]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/exit.c
16b07bfac224d3f13960b09502fbecfba8897db0
[mirror_ubuntu-artful-kernel.git] / kernel / exit.c
1 /*
2 * linux/kernel/exit.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/iocontext.h>
16 #include <linux/key.h>
17 #include <linux/security.h>
18 #include <linux/cpu.h>
19 #include <linux/acct.h>
20 #include <linux/tsacct_kern.h>
21 #include <linux/file.h>
22 #include <linux/fdtable.h>
23 #include <linux/binfmts.h>
24 #include <linux/nsproxy.h>
25 #include <linux/pid_namespace.h>
26 #include <linux/ptrace.h>
27 #include <linux/profile.h>
28 #include <linux/mount.h>
29 #include <linux/proc_fs.h>
30 #include <linux/kthread.h>
31 #include <linux/mempolicy.h>
32 #include <linux/taskstats_kern.h>
33 #include <linux/delayacct.h>
34 #include <linux/freezer.h>
35 #include <linux/cgroup.h>
36 #include <linux/syscalls.h>
37 #include <linux/signal.h>
38 #include <linux/posix-timers.h>
39 #include <linux/cn_proc.h>
40 #include <linux/mutex.h>
41 #include <linux/futex.h>
42 #include <linux/pipe_fs_i.h>
43 #include <linux/audit.h> /* for audit_free() */
44 #include <linux/resource.h>
45 #include <linux/blkdev.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/tracehook.h>
48 #include <linux/fs_struct.h>
49 #include <linux/init_task.h>
50 #include <linux/perf_event.h>
51 #include <trace/events/sched.h>
52 #include <linux/hw_breakpoint.h>
53 #include <linux/oom.h>
54 #include <linux/writeback.h>
55 #include <linux/shm.h>
56
57 #include <asm/uaccess.h>
58 #include <asm/unistd.h>
59 #include <asm/pgtable.h>
60 #include <asm/mmu_context.h>
61
62 static void exit_mm(struct task_struct * tsk);
63
64 static void __unhash_process(struct task_struct *p, bool group_dead)
65 {
66 nr_threads--;
67 detach_pid(p, PIDTYPE_PID);
68 if (group_dead) {
69 detach_pid(p, PIDTYPE_PGID);
70 detach_pid(p, PIDTYPE_SID);
71
72 list_del_rcu(&p->tasks);
73 list_del_init(&p->sibling);
74 __this_cpu_dec(process_counts);
75 }
76 list_del_rcu(&p->thread_group);
77 }
78
79 /*
80 * This function expects the tasklist_lock write-locked.
81 */
82 static void __exit_signal(struct task_struct *tsk)
83 {
84 struct signal_struct *sig = tsk->signal;
85 bool group_dead = thread_group_leader(tsk);
86 struct sighand_struct *sighand;
87 struct tty_struct *uninitialized_var(tty);
88
89 sighand = rcu_dereference_check(tsk->sighand,
90 lockdep_tasklist_lock_is_held());
91 spin_lock(&sighand->siglock);
92
93 posix_cpu_timers_exit(tsk);
94 if (group_dead) {
95 posix_cpu_timers_exit_group(tsk);
96 tty = sig->tty;
97 sig->tty = NULL;
98 } else {
99 /*
100 * This can only happen if the caller is de_thread().
101 * FIXME: this is the temporary hack, we should teach
102 * posix-cpu-timers to handle this case correctly.
103 */
104 if (unlikely(has_group_leader_pid(tsk)))
105 posix_cpu_timers_exit_group(tsk);
106
107 /*
108 * If there is any task waiting for the group exit
109 * then notify it:
110 */
111 if (sig->notify_count > 0 && !--sig->notify_count)
112 wake_up_process(sig->group_exit_task);
113
114 if (tsk == sig->curr_target)
115 sig->curr_target = next_thread(tsk);
116 /*
117 * Accumulate here the counters for all threads but the
118 * group leader as they die, so they can be added into
119 * the process-wide totals when those are taken.
120 * The group leader stays around as a zombie as long
121 * as there are other threads. When it gets reaped,
122 * the exit.c code will add its counts into these totals.
123 * We won't ever get here for the group leader, since it
124 * will have been the last reference on the signal_struct.
125 */
126 sig->utime += tsk->utime;
127 sig->stime += tsk->stime;
128 sig->gtime += tsk->gtime;
129 sig->min_flt += tsk->min_flt;
130 sig->maj_flt += tsk->maj_flt;
131 sig->nvcsw += tsk->nvcsw;
132 sig->nivcsw += tsk->nivcsw;
133 sig->inblock += task_io_get_inblock(tsk);
134 sig->oublock += task_io_get_oublock(tsk);
135 task_io_accounting_add(&sig->ioac, &tsk->ioac);
136 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
137 }
138
139 sig->nr_threads--;
140 __unhash_process(tsk, group_dead);
141
142 /*
143 * Do this under ->siglock, we can race with another thread
144 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
145 */
146 flush_sigqueue(&tsk->pending);
147 tsk->sighand = NULL;
148 spin_unlock(&sighand->siglock);
149
150 __cleanup_sighand(sighand);
151 clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
152 if (group_dead) {
153 flush_sigqueue(&sig->shared_pending);
154 tty_kref_put(tty);
155 }
156 }
157
158 static void delayed_put_task_struct(struct rcu_head *rhp)
159 {
160 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
161
162 perf_event_delayed_put(tsk);
163 trace_sched_process_free(tsk);
164 put_task_struct(tsk);
165 }
166
167
168 void release_task(struct task_struct * p)
169 {
170 struct task_struct *leader;
171 int zap_leader;
172 repeat:
173 /* don't need to get the RCU readlock here - the process is dead and
174 * can't be modifying its own credentials. But shut RCU-lockdep up */
175 rcu_read_lock();
176 atomic_dec(&__task_cred(p)->user->processes);
177 rcu_read_unlock();
178
179 proc_flush_task(p);
180
181 write_lock_irq(&tasklist_lock);
182 ptrace_release_task(p);
183 __exit_signal(p);
184
185 /*
186 * If we are the last non-leader member of the thread
187 * group, and the leader is zombie, then notify the
188 * group leader's parent process. (if it wants notification.)
189 */
190 zap_leader = 0;
191 leader = p->group_leader;
192 if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
193 /*
194 * If we were the last child thread and the leader has
195 * exited already, and the leader's parent ignores SIGCHLD,
196 * then we are the one who should release the leader.
197 */
198 zap_leader = do_notify_parent(leader, leader->exit_signal);
199 if (zap_leader)
200 leader->exit_state = EXIT_DEAD;
201 }
202
203 write_unlock_irq(&tasklist_lock);
204 release_thread(p);
205 call_rcu(&p->rcu, delayed_put_task_struct);
206
207 p = leader;
208 if (unlikely(zap_leader))
209 goto repeat;
210 }
211
212 /*
213 * This checks not only the pgrp, but falls back on the pid if no
214 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
215 * without this...
216 *
217 * The caller must hold rcu lock or the tasklist lock.
