]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - kernel/exit.c
io_uring: don't cancel all work on process exit
[mirror_ubuntu-hirsute-kernel.git] / kernel / exit.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/kernel/exit.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8 #include <linux/mm.h>
9 #include <linux/slab.h>
10 #include <linux/sched/autogroup.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/stat.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/sched/cputime.h>
16 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 #include <linux/capability.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/tty.h>
22 #include <linux/iocontext.h>
23 #include <linux/key.h>
24 #include <linux/cpu.h>
25 #include <linux/acct.h>
26 #include <linux/tsacct_kern.h>
27 #include <linux/file.h>
28 #include <linux/fdtable.h>
29 #include <linux/freezer.h>
30 #include <linux/binfmts.h>
31 #include <linux/nsproxy.h>
32 #include <linux/pid_namespace.h>
33 #include <linux/ptrace.h>
34 #include <linux/profile.h>
35 #include <linux/mount.h>
36 #include <linux/proc_fs.h>
37 #include <linux/kthread.h>
38 #include <linux/mempolicy.h>
39 #include <linux/taskstats_kern.h>
40 #include <linux/delayacct.h>
41 #include <linux/cgroup.h>
42 #include <linux/syscalls.h>
43 #include <linux/signal.h>
44 #include <linux/posix-timers.h>
45 #include <linux/cn_proc.h>
46 #include <linux/mutex.h>
47 #include <linux/futex.h>
48 #include <linux/pipe_fs_i.h>
49 #include <linux/audit.h> /* for audit_free() */
50 #include <linux/resource.h>
51 #include <linux/blkdev.h>
52 #include <linux/task_io_accounting_ops.h>
53 #include <linux/tracehook.h>
54 #include <linux/fs_struct.h>
55 #include <linux/init_task.h>
56 #include <linux/perf_event.h>
57 #include <trace/events/sched.h>
58 #include <linux/hw_breakpoint.h>
59 #include <linux/oom.h>
60 #include <linux/writeback.h>
61 #include <linux/shm.h>
62 #include <linux/kcov.h>
63 #include <linux/random.h>
64 #include <linux/rcuwait.h>
65 #include <linux/compat.h>
66
67 #include <linux/uaccess.h>
68 #include <asm/unistd.h>
69 #include <asm/pgtable.h>
70 #include <asm/mmu_context.h>
71
72 static void __unhash_process(struct task_struct *p, bool group_dead)
73 {
74 nr_threads--;
75 detach_pid(p, PIDTYPE_PID);
76 if (group_dead) {
77 detach_pid(p, PIDTYPE_TGID);
78 detach_pid(p, PIDTYPE_PGID);
79 detach_pid(p, PIDTYPE_SID);
80
81 list_del_rcu(&p->tasks);
82 list_del_init(&p->sibling);
83 __this_cpu_dec(process_counts);
84 }
85 list_del_rcu(&p->thread_group);
86 list_del_rcu(&p->thread_node);
87 }
88
89 /*
90 * This function expects the tasklist_lock write-locked.
91 */
92 static void __exit_signal(struct task_struct *tsk)
93 {
94 struct signal_struct *sig = tsk->signal;
95 bool group_dead = thread_group_leader(tsk);
96 struct sighand_struct *sighand;
97 struct tty_struct *uninitialized_var(tty);
98 u64 utime, stime;
99
100 sighand = rcu_dereference_check(tsk->sighand,
101 lockdep_tasklist_lock_is_held());
102 spin_lock(&sighand->siglock);
103
104 #ifdef CONFIG_POSIX_TIMERS
105 posix_cpu_timers_exit(tsk);
106 if (group_dead) {
107 posix_cpu_timers_exit_group(tsk);
108 } else {
109 /*
110 * This can only happen if the caller is de_thread().
111 * FIXME: this is the temporary hack, we should teach
112 * posix-cpu-timers to handle this case correctly.
113 */
114 if (unlikely(has_group_leader_pid(tsk)))
115 posix_cpu_timers_exit_group(tsk);
116 }
117 #endif
118
119 if (group_dead) {
120 tty = sig->tty;
121 sig->tty = NULL;
122 } else {
123 /*
124 * If there is any task waiting for the group exit
125 * then notify it:
126 */
127 if (sig->notify_count > 0 && !--sig->notify_count)
128 wake_up_process(sig->group_exit_task);
129
130 if (tsk == sig->curr_target)
131 sig->curr_target = next_thread(tsk);
132 }
133
134 add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
135 sizeof(unsigned long long));
136
137 /*
138 * Accumulate here the counters for all threads as they die. We could
139 * skip the group leader because it is the last user of signal_struct,
140 * but we want to avoid the race with thread_group_cputime() which can
141 * see the empty ->thread_head list.
142 */
143 task_cputime(tsk, &utime, &stime);
144 write_seqlock(&sig->stats_lock);
145 sig->utime += utime;
146 sig->stime += stime;
147 sig->gtime += task_gtime(tsk);
148 sig->min_flt += tsk->min_flt;
149 sig->maj_flt += tsk->maj_flt;
150 sig->nvcsw += tsk->nvcsw;
151 sig->nivcsw += tsk->nivcsw;
152 sig->inblock += task_io_get_inblock(tsk);
153 sig->oublock += task_io_get_oublock(tsk);
154 task_io_accounting_add(&sig->ioac, &tsk->ioac);
155 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
156 sig->nr_threads--;
157 __unhash_process(tsk, group_dead);
158 write_sequnlock(&sig->stats_lock);
159
160 /*
161 * Do this under ->siglock, we can race with another thread
162 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
163 */
164 flush_sigqueue(&tsk->pending);
165 tsk->sighand = NULL;
166 spin_unlock(&sighand->siglock);
167
168 __cleanup_sighand(sighand);
169 clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
170 if (group_dead) {
171 flush_sigqueue(&sig->shared_pending);
172 tty_kref_put(tty);
173 }
174 }
175
176 static void delayed_put_task_struct(struct rcu_head *rhp)
177 {
178 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
179
180 perf_event_delayed_put(tsk);
181 trace_sched_process_free(tsk);
182 put_task_struct(tsk);
183 }
184
185 void put_task_struct_rcu_user(struct task_struct *task)
186 {
187 if (refcount_dec_and_test(&task->rcu_users))
188 call_rcu(&task->rcu, delayed_put_task_struct);
189 }
190
191 void release_task(struct task_struct *p)
192 {
193 struct task_struct *leader;
194 int zap_leader;
195 repeat:
196 /* don't need to get the RCU readlock here - the process is dead and
197 * can't be modifying its own credentials. But shut RCU-lockdep up */
198 rcu_read_lock();
199 atomic_dec(&__task_cred(p)->user->processes);
200 rcu_read_unlock();
201
202 proc_flush_task(p);
203 cgroup_release(p);
204
205 write_lock_irq(&tasklist_lock);
206 ptrace_release_task(p);
207 __exit_signal(p);
208
209 /*
210 * If we are the last non-leader member of the thread
211 * group, and the leader is zombie, then notify the
212 * group leader's parent process. (if it wants notification.)
