]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/exit.c
sched/headers: Prepare for new header dependencies before moving code to <linux/sched...
[mirror_ubuntu-bionic-kernel.git] / kernel / exit.c
1 /*
2 * linux/kernel/exit.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/sched/autogroup.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/stat.h>
12 #include <linux/interrupt.h>
13 #include <linux/module.h>
14 #include <linux/capability.h>
15 #include <linux/completion.h>
16 #include <linux/personality.h>
17 #include <linux/tty.h>
18 #include <linux/iocontext.h>
19 #include <linux/key.h>
20 #include <linux/cpu.h>
21 #include <linux/acct.h>
22 #include <linux/tsacct_kern.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/freezer.h>
26 #include <linux/binfmts.h>
27 #include <linux/nsproxy.h>
28 #include <linux/pid_namespace.h>
29 #include <linux/ptrace.h>
30 #include <linux/profile.h>
31 #include <linux/mount.h>
32 #include <linux/proc_fs.h>
33 #include <linux/kthread.h>
34 #include <linux/mempolicy.h>
35 #include <linux/taskstats_kern.h>
36 #include <linux/delayacct.h>
37 #include <linux/cgroup.h>
38 #include <linux/syscalls.h>
39 #include <linux/signal.h>
40 #include <linux/posix-timers.h>
41 #include <linux/cn_proc.h>
42 #include <linux/mutex.h>
43 #include <linux/futex.h>
44 #include <linux/pipe_fs_i.h>
45 #include <linux/audit.h> /* for audit_free() */
46 #include <linux/resource.h>
47 #include <linux/blkdev.h>
48 #include <linux/task_io_accounting_ops.h>
49 #include <linux/tracehook.h>
50 #include <linux/fs_struct.h>
51 #include <linux/userfaultfd_k.h>
52 #include <linux/init_task.h>
53 #include <linux/perf_event.h>
54 #include <trace/events/sched.h>
55 #include <linux/hw_breakpoint.h>
56 #include <linux/oom.h>
57 #include <linux/writeback.h>
58 #include <linux/shm.h>
59 #include <linux/kcov.h>
60 #include <linux/random.h>
61 #include <linux/rcuwait.h>
62
63 #include <linux/uaccess.h>
64 #include <asm/unistd.h>
65 #include <asm/pgtable.h>
66 #include <asm/mmu_context.h>
67
68 static void __unhash_process(struct task_struct *p, bool group_dead)
69 {
70 nr_threads--;
71 detach_pid(p, PIDTYPE_PID);
72 if (group_dead) {
73 detach_pid(p, PIDTYPE_PGID);
74 detach_pid(p, PIDTYPE_SID);
75
76 list_del_rcu(&p->tasks);
77 list_del_init(&p->sibling);
78 __this_cpu_dec(process_counts);
79 }
80 list_del_rcu(&p->thread_group);
81 list_del_rcu(&p->thread_node);
82 }
83
84 /*
85 * This function expects the tasklist_lock write-locked.
86 */
87 static void __exit_signal(struct task_struct *tsk)
88 {
89 struct signal_struct *sig = tsk->signal;
90 bool group_dead = thread_group_leader(tsk);
91 struct sighand_struct *sighand;
92 struct tty_struct *uninitialized_var(tty);
93 u64 utime, stime;
94
95 sighand = rcu_dereference_check(tsk->sighand,
96 lockdep_tasklist_lock_is_held());
97 spin_lock(&sighand->siglock);
98
99 #ifdef CONFIG_POSIX_TIMERS
100 posix_cpu_timers_exit(tsk);
101 if (group_dead) {
102 posix_cpu_timers_exit_group(tsk);
103 } else {
104 /*
105 * This can only happen if the caller is de_thread().
106 * FIXME: this is the temporary hack, we should teach
107 * posix-cpu-timers to handle this case correctly.
108 */
109 if (unlikely(has_group_leader_pid(tsk)))
110 posix_cpu_timers_exit_group(tsk);
111 }
112 #endif
113
114 if (group_dead) {
115 tty = sig->tty;
116 sig->tty = NULL;
117 } else {
118 /*
119 * If there is any task waiting for the group exit
120 * then notify it:
121 */
122 if (sig->notify_count > 0 && !--sig->notify_count)
123 wake_up_process(sig->group_exit_task);
124
125 if (tsk == sig->curr_target)
126 sig->curr_target = next_thread(tsk);
127 }
128
129 add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
130 sizeof(unsigned long long));
131
132 /*
133 * Accumulate here the counters for all threads as they die. We could
134 * skip the group leader because it is the last user of signal_struct,
135 * but we want to avoid the race with thread_group_cputime() which can
136 * see the empty ->thread_head list.
137 */
138 task_cputime(tsk, &utime, &stime);
139 write_seqlock(&sig->stats_lock);
140 sig->utime += utime;
141 sig->stime += stime;
142 sig->gtime += task_gtime(tsk);
143 sig->min_flt += tsk->min_flt;
144 sig->maj_flt += tsk->maj_flt;
145 sig->nvcsw += tsk->nvcsw;
146 sig->nivcsw += tsk->nivcsw;
147 sig->inblock += task_io_get_inblock(tsk);
148 sig->oublock += task_io_get_oublock(tsk);
149 task_io_accounting_add(&sig->ioac, &tsk->ioac);
150 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
151 sig->nr_threads--;
152 __unhash_process(tsk, group_dead);
153 write_sequnlock(&sig->stats_lock);
154
155 /*
156 * Do this under ->siglock, we can race with another thread
157 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
158 */
159 flush_sigqueue(&tsk->pending);
160 tsk->sighand = NULL;
161 spin_unlock(&sighand->siglock);
162
163 __cleanup_sighand(sighand);
164 clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
165 if (group_dead) {
166 flush_sigqueue(&sig->shared_pending);
167 tty_kref_put(tty);
168 }
169 }
170
171 static void delayed_put_task_struct(struct rcu_head *rhp)
172 {
173 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
174
175 perf_event_delayed_put(tsk);
176 trace_sched_process_free(tsk);
177 put_task_struct(tsk);
178 }
179
180
181 void release_task(struct task_struct *p)
182 {
183 struct task_struct *leader;
184 int zap_leader;
185 repeat:
186 /* don't need to get the RCU readlock here - the process is dead and
187 * can't be modifying its own credentials. But shut RCU-lockdep up */
188 rcu_read_lock();
189 atomic_dec(&__task_cred(p)->user->processes);
190 rcu_read_unlock();
191
192 proc_flush_task(p);
193
194 write_lock_irq(&tasklist_lock);
195 ptrace_release_task(p);
196 __exit_signal(p);
197
198 /*
199 * If we are the last non-leader member of the thread
200 * group, and the leader is zombie, then notify the
201 * group leader's parent process. (if it wants notification.)
