734
1735 static void dup_xol_work(struct callback_head *work)
1736 {
1737 if (current->flags & PF_EXITING)
1738 return;
1739
1740 if (!__create_xol_area(current->utask->dup_xol_addr) &&
1741 !fatal_signal_pending(current))
1742 uprobe_warn(current, "dup xol area");
1743 }
1744
1745 /*
1746 * Called in context of a new clone/fork from copy_process.
1747 */
1748 void uprobe_copy_process(struct task_struct *t, unsigned long flags)
1749 {
1750 struct uprobe_task *utask = current->utask;
1751 struct mm_struct *mm = current->mm;
1752 struct xol_area *area;
1753
1754 t->utask = NULL;
1755
1756 if (!utask || !utask->return_instances)
1757 return;
1758
1759 if (mm == t->mm && !(flags & CLONE_VFORK))
1760 return;
1761
1762 if (dup_utask(t, utask))
1763 return uprobe_warn(t, "dup ret instances");
1764
1765 /* The task can fork() after dup_xol_work() fails */
1766 area = mm->uprobes_state.xol_area;
1767 if (!area)
1768 return uprobe_warn(t, "dup xol area");
1769
1770 if (mm == t->mm)
1771 return;
1772
1773 t->utask->dup_xol_addr = area->vaddr;
1774 init_task_work(&t->utask->dup_xol_work, dup_xol_work);
1775 task_work_add(t, &t->utask->dup_xol_work, true);
1776 }
1777
1778 /*
1779 * Current area->vaddr notion assume the trampoline address is always
1780 * equal area->vaddr.
1781 *
1782 * Returns -1 in case the xol_area is not allocated.
1783 */
1784 static unsigned long get_trampoline_vaddr(void)
1785 {
1786 struct xol_area *area;
1787 unsigned long trampoline_vaddr = -1;
1788
1789 /* Pairs with xol_add_vma() smp_store_release() */
1790 area = READ_ONCE(current->mm->uprobes_state.xol_area); /* ^^^ */
1791 if (area)
1792 trampoline_vaddr = area->vaddr;
1793
1794 return trampoline_vaddr;
1795 }
1796
1797 static void cleanup_return_instances(struct uprobe_task *utask, bool chained,
1798 struct pt_regs *regs)
1799 {
1800 struct return_instance *ri = utask->return_instances;
1801 enum rp_check ctx = chained ? RP_CHECK_CHAIN_CALL : RP_CHECK_CALL;
1802
1803 while (ri && !arch_uretprobe_is_alive(ri, ctx, regs)) {
1804 ri = free_ret_instance(ri);
1805 utask->depth--;
1806 }
1807 utask->return_instances = ri;
1808 }
1809
1810 static void prepare_uretprobe(struct uprobe *uprobe, struct pt_regs *regs)
1811 {
1812 struct return_instance *ri;
1813 struct uprobe_task *utask;
1814 unsigned long orig_ret_vaddr, trampoline_vaddr;
1815 bool chained;
1816
1817 if (!get_xol_area())
1818 return;
1819
1820 utask = get_utask();
1821 if (!utask)
1822 return;
1823
1824 if (utask->depth >= MAX_URETPROBE_DEPTH) {
1825 printk_ratelimited(KERN_INFO "uprobe: omit uretprobe due to"
1826 " nestedness limit pid/tgid=%d/%d\n",
1827 current->pid, current->tgid);
1828 return;
1829 }
1830
1831 ri = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1832 if (!ri)
1833 return;
1834
1835 trampoline_vaddr = get_trampoline_vaddr();
1836 orig_ret_vaddr = arch_uretprobe_hijack_return_addr(trampoline_vaddr, regs);
1837 if (orig_ret_vaddr == -1)
1838 goto fail;
1839
1840 /* drop the entries invalidated by longjmp() */
1841 chained = (orig_ret_vaddr == trampoline_vaddr);
1842 cleanup_return_instances(utask, chained, regs);
1843
1844 /*
1845 * We don't want to keep trampoline address in stack, rather keep the
1846 * original return address of first caller thru all the consequent
1847 * instances. This also makes breakpoint unwrapping easier.
