]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/events/uprobes.c
Merge remote-tracking branches 'regmap/topic/mmio', 'regmap/topic/rbtree' and 'regmap...
[mirror_ubuntu-artful-kernel.git] / kernel / events / uprobes.c
1 /*
2 * User-space Probes (UProbes)
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright (C) IBM Corporation, 2008-2012
19 * Authors:
20 * Srikar Dronamraju
21 * Jim Keniston
22 * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra
23 */
24
25 #include <linux/kernel.h>
26 #include <linux/highmem.h>
27 #include <linux/pagemap.h> /* read_mapping_page */
28 #include <linux/slab.h>
29 #include <linux/sched.h>
30 #include <linux/export.h>
31 #include <linux/rmap.h> /* anon_vma_prepare */
32 #include <linux/mmu_notifier.h> /* set_pte_at_notify */
33 #include <linux/swap.h> /* try_to_free_swap */
34 #include <linux/ptrace.h> /* user_enable_single_step */
35 #include <linux/kdebug.h> /* notifier mechanism */
36 #include "../../mm/internal.h" /* munlock_vma_page */
37 #include <linux/percpu-rwsem.h>
38 #include <linux/task_work.h>
39 #include <linux/shmem_fs.h>
40
41 #include <linux/uprobes.h>
42
43 #define UINSNS_PER_PAGE (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
44 #define MAX_UPROBE_XOL_SLOTS UINSNS_PER_PAGE
45
46 static struct rb_root uprobes_tree = RB_ROOT;
47 /*
48 * allows us to skip the uprobe_mmap if there are no uprobe events active
49 * at this time. Probably a fine grained per inode count is better?
50 */
51 #define no_uprobe_events() RB_EMPTY_ROOT(&uprobes_tree)
52
53 static DEFINE_SPINLOCK(uprobes_treelock); /* serialize rbtree access */
54
55 #define UPROBES_HASH_SZ 13
56 /* serialize uprobe->pending_list */
57 static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
58 #define uprobes_mmap_hash(v) (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
59
60 static struct percpu_rw_semaphore dup_mmap_sem;
61
62 /* Have a copy of original instruction */
63 #define UPROBE_COPY_INSN 0
64
65 struct uprobe {
66 struct rb_node rb_node; /* node in the rb tree */
67 atomic_t ref;
68 struct rw_semaphore register_rwsem;
69 struct rw_semaphore consumer_rwsem;
70 struct list_head pending_list;
71 struct uprobe_consumer *consumers;
72 struct inode *inode; /* Also hold a ref to inode */
73 loff_t offset;
74 unsigned long flags;
75
76 /*
77 * The generic code assumes that it has two members of unknown type
78 * owned by the arch-specific code:
79 *
80 * insn - copy_insn() saves the original instruction here for
81 * arch_uprobe_analyze_insn().
82 *
83 * ixol - potentially modified instruction to execute out of
84 * line, copied to xol_area by xol_get_insn_slot().
85 */
86 struct arch_uprobe arch;
87 };
88
89 /*
90 * Execute out of line area: anonymous executable mapping installed
91 * by the probed task to execute the copy of the original instruction
92 * mangled by set_swbp().
93 *
94 * On a breakpoint hit, thread contests for a slot. It frees the
95 * slot after singlestep. Currently a fixed number of slots are
96 * allocated.
97 */
98 struct xol_area {
99 wait_queue_head_t wq; /* if all slots are busy */
100 atomic_t slot_count; /* number of in-use slots */
101 unsigned long *bitmap; /* 0 = free slot */
102
103 struct vm_special_mapping xol_mapping;
104 struct page *pages[2];
105 /*
106 * We keep the vma's vm_start rather than a pointer to the vma
107 * itself. The probed process or a naughty kernel module could make
108 * the vma go away, and we must handle that reasonably gracefully.
109 */
110 unsigned long vaddr; /* Page(s) of instruction slots */
111 };
112
113 /*
114 * valid_vma: Verify if the specified vma is an executable vma
115 * Relax restrictions while unregistering: vm_flags might have
116 * changed after breakpoint was inserted.
117 * - is_register: indicates if we are in register context.
118 * - Return 1 if the specified virtual address is in an
119 * executable vma.
120 */
121 static bool valid_vma(struct vm_area_struct *vma, bool is_register)
122 {
123 vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_MAYSHARE;
124
125 if (is_register)
126 flags |= VM_WRITE;
127
128 return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC;
129 }
130
131 static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset)
132 {
133 return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
134 }
135
136 static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr)
137 {
138 return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start);
139 }
140
141 /**
142 * __replace_page - replace page in vma by new page.
143 * based on replace_page in mm/ksm.c
144 *
145 * @vma: vma that holds the pte pointing to page
146 * @addr: address the old @page is mapped at
147 * @page: the cowed page we are replacing by kpage
148 * @kpage: the modified page we replace page by
149 *
150 * Returns 0 on success, -EFAULT on failure.
151 */
152 static int __replace_page(struct vm_area_struct *vma, unsigned long addr,
153 struct page *page, struct page *kpage)
154 {
155 struct mm_struct *mm = vma->vm_mm;
156 spinlock_t *ptl;
157 pte_t *ptep;
158 int err;
159 /* For mmu_notifiers */
160 const unsigned long mmun_start = addr;
161 const unsigned long mmun_end = addr + PAGE_SIZE;
162 struct mem_cgroup *memcg;
163
164 err = mem_cgroup_try_charge(kpage, vma->vm_mm, GFP_KERNEL, &memcg);
165 if (err)
166 return err;
167
168 /* For try_to_free_swap() and munlock_vma_page() below */
169 lock_page(page);
170
171 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
172 err = -EAGAIN;
173 ptep = page_check_address(page, mm, addr, &ptl, 0);
174 if (!ptep)
175 goto unlock;
176
177 get_page(kpage);
178 page_add_new_anon_rmap(kpage, vma, addr);
179 mem_cgroup_commit_charge(kpage, memcg, false);
180 lru_cache_add_active_or_unevictable(kpage, vma);
181
182 if (!PageAnon(page)) {
183 dec_mm_counter(mm, MM_FILEPAGES);
184 inc_mm_counter(mm, MM_ANONPAGES);
185 }
186
187 flush_cache_page(vma, addr, pte_pfn(*ptep));
188 ptep_clear_flush_notify(vma, addr, ptep);
189 set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
190
191 page_remove_rmap(page);
192 if (!page_mapped(page))
193 try_to_free_swap(page);
194 pte_unmap_unlock(ptep, ptl);
195
196 if (vma->vm_flags & VM_LOCKED)
197 munlock_vma_page(page);
198 put_page(page);
199
200 err = 0;
201 unlock:
202 mem_cgroup_cancel_charge(kpage, memcg);
203 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
204 unlock_page(page);
205 return err;
206 }
207
208 /**
209 * is_swbp_insn - check if instruction is breakpoint instruction.
210 * @insn: instruction to be checked.
211 * Default implementation of is_swbp_insn
212 * Returns true if @insn is a breakpoint instruction.
213 */
214 bool __weak is_swbp_insn(uprobe_opcode_t *insn)
215 {
216 return *insn == UPROBE_SWBP_INSN;
217 }
218
219 /**
220 * is_trap_insn - check if instruction is breakpoint instruction.
221 * @insn: instruction to be checked.
222 * Default implementation of is_trap_insn
223 * Returns true if @insn is a breakpoint instruction.
224 *
225 * This function is needed for the case where an architecture has multiple
226 * trap instructions (like powerpc).
227 */
228 bool __weak is_trap_insn(uprobe_opcode_t *insn)
229 {
230 return is_swbp_insn(insn);
231 }
232
233 static void copy_from_page(struct page *page, unsigned long vaddr, void *dst, int len)
234 {
235 void *kaddr = kmap_atomic(page);
236 memcpy(dst, kaddr + (vaddr & ~PAGE_MASK), len);
237 kunmap_atomic(kaddr);
238 }
239
240 static void copy_to_page(struct page *page, unsigned long vaddr, const void *src, int len)
241 {
242 void *kaddr = kmap_atomic(page);
243 memcpy(kaddr + (vaddr & ~PAGE_MASK), src, len);
244 kunmap_atomic(kaddr);
245 }
246
247 static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode)
248 {
249 uprobe_opcode_t old_opcode;
250 bool is_swbp;
251
252 /*
253 * Note: We only check if the old_opcode is UPROBE_SWBP_INSN here.
