]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - kernel/events/uprobes.c
Merge branch 'upstream' of git://git.linux-mips.org/pub/scm/ralf/upstream-linus
[mirror_ubuntu-focal-kernel.git] / kernel / events / uprobes.c
1 /*
2 * User-space Probes (UProbes)
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright (C) IBM Corporation, 2008-2012
19 * Authors:
20 * Srikar Dronamraju
21 * Jim Keniston
22 * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
23 */
24
25 #include <linux/kernel.h>
26 #include <linux/highmem.h>
27 #include <linux/pagemap.h> /* read_mapping_page */
28 #include <linux/slab.h>
29 #include <linux/sched.h>
30 #include <linux/export.h>
31 #include <linux/rmap.h> /* anon_vma_prepare */
32 #include <linux/mmu_notifier.h> /* set_pte_at_notify */
33 #include <linux/swap.h> /* try_to_free_swap */
34 #include <linux/ptrace.h> /* user_enable_single_step */
35 #include <linux/kdebug.h> /* notifier mechanism */
36 #include "../../mm/internal.h" /* munlock_vma_page */
37 #include <linux/percpu-rwsem.h>
38 #include <linux/task_work.h>
39
40 #include <linux/uprobes.h>
41
42 #define UINSNS_PER_PAGE (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
43 #define MAX_UPROBE_XOL_SLOTS UINSNS_PER_PAGE
44
45 static struct rb_root uprobes_tree = RB_ROOT;
46 /*
47 * allows us to skip the uprobe_mmap if there are no uprobe events active
48 * at this time. Probably a fine grained per inode count is better?
49 */
50 #define no_uprobe_events() RB_EMPTY_ROOT(&uprobes_tree)
51
52 static DEFINE_SPINLOCK(uprobes_treelock); /* serialize rbtree access */
53
54 #define UPROBES_HASH_SZ 13
55 /* serialize uprobe->pending_list */
56 static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
57 #define uprobes_mmap_hash(v) (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
58
59 static struct percpu_rw_semaphore dup_mmap_sem;
60
61 /* Have a copy of original instruction */
62 #define UPROBE_COPY_INSN 0
63
64 struct uprobe {
65 struct rb_node rb_node; /* node in the rb tree */
66 atomic_t ref;
67 struct rw_semaphore register_rwsem;
68 struct rw_semaphore consumer_rwsem;
69 struct list_head pending_list;
70 struct uprobe_consumer *consumers;
71 struct inode *inode; /* Also hold a ref to inode */
72 loff_t offset;
73 unsigned long flags;
74
75 /*
76 * The generic code assumes that it has two members of unknown type
77 * owned by the arch-specific code:
78 *
79 * insn - copy_insn() saves the original instruction here for
80 * arch_uprobe_analyze_insn().
81 *
82 * ixol - potentially modified instruction to execute out of
83 * line, copied to xol_area by xol_get_insn_slot().
84 */
85 struct arch_uprobe arch;
86 };
87
88 struct return_instance {
89 struct uprobe *uprobe;
90 unsigned long func;
91 unsigned long orig_ret_vaddr; /* original return address */
92 bool chained; /* true, if instance is nested */
93
94 struct return_instance *next; /* keep as stack */
95 };
96
97 /*
98 * Execute out of line area: anonymous executable mapping installed
99 * by the probed task to execute the copy of the original instruction
100 * mangled by set_swbp().
101 *
102 * On a breakpoint hit, thread contests for a slot. It frees the
103 * slot after singlestep. Currently a fixed number of slots are
104 * allocated.
105 */
106 struct xol_area {
107 wait_queue_head_t wq; /* if all slots are busy */
108 atomic_t slot_count; /* number of in-use slots */
109 unsigned long *bitmap; /* 0 = free slot */
110 struct page *page;
111
112 /*
113 * We keep the vma's vm_start rather than a pointer to the vma
114 * itself. The probed process or a naughty kernel module could make
115 * the vma go away, and we must handle that reasonably gracefully.
116 */
117 unsigned long vaddr; /* Page(s) of instruction slots */
118 };
119
120 /*
121 * valid_vma: Verify if the specified vma is an executable vma
122 * Relax restrictions while unregistering: vm_flags might have
123 * changed after breakpoint was inserted.
124 * - is_register: indicates if we are in register context.
125 * - Return 1 if the specified virtual address is in an
126 * executable vma.
127 */
128 static bool valid_vma(struct vm_area_struct *vma, bool is_register)
129 {
130 vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_SHARED;
131
132 if (is_register)
133 flags |= VM_WRITE;
134
135 return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC;
136 }
137
138 static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset)
139 {
140 return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
141 }
142
143 static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr)
144 {
145 return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start);
146 }
147
148 /**
149 * __replace_page - replace page in vma by new page.
150 * based on replace_page in mm/ksm.c
151 *
152 * @vma: vma that holds the pte pointing to page
153 * @addr: address the old @page is mapped at
154 * @page: the cowed page we are replacing by kpage
155 * @kpage: the modified page we replace page by
156 *
157 * Returns 0 on success, -EFAULT on failure.
158 */
159 static int __replace_page(struct vm_area_struct *vma, unsigned long addr,
160 struct page *page, struct page *kpage)
161 {
162 struct mm_struct *mm = vma->vm_mm;
163 spinlock_t *ptl;
164 pte_t *ptep;
165 int err;
166 /* For mmu_notifiers */
167 const unsigned long mmun_start = addr;
168 const unsigned long mmun_end = addr + PAGE_SIZE;
169
170 /* For try_to_free_swap() and munlock_vma_page() below */
171 lock_page(page);
172
173 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
174 err = -EAGAIN;
175 ptep = page_check_address(page, mm, addr, &ptl, 0);
176 if (!ptep)
177 goto unlock;
178
179 get_page(kpage);
180 page_add_new_anon_rmap(kpage, vma, addr);
181
182 if (!PageAnon(page)) {
183 dec_mm_counter(mm, MM_FILEPAGES);
184 inc_mm_counter(mm, MM_ANONPAGES);
185 }
186
187 flush_cache_page(vma, addr, pte_pfn(*ptep));
188 ptep_clear_flush(vma, addr, ptep);
189 set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
190
191 page_remove_rmap(page);
192 if (!page_mapped(page))
193 try_to_free_swap(page);
194 pte_unmap_unlock(ptep, ptl);
195
196 if (vma->vm_flags & VM_LOCKED)
197 munlock_vma_page(page);
198 put_page(page);
199
200 err = 0;
201 unlock:
202 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
203 unlock_page(page);
204 return err;
205 }
206
207 /**
208 * is_swbp_insn - check if instruction is breakpoint instruction.
209 * @insn: instruction to be checked.
210 * Default implementation of is_swbp_insn
211 * Returns true if @insn is a breakpoint instruction.
212 */
213 bool __weak is_swbp_insn(uprobe_opcode_t *insn)
214 {
215 return *insn == UPROBE_SWBP_INSN;
216 }
217
218 /**
219 * is_trap_insn - check if instruction is breakpoint instruction.
220 * @insn: instruction to be checked.
221 * Default implementation of is_trap_insn
222 * Returns true if @insn is a breakpoint instruction.
223 *
224 * This function is needed for the case where an architecture has multiple
225 * trap instructions (like powerpc).
226 */
227 bool __weak is_trap_insn(uprobe_opcode_t *insn)
228 {
229 return is_swbp_insn(insn);
230 }
231
232 static void copy_from_page(struct page *page, unsigned long vaddr, void *dst, int len)
233 {
234 void *kaddr = kmap_atomic(page);
235 memcpy(dst, kaddr + (vaddr & ~PAGE_MASK), len);
236 kunmap_atomic(kaddr);
237 }
238
239 static void copy_to_page(struct page *page, unsigned long vaddr, const void *src, int len)
240 {
241 void *kaddr = kmap_atomic(page);
242 memcpy(kaddr + (vaddr & ~PAGE_MASK), src, len);
243 kunmap_atomic(kaddr);
244 }
245
246 static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode)
247 {
248 uprobe_opcode_t old_opcode;
249 bool is_swbp;
250
251 /*
252 * Note: We only check if the old_opcode is UPROBE_SWBP_INSN here.
