]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - kernel/exit.c
Merge branch 'topic/asoc' into for-linus
[mirror_ubuntu-eoan-kernel.git] / kernel / exit.c
1 /*
2 * linux/kernel/exit.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/iocontext.h>
16 #include <linux/key.h>
17 #include <linux/security.h>
18 #include <linux/cpu.h>
19 #include <linux/acct.h>
20 #include <linux/tsacct_kern.h>
21 #include <linux/file.h>
22 #include <linux/fdtable.h>
23 #include <linux/binfmts.h>
24 #include <linux/nsproxy.h>
25 #include <linux/pid_namespace.h>
26 #include <linux/ptrace.h>
27 #include <linux/profile.h>
28 #include <linux/mount.h>
29 #include <linux/proc_fs.h>
30 #include <linux/kthread.h>
31 #include <linux/mempolicy.h>
32 #include <linux/taskstats_kern.h>
33 #include <linux/delayacct.h>
34 #include <linux/freezer.h>
35 #include <linux/cgroup.h>
36 #include <linux/syscalls.h>
37 #include <linux/signal.h>
38 #include <linux/posix-timers.h>
39 #include <linux/cn_proc.h>
40 #include <linux/mutex.h>
41 #include <linux/futex.h>
42 #include <linux/pipe_fs_i.h>
43 #include <linux/audit.h> /* for audit_free() */
44 #include <linux/resource.h>
45 #include <linux/blkdev.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/tracehook.h>
48 #include <linux/fs_struct.h>
49 #include <linux/init_task.h>
50 #include <linux/perf_counter.h>
51 #include <trace/events/sched.h>
52
53 #include <asm/uaccess.h>
54 #include <asm/unistd.h>
55 #include <asm/pgtable.h>
56 #include <asm/mmu_context.h>
57 #include "cred-internals.h"
58
59 static void exit_mm(struct task_struct * tsk);
60
61 static void __unhash_process(struct task_struct *p)
62 {
63 nr_threads--;
64 detach_pid(p, PIDTYPE_PID);
65 if (thread_group_leader(p)) {
66 detach_pid(p, PIDTYPE_PGID);
67 detach_pid(p, PIDTYPE_SID);
68
69 list_del_rcu(&p->tasks);
70 __get_cpu_var(process_counts)--;
71 }
72 list_del_rcu(&p->thread_group);
73 list_del_init(&p->sibling);
74 }
75
76 /*
77 * This function expects the tasklist_lock write-locked.
78 */
79 static void __exit_signal(struct task_struct *tsk)
80 {
81 struct signal_struct *sig = tsk->signal;
82 struct sighand_struct *sighand;
83
84 BUG_ON(!sig);
85 BUG_ON(!atomic_read(&sig->count));
86
87 sighand = rcu_dereference(tsk->sighand);
88 spin_lock(&sighand->siglock);
89
90 posix_cpu_timers_exit(tsk);
91 if (atomic_dec_and_test(&sig->count))
92 posix_cpu_timers_exit_group(tsk);
93 else {
94 /*
95 * If there is any task waiting for the group exit
96 * then notify it:
97 */
98 if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count)
99 wake_up_process(sig->group_exit_task);
100
101 if (tsk == sig->curr_target)
102 sig->curr_target = next_thread(tsk);
103 /*
104 * Accumulate here the counters for all threads but the
105 * group leader as they die, so they can be added into
106 * the process-wide totals when those are taken.
107 * The group leader stays around as a zombie as long
108 * as there are other threads. When it gets reaped,
109 * the exit.c code will add its counts into these totals.
110 * We won't ever get here for the group leader, since it
111 * will have been the last reference on the signal_struct.
112 */
113 sig->utime = cputime_add(sig->utime, task_utime(tsk));
114 sig->stime = cputime_add(sig->stime, task_stime(tsk));
115 sig->gtime = cputime_add(sig->gtime, task_gtime(tsk));
116 sig->min_flt += tsk->min_flt;
117 sig->maj_flt += tsk->maj_flt;
118 sig->nvcsw += tsk->nvcsw;
119 sig->nivcsw += tsk->nivcsw;
120 sig->inblock += task_io_get_inblock(tsk);
121 sig->oublock += task_io_get_oublock(tsk);
122 task_io_accounting_add(&sig->ioac, &tsk->ioac);
123 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
124 sig = NULL; /* Marker for below. */
125 }
126
127 __unhash_process(tsk);
128
129 /*
130 * Do this under ->siglock, we can race with another thread
131 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
132 */
133 flush_sigqueue(&tsk->pending);
134
135 tsk->signal = NULL;
136 tsk->sighand = NULL;
137 spin_unlock(&sighand->siglock);
138
139 __cleanup_sighand(sighand);
140 clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
141 if (sig) {
142 flush_sigqueue(&sig->shared_pending);
143 taskstats_tgid_free(sig);
144 /*
145 * Make sure ->signal can't go away under rq->lock,
146 * see account_group_exec_runtime().
147 */
148 task_rq_unlock_wait(tsk);
149 __cleanup_signal(sig);
150 }
151 }
152
153 static void delayed_put_task_struct(struct rcu_head *rhp)
154 {
155 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
156
157 #ifdef CONFIG_PERF_COUNTERS
158 WARN_ON_ONCE(tsk->perf_counter_ctxp);
159 #endif
160 trace_sched_process_free(tsk);
161 put_task_struct(tsk);
162 }
163
164
165 void release_task(struct task_struct * p)
166 {
167 struct task_struct *leader;
168 int zap_leader;
169 repeat:
170 tracehook_prepare_release_task(p);
171 /* don't need to get the RCU readlock here - the process is dead and
172 * can't be modifying its own credentials */
173 atomic_dec(&__task_cred(p)->user->processes);
174
175 proc_flush_task(p);
176
177 write_lock_irq(&tasklist_lock);
178 tracehook_finish_release_task(p);
179 __exit_signal(p);
180
181 /*
182 * If we are the last non-leader member of the thread
183 * group, and the leader is zombie, then notify the
184 * group leader's parent process. (if it wants notification.)
185 */
186 zap_leader = 0;
187 leader = p->group_leader;
188 if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
189 BUG_ON(task_detached(leader));
190 do_notify_parent(leader, leader->exit_signal);
191 /*
192 * If we were the last child thread and the leader has
193 * exited already, and the leader's parent ignores SIGCHLD,
194 * then we are the one who should release the leader.
195 *
196 * do_notify_parent() will have marked it self-reaping in
197 * that case.
198 */
199 zap_leader = task_detached(leader);
200
201 /*
202 * This maintains the invariant that release_task()
203 * only runs on a task in EXIT_DEAD, just for sanity.