254 * We do not check if it is any other 'trap variant' which could
255 * be conditional trap instruction such as the one powerpc supports.
256 *
257 * The logic is that we do not care if the underlying instruction
258 * is a trap variant; uprobes always wins over any other (gdb)
259 * breakpoint.
260 */
261 copy_from_page(page, vaddr, &old_opcode, UPROBE_SWBP_INSN_SIZE);
262 is_swbp = is_swbp_insn(&old_opcode);
263
264 if (is_swbp_insn(new_opcode)) {
265 if (is_swbp) /* register: already installed? */
266 return 0;
267 } else {
268 if (!is_swbp) /* unregister: was it changed by us? */
269 return 0;
270 }
271
272 return 1;
273 }
274
275 /*
276 * NOTE:
277 * Expect the breakpoint instruction to be the smallest size instruction for
278 * the architecture. If an arch has variable length instruction and the
279 * breakpoint instruction is not of the smallest length instruction
280 * supported by that architecture then we need to modify is_trap_at_addr and
281 * uprobe_write_opcode accordingly. This would never be a problem for archs
282 * that have fixed length instructions.
283 *
284 * uprobe_write_opcode - write the opcode at a given virtual address.
285 * @mm: the probed process address space.
286 * @vaddr: the virtual address to store the opcode.
287 * @opcode: opcode to be written at @vaddr.
288 *
289 * Called with mm->mmap_sem held for write.
290 * Return 0 (success) or a negative errno.
291 */
292 int uprobe_write_opcode(struct mm_struct *mm, unsigned long vaddr,
293 uprobe_opcode_t opcode)
294 {
295 struct page *old_page, *new_page;
296 struct vm_area_struct *vma;
297 int ret;
298
299 retry:
300 /* Read the page with vaddr into memory */
301 ret = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &old_page, &vma);
302 if (ret <= 0)
303 return ret;
304
305 ret = verify_opcode(old_page, vaddr, &opcode);
306 if (ret <= 0)
307 goto put_old;
308
309 ret = anon_vma_prepare(vma);
310 if (ret)
311 goto put_old;
312
313 ret = -ENOMEM;
314 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
315 if (!new_page)
316 goto put_old;
317
318 __SetPageUptodate(new_page);
319 copy_highpage(new_page, old_page);
320 copy_to_page(new_page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
321
322 ret = __replace_page(vma, vaddr, old_page, new_page);
323 page_cache_release(new_page);
324 put_old:
325 put_page(old_page);
326
327 if (unlikely(ret == -EAGAIN))
328 goto retry;
329 return ret;
330 }
331
332 /**
333 * set_swbp - store breakpoint at a given address.
334 * @auprobe: arch specific probepoint information.
335 * @mm: the probed process address space.
336 * @vaddr: the virtual address to insert the opcode.
337 *
338 * For mm @mm, store the breakpoint instruction at @vaddr.
339 * Return 0 (success) or a negative errno.
340 */
341 int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
342 {
343 return uprobe_write_opcode(mm, vaddr, UPROBE_SWBP_INSN);
344 }
345
346 /**
347 * set_orig_insn - Restore the original instruction.
348 * @mm: the probed process address space.
349 * @auprobe: arch specific probepoint information.
350 * @vaddr: the virtual address to insert the opcode.
351 *
352 * For mm @mm, restore the original opcode (opcode) at @vaddr.
353 * Return 0 (success) or a negative errno.
354 */
355 int __weak
356 set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
357 {
358 return uprobe_write_opcode(mm, vaddr, *(uprobe_opcode_t *)&auprobe->insn);
359 }
360
361 static struct uprobe *get_uprobe(struct uprobe *uprobe)
362 {
363 atomic_inc(&uprobe->ref);
364 return uprobe;
365 }
366
367 static void put_uprobe(struct uprobe *uprobe)
368 {
369 if (atomic_dec_and_test(&uprobe->ref))
370 kfree(uprobe);
371 }
372
373 static int match_uprobe(struct uprobe *l, struct uprobe *r)
374 {
375 if (l->inode < r->inode)
376 return -1;
377
378 if (l->inode > r->inode)
379 return 1;
380
381 if (l->offset < r->offset)
382 return -1;
383
384 if (l->offset > r->offset)
385 return 1;
386
387 return 0;
388 }
389
390 static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
391 {
392 struct uprobe u = { .inode = inode, .offset = offset };
393 struct rb_node *n = uprobes_tree.rb_node;
394 struct uprobe *uprobe;
395 int match;
396
397 while (n) {
398 uprobe = rb_entry(n, struct uprobe, rb_node);
399 match = match_uprobe(&u, uprobe);
400 if (!match)
401 return get_uprobe(uprobe);
402
403 if (match < 0)
404 n = n->rb_left;
405 else
406 n = n->rb_right;
407 }
408 return NULL;
409 }
410
411 /*
412 * Find a uprobe corresponding to a given inode:offset
413 * Acquires uprobes_treelock
414 */
415 static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
416 {
417 struct uprobe *uprobe;
418
419 spin_lock(&uprobes_treelock);
420 uprobe = __find_uprobe(inode, offset);
421 spin_unlock(&uprobes_treelock);
422
423 return uprobe;
424 }
425
426 static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
427 {
428 struct rb_node **p = &uprobes_tree.rb_node;
429 struct rb_node *parent = NULL;
430 struct uprobe *u;
431 int match;
432
433 while (*p) {
434 parent = *p;
435 u = rb_entry(parent, struct uprobe, rb_node);
436 match = match_uprobe(uprobe, u);
437 if (!match)
438 return get_uprobe(u);
439
440 if (match < 0)
441 p = &parent->rb_left;
442 else
443 p = &parent->rb_right;
444
445 }
446
447 u = NULL;
448 rb_link_node(&uprobe->rb_node, parent, p);
449 rb_insert_color(&uprobe->rb_node, &uprobes_tree);
450 /* get access + creation ref */
451 atomic_set(&uprobe->ref, 2);
452
453 return u;
454 }
455
456 /*
457 * Acquire uprobes_treelock.
458 * Matching uprobe already exists in rbtree;
459 * increment (access refcount) and return the matching uprobe.
460 *
461 * No matching uprobe; insert the uprobe in rb_tree;
462 * get a double refcount (access + creation) and return NULL.
463 */
464 static struct uprobe *insert_uprobe(struct uprobe *uprobe)
465 {
466 struct uprobe *u;
467
468 spin_lock(&uprobes_treelock);
469 u = __insert_uprobe(uprobe);
470 spin_unlock(&uprobes_treelock);
471
472 return u;
473 }
474
475 static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset)
476 {
477 struct uprobe *uprobe, *cur_uprobe;
478
479 uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
480 if (!uprobe)
481 return NULL;
482
483 uprobe->inode = igrab(inode);
484 uprobe->offset = offset;
485 init_rwsem(&uprobe->register_rwsem);
486 init_rwsem(&uprobe->consumer_rwsem);
487
488 /* add to uprobes_tree, sorted on inode:offset */
489 cur_uprobe = insert_uprobe(uprobe);
490 /* a uprobe exists for this inode:offset combination */
491 if (cur_uprobe) {
492 kfree(uprobe);
493 uprobe = cur_uprobe;
494 iput(inode);
495 }
496
497 return uprobe;
498 }
499
500 static void consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
501 {
502 down_write(&uprobe->consumer_rwsem);
503 uc->next = uprobe->consumers;
504 uprobe->consumers = uc;
505 up_write(&uprobe->consumer_rwsem);
506 }
507
508 /*
509 * For uprobe @uprobe, delete the consumer @uc.
510 * Return true if the @uc is deleted successfully
511 * or return false.