218 */
219 struct pid *session_of_pgrp(struct pid *pgrp)
220 {
221 struct task_struct *p;
222 struct pid *sid = NULL;
223
224 p = pid_task(pgrp, PIDTYPE_PGID);
225 if (p == NULL)
226 p = pid_task(pgrp, PIDTYPE_PID);
227 if (p != NULL)
228 sid = task_session(p);
229
230 return sid;
231 }
232
233 /*
234 * Determine if a process group is "orphaned", according to the POSIX
235 * definition in 2.2.2.52. Orphaned process groups are not to be affected
236 * by terminal-generated stop signals. Newly orphaned process groups are
237 * to receive a SIGHUP and a SIGCONT.
238 *
239 * "I ask you, have you ever known what it is to be an orphan?"
240 */
241 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
242 {
243 struct task_struct *p;
244
245 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
246 if ((p == ignored_task) ||
247 (p->exit_state && thread_group_empty(p)) ||
248 is_global_init(p->real_parent))
249 continue;
250
251 if (task_pgrp(p->real_parent) != pgrp &&
252 task_session(p->real_parent) == task_session(p))
253 return 0;
254 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
255
256 return 1;
257 }
258
259 int is_current_pgrp_orphaned(void)
260 {
261 int retval;
262
263 read_lock(&tasklist_lock);
264 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
265 read_unlock(&tasklist_lock);
266
267 return retval;
268 }
269
270 static bool has_stopped_jobs(struct pid *pgrp)
271 {
272 struct task_struct *p;
273
274 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
275 if (p->signal->flags & SIGNAL_STOP_STOPPED)
276 return true;
277 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
278
279 return false;
280 }
281
282 /*
283 * Check to see if any process groups have become orphaned as
284 * a result of our exiting, and if they have any stopped jobs,
285 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
286 */
287 static void
288 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
289 {
290 struct pid *pgrp = task_pgrp(tsk);
291 struct task_struct *ignored_task = tsk;
292
293 if (!parent)
294 /* exit: our father is in a different pgrp than
295 * we are and we were the only connection outside.
296 */
297 parent = tsk->real_parent;
298 else
299 /* reparent: our child is in a different pgrp than
300 * we are, and it was the only connection outside.
301 */
302 ignored_task = NULL;
303
304 if (task_pgrp(parent) != pgrp &&
305 task_session(parent) == task_session(tsk) &&
306 will_become_orphaned_pgrp(pgrp, ignored_task) &&
307 has_stopped_jobs(pgrp)) {
308 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
309 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
310 }
311 }
312
313 /**
314 * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
315 *
316 * If a kernel thread is launched as a result of a system call, or if
317 * it ever exits, it should generally reparent itself to kthreadd so it
318 * isn't in the way of other processes and is correctly cleaned up on exit.
319 *
320 * The various task state such as scheduling policy and priority may have
321 * been inherited from a user process, so we reset them to sane values here.
322 *
323 * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
324 */
325 static void reparent_to_kthreadd(void)
326 {
327 write_lock_irq(&tasklist_lock);
328
329 ptrace_unlink(current);
330 /* Reparent to init */
331 current->real_parent = current->parent = kthreadd_task;
332 list_move_tail(&current->sibling, &current->real_parent->children);
333
334 /* Set the exit signal to SIGCHLD so we signal init on exit */
335 current->exit_signal = SIGCHLD;
336
337 if (task_nice(current) < 0)
338 set_user_nice(current, 0);
339 /* cpus_allowed? */
340 /* rt_priority? */
341 /* signals? */
342 memcpy(current->signal->rlim, init_task.signal->rlim,
343 sizeof(current->signal->rlim));
344
345 atomic_inc(&init_cred.usage);
346 commit_creds(&init_cred);
347 write_unlock_irq(&tasklist_lock);
348 }
349
350 void __set_special_pids(struct pid *pid)
351 {
352 struct task_struct *curr = current->group_leader;
353
354 if (task_session(curr) != pid)
355 change_pid(curr, PIDTYPE_SID, pid);
356
357 if (task_pgrp(curr) != pid)
358 change_pid(curr, PIDTYPE_PGID, pid);
359 }
360
361 static void set_special_pids(struct pid *pid)
362 {
363 write_lock_irq(&tasklist_lock);
364 __set_special_pids(pid);
365 write_unlock_irq(&tasklist_lock);
366 }
367
368 /*
369 * Let kernel threads use this to say that they allow a certain signal.
370 * Must not be used if kthread was cloned with CLONE_SIGHAND.
371 */
372 int allow_signal(int sig)
373 {
374 if (!valid_signal(sig) || sig < 1)
375 return -EINVAL;
376
377 spin_lock_irq(&current->sighand->siglock);
378 /* This is only needed for daemonize()'ed kthreads */
379 sigdelset(&current->blocked, sig);
380 /*
381 * Kernel threads handle their own signals. Let the signal code
382 * know it'll be handled, so that they don't get converted to
383 * SIGKILL or just silently dropped.
384 */
385 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
386 recalc_sigpending();
387 spin_unlock_irq(&current->sighand->siglock);
388 return 0;
389 }
390
391 EXPORT_SYMBOL(allow_signal);
392
393 int disallow_signal(int sig)
394 {
395 if (!valid_signal(sig) || sig < 1)
396 return -EINVAL;
397
398 spin_lock_irq(&current->sighand->siglock);
399 current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
400 recalc_sigpending();
401 spin_unlock_irq(&current->sighand->siglock);
402 return 0;
403 }
404
405 EXPORT_SYMBOL(disallow_signal);
406
407 /*
408 * Put all the gunge required to become a kernel thread without
409 * attached user resources in one place where it belongs.
410 */
411
412 void daemonize(const char *name, ...)
413 {
414 va_list args;
415 sigset_t blocked;
416
417 va_start(args, name);
418 vsnprintf(current->comm, sizeof(current->comm), name, args);
419 va_end(args);
420
421 /*
422 * If we were started as result of loading a module, close all of the
423 * user space pages. We don't need them, and if we didn't close them
424 * they would be locked into memory.
425 */
426 exit_mm(current);
427 /*
428 * We don't want to get frozen, in case system-wide hibernation
429 * or suspend transition begins right now.
430 */
431 current->flags |= (PF_NOFREEZE | PF_KTHREAD);
432
433 if (current->nsproxy != &init_nsproxy) {
434 get_nsproxy(&init_nsproxy);
435 switch_task_namespaces(current, &init_nsproxy);
436 }
437 set_special_pids(&init_struct_pid);
438 proc_clear_tty(current);
439
440 /* Block and flush all signals */
441 sigfillset(&blocked);
442 sigprocmask(SIG_BLOCK, &blocked, NULL);
443 flush_signals(current);
444
445 /* Become as one with the init task */
446
447 daemonize_fs_struct();
448 exit_files(current);
449 current->files = init_task.files;
450 atomic_inc(&current->files->count);
451
452 reparent_to_kthreadd();
453 }
454
455 EXPORT_SYMBOL(daemonize);
456
457 static void close_files(struct files_struct * files)
458 {
459 int i, j;
460 struct fdtable *fdt;
461
462 j = 0;
463
464 /*
465 * It is safe to dereference the fd table without RCU or
466 * ->file_lock because this is the last reference to the
467 * files structure. But use RCU to shut RCU-lockdep up.