213 */
214 zap_leader = 0;
215 leader = p->group_leader;
216 if (leader != p && thread_group_empty(leader)
217 && leader->exit_state == EXIT_ZOMBIE) {
218 /*
219 * If we were the last child thread and the leader has
220 * exited already, and the leader's parent ignores SIGCHLD,
221 * then we are the one who should release the leader.
222 */
223 zap_leader = do_notify_parent(leader, leader->exit_signal);
224 if (zap_leader)
225 leader->exit_state = EXIT_DEAD;
226 }
227
228 write_unlock_irq(&tasklist_lock);
229 release_thread(p);
230 put_task_struct_rcu_user(p);
231
232 p = leader;
233 if (unlikely(zap_leader))
234 goto repeat;
235 }
236
237 void rcuwait_wake_up(struct rcuwait *w)
238 {
239 struct task_struct *task;
240
241 rcu_read_lock();
242
243 /*
244 * Order condition vs @task, such that everything prior to the load
245 * of @task is visible. This is the condition as to why the user called
246 * rcuwait_trywake() in the first place. Pairs with set_current_state()
247 * barrier (A) in rcuwait_wait_event().
248 *
249 * WAIT WAKE
250 * [S] tsk = current [S] cond = true
251 * MB (A) MB (B)
252 * [L] cond [L] tsk
253 */
254 smp_mb(); /* (B) */
255
256 task = rcu_dereference(w->task);
257 if (task)
258 wake_up_process(task);
259 rcu_read_unlock();
260 }
261
262 /*
263 * Determine if a process group is "orphaned", according to the POSIX
264 * definition in 2.2.2.52. Orphaned process groups are not to be affected
265 * by terminal-generated stop signals. Newly orphaned process groups are
266 * to receive a SIGHUP and a SIGCONT.
267 *
268 * "I ask you, have you ever known what it is to be an orphan?"
269 */
270 static int will_become_orphaned_pgrp(struct pid *pgrp,
271 struct task_struct *ignored_task)
272 {
273 struct task_struct *p;
274
275 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
276 if ((p == ignored_task) ||
277 (p->exit_state && thread_group_empty(p)) ||
278 is_global_init(p->real_parent))
279 continue;
280
281 if (task_pgrp(p->real_parent) != pgrp &&
282 task_session(p->real_parent) == task_session(p))
283 return 0;
284 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
285
286 return 1;
287 }
288
289 int is_current_pgrp_orphaned(void)
290 {
291 int retval;
292
293 read_lock(&tasklist_lock);
294 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
295 read_unlock(&tasklist_lock);
296
297 return retval;
298 }
299
300 static bool has_stopped_jobs(struct pid *pgrp)
301 {
302 struct task_struct *p;
303
304 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
305 if (p->signal->flags & SIGNAL_STOP_STOPPED)
306 return true;
307 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
308
309 return false;
310 }
311
312 /*
313 * Check to see if any process groups have become orphaned as
314 * a result of our exiting, and if they have any stopped jobs,
315 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
316 */
317 static void
318 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
319 {
320 struct pid *pgrp = task_pgrp(tsk);
321 struct task_struct *ignored_task = tsk;
322
323 if (!parent)
324 /* exit: our father is in a different pgrp than
325 * we are and we were the only connection outside.
326 */
327 parent = tsk->real_parent;
328 else
329 /* reparent: our child is in a different pgrp than
330 * we are, and it was the only connection outside.
331 */
332 ignored_task = NULL;
333
334 if (task_pgrp(parent) != pgrp &&
335 task_session(parent) == task_session(tsk) &&
336 will_become_orphaned_pgrp(pgrp, ignored_task) &&
337 has_stopped_jobs(pgrp)) {
338 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
339 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
340 }
341 }
342
343 #ifdef CONFIG_MEMCG
344 /*
345 * A task is exiting. If it owned this mm, find a new owner for the mm.
346 */
347 void mm_update_next_owner(struct mm_struct *mm)
348 {
349 struct task_struct *c, *g, *p = current;
350
351 retry:
352 /*
353 * If the exiting or execing task is not the owner, it's
354 * someone else's problem.
355 */
356 if (mm->owner != p)
357 return;
358 /*
359 * The current owner is exiting/execing and there are no other
360 * candidates. Do not leave the mm pointing to a possibly
361 * freed task structure.
362 */
363 if (atomic_read(&mm->mm_users) <= 1) {
364 WRITE_ONCE(mm->owner, NULL);
365 return;
366 }
367
368 read_lock(&tasklist_lock);
369 /*
370 * Search in the children
371 */
372 list_for_each_entry(c, &p->children, sibling) {
373 if (c->mm == mm)
374 goto assign_new_owner;
375 }
376
377 /*
378 * Search in the siblings
379 */
380 list_for_each_entry(c, &p->real_parent->children, sibling) {
381 if (c->mm == mm)
382 goto assign_new_owner;
383 }
384
385 /*
386 * Search through everything else, we should not get here often.
387 */
388 for_each_process(g) {
389 if (g->flags & PF_KTHREAD)
390 continue;
391 for_each_thread(g, c) {
392 if (c->mm == mm)
393 goto assign_new_owner;
394 if (c->mm)
395 break;
396 }
397 }
398 read_unlock(&tasklist_lock);
399 /*
400 * We found no owner yet mm_users > 1: this implies that we are
401 * most likely racing with swapoff (try_to_unuse()) or /proc or
402 * ptrace or page migration (get_task_mm()). Mark owner as NULL.
403 */
404 WRITE_ONCE(mm->owner, NULL);
405 return;
406
407 assign_new_owner:
408 BUG_ON(c == p);
409 get_task_struct(c);
410 /*
411 * The task_lock protects c->mm from changing.
412 * We always want mm->owner->mm == mm
413 */
414 task_lock(c);
415 /*
416 * Delay read_unlock() till we have the task_lock()
417 * to ensure that c does not slip away underneath us
418 */
419 read_unlock(&tasklist_lock);
420 if (c->mm != mm) {
421 task_unlock(c);
422 put_task_struct(c);
423 goto retry;
424 }
425 WRITE_ONCE(mm->owner, c);
426 task_unlock(c);
427 put_task_struct(c);
428 }
429 #endif /* CONFIG_MEMCG */
430
431 /*
432 * Turn us into a lazy TLB process if we
433 * aren't already..