204 */
205 if (zap_leader)
206 leader->exit_state = EXIT_DEAD;
207 }
208
209 write_unlock_irq(&tasklist_lock);
210 release_thread(p);
211 call_rcu(&p->rcu, delayed_put_task_struct);
212
213 p = leader;
214 if (unlikely(zap_leader))
215 goto repeat;
216 }
217
218 /*
219 * This checks not only the pgrp, but falls back on the pid if no
220 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
221 * without this...
222 *
223 * The caller must hold rcu lock or the tasklist lock.
224 */
225 struct pid *session_of_pgrp(struct pid *pgrp)
226 {
227 struct task_struct *p;
228 struct pid *sid = NULL;
229
230 p = pid_task(pgrp, PIDTYPE_PGID);
231 if (p == NULL)
232 p = pid_task(pgrp, PIDTYPE_PID);
233 if (p != NULL)
234 sid = task_session(p);
235
236 return sid;
237 }
238
239 /*
240 * Determine if a process group is "orphaned", according to the POSIX
241 * definition in 2.2.2.52. Orphaned process groups are not to be affected
242 * by terminal-generated stop signals. Newly orphaned process groups are
243 * to receive a SIGHUP and a SIGCONT.
244 *
245 * "I ask you, have you ever known what it is to be an orphan?"
246 */
247 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
248 {
249 struct task_struct *p;
250
251 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
252 if ((p == ignored_task) ||
253 (p->exit_state && thread_group_empty(p)) ||
254 is_global_init(p->real_parent))
255 continue;
256
257 if (task_pgrp(p->real_parent) != pgrp &&
258 task_session(p->real_parent) == task_session(p))
259 return 0;
260 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
261
262 return 1;
263 }
264
265 int is_current_pgrp_orphaned(void)
266 {
267 int retval;
268
269 read_lock(&tasklist_lock);
270 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
271 read_unlock(&tasklist_lock);
272
273 return retval;
274 }
275
276 static int has_stopped_jobs(struct pid *pgrp)
277 {
278 int retval = 0;
279 struct task_struct *p;
280
281 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
282 if (!task_is_stopped(p))
283 continue;
284 retval = 1;
285 break;
286 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
287 return retval;
288 }
289
290 /*
291 * Check to see if any process groups have become orphaned as
292 * a result of our exiting, and if they have any stopped jobs,
293 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
294 */
295 static void
296 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
297 {
298 struct pid *pgrp = task_pgrp(tsk);
299 struct task_struct *ignored_task = tsk;
300
301 if (!parent)
302 /* exit: our father is in a different pgrp than
303 * we are and we were the only connection outside.
304 */
305 parent = tsk->real_parent;
306 else
307 /* reparent: our child is in a different pgrp than
308 * we are, and it was the only connection outside.
309 */
310 ignored_task = NULL;
311
312 if (task_pgrp(parent) != pgrp &&
313 task_session(parent) == task_session(tsk) &&
314 will_become_orphaned_pgrp(pgrp, ignored_task) &&
315 has_stopped_jobs(pgrp)) {
316 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
317 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
318 }
319 }
320
321 /**
322 * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
323 *
324 * If a kernel thread is launched as a result of a system call, or if
325 * it ever exits, it should generally reparent itself to kthreadd so it
326 * isn't in the way of other processes and is correctly cleaned up on exit.
327 *
328 * The various task state such as scheduling policy and priority may have
329 * been inherited from a user process, so we reset them to sane values here.
330 *
331 * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
332 */
333 static void reparent_to_kthreadd(void)
334 {
335 write_lock_irq(&tasklist_lock);
336
337 ptrace_unlink(current);
338 /* Reparent to init */
339 current->real_parent = current->parent = kthreadd_task;
340 list_move_tail(&current->sibling, &current->real_parent->children);
341
342 /* Set the exit signal to SIGCHLD so we signal init on exit */
343 current->exit_signal = SIGCHLD;
344
345 if (task_nice(current) < 0)
346 set_user_nice(current, 0);
347 /* cpus_allowed? */
348 /* rt_priority? */
349 /* signals? */
350 memcpy(current->signal->rlim, init_task.signal->rlim,
351 sizeof(current->signal->rlim));
352
353 atomic_inc(&init_cred.usage);
354 commit_creds(&init_cred);
355 write_unlock_irq(&tasklist_lock);
356 }
357
358 void __set_special_pids(struct pid *pid)
359 {
360 struct task_struct *curr = current->group_leader;
361
362 if (task_session(curr) != pid)
363 change_pid(curr, PIDTYPE_SID, pid);
364
365 if (task_pgrp(curr) != pid)
366 change_pid(curr, PIDTYPE_PGID, pid);
367 }
368
369 static void set_special_pids(struct pid *pid)
370 {
371 write_lock_irq(&tasklist_lock);
372 __set_special_pids(pid);
373 write_unlock_irq(&tasklist_lock);
374 }
375
376 /*
377 * Let kernel threads use this to say that they allow a certain signal.
378 * Must not be used if kthread was cloned with CLONE_SIGHAND.
379 */
380 int allow_signal(int sig)
381 {
382 if (!valid_signal(sig) || sig < 1)
383 return -EINVAL;
384
385 spin_lock_irq(&current->sighand->siglock);
386 /* This is only needed for daemonize()'ed kthreads */
387 sigdelset(&current->blocked, sig);
388 /*
389 * Kernel threads handle their own signals. Let the signal code
390 * know it'll be handled, so that they don't get converted to
391 * SIGKILL or just silently dropped.
392 */
393 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
394 recalc_sigpending();
395 spin_unlock_irq(&current->sighand->siglock);
396 return 0;
397 }
398
399 EXPORT_SYMBOL(allow_signal);
400
401 int disallow_signal(int sig)
402 {
403 if (!valid_signal(sig) || sig < 1)
404 return -EINVAL;
405
406 spin_lock_irq(&current->sighand->siglock);
407 current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
408 recalc_sigpending();
409 spin_unlock_irq(&current->sighand->siglock);
410 return 0;
411 }
412
413 EXPORT_SYMBOL(disallow_signal);
414
415 /*
416 * Put all the gunge required to become a kernel thread without
417 * attached user resources in one place where it belongs.
418 */
419
420 void daemonize(const char *name, ...)
421 {
422 va_list args;
423 sigset_t blocked;
424
425 va_start(args, name);
426 vsnprintf(current->comm, sizeof(current->comm), name, args);
427 va_end(args);
428
429 /*
430 * If we were started as result of loading a module, close all of the
431 * user space pages. We don't need them, and if we didn't close them
432 * they would be locked into memory.
433 */
434 exit_mm(current);
435 /*
436 * We don't want to have TIF_FREEZE set if the system-wide hibernation
437 * or suspend transition begins right now.
