]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - kernel/events/uprobes.c
Merge branches 'for-5.1/upstream-fixes', 'for-5.2/core', 'for-5.2/ish', 'for-5.2...
[mirror_ubuntu-kernels.git] / kernel / events / uprobes.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * User-space Probes (UProbes)
4 *
5 * Copyright (C) IBM Corporation, 2008-2012
6 * Authors:
7 * Srikar Dronamraju
8 * Jim Keniston
9 * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra
10 */
11
12 #include <linux/kernel.h>
13 #include <linux/highmem.h>
14 #include <linux/pagemap.h> /* read_mapping_page */
15 #include <linux/slab.h>
16 #include <linux/sched.h>
17 #include <linux/sched/mm.h>
18 #include <linux/sched/coredump.h>
19 #include <linux/export.h>
20 #include <linux/rmap.h> /* anon_vma_prepare */
21 #include <linux/mmu_notifier.h> /* set_pte_at_notify */
22 #include <linux/swap.h> /* try_to_free_swap */
23 #include <linux/ptrace.h> /* user_enable_single_step */
24 #include <linux/kdebug.h> /* notifier mechanism */
25 #include "../../mm/internal.h" /* munlock_vma_page */
26 #include <linux/percpu-rwsem.h>
27 #include <linux/task_work.h>
28 #include <linux/shmem_fs.h>
29
30 #include <linux/uprobes.h>
31
32 #define UINSNS_PER_PAGE (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
33 #define MAX_UPROBE_XOL_SLOTS UINSNS_PER_PAGE
34
35 static struct rb_root uprobes_tree = RB_ROOT;
36 /*
37 * allows us to skip the uprobe_mmap if there are no uprobe events active
38 * at this time. Probably a fine grained per inode count is better?
39 */
40 #define no_uprobe_events() RB_EMPTY_ROOT(&uprobes_tree)
41
42 static DEFINE_SPINLOCK(uprobes_treelock); /* serialize rbtree access */
43
44 #define UPROBES_HASH_SZ 13
45 /* serialize uprobe->pending_list */
46 static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
47 #define uprobes_mmap_hash(v) (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
48
49 static struct percpu_rw_semaphore dup_mmap_sem;
50
51 /* Have a copy of original instruction */
52 #define UPROBE_COPY_INSN 0
53
54 struct uprobe {
55 struct rb_node rb_node; /* node in the rb tree */
56 refcount_t ref;
57 struct rw_semaphore register_rwsem;
58 struct rw_semaphore consumer_rwsem;
59 struct list_head pending_list;
60 struct uprobe_consumer *consumers;
61 struct inode *inode; /* Also hold a ref to inode */
62 loff_t offset;
63 loff_t ref_ctr_offset;
64 unsigned long flags;
65
66 /*
67 * The generic code assumes that it has two members of unknown type
68 * owned by the arch-specific code:
69 *
70 * insn - copy_insn() saves the original instruction here for
71 * arch_uprobe_analyze_insn().
72 *
73 * ixol - potentially modified instruction to execute out of
74 * line, copied to xol_area by xol_get_insn_slot().
75 */
76 struct arch_uprobe arch;
77 };
78
79 struct delayed_uprobe {
80 struct list_head list;
81 struct uprobe *uprobe;
82 struct mm_struct *mm;
83 };
84
85 static DEFINE_MUTEX(delayed_uprobe_lock);
86 static LIST_HEAD(delayed_uprobe_list);
87
88 /*
89 * Execute out of line area: anonymous executable mapping installed
90 * by the probed task to execute the copy of the original instruction
91 * mangled by set_swbp().
92 *
93 * On a breakpoint hit, thread contests for a slot. It frees the
94 * slot after singlestep. Currently a fixed number of slots are
95 * allocated.
96 */
97 struct xol_area {
98 wait_queue_head_t wq; /* if all slots are busy */
99 atomic_t slot_count; /* number of in-use slots */
100 unsigned long *bitmap; /* 0 = free slot */
101
102 struct vm_special_mapping xol_mapping;
103 struct page *pages[2];
104 /*
105 * We keep the vma's vm_start rather than a pointer to the vma
106 * itself. The probed process or a naughty kernel module could make
107 * the vma go away, and we must handle that reasonably gracefully.
108 */
109 unsigned long vaddr; /* Page(s) of instruction slots */
110 };
111
112 /*
113 * valid_vma: Verify if the specified vma is an executable vma
114 * Relax restrictions while unregistering: vm_flags might have
115 * changed after breakpoint was inserted.
116 * - is_register: indicates if we are in register context.
117 * - Return 1 if the specified virtual address is in an
118 * executable vma.
119 */
120 static bool valid_vma(struct vm_area_struct *vma, bool is_register)
121 {
122 vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_MAYSHARE;
123
124 if (is_register)
125 flags |= VM_WRITE;
126
127 return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC;
128 }
129
130 static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset)
131 {
132 return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
133 }
134
135 static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr)
136 {
137 return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start);
138 }
139
140 /**
141 * __replace_page - replace page in vma by new page.
142 * based on replace_page in mm/ksm.c
143 *
144 * @vma: vma that holds the pte pointing to page
145 * @addr: address the old @page is mapped at
146 * @page: the cowed page we are replacing by kpage
147 * @kpage: the modified page we replace page by
148 *
149 * Returns 0 on success, -EFAULT on failure.
150 */
151 static int __replace_page(struct vm_area_struct *vma, unsigned long addr,
152 struct page *old_page, struct page *new_page)
153 {
154 struct mm_struct *mm = vma->vm_mm;
155 struct page_vma_mapped_walk pvmw = {
156 .page = old_page,
157 .vma = vma,
158 .address = addr,
159 };
160 int err;
161 struct mmu_notifier_range range;
162 struct mem_cgroup *memcg;
163
164 mmu_notifier_range_init(&range, mm, addr, addr + PAGE_SIZE);
165
166 VM_BUG_ON_PAGE(PageTransHuge(old_page), old_page);
167
168 err = mem_cgroup_try_charge(new_page, vma->vm_mm, GFP_KERNEL, &memcg,
169 false);
170 if (err)
171 return err;
172
173 /* For try_to_free_swap() and munlock_vma_page() below */
174 lock_page(old_page);
175
176 mmu_notifier_invalidate_range_start(&range);
177 err = -EAGAIN;
178 if (!page_vma_mapped_walk(&pvmw)) {
179 mem_cgroup_cancel_charge(new_page, memcg, false);
180 goto unlock;
181 }
182 VM_BUG_ON_PAGE(addr != pvmw.address, old_page);
183
184 get_page(new_page);
185 page_add_new_anon_rmap(new_page, vma, addr, false);
186 mem_cgroup_commit_charge(new_page, memcg, false, false);
187 lru_cache_add_active_or_unevictable(new_page, vma);
188
189 if (!PageAnon(old_page)) {
190 dec_mm_counter(mm, mm_counter_file(old_page));
191 inc_mm_counter(mm, MM_ANONPAGES);
192 }
193
194 flush_cache_page(vma, addr, pte_pfn(*pvmw.pte));
195 ptep_clear_flush_notify(vma, addr, pvmw.pte);
196 set_pte_at_notify(mm, addr, pvmw.pte,
197 mk_pte(new_page, vma->vm_page_prot));
198
199 page_remove_rmap(old_page, false);
200 if (!page_mapped(old_page))
201 try_to_free_swap(old_page);
202 page_vma_mapped_walk_done(&pvmw);
203
204 if (vma->vm_flags & VM_LOCKED)
205 munlock_vma_page(old_page);
206 put_page(old_page);
207
208 err = 0;
209 unlock:
210 mmu_notifier_invalidate_range_end(&range);
211 unlock_page(old_page);
212 return err;
213 }
214
215 /**
216 * is_swbp_insn - check if instruction is breakpoint instruction.
217 * @insn: instruction to be checked.
218 * Default implementation of is_swbp_insn
219 * Returns true if @insn is a breakpoint instruction.
220 */
221 bool __weak is_swbp_insn(uprobe_opcode_t *insn)
222 {
223 return *insn == UPROBE_SWBP_INSN;
224 }
225
226 /**
227 * is_trap_insn - check if instruction is breakpoint instruction.
228 * @insn: instruction to be checked.
229 * Default implementation of is_trap_insn
230 * Returns true if @insn is a breakpoint instruction.
231 *
232 * This function is needed for the case where an architecture has multiple
233 * trap instructions (like powerpc).
234 */
235 bool __weak is_trap_insn(uprobe_opcode_t *insn)
236 {
237 return is_swbp_insn(insn);
238 }
239
240 static void copy_from_page(struct page *page, unsigned long vaddr, void *dst, int len)
241 {
242 void *kaddr = kmap_atomic(page);
243 memcpy(dst, kaddr + (vaddr & ~PAGE_MASK), len);
244 kunmap_atomic(kaddr);
245 }
246
247 static void copy_to_page(struct page *page, unsigned long vaddr, const void *src, int len)
248 {
249 void *kaddr = kmap_atomic(page);
250 memcpy(kaddr + (vaddr & ~PAGE_MASK), src, len);
251 kunmap_atomic(kaddr);
252 }
253
254 static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode)
255 {
256 uprobe_opcode_t old_opcode;
257 bool is_swbp;
258
259 /*
260 * Note: We only check if the old_opcode is UPROBE_SWBP_INSN here.
261 * We do not check if it is any other 'trap variant' which could
262 * be conditional trap instruction such as the one powerpc supports.
