]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/exit.c
pid namespaces: define is_global_init() and is_container_init()
[mirror_ubuntu-artful-kernel.git] / kernel / exit.c
1 /*
2 * linux/kernel/exit.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/mnt_namespace.h>
16 #include <linux/key.h>
17 #include <linux/security.h>
18 #include <linux/cpu.h>
19 #include <linux/acct.h>
20 #include <linux/tsacct_kern.h>
21 #include <linux/file.h>
22 #include <linux/binfmts.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pid_namespace.h>
25 #include <linux/ptrace.h>
26 #include <linux/profile.h>
27 #include <linux/mount.h>
28 #include <linux/proc_fs.h>
29 #include <linux/kthread.h>
30 #include <linux/mempolicy.h>
31 #include <linux/taskstats_kern.h>
32 #include <linux/delayacct.h>
33 #include <linux/freezer.h>
34 #include <linux/cgroup.h>
35 #include <linux/syscalls.h>
36 #include <linux/signal.h>
37 #include <linux/posix-timers.h>
38 #include <linux/cn_proc.h>
39 #include <linux/mutex.h>
40 #include <linux/futex.h>
41 #include <linux/compat.h>
42 #include <linux/pipe_fs_i.h>
43 #include <linux/audit.h> /* for audit_free() */
44 #include <linux/resource.h>
45 #include <linux/blkdev.h>
46 #include <linux/task_io_accounting_ops.h>
47
48 #include <asm/uaccess.h>
49 #include <asm/unistd.h>
50 #include <asm/pgtable.h>
51 #include <asm/mmu_context.h>
52
53 extern void sem_exit (void);
54
55 static void exit_mm(struct task_struct * tsk);
56
57 static void __unhash_process(struct task_struct *p)
58 {
59 nr_threads--;
60 detach_pid(p, PIDTYPE_PID);
61 if (thread_group_leader(p)) {
62 detach_pid(p, PIDTYPE_PGID);
63 detach_pid(p, PIDTYPE_SID);
64
65 list_del_rcu(&p->tasks);
66 __get_cpu_var(process_counts)--;
67 }
68 list_del_rcu(&p->thread_group);
69 remove_parent(p);
70 }
71
72 /*
73 * This function expects the tasklist_lock write-locked.
74 */
75 static void __exit_signal(struct task_struct *tsk)
76 {
77 struct signal_struct *sig = tsk->signal;
78 struct sighand_struct *sighand;
79
80 BUG_ON(!sig);
81 BUG_ON(!atomic_read(&sig->count));
82
83 rcu_read_lock();
84 sighand = rcu_dereference(tsk->sighand);
85 spin_lock(&sighand->siglock);
86
87 posix_cpu_timers_exit(tsk);
88 if (atomic_dec_and_test(&sig->count))
89 posix_cpu_timers_exit_group(tsk);
90 else {
91 /*
92 * If there is any task waiting for the group exit
93 * then notify it:
94 */
95 if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count)
96 wake_up_process(sig->group_exit_task);
97
98 if (tsk == sig->curr_target)
99 sig->curr_target = next_thread(tsk);
100 /*
101 * Accumulate here the counters for all threads but the
102 * group leader as they die, so they can be added into
103 * the process-wide totals when those are taken.
104 * The group leader stays around as a zombie as long
105 * as there are other threads. When it gets reaped,
106 * the exit.c code will add its counts into these totals.
107 * We won't ever get here for the group leader, since it
108 * will have been the last reference on the signal_struct.
109 */
110 sig->utime = cputime_add(sig->utime, tsk->utime);
111 sig->stime = cputime_add(sig->stime, tsk->stime);
112 sig->gtime = cputime_add(sig->gtime, tsk->gtime);
113 sig->min_flt += tsk->min_flt;
114 sig->maj_flt += tsk->maj_flt;
115 sig->nvcsw += tsk->nvcsw;
116 sig->nivcsw += tsk->nivcsw;
117 sig->inblock += task_io_get_inblock(tsk);
118 sig->oublock += task_io_get_oublock(tsk);
119 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
120 sig = NULL; /* Marker for below. */
121 }
122
123 __unhash_process(tsk);
124
125 tsk->signal = NULL;
126 tsk->sighand = NULL;
127 spin_unlock(&sighand->siglock);
128 rcu_read_unlock();
129
130 __cleanup_sighand(sighand);
131 clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
132 flush_sigqueue(&tsk->pending);
133 if (sig) {
134 flush_sigqueue(&sig->shared_pending);
135 taskstats_tgid_free(sig);
136 __cleanup_signal(sig);
137 }
138 }
139
140 static void delayed_put_task_struct(struct rcu_head *rhp)
141 {
142 put_task_struct(container_of(rhp, struct task_struct, rcu));
143 }
144
145 void release_task(struct task_struct * p)
146 {
147 struct task_struct *leader;
148 int zap_leader;
149 repeat:
150 atomic_dec(&p->user->processes);
151 write_lock_irq(&tasklist_lock);
152 ptrace_unlink(p);
153 BUG_ON(!list_empty(&p->ptrace_list) || !list_empty(&p->ptrace_children));
154 __exit_signal(p);
155
156 /*
157 * If we are the last non-leader member of the thread
158 * group, and the leader is zombie, then notify the
159 * group leader's parent process. (if it wants notification.)
160 */
161 zap_leader = 0;
162 leader = p->group_leader;
163 if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
164 BUG_ON(leader->exit_signal == -1);
165 do_notify_parent(leader, leader->exit_signal);
166 /*
167 * If we were the last child thread and the leader has
168 * exited already, and the leader's parent ignores SIGCHLD,
169 * then we are the one who should release the leader.
170 *
171 * do_notify_parent() will have marked it self-reaping in
172 * that case.
173 */
174 zap_leader = (leader->exit_signal == -1);
175 }
176
177 write_unlock_irq(&tasklist_lock);
178 proc_flush_task(p);
179 release_thread(p);
180 call_rcu(&p->rcu, delayed_put_task_struct);
181
182 p = leader;
183 if (unlikely(zap_leader))
184 goto repeat;
185 }
186
187 /*
188 * This checks not only the pgrp, but falls back on the pid if no
189 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
190 * without this...
191 *
192 * The caller must hold rcu lock or the tasklist lock.
193 */
194 struct pid *session_of_pgrp(struct pid *pgrp)
195 {
196 struct task_struct *p;
197 struct pid *sid = NULL;
198
199 p = pid_task(pgrp, PIDTYPE_PGID);
200 if (p == NULL)
201 p = pid_task(pgrp, PIDTYPE_PID);
202 if (p != NULL)
203 sid = task_session(p);
204
205 return sid;
206 }
207
208 /*
209 * Determine if a process group is "orphaned", according to the POSIX
210 * definition in 2.2.2.52. Orphaned process groups are not to be affected
211 * by terminal-generated stop signals. Newly orphaned process groups are
212 * to receive a SIGHUP and a SIGCONT.
213 *
214 * "I ask you, have you ever known what it is to be an orphan?"