202 */
203 zap_leader = 0;
204 leader = p->group_leader;
205 if (leader != p && thread_group_empty(leader)
206 && leader->exit_state == EXIT_ZOMBIE) {
207 /*
208 * If we were the last child thread and the leader has
209 * exited already, and the leader's parent ignores SIGCHLD,
210 * then we are the one who should release the leader.
211 */
212 zap_leader = do_notify_parent(leader, leader->exit_signal);
213 if (zap_leader)
214 leader->exit_state = EXIT_DEAD;
215 }
216
217 write_unlock_irq(&tasklist_lock);
218 release_thread(p);
219 call_rcu(&p->rcu, delayed_put_task_struct);
220
221 p = leader;
222 if (unlikely(zap_leader))
223 goto repeat;
224 }
225
226 /*
227 * Note that if this function returns a valid task_struct pointer (!NULL)
228 * task->usage must remain >0 for the duration of the RCU critical section.
229 */
230 struct task_struct *task_rcu_dereference(struct task_struct **ptask)
231 {
232 struct sighand_struct *sighand;
233 struct task_struct *task;
234
235 /*
236 * We need to verify that release_task() was not called and thus
237 * delayed_put_task_struct() can't run and drop the last reference
238 * before rcu_read_unlock(). We check task->sighand != NULL,
239 * but we can read the already freed and reused memory.
240 */
241 retry:
242 task = rcu_dereference(*ptask);
243 if (!task)
244 return NULL;
245
246 probe_kernel_address(&task->sighand, sighand);
247
248 /*
249 * Pairs with atomic_dec_and_test() in put_task_struct(). If this task
250 * was already freed we can not miss the preceding update of this
251 * pointer.
252 */
253 smp_rmb();
254 if (unlikely(task != READ_ONCE(*ptask)))
255 goto retry;
256
257 /*
258 * We've re-checked that "task == *ptask", now we have two different
259 * cases:
260 *
261 * 1. This is actually the same task/task_struct. In this case
262 * sighand != NULL tells us it is still alive.
263 *
264 * 2. This is another task which got the same memory for task_struct.
265 * We can't know this of course, and we can not trust
266 * sighand != NULL.
267 *
268 * In this case we actually return a random value, but this is
269 * correct.
270 *
271 * If we return NULL - we can pretend that we actually noticed that
272 * *ptask was updated when the previous task has exited. Or pretend
273 * that probe_slab_address(&sighand) reads NULL.
274 *
275 * If we return the new task (because sighand is not NULL for any
276 * reason) - this is fine too. This (new) task can't go away before
277 * another gp pass.
278 *
279 * And note: We could even eliminate the false positive if re-read
280 * task->sighand once again to avoid the falsely NULL. But this case
281 * is very unlikely so we don't care.
282 */
283 if (!sighand)
284 return NULL;
285
286 return task;
287 }
288
289 void rcuwait_wake_up(struct rcuwait *w)
290 {
291 struct task_struct *task;
292
293 rcu_read_lock();
294
295 /*
296 * Order condition vs @task, such that everything prior to the load
297 * of @task is visible. This is the condition as to why the user called
298 * rcuwait_trywake() in the first place. Pairs with set_current_state()
299 * barrier (A) in rcuwait_wait_event().
300 *
301 * WAIT WAKE
302 * [S] tsk = current [S] cond = true
303 * MB (A) MB (B)
304 * [L] cond [L] tsk
305 */
306 smp_rmb(); /* (B) */
307
308 /*
309 * Avoid using task_rcu_dereference() magic as long as we are careful,
310 * see comment in rcuwait_wait_event() regarding ->exit_state.
311 */
312 task = rcu_dereference(w->task);
313 if (task)
314 wake_up_process(task);
315 rcu_read_unlock();
316 }
317
318 struct task_struct *try_get_task_struct(struct task_struct **ptask)
319 {
320 struct task_struct *task;
321
322 rcu_read_lock();
323 task = task_rcu_dereference(ptask);
324 if (task)
325 get_task_struct(task);
326 rcu_read_unlock();
327
328 return task;
329 }
330
331 /*
332 * Determine if a process group is "orphaned", according to the POSIX
333 * definition in 2.2.2.52. Orphaned process groups are not to be affected
334 * by terminal-generated stop signals. Newly orphaned process groups are
335 * to receive a SIGHUP and a SIGCONT.
336 *
337 * "I ask you, have you ever known what it is to be an orphan?"
338 */
339 static int will_become_orphaned_pgrp(struct pid *pgrp,
340 struct task_struct *ignored_task)
341 {
342 struct task_struct *p;
343
344 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
345 if ((p == ignored_task) ||
346 (p->exit_state && thread_group_empty(p)) ||
347 is_global_init(p->real_parent))
348 continue;
349
350 if (task_pgrp(p->real_parent) != pgrp &&
351 task_session(p->real_parent) == task_session(p))
352 return 0;
353 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
354
355 return 1;
356 }
357
358 int is_current_pgrp_orphaned(void)
359 {
360 int retval;
361
362 read_lock(&tasklist_lock);
363 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
364 read_unlock(&tasklist_lock);
365
366 return retval;
367 }
368
369 static bool has_stopped_jobs(struct pid *pgrp)
370 {
371 struct task_struct *p;
372
373 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
374 if (p->signal->flags & SIGNAL_STOP_STOPPED)
375 return true;
376 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
377
378 return false;
379 }
380
381 /*
382 * Check to see if any process groups have become orphaned as
383 * a result of our exiting, and if they have any stopped jobs,
384 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
385 */
386 static void
387 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
388 {
389 struct pid *pgrp = task_pgrp(tsk);
390 struct task_struct *ignored_task = tsk;
391
392 if (!parent)
393 /* exit: our father is in a different pgrp than
394 * we are and we were the only connection outside.
395 */
396 parent = tsk->real_parent;
397 else
398 /* reparent: our child is in a different pgrp than
399 * we are, and it was the only connection outside.
400 */
401 ignored_task = NULL;
402
403 if (task_pgrp(parent) != pgrp &&
404 task_session(parent) == task_session(tsk) &&
405 will_become_orphaned_pgrp(pgrp, ignored_task) &&
406 has_stopped_jobs(pgrp)) {
407 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
408 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
409 }
410 }
411
412 #ifdef CONFIG_MEMCG
413 /*
414 * A task is exiting. If it owned this mm, find a new owner for the mm.
415 */
416 void mm_update_next_owner(struct mm_struct *mm)
417 {
418 struct task_struct *c, *g, *p = current;
419
420 retry:
421 /*
422 * If the exiting or execing task is not the owner, it's
423 * someone else's problem.
424 */
425 if (mm->owner != p)
426 return;
427 /*
428 * The current owner is exiting/execing and there are no other
429 * candidates. Do not leave the mm pointing to a possibly
430 * freed task structure.
