]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - kernel/events/uprobes.c
Merge tag 'arc-v3.9-rc1-late' of git://git.kernel.org/pub/scm/linux/kernel/git/vgupta/arc
[mirror_ubuntu-hirsute-kernel.git] / kernel / events / uprobes.c
1 /*
2 * User-space Probes (UProbes)
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright (C) IBM Corporation, 2008-2012
19 * Authors:
20 * Srikar Dronamraju
21 * Jim Keniston
22 * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
23 */
24
25 #include <linux/kernel.h>
26 #include <linux/highmem.h>
27 #include <linux/pagemap.h> /* read_mapping_page */
28 #include <linux/slab.h>
29 #include <linux/sched.h>
30 #include <linux/export.h>
31 #include <linux/rmap.h> /* anon_vma_prepare */
32 #include <linux/mmu_notifier.h> /* set_pte_at_notify */
33 #include <linux/swap.h> /* try_to_free_swap */
34 #include <linux/ptrace.h> /* user_enable_single_step */
35 #include <linux/kdebug.h> /* notifier mechanism */
36 #include "../../mm/internal.h" /* munlock_vma_page */
37 #include <linux/percpu-rwsem.h>
38
39 #include <linux/uprobes.h>
40
41 #define UINSNS_PER_PAGE (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
42 #define MAX_UPROBE_XOL_SLOTS UINSNS_PER_PAGE
43
44 static struct rb_root uprobes_tree = RB_ROOT;
45 /*
46 * allows us to skip the uprobe_mmap if there are no uprobe events active
47 * at this time. Probably a fine grained per inode count is better?
48 */
49 #define no_uprobe_events() RB_EMPTY_ROOT(&uprobes_tree)
50
51 static DEFINE_SPINLOCK(uprobes_treelock); /* serialize rbtree access */
52
53 #define UPROBES_HASH_SZ 13
54 /* serialize uprobe->pending_list */
55 static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
56 #define uprobes_mmap_hash(v) (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
57
58 static struct percpu_rw_semaphore dup_mmap_sem;
59
60 /* Have a copy of original instruction */
61 #define UPROBE_COPY_INSN 0
62 /* Can skip singlestep */
63 #define UPROBE_SKIP_SSTEP 1
64
65 struct uprobe {
66 struct rb_node rb_node; /* node in the rb tree */
67 atomic_t ref;
68 struct rw_semaphore register_rwsem;
69 struct rw_semaphore consumer_rwsem;
70 struct list_head pending_list;
71 struct uprobe_consumer *consumers;
72 struct inode *inode; /* Also hold a ref to inode */
73 loff_t offset;
74 unsigned long flags;
75 struct arch_uprobe arch;
76 };
77
78 /*
79 * valid_vma: Verify if the specified vma is an executable vma
80 * Relax restrictions while unregistering: vm_flags might have
81 * changed after breakpoint was inserted.
82 * - is_register: indicates if we are in register context.
83 * - Return 1 if the specified virtual address is in an
84 * executable vma.
85 */
86 static bool valid_vma(struct vm_area_struct *vma, bool is_register)
87 {
88 vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_SHARED;
89
90 if (is_register)
91 flags |= VM_WRITE;
92
93 return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC;
94 }
95
96 static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset)
97 {
98 return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
99 }
100
101 static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr)
102 {
103 return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start);
104 }
105
106 /**
107 * __replace_page - replace page in vma by new page.
108 * based on replace_page in mm/ksm.c
109 *
110 * @vma: vma that holds the pte pointing to page
111 * @addr: address the old @page is mapped at
112 * @page: the cowed page we are replacing by kpage
113 * @kpage: the modified page we replace page by
114 *
115 * Returns 0 on success, -EFAULT on failure.
116 */
117 static int __replace_page(struct vm_area_struct *vma, unsigned long addr,
118 struct page *page, struct page *kpage)
119 {
120 struct mm_struct *mm = vma->vm_mm;
121 spinlock_t *ptl;
122 pte_t *ptep;
123 int err;
124 /* For mmu_notifiers */
125 const unsigned long mmun_start = addr;
126 const unsigned long mmun_end = addr + PAGE_SIZE;
127
128 /* For try_to_free_swap() and munlock_vma_page() below */
129 lock_page(page);
130
131 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
132 err = -EAGAIN;
133 ptep = page_check_address(page, mm, addr, &ptl, 0);
134 if (!ptep)
135 goto unlock;
136
137 get_page(kpage);
138 page_add_new_anon_rmap(kpage, vma, addr);
139
140 if (!PageAnon(page)) {
141 dec_mm_counter(mm, MM_FILEPAGES);
142 inc_mm_counter(mm, MM_ANONPAGES);
143 }
144
145 flush_cache_page(vma, addr, pte_pfn(*ptep));
146 ptep_clear_flush(vma, addr, ptep);
147 set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
148
149 page_remove_rmap(page);
150 if (!page_mapped(page))
151 try_to_free_swap(page);
152 pte_unmap_unlock(ptep, ptl);
153
154 if (vma->vm_flags & VM_LOCKED)
155 munlock_vma_page(page);
156 put_page(page);
157
158 err = 0;
159 unlock:
160 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
161 unlock_page(page);
162 return err;
163 }
164
165 /**
166 * is_swbp_insn - check if instruction is breakpoint instruction.
167 * @insn: instruction to be checked.
168 * Default implementation of is_swbp_insn
169 * Returns true if @insn is a breakpoint instruction.
170 */
171 bool __weak is_swbp_insn(uprobe_opcode_t *insn)
172 {
173 return *insn == UPROBE_SWBP_INSN;
174 }
175
176 static void copy_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *opcode)
177 {
178 void *kaddr = kmap_atomic(page);
179 memcpy(opcode, kaddr + (vaddr & ~PAGE_MASK), UPROBE_SWBP_INSN_SIZE);
180 kunmap_atomic(kaddr);
181 }
182
183 static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode)
184 {
185 uprobe_opcode_t old_opcode;
186 bool is_swbp;
187
188 copy_opcode(page, vaddr, &old_opcode);
189 is_swbp = is_swbp_insn(&old_opcode);
190
191 if (is_swbp_insn(new_opcode)) {
192 if (is_swbp) /* register: already installed? */
193 return 0;
194 } else {
195 if (!is_swbp) /* unregister: was it changed by us? */
196 return 0;
197 }
198
199 return 1;
200 }
201
202 /*
203 * NOTE:
204 * Expect the breakpoint instruction to be the smallest size instruction for
205 * the architecture. If an arch has variable length instruction and the
206 * breakpoint instruction is not of the smallest length instruction
207 * supported by that architecture then we need to modify is_swbp_at_addr and
208 * write_opcode accordingly. This would never be a problem for archs that
209 * have fixed length instructions.