434 */
435 static void exit_mm(void)
436 {
437 struct mm_struct *mm = current->mm;
438 struct core_state *core_state;
439
440 exit_mm_release(current, mm);
441 if (!mm)
442 return;
443 sync_mm_rss(mm);
444 /*
445 * Serialize with any possible pending coredump.
446 * We must hold mmap_sem around checking core_state
447 * and clearing tsk->mm. The core-inducing thread
448 * will increment ->nr_threads for each thread in the
449 * group with ->mm != NULL.
450 */
451 down_read(&mm->mmap_sem);
452 core_state = mm->core_state;
453 if (core_state) {
454 struct core_thread self;
455
456 up_read(&mm->mmap_sem);
457
458 self.task = current;
459 self.next = xchg(&core_state->dumper.next, &self);
460 /*
461 * Implies mb(), the result of xchg() must be visible
462 * to core_state->dumper.
463 */
464 if (atomic_dec_and_test(&core_state->nr_threads))
465 complete(&core_state->startup);
466
467 for (;;) {
468 set_current_state(TASK_UNINTERRUPTIBLE);
469 if (!self.task) /* see coredump_finish() */
470 break;
471 freezable_schedule();
472 }
473 __set_current_state(TASK_RUNNING);
474 down_read(&mm->mmap_sem);
475 }
476 mmgrab(mm);
477 BUG_ON(mm != current->active_mm);
478 /* more a memory barrier than a real lock */
479 task_lock(current);
480 current->mm = NULL;
481 up_read(&mm->mmap_sem);
482 enter_lazy_tlb(mm, current);
483 task_unlock(current);
484 mm_update_next_owner(mm);
485 mmput(mm);
486 if (test_thread_flag(TIF_MEMDIE))
487 exit_oom_victim();
488 }
489
490 static struct task_struct *find_alive_thread(struct task_struct *p)
491 {
492 struct task_struct *t;
493
494 for_each_thread(p, t) {
495 if (!(t->flags & PF_EXITING))
496 return t;
497 }
498 return NULL;
499 }
500
501 static struct task_struct *find_child_reaper(struct task_struct *father,
502 struct list_head *dead)
503 __releases(&tasklist_lock)
504 __acquires(&tasklist_lock)
505 {
506 struct pid_namespace *pid_ns = task_active_pid_ns(father);
507 struct task_struct *reaper = pid_ns->child_reaper;
508 struct task_struct *p, *n;
509
510 if (likely(reaper != father))
511 return reaper;
512
513 reaper = find_alive_thread(father);
514 if (reaper) {
515 pid_ns->child_reaper = reaper;
516 return reaper;
517 }
518
519 write_unlock_irq(&tasklist_lock);
520 if (unlikely(pid_ns == &init_pid_ns)) {
521 panic("Attempted to kill init! exitcode=0x%08x\n",
522 father->signal->group_exit_code ?: father->exit_code);
523 }
524
525 list_for_each_entry_safe(p, n, dead, ptrace_entry) {
526 list_del_init(&p->ptrace_entry);
527 release_task(p);
528 }
529
530 zap_pid_ns_processes(pid_ns);
531 write_lock_irq(&tasklist_lock);
532
533 return father;
534 }
535
536 /*
537 * When we die, we re-parent all our children, and try to:
538 * 1. give them to another thread in our thread group, if such a member exists
539 * 2. give it to the first ancestor process which prctl'd itself as a
540 * child_subreaper for its children (like a service manager)
541 * 3. give it to the init process (PID 1) in our pid namespace
542 */
543 static struct task_struct *find_new_reaper(struct task_struct *father,
544 struct task_struct *child_reaper)
545 {
546 struct task_struct *thread, *reaper;
547
548 thread = find_alive_thread(father);
549 if (thread)
550 return thread;
551
552 if (father->signal->has_child_subreaper) {
553 unsigned int ns_level = task_pid(father)->level;
554 /*
555 * Find the first ->is_child_subreaper ancestor in our pid_ns.
556 * We can't check reaper != child_reaper to ensure we do not
557 * cross the namespaces, the exiting parent could be injected
558 * by setns() + fork().
559 * We check pid->level, this is slightly more efficient than
560 * task_active_pid_ns(reaper) != task_active_pid_ns(father).
561 */
562 for (reaper = father->real_parent;
563 task_pid(reaper)->level == ns_level;
564 reaper = reaper->real_parent) {
565 if (reaper == &init_task)
566 break;
567 if (!reaper->signal->is_child_subreaper)
568 continue;
569 thread = find_alive_thread(reaper);
570 if (thread)
571 return thread;
572 }
573 }
574
575 return child_reaper;
576 }
577
578 /*
579 * Any that need to be release_task'd are put on the @dead list.
580 */
581 static void reparent_leader(struct task_struct *father, struct task_struct *p,
582 struct list_head *dead)
583 {
584 if (unlikely(p->exit_state == EXIT_DEAD))
585 return;
586
587 /* We don't want people slaying init. */
588 p->exit_signal = SIGCHLD;
589
590 /* If it has exited notify the new parent about this child's death. */
591 if (!p->ptrace &&
592 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
593 if (do_notify_parent(p, p->exit_signal)) {
594 p->exit_state = EXIT_DEAD;
595 list_add(&p->ptrace_entry, dead);
596 }
597 }
598
599 kill_orphaned_pgrp(p, father);
600 }
601
602 /*
603 * This does two things:
604 *
605 * A. Make init inherit all the child processes
606 * B. Check to see if any process groups have become orphaned
607 * as a result of our exiting, and if they have any stopped
608 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
609 */
610 static void forget_original_parent(struct task_struct *father,
611 struct list_head *dead)
612 {
613 struct task_struct *p, *t, *reaper;
614
615 if (unlikely(!list_empty(&father->ptraced)))
616 exit_ptrace(father, dead);
617
618 /* Can drop and reacquire tasklist_lock */
619 reaper = find_child_reaper(father, dead);
620 if (list_empty(&father->children))
621 return;
622
623 reaper = find_new_reaper(father, reaper);
624 list_for_each_entry(p, &father->children, sibling) {
625 for_each_thread(p, t) {
626 t->real_parent = reaper;
627 BUG_ON((!t->ptrace) != (t->parent == father));
628 if (likely(!t->ptrace))
629 t->parent = t->real_parent;
630 if (t->pdeath_signal)
631 group_send_sig_info(t->pdeath_signal,
632 SEND_SIG_NOINFO, t,
633 PIDTYPE_TGID);
634 }
635 /*
636 * If this is a threaded reparent there is no need to
637 * notify anyone anything has happened.