431 */
432 if (atomic_read(&mm->mm_users) <= 1) {
433 mm->owner = NULL;
434 return;
435 }
436
437 read_lock(&tasklist_lock);
438 /*
439 * Search in the children
440 */
441 list_for_each_entry(c, &p->children, sibling) {
442 if (c->mm == mm)
443 goto assign_new_owner;
444 }
445
446 /*
447 * Search in the siblings
448 */
449 list_for_each_entry(c, &p->real_parent->children, sibling) {
450 if (c->mm == mm)
451 goto assign_new_owner;
452 }
453
454 /*
455 * Search through everything else, we should not get here often.
456 */
457 for_each_process(g) {
458 if (g->flags & PF_KTHREAD)
459 continue;
460 for_each_thread(g, c) {
461 if (c->mm == mm)
462 goto assign_new_owner;
463 if (c->mm)
464 break;
465 }
466 }
467 read_unlock(&tasklist_lock);
468 /*
469 * We found no owner yet mm_users > 1: this implies that we are
470 * most likely racing with swapoff (try_to_unuse()) or /proc or
471 * ptrace or page migration (get_task_mm()). Mark owner as NULL.
472 */
473 mm->owner = NULL;
474 return;
475
476 assign_new_owner:
477 BUG_ON(c == p);
478 get_task_struct(c);
479 /*
480 * The task_lock protects c->mm from changing.
481 * We always want mm->owner->mm == mm
482 */
483 task_lock(c);
484 /*
485 * Delay read_unlock() till we have the task_lock()
486 * to ensure that c does not slip away underneath us
487 */
488 read_unlock(&tasklist_lock);
489 if (c->mm != mm) {
490 task_unlock(c);
491 put_task_struct(c);
492 goto retry;
493 }
494 mm->owner = c;
495 task_unlock(c);
496 put_task_struct(c);
497 }
498 #endif /* CONFIG_MEMCG */
499
500 /*
501 * Turn us into a lazy TLB process if we
502 * aren't already..
503 */
504 static void exit_mm(void)
505 {
506 struct mm_struct *mm = current->mm;
507 struct core_state *core_state;
508
509 mm_release(current, mm);
510 if (!mm)
511 return;
512 sync_mm_rss(mm);
513 /*
514 * Serialize with any possible pending coredump.
515 * We must hold mmap_sem around checking core_state
516 * and clearing tsk->mm. The core-inducing thread
517 * will increment ->nr_threads for each thread in the
518 * group with ->mm != NULL.
519 */
520 down_read(&mm->mmap_sem);
521 core_state = mm->core_state;
522 if (core_state) {
523 struct core_thread self;
524
525 up_read(&mm->mmap_sem);
526
527 self.task = current;
528 self.next = xchg(&core_state->dumper.next, &self);
529 /*
530 * Implies mb(), the result of xchg() must be visible
531 * to core_state->dumper.
532 */
533 if (atomic_dec_and_test(&core_state->nr_threads))
534 complete(&core_state->startup);
535
536 for (;;) {
537 set_current_state(TASK_UNINTERRUPTIBLE);
538 if (!self.task) /* see coredump_finish() */
539 break;
540 freezable_schedule();
541 }
542 __set_current_state(TASK_RUNNING);
543 down_read(&mm->mmap_sem);
544 }
545 mmgrab(mm);
546 BUG_ON(mm != current->active_mm);
547 /* more a memory barrier than a real lock */
548 task_lock(current);
549 current->mm = NULL;
550 up_read(&mm->mmap_sem);
551 enter_lazy_tlb(mm, current);
552 task_unlock(current);
553 mm_update_next_owner(mm);
554 userfaultfd_exit(mm);
555 mmput(mm);
556 if (test_thread_flag(TIF_MEMDIE))
557 exit_oom_victim();
558 }
559
560 static struct task_struct *find_alive_thread(struct task_struct *p)
561 {
562 struct task_struct *t;
563
564 for_each_thread(p, t) {
565 if (!(t->flags & PF_EXITING))
566 return t;
567 }
568 return NULL;
569 }
570
571 static struct task_struct *find_child_reaper(struct task_struct *father)
572 __releases(&tasklist_lock)
573 __acquires(&tasklist_lock)
574 {
575 struct pid_namespace *pid_ns = task_active_pid_ns(father);
576 struct task_struct *reaper = pid_ns->child_reaper;
577
578 if (likely(reaper != father))
579 return reaper;
580
581 reaper = find_alive_thread(father);
582 if (reaper) {
583 pid_ns->child_reaper = reaper;
584 return reaper;
585 }
586
587 write_unlock_irq(&tasklist_lock);
588 if (unlikely(pid_ns == &init_pid_ns)) {
589 panic("Attempted to kill init! exitcode=0x%08x\n",
590 father->signal->group_exit_code ?: father->exit_code);
591 }
592 zap_pid_ns_processes(pid_ns);
593 write_lock_irq(&tasklist_lock);
594
595 return father;
596 }
597
598 /*
599 * When we die, we re-parent all our children, and try to:
600 * 1. give them to another thread in our thread group, if such a member exists
601 * 2. give it to the first ancestor process which prctl'd itself as a
602 * child_subreaper for its children (like a service manager)
603 * 3. give it to the init process (PID 1) in our pid namespace
604 */
605 static struct task_struct *find_new_reaper(struct task_struct *father,
606 struct task_struct *child_reaper)
607 {
608 struct task_struct *thread, *reaper;
609
610 thread = find_alive_thread(father);
611 if (thread)
612 return thread;
613
614 if (father->signal->has_child_subreaper) {
615 unsigned int ns_level = task_pid(father)->level;
616 /*
617 * Find the first ->is_child_subreaper ancestor in our pid_ns.
618 * We can't check reaper != child_reaper to ensure we do not
619 * cross the namespaces, the exiting parent could be injected
620 * by setns() + fork().
621 * We check pid->level, this is slightly more efficient than
622 * task_active_pid_ns(reaper) != task_active_pid_ns(father).
623 */
624 for (reaper = father->real_parent;
625 task_pid(reaper)->level == ns_level;
626 reaper = reaper->real_parent) {
627 if (reaper == &init_task)
628 break;
629 if (!reaper->signal->is_child_subreaper)
630 continue;
631 thread = find_alive_thread(reaper);
632 if (thread)
633 return thread;
634 }
635 }
636
637 return child_reaper;
638 }
639
640 /*
641 * Any that need to be release_task'd are put on the @dead list.