468 */
469 rcu_read_lock();
470 fdt = files_fdtable(files);
471 rcu_read_unlock();
472 for (;;) {
473 unsigned long set;
474 i = j * __NFDBITS;
475 if (i >= fdt->max_fds)
476 break;
477 set = fdt->open_fds->fds_bits[j++];
478 while (set) {
479 if (set & 1) {
480 struct file * file = xchg(&fdt->fd[i], NULL);
481 if (file) {
482 filp_close(file, files);
483 cond_resched();
484 }
485 }
486 i++;
487 set >>= 1;
488 }
489 }
490 }
491
492 struct files_struct *get_files_struct(struct task_struct *task)
493 {
494 struct files_struct *files;
495
496 task_lock(task);
497 files = task->files;
498 if (files)
499 atomic_inc(&files->count);
500 task_unlock(task);
501
502 return files;
503 }
504
505 void put_files_struct(struct files_struct *files)
506 {
507 struct fdtable *fdt;
508
509 if (atomic_dec_and_test(&files->count)) {
510 close_files(files);
511 /*
512 * Free the fd and fdset arrays if we expanded them.
513 * If the fdtable was embedded, pass files for freeing
514 * at the end of the RCU grace period. Otherwise,
515 * you can free files immediately.
516 */
517 rcu_read_lock();
518 fdt = files_fdtable(files);
519 if (fdt != &files->fdtab)
520 kmem_cache_free(files_cachep, files);
521 free_fdtable(fdt);
522 rcu_read_unlock();
523 }
524 }
525
526 void reset_files_struct(struct files_struct *files)
527 {
528 struct task_struct *tsk = current;
529 struct files_struct *old;
530
531 old = tsk->files;
532 task_lock(tsk);
533 tsk->files = files;
534 task_unlock(tsk);
535 put_files_struct(old);
536 }
537
538 void exit_files(struct task_struct *tsk)
539 {
540 struct files_struct * files = tsk->files;
541
542 if (files) {
543 task_lock(tsk);
544 tsk->files = NULL;
545 task_unlock(tsk);
546 put_files_struct(files);
547 }
548 }
549
550 #ifdef CONFIG_MM_OWNER
551 /*
552 * A task is exiting. If it owned this mm, find a new owner for the mm.
553 */
554 void mm_update_next_owner(struct mm_struct *mm)
555 {
556 struct task_struct *c, *g, *p = current;
557
558 retry:
559 /*
560 * If the exiting or execing task is not the owner, it's
561 * someone else's problem.
562 */
563 if (mm->owner != p)
564 return;
565 /*
566 * The current owner is exiting/execing and there are no other
567 * candidates. Do not leave the mm pointing to a possibly
568 * freed task structure.
569 */
570 if (atomic_read(&mm->mm_users) <= 1) {
571 mm->owner = NULL;
572 return;
573 }
574
575 read_lock(&tasklist_lock);
576 /*
577 * Search in the children
578 */
579 list_for_each_entry(c, &p->children, sibling) {
580 if (c->mm == mm)
581 goto assign_new_owner;
582 }
583
584 /*
585 * Search in the siblings
586 */
587 list_for_each_entry(c, &p->real_parent->children, sibling) {
588 if (c->mm == mm)
589 goto assign_new_owner;
590 }
591
592 /*
593 * Search through everything else. We should not get
594 * here often
595 */
596 do_each_thread(g, c) {
597 if (c->mm == mm)
598 goto assign_new_owner;
599 } while_each_thread(g, c);
600
601 read_unlock(&tasklist_lock);
602 /*
603 * We found no owner yet mm_users > 1: this implies that we are
604 * most likely racing with swapoff (try_to_unuse()) or /proc or
605 * ptrace or page migration (get_task_mm()). Mark owner as NULL.
606 */
607 mm->owner = NULL;
608 return;
609
610 assign_new_owner:
611 BUG_ON(c == p);
612 get_task_struct(c);
613 /*
614 * The task_lock protects c->mm from changing.
615 * We always want mm->owner->mm == mm
616 */
617 task_lock(c);
618 /*
619 * Delay read_unlock() till we have the task_lock()
620 * to ensure that c does not slip away underneath us
621 */
622 read_unlock(&tasklist_lock);
623 if (c->mm != mm) {
624 task_unlock(c);
625 put_task_struct(c);
626 goto retry;
627 }
628 mm->owner = c;
629 task_unlock(c);
630 put_task_struct(c);
631 }
632 #endif /* CONFIG_MM_OWNER */
633
634 /*
635 * Turn us into a lazy TLB process if we
636 * aren't already..
637 */
638 static void exit_mm(struct task_struct * tsk)
639 {
640 struct mm_struct *mm = tsk->mm;
641 struct core_state *core_state;
642
643 mm_release(tsk, mm);
644 if (!mm)
645 return;
646 /*
647 * Serialize with any possible pending coredump.
648 * We must hold mmap_sem around checking core_state
649 * and clearing tsk->mm. The core-inducing thread
650 * will increment ->nr_threads for each thread in the
651 * group with ->mm != NULL.
652 */
653 down_read(&mm->mmap_sem);
654 core_state = mm->core_state;
655 if (core_state) {
656 struct core_thread self;
657 up_read(&mm->mmap_sem);
658
659 self.task = tsk;
660 self.next = xchg(&core_state->dumper.next, &self);
661 /*
662 * Implies mb(), the result of xchg() must be visible
663 * to core_state->dumper.
664 */
665 if (atomic_dec_and_test(&core_state->nr_threads))
666 complete(&core_state->startup);
667
668 for (;;) {
669 set_task_state(tsk, TASK_UNINTERRUPTIBLE);
670 if (!self.task) /* see coredump_finish() */
671 break;
672 schedule();
673 }
674 __set_task_state(tsk, TASK_RUNNING);
675 down_read(&mm->mmap_sem);
676 }
677 atomic_inc(&mm->mm_count);
678 BUG_ON(mm != tsk->active_mm);
679 /* more a memory barrier than a real lock */
680 task_lock(tsk);
681 tsk->mm = NULL;
682 up_read(&mm->mmap_sem);
683 enter_lazy_tlb(mm, current);
684 task_unlock(tsk);
685 mm_update_next_owner(mm);
686 mmput(mm);
687 }
688
689 /*
690 * When we die, we re-parent all our children.
691 * Try to give them to another thread in our thread
692 * group, and if no such member exists, give it to
693 * the child reaper process (ie "init") in our pid
694 * space.
695 */
696 static struct task_struct *find_new_reaper(struct task_struct *father)
697 __releases(&tasklist_lock)
698 __acquires(&tasklist_lock)
699 {
700 struct pid_namespace *pid_ns = task_active_pid_ns(father);
701 struct task_struct *thread;
702
703 thread = father;
704 while_each_thread(father, thread) {
705 if (thread->flags & PF_EXITING)
706 continue;
707 if (unlikely(pid_ns->child_reaper == father))
708 pid_ns->child_reaper = thread;
709 return thread;
710 }
711
712 if (unlikely(pid_ns->child_reaper == father)) {
713 write_unlock_irq(&tasklist_lock);
714 if (unlikely(pid_ns == &init_pid_ns))
715 panic("Attempted to kill init!");
716
717 zap_pid_ns_processes(pid_ns);
718 write_lock_irq(&tasklist_lock);
719 /*
720 * We can not clear ->child_reaper or leave it alone.
721 * There may by stealth EXIT_DEAD tasks on ->children,
722 * forget_original_parent() must move them somewhere.