215 */
216 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
217 {
218 struct task_struct *p;
219 int ret = 1;
220
221 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
222 if (p == ignored_task
223 || p->exit_state
224 || is_global_init(p->real_parent))
225 continue;
226 if (task_pgrp(p->real_parent) != pgrp &&
227 task_session(p->real_parent) == task_session(p)) {
228 ret = 0;
229 break;
230 }
231 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
232 return ret; /* (sighing) "Often!" */
233 }
234
235 int is_current_pgrp_orphaned(void)
236 {
237 int retval;
238
239 read_lock(&tasklist_lock);
240 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
241 read_unlock(&tasklist_lock);
242
243 return retval;
244 }
245
246 static int has_stopped_jobs(struct pid *pgrp)
247 {
248 int retval = 0;
249 struct task_struct *p;
250
251 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
252 if (p->state != TASK_STOPPED)
253 continue;
254 retval = 1;
255 break;
256 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
257 return retval;
258 }
259
260 /**
261 * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
262 *
263 * If a kernel thread is launched as a result of a system call, or if
264 * it ever exits, it should generally reparent itself to kthreadd so it
265 * isn't in the way of other processes and is correctly cleaned up on exit.
266 *
267 * The various task state such as scheduling policy and priority may have
268 * been inherited from a user process, so we reset them to sane values here.
269 *
270 * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
271 */
272 static void reparent_to_kthreadd(void)
273 {
274 write_lock_irq(&tasklist_lock);
275
276 ptrace_unlink(current);
277 /* Reparent to init */
278 remove_parent(current);
279 current->real_parent = current->parent = kthreadd_task;
280 add_parent(current);
281
282 /* Set the exit signal to SIGCHLD so we signal init on exit */
283 current->exit_signal = SIGCHLD;
284
285 if (task_nice(current) < 0)
286 set_user_nice(current, 0);
287 /* cpus_allowed? */
288 /* rt_priority? */
289 /* signals? */
290 security_task_reparent_to_init(current);
291 memcpy(current->signal->rlim, init_task.signal->rlim,
292 sizeof(current->signal->rlim));
293 atomic_inc(&(INIT_USER->__count));
294 write_unlock_irq(&tasklist_lock);
295 switch_uid(INIT_USER);
296 }
297
298 void __set_special_pids(pid_t session, pid_t pgrp)
299 {
300 struct task_struct *curr = current->group_leader;
301
302 if (task_session_nr(curr) != session) {
303 detach_pid(curr, PIDTYPE_SID);
304 set_task_session(curr, session);
305 attach_pid(curr, PIDTYPE_SID, find_pid(session));
306 }
307 if (task_pgrp_nr(curr) != pgrp) {
308 detach_pid(curr, PIDTYPE_PGID);
309 curr->signal->pgrp = pgrp;
310 attach_pid(curr, PIDTYPE_PGID, find_pid(pgrp));
311 }
312 }
313
314 static void set_special_pids(pid_t session, pid_t pgrp)
315 {
316 write_lock_irq(&tasklist_lock);
317 __set_special_pids(session, pgrp);
318 write_unlock_irq(&tasklist_lock);
319 }
320
321 /*
322 * Let kernel threads use this to say that they
323 * allow a certain signal (since daemonize() will
324 * have disabled all of them by default).
325 */
326 int allow_signal(int sig)
327 {
328 if (!valid_signal(sig) || sig < 1)
329 return -EINVAL;
330
331 spin_lock_irq(&current->sighand->siglock);
332 sigdelset(&current->blocked, sig);
333 if (!current->mm) {
334 /* Kernel threads handle their own signals.
335 Let the signal code know it'll be handled, so
336 that they don't get converted to SIGKILL or
337 just silently dropped */
338 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
339 }
340 recalc_sigpending();
341 spin_unlock_irq(&current->sighand->siglock);
342 return 0;
343 }
344
345 EXPORT_SYMBOL(allow_signal);
346
347 int disallow_signal(int sig)
348 {
349 if (!valid_signal(sig) || sig < 1)
350 return -EINVAL;
351
352 spin_lock_irq(&current->sighand->siglock);
353 current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
354 recalc_sigpending();
355 spin_unlock_irq(&current->sighand->siglock);
356 return 0;
357 }
358
359 EXPORT_SYMBOL(disallow_signal);
360
361 /*
362 * Put all the gunge required to become a kernel thread without
363 * attached user resources in one place where it belongs.
364 */
365
366 void daemonize(const char *name, ...)
367 {
368 va_list args;
369 struct fs_struct *fs;
370 sigset_t blocked;
371
372 va_start(args, name);
373 vsnprintf(current->comm, sizeof(current->comm), name, args);
374 va_end(args);
375
376 /*
377 * If we were started as result of loading a module, close all of the
378 * user space pages. We don't need them, and if we didn't close them
379 * they would be locked into memory.
380 */
381 exit_mm(current);
382 /*
383 * We don't want to have TIF_FREEZE set if the system-wide hibernation
384 * or suspend transition begins right now.
385 */
386 current->flags |= PF_NOFREEZE;
387
388 set_special_pids(1, 1);
389 proc_clear_tty(current);
390
391 /* Block and flush all signals */
392 sigfillset(&blocked);
393 sigprocmask(SIG_BLOCK, &blocked, NULL);
394 flush_signals(current);
395
396 /* Become as one with the init task */
397
398 exit_fs(current); /* current->fs->count--; */
399 fs = init_task.fs;
400 current->fs = fs;
401 atomic_inc(&fs->count);
402
403 exit_task_namespaces(current);
404 current->nsproxy = init_task.nsproxy;
405 get_task_namespaces(current);
406
407 exit_files(current);
408 current->files = init_task.files;
409 atomic_inc(&current->files->count);
410
411 reparent_to_kthreadd();
412 }
413
414 EXPORT_SYMBOL(daemonize);
415
416 static void close_files(struct files_struct * files)
417 {
418 int i, j;
419 struct fdtable *fdt;
420
421 j = 0;
422
423 /*
424 * It is safe to dereference the fd table without RCU or
425 * ->file_lock because this is the last reference to the
426 * files structure.
427 */
428 fdt = files_fdtable(files);
429 for (;;) {
430 unsigned long set;
431 i = j * __NFDBITS;
432 if (i >= fdt->max_fds)
433 break;
434 set = fdt->open_fds->fds_bits[j++];
435 while (set) {
436 if (set & 1) {
437 struct file * file = xchg(&fdt->fd[i], NULL);
438 if (file) {
439 filp_close(file, files);
440 cond_resched();
441 }
442 }
443 i++;
444 set >>= 1;
445 }
446 }
447 }
448
449 struct files_struct *get_files_struct(struct task_struct *task)
450 {
451 struct files_struct *files;
452
453 task_lock(task);
454 files = task->files;
455 if (files)
456 atomic_inc(&files->count);
457 task_unlock(task);
458
459 return files;
460 }
461
462 void fastcall put_files_struct(struct files_struct *files)
463 {
464 struct fdtable *fdt;
465
466 if (atomic_dec_and_test(&files->count)) {
467 close_files(files);
468 /*
469 * Free the fd and fdset arrays if we expanded them.