438 */
439 current->flags |= (PF_NOFREEZE | PF_KTHREAD);
440
441 if (current->nsproxy != &init_nsproxy) {
442 get_nsproxy(&init_nsproxy);
443 switch_task_namespaces(current, &init_nsproxy);
444 }
445 set_special_pids(&init_struct_pid);
446 proc_clear_tty(current);
447
448 /* Block and flush all signals */
449 sigfillset(&blocked);
450 sigprocmask(SIG_BLOCK, &blocked, NULL);
451 flush_signals(current);
452
453 /* Become as one with the init task */
454
455 daemonize_fs_struct();
456 exit_files(current);
457 current->files = init_task.files;
458 atomic_inc(&current->files->count);
459
460 reparent_to_kthreadd();
461 }
462
463 EXPORT_SYMBOL(daemonize);
464
465 static void close_files(struct files_struct * files)
466 {
467 int i, j;
468 struct fdtable *fdt;
469
470 j = 0;
471
472 /*
473 * It is safe to dereference the fd table without RCU or
474 * ->file_lock because this is the last reference to the
475 * files structure.
476 */
477 fdt = files_fdtable(files);
478 for (;;) {
479 unsigned long set;
480 i = j * __NFDBITS;
481 if (i >= fdt->max_fds)
482 break;
483 set = fdt->open_fds->fds_bits[j++];
484 while (set) {
485 if (set & 1) {
486 struct file * file = xchg(&fdt->fd[i], NULL);
487 if (file) {
488 filp_close(file, files);
489 cond_resched();
490 }
491 }
492 i++;
493 set >>= 1;
494 }
495 }
496 }
497
498 struct files_struct *get_files_struct(struct task_struct *task)
499 {
500 struct files_struct *files;
501
502 task_lock(task);
503 files = task->files;
504 if (files)
505 atomic_inc(&files->count);
506 task_unlock(task);
507
508 return files;
509 }
510
511 void put_files_struct(struct files_struct *files)
512 {
513 struct fdtable *fdt;
514
515 if (atomic_dec_and_test(&files->count)) {
516 close_files(files);
517 /*
518 * Free the fd and fdset arrays if we expanded them.
519 * If the fdtable was embedded, pass files for freeing
520 * at the end of the RCU grace period. Otherwise,
521 * you can free files immediately.
522 */
523 fdt = files_fdtable(files);
524 if (fdt != &files->fdtab)
525 kmem_cache_free(files_cachep, files);
526 free_fdtable(fdt);
527 }
528 }
529
530 void reset_files_struct(struct files_struct *files)
531 {
532 struct task_struct *tsk = current;
533 struct files_struct *old;
534
535 old = tsk->files;
536 task_lock(tsk);
537 tsk->files = files;
538 task_unlock(tsk);
539 put_files_struct(old);
540 }
541
542 void exit_files(struct task_struct *tsk)
543 {
544 struct files_struct * files = tsk->files;
545
546 if (files) {
547 task_lock(tsk);
548 tsk->files = NULL;
549 task_unlock(tsk);
550 put_files_struct(files);
551 }
552 }
553
554 #ifdef CONFIG_MM_OWNER
555 /*
556 * Task p is exiting and it owned mm, lets find a new owner for it
557 */
558 static inline int
559 mm_need_new_owner(struct mm_struct *mm, struct task_struct *p)
560 {
561 /*
562 * If there are other users of the mm and the owner (us) is exiting
563 * we need to find a new owner to take on the responsibility.
564 */
565 if (atomic_read(&mm->mm_users) <= 1)
566 return 0;
567 if (mm->owner != p)
568 return 0;
569 return 1;
570 }
571
572 void mm_update_next_owner(struct mm_struct *mm)
573 {
574 struct task_struct *c, *g, *p = current;
575
576 retry:
577 if (!mm_need_new_owner(mm, p))
578 return;
579
580 read_lock(&tasklist_lock);
581 /*
582 * Search in the children
583 */
584 list_for_each_entry(c, &p->children, sibling) {
585 if (c->mm == mm)
586 goto assign_new_owner;
587 }
588
589 /*
590 * Search in the siblings
591 */
592 list_for_each_entry(c, &p->real_parent->children, sibling) {
593 if (c->mm == mm)
594 goto assign_new_owner;
595 }
596
597 /*
598 * Search through everything else. We should not get
599 * here often
600 */
601 do_each_thread(g, c) {
602 if (c->mm == mm)
603 goto assign_new_owner;
604 } while_each_thread(g, c);
605
606 read_unlock(&tasklist_lock);
607 /*
608 * We found no owner yet mm_users > 1: this implies that we are
609 * most likely racing with swapoff (try_to_unuse()) or /proc or
610 * ptrace or page migration (get_task_mm()). Mark owner as NULL.
611 */
612 mm->owner = NULL;
613 return;
614
615 assign_new_owner:
616 BUG_ON(c == p);
617 get_task_struct(c);
618 /*
619 * The task_lock protects c->mm from changing.
620 * We always want mm->owner->mm == mm
621 */
622 task_lock(c);
623 /*
624 * Delay read_unlock() till we have the task_lock()
625 * to ensure that c does not slip away underneath us
626 */
627 read_unlock(&tasklist_lock);
628 if (c->mm != mm) {
629 task_unlock(c);
630 put_task_struct(c);
631 goto retry;
632 }
633 mm->owner = c;
634 task_unlock(c);
635 put_task_struct(c);
636 }
637 #endif /* CONFIG_MM_OWNER */
638
639 /*
640 * Turn us into a lazy TLB process if we
641 * aren't already..
642 */
643 static void exit_mm(struct task_struct * tsk)
644 {
645 struct mm_struct *mm = tsk->mm;
646 struct core_state *core_state;
647
648 mm_release(tsk, mm);
649 if (!mm)
650 return;
651 /*
652 * Serialize with any possible pending coredump.
653 * We must hold mmap_sem around checking core_state
654 * and clearing tsk->mm. The core-inducing thread
655 * will increment ->nr_threads for each thread in the
656 * group with ->mm != NULL.
657 */
658 down_read(&mm->mmap_sem);
659 core_state = mm->core_state;
660 if (core_state) {
661 struct core_thread self;
662 up_read(&mm->mmap_sem);
663
664 self.task = tsk;
665 self.next = xchg(&core_state->dumper.next, &self);
666 /*
667 * Implies mb(), the result of xchg() must be visible
668 * to core_state->dumper.
669 */
670 if (atomic_dec_and_test(&core_state->nr_threads))
671 complete(&core_state->startup);
672
673 for (;;) {
674 set_task_state(tsk, TASK_UNINTERRUPTIBLE);
675 if (!self.task) /* see coredump_finish() */
676 break;
677 schedule();
678 }
679 __set_task_state(tsk, TASK_RUNNING);
680 down_read(&mm->mmap_sem);
681 }
682 atomic_inc(&mm->mm_count);
683 BUG_ON(mm != tsk->active_mm);
684 /* more a memory barrier than a real lock */
685 task_lock(tsk);
686 tsk->mm = NULL;
687 up_read(&mm->mmap_sem);
688 enter_lazy_tlb(mm, current);
689 /* We don't want this task to be frozen prematurely */
690 clear_freeze_flag(tsk);
691 task_unlock(tsk);
692 mm_update_next_owner(mm);
693 mmput(mm);
694 }
695
696 /*
697 * When we die, we re-parent all our children.
