]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - kernel/events/uprobes.c
Merge branch 'perf-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-zesty-kernel.git] / kernel / events / uprobes.c
1 /*
2 * User-space Probes (UProbes)
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright (C) IBM Corporation, 2008-2012
19 * Authors:
20 * Srikar Dronamraju
21 * Jim Keniston
22 * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra
23 */
24
25 #include <linux/kernel.h>
26 #include <linux/highmem.h>
27 #include <linux/pagemap.h> /* read_mapping_page */
28 #include <linux/slab.h>
29 #include <linux/sched.h>
30 #include <linux/export.h>
31 #include <linux/rmap.h> /* anon_vma_prepare */
32 #include <linux/mmu_notifier.h> /* set_pte_at_notify */
33 #include <linux/swap.h> /* try_to_free_swap */
34 #include <linux/ptrace.h> /* user_enable_single_step */
35 #include <linux/kdebug.h> /* notifier mechanism */
36 #include "../../mm/internal.h" /* munlock_vma_page */
37 #include <linux/percpu-rwsem.h>
38 #include <linux/task_work.h>
39 #include <linux/shmem_fs.h>
40
41 #include <linux/uprobes.h>
42
43 #define UINSNS_PER_PAGE (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
44 #define MAX_UPROBE_XOL_SLOTS UINSNS_PER_PAGE
45
46 static struct rb_root uprobes_tree = RB_ROOT;
47 /*
48 * allows us to skip the uprobe_mmap if there are no uprobe events active
49 * at this time. Probably a fine grained per inode count is better?
50 */
51 #define no_uprobe_events() RB_EMPTY_ROOT(&uprobes_tree)
52
53 static DEFINE_SPINLOCK(uprobes_treelock); /* serialize rbtree access */
54
55 #define UPROBES_HASH_SZ 13
56 /* serialize uprobe->pending_list */
57 static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
58 #define uprobes_mmap_hash(v) (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
59
60 static struct percpu_rw_semaphore dup_mmap_sem;
61
62 /* Have a copy of original instruction */
63 #define UPROBE_COPY_INSN 0
64
65 struct uprobe {
66 struct rb_node rb_node; /* node in the rb tree */
67 atomic_t ref;
68 struct rw_semaphore register_rwsem;
69 struct rw_semaphore consumer_rwsem;
70 struct list_head pending_list;
71 struct uprobe_consumer *consumers;
72 struct inode *inode; /* Also hold a ref to inode */
73 loff_t offset;
74 unsigned long flags;
75
76 /*
77 * The generic code assumes that it has two members of unknown type
78 * owned by the arch-specific code:
79 *
80 * insn - copy_insn() saves the original instruction here for
81 * arch_uprobe_analyze_insn().
82 *
83 * ixol - potentially modified instruction to execute out of
84 * line, copied to xol_area by xol_get_insn_slot().
85 */
86 struct arch_uprobe arch;
87 };
88
89 /*
90 * Execute out of line area: anonymous executable mapping installed
91 * by the probed task to execute the copy of the original instruction
92 * mangled by set_swbp().
93 *
94 * On a breakpoint hit, thread contests for a slot. It frees the
95 * slot after singlestep. Currently a fixed number of slots are
96 * allocated.
97 */
98 struct xol_area {
99 wait_queue_head_t wq; /* if all slots are busy */
100 atomic_t slot_count; /* number of in-use slots */
101 unsigned long *bitmap; /* 0 = free slot */
102
103 struct vm_special_mapping xol_mapping;
104 struct page *pages[2];
105 /*
106 * We keep the vma's vm_start rather than a pointer to the vma
107 * itself. The probed process or a naughty kernel module could make
108 * the vma go away, and we must handle that reasonably gracefully.
109 */
110 unsigned long vaddr; /* Page(s) of instruction slots */
111 };
112
113 /*
114 * valid_vma: Verify if the specified vma is an executable vma
115 * Relax restrictions while unregistering: vm_flags might have
116 * changed after breakpoint was inserted.
117 * - is_register: indicates if we are in register context.
118 * - Return 1 if the specified virtual address is in an
119 * executable vma.
120 */
121 static bool valid_vma(struct vm_area_struct *vma, bool is_register)
122 {
123 vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_MAYSHARE;
124
125 if (is_register)
126 flags |= VM_WRITE;
127
128 return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC;
129 }
130
131 static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset)
132 {
133 return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
134 }
135
136 static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr)
137 {
138 return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start);
139 }
140
141 /**
142 * __replace_page - replace page in vma by new page.
143 * based on replace_page in mm/ksm.c
144 *
145 * @vma: vma that holds the pte pointing to page
146 * @addr: address the old @page is mapped at
147 * @page: the cowed page we are replacing by kpage
148 * @kpage: the modified page we replace page by
149 *
150 * Returns 0 on success, -EFAULT on failure.
151 */
152 static int __replace_page(struct vm_area_struct *vma, unsigned long addr,
153 struct page *old_page, struct page *new_page)
154 {
155 struct mm_struct *mm = vma->vm_mm;
156 spinlock_t *ptl;
157 pte_t *ptep;
158 int err;
159 /* For mmu_notifiers */
160 const unsigned long mmun_start = addr;
161 const unsigned long mmun_end = addr + PAGE_SIZE;
162 struct mem_cgroup *memcg;
163
164 err = mem_cgroup_try_charge(new_page, vma->vm_mm, GFP_KERNEL, &memcg,
165 false);
166 if (err)
167 return err;
168
169 /* For try_to_free_swap() and munlock_vma_page() below */
170 lock_page(old_page);
171
172 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
173 err = -EAGAIN;
174 ptep = page_check_address(old_page, mm, addr, &ptl, 0);
175 if (!ptep) {
176 mem_cgroup_cancel_charge(new_page, memcg, false);
177 goto unlock;
178 }
179
180 get_page(new_page);
181 page_add_new_anon_rmap(new_page, vma, addr, false);
182 mem_cgroup_commit_charge(new_page, memcg, false, false);
183 lru_cache_add_active_or_unevictable(new_page, vma);
184
185 if (!PageAnon(old_page)) {
186 dec_mm_counter(mm, mm_counter_file(old_page));
187 inc_mm_counter(mm, MM_ANONPAGES);
188 }
189
190 flush_cache_page(vma, addr, pte_pfn(*ptep));
191 ptep_clear_flush_notify(vma, addr, ptep);
192 set_pte_at_notify(mm, addr, ptep, mk_pte(new_page, vma->vm_page_prot));
193
194 page_remove_rmap(old_page, false);
195 if (!page_mapped(old_page))
196 try_to_free_swap(old_page);
197 pte_unmap_unlock(ptep, ptl);
198
199 if (vma->vm_flags & VM_LOCKED)
200 munlock_vma_page(old_page);
201 put_page(old_page);
202
203 err = 0;
204 unlock:
205 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
206 unlock_page(old_page);
207 return err;
208 }
209
210 /**
211 * is_swbp_insn - check if instruction is breakpoint instruction.
212 * @insn: instruction to be checked.
213 * Default implementation of is_swbp_insn
214 * Returns true if @insn is a breakpoint instruction.
215 */
216 bool __weak is_swbp_insn(uprobe_opcode_t *insn)
217 {
218 return *insn == UPROBE_SWBP_INSN;
219 }
220
221 /**
222 * is_trap_insn - check if instruction is breakpoint instruction.
223 * @insn: instruction to be checked.
224 * Default implementation of is_trap_insn
225 * Returns true if @insn is a breakpoint instruction.
226 *
227 * This function is needed for the case where an architecture has multiple
228 * trap instructions (like powerpc).
229 */
230 bool __weak is_trap_insn(uprobe_opcode_t *insn)
231 {
232 return is_swbp_insn(insn);
233 }
234
235 static void copy_from_page(struct page *page, unsigned long vaddr, void *dst, int len)
236 {
237 void *kaddr = kmap_atomic(page);
238 memcpy(dst, kaddr + (vaddr & ~PAGE_MASK), len);
239 kunmap_atomic(kaddr);
240 }
241
242 static void copy_to_page(struct page *page, unsigned long vaddr, const void *src, int len)
243 {
244 void *kaddr = kmap_atomic(page);
245 memcpy(kaddr + (vaddr & ~PAGE_MASK), src, len);
246 kunmap_atomic(kaddr);
247 }
248
249 static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode)
250 {
251 uprobe_opcode_t old_opcode;
252 bool is_swbp;
253
254 /*
255 * Note: We only check if the old_opcode is UPROBE_SWBP_INSN here.