723 */
724 pid_ns->child_reaper = init_pid_ns.child_reaper;
725 }
726
727 return pid_ns->child_reaper;
728 }
729
730 /*
731 * Any that need to be release_task'd are put on the @dead list.
732 */
733 static void reparent_leader(struct task_struct *father, struct task_struct *p,
734 struct list_head *dead)
735 {
736 list_move_tail(&p->sibling, &p->real_parent->children);
737
738 if (p->exit_state == EXIT_DEAD)
739 return;
740 /*
741 * If this is a threaded reparent there is no need to
742 * notify anyone anything has happened.
743 */
744 if (same_thread_group(p->real_parent, father))
745 return;
746
747 /* We don't want people slaying init. */
748 p->exit_signal = SIGCHLD;
749
750 /* If it has exited notify the new parent about this child's death. */
751 if (!p->ptrace &&
752 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
753 if (do_notify_parent(p, p->exit_signal)) {
754 p->exit_state = EXIT_DEAD;
755 list_move_tail(&p->sibling, dead);
756 }
757 }
758
759 kill_orphaned_pgrp(p, father);
760 }
761
762 static void forget_original_parent(struct task_struct *father)
763 {
764 struct task_struct *p, *n, *reaper;
765 LIST_HEAD(dead_children);
766
767 write_lock_irq(&tasklist_lock);
768 /*
769 * Note that exit_ptrace() and find_new_reaper() might
770 * drop tasklist_lock and reacquire it.
771 */
772 exit_ptrace(father);
773 reaper = find_new_reaper(father);
774
775 list_for_each_entry_safe(p, n, &father->children, sibling) {
776 struct task_struct *t = p;
777 do {
778 t->real_parent = reaper;
779 if (t->parent == father) {
780 BUG_ON(t->ptrace);
781 t->parent = t->real_parent;
782 }
783 if (t->pdeath_signal)
784 group_send_sig_info(t->pdeath_signal,
785 SEND_SIG_NOINFO, t);
786 } while_each_thread(p, t);
787 reparent_leader(father, p, &dead_children);
788 }
789 write_unlock_irq(&tasklist_lock);
790
791 BUG_ON(!list_empty(&father->children));
792
793 list_for_each_entry_safe(p, n, &dead_children, sibling) {
794 list_del_init(&p->sibling);
795 release_task(p);
796 }
797 }
798
799 /*
800 * Send signals to all our closest relatives so that they know
801 * to properly mourn us..
802 */
803 static void exit_notify(struct task_struct *tsk, int group_dead)
804 {
805 bool autoreap;
806
807 /*
808 * This does two things:
809 *
810 * A. Make init inherit all the child processes
811 * B. Check to see if any process groups have become orphaned
812 * as a result of our exiting, and if they have any stopped
813 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
814 */
815 forget_original_parent(tsk);
816 exit_task_namespaces(tsk);
817
818 write_lock_irq(&tasklist_lock);
819 if (group_dead)
820 kill_orphaned_pgrp(tsk->group_leader, NULL);
821
822 if (unlikely(tsk->ptrace)) {
823 int sig = thread_group_leader(tsk) &&
824 thread_group_empty(tsk) &&
825 !ptrace_reparented(tsk) ?
826 tsk->exit_signal : SIGCHLD;
827 autoreap = do_notify_parent(tsk, sig);
828 } else if (thread_group_leader(tsk)) {
829 autoreap = thread_group_empty(tsk) &&
830 do_notify_parent(tsk, tsk->exit_signal);
831 } else {
832 autoreap = true;
833 }
834
835 tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE;
836
837 /* mt-exec, de_thread() is waiting for group leader */
838 if (unlikely(tsk->signal->notify_count < 0))
839 wake_up_process(tsk->signal->group_exit_task);
840 write_unlock_irq(&tasklist_lock);
841
842 /* If the process is dead, release it - nobody will wait for it */
843 if (autoreap)
844 release_task(tsk);
845 }
846
847 #ifdef CONFIG_DEBUG_STACK_USAGE
848 static void check_stack_usage(void)
849 {
850 static DEFINE_SPINLOCK(low_water_lock);
851 static int lowest_to_date = THREAD_SIZE;
852 unsigned long free;
853
854 free = stack_not_used(current);
855
856 if (free >= lowest_to_date)
857 return;
858
859 spin_lock(&low_water_lock);
860 if (free < lowest_to_date) {
861 printk(KERN_WARNING "%s used greatest stack depth: %lu bytes "
862 "left\n",
863 current->comm, free);
864 lowest_to_date = free;
865 }
866 spin_unlock(&low_water_lock);
867 }
868 #else
869 static inline void check_stack_usage(void) {}
870 #endif
871
872 void do_exit(long code)
873 {
874 struct task_struct *tsk = current;
875 int group_dead;
876
877 profile_task_exit(tsk);
878
879 WARN_ON(blk_needs_flush_plug(tsk));
880
881 if (unlikely(in_interrupt()))
882 panic("Aiee, killing interrupt handler!");
883 if (unlikely(!tsk->pid))
884 panic("Attempted to kill the idle task!");
885
886 /*
887 * If do_exit is called because this processes oopsed, it's possible
888 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
889 * continuing. Amongst other possible reasons, this is to prevent
890 * mm_release()->clear_child_tid() from writing to a user-controlled
891 * kernel address.
892 */
893 set_fs(USER_DS);
894
895 ptrace_event(PTRACE_EVENT_EXIT, code);
896
897 validate_creds_for_do_exit(tsk);
898
899 /*
900 * We're taking recursive faults here in do_exit. Safest is to just
901 * leave this task alone and wait for reboot.
902 */
903 if (unlikely(tsk->flags & PF_EXITING)) {
904 printk(KERN_ALERT
905 "Fixing recursive fault but reboot is needed!\n");
906 /*
907 * We can do this unlocked here. The futex code uses
908 * this flag just to verify whether the pi state
909 * cleanup has been done or not. In the worst case it
910 * loops once more. We pretend that the cleanup was
911 * done as there is no way to return. Either the
912 * OWNER_DIED bit is set by now or we push the blocked
913 * task into the wait for ever nirwana as well.
914 */
915 tsk->flags |= PF_EXITPIDONE;
916 set_current_state(TASK_UNINTERRUPTIBLE);
917 schedule();
918 }
919
920 exit_signals(tsk); /* sets PF_EXITING */
921 /*
922 * tsk->flags are checked in the futex code to protect against
923 * an exiting task cleaning up the robust pi futexes.
924 */
925 smp_mb();
926 raw_spin_unlock_wait(&tsk->pi_lock);
927
928 exit_irq_thread();
929
930 if (unlikely(in_atomic()))
931 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
932 current->comm, task_pid_nr(current),
933 preempt_count());
934
935 acct_update_integrals(tsk);
936 /* sync mm's RSS info before statistics gathering */
937 if (tsk->mm)
938 sync_mm_rss(tsk->mm);
939 group_dead = atomic_dec_and_test(&tsk->signal->live);
940 if (group_dead) {
941 hrtimer_cancel(&tsk->signal->real_timer);
942 exit_itimers(tsk->signal);
943 if (tsk->mm)
944 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
945 }
946 acct_collect(code, group_dead);
947 if (group_dead)
948 tty_audit_exit();
949 audit_free(tsk);
950
951 tsk->exit_code = code;
952 taskstats_exit(tsk, group_dead);
953
954 exit_mm(tsk);
955
956 if (group_dead)
957 acct_process();
958 trace_sched_process_exit(tsk);
959
960 exit_sem(tsk);
961 exit_shm(tsk);
962 exit_files(tsk);
963 exit_fs(tsk);
964 check_stack_usage();
965 exit_thread();
966
967 /*
968 * Flush inherited counters to the parent - before the parent
969 * gets woken up by child-exit notifications.
