]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - kernel/exit.c
forget_original_parent: do not abuse child->ptrace_entry
[mirror_ubuntu-zesty-kernel.git] / kernel / exit.c
1 /*
2 * linux/kernel/exit.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/mnt_namespace.h>
16 #include <linux/iocontext.h>
17 #include <linux/key.h>
18 #include <linux/security.h>
19 #include <linux/cpu.h>
20 #include <linux/acct.h>
21 #include <linux/tsacct_kern.h>
22 #include <linux/file.h>
23 #include <linux/fdtable.h>
24 #include <linux/binfmts.h>
25 #include <linux/nsproxy.h>
26 #include <linux/pid_namespace.h>
27 #include <linux/ptrace.h>
28 #include <linux/profile.h>
29 #include <linux/mount.h>
30 #include <linux/proc_fs.h>
31 #include <linux/kthread.h>
32 #include <linux/mempolicy.h>
33 #include <linux/taskstats_kern.h>
34 #include <linux/delayacct.h>
35 #include <linux/freezer.h>
36 #include <linux/cgroup.h>
37 #include <linux/syscalls.h>
38 #include <linux/signal.h>
39 #include <linux/posix-timers.h>
40 #include <linux/cn_proc.h>
41 #include <linux/mutex.h>
42 #include <linux/futex.h>
43 #include <linux/pipe_fs_i.h>
44 #include <linux/audit.h> /* for audit_free() */
45 #include <linux/resource.h>
46 #include <linux/blkdev.h>
47 #include <linux/task_io_accounting_ops.h>
48 #include <linux/tracehook.h>
49 #include <linux/init_task.h>
50 #include <trace/sched.h>
51
52 #include <asm/uaccess.h>
53 #include <asm/unistd.h>
54 #include <asm/pgtable.h>
55 #include <asm/mmu_context.h>
56 #include "cred-internals.h"
57
58 DEFINE_TRACE(sched_process_free);
59 DEFINE_TRACE(sched_process_exit);
60 DEFINE_TRACE(sched_process_wait);
61
62 static void exit_mm(struct task_struct * tsk);
63
64 static void __unhash_process(struct task_struct *p)
65 {
66 nr_threads--;
67 detach_pid(p, PIDTYPE_PID);
68 if (thread_group_leader(p)) {
69 detach_pid(p, PIDTYPE_PGID);
70 detach_pid(p, PIDTYPE_SID);
71
72 list_del_rcu(&p->tasks);
73 __get_cpu_var(process_counts)--;
74 }
75 list_del_rcu(&p->thread_group);
76 list_del_init(&p->sibling);
77 }
78
79 /*
80 * This function expects the tasklist_lock write-locked.
81 */
82 static void __exit_signal(struct task_struct *tsk)
83 {
84 struct signal_struct *sig = tsk->signal;
85 struct sighand_struct *sighand;
86
87 BUG_ON(!sig);
88 BUG_ON(!atomic_read(&sig->count));
89
90 sighand = rcu_dereference(tsk->sighand);
91 spin_lock(&sighand->siglock);
92
93 posix_cpu_timers_exit(tsk);
94 if (atomic_dec_and_test(&sig->count))
95 posix_cpu_timers_exit_group(tsk);
96 else {
97 /*
98 * If there is any task waiting for the group exit
99 * then notify it:
100 */
101 if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count)
102 wake_up_process(sig->group_exit_task);
103
104 if (tsk == sig->curr_target)
105 sig->curr_target = next_thread(tsk);
106 /*
107 * Accumulate here the counters for all threads but the
108 * group leader as they die, so they can be added into
109 * the process-wide totals when those are taken.
110 * The group leader stays around as a zombie as long
111 * as there are other threads. When it gets reaped,
112 * the exit.c code will add its counts into these totals.
113 * We won't ever get here for the group leader, since it
114 * will have been the last reference on the signal_struct.
115 */
116 sig->utime = cputime_add(sig->utime, task_utime(tsk));
117 sig->stime = cputime_add(sig->stime, task_stime(tsk));
118 sig->gtime = cputime_add(sig->gtime, task_gtime(tsk));
119 sig->min_flt += tsk->min_flt;
120 sig->maj_flt += tsk->maj_flt;
121 sig->nvcsw += tsk->nvcsw;
122 sig->nivcsw += tsk->nivcsw;
123 sig->inblock += task_io_get_inblock(tsk);
124 sig->oublock += task_io_get_oublock(tsk);
125 task_io_accounting_add(&sig->ioac, &tsk->ioac);
126 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
127 sig = NULL; /* Marker for below. */
128 }
129
130 __unhash_process(tsk);
131
132 /*
133 * Do this under ->siglock, we can race with another thread
134 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
135 */
136 flush_sigqueue(&tsk->pending);
137
138 tsk->signal = NULL;
139 tsk->sighand = NULL;
140 spin_unlock(&sighand->siglock);
141
142 __cleanup_sighand(sighand);
143 clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
144 if (sig) {
145 flush_sigqueue(&sig->shared_pending);
146 taskstats_tgid_free(sig);
147 /*
148 * Make sure ->signal can't go away under rq->lock,
149 * see account_group_exec_runtime().
150 */
151 task_rq_unlock_wait(tsk);
152 __cleanup_signal(sig);
153 }
154 }
155
156 static void delayed_put_task_struct(struct rcu_head *rhp)
157 {
158 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
159
160 trace_sched_process_free(tsk);
161 put_task_struct(tsk);
162 }
163
164
165 void release_task(struct task_struct * p)
166 {
167 struct task_struct *leader;
168 int zap_leader;
169 repeat:
170 tracehook_prepare_release_task(p);
171 /* don't need to get the RCU readlock here - the process is dead and
172 * can't be modifying its own credentials */
173 atomic_dec(&__task_cred(p)->user->processes);
174
175 proc_flush_task(p);
176 write_lock_irq(&tasklist_lock);
177 tracehook_finish_release_task(p);
178 __exit_signal(p);
179
180 /*
181 * If we are the last non-leader member of the thread
182 * group, and the leader is zombie, then notify the
183 * group leader's parent process. (if it wants notification.)
184 */
185 zap_leader = 0;
186 leader = p->group_leader;
187 if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
188 BUG_ON(task_detached(leader));
189 do_notify_parent(leader, leader->exit_signal);
190 /*
191 * If we were the last child thread and the leader has
192 * exited already, and the leader's parent ignores SIGCHLD,
193 * then we are the one who should release the leader.
194 *
195 * do_notify_parent() will have marked it self-reaping in
196 * that case.
197 */
198 zap_leader = task_detached(leader);
199
200 /*
201 * This maintains the invariant that release_task()
202 * only runs on a task in EXIT_DEAD, just for sanity.
203 */
204 if (zap_leader)
205 leader->exit_state = EXIT_DEAD;
206 }
207
208 write_unlock_irq(&tasklist_lock);
209 release_thread(p);
210 call_rcu(&p->rcu, delayed_put_task_struct);
211
212 p = leader;
213 if (unlikely(zap_leader))
214 goto repeat;
215 }
216
217 /*
218 * This checks not only the pgrp, but falls back on the pid if no
219 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
220 * without this...