256 * We do not check if it is any other 'trap variant' which could
257 * be conditional trap instruction such as the one powerpc supports.
258 *
259 * The logic is that we do not care if the underlying instruction
260 * is a trap variant; uprobes always wins over any other (gdb)
261 * breakpoint.
262 */
263 copy_from_page(page, vaddr, &old_opcode, UPROBE_SWBP_INSN_SIZE);
264 is_swbp = is_swbp_insn(&old_opcode);
265
266 if (is_swbp_insn(new_opcode)) {
267 if (is_swbp) /* register: already installed? */
268 return 0;
269 } else {
270 if (!is_swbp) /* unregister: was it changed by us? */
271 return 0;
272 }
273
274 return 1;
275 }
276
277 /*
278 * NOTE:
279 * Expect the breakpoint instruction to be the smallest size instruction for
280 * the architecture. If an arch has variable length instruction and the
281 * breakpoint instruction is not of the smallest length instruction
282 * supported by that architecture then we need to modify is_trap_at_addr and
283 * uprobe_write_opcode accordingly. This would never be a problem for archs
284 * that have fixed length instructions.
285 *
286 * uprobe_write_opcode - write the opcode at a given virtual address.
287 * @mm: the probed process address space.
288 * @vaddr: the virtual address to store the opcode.
289 * @opcode: opcode to be written at @vaddr.
290 *
291 * Called with mm->mmap_sem held for write.
292 * Return 0 (success) or a negative errno.
293 */
294 int uprobe_write_opcode(struct mm_struct *mm, unsigned long vaddr,
295 uprobe_opcode_t opcode)
296 {
297 struct page *old_page, *new_page;
298 struct vm_area_struct *vma;
299 int ret;
300
301 retry:
302 /* Read the page with vaddr into memory */
303 ret = get_user_pages_remote(NULL, mm, vaddr, 1, 0, 1, &old_page, &vma);
304 if (ret <= 0)
305 return ret;
306
307 ret = verify_opcode(old_page, vaddr, &opcode);
308 if (ret <= 0)
309 goto put_old;
310
311 ret = anon_vma_prepare(vma);
312 if (ret)
313 goto put_old;
314
315 ret = -ENOMEM;
316 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
317 if (!new_page)
318 goto put_old;
319
320 __SetPageUptodate(new_page);
321 copy_highpage(new_page, old_page);
322 copy_to_page(new_page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
323
324 ret = __replace_page(vma, vaddr, old_page, new_page);
325 put_page(new_page);
326 put_old:
327 put_page(old_page);
328
329 if (unlikely(ret == -EAGAIN))
330 goto retry;
331 return ret;
332 }
333
334 /**
335 * set_swbp - store breakpoint at a given address.
336 * @auprobe: arch specific probepoint information.
337 * @mm: the probed process address space.
338 * @vaddr: the virtual address to insert the opcode.
339 *
340 * For mm @mm, store the breakpoint instruction at @vaddr.
341 * Return 0 (success) or a negative errno.
342 */
343 int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
344 {
345 return uprobe_write_opcode(mm, vaddr, UPROBE_SWBP_INSN);
346 }
347
348 /**
349 * set_orig_insn - Restore the original instruction.
350 * @mm: the probed process address space.
351 * @auprobe: arch specific probepoint information.
352 * @vaddr: the virtual address to insert the opcode.
353 *
354 * For mm @mm, restore the original opcode (opcode) at @vaddr.
355 * Return 0 (success) or a negative errno.
356 */
357 int __weak
358 set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
359 {
360 return uprobe_write_opcode(mm, vaddr, *(uprobe_opcode_t *)&auprobe->insn);
361 }
362
363 static struct uprobe *get_uprobe(struct uprobe *uprobe)
364 {
365 atomic_inc(&uprobe->ref);
366 return uprobe;
367 }
368
369 static void put_uprobe(struct uprobe *uprobe)
370 {
371 if (atomic_dec_and_test(&uprobe->ref))
372 kfree(uprobe);
373 }
374
375 static int match_uprobe(struct uprobe *l, struct uprobe *r)
376 {
377 if (l->inode < r->inode)
378 return -1;
379
380 if (l->inode > r->inode)
381 return 1;
382
383 if (l->offset < r->offset)
384 return -1;
385
386 if (l->offset > r->offset)
387 return 1;
388
389 return 0;
390 }
391
392 static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
393 {
394 struct uprobe u = { .inode = inode, .offset = offset };
395 struct rb_node *n = uprobes_tree.rb_node;
396 struct uprobe *uprobe;
397 int match;
398
399 while (n) {
400 uprobe = rb_entry(n, struct uprobe, rb_node);
401 match = match_uprobe(&u, uprobe);
402 if (!match)
403 return get_uprobe(uprobe);
404
405 if (match < 0)
406 n = n->rb_left;
407 else
408 n = n->rb_right;
409 }
410 return NULL;
411 }
412
413 /*
414 * Find a uprobe corresponding to a given inode:offset
415 * Acquires uprobes_treelock
416 */
417 static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
418 {
419 struct uprobe *uprobe;
420
421 spin_lock(&uprobes_treelock);
422 uprobe = __find_uprobe(inode, offset);
423 spin_unlock(&uprobes_treelock);
424
425 return uprobe;
426 }
427
428 static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
429 {
430 struct rb_node **p = &uprobes_tree.rb_node;
431 struct rb_node *parent = NULL;
432 struct uprobe *u;
433 int match;
434
435 while (*p) {
436 parent = *p;
437 u = rb_entry(parent, struct uprobe, rb_node);
438 match = match_uprobe(uprobe, u);
439 if (!match)
440 return get_uprobe(u);
441
442 if (match < 0)
443 p = &parent->rb_left;
444 else
445 p = &parent->rb_right;
446
447 }
448
449 u = NULL;
450 rb_link_node(&uprobe->rb_node, parent, p);
451 rb_insert_color(&uprobe->rb_node, &uprobes_tree);
452 /* get access + creation ref */
453 atomic_set(&uprobe->ref, 2);
454
455 return u;
456 }
457
458 /*
459 * Acquire uprobes_treelock.
460 * Matching uprobe already exists in rbtree;
461 * increment (access refcount) and return the matching uprobe.
462 *
463 * No matching uprobe; insert the uprobe in rb_tree;
464 * get a double refcount (access + creation) and return NULL.
465 */
466 static struct uprobe *insert_uprobe(struct uprobe *uprobe)
467 {
468 struct uprobe *u;
469
470 spin_lock(&uprobes_treelock);
471 u = __insert_uprobe(uprobe);
472 spin_unlock(&uprobes_treelock);
473
474 return u;
475 }
476
477 static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset)
478 {
479 struct uprobe *uprobe, *cur_uprobe;
480
481 uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
482 if (!uprobe)
483 return NULL;
484
485 uprobe->inode = igrab(inode);
486 uprobe->offset = offset;
487 init_rwsem(&uprobe->register_rwsem);
488 init_rwsem(&uprobe->consumer_rwsem);
489
490 /* add to uprobes_tree, sorted on inode:offset */
491 cur_uprobe = insert_uprobe(uprobe);
492 /* a uprobe exists for this inode:offset combination */
493 if (cur_uprobe) {
494 kfree(uprobe);
495 uprobe = cur_uprobe;
496 iput(inode);
497 }
498
499 return uprobe;
500 }
501
502 static void consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
503 {
504 down_write(&uprobe->consumer_rwsem);
505 uc->next = uprobe->consumers;
506 uprobe->consumers = uc;
507 up_write(&uprobe->consumer_rwsem);
508 }
509
510 /*
511 * For uprobe @uprobe, delete the consumer @uc.