638 */
639 if (!same_thread_group(reaper, father))
640 reparent_leader(father, p, dead);
641 }
642 list_splice_tail_init(&father->children, &reaper->children);
643 }
644
645 /*
646 * Send signals to all our closest relatives so that they know
647 * to properly mourn us..
648 */
649 static void exit_notify(struct task_struct *tsk, int group_dead)
650 {
651 bool autoreap;
652 struct task_struct *p, *n;
653 LIST_HEAD(dead);
654
655 write_lock_irq(&tasklist_lock);
656 forget_original_parent(tsk, &dead);
657
658 if (group_dead)
659 kill_orphaned_pgrp(tsk->group_leader, NULL);
660
661 tsk->exit_state = EXIT_ZOMBIE;
662 if (unlikely(tsk->ptrace)) {
663 int sig = thread_group_leader(tsk) &&
664 thread_group_empty(tsk) &&
665 !ptrace_reparented(tsk) ?
666 tsk->exit_signal : SIGCHLD;
667 autoreap = do_notify_parent(tsk, sig);
668 } else if (thread_group_leader(tsk)) {
669 autoreap = thread_group_empty(tsk) &&
670 do_notify_parent(tsk, tsk->exit_signal);
671 } else {
672 autoreap = true;
673 }
674
675 if (autoreap) {
676 tsk->exit_state = EXIT_DEAD;
677 list_add(&tsk->ptrace_entry, &dead);
678 }
679
680 /* mt-exec, de_thread() is waiting for group leader */
681 if (unlikely(tsk->signal->notify_count < 0))
682 wake_up_process(tsk->signal->group_exit_task);
683 write_unlock_irq(&tasklist_lock);
684
685 list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
686 list_del_init(&p->ptrace_entry);
687 release_task(p);
688 }
689 }
690
691 #ifdef CONFIG_DEBUG_STACK_USAGE
692 static void check_stack_usage(void)
693 {
694 static DEFINE_SPINLOCK(low_water_lock);
695 static int lowest_to_date = THREAD_SIZE;
696 unsigned long free;
697
698 free = stack_not_used(current);
699
700 if (free >= lowest_to_date)
701 return;
702
703 spin_lock(&low_water_lock);
704 if (free < lowest_to_date) {
705 pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
706 current->comm, task_pid_nr(current), free);
707 lowest_to_date = free;
708 }
709 spin_unlock(&low_water_lock);
710 }
711 #else
712 static inline void check_stack_usage(void) {}
713 #endif
714
715 void __noreturn do_exit(long code)
716 {
717 struct task_struct *tsk = current;
718 int group_dead;
719
720 profile_task_exit(tsk);
721 kcov_task_exit(tsk);
722
723 WARN_ON(blk_needs_flush_plug(tsk));
724
725 if (unlikely(in_interrupt()))
726 panic("Aiee, killing interrupt handler!");
727 if (unlikely(!tsk->pid))
728 panic("Attempted to kill the idle task!");
729
730 /*
731 * If do_exit is called because this processes oopsed, it's possible
732 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
733 * continuing. Amongst other possible reasons, this is to prevent
734 * mm_release()->clear_child_tid() from writing to a user-controlled
735 * kernel address.
736 */
737 set_fs(USER_DS);
738
739 ptrace_event(PTRACE_EVENT_EXIT, code);
740
741 validate_creds_for_do_exit(tsk);
742
743 /*
744 * We're taking recursive faults here in do_exit. Safest is to just
745 * leave this task alone and wait for reboot.
746 */
747 if (unlikely(tsk->flags & PF_EXITING)) {
748 pr_alert("Fixing recursive fault but reboot is needed!\n");
749 futex_exit_recursive(tsk);
750 set_current_state(TASK_UNINTERRUPTIBLE);
751 schedule();
752 }
753
754 exit_signals(tsk); /* sets PF_EXITING */
755
756 if (unlikely(in_atomic())) {
757 pr_info("note: %s[%d] exited with preempt_count %d\n",
758 current->comm, task_pid_nr(current),
759 preempt_count());
760 preempt_count_set(PREEMPT_ENABLED);
761 }
762
763 /* sync mm's RSS info before statistics gathering */
764 if (tsk->mm)
765 sync_mm_rss(tsk->mm);
766 acct_update_integrals(tsk);
767 group_dead = atomic_dec_and_test(&tsk->signal->live);
768 if (group_dead) {
769 #ifdef CONFIG_POSIX_TIMERS
770 hrtimer_cancel(&tsk->signal->real_timer);
771 exit_itimers(tsk->signal);
772 #endif
773 if (tsk->mm)
774 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
775 }
776 acct_collect(code, group_dead);
777 if (group_dead)
778 tty_audit_exit();
779 audit_free(tsk);
780
781 tsk->exit_code = code;
782 taskstats_exit(tsk, group_dead);
783
784 exit_mm();
785
786 if (group_dead)
787 acct_process();
788 trace_sched_process_exit(tsk);
789
790 exit_sem(tsk);
791 exit_shm(tsk);
792 exit_files(tsk);
793 exit_fs(tsk);
794 if (group_dead)
795 disassociate_ctty(1);
796 exit_task_namespaces(tsk);
797 exit_task_work(tsk);
798 exit_thread(tsk);
799 exit_umh(tsk);
800
801 /*
802 * Flush inherited counters to the parent - before the parent
803 * gets woken up by child-exit notifications.
804 *
805 * because of cgroup mode, must be called before cgroup_exit()
806 */
807 perf_event_exit_task(tsk);
808
809 sched_autogroup_exit_task(tsk);
810 cgroup_exit(tsk);
811
812 /*
813 * FIXME: do that only when needed, using sched_exit tracepoint
814 */
815 flush_ptrace_hw_breakpoint(tsk);
816
817 exit_tasks_rcu_start();
818 exit_notify(tsk, group_dead);
819 proc_exit_connector(tsk);
820 mpol_put_task_policy(tsk);
821 #ifdef CONFIG_FUTEX
822 if (unlikely(current->pi_state_cache))
823 kfree(current->pi_state_cache);
824 #endif
825 /*
826 * Make sure we are holding no locks:
827 */
828 debug_check_no_locks_held();
829
830 if (tsk->io_context)
831 exit_io_context(tsk);
832
833 if (tsk->splice_pipe)
834 free_pipe_info(tsk->splice_pipe);
835
836 if (tsk->task_frag.page)
837 put_page(tsk->task_frag.page);
838
839 validate_creds_for_do_exit(tsk);
840
841 check_stack_usage();
842 preempt_disable();
843 if (tsk->nr_dirtied)
844 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
845 exit_rcu();
846 exit_tasks_rcu_finish();
847
848 lockdep_free_task(tsk);
849 do_task_dead();
850 }
851 EXPORT_SYMBOL_GPL(do_exit);
852
853 void complete_and_exit(struct completion *comp, long code)
854 {
855 if (comp)
856 complete(comp);
857
858 do_exit(code);
859 }
860 EXPORT_SYMBOL(complete_and_exit);
861
862 SYSCALL_DEFINE1(exit, int, error_code)
863 {
864 do_exit((error_code&0xff)<<8);
865 }
866
867 /*
868 * Take down every thread in the group. This is called by fatal signals
869 * as well as by sys_exit_group (below).
