]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - kernel/exit.c
b93d46dab6fc016e8a684bc8acb69962278507d4
[mirror_ubuntu-zesty-kernel.git] / kernel / exit.c
1 /*
2 * linux/kernel/exit.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/iocontext.h>
16 #include <linux/key.h>
17 #include <linux/security.h>
18 #include <linux/cpu.h>
19 #include <linux/acct.h>
20 #include <linux/tsacct_kern.h>
21 #include <linux/file.h>
22 #include <linux/fdtable.h>
23 #include <linux/freezer.h>
24 #include <linux/binfmts.h>
25 #include <linux/nsproxy.h>
26 #include <linux/pid_namespace.h>
27 #include <linux/ptrace.h>
28 #include <linux/profile.h>
29 #include <linux/mount.h>
30 #include <linux/proc_fs.h>
31 #include <linux/kthread.h>
32 #include <linux/mempolicy.h>
33 #include <linux/taskstats_kern.h>
34 #include <linux/delayacct.h>
35 #include <linux/cgroup.h>
36 #include <linux/syscalls.h>
37 #include <linux/signal.h>
38 #include <linux/posix-timers.h>
39 #include <linux/cn_proc.h>
40 #include <linux/mutex.h>
41 #include <linux/futex.h>
42 #include <linux/pipe_fs_i.h>
43 #include <linux/audit.h> /* for audit_free() */
44 #include <linux/resource.h>
45 #include <linux/blkdev.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/tracehook.h>
48 #include <linux/fs_struct.h>
49 #include <linux/init_task.h>
50 #include <linux/perf_event.h>
51 #include <trace/events/sched.h>
52 #include <linux/hw_breakpoint.h>
53 #include <linux/oom.h>
54 #include <linux/writeback.h>
55 #include <linux/shm.h>
56
57 #include <asm/uaccess.h>
58 #include <asm/unistd.h>
59 #include <asm/pgtable.h>
60 #include <asm/mmu_context.h>
61
62 static void exit_mm(struct task_struct *tsk);
63
64 static void __unhash_process(struct task_struct *p, bool group_dead)
65 {
66 nr_threads--;
67 detach_pid(p, PIDTYPE_PID);
68 if (group_dead) {
69 detach_pid(p, PIDTYPE_PGID);
70 detach_pid(p, PIDTYPE_SID);
71
72 list_del_rcu(&p->tasks);
73 list_del_init(&p->sibling);
74 __this_cpu_dec(process_counts);
75 }
76 list_del_rcu(&p->thread_group);
77 list_del_rcu(&p->thread_node);
78 }
79
80 /*
81 * This function expects the tasklist_lock write-locked.
82 */
83 static void __exit_signal(struct task_struct *tsk)
84 {
85 struct signal_struct *sig = tsk->signal;
86 bool group_dead = thread_group_leader(tsk);
87 struct sighand_struct *sighand;
88 struct tty_struct *uninitialized_var(tty);
89 cputime_t utime, stime;
90
91 sighand = rcu_dereference_check(tsk->sighand,
92 lockdep_tasklist_lock_is_held());
93 spin_lock(&sighand->siglock);
94
95 posix_cpu_timers_exit(tsk);
96 if (group_dead) {
97 posix_cpu_timers_exit_group(tsk);
98 tty = sig->tty;
99 sig->tty = NULL;
100 } else {
101 /*
102 * This can only happen if the caller is de_thread().
103 * FIXME: this is the temporary hack, we should teach
104 * posix-cpu-timers to handle this case correctly.
105 */
106 if (unlikely(has_group_leader_pid(tsk)))
107 posix_cpu_timers_exit_group(tsk);
108
109 /*
110 * If there is any task waiting for the group exit
111 * then notify it:
112 */
113 if (sig->notify_count > 0 && !--sig->notify_count)
114 wake_up_process(sig->group_exit_task);
115
116 if (tsk == sig->curr_target)
117 sig->curr_target = next_thread(tsk);
118 }
119
120 /*
121 * Accumulate here the counters for all threads but the group leader
122 * as they die, so they can be added into the process-wide totals
123 * when those are taken. The group leader stays around as a zombie as
124 * long as there are other threads. When it gets reaped, the exit.c
125 * code will add its counts into these totals. We won't ever get here
126 * for the group leader, since it will have been the last reference on
127 * the signal_struct.
128 */
129 task_cputime(tsk, &utime, &stime);
130 sig->utime += utime;
131 sig->stime += stime;
132 sig->gtime += task_gtime(tsk);
133 sig->min_flt += tsk->min_flt;
134 sig->maj_flt += tsk->maj_flt;
135 sig->nvcsw += tsk->nvcsw;
136 sig->nivcsw += tsk->nivcsw;
137 sig->inblock += task_io_get_inblock(tsk);
138 sig->oublock += task_io_get_oublock(tsk);
139 task_io_accounting_add(&sig->ioac, &tsk->ioac);
140 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
141 sig->nr_threads--;
142 __unhash_process(tsk, group_dead);
143
144 /*
145 * Do this under ->siglock, we can race with another thread
146 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
147 */
148 flush_sigqueue(&tsk->pending);
149 tsk->sighand = NULL;
150 spin_unlock(&sighand->siglock);
151
152 __cleanup_sighand(sighand);
153 clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
154 if (group_dead) {
155 flush_sigqueue(&sig->shared_pending);
156 tty_kref_put(tty);
157 }
158 }
159
160 static void delayed_put_task_struct(struct rcu_head *rhp)
161 {
162 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
163
164 perf_event_delayed_put(tsk);
165 trace_sched_process_free(tsk);
166 put_task_struct(tsk);
167 }
168
169
170 void release_task(struct task_struct *p)
171 {
172 struct task_struct *leader;
173 int zap_leader;
174 repeat:
175 /* don't need to get the RCU readlock here - the process is dead and
176 * can't be modifying its own credentials. But shut RCU-lockdep up */
177 rcu_read_lock();
178 atomic_dec(&__task_cred(p)->user->processes);
179 rcu_read_unlock();
180
181 proc_flush_task(p);
182
183 write_lock_irq(&tasklist_lock);
184 ptrace_release_task(p);
185 __exit_signal(p);
186
187 /*
188 * If we are the last non-leader member of the thread
189 * group, and the leader is zombie, then notify the
190 * group leader's parent process. (if it wants notification.)