698 * Try to give them to another thread in our thread
699 * group, and if no such member exists, give it to
700 * the child reaper process (ie "init") in our pid
701 * space.
702 */
703 static struct task_struct *find_new_reaper(struct task_struct *father)
704 {
705 struct pid_namespace *pid_ns = task_active_pid_ns(father);
706 struct task_struct *thread;
707
708 thread = father;
709 while_each_thread(father, thread) {
710 if (thread->flags & PF_EXITING)
711 continue;
712 if (unlikely(pid_ns->child_reaper == father))
713 pid_ns->child_reaper = thread;
714 return thread;
715 }
716
717 if (unlikely(pid_ns->child_reaper == father)) {
718 write_unlock_irq(&tasklist_lock);
719 if (unlikely(pid_ns == &init_pid_ns))
720 panic("Attempted to kill init!");
721
722 zap_pid_ns_processes(pid_ns);
723 write_lock_irq(&tasklist_lock);
724 /*
725 * We can not clear ->child_reaper or leave it alone.
726 * There may by stealth EXIT_DEAD tasks on ->children,
727 * forget_original_parent() must move them somewhere.
728 */
729 pid_ns->child_reaper = init_pid_ns.child_reaper;
730 }
731
732 return pid_ns->child_reaper;
733 }
734
735 /*
736 * Any that need to be release_task'd are put on the @dead list.
737 */
738 static void reparent_thread(struct task_struct *father, struct task_struct *p,
739 struct list_head *dead)
740 {
741 if (p->pdeath_signal)
742 group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p);
743
744 list_move_tail(&p->sibling, &p->real_parent->children);
745
746 if (task_detached(p))
747 return;
748 /*
749 * If this is a threaded reparent there is no need to
750 * notify anyone anything has happened.
751 */
752 if (same_thread_group(p->real_parent, father))
753 return;
754
755 /* We don't want people slaying init. */
756 p->exit_signal = SIGCHLD;
757
758 /* If it has exited notify the new parent about this child's death. */
759 if (!task_ptrace(p) &&
760 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
761 do_notify_parent(p, p->exit_signal);
762 if (task_detached(p)) {
763 p->exit_state = EXIT_DEAD;
764 list_move_tail(&p->sibling, dead);
765 }
766 }
767
768 kill_orphaned_pgrp(p, father);
769 }
770
771 static void forget_original_parent(struct task_struct *father)
772 {
773 struct task_struct *p, *n, *reaper;
774 LIST_HEAD(dead_children);
775
776 exit_ptrace(father);
777
778 write_lock_irq(&tasklist_lock);
779 reaper = find_new_reaper(father);
780
781 list_for_each_entry_safe(p, n, &father->children, sibling) {
782 p->real_parent = reaper;
783 if (p->parent == father) {
784 BUG_ON(task_ptrace(p));
785 p->parent = p->real_parent;
786 }
787 reparent_thread(father, p, &dead_children);
788 }
789 write_unlock_irq(&tasklist_lock);
790
791 BUG_ON(!list_empty(&father->children));
792
793 list_for_each_entry_safe(p, n, &dead_children, sibling) {
794 list_del_init(&p->sibling);
795 release_task(p);
796 }
797 }
798
799 /*
800 * Send signals to all our closest relatives so that they know
801 * to properly mourn us..
802 */
803 static void exit_notify(struct task_struct *tsk, int group_dead)
804 {
805 int signal;
806 void *cookie;
807
808 /*
809 * This does two things:
810 *
811 * A. Make init inherit all the child processes
812 * B. Check to see if any process groups have become orphaned
813 * as a result of our exiting, and if they have any stopped
814 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
815 */
816 forget_original_parent(tsk);
817 exit_task_namespaces(tsk);
818
819 write_lock_irq(&tasklist_lock);
820 if (group_dead)
821 kill_orphaned_pgrp(tsk->group_leader, NULL);
822
823 /* Let father know we died
824 *
825 * Thread signals are configurable, but you aren't going to use
826 * that to send signals to arbitary processes.
827 * That stops right now.
828 *
829 * If the parent exec id doesn't match the exec id we saved
830 * when we started then we know the parent has changed security
831 * domain.
832 *
833 * If our self_exec id doesn't match our parent_exec_id then
834 * we have changed execution domain as these two values started
835 * the same after a fork.
836 */
837 if (tsk->exit_signal != SIGCHLD && !task_detached(tsk) &&
838 (tsk->parent_exec_id != tsk->real_parent->self_exec_id ||
839 tsk->self_exec_id != tsk->parent_exec_id))
840 tsk->exit_signal = SIGCHLD;
841
842 signal = tracehook_notify_death(tsk, &cookie, group_dead);
843 if (signal >= 0)
844 signal = do_notify_parent(tsk, signal);
845
846 tsk->exit_state = signal == DEATH_REAP ? EXIT_DEAD : EXIT_ZOMBIE;
847
848 /* mt-exec, de_thread() is waiting for us */
849 if (thread_group_leader(tsk) &&
850 tsk->signal->group_exit_task &&
851 tsk->signal->notify_count < 0)
852 wake_up_process(tsk->signal->group_exit_task);
853
854 write_unlock_irq(&tasklist_lock);
855
856 tracehook_report_death(tsk, signal, cookie, group_dead);
857
858 /* If the process is dead, release it - nobody will wait for it */
859 if (signal == DEATH_REAP)
860 release_task(tsk);
861 }
862
863 #ifdef CONFIG_DEBUG_STACK_USAGE
864 static void check_stack_usage(void)
865 {
866 static DEFINE_SPINLOCK(low_water_lock);
867 static int lowest_to_date = THREAD_SIZE;
868 unsigned long free;
869
870 free = stack_not_used(current);
871
872 if (free >= lowest_to_date)
873 return;
874
875 spin_lock(&low_water_lock);
876 if (free < lowest_to_date) {
877 printk(KERN_WARNING "%s used greatest stack depth: %lu bytes "
878 "left\n",
879 current->comm, free);
880 lowest_to_date = free;
881 }
882 spin_unlock(&low_water_lock);
883 }
884 #else
885 static inline void check_stack_usage(void) {}
886 #endif
887
888 NORET_TYPE void do_exit(long code)
889 {
890 struct task_struct *tsk = current;
891 int group_dead;
892
893 profile_task_exit(tsk);
894
895 WARN_ON(atomic_read(&tsk->fs_excl));
896
897 if (unlikely(in_interrupt()))
898 panic("Aiee, killing interrupt handler!");
899 if (unlikely(!tsk->pid))
900 panic("Attempted to kill the idle task!");
901
902 tracehook_report_exit(&code);
903
904 /*
905 * We're taking recursive faults here in do_exit. Safest is to just
906 * leave this task alone and wait for reboot.