512 */
513 static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
514 {
515 struct uprobe_consumer **con;
516 bool ret = false;
517
518 down_write(&uprobe->consumer_rwsem);
519 for (con = &uprobe->consumers; *con; con = &(*con)->next) {
520 if (*con == uc) {
521 *con = uc->next;
522 ret = true;
523 break;
524 }
525 }
526 up_write(&uprobe->consumer_rwsem);
527
528 return ret;
529 }
530
531 static int __copy_insn(struct address_space *mapping, struct file *filp,
532 void *insn, int nbytes, loff_t offset)
533 {
534 struct page *page;
535 /*
536 * Ensure that the page that has the original instruction is populated
537 * and in page-cache. If ->readpage == NULL it must be shmem_mapping(),
538 * see uprobe_register().
539 */
540 if (mapping->a_ops->readpage)
541 page = read_mapping_page(mapping, offset >> PAGE_CACHE_SHIFT, filp);
542 else
543 page = shmem_read_mapping_page(mapping, offset >> PAGE_CACHE_SHIFT);
544 if (IS_ERR(page))
545 return PTR_ERR(page);
546
547 copy_from_page(page, offset, insn, nbytes);
548 page_cache_release(page);
549
550 return 0;
551 }
552
553 static int copy_insn(struct uprobe *uprobe, struct file *filp)
554 {
555 struct address_space *mapping = uprobe->inode->i_mapping;
556 loff_t offs = uprobe->offset;
557 void *insn = &uprobe->arch.insn;
558 int size = sizeof(uprobe->arch.insn);
559 int len, err = -EIO;
560
561 /* Copy only available bytes, -EIO if nothing was read */
562 do {
563 if (offs >= i_size_read(uprobe->inode))
564 break;
565
566 len = min_t(int, size, PAGE_SIZE - (offs & ~PAGE_MASK));
567 err = __copy_insn(mapping, filp, insn, len, offs);
568 if (err)
569 break;
570
571 insn += len;
572 offs += len;
573 size -= len;
574 } while (size);
575
576 return err;
577 }
578
579 static int prepare_uprobe(struct uprobe *uprobe, struct file *file,
580 struct mm_struct *mm, unsigned long vaddr)
581 {
582 int ret = 0;
583
584 if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
585 return ret;
586
587 /* TODO: move this into _register, until then we abuse this sem. */
588 down_write(&uprobe->consumer_rwsem);
589 if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
590 goto out;
591
592 ret = copy_insn(uprobe, file);
593 if (ret)
594 goto out;
595
596 ret = -ENOTSUPP;
597 if (is_trap_insn((uprobe_opcode_t *)&uprobe->arch.insn))
598 goto out;
599
600 ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
601 if (ret)
602 goto out;
603
604 /* uprobe_write_opcode() assumes we don't cross page boundary */
605 BUG_ON((uprobe->offset & ~PAGE_MASK) +
606 UPROBE_SWBP_INSN_SIZE > PAGE_SIZE);
607
608 smp_wmb(); /* pairs with rmb() in find_active_uprobe() */
609 set_bit(UPROBE_COPY_INSN, &uprobe->flags);
610
611 out:
612 up_write(&uprobe->consumer_rwsem);
613
614 return ret;
615 }
616
617 static inline bool consumer_filter(struct uprobe_consumer *uc,
618 enum uprobe_filter_ctx ctx, struct mm_struct *mm)
619 {
620 return !uc->filter || uc->filter(uc, ctx, mm);
621 }
622
623 static bool filter_chain(struct uprobe *uprobe,
624 enum uprobe_filter_ctx ctx, struct mm_struct *mm)
625 {
626 struct uprobe_consumer *uc;
627 bool ret = false;
628
629 down_read(&uprobe->consumer_rwsem);
630 for (uc = uprobe->consumers; uc; uc = uc->next) {
631 ret = consumer_filter(uc, ctx, mm);
632 if (ret)
633 break;
634 }
635 up_read(&uprobe->consumer_rwsem);
636
637 return ret;
638 }
639
640 static int
641 install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
642 struct vm_area_struct *vma, unsigned long vaddr)
643 {
644 bool first_uprobe;
645 int ret;
646
647 ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr);
648 if (ret)
649 return ret;
650
651 /*
652 * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(),
653 * the task can hit this breakpoint right after __replace_page().
654 */
655 first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags);
656 if (first_uprobe)
657 set_bit(MMF_HAS_UPROBES, &mm->flags);
658
659 ret = set_swbp(&uprobe->arch, mm, vaddr);
660 if (!ret)
661 clear_bit(MMF_RECALC_UPROBES, &mm->flags);
662 else if (first_uprobe)
663 clear_bit(MMF_HAS_UPROBES, &mm->flags);
664
665 return ret;
666 }
667
668 static int
669 remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr)
670 {
671 set_bit(MMF_RECALC_UPROBES, &mm->flags);
672 return set_orig_insn(&uprobe->arch, mm, vaddr);
673 }
674
675 static inline bool uprobe_is_active(struct uprobe *uprobe)
676 {
677 return !RB_EMPTY_NODE(&uprobe->rb_node);
678 }
679 /*
680 * There could be threads that have already hit the breakpoint. They
681 * will recheck the current insn and restart if find_uprobe() fails.
682 * See find_active_uprobe().
683 */
684 static void delete_uprobe(struct uprobe *uprobe)
685 {
686 if (WARN_ON(!uprobe_is_active(uprobe)))
687 return;
688
689 spin_lock(&uprobes_treelock);
690 rb_erase(&uprobe->rb_node, &uprobes_tree);
691 spin_unlock(&uprobes_treelock);
692 RB_CLEAR_NODE(&uprobe->rb_node); /* for uprobe_is_active() */
693 iput(uprobe->inode);
694 put_uprobe(uprobe);
695 }
696
697 struct map_info {
698 struct map_info *next;
699 struct mm_struct *mm;
700 unsigned long vaddr;
701 };
702
703 static inline struct map_info *free_map_info(struct map_info *info)
704 {
705 struct map_info *next = info->next;
706 kfree(info);
707 return next;
708 }
709
710 static struct map_info *
711 build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
712 {
713 unsigned long pgoff = offset >> PAGE_SHIFT;
714 struct vm_area_struct *vma;
715 struct map_info *curr = NULL;
716 struct map_info *prev = NULL;
717 struct map_info *info;
718 int more = 0;
719
720 again:
721 i_mmap_lock_read(mapping);
722 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
723 if (!valid_vma(vma, is_register))
724 continue;
725
726 if (!prev && !more) {
727 /*
728 * Needs GFP_NOWAIT to avoid i_mmap_rwsem recursion through
729 * reclaim. This is optimistic, no harm done if it fails.
