]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/exit.c
Merge tag 'pm-4.11-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
[mirror_ubuntu-bionic-kernel.git] / kernel / exit.c
1 /*
2 * linux/kernel/exit.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/iocontext.h>
16 #include <linux/key.h>
17 #include <linux/security.h>
18 #include <linux/cpu.h>
19 #include <linux/acct.h>
20 #include <linux/tsacct_kern.h>
21 #include <linux/file.h>
22 #include <linux/fdtable.h>
23 #include <linux/freezer.h>
24 #include <linux/binfmts.h>
25 #include <linux/nsproxy.h>
26 #include <linux/pid_namespace.h>
27 #include <linux/ptrace.h>
28 #include <linux/profile.h>
29 #include <linux/mount.h>
30 #include <linux/proc_fs.h>
31 #include <linux/kthread.h>
32 #include <linux/mempolicy.h>
33 #include <linux/taskstats_kern.h>
34 #include <linux/delayacct.h>
35 #include <linux/cgroup.h>
36 #include <linux/syscalls.h>
37 #include <linux/signal.h>
38 #include <linux/posix-timers.h>
39 #include <linux/cn_proc.h>
40 #include <linux/mutex.h>
41 #include <linux/futex.h>
42 #include <linux/pipe_fs_i.h>
43 #include <linux/audit.h> /* for audit_free() */
44 #include <linux/resource.h>
45 #include <linux/blkdev.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/tracehook.h>
48 #include <linux/fs_struct.h>
49 #include <linux/init_task.h>
50 #include <linux/perf_event.h>
51 #include <trace/events/sched.h>
52 #include <linux/hw_breakpoint.h>
53 #include <linux/oom.h>
54 #include <linux/writeback.h>
55 #include <linux/shm.h>
56 #include <linux/kcov.h>
57 #include <linux/random.h>
58 #include <linux/rcuwait.h>
59
60 #include <linux/uaccess.h>
61 #include <asm/unistd.h>
62 #include <asm/pgtable.h>
63 #include <asm/mmu_context.h>
64
65 static void __unhash_process(struct task_struct *p, bool group_dead)
66 {
67 nr_threads--;
68 detach_pid(p, PIDTYPE_PID);
69 if (group_dead) {
70 detach_pid(p, PIDTYPE_PGID);
71 detach_pid(p, PIDTYPE_SID);
72
73 list_del_rcu(&p->tasks);
74 list_del_init(&p->sibling);
75 __this_cpu_dec(process_counts);
76 }
77 list_del_rcu(&p->thread_group);
78 list_del_rcu(&p->thread_node);
79 }
80
81 /*
82 * This function expects the tasklist_lock write-locked.
83 */
84 static void __exit_signal(struct task_struct *tsk)
85 {
86 struct signal_struct *sig = tsk->signal;
87 bool group_dead = thread_group_leader(tsk);
88 struct sighand_struct *sighand;
89 struct tty_struct *uninitialized_var(tty);
90 u64 utime, stime;
91
92 sighand = rcu_dereference_check(tsk->sighand,
93 lockdep_tasklist_lock_is_held());
94 spin_lock(&sighand->siglock);
95
96 #ifdef CONFIG_POSIX_TIMERS
97 posix_cpu_timers_exit(tsk);
98 if (group_dead) {
99 posix_cpu_timers_exit_group(tsk);
100 } else {
101 /*
102 * This can only happen if the caller is de_thread().
103 * FIXME: this is the temporary hack, we should teach
104 * posix-cpu-timers to handle this case correctly.
105 */
106 if (unlikely(has_group_leader_pid(tsk)))
107 posix_cpu_timers_exit_group(tsk);
108 }
109 #endif
110
111 if (group_dead) {
112 tty = sig->tty;
113 sig->tty = NULL;
114 } else {
115 /*
116 * If there is any task waiting for the group exit
117 * then notify it:
118 */
119 if (sig->notify_count > 0 && !--sig->notify_count)
120 wake_up_process(sig->group_exit_task);
121
122 if (tsk == sig->curr_target)
123 sig->curr_target = next_thread(tsk);
124 }
125
126 add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
127 sizeof(unsigned long long));
128
129 /*
130 * Accumulate here the counters for all threads as they die. We could
131 * skip the group leader because it is the last user of signal_struct,
132 * but we want to avoid the race with thread_group_cputime() which can
133 * see the empty ->thread_head list.
134 */
135 task_cputime(tsk, &utime, &stime);
136 write_seqlock(&sig->stats_lock);
137 sig->utime += utime;
138 sig->stime += stime;
139 sig->gtime += task_gtime(tsk);
140 sig->min_flt += tsk->min_flt;
141 sig->maj_flt += tsk->maj_flt;
142 sig->nvcsw += tsk->nvcsw;
143 sig->nivcsw += tsk->nivcsw;
144 sig->inblock += task_io_get_inblock(tsk);
145 sig->oublock += task_io_get_oublock(tsk);
146 task_io_accounting_add(&sig->ioac, &tsk->ioac);
147 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
148 sig->nr_threads--;
149 __unhash_process(tsk, group_dead);
150 write_sequnlock(&sig->stats_lock);
151
152 /*
153 * Do this under ->siglock, we can race with another thread
154 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
155 */
156 flush_sigqueue(&tsk->pending);
157 tsk->sighand = NULL;
158 spin_unlock(&sighand->siglock);
159
160 __cleanup_sighand(sighand);
161 clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
162 if (group_dead) {
163 flush_sigqueue(&sig->shared_pending);
164 tty_kref_put(tty);
165 }
166 }
167
168 static void delayed_put_task_struct(struct rcu_head *rhp)
169 {
170 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
171
172 perf_event_delayed_put(tsk);
173 trace_sched_process_free(tsk);
174 put_task_struct(tsk);
175 }
176
177
178 void release_task(struct task_struct *p)
179 {
180 struct task_struct *leader;
181 int zap_leader;
182 repeat:
183 /* don't need to get the RCU readlock here - the process is dead and
184 * can't be modifying its own credentials. But shut RCU-lockdep up */
185 rcu_read_lock();
186 atomic_dec(&__task_cred(p)->user->processes);
187 rcu_read_unlock();
188
189 proc_flush_task(p);
190
191 write_lock_irq(&tasklist_lock);
192 ptrace_release_task(p);
193 __exit_signal(p);
194
195 /*
196 * If we are the last non-leader member of the thread
197 * group, and the leader is zombie, then notify the
198 * group leader's parent process. (if it wants notification.)
199 */
200 zap_leader = 0;
201 leader = p->group_leader;
202 if (leader != p && thread_group_empty(leader)
203 && leader->exit_state == EXIT_ZOMBIE) {
204 /*
205 * If we were the last child thread and the leader has
206 * exited already, and the leader's parent ignores SIGCHLD,
207 * then we are the one who should release the leader.
