]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/exit.c
8a4d4d12e29456701990729d6c7dc7859767b929
[mirror_ubuntu-bionic-kernel.git] / kernel / exit.c
1 /*
2 * linux/kernel/exit.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/mnt_namespace.h>
16 #include <linux/iocontext.h>
17 #include <linux/key.h>
18 #include <linux/security.h>
19 #include <linux/cpu.h>
20 #include <linux/acct.h>
21 #include <linux/tsacct_kern.h>
22 #include <linux/file.h>
23 #include <linux/fdtable.h>
24 #include <linux/binfmts.h>
25 #include <linux/nsproxy.h>
26 #include <linux/pid_namespace.h>
27 #include <linux/ptrace.h>
28 #include <linux/profile.h>
29 #include <linux/mount.h>
30 #include <linux/proc_fs.h>
31 #include <linux/kthread.h>
32 #include <linux/mempolicy.h>
33 #include <linux/taskstats_kern.h>
34 #include <linux/delayacct.h>
35 #include <linux/freezer.h>
36 #include <linux/cgroup.h>
37 #include <linux/syscalls.h>
38 #include <linux/signal.h>
39 #include <linux/posix-timers.h>
40 #include <linux/cn_proc.h>
41 #include <linux/mutex.h>
42 #include <linux/futex.h>
43 #include <linux/compat.h>
44 #include <linux/pipe_fs_i.h>
45 #include <linux/audit.h> /* for audit_free() */
46 #include <linux/resource.h>
47 #include <linux/blkdev.h>
48 #include <linux/task_io_accounting_ops.h>
49
50 #include <asm/uaccess.h>
51 #include <asm/unistd.h>
52 #include <asm/pgtable.h>
53 #include <asm/mmu_context.h>
54
55 static void exit_mm(struct task_struct * tsk);
56
57 static inline int task_detached(struct task_struct *p)
58 {
59 return p->exit_signal == -1;
60 }
61
62 static void __unhash_process(struct task_struct *p)
63 {
64 nr_threads--;
65 detach_pid(p, PIDTYPE_PID);
66 if (thread_group_leader(p)) {
67 detach_pid(p, PIDTYPE_PGID);
68 detach_pid(p, PIDTYPE_SID);
69
70 list_del_rcu(&p->tasks);
71 __get_cpu_var(process_counts)--;
72 }
73 list_del_rcu(&p->thread_group);
74 list_del_init(&p->sibling);
75 }
76
77 /*
78 * This function expects the tasklist_lock write-locked.
79 */
80 static void __exit_signal(struct task_struct *tsk)
81 {
82 struct signal_struct *sig = tsk->signal;
83 struct sighand_struct *sighand;
84
85 BUG_ON(!sig);
86 BUG_ON(!atomic_read(&sig->count));
87
88 sighand = rcu_dereference(tsk->sighand);
89 spin_lock(&sighand->siglock);
90
91 posix_cpu_timers_exit(tsk);
92 if (atomic_dec_and_test(&sig->count))
93 posix_cpu_timers_exit_group(tsk);
94 else {
95 /*
96 * If there is any task waiting for the group exit
97 * then notify it:
98 */
99 if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count)
100 wake_up_process(sig->group_exit_task);
101
102 if (tsk == sig->curr_target)
103 sig->curr_target = next_thread(tsk);
104 /*
105 * Accumulate here the counters for all threads but the
106 * group leader as they die, so they can be added into
107 * the process-wide totals when those are taken.
108 * The group leader stays around as a zombie as long
109 * as there are other threads. When it gets reaped,
110 * the exit.c code will add its counts into these totals.
111 * We won't ever get here for the group leader, since it
112 * will have been the last reference on the signal_struct.
113 */
114 sig->utime = cputime_add(sig->utime, tsk->utime);
115 sig->stime = cputime_add(sig->stime, tsk->stime);
116 sig->gtime = cputime_add(sig->gtime, tsk->gtime);
117 sig->min_flt += tsk->min_flt;
118 sig->maj_flt += tsk->maj_flt;
119 sig->nvcsw += tsk->nvcsw;
120 sig->nivcsw += tsk->nivcsw;
121 sig->inblock += task_io_get_inblock(tsk);
122 sig->oublock += task_io_get_oublock(tsk);
123 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
124 sig = NULL; /* Marker for below. */
125 }
126
127 __unhash_process(tsk);
128
129 /*
130 * Do this under ->siglock, we can race with another thread
131 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
132 */
133 flush_sigqueue(&tsk->pending);
134
135 tsk->signal = NULL;
136 tsk->sighand = NULL;
137 spin_unlock(&sighand->siglock);
138
139 __cleanup_sighand(sighand);
140 clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
141 if (sig) {
142 flush_sigqueue(&sig->shared_pending);
143 taskstats_tgid_free(sig);
144 __cleanup_signal(sig);
145 }
146 }
147
148 static void delayed_put_task_struct(struct rcu_head *rhp)
149 {
150 put_task_struct(container_of(rhp, struct task_struct, rcu));
151 }
152
153 /*
154 * Do final ptrace-related cleanup of a zombie being reaped.
155 *
156 * Called with write_lock(&tasklist_lock) held.
157 */
158 static void ptrace_release_task(struct task_struct *p)
159 {
160 BUG_ON(!list_empty(&p->ptraced));
161 ptrace_unlink(p);
162 BUG_ON(!list_empty(&p->ptrace_entry));
163 }
164
165 void release_task(struct task_struct * p)
166 {
167 struct task_struct *leader;
168 int zap_leader;
169 repeat:
170 atomic_dec(&p->user->processes);
171 proc_flush_task(p);
172 write_lock_irq(&tasklist_lock);
173 ptrace_release_task(p);
174 __exit_signal(p);
175
176 /*
177 * If we are the last non-leader member of the thread
178 * group, and the leader is zombie, then notify the
179 * group leader's parent process. (if it wants notification.)
180 */
181 zap_leader = 0;
182 leader = p->group_leader;
183 if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
184 BUG_ON(task_detached(leader));
185 do_notify_parent(leader, leader->exit_signal);
186 /*
187 * If we were the last child thread and the leader has
188 * exited already, and the leader's parent ignores SIGCHLD,
189 * then we are the one who should release the leader.
190 *
191 * do_notify_parent() will have marked it self-reaping in
192 * that case.
193 */
194 zap_leader = task_detached(leader);
195 }
196
197 write_unlock_irq(&tasklist_lock);
198 release_thread(p);
199 call_rcu(&p->rcu, delayed_put_task_struct);
200
201 p = leader;
202 if (unlikely(zap_leader))
203 goto repeat;
204 }
205
206 /*
207 * This checks not only the pgrp, but falls back on the pid if no
208 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
209 * without this...
210 *
211 * The caller must hold rcu lock or the tasklist lock.
212 */
213 struct pid *session_of_pgrp(struct pid *pgrp)
214 {
215 struct task_struct *p;
216 struct pid *sid = NULL;
217
218 p = pid_task(pgrp, PIDTYPE_PGID);
219 if (p == NULL)
220 p = pid_task(pgrp, PIDTYPE_PID);
221 if (p != NULL)
222 sid = task_session(p);
223
224 return sid;
225 }
226
227 /*
228 * Determine if a process group is "orphaned", according to the POSIX
229 * definition in 2.2.2.52. Orphaned process groups are not to be affected
230 * by terminal-generated stop signals. Newly orphaned process groups are
231 * to receive a SIGHUP and a SIGCONT.
