]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - kernel/exit.c
do_wait() optimization: do not place sub-threads on task_struct->children list
[mirror_ubuntu-zesty-kernel.git] / kernel / exit.c
1 /*
2 * linux/kernel/exit.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/iocontext.h>
16 #include <linux/key.h>
17 #include <linux/security.h>
18 #include <linux/cpu.h>
19 #include <linux/acct.h>
20 #include <linux/tsacct_kern.h>
21 #include <linux/file.h>
22 #include <linux/fdtable.h>
23 #include <linux/binfmts.h>
24 #include <linux/nsproxy.h>
25 #include <linux/pid_namespace.h>
26 #include <linux/ptrace.h>
27 #include <linux/profile.h>
28 #include <linux/mount.h>
29 #include <linux/proc_fs.h>
30 #include <linux/kthread.h>
31 #include <linux/mempolicy.h>
32 #include <linux/taskstats_kern.h>
33 #include <linux/delayacct.h>
34 #include <linux/freezer.h>
35 #include <linux/cgroup.h>
36 #include <linux/syscalls.h>
37 #include <linux/signal.h>
38 #include <linux/posix-timers.h>
39 #include <linux/cn_proc.h>
40 #include <linux/mutex.h>
41 #include <linux/futex.h>
42 #include <linux/pipe_fs_i.h>
43 #include <linux/audit.h> /* for audit_free() */
44 #include <linux/resource.h>
45 #include <linux/blkdev.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/tracehook.h>
48 #include <linux/fs_struct.h>
49 #include <linux/init_task.h>
50 #include <linux/perf_event.h>
51 #include <trace/events/sched.h>
52 #include <linux/hw_breakpoint.h>
53
54 #include <asm/uaccess.h>
55 #include <asm/unistd.h>
56 #include <asm/pgtable.h>
57 #include <asm/mmu_context.h>
58 #include "cred-internals.h"
59
60 static void exit_mm(struct task_struct * tsk);
61
62 static void __unhash_process(struct task_struct *p)
63 {
64 nr_threads--;
65 detach_pid(p, PIDTYPE_PID);
66 if (thread_group_leader(p)) {
67 detach_pid(p, PIDTYPE_PGID);
68 detach_pid(p, PIDTYPE_SID);
69
70 list_del_rcu(&p->tasks);
71 list_del_init(&p->sibling);
72 __get_cpu_var(process_counts)--;
73 }
74 list_del_rcu(&p->thread_group);
75 }
76
77 /*
78 * This function expects the tasklist_lock write-locked.
79 */
80 static void __exit_signal(struct task_struct *tsk)
81 {
82 struct signal_struct *sig = tsk->signal;
83 struct sighand_struct *sighand;
84
85 BUG_ON(!sig);
86 BUG_ON(!atomic_read(&sig->count));
87
88 sighand = rcu_dereference(tsk->sighand);
89 spin_lock(&sighand->siglock);
90
91 posix_cpu_timers_exit(tsk);
92 if (atomic_dec_and_test(&sig->count))
93 posix_cpu_timers_exit_group(tsk);
94 else {
95 /*
96 * If there is any task waiting for the group exit
97 * then notify it:
98 */
99 if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count)
100 wake_up_process(sig->group_exit_task);
101
102 if (tsk == sig->curr_target)
103 sig->curr_target = next_thread(tsk);
104 /*
105 * Accumulate here the counters for all threads but the
106 * group leader as they die, so they can be added into
107 * the process-wide totals when those are taken.
108 * The group leader stays around as a zombie as long
109 * as there are other threads. When it gets reaped,
110 * the exit.c code will add its counts into these totals.
111 * We won't ever get here for the group leader, since it
112 * will have been the last reference on the signal_struct.
113 */
114 sig->utime = cputime_add(sig->utime, tsk->utime);
115 sig->stime = cputime_add(sig->stime, tsk->stime);
116 sig->gtime = cputime_add(sig->gtime, tsk->gtime);
117 sig->min_flt += tsk->min_flt;
118 sig->maj_flt += tsk->maj_flt;
119 sig->nvcsw += tsk->nvcsw;
120 sig->nivcsw += tsk->nivcsw;
121 sig->inblock += task_io_get_inblock(tsk);
122 sig->oublock += task_io_get_oublock(tsk);
123 task_io_accounting_add(&sig->ioac, &tsk->ioac);
124 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
125 sig = NULL; /* Marker for below. */
126 }
127
128 __unhash_process(tsk);
129
130 /*
131 * Do this under ->siglock, we can race with another thread
132 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
133 */
134 flush_sigqueue(&tsk->pending);
135
136 tsk->signal = NULL;
137 tsk->sighand = NULL;
138 spin_unlock(&sighand->siglock);
139
140 __cleanup_sighand(sighand);
141 clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
142 if (sig) {
143 flush_sigqueue(&sig->shared_pending);
144 taskstats_tgid_free(sig);
145 /*
146 * Make sure ->signal can't go away under rq->lock,
147 * see account_group_exec_runtime().
148 */
149 task_rq_unlock_wait(tsk);
150 __cleanup_signal(sig);
151 }
152 }
153
154 static void delayed_put_task_struct(struct rcu_head *rhp)
155 {
156 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
157
158 #ifdef CONFIG_PERF_EVENTS
159 WARN_ON_ONCE(tsk->perf_event_ctxp);
160 #endif
161 trace_sched_process_free(tsk);
162 put_task_struct(tsk);
163 }
164
165
166 void release_task(struct task_struct * p)
167 {
168 struct task_struct *leader;
169 int zap_leader;
170 repeat:
171 tracehook_prepare_release_task(p);
172 /* don't need to get the RCU readlock here - the process is dead and
173 * can't be modifying its own credentials */
174 atomic_dec(&__task_cred(p)->user->processes);
175
176 proc_flush_task(p);
177
178 write_lock_irq(&tasklist_lock);
179 tracehook_finish_release_task(p);
180 __exit_signal(p);
181
182 /*
183 * If we are the last non-leader member of the thread
184 * group, and the leader is zombie, then notify the
185 * group leader's parent process. (if it wants notification.)
186 */
187 zap_leader = 0;
188 leader = p->group_leader;
189 if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
190 BUG_ON(task_detached(leader));
191 do_notify_parent(leader, leader->exit_signal);
192 /*
193 * If we were the last child thread and the leader has
194 * exited already, and the leader's parent ignores SIGCHLD,
195 * then we are the one who should release the leader.
196 *
197 * do_notify_parent() will have marked it self-reaping in
198 * that case.
199 */
200 zap_leader = task_detached(leader);
201
202 /*
203 * This maintains the invariant that release_task()
204 * only runs on a task in EXIT_DEAD, just for sanity.
205 */
206 if (zap_leader)
207 leader->exit_state = EXIT_DEAD;
208 }
209
210 write_unlock_irq(&tasklist_lock);
211 release_thread(p);
212 call_rcu(&p->rcu, delayed_put_task_struct);
213
214 p = leader;
215 if (unlikely(zap_leader))
216 goto repeat;
217 }
218
219 /*
220 * This checks not only the pgrp, but falls back on the pid if no
221 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
222 * without this...