208 */
209 zap_leader = do_notify_parent(leader, leader->exit_signal);
210 if (zap_leader)
211 leader->exit_state = EXIT_DEAD;
212 }
213
214 write_unlock_irq(&tasklist_lock);
215 release_thread(p);
216 call_rcu(&p->rcu, delayed_put_task_struct);
217
218 p = leader;
219 if (unlikely(zap_leader))
220 goto repeat;
221 }
222
223 /*
224 * Note that if this function returns a valid task_struct pointer (!NULL)
225 * task->usage must remain >0 for the duration of the RCU critical section.
226 */
227 struct task_struct *task_rcu_dereference(struct task_struct **ptask)
228 {
229 struct sighand_struct *sighand;
230 struct task_struct *task;
231
232 /*
233 * We need to verify that release_task() was not called and thus
234 * delayed_put_task_struct() can't run and drop the last reference
235 * before rcu_read_unlock(). We check task->sighand != NULL,
236 * but we can read the already freed and reused memory.
237 */
238 retry:
239 task = rcu_dereference(*ptask);
240 if (!task)
241 return NULL;
242
243 probe_kernel_address(&task->sighand, sighand);
244
245 /*
246 * Pairs with atomic_dec_and_test() in put_task_struct(). If this task
247 * was already freed we can not miss the preceding update of this
248 * pointer.
249 */
250 smp_rmb();
251 if (unlikely(task != READ_ONCE(*ptask)))
252 goto retry;
253
254 /*
255 * We've re-checked that "task == *ptask", now we have two different
256 * cases:
257 *
258 * 1. This is actually the same task/task_struct. In this case
259 * sighand != NULL tells us it is still alive.
260 *
261 * 2. This is another task which got the same memory for task_struct.
262 * We can't know this of course, and we can not trust
263 * sighand != NULL.
264 *
265 * In this case we actually return a random value, but this is
266 * correct.
267 *
268 * If we return NULL - we can pretend that we actually noticed that
269 * *ptask was updated when the previous task has exited. Or pretend
270 * that probe_slab_address(&sighand) reads NULL.
271 *
272 * If we return the new task (because sighand is not NULL for any
273 * reason) - this is fine too. This (new) task can't go away before
274 * another gp pass.
275 *
276 * And note: We could even eliminate the false positive if re-read
277 * task->sighand once again to avoid the falsely NULL. But this case
278 * is very unlikely so we don't care.
279 */
280 if (!sighand)
281 return NULL;
282
283 return task;
284 }
285
286 void rcuwait_wake_up(struct rcuwait *w)
287 {
288 struct task_struct *task;
289
290 rcu_read_lock();
291
292 /*
293 * Order condition vs @task, such that everything prior to the load
294 * of @task is visible. This is the condition as to why the user called
295 * rcuwait_trywake() in the first place. Pairs with set_current_state()
296 * barrier (A) in rcuwait_wait_event().
297 *
298 * WAIT WAKE
299 * [S] tsk = current [S] cond = true
300 * MB (A) MB (B)
301 * [L] cond [L] tsk
302 */
303 smp_rmb(); /* (B) */
304
305 /*
306 * Avoid using task_rcu_dereference() magic as long as we are careful,
307 * see comment in rcuwait_wait_event() regarding ->exit_state.
308 */
309 task = rcu_dereference(w->task);
310 if (task)
311 wake_up_process(task);
312 rcu_read_unlock();
313 }
314
315 struct task_struct *try_get_task_struct(struct task_struct **ptask)
316 {
317 struct task_struct *task;
318
319 rcu_read_lock();
320 task = task_rcu_dereference(ptask);
321 if (task)
322 get_task_struct(task);
323 rcu_read_unlock();
324
325 return task;
326 }
327
328 /*
329 * Determine if a process group is "orphaned", according to the POSIX
330 * definition in 2.2.2.52. Orphaned process groups are not to be affected
331 * by terminal-generated stop signals. Newly orphaned process groups are
332 * to receive a SIGHUP and a SIGCONT.
333 *
334 * "I ask you, have you ever known what it is to be an orphan?"
335 */
336 static int will_become_orphaned_pgrp(struct pid *pgrp,
337 struct task_struct *ignored_task)
338 {
339 struct task_struct *p;
340
341 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
342 if ((p == ignored_task) ||
343 (p->exit_state && thread_group_empty(p)) ||
344 is_global_init(p->real_parent))
345 continue;
346
347 if (task_pgrp(p->real_parent) != pgrp &&
348 task_session(p->real_parent) == task_session(p))
349 return 0;
350 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
351
352 return 1;
353 }
354
355 int is_current_pgrp_orphaned(void)
356 {
357 int retval;
358
359 read_lock(&tasklist_lock);
360 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
361 read_unlock(&tasklist_lock);
362
363 return retval;
364 }
365
366 static bool has_stopped_jobs(struct pid *pgrp)
367 {
368 struct task_struct *p;
369
370 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
371 if (p->signal->flags & SIGNAL_STOP_STOPPED)
372 return true;
373 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
374
375 return false;
376 }
377
378 /*
379 * Check to see if any process groups have become orphaned as
380 * a result of our exiting, and if they have any stopped jobs,
381 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
382 */
383 static void
384 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
385 {
386 struct pid *pgrp = task_pgrp(tsk);
387 struct task_struct *ignored_task = tsk;
388
389 if (!parent)
390 /* exit: our father is in a different pgrp than
391 * we are and we were the only connection outside.
392 */
393 parent = tsk->real_parent;
394 else
395 /* reparent: our child is in a different pgrp than
396 * we are, and it was the only connection outside.
397 */
398 ignored_task = NULL;
399
400 if (task_pgrp(parent) != pgrp &&
401 task_session(parent) == task_session(tsk) &&
402 will_become_orphaned_pgrp(pgrp, ignored_task) &&
403 has_stopped_jobs(pgrp)) {
404 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
405 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
406 }
407 }
408
409 #ifdef CONFIG_MEMCG
410 /*
411 * A task is exiting. If it owned this mm, find a new owner for the mm.
412 */
413 void mm_update_next_owner(struct mm_struct *mm)
414 {
415 struct task_struct *c, *g, *p = current;
416
417 retry:
418 /*
419 * If the exiting or execing task is not the owner, it's
420 * someone else's problem.
421 */
422 if (mm->owner != p)
423 return;
424 /*
425 * The current owner is exiting/execing and there are no other
426 * candidates. Do not leave the mm pointing to a possibly
427 * freed task structure.
428 */
429 if (atomic_read(&mm->mm_users) <= 1) {
430 mm->owner = NULL;
431 return;
432 }
433
434 read_lock(&tasklist_lock);
435 /*
436 * Search in the children
437 */
438 list_for_each_entry(c, &p->children, sibling) {
439 if (c->mm == mm)
440 goto assign_new_owner;
441 }
442
443 /*
444 * Search in the siblings
445 */
446 list_for_each_entry(c, &p->real_parent->children, sibling) {
447 if (c->mm == mm)
448 goto assign_new_owner;
449 }
450
451 /*
452 * Search through everything else, we should not get here often.