1848 */
1849 if (chained) {
1850 if (!utask->return_instances) {
1851 /*
1852 * This situation is not possible. Likely we have an
1853 * attack from user-space.
1854 */
1855 uprobe_warn(current, "handle tail call");
1856 goto fail;
1857 }
1858 orig_ret_vaddr = utask->return_instances->orig_ret_vaddr;
1859 }
1860
1861 ri->uprobe = get_uprobe(uprobe);
1862 ri->func = instruction_pointer(regs);
1863 ri->stack = user_stack_pointer(regs);
1864 ri->orig_ret_vaddr = orig_ret_vaddr;
1865 ri->chained = chained;
1866
1867 utask->depth++;
1868 ri->next = utask->return_instances;
1869 utask->return_instances = ri;
1870
1871 return;
1872 fail:
1873 kfree(ri);
1874 }
1875
1876 /* Prepare to single-step probed instruction out of line. */
1877 static int
1878 pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long bp_vaddr)
1879 {
1880 struct uprobe_task *utask;
1881 unsigned long xol_vaddr;
1882 int err;
1883
1884 utask = get_utask();
1885 if (!utask)
1886 return -ENOMEM;
1887
1888 xol_vaddr = xol_get_insn_slot(uprobe);
1889 if (!xol_vaddr)
1890 return -ENOMEM;
1891
1892 utask->xol_vaddr = xol_vaddr;
1893 utask->vaddr = bp_vaddr;
1894
1895 err = arch_uprobe_pre_xol(&uprobe->arch, regs);
1896 if (unlikely(err)) {
1897 xol_free_insn_slot(current);
1898 return err;
1899 }
1900
1901 utask->active_uprobe = uprobe;
1902 utask->state = UTASK_SSTEP;
1903 return 0;
1904 }
1905
1906 /*
1907 * If we are singlestepping, then ensure this thread is not connected to
1908 * non-fatal signals until completion of singlestep. When xol insn itself
1909 * triggers the signal, restart the original insn even if the task is
1910 * already SIGKILL'ed (since coredump should report the correct ip). This
1911 * is even more important if the task has a handler for SIGSEGV/etc, The
1912 * _same_ instruction should be repeated again after return from the signal
1913 * handler, and SSTEP can never finish in this case.
1914 */
1915 bool uprobe_deny_signal(void)
1916 {
1917 struct task_struct *t = current;
1918 struct uprobe_task *utask = t->utask;
1919
1920 if (likely(!utask || !utask->active_uprobe))
1921 return false;
1922
1923 WARN_ON_ONCE(utask->state != UTASK_SSTEP);
1924
1925 if (signal_pending(t)) {
1926 spin_lock_irq(&t->sighand->siglock);
1927 clear_tsk_thread_flag(t, TIF_SIGPENDING);
1928 spin_unlock_irq(&t->sighand->siglock);
1929
1930 if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
1931 utask->state = UTASK_SSTEP_TRAPPED;
1932 set_tsk_thread_flag(t, TIF_UPROBE);
1933 }
1934 }
1935
1936 return true;
1937 }
1938
1939 static void mmf_recalc_uprobes(struct mm_struct *mm)
1940 {
1941 struct vm_area_struct *vma;
1942
1943 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1944 if (!valid_vma(vma, false))
1945 continue;
1946 /*
1947 * This is not strictly accurate, we can race with
1948 * uprobe_unregister() and see the already removed
1949 * uprobe if delete_uprobe() was not yet called.
1950 * Or this uprobe can be filtered out.
