]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/exit.c
Merge tag 'ktest-v4.11-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt...
[mirror_ubuntu-bionic-kernel.git] / kernel / exit.c
1 /*
2 * linux/kernel/exit.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/sched/autogroup.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/stat.h>
12 #include <linux/sched/task.h>
13 #include <linux/sched/task_stack.h>
14 #include <linux/sched/cputime.h>
15 #include <linux/interrupt.h>
16 #include <linux/module.h>
17 #include <linux/capability.h>
18 #include <linux/completion.h>
19 #include <linux/personality.h>
20 #include <linux/tty.h>
21 #include <linux/iocontext.h>
22 #include <linux/key.h>
23 #include <linux/cpu.h>
24 #include <linux/acct.h>
25 #include <linux/tsacct_kern.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/freezer.h>
29 #include <linux/binfmts.h>
30 #include <linux/nsproxy.h>
31 #include <linux/pid_namespace.h>
32 #include <linux/ptrace.h>
33 #include <linux/profile.h>
34 #include <linux/mount.h>
35 #include <linux/proc_fs.h>
36 #include <linux/kthread.h>
37 #include <linux/mempolicy.h>
38 #include <linux/taskstats_kern.h>
39 #include <linux/delayacct.h>
40 #include <linux/cgroup.h>
41 #include <linux/syscalls.h>
42 #include <linux/signal.h>
43 #include <linux/posix-timers.h>
44 #include <linux/cn_proc.h>
45 #include <linux/mutex.h>
46 #include <linux/futex.h>
47 #include <linux/pipe_fs_i.h>
48 #include <linux/audit.h> /* for audit_free() */
49 #include <linux/resource.h>
50 #include <linux/blkdev.h>
51 #include <linux/task_io_accounting_ops.h>
52 #include <linux/tracehook.h>
53 #include <linux/fs_struct.h>
54 #include <linux/userfaultfd_k.h>
55 #include <linux/init_task.h>
56 #include <linux/perf_event.h>
57 #include <trace/events/sched.h>
58 #include <linux/hw_breakpoint.h>
59 #include <linux/oom.h>
60 #include <linux/writeback.h>
61 #include <linux/shm.h>
62 #include <linux/kcov.h>
63 #include <linux/random.h>
64 #include <linux/rcuwait.h>
65
66 #include <linux/uaccess.h>
67 #include <asm/unistd.h>
68 #include <asm/pgtable.h>
69 #include <asm/mmu_context.h>
70
71 static void __unhash_process(struct task_struct *p, bool group_dead)
72 {
73 nr_threads--;
74 detach_pid(p, PIDTYPE_PID);
75 if (group_dead) {
76 detach_pid(p, PIDTYPE_PGID);
77 detach_pid(p, PIDTYPE_SID);
78
79 list_del_rcu(&p->tasks);
80 list_del_init(&p->sibling);
81 __this_cpu_dec(process_counts);
82 }
83 list_del_rcu(&p->thread_group);
84 list_del_rcu(&p->thread_node);
85 }
86
87 /*
88 * This function expects the tasklist_lock write-locked.
89 */
90 static void __exit_signal(struct task_struct *tsk)
91 {
92 struct signal_struct *sig = tsk->signal;
93 bool group_dead = thread_group_leader(tsk);
94 struct sighand_struct *sighand;
95 struct tty_struct *uninitialized_var(tty);
96 u64 utime, stime;
97
98 sighand = rcu_dereference_check(tsk->sighand,
99 lockdep_tasklist_lock_is_held());
100 spin_lock(&sighand->siglock);
101
102 #ifdef CONFIG_POSIX_TIMERS
103 posix_cpu_timers_exit(tsk);
104 if (group_dead) {
105 posix_cpu_timers_exit_group(tsk);
106 } else {
107 /*
108 * This can only happen if the caller is de_thread().
109 * FIXME: this is the temporary hack, we should teach
110 * posix-cpu-timers to handle this case correctly.