210 */
211
212 /*
213 * write_opcode - write the opcode at a given virtual address.
214 * @mm: the probed process address space.
215 * @vaddr: the virtual address to store the opcode.
216 * @opcode: opcode to be written at @vaddr.
217 *
218 * Called with mm->mmap_sem held (for read and with a reference to
219 * mm).
220 *
221 * For mm @mm, write the opcode at @vaddr.
222 * Return 0 (success) or a negative errno.
223 */
224 static int write_opcode(struct mm_struct *mm, unsigned long vaddr,
225 uprobe_opcode_t opcode)
226 {
227 struct page *old_page, *new_page;
228 void *vaddr_old, *vaddr_new;
229 struct vm_area_struct *vma;
230 int ret;
231
232 retry:
233 /* Read the page with vaddr into memory */
234 ret = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &old_page, &vma);
235 if (ret <= 0)
236 return ret;
237
238 ret = verify_opcode(old_page, vaddr, &opcode);
239 if (ret <= 0)
240 goto put_old;
241
242 ret = -ENOMEM;
243 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
244 if (!new_page)
245 goto put_old;
246
247 __SetPageUptodate(new_page);
248
249 /* copy the page now that we've got it stable */
250 vaddr_old = kmap_atomic(old_page);
251 vaddr_new = kmap_atomic(new_page);
252
253 memcpy(vaddr_new, vaddr_old, PAGE_SIZE);
254 memcpy(vaddr_new + (vaddr & ~PAGE_MASK), &opcode, UPROBE_SWBP_INSN_SIZE);
255
256 kunmap_atomic(vaddr_new);
257 kunmap_atomic(vaddr_old);
258
259 ret = anon_vma_prepare(vma);
260 if (ret)
261 goto put_new;
262
263 ret = __replace_page(vma, vaddr, old_page, new_page);
264
265 put_new:
266 page_cache_release(new_page);
267 put_old:
268 put_page(old_page);
269
270 if (unlikely(ret == -EAGAIN))
271 goto retry;
272 return ret;
273 }
274
275 /**
276 * set_swbp - store breakpoint at a given address.
277 * @auprobe: arch specific probepoint information.
278 * @mm: the probed process address space.
279 * @vaddr: the virtual address to insert the opcode.
280 *
281 * For mm @mm, store the breakpoint instruction at @vaddr.
282 * Return 0 (success) or a negative errno.
283 */
284 int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
285 {
286 return write_opcode(mm, vaddr, UPROBE_SWBP_INSN);
287 }
288
289 /**
290 * set_orig_insn - Restore the original instruction.
291 * @mm: the probed process address space.
292 * @auprobe: arch specific probepoint information.
293 * @vaddr: the virtual address to insert the opcode.
294 *
295 * For mm @mm, restore the original opcode (opcode) at @vaddr.
296 * Return 0 (success) or a negative errno.
297 */
298 int __weak
299 set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
300 {
301 return write_opcode(mm, vaddr, *(uprobe_opcode_t *)auprobe->insn);
302 }
303
304 static int match_uprobe(struct uprobe *l, struct uprobe *r)
305 {
306 if (l->inode < r->inode)
307 return -1;
308
309 if (l->inode > r->inode)
310 return 1;
311
312 if (l->offset < r->offset)
313 return -1;
314
315 if (l->offset > r->offset)
316 return 1;
317
318 return 0;
319 }
320
321 static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
322 {
323 struct uprobe u = { .inode = inode, .offset = offset };
324 struct rb_node *n = uprobes_tree.rb_node;
325 struct uprobe *uprobe;
326 int match;
327
328 while (n) {
329 uprobe = rb_entry(n, struct uprobe, rb_node);
330 match = match_uprobe(&u, uprobe);
331 if (!match) {
332 atomic_inc(&uprobe->ref);
333 return uprobe;
334 }
335
336 if (match < 0)
337 n = n->rb_left;
338 else
339 n = n->rb_right;
340 }
341 return NULL;
342 }
343
344 /*
345 * Find a uprobe corresponding to a given inode:offset
346 * Acquires uprobes_treelock
347 */
348 static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
349 {
350 struct uprobe *uprobe;
351
352 spin_lock(&uprobes_treelock);
353 uprobe = __find_uprobe(inode, offset);
354 spin_unlock(&uprobes_treelock);
355
356 return uprobe;
357 }
358
359 static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
360 {
361 struct rb_node **p = &uprobes_tree.rb_node;
362 struct rb_node *parent = NULL;
363 struct uprobe *u;
364 int match;
365
366 while (*p) {
367 parent = *p;
368 u = rb_entry(parent, struct uprobe, rb_node);
369 match = match_uprobe(uprobe, u);
370 if (!match) {
371 atomic_inc(&u->ref);
372 return u;
373 }
374
375 if (match < 0)
376 p = &parent->rb_left;
377 else
378 p = &parent->rb_right;
379
380 }
381
382 u = NULL;
383 rb_link_node(&uprobe->rb_node, parent, p);
384 rb_insert_color(&uprobe->rb_node, &uprobes_tree);
385 /* get access + creation ref */
386 atomic_set(&uprobe->ref, 2);
387
388 return u;
389 }
390
391 /*
392 * Acquire uprobes_treelock.
393 * Matching uprobe already exists in rbtree;
394 * increment (access refcount) and return the matching uprobe.
395 *
396 * No matching uprobe; insert the uprobe in rb_tree;
397 * get a double refcount (access + creation) and return NULL.