453 */
454 for_each_process(g) {
455 if (g->flags & PF_KTHREAD)
456 continue;
457 for_each_thread(g, c) {
458 if (c->mm == mm)
459 goto assign_new_owner;
460 if (c->mm)
461 break;
462 }
463 }
464 read_unlock(&tasklist_lock);
465 /*
466 * We found no owner yet mm_users > 1: this implies that we are
467 * most likely racing with swapoff (try_to_unuse()) or /proc or
468 * ptrace or page migration (get_task_mm()). Mark owner as NULL.
469 */
470 mm->owner = NULL;
471 return;
472
473 assign_new_owner:
474 BUG_ON(c == p);
475 get_task_struct(c);
476 /*
477 * The task_lock protects c->mm from changing.
478 * We always want mm->owner->mm == mm
479 */
480 task_lock(c);
481 /*
482 * Delay read_unlock() till we have the task_lock()
483 * to ensure that c does not slip away underneath us
484 */
485 read_unlock(&tasklist_lock);
486 if (c->mm != mm) {
487 task_unlock(c);
488 put_task_struct(c);
489 goto retry;
490 }
491 mm->owner = c;
492 task_unlock(c);
493 put_task_struct(c);
494 }
495 #endif /* CONFIG_MEMCG */
496
497 /*
498 * Turn us into a lazy TLB process if we
499 * aren't already..
500 */
501 static void exit_mm(void)
502 {
503 struct mm_struct *mm = current->mm;
504 struct core_state *core_state;
505
506 mm_release(current, mm);
507 if (!mm)
508 return;
509 sync_mm_rss(mm);
510 /*
511 * Serialize with any possible pending coredump.
512 * We must hold mmap_sem around checking core_state
513 * and clearing tsk->mm. The core-inducing thread
514 * will increment ->nr_threads for each thread in the
515 * group with ->mm != NULL.
516 */
517 down_read(&mm->mmap_sem);
518 core_state = mm->core_state;
519 if (core_state) {
520 struct core_thread self;
521
522 up_read(&mm->mmap_sem);
523
524 self.task = current;
525 self.next = xchg(&core_state->dumper.next, &self);
526 /*
527 * Implies mb(), the result of xchg() must be visible
528 * to core_state->dumper.
529 */
530 if (atomic_dec_and_test(&core_state->nr_threads))
531 complete(&core_state->startup);
532
533 for (;;) {
534 set_current_state(TASK_UNINTERRUPTIBLE);
535 if (!self.task) /* see coredump_finish() */
536 break;
537 freezable_schedule();
538 }
539 __set_current_state(TASK_RUNNING);
540 down_read(&mm->mmap_sem);
541 }
542 atomic_inc(&mm->mm_count);
543 BUG_ON(mm != current->active_mm);
544 /* more a memory barrier than a real lock */
545 task_lock(current);
546 current->mm = NULL;
547 up_read(&mm->mmap_sem);
548 enter_lazy_tlb(mm, current);
549 task_unlock(current);
550 mm_update_next_owner(mm);
551 mmput(mm);
552 if (test_thread_flag(TIF_MEMDIE))
553 exit_oom_victim();
554 }
555
556 static struct task_struct *find_alive_thread(struct task_struct *p)
557 {
558 struct task_struct *t;
559
560 for_each_thread(p, t) {
561 if (!(t->flags & PF_EXITING))
562 return t;
563 }
564 return NULL;
565 }
566
567 static struct task_struct *find_child_reaper(struct task_struct *father)
568 __releases(&tasklist_lock)
569 __acquires(&tasklist_lock)
570 {
571 struct pid_namespace *pid_ns = task_active_pid_ns(father);
572 struct task_struct *reaper = pid_ns->child_reaper;
573
574 if (likely(reaper != father))
575 return reaper;
576
577 reaper = find_alive_thread(father);
578 if (reaper) {
579 pid_ns->child_reaper = reaper;
580 return reaper;
581 }
582
583 write_unlock_irq(&tasklist_lock);
584 if (unlikely(pid_ns == &init_pid_ns)) {
585 panic("Attempted to kill init! exitcode=0x%08x\n",
586 father->signal->group_exit_code ?: father->exit_code);
587 }
588 zap_pid_ns_processes(pid_ns);
589 write_lock_irq(&tasklist_lock);
590
591 return father;
592 }
593
594 /*
595 * When we die, we re-parent all our children, and try to:
596 * 1. give them to another thread in our thread group, if such a member exists
597 * 2. give it to the first ancestor process which prctl'd itself as a
598 * child_subreaper for its children (like a service manager)
599 * 3. give it to the init process (PID 1) in our pid namespace
600 */
601 static struct task_struct *find_new_reaper(struct task_struct *father,
602 struct task_struct *child_reaper)
603 {
604 struct task_struct *thread, *reaper;
605
606 thread = find_alive_thread(father);
607 if (thread)
608 return thread;
609
610 if (father->signal->has_child_subreaper) {
611 /*
612 * Find the first ->is_child_subreaper ancestor in our pid_ns.
613 * We start from father to ensure we can not look into another
614 * namespace, this is safe because all its threads are dead.
615 */
616 for (reaper = father;
617 !same_thread_group(reaper, child_reaper);
618 reaper = reaper->real_parent) {
619 /* call_usermodehelper() descendants need this check */
620 if (reaper == &init_task)
621 break;
622 if (!reaper->signal->is_child_subreaper)
623 continue;
624 thread = find_alive_thread(reaper);
625 if (thread)
626 return thread;
627 }
628 }
629
630 return child_reaper;
631 }
632
633 /*
634 * Any that need to be release_task'd are put on the @dead list.
635 */
636 static void reparent_leader(struct task_struct *father, struct task_struct *p,
637 struct list_head *dead)
638 {
639 if (unlikely(p->exit_state == EXIT_DEAD))
640 return;
641
642 /* We don't want people slaying init. */
643 p->exit_signal = SIGCHLD;
644
645 /* If it has exited notify the new parent about this child's death. */
646 if (!p->ptrace &&
647 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
648 if (do_notify_parent(p, p->exit_signal)) {
649 p->exit_state = EXIT_DEAD;
650 list_add(&p->ptrace_entry, dead);
651 }
652 }
653
654 kill_orphaned_pgrp(p, father);
655 }
656
657 /*
658 * This does two things:
659 *
660 * A. Make init inherit all the child processes
661 * B. Check to see if any process groups have become orphaned
662 * as a result of our exiting, and if they have any stopped
663 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
664 */
665 static void forget_original_parent(struct task_struct *father,
666 struct list_head *dead)
667 {
668 struct task_struct *p, *t, *reaper;
669
670 if (unlikely(!list_empty(&father->ptraced)))
671 exit_ptrace(father, dead);
672
673 /* Can drop and reacquire tasklist_lock */
674 reaper = find_child_reaper(father);
675 if (list_empty(&father->children))
676 return;
677
678 reaper = find_new_reaper(father, reaper);
679 list_for_each_entry(p, &father->children, sibling) {
680 for_each_thread(p, t) {
681 t->real_parent = reaper;
682 BUG_ON((!t->ptrace) != (t->parent == father));
683 if (likely(!t->ptrace))
684 t->parent = t->real_parent;
685 if (t->pdeath_signal)
686 group_send_sig_info(t->pdeath_signal,
687 SEND_SIG_NOINFO, t);
688 }
689 /*
690 * If this is a threaded reparent there is no need to
691 * notify anyone anything has happened.