111 */
112 if (unlikely(has_group_leader_pid(tsk)))
113 posix_cpu_timers_exit_group(tsk);
114 }
115 #endif
116
117 if (group_dead) {
118 tty = sig->tty;
119 sig->tty = NULL;
120 } else {
121 /*
122 * If there is any task waiting for the group exit
123 * then notify it:
124 */
125 if (sig->notify_count > 0 && !--sig->notify_count)
126 wake_up_process(sig->group_exit_task);
127
128 if (tsk == sig->curr_target)
129 sig->curr_target = next_thread(tsk);
130 }
131
132 add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
133 sizeof(unsigned long long));
134
135 /*
136 * Accumulate here the counters for all threads as they die. We could
137 * skip the group leader because it is the last user of signal_struct,
138 * but we want to avoid the race with thread_group_cputime() which can
139 * see the empty ->thread_head list.
140 */
141 task_cputime(tsk, &utime, &stime);
142 write_seqlock(&sig->stats_lock);
143 sig->utime += utime;
144 sig->stime += stime;
145 sig->gtime += task_gtime(tsk);
146 sig->min_flt += tsk->min_flt;
147 sig->maj_flt += tsk->maj_flt;
148 sig->nvcsw += tsk->nvcsw;
149 sig->nivcsw += tsk->nivcsw;
150 sig->inblock += task_io_get_inblock(tsk);
151 sig->oublock += task_io_get_oublock(tsk);
152 task_io_accounting_add(&sig->ioac, &tsk->ioac);
153 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
154 sig->nr_threads--;
155 __unhash_process(tsk, group_dead);
156 write_sequnlock(&sig->stats_lock);
157
158 /*
159 * Do this under ->siglock, we can race with another thread
160 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
161 */
162 flush_sigqueue(&tsk->pending);
163 tsk->sighand = NULL;
164 spin_unlock(&sighand->siglock);
165
166 __cleanup_sighand(sighand);
167 clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
168 if (group_dead) {
169 flush_sigqueue(&sig->shared_pending);
170 tty_kref_put(tty);
171 }
172 }
173
174 static void delayed_put_task_struct(struct rcu_head *rhp)
175 {
176 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
177
178 perf_event_delayed_put(tsk);
179 trace_sched_process_free(tsk);
180 put_task_struct(tsk);
181 }
182
183
184 void release_task(struct task_struct *p)
185 {
186 struct task_struct *leader;
187 int zap_leader;
188 repeat:
189 /* don't need to get the RCU readlock here - the process is dead and
190 * can't be modifying its own credentials. But shut RCU-lockdep up */
191 rcu_read_lock();
192 atomic_dec(&__task_cred(p)->user->processes);
193 rcu_read_unlock();
194
195 proc_flush_task(p);
196
197 write_lock_irq(&tasklist_lock);
198 ptrace_release_task(p);
199 __exit_signal(p);
200
201 /*
202 * If we are the last non-leader member of the thread
203 * group, and the leader is zombie, then notify the
204 * group leader's parent process. (if it wants notification.)
205 */
206 zap_leader = 0;
207 leader = p->group_leader;
208 if (leader != p && thread_group_empty(leader)
209 && leader->exit_state == EXIT_ZOMBIE) {
210 /*
211 * If we were the last child thread and the leader has
212 * exited already, and the leader's parent ignores SIGCHLD,
213 * then we are the one who should release the leader.
214 */
215 zap_leader = do_notify_parent(leader, leader->exit_signal);
216 if (zap_leader)
217 leader->exit_state = EXIT_DEAD;
218 }
219
220 write_unlock_irq(&tasklist_lock);
221 release_thread(p);
222 call_rcu(&p->rcu, delayed_put_task_struct);
223
224 p = leader;
225 if (unlikely(zap_leader))
226 goto repeat;
227 }
228
229 /*
230 * Note that if this function returns a valid task_struct pointer (!NULL)
231 * task->usage must remain >0 for the duration of the RCU critical section.
232 */
233 struct task_struct *task_rcu_dereference(struct task_struct **ptask)
234 {
235 struct sighand_struct *sighand;
236 struct task_struct *task;
237
238 /*
239 * We need to verify that release_task() was not called and thus
240 * delayed_put_task_struct() can't run and drop the last reference
241 * before rcu_read_unlock(). We check task->sighand != NULL,
242 * but we can read the already freed and reused memory.