221 *
222 * The caller must hold rcu lock or the tasklist lock.
223 */
224 struct pid *session_of_pgrp(struct pid *pgrp)
225 {
226 struct task_struct *p;
227 struct pid *sid = NULL;
228
229 p = pid_task(pgrp, PIDTYPE_PGID);
230 if (p == NULL)
231 p = pid_task(pgrp, PIDTYPE_PID);
232 if (p != NULL)
233 sid = task_session(p);
234
235 return sid;
236 }
237
238 /*
239 * Determine if a process group is "orphaned", according to the POSIX
240 * definition in 2.2.2.52. Orphaned process groups are not to be affected
241 * by terminal-generated stop signals. Newly orphaned process groups are
242 * to receive a SIGHUP and a SIGCONT.
243 *
244 * "I ask you, have you ever known what it is to be an orphan?"
245 */
246 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
247 {
248 struct task_struct *p;
249
250 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
251 if ((p == ignored_task) ||
252 (p->exit_state && thread_group_empty(p)) ||
253 is_global_init(p->real_parent))
254 continue;
255
256 if (task_pgrp(p->real_parent) != pgrp &&
257 task_session(p->real_parent) == task_session(p))
258 return 0;
259 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
260
261 return 1;
262 }
263
264 int is_current_pgrp_orphaned(void)
265 {
266 int retval;
267
268 read_lock(&tasklist_lock);
269 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
270 read_unlock(&tasklist_lock);
271
272 return retval;
273 }
274
275 static int has_stopped_jobs(struct pid *pgrp)
276 {
277 int retval = 0;
278 struct task_struct *p;
279
280 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
281 if (!task_is_stopped(p))
282 continue;
283 retval = 1;
284 break;
285 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
286 return retval;
287 }
288
289 /*
290 * Check to see if any process groups have become orphaned as
291 * a result of our exiting, and if they have any stopped jobs,
292 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
293 */
294 static void
295 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
296 {
297 struct pid *pgrp = task_pgrp(tsk);
298 struct task_struct *ignored_task = tsk;
299
300 if (!parent)
301 /* exit: our father is in a different pgrp than
302 * we are and we were the only connection outside.
303 */
304 parent = tsk->real_parent;
305 else
306 /* reparent: our child is in a different pgrp than
307 * we are, and it was the only connection outside.
308 */
309 ignored_task = NULL;
310
311 if (task_pgrp(parent) != pgrp &&
312 task_session(parent) == task_session(tsk) &&
313 will_become_orphaned_pgrp(pgrp, ignored_task) &&
314 has_stopped_jobs(pgrp)) {
315 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
316 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
317 }
318 }
319
320 /**
321 * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
322 *
323 * If a kernel thread is launched as a result of a system call, or if
324 * it ever exits, it should generally reparent itself to kthreadd so it
325 * isn't in the way of other processes and is correctly cleaned up on exit.
326 *
327 * The various task state such as scheduling policy and priority may have
328 * been inherited from a user process, so we reset them to sane values here.
329 *
330 * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
331 */
332 static void reparent_to_kthreadd(void)
333 {
334 write_lock_irq(&tasklist_lock);
335
336 ptrace_unlink(current);
337 /* Reparent to init */
338 current->real_parent = current->parent = kthreadd_task;
339 list_move_tail(&current->sibling, &current->real_parent->children);
340
341 /* Set the exit signal to SIGCHLD so we signal init on exit */
342 current->exit_signal = SIGCHLD;
343
344 if (task_nice(current) < 0)
345 set_user_nice(current, 0);
346 /* cpus_allowed? */
347 /* rt_priority? */
348 /* signals? */
349 memcpy(current->signal->rlim, init_task.signal->rlim,
350 sizeof(current->signal->rlim));
351
352 atomic_inc(&init_cred.usage);
353 commit_creds(&init_cred);
354 write_unlock_irq(&tasklist_lock);
355 }
356
357 void __set_special_pids(struct pid *pid)
358 {
359 struct task_struct *curr = current->group_leader;
360 pid_t nr = pid_nr(pid);
361
362 if (task_session(curr) != pid) {
363 change_pid(curr, PIDTYPE_SID, pid);
364 set_task_session(curr, nr);
365 }
366 if (task_pgrp(curr) != pid) {
367 change_pid(curr, PIDTYPE_PGID, pid);
368 set_task_pgrp(curr, nr);
369 }
370 }
371
372 static void set_special_pids(struct pid *pid)
373 {
374 write_lock_irq(&tasklist_lock);
375 __set_special_pids(pid);
376 write_unlock_irq(&tasklist_lock);
377 }
378
379 /*
380 * Let kernel threads use this to say that they
381 * allow a certain signal (since daemonize() will
382 * have disabled all of them by default).
383 */
384 int allow_signal(int sig)
385 {
386 if (!valid_signal(sig) || sig < 1)
387 return -EINVAL;
388
389 spin_lock_irq(&current->sighand->siglock);
390 sigdelset(&current->blocked, sig);
391 if (!current->mm) {
392 /* Kernel threads handle their own signals.
393 Let the signal code know it'll be handled, so
394 that they don't get converted to SIGKILL or
395 just silently dropped */
396 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
397 }
398 recalc_sigpending();
399 spin_unlock_irq(&current->sighand->siglock);
400 return 0;
401 }
402
403 EXPORT_SYMBOL(allow_signal);
404
405 int disallow_signal(int sig)
406 {
407 if (!valid_signal(sig) || sig < 1)
408 return -EINVAL;
409
410 spin_lock_irq(&current->sighand->siglock);
411 current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
412 recalc_sigpending();
413 spin_unlock_irq(&current->sighand->siglock);
414 return 0;
415 }
416
417 EXPORT_SYMBOL(disallow_signal);
418
419 /*
420 * Put all the gunge required to become a kernel thread without
421 * attached user resources in one place where it belongs.
422 */
423
424 void daemonize(const char *name, ...)
425 {
426 va_list args;
427 struct fs_struct *fs;
428 sigset_t blocked;
429
430 va_start(args, name);
431 vsnprintf(current->comm, sizeof(current->comm), name, args);
432 va_end(args);
433
434 /*
435 * If we were started as result of loading a module, close all of the
436 * user space pages. We don't need them, and if we didn't close them
437 * they would be locked into memory.
438 */
439 exit_mm(current);
440 /*
441 * We don't want to have TIF_FREEZE set if the system-wide hibernation
442 * or suspend transition begins right now.