470 * If the fdtable was embedded, pass files for freeing
471 * at the end of the RCU grace period. Otherwise,
472 * you can free files immediately.
473 */
474 fdt = files_fdtable(files);
475 if (fdt != &files->fdtab)
476 kmem_cache_free(files_cachep, files);
477 free_fdtable(fdt);
478 }
479 }
480
481 EXPORT_SYMBOL(put_files_struct);
482
483 void reset_files_struct(struct task_struct *tsk, struct files_struct *files)
484 {
485 struct files_struct *old;
486
487 old = tsk->files;
488 task_lock(tsk);
489 tsk->files = files;
490 task_unlock(tsk);
491 put_files_struct(old);
492 }
493 EXPORT_SYMBOL(reset_files_struct);
494
495 static inline void __exit_files(struct task_struct *tsk)
496 {
497 struct files_struct * files = tsk->files;
498
499 if (files) {
500 task_lock(tsk);
501 tsk->files = NULL;
502 task_unlock(tsk);
503 put_files_struct(files);
504 }
505 }
506
507 void exit_files(struct task_struct *tsk)
508 {
509 __exit_files(tsk);
510 }
511
512 static inline void __put_fs_struct(struct fs_struct *fs)
513 {
514 /* No need to hold fs->lock if we are killing it */
515 if (atomic_dec_and_test(&fs->count)) {
516 dput(fs->root);
517 mntput(fs->rootmnt);
518 dput(fs->pwd);
519 mntput(fs->pwdmnt);
520 if (fs->altroot) {
521 dput(fs->altroot);
522 mntput(fs->altrootmnt);
523 }
524 kmem_cache_free(fs_cachep, fs);
525 }
526 }
527
528 void put_fs_struct(struct fs_struct *fs)
529 {
530 __put_fs_struct(fs);
531 }
532
533 static inline void __exit_fs(struct task_struct *tsk)
534 {
535 struct fs_struct * fs = tsk->fs;
536
537 if (fs) {
538 task_lock(tsk);
539 tsk->fs = NULL;
540 task_unlock(tsk);
541 __put_fs_struct(fs);
542 }
543 }
544
545 void exit_fs(struct task_struct *tsk)
546 {
547 __exit_fs(tsk);
548 }
549
550 EXPORT_SYMBOL_GPL(exit_fs);
551
552 /*
553 * Turn us into a lazy TLB process if we
554 * aren't already..
555 */
556 static void exit_mm(struct task_struct * tsk)
557 {
558 struct mm_struct *mm = tsk->mm;
559
560 mm_release(tsk, mm);
561 if (!mm)
562 return;
563 /*
564 * Serialize with any possible pending coredump.
565 * We must hold mmap_sem around checking core_waiters
566 * and clearing tsk->mm. The core-inducing thread
567 * will increment core_waiters for each thread in the
568 * group with ->mm != NULL.
569 */
570 down_read(&mm->mmap_sem);
571 if (mm->core_waiters) {
572 up_read(&mm->mmap_sem);
573 down_write(&mm->mmap_sem);
574 if (!--mm->core_waiters)
575 complete(mm->core_startup_done);
576 up_write(&mm->mmap_sem);
577
578 wait_for_completion(&mm->core_done);
579 down_read(&mm->mmap_sem);
580 }
581 atomic_inc(&mm->mm_count);
582 BUG_ON(mm != tsk->active_mm);
583 /* more a memory barrier than a real lock */
584 task_lock(tsk);
585 tsk->mm = NULL;
586 up_read(&mm->mmap_sem);
587 enter_lazy_tlb(mm, current);
588 /* We don't want this task to be frozen prematurely */
589 clear_freeze_flag(tsk);
590 task_unlock(tsk);
591 mmput(mm);
592 }
593
594 static void
595 reparent_thread(struct task_struct *p, struct task_struct *father, int traced)
596 {
597 if (p->pdeath_signal)
598 /* We already hold the tasklist_lock here. */
599 group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p);
600
601 /* Move the child from its dying parent to the new one. */
602 if (unlikely(traced)) {
603 /* Preserve ptrace links if someone else is tracing this child. */
604 list_del_init(&p->ptrace_list);
605 if (p->parent != p->real_parent)
606 list_add(&p->ptrace_list, &p->real_parent->ptrace_children);
607 } else {
608 /* If this child is being traced, then we're the one tracing it
609 * anyway, so let go of it.
610 */
611 p->ptrace = 0;
612 remove_parent(p);
613 p->parent = p->real_parent;
614 add_parent(p);
615
616 if (p->state == TASK_TRACED) {
617 /*
618 * If it was at a trace stop, turn it into
619 * a normal stop since it's no longer being
620 * traced.
621 */
622 ptrace_untrace(p);
623 }
624 }
625
626 /* If this is a threaded reparent there is no need to
627 * notify anyone anything has happened.
628 */
629 if (p->real_parent->group_leader == father->group_leader)
630 return;
631
632 /* We don't want people slaying init. */
633 if (p->exit_signal != -1)
634 p->exit_signal = SIGCHLD;
635
636 /* If we'd notified the old parent about this child's death,
637 * also notify the new parent.
638 */
639 if (!traced && p->exit_state == EXIT_ZOMBIE &&
640 p->exit_signal != -1 && thread_group_empty(p))
641 do_notify_parent(p, p->exit_signal);
642
643 /*
644 * process group orphan check
645 * Case ii: Our child is in a different pgrp
646 * than we are, and it was the only connection
647 * outside, so the child pgrp is now orphaned.
648 */
649 if ((task_pgrp(p) != task_pgrp(father)) &&
650 (task_session(p) == task_session(father))) {
651 struct pid *pgrp = task_pgrp(p);
652
653 if (will_become_orphaned_pgrp(pgrp, NULL) &&
654 has_stopped_jobs(pgrp)) {
655 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
656 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
657 }
658 }
659 }
660
661 /*
662 * When we die, we re-parent all our children.
663 * Try to give them to another thread in our thread
664 * group, and if no such member exists, give it to
665 * the child reaper process (ie "init") in our pid
666 * space.
667 */
668 static void
669 forget_original_parent(struct task_struct *father, struct list_head *to_release)
670 {
671 struct task_struct *p, *reaper = father;
672 struct list_head *_p, *_n;
673
674 do {
675 reaper = next_thread(reaper);
676 if (reaper == father) {
677 reaper = task_child_reaper(father);
678 break;
679 }
680 } while (reaper->exit_state);
681
682 /*
683 * There are only two places where our children can be:
684 *
685 * - in our child list
686 * - in our ptraced child list
687 *
688 * Search them and reparent children.