512 * Return true if the @uc is deleted successfully
513 * or return false.
514 */
515 static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
516 {
517 struct uprobe_consumer **con;
518 bool ret = false;
519
520 down_write(&uprobe->consumer_rwsem);
521 for (con = &uprobe->consumers; *con; con = &(*con)->next) {
522 if (*con == uc) {
523 *con = uc->next;
524 ret = true;
525 break;
526 }
527 }
528 up_write(&uprobe->consumer_rwsem);
529
530 return ret;
531 }
532
533 static int __copy_insn(struct address_space *mapping, struct file *filp,
534 void *insn, int nbytes, loff_t offset)
535 {
536 struct page *page;
537 /*
538 * Ensure that the page that has the original instruction is populated
539 * and in page-cache. If ->readpage == NULL it must be shmem_mapping(),
540 * see uprobe_register().
541 */
542 if (mapping->a_ops->readpage)
543 page = read_mapping_page(mapping, offset >> PAGE_SHIFT, filp);
544 else
545 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
546 if (IS_ERR(page))
547 return PTR_ERR(page);
548
549 copy_from_page(page, offset, insn, nbytes);
550 put_page(page);
551
552 return 0;
553 }
554
555 static int copy_insn(struct uprobe *uprobe, struct file *filp)
556 {
557 struct address_space *mapping = uprobe->inode->i_mapping;
558 loff_t offs = uprobe->offset;
559 void *insn = &uprobe->arch.insn;
560 int size = sizeof(uprobe->arch.insn);
561 int len, err = -EIO;
562
563 /* Copy only available bytes, -EIO if nothing was read */
564 do {
565 if (offs >= i_size_read(uprobe->inode))
566 break;
567
568 len = min_t(int, size, PAGE_SIZE - (offs & ~PAGE_MASK));
569 err = __copy_insn(mapping, filp, insn, len, offs);
570 if (err)
571 break;
572
573 insn += len;
574 offs += len;
575 size -= len;
576 } while (size);
577
578 return err;
579 }
580
581 static int prepare_uprobe(struct uprobe *uprobe, struct file *file,
582 struct mm_struct *mm, unsigned long vaddr)
583 {
584 int ret = 0;
585
586 if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
587 return ret;
588
589 /* TODO: move this into _register, until then we abuse this sem. */
590 down_write(&uprobe->consumer_rwsem);
591 if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
592 goto out;
593
594 ret = copy_insn(uprobe, file);
595 if (ret)
596 goto out;
597
598 ret = -ENOTSUPP;
599 if (is_trap_insn((uprobe_opcode_t *)&uprobe->arch.insn))
600 goto out;
601
602 ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
603 if (ret)
604 goto out;
605
606 /* uprobe_write_opcode() assumes we don't cross page boundary */
607 BUG_ON((uprobe->offset & ~PAGE_MASK) +
608 UPROBE_SWBP_INSN_SIZE > PAGE_SIZE);
609
610 smp_wmb(); /* pairs with rmb() in find_active_uprobe() */
611 set_bit(UPROBE_COPY_INSN, &uprobe->flags);
612
613 out:
614 up_write(&uprobe->consumer_rwsem);
615
616 return ret;
617 }
618
619 static inline bool consumer_filter(struct uprobe_consumer *uc,
620 enum uprobe_filter_ctx ctx, struct mm_struct *mm)
621 {
622 return !uc->filter || uc->filter(uc, ctx, mm);
623 }
624
625 static bool filter_chain(struct uprobe *uprobe,
626 enum uprobe_filter_ctx ctx, struct mm_struct *mm)
627 {
628 struct uprobe_consumer *uc;
629 bool ret = false;
630
631 down_read(&uprobe->consumer_rwsem);
632 for (uc = uprobe->consumers; uc; uc = uc->next) {
633 ret = consumer_filter(uc, ctx, mm);
634 if (ret)
635 break;
636 }
637 up_read(&uprobe->consumer_rwsem);
638
639 return ret;
640 }
641
642 static int
643 install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
644 struct vm_area_struct *vma, unsigned long vaddr)
645 {
646 bool first_uprobe;
647 int ret;
648
649 ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr);
650 if (ret)
651 return ret;
652
653 /*
654 * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(),
655 * the task can hit this breakpoint right after __replace_page().
656 */
657 first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags);
658 if (first_uprobe)
659 set_bit(MMF_HAS_UPROBES, &mm->flags);
660
661 ret = set_swbp(&uprobe->arch, mm, vaddr);
662 if (!ret)
663 clear_bit(MMF_RECALC_UPROBES, &mm->flags);
664 else if (first_uprobe)
665 clear_bit(MMF_HAS_UPROBES, &mm->flags);
666
667 return ret;
668 }
669
670 static int
671 remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr)
672 {
673 set_bit(MMF_RECALC_UPROBES, &mm->flags);
674 return set_orig_insn(&uprobe->arch, mm, vaddr);
675 }
676
677 static inline bool uprobe_is_active(struct uprobe *uprobe)
678 {
679 return !RB_EMPTY_NODE(&uprobe->rb_node);
680 }
681 /*
682 * There could be threads that have already hit the breakpoint. They
683 * will recheck the current insn and restart if find_uprobe() fails.
684 * See find_active_uprobe().
685 */
686 static void delete_uprobe(struct uprobe *uprobe)
687 {
688 if (WARN_ON(!uprobe_is_active(uprobe)))
689 return;
690
691 spin_lock(&uprobes_treelock);
692 rb_erase(&uprobe->rb_node, &uprobes_tree);
693 spin_unlock(&uprobes_treelock);
694 RB_CLEAR_NODE(&uprobe->rb_node); /* for uprobe_is_active() */
695 iput(uprobe->inode);
696 put_uprobe(uprobe);
697 }
698
699 struct map_info {
700 struct map_info *next;
701 struct mm_struct *mm;
702 unsigned long vaddr;
703 };
704
705 static inline struct map_info *free_map_info(struct map_info *info)
706 {
707 struct map_info *next = info->next;
708 kfree(info);
709 return next;
710 }
711
712 static struct map_info *
713 build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
714 {
715 unsigned long pgoff = offset >> PAGE_SHIFT;
716 struct vm_area_struct *vma;
717 struct map_info *curr = NULL;
718 struct map_info *prev = NULL;
719 struct map_info *info;
720 int more = 0;
721
722 again:
723 i_mmap_lock_read(mapping);
724 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
725 if (!valid_vma(vma, is_register))
726 continue;
727
728 if (!prev && !more) {
729 /*
730 * Needs GFP_NOWAIT to avoid i_mmap_rwsem recursion through
731 * reclaim. This is optimistic, no harm done if it fails.
