]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/exit.c
Merge tag 'arc-3.19-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/vgupta/arc
[mirror_ubuntu-bionic-kernel.git] / kernel / exit.c
1 /*
2 * linux/kernel/exit.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/iocontext.h>
16 #include <linux/key.h>
17 #include <linux/security.h>
18 #include <linux/cpu.h>
19 #include <linux/acct.h>
20 #include <linux/tsacct_kern.h>
21 #include <linux/file.h>
22 #include <linux/fdtable.h>
23 #include <linux/freezer.h>
24 #include <linux/binfmts.h>
25 #include <linux/nsproxy.h>
26 #include <linux/pid_namespace.h>
27 #include <linux/ptrace.h>
28 #include <linux/profile.h>
29 #include <linux/mount.h>
30 #include <linux/proc_fs.h>
31 #include <linux/kthread.h>
32 #include <linux/mempolicy.h>
33 #include <linux/taskstats_kern.h>
34 #include <linux/delayacct.h>
35 #include <linux/cgroup.h>
36 #include <linux/syscalls.h>
37 #include <linux/signal.h>
38 #include <linux/posix-timers.h>
39 #include <linux/cn_proc.h>
40 #include <linux/mutex.h>
41 #include <linux/futex.h>
42 #include <linux/pipe_fs_i.h>
43 #include <linux/audit.h> /* for audit_free() */
44 #include <linux/resource.h>
45 #include <linux/blkdev.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/tracehook.h>
48 #include <linux/fs_struct.h>
49 #include <linux/init_task.h>
50 #include <linux/perf_event.h>
51 #include <trace/events/sched.h>
52 #include <linux/hw_breakpoint.h>
53 #include <linux/oom.h>
54 #include <linux/writeback.h>
55 #include <linux/shm.h>
56
57 #include <asm/uaccess.h>
58 #include <asm/unistd.h>
59 #include <asm/pgtable.h>
60 #include <asm/mmu_context.h>
61
62 static void exit_mm(struct task_struct *tsk);
63
64 static void __unhash_process(struct task_struct *p, bool group_dead)
65 {
66 nr_threads--;
67 detach_pid(p, PIDTYPE_PID);
68 if (group_dead) {
69 detach_pid(p, PIDTYPE_PGID);
70 detach_pid(p, PIDTYPE_SID);
71
72 list_del_rcu(&p->tasks);
73 list_del_init(&p->sibling);
74 __this_cpu_dec(process_counts);
75 }
76 list_del_rcu(&p->thread_group);
77 list_del_rcu(&p->thread_node);
78 }
79
80 /*
81 * This function expects the tasklist_lock write-locked.
82 */
83 static void __exit_signal(struct task_struct *tsk)
84 {
85 struct signal_struct *sig = tsk->signal;
86 bool group_dead = thread_group_leader(tsk);
87 struct sighand_struct *sighand;
88 struct tty_struct *uninitialized_var(tty);
89 cputime_t utime, stime;
90
91 sighand = rcu_dereference_check(tsk->sighand,
92 lockdep_tasklist_lock_is_held());
93 spin_lock(&sighand->siglock);
94
95 posix_cpu_timers_exit(tsk);
96 if (group_dead) {
97 posix_cpu_timers_exit_group(tsk);
98 tty = sig->tty;
99 sig->tty = NULL;
100 } else {
101 /*
102 * This can only happen if the caller is de_thread().
103 * FIXME: this is the temporary hack, we should teach
104 * posix-cpu-timers to handle this case correctly.
105 */
106 if (unlikely(has_group_leader_pid(tsk)))
107 posix_cpu_timers_exit_group(tsk);
108
109 /*
110 * If there is any task waiting for the group exit
111 * then notify it:
112 */
113 if (sig->notify_count > 0 && !--sig->notify_count)
114 wake_up_process(sig->group_exit_task);
115
116 if (tsk == sig->curr_target)
117 sig->curr_target = next_thread(tsk);
118 }
119
120 /*
121 * Accumulate here the counters for all threads as they die. We could
122 * skip the group leader because it is the last user of signal_struct,
123 * but we want to avoid the race with thread_group_cputime() which can
124 * see the empty ->thread_head list.
125 */
126 task_cputime(tsk, &utime, &stime);
127 write_seqlock(&sig->stats_lock);
128 sig->utime += utime;
129 sig->stime += stime;
130 sig->gtime += task_gtime(tsk);
131 sig->min_flt += tsk->min_flt;
132 sig->maj_flt += tsk->maj_flt;
133 sig->nvcsw += tsk->nvcsw;
134 sig->nivcsw += tsk->nivcsw;
135 sig->inblock += task_io_get_inblock(tsk);
136 sig->oublock += task_io_get_oublock(tsk);
137 task_io_accounting_add(&sig->ioac, &tsk->ioac);
138 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
139 sig->nr_threads--;
140 __unhash_process(tsk, group_dead);
141 write_sequnlock(&sig->stats_lock);
142
143 /*
144 * Do this under ->siglock, we can race with another thread
145 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
146 */
147 flush_sigqueue(&tsk->pending);
148 tsk->sighand = NULL;
149 spin_unlock(&sighand->siglock);
150
151 __cleanup_sighand(sighand);
152 clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
153 if (group_dead) {
154 flush_sigqueue(&sig->shared_pending);
155 tty_kref_put(tty);
156 }
157 }
158
159 static void delayed_put_task_struct(struct rcu_head *rhp)
160 {
161 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
162
163 perf_event_delayed_put(tsk);
164 trace_sched_process_free(tsk);
165 put_task_struct(tsk);
166 }
167
168
169 void release_task(struct task_struct *p)
170 {
171 struct task_struct *leader;
172 int zap_leader;
173 repeat:
174 /* don't need to get the RCU readlock here - the process is dead and
175 * can't be modifying its own credentials. But shut RCU-lockdep up */
176 rcu_read_lock();
177 atomic_dec(&__task_cred(p)->user->processes);
178 rcu_read_unlock();
179
180 proc_flush_task(p);
181
182 write_lock_irq(&tasklist_lock);
183 ptrace_release_task(p);
184 __exit_signal(p);
185
186 /*
187 * If we are the last non-leader member of the thread
188 * group, and the leader is zombie, then notify the
189 * group leader's parent process. (if it wants notification.)
190 */
191 zap_leader = 0;
192 leader = p->group_leader;
193 if (leader != p && thread_group_empty(leader)
194 && leader->exit_state == EXIT_ZOMBIE) {
195 /*
196 * If we were the last child thread and the leader has
197 * exited already, and the leader's parent ignores SIGCHLD,
198 * then we are the one who should release the leader.