232 *
233 * "I ask you, have you ever known what it is to be an orphan?"
234 */
235 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
236 {
237 struct task_struct *p;
238
239 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
240 if ((p == ignored_task) ||
241 (p->exit_state && thread_group_empty(p)) ||
242 is_global_init(p->real_parent))
243 continue;
244
245 if (task_pgrp(p->real_parent) != pgrp &&
246 task_session(p->real_parent) == task_session(p))
247 return 0;
248 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
249
250 return 1;
251 }
252
253 int is_current_pgrp_orphaned(void)
254 {
255 int retval;
256
257 read_lock(&tasklist_lock);
258 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
259 read_unlock(&tasklist_lock);
260
261 return retval;
262 }
263
264 static int has_stopped_jobs(struct pid *pgrp)
265 {
266 int retval = 0;
267 struct task_struct *p;
268
269 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
270 if (!task_is_stopped(p))
271 continue;
272 retval = 1;
273 break;
274 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
275 return retval;
276 }
277
278 /*
279 * Check to see if any process groups have become orphaned as
280 * a result of our exiting, and if they have any stopped jobs,
281 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
282 */
283 static void
284 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
285 {
286 struct pid *pgrp = task_pgrp(tsk);
287 struct task_struct *ignored_task = tsk;
288
289 if (!parent)
290 /* exit: our father is in a different pgrp than
291 * we are and we were the only connection outside.
292 */
293 parent = tsk->real_parent;
294 else
295 /* reparent: our child is in a different pgrp than
296 * we are, and it was the only connection outside.
297 */
298 ignored_task = NULL;
299
300 if (task_pgrp(parent) != pgrp &&
301 task_session(parent) == task_session(tsk) &&
302 will_become_orphaned_pgrp(pgrp, ignored_task) &&
303 has_stopped_jobs(pgrp)) {
304 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
305 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
306 }
307 }
308
309 /**
310 * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
311 *
312 * If a kernel thread is launched as a result of a system call, or if
313 * it ever exits, it should generally reparent itself to kthreadd so it
314 * isn't in the way of other processes and is correctly cleaned up on exit.
315 *
316 * The various task state such as scheduling policy and priority may have
317 * been inherited from a user process, so we reset them to sane values here.
318 *
319 * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
320 */
321 static void reparent_to_kthreadd(void)
322 {
323 write_lock_irq(&tasklist_lock);
324
325 ptrace_unlink(current);
326 /* Reparent to init */
327 current->real_parent = current->parent = kthreadd_task;
328 list_move_tail(&current->sibling, &current->real_parent->children);
329
330 /* Set the exit signal to SIGCHLD so we signal init on exit */
331 current->exit_signal = SIGCHLD;
332
333 if (task_nice(current) < 0)
334 set_user_nice(current, 0);
335 /* cpus_allowed? */
336 /* rt_priority? */
337 /* signals? */
338 security_task_reparent_to_init(current);
339 memcpy(current->signal->rlim, init_task.signal->rlim,
340 sizeof(current->signal->rlim));
341 atomic_inc(&(INIT_USER->__count));
342 write_unlock_irq(&tasklist_lock);
343 switch_uid(INIT_USER);
344 }
345
346 void __set_special_pids(struct pid *pid)
347 {
348 struct task_struct *curr = current->group_leader;
349 pid_t nr = pid_nr(pid);
350
351 if (task_session(curr) != pid) {
352 change_pid(curr, PIDTYPE_SID, pid);
353 set_task_session(curr, nr);
354 }
355 if (task_pgrp(curr) != pid) {
356 change_pid(curr, PIDTYPE_PGID, pid);
357 set_task_pgrp(curr, nr);
358 }
359 }
360
361 static void set_special_pids(struct pid *pid)
362 {
363 write_lock_irq(&tasklist_lock);
364 __set_special_pids(pid);
365 write_unlock_irq(&tasklist_lock);
366 }
367
368 /*
369 * Let kernel threads use this to say that they
370 * allow a certain signal (since daemonize() will
371 * have disabled all of them by default).
372 */
373 int allow_signal(int sig)
374 {
375 if (!valid_signal(sig) || sig < 1)
376 return -EINVAL;
377
378 spin_lock_irq(&current->sighand->siglock);
379 sigdelset(&current->blocked, sig);
380 if (!current->mm) {
381 /* Kernel threads handle their own signals.
382 Let the signal code know it'll be handled, so
383 that they don't get converted to SIGKILL or
384 just silently dropped */
385 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
386 }
387 recalc_sigpending();
388 spin_unlock_irq(&current->sighand->siglock);
389 return 0;
390 }
391
392 EXPORT_SYMBOL(allow_signal);
393
394 int disallow_signal(int sig)
395 {
396 if (!valid_signal(sig) || sig < 1)
397 return -EINVAL;
398
399 spin_lock_irq(&current->sighand->siglock);
400 current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
401 recalc_sigpending();
402 spin_unlock_irq(&current->sighand->siglock);
403 return 0;
404 }
405
406 EXPORT_SYMBOL(disallow_signal);
407
408 /*
409 * Put all the gunge required to become a kernel thread without
410 * attached user resources in one place where it belongs.
411 */
412
413 void daemonize(const char *name, ...)
414 {
415 va_list args;
416 struct fs_struct *fs;
417 sigset_t blocked;
418
419 va_start(args, name);
420 vsnprintf(current->comm, sizeof(current->comm), name, args);
421 va_end(args);
422
423 /*
424 * If we were started as result of loading a module, close all of the
425 * user space pages. We don't need them, and if we didn't close them
426 * they would be locked into memory.
427 */
428 exit_mm(current);
429 /*
430 * We don't want to have TIF_FREEZE set if the system-wide hibernation
431 * or suspend transition begins right now.
432 */
433 current->flags |= (PF_NOFREEZE | PF_KTHREAD);
434
435 if (current->nsproxy != &init_nsproxy) {
436 get_nsproxy(&init_nsproxy);
437 switch_task_namespaces(current, &init_nsproxy);
438 }
439 set_special_pids(&init_struct_pid);
440 proc_clear_tty(current);
441
442 /* Block and flush all signals */
443 sigfillset(&blocked);
444 sigprocmask(SIG_BLOCK, &blocked, NULL);
445 flush_signals(current);
446
447 /* Become as one with the init task */
448
449 exit_fs(current); /* current->fs->count--; */
450 fs = init_task.fs;
451 current->fs = fs;
452 atomic_inc(&fs->count);
453
454 exit_files(current);
455 current->files = init_task.files;
456 atomic_inc(&current->files->count);
457
458 reparent_to_kthreadd();
459 }
460
461 EXPORT_SYMBOL(daemonize);
462
463 static void close_files(struct files_struct * files)
464 {
465 int i, j;
466 struct fdtable *fdt;
467
468 j = 0;
469
470 /*
471 * It is safe to dereference the fd table without RCU or
472 * ->file_lock because this is the last reference to the
473 * files structure.
