]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - kernel/exit.c
Merge tag 'mfd-next-5.7' of git://git.kernel.org/pub/scm/linux/kernel/git/lee/mfd
[mirror_ubuntu-hirsute-kernel.git] / kernel / exit.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/kernel/exit.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8 #include <linux/mm.h>
9 #include <linux/slab.h>
10 #include <linux/sched/autogroup.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/stat.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/sched/cputime.h>
16 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 #include <linux/capability.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/tty.h>
22 #include <linux/iocontext.h>
23 #include <linux/key.h>
24 #include <linux/cpu.h>
25 #include <linux/acct.h>
26 #include <linux/tsacct_kern.h>
27 #include <linux/file.h>
28 #include <linux/fdtable.h>
29 #include <linux/freezer.h>
30 #include <linux/binfmts.h>
31 #include <linux/nsproxy.h>
32 #include <linux/pid_namespace.h>
33 #include <linux/ptrace.h>
34 #include <linux/profile.h>
35 #include <linux/mount.h>
36 #include <linux/proc_fs.h>
37 #include <linux/kthread.h>
38 #include <linux/mempolicy.h>
39 #include <linux/taskstats_kern.h>
40 #include <linux/delayacct.h>
41 #include <linux/cgroup.h>
42 #include <linux/syscalls.h>
43 #include <linux/signal.h>
44 #include <linux/posix-timers.h>
45 #include <linux/cn_proc.h>
46 #include <linux/mutex.h>
47 #include <linux/futex.h>
48 #include <linux/pipe_fs_i.h>
49 #include <linux/audit.h> /* for audit_free() */
50 #include <linux/resource.h>
51 #include <linux/blkdev.h>
52 #include <linux/task_io_accounting_ops.h>
53 #include <linux/tracehook.h>
54 #include <linux/fs_struct.h>
55 #include <linux/init_task.h>
56 #include <linux/perf_event.h>
57 #include <trace/events/sched.h>
58 #include <linux/hw_breakpoint.h>
59 #include <linux/oom.h>
60 #include <linux/writeback.h>
61 #include <linux/shm.h>
62 #include <linux/kcov.h>
63 #include <linux/random.h>
64 #include <linux/rcuwait.h>
65 #include <linux/compat.h>
66
67 #include <linux/uaccess.h>
68 #include <asm/unistd.h>
69 #include <asm/pgtable.h>
70 #include <asm/mmu_context.h>
71
72 static void __unhash_process(struct task_struct *p, bool group_dead)
73 {
74 nr_threads--;
75 detach_pid(p, PIDTYPE_PID);
76 if (group_dead) {
77 detach_pid(p, PIDTYPE_TGID);
78 detach_pid(p, PIDTYPE_PGID);
79 detach_pid(p, PIDTYPE_SID);
80
81 list_del_rcu(&p->tasks);
82 list_del_init(&p->sibling);
83 __this_cpu_dec(process_counts);
84 }
85 list_del_rcu(&p->thread_group);
86 list_del_rcu(&p->thread_node);
87 }
88
89 /*
90 * This function expects the tasklist_lock write-locked.
91 */
92 static void __exit_signal(struct task_struct *tsk)
93 {
94 struct signal_struct *sig = tsk->signal;
95 bool group_dead = thread_group_leader(tsk);
96 struct sighand_struct *sighand;
97 struct tty_struct *uninitialized_var(tty);
98 u64 utime, stime;
99
100 sighand = rcu_dereference_check(tsk->sighand,
101 lockdep_tasklist_lock_is_held());
102 spin_lock(&sighand->siglock);
103
104 #ifdef CONFIG_POSIX_TIMERS
105 posix_cpu_timers_exit(tsk);
106 if (group_dead)
107 posix_cpu_timers_exit_group(tsk);
108 #endif
109
110 if (group_dead) {
111 tty = sig->tty;
112 sig->tty = NULL;
113 } else {
114 /*
115 * If there is any task waiting for the group exit
116 * then notify it:
117 */
118 if (sig->notify_count > 0 && !--sig->notify_count)
119 wake_up_process(sig->group_exit_task);
120
121 if (tsk == sig->curr_target)
122 sig->curr_target = next_thread(tsk);
123 }
124
125 add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
126 sizeof(unsigned long long));
127
128 /*
129 * Accumulate here the counters for all threads as they die. We could
130 * skip the group leader because it is the last user of signal_struct,
131 * but we want to avoid the race with thread_group_cputime() which can
132 * see the empty ->thread_head list.
133 */
134 task_cputime(tsk, &utime, &stime);
135 write_seqlock(&sig->stats_lock);
136 sig->utime += utime;
137 sig->stime += stime;
138 sig->gtime += task_gtime(tsk);
139 sig->min_flt += tsk->min_flt;
140 sig->maj_flt += tsk->maj_flt;
141 sig->nvcsw += tsk->nvcsw;
142 sig->nivcsw += tsk->nivcsw;
143 sig->inblock += task_io_get_inblock(tsk);
144 sig->oublock += task_io_get_oublock(tsk);
145 task_io_accounting_add(&sig->ioac, &tsk->ioac);
146 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
147 sig->nr_threads--;
148 __unhash_process(tsk, group_dead);
149 write_sequnlock(&sig->stats_lock);
150
151 /*
152 * Do this under ->siglock, we can race with another thread
153 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
154 */
155 flush_sigqueue(&tsk->pending);
156 tsk->sighand = NULL;
157 spin_unlock(&sighand->siglock);
158
159 __cleanup_sighand(sighand);
160 clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
161 if (group_dead) {
162 flush_sigqueue(&sig->shared_pending);
163 tty_kref_put(tty);
164 }
165 }
166
167 static void delayed_put_task_struct(struct rcu_head *rhp)
168 {
169 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
170
171 perf_event_delayed_put(tsk);
172 trace_sched_process_free(tsk);
173 put_task_struct(tsk);
174 }
175
176 void put_task_struct_rcu_user(struct task_struct *task)
177 {
178 if (refcount_dec_and_test(&task->rcu_users))
179 call_rcu(&task->rcu, delayed_put_task_struct);
180 }
181
182 void release_task(struct task_struct *p)
183 {
184 struct task_struct *leader;
185 struct pid *thread_pid;
186 int zap_leader;
187 repeat:
188 /* don't need to get the RCU readlock here - the process is dead and
189 * can't be modifying its own credentials. But shut RCU-lockdep up */
190 rcu_read_lock();
191 atomic_dec(&__task_cred(p)->user->processes);
192 rcu_read_unlock();
193
194 cgroup_release(p);
195
196 write_lock_irq(&tasklist_lock);
197 ptrace_release_task(p);
198 thread_pid = get_pid(p->thread_pid);
199 __exit_signal(p);
200
201 /*
202 * If we are the last non-leader member of the thread
203 * group, and the leader is zombie, then notify the
204 * group leader's parent process. (if it wants notification.)