199 */
200 zap_leader = do_notify_parent(leader, leader->exit_signal);
201 if (zap_leader)
202 leader->exit_state = EXIT_DEAD;
203 }
204
205 write_unlock_irq(&tasklist_lock);
206 release_thread(p);
207 call_rcu(&p->rcu, delayed_put_task_struct);
208
209 p = leader;
210 if (unlikely(zap_leader))
211 goto repeat;
212 }
213
214 /*
215 * Determine if a process group is "orphaned", according to the POSIX
216 * definition in 2.2.2.52. Orphaned process groups are not to be affected
217 * by terminal-generated stop signals. Newly orphaned process groups are
218 * to receive a SIGHUP and a SIGCONT.
219 *
220 * "I ask you, have you ever known what it is to be an orphan?"
221 */
222 static int will_become_orphaned_pgrp(struct pid *pgrp,
223 struct task_struct *ignored_task)
224 {
225 struct task_struct *p;
226
227 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
228 if ((p == ignored_task) ||
229 (p->exit_state && thread_group_empty(p)) ||
230 is_global_init(p->real_parent))
231 continue;
232
233 if (task_pgrp(p->real_parent) != pgrp &&
234 task_session(p->real_parent) == task_session(p))
235 return 0;
236 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
237
238 return 1;
239 }
240
241 int is_current_pgrp_orphaned(void)
242 {
243 int retval;
244
245 read_lock(&tasklist_lock);
246 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
247 read_unlock(&tasklist_lock);
248
249 return retval;
250 }
251
252 static bool has_stopped_jobs(struct pid *pgrp)
253 {
254 struct task_struct *p;
255
256 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
257 if (p->signal->flags & SIGNAL_STOP_STOPPED)
258 return true;
259 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
260
261 return false;
262 }
263
264 /*
265 * Check to see if any process groups have become orphaned as
266 * a result of our exiting, and if they have any stopped jobs,
267 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
268 */
269 static void
270 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
271 {
272 struct pid *pgrp = task_pgrp(tsk);
273 struct task_struct *ignored_task = tsk;
274
275 if (!parent)
276 /* exit: our father is in a different pgrp than
277 * we are and we were the only connection outside.
278 */
279 parent = tsk->real_parent;
280 else
281 /* reparent: our child is in a different pgrp than
282 * we are, and it was the only connection outside.
283 */
284 ignored_task = NULL;
285
286 if (task_pgrp(parent) != pgrp &&
287 task_session(parent) == task_session(tsk) &&
288 will_become_orphaned_pgrp(pgrp, ignored_task) &&
289 has_stopped_jobs(pgrp)) {
290 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
291 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
292 }
293 }
294
295 #ifdef CONFIG_MEMCG
296 /*
297 * A task is exiting. If it owned this mm, find a new owner for the mm.
298 */
299 void mm_update_next_owner(struct mm_struct *mm)
300 {
301 struct task_struct *c, *g, *p = current;
302
303 retry:
304 /*
305 * If the exiting or execing task is not the owner, it's
306 * someone else's problem.
307 */
308 if (mm->owner != p)
309 return;
310 /*
311 * The current owner is exiting/execing and there are no other
312 * candidates. Do not leave the mm pointing to a possibly
313 * freed task structure.
314 */
315 if (atomic_read(&mm->mm_users) <= 1) {
316 mm->owner = NULL;
317 return;
318 }
319
320 read_lock(&tasklist_lock);
321 /*
322 * Search in the children
323 */
324 list_for_each_entry(c, &p->children, sibling) {
325 if (c->mm == mm)
326 goto assign_new_owner;
327 }
328
329 /*
330 * Search in the siblings
331 */
332 list_for_each_entry(c, &p->real_parent->children, sibling) {
333 if (c->mm == mm)
334 goto assign_new_owner;
335 }
336
337 /*
338 * Search through everything else, we should not get here often.
339 */
340 for_each_process(g) {
341 if (g->flags & PF_KTHREAD)
342 continue;
343 for_each_thread(g, c) {
344 if (c->mm == mm)
345 goto assign_new_owner;
346 if (c->mm)
347 break;
348 }
349 }
350 read_unlock(&tasklist_lock);
351 /*
352 * We found no owner yet mm_users > 1: this implies that we are
353 * most likely racing with swapoff (try_to_unuse()) or /proc or
354 * ptrace or page migration (get_task_mm()). Mark owner as NULL.
355 */
356 mm->owner = NULL;
357 return;
358
359 assign_new_owner:
360 BUG_ON(c == p);
361 get_task_struct(c);
362 /*
363 * The task_lock protects c->mm from changing.
364 * We always want mm->owner->mm == mm
365 */
366 task_lock(c);
367 /*
368 * Delay read_unlock() till we have the task_lock()
369 * to ensure that c does not slip away underneath us
370 */
371 read_unlock(&tasklist_lock);
372 if (c->mm != mm) {
373 task_unlock(c);
374 put_task_struct(c);
375 goto retry;
376 }
377 mm->owner = c;
378 task_unlock(c);
379 put_task_struct(c);
380 }
381 #endif /* CONFIG_MEMCG */
382
383 /*
384 * Turn us into a lazy TLB process if we
385 * aren't already..
386 */
387 static void exit_mm(struct task_struct *tsk)
388 {
389 struct mm_struct *mm = tsk->mm;
390 struct core_state *core_state;
391
392 mm_release(tsk, mm);
393 if (!mm)
394 return;
395 sync_mm_rss(mm);
396 /*
397 * Serialize with any possible pending coredump.
398 * We must hold mmap_sem around checking core_state
399 * and clearing tsk->mm. The core-inducing thread
400 * will increment ->nr_threads for each thread in the
401 * group with ->mm != NULL.
402 */
403 down_read(&mm->mmap_sem);
404 core_state = mm->core_state;
405 if (core_state) {
406 struct core_thread self;
407
408 up_read(&mm->mmap_sem);
409
410 self.task = tsk;
411 self.next = xchg(&core_state->dumper.next, &self);
412 /*
413 * Implies mb(), the result of xchg() must be visible
414 * to core_state->dumper.