970 *
971 * because of cgroup mode, must be called before cgroup_exit()
972 */
973 perf_event_exit_task(tsk);
974
975 cgroup_exit(tsk, 1);
976
977 if (group_dead)
978 disassociate_ctty(1);
979
980 module_put(task_thread_info(tsk)->exec_domain->module);
981
982 proc_exit_connector(tsk);
983
984 /*
985 * FIXME: do that only when needed, using sched_exit tracepoint
986 */
987 ptrace_put_breakpoints(tsk);
988
989 exit_notify(tsk, group_dead);
990 #ifdef CONFIG_NUMA
991 task_lock(tsk);
992 mpol_put(tsk->mempolicy);
993 tsk->mempolicy = NULL;
994 task_unlock(tsk);
995 #endif
996 #ifdef CONFIG_FUTEX
997 if (unlikely(current->pi_state_cache))
998 kfree(current->pi_state_cache);
999 #endif
1000 /*
1001 * Make sure we are holding no locks:
1002 */
1003 debug_check_no_locks_held(tsk);
1004 /*
1005 * We can do this unlocked here. The futex code uses this flag
1006 * just to verify whether the pi state cleanup has been done
1007 * or not. In the worst case it loops once more.
1008 */
1009 tsk->flags |= PF_EXITPIDONE;
1010
1011 if (tsk->io_context)
1012 exit_io_context(tsk);
1013
1014 if (tsk->splice_pipe)
1015 __free_pipe_info(tsk->splice_pipe);
1016
1017 validate_creds_for_do_exit(tsk);
1018
1019 preempt_disable();
1020 if (tsk->nr_dirtied)
1021 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
1022 exit_rcu();
1023
1024 /*
1025 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed
1026 * when the following two conditions become true.
1027 * - There is race condition of mmap_sem (It is acquired by
1028 * exit_mm()), and
1029 * - SMI occurs before setting TASK_RUNINNG.
1030 * (or hypervisor of virtual machine switches to other guest)
1031 * As a result, we may become TASK_RUNNING after becoming TASK_DEAD
1032 *
1033 * To avoid it, we have to wait for releasing tsk->pi_lock which
1034 * is held by try_to_wake_up()
1035 */
1036 smp_mb();
1037 raw_spin_unlock_wait(&tsk->pi_lock);
1038
1039 /* causes final put_task_struct in finish_task_switch(). */
1040 tsk->state = TASK_DEAD;
1041 tsk->flags |= PF_NOFREEZE; /* tell freezer to ignore us */
1042 schedule();
1043 BUG();
1044 /* Avoid "noreturn function does return". */
1045 for (;;)
1046 cpu_relax(); /* For when BUG is null */
1047 }
1048
1049 EXPORT_SYMBOL_GPL(do_exit);
1050
1051 void complete_and_exit(struct completion *comp, long code)
1052 {
1053 if (comp)
1054 complete(comp);
1055
1056 do_exit(code);
1057 }
1058
1059 EXPORT_SYMBOL(complete_and_exit);
1060
1061 SYSCALL_DEFINE1(exit, int, error_code)
1062 {
1063 do_exit((error_code&0xff)<<8);
1064 }
1065
1066 /*
1067 * Take down every thread in the group. This is called by fatal signals
1068 * as well as by sys_exit_group (below).
1069 */
1070 void
1071 do_group_exit(int exit_code)
1072 {
1073 struct signal_struct *sig = current->signal;
1074
1075 BUG_ON(exit_code & 0x80); /* core dumps don't get here */
1076
1077 if (signal_group_exit(sig))
1078 exit_code = sig->group_exit_code;
1079 else if (!thread_group_empty(current)) {
1080 struct sighand_struct *const sighand = current->sighand;
1081 spin_lock_irq(&sighand->siglock);
1082 if (signal_group_exit(sig))
1083 /* Another thread got here before we took the lock. */
1084 exit_code = sig->group_exit_code;
1085 else {
1086 sig->group_exit_code = exit_code;
1087 sig->flags = SIGNAL_GROUP_EXIT;
1088 zap_other_threads(current);
1089 }
1090 spin_unlock_irq(&sighand->siglock);
1091 }
1092
1093 do_exit(exit_code);
1094 /* NOTREACHED */
1095 }
1096
1097 /*
1098 * this kills every thread in the thread group. Note that any externally
1099 * wait4()-ing process will get the correct exit code - even if this
1100 * thread is not the thread group leader.
1101 */
1102 SYSCALL_DEFINE1(exit_group, int, error_code)
1103 {
1104 do_group_exit((error_code & 0xff) << 8);
1105 /* NOTREACHED */
1106 return 0;
1107 }
1108
1109 struct wait_opts {
1110 enum pid_type wo_type;
1111 int wo_flags;
1112 struct pid *wo_pid;
1113
1114 struct siginfo __user *wo_info;
1115 int __user *wo_stat;
1116 struct rusage __user *wo_rusage;
1117
1118 wait_queue_t child_wait;
1119 int notask_error;
1120 };
1121
1122 static inline
1123 struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
1124 {
1125 if (type != PIDTYPE_PID)
1126 task = task->group_leader;
1127 return task->pids[type].pid;
1128 }
1129
1130 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
1131 {
1132 return wo->wo_type == PIDTYPE_MAX ||
1133 task_pid_type(p, wo->wo_type) == wo->wo_pid;
1134 }
1135
1136 static int eligible_child(struct wait_opts *wo, struct task_struct *p)
1137 {
1138 if (!eligible_pid(wo, p))
1139 return 0;
1140 /* Wait for all children (clone and not) if __WALL is set;
1141 * otherwise, wait for clone children *only* if __WCLONE is
1142 * set; otherwise, wait for non-clone children *only*. (Note:
1143 * A "clone" child here is one that reports to its parent
1144 * using a signal other than SIGCHLD.) */
1145 if (((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1146 && !(wo->wo_flags & __WALL))
1147 return 0;
1148
1149 return 1;
1150 }
1151
1152 static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p,
1153 pid_t pid, uid_t uid, int why, int status)
1154 {
1155 struct siginfo __user *infop;
1156 int retval = wo->wo_rusage
1157 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1158
1159 put_task_struct(p);
1160 infop = wo->wo_info;
1161 if (infop) {
1162 if (!retval)
1163 retval = put_user(SIGCHLD, &infop->si_signo);
1164 if (!retval)
1165 retval = put_user(0, &infop->si_errno);
1166 if (!retval)
1167 retval = put_user((short)why, &infop->si_code);
1168 if (!retval)
1169 retval = put_user(pid, &infop->si_pid);
1170 if (!retval)
1171 retval = put_user(uid, &infop->si_uid);
1172 if (!retval)
1173 retval = put_user(status, &infop->si_status);
1174 }
1175 if (!retval)
1176 retval = pid;
1177 return retval;
1178 }
1179
1180 /*
1181 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1182 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1183 * the lock and this task is uninteresting. If we return nonzero, we have
1184 * released the lock and the system call should return.