642 */
643 static void reparent_leader(struct task_struct *father, struct task_struct *p,
644 struct list_head *dead)
645 {
646 if (unlikely(p->exit_state == EXIT_DEAD))
647 return;
648
649 /* We don't want people slaying init. */
650 p->exit_signal = SIGCHLD;
651
652 /* If it has exited notify the new parent about this child's death. */
653 if (!p->ptrace &&
654 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
655 if (do_notify_parent(p, p->exit_signal)) {
656 p->exit_state = EXIT_DEAD;
657 list_add(&p->ptrace_entry, dead);
658 }
659 }
660
661 kill_orphaned_pgrp(p, father);
662 }
663
664 /*
665 * This does two things:
666 *
667 * A. Make init inherit all the child processes
668 * B. Check to see if any process groups have become orphaned
669 * as a result of our exiting, and if they have any stopped
670 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
671 */
672 static void forget_original_parent(struct task_struct *father,
673 struct list_head *dead)
674 {
675 struct task_struct *p, *t, *reaper;
676
677 if (unlikely(!list_empty(&father->ptraced)))
678 exit_ptrace(father, dead);
679
680 /* Can drop and reacquire tasklist_lock */
681 reaper = find_child_reaper(father);
682 if (list_empty(&father->children))
683 return;
684
685 reaper = find_new_reaper(father, reaper);
686 list_for_each_entry(p, &father->children, sibling) {
687 for_each_thread(p, t) {
688 t->real_parent = reaper;
689 BUG_ON((!t->ptrace) != (t->parent == father));
690 if (likely(!t->ptrace))
691 t->parent = t->real_parent;
692 if (t->pdeath_signal)
693 group_send_sig_info(t->pdeath_signal,
694 SEND_SIG_NOINFO, t);
695 }
696 /*
697 * If this is a threaded reparent there is no need to
698 * notify anyone anything has happened.
699 */
700 if (!same_thread_group(reaper, father))
701 reparent_leader(father, p, dead);
702 }
703 list_splice_tail_init(&father->children, &reaper->children);
704 }
705
706 /*
707 * Send signals to all our closest relatives so that they know
708 * to properly mourn us..
709 */
710 static void exit_notify(struct task_struct *tsk, int group_dead)
711 {
712 bool autoreap;
713 struct task_struct *p, *n;
714 LIST_HEAD(dead);
715
716 write_lock_irq(&tasklist_lock);
717 forget_original_parent(tsk, &dead);
718
719 if (group_dead)
720 kill_orphaned_pgrp(tsk->group_leader, NULL);
721
722 if (unlikely(tsk->ptrace)) {
723 int sig = thread_group_leader(tsk) &&
724 thread_group_empty(tsk) &&
725 !ptrace_reparented(tsk) ?
726 tsk->exit_signal : SIGCHLD;
727 autoreap = do_notify_parent(tsk, sig);
728 } else if (thread_group_leader(tsk)) {
729 autoreap = thread_group_empty(tsk) &&
730 do_notify_parent(tsk, tsk->exit_signal);
731 } else {
732 autoreap = true;
733 }
734
735 tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE;
736 if (tsk->exit_state == EXIT_DEAD)
737 list_add(&tsk->ptrace_entry, &dead);
738
739 /* mt-exec, de_thread() is waiting for group leader */
740 if (unlikely(tsk->signal->notify_count < 0))
741 wake_up_process(tsk->signal->group_exit_task);
742 write_unlock_irq(&tasklist_lock);
743
744 list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
745 list_del_init(&p->ptrace_entry);
746 release_task(p);
747 }
748 }
749
750 #ifdef CONFIG_DEBUG_STACK_USAGE
751 static void check_stack_usage(void)
752 {
753 static DEFINE_SPINLOCK(low_water_lock);
754 static int lowest_to_date = THREAD_SIZE;
755 unsigned long free;
756
757 free = stack_not_used(current);
758
759 if (free >= lowest_to_date)
760 return;
761
762 spin_lock(&low_water_lock);
763 if (free < lowest_to_date) {
764 pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
765 current->comm, task_pid_nr(current), free);
766 lowest_to_date = free;
767 }
768 spin_unlock(&low_water_lock);
769 }
770 #else
771 static inline void check_stack_usage(void) {}
772 #endif
773
774 void __noreturn do_exit(long code)
775 {
776 struct task_struct *tsk = current;
777 int group_dead;
778 TASKS_RCU(int tasks_rcu_i);
779
780 profile_task_exit(tsk);
781 kcov_task_exit(tsk);
782
783 WARN_ON(blk_needs_flush_plug(tsk));
784
785 if (unlikely(in_interrupt()))
786 panic("Aiee, killing interrupt handler!");
787 if (unlikely(!tsk->pid))
788 panic("Attempted to kill the idle task!");
789
790 /*
791 * If do_exit is called because this processes oopsed, it's possible
792 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
793 * continuing. Amongst other possible reasons, this is to prevent
794 * mm_release()->clear_child_tid() from writing to a user-controlled
795 * kernel address.
796 */
797 set_fs(USER_DS);
798
799 ptrace_event(PTRACE_EVENT_EXIT, code);
800
801 validate_creds_for_do_exit(tsk);
802
803 /*
804 * We're taking recursive faults here in do_exit. Safest is to just
805 * leave this task alone and wait for reboot.
806 */
807 if (unlikely(tsk->flags & PF_EXITING)) {
808 pr_alert("Fixing recursive fault but reboot is needed!\n");
809 /*
810 * We can do this unlocked here. The futex code uses
811 * this flag just to verify whether the pi state
812 * cleanup has been done or not. In the worst case it
813 * loops once more. We pretend that the cleanup was
814 * done as there is no way to return. Either the
815 * OWNER_DIED bit is set by now or we push the blocked
816 * task into the wait for ever nirwana as well.
817 */
818 tsk->flags |= PF_EXITPIDONE;
819 set_current_state(TASK_UNINTERRUPTIBLE);
820 schedule();
821 }
822
823 exit_signals(tsk); /* sets PF_EXITING */
824 /*
825 * Ensure that all new tsk->pi_lock acquisitions must observe
826 * PF_EXITING. Serializes against futex.c:attach_to_pi_owner().
827 */
828 smp_mb();
829 /*
830 * Ensure that we must observe the pi_state in exit_mm() ->
831 * mm_release() -> exit_pi_state_list().
832 */
833 raw_spin_unlock_wait(&tsk->pi_lock);
834
835 if (unlikely(in_atomic())) {
836 pr_info("note: %s[%d] exited with preempt_count %d\n",
837 current->comm, task_pid_nr(current),
838 preempt_count());
839 preempt_count_set(PREEMPT_ENABLED);
840 }
841
842 /* sync mm's RSS info before statistics gathering */
843 if (tsk->mm)
844 sync_mm_rss(tsk->mm);
845 acct_update_integrals(tsk);
846 group_dead = atomic_dec_and_test(&tsk->signal->live);
847 if (group_dead) {
848 #ifdef CONFIG_POSIX_TIMERS
849 hrtimer_cancel(&tsk->signal->real_timer);
850 exit_itimers(tsk->signal);
851 #endif
852 if (tsk->mm)
853 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
854 }
855 acct_collect(code, group_dead);
856 if (group_dead)
857 tty_audit_exit();
858 audit_free(tsk);
859
860 tsk->exit_code = code;
861 taskstats_exit(tsk, group_dead);
862
863 exit_mm();
864
865 if (group_dead)
866 acct_process();
867 trace_sched_process_exit(tsk);
868
869 exit_sem(tsk);
870 exit_shm(tsk);
871 exit_files(tsk);
872 exit_fs(tsk);
873 if (group_dead)
874 disassociate_ctty(1);
875 exit_task_namespaces(tsk);
876 exit_task_work(tsk);
877 exit_thread(tsk);
878
879 /*
880 * Flush inherited counters to the parent - before the parent
881 * gets woken up by child-exit notifications.