415 */
416 if (atomic_dec_and_test(&core_state->nr_threads))
417 complete(&core_state->startup);
418
419 for (;;) {
420 set_task_state(tsk, TASK_UNINTERRUPTIBLE);
421 if (!self.task) /* see coredump_finish() */
422 break;
423 freezable_schedule();
424 }
425 __set_task_state(tsk, TASK_RUNNING);
426 down_read(&mm->mmap_sem);
427 }
428 atomic_inc(&mm->mm_count);
429 BUG_ON(mm != tsk->active_mm);
430 /* more a memory barrier than a real lock */
431 task_lock(tsk);
432 tsk->mm = NULL;
433 up_read(&mm->mmap_sem);
434 enter_lazy_tlb(mm, current);
435 task_unlock(tsk);
436 mm_update_next_owner(mm);
437 mmput(mm);
438 clear_thread_flag(TIF_MEMDIE);
439 }
440
441 static struct task_struct *find_alive_thread(struct task_struct *p)
442 {
443 struct task_struct *t;
444
445 for_each_thread(p, t) {
446 if (!(t->flags & PF_EXITING))
447 return t;
448 }
449 return NULL;
450 }
451
452 static struct task_struct *find_child_reaper(struct task_struct *father)
453 __releases(&tasklist_lock)
454 __acquires(&tasklist_lock)
455 {
456 struct pid_namespace *pid_ns = task_active_pid_ns(father);
457 struct task_struct *reaper = pid_ns->child_reaper;
458
459 if (likely(reaper != father))
460 return reaper;
461
462 reaper = find_alive_thread(father);
463 if (reaper) {
464 pid_ns->child_reaper = reaper;
465 return reaper;
466 }
467
468 write_unlock_irq(&tasklist_lock);
469 if (unlikely(pid_ns == &init_pid_ns)) {
470 panic("Attempted to kill init! exitcode=0x%08x\n",
471 father->signal->group_exit_code ?: father->exit_code);
472 }
473 zap_pid_ns_processes(pid_ns);
474 write_lock_irq(&tasklist_lock);
475
476 return father;
477 }
478
479 /*
480 * When we die, we re-parent all our children, and try to:
481 * 1. give them to another thread in our thread group, if such a member exists
482 * 2. give it to the first ancestor process which prctl'd itself as a
483 * child_subreaper for its children (like a service manager)
484 * 3. give it to the init process (PID 1) in our pid namespace
485 */
486 static struct task_struct *find_new_reaper(struct task_struct *father,
487 struct task_struct *child_reaper)
488 {
489 struct task_struct *thread, *reaper;
490
491 thread = find_alive_thread(father);
492 if (thread)
493 return thread;
494
495 if (father->signal->has_child_subreaper) {
496 /*
497 * Find the first ->is_child_subreaper ancestor in our pid_ns.
498 * We start from father to ensure we can not look into another
499 * namespace, this is safe because all its threads are dead.
500 */
501 for (reaper = father;
502 !same_thread_group(reaper, child_reaper);
503 reaper = reaper->real_parent) {
504 /* call_usermodehelper() descendants need this check */
505 if (reaper == &init_task)
506 break;
507 if (!reaper->signal->is_child_subreaper)
508 continue;
509 thread = find_alive_thread(reaper);
510 if (thread)
511 return thread;
512 }
513 }
514
515 return child_reaper;
516 }
517
518 /*
519 * Any that need to be release_task'd are put on the @dead list.
520 */
521 static void reparent_leader(struct task_struct *father, struct task_struct *p,
522 struct list_head *dead)
523 {
524 if (unlikely(p->exit_state == EXIT_DEAD))
525 return;
526
527 /* We don't want people slaying init. */
528 p->exit_signal = SIGCHLD;
529
530 /* If it has exited notify the new parent about this child's death. */
531 if (!p->ptrace &&
532 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
533 if (do_notify_parent(p, p->exit_signal)) {
534 p->exit_state = EXIT_DEAD;
535 list_add(&p->ptrace_entry, dead);
536 }
537 }
538
539 kill_orphaned_pgrp(p, father);
540 }
541
542 /*
543 * This does two things:
544 *
545 * A. Make init inherit all the child processes
546 * B. Check to see if any process groups have become orphaned
547 * as a result of our exiting, and if they have any stopped
548 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
549 */
550 static void forget_original_parent(struct task_struct *father,
551 struct list_head *dead)
552 {
553 struct task_struct *p, *t, *reaper;
554
555 if (unlikely(!list_empty(&father->ptraced)))
556 exit_ptrace(father, dead);
557
558 /* Can drop and reacquire tasklist_lock */
559 reaper = find_child_reaper(father);
560 if (list_empty(&father->children))
561 return;
562
563 reaper = find_new_reaper(father, reaper);
564 list_for_each_entry(p, &father->children, sibling) {
565 for_each_thread(p, t) {
566 t->real_parent = reaper;
567 BUG_ON((!t->ptrace) != (t->parent == father));
568 if (likely(!t->ptrace))
569 t->parent = t->real_parent;
570 if (t->pdeath_signal)
571 group_send_sig_info(t->pdeath_signal,
572 SEND_SIG_NOINFO, t);
573 }
574 /*
575 * If this is a threaded reparent there is no need to
576 * notify anyone anything has happened.
577 */
578 if (!same_thread_group(reaper, father))
579 reparent_leader(father, p, dead);
580 }
581 list_splice_tail_init(&father->children, &reaper->children);
582 }
583
584 /*
585 * Send signals to all our closest relatives so that they know
586 * to properly mourn us..
587 */
588 static void exit_notify(struct task_struct *tsk, int group_dead)
589 {
590 bool autoreap;
591 struct task_struct *p, *n;
592 LIST_HEAD(dead);
593
594 write_lock_irq(&tasklist_lock);
595 forget_original_parent(tsk, &dead);
596
597 if (group_dead)
598 kill_orphaned_pgrp(tsk->group_leader, NULL);
599
600 if (unlikely(tsk->ptrace)) {
601 int sig = thread_group_leader(tsk) &&
602 thread_group_empty(tsk) &&
603 !ptrace_reparented(tsk) ?