191 */
192 zap_leader = 0;
193 leader = p->group_leader;
194 if (leader != p && thread_group_empty(leader)
195 && leader->exit_state == EXIT_ZOMBIE) {
196 /*
197 * If we were the last child thread and the leader has
198 * exited already, and the leader's parent ignores SIGCHLD,
199 * then we are the one who should release the leader.
200 */
201 zap_leader = do_notify_parent(leader, leader->exit_signal);
202 if (zap_leader)
203 leader->exit_state = EXIT_DEAD;
204 }
205
206 write_unlock_irq(&tasklist_lock);
207 release_thread(p);
208 call_rcu(&p->rcu, delayed_put_task_struct);
209
210 p = leader;
211 if (unlikely(zap_leader))
212 goto repeat;
213 }
214
215 /*
216 * This checks not only the pgrp, but falls back on the pid if no
217 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
218 * without this...
219 *
220 * The caller must hold rcu lock or the tasklist lock.
221 */
222 struct pid *session_of_pgrp(struct pid *pgrp)
223 {
224 struct task_struct *p;
225 struct pid *sid = NULL;
226
227 p = pid_task(pgrp, PIDTYPE_PGID);
228 if (p == NULL)
229 p = pid_task(pgrp, PIDTYPE_PID);
230 if (p != NULL)
231 sid = task_session(p);
232
233 return sid;
234 }
235
236 /*
237 * Determine if a process group is "orphaned", according to the POSIX
238 * definition in 2.2.2.52. Orphaned process groups are not to be affected
239 * by terminal-generated stop signals. Newly orphaned process groups are
240 * to receive a SIGHUP and a SIGCONT.
241 *
242 * "I ask you, have you ever known what it is to be an orphan?"
243 */
244 static int will_become_orphaned_pgrp(struct pid *pgrp,
245 struct task_struct *ignored_task)
246 {
247 struct task_struct *p;
248
249 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
250 if ((p == ignored_task) ||
251 (p->exit_state && thread_group_empty(p)) ||
252 is_global_init(p->real_parent))
253 continue;
254
255 if (task_pgrp(p->real_parent) != pgrp &&
256 task_session(p->real_parent) == task_session(p))
257 return 0;
258 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
259
260 return 1;
261 }
262
263 int is_current_pgrp_orphaned(void)
264 {
265 int retval;
266
267 read_lock(&tasklist_lock);
268 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
269 read_unlock(&tasklist_lock);
270
271 return retval;
272 }
273
274 static bool has_stopped_jobs(struct pid *pgrp)
275 {
276 struct task_struct *p;
277
278 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
279 if (p->signal->flags & SIGNAL_STOP_STOPPED)
280 return true;
281 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
282
283 return false;
284 }
285
286 /*
287 * Check to see if any process groups have become orphaned as
288 * a result of our exiting, and if they have any stopped jobs,
289 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
290 */
291 static void
292 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
293 {
294 struct pid *pgrp = task_pgrp(tsk);
295 struct task_struct *ignored_task = tsk;
296
297 if (!parent)
298 /* exit: our father is in a different pgrp than
299 * we are and we were the only connection outside.
300 */
301 parent = tsk->real_parent;
302 else
303 /* reparent: our child is in a different pgrp than
304 * we are, and it was the only connection outside.
305 */
306 ignored_task = NULL;
307
308 if (task_pgrp(parent) != pgrp &&
309 task_session(parent) == task_session(tsk) &&
310 will_become_orphaned_pgrp(pgrp, ignored_task) &&
311 has_stopped_jobs(pgrp)) {
312 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
313 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
314 }
315 }
316
317 #ifdef CONFIG_MEMCG
318 /*
319 * A task is exiting. If it owned this mm, find a new owner for the mm.
320 */
321 void mm_update_next_owner(struct mm_struct *mm)
322 {
323 struct task_struct *c, *g, *p = current;
324
325 retry:
326 /*
327 * If the exiting or execing task is not the owner, it's
328 * someone else's problem.
329 */
330 if (mm->owner != p)
331 return;
332 /*
333 * The current owner is exiting/execing and there are no other
334 * candidates. Do not leave the mm pointing to a possibly
335 * freed task structure.
336 */
337 if (atomic_read(&mm->mm_users) <= 1) {
338 mm->owner = NULL;
339 return;
340 }
341
342 read_lock(&tasklist_lock);
343 /*
344 * Search in the children
345 */
346 list_for_each_entry(c, &p->children, sibling) {
347 if (c->mm == mm)
348 goto assign_new_owner;
349 }
350
351 /*
352 * Search in the siblings
353 */
354 list_for_each_entry(c, &p->real_parent->children, sibling) {
355 if (c->mm == mm)
356 goto assign_new_owner;
357 }
358
359 /*
360 * Search through everything else, we should not get here often.
361 */
362 for_each_process(g) {
363 if (g->flags & PF_KTHREAD)
364 continue;
365 for_each_thread(g, c) {
366 if (c->mm == mm)
367 goto assign_new_owner;
368 if (c->mm)
369 break;
370 }
371 }
372 read_unlock(&tasklist_lock);
373 /*
374 * We found no owner yet mm_users > 1: this implies that we are
375 * most likely racing with swapoff (try_to_unuse()) or /proc or
376 * ptrace or page migration (get_task_mm()). Mark owner as NULL.
377 */
378 mm->owner = NULL;
379 return;
380
381 assign_new_owner:
382 BUG_ON(c == p);
383 get_task_struct(c);
384 /*
385 * The task_lock protects c->mm from changing.
386 * We always want mm->owner->mm == mm
387 */
388 task_lock(c);
389 /*
390 * Delay read_unlock() till we have the task_lock()
391 * to ensure that c does not slip away underneath us
392 */
393 read_unlock(&tasklist_lock);
394 if (c->mm != mm) {
395 task_unlock(c);
396 put_task_struct(c);
397 goto retry;
398 }
399 mm->owner = c;
400 task_unlock(c);
401 put_task_struct(c);
402 }
403 #endif /* CONFIG_MEMCG */
404
405 /*
406 * Turn us into a lazy TLB process if we
407 * aren't already..
408 */
409 static void exit_mm(struct task_struct *tsk)
410 {
411 struct mm_struct *mm = tsk->mm;
412 struct core_state *core_state;
413
414 mm_release(tsk, mm);
415 if (!mm)
416 return;
417 sync_mm_rss(mm);
418 /*
419 * Serialize with any possible pending coredump.
420 * We must hold mmap_sem around checking core_state
421 * and clearing tsk->mm. The core-inducing thread
422 * will increment ->nr_threads for each thread in the
423 * group with ->mm != NULL.