243 */
244 retry:
245 task = rcu_dereference(*ptask);
246 if (!task)
247 return NULL;
248
249 probe_kernel_address(&task->sighand, sighand);
250
251 /*
252 * Pairs with atomic_dec_and_test() in put_task_struct(). If this task
253 * was already freed we can not miss the preceding update of this
254 * pointer.
255 */
256 smp_rmb();
257 if (unlikely(task != READ_ONCE(*ptask)))
258 goto retry;
259
260 /*
261 * We've re-checked that "task == *ptask", now we have two different
262 * cases:
263 *
264 * 1. This is actually the same task/task_struct. In this case
265 * sighand != NULL tells us it is still alive.
266 *
267 * 2. This is another task which got the same memory for task_struct.
268 * We can't know this of course, and we can not trust
269 * sighand != NULL.
270 *
271 * In this case we actually return a random value, but this is
272 * correct.
273 *
274 * If we return NULL - we can pretend that we actually noticed that
275 * *ptask was updated when the previous task has exited. Or pretend
276 * that probe_slab_address(&sighand) reads NULL.
277 *
278 * If we return the new task (because sighand is not NULL for any
279 * reason) - this is fine too. This (new) task can't go away before
280 * another gp pass.
281 *
282 * And note: We could even eliminate the false positive if re-read
283 * task->sighand once again to avoid the falsely NULL. But this case
284 * is very unlikely so we don't care.
285 */
286 if (!sighand)
287 return NULL;
288
289 return task;
290 }
291
292 void rcuwait_wake_up(struct rcuwait *w)
293 {
294 struct task_struct *task;
295
296 rcu_read_lock();
297
298 /*
299 * Order condition vs @task, such that everything prior to the load
300 * of @task is visible. This is the condition as to why the user called
301 * rcuwait_trywake() in the first place. Pairs with set_current_state()
302 * barrier (A) in rcuwait_wait_event().
303 *
304 * WAIT WAKE
305 * [S] tsk = current [S] cond = true
306 * MB (A) MB (B)
307 * [L] cond [L] tsk
308 */
309 smp_rmb(); /* (B) */
310
311 /*
312 * Avoid using task_rcu_dereference() magic as long as we are careful,
313 * see comment in rcuwait_wait_event() regarding ->exit_state.
314 */
315 task = rcu_dereference(w->task);
316 if (task)
317 wake_up_process(task);
318 rcu_read_unlock();
319 }
320
321 struct task_struct *try_get_task_struct(struct task_struct **ptask)
322 {
323 struct task_struct *task;
324
325 rcu_read_lock();
326 task = task_rcu_dereference(ptask);
327 if (task)
328 get_task_struct(task);
329 rcu_read_unlock();
330
331 return task;
332 }
333
334 /*
335 * Determine if a process group is "orphaned", according to the POSIX
336 * definition in 2.2.2.52. Orphaned process groups are not to be affected
337 * by terminal-generated stop signals. Newly orphaned process groups are
338 * to receive a SIGHUP and a SIGCONT.
339 *
340 * "I ask you, have you ever known what it is to be an orphan?"
341 */
342 static int will_become_orphaned_pgrp(struct pid *pgrp,
343 struct task_struct *ignored_task)
344 {
345 struct task_struct *p;
346
347 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
348 if ((p == ignored_task) ||
349 (p->exit_state && thread_group_empty(p)) ||
350 is_global_init(p->real_parent))
351 continue;
352
353 if (task_pgrp(p->real_parent) != pgrp &&
354 task_session(p->real_parent) == task_session(p))
355 return 0;
356 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
357
358 return 1;
359 }
360
361 int is_current_pgrp_orphaned(void)
362 {
363 int retval;
364
365 read_lock(&tasklist_lock);
366 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
367 read_unlock(&tasklist_lock);
368
369 return retval;
370 }
371
372 static bool has_stopped_jobs(struct pid *pgrp)
373 {
374 struct task_struct *p;
375
376 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
377 if (p->signal->flags & SIGNAL_STOP_STOPPED)
378 return true;
379 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
380
381 return false;
382 }
383
384 /*
385 * Check to see if any process groups have become orphaned as
386 * a result of our exiting, and if they have any stopped jobs,
387 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
388 */
389 static void
390 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
391 {
392 struct pid *pgrp = task_pgrp(tsk);
393 struct task_struct *ignored_task = tsk;
394
395 if (!parent)
396 /* exit: our father is in a different pgrp than
397 * we are and we were the only connection outside.