604 tsk->exit_signal : SIGCHLD;
605 autoreap = do_notify_parent(tsk, sig);
606 } else if (thread_group_leader(tsk)) {
607 autoreap = thread_group_empty(tsk) &&
608 do_notify_parent(tsk, tsk->exit_signal);
609 } else {
610 autoreap = true;
611 }
612
613 tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE;
614 if (tsk->exit_state == EXIT_DEAD)
615 list_add(&tsk->ptrace_entry, &dead);
616
617 /* mt-exec, de_thread() is waiting for group leader */
618 if (unlikely(tsk->signal->notify_count < 0))
619 wake_up_process(tsk->signal->group_exit_task);
620 write_unlock_irq(&tasklist_lock);
621
622 list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
623 list_del_init(&p->ptrace_entry);
624 release_task(p);
625 }
626 }
627
628 #ifdef CONFIG_DEBUG_STACK_USAGE
629 static void check_stack_usage(void)
630 {
631 static DEFINE_SPINLOCK(low_water_lock);
632 static int lowest_to_date = THREAD_SIZE;
633 unsigned long free;
634
635 free = stack_not_used(current);
636
637 if (free >= lowest_to_date)
638 return;
639
640 spin_lock(&low_water_lock);
641 if (free < lowest_to_date) {
642 pr_warn("%s (%d) used greatest stack depth: %lu bytes left\n",
643 current->comm, task_pid_nr(current), free);
644 lowest_to_date = free;
645 }
646 spin_unlock(&low_water_lock);
647 }
648 #else
649 static inline void check_stack_usage(void) {}
650 #endif
651
652 void do_exit(long code)
653 {
654 struct task_struct *tsk = current;
655 int group_dead;
656 TASKS_RCU(int tasks_rcu_i);
657
658 profile_task_exit(tsk);
659
660 WARN_ON(blk_needs_flush_plug(tsk));
661
662 if (unlikely(in_interrupt()))
663 panic("Aiee, killing interrupt handler!");
664 if (unlikely(!tsk->pid))
665 panic("Attempted to kill the idle task!");
666
667 /*
668 * If do_exit is called because this processes oopsed, it's possible
669 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
670 * continuing. Amongst other possible reasons, this is to prevent
671 * mm_release()->clear_child_tid() from writing to a user-controlled
672 * kernel address.
673 */
674 set_fs(USER_DS);
675
676 ptrace_event(PTRACE_EVENT_EXIT, code);
677
678 validate_creds_for_do_exit(tsk);
679
680 /*
681 * We're taking recursive faults here in do_exit. Safest is to just
682 * leave this task alone and wait for reboot.
683 */
684 if (unlikely(tsk->flags & PF_EXITING)) {
685 pr_alert("Fixing recursive fault but reboot is needed!\n");
686 /*
687 * We can do this unlocked here. The futex code uses
688 * this flag just to verify whether the pi state
689 * cleanup has been done or not. In the worst case it
690 * loops once more. We pretend that the cleanup was
691 * done as there is no way to return. Either the
692 * OWNER_DIED bit is set by now or we push the blocked
693 * task into the wait for ever nirwana as well.
694 */
695 tsk->flags |= PF_EXITPIDONE;
696 set_current_state(TASK_UNINTERRUPTIBLE);
697 schedule();
698 }
699
700 exit_signals(tsk); /* sets PF_EXITING */
701 /*
702 * tsk->flags are checked in the futex code to protect against
703 * an exiting task cleaning up the robust pi futexes.
704 */
705 smp_mb();
706 raw_spin_unlock_wait(&tsk->pi_lock);
707
708 if (unlikely(in_atomic()))
709 pr_info("note: %s[%d] exited with preempt_count %d\n",
710 current->comm, task_pid_nr(current),
711 preempt_count());
712
713 acct_update_integrals(tsk);
714 /* sync mm's RSS info before statistics gathering */
715 if (tsk->mm)
716 sync_mm_rss(tsk->mm);
717 group_dead = atomic_dec_and_test(&tsk->signal->live);
718 if (group_dead) {
719 hrtimer_cancel(&tsk->signal->real_timer);
720 exit_itimers(tsk->signal);
721 if (tsk->mm)
722 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
723 }
724 acct_collect(code, group_dead);
725 if (group_dead)
726 tty_audit_exit();
727 audit_free(tsk);
728
729 tsk->exit_code = code;
730 taskstats_exit(tsk, group_dead);
731
732 exit_mm(tsk);
733
734 if (group_dead)
735 acct_process();
736 trace_sched_process_exit(tsk);
737
738 exit_sem(tsk);
739 exit_shm(tsk);
740 exit_files(tsk);
741 exit_fs(tsk);
742 if (group_dead)
743 disassociate_ctty(1);
744 exit_task_namespaces(tsk);
745 exit_task_work(tsk);
746 exit_thread();
747
748 /*
749 * Flush inherited counters to the parent - before the parent
750 * gets woken up by child-exit notifications.
751 *
752 * because of cgroup mode, must be called before cgroup_exit()
753 */
754 perf_event_exit_task(tsk);
755
756 cgroup_exit(tsk);
757
758 module_put(task_thread_info(tsk)->exec_domain->module);
759
760 /*
761 * FIXME: do that only when needed, using sched_exit tracepoint
762 */
763 flush_ptrace_hw_breakpoint(tsk);
764
765 TASKS_RCU(tasks_rcu_i = __srcu_read_lock(&tasks_rcu_exit_srcu));
766 exit_notify(tsk, group_dead);
767 proc_exit_connector(tsk);
768 #ifdef CONFIG_NUMA
769 task_lock(tsk);
770 mpol_put(tsk->mempolicy);
771 tsk->mempolicy = NULL;
772 task_unlock(tsk);
773 #endif
774 #ifdef CONFIG_FUTEX
775 if (unlikely(current->pi_state_cache))
776 kfree(current->pi_state_cache);
777 #endif
778 /*
779 * Make sure we are holding no locks:
780 */
781 debug_check_no_locks_held();
782 /*
783 * We can do this unlocked here. The futex code uses this flag
784 * just to verify whether the pi state cleanup has been done
785 * or not. In the worst case it loops once more.
786 */
787 tsk->flags |= PF_EXITPIDONE;
788
789 if (tsk->io_context)
790 exit_io_context(tsk);
791
792 if (tsk->splice_pipe)
793 free_pipe_info(tsk->splice_pipe);
794
795 if (tsk->task_frag.page)
796 put_page(tsk->task_frag.page);
797
798 validate_creds_for_do_exit(tsk);
799
800 check_stack_usage();
801 preempt_disable();
802 if (tsk->nr_dirtied)
803 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
804 exit_rcu();
805 TASKS_RCU(__srcu_read_unlock(&tasks_rcu_exit_srcu, tasks_rcu_i));
806
807 /*
808 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed
809 * when the following two conditions become true.
810 * - There is race condition of mmap_sem (It is acquired by
811 * exit_mm()), and
812 * - SMI occurs before setting TASK_RUNINNG.