263 *
264 * The logic is that we do not care if the underlying instruction
265 * is a trap variant; uprobes always wins over any other (gdb)
266 * breakpoint.
267 */
268 copy_from_page(page, vaddr, &old_opcode, UPROBE_SWBP_INSN_SIZE);
269 is_swbp = is_swbp_insn(&old_opcode);
270
271 if (is_swbp_insn(new_opcode)) {
272 if (is_swbp) /* register: already installed? */
273 return 0;
274 } else {
275 if (!is_swbp) /* unregister: was it changed by us? */
276 return 0;
277 }
278
279 return 1;
280 }
281
282 static struct delayed_uprobe *
283 delayed_uprobe_check(struct uprobe *uprobe, struct mm_struct *mm)
284 {
285 struct delayed_uprobe *du;
286
287 list_for_each_entry(du, &delayed_uprobe_list, list)
288 if (du->uprobe == uprobe && du->mm == mm)
289 return du;
290 return NULL;
291 }
292
293 static int delayed_uprobe_add(struct uprobe *uprobe, struct mm_struct *mm)
294 {
295 struct delayed_uprobe *du;
296
297 if (delayed_uprobe_check(uprobe, mm))
298 return 0;
299
300 du = kzalloc(sizeof(*du), GFP_KERNEL);
301 if (!du)
302 return -ENOMEM;
303
304 du->uprobe = uprobe;
305 du->mm = mm;
306 list_add(&du->list, &delayed_uprobe_list);
307 return 0;
308 }
309
310 static void delayed_uprobe_delete(struct delayed_uprobe *du)
311 {
312 if (WARN_ON(!du))
313 return;
314 list_del(&du->list);
315 kfree(du);
316 }
317
318 static void delayed_uprobe_remove(struct uprobe *uprobe, struct mm_struct *mm)
319 {
320 struct list_head *pos, *q;
321 struct delayed_uprobe *du;
322
323 if (!uprobe && !mm)
324 return;
325
326 list_for_each_safe(pos, q, &delayed_uprobe_list) {
327 du = list_entry(pos, struct delayed_uprobe, list);
328
329 if (uprobe && du->uprobe != uprobe)
330 continue;
331 if (mm && du->mm != mm)
332 continue;
333
334 delayed_uprobe_delete(du);
335 }
336 }
337
338 static bool valid_ref_ctr_vma(struct uprobe *uprobe,
339 struct vm_area_struct *vma)
340 {
341 unsigned long vaddr = offset_to_vaddr(vma, uprobe->ref_ctr_offset);
342
343 return uprobe->ref_ctr_offset &&
344 vma->vm_file &&
345 file_inode(vma->vm_file) == uprobe->inode &&
346 (vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE &&
347 vma->vm_start <= vaddr &&
348 vma->vm_end > vaddr;
349 }
350
351 static struct vm_area_struct *
352 find_ref_ctr_vma(struct uprobe *uprobe, struct mm_struct *mm)
353 {
354 struct vm_area_struct *tmp;
355
356 for (tmp = mm->mmap; tmp; tmp = tmp->vm_next)
357 if (valid_ref_ctr_vma(uprobe, tmp))
358 return tmp;
359
360 return NULL;
361 }
362
363 static int
364 __update_ref_ctr(struct mm_struct *mm, unsigned long vaddr, short d)
365 {
366 void *kaddr;
367 struct page *page;
368 struct vm_area_struct *vma;
369 int ret;
370 short *ptr;
371
372 if (!vaddr || !d)
373 return -EINVAL;
374
375 ret = get_user_pages_remote(NULL, mm, vaddr, 1,
376 FOLL_WRITE, &page, &vma, NULL);
377 if (unlikely(ret <= 0)) {
378 /*
379 * We are asking for 1 page. If get_user_pages_remote() fails,
380 * it may return 0, in that case we have to return error.
381 */
382 return ret == 0 ? -EBUSY : ret;
383 }
384
385 kaddr = kmap_atomic(page);
386 ptr = kaddr + (vaddr & ~PAGE_MASK);
387
388 if (unlikely(*ptr + d < 0)) {
389 pr_warn("ref_ctr going negative. vaddr: 0x%lx, "
390 "curr val: %d, delta: %d\n", vaddr, *ptr, d);
391 ret = -EINVAL;
392 goto out;
393 }
394
395 *ptr += d;
396 ret = 0;
397 out:
398 kunmap_atomic(kaddr);
399 put_page(page);
400 return ret;
401 }
402
403 static void update_ref_ctr_warn(struct uprobe *uprobe,
404 struct mm_struct *mm, short d)
405 {
406 pr_warn("ref_ctr %s failed for inode: 0x%lx offset: "
407 "0x%llx ref_ctr_offset: 0x%llx of mm: 0x%pK\n",
408 d > 0 ? "increment" : "decrement", uprobe->inode->i_ino,
409 (unsigned long long) uprobe->offset,
410 (unsigned long long) uprobe->ref_ctr_offset, mm);
411 }
412
413 static int update_ref_ctr(struct uprobe *uprobe, struct mm_struct *mm,
414 short d)
415 {
416 struct vm_area_struct *rc_vma;
417 unsigned long rc_vaddr;
418 int ret = 0;
419
420 rc_vma = find_ref_ctr_vma(uprobe, mm);
421
422 if (rc_vma) {
423 rc_vaddr = offset_to_vaddr(rc_vma, uprobe->ref_ctr_offset);
424 ret = __update_ref_ctr(mm, rc_vaddr, d);
425 if (ret)
426 update_ref_ctr_warn(uprobe, mm, d);
427
428 if (d > 0)
429 return ret;
430 }
431
432 mutex_lock(&delayed_uprobe_lock);
433 if (d > 0)
434 ret = delayed_uprobe_add(uprobe, mm);
435 else
436 delayed_uprobe_remove(uprobe, mm);
437 mutex_unlock(&delayed_uprobe_lock);
438
439 return ret;
440 }
441
442 /*
443 * NOTE:
444 * Expect the breakpoint instruction to be the smallest size instruction for
445 * the architecture. If an arch has variable length instruction and the
446 * breakpoint instruction is not of the smallest length instruction
447 * supported by that architecture then we need to modify is_trap_at_addr and
448 * uprobe_write_opcode accordingly. This would never be a problem for archs
449 * that have fixed length instructions.
450 *
451 * uprobe_write_opcode - write the opcode at a given virtual address.
452 * @mm: the probed process address space.
453 * @vaddr: the virtual address to store the opcode.
454 * @opcode: opcode to be written at @vaddr.
455 *
456 * Called with mm->mmap_sem held for write.
457 * Return 0 (success) or a negative errno.
458 */
459 int uprobe_write_opcode(struct arch_uprobe *auprobe, struct mm_struct *mm,
460 unsigned long vaddr, uprobe_opcode_t opcode)
461 {
462 struct uprobe *uprobe;
463 struct page *old_page, *new_page;
464 struct vm_area_struct *vma;
465 int ret, is_register, ref_ctr_updated = 0;
466
467 is_register = is_swbp_insn(&opcode);
468 uprobe = container_of(auprobe, struct uprobe, arch);
469
470 retry:
471 /* Read the page with vaddr into memory */
472 ret = get_user_pages_remote(NULL, mm, vaddr, 1,
473 FOLL_FORCE | FOLL_SPLIT, &old_page, &vma, NULL);
474 if (ret <= 0)
475 return ret;
476
477 ret = verify_opcode(old_page, vaddr, &opcode);
478 if (ret <= 0)
479 goto put_old;
480
481 /* We are going to replace instruction, update ref_ctr. */
482 if (!ref_ctr_updated && uprobe->ref_ctr_offset) {
483 ret = update_ref_ctr(uprobe, mm, is_register ? 1 : -1);
484 if (ret)
485 goto put_old;
486
487 ref_ctr_updated = 1;
488 }
489
490 ret = anon_vma_prepare(vma);
491 if (ret)
492 goto put_old;
493
494 ret = -ENOMEM;
495 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
496 if (!new_page)
497 goto put_old;
498
499 __SetPageUptodate(new_page);
500 copy_highpage(new_page, old_page);
501 copy_to_page(new_page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
502
503 ret = __replace_page(vma, vaddr, old_page, new_page);
504 put_page(new_page);
505 put_old:
506 put_page(old_page);
507
508 if (unlikely(ret == -EAGAIN))
509 goto retry;
510
511 /* Revert back reference counter if instruction update failed. */
512 if (ret && is_register && ref_ctr_updated)
513 update_ref_ctr(uprobe, mm, -1);
514
515 return ret;
516 }
517
518 /**
519 * set_swbp - store breakpoint at a given address.
520 * @auprobe: arch specific probepoint information.
521 * @mm: the probed process address space.
522 * @vaddr: the virtual address to insert the opcode.
523 *
524 * For mm @mm, store the breakpoint instruction at @vaddr.
525 * Return 0 (success) or a negative errno.
526 */
527 int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
528 {
529 return uprobe_write_opcode(auprobe, mm, vaddr, UPROBE_SWBP_INSN);
530 }
531
532 /**
533 * set_orig_insn - Restore the original instruction.
534 * @mm: the probed process address space.
535 * @auprobe: arch specific probepoint information.
536 * @vaddr: the virtual address to insert the opcode.
537 *
538 * For mm @mm, restore the original opcode (opcode) at @vaddr.
539 * Return 0 (success) or a negative errno.