443 */
444 current->flags |= (PF_NOFREEZE | PF_KTHREAD);
445
446 if (current->nsproxy != &init_nsproxy) {
447 get_nsproxy(&init_nsproxy);
448 switch_task_namespaces(current, &init_nsproxy);
449 }
450 set_special_pids(&init_struct_pid);
451 proc_clear_tty(current);
452
453 /* Block and flush all signals */
454 sigfillset(&blocked);
455 sigprocmask(SIG_BLOCK, &blocked, NULL);
456 flush_signals(current);
457
458 /* Become as one with the init task */
459
460 exit_fs(current); /* current->fs->count--; */
461 fs = init_task.fs;
462 current->fs = fs;
463 atomic_inc(&fs->count);
464
465 exit_files(current);
466 current->files = init_task.files;
467 atomic_inc(&current->files->count);
468
469 reparent_to_kthreadd();
470 }
471
472 EXPORT_SYMBOL(daemonize);
473
474 static void close_files(struct files_struct * files)
475 {
476 int i, j;
477 struct fdtable *fdt;
478
479 j = 0;
480
481 /*
482 * It is safe to dereference the fd table without RCU or
483 * ->file_lock because this is the last reference to the
484 * files structure.
485 */
486 fdt = files_fdtable(files);
487 for (;;) {
488 unsigned long set;
489 i = j * __NFDBITS;
490 if (i >= fdt->max_fds)
491 break;
492 set = fdt->open_fds->fds_bits[j++];
493 while (set) {
494 if (set & 1) {
495 struct file * file = xchg(&fdt->fd[i], NULL);
496 if (file) {
497 filp_close(file, files);
498 cond_resched();
499 }
500 }
501 i++;
502 set >>= 1;
503 }
504 }
505 }
506
507 struct files_struct *get_files_struct(struct task_struct *task)
508 {
509 struct files_struct *files;
510
511 task_lock(task);
512 files = task->files;
513 if (files)
514 atomic_inc(&files->count);
515 task_unlock(task);
516
517 return files;
518 }
519
520 void put_files_struct(struct files_struct *files)
521 {
522 struct fdtable *fdt;
523
524 if (atomic_dec_and_test(&files->count)) {
525 close_files(files);
526 /*
527 * Free the fd and fdset arrays if we expanded them.
528 * If the fdtable was embedded, pass files for freeing
529 * at the end of the RCU grace period. Otherwise,
530 * you can free files immediately.
531 */
532 fdt = files_fdtable(files);
533 if (fdt != &files->fdtab)
534 kmem_cache_free(files_cachep, files);
535 free_fdtable(fdt);
536 }
537 }
538
539 void reset_files_struct(struct files_struct *files)
540 {
541 struct task_struct *tsk = current;
542 struct files_struct *old;
543
544 old = tsk->files;
545 task_lock(tsk);
546 tsk->files = files;
547 task_unlock(tsk);
548 put_files_struct(old);
549 }
550
551 void exit_files(struct task_struct *tsk)
552 {
553 struct files_struct * files = tsk->files;
554
555 if (files) {
556 task_lock(tsk);
557 tsk->files = NULL;
558 task_unlock(tsk);
559 put_files_struct(files);
560 }
561 }
562
563 void put_fs_struct(struct fs_struct *fs)
564 {
565 /* No need to hold fs->lock if we are killing it */
566 if (atomic_dec_and_test(&fs->count)) {
567 path_put(&fs->root);
568 path_put(&fs->pwd);
569 kmem_cache_free(fs_cachep, fs);
570 }
571 }
572
573 void exit_fs(struct task_struct *tsk)
574 {
575 struct fs_struct * fs = tsk->fs;
576
577 if (fs) {
578 task_lock(tsk);
579 tsk->fs = NULL;
580 task_unlock(tsk);
581 put_fs_struct(fs);
582 }
583 }
584
585 EXPORT_SYMBOL_GPL(exit_fs);
586
587 #ifdef CONFIG_MM_OWNER
588 /*
589 * Task p is exiting and it owned mm, lets find a new owner for it
590 */
591 static inline int
592 mm_need_new_owner(struct mm_struct *mm, struct task_struct *p)
593 {
594 /*
595 * If there are other users of the mm and the owner (us) is exiting
596 * we need to find a new owner to take on the responsibility.
597 */
598 if (atomic_read(&mm->mm_users) <= 1)
599 return 0;
600 if (mm->owner != p)
601 return 0;
602 return 1;
603 }
604
605 void mm_update_next_owner(struct mm_struct *mm)
606 {
607 struct task_struct *c, *g, *p = current;
608
609 retry:
610 if (!mm_need_new_owner(mm, p))
611 return;
612
613 read_lock(&tasklist_lock);
614 /*
615 * Search in the children
616 */
617 list_for_each_entry(c, &p->children, sibling) {
618 if (c->mm == mm)
619 goto assign_new_owner;
620 }
621
622 /*
623 * Search in the siblings
624 */
625 list_for_each_entry(c, &p->parent->children, sibling) {
626 if (c->mm == mm)
627 goto assign_new_owner;
628 }
629
630 /*
631 * Search through everything else. We should not get
632 * here often
633 */
634 do_each_thread(g, c) {
635 if (c->mm == mm)
636 goto assign_new_owner;
637 } while_each_thread(g, c);
638
639 read_unlock(&tasklist_lock);
640 /*
641 * We found no owner yet mm_users > 1: this implies that we are
642 * most likely racing with swapoff (try_to_unuse()) or /proc or
643 * ptrace or page migration (get_task_mm()). Mark owner as NULL.
644 */
645 mm->owner = NULL;
646 return;
647
648 assign_new_owner:
649 BUG_ON(c == p);
650 get_task_struct(c);
651 /*
652 * The task_lock protects c->mm from changing.
653 * We always want mm->owner->mm == mm
654 */
655 task_lock(c);
656 /*
657 * Delay read_unlock() till we have the task_lock()
658 * to ensure that c does not slip away underneath us
659 */
660 read_unlock(&tasklist_lock);
661 if (c->mm != mm) {
662 task_unlock(c);
663 put_task_struct(c);
664 goto retry;
665 }
666 mm->owner = c;
667 task_unlock(c);
668 put_task_struct(c);
669 }
670 #endif /* CONFIG_MM_OWNER */
671
672 /*
673 * Turn us into a lazy TLB process if we
674 * aren't already..
675 */
676 static void exit_mm(struct task_struct * tsk)
677 {
678 struct mm_struct *mm = tsk->mm;
679 struct core_state *core_state;
680
681 mm_release(tsk, mm);
682 if (!mm)
683 return;
684 /*
685 * Serialize with any possible pending coredump.
686 * We must hold mmap_sem around checking core_state
687 * and clearing tsk->mm. The core-inducing thread
688 * will increment ->nr_threads for each thread in the
689 * group with ->mm != NULL.
690 */
691 down_read(&mm->mmap_sem);
692 core_state = mm->core_state;
693 if (core_state) {
694 struct core_thread self;
695 up_read(&mm->mmap_sem);
696
697 self.task = tsk;
698 self.next = xchg(&core_state->dumper.next, &self);
699 /*
700 * Implies mb(), the result of xchg() must be visible
701 * to core_state->dumper.