424 */
425 down_read(&mm->mmap_sem);
426 core_state = mm->core_state;
427 if (core_state) {
428 struct core_thread self;
429
430 up_read(&mm->mmap_sem);
431
432 self.task = tsk;
433 self.next = xchg(&core_state->dumper.next, &self);
434 /*
435 * Implies mb(), the result of xchg() must be visible
436 * to core_state->dumper.
437 */
438 if (atomic_dec_and_test(&core_state->nr_threads))
439 complete(&core_state->startup);
440
441 for (;;) {
442 set_task_state(tsk, TASK_UNINTERRUPTIBLE);
443 if (!self.task) /* see coredump_finish() */
444 break;
445 freezable_schedule();
446 }
447 __set_task_state(tsk, TASK_RUNNING);
448 down_read(&mm->mmap_sem);
449 }
450 atomic_inc(&mm->mm_count);
451 BUG_ON(mm != tsk->active_mm);
452 /* more a memory barrier than a real lock */
453 task_lock(tsk);
454 tsk->mm = NULL;
455 up_read(&mm->mmap_sem);
456 enter_lazy_tlb(mm, current);
457 task_unlock(tsk);
458 mm_update_next_owner(mm);
459 mmput(mm);
460 clear_thread_flag(TIF_MEMDIE);
461 }
462
463 /*
464 * When we die, we re-parent all our children, and try to:
465 * 1. give them to another thread in our thread group, if such a member exists
466 * 2. give it to the first ancestor process which prctl'd itself as a
467 * child_subreaper for its children (like a service manager)
468 * 3. give it to the init process (PID 1) in our pid namespace
469 */
470 static struct task_struct *find_new_reaper(struct task_struct *father)
471 __releases(&tasklist_lock)
472 __acquires(&tasklist_lock)
473 {
474 struct pid_namespace *pid_ns = task_active_pid_ns(father);
475 struct task_struct *thread;
476
477 thread = father;
478 while_each_thread(father, thread) {
479 if (thread->flags & PF_EXITING)
480 continue;
481 if (unlikely(pid_ns->child_reaper == father))
482 pid_ns->child_reaper = thread;
483 return thread;
484 }
485
486 if (unlikely(pid_ns->child_reaper == father)) {
487 write_unlock_irq(&tasklist_lock);
488 if (unlikely(pid_ns == &init_pid_ns)) {
489 panic("Attempted to kill init! exitcode=0x%08x\n",
490 father->signal->group_exit_code ?:
491 father->exit_code);
492 }
493
494 zap_pid_ns_processes(pid_ns);
495 write_lock_irq(&tasklist_lock);
496 } else if (father->signal->has_child_subreaper) {
497 struct task_struct *reaper;
498
499 /*
500 * Find the first ancestor marked as child_subreaper.
501 * Note that the code below checks same_thread_group(reaper,
502 * pid_ns->child_reaper). This is what we need to DTRT in a
503 * PID namespace. However we still need the check above, see
504 * http://marc.info/?l=linux-kernel&m=131385460420380
505 */
506 for (reaper = father->real_parent;
507 reaper != &init_task;
508 reaper = reaper->real_parent) {
509 if (same_thread_group(reaper, pid_ns->child_reaper))
510 break;
511 if (!reaper->signal->is_child_subreaper)
512 continue;
513 thread = reaper;
514 do {
515 if (!(thread->flags & PF_EXITING))
516 return reaper;
517 } while_each_thread(reaper, thread);
518 }
519 }
520
521 return pid_ns->child_reaper;
522 }
523
524 /*
525 * Any that need to be release_task'd are put on the @dead list.
526 */
527 static void reparent_leader(struct task_struct *father, struct task_struct *p,
528 struct list_head *dead)
529 {
530 list_move_tail(&p->sibling, &p->real_parent->children);
531
532 if (p->exit_state == EXIT_DEAD)
533 return;
534 /*
535 * If this is a threaded reparent there is no need to
536 * notify anyone anything has happened.
537 */
538 if (same_thread_group(p->real_parent, father))
539 return;
540
541 /* We don't want people slaying init. */
542 p->exit_signal = SIGCHLD;
543
544 /* If it has exited notify the new parent about this child's death. */
545 if (!p->ptrace &&
546 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
547 if (do_notify_parent(p, p->exit_signal)) {
548 p->exit_state = EXIT_DEAD;
549 list_move_tail(&p->sibling, dead);
550 }
551 }
552
553 kill_orphaned_pgrp(p, father);
554 }
555
556 static void forget_original_parent(struct task_struct *father)
557 {
558 struct task_struct *p, *n, *reaper;
559 LIST_HEAD(dead_children);
560
561 write_lock_irq(&tasklist_lock);
562 /*
563 * Note that exit_ptrace() and find_new_reaper() might
564 * drop tasklist_lock and reacquire it.
565 */
566 exit_ptrace(father);
567 reaper = find_new_reaper(father);
568
569 list_for_each_entry_safe(p, n, &father->children, sibling) {
570 struct task_struct *t = p;
571
572 do {
573 t->real_parent = reaper;
574 if (t->parent == father) {
575 BUG_ON(t->ptrace);
576 t->parent = t->real_parent;
577 }
578 if (t->pdeath_signal)
579 group_send_sig_info(t->pdeath_signal,
580 SEND_SIG_NOINFO, t);
581 } while_each_thread(p, t);
582 reparent_leader(father, p, &dead_children);
583 }
584 write_unlock_irq(&tasklist_lock);
585
586 BUG_ON(!list_empty(&father->children));
587
588 list_for_each_entry_safe(p, n, &dead_children, sibling) {
589 list_del_init(&p->sibling);
590 release_task(p);
591 }
592 }
593
594 /*
595 * Send signals to all our closest relatives so that they know
596 * to properly mourn us..
597 */
598 static void exit_notify(struct task_struct *tsk, int group_dead)
599 {
600 bool autoreap;
601
602 /*
603 * This does two things:
604 *
605 * A. Make init inherit all the child processes
606 * B. Check to see if any process groups have become orphaned
607 * as a result of our exiting, and if they have any stopped
608 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
609 */
610 forget_original_parent(tsk);
611
612 write_lock_irq(&tasklist_lock);
613 if (group_dead)
614 kill_orphaned_pgrp(tsk->group_leader, NULL);
615
616 if (unlikely(tsk->ptrace)) {
617 int sig = thread_group_leader(tsk) &&
618 thread_group_empty(tsk) &&
619 !ptrace_reparented(tsk) ?