540 */
541 int __weak
542 set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
543 {
544 return uprobe_write_opcode(auprobe, mm, vaddr,
545 *(uprobe_opcode_t *)&auprobe->insn);
546 }
547
548 static struct uprobe *get_uprobe(struct uprobe *uprobe)
549 {
550 refcount_inc(&uprobe->ref);
551 return uprobe;
552 }
553
554 static void put_uprobe(struct uprobe *uprobe)
555 {
556 if (refcount_dec_and_test(&uprobe->ref)) {
557 /*
558 * If application munmap(exec_vma) before uprobe_unregister()
559 * gets called, we don't get a chance to remove uprobe from
560 * delayed_uprobe_list from remove_breakpoint(). Do it here.
561 */
562 mutex_lock(&delayed_uprobe_lock);
563 delayed_uprobe_remove(uprobe, NULL);
564 mutex_unlock(&delayed_uprobe_lock);
565 kfree(uprobe);
566 }
567 }
568
569 static int match_uprobe(struct uprobe *l, struct uprobe *r)
570 {
571 if (l->inode < r->inode)
572 return -1;
573
574 if (l->inode > r->inode)
575 return 1;
576
577 if (l->offset < r->offset)
578 return -1;
579
580 if (l->offset > r->offset)
581 return 1;
582
583 return 0;
584 }
585
586 static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
587 {
588 struct uprobe u = { .inode = inode, .offset = offset };
589 struct rb_node *n = uprobes_tree.rb_node;
590 struct uprobe *uprobe;
591 int match;
592
593 while (n) {
594 uprobe = rb_entry(n, struct uprobe, rb_node);
595 match = match_uprobe(&u, uprobe);
596 if (!match)
597 return get_uprobe(uprobe);
598
599 if (match < 0)
600 n = n->rb_left;
601 else
602 n = n->rb_right;
603 }
604 return NULL;
605 }
606
607 /*
608 * Find a uprobe corresponding to a given inode:offset
609 * Acquires uprobes_treelock
610 */
611 static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
612 {
613 struct uprobe *uprobe;
614
615 spin_lock(&uprobes_treelock);
616 uprobe = __find_uprobe(inode, offset);
617 spin_unlock(&uprobes_treelock);
618
619 return uprobe;
620 }
621
622 static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
623 {
624 struct rb_node **p = &uprobes_tree.rb_node;
625 struct rb_node *parent = NULL;
626 struct uprobe *u;
627 int match;
628
629 while (*p) {
630 parent = *p;
631 u = rb_entry(parent, struct uprobe, rb_node);
632 match = match_uprobe(uprobe, u);
633 if (!match)
634 return get_uprobe(u);
635
636 if (match < 0)
637 p = &parent->rb_left;
638 else
639 p = &parent->rb_right;
640
641 }
642
643 u = NULL;
644 rb_link_node(&uprobe->rb_node, parent, p);
645 rb_insert_color(&uprobe->rb_node, &uprobes_tree);
646 /* get access + creation ref */
647 refcount_set(&uprobe->ref, 2);
648
649 return u;
650 }
651
652 /*
653 * Acquire uprobes_treelock.
654 * Matching uprobe already exists in rbtree;
655 * increment (access refcount) and return the matching uprobe.
656 *
657 * No matching uprobe; insert the uprobe in rb_tree;
658 * get a double refcount (access + creation) and return NULL.
659 */
660 static struct uprobe *insert_uprobe(struct uprobe *uprobe)
661 {
662 struct uprobe *u;
663
664 spin_lock(&uprobes_treelock);
665 u = __insert_uprobe(uprobe);
666 spin_unlock(&uprobes_treelock);
667
668 return u;
669 }
670
671 static void
672 ref_ctr_mismatch_warn(struct uprobe *cur_uprobe, struct uprobe *uprobe)
673 {
674 pr_warn("ref_ctr_offset mismatch. inode: 0x%lx offset: 0x%llx "
675 "ref_ctr_offset(old): 0x%llx ref_ctr_offset(new): 0x%llx\n",
676 uprobe->inode->i_ino, (unsigned long long) uprobe->offset,
677 (unsigned long long) cur_uprobe->ref_ctr_offset,
678 (unsigned long long) uprobe->ref_ctr_offset);
679 }
680
681 static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset,
682 loff_t ref_ctr_offset)
683 {
684 struct uprobe *uprobe, *cur_uprobe;
685
686 uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
687 if (!uprobe)
688 return NULL;
689
690 uprobe->inode = inode;
691 uprobe->offset = offset;
692 uprobe->ref_ctr_offset = ref_ctr_offset;
693 init_rwsem(&uprobe->register_rwsem);
694 init_rwsem(&uprobe->consumer_rwsem);
695
696 /* add to uprobes_tree, sorted on inode:offset */
697 cur_uprobe = insert_uprobe(uprobe);
698 /* a uprobe exists for this inode:offset combination */
699 if (cur_uprobe) {
700 if (cur_uprobe->ref_ctr_offset != uprobe->ref_ctr_offset) {
701 ref_ctr_mismatch_warn(cur_uprobe, uprobe);
702 put_uprobe(cur_uprobe);
703 kfree(uprobe);
704 return ERR_PTR(-EINVAL);
705 }
706 kfree(uprobe);
707 uprobe = cur_uprobe;
708 }
709
710 return uprobe;
711 }
712
713 static void consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
714 {
715 down_write(&uprobe->consumer_rwsem);
716 uc->next = uprobe->consumers;
717 uprobe->consumers = uc;
718 up_write(&uprobe->consumer_rwsem);
719 }
720
721 /*
722 * For uprobe @uprobe, delete the consumer @uc.
723 * Return true if the @uc is deleted successfully
724 * or return false.
725 */
726 static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
727 {
728 struct uprobe_consumer **con;
729 bool ret = false;
730
731 down_write(&uprobe->consumer_rwsem);
732 for (con = &uprobe->consumers; *con; con = &(*con)->next) {
733 if (*con == uc) {
734 *con = uc->next;
735 ret = true;
736 break;
737 }
738 }
739 up_write(&uprobe->consumer_rwsem);
740
741 return ret;
742 }
743
744 static int __copy_insn(struct address_space *mapping, struct file *filp,
745 void *insn, int nbytes, loff_t offset)
746 {
747 struct page *page;
748 /*
749 * Ensure that the page that has the original instruction is populated
750 * and in page-cache. If ->readpage == NULL it must be shmem_mapping(),
751 * see uprobe_register().
752 */
753 if (mapping->a_ops->readpage)
754 page = read_mapping_page(mapping, offset >> PAGE_SHIFT, filp);
755 else
756 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
757 if (IS_ERR(page))
758 return PTR_ERR(page);
759
760 copy_from_page(page, offset, insn, nbytes);
761 put_page(page);
762
763 return 0;
764 }
765
766 static int copy_insn(struct uprobe *uprobe, struct file *filp)
767 {
768 struct address_space *mapping = uprobe->inode->i_mapping;
769 loff_t offs = uprobe->offset;
770 void *insn = &uprobe->arch.insn;
771 int size = sizeof(uprobe->arch.insn);
772 int len, err = -EIO;
773
774 /* Copy only available bytes, -EIO if nothing was read */
775 do {
776 if (offs >= i_size_read(uprobe->inode))
777 break;
778
779 len = min_t(int, size, PAGE_SIZE - (offs & ~PAGE_MASK));
780 err = __copy_insn(mapping, filp, insn, len, offs);
781 if (err)
782 break;
783
784 insn += len;
785 offs += len;
786 size -= len;
787 } while (size);
788
789 return err;
790 }
791
792 static int prepare_uprobe(struct uprobe *uprobe, struct file *file,
793 struct mm_struct *mm, unsigned long vaddr)
794 {
795 int ret = 0;
796
797 if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
798 return ret;
799
800 /* TODO: move this into _register, until then we abuse this sem. */
801 down_write(&uprobe->consumer_rwsem);
802 if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
803 goto out;
804
805 ret = copy_insn(uprobe, file);
806 if (ret)
807 goto out;
808
809 ret = -ENOTSUPP;
810 if (is_trap_insn((uprobe_opcode_t *)&uprobe->arch.insn))
811 goto out;
812
813 ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
814 if (ret)
815 goto out;
816
817 /* uprobe_write_opcode() assumes we don't cross page boundary */
818 BUG_ON((uprobe->offset & ~PAGE_MASK) +
819 UPROBE_SWBP_INSN_SIZE > PAGE_SIZE);
820
821 smp_wmb(); /* pairs with the smp_rmb() in handle_swbp() */
822 set_bit(UPROBE_COPY_INSN, &uprobe->flags);
823
824 out:
825 up_write(&uprobe->consumer_rwsem);
826
827 return ret;
828 }
829
830 static inline bool consumer_filter(struct uprobe_consumer *uc,
831 enum uprobe_filter_ctx ctx, struct mm_struct *mm)
832 {
833 return !uc->filter || uc->filter(uc, ctx, mm);
834 }
835
836 static bool filter_chain(struct uprobe *uprobe,
837 enum uprobe_filter_ctx ctx, struct mm_struct *mm)
838 {
839 struct uprobe_consumer *uc;
840 bool ret = false;
841
842 down_read(&uprobe->consumer_rwsem);
843 for (uc = uprobe->consumers; uc; uc = uc->next) {
844 ret = consumer_filter(uc, ctx, mm);
845 if (ret)
846 break;
847 }
848 up_read(&uprobe->consumer_rwsem);
849
850 return ret;
851 }
852
853 static int
854 install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
855 struct vm_area_struct *vma, unsigned long vaddr)
856 {
857 bool first_uprobe;
858 int ret;
859
860 ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr);
861 if (ret)
862 return ret;
863
864 /*
865 * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(),
866 * the task can hit this breakpoint right after __replace_page().