474 */
475 fdt = files_fdtable(files);
476 for (;;) {
477 unsigned long set;
478 i = j * __NFDBITS;
479 if (i >= fdt->max_fds)
480 break;
481 set = fdt->open_fds->fds_bits[j++];
482 while (set) {
483 if (set & 1) {
484 struct file * file = xchg(&fdt->fd[i], NULL);
485 if (file) {
486 filp_close(file, files);
487 cond_resched();
488 }
489 }
490 i++;
491 set >>= 1;
492 }
493 }
494 }
495
496 struct files_struct *get_files_struct(struct task_struct *task)
497 {
498 struct files_struct *files;
499
500 task_lock(task);
501 files = task->files;
502 if (files)
503 atomic_inc(&files->count);
504 task_unlock(task);
505
506 return files;
507 }
508
509 void put_files_struct(struct files_struct *files)
510 {
511 struct fdtable *fdt;
512
513 if (atomic_dec_and_test(&files->count)) {
514 close_files(files);
515 /*
516 * Free the fd and fdset arrays if we expanded them.
517 * If the fdtable was embedded, pass files for freeing
518 * at the end of the RCU grace period. Otherwise,
519 * you can free files immediately.
520 */
521 fdt = files_fdtable(files);
522 if (fdt != &files->fdtab)
523 kmem_cache_free(files_cachep, files);
524 free_fdtable(fdt);
525 }
526 }
527
528 void reset_files_struct(struct files_struct *files)
529 {
530 struct task_struct *tsk = current;
531 struct files_struct *old;
532
533 old = tsk->files;
534 task_lock(tsk);
535 tsk->files = files;
536 task_unlock(tsk);
537 put_files_struct(old);
538 }
539
540 void exit_files(struct task_struct *tsk)
541 {
542 struct files_struct * files = tsk->files;
543
544 if (files) {
545 task_lock(tsk);
546 tsk->files = NULL;
547 task_unlock(tsk);
548 put_files_struct(files);
549 }
550 }
551
552 void put_fs_struct(struct fs_struct *fs)
553 {
554 /* No need to hold fs->lock if we are killing it */
555 if (atomic_dec_and_test(&fs->count)) {
556 path_put(&fs->root);
557 path_put(&fs->pwd);
558 if (fs->altroot.dentry)
559 path_put(&fs->altroot);
560 kmem_cache_free(fs_cachep, fs);
561 }
562 }
563
564 void exit_fs(struct task_struct *tsk)
565 {
566 struct fs_struct * fs = tsk->fs;
567
568 if (fs) {
569 task_lock(tsk);
570 tsk->fs = NULL;
571 task_unlock(tsk);
572 put_fs_struct(fs);
573 }
574 }
575
576 EXPORT_SYMBOL_GPL(exit_fs);
577
578 #ifdef CONFIG_MM_OWNER
579 /*
580 * Task p is exiting and it owned mm, lets find a new owner for it
581 */
582 static inline int
583 mm_need_new_owner(struct mm_struct *mm, struct task_struct *p)
584 {
585 /*
586 * If there are other users of the mm and the owner (us) is exiting
587 * we need to find a new owner to take on the responsibility.
588 */
589 if (!mm)
590 return 0;
591 if (atomic_read(&mm->mm_users) <= 1)
592 return 0;
593 if (mm->owner != p)
594 return 0;
595 return 1;
596 }
597
598 void mm_update_next_owner(struct mm_struct *mm)
599 {
600 struct task_struct *c, *g, *p = current;
601
602 retry:
603 if (!mm_need_new_owner(mm, p))
604 return;
605
606 read_lock(&tasklist_lock);
607 /*
608 * Search in the children
609 */
610 list_for_each_entry(c, &p->children, sibling) {
611 if (c->mm == mm)
612 goto assign_new_owner;
613 }
614
615 /*
616 * Search in the siblings
617 */
618 list_for_each_entry(c, &p->parent->children, sibling) {
619 if (c->mm == mm)
620 goto assign_new_owner;
621 }
622
623 /*
624 * Search through everything else. We should not get
625 * here often
626 */
627 do_each_thread(g, c) {
628 if (c->mm == mm)
629 goto assign_new_owner;
630 } while_each_thread(g, c);
631
632 read_unlock(&tasklist_lock);
633 return;
634
635 assign_new_owner:
636 BUG_ON(c == p);
637 get_task_struct(c);
638 /*
639 * The task_lock protects c->mm from changing.
640 * We always want mm->owner->mm == mm
641 */
642 task_lock(c);
643 /*
644 * Delay read_unlock() till we have the task_lock()
645 * to ensure that c does not slip away underneath us
646 */
647 read_unlock(&tasklist_lock);
648 if (c->mm != mm) {
649 task_unlock(c);
650 put_task_struct(c);
651 goto retry;
652 }
653 cgroup_mm_owner_callbacks(mm->owner, c);
654 mm->owner = c;
655 task_unlock(c);
656 put_task_struct(c);
657 }
658 #endif /* CONFIG_MM_OWNER */
659
660 /*
661 * Turn us into a lazy TLB process if we
662 * aren't already..
663 */
664 static void exit_mm(struct task_struct * tsk)
665 {
666 struct mm_struct *mm = tsk->mm;
667 struct core_state *core_state;
668
669 mm_release(tsk, mm);
670 if (!mm)
671 return;
672 /*
673 * Serialize with any possible pending coredump.
674 * We must hold mmap_sem around checking core_state
675 * and clearing tsk->mm. The core-inducing thread
676 * will increment ->nr_threads for each thread in the
677 * group with ->mm != NULL.
678 */
679 down_read(&mm->mmap_sem);
680 core_state = mm->core_state;
681 if (core_state) {
682 struct core_thread self;
683 up_read(&mm->mmap_sem);
684
685 self.task = tsk;
686 self.next = xchg(&core_state->dumper.next, &self);
687 /*
688 * Implies mb(), the result of xchg() must be visible
689 * to core_state->dumper.
690 */
691 if (atomic_dec_and_test(&core_state->nr_threads))
692 complete(&core_state->startup);
693
694 for (;;) {
695 set_task_state(tsk, TASK_UNINTERRUPTIBLE);
696 if (!self.task) /* see coredump_finish() */
697 break;
698 schedule();
699 }
700 __set_task_state(tsk, TASK_RUNNING);
701 down_read(&mm->mmap_sem);
702 }
703 atomic_inc(&mm->mm_count);
704 BUG_ON(mm != tsk->active_mm);
705 /* more a memory barrier than a real lock */
706 task_lock(tsk);
707 tsk->mm = NULL;
708 up_read(&mm->mmap_sem);
709 enter_lazy_tlb(mm, current);
710 /* We don't want this task to be frozen prematurely */
711 clear_freeze_flag(tsk);
712 task_unlock(tsk);
713 mm_update_next_owner(mm);
714 mmput(mm);
715 }
716
717 /*
718 * Return nonzero if @parent's children should reap themselves.
719 *
720 * Called with write_lock_irq(&tasklist_lock) held.
721 */
722 static int ignoring_children(struct task_struct *parent)
723 {
724 int ret;
725 struct sighand_struct *psig = parent->sighand;
726 unsigned long flags;
727 spin_lock_irqsave(&psig->siglock, flags);
728 ret = (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
729 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT));
730 spin_unlock_irqrestore(&psig->siglock, flags);
731 return ret;
732 }
733
734 /*
735 * Detach all tasks we were using ptrace on.
736 * Any that need to be release_task'd are put on the @dead list.
737 *
738 * Called with write_lock(&tasklist_lock) held.
739 */
740 static void ptrace_exit(struct task_struct *parent, struct list_head *dead)
741 {
742 struct task_struct *p, *n;
743 int ign = -1;
744
745 list_for_each_entry_safe(p, n, &parent->ptraced, ptrace_entry) {
746 __ptrace_unlink(p);
747
748 if (p->exit_state != EXIT_ZOMBIE)
749 continue;
750
751 /*
752 * If it's a zombie, our attachedness prevented normal
753 * parent notification or self-reaping. Do notification
754 * now if it would have happened earlier. If it should
755 * reap itself, add it to the @dead list. We can't call
756 * release_task() here because we already hold tasklist_lock.
