]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - kernel/events/uprobes.c
Merge tag 'nfs-for-4.10-2' of git://git.linux-nfs.org/projects/trondmy/linux-nfs
[mirror_ubuntu-zesty-kernel.git] / kernel / events / uprobes.c
1 /*
2 * User-space Probes (UProbes)
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright (C) IBM Corporation, 2008-2012
19 * Authors:
20 * Srikar Dronamraju
21 * Jim Keniston
22 * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra
23 */
24
25 #include <linux/kernel.h>
26 #include <linux/highmem.h>
27 #include <linux/pagemap.h> /* read_mapping_page */
28 #include <linux/slab.h>
29 #include <linux/sched.h>
30 #include <linux/export.h>
31 #include <linux/rmap.h> /* anon_vma_prepare */
32 #include <linux/mmu_notifier.h> /* set_pte_at_notify */
33 #include <linux/swap.h> /* try_to_free_swap */
34 #include <linux/ptrace.h> /* user_enable_single_step */
35 #include <linux/kdebug.h> /* notifier mechanism */
36 #include "../../mm/internal.h" /* munlock_vma_page */
37 #include <linux/percpu-rwsem.h>
38 #include <linux/task_work.h>
39 #include <linux/shmem_fs.h>
40
41 #include <linux/uprobes.h>
42
43 #define UINSNS_PER_PAGE (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
44 #define MAX_UPROBE_XOL_SLOTS UINSNS_PER_PAGE
45
46 static struct rb_root uprobes_tree = RB_ROOT;
47 /*
48 * allows us to skip the uprobe_mmap if there are no uprobe events active
49 * at this time. Probably a fine grained per inode count is better?
50 */
51 #define no_uprobe_events() RB_EMPTY_ROOT(&uprobes_tree)
52
53 static DEFINE_SPINLOCK(uprobes_treelock); /* serialize rbtree access */
54
55 #define UPROBES_HASH_SZ 13
56 /* serialize uprobe->pending_list */
57 static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
58 #define uprobes_mmap_hash(v) (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
59
60 static struct percpu_rw_semaphore dup_mmap_sem;
61
62 /* Have a copy of original instruction */
63 #define UPROBE_COPY_INSN 0
64
65 struct uprobe {
66 struct rb_node rb_node; /* node in the rb tree */
67 atomic_t ref;
68 struct rw_semaphore register_rwsem;
69 struct rw_semaphore consumer_rwsem;
70 struct list_head pending_list;
71 struct uprobe_consumer *consumers;
72 struct inode *inode; /* Also hold a ref to inode */
73 loff_t offset;
74 unsigned long flags;
75
76 /*
77 * The generic code assumes that it has two members of unknown type
78 * owned by the arch-specific code:
79 *
80 * insn - copy_insn() saves the original instruction here for
81 * arch_uprobe_analyze_insn().
82 *
83 * ixol - potentially modified instruction to execute out of
84 * line, copied to xol_area by xol_get_insn_slot().
85 */
86 struct arch_uprobe arch;
87 };
88
89 /*
90 * Execute out of line area: anonymous executable mapping installed
91 * by the probed task to execute the copy of the original instruction
92 * mangled by set_swbp().
93 *
94 * On a breakpoint hit, thread contests for a slot. It frees the
95 * slot after singlestep. Currently a fixed number of slots are
96 * allocated.
97 */
98 struct xol_area {
99 wait_queue_head_t wq; /* if all slots are busy */
100 atomic_t slot_count; /* number of in-use slots */
101 unsigned long *bitmap; /* 0 = free slot */
102
103 struct vm_special_mapping xol_mapping;
104 struct page *pages[2];
105 /*
106 * We keep the vma's vm_start rather than a pointer to the vma
107 * itself. The probed process or a naughty kernel module could make
108 * the vma go away, and we must handle that reasonably gracefully.
109 */
110 unsigned long vaddr; /* Page(s) of instruction slots */
111 };
112
113 /*
114 * valid_vma: Verify if the specified vma is an executable vma
115 * Relax restrictions while unregistering: vm_flags might have
116 * changed after breakpoint was inserted.
117 * - is_register: indicates if we are in register context.
118 * - Return 1 if the specified virtual address is in an
119 * executable vma.
120 */
121 static bool valid_vma(struct vm_area_struct *vma, bool is_register)
122 {
123 vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_MAYSHARE;
124
125 if (is_register)
126 flags |= VM_WRITE;
127
128 return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC;
129 }
130
131 static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset)
132 {
133 return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
134 }
135
136 static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr)
137 {
138 return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start);
139 }
140
141 /**
142 * __replace_page - replace page in vma by new page.
143 * based on replace_page in mm/ksm.c
144 *
145 * @vma: vma that holds the pte pointing to page
146 * @addr: address the old @page is mapped at
147 * @page: the cowed page we are replacing by kpage
148 * @kpage: the modified page we replace page by
149 *
150 * Returns 0 on success, -EFAULT on failure.
151 */
152 static int __replace_page(struct vm_area_struct *vma, unsigned long addr,
153 struct page *old_page, struct page *new_page)
154 {
155 struct mm_struct *mm = vma->vm_mm;
156 spinlock_t *ptl;
157 pte_t *ptep;
158 int err;
159 /* For mmu_notifiers */
160 const unsigned long mmun_start = addr;
161 const unsigned long mmun_end = addr + PAGE_SIZE;
162 struct mem_cgroup *memcg;
163
164 err = mem_cgroup_try_charge(new_page, vma->vm_mm, GFP_KERNEL, &memcg,
165 false);
166 if (err)
167 return err;
168
169 /* For try_to_free_swap() and munlock_vma_page() below */
170 lock_page(old_page);
171
172 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
173 err = -EAGAIN;
174 ptep = page_check_address(old_page, mm, addr, &ptl, 0);
175 if (!ptep) {
176 mem_cgroup_cancel_charge(new_page, memcg, false);
177 goto unlock;
178 }
179
180 get_page(new_page);
181 page_add_new_anon_rmap(new_page, vma, addr, false);
182 mem_cgroup_commit_charge(new_page, memcg, false, false);
183 lru_cache_add_active_or_unevictable(new_page, vma);
184
185 if (!PageAnon(old_page)) {
186 dec_mm_counter(mm, mm_counter_file(old_page));
187 inc_mm_counter(mm, MM_ANONPAGES);
188 }
189
190 flush_cache_page(vma, addr, pte_pfn(*ptep));
191 ptep_clear_flush_notify(vma, addr, ptep);
192 set_pte_at_notify(mm, addr, ptep, mk_pte(new_page, vma->vm_page_prot));
193
194 page_remove_rmap(old_page, false);
195 if (!page_mapped(old_page))
196 try_to_free_swap(old_page);
197 pte_unmap_unlock(ptep, ptl);
198
199 if (vma->vm_flags & VM_LOCKED)
200 munlock_vma_page(old_page);
201 put_page(old_page);
202
203 err = 0;
204 unlock:
205 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
206 unlock_page(old_page);
207 return err;
208 }
209
210 /**
211 * is_swbp_insn - check if instruction is breakpoint instruction.
212 * @insn: instruction to be checked.
213 * Default implementation of is_swbp_insn
214 * Returns true if @insn is a breakpoint instruction.
215 */
216 bool __weak is_swbp_insn(uprobe_opcode_t *insn)
217 {
218 return *insn == UPROBE_SWBP_INSN;
219 }
220
221 /**
222 * is_trap_insn - check if instruction is breakpoint instruction.
223 * @insn: instruction to be checked.
224 * Default implementation of is_trap_insn
225 * Returns true if @insn is a breakpoint instruction.
226 *
227 * This function is needed for the case where an architecture has multiple
228 * trap instructions (like powerpc).