398 */
399 parent = tsk->real_parent;
400 else
401 /* reparent: our child is in a different pgrp than
402 * we are, and it was the only connection outside.
403 */
404 ignored_task = NULL;
405
406 if (task_pgrp(parent) != pgrp &&
407 task_session(parent) == task_session(tsk) &&
408 will_become_orphaned_pgrp(pgrp, ignored_task) &&
409 has_stopped_jobs(pgrp)) {
410 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
411 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
412 }
413 }
414
415 #ifdef CONFIG_MEMCG
416 /*
417 * A task is exiting. If it owned this mm, find a new owner for the mm.
418 */
419 void mm_update_next_owner(struct mm_struct *mm)
420 {
421 struct task_struct *c, *g, *p = current;
422
423 retry:
424 /*
425 * If the exiting or execing task is not the owner, it's
426 * someone else's problem.
427 */
428 if (mm->owner != p)
429 return;
430 /*
431 * The current owner is exiting/execing and there are no other
432 * candidates. Do not leave the mm pointing to a possibly
433 * freed task structure.
434 */
435 if (atomic_read(&mm->mm_users) <= 1) {
436 mm->owner = NULL;
437 return;
438 }
439
440 read_lock(&tasklist_lock);
441 /*
442 * Search in the children
443 */
444 list_for_each_entry(c, &p->children, sibling) {
445 if (c->mm == mm)
446 goto assign_new_owner;
447 }
448
449 /*
450 * Search in the siblings
451 */
452 list_for_each_entry(c, &p->real_parent->children, sibling) {
453 if (c->mm == mm)
454 goto assign_new_owner;
455 }
456
457 /*
458 * Search through everything else, we should not get here often.
459 */
460 for_each_process(g) {
461 if (g->flags & PF_KTHREAD)
462 continue;
463 for_each_thread(g, c) {
464 if (c->mm == mm)
465 goto assign_new_owner;
466 if (c->mm)
467 break;
468 }
469 }
470 read_unlock(&tasklist_lock);
471 /*
472 * We found no owner yet mm_users > 1: this implies that we are
473 * most likely racing with swapoff (try_to_unuse()) or /proc or
474 * ptrace or page migration (get_task_mm()). Mark owner as NULL.
475 */
476 mm->owner = NULL;
477 return;
478
479 assign_new_owner:
480 BUG_ON(c == p);
481 get_task_struct(c);
482 /*
483 * The task_lock protects c->mm from changing.
484 * We always want mm->owner->mm == mm
485 */
486 task_lock(c);
487 /*
488 * Delay read_unlock() till we have the task_lock()
489 * to ensure that c does not slip away underneath us
490 */
491 read_unlock(&tasklist_lock);
492 if (c->mm != mm) {
493 task_unlock(c);
494 put_task_struct(c);
495 goto retry;
496 }
497 mm->owner = c;
498 task_unlock(c);
499 put_task_struct(c);
500 }
501 #endif /* CONFIG_MEMCG */
502
503 /*
504 * Turn us into a lazy TLB process if we
505 * aren't already..
506 */
507 static void exit_mm(void)
508 {
509 struct mm_struct *mm = current->mm;
510 struct core_state *core_state;
511
512 mm_release(current, mm);
513 if (!mm)
514 return;
515 sync_mm_rss(mm);
516 /*
517 * Serialize with any possible pending coredump.
518 * We must hold mmap_sem around checking core_state
519 * and clearing tsk->mm. The core-inducing thread
520 * will increment ->nr_threads for each thread in the
521 * group with ->mm != NULL.
522 */
523 down_read(&mm->mmap_sem);
524 core_state = mm->core_state;
525 if (core_state) {
526 struct core_thread self;
527
528 up_read(&mm->mmap_sem);
529
530 self.task = current;
531 self.next = xchg(&core_state->dumper.next, &self);
532 /*
533 * Implies mb(), the result of xchg() must be visible
534 * to core_state->dumper.