732 */
733 prev = kmalloc(sizeof(struct map_info),
734 GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
735 if (prev)
736 prev->next = NULL;
737 }
738 if (!prev) {
739 more++;
740 continue;
741 }
742
743 if (!atomic_inc_not_zero(&vma->vm_mm->mm_users))
744 continue;
745
746 info = prev;
747 prev = prev->next;
748 info->next = curr;
749 curr = info;
750
751 info->mm = vma->vm_mm;
752 info->vaddr = offset_to_vaddr(vma, offset);
753 }
754 i_mmap_unlock_read(mapping);
755
756 if (!more)
757 goto out;
758
759 prev = curr;
760 while (curr) {
761 mmput(curr->mm);
762 curr = curr->next;
763 }
764
765 do {
766 info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
767 if (!info) {
768 curr = ERR_PTR(-ENOMEM);
769 goto out;
770 }
771 info->next = prev;
772 prev = info;
773 } while (--more);
774
775 goto again;
776 out:
777 while (prev)
778 prev = free_map_info(prev);
779 return curr;
780 }
781
782 static int
783 register_for_each_vma(struct uprobe *uprobe, struct uprobe_consumer *new)
784 {
785 bool is_register = !!new;
786 struct map_info *info;
787 int err = 0;
788
789 percpu_down_write(&dup_mmap_sem);
790 info = build_map_info(uprobe->inode->i_mapping,
791 uprobe->offset, is_register);
792 if (IS_ERR(info)) {
793 err = PTR_ERR(info);
794 goto out;
795 }
796
797 while (info) {
798 struct mm_struct *mm = info->mm;
799 struct vm_area_struct *vma;
800
801 if (err && is_register)
802 goto free;
803
804 down_write(&mm->mmap_sem);
805 vma = find_vma(mm, info->vaddr);
806 if (!vma || !valid_vma(vma, is_register) ||
807 file_inode(vma->vm_file) != uprobe->inode)
808 goto unlock;
809
810 if (vma->vm_start > info->vaddr ||
811 vaddr_to_offset(vma, info->vaddr) != uprobe->offset)
812 goto unlock;
813
814 if (is_register) {
815 /* consult only the "caller", new consumer. */
816 if (consumer_filter(new,
817 UPROBE_FILTER_REGISTER, mm))
818 err = install_breakpoint(uprobe, mm, vma, info->vaddr);
819 } else if (test_bit(MMF_HAS_UPROBES, &mm->flags)) {
820 if (!filter_chain(uprobe,
821 UPROBE_FILTER_UNREGISTER, mm))
822 err |= remove_breakpoint(uprobe, mm, info->vaddr);
823 }
824
825 unlock:
826 up_write(&mm->mmap_sem);
827 free:
828 mmput(mm);
829 info = free_map_info(info);
830 }
831 out:
832 percpu_up_write(&dup_mmap_sem);
833 return err;
834 }
835
836 static int __uprobe_register(struct uprobe *uprobe, struct uprobe_consumer *uc)
837 {
838 consumer_add(uprobe, uc);
839 return register_for_each_vma(uprobe, uc);
840 }
841
842 static void __uprobe_unregister(struct uprobe *uprobe, struct uprobe_consumer *uc)
843 {
844 int err;
845
846 if (WARN_ON(!consumer_del(uprobe, uc)))
847 return;
848
849 err = register_for_each_vma(uprobe, NULL);
850 /* TODO : cant unregister? schedule a worker thread */
851 if (!uprobe->consumers && !err)
852 delete_uprobe(uprobe);
853 }
854
855 /*
856 * uprobe_register - register a probe
857 * @inode: the file in which the probe has to be placed.
858 * @offset: offset from the start of the file.
859 * @uc: information on howto handle the probe..
860 *
861 * Apart from the access refcount, uprobe_register() takes a creation
862 * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
863 * inserted into the rbtree (i.e first consumer for a @inode:@offset
864 * tuple). Creation refcount stops uprobe_unregister from freeing the
865 * @uprobe even before the register operation is complete. Creation
866 * refcount is released when the last @uc for the @uprobe
867 * unregisters.
868 *
869 * Return errno if it cannot successully install probes
870 * else return 0 (success)
871 */
872 int uprobe_register(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
873 {
874 struct uprobe *uprobe;
875 int ret;
876
877 /* Uprobe must have at least one set consumer */
878 if (!uc->handler && !uc->ret_handler)
879 return -EINVAL;
880
881 /* copy_insn() uses read_mapping_page() or shmem_read_mapping_page() */
882 if (!inode->i_mapping->a_ops->readpage && !shmem_mapping(inode->i_mapping))
883 return -EIO;
884 /* Racy, just to catch the obvious mistakes */
885 if (offset > i_size_read(inode))
886 return -EINVAL;
887
888 retry:
889 uprobe = alloc_uprobe(inode, offset);
890 if (!uprobe)
891 return -ENOMEM;
892 /*
893 * We can race with uprobe_unregister()->delete_uprobe().
894 * Check uprobe_is_active() and retry if it is false.
895 */
896 down_write(&uprobe->register_rwsem);
897 ret = -EAGAIN;
898 if (likely(uprobe_is_active(uprobe))) {
899 ret = __uprobe_register(uprobe, uc);
900 if (ret)
901 __uprobe_unregister(uprobe, uc);
902 }
903 up_write(&uprobe->register_rwsem);
904 put_uprobe(uprobe);
905
906 if (unlikely(ret == -EAGAIN))
907 goto retry;
908 return ret;
909 }
910 EXPORT_SYMBOL_GPL(uprobe_register);
911
912 /*
913 * uprobe_apply - unregister a already registered probe.
914 * @inode: the file in which the probe has to be removed.
915 * @offset: offset from the start of the file.
916 * @uc: consumer which wants to add more or remove some breakpoints
917 * @add: add or remove the breakpoints
918 */
919 int uprobe_apply(struct inode *inode, loff_t offset,
920 struct uprobe_consumer *uc, bool add)
921 {
922 struct uprobe *uprobe;
923 struct uprobe_consumer *con;
924 int ret = -ENOENT;
925
926 uprobe = find_uprobe(inode, offset);
927 if (WARN_ON(!uprobe))
928 return ret;
929
930 down_write(&uprobe->register_rwsem);
931 for (con = uprobe->consumers; con && con != uc ; con = con->next)
932 ;
933 if (con)
934 ret = register_for_each_vma(uprobe, add ? uc : NULL);
935 up_write(&uprobe->register_rwsem);
936 put_uprobe(uprobe);
937
938 return ret;
939 }
940
941 /*
942 * uprobe_unregister - unregister a already registered probe.
943 * @inode: the file in which the probe has to be removed.
944 * @offset: offset from the start of the file.
945 * @uc: identify which probe if multiple probes are colocated.
946 */
947 void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
948 {
949 struct uprobe *uprobe;
950
951 uprobe = find_uprobe(inode, offset);
952 if (WARN_ON(!uprobe))
953 return;
954
955 down_write(&uprobe->register_rwsem);
956 __uprobe_unregister(uprobe, uc);
957 up_write(&uprobe->register_rwsem);
958 put_uprobe(uprobe);
959 }
960 EXPORT_SYMBOL_GPL(uprobe_unregister);
961
962 static int unapply_uprobe(struct uprobe *uprobe, struct mm_struct *mm)
963 {
964 struct vm_area_struct *vma;
965 int err = 0;
966
967 down_read(&mm->mmap_sem);
968 for (vma = mm->mmap; vma; vma = vma->vm_next) {
969 unsigned long vaddr;
970 loff_t offset;
971
972 if (!valid_vma(vma, false) ||
973 file_inode(vma->vm_file) != uprobe->inode)
974 continue;
975
976 offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT;
977 if (uprobe->offset < offset ||
978 uprobe->offset >= offset + vma->vm_end - vma->vm_start)
979 continue;
980
981 vaddr = offset_to_vaddr(vma, uprobe->offset);
982 err |= remove_breakpoint(uprobe, mm, vaddr);
983 }
984 up_read(&mm->mmap_sem);
985
986 return err;
987 }
988
989 static struct rb_node *
990 find_node_in_range(struct inode *inode, loff_t min, loff_t max)
991 {
992 struct rb_node *n = uprobes_tree.rb_node;
993
994 while (n) {
995 struct uprobe *u = rb_entry(n, struct uprobe, rb_node);
996
997 if (inode < u->inode) {
998 n = n->rb_left;
999 } else if (inode > u->inode) {
1000 n = n->rb_right;
1001 } else {
1002 if (max < u->offset)
1003 n = n->rb_left;
1004 else if (min > u->offset)
1005 n = n->rb_right;
1006 else
1007 break;
1008 }
1009 }
1010
1011 return n;
1012 }
1013
1014 /*
1015 * For a given range in vma, build a list of probes that need to be inserted.
1016 */
1017 static void build_probe_list(struct inode *inode,
1018 struct vm_area_struct *vma,
1019 unsigned long start, unsigned long end,
1020 struct list_head *head)
1021 {
1022 loff_t min, max;
1023 struct rb_node *n, *t;
1024 struct uprobe *u;
1025
1026 INIT_LIST_HEAD(head);
1027 min = vaddr_to_offset(vma, start);
1028 max = min + (end - start) - 1;
1029
1030 spin_lock(&uprobes_treelock);
1031 n = find_node_in_range(inode, min, max);
1032 if (n) {
1033 for (t = n; t; t = rb_prev(t)) {
1034 u = rb_entry(t, struct uprobe, rb_node);
1035 if (u->inode != inode || u->offset < min)
1036 break;
1037 list_add(&u->pending_list, head);
1038 get_uprobe(u);
1039 }
1040 for (t = n; (t = rb_next(t)); ) {
1041 u = rb_entry(t, struct uprobe, rb_node);
1042 if (u->inode != inode || u->offset > max)
1043 break;
1044 list_add(&u->pending_list, head);
1045 get_uprobe(u);
1046 }
1047 }
1048 spin_unlock(&uprobes_treelock);
1049 }
1050
1051 /*
1052 * Called from mmap_region/vma_adjust with mm->mmap_sem acquired.