692 */
693 if (!same_thread_group(reaper, father))
694 reparent_leader(father, p, dead);
695 }
696 list_splice_tail_init(&father->children, &reaper->children);
697 }
698
699 /*
700 * Send signals to all our closest relatives so that they know
701 * to properly mourn us..
702 */
703 static void exit_notify(struct task_struct *tsk, int group_dead)
704 {
705 bool autoreap;
706 struct task_struct *p, *n;
707 LIST_HEAD(dead);
708
709 write_lock_irq(&tasklist_lock);
710 forget_original_parent(tsk, &dead);
711
712 if (group_dead)
713 kill_orphaned_pgrp(tsk->group_leader, NULL);
714
715 if (unlikely(tsk->ptrace)) {
716 int sig = thread_group_leader(tsk) &&
717 thread_group_empty(tsk) &&
718 !ptrace_reparented(tsk) ?
719 tsk->exit_signal : SIGCHLD;
720 autoreap = do_notify_parent(tsk, sig);
721 } else if (thread_group_leader(tsk)) {
722 autoreap = thread_group_empty(tsk) &&
723 do_notify_parent(tsk, tsk->exit_signal);
724 } else {
725 autoreap = true;
726 }
727
728 tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE;
729 if (tsk->exit_state == EXIT_DEAD)
730 list_add(&tsk->ptrace_entry, &dead);
731
732 /* mt-exec, de_thread() is waiting for group leader */
733 if (unlikely(tsk->signal->notify_count < 0))
734 wake_up_process(tsk->signal->group_exit_task);
735 write_unlock_irq(&tasklist_lock);
736
737 list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
738 list_del_init(&p->ptrace_entry);
739 release_task(p);
740 }
741 }
742
743 #ifdef CONFIG_DEBUG_STACK_USAGE
744 static void check_stack_usage(void)
745 {
746 static DEFINE_SPINLOCK(low_water_lock);
747 static int lowest_to_date = THREAD_SIZE;
748 unsigned long free;
749
750 free = stack_not_used(current);
751
752 if (free >= lowest_to_date)
753 return;
754
755 spin_lock(&low_water_lock);
756 if (free < lowest_to_date) {
757 pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
758 current->comm, task_pid_nr(current), free);
759 lowest_to_date = free;
760 }
761 spin_unlock(&low_water_lock);
762 }
763 #else
764 static inline void check_stack_usage(void) {}
765 #endif
766
767 void __noreturn do_exit(long code)
768 {
769 struct task_struct *tsk = current;
770 int group_dead;
771 TASKS_RCU(int tasks_rcu_i);
772
773 profile_task_exit(tsk);
774 kcov_task_exit(tsk);
775
776 WARN_ON(blk_needs_flush_plug(tsk));
777
778 if (unlikely(in_interrupt()))
779 panic("Aiee, killing interrupt handler!");
780 if (unlikely(!tsk->pid))
781 panic("Attempted to kill the idle task!");
782
783 /*
784 * If do_exit is called because this processes oopsed, it's possible
785 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
786 * continuing. Amongst other possible reasons, this is to prevent
787 * mm_release()->clear_child_tid() from writing to a user-controlled
788 * kernel address.
789 */
790 set_fs(USER_DS);
791
792 ptrace_event(PTRACE_EVENT_EXIT, code);
793
794 validate_creds_for_do_exit(tsk);
795
796 /*
797 * We're taking recursive faults here in do_exit. Safest is to just
798 * leave this task alone and wait for reboot.
799 */
800 if (unlikely(tsk->flags & PF_EXITING)) {
801 pr_alert("Fixing recursive fault but reboot is needed!\n");
802 /*
803 * We can do this unlocked here. The futex code uses
804 * this flag just to verify whether the pi state
805 * cleanup has been done or not. In the worst case it
806 * loops once more. We pretend that the cleanup was
807 * done as there is no way to return. Either the
808 * OWNER_DIED bit is set by now or we push the blocked
809 * task into the wait for ever nirwana as well.
810 */
811 tsk->flags |= PF_EXITPIDONE;
812 set_current_state(TASK_UNINTERRUPTIBLE);
813 schedule();
814 }
815
816 exit_signals(tsk); /* sets PF_EXITING */
817 /*
818 * Ensure that all new tsk->pi_lock acquisitions must observe
819 * PF_EXITING. Serializes against futex.c:attach_to_pi_owner().
820 */
821 smp_mb();
822 /*
823 * Ensure that we must observe the pi_state in exit_mm() ->
824 * mm_release() -> exit_pi_state_list().
825 */
826 raw_spin_unlock_wait(&tsk->pi_lock);
827
828 if (unlikely(in_atomic())) {
829 pr_info("note: %s[%d] exited with preempt_count %d\n",
830 current->comm, task_pid_nr(current),
831 preempt_count());
832 preempt_count_set(PREEMPT_ENABLED);
833 }
834
835 /* sync mm's RSS info before statistics gathering */
836 if (tsk->mm)
837 sync_mm_rss(tsk->mm);
838 acct_update_integrals(tsk);
839 group_dead = atomic_dec_and_test(&tsk->signal->live);
840 if (group_dead) {
841 #ifdef CONFIG_POSIX_TIMERS
842 hrtimer_cancel(&tsk->signal->real_timer);
843 exit_itimers(tsk->signal);
844 #endif
845 if (tsk->mm)
846 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
847 }
848 acct_collect(code, group_dead);
849 if (group_dead)
850 tty_audit_exit();
851 audit_free(tsk);
852
853 tsk->exit_code = code;
854 taskstats_exit(tsk, group_dead);
855
856 exit_mm();
857
858 if (group_dead)
859 acct_process();
860 trace_sched_process_exit(tsk);
861
862 exit_sem(tsk);
863 exit_shm(tsk);
864 exit_files(tsk);
865 exit_fs(tsk);
866 if (group_dead)
867 disassociate_ctty(1);
868 exit_task_namespaces(tsk);
869 exit_task_work(tsk);
870 exit_thread(tsk);
871
872 /*
873 * Flush inherited counters to the parent - before the parent
874 * gets woken up by child-exit notifications.