398 */
399 static struct uprobe *insert_uprobe(struct uprobe *uprobe)
400 {
401 struct uprobe *u;
402
403 spin_lock(&uprobes_treelock);
404 u = __insert_uprobe(uprobe);
405 spin_unlock(&uprobes_treelock);
406
407 return u;
408 }
409
410 static void put_uprobe(struct uprobe *uprobe)
411 {
412 if (atomic_dec_and_test(&uprobe->ref))
413 kfree(uprobe);
414 }
415
416 static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset)
417 {
418 struct uprobe *uprobe, *cur_uprobe;
419
420 uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
421 if (!uprobe)
422 return NULL;
423
424 uprobe->inode = igrab(inode);
425 uprobe->offset = offset;
426 init_rwsem(&uprobe->register_rwsem);
427 init_rwsem(&uprobe->consumer_rwsem);
428 /* For now assume that the instruction need not be single-stepped */
429 __set_bit(UPROBE_SKIP_SSTEP, &uprobe->flags);
430
431 /* add to uprobes_tree, sorted on inode:offset */
432 cur_uprobe = insert_uprobe(uprobe);
433
434 /* a uprobe exists for this inode:offset combination */
435 if (cur_uprobe) {
436 kfree(uprobe);
437 uprobe = cur_uprobe;
438 iput(inode);
439 }
440
441 return uprobe;
442 }
443
444 static void consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
445 {
446 down_write(&uprobe->consumer_rwsem);
447 uc->next = uprobe->consumers;
448 uprobe->consumers = uc;
449 up_write(&uprobe->consumer_rwsem);
450 }
451
452 /*
453 * For uprobe @uprobe, delete the consumer @uc.
454 * Return true if the @uc is deleted successfully
455 * or return false.
456 */
457 static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
458 {
459 struct uprobe_consumer **con;
460 bool ret = false;
461
462 down_write(&uprobe->consumer_rwsem);
463 for (con = &uprobe->consumers; *con; con = &(*con)->next) {
464 if (*con == uc) {
465 *con = uc->next;
466 ret = true;
467 break;
468 }
469 }
470 up_write(&uprobe->consumer_rwsem);
471
472 return ret;
473 }
474
475 static int
476 __copy_insn(struct address_space *mapping, struct file *filp, char *insn,
477 unsigned long nbytes, loff_t offset)
478 {
479 struct page *page;
480 void *vaddr;
481 unsigned long off;
482 pgoff_t idx;
483
484 if (!filp)
485 return -EINVAL;
486
487 if (!mapping->a_ops->readpage)
488 return -EIO;
489
490 idx = offset >> PAGE_CACHE_SHIFT;
491 off = offset & ~PAGE_MASK;
492
493 /*
494 * Ensure that the page that has the original instruction is
495 * populated and in page-cache.
496 */
497 page = read_mapping_page(mapping, idx, filp);
498 if (IS_ERR(page))
499 return PTR_ERR(page);
500
501 vaddr = kmap_atomic(page);
502 memcpy(insn, vaddr + off, nbytes);
503 kunmap_atomic(vaddr);
504 page_cache_release(page);
505
506 return 0;
507 }
508
509 static int copy_insn(struct uprobe *uprobe, struct file *filp)
510 {
511 struct address_space *mapping;
512 unsigned long nbytes;
513 int bytes;
514
515 nbytes = PAGE_SIZE - (uprobe->offset & ~PAGE_MASK);
516 mapping = uprobe->inode->i_mapping;
517
518 /* Instruction at end of binary; copy only available bytes */
519 if (uprobe->offset + MAX_UINSN_BYTES > uprobe->inode->i_size)
520 bytes = uprobe->inode->i_size - uprobe->offset;
521 else
522 bytes = MAX_UINSN_BYTES;
523
524 /* Instruction at the page-boundary; copy bytes in second page */
525 if (nbytes < bytes) {
526 int err = __copy_insn(mapping, filp, uprobe->arch.insn + nbytes,
527 bytes - nbytes, uprobe->offset + nbytes);
528 if (err)
529 return err;
530 bytes = nbytes;
531 }
532 return __copy_insn(mapping, filp, uprobe->arch.insn, bytes, uprobe->offset);
533 }
534
535 static int prepare_uprobe(struct uprobe *uprobe, struct file *file,
536 struct mm_struct *mm, unsigned long vaddr)
537 {
538 int ret = 0;
539
540 if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
541 return ret;
542
543 /* TODO: move this into _register, until then we abuse this sem. */
544 down_write(&uprobe->consumer_rwsem);
545 if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
546 goto out;
547
548 ret = copy_insn(uprobe, file);
549 if (ret)
550 goto out;
551
552 ret = -ENOTSUPP;
553 if (is_swbp_insn((uprobe_opcode_t *)uprobe->arch.insn))
554 goto out;
555
556 ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
557 if (ret)
558 goto out;
559
560 /* write_opcode() assumes we don't cross page boundary */
561 BUG_ON((uprobe->offset & ~PAGE_MASK) +
562 UPROBE_SWBP_INSN_SIZE > PAGE_SIZE);
563
564 smp_wmb(); /* pairs with rmb() in find_active_uprobe() */
565 set_bit(UPROBE_COPY_INSN, &uprobe->flags);
566
567 out:
568 up_write(&uprobe->consumer_rwsem);
569
570 return ret;
571 }
572
573 static inline bool consumer_filter(struct uprobe_consumer *uc,
574 enum uprobe_filter_ctx ctx, struct mm_struct *mm)
575 {
576 return !uc->filter || uc->filter(uc, ctx, mm);
577 }
578
579 static bool filter_chain(struct uprobe *uprobe,
580 enum uprobe_filter_ctx ctx, struct mm_struct *mm)
581 {
582 struct uprobe_consumer *uc;
583 bool ret = false;
584
585 down_read(&uprobe->consumer_rwsem);
586 for (uc = uprobe->consumers; uc; uc = uc->next) {
587 ret = consumer_filter(uc, ctx, mm);
588 if (ret)
589 break;
590 }
591 up_read(&uprobe->consumer_rwsem);
592
593 return ret;
594 }
595
596 static int
597 install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
598 struct vm_area_struct *vma, unsigned long vaddr)
599 {
600 bool first_uprobe;
601 int ret;
602
603 ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr);
604 if (ret)
605 return ret;
606
607 /*
608 * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(),
609 * the task can hit this breakpoint right after __replace_page().
610 */
611 first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags);
612 if (first_uprobe)
613 set_bit(MMF_HAS_UPROBES, &mm->flags);
614
615 ret = set_swbp(&uprobe->arch, mm, vaddr);
616 if (!ret)
617 clear_bit(MMF_RECALC_UPROBES, &mm->flags);
618 else if (first_uprobe)
619 clear_bit(MMF_HAS_UPROBES, &mm->flags);
620
621 return ret;
622 }
623
624 static int
625 remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr)
626 {
627 set_bit(MMF_RECALC_UPROBES, &mm->flags);
628 return set_orig_insn(&uprobe->arch, mm, vaddr);
629 }
630
631 static inline bool uprobe_is_active(struct uprobe *uprobe)
632 {
633 return !RB_EMPTY_NODE(&uprobe->rb_node);
634 }
635 /*
636 * There could be threads that have already hit the breakpoint. They
637 * will recheck the current insn and restart if find_uprobe() fails.