205 */
206 zap_leader = 0;
207 leader = p->group_leader;
208 if (leader != p && thread_group_empty(leader)
209 && leader->exit_state == EXIT_ZOMBIE) {
210 /*
211 * If we were the last child thread and the leader has
212 * exited already, and the leader's parent ignores SIGCHLD,
213 * then we are the one who should release the leader.
214 */
215 zap_leader = do_notify_parent(leader, leader->exit_signal);
216 if (zap_leader)
217 leader->exit_state = EXIT_DEAD;
218 }
219
220 write_unlock_irq(&tasklist_lock);
221 proc_flush_pid(thread_pid);
222 release_thread(p);
223 put_task_struct_rcu_user(p);
224
225 p = leader;
226 if (unlikely(zap_leader))
227 goto repeat;
228 }
229
230 void rcuwait_wake_up(struct rcuwait *w)
231 {
232 struct task_struct *task;
233
234 rcu_read_lock();
235
236 /*
237 * Order condition vs @task, such that everything prior to the load
238 * of @task is visible. This is the condition as to why the user called
239 * rcuwait_trywake() in the first place. Pairs with set_current_state()
240 * barrier (A) in rcuwait_wait_event().
241 *
242 * WAIT WAKE
243 * [S] tsk = current [S] cond = true
244 * MB (A) MB (B)
245 * [L] cond [L] tsk
246 */
247 smp_mb(); /* (B) */
248
249 task = rcu_dereference(w->task);
250 if (task)
251 wake_up_process(task);
252 rcu_read_unlock();
253 }
254 EXPORT_SYMBOL_GPL(rcuwait_wake_up);
255
256 /*
257 * Determine if a process group is "orphaned", according to the POSIX
258 * definition in 2.2.2.52. Orphaned process groups are not to be affected
259 * by terminal-generated stop signals. Newly orphaned process groups are
260 * to receive a SIGHUP and a SIGCONT.
261 *
262 * "I ask you, have you ever known what it is to be an orphan?"
263 */
264 static int will_become_orphaned_pgrp(struct pid *pgrp,
265 struct task_struct *ignored_task)
266 {
267 struct task_struct *p;
268
269 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
270 if ((p == ignored_task) ||
271 (p->exit_state && thread_group_empty(p)) ||
272 is_global_init(p->real_parent))
273 continue;
274
275 if (task_pgrp(p->real_parent) != pgrp &&
276 task_session(p->real_parent) == task_session(p))
277 return 0;
278 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
279
280 return 1;
281 }
282
283 int is_current_pgrp_orphaned(void)
284 {
285 int retval;
286
287 read_lock(&tasklist_lock);
288 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
289 read_unlock(&tasklist_lock);
290
291 return retval;
292 }
293
294 static bool has_stopped_jobs(struct pid *pgrp)
295 {
296 struct task_struct *p;
297
298 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
299 if (p->signal->flags & SIGNAL_STOP_STOPPED)
300 return true;
301 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
302
303 return false;
304 }
305
306 /*
307 * Check to see if any process groups have become orphaned as
308 * a result of our exiting, and if they have any stopped jobs,
309 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
310 */
311 static void
312 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
313 {
314 struct pid *pgrp = task_pgrp(tsk);
315 struct task_struct *ignored_task = tsk;
316
317 if (!parent)
318 /* exit: our father is in a different pgrp than
319 * we are and we were the only connection outside.
320 */
321 parent = tsk->real_parent;
322 else
323 /* reparent: our child is in a different pgrp than
324 * we are, and it was the only connection outside.
325 */
326 ignored_task = NULL;
327
328 if (task_pgrp(parent) != pgrp &&
329 task_session(parent) == task_session(tsk) &&
330 will_become_orphaned_pgrp(pgrp, ignored_task) &&
331 has_stopped_jobs(pgrp)) {
332 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
333 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
334 }
335 }
336
337 #ifdef CONFIG_MEMCG
338 /*
339 * A task is exiting. If it owned this mm, find a new owner for the mm.
340 */
341 void mm_update_next_owner(struct mm_struct *mm)
342 {
343 struct task_struct *c, *g, *p = current;
344
345 retry:
346 /*
347 * If the exiting or execing task is not the owner, it's
348 * someone else's problem.
349 */
350 if (mm->owner != p)
351 return;
352 /*
353 * The current owner is exiting/execing and there are no other
354 * candidates. Do not leave the mm pointing to a possibly
355 * freed task structure.
356 */
357 if (atomic_read(&mm->mm_users) <= 1) {
358 WRITE_ONCE(mm->owner, NULL);
359 return;
360 }
361
362 read_lock(&tasklist_lock);
363 /*
364 * Search in the children
365 */
366 list_for_each_entry(c, &p->children, sibling) {
367 if (c->mm == mm)
368 goto assign_new_owner;
369 }
370
371 /*
372 * Search in the siblings
373 */
374 list_for_each_entry(c, &p->real_parent->children, sibling) {
375 if (c->mm == mm)
376 goto assign_new_owner;
377 }
378
379 /*
380 * Search through everything else, we should not get here often.
381 */
382 for_each_process(g) {
383 if (g->flags & PF_KTHREAD)
384 continue;
385 for_each_thread(g, c) {
386 if (c->mm == mm)
387 goto assign_new_owner;
388 if (c->mm)
389 break;
390 }
391 }
392 read_unlock(&tasklist_lock);
393 /*
394 * We found no owner yet mm_users > 1: this implies that we are
395 * most likely racing with swapoff (try_to_unuse()) or /proc or
396 * ptrace or page migration (get_task_mm()). Mark owner as NULL.
397 */
398 WRITE_ONCE(mm->owner, NULL);
399 return;
400
401 assign_new_owner:
402 BUG_ON(c == p);
403 get_task_struct(c);
404 /*
405 * The task_lock protects c->mm from changing.
406 * We always want mm->owner->mm == mm
407 */
408 task_lock(c);
409 /*
410 * Delay read_unlock() till we have the task_lock()
411 * to ensure that c does not slip away underneath us
412 */
413 read_unlock(&tasklist_lock);
414 if (c->mm != mm) {
415 task_unlock(c);
416 put_task_struct(c);
417 goto retry;
418 }
419 WRITE_ONCE(mm->owner, c);
420 task_unlock(c);
421 put_task_struct(c);
422 }
423 #endif /* CONFIG_MEMCG */
424
425 /*
426 * Turn us into a lazy TLB process if we
427 * aren't already..