730 */
731 prev = kmalloc(sizeof(struct map_info),
732 GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
733 if (prev)
734 prev->next = NULL;
735 }
736 if (!prev) {
737 more++;
738 continue;
739 }
740
741 if (!atomic_inc_not_zero(&vma->vm_mm->mm_users))
742 continue;
743
744 info = prev;
745 prev = prev->next;
746 info->next = curr;
747 curr = info;
748
749 info->mm = vma->vm_mm;
750 info->vaddr = offset_to_vaddr(vma, offset);
751 }
752 i_mmap_unlock_read(mapping);
753
754 if (!more)
755 goto out;
756
757 prev = curr;
758 while (curr) {
759 mmput(curr->mm);
760 curr = curr->next;
761 }
762
763 do {
764 info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
765 if (!info) {
766 curr = ERR_PTR(-ENOMEM);
767 goto out;
768 }
769 info->next = prev;
770 prev = info;
771 } while (--more);
772
773 goto again;
774 out:
775 while (prev)
776 prev = free_map_info(prev);
777 return curr;
778 }
779
780 static int
781 register_for_each_vma(struct uprobe *uprobe, struct uprobe_consumer *new)
782 {
783 bool is_register = !!new;
784 struct map_info *info;
785 int err = 0;
786
787 percpu_down_write(&dup_mmap_sem);
788 info = build_map_info(uprobe->inode->i_mapping,
789 uprobe->offset, is_register);
790 if (IS_ERR(info)) {
791 err = PTR_ERR(info);
792 goto out;
793 }
794
795 while (info) {
796 struct mm_struct *mm = info->mm;
797 struct vm_area_struct *vma;
798
799 if (err && is_register)
800 goto free;
801
802 down_write(&mm->mmap_sem);
803 vma = find_vma(mm, info->vaddr);
804 if (!vma || !valid_vma(vma, is_register) ||
805 file_inode(vma->vm_file) != uprobe->inode)
806 goto unlock;
807
808 if (vma->vm_start > info->vaddr ||
809 vaddr_to_offset(vma, info->vaddr) != uprobe->offset)
810 goto unlock;
811
812 if (is_register) {
813 /* consult only the "caller", new consumer. */
814 if (consumer_filter(new,
815 UPROBE_FILTER_REGISTER, mm))
816 err = install_breakpoint(uprobe, mm, vma, info->vaddr);
817 } else if (test_bit(MMF_HAS_UPROBES, &mm->flags)) {
818 if (!filter_chain(uprobe,
819 UPROBE_FILTER_UNREGISTER, mm))
820 err |= remove_breakpoint(uprobe, mm, info->vaddr);
821 }
822
823 unlock:
824 up_write(&mm->mmap_sem);
825 free:
826 mmput(mm);
827 info = free_map_info(info);
828 }
829 out:
830 percpu_up_write(&dup_mmap_sem);
831 return err;
832 }
833
834 static int __uprobe_register(struct uprobe *uprobe, struct uprobe_consumer *uc)
835 {
836 consumer_add(uprobe, uc);
837 return register_for_each_vma(uprobe, uc);
838 }
839
840 static void __uprobe_unregister(struct uprobe *uprobe, struct uprobe_consumer *uc)
841 {
842 int err;
843
844 if (WARN_ON(!consumer_del(uprobe, uc)))
845 return;
846
847 err = register_for_each_vma(uprobe, NULL);
848 /* TODO : cant unregister? schedule a worker thread */
849 if (!uprobe->consumers && !err)
850 delete_uprobe(uprobe);
851 }
852
853 /*
854 * uprobe_register - register a probe
855 * @inode: the file in which the probe has to be placed.
856 * @offset: offset from the start of the file.
857 * @uc: information on howto handle the probe..
858 *
859 * Apart from the access refcount, uprobe_register() takes a creation
860 * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
861 * inserted into the rbtree (i.e first consumer for a @inode:@offset
862 * tuple). Creation refcount stops uprobe_unregister from freeing the
863 * @uprobe even before the register operation is complete. Creation
864 * refcount is released when the last @uc for the @uprobe
865 * unregisters.
866 *
867 * Return errno if it cannot successully install probes
868 * else return 0 (success)
869 */
870 int uprobe_register(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
871 {
872 struct uprobe *uprobe;
873 int ret;
874
875 /* Uprobe must have at least one set consumer */
876 if (!uc->handler && !uc->ret_handler)
877 return -EINVAL;
878
879 /* copy_insn() uses read_mapping_page() or shmem_read_mapping_page() */
880 if (!inode->i_mapping->a_ops->readpage && !shmem_mapping(inode->i_mapping))
881 return -EIO;
882 /* Racy, just to catch the obvious mistakes */
883 if (offset > i_size_read(inode))
884 return -EINVAL;
885
886 retry:
887 uprobe = alloc_uprobe(inode, offset);
888 if (!uprobe)
889 return -ENOMEM;
890 /*
891 * We can race with uprobe_unregister()->delete_uprobe().
892 * Check uprobe_is_active() and retry if it is false.
893 */
894 down_write(&uprobe->register_rwsem);
895 ret = -EAGAIN;
896 if (likely(uprobe_is_active(uprobe))) {
897 ret = __uprobe_register(uprobe, uc);
898 if (ret)
899 __uprobe_unregister(uprobe, uc);
900 }
901 up_write(&uprobe->register_rwsem);
902 put_uprobe(uprobe);
903
904 if (unlikely(ret == -EAGAIN))
905 goto retry;
906 return ret;
907 }
908 EXPORT_SYMBOL_GPL(uprobe_register);
909
910 /*
911 * uprobe_apply - unregister a already registered probe.
912 * @inode: the file in which the probe has to be removed.
913 * @offset: offset from the start of the file.
914 * @uc: consumer which wants to add more or remove some breakpoints
915 * @add: add or remove the breakpoints
916 */
917 int uprobe_apply(struct inode *inode, loff_t offset,
918 struct uprobe_consumer *uc, bool add)
919 {
920 struct uprobe *uprobe;
921 struct uprobe_consumer *con;
922 int ret = -ENOENT;
923
924 uprobe = find_uprobe(inode, offset);
925 if (WARN_ON(!uprobe))
926 return ret;
927
928 down_write(&uprobe->register_rwsem);
929 for (con = uprobe->consumers; con && con != uc ; con = con->next)
930 ;
931 if (con)
932 ret = register_for_each_vma(uprobe, add ? uc : NULL);
933 up_write(&uprobe->register_rwsem);
934 put_uprobe(uprobe);
935
936 return ret;
937 }
938
939 /*
940 * uprobe_unregister - unregister a already registered probe.
941 * @inode: the file in which the probe has to be removed.
942 * @offset: offset from the start of the file.
943 * @uc: identify which probe if multiple probes are colocated.
944 */
945 void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
946 {
947 struct uprobe *uprobe;
948
949 uprobe = find_uprobe(inode, offset);
950 if (WARN_ON(!uprobe))
951 return;
952
953 down_write(&uprobe->register_rwsem);
954 __uprobe_unregister(uprobe, uc);
955 up_write(&uprobe->register_rwsem);
956 put_uprobe(uprobe);
957 }
958 EXPORT_SYMBOL_GPL(uprobe_unregister);
959
960 static int unapply_uprobe(struct uprobe *uprobe, struct mm_struct *mm)
961 {
962 struct vm_area_struct *vma;
963 int err = 0;
964
965 down_read(&mm->mmap_sem);
966 for (vma = mm->mmap; vma; vma = vma->vm_next) {
967 unsigned long vaddr;
968 loff_t offset;
969
970 if (!valid_vma(vma, false) ||
971 file_inode(vma->vm_file) != uprobe->inode)
972 continue;
973
974 offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT;
975 if (uprobe->offset < offset ||
976 uprobe->offset >= offset + vma->vm_end - vma->vm_start)
977 continue;
978
979 vaddr = offset_to_vaddr(vma, uprobe->offset);
980 err |= remove_breakpoint(uprobe, mm, vaddr);
981 }
982 up_read(&mm->mmap_sem);
983
984 return err;
985 }
986
987 static struct rb_node *
988 find_node_in_range(struct inode *inode, loff_t min, loff_t max)
989 {
990 struct rb_node *n = uprobes_tree.rb_node;
991
992 while (n) {
993 struct uprobe *u = rb_entry(n, struct uprobe, rb_node);
994
995 if (inode < u->inode) {
996 n = n->rb_left;
997 } else if (inode > u->inode) {
998 n = n->rb_right;
999 } else {
1000 if (max < u->offset)
1001 n = n->rb_left;
1002 else if (min > u->offset)
1003 n = n->rb_right;
1004 else
1005 break;
1006 }
1007 }
1008
1009 return n;
1010 }
1011
1012 /*
1013 * For a given range in vma, build a list of probes that need to be inserted.