253 * We do not check if it is any other 'trap variant' which could
254 * be conditional trap instruction such as the one powerpc supports.
255 *
256 * The logic is that we do not care if the underlying instruction
257 * is a trap variant; uprobes always wins over any other (gdb)
258 * breakpoint.
259 */
260 copy_from_page(page, vaddr, &old_opcode, UPROBE_SWBP_INSN_SIZE);
261 is_swbp = is_swbp_insn(&old_opcode);
262
263 if (is_swbp_insn(new_opcode)) {
264 if (is_swbp) /* register: already installed? */
265 return 0;
266 } else {
267 if (!is_swbp) /* unregister: was it changed by us? */
268 return 0;
269 }
270
271 return 1;
272 }
273
274 /*
275 * NOTE:
276 * Expect the breakpoint instruction to be the smallest size instruction for
277 * the architecture. If an arch has variable length instruction and the
278 * breakpoint instruction is not of the smallest length instruction
279 * supported by that architecture then we need to modify is_trap_at_addr and
280 * uprobe_write_opcode accordingly. This would never be a problem for archs
281 * that have fixed length instructions.
282 */
283
284 /*
285 * uprobe_write_opcode - write the opcode at a given virtual address.
286 * @mm: the probed process address space.
287 * @vaddr: the virtual address to store the opcode.
288 * @opcode: opcode to be written at @vaddr.
289 *
290 * Called with mm->mmap_sem held (for read and with a reference to
291 * mm).
292 *
293 * For mm @mm, write the opcode at @vaddr.
294 * Return 0 (success) or a negative errno.
295 */
296 int uprobe_write_opcode(struct mm_struct *mm, unsigned long vaddr,
297 uprobe_opcode_t opcode)
298 {
299 struct page *old_page, *new_page;
300 struct vm_area_struct *vma;
301 int ret;
302
303 retry:
304 /* Read the page with vaddr into memory */
305 ret = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &old_page, &vma);
306 if (ret <= 0)
307 return ret;
308
309 ret = verify_opcode(old_page, vaddr, &opcode);
310 if (ret <= 0)
311 goto put_old;
312
313 ret = -ENOMEM;
314 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
315 if (!new_page)
316 goto put_old;
317
318 __SetPageUptodate(new_page);
319
320 copy_highpage(new_page, old_page);
321 copy_to_page(new_page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
322
323 ret = anon_vma_prepare(vma);
324 if (ret)
325 goto put_new;
326
327 ret = __replace_page(vma, vaddr, old_page, new_page);
328
329 put_new:
330 page_cache_release(new_page);
331 put_old:
332 put_page(old_page);
333
334 if (unlikely(ret == -EAGAIN))
335 goto retry;
336 return ret;
337 }
338
339 /**
340 * set_swbp - store breakpoint at a given address.
341 * @auprobe: arch specific probepoint information.
342 * @mm: the probed process address space.
343 * @vaddr: the virtual address to insert the opcode.
344 *
345 * For mm @mm, store the breakpoint instruction at @vaddr.
346 * Return 0 (success) or a negative errno.
347 */
348 int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
349 {
350 return uprobe_write_opcode(mm, vaddr, UPROBE_SWBP_INSN);
351 }
352
353 /**
354 * set_orig_insn - Restore the original instruction.
355 * @mm: the probed process address space.
356 * @auprobe: arch specific probepoint information.
357 * @vaddr: the virtual address to insert the opcode.
358 *
359 * For mm @mm, restore the original opcode (opcode) at @vaddr.
360 * Return 0 (success) or a negative errno.
361 */
362 int __weak
363 set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
364 {
365 return uprobe_write_opcode(mm, vaddr, *(uprobe_opcode_t *)&auprobe->insn);
366 }
367
368 static int match_uprobe(struct uprobe *l, struct uprobe *r)
369 {
370 if (l->inode < r->inode)
371 return -1;
372
373 if (l->inode > r->inode)
374 return 1;
375
376 if (l->offset < r->offset)
377 return -1;
378
379 if (l->offset > r->offset)
380 return 1;
381
382 return 0;
383 }
384
385 static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
386 {
387 struct uprobe u = { .inode = inode, .offset = offset };
388 struct rb_node *n = uprobes_tree.rb_node;
389 struct uprobe *uprobe;
390 int match;
391
392 while (n) {
393 uprobe = rb_entry(n, struct uprobe, rb_node);
394 match = match_uprobe(&u, uprobe);
395 if (!match) {
396 atomic_inc(&uprobe->ref);
397 return uprobe;
398 }
399
400 if (match < 0)
401 n = n->rb_left;
402 else
403 n = n->rb_right;
404 }
405 return NULL;
406 }
407
408 /*
409 * Find a uprobe corresponding to a given inode:offset
410 * Acquires uprobes_treelock
411 */
412 static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
413 {
414 struct uprobe *uprobe;
415
416 spin_lock(&uprobes_treelock);
417 uprobe = __find_uprobe(inode, offset);
418 spin_unlock(&uprobes_treelock);
419
420 return uprobe;
421 }
422
423 static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
424 {
425 struct rb_node **p = &uprobes_tree.rb_node;
426 struct rb_node *parent = NULL;
427 struct uprobe *u;
428 int match;
429
430 while (*p) {
431 parent = *p;
432 u = rb_entry(parent, struct uprobe, rb_node);
433 match = match_uprobe(uprobe, u);
434 if (!match) {
435 atomic_inc(&u->ref);
436 return u;
437 }
438
439 if (match < 0)
440 p = &parent->rb_left;
441 else
442 p = &parent->rb_right;
443
444 }
445
446 u = NULL;
447 rb_link_node(&uprobe->rb_node, parent, p);
448 rb_insert_color(&uprobe->rb_node, &uprobes_tree);
449 /* get access + creation ref */
450 atomic_set(&uprobe->ref, 2);
451
452 return u;
453 }
454
455 /*
456 * Acquire uprobes_treelock.
457 * Matching uprobe already exists in rbtree;
458 * increment (access refcount) and return the matching uprobe.
459 *
460 * No matching uprobe; insert the uprobe in rb_tree;
461 * get a double refcount (access + creation) and return NULL.
462 */
463 static struct uprobe *insert_uprobe(struct uprobe *uprobe)
464 {
465 struct uprobe *u;
466
467 spin_lock(&uprobes_treelock);
468 u = __insert_uprobe(uprobe);
469 spin_unlock(&uprobes_treelock);
470
471 return u;
472 }
473
474 static void put_uprobe(struct uprobe *uprobe)
475 {
476 if (atomic_dec_and_test(&uprobe->ref))
477 kfree(uprobe);
478 }
479
480 static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset)
481 {
482 struct uprobe *uprobe, *cur_uprobe;
483
484 uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
485 if (!uprobe)
486 return NULL;
487
488 uprobe->inode = igrab(inode);
489 uprobe->offset = offset;
490 init_rwsem(&uprobe->register_rwsem);
491 init_rwsem(&uprobe->consumer_rwsem);
492
493 /* add to uprobes_tree, sorted on inode:offset */
494 cur_uprobe = insert_uprobe(uprobe);
495 /* a uprobe exists for this inode:offset combination */
496 if (cur_uprobe) {
497 kfree(uprobe);
498 uprobe = cur_uprobe;
499 iput(inode);
500 }
501
502 return uprobe;
503 }
504
505 static void consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
506 {
507 down_write(&uprobe->consumer_rwsem);
508 uc->next = uprobe->consumers;
509 uprobe->consumers = uc;
510 up_write(&uprobe->consumer_rwsem);
511 }
512
513 /*
514 * For uprobe @uprobe, delete the consumer @uc.