875 *
876 * because of cgroup mode, must be called before cgroup_exit()
877 */
878 perf_event_exit_task(tsk);
879
880 sched_autogroup_exit_task(tsk);
881 cgroup_exit(tsk);
882
883 /*
884 * FIXME: do that only when needed, using sched_exit tracepoint
885 */
886 flush_ptrace_hw_breakpoint(tsk);
887
888 TASKS_RCU(preempt_disable());
889 TASKS_RCU(tasks_rcu_i = __srcu_read_lock(&tasks_rcu_exit_srcu));
890 TASKS_RCU(preempt_enable());
891 exit_notify(tsk, group_dead);
892 proc_exit_connector(tsk);
893 mpol_put_task_policy(tsk);
894 #ifdef CONFIG_FUTEX
895 if (unlikely(current->pi_state_cache))
896 kfree(current->pi_state_cache);
897 #endif
898 /*
899 * Make sure we are holding no locks:
900 */
901 debug_check_no_locks_held();
902 /*
903 * We can do this unlocked here. The futex code uses this flag
904 * just to verify whether the pi state cleanup has been done
905 * or not. In the worst case it loops once more.
906 */
907 tsk->flags |= PF_EXITPIDONE;
908
909 if (tsk->io_context)
910 exit_io_context(tsk);
911
912 if (tsk->splice_pipe)
913 free_pipe_info(tsk->splice_pipe);
914
915 if (tsk->task_frag.page)
916 put_page(tsk->task_frag.page);
917
918 validate_creds_for_do_exit(tsk);
919
920 check_stack_usage();
921 preempt_disable();
922 if (tsk->nr_dirtied)
923 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
924 exit_rcu();
925 TASKS_RCU(__srcu_read_unlock(&tasks_rcu_exit_srcu, tasks_rcu_i));
926
927 do_task_dead();
928 }
929 EXPORT_SYMBOL_GPL(do_exit);
930
931 void complete_and_exit(struct completion *comp, long code)
932 {
933 if (comp)
934 complete(comp);
935
936 do_exit(code);
937 }
938 EXPORT_SYMBOL(complete_and_exit);
939
940 SYSCALL_DEFINE1(exit, int, error_code)
941 {
942 do_exit((error_code&0xff)<<8);
943 }
944
945 /*
946 * Take down every thread in the group. This is called by fatal signals
947 * as well as by sys_exit_group (below).
948 */
949 void
950 do_group_exit(int exit_code)
951 {
952 struct signal_struct *sig = current->signal;
953
954 BUG_ON(exit_code & 0x80); /* core dumps don't get here */
955
956 if (signal_group_exit(sig))
957 exit_code = sig->group_exit_code;
958 else if (!thread_group_empty(current)) {
959 struct sighand_struct *const sighand = current->sighand;
960
961 spin_lock_irq(&sighand->siglock);
962 if (signal_group_exit(sig))
963 /* Another thread got here before we took the lock. */
964 exit_code = sig->group_exit_code;
965 else {
966 sig->group_exit_code = exit_code;
967 sig->flags = SIGNAL_GROUP_EXIT;
968 zap_other_threads(current);
969 }
970 spin_unlock_irq(&sighand->siglock);
971 }
972
973 do_exit(exit_code);
974 /* NOTREACHED */
975 }
976
977 /*
978 * this kills every thread in the thread group. Note that any externally
979 * wait4()-ing process will get the correct exit code - even if this
980 * thread is not the thread group leader.
981 */
982 SYSCALL_DEFINE1(exit_group, int, error_code)
983 {
984 do_group_exit((error_code & 0xff) << 8);
985 /* NOTREACHED */
986 return 0;
987 }
988
989 struct wait_opts {
990 enum pid_type wo_type;
991 int wo_flags;
992 struct pid *wo_pid;
993
994 struct siginfo __user *wo_info;
995 int __user *wo_stat;
996 struct rusage __user *wo_rusage;
997
998 wait_queue_t child_wait;
999 int notask_error;
1000 };
1001
1002 static inline
1003 struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
1004 {
1005 if (type != PIDTYPE_PID)
1006 task = task->group_leader;
1007 return task->pids[type].pid;
1008 }
1009
1010 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
1011 {
1012 return wo->wo_type == PIDTYPE_MAX ||
1013 task_pid_type(p, wo->wo_type) == wo->wo_pid;
1014 }
1015
1016 static int
1017 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
1018 {
1019 if (!eligible_pid(wo, p))
1020 return 0;
1021
1022 /*
1023 * Wait for all children (clone and not) if __WALL is set or
1024 * if it is traced by us.
1025 */
1026 if (ptrace || (wo->wo_flags & __WALL))
1027 return 1;
1028
1029 /*
1030 * Otherwise, wait for clone children *only* if __WCLONE is set;
1031 * otherwise, wait for non-clone children *only*.
1032 *
1033 * Note: a "clone" child here is one that reports to its parent
1034 * using a signal other than SIGCHLD, or a non-leader thread which
1035 * we can only see if it is traced by us.
1036 */
1037 if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1038 return 0;
1039
1040 return 1;
1041 }
1042
1043 static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p,
1044 pid_t pid, uid_t uid, int why, int status)
1045 {
1046 struct siginfo __user *infop;
1047 int retval = wo->wo_rusage
1048 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1049
1050 put_task_struct(p);
1051 infop = wo->wo_info;
1052 if (infop) {
1053 if (!retval)
1054 retval = put_user(SIGCHLD, &infop->si_signo);
1055 if (!retval)
1056 retval = put_user(0, &infop->si_errno);
1057 if (!retval)
1058 retval = put_user((short)why, &infop->si_code);
1059 if (!retval)
1060 retval = put_user(pid, &infop->si_pid);
1061 if (!retval)
1062 retval = put_user(uid, &infop->si_uid);
1063 if (!retval)
1064 retval = put_user(status, &infop->si_status);
1065 }
1066 if (!retval)
1067 retval = pid;
1068 return retval;
1069 }
1070
1071 /*
1072 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1073 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1074 * the lock and this task is uninteresting. If we return nonzero, we have
1075 * released the lock and the system call should return.
1076 */
1077 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1078 {
1079 int state, retval, status;
1080 pid_t pid = task_pid_vnr(p);
1081 uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1082 struct siginfo __user *infop;
1083
1084 if (!likely(wo->wo_flags & WEXITED))
1085 return 0;
1086
1087 if (unlikely(wo->wo_flags & WNOWAIT)) {
1088 int exit_code = p->exit_code;
1089 int why;
1090
1091 get_task_struct(p);
1092 read_unlock(&tasklist_lock);
1093 sched_annotate_sleep();
1094
1095 if ((exit_code & 0x7f) == 0) {
1096 why = CLD_EXITED;
1097 status = exit_code >> 8;
1098 } else {
1099 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1100 status = exit_code & 0x7f;
1101 }
1102 return wait_noreap_copyout(wo, p, pid, uid, why, status);
1103 }
1104 /*
1105 * Move the task's state to DEAD/TRACE, only one thread can do this.