907 */
908 if (unlikely(tsk->flags & PF_EXITING)) {
909 printk(KERN_ALERT
910 "Fixing recursive fault but reboot is needed!\n");
911 /*
912 * We can do this unlocked here. The futex code uses
913 * this flag just to verify whether the pi state
914 * cleanup has been done or not. In the worst case it
915 * loops once more. We pretend that the cleanup was
916 * done as there is no way to return. Either the
917 * OWNER_DIED bit is set by now or we push the blocked
918 * task into the wait for ever nirwana as well.
919 */
920 tsk->flags |= PF_EXITPIDONE;
921 set_current_state(TASK_UNINTERRUPTIBLE);
922 schedule();
923 }
924
925 exit_irq_thread();
926
927 exit_signals(tsk); /* sets PF_EXITING */
928 /*
929 * tsk->flags are checked in the futex code to protect against
930 * an exiting task cleaning up the robust pi futexes.
931 */
932 smp_mb();
933 spin_unlock_wait(&tsk->pi_lock);
934
935 if (unlikely(in_atomic()))
936 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
937 current->comm, task_pid_nr(current),
938 preempt_count());
939
940 acct_update_integrals(tsk);
941
942 group_dead = atomic_dec_and_test(&tsk->signal->live);
943 if (group_dead) {
944 hrtimer_cancel(&tsk->signal->real_timer);
945 exit_itimers(tsk->signal);
946 }
947 acct_collect(code, group_dead);
948 if (group_dead)
949 tty_audit_exit();
950 if (unlikely(tsk->audit_context))
951 audit_free(tsk);
952
953 tsk->exit_code = code;
954 taskstats_exit(tsk, group_dead);
955
956 exit_mm(tsk);
957
958 if (group_dead)
959 acct_process();
960 trace_sched_process_exit(tsk);
961
962 exit_sem(tsk);
963 exit_files(tsk);
964 exit_fs(tsk);
965 check_stack_usage();
966 exit_thread();
967 cgroup_exit(tsk, 1);
968
969 if (group_dead && tsk->signal->leader)
970 disassociate_ctty(1);
971
972 module_put(task_thread_info(tsk)->exec_domain->module);
973 if (tsk->binfmt)
974 module_put(tsk->binfmt->module);
975
976 proc_exit_connector(tsk);
977
978 /*
979 * Flush inherited counters to the parent - before the parent
980 * gets woken up by child-exit notifications.
981 */
982 perf_counter_exit_task(tsk);
983
984 exit_notify(tsk, group_dead);
985 #ifdef CONFIG_NUMA
986 mpol_put(tsk->mempolicy);
987 tsk->mempolicy = NULL;
988 #endif
989 #ifdef CONFIG_FUTEX
990 if (unlikely(!list_empty(&tsk->pi_state_list)))
991 exit_pi_state_list(tsk);
992 if (unlikely(current->pi_state_cache))
993 kfree(current->pi_state_cache);
994 #endif
995 /*
996 * Make sure we are holding no locks:
997 */
998 debug_check_no_locks_held(tsk);
999 /*
1000 * We can do this unlocked here. The futex code uses this flag
1001 * just to verify whether the pi state cleanup has been done
1002 * or not. In the worst case it loops once more.
1003 */
1004 tsk->flags |= PF_EXITPIDONE;
1005
1006 if (tsk->io_context)
1007 exit_io_context();
1008
1009 if (tsk->splice_pipe)
1010 __free_pipe_info(tsk->splice_pipe);
1011
1012 preempt_disable();
1013 /* causes final put_task_struct in finish_task_switch(). */
1014 tsk->state = TASK_DEAD;
1015 schedule();
1016 BUG();
1017 /* Avoid "noreturn function does return". */
1018 for (;;)
1019 cpu_relax(); /* For when BUG is null */
1020 }
1021
1022 EXPORT_SYMBOL_GPL(do_exit);
1023
1024 NORET_TYPE void complete_and_exit(struct completion *comp, long code)
1025 {
1026 if (comp)
1027 complete(comp);
1028
1029 do_exit(code);
1030 }
1031
1032 EXPORT_SYMBOL(complete_and_exit);
1033
1034 SYSCALL_DEFINE1(exit, int, error_code)
1035 {
1036 do_exit((error_code&0xff)<<8);
1037 }
1038
1039 /*
1040 * Take down every thread in the group. This is called by fatal signals
1041 * as well as by sys_exit_group (below).
1042 */
1043 NORET_TYPE void
1044 do_group_exit(int exit_code)
1045 {
1046 struct signal_struct *sig = current->signal;
1047
1048 BUG_ON(exit_code & 0x80); /* core dumps don't get here */
1049
1050 if (signal_group_exit(sig))
1051 exit_code = sig->group_exit_code;
1052 else if (!thread_group_empty(current)) {
1053 struct sighand_struct *const sighand = current->sighand;
1054 spin_lock_irq(&sighand->siglock);
1055 if (signal_group_exit(sig))
1056 /* Another thread got here before we took the lock. */
1057 exit_code = sig->group_exit_code;
1058 else {
1059 sig->group_exit_code = exit_code;
1060 sig->flags = SIGNAL_GROUP_EXIT;
1061 zap_other_threads(current);
1062 }
1063 spin_unlock_irq(&sighand->siglock);
1064 }
1065
1066 do_exit(exit_code);
1067 /* NOTREACHED */
1068 }
1069
1070 /*
1071 * this kills every thread in the thread group. Note that any externally
1072 * wait4()-ing process will get the correct exit code - even if this
1073 * thread is not the thread group leader.