515 * Return true if the @uc is deleted successfully
516 * or return false.
517 */
518 static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
519 {
520 struct uprobe_consumer **con;
521 bool ret = false;
522
523 down_write(&uprobe->consumer_rwsem);
524 for (con = &uprobe->consumers; *con; con = &(*con)->next) {
525 if (*con == uc) {
526 *con = uc->next;
527 ret = true;
528 break;
529 }
530 }
531 up_write(&uprobe->consumer_rwsem);
532
533 return ret;
534 }
535
536 static int __copy_insn(struct address_space *mapping, struct file *filp,
537 void *insn, int nbytes, loff_t offset)
538 {
539 struct page *page;
540
541 if (!mapping->a_ops->readpage)
542 return -EIO;
543 /*
544 * Ensure that the page that has the original instruction is
545 * populated and in page-cache.
546 */
547 page = read_mapping_page(mapping, offset >> PAGE_CACHE_SHIFT, filp);
548 if (IS_ERR(page))
549 return PTR_ERR(page);
550
551 copy_from_page(page, offset, insn, nbytes);
552 page_cache_release(page);
553
554 return 0;
555 }
556
557 static int copy_insn(struct uprobe *uprobe, struct file *filp)
558 {
559 struct address_space *mapping = uprobe->inode->i_mapping;
560 loff_t offs = uprobe->offset;
561 void *insn = &uprobe->arch.insn;
562 int size = sizeof(uprobe->arch.insn);
563 int len, err = -EIO;
564
565 /* Copy only available bytes, -EIO if nothing was read */
566 do {
567 if (offs >= i_size_read(uprobe->inode))
568 break;
569
570 len = min_t(int, size, PAGE_SIZE - (offs & ~PAGE_MASK));
571 err = __copy_insn(mapping, filp, insn, len, offs);
572 if (err)
573 break;
574
575 insn += len;
576 offs += len;
577 size -= len;
578 } while (size);
579
580 return err;
581 }
582
583 static int prepare_uprobe(struct uprobe *uprobe, struct file *file,
584 struct mm_struct *mm, unsigned long vaddr)
585 {
586 int ret = 0;
587
588 if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
589 return ret;
590
591 /* TODO: move this into _register, until then we abuse this sem. */
592 down_write(&uprobe->consumer_rwsem);
593 if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
594 goto out;
595
596 ret = copy_insn(uprobe, file);
597 if (ret)
598 goto out;
599
600 ret = -ENOTSUPP;
601 if (is_trap_insn((uprobe_opcode_t *)&uprobe->arch.insn))
602 goto out;
603
604 ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
605 if (ret)
606 goto out;
607
608 /* uprobe_write_opcode() assumes we don't cross page boundary */
609 BUG_ON((uprobe->offset & ~PAGE_MASK) +
610 UPROBE_SWBP_INSN_SIZE > PAGE_SIZE);
611
612 smp_wmb(); /* pairs with rmb() in find_active_uprobe() */
613 set_bit(UPROBE_COPY_INSN, &uprobe->flags);
614
615 out:
616 up_write(&uprobe->consumer_rwsem);
617
618 return ret;
619 }
620
621 static inline bool consumer_filter(struct uprobe_consumer *uc,
622 enum uprobe_filter_ctx ctx, struct mm_struct *mm)
623 {
624 return !uc->filter || uc->filter(uc, ctx, mm);
625 }
626
627 static bool filter_chain(struct uprobe *uprobe,
628 enum uprobe_filter_ctx ctx, struct mm_struct *mm)
629 {
630 struct uprobe_consumer *uc;
631 bool ret = false;
632
633 down_read(&uprobe->consumer_rwsem);
634 for (uc = uprobe->consumers; uc; uc = uc->next) {
635 ret = consumer_filter(uc, ctx, mm);
636 if (ret)
637 break;
638 }
639 up_read(&uprobe->consumer_rwsem);
640
641 return ret;
642 }
643
644 static int
645 install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
646 struct vm_area_struct *vma, unsigned long vaddr)
647 {
648 bool first_uprobe;
649 int ret;
650
651 ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr);
652 if (ret)
653 return ret;
654
655 /*
656 * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(),
657 * the task can hit this breakpoint right after __replace_page().
658 */
659 first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags);
660 if (first_uprobe)
661 set_bit(MMF_HAS_UPROBES, &mm->flags);
662
663 ret = set_swbp(&uprobe->arch, mm, vaddr);
664 if (!ret)
665 clear_bit(MMF_RECALC_UPROBES, &mm->flags);
666 else if (first_uprobe)
667 clear_bit(MMF_HAS_UPROBES, &mm->flags);
668
669 return ret;
670 }
671
672 static int
673 remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr)
674 {
675 set_bit(MMF_RECALC_UPROBES, &mm->flags);
676 return set_orig_insn(&uprobe->arch, mm, vaddr);
677 }
678
679 static inline bool uprobe_is_active(struct uprobe *uprobe)
680 {
681 return !RB_EMPTY_NODE(&uprobe->rb_node);
682 }
683 /*
684 * There could be threads that have already hit the breakpoint. They
685 * will recheck the current insn and restart if find_uprobe() fails.
686 * See find_active_uprobe().
687 */
688 static void delete_uprobe(struct uprobe *uprobe)
689 {
690 if (WARN_ON(!uprobe_is_active(uprobe)))
691 return;
692
693 spin_lock(&uprobes_treelock);
694 rb_erase(&uprobe->rb_node, &uprobes_tree);
695 spin_unlock(&uprobes_treelock);
696 RB_CLEAR_NODE(&uprobe->rb_node); /* for uprobe_is_active() */
697 iput(uprobe->inode);
698 put_uprobe(uprobe);
699 }
700
701 struct map_info {
702 struct map_info *next;
703 struct mm_struct *mm;
704 unsigned long vaddr;
705 };
706
707 static inline struct map_info *free_map_info(struct map_info *info)
708 {
709 struct map_info *next = info->next;
710 kfree(info);
711 return next;
712 }
713
714 static struct map_info *
715 build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
716 {
717 unsigned long pgoff = offset >> PAGE_SHIFT;
718 struct vm_area_struct *vma;
719 struct map_info *curr = NULL;
720 struct map_info *prev = NULL;
721 struct map_info *info;
722 int more = 0;
723
724 again:
725 mutex_lock(&mapping->i_mmap_mutex);
726 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
727 if (!valid_vma(vma, is_register))
728 continue;
729
730 if (!prev && !more) {
731 /*
732 * Needs GFP_NOWAIT to avoid i_mmap_mutex recursion through
733 * reclaim. This is optimistic, no harm done if it fails.