689 */
690 list_for_each_safe(_p, _n, &father->children) {
691 int ptrace;
692 p = list_entry(_p, struct task_struct, sibling);
693
694 ptrace = p->ptrace;
695
696 /* if father isn't the real parent, then ptrace must be enabled */
697 BUG_ON(father != p->real_parent && !ptrace);
698
699 if (father == p->real_parent) {
700 /* reparent with a reaper, real father it's us */
701 p->real_parent = reaper;
702 reparent_thread(p, father, 0);
703 } else {
704 /* reparent ptraced task to its real parent */
705 __ptrace_unlink (p);
706 if (p->exit_state == EXIT_ZOMBIE && p->exit_signal != -1 &&
707 thread_group_empty(p))
708 do_notify_parent(p, p->exit_signal);
709 }
710
711 /*
712 * if the ptraced child is a zombie with exit_signal == -1
713 * we must collect it before we exit, or it will remain
714 * zombie forever since we prevented it from self-reap itself
715 * while it was being traced by us, to be able to see it in wait4.
716 */
717 if (unlikely(ptrace && p->exit_state == EXIT_ZOMBIE && p->exit_signal == -1))
718 list_add(&p->ptrace_list, to_release);
719 }
720 list_for_each_safe(_p, _n, &father->ptrace_children) {
721 p = list_entry(_p, struct task_struct, ptrace_list);
722 p->real_parent = reaper;
723 reparent_thread(p, father, 1);
724 }
725 }
726
727 /*
728 * Send signals to all our closest relatives so that they know
729 * to properly mourn us..
730 */
731 static void exit_notify(struct task_struct *tsk)
732 {
733 int state;
734 struct task_struct *t;
735 struct list_head ptrace_dead, *_p, *_n;
736 struct pid *pgrp;
737
738 if (signal_pending(tsk) && !(tsk->signal->flags & SIGNAL_GROUP_EXIT)
739 && !thread_group_empty(tsk)) {
740 /*
741 * This occurs when there was a race between our exit
742 * syscall and a group signal choosing us as the one to
743 * wake up. It could be that we are the only thread
744 * alerted to check for pending signals, but another thread
745 * should be woken now to take the signal since we will not.
746 * Now we'll wake all the threads in the group just to make
747 * sure someone gets all the pending signals.
748 */
749 spin_lock_irq(&tsk->sighand->siglock);
750 for (t = next_thread(tsk); t != tsk; t = next_thread(t))
751 if (!signal_pending(t) && !(t->flags & PF_EXITING))
752 recalc_sigpending_and_wake(t);
753 spin_unlock_irq(&tsk->sighand->siglock);
754 }
755
756 write_lock_irq(&tasklist_lock);
757
758 /*
759 * This does two things:
760 *
761 * A. Make init inherit all the child processes
762 * B. Check to see if any process groups have become orphaned
763 * as a result of our exiting, and if they have any stopped
764 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
765 */
766
767 INIT_LIST_HEAD(&ptrace_dead);
768 forget_original_parent(tsk, &ptrace_dead);
769 BUG_ON(!list_empty(&tsk->children));
770 BUG_ON(!list_empty(&tsk->ptrace_children));
771
772 /*
773 * Check to see if any process groups have become orphaned
774 * as a result of our exiting, and if they have any stopped
775 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
776 *
777 * Case i: Our father is in a different pgrp than we are
778 * and we were the only connection outside, so our pgrp
779 * is about to become orphaned.
780 */
781 t = tsk->real_parent;
782
783 pgrp = task_pgrp(tsk);
784 if ((task_pgrp(t) != pgrp) &&
785 (task_session(t) == task_session(tsk)) &&
786 will_become_orphaned_pgrp(pgrp, tsk) &&
787 has_stopped_jobs(pgrp)) {
788 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
789 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
790 }
791
792 /* Let father know we died
793 *
794 * Thread signals are configurable, but you aren't going to use
795 * that to send signals to arbitary processes.
796 * That stops right now.
797 *
798 * If the parent exec id doesn't match the exec id we saved
799 * when we started then we know the parent has changed security
800 * domain.
801 *
802 * If our self_exec id doesn't match our parent_exec_id then
803 * we have changed execution domain as these two values started
804 * the same after a fork.
805 */
806 if (tsk->exit_signal != SIGCHLD && tsk->exit_signal != -1 &&
807 ( tsk->parent_exec_id != t->self_exec_id ||
808 tsk->self_exec_id != tsk->parent_exec_id)
809 && !capable(CAP_KILL))
810 tsk->exit_signal = SIGCHLD;
811
812
813 /* If something other than our normal parent is ptracing us, then
814 * send it a SIGCHLD instead of honoring exit_signal. exit_signal
815 * only has special meaning to our real parent.
816 */
817 if (tsk->exit_signal != -1 && thread_group_empty(tsk)) {
818 int signal = tsk->parent == tsk->real_parent ? tsk->exit_signal : SIGCHLD;
819 do_notify_parent(tsk, signal);
820 } else if (tsk->ptrace) {
821 do_notify_parent(tsk, SIGCHLD);
822 }
823
824 state = EXIT_ZOMBIE;
825 if (tsk->exit_signal == -1 && likely(!tsk->ptrace))
826 state = EXIT_DEAD;
827 tsk->exit_state = state;
828
829 if (thread_group_leader(tsk) &&
830 tsk->signal->notify_count < 0 &&
831 tsk->signal->group_exit_task)
832 wake_up_process(tsk->signal->group_exit_task);
833
834 write_unlock_irq(&tasklist_lock);
835
836 list_for_each_safe(_p, _n, &ptrace_dead) {
837 list_del_init(_p);
838 t = list_entry(_p, struct task_struct, ptrace_list);
839 release_task(t);
840 }
841
842 /* If the process is dead, release it - nobody will wait for it */
843 if (state == EXIT_DEAD)
844 release_task(tsk);
845 }
846
847 #ifdef CONFIG_DEBUG_STACK_USAGE
848 static void check_stack_usage(void)
849 {
850 static DEFINE_SPINLOCK(low_water_lock);
851 static int lowest_to_date = THREAD_SIZE;
852 unsigned long *n = end_of_stack(current);
853 unsigned long free;
854
855 while (*n == 0)
856 n++;
857 free = (unsigned long)n - (unsigned long)end_of_stack(current);
858
859 if (free >= lowest_to_date)
860 return;
861
862 spin_lock(&low_water_lock);
863 if (free < lowest_to_date) {
864 printk(KERN_WARNING "%s used greatest stack depth: %lu bytes "
865 "left\n",
866 current->comm, free);
867 lowest_to_date = free;
868 }
869 spin_unlock(&low_water_lock);
870 }
871 #else
872 static inline void check_stack_usage(void) {}
873 #endif
874
875 static inline void exit_child_reaper(struct task_struct *tsk)
876 {
877 if (likely(tsk->group_leader != task_child_reaper(tsk)))
878 return;
879
880 panic("Attempted to kill init!");
881 }
882
883 fastcall NORET_TYPE void do_exit(long code)
884 {
885 struct task_struct *tsk = current;
886 int group_dead;
887
888 profile_task_exit(tsk);
889
890 WARN_ON(atomic_read(&tsk->fs_excl));
891
892 if (unlikely(in_interrupt()))
893 panic("Aiee, killing interrupt handler!");
894 if (unlikely(!tsk->pid))
895 panic("Attempted to kill the idle task!");
896
897 if (unlikely(current->ptrace & PT_TRACE_EXIT)) {
898 current->ptrace_message = code;
899 ptrace_notify((PTRACE_EVENT_EXIT << 8) | SIGTRAP);
900 }
901
902 /*
903 * We're taking recursive faults here in do_exit. Safest is to just
904 * leave this task alone and wait for reboot.