1106 */
1107 state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1108 EXIT_TRACE : EXIT_DEAD;
1109 if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1110 return 0;
1111 /*
1112 * We own this thread, nobody else can reap it.
1113 */
1114 read_unlock(&tasklist_lock);
1115 sched_annotate_sleep();
1116
1117 /*
1118 * Check thread_group_leader() to exclude the traced sub-threads.
1119 */
1120 if (state == EXIT_DEAD && thread_group_leader(p)) {
1121 struct signal_struct *sig = p->signal;
1122 struct signal_struct *psig = current->signal;
1123 unsigned long maxrss;
1124 u64 tgutime, tgstime;
1125
1126 /*
1127 * The resource counters for the group leader are in its
1128 * own task_struct. Those for dead threads in the group
1129 * are in its signal_struct, as are those for the child
1130 * processes it has previously reaped. All these
1131 * accumulate in the parent's signal_struct c* fields.
1132 *
1133 * We don't bother to take a lock here to protect these
1134 * p->signal fields because the whole thread group is dead
1135 * and nobody can change them.
1136 *
1137 * psig->stats_lock also protects us from our sub-theads
1138 * which can reap other children at the same time. Until
1139 * we change k_getrusage()-like users to rely on this lock
1140 * we have to take ->siglock as well.
1141 *
1142 * We use thread_group_cputime_adjusted() to get times for
1143 * the thread group, which consolidates times for all threads
1144 * in the group including the group leader.
1145 */
1146 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1147 spin_lock_irq(&current->sighand->siglock);
1148 write_seqlock(&psig->stats_lock);
1149 psig->cutime += tgutime + sig->cutime;
1150 psig->cstime += tgstime + sig->cstime;
1151 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1152 psig->cmin_flt +=
1153 p->min_flt + sig->min_flt + sig->cmin_flt;
1154 psig->cmaj_flt +=
1155 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1156 psig->cnvcsw +=
1157 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1158 psig->cnivcsw +=
1159 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1160 psig->cinblock +=
1161 task_io_get_inblock(p) +
1162 sig->inblock + sig->cinblock;
1163 psig->coublock +=
1164 task_io_get_oublock(p) +
1165 sig->oublock + sig->coublock;
1166 maxrss = max(sig->maxrss, sig->cmaxrss);
1167 if (psig->cmaxrss < maxrss)
1168 psig->cmaxrss = maxrss;
1169 task_io_accounting_add(&psig->ioac, &p->ioac);
1170 task_io_accounting_add(&psig->ioac, &sig->ioac);
1171 write_sequnlock(&psig->stats_lock);
1172 spin_unlock_irq(&current->sighand->siglock);
1173 }
1174
1175 retval = wo->wo_rusage
1176 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1177 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1178 ? p->signal->group_exit_code : p->exit_code;
1179 if (!retval && wo->wo_stat)
1180 retval = put_user(status, wo->wo_stat);
1181
1182 infop = wo->wo_info;
1183 if (!retval && infop)
1184 retval = put_user(SIGCHLD, &infop->si_signo);
1185 if (!retval && infop)
1186 retval = put_user(0, &infop->si_errno);
1187 if (!retval && infop) {
1188 int why;
1189
1190 if ((status & 0x7f) == 0) {
1191 why = CLD_EXITED;
1192 status >>= 8;
1193 } else {
1194 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1195 status &= 0x7f;
1196 }
1197 retval = put_user((short)why, &infop->si_code);
1198 if (!retval)
1199 retval = put_user(status, &infop->si_status);
1200 }
1201 if (!retval && infop)
1202 retval = put_user(pid, &infop->si_pid);
1203 if (!retval && infop)
1204 retval = put_user(uid, &infop->si_uid);
1205 if (!retval)
1206 retval = pid;
1207
1208 if (state == EXIT_TRACE) {
1209 write_lock_irq(&tasklist_lock);
1210 /* We dropped tasklist, ptracer could die and untrace */
1211 ptrace_unlink(p);
1212
1213 /* If parent wants a zombie, don't release it now */
1214 state = EXIT_ZOMBIE;
1215 if (do_notify_parent(p, p->exit_signal))
1216 state = EXIT_DEAD;
1217 p->exit_state = state;
1218 write_unlock_irq(&tasklist_lock);
1219 }
1220 if (state == EXIT_DEAD)
1221 release_task(p);
1222
1223 return retval;
1224 }
1225
1226 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1227 {
1228 if (ptrace) {
1229 if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1230 return &p->exit_code;
1231 } else {
1232 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1233 return &p->signal->group_exit_code;
1234 }
1235 return NULL;
1236 }
1237
1238 /**
1239 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1240 * @wo: wait options
1241 * @ptrace: is the wait for ptrace
1242 * @p: task to wait for
1243 *
1244 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1245 *
1246 * CONTEXT:
1247 * read_lock(&tasklist_lock), which is released if return value is
1248 * non-zero. Also, grabs and releases @p->sighand->siglock.
1249 *
1250 * RETURNS:
1251 * 0 if wait condition didn't exist and search for other wait conditions
1252 * should continue. Non-zero return, -errno on failure and @p's pid on
1253 * success, implies that tasklist_lock is released and wait condition
1254 * search should terminate.
1255 */
1256 static int wait_task_stopped(struct wait_opts *wo,
1257 int ptrace, struct task_struct *p)
1258 {
1259 struct siginfo __user *infop;
1260 int retval, exit_code, *p_code, why;
1261 uid_t uid = 0; /* unneeded, required by compiler */
1262 pid_t pid;
1263
1264 /*
1265 * Traditionally we see ptrace'd stopped tasks regardless of options.
1266 */
1267 if (!ptrace && !(wo->wo_flags & WUNTRACED))
1268 return 0;
1269
1270 if (!task_stopped_code(p, ptrace))
1271 return 0;
1272
1273 exit_code = 0;
1274 spin_lock_irq(&p->sighand->siglock);
1275
1276 p_code = task_stopped_code(p, ptrace);
1277 if (unlikely(!p_code))
1278 goto unlock_sig;
1279
1280 exit_code = *p_code;
1281 if (!exit_code)
1282 goto unlock_sig;
1283
1284 if (!unlikely(wo->wo_flags & WNOWAIT))
1285 *p_code = 0;
1286
1287 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1288 unlock_sig:
1289 spin_unlock_irq(&p->sighand->siglock);
1290 if (!exit_code)
1291 return 0;
1292
1293 /*
1294 * Now we are pretty sure this task is interesting.
1295 * Make sure it doesn't get reaped out from under us while we
1296 * give up the lock and then examine it below. We don't want to
1297 * keep holding onto the tasklist_lock while we call getrusage and
1298 * possibly take page faults for user memory.