1053 *
1054 * Currently we ignore all errors and always return 0, the callers
1055 * can't handle the failure anyway.
1056 */
1057 int uprobe_mmap(struct vm_area_struct *vma)
1058 {
1059 struct list_head tmp_list;
1060 struct uprobe *uprobe, *u;
1061 struct inode *inode;
1062
1063 if (no_uprobe_events() || !valid_vma(vma, true))
1064 return 0;
1065
1066 inode = file_inode(vma->vm_file);
1067 if (!inode)
1068 return 0;
1069
1070 mutex_lock(uprobes_mmap_hash(inode));
1071 build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list);
1072 /*
1073 * We can race with uprobe_unregister(), this uprobe can be already
1074 * removed. But in this case filter_chain() must return false, all
1075 * consumers have gone away.
1076 */
1077 list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
1078 if (!fatal_signal_pending(current) &&
1079 filter_chain(uprobe, UPROBE_FILTER_MMAP, vma->vm_mm)) {
1080 unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset);
1081 install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
1082 }
1083 put_uprobe(uprobe);
1084 }
1085 mutex_unlock(uprobes_mmap_hash(inode));
1086
1087 return 0;
1088 }
1089
1090 static bool
1091 vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1092 {
1093 loff_t min, max;
1094 struct inode *inode;
1095 struct rb_node *n;
1096
1097 inode = file_inode(vma->vm_file);
1098
1099 min = vaddr_to_offset(vma, start);
1100 max = min + (end - start) - 1;
1101
1102 spin_lock(&uprobes_treelock);
1103 n = find_node_in_range(inode, min, max);
1104 spin_unlock(&uprobes_treelock);
1105
1106 return !!n;
1107 }
1108
1109 /*
1110 * Called in context of a munmap of a vma.
1111 */
1112 void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1113 {
1114 if (no_uprobe_events() || !valid_vma(vma, false))
1115 return;
1116
1117 if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */
1118 return;
1119
1120 if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) ||
1121 test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags))
1122 return;
1123
1124 if (vma_has_uprobes(vma, start, end))
1125 set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags);
1126 }
1127
1128 /* Slot allocation for XOL */
1129 static int xol_add_vma(struct mm_struct *mm, struct xol_area *area)
1130 {
1131 struct vm_area_struct *vma;
1132 int ret;
1133
1134 if (down_write_killable(&mm->mmap_sem))
1135 return -EINTR;
1136
1137 if (mm->uprobes_state.xol_area) {
1138 ret = -EALREADY;
1139 goto fail;
1140 }
1141
1142 if (!area->vaddr) {
1143 /* Try to map as high as possible, this is only a hint. */
1144 area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE,
1145 PAGE_SIZE, 0, 0);
1146 if (area->vaddr & ~PAGE_MASK) {
1147 ret = area->vaddr;
1148 goto fail;
1149 }
1150 }
1151
1152 vma = _install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1153 VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO,
1154 &area->xol_mapping);
1155 if (IS_ERR(vma)) {
1156 ret = PTR_ERR(vma);
1157 goto fail;
1158 }
1159
1160 ret = 0;
1161 smp_wmb(); /* pairs with get_xol_area() */
1162 mm->uprobes_state.xol_area = area;
1163 fail:
1164 up_write(&mm->mmap_sem);
1165
1166 return ret;
1167 }
1168
1169 static struct xol_area *__create_xol_area(unsigned long vaddr)
1170 {
1171 struct mm_struct *mm = current->mm;
1172 uprobe_opcode_t insn = UPROBE_SWBP_INSN;
1173 struct xol_area *area;
1174
1175 area = kmalloc(sizeof(*area), GFP_KERNEL);
1176 if (unlikely(!area))
1177 goto out;
1178
1179 area->bitmap = kzalloc(BITS_TO_LONGS(UINSNS_PER_PAGE) * sizeof(long), GFP_KERNEL);
1180 if (!area->bitmap)
1181 goto free_area;
1182
1183 area->xol_mapping.name = "[uprobes]";
1184 area->xol_mapping.fault = NULL;
1185 area->xol_mapping.pages = area->pages;
1186 area->pages[0] = alloc_page(GFP_HIGHUSER);
1187 if (!area->pages[0])
1188 goto free_bitmap;
1189 area->pages[1] = NULL;
1190
1191 area->vaddr = vaddr;
1192 init_waitqueue_head(&area->wq);
1193 /* Reserve the 1st slot for get_trampoline_vaddr() */
1194 set_bit(0, area->bitmap);
1195 atomic_set(&area->slot_count, 1);
1196 copy_to_page(area->pages[0], 0, &insn, UPROBE_SWBP_INSN_SIZE);
1197
1198 if (!xol_add_vma(mm, area))
1199 return area;
1200
1201 __free_page(area->pages[0]);
1202 free_bitmap:
1203 kfree(area->bitmap);
1204 free_area:
1205 kfree(area);
1206 out:
1207 return NULL;
1208 }
1209
1210 /*
1211 * get_xol_area - Allocate process's xol_area if necessary.
1212 * This area will be used for storing instructions for execution out of line.
1213 *
1214 * Returns the allocated area or NULL.
1215 */
1216 static struct xol_area *get_xol_area(void)
1217 {
1218 struct mm_struct *mm = current->mm;
1219 struct xol_area *area;
1220
1221 if (!mm->uprobes_state.xol_area)
1222 __create_xol_area(0);
1223
1224 area = mm->uprobes_state.xol_area;
1225 smp_read_barrier_depends(); /* pairs with wmb in xol_add_vma() */
1226 return area;
1227 }
1228
1229 /*
1230 * uprobe_clear_state - Free the area allocated for slots.
1231 */
1232 void uprobe_clear_state(struct mm_struct *mm)
1233 {
1234 struct xol_area *area = mm->uprobes_state.xol_area;
1235
1236 if (!area)
1237 return;
1238
1239 put_page(area->pages[0]);
1240 kfree(area->bitmap);
1241 kfree(area);
1242 }
1243
1244 void uprobe_start_dup_mmap(void)
1245 {
1246 percpu_down_read(&dup_mmap_sem);
1247 }
1248
1249 void uprobe_end_dup_mmap(void)
1250 {
1251 percpu_up_read(&dup_mmap_sem);
1252 }
1253
1254 void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm)
1255 {
1256 newmm->uprobes_state.xol_area = NULL;
1257
1258 if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) {
1259 set_bit(MMF_HAS_UPROBES, &newmm->flags);
1260 /* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */
1261 set_bit(MMF_RECALC_UPROBES, &newmm->flags);
1262 }
1263 }
1264
1265 /*
1266 * - search for a free slot.
1267 */
1268 static unsigned long xol_take_insn_slot(struct xol_area *area)
1269 {
1270 unsigned long slot_addr;
1271 int slot_nr;
1272
1273 do {
1274 slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1275 if (slot_nr < UINSNS_PER_PAGE) {
1276 if (!test_and_set_bit(slot_nr, area->bitmap))
1277 break;
1278
1279 slot_nr = UINSNS_PER_PAGE;
1280 continue;
1281 }
1282 wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
1283 } while (slot_nr >= UINSNS_PER_PAGE);
1284
1285 slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
1286 atomic_inc(&area->slot_count);
1287
1288 return slot_addr;
1289 }
1290
1291 /*
1292 * xol_get_insn_slot - allocate a slot for xol.
1293 * Returns the allocated slot address or 0.