428 */
429 static void exit_mm(void)
430 {
431 struct mm_struct *mm = current->mm;
432 struct core_state *core_state;
433
434 exit_mm_release(current, mm);
435 if (!mm)
436 return;
437 sync_mm_rss(mm);
438 /*
439 * Serialize with any possible pending coredump.
440 * We must hold mmap_sem around checking core_state
441 * and clearing tsk->mm. The core-inducing thread
442 * will increment ->nr_threads for each thread in the
443 * group with ->mm != NULL.
444 */
445 down_read(&mm->mmap_sem);
446 core_state = mm->core_state;
447 if (core_state) {
448 struct core_thread self;
449
450 up_read(&mm->mmap_sem);
451
452 self.task = current;
453 self.next = xchg(&core_state->dumper.next, &self);
454 /*
455 * Implies mb(), the result of xchg() must be visible
456 * to core_state->dumper.
457 */
458 if (atomic_dec_and_test(&core_state->nr_threads))
459 complete(&core_state->startup);
460
461 for (;;) {
462 set_current_state(TASK_UNINTERRUPTIBLE);
463 if (!self.task) /* see coredump_finish() */
464 break;
465 freezable_schedule();
466 }
467 __set_current_state(TASK_RUNNING);
468 down_read(&mm->mmap_sem);
469 }
470 mmgrab(mm);
471 BUG_ON(mm != current->active_mm);
472 /* more a memory barrier than a real lock */
473 task_lock(current);
474 current->mm = NULL;
475 up_read(&mm->mmap_sem);
476 enter_lazy_tlb(mm, current);
477 task_unlock(current);
478 mm_update_next_owner(mm);
479 mmput(mm);
480 if (test_thread_flag(TIF_MEMDIE))
481 exit_oom_victim();
482 }
483
484 static struct task_struct *find_alive_thread(struct task_struct *p)
485 {
486 struct task_struct *t;
487
488 for_each_thread(p, t) {
489 if (!(t->flags & PF_EXITING))
490 return t;
491 }
492 return NULL;
493 }
494
495 static struct task_struct *find_child_reaper(struct task_struct *father,
496 struct list_head *dead)
497 __releases(&tasklist_lock)
498 __acquires(&tasklist_lock)
499 {
500 struct pid_namespace *pid_ns = task_active_pid_ns(father);
501 struct task_struct *reaper = pid_ns->child_reaper;
502 struct task_struct *p, *n;
503
504 if (likely(reaper != father))
505 return reaper;
506
507 reaper = find_alive_thread(father);
508 if (reaper) {
509 pid_ns->child_reaper = reaper;
510 return reaper;
511 }
512
513 write_unlock_irq(&tasklist_lock);
514
515 list_for_each_entry_safe(p, n, dead, ptrace_entry) {
516 list_del_init(&p->ptrace_entry);
517 release_task(p);
518 }
519
520 zap_pid_ns_processes(pid_ns);
521 write_lock_irq(&tasklist_lock);
522
523 return father;
524 }
525
526 /*
527 * When we die, we re-parent all our children, and try to:
528 * 1. give them to another thread in our thread group, if such a member exists
529 * 2. give it to the first ancestor process which prctl'd itself as a
530 * child_subreaper for its children (like a service manager)
531 * 3. give it to the init process (PID 1) in our pid namespace
532 */
533 static struct task_struct *find_new_reaper(struct task_struct *father,
534 struct task_struct *child_reaper)
535 {
536 struct task_struct *thread, *reaper;
537
538 thread = find_alive_thread(father);
539 if (thread)
540 return thread;
541
542 if (father->signal->has_child_subreaper) {
543 unsigned int ns_level = task_pid(father)->level;
544 /*
545 * Find the first ->is_child_subreaper ancestor in our pid_ns.
546 * We can't check reaper != child_reaper to ensure we do not
547 * cross the namespaces, the exiting parent could be injected
548 * by setns() + fork().
549 * We check pid->level, this is slightly more efficient than
550 * task_active_pid_ns(reaper) != task_active_pid_ns(father).
551 */
552 for (reaper = father->real_parent;
553 task_pid(reaper)->level == ns_level;
554 reaper = reaper->real_parent) {
555 if (reaper == &init_task)
556 break;
557 if (!reaper->signal->is_child_subreaper)
558 continue;
559 thread = find_alive_thread(reaper);
560 if (thread)
561 return thread;
562 }
563 }
564
565 return child_reaper;
566 }
567
568 /*
569 * Any that need to be release_task'd are put on the @dead list.
570 */
571 static void reparent_leader(struct task_struct *father, struct task_struct *p,
572 struct list_head *dead)
573 {
574 if (unlikely(p->exit_state == EXIT_DEAD))
575 return;
576
577 /* We don't want people slaying init. */
578 p->exit_signal = SIGCHLD;
579
580 /* If it has exited notify the new parent about this child's death. */
581 if (!p->ptrace &&
582 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
583 if (do_notify_parent(p, p->exit_signal)) {
584 p->exit_state = EXIT_DEAD;
585 list_add(&p->ptrace_entry, dead);
586 }
587 }
588
589 kill_orphaned_pgrp(p, father);
590 }
591
592 /*
593 * This does two things:
594 *
595 * A. Make init inherit all the child processes
596 * B. Check to see if any process groups have become orphaned
597 * as a result of our exiting, and if they have any stopped
598 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
599 */
600 static void forget_original_parent(struct task_struct *father,
601 struct list_head *dead)
602 {
603 struct task_struct *p, *t, *reaper;
604
605 if (unlikely(!list_empty(&father->ptraced)))
606 exit_ptrace(father, dead);
607
608 /* Can drop and reacquire tasklist_lock */
609 reaper = find_child_reaper(father, dead);
610 if (list_empty(&father->children))
611 return;
612
613 reaper = find_new_reaper(father, reaper);
614 list_for_each_entry(p, &father->children, sibling) {
615 for_each_thread(p, t) {
616 RCU_INIT_POINTER(t->real_parent, reaper);
617 BUG_ON((!t->ptrace) != (rcu_access_pointer(t->parent) == father));
618 if (likely(!t->ptrace))
619 t->parent = t->real_parent;
620 if (t->pdeath_signal)
621 group_send_sig_info(t->pdeath_signal,
622 SEND_SIG_NOINFO, t,
623 PIDTYPE_TGID);
624 }
625 /*
626 * If this is a threaded reparent there is no need to
627 * notify anyone anything has happened.
628 */
629 if (!same_thread_group(reaper, father))
630 reparent_leader(father, p, dead);
631 }
632 list_splice_tail_init(&father->children, &reaper->children);
633 }
634
635 /*
636 * Send signals to all our closest relatives so that they know
637 * to properly mourn us..