620 tsk->exit_signal : SIGCHLD;
621 autoreap = do_notify_parent(tsk, sig);
622 } else if (thread_group_leader(tsk)) {
623 autoreap = thread_group_empty(tsk) &&
624 do_notify_parent(tsk, tsk->exit_signal);
625 } else {
626 autoreap = true;
627 }
628
629 tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE;
630
631 /* mt-exec, de_thread() is waiting for group leader */
632 if (unlikely(tsk->signal->notify_count < 0))
633 wake_up_process(tsk->signal->group_exit_task);
634 write_unlock_irq(&tasklist_lock);
635
636 /* If the process is dead, release it - nobody will wait for it */
637 if (autoreap)
638 release_task(tsk);
639 }
640
641 #ifdef CONFIG_DEBUG_STACK_USAGE
642 static void check_stack_usage(void)
643 {
644 static DEFINE_SPINLOCK(low_water_lock);
645 static int lowest_to_date = THREAD_SIZE;
646 unsigned long free;
647
648 free = stack_not_used(current);
649
650 if (free >= lowest_to_date)
651 return;
652
653 spin_lock(&low_water_lock);
654 if (free < lowest_to_date) {
655 pr_warn("%s (%d) used greatest stack depth: %lu bytes left\n",
656 current->comm, task_pid_nr(current), free);
657 lowest_to_date = free;
658 }
659 spin_unlock(&low_water_lock);
660 }
661 #else
662 static inline void check_stack_usage(void) {}
663 #endif
664
665 void do_exit(long code)
666 {
667 struct task_struct *tsk = current;
668 int group_dead;
669
670 profile_task_exit(tsk);
671
672 WARN_ON(blk_needs_flush_plug(tsk));
673
674 if (unlikely(in_interrupt()))
675 panic("Aiee, killing interrupt handler!");
676 if (unlikely(!tsk->pid))
677 panic("Attempted to kill the idle task!");
678
679 /*
680 * If do_exit is called because this processes oopsed, it's possible
681 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
682 * continuing. Amongst other possible reasons, this is to prevent
683 * mm_release()->clear_child_tid() from writing to a user-controlled
684 * kernel address.
685 */
686 set_fs(USER_DS);
687
688 ptrace_event(PTRACE_EVENT_EXIT, code);
689
690 validate_creds_for_do_exit(tsk);
691
692 /*
693 * We're taking recursive faults here in do_exit. Safest is to just
694 * leave this task alone and wait for reboot.
695 */
696 if (unlikely(tsk->flags & PF_EXITING)) {
697 pr_alert("Fixing recursive fault but reboot is needed!\n");
698 /*
699 * We can do this unlocked here. The futex code uses
700 * this flag just to verify whether the pi state
701 * cleanup has been done or not. In the worst case it
702 * loops once more. We pretend that the cleanup was
703 * done as there is no way to return. Either the
704 * OWNER_DIED bit is set by now or we push the blocked
705 * task into the wait for ever nirwana as well.
706 */
707 tsk->flags |= PF_EXITPIDONE;
708 set_current_state(TASK_UNINTERRUPTIBLE);
709 schedule();
710 }
711
712 exit_signals(tsk); /* sets PF_EXITING */
713 /*
714 * tsk->flags are checked in the futex code to protect against
715 * an exiting task cleaning up the robust pi futexes.
716 */
717 smp_mb();
718 raw_spin_unlock_wait(&tsk->pi_lock);
719
720 if (unlikely(in_atomic()))
721 pr_info("note: %s[%d] exited with preempt_count %d\n",
722 current->comm, task_pid_nr(current),
723 preempt_count());
724
725 acct_update_integrals(tsk);
726 /* sync mm's RSS info before statistics gathering */
727 if (tsk->mm)
728 sync_mm_rss(tsk->mm);
729 group_dead = atomic_dec_and_test(&tsk->signal->live);
730 if (group_dead) {
731 hrtimer_cancel(&tsk->signal->real_timer);
732 exit_itimers(tsk->signal);
733 if (tsk->mm)
734 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
735 }
736 acct_collect(code, group_dead);
737 if (group_dead)
738 tty_audit_exit();
739 audit_free(tsk);
740
741 tsk->exit_code = code;
742 taskstats_exit(tsk, group_dead);
743
744 exit_mm(tsk);
745
746 if (group_dead)
747 acct_process();
748 trace_sched_process_exit(tsk);
749
750 exit_sem(tsk);
751 exit_shm(tsk);
752 exit_files(tsk);
753 exit_fs(tsk);
754 if (group_dead)
755 disassociate_ctty(1);
756 exit_task_namespaces(tsk);
757 exit_task_work(tsk);
758 exit_thread();
759
760 /*
761 * Flush inherited counters to the parent - before the parent
762 * gets woken up by child-exit notifications.
763 *
764 * because of cgroup mode, must be called before cgroup_exit()
765 */
766 perf_event_exit_task(tsk);
767
768 cgroup_exit(tsk);
769
770 module_put(task_thread_info(tsk)->exec_domain->module);
771
772 /*
773 * FIXME: do that only when needed, using sched_exit tracepoint
774 */
775 flush_ptrace_hw_breakpoint(tsk);
776
777 exit_notify(tsk, group_dead);
778 proc_exit_connector(tsk);
779 #ifdef CONFIG_NUMA
780 task_lock(tsk);
781 mpol_put(tsk->mempolicy);
782 tsk->mempolicy = NULL;
783 task_unlock(tsk);
784 #endif
785 #ifdef CONFIG_FUTEX
786 if (unlikely(current->pi_state_cache))
787 kfree(current->pi_state_cache);
788 #endif
789 /*
790 * Make sure we are holding no locks:
791 */
792 debug_check_no_locks_held();
793 /*
794 * We can do this unlocked here. The futex code uses this flag
795 * just to verify whether the pi state cleanup has been done
796 * or not. In the worst case it loops once more.
797 */
798 tsk->flags |= PF_EXITPIDONE;
799
800 if (tsk->io_context)
801 exit_io_context(tsk);
802
803 if (tsk->splice_pipe)
804 free_pipe_info(tsk->splice_pipe);
805
806 if (tsk->task_frag.page)
807 put_page(tsk->task_frag.page);
808
809 validate_creds_for_do_exit(tsk);
810
811 check_stack_usage();
812 preempt_disable();
813 if (tsk->nr_dirtied)
814 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
815 exit_rcu();
816
817 /*
818 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed
819 * when the following two conditions become true.