229 */
230 bool __weak is_trap_insn(uprobe_opcode_t *insn)
231 {
232 return is_swbp_insn(insn);
233 }
234
235 static void copy_from_page(struct page *page, unsigned long vaddr, void *dst, int len)
236 {
237 void *kaddr = kmap_atomic(page);
238 memcpy(dst, kaddr + (vaddr & ~PAGE_MASK), len);
239 kunmap_atomic(kaddr);
240 }
241
242 static void copy_to_page(struct page *page, unsigned long vaddr, const void *src, int len)
243 {
244 void *kaddr = kmap_atomic(page);
245 memcpy(kaddr + (vaddr & ~PAGE_MASK), src, len);
246 kunmap_atomic(kaddr);
247 }
248
249 static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode)
250 {
251 uprobe_opcode_t old_opcode;
252 bool is_swbp;
253
254 /*
255 * Note: We only check if the old_opcode is UPROBE_SWBP_INSN here.
256 * We do not check if it is any other 'trap variant' which could
257 * be conditional trap instruction such as the one powerpc supports.
258 *
259 * The logic is that we do not care if the underlying instruction
260 * is a trap variant; uprobes always wins over any other (gdb)
261 * breakpoint.
262 */
263 copy_from_page(page, vaddr, &old_opcode, UPROBE_SWBP_INSN_SIZE);
264 is_swbp = is_swbp_insn(&old_opcode);
265
266 if (is_swbp_insn(new_opcode)) {
267 if (is_swbp) /* register: already installed? */
268 return 0;
269 } else {
270 if (!is_swbp) /* unregister: was it changed by us? */
271 return 0;
272 }
273
274 return 1;
275 }
276
277 /*
278 * NOTE:
279 * Expect the breakpoint instruction to be the smallest size instruction for
280 * the architecture. If an arch has variable length instruction and the
281 * breakpoint instruction is not of the smallest length instruction
282 * supported by that architecture then we need to modify is_trap_at_addr and
283 * uprobe_write_opcode accordingly. This would never be a problem for archs
284 * that have fixed length instructions.
285 *
286 * uprobe_write_opcode - write the opcode at a given virtual address.
287 * @mm: the probed process address space.
288 * @vaddr: the virtual address to store the opcode.
289 * @opcode: opcode to be written at @vaddr.
290 *
291 * Called with mm->mmap_sem held for write.
292 * Return 0 (success) or a negative errno.
293 */
294 int uprobe_write_opcode(struct mm_struct *mm, unsigned long vaddr,
295 uprobe_opcode_t opcode)
296 {
297 struct page *old_page, *new_page;
298 struct vm_area_struct *vma;
299 int ret;
300
301 retry:
302 /* Read the page with vaddr into memory */
303 ret = get_user_pages_remote(NULL, mm, vaddr, 1, FOLL_FORCE, &old_page,
304 &vma, NULL);
305 if (ret <= 0)
306 return ret;
307
308 ret = verify_opcode(old_page, vaddr, &opcode);
309 if (ret <= 0)
310 goto put_old;
311
312 ret = anon_vma_prepare(vma);
313 if (ret)
314 goto put_old;
315
316 ret = -ENOMEM;
317 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
318 if (!new_page)
319 goto put_old;
320
321 __SetPageUptodate(new_page);
322 copy_highpage(new_page, old_page);
323 copy_to_page(new_page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
324
325 ret = __replace_page(vma, vaddr, old_page, new_page);
326 put_page(new_page);
327 put_old:
328 put_page(old_page);
329
330 if (unlikely(ret == -EAGAIN))
331 goto retry;
332 return ret;
333 }
334
335 /**
336 * set_swbp - store breakpoint at a given address.
337 * @auprobe: arch specific probepoint information.
338 * @mm: the probed process address space.
339 * @vaddr: the virtual address to insert the opcode.
340 *
341 * For mm @mm, store the breakpoint instruction at @vaddr.
342 * Return 0 (success) or a negative errno.
343 */
344 int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
345 {
346 return uprobe_write_opcode(mm, vaddr, UPROBE_SWBP_INSN);
347 }
348
349 /**
350 * set_orig_insn - Restore the original instruction.
351 * @mm: the probed process address space.
352 * @auprobe: arch specific probepoint information.
353 * @vaddr: the virtual address to insert the opcode.
354 *
355 * For mm @mm, restore the original opcode (opcode) at @vaddr.
356 * Return 0 (success) or a negative errno.
357 */
358 int __weak
359 set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
360 {
361 return uprobe_write_opcode(mm, vaddr, *(uprobe_opcode_t *)&auprobe->insn);
362 }
363
364 static struct uprobe *get_uprobe(struct uprobe *uprobe)
365 {
366 atomic_inc(&uprobe->ref);
367 return uprobe;
368 }
369
370 static void put_uprobe(struct uprobe *uprobe)
371 {
372 if (atomic_dec_and_test(&uprobe->ref))
373 kfree(uprobe);
374 }
375
376 static int match_uprobe(struct uprobe *l, struct uprobe *r)
377 {
378 if (l->inode < r->inode)
379 return -1;
380
381 if (l->inode > r->inode)
382 return 1;
383
384 if (l->offset < r->offset)
385 return -1;
386
387 if (l->offset > r->offset)
388 return 1;
389
390 return 0;
391 }
392
393 static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
394 {
395 struct uprobe u = { .inode = inode, .offset = offset };
396 struct rb_node *n = uprobes_tree.rb_node;
397 struct uprobe *uprobe;
398 int match;
399
400 while (n) {
401 uprobe = rb_entry(n, struct uprobe, rb_node);
402 match = match_uprobe(&u, uprobe);
403 if (!match)
404 return get_uprobe(uprobe);
405
406 if (match < 0)
407 n = n->rb_left;
408 else
409 n = n->rb_right;
410 }
411 return NULL;
412 }
413
414 /*
415 * Find a uprobe corresponding to a given inode:offset
416 * Acquires uprobes_treelock
417 */
418 static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
419 {
420 struct uprobe *uprobe;
421
422 spin_lock(&uprobes_treelock);
423 uprobe = __find_uprobe(inode, offset);
424 spin_unlock(&uprobes_treelock);
425
426 return uprobe;
427 }
428
429 static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
430 {
431 struct rb_node **p = &uprobes_tree.rb_node;
432 struct rb_node *parent = NULL;
433 struct uprobe *u;
434 int match;
435
436 while (*p) {
437 parent = *p;
438 u = rb_entry(parent, struct uprobe, rb_node);
439 match = match_uprobe(uprobe, u);
440 if (!match)
441 return get_uprobe(u);
442
443 if (match < 0)
444 p = &parent->rb_left;
445 else
446 p = &parent->rb_right;
447
448 }
449
450 u = NULL;
451 rb_link_node(&uprobe->rb_node, parent, p);
452 rb_insert_color(&uprobe->rb_node, &uprobes_tree);
453 /* get access + creation ref */
454 atomic_set(&uprobe->ref, 2);
455
456 return u;
457 }
458
459 /*
460 * Acquire uprobes_treelock.
461 * Matching uprobe already exists in rbtree;
462 * increment (access refcount) and return the matching uprobe.
463 *
464 * No matching uprobe; insert the uprobe in rb_tree;
465 * get a double refcount (access + creation) and return NULL.
466 */
467 static struct uprobe *insert_uprobe(struct uprobe *uprobe)
468 {
469 struct uprobe *u;
470
471 spin_lock(&uprobes_treelock);
472 u = __insert_uprobe(uprobe);
473 spin_unlock(&uprobes_treelock);
474
475 return u;
476 }
477
478 static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset)
479 {
480 struct uprobe *uprobe, *cur_uprobe;
481
482 uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
483 if (!uprobe)
484 return NULL;
485
486 uprobe->inode = igrab(inode);
487 uprobe->offset = offset;
488 init_rwsem(&uprobe->register_rwsem);
489 init_rwsem(&uprobe->consumer_rwsem);
490
491 /* add to uprobes_tree, sorted on inode:offset */
492 cur_uprobe = insert_uprobe(uprobe);
493 /* a uprobe exists for this inode:offset combination */
494 if (cur_uprobe) {
495 kfree(uprobe);
496 uprobe = cur_uprobe;
497 iput(inode);
498 }
499
500 return uprobe;
501 }
502
503 static void consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
504 {
505 down_write(&uprobe->consumer_rwsem);
506 uc->next = uprobe->consumers;
507 uprobe->consumers = uc;
508 up_write(&uprobe->consumer_rwsem);
509 }
510
511 /*
512 * For uprobe @uprobe, delete the consumer @uc.