867 */
868 first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags);
869 if (first_uprobe)
870 set_bit(MMF_HAS_UPROBES, &mm->flags);
871
872 ret = set_swbp(&uprobe->arch, mm, vaddr);
873 if (!ret)
874 clear_bit(MMF_RECALC_UPROBES, &mm->flags);
875 else if (first_uprobe)
876 clear_bit(MMF_HAS_UPROBES, &mm->flags);
877
878 return ret;
879 }
880
881 static int
882 remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr)
883 {
884 set_bit(MMF_RECALC_UPROBES, &mm->flags);
885 return set_orig_insn(&uprobe->arch, mm, vaddr);
886 }
887
888 static inline bool uprobe_is_active(struct uprobe *uprobe)
889 {
890 return !RB_EMPTY_NODE(&uprobe->rb_node);
891 }
892 /*
893 * There could be threads that have already hit the breakpoint. They
894 * will recheck the current insn and restart if find_uprobe() fails.
895 * See find_active_uprobe().
896 */
897 static void delete_uprobe(struct uprobe *uprobe)
898 {
899 if (WARN_ON(!uprobe_is_active(uprobe)))
900 return;
901
902 spin_lock(&uprobes_treelock);
903 rb_erase(&uprobe->rb_node, &uprobes_tree);
904 spin_unlock(&uprobes_treelock);
905 RB_CLEAR_NODE(&uprobe->rb_node); /* for uprobe_is_active() */
906 put_uprobe(uprobe);
907 }
908
909 struct map_info {
910 struct map_info *next;
911 struct mm_struct *mm;
912 unsigned long vaddr;
913 };
914
915 static inline struct map_info *free_map_info(struct map_info *info)
916 {
917 struct map_info *next = info->next;
918 kfree(info);
919 return next;
920 }
921
922 static struct map_info *
923 build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
924 {
925 unsigned long pgoff = offset >> PAGE_SHIFT;
926 struct vm_area_struct *vma;
927 struct map_info *curr = NULL;
928 struct map_info *prev = NULL;
929 struct map_info *info;
930 int more = 0;
931
932 again:
933 i_mmap_lock_read(mapping);
934 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
935 if (!valid_vma(vma, is_register))
936 continue;
937
938 if (!prev && !more) {
939 /*
940 * Needs GFP_NOWAIT to avoid i_mmap_rwsem recursion through
941 * reclaim. This is optimistic, no harm done if it fails.
942 */
943 prev = kmalloc(sizeof(struct map_info),
944 GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
945 if (prev)
946 prev->next = NULL;
947 }
948 if (!prev) {
949 more++;
950 continue;
951 }
952
953 if (!mmget_not_zero(vma->vm_mm))
954 continue;
955
956 info = prev;
957 prev = prev->next;
958 info->next = curr;
959 curr = info;
960
961 info->mm = vma->vm_mm;
962 info->vaddr = offset_to_vaddr(vma, offset);
963 }
964 i_mmap_unlock_read(mapping);
965
966 if (!more)
967 goto out;
968
969 prev = curr;
970 while (curr) {
971 mmput(curr->mm);
972 curr = curr->next;
973 }
974
975 do {
976 info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
977 if (!info) {
978 curr = ERR_PTR(-ENOMEM);
979 goto out;
980 }
981 info->next = prev;
982 prev = info;
983 } while (--more);
984
985 goto again;
986 out:
987 while (prev)
988 prev = free_map_info(prev);
989 return curr;
990 }
991
992 static int
993 register_for_each_vma(struct uprobe *uprobe, struct uprobe_consumer *new)
994 {
995 bool is_register = !!new;
996 struct map_info *info;
997 int err = 0;
998
999 percpu_down_write(&dup_mmap_sem);
1000 info = build_map_info(uprobe->inode->i_mapping,
1001 uprobe->offset, is_register);
1002 if (IS_ERR(info)) {
1003 err = PTR_ERR(info);
1004 goto out;
1005 }
1006
1007 while (info) {
1008 struct mm_struct *mm = info->mm;
1009 struct vm_area_struct *vma;
1010
1011 if (err && is_register)
1012 goto free;
1013
1014 down_write(&mm->mmap_sem);
1015 vma = find_vma(mm, info->vaddr);
1016 if (!vma || !valid_vma(vma, is_register) ||
1017 file_inode(vma->vm_file) != uprobe->inode)
1018 goto unlock;
1019
1020 if (vma->vm_start > info->vaddr ||
1021 vaddr_to_offset(vma, info->vaddr) != uprobe->offset)
1022 goto unlock;
1023
1024 if (is_register) {
1025 /* consult only the "caller", new consumer. */
1026 if (consumer_filter(new,
1027 UPROBE_FILTER_REGISTER, mm))
1028 err = install_breakpoint(uprobe, mm, vma, info->vaddr);
1029 } else if (test_bit(MMF_HAS_UPROBES, &mm->flags)) {
1030 if (!filter_chain(uprobe,
1031 UPROBE_FILTER_UNREGISTER, mm))
1032 err |= remove_breakpoint(uprobe, mm, info->vaddr);
1033 }
1034
1035 unlock:
1036 up_write(&mm->mmap_sem);
1037 free:
1038 mmput(mm);
1039 info = free_map_info(info);
1040 }
1041 out:
1042 percpu_up_write(&dup_mmap_sem);
1043 return err;
1044 }
1045
1046 static void
1047 __uprobe_unregister(struct uprobe *uprobe, struct uprobe_consumer *uc)
1048 {
1049 int err;
1050
1051 if (WARN_ON(!consumer_del(uprobe, uc)))
1052 return;
1053
1054 err = register_for_each_vma(uprobe, NULL);
1055 /* TODO : cant unregister? schedule a worker thread */
1056 if (!uprobe->consumers && !err)
1057 delete_uprobe(uprobe);
1058 }
1059
1060 /*
1061 * uprobe_unregister - unregister an already registered probe.
1062 * @inode: the file in which the probe has to be removed.
1063 * @offset: offset from the start of the file.
1064 * @uc: identify which probe if multiple probes are colocated.
1065 */
1066 void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
1067 {
1068 struct uprobe *uprobe;
1069
1070 uprobe = find_uprobe(inode, offset);
1071 if (WARN_ON(!uprobe))
1072 return;
1073
1074 down_write(&uprobe->register_rwsem);
1075 __uprobe_unregister(uprobe, uc);
1076 up_write(&uprobe->register_rwsem);
1077 put_uprobe(uprobe);
1078 }
1079 EXPORT_SYMBOL_GPL(uprobe_unregister);
1080
1081 /*
1082 * __uprobe_register - register a probe
1083 * @inode: the file in which the probe has to be placed.
1084 * @offset: offset from the start of the file.
1085 * @uc: information on howto handle the probe..
1086 *
1087 * Apart from the access refcount, __uprobe_register() takes a creation
1088 * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
1089 * inserted into the rbtree (i.e first consumer for a @inode:@offset
1090 * tuple). Creation refcount stops uprobe_unregister from freeing the
1091 * @uprobe even before the register operation is complete. Creation
1092 * refcount is released when the last @uc for the @uprobe
1093 * unregisters. Caller of __uprobe_register() is required to keep @inode
1094 * (and the containing mount) referenced.
1095 *
1096 * Return errno if it cannot successully install probes
1097 * else return 0 (success)
1098 */
1099 static int __uprobe_register(struct inode *inode, loff_t offset,
1100 loff_t ref_ctr_offset, struct uprobe_consumer *uc)
1101 {
1102 struct uprobe *uprobe;
1103 int ret;
1104
1105 /* Uprobe must have at least one set consumer */
1106 if (!uc->handler && !uc->ret_handler)
1107 return -EINVAL;
1108
1109 /* copy_insn() uses read_mapping_page() or shmem_read_mapping_page() */
1110 if (!inode->i_mapping->a_ops->readpage && !shmem_mapping(inode->i_mapping))
1111 return -EIO;
1112 /* Racy, just to catch the obvious mistakes */
1113 if (offset > i_size_read(inode))
1114 return -EINVAL;
1115
1116 retry:
1117 uprobe = alloc_uprobe(inode, offset, ref_ctr_offset);
1118 if (!uprobe)
1119 return -ENOMEM;
1120 if (IS_ERR(uprobe))
1121 return PTR_ERR(uprobe);
1122
1123 /*
1124 * We can race with uprobe_unregister()->delete_uprobe().
1125 * Check uprobe_is_active() and retry if it is false.
1126 */
1127 down_write(&uprobe->register_rwsem);
1128 ret = -EAGAIN;
1129 if (likely(uprobe_is_active(uprobe))) {
1130 consumer_add(uprobe, uc);
1131 ret = register_for_each_vma(uprobe, uc);
1132 if (ret)
1133 __uprobe_unregister(uprobe, uc);
1134 }
1135 up_write(&uprobe->register_rwsem);
1136 put_uprobe(uprobe);
1137
1138 if (unlikely(ret == -EAGAIN))
1139 goto retry;
1140 return ret;
1141 }
1142
1143 int uprobe_register(struct inode *inode, loff_t offset,
1144 struct uprobe_consumer *uc)
1145 {
1146 return __uprobe_register(inode, offset, 0, uc);
1147 }
1148 EXPORT_SYMBOL_GPL(uprobe_register);
1149
1150 int uprobe_register_refctr(struct inode *inode, loff_t offset,
1151 loff_t ref_ctr_offset, struct uprobe_consumer *uc)
1152 {
1153 return __uprobe_register(inode, offset, ref_ctr_offset, uc);
1154 }
1155 EXPORT_SYMBOL_GPL(uprobe_register_refctr);
1156
1157 /*
1158 * uprobe_apply - unregister an already registered probe.