702 */
703 if (atomic_dec_and_test(&core_state->nr_threads))
704 complete(&core_state->startup);
705
706 for (;;) {
707 set_task_state(tsk, TASK_UNINTERRUPTIBLE);
708 if (!self.task) /* see coredump_finish() */
709 break;
710 schedule();
711 }
712 __set_task_state(tsk, TASK_RUNNING);
713 down_read(&mm->mmap_sem);
714 }
715 atomic_inc(&mm->mm_count);
716 BUG_ON(mm != tsk->active_mm);
717 /* more a memory barrier than a real lock */
718 task_lock(tsk);
719 tsk->mm = NULL;
720 up_read(&mm->mmap_sem);
721 enter_lazy_tlb(mm, current);
722 /* We don't want this task to be frozen prematurely */
723 clear_freeze_flag(tsk);
724 task_unlock(tsk);
725 mm_update_next_owner(mm);
726 mmput(mm);
727 }
728
729 /*
730 * When we die, we re-parent all our children.
731 * Try to give them to another thread in our thread
732 * group, and if no such member exists, give it to
733 * the child reaper process (ie "init") in our pid
734 * space.
735 */
736 static struct task_struct *find_new_reaper(struct task_struct *father)
737 {
738 struct pid_namespace *pid_ns = task_active_pid_ns(father);
739 struct task_struct *thread;
740
741 thread = father;
742 while_each_thread(father, thread) {
743 if (thread->flags & PF_EXITING)
744 continue;
745 if (unlikely(pid_ns->child_reaper == father))
746 pid_ns->child_reaper = thread;
747 return thread;
748 }
749
750 if (unlikely(pid_ns->child_reaper == father)) {
751 write_unlock_irq(&tasklist_lock);
752 if (unlikely(pid_ns == &init_pid_ns))
753 panic("Attempted to kill init!");
754
755 zap_pid_ns_processes(pid_ns);
756 write_lock_irq(&tasklist_lock);
757 /*
758 * We can not clear ->child_reaper or leave it alone.
759 * There may by stealth EXIT_DEAD tasks on ->children,
760 * forget_original_parent() must move them somewhere.
761 */
762 pid_ns->child_reaper = init_pid_ns.child_reaper;
763 }
764
765 return pid_ns->child_reaper;
766 }
767
768 /*
769 * Any that need to be release_task'd are put on the @dead list.
770 */
771 static void reparent_thread(struct task_struct *father, struct task_struct *p,
772 struct list_head *dead)
773 {
774 if (p->pdeath_signal)
775 group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p);
776
777 list_move_tail(&p->sibling, &p->real_parent->children);
778
779 if (task_detached(p))
780 return;
781 /*
782 * If this is a threaded reparent there is no need to
783 * notify anyone anything has happened.
784 */
785 if (same_thread_group(p->real_parent, father))
786 return;
787
788 /* We don't want people slaying init. */
789 p->exit_signal = SIGCHLD;
790
791 /* If it has exited notify the new parent about this child's death. */
792 if (!p->ptrace &&
793 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
794 do_notify_parent(p, p->exit_signal);
795 if (task_detached(p)) {
796 p->exit_state = EXIT_DEAD;
797 list_move_tail(&p->sibling, dead);
798 }
799 }
800
801 kill_orphaned_pgrp(p, father);
802 }
803
804 static void forget_original_parent(struct task_struct *father)
805 {
806 struct task_struct *p, *n, *reaper;
807 LIST_HEAD(dead_children);
808
809 exit_ptrace(father);
810
811 write_lock_irq(&tasklist_lock);
812 reaper = find_new_reaper(father);
813
814 list_for_each_entry_safe(p, n, &father->children, sibling) {
815 p->real_parent = reaper;
816 if (p->parent == father) {
817 BUG_ON(p->ptrace);
818 p->parent = p->real_parent;
819 }
820 reparent_thread(father, p, &dead_children);
821 }
822 write_unlock_irq(&tasklist_lock);
823
824 BUG_ON(!list_empty(&father->children));
825
826 list_for_each_entry_safe(p, n, &dead_children, sibling) {
827 list_del_init(&p->sibling);
828 release_task(p);
829 }
830 }
831
832 /*
833 * Send signals to all our closest relatives so that they know
834 * to properly mourn us..
835 */
836 static void exit_notify(struct task_struct *tsk, int group_dead)
837 {
838 int signal;
839 void *cookie;
840
841 /*
842 * This does two things:
843 *
844 * A. Make init inherit all the child processes
845 * B. Check to see if any process groups have become orphaned
846 * as a result of our exiting, and if they have any stopped
847 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
848 */
849 forget_original_parent(tsk);
850 exit_task_namespaces(tsk);
851
852 write_lock_irq(&tasklist_lock);
853 if (group_dead)
854 kill_orphaned_pgrp(tsk->group_leader, NULL);
855
856 /* Let father know we died
857 *
858 * Thread signals are configurable, but you aren't going to use
859 * that to send signals to arbitary processes.
860 * That stops right now.
861 *
862 * If the parent exec id doesn't match the exec id we saved
863 * when we started then we know the parent has changed security
864 * domain.
865 *
866 * If our self_exec id doesn't match our parent_exec_id then
867 * we have changed execution domain as these two values started
868 * the same after a fork.
869 */
870 if (tsk->exit_signal != SIGCHLD && !task_detached(tsk) &&
871 (tsk->parent_exec_id != tsk->real_parent->self_exec_id ||
872 tsk->self_exec_id != tsk->parent_exec_id) &&
873 !capable(CAP_KILL))
874 tsk->exit_signal = SIGCHLD;
875
876 signal = tracehook_notify_death(tsk, &cookie, group_dead);
877 if (signal >= 0)
878 signal = do_notify_parent(tsk, signal);
879
880 tsk->exit_state = signal == DEATH_REAP ? EXIT_DEAD : EXIT_ZOMBIE;
881
882 /* mt-exec, de_thread() is waiting for us */
883 if (thread_group_leader(tsk) &&
884 tsk->signal->group_exit_task &&
885 tsk->signal->notify_count < 0)
886 wake_up_process(tsk->signal->group_exit_task);
887
888 write_unlock_irq(&tasklist_lock);
889
890 tracehook_report_death(tsk, signal, cookie, group_dead);
891
892 /* If the process is dead, release it - nobody will wait for it */
893 if (signal == DEATH_REAP)
894 release_task(tsk);
895 }
896
897 #ifdef CONFIG_DEBUG_STACK_USAGE
898 static void check_stack_usage(void)
899 {
900 static DEFINE_SPINLOCK(low_water_lock);
901 static int lowest_to_date = THREAD_SIZE;
902 unsigned long free;
903
904 free = stack_not_used(current);
905
906 if (free >= lowest_to_date)
907 return;
908
909 spin_lock(&low_water_lock);
910 if (free < lowest_to_date) {
911 printk(KERN_WARNING "%s used greatest stack depth: %lu bytes "
912 "left\n",
913 current->comm, free);
914 lowest_to_date = free;
915 }
916 spin_unlock(&low_water_lock);
917 }
918 #else
919 static inline void check_stack_usage(void) {}
920 #endif
921
922 NORET_TYPE void do_exit(long code)
923 {
924 struct task_struct *tsk = current;
925 int group_dead;
926
927 profile_task_exit(tsk);
928
929 WARN_ON(atomic_read(&tsk->fs_excl));
930
931 if (unlikely(in_interrupt()))
932 panic("Aiee, killing interrupt handler!");
933 if (unlikely(!tsk->pid))
934 panic("Attempted to kill the idle task!");
935
936 tracehook_report_exit(&code);
937
938 /*
939 * We're taking recursive faults here in do_exit. Safest is to just
940 * leave this task alone and wait for reboot.