734 */
735 prev = kmalloc(sizeof(struct map_info),
736 GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
737 if (prev)
738 prev->next = NULL;
739 }
740 if (!prev) {
741 more++;
742 continue;
743 }
744
745 if (!atomic_inc_not_zero(&vma->vm_mm->mm_users))
746 continue;
747
748 info = prev;
749 prev = prev->next;
750 info->next = curr;
751 curr = info;
752
753 info->mm = vma->vm_mm;
754 info->vaddr = offset_to_vaddr(vma, offset);
755 }
756 mutex_unlock(&mapping->i_mmap_mutex);
757
758 if (!more)
759 goto out;
760
761 prev = curr;
762 while (curr) {
763 mmput(curr->mm);
764 curr = curr->next;
765 }
766
767 do {
768 info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
769 if (!info) {
770 curr = ERR_PTR(-ENOMEM);
771 goto out;
772 }
773 info->next = prev;
774 prev = info;
775 } while (--more);
776
777 goto again;
778 out:
779 while (prev)
780 prev = free_map_info(prev);
781 return curr;
782 }
783
784 static int
785 register_for_each_vma(struct uprobe *uprobe, struct uprobe_consumer *new)
786 {
787 bool is_register = !!new;
788 struct map_info *info;
789 int err = 0;
790
791 percpu_down_write(&dup_mmap_sem);
792 info = build_map_info(uprobe->inode->i_mapping,
793 uprobe->offset, is_register);
794 if (IS_ERR(info)) {
795 err = PTR_ERR(info);
796 goto out;
797 }
798
799 while (info) {
800 struct mm_struct *mm = info->mm;
801 struct vm_area_struct *vma;
802
803 if (err && is_register)
804 goto free;
805
806 down_write(&mm->mmap_sem);
807 vma = find_vma(mm, info->vaddr);
808 if (!vma || !valid_vma(vma, is_register) ||
809 file_inode(vma->vm_file) != uprobe->inode)
810 goto unlock;
811
812 if (vma->vm_start > info->vaddr ||
813 vaddr_to_offset(vma, info->vaddr) != uprobe->offset)
814 goto unlock;
815
816 if (is_register) {
817 /* consult only the "caller", new consumer. */
818 if (consumer_filter(new,
819 UPROBE_FILTER_REGISTER, mm))
820 err = install_breakpoint(uprobe, mm, vma, info->vaddr);
821 } else if (test_bit(MMF_HAS_UPROBES, &mm->flags)) {
822 if (!filter_chain(uprobe,
823 UPROBE_FILTER_UNREGISTER, mm))
824 err |= remove_breakpoint(uprobe, mm, info->vaddr);
825 }
826
827 unlock:
828 up_write(&mm->mmap_sem);
829 free:
830 mmput(mm);
831 info = free_map_info(info);
832 }
833 out:
834 percpu_up_write(&dup_mmap_sem);
835 return err;
836 }
837
838 static int __uprobe_register(struct uprobe *uprobe, struct uprobe_consumer *uc)
839 {
840 consumer_add(uprobe, uc);
841 return register_for_each_vma(uprobe, uc);
842 }
843
844 static void __uprobe_unregister(struct uprobe *uprobe, struct uprobe_consumer *uc)
845 {
846 int err;
847
848 if (!consumer_del(uprobe, uc)) /* WARN? */
849 return;
850
851 err = register_for_each_vma(uprobe, NULL);
852 /* TODO : cant unregister? schedule a worker thread */
853 if (!uprobe->consumers && !err)
854 delete_uprobe(uprobe);
855 }
856
857 /*
858 * uprobe_register - register a probe
859 * @inode: the file in which the probe has to be placed.
860 * @offset: offset from the start of the file.
861 * @uc: information on howto handle the probe..
862 *
863 * Apart from the access refcount, uprobe_register() takes a creation
864 * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
865 * inserted into the rbtree (i.e first consumer for a @inode:@offset
866 * tuple). Creation refcount stops uprobe_unregister from freeing the
867 * @uprobe even before the register operation is complete. Creation
868 * refcount is released when the last @uc for the @uprobe
869 * unregisters.
870 *
871 * Return errno if it cannot successully install probes
872 * else return 0 (success)
873 */
874 int uprobe_register(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
875 {
876 struct uprobe *uprobe;
877 int ret;
878
879 /* Uprobe must have at least one set consumer */
880 if (!uc->handler && !uc->ret_handler)
881 return -EINVAL;
882
883 /* Racy, just to catch the obvious mistakes */
884 if (offset > i_size_read(inode))
885 return -EINVAL;
886
887 retry:
888 uprobe = alloc_uprobe(inode, offset);
889 if (!uprobe)
890 return -ENOMEM;
891 /*
892 * We can race with uprobe_unregister()->delete_uprobe().
893 * Check uprobe_is_active() and retry if it is false.
894 */
895 down_write(&uprobe->register_rwsem);
896 ret = -EAGAIN;
897 if (likely(uprobe_is_active(uprobe))) {
898 ret = __uprobe_register(uprobe, uc);
899 if (ret)
900 __uprobe_unregister(uprobe, uc);
901 }
902 up_write(&uprobe->register_rwsem);
903 put_uprobe(uprobe);
904
905 if (unlikely(ret == -EAGAIN))
906 goto retry;
907 return ret;
908 }
909 EXPORT_SYMBOL_GPL(uprobe_register);
910
911 /*
912 * uprobe_apply - unregister a already registered probe.
913 * @inode: the file in which the probe has to be removed.
914 * @offset: offset from the start of the file.
915 * @uc: consumer which wants to add more or remove some breakpoints
916 * @add: add or remove the breakpoints
917 */
918 int uprobe_apply(struct inode *inode, loff_t offset,
919 struct uprobe_consumer *uc, bool add)
920 {
921 struct uprobe *uprobe;
922 struct uprobe_consumer *con;
923 int ret = -ENOENT;
924
925 uprobe = find_uprobe(inode, offset);
926 if (!uprobe)
927 return ret;
928
929 down_write(&uprobe->register_rwsem);
930 for (con = uprobe->consumers; con && con != uc ; con = con->next)
931 ;
932 if (con)
933 ret = register_for_each_vma(uprobe, add ? uc : NULL);
934 up_write(&uprobe->register_rwsem);
935 put_uprobe(uprobe);
936
937 return ret;
938 }
939
940 /*
941 * uprobe_unregister - unregister a already registered probe.
942 * @inode: the file in which the probe has to be removed.
943 * @offset: offset from the start of the file.
944 * @uc: identify which probe if multiple probes are colocated.
945 */
946 void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
947 {
948 struct uprobe *uprobe;
949
950 uprobe = find_uprobe(inode, offset);
951 if (!uprobe)
952 return;
953
954 down_write(&uprobe->register_rwsem);
955 __uprobe_unregister(uprobe, uc);
956 up_write(&uprobe->register_rwsem);
957 put_uprobe(uprobe);
958 }
959 EXPORT_SYMBOL_GPL(uprobe_unregister);
960
961 static int unapply_uprobe(struct uprobe *uprobe, struct mm_struct *mm)
962 {
963 struct vm_area_struct *vma;
964 int err = 0;
965
966 down_read(&mm->mmap_sem);
967 for (vma = mm->mmap; vma; vma = vma->vm_next) {
968 unsigned long vaddr;
969 loff_t offset;
970
971 if (!valid_vma(vma, false) ||
972 file_inode(vma->vm_file) != uprobe->inode)
973 continue;
974
975 offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT;
976 if (uprobe->offset < offset ||
977 uprobe->offset >= offset + vma->vm_end - vma->vm_start)
978 continue;
979
980 vaddr = offset_to_vaddr(vma, uprobe->offset);
981 err |= remove_breakpoint(uprobe, mm, vaddr);
982 }
983 up_read(&mm->mmap_sem);
984
985 return err;
986 }
987
988 static struct rb_node *
989 find_node_in_range(struct inode *inode, loff_t min, loff_t max)
990 {
991 struct rb_node *n = uprobes_tree.rb_node;
992
993 while (n) {
994 struct uprobe *u = rb_entry(n, struct uprobe, rb_node);
995
996 if (inode < u->inode) {
997 n = n->rb_left;
998 } else if (inode > u->inode) {
999 n = n->rb_right;
1000 } else {
1001 if (max < u->offset)
1002 n = n->rb_left;
1003 else if (min > u->offset)
1004 n = n->rb_right;
1005 else
1006 break;
1007 }
1008 }
1009
1010 return n;
1011 }
1012
1013 /*
1014 * For a given range in vma, build a list of probes that need to be inserted.