1159 * @inode: the file in which the probe has to be removed.
1160 * @offset: offset from the start of the file.
1161 * @uc: consumer which wants to add more or remove some breakpoints
1162 * @add: add or remove the breakpoints
1163 */
1164 int uprobe_apply(struct inode *inode, loff_t offset,
1165 struct uprobe_consumer *uc, bool add)
1166 {
1167 struct uprobe *uprobe;
1168 struct uprobe_consumer *con;
1169 int ret = -ENOENT;
1170
1171 uprobe = find_uprobe(inode, offset);
1172 if (WARN_ON(!uprobe))
1173 return ret;
1174
1175 down_write(&uprobe->register_rwsem);
1176 for (con = uprobe->consumers; con && con != uc ; con = con->next)
1177 ;
1178 if (con)
1179 ret = register_for_each_vma(uprobe, add ? uc : NULL);
1180 up_write(&uprobe->register_rwsem);
1181 put_uprobe(uprobe);
1182
1183 return ret;
1184 }
1185
1186 static int unapply_uprobe(struct uprobe *uprobe, struct mm_struct *mm)
1187 {
1188 struct vm_area_struct *vma;
1189 int err = 0;
1190
1191 down_read(&mm->mmap_sem);
1192 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1193 unsigned long vaddr;
1194 loff_t offset;
1195
1196 if (!valid_vma(vma, false) ||
1197 file_inode(vma->vm_file) != uprobe->inode)
1198 continue;
1199
1200 offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT;
1201 if (uprobe->offset < offset ||
1202 uprobe->offset >= offset + vma->vm_end - vma->vm_start)
1203 continue;
1204
1205 vaddr = offset_to_vaddr(vma, uprobe->offset);
1206 err |= remove_breakpoint(uprobe, mm, vaddr);
1207 }
1208 up_read(&mm->mmap_sem);
1209
1210 return err;
1211 }
1212
1213 static struct rb_node *
1214 find_node_in_range(struct inode *inode, loff_t min, loff_t max)
1215 {
1216 struct rb_node *n = uprobes_tree.rb_node;
1217
1218 while (n) {
1219 struct uprobe *u = rb_entry(n, struct uprobe, rb_node);
1220
1221 if (inode < u->inode) {
1222 n = n->rb_left;
1223 } else if (inode > u->inode) {
1224 n = n->rb_right;
1225 } else {
1226 if (max < u->offset)
1227 n = n->rb_left;
1228 else if (min > u->offset)
1229 n = n->rb_right;
1230 else
1231 break;
1232 }
1233 }
1234
1235 return n;
1236 }
1237
1238 /*
1239 * For a given range in vma, build a list of probes that need to be inserted.
1240 */
1241 static void build_probe_list(struct inode *inode,
1242 struct vm_area_struct *vma,
1243 unsigned long start, unsigned long end,
1244 struct list_head *head)
1245 {
1246 loff_t min, max;
1247 struct rb_node *n, *t;
1248 struct uprobe *u;
1249
1250 INIT_LIST_HEAD(head);
1251 min = vaddr_to_offset(vma, start);
1252 max = min + (end - start) - 1;
1253
1254 spin_lock(&uprobes_treelock);
1255 n = find_node_in_range(inode, min, max);
1256 if (n) {
1257 for (t = n; t; t = rb_prev(t)) {
1258 u = rb_entry(t, struct uprobe, rb_node);
1259 if (u->inode != inode || u->offset < min)
1260 break;
1261 list_add(&u->pending_list, head);
1262 get_uprobe(u);
1263 }
1264 for (t = n; (t = rb_next(t)); ) {
1265 u = rb_entry(t, struct uprobe, rb_node);
1266 if (u->inode != inode || u->offset > max)
1267 break;
1268 list_add(&u->pending_list, head);
1269 get_uprobe(u);
1270 }
1271 }
1272 spin_unlock(&uprobes_treelock);
1273 }
1274
1275 /* @vma contains reference counter, not the probed instruction. */
1276 static int delayed_ref_ctr_inc(struct vm_area_struct *vma)
1277 {
1278 struct list_head *pos, *q;
1279 struct delayed_uprobe *du;
1280 unsigned long vaddr;
1281 int ret = 0, err = 0;
1282
1283 mutex_lock(&delayed_uprobe_lock);
1284 list_for_each_safe(pos, q, &delayed_uprobe_list) {
1285 du = list_entry(pos, struct delayed_uprobe, list);
1286
1287 if (du->mm != vma->vm_mm ||
1288 !valid_ref_ctr_vma(du->uprobe, vma))
1289 continue;
1290
1291 vaddr = offset_to_vaddr(vma, du->uprobe->ref_ctr_offset);
1292 ret = __update_ref_ctr(vma->vm_mm, vaddr, 1);
1293 if (ret) {
1294 update_ref_ctr_warn(du->uprobe, vma->vm_mm, 1);
1295 if (!err)
1296 err = ret;
1297 }
1298 delayed_uprobe_delete(du);
1299 }
1300 mutex_unlock(&delayed_uprobe_lock);
1301 return err;
1302 }
1303
1304 /*
1305 * Called from mmap_region/vma_adjust with mm->mmap_sem acquired.
1306 *
1307 * Currently we ignore all errors and always return 0, the callers
1308 * can't handle the failure anyway.
1309 */
1310 int uprobe_mmap(struct vm_area_struct *vma)
1311 {
1312 struct list_head tmp_list;
1313 struct uprobe *uprobe, *u;
1314 struct inode *inode;
1315
1316 if (no_uprobe_events())
1317 return 0;
1318
1319 if (vma->vm_file &&
1320 (vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE &&
1321 test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags))
1322 delayed_ref_ctr_inc(vma);
1323
1324 if (!valid_vma(vma, true))
1325 return 0;
1326
1327 inode = file_inode(vma->vm_file);
1328 if (!inode)
1329 return 0;
1330
1331 mutex_lock(uprobes_mmap_hash(inode));
1332 build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list);
1333 /*
1334 * We can race with uprobe_unregister(), this uprobe can be already
1335 * removed. But in this case filter_chain() must return false, all
1336 * consumers have gone away.
1337 */
1338 list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
1339 if (!fatal_signal_pending(current) &&
1340 filter_chain(uprobe, UPROBE_FILTER_MMAP, vma->vm_mm)) {
1341 unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset);
1342 install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
1343 }
1344 put_uprobe(uprobe);
1345 }
1346 mutex_unlock(uprobes_mmap_hash(inode));
1347
1348 return 0;
1349 }
1350
1351 static bool
1352 vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1353 {
1354 loff_t min, max;
1355 struct inode *inode;
1356 struct rb_node *n;
1357
1358 inode = file_inode(vma->vm_file);
1359
1360 min = vaddr_to_offset(vma, start);
1361 max = min + (end - start) - 1;
1362
1363 spin_lock(&uprobes_treelock);
1364 n = find_node_in_range(inode, min, max);
1365 spin_unlock(&uprobes_treelock);
1366
1367 return !!n;
1368 }
1369
1370 /*
1371 * Called in context of a munmap of a vma.
1372 */
1373 void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1374 {
1375 if (no_uprobe_events() || !valid_vma(vma, false))
1376 return;
1377
1378 if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */
1379 return;
1380
1381 if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) ||
1382 test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags))
1383 return;
1384
1385 if (vma_has_uprobes(vma, start, end))
1386 set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags);
1387 }
1388
1389 /* Slot allocation for XOL */
1390 static int xol_add_vma(struct mm_struct *mm, struct xol_area *area)
1391 {
1392 struct vm_area_struct *vma;
1393 int ret;
1394
1395 if (down_write_killable(&mm->mmap_sem))
1396 return -EINTR;
1397
1398 if (mm->uprobes_state.xol_area) {
1399 ret = -EALREADY;
1400 goto fail;
1401 }
1402
1403 if (!area->vaddr) {
1404 /* Try to map as high as possible, this is only a hint. */
1405 area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE,
1406 PAGE_SIZE, 0, 0);
1407 if (area->vaddr & ~PAGE_MASK) {
1408 ret = area->vaddr;
1409 goto fail;
1410 }
1411 }
1412
1413 vma = _install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1414 VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO,
1415 &area->xol_mapping);
1416 if (IS_ERR(vma)) {
1417 ret = PTR_ERR(vma);
1418 goto fail;
1419 }
1420
1421 ret = 0;
1422 /* pairs with get_xol_area() */
1423 smp_store_release(&mm->uprobes_state.xol_area, area); /* ^^^ */
1424 fail:
1425 up_write(&mm->mmap_sem);
1426
1427 return ret;
1428 }
1429
1430 static struct xol_area *__create_xol_area(unsigned long vaddr)
1431 {
1432 struct mm_struct *mm = current->mm;
1433 uprobe_opcode_t insn = UPROBE_SWBP_INSN;
1434 struct xol_area *area;
1435
1436 area = kmalloc(sizeof(*area), GFP_KERNEL);
1437 if (unlikely(!area))
1438 goto out;
1439
1440 area->bitmap = kcalloc(BITS_TO_LONGS(UINSNS_PER_PAGE), sizeof(long),
1441 GFP_KERNEL);
1442 if (!area->bitmap)
1443 goto free_area;
1444
1445 area->xol_mapping.name = "[uprobes]";
1446 area->xol_mapping.fault = NULL;
1447 area->xol_mapping.pages = area->pages;
1448 area->pages[0] = alloc_page(GFP_HIGHUSER);
1449 if (!area->pages[0])
1450 goto free_bitmap;
1451 area->pages[1] = NULL;
1452
1453 area->vaddr = vaddr;
1454 init_waitqueue_head(&area->wq);
1455 /* Reserve the 1st slot for get_trampoline_vaddr() */
1456 set_bit(0, area->bitmap);
1457 atomic_set(&area->slot_count, 1);
1458 arch_uprobe_copy_ixol(area->pages[0], 0, &insn, UPROBE_SWBP_INSN_SIZE);
1459
1460 if (!xol_add_vma(mm, area))
1461 return area;
1462
1463 __free_page(area->pages[0]);
1464 free_bitmap:
1465 kfree(area->bitmap);
1466 free_area:
1467 kfree(area);
1468 out:
1469 return NULL;
1470 }
1471
1472 /*
1473 * get_xol_area - Allocate process's xol_area if necessary.