941 */
942 if (unlikely(tsk->flags & PF_EXITING)) {
943 printk(KERN_ALERT
944 "Fixing recursive fault but reboot is needed!\n");
945 /*
946 * We can do this unlocked here. The futex code uses
947 * this flag just to verify whether the pi state
948 * cleanup has been done or not. In the worst case it
949 * loops once more. We pretend that the cleanup was
950 * done as there is no way to return. Either the
951 * OWNER_DIED bit is set by now or we push the blocked
952 * task into the wait for ever nirwana as well.
953 */
954 tsk->flags |= PF_EXITPIDONE;
955 set_current_state(TASK_UNINTERRUPTIBLE);
956 schedule();
957 }
958
959 exit_signals(tsk); /* sets PF_EXITING */
960 /*
961 * tsk->flags are checked in the futex code to protect against
962 * an exiting task cleaning up the robust pi futexes.
963 */
964 smp_mb();
965 spin_unlock_wait(&tsk->pi_lock);
966
967 if (unlikely(in_atomic()))
968 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
969 current->comm, task_pid_nr(current),
970 preempt_count());
971
972 acct_update_integrals(tsk);
973
974 group_dead = atomic_dec_and_test(&tsk->signal->live);
975 if (group_dead) {
976 hrtimer_cancel(&tsk->signal->real_timer);
977 exit_itimers(tsk->signal);
978 }
979 acct_collect(code, group_dead);
980 if (group_dead)
981 tty_audit_exit();
982 if (unlikely(tsk->audit_context))
983 audit_free(tsk);
984
985 tsk->exit_code = code;
986 taskstats_exit(tsk, group_dead);
987
988 exit_mm(tsk);
989
990 if (group_dead)
991 acct_process();
992 trace_sched_process_exit(tsk);
993
994 exit_sem(tsk);
995 exit_files(tsk);
996 exit_fs(tsk);
997 check_stack_usage();
998 exit_thread();
999 cgroup_exit(tsk, 1);
1000
1001 if (group_dead && tsk->signal->leader)
1002 disassociate_ctty(1);
1003
1004 module_put(task_thread_info(tsk)->exec_domain->module);
1005 if (tsk->binfmt)
1006 module_put(tsk->binfmt->module);
1007
1008 proc_exit_connector(tsk);
1009 exit_notify(tsk, group_dead);
1010 #ifdef CONFIG_NUMA
1011 mpol_put(tsk->mempolicy);
1012 tsk->mempolicy = NULL;
1013 #endif
1014 #ifdef CONFIG_FUTEX
1015 /*
1016 * This must happen late, after the PID is not
1017 * hashed anymore:
1018 */
1019 if (unlikely(!list_empty(&tsk->pi_state_list)))
1020 exit_pi_state_list(tsk);
1021 if (unlikely(current->pi_state_cache))
1022 kfree(current->pi_state_cache);
1023 #endif
1024 /*
1025 * Make sure we are holding no locks:
1026 */
1027 debug_check_no_locks_held(tsk);
1028 /*
1029 * We can do this unlocked here. The futex code uses this flag
1030 * just to verify whether the pi state cleanup has been done
1031 * or not. In the worst case it loops once more.
1032 */
1033 tsk->flags |= PF_EXITPIDONE;
1034
1035 if (tsk->io_context)
1036 exit_io_context();
1037
1038 if (tsk->splice_pipe)
1039 __free_pipe_info(tsk->splice_pipe);
1040
1041 preempt_disable();
1042 /* causes final put_task_struct in finish_task_switch(). */
1043 tsk->state = TASK_DEAD;
1044 schedule();
1045 BUG();
1046 /* Avoid "noreturn function does return". */
1047 for (;;)
1048 cpu_relax(); /* For when BUG is null */
1049 }
1050
1051 EXPORT_SYMBOL_GPL(do_exit);
1052
1053 NORET_TYPE void complete_and_exit(struct completion *comp, long code)
1054 {
1055 if (comp)
1056 complete(comp);
1057
1058 do_exit(code);
1059 }
1060
1061 EXPORT_SYMBOL(complete_and_exit);
1062
1063 SYSCALL_DEFINE1(exit, int, error_code)
1064 {
1065 do_exit((error_code&0xff)<<8);
1066 }
1067
1068 /*
1069 * Take down every thread in the group. This is called by fatal signals
1070 * as well as by sys_exit_group (below).
1071 */
1072 NORET_TYPE void
1073 do_group_exit(int exit_code)
1074 {
1075 struct signal_struct *sig = current->signal;
1076
1077 BUG_ON(exit_code & 0x80); /* core dumps don't get here */
1078
1079 if (signal_group_exit(sig))
1080 exit_code = sig->group_exit_code;
1081 else if (!thread_group_empty(current)) {
1082 struct sighand_struct *const sighand = current->sighand;
1083 spin_lock_irq(&sighand->siglock);
1084 if (signal_group_exit(sig))
1085 /* Another thread got here before we took the lock. */
1086 exit_code = sig->group_exit_code;
1087 else {
1088 sig->group_exit_code = exit_code;
1089 sig->flags = SIGNAL_GROUP_EXIT;
1090 zap_other_threads(current);
1091 }
1092 spin_unlock_irq(&sighand->siglock);
1093 }
1094
1095 do_exit(exit_code);
1096 /* NOTREACHED */
1097 }
1098
1099 /*
1100 * this kills every thread in the thread group. Note that any externally
1101 * wait4()-ing process will get the correct exit code - even if this
1102 * thread is not the thread group leader.