223 *
224 * The caller must hold rcu lock or the tasklist lock.
225 */
226 struct pid *session_of_pgrp(struct pid *pgrp)
227 {
228 struct task_struct *p;
229 struct pid *sid = NULL;
230
231 p = pid_task(pgrp, PIDTYPE_PGID);
232 if (p == NULL)
233 p = pid_task(pgrp, PIDTYPE_PID);
234 if (p != NULL)
235 sid = task_session(p);
236
237 return sid;
238 }
239
240 /*
241 * Determine if a process group is "orphaned", according to the POSIX
242 * definition in 2.2.2.52. Orphaned process groups are not to be affected
243 * by terminal-generated stop signals. Newly orphaned process groups are
244 * to receive a SIGHUP and a SIGCONT.
245 *
246 * "I ask you, have you ever known what it is to be an orphan?"
247 */
248 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
249 {
250 struct task_struct *p;
251
252 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
253 if ((p == ignored_task) ||
254 (p->exit_state && thread_group_empty(p)) ||
255 is_global_init(p->real_parent))
256 continue;
257
258 if (task_pgrp(p->real_parent) != pgrp &&
259 task_session(p->real_parent) == task_session(p))
260 return 0;
261 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
262
263 return 1;
264 }
265
266 int is_current_pgrp_orphaned(void)
267 {
268 int retval;
269
270 read_lock(&tasklist_lock);
271 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
272 read_unlock(&tasklist_lock);
273
274 return retval;
275 }
276
277 static int has_stopped_jobs(struct pid *pgrp)
278 {
279 int retval = 0;
280 struct task_struct *p;
281
282 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
283 if (!task_is_stopped(p))
284 continue;
285 retval = 1;
286 break;
287 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
288 return retval;
289 }
290
291 /*
292 * Check to see if any process groups have become orphaned as
293 * a result of our exiting, and if they have any stopped jobs,
294 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
295 */
296 static void
297 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
298 {
299 struct pid *pgrp = task_pgrp(tsk);
300 struct task_struct *ignored_task = tsk;
301
302 if (!parent)
303 /* exit: our father is in a different pgrp than
304 * we are and we were the only connection outside.
305 */
306 parent = tsk->real_parent;
307 else
308 /* reparent: our child is in a different pgrp than
309 * we are, and it was the only connection outside.
310 */
311 ignored_task = NULL;
312
313 if (task_pgrp(parent) != pgrp &&
314 task_session(parent) == task_session(tsk) &&
315 will_become_orphaned_pgrp(pgrp, ignored_task) &&
316 has_stopped_jobs(pgrp)) {
317 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
318 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
319 }
320 }
321
322 /**
323 * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
324 *
325 * If a kernel thread is launched as a result of a system call, or if
326 * it ever exits, it should generally reparent itself to kthreadd so it
327 * isn't in the way of other processes and is correctly cleaned up on exit.
328 *
329 * The various task state such as scheduling policy and priority may have
330 * been inherited from a user process, so we reset them to sane values here.
331 *
332 * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
333 */
334 static void reparent_to_kthreadd(void)
335 {
336 write_lock_irq(&tasklist_lock);
337
338 ptrace_unlink(current);
339 /* Reparent to init */
340 current->real_parent = current->parent = kthreadd_task;
341 list_move_tail(&current->sibling, &current->real_parent->children);
342
343 /* Set the exit signal to SIGCHLD so we signal init on exit */
344 current->exit_signal = SIGCHLD;
345
346 if (task_nice(current) < 0)
347 set_user_nice(current, 0);
348 /* cpus_allowed? */
349 /* rt_priority? */
350 /* signals? */
351 memcpy(current->signal->rlim, init_task.signal->rlim,
352 sizeof(current->signal->rlim));
353
354 atomic_inc(&init_cred.usage);
355 commit_creds(&init_cred);
356 write_unlock_irq(&tasklist_lock);
357 }
358
359 void __set_special_pids(struct pid *pid)
360 {
361 struct task_struct *curr = current->group_leader;
362
363 if (task_session(curr) != pid)
364 change_pid(curr, PIDTYPE_SID, pid);
365
366 if (task_pgrp(curr) != pid)
367 change_pid(curr, PIDTYPE_PGID, pid);
368 }
369
370 static void set_special_pids(struct pid *pid)
371 {
372 write_lock_irq(&tasklist_lock);
373 __set_special_pids(pid);
374 write_unlock_irq(&tasklist_lock);
375 }
376
377 /*
378 * Let kernel threads use this to say that they allow a certain signal.
379 * Must not be used if kthread was cloned with CLONE_SIGHAND.
380 */
381 int allow_signal(int sig)
382 {
383 if (!valid_signal(sig) || sig < 1)
384 return -EINVAL;
385
386 spin_lock_irq(&current->sighand->siglock);
387 /* This is only needed for daemonize()'ed kthreads */
388 sigdelset(&current->blocked, sig);
389 /*
390 * Kernel threads handle their own signals. Let the signal code
391 * know it'll be handled, so that they don't get converted to
392 * SIGKILL or just silently dropped.
393 */
394 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
395 recalc_sigpending();
396 spin_unlock_irq(&current->sighand->siglock);
397 return 0;
398 }
399
400 EXPORT_SYMBOL(allow_signal);
401
402 int disallow_signal(int sig)
403 {
404 if (!valid_signal(sig) || sig < 1)
405 return -EINVAL;
406
407 spin_lock_irq(&current->sighand->siglock);
408 current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
409 recalc_sigpending();
410 spin_unlock_irq(&current->sighand->siglock);
411 return 0;
412 }
413
414 EXPORT_SYMBOL(disallow_signal);
415
416 /*
417 * Put all the gunge required to become a kernel thread without
418 * attached user resources in one place where it belongs.
419 */
420
421 void daemonize(const char *name, ...)
422 {
423 va_list args;
424 sigset_t blocked;
425
426 va_start(args, name);
427 vsnprintf(current->comm, sizeof(current->comm), name, args);
428 va_end(args);
429
430 /*
431 * If we were started as result of loading a module, close all of the
432 * user space pages. We don't need them, and if we didn't close them
433 * they would be locked into memory.
434 */
435 exit_mm(current);
436 /*
437 * We don't want to have TIF_FREEZE set if the system-wide hibernation
438 * or suspend transition begins right now.