905 */
906 if (unlikely(tsk->flags & PF_EXITING)) {
907 printk(KERN_ALERT
908 "Fixing recursive fault but reboot is needed!\n");
909 /*
910 * We can do this unlocked here. The futex code uses
911 * this flag just to verify whether the pi state
912 * cleanup has been done or not. In the worst case it
913 * loops once more. We pretend that the cleanup was
914 * done as there is no way to return. Either the
915 * OWNER_DIED bit is set by now or we push the blocked
916 * task into the wait for ever nirwana as well.
917 */
918 tsk->flags |= PF_EXITPIDONE;
919 if (tsk->io_context)
920 exit_io_context();
921 set_current_state(TASK_UNINTERRUPTIBLE);
922 schedule();
923 }
924
925 tsk->flags |= PF_EXITING;
926 /*
927 * tsk->flags are checked in the futex code to protect against
928 * an exiting task cleaning up the robust pi futexes.
929 */
930 smp_mb();
931 spin_unlock_wait(&tsk->pi_lock);
932
933 if (unlikely(in_atomic()))
934 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
935 current->comm, current->pid,
936 preempt_count());
937
938 acct_update_integrals(tsk);
939 if (tsk->mm) {
940 update_hiwater_rss(tsk->mm);
941 update_hiwater_vm(tsk->mm);
942 }
943 group_dead = atomic_dec_and_test(&tsk->signal->live);
944 if (group_dead) {
945 exit_child_reaper(tsk);
946 hrtimer_cancel(&tsk->signal->real_timer);
947 exit_itimers(tsk->signal);
948 }
949 acct_collect(code, group_dead);
950 #ifdef CONFIG_FUTEX
951 if (unlikely(tsk->robust_list))
952 exit_robust_list(tsk);
953 #ifdef CONFIG_COMPAT
954 if (unlikely(tsk->compat_robust_list))
955 compat_exit_robust_list(tsk);
956 #endif
957 #endif
958 if (group_dead)
959 tty_audit_exit();
960 if (unlikely(tsk->audit_context))
961 audit_free(tsk);
962
963 tsk->exit_code = code;
964 taskstats_exit(tsk, group_dead);
965
966 exit_mm(tsk);
967
968 if (group_dead)
969 acct_process();
970 exit_sem(tsk);
971 __exit_files(tsk);
972 __exit_fs(tsk);
973 check_stack_usage();
974 exit_thread();
975 cgroup_exit(tsk, 1);
976 exit_keys(tsk);
977
978 if (group_dead && tsk->signal->leader)
979 disassociate_ctty(1);
980
981 module_put(task_thread_info(tsk)->exec_domain->module);
982 if (tsk->binfmt)
983 module_put(tsk->binfmt->module);
984
985 proc_exit_connector(tsk);
986 exit_task_namespaces(tsk);
987 exit_notify(tsk);
988 #ifdef CONFIG_NUMA
989 mpol_free(tsk->mempolicy);
990 tsk->mempolicy = NULL;
991 #endif
992 #ifdef CONFIG_FUTEX
993 /*
994 * This must happen late, after the PID is not
995 * hashed anymore:
996 */
997 if (unlikely(!list_empty(&tsk->pi_state_list)))
998 exit_pi_state_list(tsk);
999 if (unlikely(current->pi_state_cache))
1000 kfree(current->pi_state_cache);
1001 #endif
1002 /*
1003 * Make sure we are holding no locks:
1004 */
1005 debug_check_no_locks_held(tsk);
1006 /*
1007 * We can do this unlocked here. The futex code uses this flag
1008 * just to verify whether the pi state cleanup has been done
1009 * or not. In the worst case it loops once more.
1010 */
1011 tsk->flags |= PF_EXITPIDONE;
1012
1013 if (tsk->io_context)
1014 exit_io_context();
1015
1016 if (tsk->splice_pipe)
1017 __free_pipe_info(tsk->splice_pipe);
1018
1019 preempt_disable();
1020 /* causes final put_task_struct in finish_task_switch(). */
1021 tsk->state = TASK_DEAD;
1022
1023 schedule();
1024 BUG();
1025 /* Avoid "noreturn function does return". */
1026 for (;;)
1027 cpu_relax(); /* For when BUG is null */
1028 }
1029
1030 EXPORT_SYMBOL_GPL(do_exit);
1031
1032 NORET_TYPE void complete_and_exit(struct completion *comp, long code)
1033 {
1034 if (comp)
1035 complete(comp);
1036
1037 do_exit(code);
1038 }
1039
1040 EXPORT_SYMBOL(complete_and_exit);
1041
1042 asmlinkage long sys_exit(int error_code)
1043 {
1044 do_exit((error_code&0xff)<<8);
1045 }
1046
1047 /*
1048 * Take down every thread in the group. This is called by fatal signals
1049 * as well as by sys_exit_group (below).
1050 */
1051 NORET_TYPE void
1052 do_group_exit(int exit_code)
1053 {
1054 BUG_ON(exit_code & 0x80); /* core dumps don't get here */
1055
1056 if (current->signal->flags & SIGNAL_GROUP_EXIT)
1057 exit_code = current->signal->group_exit_code;
1058 else if (!thread_group_empty(current)) {
1059 struct signal_struct *const sig = current->signal;
1060 struct sighand_struct *const sighand = current->sighand;
1061 spin_lock_irq(&sighand->siglock);
1062 if (sig->flags & SIGNAL_GROUP_EXIT)
1063 /* Another thread got here before we took the lock. */
1064 exit_code = sig->group_exit_code;
1065 else {
1066 sig->group_exit_code = exit_code;
1067 zap_other_threads(current);
1068 }
1069 spin_unlock_irq(&sighand->siglock);
1070 }
1071
1072 do_exit(exit_code);
1073 /* NOTREACHED */
1074 }
1075
1076 /*
1077 * this kills every thread in the thread group. Note that any externally
1078 * wait4()-ing process will get the correct exit code - even if this
1079 * thread is not the thread group leader.