882 *
883 * because of cgroup mode, must be called before cgroup_exit()
884 */
885 perf_event_exit_task(tsk);
886
887 sched_autogroup_exit_task(tsk);
888 cgroup_exit(tsk);
889
890 /*
891 * FIXME: do that only when needed, using sched_exit tracepoint
892 */
893 flush_ptrace_hw_breakpoint(tsk);
894
895 TASKS_RCU(preempt_disable());
896 TASKS_RCU(tasks_rcu_i = __srcu_read_lock(&tasks_rcu_exit_srcu));
897 TASKS_RCU(preempt_enable());
898 exit_notify(tsk, group_dead);
899 proc_exit_connector(tsk);
900 mpol_put_task_policy(tsk);
901 #ifdef CONFIG_FUTEX
902 if (unlikely(current->pi_state_cache))
903 kfree(current->pi_state_cache);
904 #endif
905 /*
906 * Make sure we are holding no locks:
907 */
908 debug_check_no_locks_held();
909 /*
910 * We can do this unlocked here. The futex code uses this flag
911 * just to verify whether the pi state cleanup has been done
912 * or not. In the worst case it loops once more.
913 */
914 tsk->flags |= PF_EXITPIDONE;
915
916 if (tsk->io_context)
917 exit_io_context(tsk);
918
919 if (tsk->splice_pipe)
920 free_pipe_info(tsk->splice_pipe);
921
922 if (tsk->task_frag.page)
923 put_page(tsk->task_frag.page);
924
925 validate_creds_for_do_exit(tsk);
926
927 check_stack_usage();
928 preempt_disable();
929 if (tsk->nr_dirtied)
930 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
931 exit_rcu();
932 TASKS_RCU(__srcu_read_unlock(&tasks_rcu_exit_srcu, tasks_rcu_i));
933
934 do_task_dead();
935 }
936 EXPORT_SYMBOL_GPL(do_exit);
937
938 void complete_and_exit(struct completion *comp, long code)
939 {
940 if (comp)
941 complete(comp);
942
943 do_exit(code);
944 }
945 EXPORT_SYMBOL(complete_and_exit);
946
947 SYSCALL_DEFINE1(exit, int, error_code)
948 {
949 do_exit((error_code&0xff)<<8);
950 }
951
952 /*
953 * Take down every thread in the group. This is called by fatal signals
954 * as well as by sys_exit_group (below).
955 */
956 void
957 do_group_exit(int exit_code)
958 {
959 struct signal_struct *sig = current->signal;
960
961 BUG_ON(exit_code & 0x80); /* core dumps don't get here */
962
963 if (signal_group_exit(sig))
964 exit_code = sig->group_exit_code;
965 else if (!thread_group_empty(current)) {
966 struct sighand_struct *const sighand = current->sighand;
967
968 spin_lock_irq(&sighand->siglock);
969 if (signal_group_exit(sig))
970 /* Another thread got here before we took the lock. */
971 exit_code = sig->group_exit_code;
972 else {
973 sig->group_exit_code = exit_code;
974 sig->flags = SIGNAL_GROUP_EXIT;
975 zap_other_threads(current);
976 }
977 spin_unlock_irq(&sighand->siglock);
978 }
979
980 do_exit(exit_code);
981 /* NOTREACHED */
982 }
983
984 /*
985 * this kills every thread in the thread group. Note that any externally
986 * wait4()-ing process will get the correct exit code - even if this
987 * thread is not the thread group leader.
988 */
989 SYSCALL_DEFINE1(exit_group, int, error_code)
990 {
991 do_group_exit((error_code & 0xff) << 8);
992 /* NOTREACHED */
993 return 0;
994 }
995
996 struct wait_opts {
997 enum pid_type wo_type;
998 int wo_flags;
999 struct pid *wo_pid;
1000
1001 struct siginfo __user *wo_info;
1002 int __user *wo_stat;
1003 struct rusage __user *wo_rusage;
1004
1005 wait_queue_t child_wait;
1006 int notask_error;
1007 };
1008
1009 static inline
1010 struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
1011 {
1012 if (type != PIDTYPE_PID)
1013 task = task->group_leader;
1014 return task->pids[type].pid;
1015 }
1016
1017 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
1018 {
1019 return wo->wo_type == PIDTYPE_MAX ||
1020 task_pid_type(p, wo->wo_type) == wo->wo_pid;
1021 }
1022
1023 static int
1024 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
1025 {
1026 if (!eligible_pid(wo, p))
1027 return 0;
1028
1029 /*
1030 * Wait for all children (clone and not) if __WALL is set or
1031 * if it is traced by us.
1032 */
1033 if (ptrace || (wo->wo_flags & __WALL))
1034 return 1;
1035
1036 /*
1037 * Otherwise, wait for clone children *only* if __WCLONE is set;
1038 * otherwise, wait for non-clone children *only*.
1039 *
1040 * Note: a "clone" child here is one that reports to its parent
1041 * using a signal other than SIGCHLD, or a non-leader thread which
1042 * we can only see if it is traced by us.
1043 */
1044 if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1045 return 0;
1046
1047 return 1;
1048 }
1049
1050 static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p,
1051 pid_t pid, uid_t uid, int why, int status)
1052 {
1053 struct siginfo __user *infop;
1054 int retval = wo->wo_rusage
1055 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1056
1057 put_task_struct(p);
1058 infop = wo->wo_info;
1059 if (infop) {
1060 if (!retval)
1061 retval = put_user(SIGCHLD, &infop->si_signo);
1062 if (!retval)
1063 retval = put_user(0, &infop->si_errno);
1064 if (!retval)
1065 retval = put_user((short)why, &infop->si_code);
1066 if (!retval)
1067 retval = put_user(pid, &infop->si_pid);
1068 if (!retval)
1069 retval = put_user(uid, &infop->si_uid);
1070 if (!retval)
1071 retval = put_user(status, &infop->si_status);
1072 }
1073 if (!retval)
1074 retval = pid;
1075 return retval;
1076 }
1077
1078 /*
1079 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1080 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1081 * the lock and this task is uninteresting. If we return nonzero, we have
1082 * released the lock and the system call should return.