1185 */
1186 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1187 {
1188 unsigned long state;
1189 int retval, status, traced;
1190 pid_t pid = task_pid_vnr(p);
1191 uid_t uid = __task_cred(p)->uid;
1192 struct siginfo __user *infop;
1193
1194 if (!likely(wo->wo_flags & WEXITED))
1195 return 0;
1196
1197 if (unlikely(wo->wo_flags & WNOWAIT)) {
1198 int exit_code = p->exit_code;
1199 int why;
1200
1201 get_task_struct(p);
1202 read_unlock(&tasklist_lock);
1203 if ((exit_code & 0x7f) == 0) {
1204 why = CLD_EXITED;
1205 status = exit_code >> 8;
1206 } else {
1207 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1208 status = exit_code & 0x7f;
1209 }
1210 return wait_noreap_copyout(wo, p, pid, uid, why, status);
1211 }
1212
1213 /*
1214 * Try to move the task's state to DEAD
1215 * only one thread is allowed to do this:
1216 */
1217 state = xchg(&p->exit_state, EXIT_DEAD);
1218 if (state != EXIT_ZOMBIE) {
1219 BUG_ON(state != EXIT_DEAD);
1220 return 0;
1221 }
1222
1223 traced = ptrace_reparented(p);
1224 /*
1225 * It can be ptraced but not reparented, check
1226 * thread_group_leader() to filter out sub-threads.
1227 */
1228 if (likely(!traced) && thread_group_leader(p)) {
1229 struct signal_struct *psig;
1230 struct signal_struct *sig;
1231 unsigned long maxrss;
1232 cputime_t tgutime, tgstime;
1233
1234 /*
1235 * The resource counters for the group leader are in its
1236 * own task_struct. Those for dead threads in the group
1237 * are in its signal_struct, as are those for the child
1238 * processes it has previously reaped. All these
1239 * accumulate in the parent's signal_struct c* fields.
1240 *
1241 * We don't bother to take a lock here to protect these
1242 * p->signal fields, because they are only touched by
1243 * __exit_signal, which runs with tasklist_lock
1244 * write-locked anyway, and so is excluded here. We do
1245 * need to protect the access to parent->signal fields,
1246 * as other threads in the parent group can be right
1247 * here reaping other children at the same time.
1248 *
1249 * We use thread_group_times() to get times for the thread
1250 * group, which consolidates times for all threads in the
1251 * group including the group leader.
1252 */
1253 thread_group_times(p, &tgutime, &tgstime);
1254 spin_lock_irq(&p->real_parent->sighand->siglock);
1255 psig = p->real_parent->signal;
1256 sig = p->signal;
1257 psig->cutime += tgutime + sig->cutime;
1258 psig->cstime += tgstime + sig->cstime;
1259 psig->cgtime += p->gtime + sig->gtime + sig->cgtime;
1260 psig->cmin_flt +=
1261 p->min_flt + sig->min_flt + sig->cmin_flt;
1262 psig->cmaj_flt +=
1263 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1264 psig->cnvcsw +=
1265 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1266 psig->cnivcsw +=
1267 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1268 psig->cinblock +=
1269 task_io_get_inblock(p) +
1270 sig->inblock + sig->cinblock;
1271 psig->coublock +=
1272 task_io_get_oublock(p) +
1273 sig->oublock + sig->coublock;
1274 maxrss = max(sig->maxrss, sig->cmaxrss);
1275 if (psig->cmaxrss < maxrss)
1276 psig->cmaxrss = maxrss;
1277 task_io_accounting_add(&psig->ioac, &p->ioac);
1278 task_io_accounting_add(&psig->ioac, &sig->ioac);
1279 spin_unlock_irq(&p->real_parent->sighand->siglock);
1280 }
1281
1282 /*
1283 * Now we are sure this task is interesting, and no other
1284 * thread can reap it because we set its state to EXIT_DEAD.
1285 */
1286 read_unlock(&tasklist_lock);
1287
1288 retval = wo->wo_rusage
1289 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1290 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1291 ? p->signal->group_exit_code : p->exit_code;
1292 if (!retval && wo->wo_stat)
1293 retval = put_user(status, wo->wo_stat);
1294
1295 infop = wo->wo_info;
1296 if (!retval && infop)
1297 retval = put_user(SIGCHLD, &infop->si_signo);
1298 if (!retval && infop)
1299 retval = put_user(0, &infop->si_errno);
1300 if (!retval && infop) {
1301 int why;
1302
1303 if ((status & 0x7f) == 0) {
1304 why = CLD_EXITED;
1305 status >>= 8;
1306 } else {
1307 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1308 status &= 0x7f;
1309 }
1310 retval = put_user((short)why, &infop->si_code);
1311 if (!retval)
1312 retval = put_user(status, &infop->si_status);
1313 }
1314 if (!retval && infop)
1315 retval = put_user(pid, &infop->si_pid);
1316 if (!retval && infop)
1317 retval = put_user(uid, &infop->si_uid);
1318 if (!retval)
1319 retval = pid;
1320
1321 if (traced) {
1322 write_lock_irq(&tasklist_lock);
1323 /* We dropped tasklist, ptracer could die and untrace */
1324 ptrace_unlink(p);
1325 /*
1326 * If this is not a sub-thread, notify the parent.
1327 * If parent wants a zombie, don't release it now.
1328 */
1329 if (thread_group_leader(p) &&
1330 !do_notify_parent(p, p->exit_signal)) {
1331 p->exit_state = EXIT_ZOMBIE;
1332 p = NULL;
1333 }
1334 write_unlock_irq(&tasklist_lock);
1335 }
1336 if (p != NULL)
1337 release_task(p);
1338
1339 return retval;
1340 }
1341
1342 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1343 {
1344 if (ptrace) {
1345 if (task_is_stopped_or_traced(p) &&
1346 !(p->jobctl & JOBCTL_LISTENING))
1347 return &p->exit_code;
1348 } else {
1349 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1350 return &p->signal->group_exit_code;
1351 }
1352 return NULL;
1353 }
1354
1355 /**
1356 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1357 * @wo: wait options
1358 * @ptrace: is the wait for ptrace
1359 * @p: task to wait for
1360 *
1361 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1362 *
1363 * CONTEXT:
1364 * read_lock(&tasklist_lock), which is released if return value is
1365 * non-zero. Also, grabs and releases @p->sighand->siglock.
1366 *
1367 * RETURNS:
1368 * 0 if wait condition didn't exist and search for other wait conditions
1369 * should continue. Non-zero return, -errno on failure and @p's pid on
1370 * success, implies that tasklist_lock is released and wait condition
1371 * search should terminate.
1372 */
1373 static int wait_task_stopped(struct wait_opts *wo,
1374 int ptrace, struct task_struct *p)
1375 {
1376 struct siginfo __user *infop;
1377 int retval, exit_code, *p_code, why;
1378 uid_t uid = 0; /* unneeded, required by compiler */
1379 pid_t pid;
1380
1381 /*
1382 * Traditionally we see ptrace'd stopped tasks regardless of options.