1103 */
1104 SYSCALL_DEFINE1(exit_group, int, error_code)
1105 {
1106 do_group_exit((error_code & 0xff) << 8);
1107 /* NOTREACHED */
1108 return 0;
1109 }
1110
1111 static struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
1112 {
1113 struct pid *pid = NULL;
1114 if (type == PIDTYPE_PID)
1115 pid = task->pids[type].pid;
1116 else if (type < PIDTYPE_MAX)
1117 pid = task->group_leader->pids[type].pid;
1118 return pid;
1119 }
1120
1121 static int eligible_child(enum pid_type type, struct pid *pid, int options,
1122 struct task_struct *p)
1123 {
1124 int err;
1125
1126 if (type < PIDTYPE_MAX) {
1127 if (task_pid_type(p, type) != pid)
1128 return 0;
1129 }
1130
1131 /* Wait for all children (clone and not) if __WALL is set;
1132 * otherwise, wait for clone children *only* if __WCLONE is
1133 * set; otherwise, wait for non-clone children *only*. (Note:
1134 * A "clone" child here is one that reports to its parent
1135 * using a signal other than SIGCHLD.) */
1136 if (((p->exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0))
1137 && !(options & __WALL))
1138 return 0;
1139
1140 err = security_task_wait(p);
1141 if (err)
1142 return err;
1143
1144 return 1;
1145 }
1146
1147 static int wait_noreap_copyout(struct task_struct *p, pid_t pid, uid_t uid,
1148 int why, int status,
1149 struct siginfo __user *infop,
1150 struct rusage __user *rusagep)
1151 {
1152 int retval = rusagep ? getrusage(p, RUSAGE_BOTH, rusagep) : 0;
1153
1154 put_task_struct(p);
1155 if (!retval)
1156 retval = put_user(SIGCHLD, &infop->si_signo);
1157 if (!retval)
1158 retval = put_user(0, &infop->si_errno);
1159 if (!retval)
1160 retval = put_user((short)why, &infop->si_code);
1161 if (!retval)
1162 retval = put_user(pid, &infop->si_pid);
1163 if (!retval)
1164 retval = put_user(uid, &infop->si_uid);
1165 if (!retval)
1166 retval = put_user(status, &infop->si_status);
1167 if (!retval)
1168 retval = pid;
1169 return retval;
1170 }
1171
1172 /*
1173 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1174 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1175 * the lock and this task is uninteresting. If we return nonzero, we have
1176 * released the lock and the system call should return.
1177 */
1178 static int wait_task_zombie(struct task_struct *p, int options,
1179 struct siginfo __user *infop,
1180 int __user *stat_addr, struct rusage __user *ru)
1181 {
1182 unsigned long state;
1183 int retval, status, traced;
1184 pid_t pid = task_pid_vnr(p);
1185 uid_t uid = __task_cred(p)->uid;
1186
1187 if (!likely(options & WEXITED))
1188 return 0;
1189
1190 if (unlikely(options & WNOWAIT)) {
1191 int exit_code = p->exit_code;
1192 int why, status;
1193
1194 get_task_struct(p);
1195 read_unlock(&tasklist_lock);
1196 if ((exit_code & 0x7f) == 0) {
1197 why = CLD_EXITED;
1198 status = exit_code >> 8;
1199 } else {
1200 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1201 status = exit_code & 0x7f;
1202 }
1203 return wait_noreap_copyout(p, pid, uid, why,
1204 status, infop, ru);
1205 }
1206
1207 /*
1208 * Try to move the task's state to DEAD
1209 * only one thread is allowed to do this:
1210 */
1211 state = xchg(&p->exit_state, EXIT_DEAD);
1212 if (state != EXIT_ZOMBIE) {
1213 BUG_ON(state != EXIT_DEAD);
1214 return 0;
1215 }
1216
1217 traced = ptrace_reparented(p);
1218
1219 if (likely(!traced)) {
1220 struct signal_struct *psig;
1221 struct signal_struct *sig;
1222 struct task_cputime cputime;
1223
1224 /*
1225 * The resource counters for the group leader are in its
1226 * own task_struct. Those for dead threads in the group
1227 * are in its signal_struct, as are those for the child
1228 * processes it has previously reaped. All these
1229 * accumulate in the parent's signal_struct c* fields.
1230 *
1231 * We don't bother to take a lock here to protect these
1232 * p->signal fields, because they are only touched by
1233 * __exit_signal, which runs with tasklist_lock
1234 * write-locked anyway, and so is excluded here. We do
1235 * need to protect the access to p->parent->signal fields,
1236 * as other threads in the parent group can be right
1237 * here reaping other children at the same time.
1238 *
1239 * We use thread_group_cputime() to get times for the thread
1240 * group, which consolidates times for all threads in the
1241 * group including the group leader.
1242 */
1243 thread_group_cputime(p, &cputime);
1244 spin_lock_irq(&p->parent->sighand->siglock);
1245 psig = p->parent->signal;
1246 sig = p->signal;
1247 psig->cutime =
1248 cputime_add(psig->cutime,
1249 cputime_add(cputime.utime,
1250 sig->cutime));
1251 psig->cstime =
1252 cputime_add(psig->cstime,
1253 cputime_add(cputime.stime,
1254 sig->cstime));
1255 psig->cgtime =
1256 cputime_add(psig->cgtime,
1257 cputime_add(p->gtime,
1258 cputime_add(sig->gtime,
1259 sig->cgtime)));
1260 psig->cmin_flt +=
1261 p->min_flt + sig->min_flt + sig->cmin_flt;
1262 psig->cmaj_flt +=
1263 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1264 psig->cnvcsw +=
1265 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1266 psig->cnivcsw +=
1267 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1268 psig->cinblock +=
1269 task_io_get_inblock(p) +
1270 sig->inblock + sig->cinblock;
1271 psig->coublock +=
1272 task_io_get_oublock(p) +
1273 sig->oublock + sig->coublock;
1274 task_io_accounting_add(&psig->ioac, &p->ioac);
1275 task_io_accounting_add(&psig->ioac, &sig->ioac);
1276 spin_unlock_irq(&p->parent->sighand->siglock);
1277 }
1278
1279 /*
1280 * Now we are sure this task is interesting, and no other
1281 * thread can reap it because we set its state to EXIT_DEAD.
1282 */
1283 read_unlock(&tasklist_lock);
1284
1285 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1286 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1287 ? p->signal->group_exit_code : p->exit_code;
1288 if (!retval && stat_addr)
1289 retval = put_user(status, stat_addr);
1290 if (!retval && infop)
1291 retval = put_user(SIGCHLD, &infop->si_signo);
1292 if (!retval && infop)
1293 retval = put_user(0, &infop->si_errno);
1294 if (!retval && infop) {
1295 int why;
1296
1297 if ((status & 0x7f) == 0) {
1298 why = CLD_EXITED;
1299 status >>= 8;
1300 } else {
1301 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1302 status &= 0x7f;
1303 }
1304 retval = put_user((short)why, &infop->si_code);
1305 if (!retval)
1306 retval = put_user(status, &infop->si_status);
1307 }
1308 if (!retval && infop)
1309 retval = put_user(pid, &infop->si_pid);
1310 if (!retval && infop)
1311 retval = put_user(uid, &infop->si_uid);
1312 if (!retval)
1313 retval = pid;
1314
1315 if (traced) {
1316 write_lock_irq(&tasklist_lock);
1317 /* We dropped tasklist, ptracer could die and untrace */
1318 ptrace_unlink(p);
1319 /*
1320 * If this is not a detached task, notify the parent.
1321 * If it's still not detached after that, don't release
1322 * it now.