1951 */
1952 if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end))
1953 return;
1954 }
1955
1956 clear_bit(MMF_HAS_UPROBES, &mm->flags);
1957 }
1958
1959 static int is_trap_at_addr(struct mm_struct *mm, unsigned long vaddr)
1960 {
1961 struct page *page;
1962 uprobe_opcode_t opcode;
1963 int result;
1964
1965 pagefault_disable();
1966 result = __get_user(opcode, (uprobe_opcode_t __user *)vaddr);
1967 pagefault_enable();
1968
1969 if (likely(result == 0))
1970 goto out;
1971
1972 /*
1973 * The NULL 'tsk' here ensures that any faults that occur here
1974 * will not be accounted to the task. 'mm' *is* current->mm,
1975 * but we treat this as a 'remote' access since it is
1976 * essentially a kernel access to the memory.
1977 */
1978 result = get_user_pages_remote(NULL, mm, vaddr, 1, FOLL_FORCE, &page,
1979 NULL, NULL);
1980 if (result < 0)
1981 return result;
1982
1983 copy_from_page(page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
1984 put_page(page);
1985 out:
1986 /* This needs to return true for any variant of the trap insn */
1987 return is_trap_insn(&opcode);
1988 }
1989
1990 static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
1991 {
1992 struct mm_struct *mm = current->mm;
1993 struct uprobe *uprobe = NULL;
1994 struct vm_area_struct *vma;
1995
1996 down_read(&mm->mmap_sem);
1997 vma = find_vma(mm, bp_vaddr);
1998 if (vma && vma->vm_start <= bp_vaddr) {
1999 if (valid_vma(vma, false)) {
2000 struct inode *inode = file_inode(vma->vm_file);
2001 loff_t offset = vaddr_to_offset(vma, bp_vaddr);
2002
2003 uprobe = find_uprobe(inode, offset);
2004 }
2005
2006 if (!uprobe)
2007 *is_swbp = is_trap_at_addr(mm, bp_vaddr);
2008 } else {
2009 *is_swbp = -EFAULT;
2010 }
2011
2012 if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags))
2013 mmf_recalc_uprobes(mm);
2014 up_read(&mm->mmap_sem);
2015
2016 return uprobe;
2017 }
2018
2019 static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
2020 {
2021 struct uprobe_consumer *uc;
2022 int remove = UPROBE_HANDLER_REMOVE;
2023 bool need_prep = false; /* prepare return uprobe, when needed */
2024
2025 down_read(&uprobe->register_rwsem);
2026 for (uc = uprobe->consumers; uc; uc = uc->next) {
2027 int rc = 0;
2028
2029 if (uc->handler) {
2030 rc = uc->handler(uc, regs);
2031 WARN(rc & ~UPROBE_HANDLER_MASK,
2032 "bad rc=0x%x from %ps()\n", rc, uc->handler);
2033 }
2034
2035 if (uc->ret_handler)
2036 need_prep = true;
2037
2038 remove &= rc;
2039 }
2040
2041 if (need_prep && !remove)
2042 prepare_uretprobe(uprobe, regs); /* put bp at return */
2043
2044 if (remove && uprobe->consumers) {
2045 WARN_ON(!uprobe_is_active(uprobe));
2046 unapply_uprobe(uprobe, current->mm);
2047 }
2048 up_read(&uprobe->register_rwsem);
2049 }
2050
2051 static void
2052 handle_uretprobe_chain(struct return_instance *ri, struct pt_regs *regs)
2053 {
2054 struct uprobe *uprobe = ri->uprobe;
2055 struct uprobe_consumer *uc;
2056
2057 down_read(&uprobe->register_rwsem);
2058 for (uc = uprobe->consumers; uc; uc = uc->next) {
2059 if (uc->ret_handler)
2060 uc->ret_handler(uc, ri->func, regs);
2061 }
2062 up_read(&uprobe->register_rwsem);
2063 }
2064
2065 static struct return_instance *find_next_ret_chain(struct return_instance *ri)
2066 {
2067 bool chained;
2068
2069 do {
2070 chained = ri->chained;
2071 ri = ri->next; /* can't be NULL if chained */
2072 } while (chained);
2073
2074 return ri;
2075 }
2076
2077 static void handle_trampoline(struct pt_regs *regs)
2078 {
2079 struct uprobe_task *utask;
2080 struct return_instance *ri, *next;
2081 bool valid;
2082
2083 utask = current->utask;
2084 if (!utask)
2085 goto sigill;
2086
2087 ri = utask->return_instances;
2088 if (!ri)
2089 goto sigill;
2090
2091 do {
2092 /*
2093 * We should throw out the frames invalidated by longjmp().