757 *
758 * If it's our own child, there is no notification to do.
759 * But if our normal children self-reap, then this child
760 * was prevented by ptrace and we must reap it now.
761 */
762 if (!task_detached(p) && thread_group_empty(p)) {
763 if (!same_thread_group(p->real_parent, parent))
764 do_notify_parent(p, p->exit_signal);
765 else {
766 if (ign < 0)
767 ign = ignoring_children(parent);
768 if (ign)
769 p->exit_signal = -1;
770 }
771 }
772
773 if (task_detached(p)) {
774 /*
775 * Mark it as in the process of being reaped.
776 */
777 p->exit_state = EXIT_DEAD;
778 list_add(&p->ptrace_entry, dead);
779 }
780 }
781 }
782
783 /*
784 * Finish up exit-time ptrace cleanup.
785 *
786 * Called without locks.
787 */
788 static void ptrace_exit_finish(struct task_struct *parent,
789 struct list_head *dead)
790 {
791 struct task_struct *p, *n;
792
793 BUG_ON(!list_empty(&parent->ptraced));
794
795 list_for_each_entry_safe(p, n, dead, ptrace_entry) {
796 list_del_init(&p->ptrace_entry);
797 release_task(p);
798 }
799 }
800
801 static void reparent_thread(struct task_struct *p, struct task_struct *father)
802 {
803 if (p->pdeath_signal)
804 /* We already hold the tasklist_lock here. */
805 group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p);
806
807 list_move_tail(&p->sibling, &p->real_parent->children);
808
809 /* If this is a threaded reparent there is no need to
810 * notify anyone anything has happened.
811 */
812 if (same_thread_group(p->real_parent, father))
813 return;
814
815 /* We don't want people slaying init. */
816 if (!task_detached(p))
817 p->exit_signal = SIGCHLD;
818
819 /* If we'd notified the old parent about this child's death,
820 * also notify the new parent.
821 */
822 if (!ptrace_reparented(p) &&
823 p->exit_state == EXIT_ZOMBIE &&
824 !task_detached(p) && thread_group_empty(p))
825 do_notify_parent(p, p->exit_signal);
826
827 kill_orphaned_pgrp(p, father);
828 }
829
830 /*
831 * When we die, we re-parent all our children.
832 * Try to give them to another thread in our thread
833 * group, and if no such member exists, give it to
834 * the child reaper process (ie "init") in our pid
835 * space.
836 */
837 static void forget_original_parent(struct task_struct *father)
838 {
839 struct task_struct *p, *n, *reaper = father;
840 LIST_HEAD(ptrace_dead);
841
842 write_lock_irq(&tasklist_lock);
843
844 /*
845 * First clean up ptrace if we were using it.
846 */
847 ptrace_exit(father, &ptrace_dead);
848
849 do {
850 reaper = next_thread(reaper);
851 if (reaper == father) {
852 reaper = task_child_reaper(father);
853 break;
854 }
855 } while (reaper->flags & PF_EXITING);
856
857 list_for_each_entry_safe(p, n, &father->children, sibling) {
858 p->real_parent = reaper;
859 if (p->parent == father) {
860 BUG_ON(p->ptrace);
861 p->parent = p->real_parent;
862 }
863 reparent_thread(p, father);
864 }
865
866 write_unlock_irq(&tasklist_lock);
867 BUG_ON(!list_empty(&father->children));
868
869 ptrace_exit_finish(father, &ptrace_dead);
870 }
871
872 /*
873 * Send signals to all our closest relatives so that they know
874 * to properly mourn us..
875 */
876 static void exit_notify(struct task_struct *tsk, int group_dead)
877 {
878 int state;
879
880 /*
881 * This does two things:
882 *
883 * A. Make init inherit all the child processes
884 * B. Check to see if any process groups have become orphaned
885 * as a result of our exiting, and if they have any stopped
886 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
887 */
888 forget_original_parent(tsk);
889 exit_task_namespaces(tsk);
890
891 write_lock_irq(&tasklist_lock);
892 if (group_dead)
893 kill_orphaned_pgrp(tsk->group_leader, NULL);
894
895 /* Let father know we died
896 *
897 * Thread signals are configurable, but you aren't going to use
898 * that to send signals to arbitary processes.
899 * That stops right now.
900 *
901 * If the parent exec id doesn't match the exec id we saved
902 * when we started then we know the parent has changed security
903 * domain.
904 *
905 * If our self_exec id doesn't match our parent_exec_id then
906 * we have changed execution domain as these two values started
907 * the same after a fork.
908 */
909 if (tsk->exit_signal != SIGCHLD && !task_detached(tsk) &&
910 (tsk->parent_exec_id != tsk->real_parent->self_exec_id ||
911 tsk->self_exec_id != tsk->parent_exec_id) &&
912 !capable(CAP_KILL))
913 tsk->exit_signal = SIGCHLD;
914
915 /* If something other than our normal parent is ptracing us, then
916 * send it a SIGCHLD instead of honoring exit_signal. exit_signal
917 * only has special meaning to our real parent.
918 */
919 if (!task_detached(tsk) && thread_group_empty(tsk)) {
920 int signal = ptrace_reparented(tsk) ?
921 SIGCHLD : tsk->exit_signal;
922 do_notify_parent(tsk, signal);
923 } else if (tsk->ptrace) {
924 do_notify_parent(tsk, SIGCHLD);
925 }
926
927 state = EXIT_ZOMBIE;
928 if (task_detached(tsk) && likely(!tsk->ptrace))
929 state = EXIT_DEAD;
930 tsk->exit_state = state;
931
932 /* mt-exec, de_thread() is waiting for us */
933 if (thread_group_leader(tsk) &&
934 tsk->signal->notify_count < 0 &&
935 tsk->signal->group_exit_task)
936 wake_up_process(tsk->signal->group_exit_task);
937
938 write_unlock_irq(&tasklist_lock);
939
940 /* If the process is dead, release it - nobody will wait for it */
941 if (state == EXIT_DEAD)
942 release_task(tsk);
943 }
944
945 #ifdef CONFIG_DEBUG_STACK_USAGE
946 static void check_stack_usage(void)
947 {
948 static DEFINE_SPINLOCK(low_water_lock);
949 static int lowest_to_date = THREAD_SIZE;
950 unsigned long *n = end_of_stack(current);
951 unsigned long free;
952
953 while (*n == 0)
954 n++;
955 free = (unsigned long)n - (unsigned long)end_of_stack(current);
956
957 if (free >= lowest_to_date)
958 return;
959
960 spin_lock(&low_water_lock);
961 if (free < lowest_to_date) {
962 printk(KERN_WARNING "%s used greatest stack depth: %lu bytes "
963 "left\n",
964 current->comm, free);
965 lowest_to_date = free;
966 }
967 spin_unlock(&low_water_lock);
968 }
969 #else
970 static inline void check_stack_usage(void) {}
971 #endif
972
973 static inline void exit_child_reaper(struct task_struct *tsk)
974 {
975 if (likely(tsk->group_leader != task_child_reaper(tsk)))
976 return;
977
978 if (tsk->nsproxy->pid_ns == &init_pid_ns)
979 panic("Attempted to kill init!");
980
981 /*
982 * @tsk is the last thread in the 'cgroup-init' and is exiting.