1083 */
1084 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1085 {
1086 int state, retval, status;
1087 pid_t pid = task_pid_vnr(p);
1088 uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1089 struct siginfo __user *infop;
1090
1091 if (!likely(wo->wo_flags & WEXITED))
1092 return 0;
1093
1094 if (unlikely(wo->wo_flags & WNOWAIT)) {
1095 int exit_code = p->exit_code;
1096 int why;
1097
1098 get_task_struct(p);
1099 read_unlock(&tasklist_lock);
1100 sched_annotate_sleep();
1101
1102 if ((exit_code & 0x7f) == 0) {
1103 why = CLD_EXITED;
1104 status = exit_code >> 8;
1105 } else {
1106 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1107 status = exit_code & 0x7f;
1108 }
1109 return wait_noreap_copyout(wo, p, pid, uid, why, status);
1110 }
1111 /*
1112 * Move the task's state to DEAD/TRACE, only one thread can do this.
1113 */
1114 state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1115 EXIT_TRACE : EXIT_DEAD;
1116 if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1117 return 0;
1118 /*
1119 * We own this thread, nobody else can reap it.
1120 */
1121 read_unlock(&tasklist_lock);
1122 sched_annotate_sleep();
1123
1124 /*
1125 * Check thread_group_leader() to exclude the traced sub-threads.
1126 */
1127 if (state == EXIT_DEAD && thread_group_leader(p)) {
1128 struct signal_struct *sig = p->signal;
1129 struct signal_struct *psig = current->signal;
1130 unsigned long maxrss;
1131 u64 tgutime, tgstime;
1132
1133 /*
1134 * The resource counters for the group leader are in its
1135 * own task_struct. Those for dead threads in the group
1136 * are in its signal_struct, as are those for the child
1137 * processes it has previously reaped. All these
1138 * accumulate in the parent's signal_struct c* fields.
1139 *
1140 * We don't bother to take a lock here to protect these
1141 * p->signal fields because the whole thread group is dead
1142 * and nobody can change them.
1143 *
1144 * psig->stats_lock also protects us from our sub-theads
1145 * which can reap other children at the same time. Until
1146 * we change k_getrusage()-like users to rely on this lock
1147 * we have to take ->siglock as well.
1148 *
1149 * We use thread_group_cputime_adjusted() to get times for
1150 * the thread group, which consolidates times for all threads
1151 * in the group including the group leader.
1152 */
1153 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1154 spin_lock_irq(&current->sighand->siglock);
1155 write_seqlock(&psig->stats_lock);
1156 psig->cutime += tgutime + sig->cutime;
1157 psig->cstime += tgstime + sig->cstime;
1158 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1159 psig->cmin_flt +=
1160 p->min_flt + sig->min_flt + sig->cmin_flt;
1161 psig->cmaj_flt +=
1162 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1163 psig->cnvcsw +=
1164 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1165 psig->cnivcsw +=
1166 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1167 psig->cinblock +=
1168 task_io_get_inblock(p) +
1169 sig->inblock + sig->cinblock;
1170 psig->coublock +=
1171 task_io_get_oublock(p) +
1172 sig->oublock + sig->coublock;
1173 maxrss = max(sig->maxrss, sig->cmaxrss);
1174 if (psig->cmaxrss < maxrss)
1175 psig->cmaxrss = maxrss;
1176 task_io_accounting_add(&psig->ioac, &p->ioac);
1177 task_io_accounting_add(&psig->ioac, &sig->ioac);
1178 write_sequnlock(&psig->stats_lock);
1179 spin_unlock_irq(&current->sighand->siglock);
1180 }
1181
1182 retval = wo->wo_rusage
1183 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1184 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1185 ? p->signal->group_exit_code : p->exit_code;
1186 if (!retval && wo->wo_stat)
1187 retval = put_user(status, wo->wo_stat);
1188
1189 infop = wo->wo_info;
1190 if (!retval && infop)
1191 retval = put_user(SIGCHLD, &infop->si_signo);
1192 if (!retval && infop)
1193 retval = put_user(0, &infop->si_errno);
1194 if (!retval && infop) {
1195 int why;
1196
1197 if ((status & 0x7f) == 0) {
1198 why = CLD_EXITED;
1199 status >>= 8;
1200 } else {
1201 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1202 status &= 0x7f;
1203 }
1204 retval = put_user((short)why, &infop->si_code);
1205 if (!retval)
1206 retval = put_user(status, &infop->si_status);
1207 }
1208 if (!retval && infop)
1209 retval = put_user(pid, &infop->si_pid);
1210 if (!retval && infop)
1211 retval = put_user(uid, &infop->si_uid);
1212 if (!retval)
1213 retval = pid;
1214
1215 if (state == EXIT_TRACE) {
1216 write_lock_irq(&tasklist_lock);
1217 /* We dropped tasklist, ptracer could die and untrace */
1218 ptrace_unlink(p);
1219
1220 /* If parent wants a zombie, don't release it now */
1221 state = EXIT_ZOMBIE;
1222 if (do_notify_parent(p, p->exit_signal))
1223 state = EXIT_DEAD;
1224 p->exit_state = state;
1225 write_unlock_irq(&tasklist_lock);
1226 }
1227 if (state == EXIT_DEAD)
1228 release_task(p);
1229
1230 return retval;
1231 }
1232
1233 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1234 {
1235 if (ptrace) {
1236 if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1237 return &p->exit_code;
1238 } else {
1239 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1240 return &p->signal->group_exit_code;
1241 }
1242 return NULL;
1243 }
1244
1245 /**
1246 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1247 * @wo: wait options
1248 * @ptrace: is the wait for ptrace
1249 * @p: task to wait for
1250 *
1251 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1252 *
1253 * CONTEXT:
1254 * read_lock(&tasklist_lock), which is released if return value is
1255 * non-zero. Also, grabs and releases @p->sighand->siglock.
1256 *
1257 * RETURNS:
1258 * 0 if wait condition didn't exist and search for other wait conditions
1259 * should continue. Non-zero return, -errno on failure and @p's pid on
1260 * success, implies that tasklist_lock is released and wait condition
1261 * search should terminate.
1262 */
1263 static int wait_task_stopped(struct wait_opts *wo,
1264 int ptrace, struct task_struct *p)
1265 {
1266 struct siginfo __user *infop;
1267 int retval, exit_code, *p_code, why;
1268 uid_t uid = 0; /* unneeded, required by compiler */
1269 pid_t pid;
1270
1271 /*
1272 * Traditionally we see ptrace'd stopped tasks regardless of options.
1273 */
1274 if (!ptrace && !(wo->wo_flags & WUNTRACED))
1275 return 0;
1276
1277 if (!task_stopped_code(p, ptrace))
1278 return 0;
1279
1280 exit_code = 0;
1281 spin_lock_irq(&p->sighand->siglock);
1282
1283 p_code = task_stopped_code(p, ptrace);
1284 if (unlikely(!p_code))
1285 goto unlock_sig;
1286
1287 exit_code = *p_code;
1288 if (!exit_code)
1289 goto unlock_sig;
1290
1291 if (!unlikely(wo->wo_flags & WNOWAIT))
1292 *p_code = 0;
1293
1294 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1295 unlock_sig:
1296 spin_unlock_irq(&p->sighand->siglock);
1297 if (!exit_code)
1298 return 0;
1299
1300 /*
1301 * Now we are pretty sure this task is interesting.