439 */
440 current->flags |= (PF_NOFREEZE | PF_KTHREAD);
441
442 if (current->nsproxy != &init_nsproxy) {
443 get_nsproxy(&init_nsproxy);
444 switch_task_namespaces(current, &init_nsproxy);
445 }
446 set_special_pids(&init_struct_pid);
447 proc_clear_tty(current);
448
449 /* Block and flush all signals */
450 sigfillset(&blocked);
451 sigprocmask(SIG_BLOCK, &blocked, NULL);
452 flush_signals(current);
453
454 /* Become as one with the init task */
455
456 daemonize_fs_struct();
457 exit_files(current);
458 current->files = init_task.files;
459 atomic_inc(&current->files->count);
460
461 reparent_to_kthreadd();
462 }
463
464 EXPORT_SYMBOL(daemonize);
465
466 static void close_files(struct files_struct * files)
467 {
468 int i, j;
469 struct fdtable *fdt;
470
471 j = 0;
472
473 /*
474 * It is safe to dereference the fd table without RCU or
475 * ->file_lock because this is the last reference to the
476 * files structure.
477 */
478 fdt = files_fdtable(files);
479 for (;;) {
480 unsigned long set;
481 i = j * __NFDBITS;
482 if (i >= fdt->max_fds)
483 break;
484 set = fdt->open_fds->fds_bits[j++];
485 while (set) {
486 if (set & 1) {
487 struct file * file = xchg(&fdt->fd[i], NULL);
488 if (file) {
489 filp_close(file, files);
490 cond_resched();
491 }
492 }
493 i++;
494 set >>= 1;
495 }
496 }
497 }
498
499 struct files_struct *get_files_struct(struct task_struct *task)
500 {
501 struct files_struct *files;
502
503 task_lock(task);
504 files = task->files;
505 if (files)
506 atomic_inc(&files->count);
507 task_unlock(task);
508
509 return files;
510 }
511
512 void put_files_struct(struct files_struct *files)
513 {
514 struct fdtable *fdt;
515
516 if (atomic_dec_and_test(&files->count)) {
517 close_files(files);
518 /*
519 * Free the fd and fdset arrays if we expanded them.
520 * If the fdtable was embedded, pass files for freeing
521 * at the end of the RCU grace period. Otherwise,
522 * you can free files immediately.
523 */
524 fdt = files_fdtable(files);
525 if (fdt != &files->fdtab)
526 kmem_cache_free(files_cachep, files);
527 free_fdtable(fdt);
528 }
529 }
530
531 void reset_files_struct(struct files_struct *files)
532 {
533 struct task_struct *tsk = current;
534 struct files_struct *old;
535
536 old = tsk->files;
537 task_lock(tsk);
538 tsk->files = files;
539 task_unlock(tsk);
540 put_files_struct(old);
541 }
542
543 void exit_files(struct task_struct *tsk)
544 {
545 struct files_struct * files = tsk->files;
546
547 if (files) {
548 task_lock(tsk);
549 tsk->files = NULL;
550 task_unlock(tsk);
551 put_files_struct(files);
552 }
553 }
554
555 #ifdef CONFIG_MM_OWNER
556 /*
557 * Task p is exiting and it owned mm, lets find a new owner for it
558 */
559 static inline int
560 mm_need_new_owner(struct mm_struct *mm, struct task_struct *p)
561 {
562 /*
563 * If there are other users of the mm and the owner (us) is exiting
564 * we need to find a new owner to take on the responsibility.
565 */
566 if (atomic_read(&mm->mm_users) <= 1)
567 return 0;
568 if (mm->owner != p)
569 return 0;
570 return 1;
571 }
572
573 void mm_update_next_owner(struct mm_struct *mm)
574 {
575 struct task_struct *c, *g, *p = current;
576
577 retry:
578 if (!mm_need_new_owner(mm, p))
579 return;
580
581 read_lock(&tasklist_lock);
582 /*
583 * Search in the children
584 */
585 list_for_each_entry(c, &p->children, sibling) {
586 if (c->mm == mm)
587 goto assign_new_owner;
588 }
589
590 /*
591 * Search in the siblings
592 */
593 list_for_each_entry(c, &p->real_parent->children, sibling) {
594 if (c->mm == mm)
595 goto assign_new_owner;
596 }
597
598 /*
599 * Search through everything else. We should not get
600 * here often
601 */
602 do_each_thread(g, c) {
603 if (c->mm == mm)
604 goto assign_new_owner;
605 } while_each_thread(g, c);
606
607 read_unlock(&tasklist_lock);
608 /*
609 * We found no owner yet mm_users > 1: this implies that we are
610 * most likely racing with swapoff (try_to_unuse()) or /proc or
611 * ptrace or page migration (get_task_mm()). Mark owner as NULL.
612 */
613 mm->owner = NULL;
614 return;
615
616 assign_new_owner:
617 BUG_ON(c == p);
618 get_task_struct(c);
619 /*
620 * The task_lock protects c->mm from changing.
621 * We always want mm->owner->mm == mm
622 */
623 task_lock(c);
624 /*
625 * Delay read_unlock() till we have the task_lock()
626 * to ensure that c does not slip away underneath us
627 */
628 read_unlock(&tasklist_lock);
629 if (c->mm != mm) {
630 task_unlock(c);
631 put_task_struct(c);
632 goto retry;
633 }
634 mm->owner = c;
635 task_unlock(c);
636 put_task_struct(c);
637 }
638 #endif /* CONFIG_MM_OWNER */
639
640 /*
641 * Turn us into a lazy TLB process if we
642 * aren't already..
643 */
644 static void exit_mm(struct task_struct * tsk)
645 {
646 struct mm_struct *mm = tsk->mm;
647 struct core_state *core_state;
648
649 mm_release(tsk, mm);
650 if (!mm)
651 return;
652 /*
653 * Serialize with any possible pending coredump.
654 * We must hold mmap_sem around checking core_state
655 * and clearing tsk->mm. The core-inducing thread
656 * will increment ->nr_threads for each thread in the
657 * group with ->mm != NULL.
658 */
659 down_read(&mm->mmap_sem);
660 core_state = mm->core_state;
661 if (core_state) {
662 struct core_thread self;
663 up_read(&mm->mmap_sem);
664
665 self.task = tsk;
666 self.next = xchg(&core_state->dumper.next, &self);
667 /*
668 * Implies mb(), the result of xchg() must be visible
669 * to core_state->dumper.
670 */
671 if (atomic_dec_and_test(&core_state->nr_threads))
672 complete(&core_state->startup);
673
674 for (;;) {
675 set_task_state(tsk, TASK_UNINTERRUPTIBLE);
676 if (!self.task) /* see coredump_finish() */
677 break;
678 schedule();
679 }
680 __set_task_state(tsk, TASK_RUNNING);
681 down_read(&mm->mmap_sem);
682 }
683 atomic_inc(&mm->mm_count);
684 BUG_ON(mm != tsk->active_mm);
685 /* more a memory barrier than a real lock */
686 task_lock(tsk);
687 tsk->mm = NULL;
688 up_read(&mm->mmap_sem);
689 enter_lazy_tlb(mm, current);
690 /* We don't want this task to be frozen prematurely */
691 clear_freeze_flag(tsk);
692 task_unlock(tsk);
693 mm_update_next_owner(mm);
694 mmput(mm);
695 }
696
697 /*
698 * When we die, we re-parent all our children.