1014 */
1015 static void build_probe_list(struct inode *inode,
1016 struct vm_area_struct *vma,
1017 unsigned long start, unsigned long end,
1018 struct list_head *head)
1019 {
1020 loff_t min, max;
1021 struct rb_node *n, *t;
1022 struct uprobe *u;
1023
1024 INIT_LIST_HEAD(head);
1025 min = vaddr_to_offset(vma, start);
1026 max = min + (end - start) - 1;
1027
1028 spin_lock(&uprobes_treelock);
1029 n = find_node_in_range(inode, min, max);
1030 if (n) {
1031 for (t = n; t; t = rb_prev(t)) {
1032 u = rb_entry(t, struct uprobe, rb_node);
1033 if (u->inode != inode || u->offset < min)
1034 break;
1035 list_add(&u->pending_list, head);
1036 get_uprobe(u);
1037 }
1038 for (t = n; (t = rb_next(t)); ) {
1039 u = rb_entry(t, struct uprobe, rb_node);
1040 if (u->inode != inode || u->offset > max)
1041 break;
1042 list_add(&u->pending_list, head);
1043 get_uprobe(u);
1044 }
1045 }
1046 spin_unlock(&uprobes_treelock);
1047 }
1048
1049 /*
1050 * Called from mmap_region/vma_adjust with mm->mmap_sem acquired.
1051 *
1052 * Currently we ignore all errors and always return 0, the callers
1053 * can't handle the failure anyway.
1054 */
1055 int uprobe_mmap(struct vm_area_struct *vma)
1056 {
1057 struct list_head tmp_list;
1058 struct uprobe *uprobe, *u;
1059 struct inode *inode;
1060
1061 if (no_uprobe_events() || !valid_vma(vma, true))
1062 return 0;
1063
1064 inode = file_inode(vma->vm_file);
1065 if (!inode)
1066 return 0;
1067
1068 mutex_lock(uprobes_mmap_hash(inode));
1069 build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list);
1070 /*
1071 * We can race with uprobe_unregister(), this uprobe can be already
1072 * removed. But in this case filter_chain() must return false, all
1073 * consumers have gone away.
1074 */
1075 list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
1076 if (!fatal_signal_pending(current) &&
1077 filter_chain(uprobe, UPROBE_FILTER_MMAP, vma->vm_mm)) {
1078 unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset);
1079 install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
1080 }
1081 put_uprobe(uprobe);
1082 }
1083 mutex_unlock(uprobes_mmap_hash(inode));
1084
1085 return 0;
1086 }
1087
1088 static bool
1089 vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1090 {
1091 loff_t min, max;
1092 struct inode *inode;
1093 struct rb_node *n;
1094
1095 inode = file_inode(vma->vm_file);
1096
1097 min = vaddr_to_offset(vma, start);
1098 max = min + (end - start) - 1;
1099
1100 spin_lock(&uprobes_treelock);
1101 n = find_node_in_range(inode, min, max);
1102 spin_unlock(&uprobes_treelock);
1103
1104 return !!n;
1105 }
1106
1107 /*
1108 * Called in context of a munmap of a vma.
1109 */
1110 void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1111 {
1112 if (no_uprobe_events() || !valid_vma(vma, false))
1113 return;
1114
1115 if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */
1116 return;
1117
1118 if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) ||
1119 test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags))
1120 return;
1121
1122 if (vma_has_uprobes(vma, start, end))
1123 set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags);
1124 }
1125
1126 /* Slot allocation for XOL */
1127 static int xol_add_vma(struct mm_struct *mm, struct xol_area *area)
1128 {
1129 struct vm_area_struct *vma;
1130 int ret;
1131
1132 down_write(&mm->mmap_sem);
1133 if (mm->uprobes_state.xol_area) {
1134 ret = -EALREADY;
1135 goto fail;
1136 }
1137
1138 if (!area->vaddr) {
1139 /* Try to map as high as possible, this is only a hint. */
1140 area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE,
1141 PAGE_SIZE, 0, 0);
1142 if (area->vaddr & ~PAGE_MASK) {
1143 ret = area->vaddr;
1144 goto fail;
1145 }
1146 }
1147
1148 vma = _install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1149 VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO,
1150 &area->xol_mapping);
1151 if (IS_ERR(vma)) {
1152 ret = PTR_ERR(vma);
1153 goto fail;
1154 }
1155
1156 ret = 0;
1157 smp_wmb(); /* pairs with get_xol_area() */
1158 mm->uprobes_state.xol_area = area;
1159 fail:
1160 up_write(&mm->mmap_sem);
1161
1162 return ret;
1163 }
1164
1165 static struct xol_area *__create_xol_area(unsigned long vaddr)
1166 {
1167 struct mm_struct *mm = current->mm;
1168 uprobe_opcode_t insn = UPROBE_SWBP_INSN;
1169 struct xol_area *area;
1170
1171 area = kmalloc(sizeof(*area), GFP_KERNEL);
1172 if (unlikely(!area))
1173 goto out;
1174
1175 area->bitmap = kzalloc(BITS_TO_LONGS(UINSNS_PER_PAGE) * sizeof(long), GFP_KERNEL);
1176 if (!area->bitmap)
1177 goto free_area;
1178
1179 area->xol_mapping.name = "[uprobes]";
1180 area->xol_mapping.pages = area->pages;
1181 area->pages[0] = alloc_page(GFP_HIGHUSER);
1182 if (!area->pages[0])
1183 goto free_bitmap;
1184 area->pages[1] = NULL;
1185
1186 area->vaddr = vaddr;
1187 init_waitqueue_head(&area->wq);
1188 /* Reserve the 1st slot for get_trampoline_vaddr() */
1189 set_bit(0, area->bitmap);
1190 atomic_set(&area->slot_count, 1);
1191 copy_to_page(area->pages[0], 0, &insn, UPROBE_SWBP_INSN_SIZE);
1192
1193 if (!xol_add_vma(mm, area))
1194 return area;
1195
1196 __free_page(area->pages[0]);
1197 free_bitmap:
1198 kfree(area->bitmap);
1199 free_area:
1200 kfree(area);
1201 out:
1202 return NULL;
1203 }
1204
1205 /*
1206 * get_xol_area - Allocate process's xol_area if necessary.
1207 * This area will be used for storing instructions for execution out of line.
1208 *
1209 * Returns the allocated area or NULL.
1210 */
1211 static struct xol_area *get_xol_area(void)
1212 {
1213 struct mm_struct *mm = current->mm;
1214 struct xol_area *area;
1215
1216 if (!mm->uprobes_state.xol_area)
1217 __create_xol_area(0);
1218
1219 area = mm->uprobes_state.xol_area;
1220 smp_read_barrier_depends(); /* pairs with wmb in xol_add_vma() */
1221 return area;
1222 }
1223
1224 /*
1225 * uprobe_clear_state - Free the area allocated for slots.
1226 */
1227 void uprobe_clear_state(struct mm_struct *mm)
1228 {
1229 struct xol_area *area = mm->uprobes_state.xol_area;
1230
1231 if (!area)
1232 return;
1233
1234 put_page(area->pages[0]);
1235 kfree(area->bitmap);
1236 kfree(area);
1237 }
1238
1239 void uprobe_start_dup_mmap(void)
1240 {
1241 percpu_down_read(&dup_mmap_sem);
1242 }
1243
1244 void uprobe_end_dup_mmap(void)
1245 {
1246 percpu_up_read(&dup_mmap_sem);
1247 }
1248
1249 void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm)
1250 {
1251 newmm->uprobes_state.xol_area = NULL;
1252
1253 if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) {
1254 set_bit(MMF_HAS_UPROBES, &newmm->flags);
1255 /* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */
1256 set_bit(MMF_RECALC_UPROBES, &newmm->flags);
1257 }
1258 }
1259
1260 /*
1261 * - search for a free slot.
1262 */
1263 static unsigned long xol_take_insn_slot(struct xol_area *area)
1264 {
1265 unsigned long slot_addr;
1266 int slot_nr;
1267
1268 do {
1269 slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1270 if (slot_nr < UINSNS_PER_PAGE) {
1271 if (!test_and_set_bit(slot_nr, area->bitmap))
1272 break;
1273
1274 slot_nr = UINSNS_PER_PAGE;
1275 continue;
1276 }
1277 wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
1278 } while (slot_nr >= UINSNS_PER_PAGE);
1279
1280 slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
1281 atomic_inc(&area->slot_count);
1282
1283 return slot_addr;
1284 }
1285
1286 /*
1287 * xol_get_insn_slot - allocate a slot for xol.
1288 * Returns the allocated slot address or 0.