1474 * This area will be used for storing instructions for execution out of line.
1475 *
1476 * Returns the allocated area or NULL.
1477 */
1478 static struct xol_area *get_xol_area(void)
1479 {
1480 struct mm_struct *mm = current->mm;
1481 struct xol_area *area;
1482
1483 if (!mm->uprobes_state.xol_area)
1484 __create_xol_area(0);
1485
1486 /* Pairs with xol_add_vma() smp_store_release() */
1487 area = READ_ONCE(mm->uprobes_state.xol_area); /* ^^^ */
1488 return area;
1489 }
1490
1491 /*
1492 * uprobe_clear_state - Free the area allocated for slots.
1493 */
1494 void uprobe_clear_state(struct mm_struct *mm)
1495 {
1496 struct xol_area *area = mm->uprobes_state.xol_area;
1497
1498 mutex_lock(&delayed_uprobe_lock);
1499 delayed_uprobe_remove(NULL, mm);
1500 mutex_unlock(&delayed_uprobe_lock);
1501
1502 if (!area)
1503 return;
1504
1505 put_page(area->pages[0]);
1506 kfree(area->bitmap);
1507 kfree(area);
1508 }
1509
1510 void uprobe_start_dup_mmap(void)
1511 {
1512 percpu_down_read(&dup_mmap_sem);
1513 }
1514
1515 void uprobe_end_dup_mmap(void)
1516 {
1517 percpu_up_read(&dup_mmap_sem);
1518 }
1519
1520 void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm)
1521 {
1522 if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) {
1523 set_bit(MMF_HAS_UPROBES, &newmm->flags);
1524 /* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */
1525 set_bit(MMF_RECALC_UPROBES, &newmm->flags);
1526 }
1527 }
1528
1529 /*
1530 * - search for a free slot.
1531 */
1532 static unsigned long xol_take_insn_slot(struct xol_area *area)
1533 {
1534 unsigned long slot_addr;
1535 int slot_nr;
1536
1537 do {
1538 slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1539 if (slot_nr < UINSNS_PER_PAGE) {
1540 if (!test_and_set_bit(slot_nr, area->bitmap))
1541 break;
1542
1543 slot_nr = UINSNS_PER_PAGE;
1544 continue;
1545 }
1546 wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
1547 } while (slot_nr >= UINSNS_PER_PAGE);
1548
1549 slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
1550 atomic_inc(&area->slot_count);
1551
1552 return slot_addr;
1553 }
1554
1555 /*
1556 * xol_get_insn_slot - allocate a slot for xol.
1557 * Returns the allocated slot address or 0.
1558 */
1559 static unsigned long xol_get_insn_slot(struct uprobe *uprobe)
1560 {
1561 struct xol_area *area;
1562 unsigned long xol_vaddr;
1563
1564 area = get_xol_area();
1565 if (!area)
1566 return 0;
1567
1568 xol_vaddr = xol_take_insn_slot(area);
1569 if (unlikely(!xol_vaddr))
1570 return 0;
1571
1572 arch_uprobe_copy_ixol(area->pages[0], xol_vaddr,
1573 &uprobe->arch.ixol, sizeof(uprobe->arch.ixol));
1574
1575 return xol_vaddr;
1576 }
1577
1578 /*
1579 * xol_free_insn_slot - If slot was earlier allocated by
1580 * @xol_get_insn_slot(), make the slot available for
1581 * subsequent requests.
1582 */
1583 static void xol_free_insn_slot(struct task_struct *tsk)
1584 {
1585 struct xol_area *area;
1586 unsigned long vma_end;
1587 unsigned long slot_addr;
1588
1589 if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
1590 return;
1591
1592 slot_addr = tsk->utask->xol_vaddr;
1593 if (unlikely(!slot_addr))
1594 return;
1595
1596 area = tsk->mm->uprobes_state.xol_area;
1597 vma_end = area->vaddr + PAGE_SIZE;
1598 if (area->vaddr <= slot_addr && slot_addr < vma_end) {
1599 unsigned long offset;
1600 int slot_nr;
1601
1602 offset = slot_addr - area->vaddr;
1603 slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1604 if (slot_nr >= UINSNS_PER_PAGE)
1605 return;
1606
1607 clear_bit(slot_nr, area->bitmap);
1608 atomic_dec(&area->slot_count);
1609 smp_mb__after_atomic(); /* pairs with prepare_to_wait() */
1610 if (waitqueue_active(&area->wq))
1611 wake_up(&area->wq);
1612
1613 tsk->utask->xol_vaddr = 0;
1614 }
1615 }
1616
1617 void __weak arch_uprobe_copy_ixol(struct page *page, unsigned long vaddr,
1618 void *src, unsigned long len)
1619 {
1620 /* Initialize the slot */
1621 copy_to_page(page, vaddr, src, len);
1622
1623 /*
1624 * We probably need flush_icache_user_range() but it needs vma.
1625 * This should work on most of architectures by default. If
1626 * architecture needs to do something different it can define
1627 * its own version of the function.
1628 */
1629 flush_dcache_page(page);
1630 }
1631
1632 /**
1633 * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1634 * @regs: Reflects the saved state of the task after it has hit a breakpoint
1635 * instruction.
1636 * Return the address of the breakpoint instruction.
1637 */
1638 unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1639 {
1640 return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1641 }
1642
1643 unsigned long uprobe_get_trap_addr(struct pt_regs *regs)
1644 {
1645 struct uprobe_task *utask = current->utask;
1646
1647 if (unlikely(utask && utask->active_uprobe))
1648 return utask->vaddr;
1649
1650 return instruction_pointer(regs);
1651 }
1652
1653 static struct return_instance *free_ret_instance(struct return_instance *ri)
1654 {
1655 struct return_instance *next = ri->next;
1656 put_uprobe(ri->uprobe);
1657 kfree(ri);
1658 return next;
1659 }
1660
1661 /*
1662 * Called with no locks held.
1663 * Called in context of an exiting or an exec-ing thread.
1664 */
1665 void uprobe_free_utask(struct task_struct *t)
1666 {
1667 struct uprobe_task *utask = t->utask;
1668 struct return_instance *ri;
1669
1670 if (!utask)
1671 return;
1672
1673 if (utask->active_uprobe)
1674 put_uprobe(utask->active_uprobe);
1675
1676 ri = utask->return_instances;
1677 while (ri)
1678 ri = free_ret_instance(ri);
1679
1680 xol_free_insn_slot(t);
1681 kfree(utask);
1682 t->utask = NULL;
1683 }
1684
1685 /*
1686 * Allocate a uprobe_task object for the task if if necessary.
1687 * Called when the thread hits a breakpoint.
1688 *
1689 * Returns:
1690 * - pointer to new uprobe_task on success
1691 * - NULL otherwise
1692 */
1693 static struct uprobe_task *get_utask(void)
1694 {
1695 if (!current->utask)
1696 current->utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1697 return current->utask;
1698 }
1699
1700 static int dup_utask(struct task_struct *t, struct uprobe_task *o_utask)
1701 {
1702 struct uprobe_task *n_utask;
1703 struct return_instance **p, *o, *n;
1704
1705 n_utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1706 if (!n_utask)
1707 return -ENOMEM;
1708 t->utask = n_utask;
1709
1710 p = &n_utask->return_instances;
1711 for (o = o_utask->return_instances; o; o = o->next) {
1712 n = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1713 if (!n)
1714 return -ENOMEM;
1715
1716 *n = *o;
1717 get_uprobe(n->uprobe);
1718 n->next = NULL;
1719
1720 *p = n;
1721 p = &n->next;
1722 n_utask->depth++;
1723 }
1724
1725 return 0;
1726 }
1727
1728 static void uprobe_warn(struct task_struct *t, const char *msg)
1729 {
1730 pr_warn("uprobe: %s:%d failed to %s\n",
1731 current->comm, current->pid, msg);
1732 }
1733
1734 static void dup_xol_work(struct callback_head *work)
1735 {
1736 if (current->flags & PF_EXITING)
1737 return;
1738
1739 if (!__create_xol_area(current->utask->dup_xol_addr) &&
1740 !fatal_signal_pending(current))
1741 uprobe_warn(current, "dup xol area");
1742 }
1743
1744 /*
1745 * Called in context of a new clone/fork from copy_process.