535 */
536 if (atomic_dec_and_test(&core_state->nr_threads))
537 complete(&core_state->startup);
538
539 for (;;) {
540 set_current_state(TASK_UNINTERRUPTIBLE);
541 if (!self.task) /* see coredump_finish() */
542 break;
543 freezable_schedule();
544 }
545 __set_current_state(TASK_RUNNING);
546 down_read(&mm->mmap_sem);
547 }
548 mmgrab(mm);
549 BUG_ON(mm != current->active_mm);
550 /* more a memory barrier than a real lock */
551 task_lock(current);
552 current->mm = NULL;
553 up_read(&mm->mmap_sem);
554 enter_lazy_tlb(mm, current);
555 task_unlock(current);
556 mm_update_next_owner(mm);
557 userfaultfd_exit(mm);
558 mmput(mm);
559 if (test_thread_flag(TIF_MEMDIE))
560 exit_oom_victim();
561 }
562
563 static struct task_struct *find_alive_thread(struct task_struct *p)
564 {
565 struct task_struct *t;
566
567 for_each_thread(p, t) {
568 if (!(t->flags & PF_EXITING))
569 return t;
570 }
571 return NULL;
572 }
573
574 static struct task_struct *find_child_reaper(struct task_struct *father)
575 __releases(&tasklist_lock)
576 __acquires(&tasklist_lock)
577 {
578 struct pid_namespace *pid_ns = task_active_pid_ns(father);
579 struct task_struct *reaper = pid_ns->child_reaper;
580
581 if (likely(reaper != father))
582 return reaper;
583
584 reaper = find_alive_thread(father);
585 if (reaper) {
586 pid_ns->child_reaper = reaper;
587 return reaper;
588 }
589
590 write_unlock_irq(&tasklist_lock);
591 if (unlikely(pid_ns == &init_pid_ns)) {
592 panic("Attempted to kill init! exitcode=0x%08x\n",
593 father->signal->group_exit_code ?: father->exit_code);
594 }
595 zap_pid_ns_processes(pid_ns);
596 write_lock_irq(&tasklist_lock);
597
598 return father;
599 }
600
601 /*
602 * When we die, we re-parent all our children, and try to:
603 * 1. give them to another thread in our thread group, if such a member exists
604 * 2. give it to the first ancestor process which prctl'd itself as a
605 * child_subreaper for its children (like a service manager)
606 * 3. give it to the init process (PID 1) in our pid namespace
607 */
608 static struct task_struct *find_new_reaper(struct task_struct *father,
609 struct task_struct *child_reaper)
610 {
611 struct task_struct *thread, *reaper;
612
613 thread = find_alive_thread(father);
614 if (thread)
615 return thread;
616
617 if (father->signal->has_child_subreaper) {
618 unsigned int ns_level = task_pid(father)->level;
619 /*
620 * Find the first ->is_child_subreaper ancestor in our pid_ns.
621 * We can't check reaper != child_reaper to ensure we do not
622 * cross the namespaces, the exiting parent could be injected
623 * by setns() + fork().
624 * We check pid->level, this is slightly more efficient than
625 * task_active_pid_ns(reaper) != task_active_pid_ns(father).
626 */
627 for (reaper = father->real_parent;
628 task_pid(reaper)->level == ns_level;
629 reaper = reaper->real_parent) {
630 if (reaper == &init_task)
631 break;
632 if (!reaper->signal->is_child_subreaper)
633 continue;
634 thread = find_alive_thread(reaper);
635 if (thread)
636 return thread;
637 }
638 }
639
640 return child_reaper;
641 }
642
643 /*
644 * Any that need to be release_task'd are put on the @dead list.