2094 * If this chain is valid, then the next one should be alive
2095 * or NULL; the latter case means that nobody but ri->func
2096 * could hit this trampoline on return. TODO: sigaltstack().
2097 */
2098 next = find_next_ret_chain(ri);
2099 valid = !next || arch_uretprobe_is_alive(next, RP_CHECK_RET, regs);
2100
2101 instruction_pointer_set(regs, ri->orig_ret_vaddr);
2102 do {
2103 if (valid)
2104 handle_uretprobe_chain(ri, regs);
2105 ri = free_ret_instance(ri);
2106 utask->depth--;
2107 } while (ri != next);
2108 } while (!valid);
2109
2110 utask->return_instances = ri;
2111 return;
2112
2113 sigill:
2114 uprobe_warn(current, "handle uretprobe, sending SIGILL.");
2115 force_sig(SIGILL, current);
2116
2117 }
2118
2119 bool __weak arch_uprobe_ignore(struct arch_uprobe *aup, struct pt_regs *regs)
2120 {
2121 return false;
2122 }
2123
2124 bool __weak arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx,
2125 struct pt_regs *regs)
2126 {
2127 return true;
2128 }
2129
2130 /*
2131 * Run handler and ask thread to singlestep.
2132 * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
2133 */
2134 static void handle_swbp(struct pt_regs *regs)
2135 {
2136 struct uprobe *uprobe;
2137 unsigned long bp_vaddr;
2138 int uninitialized_var(is_swbp);
2139
2140 bp_vaddr = uprobe_get_swbp_addr(regs);
2141 if (bp_vaddr == get_trampoline_vaddr())
2142 return handle_trampoline(regs);
2143
2144 uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
2145 if (!uprobe) {
2146 if (is_swbp > 0) {
2147 /* No matching uprobe; signal SIGTRAP. */
2148 send_sig(SIGTRAP, current, 0);
2149 } else {
2150 /*
2151 * Either we raced with uprobe_unregister() or we can't
2152 * access this memory. The latter is only possible if
2153 * another thread plays with our ->mm. In both cases
2154 * we can simply restart. If this vma was unmapped we
2155 * can pretend this insn was not executed yet and get
2156 * the (correct) SIGSEGV after restart.
2157 */
2158 instruction_pointer_set(regs, bp_vaddr);
2159 }
2160 return;
2161 }
2162
2163 /* change it in advance for ->handler() and restart */
2164 instruction_pointer_set(regs, bp_vaddr);
2165
2166 /*
2167 * TODO: move copy_insn/etc into _register and remove this hack.
2168 * After we hit the bp, _unregister + _register can install the
2169 * new and not-yet-analyzed uprobe at the same address, restart.
2170 */
2171 if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags)))
2172 goto out;
2173
2174 /*
2175 * Pairs with the smp_wmb() in prepare_uprobe().
2176 *
2177 * Guarantees that if we see the UPROBE_COPY_INSN bit set, then
2178 * we must also see the stores to &uprobe->arch performed by the
2179 * prepare_uprobe() call.
2180 */
2181 smp_rmb();
2182
2183 /* Tracing handlers use ->utask to communicate with fetch methods */
2184 if (!get_utask())
2185 goto out;
2186
2187 if (arch_uprobe_ignore(&uprobe->arch, regs))
2188 goto out;
2189
2190 handler_chain(uprobe, regs);
2191
2192 if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
2193 goto out;
2194
2195 if (!pre_ssout(uprobe, regs, bp_vaddr))
2196 return;
2197
2198 /* arch_uprobe_skip_sstep() succeeded, or restart if can't singlestep */
2199 out:
2200 put_uprobe(uprobe);
2201 }
2202
2203 /*
2204 * Perform required fix-ups and disable singlestep.