1015 */
1016 static void build_probe_list(struct inode *inode,
1017 struct vm_area_struct *vma,
1018 unsigned long start, unsigned long end,
1019 struct list_head *head)
1020 {
1021 loff_t min, max;
1022 struct rb_node *n, *t;
1023 struct uprobe *u;
1024
1025 INIT_LIST_HEAD(head);
1026 min = vaddr_to_offset(vma, start);
1027 max = min + (end - start) - 1;
1028
1029 spin_lock(&uprobes_treelock);
1030 n = find_node_in_range(inode, min, max);
1031 if (n) {
1032 for (t = n; t; t = rb_prev(t)) {
1033 u = rb_entry(t, struct uprobe, rb_node);
1034 if (u->inode != inode || u->offset < min)
1035 break;
1036 list_add(&u->pending_list, head);
1037 atomic_inc(&u->ref);
1038 }
1039 for (t = n; (t = rb_next(t)); ) {
1040 u = rb_entry(t, struct uprobe, rb_node);
1041 if (u->inode != inode || u->offset > max)
1042 break;
1043 list_add(&u->pending_list, head);
1044 atomic_inc(&u->ref);
1045 }
1046 }
1047 spin_unlock(&uprobes_treelock);
1048 }
1049
1050 /*
1051 * Called from mmap_region/vma_adjust with mm->mmap_sem acquired.
1052 *
1053 * Currently we ignore all errors and always return 0, the callers
1054 * can't handle the failure anyway.
1055 */
1056 int uprobe_mmap(struct vm_area_struct *vma)
1057 {
1058 struct list_head tmp_list;
1059 struct uprobe *uprobe, *u;
1060 struct inode *inode;
1061
1062 if (no_uprobe_events() || !valid_vma(vma, true))
1063 return 0;
1064
1065 inode = file_inode(vma->vm_file);
1066 if (!inode)
1067 return 0;
1068
1069 mutex_lock(uprobes_mmap_hash(inode));
1070 build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list);
1071 /*
1072 * We can race with uprobe_unregister(), this uprobe can be already
1073 * removed. But in this case filter_chain() must return false, all
1074 * consumers have gone away.
1075 */
1076 list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
1077 if (!fatal_signal_pending(current) &&
1078 filter_chain(uprobe, UPROBE_FILTER_MMAP, vma->vm_mm)) {
1079 unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset);
1080 install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
1081 }
1082 put_uprobe(uprobe);
1083 }
1084 mutex_unlock(uprobes_mmap_hash(inode));
1085
1086 return 0;
1087 }
1088
1089 static bool
1090 vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1091 {
1092 loff_t min, max;
1093 struct inode *inode;
1094 struct rb_node *n;
1095
1096 inode = file_inode(vma->vm_file);
1097
1098 min = vaddr_to_offset(vma, start);
1099 max = min + (end - start) - 1;
1100
1101 spin_lock(&uprobes_treelock);
1102 n = find_node_in_range(inode, min, max);
1103 spin_unlock(&uprobes_treelock);
1104
1105 return !!n;
1106 }
1107
1108 /*
1109 * Called in context of a munmap of a vma.
1110 */
1111 void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1112 {
1113 if (no_uprobe_events() || !valid_vma(vma, false))
1114 return;
1115
1116 if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */
1117 return;
1118
1119 if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) ||
1120 test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags))
1121 return;
1122
1123 if (vma_has_uprobes(vma, start, end))
1124 set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags);
1125 }
1126
1127 /* Slot allocation for XOL */
1128 static int xol_add_vma(struct mm_struct *mm, struct xol_area *area)
1129 {
1130 int ret = -EALREADY;
1131
1132 down_write(&mm->mmap_sem);
1133 if (mm->uprobes_state.xol_area)
1134 goto fail;
1135
1136 if (!area->vaddr) {
1137 /* Try to map as high as possible, this is only a hint. */
1138 area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE,
1139 PAGE_SIZE, 0, 0);
1140 if (area->vaddr & ~PAGE_MASK) {
1141 ret = area->vaddr;
1142 goto fail;
1143 }
1144 }
1145
1146 ret = install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1147 VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO, &area->page);
1148 if (ret)
1149 goto fail;
1150
1151 smp_wmb(); /* pairs with get_xol_area() */
1152 mm->uprobes_state.xol_area = area;
1153 fail:
1154 up_write(&mm->mmap_sem);
1155
1156 return ret;
1157 }
1158
1159 static struct xol_area *__create_xol_area(unsigned long vaddr)
1160 {
1161 struct mm_struct *mm = current->mm;
1162 uprobe_opcode_t insn = UPROBE_SWBP_INSN;
1163 struct xol_area *area;
1164
1165 area = kmalloc(sizeof(*area), GFP_KERNEL);
1166 if (unlikely(!area))
1167 goto out;
1168
1169 area->bitmap = kzalloc(BITS_TO_LONGS(UINSNS_PER_PAGE) * sizeof(long), GFP_KERNEL);
1170 if (!area->bitmap)
1171 goto free_area;
1172
1173 area->page = alloc_page(GFP_HIGHUSER);
1174 if (!area->page)
1175 goto free_bitmap;
1176
1177 area->vaddr = vaddr;
1178 init_waitqueue_head(&area->wq);
1179 /* Reserve the 1st slot for get_trampoline_vaddr() */
1180 set_bit(0, area->bitmap);
1181 atomic_set(&area->slot_count, 1);
1182 copy_to_page(area->page, 0, &insn, UPROBE_SWBP_INSN_SIZE);
1183
1184 if (!xol_add_vma(mm, area))
1185 return area;
1186
1187 __free_page(area->page);
1188 free_bitmap:
1189 kfree(area->bitmap);
1190 free_area:
1191 kfree(area);
1192 out:
1193 return NULL;
1194 }
1195
1196 /*
1197 * get_xol_area - Allocate process's xol_area if necessary.
1198 * This area will be used for storing instructions for execution out of line.
1199 *
1200 * Returns the allocated area or NULL.
1201 */
1202 static struct xol_area *get_xol_area(void)
1203 {
1204 struct mm_struct *mm = current->mm;
1205 struct xol_area *area;
1206
1207 if (!mm->uprobes_state.xol_area)
1208 __create_xol_area(0);
1209
1210 area = mm->uprobes_state.xol_area;
1211 smp_read_barrier_depends(); /* pairs with wmb in xol_add_vma() */
1212 return area;
1213 }
1214
1215 /*
1216 * uprobe_clear_state - Free the area allocated for slots.
1217 */
1218 void uprobe_clear_state(struct mm_struct *mm)
1219 {
1220 struct xol_area *area = mm->uprobes_state.xol_area;
1221
1222 if (!area)
1223 return;
1224
1225 put_page(area->page);
1226 kfree(area->bitmap);
1227 kfree(area);
1228 }
1229
1230 void uprobe_start_dup_mmap(void)
1231 {
1232 percpu_down_read(&dup_mmap_sem);
1233 }
1234
1235 void uprobe_end_dup_mmap(void)
1236 {
1237 percpu_up_read(&dup_mmap_sem);
1238 }
1239
1240 void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm)
1241 {
1242 newmm->uprobes_state.xol_area = NULL;
1243
1244 if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) {
1245 set_bit(MMF_HAS_UPROBES, &newmm->flags);
1246 /* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */
1247 set_bit(MMF_RECALC_UPROBES, &newmm->flags);
1248 }
1249 }
1250
1251 /*
1252 * - search for a free slot.