1299 */
1300 get_task_struct(p);
1301 pid = task_pid_vnr(p);
1302 why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1303 read_unlock(&tasklist_lock);
1304 sched_annotate_sleep();
1305
1306 if (unlikely(wo->wo_flags & WNOWAIT))
1307 return wait_noreap_copyout(wo, p, pid, uid, why, exit_code);
1308
1309 retval = wo->wo_rusage
1310 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1311 if (!retval && wo->wo_stat)
1312 retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat);
1313
1314 infop = wo->wo_info;
1315 if (!retval && infop)
1316 retval = put_user(SIGCHLD, &infop->si_signo);
1317 if (!retval && infop)
1318 retval = put_user(0, &infop->si_errno);
1319 if (!retval && infop)
1320 retval = put_user((short)why, &infop->si_code);
1321 if (!retval && infop)
1322 retval = put_user(exit_code, &infop->si_status);
1323 if (!retval && infop)
1324 retval = put_user(pid, &infop->si_pid);
1325 if (!retval && infop)
1326 retval = put_user(uid, &infop->si_uid);
1327 if (!retval)
1328 retval = pid;
1329 put_task_struct(p);
1330
1331 BUG_ON(!retval);
1332 return retval;
1333 }
1334
1335 /*
1336 * Handle do_wait work for one task in a live, non-stopped state.
1337 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1338 * the lock and this task is uninteresting. If we return nonzero, we have
1339 * released the lock and the system call should return.
1340 */
1341 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1342 {
1343 int retval;
1344 pid_t pid;
1345 uid_t uid;
1346
1347 if (!unlikely(wo->wo_flags & WCONTINUED))
1348 return 0;
1349
1350 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1351 return 0;
1352
1353 spin_lock_irq(&p->sighand->siglock);
1354 /* Re-check with the lock held. */
1355 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1356 spin_unlock_irq(&p->sighand->siglock);
1357 return 0;
1358 }
1359 if (!unlikely(wo->wo_flags & WNOWAIT))
1360 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1361 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1362 spin_unlock_irq(&p->sighand->siglock);
1363
1364 pid = task_pid_vnr(p);
1365 get_task_struct(p);
1366 read_unlock(&tasklist_lock);
1367 sched_annotate_sleep();
1368
1369 if (!wo->wo_info) {
1370 retval = wo->wo_rusage
1371 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1372 put_task_struct(p);
1373 if (!retval && wo->wo_stat)
1374 retval = put_user(0xffff, wo->wo_stat);
1375 if (!retval)
1376 retval = pid;
1377 } else {
1378 retval = wait_noreap_copyout(wo, p, pid, uid,
1379 CLD_CONTINUED, SIGCONT);
1380 BUG_ON(retval == 0);
1381 }
1382
1383 return retval;
1384 }
1385
1386 /*
1387 * Consider @p for a wait by @parent.
1388 *
1389 * -ECHILD should be in ->notask_error before the first call.
1390 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1391 * Returns zero if the search for a child should continue;
1392 * then ->notask_error is 0 if @p is an eligible child,
1393 * or another error from security_task_wait(), or still -ECHILD.
1394 */
1395 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1396 struct task_struct *p)
1397 {
1398 /*
1399 * We can race with wait_task_zombie() from another thread.
1400 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1401 * can't confuse the checks below.
1402 */
1403 int exit_state = ACCESS_ONCE(p->exit_state);
1404 int ret;
1405
1406 if (unlikely(exit_state == EXIT_DEAD))
1407 return 0;
1408
1409 ret = eligible_child(wo, ptrace, p);
1410 if (!ret)
1411 return ret;
1412
1413 ret = security_task_wait(p);
1414 if (unlikely(ret < 0)) {
1415 /*
1416 * If we have not yet seen any eligible child,
1417 * then let this error code replace -ECHILD.
1418 * A permission error will give the user a clue
1419 * to look for security policy problems, rather
1420 * than for mysterious wait bugs.
1421 */
1422 if (wo->notask_error)
1423 wo->notask_error = ret;
1424 return 0;
1425 }
1426
1427 if (unlikely(exit_state == EXIT_TRACE)) {
1428 /*
1429 * ptrace == 0 means we are the natural parent. In this case
1430 * we should clear notask_error, debugger will notify us.
1431 */
1432 if (likely(!ptrace))
1433 wo->notask_error = 0;
1434 return 0;
1435 }
1436
1437 if (likely(!ptrace) && unlikely(p->ptrace)) {
1438 /*
1439 * If it is traced by its real parent's group, just pretend
1440 * the caller is ptrace_do_wait() and reap this child if it
1441 * is zombie.
1442 *
1443 * This also hides group stop state from real parent; otherwise
1444 * a single stop can be reported twice as group and ptrace stop.
1445 * If a ptracer wants to distinguish these two events for its
1446 * own children it should create a separate process which takes
1447 * the role of real parent.
1448 */
1449 if (!ptrace_reparented(p))
1450 ptrace = 1;
1451 }
1452
1453 /* slay zombie? */
1454 if (exit_state == EXIT_ZOMBIE) {
1455 /* we don't reap group leaders with subthreads */
1456 if (!delay_group_leader(p)) {
1457 /*
1458 * A zombie ptracee is only visible to its ptracer.
1459 * Notification and reaping will be cascaded to the
1460 * real parent when the ptracer detaches.
1461 */
1462 if (unlikely(ptrace) || likely(!p->ptrace))
1463 return wait_task_zombie(wo, p);
1464 }
1465
1466 /*
1467 * Allow access to stopped/continued state via zombie by
1468 * falling through. Clearing of notask_error is complex.
1469 *
1470 * When !@ptrace:
1471 *
1472 * If WEXITED is set, notask_error should naturally be
1473 * cleared. If not, subset of WSTOPPED|WCONTINUED is set,
1474 * so, if there are live subthreads, there are events to
1475 * wait for. If all subthreads are dead, it's still safe
1476 * to clear - this function will be called again in finite
1477 * amount time once all the subthreads are released and
1478 * will then return without clearing.
1479 *
1480 * When @ptrace:
1481 *
1482 * Stopped state is per-task and thus can't change once the
1483 * target task dies. Only continued and exited can happen.
1484 * Clear notask_error if WCONTINUED | WEXITED.
1485 */
1486 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1487 wo->notask_error = 0;
1488 } else {
1489 /*
1490 * @p is alive and it's gonna stop, continue or exit, so
1491 * there always is something to wait for.
1492 */
1493 wo->notask_error = 0;
1494 }
1495
1496 /*
1497 * Wait for stopped. Depending on @ptrace, different stopped state
1498 * is used and the two don't interact with each other.
1499 */
1500 ret = wait_task_stopped(wo, ptrace, p);
1501 if (ret)
1502 return ret;
1503
1504 /*
1505 * Wait for continued. There's only one continued state and the
1506 * ptracer can consume it which can confuse the real parent. Don't
1507 * use WCONTINUED from ptracer. You don't need or want it.