638 * See find_active_uprobe().
639 */
640 static void delete_uprobe(struct uprobe *uprobe)
641 {
642 if (WARN_ON(!uprobe_is_active(uprobe)))
643 return;
644
645 spin_lock(&uprobes_treelock);
646 rb_erase(&uprobe->rb_node, &uprobes_tree);
647 spin_unlock(&uprobes_treelock);
648 RB_CLEAR_NODE(&uprobe->rb_node); /* for uprobe_is_active() */
649 iput(uprobe->inode);
650 put_uprobe(uprobe);
651 }
652
653 struct map_info {
654 struct map_info *next;
655 struct mm_struct *mm;
656 unsigned long vaddr;
657 };
658
659 static inline struct map_info *free_map_info(struct map_info *info)
660 {
661 struct map_info *next = info->next;
662 kfree(info);
663 return next;
664 }
665
666 static struct map_info *
667 build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
668 {
669 unsigned long pgoff = offset >> PAGE_SHIFT;
670 struct vm_area_struct *vma;
671 struct map_info *curr = NULL;
672 struct map_info *prev = NULL;
673 struct map_info *info;
674 int more = 0;
675
676 again:
677 mutex_lock(&mapping->i_mmap_mutex);
678 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
679 if (!valid_vma(vma, is_register))
680 continue;
681
682 if (!prev && !more) {
683 /*
684 * Needs GFP_NOWAIT to avoid i_mmap_mutex recursion through
685 * reclaim. This is optimistic, no harm done if it fails.
686 */
687 prev = kmalloc(sizeof(struct map_info),
688 GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
689 if (prev)
690 prev->next = NULL;
691 }
692 if (!prev) {
693 more++;
694 continue;
695 }
696
697 if (!atomic_inc_not_zero(&vma->vm_mm->mm_users))
698 continue;
699
700 info = prev;
701 prev = prev->next;
702 info->next = curr;
703 curr = info;
704
705 info->mm = vma->vm_mm;
706 info->vaddr = offset_to_vaddr(vma, offset);
707 }
708 mutex_unlock(&mapping->i_mmap_mutex);
709
710 if (!more)
711 goto out;
712
713 prev = curr;
714 while (curr) {
715 mmput(curr->mm);
716 curr = curr->next;
717 }
718
719 do {
720 info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
721 if (!info) {
722 curr = ERR_PTR(-ENOMEM);
723 goto out;
724 }
725 info->next = prev;
726 prev = info;
727 } while (--more);
728
729 goto again;
730 out:
731 while (prev)
732 prev = free_map_info(prev);
733 return curr;
734 }
735
736 static int
737 register_for_each_vma(struct uprobe *uprobe, struct uprobe_consumer *new)
738 {
739 bool is_register = !!new;
740 struct map_info *info;
741 int err = 0;
742
743 percpu_down_write(&dup_mmap_sem);
744 info = build_map_info(uprobe->inode->i_mapping,
745 uprobe->offset, is_register);
746 if (IS_ERR(info)) {
747 err = PTR_ERR(info);
748 goto out;
749 }
750
751 while (info) {
752 struct mm_struct *mm = info->mm;
753 struct vm_area_struct *vma;
754
755 if (err && is_register)
756 goto free;
757
758 down_write(&mm->mmap_sem);
759 vma = find_vma(mm, info->vaddr);
760 if (!vma || !valid_vma(vma, is_register) ||
761 vma->vm_file->f_mapping->host != uprobe->inode)
762 goto unlock;
763
764 if (vma->vm_start > info->vaddr ||
765 vaddr_to_offset(vma, info->vaddr) != uprobe->offset)
766 goto unlock;
767
768 if (is_register) {
769 /* consult only the "caller", new consumer. */
770 if (consumer_filter(new,
771 UPROBE_FILTER_REGISTER, mm))
772 err = install_breakpoint(uprobe, mm, vma, info->vaddr);
773 } else if (test_bit(MMF_HAS_UPROBES, &mm->flags)) {
774 if (!filter_chain(uprobe,
775 UPROBE_FILTER_UNREGISTER, mm))
776 err |= remove_breakpoint(uprobe, mm, info->vaddr);
777 }
778
779 unlock:
780 up_write(&mm->mmap_sem);
781 free:
782 mmput(mm);
783 info = free_map_info(info);
784 }
785 out:
786 percpu_up_write(&dup_mmap_sem);
787 return err;
788 }
789
790 static int __uprobe_register(struct uprobe *uprobe, struct uprobe_consumer *uc)
791 {
792 consumer_add(uprobe, uc);
793 return register_for_each_vma(uprobe, uc);
794 }
795
796 static void __uprobe_unregister(struct uprobe *uprobe, struct uprobe_consumer *uc)
797 {
798 int err;
799
800 if (!consumer_del(uprobe, uc)) /* WARN? */
801 return;
802
803 err = register_for_each_vma(uprobe, NULL);
804 /* TODO : cant unregister? schedule a worker thread */
805 if (!uprobe->consumers && !err)
806 delete_uprobe(uprobe);
807 }
808
809 /*
810 * uprobe_register - register a probe
811 * @inode: the file in which the probe has to be placed.
812 * @offset: offset from the start of the file.
813 * @uc: information on howto handle the probe..
814 *
815 * Apart from the access refcount, uprobe_register() takes a creation
816 * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
817 * inserted into the rbtree (i.e first consumer for a @inode:@offset
818 * tuple). Creation refcount stops uprobe_unregister from freeing the
819 * @uprobe even before the register operation is complete. Creation
820 * refcount is released when the last @uc for the @uprobe
821 * unregisters.
822 *
823 * Return errno if it cannot successully install probes
824 * else return 0 (success)
825 */
826 int uprobe_register(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
827 {
828 struct uprobe *uprobe;
829 int ret;
830
831 /* Racy, just to catch the obvious mistakes */
832 if (offset > i_size_read(inode))
833 return -EINVAL;
834
835 retry:
836 uprobe = alloc_uprobe(inode, offset);
837 if (!uprobe)
838 return -ENOMEM;
839 /*
840 * We can race with uprobe_unregister()->delete_uprobe().
841 * Check uprobe_is_active() and retry if it is false.