638 */
639 static void exit_notify(struct task_struct *tsk, int group_dead)
640 {
641 bool autoreap;
642 struct task_struct *p, *n;
643 LIST_HEAD(dead);
644
645 write_lock_irq(&tasklist_lock);
646 forget_original_parent(tsk, &dead);
647
648 if (group_dead)
649 kill_orphaned_pgrp(tsk->group_leader, NULL);
650
651 tsk->exit_state = EXIT_ZOMBIE;
652 if (unlikely(tsk->ptrace)) {
653 int sig = thread_group_leader(tsk) &&
654 thread_group_empty(tsk) &&
655 !ptrace_reparented(tsk) ?
656 tsk->exit_signal : SIGCHLD;
657 autoreap = do_notify_parent(tsk, sig);
658 } else if (thread_group_leader(tsk)) {
659 autoreap = thread_group_empty(tsk) &&
660 do_notify_parent(tsk, tsk->exit_signal);
661 } else {
662 autoreap = true;
663 }
664
665 if (autoreap) {
666 tsk->exit_state = EXIT_DEAD;
667 list_add(&tsk->ptrace_entry, &dead);
668 }
669
670 /* mt-exec, de_thread() is waiting for group leader */
671 if (unlikely(tsk->signal->notify_count < 0))
672 wake_up_process(tsk->signal->group_exit_task);
673 write_unlock_irq(&tasklist_lock);
674
675 list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
676 list_del_init(&p->ptrace_entry);
677 release_task(p);
678 }
679 }
680
681 #ifdef CONFIG_DEBUG_STACK_USAGE
682 static void check_stack_usage(void)
683 {
684 static DEFINE_SPINLOCK(low_water_lock);
685 static int lowest_to_date = THREAD_SIZE;
686 unsigned long free;
687
688 free = stack_not_used(current);
689
690 if (free >= lowest_to_date)
691 return;
692
693 spin_lock(&low_water_lock);
694 if (free < lowest_to_date) {
695 pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
696 current->comm, task_pid_nr(current), free);
697 lowest_to_date = free;
698 }
699 spin_unlock(&low_water_lock);
700 }
701 #else
702 static inline void check_stack_usage(void) {}
703 #endif
704
705 void __noreturn do_exit(long code)
706 {
707 struct task_struct *tsk = current;
708 int group_dead;
709
710 profile_task_exit(tsk);
711 kcov_task_exit(tsk);
712
713 WARN_ON(blk_needs_flush_plug(tsk));
714
715 if (unlikely(in_interrupt()))
716 panic("Aiee, killing interrupt handler!");
717 if (unlikely(!tsk->pid))
718 panic("Attempted to kill the idle task!");
719
720 /*
721 * If do_exit is called because this processes oopsed, it's possible
722 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
723 * continuing. Amongst other possible reasons, this is to prevent
724 * mm_release()->clear_child_tid() from writing to a user-controlled
725 * kernel address.
726 */
727 set_fs(USER_DS);
728
729 ptrace_event(PTRACE_EVENT_EXIT, code);
730
731 validate_creds_for_do_exit(tsk);
732
733 /*
734 * We're taking recursive faults here in do_exit. Safest is to just
735 * leave this task alone and wait for reboot.
736 */
737 if (unlikely(tsk->flags & PF_EXITING)) {
738 pr_alert("Fixing recursive fault but reboot is needed!\n");
739 futex_exit_recursive(tsk);
740 set_current_state(TASK_UNINTERRUPTIBLE);
741 schedule();
742 }
743
744 exit_signals(tsk); /* sets PF_EXITING */
745
746 if (unlikely(in_atomic())) {
747 pr_info("note: %s[%d] exited with preempt_count %d\n",
748 current->comm, task_pid_nr(current),
749 preempt_count());
750 preempt_count_set(PREEMPT_ENABLED);
751 }
752
753 /* sync mm's RSS info before statistics gathering */
754 if (tsk->mm)
755 sync_mm_rss(tsk->mm);
756 acct_update_integrals(tsk);
757 group_dead = atomic_dec_and_test(&tsk->signal->live);
758 if (group_dead) {
759 /*
760 * If the last thread of global init has exited, panic
761 * immediately to get a useable coredump.
762 */
763 if (unlikely(is_global_init(tsk)))
764 panic("Attempted to kill init! exitcode=0x%08x\n",
765 tsk->signal->group_exit_code ?: (int)code);
766
767 #ifdef CONFIG_POSIX_TIMERS
768 hrtimer_cancel(&tsk->signal->real_timer);
769 exit_itimers(tsk->signal);
770 #endif
771 if (tsk->mm)
772 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
773 }
774 acct_collect(code, group_dead);
775 if (group_dead)
776 tty_audit_exit();
777 audit_free(tsk);
778
779 tsk->exit_code = code;
780 taskstats_exit(tsk, group_dead);
781
782 exit_mm();
783
784 if (group_dead)
785 acct_process();
786 trace_sched_process_exit(tsk);
787
788 exit_sem(tsk);
789 exit_shm(tsk);
790 exit_files(tsk);
791 exit_fs(tsk);
792 if (group_dead)
793 disassociate_ctty(1);
794 exit_task_namespaces(tsk);
795 exit_task_work(tsk);
796 exit_thread(tsk);
797 exit_umh(tsk);
798
799 /*
800 * Flush inherited counters to the parent - before the parent
801 * gets woken up by child-exit notifications.
802 *
803 * because of cgroup mode, must be called before cgroup_exit()
804 */
805 perf_event_exit_task(tsk);
806
807 sched_autogroup_exit_task(tsk);
808 cgroup_exit(tsk);
809
810 /*
811 * FIXME: do that only when needed, using sched_exit tracepoint
812 */
813 flush_ptrace_hw_breakpoint(tsk);
814
815 exit_tasks_rcu_start();
816 exit_notify(tsk, group_dead);
817 proc_exit_connector(tsk);
818 mpol_put_task_policy(tsk);
819 #ifdef CONFIG_FUTEX
820 if (unlikely(current->pi_state_cache))
821 kfree(current->pi_state_cache);
822 #endif
823 /*
824 * Make sure we are holding no locks:
825 */
826 debug_check_no_locks_held();
827
828 if (tsk->io_context)
829 exit_io_context(tsk);
830
831 if (tsk->splice_pipe)
832 free_pipe_info(tsk->splice_pipe);
833
834 if (tsk->task_frag.page)
835 put_page(tsk->task_frag.page);
836
837 validate_creds_for_do_exit(tsk);
838
839 check_stack_usage();
840 preempt_disable();
841 if (tsk->nr_dirtied)
842 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
843 exit_rcu();
844 exit_tasks_rcu_finish();
845
846 lockdep_free_task(tsk);
847 do_task_dead();
848 }
849 EXPORT_SYMBOL_GPL(do_exit);
850
851 void complete_and_exit(struct completion *comp, long code)
852 {
853 if (comp)
854 complete(comp);
855
856 do_exit(code);
857 }
858 EXPORT_SYMBOL(complete_and_exit);
859
860 SYSCALL_DEFINE1(exit, int, error_code)
861 {
862 do_exit((error_code&0xff)<<8);
863 }
864
865 /*
866 * Take down every thread in the group. This is called by fatal signals
867 * as well as by sys_exit_group (below).