820 * - There is race condition of mmap_sem (It is acquired by
821 * exit_mm()), and
822 * - SMI occurs before setting TASK_RUNINNG.
823 * (or hypervisor of virtual machine switches to other guest)
824 * As a result, we may become TASK_RUNNING after becoming TASK_DEAD
825 *
826 * To avoid it, we have to wait for releasing tsk->pi_lock which
827 * is held by try_to_wake_up()
828 */
829 smp_mb();
830 raw_spin_unlock_wait(&tsk->pi_lock);
831
832 /* causes final put_task_struct in finish_task_switch(). */
833 tsk->state = TASK_DEAD;
834 tsk->flags |= PF_NOFREEZE; /* tell freezer to ignore us */
835 schedule();
836 BUG();
837 /* Avoid "noreturn function does return". */
838 for (;;)
839 cpu_relax(); /* For when BUG is null */
840 }
841 EXPORT_SYMBOL_GPL(do_exit);
842
843 void complete_and_exit(struct completion *comp, long code)
844 {
845 if (comp)
846 complete(comp);
847
848 do_exit(code);
849 }
850 EXPORT_SYMBOL(complete_and_exit);
851
852 SYSCALL_DEFINE1(exit, int, error_code)
853 {
854 do_exit((error_code&0xff)<<8);
855 }
856
857 /*
858 * Take down every thread in the group. This is called by fatal signals
859 * as well as by sys_exit_group (below).
860 */
861 void
862 do_group_exit(int exit_code)
863 {
864 struct signal_struct *sig = current->signal;
865
866 BUG_ON(exit_code & 0x80); /* core dumps don't get here */
867
868 if (signal_group_exit(sig))
869 exit_code = sig->group_exit_code;
870 else if (!thread_group_empty(current)) {
871 struct sighand_struct *const sighand = current->sighand;
872
873 spin_lock_irq(&sighand->siglock);
874 if (signal_group_exit(sig))
875 /* Another thread got here before we took the lock. */
876 exit_code = sig->group_exit_code;
877 else {
878 sig->group_exit_code = exit_code;
879 sig->flags = SIGNAL_GROUP_EXIT;
880 zap_other_threads(current);
881 }
882 spin_unlock_irq(&sighand->siglock);
883 }
884
885 do_exit(exit_code);
886 /* NOTREACHED */
887 }
888
889 /*
890 * this kills every thread in the thread group. Note that any externally
891 * wait4()-ing process will get the correct exit code - even if this
892 * thread is not the thread group leader.
893 */
894 SYSCALL_DEFINE1(exit_group, int, error_code)
895 {
896 do_group_exit((error_code & 0xff) << 8);
897 /* NOTREACHED */
898 return 0;
899 }
900
901 struct wait_opts {
902 enum pid_type wo_type;
903 int wo_flags;
904 struct pid *wo_pid;
905
906 struct siginfo __user *wo_info;
907 int __user *wo_stat;
908 struct rusage __user *wo_rusage;
909
910 wait_queue_t child_wait;
911 int notask_error;
912 };
913
914 static inline
915 struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
916 {
917 if (type != PIDTYPE_PID)
918 task = task->group_leader;
919 return task->pids[type].pid;
920 }
921
922 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
923 {
924 return wo->wo_type == PIDTYPE_MAX ||
925 task_pid_type(p, wo->wo_type) == wo->wo_pid;
926 }
927
928 static int eligible_child(struct wait_opts *wo, struct task_struct *p)
929 {
930 if (!eligible_pid(wo, p))
931 return 0;
932 /* Wait for all children (clone and not) if __WALL is set;
933 * otherwise, wait for clone children *only* if __WCLONE is
934 * set; otherwise, wait for non-clone children *only*. (Note:
935 * A "clone" child here is one that reports to its parent
936 * using a signal other than SIGCHLD.) */
937 if (((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
938 && !(wo->wo_flags & __WALL))
939 return 0;
940
941 return 1;
942 }
943
944 static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p,
945 pid_t pid, uid_t uid, int why, int status)
946 {
947 struct siginfo __user *infop;
948 int retval = wo->wo_rusage
949 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
950
951 put_task_struct(p);
952 infop = wo->wo_info;
953 if (infop) {
954 if (!retval)
955 retval = put_user(SIGCHLD, &infop->si_signo);
956 if (!retval)
957 retval = put_user(0, &infop->si_errno);
958 if (!retval)
959 retval = put_user((short)why, &infop->si_code);
960 if (!retval)
961 retval = put_user(pid, &infop->si_pid);
962 if (!retval)
963 retval = put_user(uid, &infop->si_uid);
964 if (!retval)
965 retval = put_user(status, &infop->si_status);
966 }
967 if (!retval)
968 retval = pid;
969 return retval;
970 }
971
972 /*
973 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
974 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
975 * the lock and this task is uninteresting. If we return nonzero, we have
976 * released the lock and the system call should return.
977 */
978 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
979 {
980 unsigned long state;
981 int retval, status, traced;
982 pid_t pid = task_pid_vnr(p);
983 uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
984 struct siginfo __user *infop;
985
986 if (!likely(wo->wo_flags & WEXITED))
987 return 0;
988
989 if (unlikely(wo->wo_flags & WNOWAIT)) {
990 int exit_code = p->exit_code;
991 int why;
992
993 get_task_struct(p);
994 read_unlock(&tasklist_lock);
995 if ((exit_code & 0x7f) == 0) {
996 why = CLD_EXITED;
997 status = exit_code >> 8;
998 } else {
999 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1000 status = exit_code & 0x7f;
1001 }
1002 return wait_noreap_copyout(wo, p, pid, uid, why, status);
1003 }
1004
1005 traced = ptrace_reparented(p);
1006 /*
1007 * Move the task's state to DEAD/TRACE, only one thread can do this.
1008 */
1009 state = traced && thread_group_leader(p) ? EXIT_TRACE : EXIT_DEAD;
1010 if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1011 return 0;
1012 /*
1013 * It can be ptraced but not reparented, check
1014 * thread_group_leader() to filter out sub-threads.
1015 */
1016 if (likely(!traced) && thread_group_leader(p)) {
1017 struct signal_struct *psig;
1018 struct signal_struct *sig;
1019 unsigned long maxrss;
1020 cputime_t tgutime, tgstime;
1021
1022 /*
1023 * The resource counters for the group leader are in its
1024 * own task_struct. Those for dead threads in the group
1025 * are in its signal_struct, as are those for the child
1026 * processes it has previously reaped. All these
1027 * accumulate in the parent's signal_struct c* fields.