1074 */
1075 SYSCALL_DEFINE1(exit_group, int, error_code)
1076 {
1077 do_group_exit((error_code & 0xff) << 8);
1078 /* NOTREACHED */
1079 return 0;
1080 }
1081
1082 struct wait_opts {
1083 enum pid_type wo_type;
1084 int wo_flags;
1085 struct pid *wo_pid;
1086
1087 struct siginfo __user *wo_info;
1088 int __user *wo_stat;
1089 struct rusage __user *wo_rusage;
1090
1091 int notask_error;
1092 };
1093
1094 static struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
1095 {
1096 struct pid *pid = NULL;
1097 if (type == PIDTYPE_PID)
1098 pid = task->pids[type].pid;
1099 else if (type < PIDTYPE_MAX)
1100 pid = task->group_leader->pids[type].pid;
1101 return pid;
1102 }
1103
1104 static int eligible_child(struct wait_opts *wo, struct task_struct *p)
1105 {
1106 int err;
1107
1108 if (wo->wo_type < PIDTYPE_MAX) {
1109 if (task_pid_type(p, wo->wo_type) != wo->wo_pid)
1110 return 0;
1111 }
1112
1113 /* Wait for all children (clone and not) if __WALL is set;
1114 * otherwise, wait for clone children *only* if __WCLONE is
1115 * set; otherwise, wait for non-clone children *only*. (Note:
1116 * A "clone" child here is one that reports to its parent
1117 * using a signal other than SIGCHLD.) */
1118 if (((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1119 && !(wo->wo_flags & __WALL))
1120 return 0;
1121
1122 err = security_task_wait(p);
1123 if (err)
1124 return err;
1125
1126 return 1;
1127 }
1128
1129 static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p,
1130 pid_t pid, uid_t uid, int why, int status)
1131 {
1132 struct siginfo __user *infop;
1133 int retval = wo->wo_rusage
1134 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1135
1136 put_task_struct(p);
1137 infop = wo->wo_info;
1138 if (!retval)
1139 retval = put_user(SIGCHLD, &infop->si_signo);
1140 if (!retval)
1141 retval = put_user(0, &infop->si_errno);
1142 if (!retval)
1143 retval = put_user((short)why, &infop->si_code);
1144 if (!retval)
1145 retval = put_user(pid, &infop->si_pid);
1146 if (!retval)
1147 retval = put_user(uid, &infop->si_uid);
1148 if (!retval)
1149 retval = put_user(status, &infop->si_status);
1150 if (!retval)
1151 retval = pid;
1152 return retval;
1153 }
1154
1155 /*
1156 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1157 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1158 * the lock and this task is uninteresting. If we return nonzero, we have
1159 * released the lock and the system call should return.
1160 */
1161 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1162 {
1163 unsigned long state;
1164 int retval, status, traced;
1165 pid_t pid = task_pid_vnr(p);
1166 uid_t uid = __task_cred(p)->uid;
1167 struct siginfo __user *infop;
1168
1169 if (!likely(wo->wo_flags & WEXITED))
1170 return 0;
1171
1172 if (unlikely(wo->wo_flags & WNOWAIT)) {
1173 int exit_code = p->exit_code;
1174 int why, status;
1175
1176 get_task_struct(p);
1177 read_unlock(&tasklist_lock);
1178 if ((exit_code & 0x7f) == 0) {
1179 why = CLD_EXITED;
1180 status = exit_code >> 8;
1181 } else {
1182 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1183 status = exit_code & 0x7f;
1184 }
1185 return wait_noreap_copyout(wo, p, pid, uid, why, status);
1186 }
1187
1188 /*
1189 * Try to move the task's state to DEAD
1190 * only one thread is allowed to do this:
1191 */
1192 state = xchg(&p->exit_state, EXIT_DEAD);
1193 if (state != EXIT_ZOMBIE) {
1194 BUG_ON(state != EXIT_DEAD);
1195 return 0;
1196 }
1197
1198 traced = ptrace_reparented(p);
1199 /*
1200 * It can be ptraced but not reparented, check
1201 * !task_detached() to filter out sub-threads.
1202 */
1203 if (likely(!traced) && likely(!task_detached(p))) {
1204 struct signal_struct *psig;
1205 struct signal_struct *sig;
1206
1207 /*
1208 * The resource counters for the group leader are in its
1209 * own task_struct. Those for dead threads in the group
1210 * are in its signal_struct, as are those for the child
1211 * processes it has previously reaped. All these
1212 * accumulate in the parent's signal_struct c* fields.
1213 *
1214 * We don't bother to take a lock here to protect these
1215 * p->signal fields, because they are only touched by
1216 * __exit_signal, which runs with tasklist_lock
1217 * write-locked anyway, and so is excluded here. We do
1218 * need to protect the access to parent->signal fields,
1219 * as other threads in the parent group can be right
1220 * here reaping other children at the same time.
1221 */
1222 spin_lock_irq(&p->real_parent->sighand->siglock);
1223 psig = p->real_parent->signal;
1224 sig = p->signal;
1225 psig->cutime =
1226 cputime_add(psig->cutime,
1227 cputime_add(p->utime,
1228 cputime_add(sig->utime,
1229 sig->cutime)));
1230 psig->cstime =
1231 cputime_add(psig->cstime,
1232 cputime_add(p->stime,
1233 cputime_add(sig->stime,
1234 sig->cstime)));
1235 psig->cgtime =
1236 cputime_add(psig->cgtime,
1237 cputime_add(p->gtime,
1238 cputime_add(sig->gtime,
1239 sig->cgtime)));
1240 psig->cmin_flt +=
1241 p->min_flt + sig->min_flt + sig->cmin_flt;
1242 psig->cmaj_flt +=
1243 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1244 psig->cnvcsw +=
1245 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1246 psig->cnivcsw +=
1247 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1248 psig->cinblock +=
1249 task_io_get_inblock(p) +
1250 sig->inblock + sig->cinblock;
1251 psig->coublock +=
1252 task_io_get_oublock(p) +
1253 sig->oublock + sig->coublock;
1254 task_io_accounting_add(&psig->ioac, &p->ioac);
1255 task_io_accounting_add(&psig->ioac, &sig->ioac);
1256 spin_unlock_irq(&p->real_parent->sighand->siglock);
1257 }
1258
1259 /*
1260 * Now we are sure this task is interesting, and no other
1261 * thread can reap it because we set its state to EXIT_DEAD.
1262 */
1263 read_unlock(&tasklist_lock);
1264
1265 retval = wo->wo_rusage
1266 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1267 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1268 ? p->signal->group_exit_code : p->exit_code;
1269 if (!retval && wo->wo_stat)
1270 retval = put_user(status, wo->wo_stat);
1271
1272 infop = wo->wo_info;
1273 if (!retval && infop)
1274 retval = put_user(SIGCHLD, &infop->si_signo);
1275 if (!retval && infop)
1276 retval = put_user(0, &infop->si_errno);
1277 if (!retval && infop) {
1278 int why;
1279
1280 if ((status & 0x7f) == 0) {
1281 why = CLD_EXITED;
1282 status >>= 8;
1283 } else {
1284 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1285 status &= 0x7f;
1286 }
1287 retval = put_user((short)why, &infop->si_code);
1288 if (!retval)
1289 retval = put_user(status, &infop->si_status);
1290 }
1291 if (!retval && infop)
1292 retval = put_user(pid, &infop->si_pid);
1293 if (!retval && infop)
1294 retval = put_user(uid, &infop->si_uid);
1295 if (!retval)
1296 retval = pid;
1297
1298 if (traced) {
1299 write_lock_irq(&tasklist_lock);
1300 /* We dropped tasklist, ptracer could die and untrace */
1301 ptrace_unlink(p);
1302 /*
1303 * If this is not a detached task, notify the parent.
1304 * If it's still not detached after that, don't release
1305 * it now.