868 */
869 void
870 do_group_exit(int exit_code)
871 {
872 struct signal_struct *sig = current->signal;
873
874 BUG_ON(exit_code & 0x80); /* core dumps don't get here */
875
876 if (signal_group_exit(sig))
877 exit_code = sig->group_exit_code;
878 else if (!thread_group_empty(current)) {
879 struct sighand_struct *const sighand = current->sighand;
880
881 spin_lock_irq(&sighand->siglock);
882 if (signal_group_exit(sig))
883 /* Another thread got here before we took the lock. */
884 exit_code = sig->group_exit_code;
885 else {
886 sig->group_exit_code = exit_code;
887 sig->flags = SIGNAL_GROUP_EXIT;
888 zap_other_threads(current);
889 }
890 spin_unlock_irq(&sighand->siglock);
891 }
892
893 do_exit(exit_code);
894 /* NOTREACHED */
895 }
896
897 /*
898 * this kills every thread in the thread group. Note that any externally
899 * wait4()-ing process will get the correct exit code - even if this
900 * thread is not the thread group leader.
901 */
902 SYSCALL_DEFINE1(exit_group, int, error_code)
903 {
904 do_group_exit((error_code & 0xff) << 8);
905 /* NOTREACHED */
906 return 0;
907 }
908
909 struct waitid_info {
910 pid_t pid;
911 uid_t uid;
912 int status;
913 int cause;
914 };
915
916 struct wait_opts {
917 enum pid_type wo_type;
918 int wo_flags;
919 struct pid *wo_pid;
920
921 struct waitid_info *wo_info;
922 int wo_stat;
923 struct rusage *wo_rusage;
924
925 wait_queue_entry_t child_wait;
926 int notask_error;
927 };
928
929 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
930 {
931 return wo->wo_type == PIDTYPE_MAX ||
932 task_pid_type(p, wo->wo_type) == wo->wo_pid;
933 }
934
935 static int
936 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
937 {
938 if (!eligible_pid(wo, p))
939 return 0;
940
941 /*
942 * Wait for all children (clone and not) if __WALL is set or
943 * if it is traced by us.
944 */
945 if (ptrace || (wo->wo_flags & __WALL))
946 return 1;
947
948 /*
949 * Otherwise, wait for clone children *only* if __WCLONE is set;
950 * otherwise, wait for non-clone children *only*.
951 *
952 * Note: a "clone" child here is one that reports to its parent
953 * using a signal other than SIGCHLD, or a non-leader thread which
954 * we can only see if it is traced by us.
955 */
956 if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
957 return 0;
958
959 return 1;
960 }
961
962 /*
963 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
964 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
965 * the lock and this task is uninteresting. If we return nonzero, we have
966 * released the lock and the system call should return.
967 */
968 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
969 {
970 int state, status;
971 pid_t pid = task_pid_vnr(p);
972 uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
973 struct waitid_info *infop;
974
975 if (!likely(wo->wo_flags & WEXITED))
976 return 0;
977
978 if (unlikely(wo->wo_flags & WNOWAIT)) {
979 status = p->exit_code;
980 get_task_struct(p);
981 read_unlock(&tasklist_lock);
982 sched_annotate_sleep();
983 if (wo->wo_rusage)
984 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
985 put_task_struct(p);
986 goto out_info;
987 }
988 /*
989 * Move the task's state to DEAD/TRACE, only one thread can do this.
990 */
991 state = (ptrace_reparented(p) && thread_group_leader(p)) ?
992 EXIT_TRACE : EXIT_DEAD;
993 if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
994 return 0;
995 /*
996 * We own this thread, nobody else can reap it.
997 */
998 read_unlock(&tasklist_lock);
999 sched_annotate_sleep();
1000
1001 /*
1002 * Check thread_group_leader() to exclude the traced sub-threads.
1003 */
1004 if (state == EXIT_DEAD && thread_group_leader(p)) {
1005 struct signal_struct *sig = p->signal;
1006 struct signal_struct *psig = current->signal;
1007 unsigned long maxrss;
1008 u64 tgutime, tgstime;
1009
1010 /*
1011 * The resource counters for the group leader are in its
1012 * own task_struct. Those for dead threads in the group
1013 * are in its signal_struct, as are those for the child
1014 * processes it has previously reaped. All these
1015 * accumulate in the parent's signal_struct c* fields.
1016 *
1017 * We don't bother to take a lock here to protect these
1018 * p->signal fields because the whole thread group is dead
1019 * and nobody can change them.
1020 *
1021 * psig->stats_lock also protects us from our sub-theads
1022 * which can reap other children at the same time. Until
1023 * we change k_getrusage()-like users to rely on this lock
1024 * we have to take ->siglock as well.
1025 *
1026 * We use thread_group_cputime_adjusted() to get times for
1027 * the thread group, which consolidates times for all threads
1028 * in the group including the group leader.