842 */
843 down_write(&uprobe->register_rwsem);
844 ret = -EAGAIN;
845 if (likely(uprobe_is_active(uprobe))) {
846 ret = __uprobe_register(uprobe, uc);
847 if (ret)
848 __uprobe_unregister(uprobe, uc);
849 }
850 up_write(&uprobe->register_rwsem);
851 put_uprobe(uprobe);
852
853 if (unlikely(ret == -EAGAIN))
854 goto retry;
855 return ret;
856 }
857 EXPORT_SYMBOL_GPL(uprobe_register);
858
859 /*
860 * uprobe_apply - unregister a already registered probe.
861 * @inode: the file in which the probe has to be removed.
862 * @offset: offset from the start of the file.
863 * @uc: consumer which wants to add more or remove some breakpoints
864 * @add: add or remove the breakpoints
865 */
866 int uprobe_apply(struct inode *inode, loff_t offset,
867 struct uprobe_consumer *uc, bool add)
868 {
869 struct uprobe *uprobe;
870 struct uprobe_consumer *con;
871 int ret = -ENOENT;
872
873 uprobe = find_uprobe(inode, offset);
874 if (!uprobe)
875 return ret;
876
877 down_write(&uprobe->register_rwsem);
878 for (con = uprobe->consumers; con && con != uc ; con = con->next)
879 ;
880 if (con)
881 ret = register_for_each_vma(uprobe, add ? uc : NULL);
882 up_write(&uprobe->register_rwsem);
883 put_uprobe(uprobe);
884
885 return ret;
886 }
887
888 /*
889 * uprobe_unregister - unregister a already registered probe.
890 * @inode: the file in which the probe has to be removed.
891 * @offset: offset from the start of the file.
892 * @uc: identify which probe if multiple probes are colocated.
893 */
894 void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
895 {
896 struct uprobe *uprobe;
897
898 uprobe = find_uprobe(inode, offset);
899 if (!uprobe)
900 return;
901
902 down_write(&uprobe->register_rwsem);
903 __uprobe_unregister(uprobe, uc);
904 up_write(&uprobe->register_rwsem);
905 put_uprobe(uprobe);
906 }
907 EXPORT_SYMBOL_GPL(uprobe_unregister);
908
909 static int unapply_uprobe(struct uprobe *uprobe, struct mm_struct *mm)
910 {
911 struct vm_area_struct *vma;
912 int err = 0;
913
914 down_read(&mm->mmap_sem);
915 for (vma = mm->mmap; vma; vma = vma->vm_next) {
916 unsigned long vaddr;
917 loff_t offset;
918
919 if (!valid_vma(vma, false) ||
920 vma->vm_file->f_mapping->host != uprobe->inode)
921 continue;
922
923 offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT;
924 if (uprobe->offset < offset ||
925 uprobe->offset >= offset + vma->vm_end - vma->vm_start)
926 continue;
927
928 vaddr = offset_to_vaddr(vma, uprobe->offset);
929 err |= remove_breakpoint(uprobe, mm, vaddr);
930 }
931 up_read(&mm->mmap_sem);
932
933 return err;
934 }
935
936 static struct rb_node *
937 find_node_in_range(struct inode *inode, loff_t min, loff_t max)
938 {
939 struct rb_node *n = uprobes_tree.rb_node;
940
941 while (n) {
942 struct uprobe *u = rb_entry(n, struct uprobe, rb_node);
943
944 if (inode < u->inode) {
945 n = n->rb_left;
946 } else if (inode > u->inode) {
947 n = n->rb_right;
948 } else {
949 if (max < u->offset)
950 n = n->rb_left;
951 else if (min > u->offset)
952 n = n->rb_right;
953 else
954 break;
955 }
956 }
957
958 return n;
959 }
960
961 /*
962 * For a given range in vma, build a list of probes that need to be inserted.
963 */
964 static void build_probe_list(struct inode *inode,
965 struct vm_area_struct *vma,
966 unsigned long start, unsigned long end,
967 struct list_head *head)
968 {
969 loff_t min, max;
970 struct rb_node *n, *t;
971 struct uprobe *u;
972
973 INIT_LIST_HEAD(head);
974 min = vaddr_to_offset(vma, start);
975 max = min + (end - start) - 1;
976
977 spin_lock(&uprobes_treelock);
978 n = find_node_in_range(inode, min, max);
979 if (n) {
980 for (t = n; t; t = rb_prev(t)) {
981 u = rb_entry(t, struct uprobe, rb_node);
982 if (u->inode != inode || u->offset < min)
983 break;
984 list_add(&u->pending_list, head);
985 atomic_inc(&u->ref);
986 }
987 for (t = n; (t = rb_next(t)); ) {
988 u = rb_entry(t, struct uprobe, rb_node);
989 if (u->inode != inode || u->offset > max)
990 break;
991 list_add(&u->pending_list, head);
992 atomic_inc(&u->ref);
993 }
994 }
995 spin_unlock(&uprobes_treelock);
996 }
997
998 /*
999 * Called from mmap_region/vma_adjust with mm->mmap_sem acquired.
1000 *
1001 * Currently we ignore all errors and always return 0, the callers
1002 * can't handle the failure anyway.
1003 */
1004 int uprobe_mmap(struct vm_area_struct *vma)
1005 {
1006 struct list_head tmp_list;
1007 struct uprobe *uprobe, *u;
1008 struct inode *inode;
1009
1010 if (no_uprobe_events() || !valid_vma(vma, true))
1011 return 0;
1012
1013 inode = vma->vm_file->f_mapping->host;
1014 if (!inode)
1015 return 0;
1016
1017 mutex_lock(uprobes_mmap_hash(inode));
1018 build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list);
1019 /*
1020 * We can race with uprobe_unregister(), this uprobe can be already
1021 * removed. But in this case filter_chain() must return false, all
1022 * consumers have gone away.
1023 */
1024 list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
1025 if (!fatal_signal_pending(current) &&
1026 filter_chain(uprobe, UPROBE_FILTER_MMAP, vma->vm_mm)) {
1027 unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset);
1028 install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
1029 }
1030 put_uprobe(uprobe);
1031 }
1032 mutex_unlock(uprobes_mmap_hash(inode));
1033
1034 return 0;
1035 }
1036
1037 static bool
1038 vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1039 {
1040 loff_t min, max;
1041 struct inode *inode;
1042 struct rb_node *n;
1043
1044 inode = vma->vm_file->f_mapping->host;
1045
1046 min = vaddr_to_offset(vma, start);
1047 max = min + (end - start) - 1;
1048
1049 spin_lock(&uprobes_treelock);
1050 n = find_node_in_range(inode, min, max);
1051 spin_unlock(&uprobes_treelock);
1052
1053 return !!n;
1054 }
1055
1056 /*
1057 * Called in context of a munmap of a vma.