870 */
871 void
872 do_group_exit(int exit_code)
873 {
874 struct signal_struct *sig = current->signal;
875
876 BUG_ON(exit_code & 0x80); /* core dumps don't get here */
877
878 if (signal_group_exit(sig))
879 exit_code = sig->group_exit_code;
880 else if (!thread_group_empty(current)) {
881 struct sighand_struct *const sighand = current->sighand;
882
883 spin_lock_irq(&sighand->siglock);
884 if (signal_group_exit(sig))
885 /* Another thread got here before we took the lock. */
886 exit_code = sig->group_exit_code;
887 else {
888 sig->group_exit_code = exit_code;
889 sig->flags = SIGNAL_GROUP_EXIT;
890 zap_other_threads(current);
891 }
892 spin_unlock_irq(&sighand->siglock);
893 }
894
895 do_exit(exit_code);
896 /* NOTREACHED */
897 }
898
899 /*
900 * this kills every thread in the thread group. Note that any externally
901 * wait4()-ing process will get the correct exit code - even if this
902 * thread is not the thread group leader.
903 */
904 SYSCALL_DEFINE1(exit_group, int, error_code)
905 {
906 do_group_exit((error_code & 0xff) << 8);
907 /* NOTREACHED */
908 return 0;
909 }
910
911 struct waitid_info {
912 pid_t pid;
913 uid_t uid;
914 int status;
915 int cause;
916 };
917
918 struct wait_opts {
919 enum pid_type wo_type;
920 int wo_flags;
921 struct pid *wo_pid;
922
923 struct waitid_info *wo_info;
924 int wo_stat;
925 struct rusage *wo_rusage;
926
927 wait_queue_entry_t child_wait;
928 int notask_error;
929 };
930
931 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
932 {
933 return wo->wo_type == PIDTYPE_MAX ||
934 task_pid_type(p, wo->wo_type) == wo->wo_pid;
935 }
936
937 static int
938 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
939 {
940 if (!eligible_pid(wo, p))
941 return 0;
942
943 /*
944 * Wait for all children (clone and not) if __WALL is set or
945 * if it is traced by us.
946 */
947 if (ptrace || (wo->wo_flags & __WALL))
948 return 1;
949
950 /*
951 * Otherwise, wait for clone children *only* if __WCLONE is set;
952 * otherwise, wait for non-clone children *only*.
953 *
954 * Note: a "clone" child here is one that reports to its parent
955 * using a signal other than SIGCHLD, or a non-leader thread which
956 * we can only see if it is traced by us.
957 */
958 if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
959 return 0;
960
961 return 1;
962 }
963
964 /*
965 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
966 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
967 * the lock and this task is uninteresting. If we return nonzero, we have
968 * released the lock and the system call should return.
969 */
970 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
971 {
972 int state, status;
973 pid_t pid = task_pid_vnr(p);
974 uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
975 struct waitid_info *infop;
976
977 if (!likely(wo->wo_flags & WEXITED))
978 return 0;
979
980 if (unlikely(wo->wo_flags & WNOWAIT)) {
981 status = p->exit_code;
982 get_task_struct(p);
983 read_unlock(&tasklist_lock);
984 sched_annotate_sleep();
985 if (wo->wo_rusage)
986 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
987 put_task_struct(p);
988 goto out_info;
989 }
990 /*
991 * Move the task's state to DEAD/TRACE, only one thread can do this.
992 */
993 state = (ptrace_reparented(p) && thread_group_leader(p)) ?
994 EXIT_TRACE : EXIT_DEAD;
995 if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
996 return 0;
997 /*
998 * We own this thread, nobody else can reap it.
999 */
1000 read_unlock(&tasklist_lock);
1001 sched_annotate_sleep();
1002
1003 /*
1004 * Check thread_group_leader() to exclude the traced sub-threads.
1005 */
1006 if (state == EXIT_DEAD && thread_group_leader(p)) {
1007 struct signal_struct *sig = p->signal;
1008 struct signal_struct *psig = current->signal;
1009 unsigned long maxrss;
1010 u64 tgutime, tgstime;
1011
1012 /*
1013 * The resource counters for the group leader are in its
1014 * own task_struct. Those for dead threads in the group
1015 * are in its signal_struct, as are those for the child
1016 * processes it has previously reaped. All these
1017 * accumulate in the parent's signal_struct c* fields.
1018 *
1019 * We don't bother to take a lock here to protect these
1020 * p->signal fields because the whole thread group is dead
1021 * and nobody can change them.
1022 *
1023 * psig->stats_lock also protects us from our sub-theads
1024 * which can reap other children at the same time. Until
1025 * we change k_getrusage()-like users to rely on this lock
1026 * we have to take ->siglock as well.
1027 *
1028 * We use thread_group_cputime_adjusted() to get times for
1029 * the thread group, which consolidates times for all threads
1030 * in the group including the group leader.