1029 */
1030 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1031 spin_lock_irq(&current->sighand->siglock);
1032 write_seqlock(&psig->stats_lock);
1033 psig->cutime += tgutime + sig->cutime;
1034 psig->cstime += tgstime + sig->cstime;
1035 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1036 psig->cmin_flt +=
1037 p->min_flt + sig->min_flt + sig->cmin_flt;
1038 psig->cmaj_flt +=
1039 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1040 psig->cnvcsw +=
1041 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1042 psig->cnivcsw +=
1043 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1044 psig->cinblock +=
1045 task_io_get_inblock(p) +
1046 sig->inblock + sig->cinblock;
1047 psig->coublock +=
1048 task_io_get_oublock(p) +
1049 sig->oublock + sig->coublock;
1050 maxrss = max(sig->maxrss, sig->cmaxrss);
1051 if (psig->cmaxrss < maxrss)
1052 psig->cmaxrss = maxrss;
1053 task_io_accounting_add(&psig->ioac, &p->ioac);
1054 task_io_accounting_add(&psig->ioac, &sig->ioac);
1055 write_sequnlock(&psig->stats_lock);
1056 spin_unlock_irq(&current->sighand->siglock);
1057 }
1058
1059 if (wo->wo_rusage)
1060 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1061 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1062 ? p->signal->group_exit_code : p->exit_code;
1063 wo->wo_stat = status;
1064
1065 if (state == EXIT_TRACE) {
1066 write_lock_irq(&tasklist_lock);
1067 /* We dropped tasklist, ptracer could die and untrace */
1068 ptrace_unlink(p);
1069
1070 /* If parent wants a zombie, don't release it now */
1071 state = EXIT_ZOMBIE;
1072 if (do_notify_parent(p, p->exit_signal))
1073 state = EXIT_DEAD;
1074 p->exit_state = state;
1075 write_unlock_irq(&tasklist_lock);
1076 }
1077 if (state == EXIT_DEAD)
1078 release_task(p);
1079
1080 out_info:
1081 infop = wo->wo_info;
1082 if (infop) {
1083 if ((status & 0x7f) == 0) {
1084 infop->cause = CLD_EXITED;
1085 infop->status = status >> 8;
1086 } else {
1087 infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1088 infop->status = status & 0x7f;
1089 }
1090 infop->pid = pid;
1091 infop->uid = uid;
1092 }
1093
1094 return pid;
1095 }
1096
1097 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1098 {
1099 if (ptrace) {
1100 if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1101 return &p->exit_code;
1102 } else {
1103 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1104 return &p->signal->group_exit_code;
1105 }
1106 return NULL;
1107 }
1108
1109 /**
1110 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1111 * @wo: wait options
1112 * @ptrace: is the wait for ptrace
1113 * @p: task to wait for
1114 *
1115 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1116 *
1117 * CONTEXT:
1118 * read_lock(&tasklist_lock), which is released if return value is
1119 * non-zero. Also, grabs and releases @p->sighand->siglock.
1120 *
1121 * RETURNS:
1122 * 0 if wait condition didn't exist and search for other wait conditions
1123 * should continue. Non-zero return, -errno on failure and @p's pid on
1124 * success, implies that tasklist_lock is released and wait condition
1125 * search should terminate.
1126 */
1127 static int wait_task_stopped(struct wait_opts *wo,
1128 int ptrace, struct task_struct *p)
1129 {
1130 struct waitid_info *infop;
1131 int exit_code, *p_code, why;
1132 uid_t uid = 0; /* unneeded, required by compiler */
1133 pid_t pid;
1134
1135 /*
1136 * Traditionally we see ptrace'd stopped tasks regardless of options.
1137 */
1138 if (!ptrace && !(wo->wo_flags & WUNTRACED))
1139 return 0;
1140
1141 if (!task_stopped_code(p, ptrace))
1142 return 0;
1143
1144 exit_code = 0;
1145 spin_lock_irq(&p->sighand->siglock);
1146
1147 p_code = task_stopped_code(p, ptrace);
1148 if (unlikely(!p_code))
1149 goto unlock_sig;
1150
1151 exit_code = *p_code;
1152 if (!exit_code)
1153 goto unlock_sig;
1154
1155 if (!unlikely(wo->wo_flags & WNOWAIT))
1156 *p_code = 0;
1157
1158 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1159 unlock_sig:
1160 spin_unlock_irq(&p->sighand->siglock);
1161 if (!exit_code)
1162 return 0;
1163
1164 /*
1165 * Now we are pretty sure this task is interesting.
1166 * Make sure it doesn't get reaped out from under us while we
1167 * give up the lock and then examine it below. We don't want to
1168 * keep holding onto the tasklist_lock while we call getrusage and
1169 * possibly take page faults for user memory.
1170 */
1171 get_task_struct(p);
1172 pid = task_pid_vnr(p);
1173 why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1174 read_unlock(&tasklist_lock);
1175 sched_annotate_sleep();
1176 if (wo->wo_rusage)
1177 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1178 put_task_struct(p);
1179
1180 if (likely(!(wo->wo_flags & WNOWAIT)))
1181 wo->wo_stat = (exit_code << 8) | 0x7f;
1182
1183 infop = wo->wo_info;
1184 if (infop) {
1185 infop->cause = why;
1186 infop->status = exit_code;
1187 infop->pid = pid;
1188 infop->uid = uid;
1189 }
1190 return pid;
1191 }
1192
1193 /*
1194 * Handle do_wait work for one task in a live, non-stopped state.
1195 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1196 * the lock and this task is uninteresting. If we return nonzero, we have
1197 * released the lock and the system call should return.
1198 */
1199 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1200 {
1201 struct waitid_info *infop;
1202 pid_t pid;
1203 uid_t uid;
1204
1205 if (!unlikely(wo->wo_flags & WCONTINUED))
1206 return 0;
1207
1208 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1209 return 0;
1210
1211 spin_lock_irq(&p->sighand->siglock);
1212 /* Re-check with the lock held. */
1213 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1214 spin_unlock_irq(&p->sighand->siglock);
1215 return 0;
1216 }
1217 if (!unlikely(wo->wo_flags & WNOWAIT))
1218 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1219 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1220 spin_unlock_irq(&p->sighand->siglock);
1221
1222 pid = task_pid_vnr(p);
1223 get_task_struct(p);
1224 read_unlock(&tasklist_lock);
1225 sched_annotate_sleep();
1226 if (wo->wo_rusage)
1227 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1228 put_task_struct(p);
1229
1230 infop = wo->wo_info;
1231 if (!infop) {
1232 wo->wo_stat = 0xffff;
1233 } else {
1234 infop->cause = CLD_CONTINUED;
1235 infop->pid = pid;
1236 infop->uid = uid;
1237 infop->status = SIGCONT;
1238 }
1239 return pid;
1240 }
1241
1242 /*
1243 * Consider @p for a wait by @parent.
1244 *
1245 * -ECHILD should be in ->notask_error before the first call.
1246 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1247 * Returns zero if the search for a child should continue;
1248 * then ->notask_error is 0 if @p is an eligible child,
1249 * or still -ECHILD.
1250 */
1251 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1252 struct task_struct *p)
1253 {
1254 /*
1255 * We can race with wait_task_zombie() from another thread.
1256 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1257 * can't confuse the checks below.
1258 */
1259 int exit_state = READ_ONCE(p->exit_state);
1260 int ret;
1261
1262 if (unlikely(exit_state == EXIT_DEAD))
1263 return 0;
1264
1265 ret = eligible_child(wo, ptrace, p);
1266 if (!ret)
1267 return ret;
1268
1269 if (unlikely(exit_state == EXIT_TRACE)) {
1270 /*
1271 * ptrace == 0 means we are the natural parent. In this case
1272 * we should clear notask_error, debugger will notify us.