1383 */
1384 if (!ptrace && !(wo->wo_flags & WUNTRACED))
1385 return 0;
1386
1387 if (!task_stopped_code(p, ptrace))
1388 return 0;
1389
1390 exit_code = 0;
1391 spin_lock_irq(&p->sighand->siglock);
1392
1393 p_code = task_stopped_code(p, ptrace);
1394 if (unlikely(!p_code))
1395 goto unlock_sig;
1396
1397 exit_code = *p_code;
1398 if (!exit_code)
1399 goto unlock_sig;
1400
1401 if (!unlikely(wo->wo_flags & WNOWAIT))
1402 *p_code = 0;
1403
1404 uid = task_uid(p);
1405 unlock_sig:
1406 spin_unlock_irq(&p->sighand->siglock);
1407 if (!exit_code)
1408 return 0;
1409
1410 /*
1411 * Now we are pretty sure this task is interesting.
1412 * Make sure it doesn't get reaped out from under us while we
1413 * give up the lock and then examine it below. We don't want to
1414 * keep holding onto the tasklist_lock while we call getrusage and
1415 * possibly take page faults for user memory.
1416 */
1417 get_task_struct(p);
1418 pid = task_pid_vnr(p);
1419 why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1420 read_unlock(&tasklist_lock);
1421
1422 if (unlikely(wo->wo_flags & WNOWAIT))
1423 return wait_noreap_copyout(wo, p, pid, uid, why, exit_code);
1424
1425 retval = wo->wo_rusage
1426 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1427 if (!retval && wo->wo_stat)
1428 retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat);
1429
1430 infop = wo->wo_info;
1431 if (!retval && infop)
1432 retval = put_user(SIGCHLD, &infop->si_signo);
1433 if (!retval && infop)
1434 retval = put_user(0, &infop->si_errno);
1435 if (!retval && infop)
1436 retval = put_user((short)why, &infop->si_code);
1437 if (!retval && infop)
1438 retval = put_user(exit_code, &infop->si_status);
1439 if (!retval && infop)
1440 retval = put_user(pid, &infop->si_pid);
1441 if (!retval && infop)
1442 retval = put_user(uid, &infop->si_uid);
1443 if (!retval)
1444 retval = pid;
1445 put_task_struct(p);
1446
1447 BUG_ON(!retval);
1448 return retval;
1449 }
1450
1451 /*
1452 * Handle do_wait work for one task in a live, non-stopped state.
1453 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1454 * the lock and this task is uninteresting. If we return nonzero, we have
1455 * released the lock and the system call should return.
1456 */
1457 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1458 {
1459 int retval;
1460 pid_t pid;
1461 uid_t uid;
1462
1463 if (!unlikely(wo->wo_flags & WCONTINUED))
1464 return 0;
1465
1466 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1467 return 0;
1468
1469 spin_lock_irq(&p->sighand->siglock);
1470 /* Re-check with the lock held. */
1471 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1472 spin_unlock_irq(&p->sighand->siglock);
1473 return 0;
1474 }
1475 if (!unlikely(wo->wo_flags & WNOWAIT))
1476 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1477 uid = task_uid(p);
1478 spin_unlock_irq(&p->sighand->siglock);
1479
1480 pid = task_pid_vnr(p);
1481 get_task_struct(p);
1482 read_unlock(&tasklist_lock);
1483
1484 if (!wo->wo_info) {
1485 retval = wo->wo_rusage
1486 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1487 put_task_struct(p);
1488 if (!retval && wo->wo_stat)
1489 retval = put_user(0xffff, wo->wo_stat);
1490 if (!retval)
1491 retval = pid;
1492 } else {
1493 retval = wait_noreap_copyout(wo, p, pid, uid,
1494 CLD_CONTINUED, SIGCONT);
1495 BUG_ON(retval == 0);
1496 }
1497
1498 return retval;
1499 }
1500
1501 /*
1502 * Consider @p for a wait by @parent.
1503 *
1504 * -ECHILD should be in ->notask_error before the first call.
1505 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1506 * Returns zero if the search for a child should continue;
1507 * then ->notask_error is 0 if @p is an eligible child,
1508 * or another error from security_task_wait(), or still -ECHILD.
1509 */
1510 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1511 struct task_struct *p)
1512 {
1513 int ret = eligible_child(wo, p);
1514 if (!ret)
1515 return ret;
1516
1517 ret = security_task_wait(p);
1518 if (unlikely(ret < 0)) {
1519 /*
1520 * If we have not yet seen any eligible child,
1521 * then let this error code replace -ECHILD.
1522 * A permission error will give the user a clue
1523 * to look for security policy problems, rather
1524 * than for mysterious wait bugs.
1525 */
1526 if (wo->notask_error)
1527 wo->notask_error = ret;
1528 return 0;
1529 }
1530
1531 /* dead body doesn't have much to contribute */
1532 if (unlikely(p->exit_state == EXIT_DEAD)) {
1533 /*
1534 * But do not ignore this task until the tracer does
1535 * wait_task_zombie()->do_notify_parent().
1536 */
1537 if (likely(!ptrace) && unlikely(ptrace_reparented(p)))
1538 wo->notask_error = 0;
1539 return 0;
1540 }
1541
1542 /* slay zombie? */
1543 if (p->exit_state == EXIT_ZOMBIE) {
1544 /*
1545 * A zombie ptracee is only visible to its ptracer.
1546 * Notification and reaping will be cascaded to the real
1547 * parent when the ptracer detaches.
1548 */
1549 if (likely(!ptrace) && unlikely(p->ptrace)) {
1550 /* it will become visible, clear notask_error */
1551 wo->notask_error = 0;
1552 return 0;
1553 }
1554
1555 /* we don't reap group leaders with subthreads */
1556 if (!delay_group_leader(p))
1557 return wait_task_zombie(wo, p);
1558
1559 /*
1560 * Allow access to stopped/continued state via zombie by
1561 * falling through. Clearing of notask_error is complex.
1562 *
1563 * When !@ptrace:
1564 *
1565 * If WEXITED is set, notask_error should naturally be
1566 * cleared. If not, subset of WSTOPPED|WCONTINUED is set,
1567 * so, if there are live subthreads, there are events to
1568 * wait for. If all subthreads are dead, it's still safe
1569 * to clear - this function will be called again in finite
1570 * amount time once all the subthreads are released and
1571 * will then return without clearing.
1572 *
1573 * When @ptrace:
1574 *
1575 * Stopped state is per-task and thus can't change once the
1576 * target task dies. Only continued and exited can happen.
1577 * Clear notask_error if WCONTINUED | WEXITED.
1578 */
1579 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1580 wo->notask_error = 0;
1581 } else {
1582 /*
1583 * If @p is ptraced by a task in its real parent's group,
1584 * hide group stop/continued state when looking at @p as
1585 * the real parent; otherwise, a single stop can be
1586 * reported twice as group and ptrace stops.
1587 *
1588 * If a ptracer wants to distinguish the two events for its
1589 * own children, it should create a separate process which
1590 * takes the role of real parent.
1591 */
1592 if (likely(!ptrace) && p->ptrace && !ptrace_reparented(p))
1593 return 0;
1594
1595 /*
1596 * @p is alive and it's gonna stop, continue or exit, so
1597 * there always is something to wait for.
1598 */
1599 wo->notask_error = 0;
1600 }
1601
1602 /*
1603 * Wait for stopped. Depending on @ptrace, different stopped state
1604 * is used and the two don't interact with each other.