1508 */
1509 return wait_task_continued(wo, p);
1510 }
1511
1512 /*
1513 * Do the work of do_wait() for one thread in the group, @tsk.
1514 *
1515 * -ECHILD should be in ->notask_error before the first call.
1516 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1517 * Returns zero if the search for a child should continue; then
1518 * ->notask_error is 0 if there were any eligible children,
1519 * or another error from security_task_wait(), or still -ECHILD.
1520 */
1521 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1522 {
1523 struct task_struct *p;
1524
1525 list_for_each_entry(p, &tsk->children, sibling) {
1526 int ret = wait_consider_task(wo, 0, p);
1527
1528 if (ret)
1529 return ret;
1530 }
1531
1532 return 0;
1533 }
1534
1535 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1536 {
1537 struct task_struct *p;
1538
1539 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1540 int ret = wait_consider_task(wo, 1, p);
1541
1542 if (ret)
1543 return ret;
1544 }
1545
1546 return 0;
1547 }
1548
1549 static int child_wait_callback(wait_queue_t *wait, unsigned mode,
1550 int sync, void *key)
1551 {
1552 struct wait_opts *wo = container_of(wait, struct wait_opts,
1553 child_wait);
1554 struct task_struct *p = key;
1555
1556 if (!eligible_pid(wo, p))
1557 return 0;
1558
1559 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1560 return 0;
1561
1562 return default_wake_function(wait, mode, sync, key);
1563 }
1564
1565 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1566 {
1567 __wake_up_sync_key(&parent->signal->wait_chldexit,
1568 TASK_INTERRUPTIBLE, 1, p);
1569 }
1570
1571 static long do_wait(struct wait_opts *wo)
1572 {
1573 struct task_struct *tsk;
1574 int retval;
1575
1576 trace_sched_process_wait(wo->wo_pid);
1577
1578 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1579 wo->child_wait.private = current;
1580 add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1581 repeat:
1582 /*
1583 * If there is nothing that can match our criteria, just get out.
1584 * We will clear ->notask_error to zero if we see any child that
1585 * might later match our criteria, even if we are not able to reap
1586 * it yet.
1587 */
1588 wo->notask_error = -ECHILD;
1589 if ((wo->wo_type < PIDTYPE_MAX) &&
1590 (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
1591 goto notask;
1592
1593 set_current_state(TASK_INTERRUPTIBLE);
1594 read_lock(&tasklist_lock);
1595 tsk = current;
1596 do {
1597 retval = do_wait_thread(wo, tsk);
1598 if (retval)
1599 goto end;
1600
1601 retval = ptrace_do_wait(wo, tsk);
1602 if (retval)
1603 goto end;
1604
1605 if (wo->wo_flags & __WNOTHREAD)
1606 break;
1607 } while_each_thread(current, tsk);
1608 read_unlock(&tasklist_lock);
1609
1610 notask:
1611 retval = wo->notask_error;
1612 if (!retval && !(wo->wo_flags & WNOHANG)) {
1613 retval = -ERESTARTSYS;
1614 if (!signal_pending(current)) {
1615 schedule();
1616 goto repeat;
1617 }
1618 }
1619 end:
1620 __set_current_state(TASK_RUNNING);
1621 remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1622 return retval;
1623 }
1624
1625 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1626 infop, int, options, struct rusage __user *, ru)
1627 {
1628 struct wait_opts wo;
1629 struct pid *pid = NULL;
1630 enum pid_type type;
1631 long ret;
1632
1633 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1634 __WNOTHREAD|__WCLONE|__WALL))
1635 return -EINVAL;
1636 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1637 return -EINVAL;
1638
1639 switch (which) {
1640 case P_ALL:
1641 type = PIDTYPE_MAX;
1642 break;
1643 case P_PID:
1644 type = PIDTYPE_PID;
1645 if (upid <= 0)
1646 return -EINVAL;
1647 break;
1648 case P_PGID:
1649 type = PIDTYPE_PGID;
1650 if (upid <= 0)
1651 return -EINVAL;
1652 break;
1653 default:
1654 return -EINVAL;
1655 }
1656
1657 if (type < PIDTYPE_MAX)
1658 pid = find_get_pid(upid);
1659
1660 wo.wo_type = type;
1661 wo.wo_pid = pid;
1662 wo.wo_flags = options;
1663 wo.wo_info = infop;
1664 wo.wo_stat = NULL;
1665 wo.wo_rusage = ru;
1666 ret = do_wait(&wo);
1667
1668 if (ret > 0) {
1669 ret = 0;
1670 } else if (infop) {
1671 /*
1672 * For a WNOHANG return, clear out all the fields
1673 * we would set so the user can easily tell the
1674 * difference.
1675 */
1676 if (!ret)
1677 ret = put_user(0, &infop->si_signo);
1678 if (!ret)
1679 ret = put_user(0, &infop->si_errno);
1680 if (!ret)
1681 ret = put_user(0, &infop->si_code);
1682 if (!ret)
1683 ret = put_user(0, &infop->si_pid);
1684 if (!ret)
1685 ret = put_user(0, &infop->si_uid);
1686 if (!ret)
1687 ret = put_user(0, &infop->si_status);
1688 }
1689
1690 put_pid(pid);
1691 return ret;
1692 }
1693
1694 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1695 int, options, struct rusage __user *, ru)
1696 {
1697 struct wait_opts wo;
1698 struct pid *pid = NULL;
1699 enum pid_type type;
1700 long ret;
1701
1702 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1703 __WNOTHREAD|__WCLONE|__WALL))
1704 return -EINVAL;
1705
1706 if (upid == -1)
1707 type = PIDTYPE_MAX;
1708 else if (upid < 0) {
1709 type = PIDTYPE_PGID;
1710 pid = find_get_pid(-upid);
1711 } else if (upid == 0) {
1712 type = PIDTYPE_PGID;
1713 pid = get_task_pid(current, PIDTYPE_PGID);
1714 } else /* upid > 0 */ {
1715 type = PIDTYPE_PID;
1716 pid = find_get_pid(upid);
1717 }
1718
1719 wo.wo_type = type;
1720 wo.wo_pid = pid;
1721 wo.wo_flags = options | WEXITED;
1722 wo.wo_info = NULL;
1723 wo.wo_stat = stat_addr;
1724 wo.wo_rusage = ru;
1725 ret = do_wait(&wo);
1726 put_pid(pid);
1727
1728 return ret;
1729 }
1730
1731 #ifdef __ARCH_WANT_SYS_WAITPID
1732
1733 /*
1734 * sys_waitpid() remains for compatibility. waitpid() should be
1735 * implemented by calling sys_wait4() from libc.a.
1736 */
1737 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1738 {
1739 return sys_wait4(pid, stat_addr, options, NULL);
1740 }
1741
1742 #endif