1253 */
1254 static unsigned long xol_take_insn_slot(struct xol_area *area)
1255 {
1256 unsigned long slot_addr;
1257 int slot_nr;
1258
1259 do {
1260 slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1261 if (slot_nr < UINSNS_PER_PAGE) {
1262 if (!test_and_set_bit(slot_nr, area->bitmap))
1263 break;
1264
1265 slot_nr = UINSNS_PER_PAGE;
1266 continue;
1267 }
1268 wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
1269 } while (slot_nr >= UINSNS_PER_PAGE);
1270
1271 slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
1272 atomic_inc(&area->slot_count);
1273
1274 return slot_addr;
1275 }
1276
1277 /*
1278 * xol_get_insn_slot - allocate a slot for xol.
1279 * Returns the allocated slot address or 0.
1280 */
1281 static unsigned long xol_get_insn_slot(struct uprobe *uprobe)
1282 {
1283 struct xol_area *area;
1284 unsigned long xol_vaddr;
1285
1286 area = get_xol_area();
1287 if (!area)
1288 return 0;
1289
1290 xol_vaddr = xol_take_insn_slot(area);
1291 if (unlikely(!xol_vaddr))
1292 return 0;
1293
1294 arch_uprobe_copy_ixol(area->page, xol_vaddr,
1295 &uprobe->arch.ixol, sizeof(uprobe->arch.ixol));
1296
1297 return xol_vaddr;
1298 }
1299
1300 /*
1301 * xol_free_insn_slot - If slot was earlier allocated by
1302 * @xol_get_insn_slot(), make the slot available for
1303 * subsequent requests.
1304 */
1305 static void xol_free_insn_slot(struct task_struct *tsk)
1306 {
1307 struct xol_area *area;
1308 unsigned long vma_end;
1309 unsigned long slot_addr;
1310
1311 if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
1312 return;
1313
1314 slot_addr = tsk->utask->xol_vaddr;
1315 if (unlikely(!slot_addr))
1316 return;
1317
1318 area = tsk->mm->uprobes_state.xol_area;
1319 vma_end = area->vaddr + PAGE_SIZE;
1320 if (area->vaddr <= slot_addr && slot_addr < vma_end) {
1321 unsigned long offset;
1322 int slot_nr;
1323
1324 offset = slot_addr - area->vaddr;
1325 slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1326 if (slot_nr >= UINSNS_PER_PAGE)
1327 return;
1328
1329 clear_bit(slot_nr, area->bitmap);
1330 atomic_dec(&area->slot_count);
1331 if (waitqueue_active(&area->wq))
1332 wake_up(&area->wq);
1333
1334 tsk->utask->xol_vaddr = 0;
1335 }
1336 }
1337
1338 void __weak arch_uprobe_copy_ixol(struct page *page, unsigned long vaddr,
1339 void *src, unsigned long len)
1340 {
1341 /* Initialize the slot */
1342 copy_to_page(page, vaddr, src, len);
1343
1344 /*
1345 * We probably need flush_icache_user_range() but it needs vma.
1346 * This should work on most of architectures by default. If
1347 * architecture needs to do something different it can define
1348 * its own version of the function.
1349 */
1350 flush_dcache_page(page);
1351 }
1352
1353 /**
1354 * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1355 * @regs: Reflects the saved state of the task after it has hit a breakpoint
1356 * instruction.
1357 * Return the address of the breakpoint instruction.
1358 */
1359 unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1360 {
1361 return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1362 }
1363
1364 /*
1365 * Called with no locks held.
1366 * Called in context of a exiting or a exec-ing thread.
1367 */
1368 void uprobe_free_utask(struct task_struct *t)
1369 {
1370 struct uprobe_task *utask = t->utask;
1371 struct return_instance *ri, *tmp;
1372
1373 if (!utask)
1374 return;
1375
1376 if (utask->active_uprobe)
1377 put_uprobe(utask->active_uprobe);
1378
1379 ri = utask->return_instances;
1380 while (ri) {
1381 tmp = ri;
1382 ri = ri->next;
1383
1384 put_uprobe(tmp->uprobe);
1385 kfree(tmp);
1386 }
1387
1388 xol_free_insn_slot(t);
1389 kfree(utask);
1390 t->utask = NULL;
1391 }
1392
1393 /*
1394 * Allocate a uprobe_task object for the task if if necessary.
1395 * Called when the thread hits a breakpoint.
1396 *
1397 * Returns:
1398 * - pointer to new uprobe_task on success
1399 * - NULL otherwise
1400 */
1401 static struct uprobe_task *get_utask(void)
1402 {
1403 if (!current->utask)
1404 current->utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1405 return current->utask;
1406 }
1407
1408 static int dup_utask(struct task_struct *t, struct uprobe_task *o_utask)
1409 {
1410 struct uprobe_task *n_utask;
1411 struct return_instance **p, *o, *n;
1412
1413 n_utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1414 if (!n_utask)
1415 return -ENOMEM;
1416 t->utask = n_utask;
1417
1418 p = &n_utask->return_instances;
1419 for (o = o_utask->return_instances; o; o = o->next) {
1420 n = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1421 if (!n)
1422 return -ENOMEM;
1423
1424 *n = *o;
1425 atomic_inc(&n->uprobe->ref);
1426 n->next = NULL;
1427
1428 *p = n;
1429 p = &n->next;
1430 n_utask->depth++;
1431 }
1432
1433 return 0;
1434 }
1435
1436 static void uprobe_warn(struct task_struct *t, const char *msg)
1437 {
1438 pr_warn("uprobe: %s:%d failed to %s\n",
1439 current->comm, current->pid, msg);
1440 }
1441
1442 static void dup_xol_work(struct callback_head *work)
1443 {
1444 if (current->flags & PF_EXITING)
1445 return;
1446
1447 if (!__create_xol_area(current->utask->dup_xol_addr))
1448 uprobe_warn(current, "dup xol area");
1449 }
1450
1451 /*
1452 * Called in context of a new clone/fork from copy_process.
1453 */
1454 void uprobe_copy_process(struct task_struct *t, unsigned long flags)
1455 {
1456 struct uprobe_task *utask = current->utask;
1457 struct mm_struct *mm = current->mm;
1458 struct xol_area *area;
1459
1460 t->utask = NULL;
1461
1462 if (!utask || !utask->return_instances)
1463 return;
1464
1465 if (mm == t->mm && !(flags & CLONE_VFORK))
1466 return;
1467
1468 if (dup_utask(t, utask))
1469 return uprobe_warn(t, "dup ret instances");
1470
1471 /* The task can fork() after dup_xol_work() fails */
1472 area = mm->uprobes_state.xol_area;
1473 if (!area)
1474 return uprobe_warn(t, "dup xol area");
1475
1476 if (mm == t->mm)
1477 return;
1478
1479 t->utask->dup_xol_addr = area->vaddr;
1480 init_task_work(&t->utask->dup_xol_work, dup_xol_work);
1481 task_work_add(t, &t->utask->dup_xol_work, true);
1482 }
1483
1484 /*
1485 * Current area->vaddr notion assume the trampoline address is always
1486 * equal area->vaddr.
1487 *
1488 * Returns -1 in case the xol_area is not allocated.