1605 */
1606 ret = wait_task_stopped(wo, ptrace, p);
1607 if (ret)
1608 return ret;
1609
1610 /*
1611 * Wait for continued. There's only one continued state and the
1612 * ptracer can consume it which can confuse the real parent. Don't
1613 * use WCONTINUED from ptracer. You don't need or want it.
1614 */
1615 return wait_task_continued(wo, p);
1616 }
1617
1618 /*
1619 * Do the work of do_wait() for one thread in the group, @tsk.
1620 *
1621 * -ECHILD should be in ->notask_error before the first call.
1622 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1623 * Returns zero if the search for a child should continue; then
1624 * ->notask_error is 0 if there were any eligible children,
1625 * or another error from security_task_wait(), or still -ECHILD.
1626 */
1627 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1628 {
1629 struct task_struct *p;
1630
1631 list_for_each_entry(p, &tsk->children, sibling) {
1632 int ret = wait_consider_task(wo, 0, p);
1633 if (ret)
1634 return ret;
1635 }
1636
1637 return 0;
1638 }
1639
1640 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1641 {
1642 struct task_struct *p;
1643
1644 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1645 int ret = wait_consider_task(wo, 1, p);
1646 if (ret)
1647 return ret;
1648 }
1649
1650 return 0;
1651 }
1652
1653 static int child_wait_callback(wait_queue_t *wait, unsigned mode,
1654 int sync, void *key)
1655 {
1656 struct wait_opts *wo = container_of(wait, struct wait_opts,
1657 child_wait);
1658 struct task_struct *p = key;
1659
1660 if (!eligible_pid(wo, p))
1661 return 0;
1662
1663 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1664 return 0;
1665
1666 return default_wake_function(wait, mode, sync, key);
1667 }
1668
1669 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1670 {
1671 __wake_up_sync_key(&parent->signal->wait_chldexit,
1672 TASK_INTERRUPTIBLE, 1, p);
1673 }
1674
1675 static long do_wait(struct wait_opts *wo)
1676 {
1677 struct task_struct *tsk;
1678 int retval;
1679
1680 trace_sched_process_wait(wo->wo_pid);
1681
1682 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1683 wo->child_wait.private = current;
1684 add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1685 repeat:
1686 /*
1687 * If there is nothing that can match our critiera just get out.
1688 * We will clear ->notask_error to zero if we see any child that
1689 * might later match our criteria, even if we are not able to reap
1690 * it yet.
1691 */
1692 wo->notask_error = -ECHILD;
1693 if ((wo->wo_type < PIDTYPE_MAX) &&
1694 (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
1695 goto notask;
1696
1697 set_current_state(TASK_INTERRUPTIBLE);
1698 read_lock(&tasklist_lock);
1699 tsk = current;
1700 do {
1701 retval = do_wait_thread(wo, tsk);
1702 if (retval)
1703 goto end;
1704
1705 retval = ptrace_do_wait(wo, tsk);
1706 if (retval)
1707 goto end;
1708
1709 if (wo->wo_flags & __WNOTHREAD)
1710 break;
1711 } while_each_thread(current, tsk);
1712 read_unlock(&tasklist_lock);
1713
1714 notask:
1715 retval = wo->notask_error;
1716 if (!retval && !(wo->wo_flags & WNOHANG)) {
1717 retval = -ERESTARTSYS;
1718 if (!signal_pending(current)) {
1719 schedule();
1720 goto repeat;
1721 }
1722 }
1723 end:
1724 __set_current_state(TASK_RUNNING);
1725 remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1726 return retval;
1727 }
1728
1729 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1730 infop, int, options, struct rusage __user *, ru)
1731 {
1732 struct wait_opts wo;
1733 struct pid *pid = NULL;
1734 enum pid_type type;
1735 long ret;
1736
1737 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1738 return -EINVAL;
1739 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1740 return -EINVAL;
1741
1742 switch (which) {
1743 case P_ALL:
1744 type = PIDTYPE_MAX;
1745 break;
1746 case P_PID:
1747 type = PIDTYPE_PID;
1748 if (upid <= 0)
1749 return -EINVAL;
1750 break;
1751 case P_PGID:
1752 type = PIDTYPE_PGID;
1753 if (upid <= 0)
1754 return -EINVAL;
1755 break;
1756 default:
1757 return -EINVAL;
1758 }
1759
1760 if (type < PIDTYPE_MAX)
1761 pid = find_get_pid(upid);
1762
1763 wo.wo_type = type;
1764 wo.wo_pid = pid;
1765 wo.wo_flags = options;
1766 wo.wo_info = infop;
1767 wo.wo_stat = NULL;
1768 wo.wo_rusage = ru;
1769 ret = do_wait(&wo);
1770
1771 if (ret > 0) {
1772 ret = 0;
1773 } else if (infop) {
1774 /*
1775 * For a WNOHANG return, clear out all the fields
1776 * we would set so the user can easily tell the
1777 * difference.
1778 */
1779 if (!ret)
1780 ret = put_user(0, &infop->si_signo);
1781 if (!ret)
1782 ret = put_user(0, &infop->si_errno);
1783 if (!ret)
1784 ret = put_user(0, &infop->si_code);
1785 if (!ret)
1786 ret = put_user(0, &infop->si_pid);
1787 if (!ret)
1788 ret = put_user(0, &infop->si_uid);
1789 if (!ret)
1790 ret = put_user(0, &infop->si_status);
1791 }
1792
1793 put_pid(pid);
1794
1795 /* avoid REGPARM breakage on x86: */
1796 asmlinkage_protect(5, ret, which, upid, infop, options, ru);
1797 return ret;
1798 }
1799
1800 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1801 int, options, struct rusage __user *, ru)
1802 {
1803 struct wait_opts wo;
1804 struct pid *pid = NULL;
1805 enum pid_type type;
1806 long ret;
1807
1808 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1809 __WNOTHREAD|__WCLONE|__WALL))
1810 return -EINVAL;
1811
1812 if (upid == -1)
1813 type = PIDTYPE_MAX;
1814 else if (upid < 0) {
1815 type = PIDTYPE_PGID;
1816 pid = find_get_pid(-upid);
1817 } else if (upid == 0) {
1818 type = PIDTYPE_PGID;
1819 pid = get_task_pid(current, PIDTYPE_PGID);
1820 } else /* upid > 0 */ {
1821 type = PIDTYPE_PID;
1822 pid = find_get_pid(upid);
1823 }
1824
1825 wo.wo_type = type;
1826 wo.wo_pid = pid;
1827 wo.wo_flags = options | WEXITED;
1828 wo.wo_info = NULL;
1829 wo.wo_stat = stat_addr;
1830 wo.wo_rusage = ru;
1831 ret = do_wait(&wo);
1832 put_pid(pid);
1833
1834 /* avoid REGPARM breakage on x86: */
1835 asmlinkage_protect(4, ret, upid, stat_addr, options, ru);
1836 return ret;
1837 }
1838
1839 #ifdef __ARCH_WANT_SYS_WAITPID
1840
1841 /*
1842 * sys_waitpid() remains for compatibility. waitpid() should be
1843 * implemented by calling sys_wait4() from libc.a.
1844 */
1845 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1846 {
1847 return sys_wait4(pid, stat_addr, options, NULL);
1848 }
1849
1850 #endif