513 * Return true if the @uc is deleted successfully
514 * or return false.
515 */
516 static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
517 {
518 struct uprobe_consumer **con;
519 bool ret = false;
520
521 down_write(&uprobe->consumer_rwsem);
522 for (con = &uprobe->consumers; *con; con = &(*con)->next) {
523 if (*con == uc) {
524 *con = uc->next;
525 ret = true;
526 break;
527 }
528 }
529 up_write(&uprobe->consumer_rwsem);
530
531 return ret;
532 }
533
534 static int __copy_insn(struct address_space *mapping, struct file *filp,
535 void *insn, int nbytes, loff_t offset)
536 {
537 struct page *page;
538 /*
539 * Ensure that the page that has the original instruction is populated
540 * and in page-cache. If ->readpage == NULL it must be shmem_mapping(),
541 * see uprobe_register().
542 */
543 if (mapping->a_ops->readpage)
544 page = read_mapping_page(mapping, offset >> PAGE_SHIFT, filp);
545 else
546 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
547 if (IS_ERR(page))
548 return PTR_ERR(page);
549
550 copy_from_page(page, offset, insn, nbytes);
551 put_page(page);
552
553 return 0;
554 }
555
556 static int copy_insn(struct uprobe *uprobe, struct file *filp)
557 {
558 struct address_space *mapping = uprobe->inode->i_mapping;
559 loff_t offs = uprobe->offset;
560 void *insn = &uprobe->arch.insn;
561 int size = sizeof(uprobe->arch.insn);
562 int len, err = -EIO;
563
564 /* Copy only available bytes, -EIO if nothing was read */
565 do {
566 if (offs >= i_size_read(uprobe->inode))
567 break;
568
569 len = min_t(int, size, PAGE_SIZE - (offs & ~PAGE_MASK));
570 err = __copy_insn(mapping, filp, insn, len, offs);
571 if (err)
572 break;
573
574 insn += len;
575 offs += len;
576 size -= len;
577 } while (size);
578
579 return err;
580 }
581
582 static int prepare_uprobe(struct uprobe *uprobe, struct file *file,
583 struct mm_struct *mm, unsigned long vaddr)
584 {
585 int ret = 0;
586
587 if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
588 return ret;
589
590 /* TODO: move this into _register, until then we abuse this sem. */
591 down_write(&uprobe->consumer_rwsem);
592 if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
593 goto out;
594
595 ret = copy_insn(uprobe, file);
596 if (ret)
597 goto out;
598
599 ret = -ENOTSUPP;
600 if (is_trap_insn((uprobe_opcode_t *)&uprobe->arch.insn))
601 goto out;
602
603 ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
604 if (ret)
605 goto out;
606
607 /* uprobe_write_opcode() assumes we don't cross page boundary */
608 BUG_ON((uprobe->offset & ~PAGE_MASK) +
609 UPROBE_SWBP_INSN_SIZE > PAGE_SIZE);
610
611 smp_wmb(); /* pairs with rmb() in find_active_uprobe() */
612 set_bit(UPROBE_COPY_INSN, &uprobe->flags);
613
614 out:
615 up_write(&uprobe->consumer_rwsem);
616
617 return ret;
618 }
619
620 static inline bool consumer_filter(struct uprobe_consumer *uc,
621 enum uprobe_filter_ctx ctx, struct mm_struct *mm)
622 {
623 return !uc->filter || uc->filter(uc, ctx, mm);
624 }
625
626 static bool filter_chain(struct uprobe *uprobe,
627 enum uprobe_filter_ctx ctx, struct mm_struct *mm)
628 {
629 struct uprobe_consumer *uc;
630 bool ret = false;
631
632 down_read(&uprobe->consumer_rwsem);
633 for (uc = uprobe->consumers; uc; uc = uc->next) {
634 ret = consumer_filter(uc, ctx, mm);
635 if (ret)
636 break;
637 }
638 up_read(&uprobe->consumer_rwsem);
639
640 return ret;
641 }
642
643 static int
644 install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
645 struct vm_area_struct *vma, unsigned long vaddr)
646 {
647 bool first_uprobe;
648 int ret;
649
650 ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr);
651 if (ret)
652 return ret;
653
654 /*
655 * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(),
656 * the task can hit this breakpoint right after __replace_page().
657 */
658 first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags);
659 if (first_uprobe)
660 set_bit(MMF_HAS_UPROBES, &mm->flags);
661
662 ret = set_swbp(&uprobe->arch, mm, vaddr);
663 if (!ret)
664 clear_bit(MMF_RECALC_UPROBES, &mm->flags);
665 else if (first_uprobe)
666 clear_bit(MMF_HAS_UPROBES, &mm->flags);
667
668 return ret;
669 }
670
671 static int
672 remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr)
673 {
674 set_bit(MMF_RECALC_UPROBES, &mm->flags);
675 return set_orig_insn(&uprobe->arch, mm, vaddr);
676 }
677
678 static inline bool uprobe_is_active(struct uprobe *uprobe)
679 {
680 return !RB_EMPTY_NODE(&uprobe->rb_node);
681 }
682 /*
683 * There could be threads that have already hit the breakpoint. They
684 * will recheck the current insn and restart if find_uprobe() fails.
685 * See find_active_uprobe().
686 */
687 static void delete_uprobe(struct uprobe *uprobe)
688 {
689 if (WARN_ON(!uprobe_is_active(uprobe)))
690 return;
691
692 spin_lock(&uprobes_treelock);
693 rb_erase(&uprobe->rb_node, &uprobes_tree);
694 spin_unlock(&uprobes_treelock);
695 RB_CLEAR_NODE(&uprobe->rb_node); /* for uprobe_is_active() */
696 iput(uprobe->inode);
697 put_uprobe(uprobe);
698 }
699
700 struct map_info {
701 struct map_info *next;
702 struct mm_struct *mm;
703 unsigned long vaddr;
704 };
705
706 static inline struct map_info *free_map_info(struct map_info *info)
707 {
708 struct map_info *next = info->next;
709 kfree(info);
710 return next;
711 }
712
713 static struct map_info *
714 build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
715 {
716 unsigned long pgoff = offset >> PAGE_SHIFT;
717 struct vm_area_struct *vma;
718 struct map_info *curr = NULL;
719 struct map_info *prev = NULL;
720 struct map_info *info;
721 int more = 0;
722
723 again:
724 i_mmap_lock_read(mapping);
725 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
726 if (!valid_vma(vma, is_register))
727 continue;
728
729 if (!prev && !more) {
730 /*
731 * Needs GFP_NOWAIT to avoid i_mmap_rwsem recursion through
732 * reclaim. This is optimistic, no harm done if it fails.