699 * Try to give them to another thread in our thread
700 * group, and if no such member exists, give it to
701 * the child reaper process (ie "init") in our pid
702 * space.
703 */
704 static struct task_struct *find_new_reaper(struct task_struct *father)
705 {
706 struct pid_namespace *pid_ns = task_active_pid_ns(father);
707 struct task_struct *thread;
708
709 thread = father;
710 while_each_thread(father, thread) {
711 if (thread->flags & PF_EXITING)
712 continue;
713 if (unlikely(pid_ns->child_reaper == father))
714 pid_ns->child_reaper = thread;
715 return thread;
716 }
717
718 if (unlikely(pid_ns->child_reaper == father)) {
719 write_unlock_irq(&tasklist_lock);
720 if (unlikely(pid_ns == &init_pid_ns))
721 panic("Attempted to kill init!");
722
723 zap_pid_ns_processes(pid_ns);
724 write_lock_irq(&tasklist_lock);
725 /*
726 * We can not clear ->child_reaper or leave it alone.
727 * There may by stealth EXIT_DEAD tasks on ->children,
728 * forget_original_parent() must move them somewhere.
729 */
730 pid_ns->child_reaper = init_pid_ns.child_reaper;
731 }
732
733 return pid_ns->child_reaper;
734 }
735
736 /*
737 * Any that need to be release_task'd are put on the @dead list.
738 */
739 static void reparent_leader(struct task_struct *father, struct task_struct *p,
740 struct list_head *dead)
741 {
742 list_move_tail(&p->sibling, &p->real_parent->children);
743
744 if (task_detached(p))
745 return;
746 /*
747 * If this is a threaded reparent there is no need to
748 * notify anyone anything has happened.
749 */
750 if (same_thread_group(p->real_parent, father))
751 return;
752
753 /* We don't want people slaying init. */
754 p->exit_signal = SIGCHLD;
755
756 /* If it has exited notify the new parent about this child's death. */
757 if (!task_ptrace(p) &&
758 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
759 do_notify_parent(p, p->exit_signal);
760 if (task_detached(p)) {
761 p->exit_state = EXIT_DEAD;
762 list_move_tail(&p->sibling, dead);
763 }
764 }
765
766 kill_orphaned_pgrp(p, father);
767 }
768
769 static void forget_original_parent(struct task_struct *father)
770 {
771 struct task_struct *p, *n, *reaper;
772 LIST_HEAD(dead_children);
773
774 exit_ptrace(father);
775
776 write_lock_irq(&tasklist_lock);
777 reaper = find_new_reaper(father);
778
779 list_for_each_entry_safe(p, n, &father->children, sibling) {
780 struct task_struct *t = p;
781 do {
782 t->real_parent = reaper;
783 if (t->parent == father) {
784 BUG_ON(task_ptrace(t));
785 t->parent = t->real_parent;
786 }
787 if (t->pdeath_signal)
788 group_send_sig_info(t->pdeath_signal,
789 SEND_SIG_NOINFO, t);
790 } while_each_thread(p, t);
791 reparent_leader(father, p, &dead_children);
792 }
793 write_unlock_irq(&tasklist_lock);
794
795 BUG_ON(!list_empty(&father->children));
796
797 list_for_each_entry_safe(p, n, &dead_children, sibling) {
798 list_del_init(&p->sibling);
799 release_task(p);
800 }
801 }
802
803 /*
804 * Send signals to all our closest relatives so that they know
805 * to properly mourn us..
806 */
807 static void exit_notify(struct task_struct *tsk, int group_dead)
808 {
809 int signal;
810 void *cookie;
811
812 /*
813 * This does two things:
814 *
815 * A. Make init inherit all the child processes
816 * B. Check to see if any process groups have become orphaned
817 * as a result of our exiting, and if they have any stopped
818 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
819 */
820 forget_original_parent(tsk);
821 exit_task_namespaces(tsk);
822
823 write_lock_irq(&tasklist_lock);
824 if (group_dead)
825 kill_orphaned_pgrp(tsk->group_leader, NULL);
826
827 /* Let father know we died
828 *
829 * Thread signals are configurable, but you aren't going to use
830 * that to send signals to arbitary processes.
831 * That stops right now.
832 *
833 * If the parent exec id doesn't match the exec id we saved
834 * when we started then we know the parent has changed security
835 * domain.
836 *
837 * If our self_exec id doesn't match our parent_exec_id then
838 * we have changed execution domain as these two values started
839 * the same after a fork.
840 */
841 if (tsk->exit_signal != SIGCHLD && !task_detached(tsk) &&
842 (tsk->parent_exec_id != tsk->real_parent->self_exec_id ||
843 tsk->self_exec_id != tsk->parent_exec_id))
844 tsk->exit_signal = SIGCHLD;
845
846 signal = tracehook_notify_death(tsk, &cookie, group_dead);
847 if (signal >= 0)
848 signal = do_notify_parent(tsk, signal);
849
850 tsk->exit_state = signal == DEATH_REAP ? EXIT_DEAD : EXIT_ZOMBIE;
851
852 /* mt-exec, de_thread() is waiting for us */
853 if (thread_group_leader(tsk) &&
854 tsk->signal->group_exit_task &&
855 tsk->signal->notify_count < 0)
856 wake_up_process(tsk->signal->group_exit_task);
857
858 write_unlock_irq(&tasklist_lock);
859
860 tracehook_report_death(tsk, signal, cookie, group_dead);
861
862 /* If the process is dead, release it - nobody will wait for it */
863 if (signal == DEATH_REAP)
864 release_task(tsk);
865 }
866
867 #ifdef CONFIG_DEBUG_STACK_USAGE
868 static void check_stack_usage(void)
869 {
870 static DEFINE_SPINLOCK(low_water_lock);
871 static int lowest_to_date = THREAD_SIZE;
872 unsigned long free;
873
874 free = stack_not_used(current);
875
876 if (free >= lowest_to_date)
877 return;
878
879 spin_lock(&low_water_lock);
880 if (free < lowest_to_date) {
881 printk(KERN_WARNING "%s used greatest stack depth: %lu bytes "
882 "left\n",
883 current->comm, free);
884 lowest_to_date = free;
885 }
886 spin_unlock(&low_water_lock);
887 }
888 #else
889 static inline void check_stack_usage(void) {}
890 #endif
891
892 NORET_TYPE void do_exit(long code)
893 {
894 struct task_struct *tsk = current;
895 int group_dead;
896
897 profile_task_exit(tsk);
898
899 WARN_ON(atomic_read(&tsk->fs_excl));
900
901 if (unlikely(in_interrupt()))
902 panic("Aiee, killing interrupt handler!");
903 if (unlikely(!tsk->pid))
904 panic("Attempted to kill the idle task!");
905
906 tracehook_report_exit(&code);
907
908 validate_creds_for_do_exit(tsk);
909
910 /*
911 * We're taking recursive faults here in do_exit. Safest is to just
912 * leave this task alone and wait for reboot.