1302 * Make sure it doesn't get reaped out from under us while we
1303 * give up the lock and then examine it below. We don't want to
1304 * keep holding onto the tasklist_lock while we call getrusage and
1305 * possibly take page faults for user memory.
1306 */
1307 get_task_struct(p);
1308 pid = task_pid_vnr(p);
1309 why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1310 read_unlock(&tasklist_lock);
1311 sched_annotate_sleep();
1312
1313 if (unlikely(wo->wo_flags & WNOWAIT))
1314 return wait_noreap_copyout(wo, p, pid, uid, why, exit_code);
1315
1316 retval = wo->wo_rusage
1317 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1318 if (!retval && wo->wo_stat)
1319 retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat);
1320
1321 infop = wo->wo_info;
1322 if (!retval && infop)
1323 retval = put_user(SIGCHLD, &infop->si_signo);
1324 if (!retval && infop)
1325 retval = put_user(0, &infop->si_errno);
1326 if (!retval && infop)
1327 retval = put_user((short)why, &infop->si_code);
1328 if (!retval && infop)
1329 retval = put_user(exit_code, &infop->si_status);
1330 if (!retval && infop)
1331 retval = put_user(pid, &infop->si_pid);
1332 if (!retval && infop)
1333 retval = put_user(uid, &infop->si_uid);
1334 if (!retval)
1335 retval = pid;
1336 put_task_struct(p);
1337
1338 BUG_ON(!retval);
1339 return retval;
1340 }
1341
1342 /*
1343 * Handle do_wait work for one task in a live, non-stopped state.
1344 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1345 * the lock and this task is uninteresting. If we return nonzero, we have
1346 * released the lock and the system call should return.
1347 */
1348 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1349 {
1350 int retval;
1351 pid_t pid;
1352 uid_t uid;
1353
1354 if (!unlikely(wo->wo_flags & WCONTINUED))
1355 return 0;
1356
1357 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1358 return 0;
1359
1360 spin_lock_irq(&p->sighand->siglock);
1361 /* Re-check with the lock held. */
1362 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1363 spin_unlock_irq(&p->sighand->siglock);
1364 return 0;
1365 }
1366 if (!unlikely(wo->wo_flags & WNOWAIT))
1367 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1368 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1369 spin_unlock_irq(&p->sighand->siglock);
1370
1371 pid = task_pid_vnr(p);
1372 get_task_struct(p);
1373 read_unlock(&tasklist_lock);
1374 sched_annotate_sleep();
1375
1376 if (!wo->wo_info) {
1377 retval = wo->wo_rusage
1378 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1379 put_task_struct(p);
1380 if (!retval && wo->wo_stat)
1381 retval = put_user(0xffff, wo->wo_stat);
1382 if (!retval)
1383 retval = pid;
1384 } else {
1385 retval = wait_noreap_copyout(wo, p, pid, uid,
1386 CLD_CONTINUED, SIGCONT);
1387 BUG_ON(retval == 0);
1388 }
1389
1390 return retval;
1391 }
1392
1393 /*
1394 * Consider @p for a wait by @parent.
1395 *
1396 * -ECHILD should be in ->notask_error before the first call.
1397 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1398 * Returns zero if the search for a child should continue;
1399 * then ->notask_error is 0 if @p is an eligible child,
1400 * or still -ECHILD.
1401 */
1402 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1403 struct task_struct *p)
1404 {
1405 /*
1406 * We can race with wait_task_zombie() from another thread.
1407 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1408 * can't confuse the checks below.
1409 */
1410 int exit_state = ACCESS_ONCE(p->exit_state);
1411 int ret;
1412
1413 if (unlikely(exit_state == EXIT_DEAD))
1414 return 0;
1415
1416 ret = eligible_child(wo, ptrace, p);
1417 if (!ret)
1418 return ret;
1419
1420 if (unlikely(exit_state == EXIT_TRACE)) {
1421 /*
1422 * ptrace == 0 means we are the natural parent. In this case
1423 * we should clear notask_error, debugger will notify us.
1424 */
1425 if (likely(!ptrace))
1426 wo->notask_error = 0;
1427 return 0;
1428 }
1429
1430 if (likely(!ptrace) && unlikely(p->ptrace)) {
1431 /*
1432 * If it is traced by its real parent's group, just pretend
1433 * the caller is ptrace_do_wait() and reap this child if it
1434 * is zombie.
1435 *
1436 * This also hides group stop state from real parent; otherwise
1437 * a single stop can be reported twice as group and ptrace stop.
1438 * If a ptracer wants to distinguish these two events for its
1439 * own children it should create a separate process which takes
1440 * the role of real parent.
1441 */
1442 if (!ptrace_reparented(p))
1443 ptrace = 1;
1444 }
1445
1446 /* slay zombie? */
1447 if (exit_state == EXIT_ZOMBIE) {
1448 /* we don't reap group leaders with subthreads */
1449 if (!delay_group_leader(p)) {
1450 /*
1451 * A zombie ptracee is only visible to its ptracer.
1452 * Notification and reaping will be cascaded to the
1453 * real parent when the ptracer detaches.
1454 */
1455 if (unlikely(ptrace) || likely(!p->ptrace))
1456 return wait_task_zombie(wo, p);
1457 }
1458
1459 /*
1460 * Allow access to stopped/continued state via zombie by
1461 * falling through. Clearing of notask_error is complex.
1462 *
1463 * When !@ptrace:
1464 *
1465 * If WEXITED is set, notask_error should naturally be
1466 * cleared. If not, subset of WSTOPPED|WCONTINUED is set,
1467 * so, if there are live subthreads, there are events to
1468 * wait for. If all subthreads are dead, it's still safe
1469 * to clear - this function will be called again in finite
1470 * amount time once all the subthreads are released and
1471 * will then return without clearing.
1472 *
1473 * When @ptrace:
1474 *
1475 * Stopped state is per-task and thus can't change once the
1476 * target task dies. Only continued and exited can happen.
1477 * Clear notask_error if WCONTINUED | WEXITED.
1478 */
1479 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1480 wo->notask_error = 0;
1481 } else {
1482 /*
1483 * @p is alive and it's gonna stop, continue or exit, so
1484 * there always is something to wait for.
1485 */
1486 wo->notask_error = 0;
1487 }
1488
1489 /*
1490 * Wait for stopped. Depending on @ptrace, different stopped state
1491 * is used and the two don't interact with each other.
1492 */
1493 ret = wait_task_stopped(wo, ptrace, p);
1494 if (ret)
1495 return ret;
1496
1497 /*
1498 * Wait for continued. There's only one continued state and the
1499 * ptracer can consume it which can confuse the real parent. Don't
1500 * use WCONTINUED from ptracer. You don't need or want it.