1058 */
1059 void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1060 {
1061 if (no_uprobe_events() || !valid_vma(vma, false))
1062 return;
1063
1064 if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */
1065 return;
1066
1067 if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) ||
1068 test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags))
1069 return;
1070
1071 if (vma_has_uprobes(vma, start, end))
1072 set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags);
1073 }
1074
1075 /* Slot allocation for XOL */
1076 static int xol_add_vma(struct xol_area *area)
1077 {
1078 struct mm_struct *mm = current->mm;
1079 int ret = -EALREADY;
1080
1081 down_write(&mm->mmap_sem);
1082 if (mm->uprobes_state.xol_area)
1083 goto fail;
1084
1085 ret = -ENOMEM;
1086 /* Try to map as high as possible, this is only a hint. */
1087 area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE, PAGE_SIZE, 0, 0);
1088 if (area->vaddr & ~PAGE_MASK) {
1089 ret = area->vaddr;
1090 goto fail;
1091 }
1092
1093 ret = install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1094 VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO, &area->page);
1095 if (ret)
1096 goto fail;
1097
1098 smp_wmb(); /* pairs with get_xol_area() */
1099 mm->uprobes_state.xol_area = area;
1100 ret = 0;
1101 fail:
1102 up_write(&mm->mmap_sem);
1103
1104 return ret;
1105 }
1106
1107 /*
1108 * get_xol_area - Allocate process's xol_area if necessary.
1109 * This area will be used for storing instructions for execution out of line.
1110 *
1111 * Returns the allocated area or NULL.
1112 */
1113 static struct xol_area *get_xol_area(void)
1114 {
1115 struct mm_struct *mm = current->mm;
1116 struct xol_area *area;
1117
1118 area = mm->uprobes_state.xol_area;
1119 if (area)
1120 goto ret;
1121
1122 area = kzalloc(sizeof(*area), GFP_KERNEL);
1123 if (unlikely(!area))
1124 goto out;
1125
1126 area->bitmap = kzalloc(BITS_TO_LONGS(UINSNS_PER_PAGE) * sizeof(long), GFP_KERNEL);
1127 if (!area->bitmap)
1128 goto free_area;
1129
1130 area->page = alloc_page(GFP_HIGHUSER);
1131 if (!area->page)
1132 goto free_bitmap;
1133
1134 init_waitqueue_head(&area->wq);
1135 if (!xol_add_vma(area))
1136 return area;
1137
1138 __free_page(area->page);
1139 free_bitmap:
1140 kfree(area->bitmap);
1141 free_area:
1142 kfree(area);
1143 out:
1144 area = mm->uprobes_state.xol_area;
1145 ret:
1146 smp_read_barrier_depends(); /* pairs with wmb in xol_add_vma() */
1147 return area;
1148 }
1149
1150 /*
1151 * uprobe_clear_state - Free the area allocated for slots.
1152 */
1153 void uprobe_clear_state(struct mm_struct *mm)
1154 {
1155 struct xol_area *area = mm->uprobes_state.xol_area;
1156
1157 if (!area)
1158 return;
1159
1160 put_page(area->page);
1161 kfree(area->bitmap);
1162 kfree(area);
1163 }
1164
1165 void uprobe_start_dup_mmap(void)
1166 {
1167 percpu_down_read(&dup_mmap_sem);
1168 }
1169
1170 void uprobe_end_dup_mmap(void)
1171 {
1172 percpu_up_read(&dup_mmap_sem);
1173 }
1174
1175 void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm)
1176 {
1177 newmm->uprobes_state.xol_area = NULL;
1178
1179 if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) {
1180 set_bit(MMF_HAS_UPROBES, &newmm->flags);
1181 /* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */
1182 set_bit(MMF_RECALC_UPROBES, &newmm->flags);
1183 }
1184 }
1185
1186 /*
1187 * - search for a free slot.
1188 */
1189 static unsigned long xol_take_insn_slot(struct xol_area *area)
1190 {
1191 unsigned long slot_addr;
1192 int slot_nr;
1193
1194 do {
1195 slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1196 if (slot_nr < UINSNS_PER_PAGE) {
1197 if (!test_and_set_bit(slot_nr, area->bitmap))
1198 break;
1199
1200 slot_nr = UINSNS_PER_PAGE;
1201 continue;
1202 }
1203 wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
1204 } while (slot_nr >= UINSNS_PER_PAGE);
1205
1206 slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
1207 atomic_inc(&area->slot_count);
1208
1209 return slot_addr;
1210 }
1211
1212 /*
1213 * xol_get_insn_slot - allocate a slot for xol.
1214 * Returns the allocated slot address or 0.
1215 */
1216 static unsigned long xol_get_insn_slot(struct uprobe *uprobe)
1217 {
1218 struct xol_area *area;
1219 unsigned long offset;
1220 unsigned long xol_vaddr;
1221 void *vaddr;
1222
1223 area = get_xol_area();
1224 if (!area)
1225 return 0;
1226
1227 xol_vaddr = xol_take_insn_slot(area);
1228 if (unlikely(!xol_vaddr))
1229 return 0;
1230
1231 /* Initialize the slot */
1232 offset = xol_vaddr & ~PAGE_MASK;
1233 vaddr = kmap_atomic(area->page);
1234 memcpy(vaddr + offset, uprobe->arch.insn, MAX_UINSN_BYTES);
1235 kunmap_atomic(vaddr);
1236 /*
1237 * We probably need flush_icache_user_range() but it needs vma.
1238 * This should work on supported architectures too.
1239 */
1240 flush_dcache_page(area->page);
1241
1242 return xol_vaddr;
1243 }
1244
1245 /*
1246 * xol_free_insn_slot - If slot was earlier allocated by
1247 * @xol_get_insn_slot(), make the slot available for
1248 * subsequent requests.
1249 */
1250 static void xol_free_insn_slot(struct task_struct *tsk)
1251 {
1252 struct xol_area *area;
1253 unsigned long vma_end;
1254 unsigned long slot_addr;
1255
1256 if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
1257 return;
1258
1259 slot_addr = tsk->utask->xol_vaddr;
1260 if (unlikely(!slot_addr))
1261 return;
1262
1263 area = tsk->mm->uprobes_state.xol_area;
1264 vma_end = area->vaddr + PAGE_SIZE;
1265 if (area->vaddr <= slot_addr && slot_addr < vma_end) {
1266 unsigned long offset;
1267 int slot_nr;
1268
1269 offset = slot_addr - area->vaddr;
1270 slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1271 if (slot_nr >= UINSNS_PER_PAGE)
1272 return;
1273
1274 clear_bit(slot_nr, area->bitmap);
1275 atomic_dec(&area->slot_count);
1276 if (waitqueue_active(&area->wq))
1277 wake_up(&area->wq);
1278
1279 tsk->utask->xol_vaddr = 0;
1280 }
1281 }
1282
1283 /**
1284 * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1285 * @regs: Reflects the saved state of the task after it has hit a breakpoint
1286 * instruction.