1289 */
1290 static unsigned long xol_get_insn_slot(struct uprobe *uprobe)
1291 {
1292 struct xol_area *area;
1293 unsigned long xol_vaddr;
1294
1295 area = get_xol_area();
1296 if (!area)
1297 return 0;
1298
1299 xol_vaddr = xol_take_insn_slot(area);
1300 if (unlikely(!xol_vaddr))
1301 return 0;
1302
1303 arch_uprobe_copy_ixol(area->pages[0], xol_vaddr,
1304 &uprobe->arch.ixol, sizeof(uprobe->arch.ixol));
1305
1306 return xol_vaddr;
1307 }
1308
1309 /*
1310 * xol_free_insn_slot - If slot was earlier allocated by
1311 * @xol_get_insn_slot(), make the slot available for
1312 * subsequent requests.
1313 */
1314 static void xol_free_insn_slot(struct task_struct *tsk)
1315 {
1316 struct xol_area *area;
1317 unsigned long vma_end;
1318 unsigned long slot_addr;
1319
1320 if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
1321 return;
1322
1323 slot_addr = tsk->utask->xol_vaddr;
1324 if (unlikely(!slot_addr))
1325 return;
1326
1327 area = tsk->mm->uprobes_state.xol_area;
1328 vma_end = area->vaddr + PAGE_SIZE;
1329 if (area->vaddr <= slot_addr && slot_addr < vma_end) {
1330 unsigned long offset;
1331 int slot_nr;
1332
1333 offset = slot_addr - area->vaddr;
1334 slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1335 if (slot_nr >= UINSNS_PER_PAGE)
1336 return;
1337
1338 clear_bit(slot_nr, area->bitmap);
1339 atomic_dec(&area->slot_count);
1340 smp_mb__after_atomic(); /* pairs with prepare_to_wait() */
1341 if (waitqueue_active(&area->wq))
1342 wake_up(&area->wq);
1343
1344 tsk->utask->xol_vaddr = 0;
1345 }
1346 }
1347
1348 void __weak arch_uprobe_copy_ixol(struct page *page, unsigned long vaddr,
1349 void *src, unsigned long len)
1350 {
1351 /* Initialize the slot */
1352 copy_to_page(page, vaddr, src, len);
1353
1354 /*
1355 * We probably need flush_icache_user_range() but it needs vma.
1356 * This should work on most of architectures by default. If
1357 * architecture needs to do something different it can define
1358 * its own version of the function.
1359 */
1360 flush_dcache_page(page);
1361 }
1362
1363 /**
1364 * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1365 * @regs: Reflects the saved state of the task after it has hit a breakpoint
1366 * instruction.
1367 * Return the address of the breakpoint instruction.
1368 */
1369 unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1370 {
1371 return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1372 }
1373
1374 unsigned long uprobe_get_trap_addr(struct pt_regs *regs)
1375 {
1376 struct uprobe_task *utask = current->utask;
1377
1378 if (unlikely(utask && utask->active_uprobe))
1379 return utask->vaddr;
1380
1381 return instruction_pointer(regs);
1382 }
1383
1384 static struct return_instance *free_ret_instance(struct return_instance *ri)
1385 {
1386 struct return_instance *next = ri->next;
1387 put_uprobe(ri->uprobe);
1388 kfree(ri);
1389 return next;
1390 }
1391
1392 /*
1393 * Called with no locks held.
1394 * Called in context of a exiting or a exec-ing thread.
1395 */
1396 void uprobe_free_utask(struct task_struct *t)
1397 {
1398 struct uprobe_task *utask = t->utask;
1399 struct return_instance *ri;
1400
1401 if (!utask)
1402 return;
1403
1404 if (utask->active_uprobe)
1405 put_uprobe(utask->active_uprobe);
1406
1407 ri = utask->return_instances;
1408 while (ri)
1409 ri = free_ret_instance(ri);
1410
1411 xol_free_insn_slot(t);
1412 kfree(utask);
1413 t->utask = NULL;
1414 }
1415
1416 /*
1417 * Allocate a uprobe_task object for the task if if necessary.
1418 * Called when the thread hits a breakpoint.
1419 *
1420 * Returns:
1421 * - pointer to new uprobe_task on success
1422 * - NULL otherwise
1423 */
1424 static struct uprobe_task *get_utask(void)
1425 {
1426 if (!current->utask)
1427 current->utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1428 return current->utask;
1429 }
1430
1431 static int dup_utask(struct task_struct *t, struct uprobe_task *o_utask)
1432 {
1433 struct uprobe_task *n_utask;
1434 struct return_instance **p, *o, *n;
1435
1436 n_utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1437 if (!n_utask)
1438 return -ENOMEM;
1439 t->utask = n_utask;
1440
1441 p = &n_utask->return_instances;
1442 for (o = o_utask->return_instances; o; o = o->next) {
1443 n = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1444 if (!n)
1445 return -ENOMEM;
1446
1447 *n = *o;
1448 get_uprobe(n->uprobe);
1449 n->next = NULL;
1450
1451 *p = n;
1452 p = &n->next;
1453 n_utask->depth++;
1454 }
1455
1456 return 0;
1457 }
1458
1459 static void uprobe_warn(struct task_struct *t, const char *msg)
1460 {
1461 pr_warn("uprobe: %s:%d failed to %s\n",
1462 current->comm, current->pid, msg);
1463 }
1464
1465 static void dup_xol_work(struct callback_head *work)
1466 {
1467 if (current->flags & PF_EXITING)
1468 return;
1469
1470 if (!__create_xol_area(current->utask->dup_xol_addr))
1471 uprobe_warn(current, "dup xol area");
1472 }
1473
1474 /*
1475 * Called in context of a new clone/fork from copy_process.
1476 */
1477 void uprobe_copy_process(struct task_struct *t, unsigned long flags)
1478 {
1479 struct uprobe_task *utask = current->utask;
1480 struct mm_struct *mm = current->mm;
1481 struct xol_area *area;
1482
1483 t->utask = NULL;
1484
1485 if (!utask || !utask->return_instances)
1486 return;
1487
1488 if (mm == t->mm && !(flags & CLONE_VFORK))
1489 return;
1490
1491 if (dup_utask(t, utask))
1492 return uprobe_warn(t, "dup ret instances");
1493
1494 /* The task can fork() after dup_xol_work() fails */
1495 area = mm->uprobes_state.xol_area;
1496 if (!area)
1497 return uprobe_warn(t, "dup xol area");
1498
1499 if (mm == t->mm)
1500 return;
1501
1502 t->utask->dup_xol_addr = area->vaddr;
1503 init_task_work(&t->utask->dup_xol_work, dup_xol_work);
1504 task_work_add(t, &t->utask->dup_xol_work, true);
1505 }
1506
1507 /*
1508 * Current area->vaddr notion assume the trampoline address is always
1509 * equal area->vaddr.
1510 *
1511 * Returns -1 in case the xol_area is not allocated.