645 */
646 static void reparent_leader(struct task_struct *father, struct task_struct *p,
647 struct list_head *dead)
648 {
649 if (unlikely(p->exit_state == EXIT_DEAD))
650 return;
651
652 /* We don't want people slaying init. */
653 p->exit_signal = SIGCHLD;
654
655 /* If it has exited notify the new parent about this child's death. */
656 if (!p->ptrace &&
657 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
658 if (do_notify_parent(p, p->exit_signal)) {
659 p->exit_state = EXIT_DEAD;
660 list_add(&p->ptrace_entry, dead);
661 }
662 }
663
664 kill_orphaned_pgrp(p, father);
665 }
666
667 /*
668 * This does two things:
669 *
670 * A. Make init inherit all the child processes
671 * B. Check to see if any process groups have become orphaned
672 * as a result of our exiting, and if they have any stopped
673 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
674 */
675 static void forget_original_parent(struct task_struct *father,
676 struct list_head *dead)
677 {
678 struct task_struct *p, *t, *reaper;
679
680 if (unlikely(!list_empty(&father->ptraced)))
681 exit_ptrace(father, dead);
682
683 /* Can drop and reacquire tasklist_lock */
684 reaper = find_child_reaper(father);
685 if (list_empty(&father->children))
686 return;
687
688 reaper = find_new_reaper(father, reaper);
689 list_for_each_entry(p, &father->children, sibling) {
690 for_each_thread(p, t) {
691 t->real_parent = reaper;
692 BUG_ON((!t->ptrace) != (t->parent == father));
693 if (likely(!t->ptrace))
694 t->parent = t->real_parent;
695 if (t->pdeath_signal)
696 group_send_sig_info(t->pdeath_signal,
697 SEND_SIG_NOINFO, t);
698 }
699 /*
700 * If this is a threaded reparent there is no need to
701 * notify anyone anything has happened.
702 */
703 if (!same_thread_group(reaper, father))
704 reparent_leader(father, p, dead);
705 }
706 list_splice_tail_init(&father->children, &reaper->children);
707 }
708
709 /*
710 * Send signals to all our closest relatives so that they know
711 * to properly mourn us..
712 */
713 static void exit_notify(struct task_struct *tsk, int group_dead)
714 {
715 bool autoreap;
716 struct task_struct *p, *n;
717 LIST_HEAD(dead);
718
719 write_lock_irq(&tasklist_lock);
720 forget_original_parent(tsk, &dead);
721
722 if (group_dead)
723 kill_orphaned_pgrp(tsk->group_leader, NULL);
724
725 if (unlikely(tsk->ptrace)) {
726 int sig = thread_group_leader(tsk) &&
727 thread_group_empty(tsk) &&
728 !ptrace_reparented(tsk) ?
729 tsk->exit_signal : SIGCHLD;
730 autoreap = do_notify_parent(tsk, sig);
731 } else if (thread_group_leader(tsk)) {
732 autoreap = thread_group_empty(tsk) &&
733 do_notify_parent(tsk, tsk->exit_signal);
734 } else {
735 autoreap = true;
736 }
737
738 tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE;
739 if (tsk->exit_state == EXIT_DEAD)
740 list_add(&tsk->ptrace_entry, &dead);
741
742 /* mt-exec, de_thread() is waiting for group leader */
743 if (unlikely(tsk->signal->notify_count < 0))
744 wake_up_process(tsk->signal->group_exit_task);
745 write_unlock_irq(&tasklist_lock);
746
747 list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
748 list_del_init(&p->ptrace_entry);
749 release_task(p);
750 }
751 }
752
753 #ifdef CONFIG_DEBUG_STACK_USAGE
754 static void check_stack_usage(void)
755 {
756 static DEFINE_SPINLOCK(low_water_lock);
757 static int lowest_to_date = THREAD_SIZE;
758 unsigned long free;
759
760 free = stack_not_used(current);
761
762 if (free >= lowest_to_date)
763 return;
764
765 spin_lock(&low_water_lock);
766 if (free < lowest_to_date) {
767 pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
768 current->comm, task_pid_nr(current), free);
769 lowest_to_date = free;
770 }
771 spin_unlock(&low_water_lock);
772 }
773 #else
774 static inline void check_stack_usage(void) {}
775 #endif
776
777 void __noreturn do_exit(long code)
778 {
779 struct task_struct *tsk = current;
780 int group_dead;
781 TASKS_RCU(int tasks_rcu_i);
782
783 profile_task_exit(tsk);
784 kcov_task_exit(tsk);
785
786 WARN_ON(blk_needs_flush_plug(tsk));
787
788 if (unlikely(in_interrupt()))
789 panic("Aiee, killing interrupt handler!");
790 if (unlikely(!tsk->pid))
791 panic("Attempted to kill the idle task!");
792
793 /*
794 * If do_exit is called because this processes oopsed, it's possible
795 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
796 * continuing. Amongst other possible reasons, this is to prevent
797 * mm_release()->clear_child_tid() from writing to a user-controlled
798 * kernel address.