1031 */
1032 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1033 spin_lock_irq(&current->sighand->siglock);
1034 write_seqlock(&psig->stats_lock);
1035 psig->cutime += tgutime + sig->cutime;
1036 psig->cstime += tgstime + sig->cstime;
1037 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1038 psig->cmin_flt +=
1039 p->min_flt + sig->min_flt + sig->cmin_flt;
1040 psig->cmaj_flt +=
1041 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1042 psig->cnvcsw +=
1043 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1044 psig->cnivcsw +=
1045 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1046 psig->cinblock +=
1047 task_io_get_inblock(p) +
1048 sig->inblock + sig->cinblock;
1049 psig->coublock +=
1050 task_io_get_oublock(p) +
1051 sig->oublock + sig->coublock;
1052 maxrss = max(sig->maxrss, sig->cmaxrss);
1053 if (psig->cmaxrss < maxrss)
1054 psig->cmaxrss = maxrss;
1055 task_io_accounting_add(&psig->ioac, &p->ioac);
1056 task_io_accounting_add(&psig->ioac, &sig->ioac);
1057 write_sequnlock(&psig->stats_lock);
1058 spin_unlock_irq(&current->sighand->siglock);
1059 }
1060
1061 if (wo->wo_rusage)
1062 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1063 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1064 ? p->signal->group_exit_code : p->exit_code;
1065 wo->wo_stat = status;
1066
1067 if (state == EXIT_TRACE) {
1068 write_lock_irq(&tasklist_lock);
1069 /* We dropped tasklist, ptracer could die and untrace */
1070 ptrace_unlink(p);
1071
1072 /* If parent wants a zombie, don't release it now */
1073 state = EXIT_ZOMBIE;
1074 if (do_notify_parent(p, p->exit_signal))
1075 state = EXIT_DEAD;
1076 p->exit_state = state;
1077 write_unlock_irq(&tasklist_lock);
1078 }
1079 if (state == EXIT_DEAD)
1080 release_task(p);
1081
1082 out_info:
1083 infop = wo->wo_info;
1084 if (infop) {
1085 if ((status & 0x7f) == 0) {
1086 infop->cause = CLD_EXITED;
1087 infop->status = status >> 8;
1088 } else {
1089 infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1090 infop->status = status & 0x7f;
1091 }
1092 infop->pid = pid;
1093 infop->uid = uid;
1094 }
1095
1096 return pid;
1097 }
1098
1099 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1100 {
1101 if (ptrace) {
1102 if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1103 return &p->exit_code;
1104 } else {
1105 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1106 return &p->signal->group_exit_code;
1107 }
1108 return NULL;
1109 }
1110
1111 /**
1112 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1113 * @wo: wait options
1114 * @ptrace: is the wait for ptrace
1115 * @p: task to wait for
1116 *
1117 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1118 *
1119 * CONTEXT:
1120 * read_lock(&tasklist_lock), which is released if return value is
1121 * non-zero. Also, grabs and releases @p->sighand->siglock.
1122 *
1123 * RETURNS:
1124 * 0 if wait condition didn't exist and search for other wait conditions
1125 * should continue. Non-zero return, -errno on failure and @p's pid on
1126 * success, implies that tasklist_lock is released and wait condition
1127 * search should terminate.
1128 */
1129 static int wait_task_stopped(struct wait_opts *wo,
1130 int ptrace, struct task_struct *p)
1131 {
1132 struct waitid_info *infop;
1133 int exit_code, *p_code, why;
1134 uid_t uid = 0; /* unneeded, required by compiler */
1135 pid_t pid;
1136
1137 /*
1138 * Traditionally we see ptrace'd stopped tasks regardless of options.
1139 */
1140 if (!ptrace && !(wo->wo_flags & WUNTRACED))
1141 return 0;
1142
1143 if (!task_stopped_code(p, ptrace))
1144 return 0;
1145
1146 exit_code = 0;
1147 spin_lock_irq(&p->sighand->siglock);
1148
1149 p_code = task_stopped_code(p, ptrace);
1150 if (unlikely(!p_code))
1151 goto unlock_sig;
1152
1153 exit_code = *p_code;
1154 if (!exit_code)
1155 goto unlock_sig;
1156
1157 if (!unlikely(wo->wo_flags & WNOWAIT))
1158 *p_code = 0;
1159
1160 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1161 unlock_sig:
1162 spin_unlock_irq(&p->sighand->siglock);
1163 if (!exit_code)
1164 return 0;
1165
1166 /*
1167 * Now we are pretty sure this task is interesting.
1168 * Make sure it doesn't get reaped out from under us while we
1169 * give up the lock and then examine it below. We don't want to
1170 * keep holding onto the tasklist_lock while we call getrusage and
1171 * possibly take page faults for user memory.
1172 */
1173 get_task_struct(p);
1174 pid = task_pid_vnr(p);
1175 why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1176 read_unlock(&tasklist_lock);
1177 sched_annotate_sleep();
1178 if (wo->wo_rusage)
1179 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1180 put_task_struct(p);
1181
1182 if (likely(!(wo->wo_flags & WNOWAIT)))
1183 wo->wo_stat = (exit_code << 8) | 0x7f;
1184
1185 infop = wo->wo_info;
1186 if (infop) {
1187 infop->cause = why;
1188 infop->status = exit_code;
1189 infop->pid = pid;
1190 infop->uid = uid;
1191 }
1192 return pid;
1193 }
1194
1195 /*
1196 * Handle do_wait work for one task in a live, non-stopped state.
1197 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1198 * the lock and this task is uninteresting. If we return nonzero, we have
1199 * released the lock and the system call should return.
1200 */
1201 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1202 {
1203 struct waitid_info *infop;
1204 pid_t pid;
1205 uid_t uid;
1206
1207 if (!unlikely(wo->wo_flags & WCONTINUED))
1208 return 0;
1209
1210 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1211 return 0;
1212
1213 spin_lock_irq(&p->sighand->siglock);
1214 /* Re-check with the lock held. */
1215 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1216 spin_unlock_irq(&p->sighand->siglock);
1217 return 0;
1218 }
1219 if (!unlikely(wo->wo_flags & WNOWAIT))
1220 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1221 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1222 spin_unlock_irq(&p->sighand->siglock);
1223
1224 pid = task_pid_vnr(p);
1225 get_task_struct(p);
1226 read_unlock(&tasklist_lock);
1227 sched_annotate_sleep();
1228 if (wo->wo_rusage)
1229 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1230 put_task_struct(p);
1231
1232 infop = wo->wo_info;
1233 if (!infop) {
1234 wo->wo_stat = 0xffff;
1235 } else {
1236 infop->cause = CLD_CONTINUED;
1237 infop->pid = pid;
1238 infop->uid = uid;
1239 infop->status = SIGCONT;
1240 }
1241 return pid;
1242 }
1243
1244 /*
1245 * Consider @p for a wait by @parent.
1246 *
1247 * -ECHILD should be in ->notask_error before the first call.
1248 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1249 * Returns zero if the search for a child should continue;
1250 * then ->notask_error is 0 if @p is an eligible child,
1251 * or still -ECHILD.
1252 */
1253 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1254 struct task_struct *p)
1255 {
1256 /*
1257 * We can race with wait_task_zombie() from another thread.
1258 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1259 * can't confuse the checks below.
1260 */
1261 int exit_state = READ_ONCE(p->exit_state);
1262 int ret;
1263
1264 if (unlikely(exit_state == EXIT_DEAD))
1265 return 0;
1266
1267 ret = eligible_child(wo, ptrace, p);
1268 if (!ret)
1269 return ret;
1270
1271 if (unlikely(exit_state == EXIT_TRACE)) {
1272 /*
1273 * ptrace == 0 means we are the natural parent. In this case
1274 * we should clear notask_error, debugger will notify us.