913 */
914 if (unlikely(tsk->flags & PF_EXITING)) {
915 printk(KERN_ALERT
916 "Fixing recursive fault but reboot is needed!\n");
917 /*
918 * We can do this unlocked here. The futex code uses
919 * this flag just to verify whether the pi state
920 * cleanup has been done or not. In the worst case it
921 * loops once more. We pretend that the cleanup was
922 * done as there is no way to return. Either the
923 * OWNER_DIED bit is set by now or we push the blocked
924 * task into the wait for ever nirwana as well.
925 */
926 tsk->flags |= PF_EXITPIDONE;
927 set_current_state(TASK_UNINTERRUPTIBLE);
928 schedule();
929 }
930
931 exit_irq_thread();
932
933 exit_signals(tsk); /* sets PF_EXITING */
934 /*
935 * tsk->flags are checked in the futex code to protect against
936 * an exiting task cleaning up the robust pi futexes.
937 */
938 smp_mb();
939 raw_spin_unlock_wait(&tsk->pi_lock);
940
941 if (unlikely(in_atomic()))
942 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
943 current->comm, task_pid_nr(current),
944 preempt_count());
945
946 acct_update_integrals(tsk);
947
948 group_dead = atomic_dec_and_test(&tsk->signal->live);
949 if (group_dead) {
950 hrtimer_cancel(&tsk->signal->real_timer);
951 exit_itimers(tsk->signal);
952 if (tsk->mm)
953 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
954 }
955 acct_collect(code, group_dead);
956 if (group_dead)
957 tty_audit_exit();
958 if (unlikely(tsk->audit_context))
959 audit_free(tsk);
960
961 tsk->exit_code = code;
962 taskstats_exit(tsk, group_dead);
963
964 exit_mm(tsk);
965
966 if (group_dead)
967 acct_process();
968 trace_sched_process_exit(tsk);
969
970 exit_sem(tsk);
971 exit_files(tsk);
972 exit_fs(tsk);
973 check_stack_usage();
974 exit_thread();
975 cgroup_exit(tsk, 1);
976
977 if (group_dead)
978 disassociate_ctty(1);
979
980 module_put(task_thread_info(tsk)->exec_domain->module);
981
982 proc_exit_connector(tsk);
983
984 /*
985 * FIXME: do that only when needed, using sched_exit tracepoint
986 */
987 flush_ptrace_hw_breakpoint(tsk);
988 /*
989 * Flush inherited counters to the parent - before the parent
990 * gets woken up by child-exit notifications.
991 */
992 perf_event_exit_task(tsk);
993
994 exit_notify(tsk, group_dead);
995 #ifdef CONFIG_NUMA
996 mpol_put(tsk->mempolicy);
997 tsk->mempolicy = NULL;
998 #endif
999 #ifdef CONFIG_FUTEX
1000 if (unlikely(current->pi_state_cache))
1001 kfree(current->pi_state_cache);
1002 #endif
1003 /*
1004 * Make sure we are holding no locks:
1005 */
1006 debug_check_no_locks_held(tsk);
1007 /*
1008 * We can do this unlocked here. The futex code uses this flag
1009 * just to verify whether the pi state cleanup has been done
1010 * or not. In the worst case it loops once more.
1011 */
1012 tsk->flags |= PF_EXITPIDONE;
1013
1014 if (tsk->io_context)
1015 exit_io_context(tsk);
1016
1017 if (tsk->splice_pipe)
1018 __free_pipe_info(tsk->splice_pipe);
1019
1020 validate_creds_for_do_exit(tsk);
1021
1022 preempt_disable();
1023 exit_rcu();
1024 /* causes final put_task_struct in finish_task_switch(). */
1025 tsk->state = TASK_DEAD;
1026 schedule();
1027 BUG();
1028 /* Avoid "noreturn function does return". */
1029 for (;;)
1030 cpu_relax(); /* For when BUG is null */
1031 }
1032
1033 EXPORT_SYMBOL_GPL(do_exit);
1034
1035 NORET_TYPE void complete_and_exit(struct completion *comp, long code)
1036 {
1037 if (comp)
1038 complete(comp);
1039
1040 do_exit(code);
1041 }
1042
1043 EXPORT_SYMBOL(complete_and_exit);
1044
1045 SYSCALL_DEFINE1(exit, int, error_code)
1046 {
1047 do_exit((error_code&0xff)<<8);
1048 }
1049
1050 /*
1051 * Take down every thread in the group. This is called by fatal signals
1052 * as well as by sys_exit_group (below).
1053 */
1054 NORET_TYPE void
1055 do_group_exit(int exit_code)
1056 {
1057 struct signal_struct *sig = current->signal;
1058
1059 BUG_ON(exit_code & 0x80); /* core dumps don't get here */
1060
1061 if (signal_group_exit(sig))
1062 exit_code = sig->group_exit_code;
1063 else if (!thread_group_empty(current)) {
1064 struct sighand_struct *const sighand = current->sighand;
1065 spin_lock_irq(&sighand->siglock);
1066 if (signal_group_exit(sig))
1067 /* Another thread got here before we took the lock. */
1068 exit_code = sig->group_exit_code;
1069 else {
1070 sig->group_exit_code = exit_code;
1071 sig->flags = SIGNAL_GROUP_EXIT;
1072 zap_other_threads(current);
1073 }
1074 spin_unlock_irq(&sighand->siglock);
1075 }
1076
1077 do_exit(exit_code);
1078 /* NOTREACHED */
1079 }
1080
1081 /*
1082 * this kills every thread in the thread group. Note that any externally
1083 * wait4()-ing process will get the correct exit code - even if this
1084 * thread is not the thread group leader.