1306 */
1307 if (!task_detached(p)) {
1308 do_notify_parent(p, p->exit_signal);
1309 if (!task_detached(p)) {
1310 p->exit_state = EXIT_ZOMBIE;
1311 p = NULL;
1312 }
1313 }
1314 write_unlock_irq(&tasklist_lock);
1315 }
1316 if (p != NULL)
1317 release_task(p);
1318
1319 return retval;
1320 }
1321
1322 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1323 {
1324 if (ptrace) {
1325 if (task_is_stopped_or_traced(p))
1326 return &p->exit_code;
1327 } else {
1328 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1329 return &p->signal->group_exit_code;
1330 }
1331 return NULL;
1332 }
1333
1334 /*
1335 * Handle sys_wait4 work for one task in state TASK_STOPPED. We hold
1336 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1337 * the lock and this task is uninteresting. If we return nonzero, we have
1338 * released the lock and the system call should return.
1339 */
1340 static int wait_task_stopped(struct wait_opts *wo,
1341 int ptrace, struct task_struct *p)
1342 {
1343 struct siginfo __user *infop;
1344 int retval, exit_code, *p_code, why;
1345 uid_t uid = 0; /* unneeded, required by compiler */
1346 pid_t pid;
1347
1348 /*
1349 * Traditionally we see ptrace'd stopped tasks regardless of options.
1350 */
1351 if (!ptrace && !(wo->wo_flags & WUNTRACED))
1352 return 0;
1353
1354 exit_code = 0;
1355 spin_lock_irq(&p->sighand->siglock);
1356
1357 p_code = task_stopped_code(p, ptrace);
1358 if (unlikely(!p_code))
1359 goto unlock_sig;
1360
1361 exit_code = *p_code;
1362 if (!exit_code)
1363 goto unlock_sig;
1364
1365 if (!unlikely(wo->wo_flags & WNOWAIT))
1366 *p_code = 0;
1367
1368 /* don't need the RCU readlock here as we're holding a spinlock */
1369 uid = __task_cred(p)->uid;
1370 unlock_sig:
1371 spin_unlock_irq(&p->sighand->siglock);
1372 if (!exit_code)
1373 return 0;
1374
1375 /*
1376 * Now we are pretty sure this task is interesting.
1377 * Make sure it doesn't get reaped out from under us while we
1378 * give up the lock and then examine it below. We don't want to
1379 * keep holding onto the tasklist_lock while we call getrusage and
1380 * possibly take page faults for user memory.
1381 */
1382 get_task_struct(p);
1383 pid = task_pid_vnr(p);
1384 why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1385 read_unlock(&tasklist_lock);
1386
1387 if (unlikely(wo->wo_flags & WNOWAIT))
1388 return wait_noreap_copyout(wo, p, pid, uid, why, exit_code);
1389
1390 retval = wo->wo_rusage
1391 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1392 if (!retval && wo->wo_stat)
1393 retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat);
1394
1395 infop = wo->wo_info;
1396 if (!retval && infop)
1397 retval = put_user(SIGCHLD, &infop->si_signo);
1398 if (!retval && infop)
1399 retval = put_user(0, &infop->si_errno);
1400 if (!retval && infop)
1401 retval = put_user((short)why, &infop->si_code);
1402 if (!retval && infop)
1403 retval = put_user(exit_code, &infop->si_status);
1404 if (!retval && infop)
1405 retval = put_user(pid, &infop->si_pid);
1406 if (!retval && infop)
1407 retval = put_user(uid, &infop->si_uid);
1408 if (!retval)
1409 retval = pid;
1410 put_task_struct(p);
1411
1412 BUG_ON(!retval);
1413 return retval;
1414 }
1415
1416 /*
1417 * Handle do_wait work for one task in a live, non-stopped state.
1418 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1419 * the lock and this task is uninteresting. If we return nonzero, we have
1420 * released the lock and the system call should return.
1421 */
1422 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1423 {
1424 int retval;
1425 pid_t pid;
1426 uid_t uid;
1427
1428 if (!unlikely(wo->wo_flags & WCONTINUED))
1429 return 0;
1430
1431 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1432 return 0;
1433
1434 spin_lock_irq(&p->sighand->siglock);
1435 /* Re-check with the lock held. */
1436 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1437 spin_unlock_irq(&p->sighand->siglock);
1438 return 0;
1439 }
1440 if (!unlikely(wo->wo_flags & WNOWAIT))
1441 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1442 uid = __task_cred(p)->uid;
1443 spin_unlock_irq(&p->sighand->siglock);
1444
1445 pid = task_pid_vnr(p);
1446 get_task_struct(p);
1447 read_unlock(&tasklist_lock);
1448
1449 if (!wo->wo_info) {
1450 retval = wo->wo_rusage
1451 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1452 put_task_struct(p);
1453 if (!retval && wo->wo_stat)
1454 retval = put_user(0xffff, wo->wo_stat);
1455 if (!retval)
1456 retval = pid;
1457 } else {
1458 retval = wait_noreap_copyout(wo, p, pid, uid,
1459 CLD_CONTINUED, SIGCONT);
1460 BUG_ON(retval == 0);
1461 }
1462
1463 return retval;
1464 }
1465
1466 /*
1467 * Consider @p for a wait by @parent.
1468 *
1469 * -ECHILD should be in ->notask_error before the first call.
1470 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1471 * Returns zero if the search for a child should continue;
1472 * then ->notask_error is 0 if @p is an eligible child,
1473 * or another error from security_task_wait(), or still -ECHILD.
1474 */
1475 static int wait_consider_task(struct wait_opts *wo, struct task_struct *parent,
1476 int ptrace, struct task_struct *p)
1477 {
1478 int ret = eligible_child(wo, p);
1479 if (!ret)
1480 return ret;
1481
1482 if (unlikely(ret < 0)) {
1483 /*
1484 * If we have not yet seen any eligible child,
1485 * then let this error code replace -ECHILD.
1486 * A permission error will give the user a clue
1487 * to look for security policy problems, rather
1488 * than for mysterious wait bugs.
1489 */
1490 if (wo->notask_error)
1491 wo->notask_error = ret;
1492 return 0;
1493 }
1494
1495 if (likely(!ptrace) && unlikely(task_ptrace(p))) {
1496 /*
1497 * This child is hidden by ptrace.
1498 * We aren't allowed to see it now, but eventually we will.
1499 */
1500 wo->notask_error = 0;
1501 return 0;
1502 }
1503
1504 if (p->exit_state == EXIT_DEAD)
1505 return 0;
1506
1507 /*
1508 * We don't reap group leaders with subthreads.
1509 */
1510 if (p->exit_state == EXIT_ZOMBIE && !delay_group_leader(p))
1511 return wait_task_zombie(wo, p);
1512
1513 /*
1514 * It's stopped or running now, so it might
1515 * later continue, exit, or stop again.