1323 */
1324 if (!task_detached(p)) {
1325 do_notify_parent(p, p->exit_signal);
1326 if (!task_detached(p)) {
1327 p->exit_state = EXIT_ZOMBIE;
1328 p = NULL;
1329 }
1330 }
1331 write_unlock_irq(&tasklist_lock);
1332 }
1333 if (p != NULL)
1334 release_task(p);
1335
1336 return retval;
1337 }
1338
1339 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1340 {
1341 if (ptrace) {
1342 if (task_is_stopped_or_traced(p))
1343 return &p->exit_code;
1344 } else {
1345 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1346 return &p->signal->group_exit_code;
1347 }
1348 return NULL;
1349 }
1350
1351 /*
1352 * Handle sys_wait4 work for one task in state TASK_STOPPED. We hold
1353 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1354 * the lock and this task is uninteresting. If we return nonzero, we have
1355 * released the lock and the system call should return.
1356 */
1357 static int wait_task_stopped(int ptrace, struct task_struct *p,
1358 int options, struct siginfo __user *infop,
1359 int __user *stat_addr, struct rusage __user *ru)
1360 {
1361 int retval, exit_code, *p_code, why;
1362 uid_t uid = 0; /* unneeded, required by compiler */
1363 pid_t pid;
1364
1365 if (!(options & WUNTRACED))
1366 return 0;
1367
1368 exit_code = 0;
1369 spin_lock_irq(&p->sighand->siglock);
1370
1371 p_code = task_stopped_code(p, ptrace);
1372 if (unlikely(!p_code))
1373 goto unlock_sig;
1374
1375 exit_code = *p_code;
1376 if (!exit_code)
1377 goto unlock_sig;
1378
1379 if (!unlikely(options & WNOWAIT))
1380 *p_code = 0;
1381
1382 /* don't need the RCU readlock here as we're holding a spinlock */
1383 uid = __task_cred(p)->uid;
1384 unlock_sig:
1385 spin_unlock_irq(&p->sighand->siglock);
1386 if (!exit_code)
1387 return 0;
1388
1389 /*
1390 * Now we are pretty sure this task is interesting.
1391 * Make sure it doesn't get reaped out from under us while we
1392 * give up the lock and then examine it below. We don't want to
1393 * keep holding onto the tasklist_lock while we call getrusage and
1394 * possibly take page faults for user memory.
1395 */
1396 get_task_struct(p);
1397 pid = task_pid_vnr(p);
1398 why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1399 read_unlock(&tasklist_lock);
1400
1401 if (unlikely(options & WNOWAIT))
1402 return wait_noreap_copyout(p, pid, uid,
1403 why, exit_code,
1404 infop, ru);
1405
1406 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1407 if (!retval && stat_addr)
1408 retval = put_user((exit_code << 8) | 0x7f, stat_addr);
1409 if (!retval && infop)
1410 retval = put_user(SIGCHLD, &infop->si_signo);
1411 if (!retval && infop)
1412 retval = put_user(0, &infop->si_errno);
1413 if (!retval && infop)
1414 retval = put_user((short)why, &infop->si_code);
1415 if (!retval && infop)
1416 retval = put_user(exit_code, &infop->si_status);
1417 if (!retval && infop)
1418 retval = put_user(pid, &infop->si_pid);
1419 if (!retval && infop)
1420 retval = put_user(uid, &infop->si_uid);
1421 if (!retval)
1422 retval = pid;
1423 put_task_struct(p);
1424
1425 BUG_ON(!retval);
1426 return retval;
1427 }
1428
1429 /*
1430 * Handle do_wait work for one task in a live, non-stopped state.
1431 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1432 * the lock and this task is uninteresting. If we return nonzero, we have
1433 * released the lock and the system call should return.
1434 */
1435 static int wait_task_continued(struct task_struct *p, int options,
1436 struct siginfo __user *infop,
1437 int __user *stat_addr, struct rusage __user *ru)
1438 {
1439 int retval;
1440 pid_t pid;
1441 uid_t uid;
1442
1443 if (!unlikely(options & WCONTINUED))
1444 return 0;
1445
1446 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1447 return 0;
1448
1449 spin_lock_irq(&p->sighand->siglock);
1450 /* Re-check with the lock held. */
1451 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1452 spin_unlock_irq(&p->sighand->siglock);
1453 return 0;
1454 }
1455 if (!unlikely(options & WNOWAIT))
1456 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1457 uid = __task_cred(p)->uid;
1458 spin_unlock_irq(&p->sighand->siglock);
1459
1460 pid = task_pid_vnr(p);
1461 get_task_struct(p);
1462 read_unlock(&tasklist_lock);
1463
1464 if (!infop) {
1465 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1466 put_task_struct(p);
1467 if (!retval && stat_addr)
1468 retval = put_user(0xffff, stat_addr);
1469 if (!retval)
1470 retval = pid;
1471 } else {
1472 retval = wait_noreap_copyout(p, pid, uid,
1473 CLD_CONTINUED, SIGCONT,
1474 infop, ru);
1475 BUG_ON(retval == 0);
1476 }
1477
1478 return retval;
1479 }
1480
1481 /*
1482 * Consider @p for a wait by @parent.
1483 *
1484 * -ECHILD should be in *@notask_error before the first call.
1485 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1486 * Returns zero if the search for a child should continue;
1487 * then *@notask_error is 0 if @p is an eligible child,
1488 * or another error from security_task_wait(), or still -ECHILD.
1489 */
1490 static int wait_consider_task(struct task_struct *parent, int ptrace,
1491 struct task_struct *p, int *notask_error,
1492 enum pid_type type, struct pid *pid, int options,
1493 struct siginfo __user *infop,
1494 int __user *stat_addr, struct rusage __user *ru)
1495 {
1496 int ret = eligible_child(type, pid, options, p);
1497 if (!ret)
1498 return ret;
1499
1500 if (unlikely(ret < 0)) {
1501 /*
1502 * If we have not yet seen any eligible child,
1503 * then let this error code replace -ECHILD.
1504 * A permission error will give the user a clue
1505 * to look for security policy problems, rather
1506 * than for mysterious wait bugs.
1507 */
1508 if (*notask_error)
1509 *notask_error = ret;
1510 }
1511
1512 if (likely(!ptrace) && unlikely(p->ptrace)) {
1513 /*
1514 * This child is hidden by ptrace.
1515 * We aren't allowed to see it now, but eventually we will.
1516 */
1517 *notask_error = 0;
1518 return 0;
1519 }
1520
1521 if (p->exit_state == EXIT_DEAD)
1522 return 0;
1523
1524 /*
1525 * We don't reap group leaders with subthreads.
1526 */
1527 if (p->exit_state == EXIT_ZOMBIE && !delay_group_leader(p))
1528 return wait_task_zombie(p, options, infop, stat_addr, ru);
1529
1530 /*
1531 * It's stopped or running now, so it might
1532 * later continue, exit, or stop again.
1533 */
1534 *notask_error = 0;
1535
1536 if (task_stopped_code(p, ptrace))
1537 return wait_task_stopped(ptrace, p, options,
1538 infop, stat_addr, ru);
1539
1540 return wait_task_continued(p, options, infop, stat_addr, ru);
1541 }
1542
1543 /*
1544 * Do the work of do_wait() for one thread in the group, @tsk.
1545 *
1546 * -ECHILD should be in *@notask_error before the first call.