1085 */
1086 SYSCALL_DEFINE1(exit_group, int, error_code)
1087 {
1088 do_group_exit((error_code & 0xff) << 8);
1089 /* NOTREACHED */
1090 return 0;
1091 }
1092
1093 struct wait_opts {
1094 enum pid_type wo_type;
1095 int wo_flags;
1096 struct pid *wo_pid;
1097
1098 struct siginfo __user *wo_info;
1099 int __user *wo_stat;
1100 struct rusage __user *wo_rusage;
1101
1102 wait_queue_t child_wait;
1103 int notask_error;
1104 };
1105
1106 static inline
1107 struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
1108 {
1109 if (type != PIDTYPE_PID)
1110 task = task->group_leader;
1111 return task->pids[type].pid;
1112 }
1113
1114 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
1115 {
1116 return wo->wo_type == PIDTYPE_MAX ||
1117 task_pid_type(p, wo->wo_type) == wo->wo_pid;
1118 }
1119
1120 static int eligible_child(struct wait_opts *wo, struct task_struct *p)
1121 {
1122 if (!eligible_pid(wo, p))
1123 return 0;
1124 /* Wait for all children (clone and not) if __WALL is set;
1125 * otherwise, wait for clone children *only* if __WCLONE is
1126 * set; otherwise, wait for non-clone children *only*. (Note:
1127 * A "clone" child here is one that reports to its parent
1128 * using a signal other than SIGCHLD.) */
1129 if (((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1130 && !(wo->wo_flags & __WALL))
1131 return 0;
1132
1133 return 1;
1134 }
1135
1136 static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p,
1137 pid_t pid, uid_t uid, int why, int status)
1138 {
1139 struct siginfo __user *infop;
1140 int retval = wo->wo_rusage
1141 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1142
1143 put_task_struct(p);
1144 infop = wo->wo_info;
1145 if (infop) {
1146 if (!retval)
1147 retval = put_user(SIGCHLD, &infop->si_signo);
1148 if (!retval)
1149 retval = put_user(0, &infop->si_errno);
1150 if (!retval)
1151 retval = put_user((short)why, &infop->si_code);
1152 if (!retval)
1153 retval = put_user(pid, &infop->si_pid);
1154 if (!retval)
1155 retval = put_user(uid, &infop->si_uid);
1156 if (!retval)
1157 retval = put_user(status, &infop->si_status);
1158 }
1159 if (!retval)
1160 retval = pid;
1161 return retval;
1162 }
1163
1164 /*
1165 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1166 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1167 * the lock and this task is uninteresting. If we return nonzero, we have
1168 * released the lock and the system call should return.
1169 */
1170 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1171 {
1172 unsigned long state;
1173 int retval, status, traced;
1174 pid_t pid = task_pid_vnr(p);
1175 uid_t uid = __task_cred(p)->uid;
1176 struct siginfo __user *infop;
1177
1178 if (!likely(wo->wo_flags & WEXITED))
1179 return 0;
1180
1181 if (unlikely(wo->wo_flags & WNOWAIT)) {
1182 int exit_code = p->exit_code;
1183 int why, status;
1184
1185 get_task_struct(p);
1186 read_unlock(&tasklist_lock);
1187 if ((exit_code & 0x7f) == 0) {
1188 why = CLD_EXITED;
1189 status = exit_code >> 8;
1190 } else {
1191 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1192 status = exit_code & 0x7f;
1193 }
1194 return wait_noreap_copyout(wo, p, pid, uid, why, status);
1195 }
1196
1197 /*
1198 * Try to move the task's state to DEAD
1199 * only one thread is allowed to do this:
1200 */
1201 state = xchg(&p->exit_state, EXIT_DEAD);
1202 if (state != EXIT_ZOMBIE) {
1203 BUG_ON(state != EXIT_DEAD);
1204 return 0;
1205 }
1206
1207 traced = ptrace_reparented(p);
1208 /*
1209 * It can be ptraced but not reparented, check
1210 * !task_detached() to filter out sub-threads.
1211 */
1212 if (likely(!traced) && likely(!task_detached(p))) {
1213 struct signal_struct *psig;
1214 struct signal_struct *sig;
1215 unsigned long maxrss;
1216 cputime_t tgutime, tgstime;
1217
1218 /*
1219 * The resource counters for the group leader are in its
1220 * own task_struct. Those for dead threads in the group
1221 * are in its signal_struct, as are those for the child
1222 * processes it has previously reaped. All these
1223 * accumulate in the parent's signal_struct c* fields.
1224 *
1225 * We don't bother to take a lock here to protect these
1226 * p->signal fields, because they are only touched by
1227 * __exit_signal, which runs with tasklist_lock
1228 * write-locked anyway, and so is excluded here. We do
1229 * need to protect the access to parent->signal fields,
1230 * as other threads in the parent group can be right
1231 * here reaping other children at the same time.
1232 *
1233 * We use thread_group_times() to get times for the thread
1234 * group, which consolidates times for all threads in the
1235 * group including the group leader.
1236 */
1237 thread_group_times(p, &tgutime, &tgstime);
1238 spin_lock_irq(&p->real_parent->sighand->siglock);
1239 psig = p->real_parent->signal;
1240 sig = p->signal;
1241 psig->cutime =
1242 cputime_add(psig->cutime,
1243 cputime_add(tgutime,
1244 sig->cutime));
1245 psig->cstime =
1246 cputime_add(psig->cstime,
1247 cputime_add(tgstime,
1248 sig->cstime));
1249 psig->cgtime =
1250 cputime_add(psig->cgtime,
1251 cputime_add(p->gtime,
1252 cputime_add(sig->gtime,
1253 sig->cgtime)));
1254 psig->cmin_flt +=
1255 p->min_flt + sig->min_flt + sig->cmin_flt;
1256 psig->cmaj_flt +=
1257 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1258 psig->cnvcsw +=
1259 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1260 psig->cnivcsw +=
1261 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1262 psig->cinblock +=
1263 task_io_get_inblock(p) +
1264 sig->inblock + sig->cinblock;
1265 psig->coublock +=
1266 task_io_get_oublock(p) +
1267 sig->oublock + sig->coublock;
1268 maxrss = max(sig->maxrss, sig->cmaxrss);
1269 if (psig->cmaxrss < maxrss)
1270 psig->cmaxrss = maxrss;
1271 task_io_accounting_add(&psig->ioac, &p->ioac);
1272 task_io_accounting_add(&psig->ioac, &sig->ioac);
1273 spin_unlock_irq(&p->real_parent->sighand->siglock);
1274 }
1275
1276 /*
1277 * Now we are sure this task is interesting, and no other
1278 * thread can reap it because we set its state to EXIT_DEAD.
1279 */
1280 read_unlock(&tasklist_lock);
1281
1282 retval = wo->wo_rusage
1283 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1284 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1285 ? p->signal->group_exit_code : p->exit_code;
1286 if (!retval && wo->wo_stat)
1287 retval = put_user(status, wo->wo_stat);
1288
1289 infop = wo->wo_info;
1290 if (!retval && infop)
1291 retval = put_user(SIGCHLD, &infop->si_signo);
1292 if (!retval && infop)
1293 retval = put_user(0, &infop->si_errno);
1294 if (!retval && infop) {
1295 int why;
1296
1297 if ((status & 0x7f) == 0) {
1298 why = CLD_EXITED;
1299 status >>= 8;
1300 } else {
1301 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1302 status &= 0x7f;
1303 }
1304 retval = put_user((short)why, &infop->si_code);
1305 if (!retval)
1306 retval = put_user(status, &infop->si_status);
1307 }
1308 if (!retval && infop)
1309 retval = put_user(pid, &infop->si_pid);
1310 if (!retval && infop)
1311 retval = put_user(uid, &infop->si_uid);
1312 if (!retval)
1313 retval = pid;
1314
1315 if (traced) {
1316 write_lock_irq(&tasklist_lock);
1317 /* We dropped tasklist, ptracer could die and untrace */
1318 ptrace_unlink(p);
1319 /*
1320 * If this is not a detached task, notify the parent.
1321 * If it's still not detached after that, don't release
1322 * it now.