1294 */
1295 static unsigned long xol_get_insn_slot(struct uprobe *uprobe)
1296 {
1297 struct xol_area *area;
1298 unsigned long xol_vaddr;
1299
1300 area = get_xol_area();
1301 if (!area)
1302 return 0;
1303
1304 xol_vaddr = xol_take_insn_slot(area);
1305 if (unlikely(!xol_vaddr))
1306 return 0;
1307
1308 arch_uprobe_copy_ixol(area->pages[0], xol_vaddr,
1309 &uprobe->arch.ixol, sizeof(uprobe->arch.ixol));
1310
1311 return xol_vaddr;
1312 }
1313
1314 /*
1315 * xol_free_insn_slot - If slot was earlier allocated by
1316 * @xol_get_insn_slot(), make the slot available for
1317 * subsequent requests.
1318 */
1319 static void xol_free_insn_slot(struct task_struct *tsk)
1320 {
1321 struct xol_area *area;
1322 unsigned long vma_end;
1323 unsigned long slot_addr;
1324
1325 if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
1326 return;
1327
1328 slot_addr = tsk->utask->xol_vaddr;
1329 if (unlikely(!slot_addr))
1330 return;
1331
1332 area = tsk->mm->uprobes_state.xol_area;
1333 vma_end = area->vaddr + PAGE_SIZE;
1334 if (area->vaddr <= slot_addr && slot_addr < vma_end) {
1335 unsigned long offset;
1336 int slot_nr;
1337
1338 offset = slot_addr - area->vaddr;
1339 slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1340 if (slot_nr >= UINSNS_PER_PAGE)
1341 return;
1342
1343 clear_bit(slot_nr, area->bitmap);
1344 atomic_dec(&area->slot_count);
1345 smp_mb__after_atomic(); /* pairs with prepare_to_wait() */
1346 if (waitqueue_active(&area->wq))
1347 wake_up(&area->wq);
1348
1349 tsk->utask->xol_vaddr = 0;
1350 }
1351 }
1352
1353 void __weak arch_uprobe_copy_ixol(struct page *page, unsigned long vaddr,
1354 void *src, unsigned long len)
1355 {
1356 /* Initialize the slot */
1357 copy_to_page(page, vaddr, src, len);
1358
1359 /*
1360 * We probably need flush_icache_user_range() but it needs vma.
1361 * This should work on most of architectures by default. If
1362 * architecture needs to do something different it can define
1363 * its own version of the function.
1364 */
1365 flush_dcache_page(page);
1366 }
1367
1368 /**
1369 * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1370 * @regs: Reflects the saved state of the task after it has hit a breakpoint
1371 * instruction.
1372 * Return the address of the breakpoint instruction.
1373 */
1374 unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1375 {
1376 return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1377 }
1378
1379 unsigned long uprobe_get_trap_addr(struct pt_regs *regs)
1380 {
1381 struct uprobe_task *utask = current->utask;
1382
1383 if (unlikely(utask && utask->active_uprobe))
1384 return utask->vaddr;
1385
1386 return instruction_pointer(regs);
1387 }
1388
1389 static struct return_instance *free_ret_instance(struct return_instance *ri)
1390 {
1391 struct return_instance *next = ri->next;
1392 put_uprobe(ri->uprobe);
1393 kfree(ri);
1394 return next;
1395 }
1396
1397 /*
1398 * Called with no locks held.
1399 * Called in context of a exiting or a exec-ing thread.
1400 */
1401 void uprobe_free_utask(struct task_struct *t)
1402 {
1403 struct uprobe_task *utask = t->utask;
1404 struct return_instance *ri;
1405
1406 if (!utask)
1407 return;
1408
1409 if (utask->active_uprobe)
1410 put_uprobe(utask->active_uprobe);
1411
1412 ri = utask->return_instances;
1413 while (ri)
1414 ri = free_ret_instance(ri);
1415
1416 xol_free_insn_slot(t);
1417 kfree(utask);
1418 t->utask = NULL;
1419 }
1420
1421 /*
1422 * Allocate a uprobe_task object for the task if if necessary.
1423 * Called when the thread hits a breakpoint.
1424 *
1425 * Returns:
1426 * - pointer to new uprobe_task on success
1427 * - NULL otherwise
1428 */
1429 static struct uprobe_task *get_utask(void)
1430 {
1431 if (!current->utask)
1432 current->utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1433 return current->utask;
1434 }
1435
1436 static int dup_utask(struct task_struct *t, struct uprobe_task *o_utask)
1437 {
1438 struct uprobe_task *n_utask;
1439 struct return_instance **p, *o, *n;
1440
1441 n_utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1442 if (!n_utask)
1443 return -ENOMEM;
1444 t->utask = n_utask;
1445
1446 p = &n_utask->return_instances;
1447 for (o = o_utask->return_instances; o; o = o->next) {
1448 n = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1449 if (!n)
1450 return -ENOMEM;
1451
1452 *n = *o;
1453 get_uprobe(n->uprobe);
1454 n->next = NULL;
1455
1456 *p = n;
1457 p = &n->next;
1458 n_utask->depth++;
1459 }
1460
1461 return 0;
1462 }
1463
1464 static void uprobe_warn(struct task_struct *t, const char *msg)
1465 {
1466 pr_warn("uprobe: %s:%d failed to %s\n",
1467 current->comm, current->pid, msg);
1468 }
1469
1470 static void dup_xol_work(struct callback_head *work)
1471 {
1472 if (current->flags & PF_EXITING)
1473 return;
1474
1475 if (!__create_xol_area(current->utask->dup_xol_addr) &&
1476 !fatal_signal_pending(current))
1477 uprobe_warn(current, "dup xol area");
1478 }
1479
1480 /*
1481 * Called in context of a new clone/fork from copy_process.
1482 */
1483 void uprobe_copy_process(struct task_struct *t, unsigned long flags)
1484 {
1485 struct uprobe_task *utask = current->utask;
1486 struct mm_struct *mm = current->mm;
1487 struct xol_area *area;
1488
1489 t->utask = NULL;
1490
1491 if (!utask || !utask->return_instances)
1492 return;
1493
1494 if (mm == t->mm && !(flags & CLONE_VFORK))
1495 return;
1496
1497 if (dup_utask(t, utask))
1498 return uprobe_warn(t, "dup ret instances");
1499
1500 /* The task can fork() after dup_xol_work() fails */
1501 area = mm->uprobes_state.xol_area;
1502 if (!area)
1503 return uprobe_warn(t, "dup xol area");
1504
1505 if (mm == t->mm)
1506 return;
1507
1508 t->utask->dup_xol_addr = area->vaddr;
1509 init_task_work(&t->utask->dup_xol_work, dup_xol_work);
1510 task_work_add(t, &t->utask->dup_xol_work, true);
1511 }
1512
1513 /*
1514 * Current area->vaddr notion assume the trampoline address is always
1515 * equal area->vaddr.
1516 *
1517 * Returns -1 in case the xol_area is not allocated.
1518 */
1519 static unsigned long get_trampoline_vaddr(void)
1520 {
1521 struct xol_area *area;
1522 unsigned long trampoline_vaddr = -1;
1523
1524 area = current->mm->uprobes_state.xol_area;
1525 smp_read_barrier_depends();
1526 if (area)
1527 trampoline_vaddr = area->vaddr;
1528
1529 return trampoline_vaddr;
1530 }
1531
1532 static void cleanup_return_instances(struct uprobe_task *utask, bool chained,
1533 struct pt_regs *regs)
1534 {
1535 struct return_instance *ri = utask->return_instances;
1536 enum rp_check ctx = chained ? RP_CHECK_CHAIN_CALL : RP_CHECK_CALL;
1537
1538 while (ri && !arch_uretprobe_is_alive(ri, ctx, regs)) {
1539 ri = free_ret_instance(ri);
1540 utask->depth--;
1541 }
1542 utask->return_instances = ri;
1543 }
1544
1545 static void prepare_uretprobe(struct uprobe *uprobe, struct pt_regs *regs)
1546 {
1547 struct return_instance *ri;
1548 struct uprobe_task *utask;
1549 unsigned long orig_ret_vaddr, trampoline_vaddr;
1550 bool chained;
1551
1552 if (!get_xol_area())
1553 return;
1554
1555 utask = get_utask();
1556 if (!utask)
1557 return;
1558
1559 if (utask->depth >= MAX_URETPROBE_DEPTH) {
1560 printk_ratelimited(KERN_INFO "uprobe: omit uretprobe due to"
1561 " nestedness limit pid/tgid=%d/%d\n",
1562 current->pid, current->tgid);
1563 return;
1564 }
1565
1566 ri = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1567 if (!ri)
1568 return;
1569
1570 trampoline_vaddr = get_trampoline_vaddr();
1571 orig_ret_vaddr = arch_uretprobe_hijack_return_addr(trampoline_vaddr, regs);
1572 if (orig_ret_vaddr == -1)
1573 goto fail;
1574
1575 /* drop the entries invalidated by longjmp() */
1576 chained = (orig_ret_vaddr == trampoline_vaddr);
1577 cleanup_return_instances(utask, chained, regs);
1578
1579 /*
1580 * We don't want to keep trampoline address in stack, rather keep the
1581 * original return address of first caller thru all the consequent
1582 * instances. This also makes breakpoint unwrapping easier.