1080 */
1081 asmlinkage void sys_exit_group(int error_code)
1082 {
1083 do_group_exit((error_code & 0xff) << 8);
1084 }
1085
1086 static int eligible_child(pid_t pid, int options, struct task_struct *p)
1087 {
1088 int err;
1089
1090 if (pid > 0) {
1091 if (p->pid != pid)
1092 return 0;
1093 } else if (!pid) {
1094 if (task_pgrp_nr(p) != task_pgrp_nr(current))
1095 return 0;
1096 } else if (pid != -1) {
1097 if (task_pgrp_nr(p) != -pid)
1098 return 0;
1099 }
1100
1101 /*
1102 * Do not consider detached threads that are
1103 * not ptraced:
1104 */
1105 if (p->exit_signal == -1 && !p->ptrace)
1106 return 0;
1107
1108 /* Wait for all children (clone and not) if __WALL is set;
1109 * otherwise, wait for clone children *only* if __WCLONE is
1110 * set; otherwise, wait for non-clone children *only*. (Note:
1111 * A "clone" child here is one that reports to its parent
1112 * using a signal other than SIGCHLD.) */
1113 if (((p->exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0))
1114 && !(options & __WALL))
1115 return 0;
1116 /*
1117 * Do not consider thread group leaders that are
1118 * in a non-empty thread group:
1119 */
1120 if (delay_group_leader(p))
1121 return 2;
1122
1123 err = security_task_wait(p);
1124 if (err)
1125 return err;
1126
1127 return 1;
1128 }
1129
1130 static int wait_noreap_copyout(struct task_struct *p, pid_t pid, uid_t uid,
1131 int why, int status,
1132 struct siginfo __user *infop,
1133 struct rusage __user *rusagep)
1134 {
1135 int retval = rusagep ? getrusage(p, RUSAGE_BOTH, rusagep) : 0;
1136
1137 put_task_struct(p);
1138 if (!retval)
1139 retval = put_user(SIGCHLD, &infop->si_signo);
1140 if (!retval)
1141 retval = put_user(0, &infop->si_errno);
1142 if (!retval)
1143 retval = put_user((short)why, &infop->si_code);
1144 if (!retval)
1145 retval = put_user(pid, &infop->si_pid);
1146 if (!retval)
1147 retval = put_user(uid, &infop->si_uid);
1148 if (!retval)
1149 retval = put_user(status, &infop->si_status);
1150 if (!retval)
1151 retval = pid;
1152 return retval;
1153 }
1154
1155 /*
1156 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1157 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1158 * the lock and this task is uninteresting. If we return nonzero, we have
1159 * released the lock and the system call should return.
1160 */
1161 static int wait_task_zombie(struct task_struct *p, int noreap,
1162 struct siginfo __user *infop,
1163 int __user *stat_addr, struct rusage __user *ru)
1164 {
1165 unsigned long state;
1166 int retval, status, traced;
1167
1168 if (unlikely(noreap)) {
1169 pid_t pid = p->pid;
1170 uid_t uid = p->uid;
1171 int exit_code = p->exit_code;
1172 int why, status;
1173
1174 if (unlikely(p->exit_state != EXIT_ZOMBIE))
1175 return 0;
1176 if (unlikely(p->exit_signal == -1 && p->ptrace == 0))
1177 return 0;
1178 get_task_struct(p);
1179 read_unlock(&tasklist_lock);
1180 if ((exit_code & 0x7f) == 0) {
1181 why = CLD_EXITED;
1182 status = exit_code >> 8;
1183 } else {
1184 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1185 status = exit_code & 0x7f;
1186 }
1187 return wait_noreap_copyout(p, pid, uid, why,
1188 status, infop, ru);
1189 }
1190
1191 /*
1192 * Try to move the task's state to DEAD
1193 * only one thread is allowed to do this:
1194 */
1195 state = xchg(&p->exit_state, EXIT_DEAD);
1196 if (state != EXIT_ZOMBIE) {
1197 BUG_ON(state != EXIT_DEAD);
1198 return 0;
1199 }
1200
1201 /* traced means p->ptrace, but not vice versa */
1202 traced = (p->real_parent != p->parent);
1203
1204 if (likely(!traced)) {
1205 struct signal_struct *psig;
1206 struct signal_struct *sig;
1207
1208 /*
1209 * The resource counters for the group leader are in its
1210 * own task_struct. Those for dead threads in the group
1211 * are in its signal_struct, as are those for the child
1212 * processes it has previously reaped. All these
1213 * accumulate in the parent's signal_struct c* fields.
1214 *
1215 * We don't bother to take a lock here to protect these
1216 * p->signal fields, because they are only touched by
1217 * __exit_signal, which runs with tasklist_lock
1218 * write-locked anyway, and so is excluded here. We do
1219 * need to protect the access to p->parent->signal fields,
1220 * as other threads in the parent group can be right
1221 * here reaping other children at the same time.
1222 */
1223 spin_lock_irq(&p->parent->sighand->siglock);
1224 psig = p->parent->signal;
1225 sig = p->signal;
1226 psig->cutime =
1227 cputime_add(psig->cutime,
1228 cputime_add(p->utime,
1229 cputime_add(sig->utime,
1230 sig->cutime)));
1231 psig->cstime =
1232 cputime_add(psig->cstime,
1233 cputime_add(p->stime,
1234 cputime_add(sig->stime,
1235 sig->cstime)));
1236 psig->cgtime =
1237 cputime_add(psig->cgtime,
1238 cputime_add(p->gtime,
1239 cputime_add(sig->gtime,
1240 sig->cgtime)));
1241 psig->cmin_flt +=
1242 p->min_flt + sig->min_flt + sig->cmin_flt;
1243 psig->cmaj_flt +=
1244 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1245 psig->cnvcsw +=
1246 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1247 psig->cnivcsw +=
1248 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1249 psig->cinblock +=
1250 task_io_get_inblock(p) +
1251 sig->inblock + sig->cinblock;
1252 psig->coublock +=
1253 task_io_get_oublock(p) +
1254 sig->oublock + sig->coublock;
1255 spin_unlock_irq(&p->parent->sighand->siglock);
1256 }
1257
1258 /*
1259 * Now we are sure this task is interesting, and no other
1260 * thread can reap it because we set its state to EXIT_DEAD.
1261 */
1262 read_unlock(&tasklist_lock);
1263
1264 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1265 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1266 ? p->signal->group_exit_code : p->exit_code;
1267 if (!retval && stat_addr)
1268 retval = put_user(status, stat_addr);
1269 if (!retval && infop)
1270 retval = put_user(SIGCHLD, &infop->si_signo);
1271 if (!retval && infop)
1272 retval = put_user(0, &infop->si_errno);
1273 if (!retval && infop) {
1274 int why;
1275
1276 if ((status & 0x7f) == 0) {
1277 why = CLD_EXITED;
1278 status >>= 8;
1279 } else {
1280 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1281 status &= 0x7f;
1282 }
1283 retval = put_user((short)why, &infop->si_code);
1284 if (!retval)
1285 retval = put_user(status, &infop->si_status);
1286 }
1287 if (!retval && infop)
1288 retval = put_user(p->pid, &infop->si_pid);
1289 if (!retval && infop)
1290 retval = put_user(p->uid, &infop->si_uid);
1291 if (!retval)
1292 retval = p->pid;
1293
1294 if (traced) {
1295 write_lock_irq(&tasklist_lock);
1296 /* We dropped tasklist, ptracer could die and untrace */
1297 ptrace_unlink(p);
1298 /*
1299 * If this is not a detached task, notify the parent.