1547 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1548 * Returns zero if the search for a child should continue; then
1549 * *@notask_error is 0 if there were any eligible children,
1550 * or another error from security_task_wait(), or still -ECHILD.
1551 */
1552 static int do_wait_thread(struct task_struct *tsk, int *notask_error,
1553 enum pid_type type, struct pid *pid, int options,
1554 struct siginfo __user *infop, int __user *stat_addr,
1555 struct rusage __user *ru)
1556 {
1557 struct task_struct *p;
1558
1559 list_for_each_entry(p, &tsk->children, sibling) {
1560 /*
1561 * Do not consider detached threads.
1562 */
1563 if (!task_detached(p)) {
1564 int ret = wait_consider_task(tsk, 0, p, notask_error,
1565 type, pid, options,
1566 infop, stat_addr, ru);
1567 if (ret)
1568 return ret;
1569 }
1570 }
1571
1572 return 0;
1573 }
1574
1575 static int ptrace_do_wait(struct task_struct *tsk, int *notask_error,
1576 enum pid_type type, struct pid *pid, int options,
1577 struct siginfo __user *infop, int __user *stat_addr,
1578 struct rusage __user *ru)
1579 {
1580 struct task_struct *p;
1581
1582 /*
1583 * Traditionally we see ptrace'd stopped tasks regardless of options.
1584 */
1585 options |= WUNTRACED;
1586
1587 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1588 int ret = wait_consider_task(tsk, 1, p, notask_error,
1589 type, pid, options,
1590 infop, stat_addr, ru);
1591 if (ret)
1592 return ret;
1593 }
1594
1595 return 0;
1596 }
1597
1598 static long do_wait(enum pid_type type, struct pid *pid, int options,
1599 struct siginfo __user *infop, int __user *stat_addr,
1600 struct rusage __user *ru)
1601 {
1602 DECLARE_WAITQUEUE(wait, current);
1603 struct task_struct *tsk;
1604 int retval;
1605
1606 trace_sched_process_wait(pid);
1607
1608 add_wait_queue(&current->signal->wait_chldexit,&wait);
1609 repeat:
1610 /*
1611 * If there is nothing that can match our critiera just get out.
1612 * We will clear @retval to zero if we see any child that might later
1613 * match our criteria, even if we are not able to reap it yet.
1614 */
1615 retval = -ECHILD;
1616 if ((type < PIDTYPE_MAX) && (!pid || hlist_empty(&pid->tasks[type])))
1617 goto end;
1618
1619 current->state = TASK_INTERRUPTIBLE;
1620 read_lock(&tasklist_lock);
1621 tsk = current;
1622 do {
1623 int tsk_result = do_wait_thread(tsk, &retval,
1624 type, pid, options,
1625 infop, stat_addr, ru);
1626 if (!tsk_result)
1627 tsk_result = ptrace_do_wait(tsk, &retval,
1628 type, pid, options,
1629 infop, stat_addr, ru);
1630 if (tsk_result) {
1631 /*
1632 * tasklist_lock is unlocked and we have a final result.
1633 */
1634 retval = tsk_result;
1635 goto end;
1636 }
1637
1638 if (options & __WNOTHREAD)
1639 break;
1640 tsk = next_thread(tsk);
1641 BUG_ON(tsk->signal != current->signal);
1642 } while (tsk != current);
1643 read_unlock(&tasklist_lock);
1644
1645 if (!retval && !(options & WNOHANG)) {
1646 retval = -ERESTARTSYS;
1647 if (!signal_pending(current)) {
1648 schedule();
1649 goto repeat;
1650 }
1651 }
1652
1653 end:
1654 current->state = TASK_RUNNING;
1655 remove_wait_queue(&current->signal->wait_chldexit,&wait);
1656 if (infop) {
1657 if (retval > 0)
1658 retval = 0;
1659 else {
1660 /*
1661 * For a WNOHANG return, clear out all the fields
1662 * we would set so the user can easily tell the
1663 * difference.
1664 */
1665 if (!retval)
1666 retval = put_user(0, &infop->si_signo);
1667 if (!retval)
1668 retval = put_user(0, &infop->si_errno);
1669 if (!retval)
1670 retval = put_user(0, &infop->si_code);
1671 if (!retval)
1672 retval = put_user(0, &infop->si_pid);
1673 if (!retval)
1674 retval = put_user(0, &infop->si_uid);
1675 if (!retval)
1676 retval = put_user(0, &infop->si_status);
1677 }
1678 }
1679 return retval;
1680 }
1681
1682 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1683 infop, int, options, struct rusage __user *, ru)
1684 {
1685 struct pid *pid = NULL;
1686 enum pid_type type;
1687 long ret;
1688
1689 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1690 return -EINVAL;
1691 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1692 return -EINVAL;
1693
1694 switch (which) {
1695 case P_ALL:
1696 type = PIDTYPE_MAX;
1697 break;
1698 case P_PID:
1699 type = PIDTYPE_PID;
1700 if (upid <= 0)
1701 return -EINVAL;
1702 break;
1703 case P_PGID:
1704 type = PIDTYPE_PGID;
1705 if (upid <= 0)
1706 return -EINVAL;
1707 break;
1708 default:
1709 return -EINVAL;
1710 }
1711
1712 if (type < PIDTYPE_MAX)
1713 pid = find_get_pid(upid);
1714 ret = do_wait(type, pid, options, infop, NULL, ru);
1715 put_pid(pid);
1716
1717 /* avoid REGPARM breakage on x86: */
1718 asmlinkage_protect(5, ret, which, upid, infop, options, ru);
1719 return ret;
1720 }
1721
1722 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1723 int, options, struct rusage __user *, ru)
1724 {
1725 struct pid *pid = NULL;
1726 enum pid_type type;
1727 long ret;
1728
1729 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1730 __WNOTHREAD|__WCLONE|__WALL))
1731 return -EINVAL;
1732
1733 if (upid == -1)
1734 type = PIDTYPE_MAX;
1735 else if (upid < 0) {
1736 type = PIDTYPE_PGID;
1737 pid = find_get_pid(-upid);
1738 } else if (upid == 0) {
1739 type = PIDTYPE_PGID;
1740 pid = get_pid(task_pgrp(current));
1741 } else /* upid > 0 */ {
1742 type = PIDTYPE_PID;
1743 pid = find_get_pid(upid);
1744 }
1745
1746 ret = do_wait(type, pid, options | WEXITED, NULL, stat_addr, ru);
1747 put_pid(pid);
1748
1749 /* avoid REGPARM breakage on x86: */
1750 asmlinkage_protect(4, ret, upid, stat_addr, options, ru);
1751 return ret;
1752 }
1753
1754 #ifdef __ARCH_WANT_SYS_WAITPID
1755
1756 /*
1757 * sys_waitpid() remains for compatibility. waitpid() should be
1758 * implemented by calling sys_wait4() from libc.a.
1759 */
1760 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1761 {
1762 return sys_wait4(pid, stat_addr, options, NULL);
1763 }
1764
1765 #endif