1275 */
1276 if (likely(!ptrace))
1277 wo->notask_error = 0;
1278 return 0;
1279 }
1280
1281 if (likely(!ptrace) && unlikely(p->ptrace)) {
1282 /*
1283 * If it is traced by its real parent's group, just pretend
1284 * the caller is ptrace_do_wait() and reap this child if it
1285 * is zombie.
1286 *
1287 * This also hides group stop state from real parent; otherwise
1288 * a single stop can be reported twice as group and ptrace stop.
1289 * If a ptracer wants to distinguish these two events for its
1290 * own children it should create a separate process which takes
1291 * the role of real parent.
1292 */
1293 if (!ptrace_reparented(p))
1294 ptrace = 1;
1295 }
1296
1297 /* slay zombie? */
1298 if (exit_state == EXIT_ZOMBIE) {
1299 /* we don't reap group leaders with subthreads */
1300 if (!delay_group_leader(p)) {
1301 /*
1302 * A zombie ptracee is only visible to its ptracer.
1303 * Notification and reaping will be cascaded to the
1304 * real parent when the ptracer detaches.
1305 */
1306 if (unlikely(ptrace) || likely(!p->ptrace))
1307 return wait_task_zombie(wo, p);
1308 }
1309
1310 /*
1311 * Allow access to stopped/continued state via zombie by
1312 * falling through. Clearing of notask_error is complex.
1313 *
1314 * When !@ptrace:
1315 *
1316 * If WEXITED is set, notask_error should naturally be
1317 * cleared. If not, subset of WSTOPPED|WCONTINUED is set,
1318 * so, if there are live subthreads, there are events to
1319 * wait for. If all subthreads are dead, it's still safe
1320 * to clear - this function will be called again in finite
1321 * amount time once all the subthreads are released and
1322 * will then return without clearing.
1323 *
1324 * When @ptrace:
1325 *
1326 * Stopped state is per-task and thus can't change once the
1327 * target task dies. Only continued and exited can happen.
1328 * Clear notask_error if WCONTINUED | WEXITED.
1329 */
1330 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1331 wo->notask_error = 0;
1332 } else {
1333 /*
1334 * @p is alive and it's gonna stop, continue or exit, so
1335 * there always is something to wait for.
1336 */
1337 wo->notask_error = 0;
1338 }
1339
1340 /*
1341 * Wait for stopped. Depending on @ptrace, different stopped state
1342 * is used and the two don't interact with each other.
1343 */
1344 ret = wait_task_stopped(wo, ptrace, p);
1345 if (ret)
1346 return ret;
1347
1348 /*
1349 * Wait for continued. There's only one continued state and the
1350 * ptracer can consume it which can confuse the real parent. Don't
1351 * use WCONTINUED from ptracer. You don't need or want it.
1352 */
1353 return wait_task_continued(wo, p);
1354 }
1355
1356 /*
1357 * Do the work of do_wait() for one thread in the group, @tsk.
1358 *
1359 * -ECHILD should be in ->notask_error before the first call.
1360 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1361 * Returns zero if the search for a child should continue; then
1362 * ->notask_error is 0 if there were any eligible children,
1363 * or still -ECHILD.
1364 */
1365 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1366 {
1367 struct task_struct *p;
1368
1369 list_for_each_entry(p, &tsk->children, sibling) {
1370 int ret = wait_consider_task(wo, 0, p);
1371
1372 if (ret)
1373 return ret;
1374 }
1375
1376 return 0;
1377 }
1378
1379 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1380 {
1381 struct task_struct *p;
1382
1383 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1384 int ret = wait_consider_task(wo, 1, p);
1385
1386 if (ret)
1387 return ret;
1388 }
1389
1390 return 0;
1391 }
1392
1393 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
1394 int sync, void *key)
1395 {
1396 struct wait_opts *wo = container_of(wait, struct wait_opts,
1397 child_wait);
1398 struct task_struct *p = key;
1399
1400 if (!eligible_pid(wo, p))
1401 return 0;
1402
1403 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1404 return 0;
1405
1406 return default_wake_function(wait, mode, sync, key);
1407 }
1408
1409 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1410 {
1411 __wake_up_sync_key(&parent->signal->wait_chldexit,
1412 TASK_INTERRUPTIBLE, p);
1413 }
1414
1415 static long do_wait(struct wait_opts *wo)
1416 {
1417 struct task_struct *tsk;
1418 int retval;
1419
1420 trace_sched_process_wait(wo->wo_pid);
1421
1422 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1423 wo->child_wait.private = current;
1424 add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1425 repeat:
1426 /*
1427 * If there is nothing that can match our criteria, just get out.
1428 * We will clear ->notask_error to zero if we see any child that
1429 * might later match our criteria, even if we are not able to reap
1430 * it yet.