983 * Terminate all remaining processes in the namespace and reap them
984 * before exiting @tsk.
985 *
986 * Note that @tsk (last thread of cgroup-init) may not necessarily
987 * be the child-reaper (i.e main thread of cgroup-init) of the
988 * namespace i.e the child_reaper may have already exited.
989 *
990 * Even after a child_reaper exits, we let it inherit orphaned children,
991 * because, pid_ns->child_reaper remains valid as long as there is
992 * at least one living sub-thread in the cgroup init.
993
994 * This living sub-thread of the cgroup-init will be notified when
995 * a child inherited by the 'child-reaper' exits (do_notify_parent()
996 * uses __group_send_sig_info()). Further, when reaping child processes,
997 * do_wait() iterates over children of all living sub threads.
998
999 * i.e even though 'child_reaper' thread is listed as the parent of the
1000 * orphaned children, any living sub-thread in the cgroup-init can
1001 * perform the role of the child_reaper.
1002 */
1003 zap_pid_ns_processes(tsk->nsproxy->pid_ns);
1004 }
1005
1006 NORET_TYPE void do_exit(long code)
1007 {
1008 struct task_struct *tsk = current;
1009 int group_dead;
1010
1011 profile_task_exit(tsk);
1012
1013 WARN_ON(atomic_read(&tsk->fs_excl));
1014
1015 if (unlikely(in_interrupt()))
1016 panic("Aiee, killing interrupt handler!");
1017 if (unlikely(!tsk->pid))
1018 panic("Attempted to kill the idle task!");
1019
1020 if (unlikely(current->ptrace & PT_TRACE_EXIT)) {
1021 current->ptrace_message = code;
1022 ptrace_notify((PTRACE_EVENT_EXIT << 8) | SIGTRAP);
1023 }
1024
1025 /*
1026 * We're taking recursive faults here in do_exit. Safest is to just
1027 * leave this task alone and wait for reboot.
1028 */
1029 if (unlikely(tsk->flags & PF_EXITING)) {
1030 printk(KERN_ALERT
1031 "Fixing recursive fault but reboot is needed!\n");
1032 /*
1033 * We can do this unlocked here. The futex code uses
1034 * this flag just to verify whether the pi state
1035 * cleanup has been done or not. In the worst case it
1036 * loops once more. We pretend that the cleanup was
1037 * done as there is no way to return. Either the
1038 * OWNER_DIED bit is set by now or we push the blocked
1039 * task into the wait for ever nirwana as well.
1040 */
1041 tsk->flags |= PF_EXITPIDONE;
1042 if (tsk->io_context)
1043 exit_io_context();
1044 set_current_state(TASK_UNINTERRUPTIBLE);
1045 schedule();
1046 }
1047
1048 exit_signals(tsk); /* sets PF_EXITING */
1049 /*
1050 * tsk->flags are checked in the futex code to protect against
1051 * an exiting task cleaning up the robust pi futexes.
1052 */
1053 smp_mb();
1054 spin_unlock_wait(&tsk->pi_lock);
1055
1056 if (unlikely(in_atomic()))
1057 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
1058 current->comm, task_pid_nr(current),
1059 preempt_count());
1060
1061 acct_update_integrals(tsk);
1062 if (tsk->mm) {
1063 update_hiwater_rss(tsk->mm);
1064 update_hiwater_vm(tsk->mm);
1065 }
1066 group_dead = atomic_dec_and_test(&tsk->signal->live);
1067 if (group_dead) {
1068 exit_child_reaper(tsk);
1069 hrtimer_cancel(&tsk->signal->real_timer);
1070 exit_itimers(tsk->signal);
1071 }
1072 acct_collect(code, group_dead);
1073 #ifdef CONFIG_FUTEX
1074 if (unlikely(tsk->robust_list))
1075 exit_robust_list(tsk);
1076 #ifdef CONFIG_COMPAT
1077 if (unlikely(tsk->compat_robust_list))
1078 compat_exit_robust_list(tsk);
1079 #endif
1080 #endif
1081 if (group_dead)
1082 tty_audit_exit();
1083 if (unlikely(tsk->audit_context))
1084 audit_free(tsk);
1085
1086 tsk->exit_code = code;
1087 taskstats_exit(tsk, group_dead);
1088
1089 exit_mm(tsk);
1090
1091 if (group_dead)
1092 acct_process();
1093 exit_sem(tsk);
1094 exit_files(tsk);
1095 exit_fs(tsk);
1096 check_stack_usage();
1097 exit_thread();
1098 cgroup_exit(tsk, 1);
1099 exit_keys(tsk);
1100
1101 if (group_dead && tsk->signal->leader)
1102 disassociate_ctty(1);
1103
1104 module_put(task_thread_info(tsk)->exec_domain->module);
1105 if (tsk->binfmt)
1106 module_put(tsk->binfmt->module);
1107
1108 proc_exit_connector(tsk);
1109 exit_notify(tsk, group_dead);
1110 #ifdef CONFIG_NUMA
1111 mpol_put(tsk->mempolicy);
1112 tsk->mempolicy = NULL;
1113 #endif
1114 #ifdef CONFIG_FUTEX
1115 /*
1116 * This must happen late, after the PID is not
1117 * hashed anymore:
1118 */
1119 if (unlikely(!list_empty(&tsk->pi_state_list)))
1120 exit_pi_state_list(tsk);
1121 if (unlikely(current->pi_state_cache))
1122 kfree(current->pi_state_cache);
1123 #endif
1124 /*
1125 * Make sure we are holding no locks:
1126 */
1127 debug_check_no_locks_held(tsk);
1128 /*
1129 * We can do this unlocked here. The futex code uses this flag
1130 * just to verify whether the pi state cleanup has been done
1131 * or not. In the worst case it loops once more.
1132 */
1133 tsk->flags |= PF_EXITPIDONE;
1134
1135 if (tsk->io_context)
1136 exit_io_context();
1137
1138 if (tsk->splice_pipe)
1139 __free_pipe_info(tsk->splice_pipe);
1140
1141 preempt_disable();
1142 /* causes final put_task_struct in finish_task_switch(). */
1143 tsk->state = TASK_DEAD;
1144
1145 schedule();
1146 BUG();
1147 /* Avoid "noreturn function does return". */
1148 for (;;)
1149 cpu_relax(); /* For when BUG is null */
1150 }
1151
1152 EXPORT_SYMBOL_GPL(do_exit);
1153
1154 NORET_TYPE void complete_and_exit(struct completion *comp, long code)
1155 {
1156 if (comp)
1157 complete(comp);
1158
1159 do_exit(code);
1160 }
1161
1162 EXPORT_SYMBOL(complete_and_exit);
1163
1164 asmlinkage long sys_exit(int error_code)
1165 {
1166 do_exit((error_code&0xff)<<8);
1167 }
1168
1169 /*
1170 * Take down every thread in the group. This is called by fatal signals
1171 * as well as by sys_exit_group (below).