1746 */
1747 void uprobe_copy_process(struct task_struct *t, unsigned long flags)
1748 {
1749 struct uprobe_task *utask = current->utask;
1750 struct mm_struct *mm = current->mm;
1751 struct xol_area *area;
1752
1753 t->utask = NULL;
1754
1755 if (!utask || !utask->return_instances)
1756 return;
1757
1758 if (mm == t->mm && !(flags & CLONE_VFORK))
1759 return;
1760
1761 if (dup_utask(t, utask))
1762 return uprobe_warn(t, "dup ret instances");
1763
1764 /* The task can fork() after dup_xol_work() fails */
1765 area = mm->uprobes_state.xol_area;
1766 if (!area)
1767 return uprobe_warn(t, "dup xol area");
1768
1769 if (mm == t->mm)
1770 return;
1771
1772 t->utask->dup_xol_addr = area->vaddr;
1773 init_task_work(&t->utask->dup_xol_work, dup_xol_work);
1774 task_work_add(t, &t->utask->dup_xol_work, true);
1775 }
1776
1777 /*
1778 * Current area->vaddr notion assume the trampoline address is always
1779 * equal area->vaddr.
1780 *
1781 * Returns -1 in case the xol_area is not allocated.
1782 */
1783 static unsigned long get_trampoline_vaddr(void)
1784 {
1785 struct xol_area *area;
1786 unsigned long trampoline_vaddr = -1;
1787
1788 /* Pairs with xol_add_vma() smp_store_release() */
1789 area = READ_ONCE(current->mm->uprobes_state.xol_area); /* ^^^ */
1790 if (area)
1791 trampoline_vaddr = area->vaddr;
1792
1793 return trampoline_vaddr;
1794 }
1795
1796 static void cleanup_return_instances(struct uprobe_task *utask, bool chained,
1797 struct pt_regs *regs)
1798 {
1799 struct return_instance *ri = utask->return_instances;
1800 enum rp_check ctx = chained ? RP_CHECK_CHAIN_CALL : RP_CHECK_CALL;
1801
1802 while (ri && !arch_uretprobe_is_alive(ri, ctx, regs)) {
1803 ri = free_ret_instance(ri);
1804 utask->depth--;
1805 }
1806 utask->return_instances = ri;
1807 }
1808
1809 static void prepare_uretprobe(struct uprobe *uprobe, struct pt_regs *regs)
1810 {
1811 struct return_instance *ri;
1812 struct uprobe_task *utask;
1813 unsigned long orig_ret_vaddr, trampoline_vaddr;
1814 bool chained;
1815
1816 if (!get_xol_area())
1817 return;
1818
1819 utask = get_utask();
1820 if (!utask)
1821 return;
1822
1823 if (utask->depth >= MAX_URETPROBE_DEPTH) {
1824 printk_ratelimited(KERN_INFO "uprobe: omit uretprobe due to"
1825 " nestedness limit pid/tgid=%d/%d\n",
1826 current->pid, current->tgid);
1827 return;
1828 }
1829
1830 ri = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1831 if (!ri)
1832 return;
1833
1834 trampoline_vaddr = get_trampoline_vaddr();
1835 orig_ret_vaddr = arch_uretprobe_hijack_return_addr(trampoline_vaddr, regs);
1836 if (orig_ret_vaddr == -1)
1837 goto fail;
1838
1839 /* drop the entries invalidated by longjmp() */
1840 chained = (orig_ret_vaddr == trampoline_vaddr);
1841 cleanup_return_instances(utask, chained, regs);
1842
1843 /*
1844 * We don't want to keep trampoline address in stack, rather keep the
1845 * original return address of first caller thru all the consequent
1846 * instances. This also makes breakpoint unwrapping easier.
1847 */
1848 if (chained) {
1849 if (!utask->return_instances) {
1850 /*
1851 * This situation is not possible. Likely we have an
1852 * attack from user-space.
1853 */
1854 uprobe_warn(current, "handle tail call");
1855 goto fail;
1856 }
1857 orig_ret_vaddr = utask->return_instances->orig_ret_vaddr;
1858 }
1859
1860 ri->uprobe = get_uprobe(uprobe);
1861 ri->func = instruction_pointer(regs);
1862 ri->stack = user_stack_pointer(regs);
1863 ri->orig_ret_vaddr = orig_ret_vaddr;
1864 ri->chained = chained;
1865
1866 utask->depth++;
1867 ri->next = utask->return_instances;
1868 utask->return_instances = ri;
1869
1870 return;
1871 fail:
1872 kfree(ri);
1873 }
1874
1875 /* Prepare to single-step probed instruction out of line. */
1876 static int
1877 pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long bp_vaddr)
1878 {
1879 struct uprobe_task *utask;
1880 unsigned long xol_vaddr;
1881 int err;
1882
1883 utask = get_utask();
1884 if (!utask)
1885 return -ENOMEM;
1886
1887 xol_vaddr = xol_get_insn_slot(uprobe);
1888 if (!xol_vaddr)
1889 return -ENOMEM;
1890
1891 utask->xol_vaddr = xol_vaddr;
1892 utask->vaddr = bp_vaddr;
1893
1894 err = arch_uprobe_pre_xol(&uprobe->arch, regs);
1895 if (unlikely(err)) {
1896 xol_free_insn_slot(current);
1897 return err;
1898 }
1899
1900 utask->active_uprobe = uprobe;
1901 utask->state = UTASK_SSTEP;
1902 return 0;
1903 }
1904
1905 /*
1906 * If we are singlestepping, then ensure this thread is not connected to
1907 * non-fatal signals until completion of singlestep. When xol insn itself
1908 * triggers the signal, restart the original insn even if the task is
1909 * already SIGKILL'ed (since coredump should report the correct ip). This
1910 * is even more important if the task has a handler for SIGSEGV/etc, The
1911 * _same_ instruction should be repeated again after return from the signal
1912 * handler, and SSTEP can never finish in this case.
1913 */
1914 bool uprobe_deny_signal(void)
1915 {
1916 struct task_struct *t = current;
1917 struct uprobe_task *utask = t->utask;
1918
1919 if (likely(!utask || !utask->active_uprobe))
1920 return false;
1921
1922 WARN_ON_ONCE(utask->state != UTASK_SSTEP);
1923
1924 if (signal_pending(t)) {
1925 spin_lock_irq(&t->sighand->siglock);
1926 clear_tsk_thread_flag(t, TIF_SIGPENDING);
1927 spin_unlock_irq(&t->sighand->siglock);
1928
1929 if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
1930 utask->state = UTASK_SSTEP_TRAPPED;
1931 set_tsk_thread_flag(t, TIF_UPROBE);
1932 }
1933 }
1934
1935 return true;
1936 }
1937
1938 static void mmf_recalc_uprobes(struct mm_struct *mm)
1939 {
1940 struct vm_area_struct *vma;
1941
1942 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1943 if (!valid_vma(vma, false))
1944 continue;
1945 /*
1946 * This is not strictly accurate, we can race with
1947 * uprobe_unregister() and see the already removed
1948 * uprobe if delete_uprobe() was not yet called.
1949 * Or this uprobe can be filtered out.
1950 */
1951 if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end))
1952 return;
1953 }
1954
1955 clear_bit(MMF_HAS_UPROBES, &mm->flags);
1956 }
1957
1958 static int is_trap_at_addr(struct mm_struct *mm, unsigned long vaddr)
1959 {
1960 struct page *page;
1961 uprobe_opcode_t opcode;
1962 int result;
1963
1964 pagefault_disable();
1965 result = __get_user(opcode, (uprobe_opcode_t __user *)vaddr);
1966 pagefault_enable();
1967
1968 if (likely(result == 0))
1969 goto out;
1970
1971 /*
1972 * The NULL 'tsk' here ensures that any faults that occur here
1973 * will not be accounted to the task. 'mm' *is* current->mm,
1974 * but we treat this as a 'remote' access since it is
1975 * essentially a kernel access to the memory.