1431 */
1432 wo->notask_error = -ECHILD;
1433 if ((wo->wo_type < PIDTYPE_MAX) &&
1434 (!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type)))
1435 goto notask;
1436
1437 set_current_state(TASK_INTERRUPTIBLE);
1438 read_lock(&tasklist_lock);
1439 tsk = current;
1440 do {
1441 retval = do_wait_thread(wo, tsk);
1442 if (retval)
1443 goto end;
1444
1445 retval = ptrace_do_wait(wo, tsk);
1446 if (retval)
1447 goto end;
1448
1449 if (wo->wo_flags & __WNOTHREAD)
1450 break;
1451 } while_each_thread(current, tsk);
1452 read_unlock(&tasklist_lock);
1453
1454 notask:
1455 retval = wo->notask_error;
1456 if (!retval && !(wo->wo_flags & WNOHANG)) {
1457 retval = -ERESTARTSYS;
1458 if (!signal_pending(current)) {
1459 schedule();
1460 goto repeat;
1461 }
1462 }
1463 end:
1464 __set_current_state(TASK_RUNNING);
1465 remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1466 return retval;
1467 }
1468
1469 static struct pid *pidfd_get_pid(unsigned int fd)
1470 {
1471 struct fd f;
1472 struct pid *pid;
1473
1474 f = fdget(fd);
1475 if (!f.file)
1476 return ERR_PTR(-EBADF);
1477
1478 pid = pidfd_pid(f.file);
1479 if (!IS_ERR(pid))
1480 get_pid(pid);
1481
1482 fdput(f);
1483 return pid;
1484 }
1485
1486 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
1487 int options, struct rusage *ru)
1488 {
1489 struct wait_opts wo;
1490 struct pid *pid = NULL;
1491 enum pid_type type;
1492 long ret;
1493
1494 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1495 __WNOTHREAD|__WCLONE|__WALL))
1496 return -EINVAL;
1497 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1498 return -EINVAL;
1499
1500 switch (which) {
1501 case P_ALL:
1502 type = PIDTYPE_MAX;
1503 break;
1504 case P_PID:
1505 type = PIDTYPE_PID;
1506 if (upid <= 0)
1507 return -EINVAL;
1508
1509 pid = find_get_pid(upid);
1510 break;
1511 case P_PGID:
1512 type = PIDTYPE_PGID;
1513 if (upid < 0)
1514 return -EINVAL;
1515
1516 if (upid)
1517 pid = find_get_pid(upid);
1518 else
1519 pid = get_task_pid(current, PIDTYPE_PGID);
1520 break;
1521 case P_PIDFD:
1522 type = PIDTYPE_PID;
1523 if (upid < 0)
1524 return -EINVAL;
1525
1526 pid = pidfd_get_pid(upid);
1527 if (IS_ERR(pid))
1528 return PTR_ERR(pid);
1529 break;
1530 default:
1531 return -EINVAL;
1532 }
1533
1534 wo.wo_type = type;
1535 wo.wo_pid = pid;
1536 wo.wo_flags = options;
1537 wo.wo_info = infop;
1538 wo.wo_rusage = ru;
1539 ret = do_wait(&wo);
1540
1541 put_pid(pid);
1542 return ret;
1543 }
1544
1545 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1546 infop, int, options, struct rusage __user *, ru)
1547 {
1548 struct rusage r;
1549 struct waitid_info info = {.status = 0};
1550 long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
1551 int signo = 0;
1552
1553 if (err > 0) {
1554 signo = SIGCHLD;
1555 err = 0;
1556 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1557 return -EFAULT;
1558 }
1559 if (!infop)
1560 return err;
1561
1562 if (!user_access_begin(infop, sizeof(*infop)))
1563 return -EFAULT;
1564
1565 unsafe_put_user(signo, &infop->si_signo, Efault);
1566 unsafe_put_user(0, &infop->si_errno, Efault);
1567 unsafe_put_user(info.cause, &infop->si_code, Efault);
1568 unsafe_put_user(info.pid, &infop->si_pid, Efault);
1569 unsafe_put_user(info.uid, &infop->si_uid, Efault);
1570 unsafe_put_user(info.status, &infop->si_status, Efault);
1571 user_access_end();
1572 return err;
1573 Efault:
1574 user_access_end();
1575 return -EFAULT;
1576 }
1577
1578 long kernel_wait4(pid_t upid, int __user *stat_addr, int options,
1579 struct rusage *ru)
1580 {
1581 struct wait_opts wo;
1582 struct pid *pid = NULL;
1583 enum pid_type type;
1584 long ret;
1585
1586 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1587 __WNOTHREAD|__WCLONE|__WALL))
1588 return -EINVAL;
1589
1590 /* -INT_MIN is not defined */
1591 if (upid == INT_MIN)
1592 return -ESRCH;
1593
1594 if (upid == -1)
1595 type = PIDTYPE_MAX;
1596 else if (upid < 0) {
1597 type = PIDTYPE_PGID;
1598 pid = find_get_pid(-upid);
1599 } else if (upid == 0) {
1600 type = PIDTYPE_PGID;
1601 pid = get_task_pid(current, PIDTYPE_PGID);
1602 } else /* upid > 0 */ {
1603 type = PIDTYPE_PID;
1604 pid = find_get_pid(upid);
1605 }
1606
1607 wo.wo_type = type;
1608 wo.wo_pid = pid;
1609 wo.wo_flags = options | WEXITED;
1610 wo.wo_info = NULL;
1611 wo.wo_stat = 0;
1612 wo.wo_rusage = ru;
1613 ret = do_wait(&wo);
1614 put_pid(pid);
1615 if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
1616 ret = -EFAULT;
1617
1618 return ret;
1619 }
1620
1621 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1622 int, options, struct rusage __user *, ru)
1623 {
1624 struct rusage r;
1625 long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
1626
1627 if (err > 0) {
1628 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1629 return -EFAULT;
1630 }
1631 return err;
1632 }
1633
1634 #ifdef __ARCH_WANT_SYS_WAITPID
1635
1636 /*
1637 * sys_waitpid() remains for compatibility. waitpid() should be
1638 * implemented by calling sys_wait4() from libc.a.
1639 */
1640 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1641 {
1642 return kernel_wait4(pid, stat_addr, options, NULL);
1643 }
1644
1645 #endif
1646
1647 #ifdef CONFIG_COMPAT
1648 COMPAT_SYSCALL_DEFINE4(wait4,
1649 compat_pid_t, pid,
1650 compat_uint_t __user *, stat_addr,
1651 int, options,
1652 struct compat_rusage __user *, ru)
1653 {
1654 struct rusage r;
1655 long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
1656 if (err > 0) {
1657 if (ru && put_compat_rusage(&r, ru))
1658 return -EFAULT;
1659 }
1660 return err;
1661 }
1662
1663 COMPAT_SYSCALL_DEFINE5(waitid,
1664 int, which, compat_pid_t, pid,
1665 struct compat_siginfo __user *, infop, int, options,
1666 struct compat_rusage __user *, uru)
1667 {
1668 struct rusage ru;
1669 struct waitid_info info = {.status = 0};
1670 long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
1671 int signo = 0;
1672 if (err > 0) {
1673 signo = SIGCHLD;
1674 err = 0;
1675 if (uru) {
1676 /* kernel_waitid() overwrites everything in ru */
1677 if (COMPAT_USE_64BIT_TIME)
1678 err = copy_to_user(uru, &ru, sizeof(ru));
1679 else
1680 err = put_compat_rusage(&ru, uru);
1681 if (err)
1682 return -EFAULT;
1683 }
1684 }
1685
1686 if (!infop)
1687 return err;
1688
1689 if (!user_access_begin(infop, sizeof(*infop)))
1690 return -EFAULT;
1691
1692 unsafe_put_user(signo, &infop->si_signo, Efault);
1693 unsafe_put_user(0, &infop->si_errno, Efault);
1694 unsafe_put_user(info.cause, &infop->si_code, Efault);
1695 unsafe_put_user(info.pid, &infop->si_pid, Efault);
1696 unsafe_put_user(info.uid, &infop->si_uid, Efault);
1697 unsafe_put_user(info.status, &infop->si_status, Efault);
1698 user_access_end();
1699 return err;
1700 Efault:
1701 user_access_end();
1702 return -EFAULT;
1703 }
1704 #endif
1705
1706 __weak void abort(void)
1707 {
1708 BUG();
1709
1710 /* if that doesn't kill us, halt */
1711 panic("Oops failed to kill thread");
1712 }
1713 EXPORT_SYMBOL(abort);