813 * (or hypervisor of virtual machine switches to other guest)
814 * As a result, we may become TASK_RUNNING after becoming TASK_DEAD
815 *
816 * To avoid it, we have to wait for releasing tsk->pi_lock which
817 * is held by try_to_wake_up()
818 */
819 smp_mb();
820 raw_spin_unlock_wait(&tsk->pi_lock);
821
822 /* causes final put_task_struct in finish_task_switch(). */
823 tsk->state = TASK_DEAD;
824 tsk->flags |= PF_NOFREEZE; /* tell freezer to ignore us */
825 schedule();
826 BUG();
827 /* Avoid "noreturn function does return". */
828 for (;;)
829 cpu_relax(); /* For when BUG is null */
830 }
831 EXPORT_SYMBOL_GPL(do_exit);
832
833 void complete_and_exit(struct completion *comp, long code)
834 {
835 if (comp)
836 complete(comp);
837
838 do_exit(code);
839 }
840 EXPORT_SYMBOL(complete_and_exit);
841
842 SYSCALL_DEFINE1(exit, int, error_code)
843 {
844 do_exit((error_code&0xff)<<8);
845 }
846
847 /*
848 * Take down every thread in the group. This is called by fatal signals
849 * as well as by sys_exit_group (below).
850 */
851 void
852 do_group_exit(int exit_code)
853 {
854 struct signal_struct *sig = current->signal;
855
856 BUG_ON(exit_code & 0x80); /* core dumps don't get here */
857
858 if (signal_group_exit(sig))
859 exit_code = sig->group_exit_code;
860 else if (!thread_group_empty(current)) {
861 struct sighand_struct *const sighand = current->sighand;
862
863 spin_lock_irq(&sighand->siglock);
864 if (signal_group_exit(sig))
865 /* Another thread got here before we took the lock. */
866 exit_code = sig->group_exit_code;
867 else {
868 sig->group_exit_code = exit_code;
869 sig->flags = SIGNAL_GROUP_EXIT;
870 zap_other_threads(current);
871 }
872 spin_unlock_irq(&sighand->siglock);
873 }
874
875 do_exit(exit_code);
876 /* NOTREACHED */
877 }
878
879 /*
880 * this kills every thread in the thread group. Note that any externally
881 * wait4()-ing process will get the correct exit code - even if this
882 * thread is not the thread group leader.
883 */
884 SYSCALL_DEFINE1(exit_group, int, error_code)
885 {
886 do_group_exit((error_code & 0xff) << 8);
887 /* NOTREACHED */
888 return 0;
889 }
890
891 struct wait_opts {
892 enum pid_type wo_type;
893 int wo_flags;
894 struct pid *wo_pid;
895
896 struct siginfo __user *wo_info;
897 int __user *wo_stat;
898 struct rusage __user *wo_rusage;
899
900 wait_queue_t child_wait;
901 int notask_error;
902 };
903
904 static inline
905 struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
906 {
907 if (type != PIDTYPE_PID)
908 task = task->group_leader;
909 return task->pids[type].pid;
910 }
911
912 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
913 {
914 return wo->wo_type == PIDTYPE_MAX ||
915 task_pid_type(p, wo->wo_type) == wo->wo_pid;
916 }
917
918 static int eligible_child(struct wait_opts *wo, struct task_struct *p)
919 {
920 if (!eligible_pid(wo, p))
921 return 0;
922 /* Wait for all children (clone and not) if __WALL is set;
923 * otherwise, wait for clone children *only* if __WCLONE is
924 * set; otherwise, wait for non-clone children *only*. (Note:
925 * A "clone" child here is one that reports to its parent
926 * using a signal other than SIGCHLD.) */
927 if (((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
928 && !(wo->wo_flags & __WALL))
929 return 0;
930
931 return 1;
932 }
933
934 static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p,
935 pid_t pid, uid_t uid, int why, int status)
936 {
937 struct siginfo __user *infop;
938 int retval = wo->wo_rusage
939 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
940
941 put_task_struct(p);
942 infop = wo->wo_info;
943 if (infop) {
944 if (!retval)
945 retval = put_user(SIGCHLD, &infop->si_signo);
946 if (!retval)
947 retval = put_user(0, &infop->si_errno);
948 if (!retval)
949 retval = put_user((short)why, &infop->si_code);
950 if (!retval)
951 retval = put_user(pid, &infop->si_pid);
952 if (!retval)
953 retval = put_user(uid, &infop->si_uid);
954 if (!retval)
955 retval = put_user(status, &infop->si_status);
956 }
957 if (!retval)
958 retval = pid;
959 return retval;
960 }
961
962 /*
963 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
964 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
965 * the lock and this task is uninteresting. If we return nonzero, we have
966 * released the lock and the system call should return.
967 */
968 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
969 {
970 int state, retval, status;
971 pid_t pid = task_pid_vnr(p);
972 uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
973 struct siginfo __user *infop;
974
975 if (!likely(wo->wo_flags & WEXITED))
976 return 0;
977
978 if (unlikely(wo->wo_flags & WNOWAIT)) {
979 int exit_code = p->exit_code;
980 int why;
981
982 get_task_struct(p);
983 read_unlock(&tasklist_lock);
984 sched_annotate_sleep();
985
986 if ((exit_code & 0x7f) == 0) {
987 why = CLD_EXITED;
988 status = exit_code >> 8;
989 } else {
990 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
991 status = exit_code & 0x7f;
992 }
993 return wait_noreap_copyout(wo, p, pid, uid, why, status);
994 }
995 /*
996 * Move the task's state to DEAD/TRACE, only one thread can do this.
997 */
998 state = (ptrace_reparented(p) && thread_group_leader(p)) ?
999 EXIT_TRACE : EXIT_DEAD;
1000 if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1001 return 0;
1002 /*
1003 * We own this thread, nobody else can reap it.
1004 */
1005 read_unlock(&tasklist_lock);
1006 sched_annotate_sleep();
1007
1008 /*
1009 * Check thread_group_leader() to exclude the traced sub-threads.
1010 */
1011 if (state == EXIT_DEAD && thread_group_leader(p)) {
1012 struct signal_struct *sig = p->signal;
1013 struct signal_struct *psig = current->signal;
1014 unsigned long maxrss;
1015 cputime_t tgutime, tgstime;
1016
1017 /*
1018 * The resource counters for the group leader are in its
1019 * own task_struct. Those for dead threads in the group
1020 * are in its signal_struct, as are those for the child
1021 * processes it has previously reaped. All these
1022 * accumulate in the parent's signal_struct c* fields.