1273 */
1274 if (likely(!ptrace))
1275 wo->notask_error = 0;
1276 return 0;
1277 }
1278
1279 if (likely(!ptrace) && unlikely(p->ptrace)) {
1280 /*
1281 * If it is traced by its real parent's group, just pretend
1282 * the caller is ptrace_do_wait() and reap this child if it
1283 * is zombie.
1284 *
1285 * This also hides group stop state from real parent; otherwise
1286 * a single stop can be reported twice as group and ptrace stop.
1287 * If a ptracer wants to distinguish these two events for its
1288 * own children it should create a separate process which takes
1289 * the role of real parent.
1290 */
1291 if (!ptrace_reparented(p))
1292 ptrace = 1;
1293 }
1294
1295 /* slay zombie? */
1296 if (exit_state == EXIT_ZOMBIE) {
1297 /* we don't reap group leaders with subthreads */
1298 if (!delay_group_leader(p)) {
1299 /*
1300 * A zombie ptracee is only visible to its ptracer.
1301 * Notification and reaping will be cascaded to the
1302 * real parent when the ptracer detaches.
1303 */
1304 if (unlikely(ptrace) || likely(!p->ptrace))
1305 return wait_task_zombie(wo, p);
1306 }
1307
1308 /*
1309 * Allow access to stopped/continued state via zombie by
1310 * falling through. Clearing of notask_error is complex.
1311 *
1312 * When !@ptrace:
1313 *
1314 * If WEXITED is set, notask_error should naturally be
1315 * cleared. If not, subset of WSTOPPED|WCONTINUED is set,
1316 * so, if there are live subthreads, there are events to
1317 * wait for. If all subthreads are dead, it's still safe
1318 * to clear - this function will be called again in finite
1319 * amount time once all the subthreads are released and
1320 * will then return without clearing.
1321 *
1322 * When @ptrace:
1323 *
1324 * Stopped state is per-task and thus can't change once the
1325 * target task dies. Only continued and exited can happen.
1326 * Clear notask_error if WCONTINUED | WEXITED.
1327 */
1328 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1329 wo->notask_error = 0;
1330 } else {
1331 /*
1332 * @p is alive and it's gonna stop, continue or exit, so
1333 * there always is something to wait for.
1334 */
1335 wo->notask_error = 0;
1336 }
1337
1338 /*
1339 * Wait for stopped. Depending on @ptrace, different stopped state
1340 * is used and the two don't interact with each other.
1341 */
1342 ret = wait_task_stopped(wo, ptrace, p);
1343 if (ret)
1344 return ret;
1345
1346 /*
1347 * Wait for continued. There's only one continued state and the
1348 * ptracer can consume it which can confuse the real parent. Don't
1349 * use WCONTINUED from ptracer. You don't need or want it.
1350 */
1351 return wait_task_continued(wo, p);
1352 }
1353
1354 /*
1355 * Do the work of do_wait() for one thread in the group, @tsk.
1356 *
1357 * -ECHILD should be in ->notask_error before the first call.
1358 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1359 * Returns zero if the search for a child should continue; then
1360 * ->notask_error is 0 if there were any eligible children,
1361 * or still -ECHILD.
1362 */
1363 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1364 {
1365 struct task_struct *p;
1366
1367 list_for_each_entry(p, &tsk->children, sibling) {
1368 int ret = wait_consider_task(wo, 0, p);
1369
1370 if (ret)
1371 return ret;
1372 }
1373
1374 return 0;
1375 }
1376
1377 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1378 {
1379 struct task_struct *p;
1380
1381 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1382 int ret = wait_consider_task(wo, 1, p);
1383
1384 if (ret)
1385 return ret;
1386 }
1387
1388 return 0;
1389 }
1390
1391 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
1392 int sync, void *key)
1393 {
1394 struct wait_opts *wo = container_of(wait, struct wait_opts,
1395 child_wait);
1396 struct task_struct *p = key;
1397
1398 if (!eligible_pid(wo, p))
1399 return 0;
1400
1401 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1402 return 0;
1403
1404 return default_wake_function(wait, mode, sync, key);
1405 }
1406
1407 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1408 {
1409 __wake_up_sync_key(&parent->signal->wait_chldexit,
1410 TASK_INTERRUPTIBLE, p);
1411 }
1412
1413 static long do_wait(struct wait_opts *wo)
1414 {
1415 struct task_struct *tsk;
1416 int retval;
1417
1418 trace_sched_process_wait(wo->wo_pid);
1419
1420 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1421 wo->child_wait.private = current;
1422 add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1423 repeat:
1424 /*
1425 * If there is nothing that can match our criteria, just get out.
1426 * We will clear ->notask_error to zero if we see any child that
1427 * might later match our criteria, even if we are not able to reap
1428 * it yet.