1512 */
1513 static unsigned long get_trampoline_vaddr(void)
1514 {
1515 struct xol_area *area;
1516 unsigned long trampoline_vaddr = -1;
1517
1518 area = current->mm->uprobes_state.xol_area;
1519 smp_read_barrier_depends();
1520 if (area)
1521 trampoline_vaddr = area->vaddr;
1522
1523 return trampoline_vaddr;
1524 }
1525
1526 static void cleanup_return_instances(struct uprobe_task *utask, bool chained,
1527 struct pt_regs *regs)
1528 {
1529 struct return_instance *ri = utask->return_instances;
1530 enum rp_check ctx = chained ? RP_CHECK_CHAIN_CALL : RP_CHECK_CALL;
1531
1532 while (ri && !arch_uretprobe_is_alive(ri, ctx, regs)) {
1533 ri = free_ret_instance(ri);
1534 utask->depth--;
1535 }
1536 utask->return_instances = ri;
1537 }
1538
1539 static void prepare_uretprobe(struct uprobe *uprobe, struct pt_regs *regs)
1540 {
1541 struct return_instance *ri;
1542 struct uprobe_task *utask;
1543 unsigned long orig_ret_vaddr, trampoline_vaddr;
1544 bool chained;
1545
1546 if (!get_xol_area())
1547 return;
1548
1549 utask = get_utask();
1550 if (!utask)
1551 return;
1552
1553 if (utask->depth >= MAX_URETPROBE_DEPTH) {
1554 printk_ratelimited(KERN_INFO "uprobe: omit uretprobe due to"
1555 " nestedness limit pid/tgid=%d/%d\n",
1556 current->pid, current->tgid);
1557 return;
1558 }
1559
1560 ri = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1561 if (!ri)
1562 return;
1563
1564 trampoline_vaddr = get_trampoline_vaddr();
1565 orig_ret_vaddr = arch_uretprobe_hijack_return_addr(trampoline_vaddr, regs);
1566 if (orig_ret_vaddr == -1)
1567 goto fail;
1568
1569 /* drop the entries invalidated by longjmp() */
1570 chained = (orig_ret_vaddr == trampoline_vaddr);
1571 cleanup_return_instances(utask, chained, regs);
1572
1573 /*
1574 * We don't want to keep trampoline address in stack, rather keep the
1575 * original return address of first caller thru all the consequent
1576 * instances. This also makes breakpoint unwrapping easier.
1577 */
1578 if (chained) {
1579 if (!utask->return_instances) {
1580 /*
1581 * This situation is not possible. Likely we have an
1582 * attack from user-space.
1583 */
1584 uprobe_warn(current, "handle tail call");
1585 goto fail;
1586 }
1587 orig_ret_vaddr = utask->return_instances->orig_ret_vaddr;
1588 }
1589
1590 ri->uprobe = get_uprobe(uprobe);
1591 ri->func = instruction_pointer(regs);
1592 ri->stack = user_stack_pointer(regs);
1593 ri->orig_ret_vaddr = orig_ret_vaddr;
1594 ri->chained = chained;
1595
1596 utask->depth++;
1597 ri->next = utask->return_instances;
1598 utask->return_instances = ri;
1599
1600 return;
1601 fail:
1602 kfree(ri);
1603 }
1604
1605 /* Prepare to single-step probed instruction out of line. */
1606 static int
1607 pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long bp_vaddr)
1608 {
1609 struct uprobe_task *utask;
1610 unsigned long xol_vaddr;
1611 int err;
1612
1613 utask = get_utask();
1614 if (!utask)
1615 return -ENOMEM;
1616
1617 xol_vaddr = xol_get_insn_slot(uprobe);
1618 if (!xol_vaddr)
1619 return -ENOMEM;
1620
1621 utask->xol_vaddr = xol_vaddr;
1622 utask->vaddr = bp_vaddr;
1623
1624 err = arch_uprobe_pre_xol(&uprobe->arch, regs);
1625 if (unlikely(err)) {
1626 xol_free_insn_slot(current);
1627 return err;
1628 }
1629
1630 utask->active_uprobe = uprobe;
1631 utask->state = UTASK_SSTEP;
1632 return 0;
1633 }
1634
1635 /*
1636 * If we are singlestepping, then ensure this thread is not connected to
1637 * non-fatal signals until completion of singlestep. When xol insn itself
1638 * triggers the signal, restart the original insn even if the task is
1639 * already SIGKILL'ed (since coredump should report the correct ip). This
1640 * is even more important if the task has a handler for SIGSEGV/etc, The
1641 * _same_ instruction should be repeated again after return from the signal
1642 * handler, and SSTEP can never finish in this case.
1643 */
1644 bool uprobe_deny_signal(void)
1645 {
1646 struct task_struct *t = current;
1647 struct uprobe_task *utask = t->utask;
1648
1649 if (likely(!utask || !utask->active_uprobe))
1650 return false;
1651
1652 WARN_ON_ONCE(utask->state != UTASK_SSTEP);
1653
1654 if (signal_pending(t)) {
1655 spin_lock_irq(&t->sighand->siglock);
1656 clear_tsk_thread_flag(t, TIF_SIGPENDING);
1657 spin_unlock_irq(&t->sighand->siglock);
1658
1659 if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
1660 utask->state = UTASK_SSTEP_TRAPPED;
1661 set_tsk_thread_flag(t, TIF_UPROBE);
1662 }
1663 }
1664
1665 return true;
1666 }
1667
1668 static void mmf_recalc_uprobes(struct mm_struct *mm)
1669 {
1670 struct vm_area_struct *vma;
1671
1672 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1673 if (!valid_vma(vma, false))
1674 continue;
1675 /*
1676 * This is not strictly accurate, we can race with
1677 * uprobe_unregister() and see the already removed
1678 * uprobe if delete_uprobe() was not yet called.
1679 * Or this uprobe can be filtered out.
1680 */
1681 if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end))
1682 return;
1683 }
1684
1685 clear_bit(MMF_HAS_UPROBES, &mm->flags);
1686 }
1687
1688 static int is_trap_at_addr(struct mm_struct *mm, unsigned long vaddr)
1689 {
1690 struct page *page;
1691 uprobe_opcode_t opcode;
1692 int result;
1693
1694 pagefault_disable();
1695 result = __copy_from_user_inatomic(&opcode, (void __user*)vaddr,
1696 sizeof(opcode));
1697 pagefault_enable();
1698
1699 if (likely(result == 0))
1700 goto out;
1701
1702 result = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &page, NULL);
1703 if (result < 0)
1704 return result;
1705
1706 copy_from_page(page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
1707 put_page(page);
1708 out:
1709 /* This needs to return true for any variant of the trap insn */
1710 return is_trap_insn(&opcode);
1711 }
1712
1713 static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
1714 {
1715 struct mm_struct *mm = current->mm;
1716 struct uprobe *uprobe = NULL;
1717 struct vm_area_struct *vma;
1718
1719 down_read(&mm->mmap_sem);
1720 vma = find_vma(mm, bp_vaddr);
1721 if (vma && vma->vm_start <= bp_vaddr) {
1722 if (valid_vma(vma, false)) {
1723 struct inode *inode = file_inode(vma->vm_file);
1724 loff_t offset = vaddr_to_offset(vma, bp_vaddr);
1725
1726 uprobe = find_uprobe(inode, offset);
1727 }
1728
1729 if (!uprobe)
1730 *is_swbp = is_trap_at_addr(mm, bp_vaddr);
1731 } else {
1732 *is_swbp = -EFAULT;
1733 }
1734
1735 if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags))
1736 mmf_recalc_uprobes(mm);
1737 up_read(&mm->mmap_sem);
1738
1739 return uprobe;
1740 }
1741
1742 static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
1743 {
1744 struct uprobe_consumer *uc;
1745 int remove = UPROBE_HANDLER_REMOVE;
1746 bool need_prep = false; /* prepare return uprobe, when needed */
1747
1748 down_read(&uprobe->register_rwsem);
1749 for (uc = uprobe->consumers; uc; uc = uc->next) {
1750 int rc = 0;
1751
1752 if (uc->handler) {
1753 rc = uc->handler(uc, regs);
1754 WARN(rc & ~UPROBE_HANDLER_MASK,
1755 "bad rc=0x%x from %pf()\n", rc, uc->handler);
1756 }
1757
1758 if (uc->ret_handler)
1759 need_prep = true;
1760
1761 remove &= rc;
1762 }
1763
1764 if (need_prep && !remove)
1765 prepare_uretprobe(uprobe, regs); /* put bp at return */
1766
1767 if (remove && uprobe->consumers) {
1768 WARN_ON(!uprobe_is_active(uprobe));
1769 unapply_uprobe(uprobe, current->mm);
1770 }
1771 up_read(&uprobe->register_rwsem);
1772 }
1773
1774 static void
1775 handle_uretprobe_chain(struct return_instance *ri, struct pt_regs *regs)
1776 {
1777 struct uprobe *uprobe = ri->uprobe;
1778 struct uprobe_consumer *uc;
1779
1780 down_read(&uprobe->register_rwsem);
1781 for (uc = uprobe->consumers; uc; uc = uc->next) {
1782 if (uc->ret_handler)
1783 uc->ret_handler(uc, ri->func, regs);
1784 }
1785 up_read(&uprobe->register_rwsem);
1786 }
1787
1788 static struct return_instance *find_next_ret_chain(struct return_instance *ri)
1789 {
1790 bool chained;
1791
1792 do {
1793 chained = ri->chained;
1794 ri = ri->next; /* can't be NULL if chained */
1795 } while (chained);
1796
1797 return ri;
1798 }
1799
1800 static void handle_trampoline(struct pt_regs *regs)
1801 {
1802 struct uprobe_task *utask;
1803 struct return_instance *ri, *next;
1804 bool valid;
1805
1806 utask = current->utask;
1807 if (!utask)
1808 goto sigill;
1809
1810 ri = utask->return_instances;
1811 if (!ri)
1812 goto sigill;
1813
1814 do {
1815 /*
1816 * We should throw out the frames invalidated by longjmp().