1028 *
1029 * We don't bother to take a lock here to protect these
1030 * p->signal fields, because they are only touched by
1031 * __exit_signal, which runs with tasklist_lock
1032 * write-locked anyway, and so is excluded here. We do
1033 * need to protect the access to parent->signal fields,
1034 * as other threads in the parent group can be right
1035 * here reaping other children at the same time.
1036 *
1037 * We use thread_group_cputime_adjusted() to get times for
1038 * the thread group, which consolidates times for all threads
1039 * in the group including the group leader.
1040 */
1041 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1042 spin_lock_irq(&p->real_parent->sighand->siglock);
1043 psig = p->real_parent->signal;
1044 sig = p->signal;
1045 psig->cutime += tgutime + sig->cutime;
1046 psig->cstime += tgstime + sig->cstime;
1047 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1048 psig->cmin_flt +=
1049 p->min_flt + sig->min_flt + sig->cmin_flt;
1050 psig->cmaj_flt +=
1051 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1052 psig->cnvcsw +=
1053 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1054 psig->cnivcsw +=
1055 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1056 psig->cinblock +=
1057 task_io_get_inblock(p) +
1058 sig->inblock + sig->cinblock;
1059 psig->coublock +=
1060 task_io_get_oublock(p) +
1061 sig->oublock + sig->coublock;
1062 maxrss = max(sig->maxrss, sig->cmaxrss);
1063 if (psig->cmaxrss < maxrss)
1064 psig->cmaxrss = maxrss;
1065 task_io_accounting_add(&psig->ioac, &p->ioac);
1066 task_io_accounting_add(&psig->ioac, &sig->ioac);
1067 spin_unlock_irq(&p->real_parent->sighand->siglock);
1068 }
1069
1070 /*
1071 * Now we are sure this task is interesting, and no other
1072 * thread can reap it because we its state == DEAD/TRACE.
1073 */
1074 read_unlock(&tasklist_lock);
1075
1076 retval = wo->wo_rusage
1077 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1078 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1079 ? p->signal->group_exit_code : p->exit_code;
1080 if (!retval && wo->wo_stat)
1081 retval = put_user(status, wo->wo_stat);
1082
1083 infop = wo->wo_info;
1084 if (!retval && infop)
1085 retval = put_user(SIGCHLD, &infop->si_signo);
1086 if (!retval && infop)
1087 retval = put_user(0, &infop->si_errno);
1088 if (!retval && infop) {
1089 int why;
1090
1091 if ((status & 0x7f) == 0) {
1092 why = CLD_EXITED;
1093 status >>= 8;
1094 } else {
1095 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1096 status &= 0x7f;
1097 }
1098 retval = put_user((short)why, &infop->si_code);
1099 if (!retval)
1100 retval = put_user(status, &infop->si_status);
1101 }
1102 if (!retval && infop)
1103 retval = put_user(pid, &infop->si_pid);
1104 if (!retval && infop)
1105 retval = put_user(uid, &infop->si_uid);
1106 if (!retval)
1107 retval = pid;
1108
1109 if (state == EXIT_TRACE) {
1110 write_lock_irq(&tasklist_lock);
1111 /* We dropped tasklist, ptracer could die and untrace */
1112 ptrace_unlink(p);
1113
1114 /* If parent wants a zombie, don't release it now */
1115 state = EXIT_ZOMBIE;
1116 if (do_notify_parent(p, p->exit_signal))
1117 state = EXIT_DEAD;
1118 p->exit_state = state;
1119 write_unlock_irq(&tasklist_lock);
1120 }
1121 if (state == EXIT_DEAD)
1122 release_task(p);
1123
1124 return retval;
1125 }
1126
1127 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1128 {
1129 if (ptrace) {
1130 if (task_is_stopped_or_traced(p) &&
1131 !(p->jobctl & JOBCTL_LISTENING))
1132 return &p->exit_code;
1133 } else {
1134 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1135 return &p->signal->group_exit_code;
1136 }
1137 return NULL;
1138 }
1139
1140 /**
1141 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1142 * @wo: wait options
1143 * @ptrace: is the wait for ptrace
1144 * @p: task to wait for
1145 *
1146 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1147 *
1148 * CONTEXT:
1149 * read_lock(&tasklist_lock), which is released if return value is
1150 * non-zero. Also, grabs and releases @p->sighand->siglock.
1151 *
1152 * RETURNS:
1153 * 0 if wait condition didn't exist and search for other wait conditions
1154 * should continue. Non-zero return, -errno on failure and @p's pid on
1155 * success, implies that tasklist_lock is released and wait condition
1156 * search should terminate.
1157 */
1158 static int wait_task_stopped(struct wait_opts *wo,
1159 int ptrace, struct task_struct *p)
1160 {
1161 struct siginfo __user *infop;
1162 int retval, exit_code, *p_code, why;
1163 uid_t uid = 0; /* unneeded, required by compiler */
1164 pid_t pid;
1165
1166 /*
1167 * Traditionally we see ptrace'd stopped tasks regardless of options.
1168 */
1169 if (!ptrace && !(wo->wo_flags & WUNTRACED))
1170 return 0;
1171
1172 if (!task_stopped_code(p, ptrace))
1173 return 0;
1174
1175 exit_code = 0;
1176 spin_lock_irq(&p->sighand->siglock);
1177
1178 p_code = task_stopped_code(p, ptrace);
1179 if (unlikely(!p_code))
1180 goto unlock_sig;
1181
1182 exit_code = *p_code;
1183 if (!exit_code)
1184 goto unlock_sig;
1185
1186 if (!unlikely(wo->wo_flags & WNOWAIT))
1187 *p_code = 0;
1188
1189 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1190 unlock_sig:
1191 spin_unlock_irq(&p->sighand->siglock);
1192 if (!exit_code)
1193 return 0;
1194
1195 /*
1196 * Now we are pretty sure this task is interesting.
1197 * Make sure it doesn't get reaped out from under us while we
1198 * give up the lock and then examine it below. We don't want to
1199 * keep holding onto the tasklist_lock while we call getrusage and
1200 * possibly take page faults for user memory.