1429 */
1430 wo->notask_error = -ECHILD;
1431 if ((wo->wo_type < PIDTYPE_MAX) &&
1432 (!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type)))
1433 goto notask;
1434
1435 set_current_state(TASK_INTERRUPTIBLE);
1436 read_lock(&tasklist_lock);
1437 tsk = current;
1438 do {
1439 retval = do_wait_thread(wo, tsk);
1440 if (retval)
1441 goto end;
1442
1443 retval = ptrace_do_wait(wo, tsk);
1444 if (retval)
1445 goto end;
1446
1447 if (wo->wo_flags & __WNOTHREAD)
1448 break;
1449 } while_each_thread(current, tsk);
1450 read_unlock(&tasklist_lock);
1451
1452 notask:
1453 retval = wo->notask_error;
1454 if (!retval && !(wo->wo_flags & WNOHANG)) {
1455 retval = -ERESTARTSYS;
1456 if (!signal_pending(current)) {
1457 schedule();
1458 goto repeat;
1459 }
1460 }
1461 end:
1462 __set_current_state(TASK_RUNNING);
1463 remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1464 return retval;
1465 }
1466
1467 static struct pid *pidfd_get_pid(unsigned int fd)
1468 {
1469 struct fd f;
1470 struct pid *pid;
1471
1472 f = fdget(fd);
1473 if (!f.file)
1474 return ERR_PTR(-EBADF);
1475
1476 pid = pidfd_pid(f.file);
1477 if (!IS_ERR(pid))
1478 get_pid(pid);
1479
1480 fdput(f);
1481 return pid;
1482 }
1483
1484 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
1485 int options, struct rusage *ru)
1486 {
1487 struct wait_opts wo;
1488 struct pid *pid = NULL;
1489 enum pid_type type;
1490 long ret;
1491
1492 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1493 __WNOTHREAD|__WCLONE|__WALL))
1494 return -EINVAL;
1495 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1496 return -EINVAL;
1497
1498 switch (which) {
1499 case P_ALL:
1500 type = PIDTYPE_MAX;
1501 break;
1502 case P_PID:
1503 type = PIDTYPE_PID;
1504 if (upid <= 0)
1505 return -EINVAL;
1506
1507 pid = find_get_pid(upid);
1508 break;
1509 case P_PGID:
1510 type = PIDTYPE_PGID;
1511 if (upid < 0)
1512 return -EINVAL;
1513
1514 if (upid)
1515 pid = find_get_pid(upid);
1516 else
1517 pid = get_task_pid(current, PIDTYPE_PGID);
1518 break;
1519 case P_PIDFD:
1520 type = PIDTYPE_PID;
1521 if (upid < 0)
1522 return -EINVAL;
1523
1524 pid = pidfd_get_pid(upid);
1525 if (IS_ERR(pid))
1526 return PTR_ERR(pid);
1527 break;
1528 default:
1529 return -EINVAL;
1530 }
1531
1532 wo.wo_type = type;
1533 wo.wo_pid = pid;
1534 wo.wo_flags = options;
1535 wo.wo_info = infop;
1536 wo.wo_rusage = ru;
1537 ret = do_wait(&wo);
1538
1539 put_pid(pid);
1540 return ret;
1541 }
1542
1543 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1544 infop, int, options, struct rusage __user *, ru)
1545 {
1546 struct rusage r;
1547 struct waitid_info info = {.status = 0};
1548 long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
1549 int signo = 0;
1550
1551 if (err > 0) {
1552 signo = SIGCHLD;
1553 err = 0;
1554 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1555 return -EFAULT;
1556 }
1557 if (!infop)
1558 return err;
1559
1560 if (!user_access_begin(infop, sizeof(*infop)))
1561 return -EFAULT;
1562
1563 unsafe_put_user(signo, &infop->si_signo, Efault);
1564 unsafe_put_user(0, &infop->si_errno, Efault);
1565 unsafe_put_user(info.cause, &infop->si_code, Efault);
1566 unsafe_put_user(info.pid, &infop->si_pid, Efault);
1567 unsafe_put_user(info.uid, &infop->si_uid, Efault);
1568 unsafe_put_user(info.status, &infop->si_status, Efault);
1569 user_access_end();
1570 return err;
1571 Efault:
1572 user_access_end();
1573 return -EFAULT;
1574 }
1575
1576 long kernel_wait4(pid_t upid, int __user *stat_addr, int options,
1577 struct rusage *ru)
1578 {
1579 struct wait_opts wo;
1580 struct pid *pid = NULL;
1581 enum pid_type type;
1582 long ret;
1583
1584 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1585 __WNOTHREAD|__WCLONE|__WALL))
1586 return -EINVAL;
1587
1588 /* -INT_MIN is not defined */
1589 if (upid == INT_MIN)
1590 return -ESRCH;
1591
1592 if (upid == -1)
1593 type = PIDTYPE_MAX;
1594 else if (upid < 0) {
1595 type = PIDTYPE_PGID;
1596 pid = find_get_pid(-upid);
1597 } else if (upid == 0) {
1598 type = PIDTYPE_PGID;
1599 pid = get_task_pid(current, PIDTYPE_PGID);
1600 } else /* upid > 0 */ {
1601 type = PIDTYPE_PID;
1602 pid = find_get_pid(upid);
1603 }
1604
1605 wo.wo_type = type;
1606 wo.wo_pid = pid;
1607 wo.wo_flags = options | WEXITED;
1608 wo.wo_info = NULL;
1609 wo.wo_stat = 0;
1610 wo.wo_rusage = ru;
1611 ret = do_wait(&wo);
1612 put_pid(pid);
1613 if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
1614 ret = -EFAULT;
1615
1616 return ret;
1617 }
1618
1619 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1620 int, options, struct rusage __user *, ru)
1621 {
1622 struct rusage r;
1623 long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
1624
1625 if (err > 0) {
1626 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1627 return -EFAULT;
1628 }
1629 return err;
1630 }
1631
1632 #ifdef __ARCH_WANT_SYS_WAITPID
1633
1634 /*
1635 * sys_waitpid() remains for compatibility. waitpid() should be
1636 * implemented by calling sys_wait4() from libc.a.
1637 */
1638 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1639 {
1640 return kernel_wait4(pid, stat_addr, options, NULL);
1641 }
1642
1643 #endif
1644
1645 #ifdef CONFIG_COMPAT
1646 COMPAT_SYSCALL_DEFINE4(wait4,
1647 compat_pid_t, pid,
1648 compat_uint_t __user *, stat_addr,
1649 int, options,
1650 struct compat_rusage __user *, ru)
1651 {
1652 struct rusage r;
1653 long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
1654 if (err > 0) {
1655 if (ru && put_compat_rusage(&r, ru))
1656 return -EFAULT;
1657 }
1658 return err;
1659 }
1660
1661 COMPAT_SYSCALL_DEFINE5(waitid,
1662 int, which, compat_pid_t, pid,
1663 struct compat_siginfo __user *, infop, int, options,
1664 struct compat_rusage __user *, uru)
1665 {
1666 struct rusage ru;
1667 struct waitid_info info = {.status = 0};
1668 long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
1669 int signo = 0;
1670 if (err > 0) {
1671 signo = SIGCHLD;
1672 err = 0;
1673 if (uru) {
1674 /* kernel_waitid() overwrites everything in ru */
1675 if (COMPAT_USE_64BIT_TIME)
1676 err = copy_to_user(uru, &ru, sizeof(ru));
1677 else
1678 err = put_compat_rusage(&ru, uru);
1679 if (err)
1680 return -EFAULT;
1681 }
1682 }
1683
1684 if (!infop)
1685 return err;
1686
1687 if (!user_access_begin(infop, sizeof(*infop)))
1688 return -EFAULT;
1689
1690 unsafe_put_user(signo, &infop->si_signo, Efault);
1691 unsafe_put_user(0, &infop->si_errno, Efault);
1692 unsafe_put_user(info.cause, &infop->si_code, Efault);
1693 unsafe_put_user(info.pid, &infop->si_pid, Efault);
1694 unsafe_put_user(info.uid, &infop->si_uid, Efault);
1695 unsafe_put_user(info.status, &infop->si_status, Efault);
1696 user_access_end();
1697 return err;
1698 Efault:
1699 user_access_end();
1700 return -EFAULT;
1701 }
1702 #endif
1703
1704 __weak void abort(void)
1705 {
1706 BUG();
1707
1708 /* if that doesn't kill us, halt */
1709 panic("Oops failed to kill thread");
1710 }
1711 EXPORT_SYMBOL(abort);