733 */
734 prev = kmalloc(sizeof(struct map_info),
735 GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
736 if (prev)
737 prev->next = NULL;
738 }
739 if (!prev) {
740 more++;
741 continue;
742 }
743
744 if (!atomic_inc_not_zero(&vma->vm_mm->mm_users))
745 continue;
746
747 info = prev;
748 prev = prev->next;
749 info->next = curr;
750 curr = info;
751
752 info->mm = vma->vm_mm;
753 info->vaddr = offset_to_vaddr(vma, offset);
754 }
755 i_mmap_unlock_read(mapping);
756
757 if (!more)
758 goto out;
759
760 prev = curr;
761 while (curr) {
762 mmput(curr->mm);
763 curr = curr->next;
764 }
765
766 do {
767 info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
768 if (!info) {
769 curr = ERR_PTR(-ENOMEM);
770 goto out;
771 }
772 info->next = prev;
773 prev = info;
774 } while (--more);
775
776 goto again;
777 out:
778 while (prev)
779 prev = free_map_info(prev);
780 return curr;
781 }
782
783 static int
784 register_for_each_vma(struct uprobe *uprobe, struct uprobe_consumer *new)
785 {
786 bool is_register = !!new;
787 struct map_info *info;
788 int err = 0;
789
790 percpu_down_write(&dup_mmap_sem);
791 info = build_map_info(uprobe->inode->i_mapping,
792 uprobe->offset, is_register);
793 if (IS_ERR(info)) {
794 err = PTR_ERR(info);
795 goto out;
796 }
797
798 while (info) {
799 struct mm_struct *mm = info->mm;
800 struct vm_area_struct *vma;
801
802 if (err && is_register)
803 goto free;
804
805 down_write(&mm->mmap_sem);
806 vma = find_vma(mm, info->vaddr);
807 if (!vma || !valid_vma(vma, is_register) ||
808 file_inode(vma->vm_file) != uprobe->inode)
809 goto unlock;
810
811 if (vma->vm_start > info->vaddr ||
812 vaddr_to_offset(vma, info->vaddr) != uprobe->offset)
813 goto unlock;
814
815 if (is_register) {
816 /* consult only the "caller", new consumer. */
817 if (consumer_filter(new,
818 UPROBE_FILTER_REGISTER, mm))
819 err = install_breakpoint(uprobe, mm, vma, info->vaddr);
820 } else if (test_bit(MMF_HAS_UPROBES, &mm->flags)) {
821 if (!filter_chain(uprobe,
822 UPROBE_FILTER_UNREGISTER, mm))
823 err |= remove_breakpoint(uprobe, mm, info->vaddr);
824 }
825
826 unlock:
827 up_write(&mm->mmap_sem);
828 free:
829 mmput(mm);
830 info = free_map_info(info);
831 }
832 out:
833 percpu_up_write(&dup_mmap_sem);
834 return err;
835 }
836
837 static int __uprobe_register(struct uprobe *uprobe, struct uprobe_consumer *uc)
838 {
839 consumer_add(uprobe, uc);
840 return register_for_each_vma(uprobe, uc);
841 }
842
843 static void __uprobe_unregister(struct uprobe *uprobe, struct uprobe_consumer *uc)
844 {
845 int err;
846
847 if (WARN_ON(!consumer_del(uprobe, uc)))
848 return;
849
850 err = register_for_each_vma(uprobe, NULL);
851 /* TODO : cant unregister? schedule a worker thread */
852 if (!uprobe->consumers && !err)
853 delete_uprobe(uprobe);
854 }
855
856 /*
857 * uprobe_register - register a probe
858 * @inode: the file in which the probe has to be placed.
859 * @offset: offset from the start of the file.
860 * @uc: information on howto handle the probe..
861 *
862 * Apart from the access refcount, uprobe_register() takes a creation
863 * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
864 * inserted into the rbtree (i.e first consumer for a @inode:@offset
865 * tuple). Creation refcount stops uprobe_unregister from freeing the
866 * @uprobe even before the register operation is complete. Creation
867 * refcount is released when the last @uc for the @uprobe
868 * unregisters.
869 *
870 * Return errno if it cannot successully install probes
871 * else return 0 (success)
872 */
873 int uprobe_register(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
874 {
875 struct uprobe *uprobe;
876 int ret;
877
878 /* Uprobe must have at least one set consumer */
879 if (!uc->handler && !uc->ret_handler)
880 return -EINVAL;
881
882 /* copy_insn() uses read_mapping_page() or shmem_read_mapping_page() */
883 if (!inode->i_mapping->a_ops->readpage && !shmem_mapping(inode->i_mapping))
884 return -EIO;
885 /* Racy, just to catch the obvious mistakes */
886 if (offset > i_size_read(inode))
887 return -EINVAL;
888
889 retry:
890 uprobe = alloc_uprobe(inode, offset);
891 if (!uprobe)
892 return -ENOMEM;
893 /*
894 * We can race with uprobe_unregister()->delete_uprobe().
895 * Check uprobe_is_active() and retry if it is false.
896 */
897 down_write(&uprobe->register_rwsem);
898 ret = -EAGAIN;
899 if (likely(uprobe_is_active(uprobe))) {
900 ret = __uprobe_register(uprobe, uc);
901 if (ret)
902 __uprobe_unregister(uprobe, uc);
903 }
904 up_write(&uprobe->register_rwsem);
905 put_uprobe(uprobe);
906
907 if (unlikely(ret == -EAGAIN))
908 goto retry;
909 return ret;
910 }
911 EXPORT_SYMBOL_GPL(uprobe_register);
912
913 /*
914 * uprobe_apply - unregister a already registered probe.
915 * @inode: the file in which the probe has to be removed.
916 * @offset: offset from the start of the file.
917 * @uc: consumer which wants to add more or remove some breakpoints
918 * @add: add or remove the breakpoints
919 */
920 int uprobe_apply(struct inode *inode, loff_t offset,
921 struct uprobe_consumer *uc, bool add)
922 {
923 struct uprobe *uprobe;
924 struct uprobe_consumer *con;
925 int ret = -ENOENT;
926
927 uprobe = find_uprobe(inode, offset);
928 if (WARN_ON(!uprobe))
929 return ret;
930
931 down_write(&uprobe->register_rwsem);
932 for (con = uprobe->consumers; con && con != uc ; con = con->next)
933 ;
934 if (con)
935 ret = register_for_each_vma(uprobe, add ? uc : NULL);
936 up_write(&uprobe->register_rwsem);
937 put_uprobe(uprobe);
938
939 return ret;
940 }
941
942 /*
943 * uprobe_unregister - unregister a already registered probe.
944 * @inode: the file in which the probe has to be removed.
945 * @offset: offset from the start of the file.
946 * @uc: identify which probe if multiple probes are colocated.
947 */
948 void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
949 {
950 struct uprobe *uprobe;
951
952 uprobe = find_uprobe(inode, offset);
953 if (WARN_ON(!uprobe))
954 return;
955
956 down_write(&uprobe->register_rwsem);
957 __uprobe_unregister(uprobe, uc);
958 up_write(&uprobe->register_rwsem);
959 put_uprobe(uprobe);
960 }
961 EXPORT_SYMBOL_GPL(uprobe_unregister);
962
963 static int unapply_uprobe(struct uprobe *uprobe, struct mm_struct *mm)
964 {
965 struct vm_area_struct *vma;
966 int err = 0;
967
968 down_read(&mm->mmap_sem);
969 for (vma = mm->mmap; vma; vma = vma->vm_next) {
970 unsigned long vaddr;
971 loff_t offset;
972
973 if (!valid_vma(vma, false) ||
974 file_inode(vma->vm_file) != uprobe->inode)
975 continue;
976
977 offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT;
978 if (uprobe->offset < offset ||
979 uprobe->offset >= offset + vma->vm_end - vma->vm_start)
980 continue;
981
982 vaddr = offset_to_vaddr(vma, uprobe->offset);
983 err |= remove_breakpoint(uprobe, mm, vaddr);
984 }
985 up_read(&mm->mmap_sem);
986
987 return err;
988 }
989
990 static struct rb_node *
991 find_node_in_range(struct inode *inode, loff_t min, loff_t max)
992 {
993 struct rb_node *n = uprobes_tree.rb_node;
994
995 while (n) {
996 struct uprobe *u = rb_entry(n, struct uprobe, rb_node);
997
998 if (inode < u->inode) {
999 n = n->rb_left;
1000 } else if (inode > u->inode) {
1001 n = n->rb_right;
1002 } else {
1003 if (max < u->offset)
1004 n = n->rb_left;
1005 else if (min > u->offset)
1006 n = n->rb_right;
1007 else
1008 break;
1009 }
1010 }
1011
1012 return n;
1013 }
1014
1015 /*
1016 * For a given range in vma, build a list of probes that need to be inserted.
1017 */
1018 static void build_probe_list(struct inode *inode,
1019 struct vm_area_struct *vma,
1020 unsigned long start, unsigned long end,
1021 struct list_head *head)
1022 {
1023 loff_t min, max;
1024 struct rb_node *n, *t;
1025 struct uprobe *u;
1026
1027 INIT_LIST_HEAD(head);
1028 min = vaddr_to_offset(vma, start);
1029 max = min + (end - start) - 1;
1030
1031 spin_lock(&uprobes_treelock);
1032 n = find_node_in_range(inode, min, max);
1033 if (n) {
1034 for (t = n; t; t = rb_prev(t)) {
1035 u = rb_entry(t, struct uprobe, rb_node);
1036 if (u->inode != inode || u->offset < min)
1037 break;
1038 list_add(&u->pending_list, head);
1039 get_uprobe(u);
1040 }
1041 for (t = n; (t = rb_next(t)); ) {
1042 u = rb_entry(t, struct uprobe, rb_node);
1043 if (u->inode != inode || u->offset > max)
1044 break;
1045 list_add(&u->pending_list, head);
1046 get_uprobe(u);
1047 }
1048 }
1049 spin_unlock(&uprobes_treelock);
1050 }
1051
1052 /*
1053 * Called from mmap_region/vma_adjust with mm->mmap_sem acquired.