1201 */
1202 get_task_struct(p);
1203 pid = task_pid_vnr(p);
1204 why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1205 read_unlock(&tasklist_lock);
1206
1207 if (unlikely(wo->wo_flags & WNOWAIT))
1208 return wait_noreap_copyout(wo, p, pid, uid, why, exit_code);
1209
1210 retval = wo->wo_rusage
1211 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1212 if (!retval && wo->wo_stat)
1213 retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat);
1214
1215 infop = wo->wo_info;
1216 if (!retval && infop)
1217 retval = put_user(SIGCHLD, &infop->si_signo);
1218 if (!retval && infop)
1219 retval = put_user(0, &infop->si_errno);
1220 if (!retval && infop)
1221 retval = put_user((short)why, &infop->si_code);
1222 if (!retval && infop)
1223 retval = put_user(exit_code, &infop->si_status);
1224 if (!retval && infop)
1225 retval = put_user(pid, &infop->si_pid);
1226 if (!retval && infop)
1227 retval = put_user(uid, &infop->si_uid);
1228 if (!retval)
1229 retval = pid;
1230 put_task_struct(p);
1231
1232 BUG_ON(!retval);
1233 return retval;
1234 }
1235
1236 /*
1237 * Handle do_wait work for one task in a live, non-stopped state.
1238 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1239 * the lock and this task is uninteresting. If we return nonzero, we have
1240 * released the lock and the system call should return.
1241 */
1242 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1243 {
1244 int retval;
1245 pid_t pid;
1246 uid_t uid;
1247
1248 if (!unlikely(wo->wo_flags & WCONTINUED))
1249 return 0;
1250
1251 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1252 return 0;
1253
1254 spin_lock_irq(&p->sighand->siglock);
1255 /* Re-check with the lock held. */
1256 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1257 spin_unlock_irq(&p->sighand->siglock);
1258 return 0;
1259 }
1260 if (!unlikely(wo->wo_flags & WNOWAIT))
1261 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1262 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1263 spin_unlock_irq(&p->sighand->siglock);
1264
1265 pid = task_pid_vnr(p);
1266 get_task_struct(p);
1267 read_unlock(&tasklist_lock);
1268
1269 if (!wo->wo_info) {
1270 retval = wo->wo_rusage
1271 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1272 put_task_struct(p);
1273 if (!retval && wo->wo_stat)
1274 retval = put_user(0xffff, wo->wo_stat);
1275 if (!retval)
1276 retval = pid;
1277 } else {
1278 retval = wait_noreap_copyout(wo, p, pid, uid,
1279 CLD_CONTINUED, SIGCONT);
1280 BUG_ON(retval == 0);
1281 }
1282
1283 return retval;
1284 }
1285
1286 /*
1287 * Consider @p for a wait by @parent.
1288 *
1289 * -ECHILD should be in ->notask_error before the first call.
1290 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1291 * Returns zero if the search for a child should continue;
1292 * then ->notask_error is 0 if @p is an eligible child,
1293 * or another error from security_task_wait(), or still -ECHILD.
1294 */
1295 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1296 struct task_struct *p)
1297 {
1298 int ret;
1299
1300 if (unlikely(p->exit_state == EXIT_DEAD))
1301 return 0;
1302
1303 ret = eligible_child(wo, p);
1304 if (!ret)
1305 return ret;
1306
1307 ret = security_task_wait(p);
1308 if (unlikely(ret < 0)) {
1309 /*
1310 * If we have not yet seen any eligible child,
1311 * then let this error code replace -ECHILD.
1312 * A permission error will give the user a clue
1313 * to look for security policy problems, rather
1314 * than for mysterious wait bugs.
1315 */
1316 if (wo->notask_error)
1317 wo->notask_error = ret;
1318 return 0;
1319 }
1320
1321 if (unlikely(p->exit_state == EXIT_TRACE)) {
1322 /*
1323 * ptrace == 0 means we are the natural parent. In this case
1324 * we should clear notask_error, debugger will notify us.
1325 */
1326 if (likely(!ptrace))
1327 wo->notask_error = 0;
1328 return 0;
1329 }
1330
1331 if (likely(!ptrace) && unlikely(p->ptrace)) {
1332 /*
1333 * If it is traced by its real parent's group, just pretend
1334 * the caller is ptrace_do_wait() and reap this child if it
1335 * is zombie.
1336 *
1337 * This also hides group stop state from real parent; otherwise
1338 * a single stop can be reported twice as group and ptrace stop.
1339 * If a ptracer wants to distinguish these two events for its
1340 * own children it should create a separate process which takes
1341 * the role of real parent.
1342 */
1343 if (!ptrace_reparented(p))
1344 ptrace = 1;
1345 }
1346
1347 /* slay zombie? */
1348 if (p->exit_state == EXIT_ZOMBIE) {
1349 /* we don't reap group leaders with subthreads */
1350 if (!delay_group_leader(p)) {
1351 /*
1352 * A zombie ptracee is only visible to its ptracer.
1353 * Notification and reaping will be cascaded to the
1354 * real parent when the ptracer detaches.
1355 */
1356 if (unlikely(ptrace) || likely(!p->ptrace))
1357 return wait_task_zombie(wo, p);
1358 }
1359
1360 /*
1361 * Allow access to stopped/continued state via zombie by
1362 * falling through. Clearing of notask_error is complex.
1363 *
1364 * When !@ptrace:
1365 *
1366 * If WEXITED is set, notask_error should naturally be
1367 * cleared. If not, subset of WSTOPPED|WCONTINUED is set,
1368 * so, if there are live subthreads, there are events to
1369 * wait for. If all subthreads are dead, it's still safe
1370 * to clear - this function will be called again in finite
1371 * amount time once all the subthreads are released and
1372 * will then return without clearing.
1373 *
1374 * When @ptrace:
1375 *
1376 * Stopped state is per-task and thus can't change once the
1377 * target task dies. Only continued and exited can happen.
1378 * Clear notask_error if WCONTINUED | WEXITED.
1379 */
1380 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1381 wo->notask_error = 0;
1382 } else {
1383 /*
1384 * @p is alive and it's gonna stop, continue or exit, so
1385 * there always is something to wait for.
1386 */
1387 wo->notask_error = 0;
1388 }
1389
1390 /*
1391 * Wait for stopped. Depending on @ptrace, different stopped state
1392 * is used and the two don't interact with each other.
1393 */
1394 ret = wait_task_stopped(wo, ptrace, p);
1395 if (ret)
1396 return ret;
1397
1398 /*
1399 * Wait for continued. There's only one continued state and the
1400 * ptracer can consume it which can confuse the real parent. Don't
1401 * use WCONTINUED from ptracer. You don't need or want it.
1402 */
1403 return wait_task_continued(wo, p);
1404 }
1405
1406 /*
1407 * Do the work of do_wait() for one thread in the group, @tsk.
1408 *
1409 * -ECHILD should be in ->notask_error before the first call.