1023 *
1024 * We don't bother to take a lock here to protect these
1025 * p->signal fields because the whole thread group is dead
1026 * and nobody can change them.
1027 *
1028 * psig->stats_lock also protects us from our sub-theads
1029 * which can reap other children at the same time. Until
1030 * we change k_getrusage()-like users to rely on this lock
1031 * we have to take ->siglock as well.
1032 *
1033 * We use thread_group_cputime_adjusted() to get times for
1034 * the thread group, which consolidates times for all threads
1035 * in the group including the group leader.
1036 */
1037 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1038 spin_lock_irq(&current->sighand->siglock);
1039 write_seqlock(&psig->stats_lock);
1040 psig->cutime += tgutime + sig->cutime;
1041 psig->cstime += tgstime + sig->cstime;
1042 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1043 psig->cmin_flt +=
1044 p->min_flt + sig->min_flt + sig->cmin_flt;
1045 psig->cmaj_flt +=
1046 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1047 psig->cnvcsw +=
1048 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1049 psig->cnivcsw +=
1050 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1051 psig->cinblock +=
1052 task_io_get_inblock(p) +
1053 sig->inblock + sig->cinblock;
1054 psig->coublock +=
1055 task_io_get_oublock(p) +
1056 sig->oublock + sig->coublock;
1057 maxrss = max(sig->maxrss, sig->cmaxrss);
1058 if (psig->cmaxrss < maxrss)
1059 psig->cmaxrss = maxrss;
1060 task_io_accounting_add(&psig->ioac, &p->ioac);
1061 task_io_accounting_add(&psig->ioac, &sig->ioac);
1062 write_sequnlock(&psig->stats_lock);
1063 spin_unlock_irq(&current->sighand->siglock);
1064 }
1065
1066 retval = wo->wo_rusage
1067 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1068 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1069 ? p->signal->group_exit_code : p->exit_code;
1070 if (!retval && wo->wo_stat)
1071 retval = put_user(status, wo->wo_stat);
1072
1073 infop = wo->wo_info;
1074 if (!retval && infop)
1075 retval = put_user(SIGCHLD, &infop->si_signo);
1076 if (!retval && infop)
1077 retval = put_user(0, &infop->si_errno);
1078 if (!retval && infop) {
1079 int why;
1080
1081 if ((status & 0x7f) == 0) {
1082 why = CLD_EXITED;
1083 status >>= 8;
1084 } else {
1085 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1086 status &= 0x7f;
1087 }
1088 retval = put_user((short)why, &infop->si_code);
1089 if (!retval)
1090 retval = put_user(status, &infop->si_status);
1091 }
1092 if (!retval && infop)
1093 retval = put_user(pid, &infop->si_pid);
1094 if (!retval && infop)
1095 retval = put_user(uid, &infop->si_uid);
1096 if (!retval)
1097 retval = pid;
1098
1099 if (state == EXIT_TRACE) {
1100 write_lock_irq(&tasklist_lock);
1101 /* We dropped tasklist, ptracer could die and untrace */
1102 ptrace_unlink(p);
1103
1104 /* If parent wants a zombie, don't release it now */
1105 state = EXIT_ZOMBIE;
1106 if (do_notify_parent(p, p->exit_signal))
1107 state = EXIT_DEAD;
1108 p->exit_state = state;
1109 write_unlock_irq(&tasklist_lock);
1110 }
1111 if (state == EXIT_DEAD)
1112 release_task(p);
1113
1114 return retval;
1115 }
1116
1117 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1118 {
1119 if (ptrace) {
1120 if (task_is_stopped_or_traced(p) &&
1121 !(p->jobctl & JOBCTL_LISTENING))
1122 return &p->exit_code;
1123 } else {
1124 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1125 return &p->signal->group_exit_code;
1126 }
1127 return NULL;
1128 }
1129
1130 /**
1131 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1132 * @wo: wait options
1133 * @ptrace: is the wait for ptrace
1134 * @p: task to wait for
1135 *
1136 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1137 *
1138 * CONTEXT:
1139 * read_lock(&tasklist_lock), which is released if return value is
1140 * non-zero. Also, grabs and releases @p->sighand->siglock.
1141 *
1142 * RETURNS:
1143 * 0 if wait condition didn't exist and search for other wait conditions
1144 * should continue. Non-zero return, -errno on failure and @p's pid on
1145 * success, implies that tasklist_lock is released and wait condition
1146 * search should terminate.
1147 */
1148 static int wait_task_stopped(struct wait_opts *wo,
1149 int ptrace, struct task_struct *p)
1150 {
1151 struct siginfo __user *infop;
1152 int retval, exit_code, *p_code, why;
1153 uid_t uid = 0; /* unneeded, required by compiler */
1154 pid_t pid;
1155
1156 /*
1157 * Traditionally we see ptrace'd stopped tasks regardless of options.
1158 */
1159 if (!ptrace && !(wo->wo_flags & WUNTRACED))
1160 return 0;
1161
1162 if (!task_stopped_code(p, ptrace))
1163 return 0;
1164
1165 exit_code = 0;
1166 spin_lock_irq(&p->sighand->siglock);
1167
1168 p_code = task_stopped_code(p, ptrace);
1169 if (unlikely(!p_code))
1170 goto unlock_sig;
1171
1172 exit_code = *p_code;
1173 if (!exit_code)
1174 goto unlock_sig;
1175
1176 if (!unlikely(wo->wo_flags & WNOWAIT))
1177 *p_code = 0;
1178
1179 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1180 unlock_sig:
1181 spin_unlock_irq(&p->sighand->siglock);
1182 if (!exit_code)
1183 return 0;
1184
1185 /*
1186 * Now we are pretty sure this task is interesting.
1187 * Make sure it doesn't get reaped out from under us while we
1188 * give up the lock and then examine it below. We don't want to
1189 * keep holding onto the tasklist_lock while we call getrusage and
1190 * possibly take page faults for user memory.