1501 */
1502 return wait_task_continued(wo, p);
1503 }
1504
1505 /*
1506 * Do the work of do_wait() for one thread in the group, @tsk.
1507 *
1508 * -ECHILD should be in ->notask_error before the first call.
1509 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1510 * Returns zero if the search for a child should continue; then
1511 * ->notask_error is 0 if there were any eligible children,
1512 * or still -ECHILD.
1513 */
1514 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1515 {
1516 struct task_struct *p;
1517
1518 list_for_each_entry(p, &tsk->children, sibling) {
1519 int ret = wait_consider_task(wo, 0, p);
1520
1521 if (ret)
1522 return ret;
1523 }
1524
1525 return 0;
1526 }
1527
1528 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1529 {
1530 struct task_struct *p;
1531
1532 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1533 int ret = wait_consider_task(wo, 1, p);
1534
1535 if (ret)
1536 return ret;
1537 }
1538
1539 return 0;
1540 }
1541
1542 static int child_wait_callback(wait_queue_t *wait, unsigned mode,
1543 int sync, void *key)
1544 {
1545 struct wait_opts *wo = container_of(wait, struct wait_opts,
1546 child_wait);
1547 struct task_struct *p = key;
1548
1549 if (!eligible_pid(wo, p))
1550 return 0;
1551
1552 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1553 return 0;
1554
1555 return default_wake_function(wait, mode, sync, key);
1556 }
1557
1558 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1559 {
1560 __wake_up_sync_key(&parent->signal->wait_chldexit,
1561 TASK_INTERRUPTIBLE, 1, p);
1562 }
1563
1564 static long do_wait(struct wait_opts *wo)
1565 {
1566 struct task_struct *tsk;
1567 int retval;
1568
1569 trace_sched_process_wait(wo->wo_pid);
1570
1571 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1572 wo->child_wait.private = current;
1573 add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1574 repeat:
1575 /*
1576 * If there is nothing that can match our criteria, just get out.
1577 * We will clear ->notask_error to zero if we see any child that
1578 * might later match our criteria, even if we are not able to reap
1579 * it yet.
1580 */
1581 wo->notask_error = -ECHILD;
1582 if ((wo->wo_type < PIDTYPE_MAX) &&
1583 (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
1584 goto notask;
1585
1586 set_current_state(TASK_INTERRUPTIBLE);
1587 read_lock(&tasklist_lock);
1588 tsk = current;
1589 do {
1590 retval = do_wait_thread(wo, tsk);
1591 if (retval)
1592 goto end;
1593
1594 retval = ptrace_do_wait(wo, tsk);
1595 if (retval)
1596 goto end;
1597
1598 if (wo->wo_flags & __WNOTHREAD)
1599 break;
1600 } while_each_thread(current, tsk);
1601 read_unlock(&tasklist_lock);
1602
1603 notask:
1604 retval = wo->notask_error;
1605 if (!retval && !(wo->wo_flags & WNOHANG)) {
1606 retval = -ERESTARTSYS;
1607 if (!signal_pending(current)) {
1608 schedule();
1609 goto repeat;
1610 }
1611 }
1612 end:
1613 __set_current_state(TASK_RUNNING);
1614 remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1615 return retval;
1616 }
1617
1618 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1619 infop, int, options, struct rusage __user *, ru)
1620 {
1621 struct wait_opts wo;
1622 struct pid *pid = NULL;
1623 enum pid_type type;
1624 long ret;
1625
1626 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1627 __WNOTHREAD|__WCLONE|__WALL))
1628 return -EINVAL;
1629 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1630 return -EINVAL;
1631
1632 switch (which) {
1633 case P_ALL:
1634 type = PIDTYPE_MAX;
1635 break;
1636 case P_PID:
1637 type = PIDTYPE_PID;
1638 if (upid <= 0)
1639 return -EINVAL;
1640 break;
1641 case P_PGID:
1642 type = PIDTYPE_PGID;
1643 if (upid <= 0)
1644 return -EINVAL;
1645 break;
1646 default:
1647 return -EINVAL;
1648 }
1649
1650 if (type < PIDTYPE_MAX)
1651 pid = find_get_pid(upid);
1652
1653 wo.wo_type = type;
1654 wo.wo_pid = pid;
1655 wo.wo_flags = options;
1656 wo.wo_info = infop;
1657 wo.wo_stat = NULL;
1658 wo.wo_rusage = ru;
1659 ret = do_wait(&wo);
1660
1661 if (ret > 0) {
1662 ret = 0;
1663 } else if (infop) {
1664 /*
1665 * For a WNOHANG return, clear out all the fields
1666 * we would set so the user can easily tell the
1667 * difference.
1668 */
1669 if (!ret)
1670 ret = put_user(0, &infop->si_signo);
1671 if (!ret)
1672 ret = put_user(0, &infop->si_errno);
1673 if (!ret)
1674 ret = put_user(0, &infop->si_code);
1675 if (!ret)
1676 ret = put_user(0, &infop->si_pid);
1677 if (!ret)
1678 ret = put_user(0, &infop->si_uid);
1679 if (!ret)
1680 ret = put_user(0, &infop->si_status);
1681 }
1682
1683 put_pid(pid);
1684 return ret;
1685 }
1686
1687 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1688 int, options, struct rusage __user *, ru)
1689 {
1690 struct wait_opts wo;
1691 struct pid *pid = NULL;
1692 enum pid_type type;
1693 long ret;
1694
1695 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1696 __WNOTHREAD|__WCLONE|__WALL))
1697 return -EINVAL;
1698
1699 if (upid == -1)
1700 type = PIDTYPE_MAX;
1701 else if (upid < 0) {
1702 type = PIDTYPE_PGID;
1703 pid = find_get_pid(-upid);
1704 } else if (upid == 0) {
1705 type = PIDTYPE_PGID;
1706 pid = get_task_pid(current, PIDTYPE_PGID);
1707 } else /* upid > 0 */ {
1708 type = PIDTYPE_PID;
1709 pid = find_get_pid(upid);
1710 }
1711
1712 wo.wo_type = type;
1713 wo.wo_pid = pid;
1714 wo.wo_flags = options | WEXITED;
1715 wo.wo_info = NULL;
1716 wo.wo_stat = stat_addr;
1717 wo.wo_rusage = ru;
1718 ret = do_wait(&wo);
1719 put_pid(pid);
1720
1721 return ret;
1722 }
1723
1724 #ifdef __ARCH_WANT_SYS_WAITPID
1725
1726 /*
1727 * sys_waitpid() remains for compatibility. waitpid() should be
1728 * implemented by calling sys_wait4() from libc.a.
1729 */
1730 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1731 {
1732 return sys_wait4(pid, stat_addr, options, NULL);
1733 }
1734
1735 #endif