1489 */
1490 static unsigned long get_trampoline_vaddr(void)
1491 {
1492 struct xol_area *area;
1493 unsigned long trampoline_vaddr = -1;
1494
1495 area = current->mm->uprobes_state.xol_area;
1496 smp_read_barrier_depends();
1497 if (area)
1498 trampoline_vaddr = area->vaddr;
1499
1500 return trampoline_vaddr;
1501 }
1502
1503 static void prepare_uretprobe(struct uprobe *uprobe, struct pt_regs *regs)
1504 {
1505 struct return_instance *ri;
1506 struct uprobe_task *utask;
1507 unsigned long orig_ret_vaddr, trampoline_vaddr;
1508 bool chained = false;
1509
1510 if (!get_xol_area())
1511 return;
1512
1513 utask = get_utask();
1514 if (!utask)
1515 return;
1516
1517 if (utask->depth >= MAX_URETPROBE_DEPTH) {
1518 printk_ratelimited(KERN_INFO "uprobe: omit uretprobe due to"
1519 " nestedness limit pid/tgid=%d/%d\n",
1520 current->pid, current->tgid);
1521 return;
1522 }
1523
1524 ri = kzalloc(sizeof(struct return_instance), GFP_KERNEL);
1525 if (!ri)
1526 goto fail;
1527
1528 trampoline_vaddr = get_trampoline_vaddr();
1529 orig_ret_vaddr = arch_uretprobe_hijack_return_addr(trampoline_vaddr, regs);
1530 if (orig_ret_vaddr == -1)
1531 goto fail;
1532
1533 /*
1534 * We don't want to keep trampoline address in stack, rather keep the
1535 * original return address of first caller thru all the consequent
1536 * instances. This also makes breakpoint unwrapping easier.
1537 */
1538 if (orig_ret_vaddr == trampoline_vaddr) {
1539 if (!utask->return_instances) {
1540 /*
1541 * This situation is not possible. Likely we have an
1542 * attack from user-space.
1543 */
1544 pr_warn("uprobe: unable to set uretprobe pid/tgid=%d/%d\n",
1545 current->pid, current->tgid);
1546 goto fail;
1547 }
1548
1549 chained = true;
1550 orig_ret_vaddr = utask->return_instances->orig_ret_vaddr;
1551 }
1552
1553 atomic_inc(&uprobe->ref);
1554 ri->uprobe = uprobe;
1555 ri->func = instruction_pointer(regs);
1556 ri->orig_ret_vaddr = orig_ret_vaddr;
1557 ri->chained = chained;
1558
1559 utask->depth++;
1560
1561 /* add instance to the stack */
1562 ri->next = utask->return_instances;
1563 utask->return_instances = ri;
1564
1565 return;
1566
1567 fail:
1568 kfree(ri);
1569 }
1570
1571 /* Prepare to single-step probed instruction out of line. */
1572 static int
1573 pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long bp_vaddr)
1574 {
1575 struct uprobe_task *utask;
1576 unsigned long xol_vaddr;
1577 int err;
1578
1579 utask = get_utask();
1580 if (!utask)
1581 return -ENOMEM;
1582
1583 xol_vaddr = xol_get_insn_slot(uprobe);
1584 if (!xol_vaddr)
1585 return -ENOMEM;
1586
1587 utask->xol_vaddr = xol_vaddr;
1588 utask->vaddr = bp_vaddr;
1589
1590 err = arch_uprobe_pre_xol(&uprobe->arch, regs);
1591 if (unlikely(err)) {
1592 xol_free_insn_slot(current);
1593 return err;
1594 }
1595
1596 utask->active_uprobe = uprobe;
1597 utask->state = UTASK_SSTEP;
1598 return 0;
1599 }
1600
1601 /*
1602 * If we are singlestepping, then ensure this thread is not connected to
1603 * non-fatal signals until completion of singlestep. When xol insn itself
1604 * triggers the signal, restart the original insn even if the task is
1605 * already SIGKILL'ed (since coredump should report the correct ip). This
1606 * is even more important if the task has a handler for SIGSEGV/etc, The
1607 * _same_ instruction should be repeated again after return from the signal
1608 * handler, and SSTEP can never finish in this case.
1609 */
1610 bool uprobe_deny_signal(void)
1611 {
1612 struct task_struct *t = current;
1613 struct uprobe_task *utask = t->utask;
1614
1615 if (likely(!utask || !utask->active_uprobe))
1616 return false;
1617
1618 WARN_ON_ONCE(utask->state != UTASK_SSTEP);
1619
1620 if (signal_pending(t)) {
1621 spin_lock_irq(&t->sighand->siglock);
1622 clear_tsk_thread_flag(t, TIF_SIGPENDING);
1623 spin_unlock_irq(&t->sighand->siglock);
1624
1625 if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
1626 utask->state = UTASK_SSTEP_TRAPPED;
1627 set_tsk_thread_flag(t, TIF_UPROBE);
1628 set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
1629 }
1630 }
1631
1632 return true;
1633 }
1634
1635 static void mmf_recalc_uprobes(struct mm_struct *mm)
1636 {
1637 struct vm_area_struct *vma;
1638
1639 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1640 if (!valid_vma(vma, false))
1641 continue;
1642 /*
1643 * This is not strictly accurate, we can race with
1644 * uprobe_unregister() and see the already removed
1645 * uprobe if delete_uprobe() was not yet called.
1646 * Or this uprobe can be filtered out.
1647 */
1648 if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end))
1649 return;
1650 }
1651
1652 clear_bit(MMF_HAS_UPROBES, &mm->flags);
1653 }
1654
1655 static int is_trap_at_addr(struct mm_struct *mm, unsigned long vaddr)
1656 {
1657 struct page *page;
1658 uprobe_opcode_t opcode;
1659 int result;
1660
1661 pagefault_disable();
1662 result = __copy_from_user_inatomic(&opcode, (void __user*)vaddr,
1663 sizeof(opcode));
1664 pagefault_enable();
1665
1666 if (likely(result == 0))
1667 goto out;
1668
1669 result = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &page, NULL);
1670 if (result < 0)
1671 return result;
1672
1673 copy_from_page(page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
1674 put_page(page);
1675 out:
1676 /* This needs to return true for any variant of the trap insn */
1677 return is_trap_insn(&opcode);
1678 }
1679
1680 static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
1681 {
1682 struct mm_struct *mm = current->mm;
1683 struct uprobe *uprobe = NULL;
1684 struct vm_area_struct *vma;
1685
1686 down_read(&mm->mmap_sem);
1687 vma = find_vma(mm, bp_vaddr);
1688 if (vma && vma->vm_start <= bp_vaddr) {
1689 if (valid_vma(vma, false)) {
1690 struct inode *inode = file_inode(vma->vm_file);
1691 loff_t offset = vaddr_to_offset(vma, bp_vaddr);
1692
1693 uprobe = find_uprobe(inode, offset);
1694 }
1695
1696 if (!uprobe)
1697 *is_swbp = is_trap_at_addr(mm, bp_vaddr);
1698 } else {
1699 *is_swbp = -EFAULT;
1700 }
1701
1702 if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags))
1703 mmf_recalc_uprobes(mm);
1704 up_read(&mm->mmap_sem);
1705
1706 return uprobe;
1707 }
1708
1709 static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
1710 {
1711 struct uprobe_consumer *uc;
1712 int remove = UPROBE_HANDLER_REMOVE;
1713 bool need_prep = false; /* prepare return uprobe, when needed */
1714
1715 down_read(&uprobe->register_rwsem);
1716 for (uc = uprobe->consumers; uc; uc = uc->next) {
1717 int rc = 0;
1718
1719 if (uc->handler) {
1720 rc = uc->handler(uc, regs);
1721 WARN(rc & ~UPROBE_HANDLER_MASK,
1722 "bad rc=0x%x from %pf()\n", rc, uc->handler);
1723 }
1724
1725 if (uc->ret_handler)
1726 need_prep = true;
1727
1728 remove &= rc;
1729 }
1730
1731 if (need_prep && !remove)
1732 prepare_uretprobe(uprobe, regs); /* put bp at return */
1733
1734 if (remove && uprobe->consumers) {
1735 WARN_ON(!uprobe_is_active(uprobe));
1736 unapply_uprobe(uprobe, current->mm);
1737 }
1738 up_read(&uprobe->register_rwsem);
1739 }
1740
1741 static void
1742 handle_uretprobe_chain(struct return_instance *ri, struct pt_regs *regs)
1743 {
1744 struct uprobe *uprobe = ri->uprobe;
1745 struct uprobe_consumer *uc;
1746
1747 down_read(&uprobe->register_rwsem);
1748 for (uc = uprobe->consumers; uc; uc = uc->next) {
1749 if (uc->ret_handler)
1750 uc->ret_handler(uc, ri->func, regs);
1751 }
1752 up_read(&uprobe->register_rwsem);
1753 }
1754
1755 static bool handle_trampoline(struct pt_regs *regs)
1756 {
1757 struct uprobe_task *utask;
1758 struct return_instance *ri, *tmp;
1759 bool chained;
1760
1761 utask = current->utask;
1762 if (!utask)
1763 return false;
1764
1765 ri = utask->return_instances;
1766 if (!ri)
1767 return false;
1768
1769 /*
1770 * TODO: we should throw out return_instance's invalidated by
1771 * longjmp(), currently we assume that the probed function always
1772 * returns.