1976 */
1977 result = get_user_pages_remote(NULL, mm, vaddr, 1, FOLL_FORCE, &page,
1978 NULL, NULL);
1979 if (result < 0)
1980 return result;
1981
1982 copy_from_page(page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
1983 put_page(page);
1984 out:
1985 /* This needs to return true for any variant of the trap insn */
1986 return is_trap_insn(&opcode);
1987 }
1988
1989 static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
1990 {
1991 struct mm_struct *mm = current->mm;
1992 struct uprobe *uprobe = NULL;
1993 struct vm_area_struct *vma;
1994
1995 down_read(&mm->mmap_sem);
1996 vma = find_vma(mm, bp_vaddr);
1997 if (vma && vma->vm_start <= bp_vaddr) {
1998 if (valid_vma(vma, false)) {
1999 struct inode *inode = file_inode(vma->vm_file);
2000 loff_t offset = vaddr_to_offset(vma, bp_vaddr);
2001
2002 uprobe = find_uprobe(inode, offset);
2003 }
2004
2005 if (!uprobe)
2006 *is_swbp = is_trap_at_addr(mm, bp_vaddr);
2007 } else {
2008 *is_swbp = -EFAULT;
2009 }
2010
2011 if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags))
2012 mmf_recalc_uprobes(mm);
2013 up_read(&mm->mmap_sem);
2014
2015 return uprobe;
2016 }
2017
2018 static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
2019 {
2020 struct uprobe_consumer *uc;
2021 int remove = UPROBE_HANDLER_REMOVE;
2022 bool need_prep = false; /* prepare return uprobe, when needed */
2023
2024 down_read(&uprobe->register_rwsem);
2025 for (uc = uprobe->consumers; uc; uc = uc->next) {
2026 int rc = 0;
2027
2028 if (uc->handler) {
2029 rc = uc->handler(uc, regs);
2030 WARN(rc & ~UPROBE_HANDLER_MASK,
2031 "bad rc=0x%x from %pf()\n", rc, uc->handler);
2032 }
2033
2034 if (uc->ret_handler)
2035 need_prep = true;
2036
2037 remove &= rc;
2038 }
2039
2040 if (need_prep && !remove)
2041 prepare_uretprobe(uprobe, regs); /* put bp at return */
2042
2043 if (remove && uprobe->consumers) {
2044 WARN_ON(!uprobe_is_active(uprobe));
2045 unapply_uprobe(uprobe, current->mm);
2046 }
2047 up_read(&uprobe->register_rwsem);
2048 }
2049
2050 static void
2051 handle_uretprobe_chain(struct return_instance *ri, struct pt_regs *regs)
2052 {
2053 struct uprobe *uprobe = ri->uprobe;
2054 struct uprobe_consumer *uc;
2055
2056 down_read(&uprobe->register_rwsem);
2057 for (uc = uprobe->consumers; uc; uc = uc->next) {
2058 if (uc->ret_handler)
2059 uc->ret_handler(uc, ri->func, regs);
2060 }
2061 up_read(&uprobe->register_rwsem);
2062 }
2063
2064 static struct return_instance *find_next_ret_chain(struct return_instance *ri)
2065 {
2066 bool chained;
2067
2068 do {
2069 chained = ri->chained;
2070 ri = ri->next; /* can't be NULL if chained */
2071 } while (chained);
2072
2073 return ri;
2074 }
2075
2076 static void handle_trampoline(struct pt_regs *regs)
2077 {
2078 struct uprobe_task *utask;
2079 struct return_instance *ri, *next;
2080 bool valid;
2081
2082 utask = current->utask;
2083 if (!utask)
2084 goto sigill;
2085
2086 ri = utask->return_instances;
2087 if (!ri)
2088 goto sigill;
2089
2090 do {
2091 /*
2092 * We should throw out the frames invalidated by longjmp().
2093 * If this chain is valid, then the next one should be alive
2094 * or NULL; the latter case means that nobody but ri->func
2095 * could hit this trampoline on return. TODO: sigaltstack().
2096 */
2097 next = find_next_ret_chain(ri);
2098 valid = !next || arch_uretprobe_is_alive(next, RP_CHECK_RET, regs);
2099
2100 instruction_pointer_set(regs, ri->orig_ret_vaddr);
2101 do {
2102 if (valid)
2103 handle_uretprobe_chain(ri, regs);
2104 ri = free_ret_instance(ri);
2105 utask->depth--;
2106 } while (ri != next);
2107 } while (!valid);
2108
2109 utask->return_instances = ri;
2110 return;
2111
2112 sigill:
2113 uprobe_warn(current, "handle uretprobe, sending SIGILL.");
2114 force_sig(SIGILL, current);
2115
2116 }
2117
2118 bool __weak arch_uprobe_ignore(struct arch_uprobe *aup, struct pt_regs *regs)
2119 {
2120 return false;
2121 }
2122
2123 bool __weak arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx,
2124 struct pt_regs *regs)
2125 {
2126 return true;
2127 }
2128
2129 /*
2130 * Run handler and ask thread to singlestep.
2131 * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
2132 */
2133 static void handle_swbp(struct pt_regs *regs)
2134 {
2135 struct uprobe *uprobe;
2136 unsigned long bp_vaddr;
2137 int uninitialized_var(is_swbp);
2138
2139 bp_vaddr = uprobe_get_swbp_addr(regs);
2140 if (bp_vaddr == get_trampoline_vaddr())
2141 return handle_trampoline(regs);
2142
2143 uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
2144 if (!uprobe) {
2145 if (is_swbp > 0) {
2146 /* No matching uprobe; signal SIGTRAP. */
2147 send_sig(SIGTRAP, current, 0);
2148 } else {
2149 /*
2150 * Either we raced with uprobe_unregister() or we can't
2151 * access this memory. The latter is only possible if
2152 * another thread plays with our ->mm. In both cases
2153 * we can simply restart. If this vma was unmapped we
2154 * can pretend this insn was not executed yet and get
2155 * the (correct) SIGSEGV after restart.
2156 */
2157 instruction_pointer_set(regs, bp_vaddr);
2158 }
2159 return;
2160 }
2161
2162 /* change it in advance for ->handler() and restart */
2163 instruction_pointer_set(regs, bp_vaddr);
2164
2165 /*
2166 * TODO: move copy_insn/etc into _register and remove this hack.
2167 * After we hit the bp, _unregister + _register can install the
2168 * new and not-yet-analyzed uprobe at the same address, restart.
2169 */
2170 if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags)))
2171 goto out;
2172
2173 /*
2174 * Pairs with the smp_wmb() in prepare_uprobe().
2175 *
2176 * Guarantees that if we see the UPROBE_COPY_INSN bit set, then
2177 * we must also see the stores to &uprobe->arch performed by the
2178 * prepare_uprobe() call.
2179 */
2180 smp_rmb();
2181
2182 /* Tracing handlers use ->utask to communicate with fetch methods */
2183 if (!get_utask())
2184 goto out;
2185
2186 if (arch_uprobe_ignore(&uprobe->arch, regs))
2187 goto out;
2188
2189 handler_chain(uprobe, regs);
2190
2191 if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
2192 goto out;
2193
2194 if (!pre_ssout(uprobe, regs, bp_vaddr))
2195 return;
2196
2197 /* arch_uprobe_skip_sstep() succeeded, or restart if can't singlestep */
2198 out:
2199 put_uprobe(uprobe);
2200 }
2201
2202 /*
2203 * Perform required fix-ups and disable singlestep.
2204 * Allow pending signals to take effect.
2205 */
2206 static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
2207 {
2208 struct uprobe *uprobe;
2209 int err = 0;
2210
2211 uprobe = utask->active_uprobe;
2212 if (utask->state == UTASK_SSTEP_ACK)
2213 err = arch_uprobe_post_xol(&uprobe->arch, regs);
2214 else if (utask->state == UTASK_SSTEP_TRAPPED)
2215 arch_uprobe_abort_xol(&uprobe->arch, regs);
2216 else
2217 WARN_ON_ONCE(1);
2218
2219 put_uprobe(uprobe);
2220 utask->active_uprobe = NULL;
2221 utask->state = UTASK_RUNNING;
2222 xol_free_insn_slot(current);
2223
2224 spin_lock_irq(&current->sighand->siglock);
2225 recalc_sigpending(); /* see uprobe_deny_signal() */
2226 spin_unlock_irq(&current->sighand->siglock);
2227
2228 if (unlikely(err)) {
2229 uprobe_warn(current, "execute the probed insn, sending SIGILL.");
2230 force_sig(SIGILL, current);
2231 }
2232 }
2233
2234 /*
2235 * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and
2236 * allows the thread to return from interrupt. After that handle_swbp()
2237 * sets utask->active_uprobe.
2238 *
2239 * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag
2240 * and allows the thread to return from interrupt.
2241 *
2242 * While returning to userspace, thread notices the TIF_UPROBE flag and calls
2243 * uprobe_notify_resume().
2244 */
2245 void uprobe_notify_resume(struct pt_regs *regs)
2246 {
2247 struct uprobe_task *utask;
2248
2249 clear_thread_flag(TIF_UPROBE);
2250
2251 utask = current->utask;
2252 if (utask && utask->active_uprobe)
2253 handle_singlestep(utask, regs);
2254 else
2255 handle_swbp(regs);
2256 }
2257
2258 /*
2259 * uprobe_pre_sstep_notifier gets called from interrupt context as part of
2260 * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
2261 */
2262 int uprobe_pre_sstep_notifier(struct pt_regs *regs)
2263 {
2264 if (!current->mm)
2265 return 0;
2266
2267 if (!test_bit(MMF_HAS_UPROBES, &current->mm->flags) &&
2268 (!current->utask || !current->utask->return_instances))
2269 return 0;
2270
2271 set_thread_flag(TIF_UPROBE);
2272 return 1;
2273 }
2274
2275 /*
2276 * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
2277 * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
2278 */
2279 int uprobe_post_sstep_notifier(struct pt_regs *regs)
2280 {
2281 struct uprobe_task *utask = current->utask;
2282
2283 if (!current->mm || !utask || !utask->active_uprobe)
2284 /* task is currently not uprobed */
2285 return 0;
2286
2287 utask->state = UTASK_SSTEP_ACK;
2288 set_thread_flag(TIF_UPROBE);
2289 return 1;
2290 }
2291
2292 static struct notifier_block uprobe_exception_nb = {
2293 .notifier_call = arch_uprobe_exception_notify,
2294 .priority = INT_MAX-1, /* notified after kprobes, kgdb */
2295 };
2296
2297 static int __init init_uprobes(void)
2298 {
2299 int i;
2300
2301 for (i = 0; i < UPROBES_HASH_SZ; i++)
2302 mutex_init(&uprobes_mmap_mutex[i]);
2303
2304 if (percpu_init_rwsem(&dup_mmap_sem))
2305 return -ENOMEM;
2306
2307 return register_die_notifier(&uprobe_exception_nb);
2308 }
2309 __initcall(init_uprobes);