1287 * Return the address of the breakpoint instruction.
1288 */
1289 unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1290 {
1291 return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1292 }
1293
1294 /*
1295 * Called with no locks held.
1296 * Called in context of a exiting or a exec-ing thread.
1297 */
1298 void uprobe_free_utask(struct task_struct *t)
1299 {
1300 struct uprobe_task *utask = t->utask;
1301
1302 if (!utask)
1303 return;
1304
1305 if (utask->active_uprobe)
1306 put_uprobe(utask->active_uprobe);
1307
1308 xol_free_insn_slot(t);
1309 kfree(utask);
1310 t->utask = NULL;
1311 }
1312
1313 /*
1314 * Called in context of a new clone/fork from copy_process.
1315 */
1316 void uprobe_copy_process(struct task_struct *t)
1317 {
1318 t->utask = NULL;
1319 }
1320
1321 /*
1322 * Allocate a uprobe_task object for the task if if necessary.
1323 * Called when the thread hits a breakpoint.
1324 *
1325 * Returns:
1326 * - pointer to new uprobe_task on success
1327 * - NULL otherwise
1328 */
1329 static struct uprobe_task *get_utask(void)
1330 {
1331 if (!current->utask)
1332 current->utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1333 return current->utask;
1334 }
1335
1336 /* Prepare to single-step probed instruction out of line. */
1337 static int
1338 pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long bp_vaddr)
1339 {
1340 struct uprobe_task *utask;
1341 unsigned long xol_vaddr;
1342 int err;
1343
1344 utask = get_utask();
1345 if (!utask)
1346 return -ENOMEM;
1347
1348 xol_vaddr = xol_get_insn_slot(uprobe);
1349 if (!xol_vaddr)
1350 return -ENOMEM;
1351
1352 utask->xol_vaddr = xol_vaddr;
1353 utask->vaddr = bp_vaddr;
1354
1355 err = arch_uprobe_pre_xol(&uprobe->arch, regs);
1356 if (unlikely(err)) {
1357 xol_free_insn_slot(current);
1358 return err;
1359 }
1360
1361 utask->active_uprobe = uprobe;
1362 utask->state = UTASK_SSTEP;
1363 return 0;
1364 }
1365
1366 /*
1367 * If we are singlestepping, then ensure this thread is not connected to
1368 * non-fatal signals until completion of singlestep. When xol insn itself
1369 * triggers the signal, restart the original insn even if the task is
1370 * already SIGKILL'ed (since coredump should report the correct ip). This
1371 * is even more important if the task has a handler for SIGSEGV/etc, The
1372 * _same_ instruction should be repeated again after return from the signal
1373 * handler, and SSTEP can never finish in this case.
1374 */
1375 bool uprobe_deny_signal(void)
1376 {
1377 struct task_struct *t = current;
1378 struct uprobe_task *utask = t->utask;
1379
1380 if (likely(!utask || !utask->active_uprobe))
1381 return false;
1382
1383 WARN_ON_ONCE(utask->state != UTASK_SSTEP);
1384
1385 if (signal_pending(t)) {
1386 spin_lock_irq(&t->sighand->siglock);
1387 clear_tsk_thread_flag(t, TIF_SIGPENDING);
1388 spin_unlock_irq(&t->sighand->siglock);
1389
1390 if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
1391 utask->state = UTASK_SSTEP_TRAPPED;
1392 set_tsk_thread_flag(t, TIF_UPROBE);
1393 set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
1394 }
1395 }
1396
1397 return true;
1398 }
1399
1400 /*
1401 * Avoid singlestepping the original instruction if the original instruction
1402 * is a NOP or can be emulated.
1403 */
1404 static bool can_skip_sstep(struct uprobe *uprobe, struct pt_regs *regs)
1405 {
1406 if (test_bit(UPROBE_SKIP_SSTEP, &uprobe->flags)) {
1407 if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
1408 return true;
1409 clear_bit(UPROBE_SKIP_SSTEP, &uprobe->flags);
1410 }
1411 return false;
1412 }
1413
1414 static void mmf_recalc_uprobes(struct mm_struct *mm)
1415 {
1416 struct vm_area_struct *vma;
1417
1418 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1419 if (!valid_vma(vma, false))
1420 continue;
1421 /*
1422 * This is not strictly accurate, we can race with
1423 * uprobe_unregister() and see the already removed
1424 * uprobe if delete_uprobe() was not yet called.
1425 * Or this uprobe can be filtered out.
1426 */
1427 if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end))
1428 return;
1429 }
1430
1431 clear_bit(MMF_HAS_UPROBES, &mm->flags);
1432 }
1433
1434 static int is_swbp_at_addr(struct mm_struct *mm, unsigned long vaddr)
1435 {
1436 struct page *page;
1437 uprobe_opcode_t opcode;
1438 int result;
1439
1440 pagefault_disable();
1441 result = __copy_from_user_inatomic(&opcode, (void __user*)vaddr,
1442 sizeof(opcode));
1443 pagefault_enable();
1444
1445 if (likely(result == 0))
1446 goto out;
1447
1448 result = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &page, NULL);
1449 if (result < 0)
1450 return result;
1451
1452 copy_opcode(page, vaddr, &opcode);
1453 put_page(page);
1454 out:
1455 return is_swbp_insn(&opcode);
1456 }
1457
1458 static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
1459 {
1460 struct mm_struct *mm = current->mm;
1461 struct uprobe *uprobe = NULL;
1462 struct vm_area_struct *vma;
1463
1464 down_read(&mm->mmap_sem);
1465 vma = find_vma(mm, bp_vaddr);
1466 if (vma && vma->vm_start <= bp_vaddr) {
1467 if (valid_vma(vma, false)) {
1468 struct inode *inode = vma->vm_file->f_mapping->host;
1469 loff_t offset = vaddr_to_offset(vma, bp_vaddr);
1470
1471 uprobe = find_uprobe(inode, offset);
1472 }
1473
1474 if (!uprobe)
1475 *is_swbp = is_swbp_at_addr(mm, bp_vaddr);
1476 } else {
1477 *is_swbp = -EFAULT;
1478 }
1479
1480 if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags))
1481 mmf_recalc_uprobes(mm);
1482 up_read(&mm->mmap_sem);
1483
1484 return uprobe;
1485 }
1486
1487 static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
1488 {
1489 struct uprobe_consumer *uc;
1490 int remove = UPROBE_HANDLER_REMOVE;
1491
1492 down_read(&uprobe->register_rwsem);
1493 for (uc = uprobe->consumers; uc; uc = uc->next) {
1494 int rc = uc->handler(uc, regs);
1495
1496 WARN(rc & ~UPROBE_HANDLER_MASK,
1497 "bad rc=0x%x from %pf()\n", rc, uc->handler);
1498 remove &= rc;
1499 }
1500
1501 if (remove && uprobe->consumers) {
1502 WARN_ON(!uprobe_is_active(uprobe));
1503 unapply_uprobe(uprobe, current->mm);
1504 }
1505 up_read(&uprobe->register_rwsem);
1506 }
1507
1508 /*
1509 * Run handler and ask thread to singlestep.