1054 *
1055 * Currently we ignore all errors and always return 0, the callers
1056 * can't handle the failure anyway.
1057 */
1058 int uprobe_mmap(struct vm_area_struct *vma)
1059 {
1060 struct list_head tmp_list;
1061 struct uprobe *uprobe, *u;
1062 struct inode *inode;
1063
1064 if (no_uprobe_events() || !valid_vma(vma, true))
1065 return 0;
1066
1067 inode = file_inode(vma->vm_file);
1068 if (!inode)
1069 return 0;
1070
1071 mutex_lock(uprobes_mmap_hash(inode));
1072 build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list);
1073 /*
1074 * We can race with uprobe_unregister(), this uprobe can be already
1075 * removed. But in this case filter_chain() must return false, all
1076 * consumers have gone away.
1077 */
1078 list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
1079 if (!fatal_signal_pending(current) &&
1080 filter_chain(uprobe, UPROBE_FILTER_MMAP, vma->vm_mm)) {
1081 unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset);
1082 install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
1083 }
1084 put_uprobe(uprobe);
1085 }
1086 mutex_unlock(uprobes_mmap_hash(inode));
1087
1088 return 0;
1089 }
1090
1091 static bool
1092 vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1093 {
1094 loff_t min, max;
1095 struct inode *inode;
1096 struct rb_node *n;
1097
1098 inode = file_inode(vma->vm_file);
1099
1100 min = vaddr_to_offset(vma, start);
1101 max = min + (end - start) - 1;
1102
1103 spin_lock(&uprobes_treelock);
1104 n = find_node_in_range(inode, min, max);
1105 spin_unlock(&uprobes_treelock);
1106
1107 return !!n;
1108 }
1109
1110 /*
1111 * Called in context of a munmap of a vma.
1112 */
1113 void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1114 {
1115 if (no_uprobe_events() || !valid_vma(vma, false))
1116 return;
1117
1118 if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */
1119 return;
1120
1121 if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) ||
1122 test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags))
1123 return;
1124
1125 if (vma_has_uprobes(vma, start, end))
1126 set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags);
1127 }
1128
1129 /* Slot allocation for XOL */
1130 static int xol_add_vma(struct mm_struct *mm, struct xol_area *area)
1131 {
1132 struct vm_area_struct *vma;
1133 int ret;
1134
1135 if (down_write_killable(&mm->mmap_sem))
1136 return -EINTR;
1137
1138 if (mm->uprobes_state.xol_area) {
1139 ret = -EALREADY;
1140 goto fail;
1141 }
1142
1143 if (!area->vaddr) {
1144 /* Try to map as high as possible, this is only a hint. */
1145 area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE,
1146 PAGE_SIZE, 0, 0);
1147 if (area->vaddr & ~PAGE_MASK) {
1148 ret = area->vaddr;
1149 goto fail;
1150 }
1151 }
1152
1153 vma = _install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1154 VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO,
1155 &area->xol_mapping);
1156 if (IS_ERR(vma)) {
1157 ret = PTR_ERR(vma);
1158 goto fail;
1159 }
1160
1161 ret = 0;
1162 smp_wmb(); /* pairs with get_xol_area() */
1163 mm->uprobes_state.xol_area = area;
1164 fail:
1165 up_write(&mm->mmap_sem);
1166
1167 return ret;
1168 }
1169
1170 static struct xol_area *__create_xol_area(unsigned long vaddr)
1171 {
1172 struct mm_struct *mm = current->mm;
1173 uprobe_opcode_t insn = UPROBE_SWBP_INSN;
1174 struct xol_area *area;
1175
1176 area = kmalloc(sizeof(*area), GFP_KERNEL);
1177 if (unlikely(!area))
1178 goto out;
1179
1180 area->bitmap = kzalloc(BITS_TO_LONGS(UINSNS_PER_PAGE) * sizeof(long), GFP_KERNEL);
1181 if (!area->bitmap)
1182 goto free_area;
1183
1184 area->xol_mapping.name = "[uprobes]";
1185 area->xol_mapping.fault = NULL;
1186 area->xol_mapping.pages = area->pages;
1187 area->pages[0] = alloc_page(GFP_HIGHUSER);
1188 if (!area->pages[0])
1189 goto free_bitmap;
1190 area->pages[1] = NULL;
1191
1192 area->vaddr = vaddr;
1193 init_waitqueue_head(&area->wq);
1194 /* Reserve the 1st slot for get_trampoline_vaddr() */
1195 set_bit(0, area->bitmap);
1196 atomic_set(&area->slot_count, 1);
1197 copy_to_page(area->pages[0], 0, &insn, UPROBE_SWBP_INSN_SIZE);
1198
1199 if (!xol_add_vma(mm, area))
1200 return area;
1201
1202 __free_page(area->pages[0]);
1203 free_bitmap:
1204 kfree(area->bitmap);
1205 free_area:
1206 kfree(area);
1207 out:
1208 return NULL;
1209 }
1210
1211 /*
1212 * get_xol_area - Allocate process's xol_area if necessary.
1213 * This area will be used for storing instructions for execution out of line.
1214 *
1215 * Returns the allocated area or NULL.
1216 */
1217 static struct xol_area *get_xol_area(void)
1218 {
1219 struct mm_struct *mm = current->mm;
1220 struct xol_area *area;
1221
1222 if (!mm->uprobes_state.xol_area)
1223 __create_xol_area(0);
1224
1225 area = mm->uprobes_state.xol_area;
1226 smp_read_barrier_depends(); /* pairs with wmb in xol_add_vma() */
1227 return area;
1228 }
1229
1230 /*
1231 * uprobe_clear_state - Free the area allocated for slots.
1232 */
1233 void uprobe_clear_state(struct mm_struct *mm)
1234 {
1235 struct xol_area *area = mm->uprobes_state.xol_area;
1236
1237 if (!area)
1238 return;
1239
1240 put_page(area->pages[0]);
1241 kfree(area->bitmap);
1242 kfree(area);
1243 }
1244
1245 void uprobe_start_dup_mmap(void)
1246 {
1247 percpu_down_read(&dup_mmap_sem);
1248 }
1249
1250 void uprobe_end_dup_mmap(void)
1251 {
1252 percpu_up_read(&dup_mmap_sem);
1253 }
1254
1255 void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm)
1256 {
1257 newmm->uprobes_state.xol_area = NULL;
1258
1259 if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) {
1260 set_bit(MMF_HAS_UPROBES, &newmm->flags);
1261 /* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */
1262 set_bit(MMF_RECALC_UPROBES, &newmm->flags);
1263 }
1264 }
1265
1266 /*
1267 * - search for a free slot.
1268 */
1269 static unsigned long xol_take_insn_slot(struct xol_area *area)
1270 {
1271 unsigned long slot_addr;
1272 int slot_nr;
1273
1274 do {
1275 slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1276 if (slot_nr < UINSNS_PER_PAGE) {
1277 if (!test_and_set_bit(slot_nr, area->bitmap))
1278 break;
1279
1280 slot_nr = UINSNS_PER_PAGE;
1281 continue;
1282 }
1283 wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
1284 } while (slot_nr >= UINSNS_PER_PAGE);
1285
1286 slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
1287 atomic_inc(&area->slot_count);
1288
1289 return slot_addr;
1290 }
1291
1292 /*
1293 * xol_get_insn_slot - allocate a slot for xol.
1294 * Returns the allocated slot address or 0.