1410 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1411 * Returns zero if the search for a child should continue; then
1412 * ->notask_error is 0 if there were any eligible children,
1413 * or another error from security_task_wait(), or still -ECHILD.
1414 */
1415 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1416 {
1417 struct task_struct *p;
1418
1419 list_for_each_entry(p, &tsk->children, sibling) {
1420 int ret = wait_consider_task(wo, 0, p);
1421
1422 if (ret)
1423 return ret;
1424 }
1425
1426 return 0;
1427 }
1428
1429 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1430 {
1431 struct task_struct *p;
1432
1433 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1434 int ret = wait_consider_task(wo, 1, p);
1435
1436 if (ret)
1437 return ret;
1438 }
1439
1440 return 0;
1441 }
1442
1443 static int child_wait_callback(wait_queue_t *wait, unsigned mode,
1444 int sync, void *key)
1445 {
1446 struct wait_opts *wo = container_of(wait, struct wait_opts,
1447 child_wait);
1448 struct task_struct *p = key;
1449
1450 if (!eligible_pid(wo, p))
1451 return 0;
1452
1453 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1454 return 0;
1455
1456 return default_wake_function(wait, mode, sync, key);
1457 }
1458
1459 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1460 {
1461 __wake_up_sync_key(&parent->signal->wait_chldexit,
1462 TASK_INTERRUPTIBLE, 1, p);
1463 }
1464
1465 static long do_wait(struct wait_opts *wo)
1466 {
1467 struct task_struct *tsk;
1468 int retval;
1469
1470 trace_sched_process_wait(wo->wo_pid);
1471
1472 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1473 wo->child_wait.private = current;
1474 add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1475 repeat:
1476 /*
1477 * If there is nothing that can match our critiera just get out.
1478 * We will clear ->notask_error to zero if we see any child that
1479 * might later match our criteria, even if we are not able to reap
1480 * it yet.
1481 */
1482 wo->notask_error = -ECHILD;
1483 if ((wo->wo_type < PIDTYPE_MAX) &&
1484 (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
1485 goto notask;
1486
1487 set_current_state(TASK_INTERRUPTIBLE);
1488 read_lock(&tasklist_lock);
1489 tsk = current;
1490 do {
1491 retval = do_wait_thread(wo, tsk);
1492 if (retval)
1493 goto end;
1494
1495 retval = ptrace_do_wait(wo, tsk);
1496 if (retval)
1497 goto end;
1498
1499 if (wo->wo_flags & __WNOTHREAD)
1500 break;
1501 } while_each_thread(current, tsk);
1502 read_unlock(&tasklist_lock);
1503
1504 notask:
1505 retval = wo->notask_error;
1506 if (!retval && !(wo->wo_flags & WNOHANG)) {
1507 retval = -ERESTARTSYS;
1508 if (!signal_pending(current)) {
1509 schedule();
1510 goto repeat;
1511 }
1512 }
1513 end:
1514 __set_current_state(TASK_RUNNING);
1515 remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1516 return retval;
1517 }
1518
1519 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1520 infop, int, options, struct rusage __user *, ru)
1521 {
1522 struct wait_opts wo;
1523 struct pid *pid = NULL;
1524 enum pid_type type;
1525 long ret;
1526
1527 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1528 return -EINVAL;
1529 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1530 return -EINVAL;
1531
1532 switch (which) {
1533 case P_ALL:
1534 type = PIDTYPE_MAX;
1535 break;
1536 case P_PID:
1537 type = PIDTYPE_PID;
1538 if (upid <= 0)
1539 return -EINVAL;
1540 break;
1541 case P_PGID:
1542 type = PIDTYPE_PGID;
1543 if (upid <= 0)
1544 return -EINVAL;
1545 break;
1546 default:
1547 return -EINVAL;
1548 }
1549
1550 if (type < PIDTYPE_MAX)
1551 pid = find_get_pid(upid);
1552
1553 wo.wo_type = type;
1554 wo.wo_pid = pid;
1555 wo.wo_flags = options;
1556 wo.wo_info = infop;
1557 wo.wo_stat = NULL;
1558 wo.wo_rusage = ru;
1559 ret = do_wait(&wo);
1560
1561 if (ret > 0) {
1562 ret = 0;
1563 } else if (infop) {
1564 /*
1565 * For a WNOHANG return, clear out all the fields
1566 * we would set so the user can easily tell the
1567 * difference.
1568 */
1569 if (!ret)
1570 ret = put_user(0, &infop->si_signo);
1571 if (!ret)
1572 ret = put_user(0, &infop->si_errno);
1573 if (!ret)
1574 ret = put_user(0, &infop->si_code);
1575 if (!ret)
1576 ret = put_user(0, &infop->si_pid);
1577 if (!ret)
1578 ret = put_user(0, &infop->si_uid);
1579 if (!ret)
1580 ret = put_user(0, &infop->si_status);
1581 }
1582
1583 put_pid(pid);
1584 return ret;
1585 }
1586
1587 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1588 int, options, struct rusage __user *, ru)
1589 {
1590 struct wait_opts wo;
1591 struct pid *pid = NULL;
1592 enum pid_type type;
1593 long ret;
1594
1595 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1596 __WNOTHREAD|__WCLONE|__WALL))
1597 return -EINVAL;
1598
1599 if (upid == -1)
1600 type = PIDTYPE_MAX;
1601 else if (upid < 0) {
1602 type = PIDTYPE_PGID;
1603 pid = find_get_pid(-upid);
1604 } else if (upid == 0) {
1605 type = PIDTYPE_PGID;
1606 pid = get_task_pid(current, PIDTYPE_PGID);
1607 } else /* upid > 0 */ {
1608 type = PIDTYPE_PID;
1609 pid = find_get_pid(upid);
1610 }
1611
1612 wo.wo_type = type;
1613 wo.wo_pid = pid;
1614 wo.wo_flags = options | WEXITED;
1615 wo.wo_info = NULL;
1616 wo.wo_stat = stat_addr;
1617 wo.wo_rusage = ru;
1618 ret = do_wait(&wo);
1619 put_pid(pid);
1620
1621 return ret;
1622 }
1623
1624 #ifdef __ARCH_WANT_SYS_WAITPID
1625
1626 /*
1627 * sys_waitpid() remains for compatibility. waitpid() should be
1628 * implemented by calling sys_wait4() from libc.a.
1629 */
1630 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1631 {
1632 return sys_wait4(pid, stat_addr, options, NULL);
1633 }
1634
1635 #endif