799 */
800 set_fs(USER_DS);
801
802 ptrace_event(PTRACE_EVENT_EXIT, code);
803
804 validate_creds_for_do_exit(tsk);
805
806 /*
807 * We're taking recursive faults here in do_exit. Safest is to just
808 * leave this task alone and wait for reboot.
809 */
810 if (unlikely(tsk->flags & PF_EXITING)) {
811 pr_alert("Fixing recursive fault but reboot is needed!\n");
812 /*
813 * We can do this unlocked here. The futex code uses
814 * this flag just to verify whether the pi state
815 * cleanup has been done or not. In the worst case it
816 * loops once more. We pretend that the cleanup was
817 * done as there is no way to return. Either the
818 * OWNER_DIED bit is set by now or we push the blocked
819 * task into the wait for ever nirwana as well.
820 */
821 tsk->flags |= PF_EXITPIDONE;
822 set_current_state(TASK_UNINTERRUPTIBLE);
823 schedule();
824 }
825
826 exit_signals(tsk); /* sets PF_EXITING */
827 /*
828 * Ensure that all new tsk->pi_lock acquisitions must observe
829 * PF_EXITING. Serializes against futex.c:attach_to_pi_owner().
830 */
831 smp_mb();
832 /*
833 * Ensure that we must observe the pi_state in exit_mm() ->
834 * mm_release() -> exit_pi_state_list().
835 */
836 raw_spin_unlock_wait(&tsk->pi_lock);
837
838 if (unlikely(in_atomic())) {
839 pr_info("note: %s[%d] exited with preempt_count %d\n",
840 current->comm, task_pid_nr(current),
841 preempt_count());
842 preempt_count_set(PREEMPT_ENABLED);
843 }
844
845 /* sync mm's RSS info before statistics gathering */
846 if (tsk->mm)
847 sync_mm_rss(tsk->mm);
848 acct_update_integrals(tsk);
849 group_dead = atomic_dec_and_test(&tsk->signal->live);
850 if (group_dead) {
851 #ifdef CONFIG_POSIX_TIMERS
852 hrtimer_cancel(&tsk->signal->real_timer);
853 exit_itimers(tsk->signal);
854 #endif
855 if (tsk->mm)
856 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
857 }
858 acct_collect(code, group_dead);
859 if (group_dead)
860 tty_audit_exit();
861 audit_free(tsk);
862
863 tsk->exit_code = code;
864 taskstats_exit(tsk, group_dead);
865
866 exit_mm();
867
868 if (group_dead)
869 acct_process();
870 trace_sched_process_exit(tsk);
871
872 exit_sem(tsk);
873 exit_shm(tsk);
874 exit_files(tsk);
875 exit_fs(tsk);
876 if (group_dead)
877 disassociate_ctty(1);
878 exit_task_namespaces(tsk);
879 exit_task_work(tsk);
880 exit_thread(tsk);
881
882 /*
883 * Flush inherited counters to the parent - before the parent
884 * gets woken up by child-exit notifications.
885 *
886 * because of cgroup mode, must be called before cgroup_exit()
887 */
888 perf_event_exit_task(tsk);
889
890 sched_autogroup_exit_task(tsk);
891 cgroup_exit(tsk);
892
893 /*
894 * FIXME: do that only when needed, using sched_exit tracepoint
895 */
896 flush_ptrace_hw_breakpoint(tsk);
897
898 TASKS_RCU(preempt_disable());
899 TASKS_RCU(tasks_rcu_i = __srcu_read_lock(&tasks_rcu_exit_srcu));
900 TASKS_RCU(preempt_enable());
901 exit_notify(tsk, group_dead);
902 proc_exit_connector(tsk);
903 mpol_put_task_policy(tsk);
904 #ifdef CONFIG_FUTEX
905 if (unlikely(current->pi_state_cache))
906 kfree(current->pi_state_cache);
907 #endif
908 /*
909 * Make sure we are holding no locks:
910 */
911 debug_check_no_locks_held();
912 /*
913 * We can do this unlocked here. The futex code uses this flag
914 * just to verify whether the pi state cleanup has been done
915 * or not. In the worst case it loops once more.