1295 */
1296 static unsigned long xol_get_insn_slot(struct uprobe *uprobe)
1297 {
1298 struct xol_area *area;
1299 unsigned long xol_vaddr;
1300
1301 area = get_xol_area();
1302 if (!area)
1303 return 0;
1304
1305 xol_vaddr = xol_take_insn_slot(area);
1306 if (unlikely(!xol_vaddr))
1307 return 0;
1308
1309 arch_uprobe_copy_ixol(area->pages[0], xol_vaddr,
1310 &uprobe->arch.ixol, sizeof(uprobe->arch.ixol));
1311
1312 return xol_vaddr;
1313 }
1314
1315 /*
1316 * xol_free_insn_slot - If slot was earlier allocated by
1317 * @xol_get_insn_slot(), make the slot available for
1318 * subsequent requests.
1319 */
1320 static void xol_free_insn_slot(struct task_struct *tsk)
1321 {
1322 struct xol_area *area;
1323 unsigned long vma_end;
1324 unsigned long slot_addr;
1325
1326 if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
1327 return;
1328
1329 slot_addr = tsk->utask->xol_vaddr;
1330 if (unlikely(!slot_addr))
1331 return;
1332
1333 area = tsk->mm->uprobes_state.xol_area;
1334 vma_end = area->vaddr + PAGE_SIZE;
1335 if (area->vaddr <= slot_addr && slot_addr < vma_end) {
1336 unsigned long offset;
1337 int slot_nr;
1338
1339 offset = slot_addr - area->vaddr;
1340 slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1341 if (slot_nr >= UINSNS_PER_PAGE)
1342 return;
1343
1344 clear_bit(slot_nr, area->bitmap);
1345 atomic_dec(&area->slot_count);
1346 smp_mb__after_atomic(); /* pairs with prepare_to_wait() */
1347 if (waitqueue_active(&area->wq))
1348 wake_up(&area->wq);
1349
1350 tsk->utask->xol_vaddr = 0;
1351 }
1352 }
1353
1354 void __weak arch_uprobe_copy_ixol(struct page *page, unsigned long vaddr,
1355 void *src, unsigned long len)
1356 {
1357 /* Initialize the slot */
1358 copy_to_page(page, vaddr, src, len);
1359
1360 /*
1361 * We probably need flush_icache_user_range() but it needs vma.
1362 * This should work on most of architectures by default. If
1363 * architecture needs to do something different it can define
1364 * its own version of the function.
1365 */
1366 flush_dcache_page(page);
1367 }
1368
1369 /**
1370 * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1371 * @regs: Reflects the saved state of the task after it has hit a breakpoint
1372 * instruction.
1373 * Return the address of the breakpoint instruction.
1374 */
1375 unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1376 {
1377 return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1378 }
1379
1380 unsigned long uprobe_get_trap_addr(struct pt_regs *regs)
1381 {
1382 struct uprobe_task *utask = current->utask;
1383
1384 if (unlikely(utask && utask->active_uprobe))
1385 return utask->vaddr;
1386
1387 return instruction_pointer(regs);
1388 }
1389
1390 static struct return_instance *free_ret_instance(struct return_instance *ri)
1391 {
1392 struct return_instance *next = ri->next;
1393 put_uprobe(ri->uprobe);
1394 kfree(ri);
1395 return next;
1396 }
1397
1398 /*
1399 * Called with no locks held.
1400 * Called in context of a exiting or a exec-ing thread.
1401 */
1402 void uprobe_free_utask(struct task_struct *t)
1403 {
1404 struct uprobe_task *utask = t->utask;
1405 struct return_instance *ri;
1406
1407 if (!utask)
1408 return;
1409
1410 if (utask->active_uprobe)
1411 put_uprobe(utask->active_uprobe);
1412
1413 ri = utask->return_instances;
1414 while (ri)
1415 ri = free_ret_instance(ri);
1416
1417 xol_free_insn_slot(t);
1418 kfree(utask);
1419 t->utask = NULL;
1420 }
1421
1422 /*
1423 * Allocate a uprobe_task object for the task if if necessary.
1424 * Called when the thread hits a breakpoint.
1425 *
1426 * Returns:
1427 * - pointer to new uprobe_task on success
1428 * - NULL otherwise
1429 */
1430 static struct uprobe_task *get_utask(void)
1431 {
1432 if (!current->utask)
1433 current->utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1434 return current->utask;
1435 }
1436
1437 static int dup_utask(struct task_struct *t, struct uprobe_task *o_utask)
1438 {
1439 struct uprobe_task *n_utask;
1440 struct return_instance **p, *o, *n;
1441
1442 n_utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1443 if (!n_utask)
1444 return -ENOMEM;
1445 t->utask = n_utask;
1446
1447 p = &n_utask->return_instances;
1448 for (o = o_utask->return_instances; o; o = o->next) {
1449 n = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1450 if (!n)
1451 return -ENOMEM;
1452
1453 *n = *o;
1454 get_uprobe(n->uprobe);
1455 n->next = NULL;
1456
1457 *p = n;
1458 p = &n->next;
1459 n_utask->depth++;
1460 }
1461
1462 return 0;
1463 }
1464
1465 static void uprobe_warn(struct task_struct *t, const char *msg)
1466 {
1467 pr_warn("uprobe: %s:%d failed to %s\n",
1468 current->comm, current->pid, msg);
1469 }
1470
1471 static void dup_xol_work(struct callback_head *work)
1472 {
1473 if (current->flags & PF_EXITING)
1474 return;
1475
1476 if (!__create_xol_area(current->utask->dup_xol_addr) &&
1477 !fatal_signal_pending(current))
1478 uprobe_warn(current, "dup xol area");
1479 }
1480
1481 /*
1482 * Called in context of a new clone/fork from copy_process.
1483 */
1484 void uprobe_copy_process(struct task_struct *t, unsigned long flags)
1485 {
1486 struct uprobe_task *utask = current->utask;
1487 struct mm_struct *mm = current->mm;
1488 struct xol_area *area;
1489
1490 t->utask = NULL;
1491
1492 if (!utask || !utask->return_instances)
1493 return;
1494
1495 if (mm == t->mm && !(flags & CLONE_VFORK))
1496 return;
1497
1498 if (dup_utask(t, utask))
1499 return uprobe_warn(t, "dup ret instances");
1500
1501 /* The task can fork() after dup_xol_work() fails */
1502 area = mm->uprobes_state.xol_area;
1503 if (!area)
1504 return uprobe_warn(t, "dup xol area");
1505
1506 if (mm == t->mm)
1507 return;
1508
1509 t->utask->dup_xol_addr = area->vaddr;
1510 init_task_work(&t->utask->dup_xol_work, dup_xol_work);
1511 task_work_add(t, &t->utask->dup_xol_work, true);
1512 }
1513
1514 /*
1515 * Current area->vaddr notion assume the trampoline address is always
1516 * equal area->vaddr.
1517 *
1518 * Returns -1 in case the xol_area is not allocated.
1519 */
1520 static unsigned long get_trampoline_vaddr(void)
1521 {
1522 struct xol_area *area;
1523 unsigned long trampoline_vaddr = -1;
1524
1525 area = current->mm->uprobes_state.xol_area;
1526 smp_read_barrier_depends();
1527 if (area)
1528 trampoline_vaddr = area->vaddr;
1529
1530 return trampoline_vaddr;
1531 }
1532
1533 static void cleanup_return_instances(struct uprobe_task *utask, bool chained,
1534 struct pt_regs *regs)
1535 {
1536 struct return_instance *ri = utask->return_instances;
1537 enum rp_check ctx = chained ? RP_CHECK_CHAIN_CALL : RP_CHECK_CALL;
1538
1539 while (ri && !arch_uretprobe_is_alive(ri, ctx, regs)) {
1540 ri = free_ret_instance(ri);
1541 utask->depth--;
1542 }
1543 utask->return_instances = ri;
1544 }
1545
1546 static void prepare_uretprobe(struct uprobe *uprobe, struct pt_regs *regs)
1547 {
1548 struct return_instance *ri;
1549 struct uprobe_task *utask;
1550 unsigned long orig_ret_vaddr, trampoline_vaddr;
1551 bool chained;
1552
1553 if (!get_xol_area())
1554 return;
1555
1556 utask = get_utask();
1557 if (!utask)
1558 return;
1559
1560 if (utask->depth >= MAX_URETPROBE_DEPTH) {
1561 printk_ratelimited(KERN_INFO "uprobe: omit uretprobe due to"
1562 " nestedness limit pid/tgid=%d/%d\n",
1563 current->pid, current->tgid);
1564 return;
1565 }
1566
1567 ri = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1568 if (!ri)
1569 return;
1570
1571 trampoline_vaddr = get_trampoline_vaddr();
1572 orig_ret_vaddr = arch_uretprobe_hijack_return_addr(trampoline_vaddr, regs);
1573 if (orig_ret_vaddr == -1)
1574 goto fail;
1575
1576 /* drop the entries invalidated by longjmp() */
1577 chained = (orig_ret_vaddr == trampoline_vaddr);
1578 cleanup_return_instances(utask, chained, regs);
1579
1580 /*
1581 * We don't want to keep trampoline address in stack, rather keep the
1582 * original return address of first caller thru all the consequent
1583 * instances. This also makes breakpoint unwrapping easier.