1191 */
1192 get_task_struct(p);
1193 pid = task_pid_vnr(p);
1194 why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1195 read_unlock(&tasklist_lock);
1196 sched_annotate_sleep();
1197
1198 if (unlikely(wo->wo_flags & WNOWAIT))
1199 return wait_noreap_copyout(wo, p, pid, uid, why, exit_code);
1200
1201 retval = wo->wo_rusage
1202 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1203 if (!retval && wo->wo_stat)
1204 retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat);
1205
1206 infop = wo->wo_info;
1207 if (!retval && infop)
1208 retval = put_user(SIGCHLD, &infop->si_signo);
1209 if (!retval && infop)
1210 retval = put_user(0, &infop->si_errno);
1211 if (!retval && infop)
1212 retval = put_user((short)why, &infop->si_code);
1213 if (!retval && infop)
1214 retval = put_user(exit_code, &infop->si_status);
1215 if (!retval && infop)
1216 retval = put_user(pid, &infop->si_pid);
1217 if (!retval && infop)
1218 retval = put_user(uid, &infop->si_uid);
1219 if (!retval)
1220 retval = pid;
1221 put_task_struct(p);
1222
1223 BUG_ON(!retval);
1224 return retval;
1225 }
1226
1227 /*
1228 * Handle do_wait work for one task in a live, non-stopped state.
1229 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1230 * the lock and this task is uninteresting. If we return nonzero, we have
1231 * released the lock and the system call should return.
1232 */
1233 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1234 {
1235 int retval;
1236 pid_t pid;
1237 uid_t uid;
1238
1239 if (!unlikely(wo->wo_flags & WCONTINUED))
1240 return 0;
1241
1242 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1243 return 0;
1244
1245 spin_lock_irq(&p->sighand->siglock);
1246 /* Re-check with the lock held. */
1247 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1248 spin_unlock_irq(&p->sighand->siglock);
1249 return 0;
1250 }
1251 if (!unlikely(wo->wo_flags & WNOWAIT))
1252 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1253 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1254 spin_unlock_irq(&p->sighand->siglock);
1255
1256 pid = task_pid_vnr(p);
1257 get_task_struct(p);
1258 read_unlock(&tasklist_lock);
1259 sched_annotate_sleep();
1260
1261 if (!wo->wo_info) {
1262 retval = wo->wo_rusage
1263 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1264 put_task_struct(p);
1265 if (!retval && wo->wo_stat)
1266 retval = put_user(0xffff, wo->wo_stat);
1267 if (!retval)
1268 retval = pid;
1269 } else {
1270 retval = wait_noreap_copyout(wo, p, pid, uid,
1271 CLD_CONTINUED, SIGCONT);
1272 BUG_ON(retval == 0);
1273 }
1274
1275 return retval;
1276 }
1277
1278 /*
1279 * Consider @p for a wait by @parent.
1280 *
1281 * -ECHILD should be in ->notask_error before the first call.
1282 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1283 * Returns zero if the search for a child should continue;
1284 * then ->notask_error is 0 if @p is an eligible child,
1285 * or another error from security_task_wait(), or still -ECHILD.
1286 */
1287 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1288 struct task_struct *p)
1289 {
1290 int ret;
1291
1292 if (unlikely(p->exit_state == EXIT_DEAD))
1293 return 0;
1294
1295 ret = eligible_child(wo, p);
1296 if (!ret)
1297 return ret;
1298
1299 ret = security_task_wait(p);
1300 if (unlikely(ret < 0)) {
1301 /*
1302 * If we have not yet seen any eligible child,
1303 * then let this error code replace -ECHILD.
1304 * A permission error will give the user a clue
1305 * to look for security policy problems, rather
1306 * than for mysterious wait bugs.
1307 */
1308 if (wo->notask_error)
1309 wo->notask_error = ret;
1310 return 0;
1311 }
1312
1313 if (unlikely(p->exit_state == EXIT_TRACE)) {
1314 /*
1315 * ptrace == 0 means we are the natural parent. In this case
1316 * we should clear notask_error, debugger will notify us.
1317 */
1318 if (likely(!ptrace))
1319 wo->notask_error = 0;
1320 return 0;
1321 }
1322
1323 if (likely(!ptrace) && unlikely(p->ptrace)) {
1324 /*
1325 * If it is traced by its real parent's group, just pretend
1326 * the caller is ptrace_do_wait() and reap this child if it
1327 * is zombie.
1328 *
1329 * This also hides group stop state from real parent; otherwise
1330 * a single stop can be reported twice as group and ptrace stop.
1331 * If a ptracer wants to distinguish these two events for its
1332 * own children it should create a separate process which takes
1333 * the role of real parent.
1334 */
1335 if (!ptrace_reparented(p))
1336 ptrace = 1;
1337 }
1338
1339 /* slay zombie? */
1340 if (p->exit_state == EXIT_ZOMBIE) {
1341 /* we don't reap group leaders with subthreads */
1342 if (!delay_group_leader(p)) {
1343 /*
1344 * A zombie ptracee is only visible to its ptracer.
1345 * Notification and reaping will be cascaded to the
1346 * real parent when the ptracer detaches.
1347 */
1348 if (unlikely(ptrace) || likely(!p->ptrace))
1349 return wait_task_zombie(wo, p);
1350 }
1351
1352 /*
1353 * Allow access to stopped/continued state via zombie by
1354 * falling through. Clearing of notask_error is complex.
1355 *
1356 * When !@ptrace:
1357 *
1358 * If WEXITED is set, notask_error should naturally be
1359 * cleared. If not, subset of WSTOPPED|WCONTINUED is set,
1360 * so, if there are live subthreads, there are events to
1361 * wait for. If all subthreads are dead, it's still safe
1362 * to clear - this function will be called again in finite
1363 * amount time once all the subthreads are released and
1364 * will then return without clearing.
1365 *
1366 * When @ptrace:
1367 *
1368 * Stopped state is per-task and thus can't change once the
1369 * target task dies. Only continued and exited can happen.
1370 * Clear notask_error if WCONTINUED | WEXITED.
1371 */
1372 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1373 wo->notask_error = 0;
1374 } else {
1375 /*
1376 * @p is alive and it's gonna stop, continue or exit, so
1377 * there always is something to wait for.
1378 */
1379 wo->notask_error = 0;
1380 }
1381
1382 /*
1383 * Wait for stopped. Depending on @ptrace, different stopped state
1384 * is used and the two don't interact with each other.
1385 */
1386 ret = wait_task_stopped(wo, ptrace, p);
1387 if (ret)
1388 return ret;
1389
1390 /*
1391 * Wait for continued. There's only one continued state and the
1392 * ptracer can consume it which can confuse the real parent. Don't
1393 * use WCONTINUED from ptracer. You don't need or want it.
1394 */
1395 return wait_task_continued(wo, p);
1396 }
1397
1398 /*
1399 * Do the work of do_wait() for one thread in the group, @tsk.
1400 *
1401 * -ECHILD should be in ->notask_error before the first call.