1300 * If it's still not detached after that, don't release
1301 * it now.
1302 */
1303 if (p->exit_signal != -1) {
1304 do_notify_parent(p, p->exit_signal);
1305 if (p->exit_signal != -1) {
1306 p->exit_state = EXIT_ZOMBIE;
1307 p = NULL;
1308 }
1309 }
1310 write_unlock_irq(&tasklist_lock);
1311 }
1312 if (p != NULL)
1313 release_task(p);
1314
1315 return retval;
1316 }
1317
1318 /*
1319 * Handle sys_wait4 work for one task in state TASK_STOPPED. We hold
1320 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1321 * the lock and this task is uninteresting. If we return nonzero, we have
1322 * released the lock and the system call should return.
1323 */
1324 static int wait_task_stopped(struct task_struct *p, int delayed_group_leader,
1325 int noreap, struct siginfo __user *infop,
1326 int __user *stat_addr, struct rusage __user *ru)
1327 {
1328 int retval, exit_code;
1329
1330 if (!p->exit_code)
1331 return 0;
1332 if (delayed_group_leader && !(p->ptrace & PT_PTRACED) &&
1333 p->signal->group_stop_count > 0)
1334 /*
1335 * A group stop is in progress and this is the group leader.
1336 * We won't report until all threads have stopped.
1337 */
1338 return 0;
1339
1340 /*
1341 * Now we are pretty sure this task is interesting.
1342 * Make sure it doesn't get reaped out from under us while we
1343 * give up the lock and then examine it below. We don't want to
1344 * keep holding onto the tasklist_lock while we call getrusage and
1345 * possibly take page faults for user memory.
1346 */
1347 get_task_struct(p);
1348 read_unlock(&tasklist_lock);
1349
1350 if (unlikely(noreap)) {
1351 pid_t pid = p->pid;
1352 uid_t uid = p->uid;
1353 int why = (p->ptrace & PT_PTRACED) ? CLD_TRAPPED : CLD_STOPPED;
1354
1355 exit_code = p->exit_code;
1356 if (unlikely(!exit_code) ||
1357 unlikely(p->state & TASK_TRACED))
1358 goto bail_ref;
1359 return wait_noreap_copyout(p, pid, uid,
1360 why, (exit_code << 8) | 0x7f,
1361 infop, ru);
1362 }
1363
1364 write_lock_irq(&tasklist_lock);
1365
1366 /*
1367 * This uses xchg to be atomic with the thread resuming and setting
1368 * it. It must also be done with the write lock held to prevent a
1369 * race with the EXIT_ZOMBIE case.
1370 */
1371 exit_code = xchg(&p->exit_code, 0);
1372 if (unlikely(p->exit_state)) {
1373 /*
1374 * The task resumed and then died. Let the next iteration
1375 * catch it in EXIT_ZOMBIE. Note that exit_code might
1376 * already be zero here if it resumed and did _exit(0).
1377 * The task itself is dead and won't touch exit_code again;
1378 * other processors in this function are locked out.
1379 */
1380 p->exit_code = exit_code;
1381 exit_code = 0;
1382 }
1383 if (unlikely(exit_code == 0)) {
1384 /*
1385 * Another thread in this function got to it first, or it
1386 * resumed, or it resumed and then died.
1387 */
1388 write_unlock_irq(&tasklist_lock);
1389 bail_ref:
1390 put_task_struct(p);
1391 /*
1392 * We are returning to the wait loop without having successfully
1393 * removed the process and having released the lock. We cannot
1394 * continue, since the "p" task pointer is potentially stale.
1395 *
1396 * Return -EAGAIN, and do_wait() will restart the loop from the
1397 * beginning. Do _not_ re-acquire the lock.
1398 */
1399 return -EAGAIN;
1400 }
1401
1402 /* move to end of parent's list to avoid starvation */
1403 remove_parent(p);
1404 add_parent(p);
1405
1406 write_unlock_irq(&tasklist_lock);
1407
1408 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1409 if (!retval && stat_addr)
1410 retval = put_user((exit_code << 8) | 0x7f, stat_addr);
1411 if (!retval && infop)
1412 retval = put_user(SIGCHLD, &infop->si_signo);
1413 if (!retval && infop)
1414 retval = put_user(0, &infop->si_errno);
1415 if (!retval && infop)
1416 retval = put_user((short)((p->ptrace & PT_PTRACED)
1417 ? CLD_TRAPPED : CLD_STOPPED),
1418 &infop->si_code);
1419 if (!retval && infop)
1420 retval = put_user(exit_code, &infop->si_status);
1421 if (!retval && infop)
1422 retval = put_user(p->pid, &infop->si_pid);
1423 if (!retval && infop)
1424 retval = put_user(p->uid, &infop->si_uid);
1425 if (!retval)
1426 retval = p->pid;
1427 put_task_struct(p);
1428
1429 BUG_ON(!retval);
1430 return retval;
1431 }
1432
1433 /*
1434 * Handle do_wait work for one task in a live, non-stopped state.
1435 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1436 * the lock and this task is uninteresting. If we return nonzero, we have
1437 * released the lock and the system call should return.
1438 */
1439 static int wait_task_continued(struct task_struct *p, int noreap,
1440 struct siginfo __user *infop,
1441 int __user *stat_addr, struct rusage __user *ru)
1442 {
1443 int retval;
1444 pid_t pid;
1445 uid_t uid;
1446
1447 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1448 return 0;
1449
1450 spin_lock_irq(&p->sighand->siglock);
1451 /* Re-check with the lock held. */
1452 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1453 spin_unlock_irq(&p->sighand->siglock);
1454 return 0;
1455 }
1456 if (!noreap)
1457 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1458 spin_unlock_irq(&p->sighand->siglock);
1459
1460 pid = p->pid;
1461 uid = p->uid;
1462 get_task_struct(p);
1463 read_unlock(&tasklist_lock);
1464
1465 if (!infop) {
1466 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1467 put_task_struct(p);
1468 if (!retval && stat_addr)
1469 retval = put_user(0xffff, stat_addr);
1470 if (!retval)
1471 retval = p->pid;
1472 } else {
1473 retval = wait_noreap_copyout(p, pid, uid,
1474 CLD_CONTINUED, SIGCONT,
1475 infop, ru);
1476 BUG_ON(retval == 0);
1477 }
1478
1479 return retval;
1480 }
1481
1482
1483 static inline int my_ptrace_child(struct task_struct *p)
1484 {
1485 if (!(p->ptrace & PT_PTRACED))
1486 return 0;
1487 if (!(p->ptrace & PT_ATTACHED))
1488 return 1;
1489 /*
1490 * This child was PTRACE_ATTACH'd. We should be seeing it only if
1491 * we are the attacher. If we are the real parent, this is a race
1492 * inside ptrace_attach. It is waiting for the tasklist_lock,
1493 * which we have to switch the parent links, but has already set
1494 * the flags in p->ptrace.