1172 */
1173 NORET_TYPE void
1174 do_group_exit(int exit_code)
1175 {
1176 struct signal_struct *sig = current->signal;
1177
1178 BUG_ON(exit_code & 0x80); /* core dumps don't get here */
1179
1180 if (signal_group_exit(sig))
1181 exit_code = sig->group_exit_code;
1182 else if (!thread_group_empty(current)) {
1183 struct sighand_struct *const sighand = current->sighand;
1184 spin_lock_irq(&sighand->siglock);
1185 if (signal_group_exit(sig))
1186 /* Another thread got here before we took the lock. */
1187 exit_code = sig->group_exit_code;
1188 else {
1189 sig->group_exit_code = exit_code;
1190 sig->flags = SIGNAL_GROUP_EXIT;
1191 zap_other_threads(current);
1192 }
1193 spin_unlock_irq(&sighand->siglock);
1194 }
1195
1196 do_exit(exit_code);
1197 /* NOTREACHED */
1198 }
1199
1200 /*
1201 * this kills every thread in the thread group. Note that any externally
1202 * wait4()-ing process will get the correct exit code - even if this
1203 * thread is not the thread group leader.
1204 */
1205 asmlinkage void sys_exit_group(int error_code)
1206 {
1207 do_group_exit((error_code & 0xff) << 8);
1208 }
1209
1210 static struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
1211 {
1212 struct pid *pid = NULL;
1213 if (type == PIDTYPE_PID)
1214 pid = task->pids[type].pid;
1215 else if (type < PIDTYPE_MAX)
1216 pid = task->group_leader->pids[type].pid;
1217 return pid;
1218 }
1219
1220 static int eligible_child(enum pid_type type, struct pid *pid, int options,
1221 struct task_struct *p)
1222 {
1223 int err;
1224
1225 if (type < PIDTYPE_MAX) {
1226 if (task_pid_type(p, type) != pid)
1227 return 0;
1228 }
1229
1230 /* Wait for all children (clone and not) if __WALL is set;
1231 * otherwise, wait for clone children *only* if __WCLONE is
1232 * set; otherwise, wait for non-clone children *only*. (Note:
1233 * A "clone" child here is one that reports to its parent
1234 * using a signal other than SIGCHLD.) */
1235 if (((p->exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0))
1236 && !(options & __WALL))
1237 return 0;
1238
1239 err = security_task_wait(p);
1240 if (err)
1241 return err;
1242
1243 return 1;
1244 }
1245
1246 static int wait_noreap_copyout(struct task_struct *p, pid_t pid, uid_t uid,
1247 int why, int status,
1248 struct siginfo __user *infop,
1249 struct rusage __user *rusagep)
1250 {
1251 int retval = rusagep ? getrusage(p, RUSAGE_BOTH, rusagep) : 0;
1252
1253 put_task_struct(p);
1254 if (!retval)
1255 retval = put_user(SIGCHLD, &infop->si_signo);
1256 if (!retval)
1257 retval = put_user(0, &infop->si_errno);
1258 if (!retval)
1259 retval = put_user((short)why, &infop->si_code);
1260 if (!retval)
1261 retval = put_user(pid, &infop->si_pid);
1262 if (!retval)
1263 retval = put_user(uid, &infop->si_uid);
1264 if (!retval)
1265 retval = put_user(status, &infop->si_status);
1266 if (!retval)
1267 retval = pid;
1268 return retval;
1269 }
1270
1271 /*
1272 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1273 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1274 * the lock and this task is uninteresting. If we return nonzero, we have
1275 * released the lock and the system call should return.
1276 */
1277 static int wait_task_zombie(struct task_struct *p, int options,
1278 struct siginfo __user *infop,
1279 int __user *stat_addr, struct rusage __user *ru)
1280 {
1281 unsigned long state;
1282 int retval, status, traced;
1283 pid_t pid = task_pid_vnr(p);
1284
1285 if (!likely(options & WEXITED))
1286 return 0;
1287
1288 if (unlikely(options & WNOWAIT)) {
1289 uid_t uid = p->uid;
1290 int exit_code = p->exit_code;
1291 int why, status;
1292
1293 get_task_struct(p);
1294 read_unlock(&tasklist_lock);
1295 if ((exit_code & 0x7f) == 0) {
1296 why = CLD_EXITED;
1297 status = exit_code >> 8;
1298 } else {
1299 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1300 status = exit_code & 0x7f;
1301 }
1302 return wait_noreap_copyout(p, pid, uid, why,
1303 status, infop, ru);
1304 }
1305
1306 /*
1307 * Try to move the task's state to DEAD
1308 * only one thread is allowed to do this:
1309 */
1310 state = xchg(&p->exit_state, EXIT_DEAD);
1311 if (state != EXIT_ZOMBIE) {
1312 BUG_ON(state != EXIT_DEAD);
1313 return 0;
1314 }
1315
1316 traced = ptrace_reparented(p);
1317
1318 if (likely(!traced)) {
1319 struct signal_struct *psig;
1320 struct signal_struct *sig;
1321
1322 /*
1323 * The resource counters for the group leader are in its
1324 * own task_struct. Those for dead threads in the group
1325 * are in its signal_struct, as are those for the child
1326 * processes it has previously reaped. All these
1327 * accumulate in the parent's signal_struct c* fields.
1328 *
1329 * We don't bother to take a lock here to protect these
1330 * p->signal fields, because they are only touched by
1331 * __exit_signal, which runs with tasklist_lock
1332 * write-locked anyway, and so is excluded here. We do
1333 * need to protect the access to p->parent->signal fields,
1334 * as other threads in the parent group can be right
1335 * here reaping other children at the same time.
1336 */
1337 spin_lock_irq(&p->parent->sighand->siglock);
1338 psig = p->parent->signal;
1339 sig = p->signal;
1340 psig->cutime =
1341 cputime_add(psig->cutime,
1342 cputime_add(p->utime,
1343 cputime_add(sig->utime,
1344 sig->cutime)));
1345 psig->cstime =
1346 cputime_add(psig->cstime,
1347 cputime_add(p->stime,
1348 cputime_add(sig->stime,
1349 sig->cstime)));
1350 psig->cgtime =
1351 cputime_add(psig->cgtime,
1352 cputime_add(p->gtime,
1353 cputime_add(sig->gtime,
1354 sig->cgtime)));
1355 psig->cmin_flt +=
1356 p->min_flt + sig->min_flt + sig->cmin_flt;
1357 psig->cmaj_flt +=
1358 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1359 psig->cnvcsw +=
1360 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1361 psig->cnivcsw +=
1362 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1363 psig->cinblock +=
1364 task_io_get_inblock(p) +
1365 sig->inblock + sig->cinblock;
1366 psig->coublock +=
1367 task_io_get_oublock(p) +
1368 sig->oublock + sig->coublock;
1369 spin_unlock_irq(&p->parent->sighand->siglock);
1370 }
1371
1372 /*
1373 * Now we are sure this task is interesting, and no other
1374 * thread can reap it because we set its state to EXIT_DEAD.
1375 */
1376 read_unlock(&tasklist_lock);
1377
1378 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1379 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1380 ? p->signal->group_exit_code : p->exit_code;
1381 if (!retval && stat_addr)
1382 retval = put_user(status, stat_addr);
1383 if (!retval && infop)
1384 retval = put_user(SIGCHLD, &infop->si_signo);
1385 if (!retval && infop)
1386 retval = put_user(0, &infop->si_errno);
1387 if (!retval && infop) {
1388 int why;
1389
1390 if ((status & 0x7f) == 0) {
1391 why = CLD_EXITED;
1392 status >>= 8;
1393 } else {
1394 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1395 status &= 0x7f;
1396 }
1397 retval = put_user((short)why, &infop->si_code);
1398 if (!retval)
1399 retval = put_user(status, &infop->si_status);
1400 }
1401 if (!retval && infop)
1402 retval = put_user(pid, &infop->si_pid);
1403 if (!retval && infop)
1404 retval = put_user(p->uid, &infop->si_uid);
1405 if (!retval)
1406 retval = pid;
1407
1408 if (traced) {
1409 write_lock_irq(&tasklist_lock);
1410 /* We dropped tasklist, ptracer could die and untrace */
1411 ptrace_unlink(p);
1412 /*
1413 * If this is not a detached task, notify the parent.