1510 * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
1511 */
1512 static void handle_swbp(struct pt_regs *regs)
1513 {
1514 struct uprobe *uprobe;
1515 unsigned long bp_vaddr;
1516 int uninitialized_var(is_swbp);
1517
1518 bp_vaddr = uprobe_get_swbp_addr(regs);
1519 uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
1520
1521 if (!uprobe) {
1522 if (is_swbp > 0) {
1523 /* No matching uprobe; signal SIGTRAP. */
1524 send_sig(SIGTRAP, current, 0);
1525 } else {
1526 /*
1527 * Either we raced with uprobe_unregister() or we can't
1528 * access this memory. The latter is only possible if
1529 * another thread plays with our ->mm. In both cases
1530 * we can simply restart. If this vma was unmapped we
1531 * can pretend this insn was not executed yet and get
1532 * the (correct) SIGSEGV after restart.
1533 */
1534 instruction_pointer_set(regs, bp_vaddr);
1535 }
1536 return;
1537 }
1538
1539 /* change it in advance for ->handler() and restart */
1540 instruction_pointer_set(regs, bp_vaddr);
1541
1542 /*
1543 * TODO: move copy_insn/etc into _register and remove this hack.
1544 * After we hit the bp, _unregister + _register can install the
1545 * new and not-yet-analyzed uprobe at the same address, restart.
1546 */
1547 smp_rmb(); /* pairs with wmb() in install_breakpoint() */
1548 if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags)))
1549 goto out;
1550
1551 handler_chain(uprobe, regs);
1552 if (can_skip_sstep(uprobe, regs))
1553 goto out;
1554
1555 if (!pre_ssout(uprobe, regs, bp_vaddr))
1556 return;
1557
1558 /* can_skip_sstep() succeeded, or restart if can't singlestep */
1559 out:
1560 put_uprobe(uprobe);
1561 }
1562
1563 /*
1564 * Perform required fix-ups and disable singlestep.
1565 * Allow pending signals to take effect.
1566 */
1567 static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
1568 {
1569 struct uprobe *uprobe;
1570
1571 uprobe = utask->active_uprobe;
1572 if (utask->state == UTASK_SSTEP_ACK)
1573 arch_uprobe_post_xol(&uprobe->arch, regs);
1574 else if (utask->state == UTASK_SSTEP_TRAPPED)
1575 arch_uprobe_abort_xol(&uprobe->arch, regs);
1576 else
1577 WARN_ON_ONCE(1);
1578
1579 put_uprobe(uprobe);
1580 utask->active_uprobe = NULL;
1581 utask->state = UTASK_RUNNING;
1582 xol_free_insn_slot(current);
1583
1584 spin_lock_irq(&current->sighand->siglock);
1585 recalc_sigpending(); /* see uprobe_deny_signal() */
1586 spin_unlock_irq(&current->sighand->siglock);
1587 }
1588
1589 /*
1590 * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and
1591 * allows the thread to return from interrupt. After that handle_swbp()
1592 * sets utask->active_uprobe.
1593 *
1594 * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag
1595 * and allows the thread to return from interrupt.
1596 *
1597 * While returning to userspace, thread notices the TIF_UPROBE flag and calls
1598 * uprobe_notify_resume().
1599 */
1600 void uprobe_notify_resume(struct pt_regs *regs)
1601 {
1602 struct uprobe_task *utask;
1603
1604 clear_thread_flag(TIF_UPROBE);
1605
1606 utask = current->utask;
1607 if (utask && utask->active_uprobe)
1608 handle_singlestep(utask, regs);
1609 else
1610 handle_swbp(regs);
1611 }
1612
1613 /*
1614 * uprobe_pre_sstep_notifier gets called from interrupt context as part of
1615 * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
1616 */
1617 int uprobe_pre_sstep_notifier(struct pt_regs *regs)
1618 {
1619 if (!current->mm || !test_bit(MMF_HAS_UPROBES, &current->mm->flags))
1620 return 0;
1621
1622 set_thread_flag(TIF_UPROBE);
1623 return 1;
1624 }
1625
1626 /*
1627 * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
1628 * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
1629 */
1630 int uprobe_post_sstep_notifier(struct pt_regs *regs)
1631 {
1632 struct uprobe_task *utask = current->utask;
1633
1634 if (!current->mm || !utask || !utask->active_uprobe)
1635 /* task is currently not uprobed */
1636 return 0;
1637
1638 utask->state = UTASK_SSTEP_ACK;
1639 set_thread_flag(TIF_UPROBE);
1640 return 1;
1641 }
1642
1643 static struct notifier_block uprobe_exception_nb = {
1644 .notifier_call = arch_uprobe_exception_notify,
1645 .priority = INT_MAX-1, /* notified after kprobes, kgdb */
1646 };
1647
1648 static int __init init_uprobes(void)
1649 {
1650 int i;
1651
1652 for (i = 0; i < UPROBES_HASH_SZ; i++)
1653 mutex_init(&uprobes_mmap_mutex[i]);
1654
1655 if (percpu_init_rwsem(&dup_mmap_sem))
1656 return -ENOMEM;
1657
1658 return register_die_notifier(&uprobe_exception_nb);
1659 }
1660 module_init(init_uprobes);
1661
1662 static void __exit exit_uprobes(void)
1663 {
1664 }
1665 module_exit(exit_uprobes);