1773 */
1774 instruction_pointer_set(regs, ri->orig_ret_vaddr);
1775
1776 for (;;) {
1777 handle_uretprobe_chain(ri, regs);
1778
1779 chained = ri->chained;
1780 put_uprobe(ri->uprobe);
1781
1782 tmp = ri;
1783 ri = ri->next;
1784 kfree(tmp);
1785 utask->depth--;
1786
1787 if (!chained)
1788 break;
1789 BUG_ON(!ri);
1790 }
1791
1792 utask->return_instances = ri;
1793
1794 return true;
1795 }
1796
1797 bool __weak arch_uprobe_ignore(struct arch_uprobe *aup, struct pt_regs *regs)
1798 {
1799 return false;
1800 }
1801
1802 /*
1803 * Run handler and ask thread to singlestep.
1804 * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
1805 */
1806 static void handle_swbp(struct pt_regs *regs)
1807 {
1808 struct uprobe *uprobe;
1809 unsigned long bp_vaddr;
1810 int uninitialized_var(is_swbp);
1811
1812 bp_vaddr = uprobe_get_swbp_addr(regs);
1813 if (bp_vaddr == get_trampoline_vaddr()) {
1814 if (handle_trampoline(regs))
1815 return;
1816
1817 pr_warn("uprobe: unable to handle uretprobe pid/tgid=%d/%d\n",
1818 current->pid, current->tgid);
1819 }
1820
1821 uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
1822 if (!uprobe) {
1823 if (is_swbp > 0) {
1824 /* No matching uprobe; signal SIGTRAP. */
1825 send_sig(SIGTRAP, current, 0);
1826 } else {
1827 /*
1828 * Either we raced with uprobe_unregister() or we can't
1829 * access this memory. The latter is only possible if
1830 * another thread plays with our ->mm. In both cases
1831 * we can simply restart. If this vma was unmapped we
1832 * can pretend this insn was not executed yet and get
1833 * the (correct) SIGSEGV after restart.
1834 */
1835 instruction_pointer_set(regs, bp_vaddr);
1836 }
1837 return;
1838 }
1839
1840 /* change it in advance for ->handler() and restart */
1841 instruction_pointer_set(regs, bp_vaddr);
1842
1843 /*
1844 * TODO: move copy_insn/etc into _register and remove this hack.
1845 * After we hit the bp, _unregister + _register can install the
1846 * new and not-yet-analyzed uprobe at the same address, restart.
1847 */
1848 smp_rmb(); /* pairs with wmb() in install_breakpoint() */
1849 if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags)))
1850 goto out;
1851
1852 /* Tracing handlers use ->utask to communicate with fetch methods */
1853 if (!get_utask())
1854 goto out;
1855
1856 if (arch_uprobe_ignore(&uprobe->arch, regs))
1857 goto out;
1858
1859 handler_chain(uprobe, regs);
1860
1861 if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
1862 goto out;
1863
1864 if (!pre_ssout(uprobe, regs, bp_vaddr))
1865 return;
1866
1867 /* arch_uprobe_skip_sstep() succeeded, or restart if can't singlestep */
1868 out:
1869 put_uprobe(uprobe);
1870 }
1871
1872 /*
1873 * Perform required fix-ups and disable singlestep.
1874 * Allow pending signals to take effect.
1875 */
1876 static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
1877 {
1878 struct uprobe *uprobe;
1879 int err = 0;
1880
1881 uprobe = utask->active_uprobe;
1882 if (utask->state == UTASK_SSTEP_ACK)
1883 err = arch_uprobe_post_xol(&uprobe->arch, regs);
1884 else if (utask->state == UTASK_SSTEP_TRAPPED)
1885 arch_uprobe_abort_xol(&uprobe->arch, regs);
1886 else
1887 WARN_ON_ONCE(1);
1888
1889 put_uprobe(uprobe);
1890 utask->active_uprobe = NULL;
1891 utask->state = UTASK_RUNNING;
1892 xol_free_insn_slot(current);
1893
1894 spin_lock_irq(&current->sighand->siglock);
1895 recalc_sigpending(); /* see uprobe_deny_signal() */
1896 spin_unlock_irq(&current->sighand->siglock);
1897
1898 if (unlikely(err)) {
1899 uprobe_warn(current, "execute the probed insn, sending SIGILL.");
1900 force_sig_info(SIGILL, SEND_SIG_FORCED, current);
1901 }
1902 }
1903
1904 /*
1905 * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and
1906 * allows the thread to return from interrupt. After that handle_swbp()
1907 * sets utask->active_uprobe.
1908 *
1909 * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag
1910 * and allows the thread to return from interrupt.
1911 *
1912 * While returning to userspace, thread notices the TIF_UPROBE flag and calls
1913 * uprobe_notify_resume().
1914 */
1915 void uprobe_notify_resume(struct pt_regs *regs)
1916 {
1917 struct uprobe_task *utask;
1918
1919 clear_thread_flag(TIF_UPROBE);
1920
1921 utask = current->utask;
1922 if (utask && utask->active_uprobe)
1923 handle_singlestep(utask, regs);
1924 else
1925 handle_swbp(regs);
1926 }
1927
1928 /*
1929 * uprobe_pre_sstep_notifier gets called from interrupt context as part of
1930 * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
1931 */
1932 int uprobe_pre_sstep_notifier(struct pt_regs *regs)
1933 {
1934 if (!current->mm)
1935 return 0;
1936
1937 if (!test_bit(MMF_HAS_UPROBES, &current->mm->flags) &&
1938 (!current->utask || !current->utask->return_instances))
1939 return 0;
1940
1941 set_thread_flag(TIF_UPROBE);
1942 return 1;
1943 }
1944
1945 /*
1946 * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
1947 * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
1948 */
1949 int uprobe_post_sstep_notifier(struct pt_regs *regs)
1950 {
1951 struct uprobe_task *utask = current->utask;
1952
1953 if (!current->mm || !utask || !utask->active_uprobe)
1954 /* task is currently not uprobed */
1955 return 0;
1956
1957 utask->state = UTASK_SSTEP_ACK;
1958 set_thread_flag(TIF_UPROBE);
1959 return 1;
1960 }
1961
1962 static struct notifier_block uprobe_exception_nb = {
1963 .notifier_call = arch_uprobe_exception_notify,
1964 .priority = INT_MAX-1, /* notified after kprobes, kgdb */
1965 };
1966
1967 static int __init init_uprobes(void)
1968 {
1969 int i;
1970
1971 for (i = 0; i < UPROBES_HASH_SZ; i++)
1972 mutex_init(&uprobes_mmap_mutex[i]);
1973
1974 if (percpu_init_rwsem(&dup_mmap_sem))
1975 return -ENOMEM;
1976
1977 return register_die_notifier(&uprobe_exception_nb);
1978 }
1979 __initcall(init_uprobes);