1414 * If it's still not detached after that, don't release
1415 * it now.
1416 */
1417 if (!task_detached(p)) {
1418 do_notify_parent(p, p->exit_signal);
1419 if (!task_detached(p)) {
1420 p->exit_state = EXIT_ZOMBIE;
1421 p = NULL;
1422 }
1423 }
1424 write_unlock_irq(&tasklist_lock);
1425 }
1426 if (p != NULL)
1427 release_task(p);
1428
1429 return retval;
1430 }
1431
1432 /*
1433 * Handle sys_wait4 work for one task in state TASK_STOPPED. We hold
1434 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1435 * the lock and this task is uninteresting. If we return nonzero, we have
1436 * released the lock and the system call should return.
1437 */
1438 static int wait_task_stopped(int ptrace, struct task_struct *p,
1439 int options, struct siginfo __user *infop,
1440 int __user *stat_addr, struct rusage __user *ru)
1441 {
1442 int retval, exit_code, why;
1443 uid_t uid = 0; /* unneeded, required by compiler */
1444 pid_t pid;
1445
1446 if (!(options & WUNTRACED))
1447 return 0;
1448
1449 exit_code = 0;
1450 spin_lock_irq(&p->sighand->siglock);
1451
1452 if (unlikely(!task_is_stopped_or_traced(p)))
1453 goto unlock_sig;
1454
1455 if (!ptrace && p->signal->group_stop_count > 0)
1456 /*
1457 * A group stop is in progress and this is the group leader.
1458 * We won't report until all threads have stopped.
1459 */
1460 goto unlock_sig;
1461
1462 exit_code = p->exit_code;
1463 if (!exit_code)
1464 goto unlock_sig;
1465
1466 if (!unlikely(options & WNOWAIT))
1467 p->exit_code = 0;
1468
1469 uid = p->uid;
1470 unlock_sig:
1471 spin_unlock_irq(&p->sighand->siglock);
1472 if (!exit_code)
1473 return 0;
1474
1475 /*
1476 * Now we are pretty sure this task is interesting.
1477 * Make sure it doesn't get reaped out from under us while we
1478 * give up the lock and then examine it below. We don't want to
1479 * keep holding onto the tasklist_lock while we call getrusage and
1480 * possibly take page faults for user memory.
1481 */
1482 get_task_struct(p);
1483 pid = task_pid_vnr(p);
1484 why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1485 read_unlock(&tasklist_lock);
1486
1487 if (unlikely(options & WNOWAIT))
1488 return wait_noreap_copyout(p, pid, uid,
1489 why, exit_code,
1490 infop, ru);
1491
1492 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1493 if (!retval && stat_addr)
1494 retval = put_user((exit_code << 8) | 0x7f, stat_addr);
1495 if (!retval && infop)
1496 retval = put_user(SIGCHLD, &infop->si_signo);
1497 if (!retval && infop)
1498 retval = put_user(0, &infop->si_errno);
1499 if (!retval && infop)
1500 retval = put_user((short)why, &infop->si_code);
1501 if (!retval && infop)
1502 retval = put_user(exit_code, &infop->si_status);
1503 if (!retval && infop)
1504 retval = put_user(pid, &infop->si_pid);
1505 if (!retval && infop)
1506 retval = put_user(uid, &infop->si_uid);
1507 if (!retval)
1508 retval = pid;
1509 put_task_struct(p);
1510
1511 BUG_ON(!retval);
1512 return retval;
1513 }
1514
1515 /*
1516 * Handle do_wait work for one task in a live, non-stopped state.
1517 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1518 * the lock and this task is uninteresting. If we return nonzero, we have
1519 * released the lock and the system call should return.
1520 */
1521 static int wait_task_continued(struct task_struct *p, int options,
1522 struct siginfo __user *infop,
1523 int __user *stat_addr, struct rusage __user *ru)
1524 {
1525 int retval;
1526 pid_t pid;
1527 uid_t uid;
1528
1529 if (!unlikely(options & WCONTINUED))
1530 return 0;
1531
1532 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1533 return 0;
1534
1535 spin_lock_irq(&p->sighand->siglock);
1536 /* Re-check with the lock held. */
1537 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1538 spin_unlock_irq(&p->sighand->siglock);
1539 return 0;
1540 }
1541 if (!unlikely(options & WNOWAIT))
1542 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1543 spin_unlock_irq(&p->sighand->siglock);
1544
1545 pid = task_pid_vnr(p);
1546 uid = p->uid;
1547 get_task_struct(p);
1548 read_unlock(&tasklist_lock);
1549
1550 if (!infop) {
1551 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1552 put_task_struct(p);
1553 if (!retval && stat_addr)
1554 retval = put_user(0xffff, stat_addr);
1555 if (!retval)
1556 retval = pid;
1557 } else {
1558 retval = wait_noreap_copyout(p, pid, uid,
1559 CLD_CONTINUED, SIGCONT,
1560 infop, ru);
1561 BUG_ON(retval == 0);
1562 }
1563
1564 return retval;
1565 }
1566
1567 /*
1568 * Consider @p for a wait by @parent.
1569 *
1570 * -ECHILD should be in *@notask_error before the first call.
1571 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1572 * Returns zero if the search for a child should continue;
1573 * then *@notask_error is 0 if @p is an eligible child,
1574 * or another error from security_task_wait(), or still -ECHILD.
1575 */
1576 static int wait_consider_task(struct task_struct *parent, int ptrace,
1577 struct task_struct *p, int *notask_error,
1578 enum pid_type type, struct pid *pid, int options,
1579 struct siginfo __user *infop,
1580 int __user *stat_addr, struct rusage __user *ru)
1581 {
1582 int ret = eligible_child(type, pid, options, p);
1583 if (!ret)
1584 return ret;
1585
1586 if (unlikely(ret < 0)) {
1587 /*
1588 * If we have not yet seen any eligible child,
1589 * then let this error code replace -ECHILD.
1590 * A permission error will give the user a clue
1591 * to look for security policy problems, rather
1592 * than for mysterious wait bugs.
1593 */
1594 if (*notask_error)
1595 *notask_error = ret;
1596 }
1597
1598 if (likely(!ptrace) && unlikely(p->ptrace)) {
1599 /*
1600 * This child is hidden by ptrace.
1601 * We aren't allowed to see it now, but eventually we will.
1602 */
1603 *notask_error = 0;
1604 return 0;
1605 }
1606
1607 if (p->exit_state == EXIT_DEAD)
1608 return 0;
1609
1610 /*
1611 * We don't reap group leaders with subthreads.
1612 */
1613 if (p->exit_state == EXIT_ZOMBIE && !delay_group_leader(p))
1614 return wait_task_zombie(p, options, infop, stat_addr, ru);
1615
1616 /*
1617 * It's stopped or running now, so it might
1618 * later continue, exit, or stop again.
1619 */
1620 *notask_error = 0;
1621
1622 if (task_is_stopped_or_traced(p))
1623 return wait_task_stopped(ptrace, p, options,
1624 infop, stat_addr, ru);
1625
1626 return wait_task_continued(p, options, infop, stat_addr, ru);
1627 }
1628
1629 /*
1630 * Do the work of do_wait() for one thread in the group, @tsk.