1516 */
1517 wo->notask_error = 0;
1518
1519 if (task_stopped_code(p, ptrace))
1520 return wait_task_stopped(wo, ptrace, p);
1521
1522 return wait_task_continued(wo, p);
1523 }
1524
1525 /*
1526 * Do the work of do_wait() for one thread in the group, @tsk.
1527 *
1528 * -ECHILD should be in ->notask_error before the first call.
1529 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1530 * Returns zero if the search for a child should continue; then
1531 * ->notask_error is 0 if there were any eligible children,
1532 * or another error from security_task_wait(), or still -ECHILD.
1533 */
1534 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1535 {
1536 struct task_struct *p;
1537
1538 list_for_each_entry(p, &tsk->children, sibling) {
1539 /*
1540 * Do not consider detached threads.
1541 */
1542 if (!task_detached(p)) {
1543 int ret = wait_consider_task(wo, tsk, 0, p);
1544 if (ret)
1545 return ret;
1546 }
1547 }
1548
1549 return 0;
1550 }
1551
1552 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1553 {
1554 struct task_struct *p;
1555
1556 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1557 int ret = wait_consider_task(wo, tsk, 1, p);
1558 if (ret)
1559 return ret;
1560 }
1561
1562 return 0;
1563 }
1564
1565 static long do_wait(struct wait_opts *wo)
1566 {
1567 DECLARE_WAITQUEUE(wait, current);
1568 struct task_struct *tsk;
1569 int retval;
1570
1571 trace_sched_process_wait(wo->wo_pid);
1572
1573 add_wait_queue(&current->signal->wait_chldexit,&wait);
1574 repeat:
1575 /*
1576 * If there is nothing that can match our critiera just get out.
1577 * We will clear ->notask_error to zero if we see any child that
1578 * might later match our criteria, even if we are not able to reap
1579 * it yet.
1580 */
1581 wo->notask_error = -ECHILD;
1582 if ((wo->wo_type < PIDTYPE_MAX) &&
1583 (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
1584 goto notask;
1585
1586 set_current_state(TASK_INTERRUPTIBLE);
1587 read_lock(&tasklist_lock);
1588 tsk = current;
1589 do {
1590 retval = do_wait_thread(wo, tsk);
1591 if (retval)
1592 goto end;
1593
1594 retval = ptrace_do_wait(wo, tsk);
1595 if (retval)
1596 goto end;
1597
1598 if (wo->wo_flags & __WNOTHREAD)
1599 break;
1600 } while_each_thread(current, tsk);
1601 read_unlock(&tasklist_lock);
1602
1603 notask:
1604 retval = wo->notask_error;
1605 if (!retval && !(wo->wo_flags & WNOHANG)) {
1606 retval = -ERESTARTSYS;
1607 if (!signal_pending(current)) {
1608 schedule();
1609 goto repeat;
1610 }
1611 }
1612 end:
1613 __set_current_state(TASK_RUNNING);
1614 remove_wait_queue(&current->signal->wait_chldexit,&wait);
1615 if (wo->wo_info) {
1616 struct siginfo __user *infop = wo->wo_info;
1617
1618 if (retval > 0)
1619 retval = 0;
1620 else {
1621 /*
1622 * For a WNOHANG return, clear out all the fields
1623 * we would set so the user can easily tell the
1624 * difference.
1625 */
1626 if (!retval)
1627 retval = put_user(0, &infop->si_signo);
1628 if (!retval)
1629 retval = put_user(0, &infop->si_errno);
1630 if (!retval)
1631 retval = put_user(0, &infop->si_code);
1632 if (!retval)
1633 retval = put_user(0, &infop->si_pid);
1634 if (!retval)
1635 retval = put_user(0, &infop->si_uid);
1636 if (!retval)
1637 retval = put_user(0, &infop->si_status);
1638 }
1639 }
1640 return retval;
1641 }
1642
1643 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1644 infop, int, options, struct rusage __user *, ru)
1645 {
1646 struct wait_opts wo;
1647 struct pid *pid = NULL;
1648 enum pid_type type;
1649 long ret;
1650
1651 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1652 return -EINVAL;
1653 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1654 return -EINVAL;
1655
1656 switch (which) {
1657 case P_ALL:
1658 type = PIDTYPE_MAX;
1659 break;
1660 case P_PID:
1661 type = PIDTYPE_PID;
1662 if (upid <= 0)
1663 return -EINVAL;
1664 break;
1665 case P_PGID:
1666 type = PIDTYPE_PGID;
1667 if (upid <= 0)
1668 return -EINVAL;
1669 break;
1670 default:
1671 return -EINVAL;
1672 }
1673
1674 if (type < PIDTYPE_MAX)
1675 pid = find_get_pid(upid);
1676
1677 wo.wo_type = type;
1678 wo.wo_pid = pid;
1679 wo.wo_flags = options;
1680 wo.wo_info = infop;
1681 wo.wo_stat = NULL;
1682 wo.wo_rusage = ru;
1683 ret = do_wait(&wo);
1684 put_pid(pid);
1685
1686 /* avoid REGPARM breakage on x86: */
1687 asmlinkage_protect(5, ret, which, upid, infop, options, ru);
1688 return ret;
1689 }
1690
1691 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1692 int, options, struct rusage __user *, ru)
1693 {
1694 struct wait_opts wo;
1695 struct pid *pid = NULL;
1696 enum pid_type type;
1697 long ret;
1698
1699 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1700 __WNOTHREAD|__WCLONE|__WALL))
1701 return -EINVAL;
1702
1703 if (upid == -1)
1704 type = PIDTYPE_MAX;
1705 else if (upid < 0) {
1706 type = PIDTYPE_PGID;
1707 pid = find_get_pid(-upid);
1708 } else if (upid == 0) {
1709 type = PIDTYPE_PGID;
1710 pid = get_task_pid(current, PIDTYPE_PGID);
1711 } else /* upid > 0 */ {
1712 type = PIDTYPE_PID;
1713 pid = find_get_pid(upid);
1714 }
1715
1716 wo.wo_type = type;
1717 wo.wo_pid = pid;
1718 wo.wo_flags = options | WEXITED;
1719 wo.wo_info = NULL;
1720 wo.wo_stat = stat_addr;
1721 wo.wo_rusage = ru;
1722 ret = do_wait(&wo);
1723 put_pid(pid);
1724
1725 /* avoid REGPARM breakage on x86: */
1726 asmlinkage_protect(4, ret, upid, stat_addr, options, ru);
1727 return ret;
1728 }
1729
1730 #ifdef __ARCH_WANT_SYS_WAITPID
1731
1732 /*
1733 * sys_waitpid() remains for compatibility. waitpid() should be
1734 * implemented by calling sys_wait4() from libc.a.
1735 */
1736 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1737 {
1738 return sys_wait4(pid, stat_addr, options, NULL);
1739 }
1740
1741 #endif