2205 * Allow pending signals to take effect.
2206 */
2207 static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
2208 {
2209 struct uprobe *uprobe;
2210 int err = 0;
2211
2212 uprobe = utask->active_uprobe;
2213 if (utask->state == UTASK_SSTEP_ACK)
2214 err = arch_uprobe_post_xol(&uprobe->arch, regs);
2215 else if (utask->state == UTASK_SSTEP_TRAPPED)
2216 arch_uprobe_abort_xol(&uprobe->arch, regs);
2217 else
2218 WARN_ON_ONCE(1);
2219
2220 put_uprobe(uprobe);
2221 utask->active_uprobe = NULL;
2222 utask->state = UTASK_RUNNING;
2223 xol_free_insn_slot(current);
2224
2225 spin_lock_irq(&current->sighand->siglock);
2226 recalc_sigpending(); /* see uprobe_deny_signal() */
2227 spin_unlock_irq(&current->sighand->siglock);
2228
2229 if (unlikely(err)) {
2230 uprobe_warn(current, "execute the probed insn, sending SIGILL.");
2231 force_sig(SIGILL, current);
2232 }
2233 }
2234
2235 /*
2236 * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and
2237 * allows the thread to return from interrupt. After that handle_swbp()
2238 * sets utask->active_uprobe.
2239 *
2240 * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag
2241 * and allows the thread to return from interrupt.
2242 *
2243 * While returning to userspace, thread notices the TIF_UPROBE flag and calls
2244 * uprobe_notify_resume().
2245 */
2246 void uprobe_notify_resume(struct pt_regs *regs)
2247 {
2248 struct uprobe_task *utask;
2249
2250 clear_thread_flag(TIF_UPROBE);
2251
2252 utask = current->utask;
2253 if (utask && utask->active_uprobe)
2254 handle_singlestep(utask, regs);
2255 else
2256 handle_swbp(regs);
2257 }
2258
2259 /*
2260 * uprobe_pre_sstep_notifier gets called from interrupt context as part of
2261 * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
2262 */
2263 int uprobe_pre_sstep_notifier(struct pt_regs *regs)
2264 {
2265 if (!current->mm)
2266 return 0;
2267
2268 if (!test_bit(MMF_HAS_UPROBES, &current->mm->flags) &&
2269 (!current->utask || !current->utask->return_instances))
2270 return 0;
2271
2272 set_thread_flag(TIF_UPROBE);
2273 return 1;
2274 }
2275
2276 /*
2277 * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
2278 * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
2279 */
2280 int uprobe_post_sstep_notifier(struct pt_regs *regs)
2281 {
2282 struct uprobe_task *utask = current->utask;
2283
2284 if (!current->mm || !utask || !utask->active_uprobe)
2285 /* task is currently not uprobed */
2286 return 0;
2287
2288 utask->state = UTASK_SSTEP_ACK;
2289 set_thread_flag(TIF_UPROBE);
2290 return 1;
2291 }
2292
2293 static struct notifier_block uprobe_exception_nb = {
2294 .notifier_call = arch_uprobe_exception_notify,
2295 .priority = INT_MAX-1, /* notified after kprobes, kgdb */
2296 };
2297
2298 void __init uprobes_init(void)
2299 {
2300 int i;
2301
2302 for (i = 0; i < UPROBES_HASH_SZ; i++)
2303 mutex_init(&uprobes_mmap_mutex[i]);
2304
2305 BUG_ON(percpu_init_rwsem(&dup_mmap_sem));
2306
2307 BUG_ON(register_die_notifier(&uprobe_exception_nb));
2308 }