1402 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1403 * Returns zero if the search for a child should continue; then
1404 * ->notask_error is 0 if there were any eligible children,
1405 * or another error from security_task_wait(), or still -ECHILD.
1406 */
1407 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1408 {
1409 struct task_struct *p;
1410
1411 list_for_each_entry(p, &tsk->children, sibling) {
1412 int ret = wait_consider_task(wo, 0, p);
1413
1414 if (ret)
1415 return ret;
1416 }
1417
1418 return 0;
1419 }
1420
1421 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1422 {
1423 struct task_struct *p;
1424
1425 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1426 int ret = wait_consider_task(wo, 1, p);
1427
1428 if (ret)
1429 return ret;
1430 }
1431
1432 return 0;
1433 }
1434
1435 static int child_wait_callback(wait_queue_t *wait, unsigned mode,
1436 int sync, void *key)
1437 {
1438 struct wait_opts *wo = container_of(wait, struct wait_opts,
1439 child_wait);
1440 struct task_struct *p = key;
1441
1442 if (!eligible_pid(wo, p))
1443 return 0;
1444
1445 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1446 return 0;
1447
1448 return default_wake_function(wait, mode, sync, key);
1449 }
1450
1451 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1452 {
1453 __wake_up_sync_key(&parent->signal->wait_chldexit,
1454 TASK_INTERRUPTIBLE, 1, p);
1455 }
1456
1457 static long do_wait(struct wait_opts *wo)
1458 {
1459 struct task_struct *tsk;
1460 int retval;
1461
1462 trace_sched_process_wait(wo->wo_pid);
1463
1464 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1465 wo->child_wait.private = current;
1466 add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1467 repeat:
1468 /*
1469 * If there is nothing that can match our critiera just get out.
1470 * We will clear ->notask_error to zero if we see any child that
1471 * might later match our criteria, even if we are not able to reap
1472 * it yet.
1473 */
1474 wo->notask_error = -ECHILD;
1475 if ((wo->wo_type < PIDTYPE_MAX) &&
1476 (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
1477 goto notask;
1478
1479 set_current_state(TASK_INTERRUPTIBLE);
1480 read_lock(&tasklist_lock);
1481 tsk = current;
1482 do {
1483 retval = do_wait_thread(wo, tsk);
1484 if (retval)
1485 goto end;
1486
1487 retval = ptrace_do_wait(wo, tsk);
1488 if (retval)
1489 goto end;
1490
1491 if (wo->wo_flags & __WNOTHREAD)
1492 break;
1493 } while_each_thread(current, tsk);
1494 read_unlock(&tasklist_lock);
1495
1496 notask:
1497 retval = wo->notask_error;
1498 if (!retval && !(wo->wo_flags & WNOHANG)) {
1499 retval = -ERESTARTSYS;
1500 if (!signal_pending(current)) {
1501 schedule();
1502 goto repeat;
1503 }
1504 }
1505 end:
1506 __set_current_state(TASK_RUNNING);
1507 remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1508 return retval;
1509 }
1510
1511 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1512 infop, int, options, struct rusage __user *, ru)
1513 {
1514 struct wait_opts wo;
1515 struct pid *pid = NULL;
1516 enum pid_type type;
1517 long ret;
1518
1519 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1520 return -EINVAL;
1521 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1522 return -EINVAL;
1523
1524 switch (which) {
1525 case P_ALL:
1526 type = PIDTYPE_MAX;
1527 break;
1528 case P_PID:
1529 type = PIDTYPE_PID;
1530 if (upid <= 0)
1531 return -EINVAL;
1532 break;
1533 case P_PGID:
1534 type = PIDTYPE_PGID;
1535 if (upid <= 0)
1536 return -EINVAL;
1537 break;
1538 default:
1539 return -EINVAL;
1540 }
1541
1542 if (type < PIDTYPE_MAX)
1543 pid = find_get_pid(upid);
1544
1545 wo.wo_type = type;
1546 wo.wo_pid = pid;
1547 wo.wo_flags = options;
1548 wo.wo_info = infop;
1549 wo.wo_stat = NULL;
1550 wo.wo_rusage = ru;
1551 ret = do_wait(&wo);
1552
1553 if (ret > 0) {
1554 ret = 0;
1555 } else if (infop) {
1556 /*
1557 * For a WNOHANG return, clear out all the fields
1558 * we would set so the user can easily tell the
1559 * difference.
1560 */
1561 if (!ret)
1562 ret = put_user(0, &infop->si_signo);
1563 if (!ret)
1564 ret = put_user(0, &infop->si_errno);
1565 if (!ret)
1566 ret = put_user(0, &infop->si_code);
1567 if (!ret)
1568 ret = put_user(0, &infop->si_pid);
1569 if (!ret)
1570 ret = put_user(0, &infop->si_uid);
1571 if (!ret)
1572 ret = put_user(0, &infop->si_status);
1573 }
1574
1575 put_pid(pid);
1576 return ret;
1577 }
1578
1579 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1580 int, options, struct rusage __user *, ru)
1581 {
1582 struct wait_opts wo;
1583 struct pid *pid = NULL;
1584 enum pid_type type;
1585 long ret;
1586
1587 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1588 __WNOTHREAD|__WCLONE|__WALL))
1589 return -EINVAL;
1590
1591 if (upid == -1)
1592 type = PIDTYPE_MAX;
1593 else if (upid < 0) {
1594 type = PIDTYPE_PGID;
1595 pid = find_get_pid(-upid);
1596 } else if (upid == 0) {
1597 type = PIDTYPE_PGID;
1598 pid = get_task_pid(current, PIDTYPE_PGID);
1599 } else /* upid > 0 */ {
1600 type = PIDTYPE_PID;
1601 pid = find_get_pid(upid);
1602 }
1603
1604 wo.wo_type = type;
1605 wo.wo_pid = pid;
1606 wo.wo_flags = options | WEXITED;
1607 wo.wo_info = NULL;
1608 wo.wo_stat = stat_addr;
1609 wo.wo_rusage = ru;
1610 ret = do_wait(&wo);
1611 put_pid(pid);
1612
1613 return ret;
1614 }
1615
1616 #ifdef __ARCH_WANT_SYS_WAITPID
1617
1618 /*
1619 * sys_waitpid() remains for compatibility. waitpid() should be
1620 * implemented by calling sys_wait4() from libc.a.
1621 */
1622 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1623 {
1624 return sys_wait4(pid, stat_addr, options, NULL);
1625 }
1626
1627 #endif