1584 */
1585 if (chained) {
1586 if (!utask->return_instances) {
1587 /*
1588 * This situation is not possible. Likely we have an
1589 * attack from user-space.
1590 */
1591 uprobe_warn(current, "handle tail call");
1592 goto fail;
1593 }
1594 orig_ret_vaddr = utask->return_instances->orig_ret_vaddr;
1595 }
1596
1597 ri->uprobe = get_uprobe(uprobe);
1598 ri->func = instruction_pointer(regs);
1599 ri->stack = user_stack_pointer(regs);
1600 ri->orig_ret_vaddr = orig_ret_vaddr;
1601 ri->chained = chained;
1602
1603 utask->depth++;
1604 ri->next = utask->return_instances;
1605 utask->return_instances = ri;
1606
1607 return;
1608 fail:
1609 kfree(ri);
1610 }
1611
1612 /* Prepare to single-step probed instruction out of line. */
1613 static int
1614 pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long bp_vaddr)
1615 {
1616 struct uprobe_task *utask;
1617 unsigned long xol_vaddr;
1618 int err;
1619
1620 utask = get_utask();
1621 if (!utask)
1622 return -ENOMEM;
1623
1624 xol_vaddr = xol_get_insn_slot(uprobe);
1625 if (!xol_vaddr)
1626 return -ENOMEM;
1627
1628 utask->xol_vaddr = xol_vaddr;
1629 utask->vaddr = bp_vaddr;
1630
1631 err = arch_uprobe_pre_xol(&uprobe->arch, regs);
1632 if (unlikely(err)) {
1633 xol_free_insn_slot(current);
1634 return err;
1635 }
1636
1637 utask->active_uprobe = uprobe;
1638 utask->state = UTASK_SSTEP;
1639 return 0;
1640 }
1641
1642 /*
1643 * If we are singlestepping, then ensure this thread is not connected to
1644 * non-fatal signals until completion of singlestep. When xol insn itself
1645 * triggers the signal, restart the original insn even if the task is
1646 * already SIGKILL'ed (since coredump should report the correct ip). This
1647 * is even more important if the task has a handler for SIGSEGV/etc, The
1648 * _same_ instruction should be repeated again after return from the signal
1649 * handler, and SSTEP can never finish in this case.
1650 */
1651 bool uprobe_deny_signal(void)
1652 {
1653 struct task_struct *t = current;
1654 struct uprobe_task *utask = t->utask;
1655
1656 if (likely(!utask || !utask->active_uprobe))
1657 return false;
1658
1659 WARN_ON_ONCE(utask->state != UTASK_SSTEP);
1660
1661 if (signal_pending(t)) {
1662 spin_lock_irq(&t->sighand->siglock);
1663 clear_tsk_thread_flag(t, TIF_SIGPENDING);
1664 spin_unlock_irq(&t->sighand->siglock);
1665
1666 if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
1667 utask->state = UTASK_SSTEP_TRAPPED;
1668 set_tsk_thread_flag(t, TIF_UPROBE);
1669 }
1670 }
1671
1672 return true;
1673 }
1674
1675 static void mmf_recalc_uprobes(struct mm_struct *mm)
1676 {
1677 struct vm_area_struct *vma;
1678
1679 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1680 if (!valid_vma(vma, false))
1681 continue;
1682 /*
1683 * This is not strictly accurate, we can race with
1684 * uprobe_unregister() and see the already removed
1685 * uprobe if delete_uprobe() was not yet called.
1686 * Or this uprobe can be filtered out.
1687 */
1688 if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end))
1689 return;
1690 }
1691
1692 clear_bit(MMF_HAS_UPROBES, &mm->flags);
1693 }
1694
1695 static int is_trap_at_addr(struct mm_struct *mm, unsigned long vaddr)
1696 {
1697 struct page *page;
1698 uprobe_opcode_t opcode;
1699 int result;
1700
1701 pagefault_disable();
1702 result = __get_user(opcode, (uprobe_opcode_t __user *)vaddr);
1703 pagefault_enable();
1704
1705 if (likely(result == 0))
1706 goto out;
1707
1708 /*
1709 * The NULL 'tsk' here ensures that any faults that occur here
1710 * will not be accounted to the task. 'mm' *is* current->mm,
1711 * but we treat this as a 'remote' access since it is
1712 * essentially a kernel access to the memory.
1713 */
1714 result = get_user_pages_remote(NULL, mm, vaddr, 1, FOLL_FORCE, &page,
1715 NULL, NULL);
1716 if (result < 0)
1717 return result;
1718
1719 copy_from_page(page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
1720 put_page(page);
1721 out:
1722 /* This needs to return true for any variant of the trap insn */
1723 return is_trap_insn(&opcode);
1724 }
1725
1726 static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
1727 {
1728 struct mm_struct *mm = current->mm;
1729 struct uprobe *uprobe = NULL;
1730 struct vm_area_struct *vma;
1731
1732 down_read(&mm->mmap_sem);
1733 vma = find_vma(mm, bp_vaddr);
1734 if (vma && vma->vm_start <= bp_vaddr) {
1735 if (valid_vma(vma, false)) {
1736 struct inode *inode = file_inode(vma->vm_file);
1737 loff_t offset = vaddr_to_offset(vma, bp_vaddr);
1738
1739 uprobe = find_uprobe(inode, offset);
1740 }
1741
1742 if (!uprobe)
1743 *is_swbp = is_trap_at_addr(mm, bp_vaddr);
1744 } else {
1745 *is_swbp = -EFAULT;
1746 }
1747
1748 if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags))
1749 mmf_recalc_uprobes(mm);
1750 up_read(&mm->mmap_sem);
1751
1752 return uprobe;
1753 }
1754
1755 static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
1756 {
1757 struct uprobe_consumer *uc;
1758 int remove = UPROBE_HANDLER_REMOVE;
1759 bool need_prep = false; /* prepare return uprobe, when needed */
1760
1761 down_read(&uprobe->register_rwsem);
1762 for (uc = uprobe->consumers; uc; uc = uc->next) {
1763 int rc = 0;
1764
1765 if (uc->handler) {
1766 rc = uc->handler(uc, regs);
1767 WARN(rc & ~UPROBE_HANDLER_MASK,
1768 "bad rc=0x%x from %pf()\n", rc, uc->handler);
1769 }
1770
1771 if (uc->ret_handler)
1772 need_prep = true;
1773
1774 remove &= rc;
1775 }
1776
1777 if (need_prep && !remove)
1778 prepare_uretprobe(uprobe, regs); /* put bp at return */
1779
1780 if (remove && uprobe->consumers) {
1781 WARN_ON(!uprobe_is_active(uprobe));
1782 unapply_uprobe(uprobe, current->mm);
1783 }
1784 up_read(&uprobe->register_rwsem);
1785 }
1786
1787 static void
1788 handle_uretprobe_chain(struct return_instance *ri, struct pt_regs *regs)
1789 {
1790 struct uprobe *uprobe = ri->uprobe;
1791 struct uprobe_consumer *uc;
1792
1793 down_read(&uprobe->register_rwsem);
1794 for (uc = uprobe->consumers; uc; uc = uc->next) {
1795 if (uc->ret_handler)
1796 uc->ret_handler(uc, ri->func, regs);
1797 }
1798 up_read(&uprobe->register_rwsem);
1799 }
1800
1801 static struct return_instance *find_next_ret_chain(struct return_instance *ri)
1802 {
1803 bool chained;
1804
1805 do {
1806 chained = ri->chained;
1807 ri = ri->next; /* can't be NULL if chained */
1808 } while (chained);
1809
1810 return ri;
1811 }
1812
1813 static void handle_trampoline(struct pt_regs *regs)
1814 {
1815 struct uprobe_task *utask;
1816 struct return_instance *ri, *next;
1817 bool valid;
1818
1819 utask = current->utask;
1820 if (!utask)
1821 goto sigill;
1822
1823 ri = utask->return_instances;
1824 if (!ri)
1825 goto sigill;
1826
1827 do {
1828 /*
1829 * We should throw out the frames invalidated by longjmp().