1583 */
1584 if (chained) {
1585 if (!utask->return_instances) {
1586 /*
1587 * This situation is not possible. Likely we have an
1588 * attack from user-space.
1589 */
1590 uprobe_warn(current, "handle tail call");
1591 goto fail;
1592 }
1593 orig_ret_vaddr = utask->return_instances->orig_ret_vaddr;
1594 }
1595
1596 ri->uprobe = get_uprobe(uprobe);
1597 ri->func = instruction_pointer(regs);
1598 ri->stack = user_stack_pointer(regs);
1599 ri->orig_ret_vaddr = orig_ret_vaddr;
1600 ri->chained = chained;
1601
1602 utask->depth++;
1603 ri->next = utask->return_instances;
1604 utask->return_instances = ri;
1605
1606 return;
1607 fail:
1608 kfree(ri);
1609 }
1610
1611 /* Prepare to single-step probed instruction out of line. */
1612 static int
1613 pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long bp_vaddr)
1614 {
1615 struct uprobe_task *utask;
1616 unsigned long xol_vaddr;
1617 int err;
1618
1619 utask = get_utask();
1620 if (!utask)
1621 return -ENOMEM;
1622
1623 xol_vaddr = xol_get_insn_slot(uprobe);
1624 if (!xol_vaddr)
1625 return -ENOMEM;
1626
1627 utask->xol_vaddr = xol_vaddr;
1628 utask->vaddr = bp_vaddr;
1629
1630 err = arch_uprobe_pre_xol(&uprobe->arch, regs);
1631 if (unlikely(err)) {
1632 xol_free_insn_slot(current);
1633 return err;
1634 }
1635
1636 utask->active_uprobe = uprobe;
1637 utask->state = UTASK_SSTEP;
1638 return 0;
1639 }
1640
1641 /*
1642 * If we are singlestepping, then ensure this thread is not connected to
1643 * non-fatal signals until completion of singlestep. When xol insn itself
1644 * triggers the signal, restart the original insn even if the task is
1645 * already SIGKILL'ed (since coredump should report the correct ip). This
1646 * is even more important if the task has a handler for SIGSEGV/etc, The
1647 * _same_ instruction should be repeated again after return from the signal
1648 * handler, and SSTEP can never finish in this case.
1649 */
1650 bool uprobe_deny_signal(void)
1651 {
1652 struct task_struct *t = current;
1653 struct uprobe_task *utask = t->utask;
1654
1655 if (likely(!utask || !utask->active_uprobe))
1656 return false;
1657
1658 WARN_ON_ONCE(utask->state != UTASK_SSTEP);
1659
1660 if (signal_pending(t)) {
1661 spin_lock_irq(&t->sighand->siglock);
1662 clear_tsk_thread_flag(t, TIF_SIGPENDING);
1663 spin_unlock_irq(&t->sighand->siglock);
1664
1665 if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
1666 utask->state = UTASK_SSTEP_TRAPPED;
1667 set_tsk_thread_flag(t, TIF_UPROBE);
1668 }
1669 }
1670
1671 return true;
1672 }
1673
1674 static void mmf_recalc_uprobes(struct mm_struct *mm)
1675 {
1676 struct vm_area_struct *vma;
1677
1678 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1679 if (!valid_vma(vma, false))
1680 continue;
1681 /*
1682 * This is not strictly accurate, we can race with
1683 * uprobe_unregister() and see the already removed
1684 * uprobe if delete_uprobe() was not yet called.
1685 * Or this uprobe can be filtered out.
1686 */
1687 if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end))
1688 return;
1689 }
1690
1691 clear_bit(MMF_HAS_UPROBES, &mm->flags);
1692 }
1693
1694 static int is_trap_at_addr(struct mm_struct *mm, unsigned long vaddr)
1695 {
1696 struct page *page;
1697 uprobe_opcode_t opcode;
1698 int result;
1699
1700 pagefault_disable();
1701 result = __get_user(opcode, (uprobe_opcode_t __user *)vaddr);
1702 pagefault_enable();
1703
1704 if (likely(result == 0))
1705 goto out;
1706
1707 /*
1708 * The NULL 'tsk' here ensures that any faults that occur here
1709 * will not be accounted to the task. 'mm' *is* current->mm,
1710 * but we treat this as a 'remote' access since it is
1711 * essentially a kernel access to the memory.
1712 */
1713 result = get_user_pages_remote(NULL, mm, vaddr, 1, 0, 1, &page, NULL);
1714 if (result < 0)
1715 return result;
1716
1717 copy_from_page(page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
1718 put_page(page);
1719 out:
1720 /* This needs to return true for any variant of the trap insn */
1721 return is_trap_insn(&opcode);
1722 }
1723
1724 static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
1725 {
1726 struct mm_struct *mm = current->mm;
1727 struct uprobe *uprobe = NULL;
1728 struct vm_area_struct *vma;
1729
1730 down_read(&mm->mmap_sem);
1731 vma = find_vma(mm, bp_vaddr);
1732 if (vma && vma->vm_start <= bp_vaddr) {
1733 if (valid_vma(vma, false)) {
1734 struct inode *inode = file_inode(vma->vm_file);
1735 loff_t offset = vaddr_to_offset(vma, bp_vaddr);
1736
1737 uprobe = find_uprobe(inode, offset);
1738 }
1739
1740 if (!uprobe)
1741 *is_swbp = is_trap_at_addr(mm, bp_vaddr);
1742 } else {
1743 *is_swbp = -EFAULT;
1744 }
1745
1746 if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags))
1747 mmf_recalc_uprobes(mm);
1748 up_read(&mm->mmap_sem);
1749
1750 return uprobe;
1751 }
1752
1753 static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
1754 {
1755 struct uprobe_consumer *uc;
1756 int remove = UPROBE_HANDLER_REMOVE;
1757 bool need_prep = false; /* prepare return uprobe, when needed */
1758
1759 down_read(&uprobe->register_rwsem);
1760 for (uc = uprobe->consumers; uc; uc = uc->next) {
1761 int rc = 0;
1762
1763 if (uc->handler) {
1764 rc = uc->handler(uc, regs);
1765 WARN(rc & ~UPROBE_HANDLER_MASK,
1766 "bad rc=0x%x from %pf()\n", rc, uc->handler);
1767 }
1768
1769 if (uc->ret_handler)
1770 need_prep = true;
1771
1772 remove &= rc;
1773 }
1774
1775 if (need_prep && !remove)
1776 prepare_uretprobe(uprobe, regs); /* put bp at return */
1777
1778 if (remove && uprobe->consumers) {
1779 WARN_ON(!uprobe_is_active(uprobe));
1780 unapply_uprobe(uprobe, current->mm);
1781 }
1782 up_read(&uprobe->register_rwsem);
1783 }
1784
1785 static void
1786 handle_uretprobe_chain(struct return_instance *ri, struct pt_regs *regs)
1787 {
1788 struct uprobe *uprobe = ri->uprobe;
1789 struct uprobe_consumer *uc;
1790
1791 down_read(&uprobe->register_rwsem);
1792 for (uc = uprobe->consumers; uc; uc = uc->next) {
1793 if (uc->ret_handler)
1794 uc->ret_handler(uc, ri->func, regs);
1795 }
1796 up_read(&uprobe->register_rwsem);
1797 }
1798
1799 static struct return_instance *find_next_ret_chain(struct return_instance *ri)
1800 {
1801 bool chained;
1802
1803 do {
1804 chained = ri->chained;
1805 ri = ri->next; /* can't be NULL if chained */
1806 } while (chained);
1807
1808 return ri;
1809 }
1810
1811 static void handle_trampoline(struct pt_regs *regs)
1812 {
1813 struct uprobe_task *utask;
1814 struct return_instance *ri, *next;
1815 bool valid;
1816
1817 utask = current->utask;
1818 if (!utask)
1819 goto sigill;
1820
1821 ri = utask->return_instances;
1822 if (!ri)
1823 goto sigill;
1824
1825 do {
1826 /*
1827 * We should throw out the frames invalidated by longjmp().