1323 */
1324 if (!task_detached(p)) {
1325 do_notify_parent(p, p->exit_signal);
1326 if (!task_detached(p)) {
1327 p->exit_state = EXIT_ZOMBIE;
1328 p = NULL;
1329 }
1330 }
1331 write_unlock_irq(&tasklist_lock);
1332 }
1333 if (p != NULL)
1334 release_task(p);
1335
1336 return retval;
1337 }
1338
1339 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1340 {
1341 if (ptrace) {
1342 if (task_is_stopped_or_traced(p))
1343 return &p->exit_code;
1344 } else {
1345 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1346 return &p->signal->group_exit_code;
1347 }
1348 return NULL;
1349 }
1350
1351 /*
1352 * Handle sys_wait4 work for one task in state TASK_STOPPED. We hold
1353 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1354 * the lock and this task is uninteresting. If we return nonzero, we have
1355 * released the lock and the system call should return.
1356 */
1357 static int wait_task_stopped(struct wait_opts *wo,
1358 int ptrace, struct task_struct *p)
1359 {
1360 struct siginfo __user *infop;
1361 int retval, exit_code, *p_code, why;
1362 uid_t uid = 0; /* unneeded, required by compiler */
1363 pid_t pid;
1364
1365 /*
1366 * Traditionally we see ptrace'd stopped tasks regardless of options.
1367 */
1368 if (!ptrace && !(wo->wo_flags & WUNTRACED))
1369 return 0;
1370
1371 exit_code = 0;
1372 spin_lock_irq(&p->sighand->siglock);
1373
1374 p_code = task_stopped_code(p, ptrace);
1375 if (unlikely(!p_code))
1376 goto unlock_sig;
1377
1378 exit_code = *p_code;
1379 if (!exit_code)
1380 goto unlock_sig;
1381
1382 if (!unlikely(wo->wo_flags & WNOWAIT))
1383 *p_code = 0;
1384
1385 /* don't need the RCU readlock here as we're holding a spinlock */
1386 uid = __task_cred(p)->uid;
1387 unlock_sig:
1388 spin_unlock_irq(&p->sighand->siglock);
1389 if (!exit_code)
1390 return 0;
1391
1392 /*
1393 * Now we are pretty sure this task is interesting.
1394 * Make sure it doesn't get reaped out from under us while we
1395 * give up the lock and then examine it below. We don't want to
1396 * keep holding onto the tasklist_lock while we call getrusage and
1397 * possibly take page faults for user memory.
1398 */
1399 get_task_struct(p);
1400 pid = task_pid_vnr(p);
1401 why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1402 read_unlock(&tasklist_lock);
1403
1404 if (unlikely(wo->wo_flags & WNOWAIT))
1405 return wait_noreap_copyout(wo, p, pid, uid, why, exit_code);
1406
1407 retval = wo->wo_rusage
1408 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1409 if (!retval && wo->wo_stat)
1410 retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat);
1411
1412 infop = wo->wo_info;
1413 if (!retval && infop)
1414 retval = put_user(SIGCHLD, &infop->si_signo);
1415 if (!retval && infop)
1416 retval = put_user(0, &infop->si_errno);
1417 if (!retval && infop)
1418 retval = put_user((short)why, &infop->si_code);
1419 if (!retval && infop)
1420 retval = put_user(exit_code, &infop->si_status);
1421 if (!retval && infop)
1422 retval = put_user(pid, &infop->si_pid);
1423 if (!retval && infop)
1424 retval = put_user(uid, &infop->si_uid);
1425 if (!retval)
1426 retval = pid;
1427 put_task_struct(p);
1428
1429 BUG_ON(!retval);
1430 return retval;
1431 }
1432
1433 /*
1434 * Handle do_wait work for one task in a live, non-stopped state.
1435 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1436 * the lock and this task is uninteresting. If we return nonzero, we have
1437 * released the lock and the system call should return.
1438 */
1439 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1440 {
1441 int retval;
1442 pid_t pid;
1443 uid_t uid;
1444
1445 if (!unlikely(wo->wo_flags & WCONTINUED))
1446 return 0;
1447
1448 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1449 return 0;
1450
1451 spin_lock_irq(&p->sighand->siglock);
1452 /* Re-check with the lock held. */
1453 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1454 spin_unlock_irq(&p->sighand->siglock);
1455 return 0;
1456 }
1457 if (!unlikely(wo->wo_flags & WNOWAIT))
1458 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1459 uid = __task_cred(p)->uid;
1460 spin_unlock_irq(&p->sighand->siglock);
1461
1462 pid = task_pid_vnr(p);
1463 get_task_struct(p);
1464 read_unlock(&tasklist_lock);
1465
1466 if (!wo->wo_info) {
1467 retval = wo->wo_rusage
1468 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1469 put_task_struct(p);
1470 if (!retval && wo->wo_stat)
1471 retval = put_user(0xffff, wo->wo_stat);
1472 if (!retval)
1473 retval = pid;
1474 } else {
1475 retval = wait_noreap_copyout(wo, p, pid, uid,
1476 CLD_CONTINUED, SIGCONT);
1477 BUG_ON(retval == 0);
1478 }
1479
1480 return retval;
1481 }
1482
1483 /*
1484 * Consider @p for a wait by @parent.
1485 *
1486 * -ECHILD should be in ->notask_error before the first call.
1487 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1488 * Returns zero if the search for a child should continue;
1489 * then ->notask_error is 0 if @p is an eligible child,
1490 * or another error from security_task_wait(), or still -ECHILD.
1491 */
1492 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1493 struct task_struct *p)
1494 {
1495 int ret = eligible_child(wo, p);
1496 if (!ret)
1497 return ret;
1498
1499 ret = security_task_wait(p);
1500 if (unlikely(ret < 0)) {
1501 /*
1502 * If we have not yet seen any eligible child,
1503 * then let this error code replace -ECHILD.
1504 * A permission error will give the user a clue
1505 * to look for security policy problems, rather
1506 * than for mysterious wait bugs.
1507 */
1508 if (wo->notask_error)
1509 wo->notask_error = ret;
1510 return 0;
1511 }
1512
1513 if (likely(!ptrace) && unlikely(task_ptrace(p))) {
1514 /*
1515 * This child is hidden by ptrace.
1516 * We aren't allowed to see it now, but eventually we will.
1517 */
1518 wo->notask_error = 0;
1519 return 0;
1520 }
1521
1522 if (p->exit_state == EXIT_DEAD)
1523 return 0;
1524
1525 /*
1526 * We don't reap group leaders with subthreads.
1527 */
1528 if (p->exit_state == EXIT_ZOMBIE && !delay_group_leader(p))
1529 return wait_task_zombie(wo, p);
1530
1531 /*
1532 * It's stopped or running now, so it might
1533 * later continue, exit, or stop again.
1534 */
1535 wo->notask_error = 0;
1536
1537 if (task_stopped_code(p, ptrace))
1538 return wait_task_stopped(wo, ptrace, p);
1539
1540 return wait_task_continued(wo, p);
1541 }
1542
1543 /*
1544 * Do the work of do_wait() for one thread in the group, @tsk.