1830 * If this chain is valid, then the next one should be alive
1831 * or NULL; the latter case means that nobody but ri->func
1832 * could hit this trampoline on return. TODO: sigaltstack().
1833 */
1834 next = find_next_ret_chain(ri);
1835 valid = !next || arch_uretprobe_is_alive(next, RP_CHECK_RET, regs);
1836
1837 instruction_pointer_set(regs, ri->orig_ret_vaddr);
1838 do {
1839 if (valid)
1840 handle_uretprobe_chain(ri, regs);
1841 ri = free_ret_instance(ri);
1842 utask->depth--;
1843 } while (ri != next);
1844 } while (!valid);
1845
1846 utask->return_instances = ri;
1847 return;
1848
1849 sigill:
1850 uprobe_warn(current, "handle uretprobe, sending SIGILL.");
1851 force_sig_info(SIGILL, SEND_SIG_FORCED, current);
1852
1853 }
1854
1855 bool __weak arch_uprobe_ignore(struct arch_uprobe *aup, struct pt_regs *regs)
1856 {
1857 return false;
1858 }
1859
1860 bool __weak arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx,
1861 struct pt_regs *regs)
1862 {
1863 return true;
1864 }
1865
1866 /*
1867 * Run handler and ask thread to singlestep.
1868 * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
1869 */
1870 static void handle_swbp(struct pt_regs *regs)
1871 {
1872 struct uprobe *uprobe;
1873 unsigned long bp_vaddr;
1874 int uninitialized_var(is_swbp);
1875
1876 bp_vaddr = uprobe_get_swbp_addr(regs);
1877 if (bp_vaddr == get_trampoline_vaddr())
1878 return handle_trampoline(regs);
1879
1880 uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
1881 if (!uprobe) {
1882 if (is_swbp > 0) {
1883 /* No matching uprobe; signal SIGTRAP. */
1884 send_sig(SIGTRAP, current, 0);
1885 } else {
1886 /*
1887 * Either we raced with uprobe_unregister() or we can't
1888 * access this memory. The latter is only possible if
1889 * another thread plays with our ->mm. In both cases
1890 * we can simply restart. If this vma was unmapped we
1891 * can pretend this insn was not executed yet and get
1892 * the (correct) SIGSEGV after restart.
1893 */
1894 instruction_pointer_set(regs, bp_vaddr);
1895 }
1896 return;
1897 }
1898
1899 /* change it in advance for ->handler() and restart */
1900 instruction_pointer_set(regs, bp_vaddr);
1901
1902 /*
1903 * TODO: move copy_insn/etc into _register and remove this hack.
1904 * After we hit the bp, _unregister + _register can install the
1905 * new and not-yet-analyzed uprobe at the same address, restart.
1906 */
1907 smp_rmb(); /* pairs with wmb() in install_breakpoint() */
1908 if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags)))
1909 goto out;
1910
1911 /* Tracing handlers use ->utask to communicate with fetch methods */
1912 if (!get_utask())
1913 goto out;
1914
1915 if (arch_uprobe_ignore(&uprobe->arch, regs))
1916 goto out;
1917
1918 handler_chain(uprobe, regs);
1919
1920 if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
1921 goto out;
1922
1923 if (!pre_ssout(uprobe, regs, bp_vaddr))
1924 return;
1925
1926 /* arch_uprobe_skip_sstep() succeeded, or restart if can't singlestep */
1927 out:
1928 put_uprobe(uprobe);
1929 }
1930
1931 /*
1932 * Perform required fix-ups and disable singlestep.
1933 * Allow pending signals to take effect.
1934 */
1935 static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
1936 {
1937 struct uprobe *uprobe;
1938 int err = 0;
1939
1940 uprobe = utask->active_uprobe;
1941 if (utask->state == UTASK_SSTEP_ACK)
1942 err = arch_uprobe_post_xol(&uprobe->arch, regs);
1943 else if (utask->state == UTASK_SSTEP_TRAPPED)
1944 arch_uprobe_abort_xol(&uprobe->arch, regs);
1945 else
1946 WARN_ON_ONCE(1);
1947
1948 put_uprobe(uprobe);
1949 utask->active_uprobe = NULL;
1950 utask->state = UTASK_RUNNING;
1951 xol_free_insn_slot(current);
1952
1953 spin_lock_irq(&current->sighand->siglock);
1954 recalc_sigpending(); /* see uprobe_deny_signal() */
1955 spin_unlock_irq(&current->sighand->siglock);
1956
1957 if (unlikely(err)) {
1958 uprobe_warn(current, "execute the probed insn, sending SIGILL.");
1959 force_sig_info(SIGILL, SEND_SIG_FORCED, current);
1960 }
1961 }
1962
1963 /*
1964 * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and
1965 * allows the thread to return from interrupt. After that handle_swbp()
1966 * sets utask->active_uprobe.
1967 *
1968 * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag
1969 * and allows the thread to return from interrupt.
1970 *
1971 * While returning to userspace, thread notices the TIF_UPROBE flag and calls
1972 * uprobe_notify_resume().
1973 */
1974 void uprobe_notify_resume(struct pt_regs *regs)
1975 {
1976 struct uprobe_task *utask;
1977
1978 clear_thread_flag(TIF_UPROBE);
1979
1980 utask = current->utask;
1981 if (utask && utask->active_uprobe)
1982 handle_singlestep(utask, regs);
1983 else
1984 handle_swbp(regs);
1985 }
1986
1987 /*
1988 * uprobe_pre_sstep_notifier gets called from interrupt context as part of
1989 * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
1990 */
1991 int uprobe_pre_sstep_notifier(struct pt_regs *regs)
1992 {
1993 if (!current->mm)
1994 return 0;
1995
1996 if (!test_bit(MMF_HAS_UPROBES, &current->mm->flags) &&
1997 (!current->utask || !current->utask->return_instances))
1998 return 0;
1999
2000 set_thread_flag(TIF_UPROBE);
2001 return 1;
2002 }
2003
2004 /*
2005 * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
2006 * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
2007 */
2008 int uprobe_post_sstep_notifier(struct pt_regs *regs)
2009 {
2010 struct uprobe_task *utask = current->utask;
2011
2012 if (!current->mm || !utask || !utask->active_uprobe)
2013 /* task is currently not uprobed */
2014 return 0;
2015
2016 utask->state = UTASK_SSTEP_ACK;
2017 set_thread_flag(TIF_UPROBE);
2018 return 1;
2019 }
2020
2021 static struct notifier_block uprobe_exception_nb = {
2022 .notifier_call = arch_uprobe_exception_notify,
2023 .priority = INT_MAX-1, /* notified after kprobes, kgdb */
2024 };
2025
2026 static int __init init_uprobes(void)
2027 {
2028 int i;
2029
2030 for (i = 0; i < UPROBES_HASH_SZ; i++)
2031 mutex_init(&uprobes_mmap_mutex[i]);
2032
2033 if (percpu_init_rwsem(&dup_mmap_sem))
2034 return -ENOMEM;
2035
2036 return register_die_notifier(&uprobe_exception_nb);
2037 }
2038 __initcall(init_uprobes);