1817 * If this chain is valid, then the next one should be alive
1818 * or NULL; the latter case means that nobody but ri->func
1819 * could hit this trampoline on return. TODO: sigaltstack().
1820 */
1821 next = find_next_ret_chain(ri);
1822 valid = !next || arch_uretprobe_is_alive(next, RP_CHECK_RET, regs);
1823
1824 instruction_pointer_set(regs, ri->orig_ret_vaddr);
1825 do {
1826 if (valid)
1827 handle_uretprobe_chain(ri, regs);
1828 ri = free_ret_instance(ri);
1829 utask->depth--;
1830 } while (ri != next);
1831 } while (!valid);
1832
1833 utask->return_instances = ri;
1834 return;
1835
1836 sigill:
1837 uprobe_warn(current, "handle uretprobe, sending SIGILL.");
1838 force_sig_info(SIGILL, SEND_SIG_FORCED, current);
1839
1840 }
1841
1842 bool __weak arch_uprobe_ignore(struct arch_uprobe *aup, struct pt_regs *regs)
1843 {
1844 return false;
1845 }
1846
1847 bool __weak arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx,
1848 struct pt_regs *regs)
1849 {
1850 return true;
1851 }
1852
1853 /*
1854 * Run handler and ask thread to singlestep.
1855 * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
1856 */
1857 static void handle_swbp(struct pt_regs *regs)
1858 {
1859 struct uprobe *uprobe;
1860 unsigned long bp_vaddr;
1861 int uninitialized_var(is_swbp);
1862
1863 bp_vaddr = uprobe_get_swbp_addr(regs);
1864 if (bp_vaddr == get_trampoline_vaddr())
1865 return handle_trampoline(regs);
1866
1867 uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
1868 if (!uprobe) {
1869 if (is_swbp > 0) {
1870 /* No matching uprobe; signal SIGTRAP. */
1871 send_sig(SIGTRAP, current, 0);
1872 } else {
1873 /*
1874 * Either we raced with uprobe_unregister() or we can't
1875 * access this memory. The latter is only possible if
1876 * another thread plays with our ->mm. In both cases
1877 * we can simply restart. If this vma was unmapped we
1878 * can pretend this insn was not executed yet and get
1879 * the (correct) SIGSEGV after restart.
1880 */
1881 instruction_pointer_set(regs, bp_vaddr);
1882 }
1883 return;
1884 }
1885
1886 /* change it in advance for ->handler() and restart */
1887 instruction_pointer_set(regs, bp_vaddr);
1888
1889 /*
1890 * TODO: move copy_insn/etc into _register and remove this hack.
1891 * After we hit the bp, _unregister + _register can install the
1892 * new and not-yet-analyzed uprobe at the same address, restart.
1893 */
1894 smp_rmb(); /* pairs with wmb() in install_breakpoint() */
1895 if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags)))
1896 goto out;
1897
1898 /* Tracing handlers use ->utask to communicate with fetch methods */
1899 if (!get_utask())
1900 goto out;
1901
1902 if (arch_uprobe_ignore(&uprobe->arch, regs))
1903 goto out;
1904
1905 handler_chain(uprobe, regs);
1906
1907 if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
1908 goto out;
1909
1910 if (!pre_ssout(uprobe, regs, bp_vaddr))
1911 return;
1912
1913 /* arch_uprobe_skip_sstep() succeeded, or restart if can't singlestep */
1914 out:
1915 put_uprobe(uprobe);
1916 }
1917
1918 /*
1919 * Perform required fix-ups and disable singlestep.
1920 * Allow pending signals to take effect.
1921 */
1922 static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
1923 {
1924 struct uprobe *uprobe;
1925 int err = 0;
1926
1927 uprobe = utask->active_uprobe;
1928 if (utask->state == UTASK_SSTEP_ACK)
1929 err = arch_uprobe_post_xol(&uprobe->arch, regs);
1930 else if (utask->state == UTASK_SSTEP_TRAPPED)
1931 arch_uprobe_abort_xol(&uprobe->arch, regs);
1932 else
1933 WARN_ON_ONCE(1);
1934
1935 put_uprobe(uprobe);
1936 utask->active_uprobe = NULL;
1937 utask->state = UTASK_RUNNING;
1938 xol_free_insn_slot(current);
1939
1940 spin_lock_irq(&current->sighand->siglock);
1941 recalc_sigpending(); /* see uprobe_deny_signal() */
1942 spin_unlock_irq(&current->sighand->siglock);
1943
1944 if (unlikely(err)) {
1945 uprobe_warn(current, "execute the probed insn, sending SIGILL.");
1946 force_sig_info(SIGILL, SEND_SIG_FORCED, current);
1947 }
1948 }
1949
1950 /*
1951 * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and
1952 * allows the thread to return from interrupt. After that handle_swbp()
1953 * sets utask->active_uprobe.
1954 *
1955 * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag
1956 * and allows the thread to return from interrupt.
1957 *
1958 * While returning to userspace, thread notices the TIF_UPROBE flag and calls
1959 * uprobe_notify_resume().
1960 */
1961 void uprobe_notify_resume(struct pt_regs *regs)
1962 {
1963 struct uprobe_task *utask;
1964
1965 clear_thread_flag(TIF_UPROBE);
1966
1967 utask = current->utask;
1968 if (utask && utask->active_uprobe)
1969 handle_singlestep(utask, regs);
1970 else
1971 handle_swbp(regs);
1972 }
1973
1974 /*
1975 * uprobe_pre_sstep_notifier gets called from interrupt context as part of
1976 * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
1977 */
1978 int uprobe_pre_sstep_notifier(struct pt_regs *regs)
1979 {
1980 if (!current->mm)
1981 return 0;
1982
1983 if (!test_bit(MMF_HAS_UPROBES, &current->mm->flags) &&
1984 (!current->utask || !current->utask->return_instances))
1985 return 0;
1986
1987 set_thread_flag(TIF_UPROBE);
1988 return 1;
1989 }
1990
1991 /*
1992 * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
1993 * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
1994 */
1995 int uprobe_post_sstep_notifier(struct pt_regs *regs)
1996 {
1997 struct uprobe_task *utask = current->utask;
1998
1999 if (!current->mm || !utask || !utask->active_uprobe)
2000 /* task is currently not uprobed */
2001 return 0;
2002
2003 utask->state = UTASK_SSTEP_ACK;
2004 set_thread_flag(TIF_UPROBE);
2005 return 1;
2006 }
2007
2008 static struct notifier_block uprobe_exception_nb = {
2009 .notifier_call = arch_uprobe_exception_notify,
2010 .priority = INT_MAX-1, /* notified after kprobes, kgdb */
2011 };
2012
2013 static int __init init_uprobes(void)
2014 {
2015 int i;
2016
2017 for (i = 0; i < UPROBES_HASH_SZ; i++)
2018 mutex_init(&uprobes_mmap_mutex[i]);
2019
2020 if (percpu_init_rwsem(&dup_mmap_sem))
2021 return -ENOMEM;
2022
2023 return register_die_notifier(&uprobe_exception_nb);
2024 }
2025 __initcall(init_uprobes);