1545 *
1546 * -ECHILD should be in ->notask_error before the first call.
1547 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1548 * Returns zero if the search for a child should continue; then
1549 * ->notask_error is 0 if there were any eligible children,
1550 * or another error from security_task_wait(), or still -ECHILD.
1551 */
1552 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1553 {
1554 struct task_struct *p;
1555
1556 list_for_each_entry(p, &tsk->children, sibling) {
1557 int ret = wait_consider_task(wo, 0, p);
1558 if (ret)
1559 return ret;
1560 }
1561
1562 return 0;
1563 }
1564
1565 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1566 {
1567 struct task_struct *p;
1568
1569 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1570 int ret = wait_consider_task(wo, 1, p);
1571 if (ret)
1572 return ret;
1573 }
1574
1575 return 0;
1576 }
1577
1578 static int child_wait_callback(wait_queue_t *wait, unsigned mode,
1579 int sync, void *key)
1580 {
1581 struct wait_opts *wo = container_of(wait, struct wait_opts,
1582 child_wait);
1583 struct task_struct *p = key;
1584
1585 if (!eligible_pid(wo, p))
1586 return 0;
1587
1588 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1589 return 0;
1590
1591 return default_wake_function(wait, mode, sync, key);
1592 }
1593
1594 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1595 {
1596 __wake_up_sync_key(&parent->signal->wait_chldexit,
1597 TASK_INTERRUPTIBLE, 1, p);
1598 }
1599
1600 static long do_wait(struct wait_opts *wo)
1601 {
1602 struct task_struct *tsk;
1603 int retval;
1604
1605 trace_sched_process_wait(wo->wo_pid);
1606
1607 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1608 wo->child_wait.private = current;
1609 add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1610 repeat:
1611 /*
1612 * If there is nothing that can match our critiera just get out.
1613 * We will clear ->notask_error to zero if we see any child that
1614 * might later match our criteria, even if we are not able to reap
1615 * it yet.
1616 */
1617 wo->notask_error = -ECHILD;
1618 if ((wo->wo_type < PIDTYPE_MAX) &&
1619 (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
1620 goto notask;
1621
1622 set_current_state(TASK_INTERRUPTIBLE);
1623 read_lock(&tasklist_lock);
1624 tsk = current;
1625 do {
1626 retval = do_wait_thread(wo, tsk);
1627 if (retval)
1628 goto end;
1629
1630 retval = ptrace_do_wait(wo, tsk);
1631 if (retval)
1632 goto end;
1633
1634 if (wo->wo_flags & __WNOTHREAD)
1635 break;
1636 } while_each_thread(current, tsk);
1637 read_unlock(&tasklist_lock);
1638
1639 notask:
1640 retval = wo->notask_error;
1641 if (!retval && !(wo->wo_flags & WNOHANG)) {
1642 retval = -ERESTARTSYS;
1643 if (!signal_pending(current)) {
1644 schedule();
1645 goto repeat;
1646 }
1647 }
1648 end:
1649 __set_current_state(TASK_RUNNING);
1650 remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1651 return retval;
1652 }
1653
1654 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1655 infop, int, options, struct rusage __user *, ru)
1656 {
1657 struct wait_opts wo;
1658 struct pid *pid = NULL;
1659 enum pid_type type;
1660 long ret;
1661
1662 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1663 return -EINVAL;
1664 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1665 return -EINVAL;
1666
1667 switch (which) {
1668 case P_ALL:
1669 type = PIDTYPE_MAX;
1670 break;
1671 case P_PID:
1672 type = PIDTYPE_PID;
1673 if (upid <= 0)
1674 return -EINVAL;
1675 break;
1676 case P_PGID:
1677 type = PIDTYPE_PGID;
1678 if (upid <= 0)
1679 return -EINVAL;
1680 break;
1681 default:
1682 return -EINVAL;
1683 }
1684
1685 if (type < PIDTYPE_MAX)
1686 pid = find_get_pid(upid);
1687
1688 wo.wo_type = type;
1689 wo.wo_pid = pid;
1690 wo.wo_flags = options;
1691 wo.wo_info = infop;
1692 wo.wo_stat = NULL;
1693 wo.wo_rusage = ru;
1694 ret = do_wait(&wo);
1695
1696 if (ret > 0) {
1697 ret = 0;
1698 } else if (infop) {
1699 /*
1700 * For a WNOHANG return, clear out all the fields
1701 * we would set so the user can easily tell the
1702 * difference.
1703 */
1704 if (!ret)
1705 ret = put_user(0, &infop->si_signo);
1706 if (!ret)
1707 ret = put_user(0, &infop->si_errno);
1708 if (!ret)
1709 ret = put_user(0, &infop->si_code);
1710 if (!ret)
1711 ret = put_user(0, &infop->si_pid);
1712 if (!ret)
1713 ret = put_user(0, &infop->si_uid);
1714 if (!ret)
1715 ret = put_user(0, &infop->si_status);
1716 }
1717
1718 put_pid(pid);
1719
1720 /* avoid REGPARM breakage on x86: */
1721 asmlinkage_protect(5, ret, which, upid, infop, options, ru);
1722 return ret;
1723 }
1724
1725 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1726 int, options, struct rusage __user *, ru)
1727 {
1728 struct wait_opts wo;
1729 struct pid *pid = NULL;
1730 enum pid_type type;
1731 long ret;
1732
1733 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1734 __WNOTHREAD|__WCLONE|__WALL))
1735 return -EINVAL;
1736
1737 if (upid == -1)
1738 type = PIDTYPE_MAX;
1739 else if (upid < 0) {
1740 type = PIDTYPE_PGID;
1741 pid = find_get_pid(-upid);
1742 } else if (upid == 0) {
1743 type = PIDTYPE_PGID;
1744 pid = get_task_pid(current, PIDTYPE_PGID);
1745 } else /* upid > 0 */ {
1746 type = PIDTYPE_PID;
1747 pid = find_get_pid(upid);
1748 }
1749
1750 wo.wo_type = type;
1751 wo.wo_pid = pid;
1752 wo.wo_flags = options | WEXITED;
1753 wo.wo_info = NULL;
1754 wo.wo_stat = stat_addr;
1755 wo.wo_rusage = ru;
1756 ret = do_wait(&wo);
1757 put_pid(pid);
1758
1759 /* avoid REGPARM breakage on x86: */
1760 asmlinkage_protect(4, ret, upid, stat_addr, options, ru);
1761 return ret;
1762 }
1763
1764 #ifdef __ARCH_WANT_SYS_WAITPID
1765
1766 /*
1767 * sys_waitpid() remains for compatibility. waitpid() should be
1768 * implemented by calling sys_wait4() from libc.a.
1769 */
1770 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1771 {
1772 return sys_wait4(pid, stat_addr, options, NULL);
1773 }
1774
1775 #endif