1828 * If this chain is valid, then the next one should be alive
1829 * or NULL; the latter case means that nobody but ri->func
1830 * could hit this trampoline on return. TODO: sigaltstack().
1831 */
1832 next = find_next_ret_chain(ri);
1833 valid = !next || arch_uretprobe_is_alive(next, RP_CHECK_RET, regs);
1834
1835 instruction_pointer_set(regs, ri->orig_ret_vaddr);
1836 do {
1837 if (valid)
1838 handle_uretprobe_chain(ri, regs);
1839 ri = free_ret_instance(ri);
1840 utask->depth--;
1841 } while (ri != next);
1842 } while (!valid);
1843
1844 utask->return_instances = ri;
1845 return;
1846
1847 sigill:
1848 uprobe_warn(current, "handle uretprobe, sending SIGILL.");
1849 force_sig_info(SIGILL, SEND_SIG_FORCED, current);
1850
1851 }
1852
1853 bool __weak arch_uprobe_ignore(struct arch_uprobe *aup, struct pt_regs *regs)
1854 {
1855 return false;
1856 }
1857
1858 bool __weak arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx,
1859 struct pt_regs *regs)
1860 {
1861 return true;
1862 }
1863
1864 /*
1865 * Run handler and ask thread to singlestep.
1866 * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
1867 */
1868 static void handle_swbp(struct pt_regs *regs)
1869 {
1870 struct uprobe *uprobe;
1871 unsigned long bp_vaddr;
1872 int uninitialized_var(is_swbp);
1873
1874 bp_vaddr = uprobe_get_swbp_addr(regs);
1875 if (bp_vaddr == get_trampoline_vaddr())
1876 return handle_trampoline(regs);
1877
1878 uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
1879 if (!uprobe) {
1880 if (is_swbp > 0) {
1881 /* No matching uprobe; signal SIGTRAP. */
1882 send_sig(SIGTRAP, current, 0);
1883 } else {
1884 /*
1885 * Either we raced with uprobe_unregister() or we can't
1886 * access this memory. The latter is only possible if
1887 * another thread plays with our ->mm. In both cases
1888 * we can simply restart. If this vma was unmapped we
1889 * can pretend this insn was not executed yet and get
1890 * the (correct) SIGSEGV after restart.
1891 */
1892 instruction_pointer_set(regs, bp_vaddr);
1893 }
1894 return;
1895 }
1896
1897 /* change it in advance for ->handler() and restart */
1898 instruction_pointer_set(regs, bp_vaddr);
1899
1900 /*
1901 * TODO: move copy_insn/etc into _register and remove this hack.
1902 * After we hit the bp, _unregister + _register can install the
1903 * new and not-yet-analyzed uprobe at the same address, restart.
1904 */
1905 smp_rmb(); /* pairs with wmb() in install_breakpoint() */
1906 if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags)))
1907 goto out;
1908
1909 /* Tracing handlers use ->utask to communicate with fetch methods */
1910 if (!get_utask())
1911 goto out;
1912
1913 if (arch_uprobe_ignore(&uprobe->arch, regs))
1914 goto out;
1915
1916 handler_chain(uprobe, regs);
1917
1918 if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
1919 goto out;
1920
1921 if (!pre_ssout(uprobe, regs, bp_vaddr))
1922 return;
1923
1924 /* arch_uprobe_skip_sstep() succeeded, or restart if can't singlestep */
1925 out:
1926 put_uprobe(uprobe);
1927 }
1928
1929 /*
1930 * Perform required fix-ups and disable singlestep.
1931 * Allow pending signals to take effect.
1932 */
1933 static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
1934 {
1935 struct uprobe *uprobe;
1936 int err = 0;
1937
1938 uprobe = utask->active_uprobe;
1939 if (utask->state == UTASK_SSTEP_ACK)
1940 err = arch_uprobe_post_xol(&uprobe->arch, regs);
1941 else if (utask->state == UTASK_SSTEP_TRAPPED)
1942 arch_uprobe_abort_xol(&uprobe->arch, regs);
1943 else
1944 WARN_ON_ONCE(1);
1945
1946 put_uprobe(uprobe);
1947 utask->active_uprobe = NULL;
1948 utask->state = UTASK_RUNNING;
1949 xol_free_insn_slot(current);
1950
1951 spin_lock_irq(&current->sighand->siglock);
1952 recalc_sigpending(); /* see uprobe_deny_signal() */
1953 spin_unlock_irq(&current->sighand->siglock);
1954
1955 if (unlikely(err)) {
1956 uprobe_warn(current, "execute the probed insn, sending SIGILL.");
1957 force_sig_info(SIGILL, SEND_SIG_FORCED, current);
1958 }
1959 }
1960
1961 /*
1962 * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and
1963 * allows the thread to return from interrupt. After that handle_swbp()
1964 * sets utask->active_uprobe.
1965 *
1966 * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag
1967 * and allows the thread to return from interrupt.
1968 *
1969 * While returning to userspace, thread notices the TIF_UPROBE flag and calls
1970 * uprobe_notify_resume().
1971 */
1972 void uprobe_notify_resume(struct pt_regs *regs)
1973 {
1974 struct uprobe_task *utask;
1975
1976 clear_thread_flag(TIF_UPROBE);
1977
1978 utask = current->utask;
1979 if (utask && utask->active_uprobe)
1980 handle_singlestep(utask, regs);
1981 else
1982 handle_swbp(regs);
1983 }
1984
1985 /*
1986 * uprobe_pre_sstep_notifier gets called from interrupt context as part of
1987 * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
1988 */
1989 int uprobe_pre_sstep_notifier(struct pt_regs *regs)
1990 {
1991 if (!current->mm)
1992 return 0;
1993
1994 if (!test_bit(MMF_HAS_UPROBES, &current->mm->flags) &&
1995 (!current->utask || !current->utask->return_instances))
1996 return 0;
1997
1998 set_thread_flag(TIF_UPROBE);
1999 return 1;
2000 }
2001
2002 /*
2003 * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
2004 * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
2005 */
2006 int uprobe_post_sstep_notifier(struct pt_regs *regs)
2007 {
2008 struct uprobe_task *utask = current->utask;
2009
2010 if (!current->mm || !utask || !utask->active_uprobe)
2011 /* task is currently not uprobed */
2012 return 0;
2013
2014 utask->state = UTASK_SSTEP_ACK;
2015 set_thread_flag(TIF_UPROBE);
2016 return 1;
2017 }
2018
2019 static struct notifier_block uprobe_exception_nb = {
2020 .notifier_call = arch_uprobe_exception_notify,
2021 .priority = INT_MAX-1, /* notified after kprobes, kgdb */
2022 };
2023
2024 static int __init init_uprobes(void)
2025 {
2026 int i;
2027
2028 for (i = 0; i < UPROBES_HASH_SZ; i++)
2029 mutex_init(&uprobes_mmap_mutex[i]);
2030
2031 if (percpu_init_rwsem(&dup_mmap_sem))
2032 return -ENOMEM;
2033
2034 return register_die_notifier(&uprobe_exception_nb);
2035 }
2036 __initcall(init_uprobes);