1495 */
1496 return (p->parent != p->real_parent);
1497 }
1498
1499 static long do_wait(pid_t pid, int options, struct siginfo __user *infop,
1500 int __user *stat_addr, struct rusage __user *ru)
1501 {
1502 DECLARE_WAITQUEUE(wait, current);
1503 struct task_struct *tsk;
1504 int flag, retval;
1505 int allowed, denied;
1506
1507 add_wait_queue(&current->signal->wait_chldexit,&wait);
1508 repeat:
1509 /*
1510 * We will set this flag if we see any child that might later
1511 * match our criteria, even if we are not able to reap it yet.
1512 */
1513 flag = 0;
1514 allowed = denied = 0;
1515 current->state = TASK_INTERRUPTIBLE;
1516 read_lock(&tasklist_lock);
1517 tsk = current;
1518 do {
1519 struct task_struct *p;
1520 struct list_head *_p;
1521 int ret;
1522
1523 list_for_each(_p,&tsk->children) {
1524 p = list_entry(_p, struct task_struct, sibling);
1525
1526 ret = eligible_child(pid, options, p);
1527 if (!ret)
1528 continue;
1529
1530 if (unlikely(ret < 0)) {
1531 denied = ret;
1532 continue;
1533 }
1534 allowed = 1;
1535
1536 switch (p->state) {
1537 case TASK_TRACED:
1538 /*
1539 * When we hit the race with PTRACE_ATTACH,
1540 * we will not report this child. But the
1541 * race means it has not yet been moved to
1542 * our ptrace_children list, so we need to
1543 * set the flag here to avoid a spurious ECHILD
1544 * when the race happens with the only child.
1545 */
1546 flag = 1;
1547 if (!my_ptrace_child(p))
1548 continue;
1549 /*FALLTHROUGH*/
1550 case TASK_STOPPED:
1551 /*
1552 * It's stopped now, so it might later
1553 * continue, exit, or stop again.
1554 */
1555 flag = 1;
1556 if (!(options & WUNTRACED) &&
1557 !my_ptrace_child(p))
1558 continue;
1559 retval = wait_task_stopped(p, ret == 2,
1560 (options & WNOWAIT),
1561 infop,
1562 stat_addr, ru);
1563 if (retval == -EAGAIN)
1564 goto repeat;
1565 if (retval != 0) /* He released the lock. */
1566 goto end;
1567 break;
1568 default:
1569 // case EXIT_DEAD:
1570 if (p->exit_state == EXIT_DEAD)
1571 continue;
1572 // case EXIT_ZOMBIE:
1573 if (p->exit_state == EXIT_ZOMBIE) {
1574 /*
1575 * Eligible but we cannot release
1576 * it yet:
1577 */
1578 if (ret == 2)
1579 goto check_continued;
1580 if (!likely(options & WEXITED))
1581 continue;
1582 retval = wait_task_zombie(
1583 p, (options & WNOWAIT),
1584 infop, stat_addr, ru);
1585 /* He released the lock. */
1586 if (retval != 0)
1587 goto end;
1588 break;
1589 }
1590 check_continued:
1591 /*
1592 * It's running now, so it might later
1593 * exit, stop, or stop and then continue.
1594 */
1595 flag = 1;
1596 if (!unlikely(options & WCONTINUED))
1597 continue;
1598 retval = wait_task_continued(
1599 p, (options & WNOWAIT),
1600 infop, stat_addr, ru);
1601 if (retval != 0) /* He released the lock. */
1602 goto end;
1603 break;
1604 }
1605 }
1606 if (!flag) {
1607 list_for_each(_p, &tsk->ptrace_children) {
1608 p = list_entry(_p, struct task_struct,
1609 ptrace_list);
1610 if (!eligible_child(pid, options, p))
1611 continue;
1612 flag = 1;
1613 break;
1614 }
1615 }
1616 if (options & __WNOTHREAD)
1617 break;
1618 tsk = next_thread(tsk);
1619 BUG_ON(tsk->signal != current->signal);
1620 } while (tsk != current);
1621
1622 read_unlock(&tasklist_lock);
1623 if (flag) {
1624 retval = 0;
1625 if (options & WNOHANG)
1626 goto end;
1627 retval = -ERESTARTSYS;
1628 if (signal_pending(current))
1629 goto end;
1630 schedule();
1631 goto repeat;
1632 }
1633 retval = -ECHILD;
1634 if (unlikely(denied) && !allowed)
1635 retval = denied;
1636 end:
1637 current->state = TASK_RUNNING;
1638 remove_wait_queue(&current->signal->wait_chldexit,&wait);
1639 if (infop) {
1640 if (retval > 0)
1641 retval = 0;
1642 else {
1643 /*
1644 * For a WNOHANG return, clear out all the fields
1645 * we would set so the user can easily tell the
1646 * difference.
1647 */
1648 if (!retval)
1649 retval = put_user(0, &infop->si_signo);
1650 if (!retval)
1651 retval = put_user(0, &infop->si_errno);
1652 if (!retval)
1653 retval = put_user(0, &infop->si_code);
1654 if (!retval)
1655 retval = put_user(0, &infop->si_pid);
1656 if (!retval)
1657 retval = put_user(0, &infop->si_uid);
1658 if (!retval)
1659 retval = put_user(0, &infop->si_status);
1660 }
1661 }
1662 return retval;
1663 }
1664
1665 asmlinkage long sys_waitid(int which, pid_t pid,
1666 struct siginfo __user *infop, int options,
1667 struct rusage __user *ru)
1668 {
1669 long ret;
1670
1671 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1672 return -EINVAL;
1673 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1674 return -EINVAL;
1675
1676 switch (which) {
1677 case P_ALL:
1678 pid = -1;
1679 break;
1680 case P_PID:
1681 if (pid <= 0)
1682 return -EINVAL;
1683 break;
1684 case P_PGID:
1685 if (pid <= 0)
1686 return -EINVAL;
1687 pid = -pid;
1688 break;
1689 default:
1690 return -EINVAL;
1691 }
1692
1693 ret = do_wait(pid, options, infop, NULL, ru);
1694
1695 /* avoid REGPARM breakage on x86: */
1696 prevent_tail_call(ret);
1697 return ret;
1698 }
1699
1700 asmlinkage long sys_wait4(pid_t pid, int __user *stat_addr,
1701 int options, struct rusage __user *ru)
1702 {
1703 long ret;
1704
1705 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1706 __WNOTHREAD|__WCLONE|__WALL))
1707 return -EINVAL;
1708 ret = do_wait(pid, options | WEXITED, NULL, stat_addr, ru);
1709
1710 /* avoid REGPARM breakage on x86: */
1711 prevent_tail_call(ret);
1712 return ret;
1713 }
1714
1715 #ifdef __ARCH_WANT_SYS_WAITPID
1716
1717 /*
1718 * sys_waitpid() remains for compatibility. waitpid() should be
1719 * implemented by calling sys_wait4() from libc.a.
1720 */
1721 asmlinkage long sys_waitpid(pid_t pid, int __user *stat_addr, int options)
1722 {
1723 return sys_wait4(pid, stat_addr, options, NULL);
1724 }
1725
1726 #endif