1631 *
1632 * -ECHILD should be in *@notask_error before the first call.
1633 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1634 * Returns zero if the search for a child should continue; then
1635 * *@notask_error is 0 if there were any eligible children,
1636 * or another error from security_task_wait(), or still -ECHILD.
1637 */
1638 static int do_wait_thread(struct task_struct *tsk, int *notask_error,
1639 enum pid_type type, struct pid *pid, int options,
1640 struct siginfo __user *infop, int __user *stat_addr,
1641 struct rusage __user *ru)
1642 {
1643 struct task_struct *p;
1644
1645 list_for_each_entry(p, &tsk->children, sibling) {
1646 /*
1647 * Do not consider detached threads.
1648 */
1649 if (!task_detached(p)) {
1650 int ret = wait_consider_task(tsk, 0, p, notask_error,
1651 type, pid, options,
1652 infop, stat_addr, ru);
1653 if (ret)
1654 return ret;
1655 }
1656 }
1657
1658 return 0;
1659 }
1660
1661 static int ptrace_do_wait(struct task_struct *tsk, int *notask_error,
1662 enum pid_type type, struct pid *pid, int options,
1663 struct siginfo __user *infop, int __user *stat_addr,
1664 struct rusage __user *ru)
1665 {
1666 struct task_struct *p;
1667
1668 /*
1669 * Traditionally we see ptrace'd stopped tasks regardless of options.
1670 */
1671 options |= WUNTRACED;
1672
1673 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1674 int ret = wait_consider_task(tsk, 1, p, notask_error,
1675 type, pid, options,
1676 infop, stat_addr, ru);
1677 if (ret)
1678 return ret;
1679 }
1680
1681 return 0;
1682 }
1683
1684 static long do_wait(enum pid_type type, struct pid *pid, int options,
1685 struct siginfo __user *infop, int __user *stat_addr,
1686 struct rusage __user *ru)
1687 {
1688 DECLARE_WAITQUEUE(wait, current);
1689 struct task_struct *tsk;
1690 int retval;
1691
1692 add_wait_queue(&current->signal->wait_chldexit,&wait);
1693 repeat:
1694 /*
1695 * If there is nothing that can match our critiera just get out.
1696 * We will clear @retval to zero if we see any child that might later
1697 * match our criteria, even if we are not able to reap it yet.
1698 */
1699 retval = -ECHILD;
1700 if ((type < PIDTYPE_MAX) && (!pid || hlist_empty(&pid->tasks[type])))
1701 goto end;
1702
1703 current->state = TASK_INTERRUPTIBLE;
1704 read_lock(&tasklist_lock);
1705 tsk = current;
1706 do {
1707 int tsk_result = do_wait_thread(tsk, &retval,
1708 type, pid, options,
1709 infop, stat_addr, ru);
1710 if (!tsk_result)
1711 tsk_result = ptrace_do_wait(tsk, &retval,
1712 type, pid, options,
1713 infop, stat_addr, ru);
1714 if (tsk_result) {
1715 /*
1716 * tasklist_lock is unlocked and we have a final result.
1717 */
1718 retval = tsk_result;
1719 goto end;
1720 }
1721
1722 if (options & __WNOTHREAD)
1723 break;
1724 tsk = next_thread(tsk);
1725 BUG_ON(tsk->signal != current->signal);
1726 } while (tsk != current);
1727 read_unlock(&tasklist_lock);
1728
1729 if (!retval && !(options & WNOHANG)) {
1730 retval = -ERESTARTSYS;
1731 if (!signal_pending(current)) {
1732 schedule();
1733 goto repeat;
1734 }
1735 }
1736
1737 end:
1738 current->state = TASK_RUNNING;
1739 remove_wait_queue(&current->signal->wait_chldexit,&wait);
1740 if (infop) {
1741 if (retval > 0)
1742 retval = 0;
1743 else {
1744 /*
1745 * For a WNOHANG return, clear out all the fields
1746 * we would set so the user can easily tell the
1747 * difference.
1748 */
1749 if (!retval)
1750 retval = put_user(0, &infop->si_signo);
1751 if (!retval)
1752 retval = put_user(0, &infop->si_errno);
1753 if (!retval)
1754 retval = put_user(0, &infop->si_code);
1755 if (!retval)
1756 retval = put_user(0, &infop->si_pid);
1757 if (!retval)
1758 retval = put_user(0, &infop->si_uid);
1759 if (!retval)
1760 retval = put_user(0, &infop->si_status);
1761 }
1762 }
1763 return retval;
1764 }
1765
1766 asmlinkage long sys_waitid(int which, pid_t upid,
1767 struct siginfo __user *infop, int options,
1768 struct rusage __user *ru)
1769 {
1770 struct pid *pid = NULL;
1771 enum pid_type type;
1772 long ret;
1773
1774 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1775 return -EINVAL;
1776 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1777 return -EINVAL;
1778
1779 switch (which) {
1780 case P_ALL:
1781 type = PIDTYPE_MAX;
1782 break;
1783 case P_PID:
1784 type = PIDTYPE_PID;
1785 if (upid <= 0)
1786 return -EINVAL;
1787 break;
1788 case P_PGID:
1789 type = PIDTYPE_PGID;
1790 if (upid <= 0)
1791 return -EINVAL;
1792 break;
1793 default:
1794 return -EINVAL;
1795 }
1796
1797 if (type < PIDTYPE_MAX)
1798 pid = find_get_pid(upid);
1799 ret = do_wait(type, pid, options, infop, NULL, ru);
1800 put_pid(pid);
1801
1802 /* avoid REGPARM breakage on x86: */
1803 asmlinkage_protect(5, ret, which, upid, infop, options, ru);
1804 return ret;
1805 }
1806
1807 asmlinkage long sys_wait4(pid_t upid, int __user *stat_addr,
1808 int options, struct rusage __user *ru)
1809 {
1810 struct pid *pid = NULL;
1811 enum pid_type type;
1812 long ret;
1813
1814 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1815 __WNOTHREAD|__WCLONE|__WALL))
1816 return -EINVAL;
1817
1818 if (upid == -1)
1819 type = PIDTYPE_MAX;
1820 else if (upid < 0) {
1821 type = PIDTYPE_PGID;
1822 pid = find_get_pid(-upid);
1823 } else if (upid == 0) {
1824 type = PIDTYPE_PGID;
1825 pid = get_pid(task_pgrp(current));
1826 } else /* upid > 0 */ {
1827 type = PIDTYPE_PID;
1828 pid = find_get_pid(upid);
1829 }
1830
1831 ret = do_wait(type, pid, options | WEXITED, NULL, stat_addr, ru);
1832 put_pid(pid);
1833
1834 /* avoid REGPARM breakage on x86: */
1835 asmlinkage_protect(4, ret, upid, stat_addr, options, ru);
1836 return ret;
1837 }
1838
1839 #ifdef __ARCH_WANT_SYS_WAITPID
1840
1841 /*
1842 * sys_waitpid() remains for compatibility. waitpid() should be
1843 * implemented by calling sys_wait4() from libc.a.
1844 */
1845 asmlinkage long sys_waitpid(pid_t pid, int __user *stat_addr, int options)
1846 {
1847 return sys_wait4(pid, stat_addr, options, NULL);
1848 }
1849
1850 #endif