916 */
917 tsk->flags |= PF_EXITPIDONE;
918
919 if (tsk->io_context)
920 exit_io_context(tsk);
921
922 if (tsk->splice_pipe)
923 free_pipe_info(tsk->splice_pipe);
924
925 if (tsk->task_frag.page)
926 put_page(tsk->task_frag.page);
927
928 validate_creds_for_do_exit(tsk);
929
930 check_stack_usage();
931 preempt_disable();
932 if (tsk->nr_dirtied)
933 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
934 exit_rcu();
935 TASKS_RCU(__srcu_read_unlock(&tasks_rcu_exit_srcu, tasks_rcu_i));
936
937 do_task_dead();
938 }
939 EXPORT_SYMBOL_GPL(do_exit);
940
941 void complete_and_exit(struct completion *comp, long code)
942 {
943 if (comp)
944 complete(comp);
945
946 do_exit(code);
947 }
948 EXPORT_SYMBOL(complete_and_exit);
949
950 SYSCALL_DEFINE1(exit, int, error_code)
951 {
952 do_exit((error_code&0xff)<<8);
953 }
954
955 /*
956 * Take down every thread in the group. This is called by fatal signals
957 * as well as by sys_exit_group (below).
958 */
959 void
960 do_group_exit(int exit_code)
961 {
962 struct signal_struct *sig = current->signal;
963
964 BUG_ON(exit_code & 0x80); /* core dumps don't get here */
965
966 if (signal_group_exit(sig))
967 exit_code = sig->group_exit_code;
968 else if (!thread_group_empty(current)) {
969 struct sighand_struct *const sighand = current->sighand;
970
971 spin_lock_irq(&sighand->siglock);
972 if (signal_group_exit(sig))
973 /* Another thread got here before we took the lock. */
974 exit_code = sig->group_exit_code;
975 else {
976 sig->group_exit_code = exit_code;
977 sig->flags = SIGNAL_GROUP_EXIT;
978 zap_other_threads(current);
979 }
980 spin_unlock_irq(&sighand->siglock);
981 }
982
983 do_exit(exit_code);
984 /* NOTREACHED */
985 }
986
987 /*
988 * this kills every thread in the thread group. Note that any externally
989 * wait4()-ing process will get the correct exit code - even if this
990 * thread is not the thread group leader.
991 */
992 SYSCALL_DEFINE1(exit_group, int, error_code)
993 {
994 do_group_exit((error_code & 0xff) << 8);
995 /* NOTREACHED */
996 return 0;
997 }
998
999 struct wait_opts {
1000 enum pid_type wo_type;
1001 int wo_flags;
1002 struct pid *wo_pid;
1003
1004 struct siginfo __user *wo_info;
1005 int __user *wo_stat;
1006 struct rusage __user *wo_rusage;
1007
1008 wait_queue_t child_wait;
1009 int notask_error;
1010 };
1011
1012 static inline
1013 struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
1014 {
1015 if (type != PIDTYPE_PID)
1016 task = task->group_leader;
1017 return task->pids[type].pid;
1018 }
1019
1020 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
1021 {
1022 return wo->wo_type == PIDTYPE_MAX ||
1023 task_pid_type(p, wo->wo_type) == wo->wo_pid;
1024 }
1025
1026 static int
1027 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
1028 {
1029 if (!eligible_pid(wo, p))
1030 return 0;
1031
1032 /*
1033 * Wait for all children (clone and not) if __WALL is set or
1034 * if it is traced by us.
1035 */
1036 if (ptrace || (wo->wo_flags & __WALL))
1037 return 1;
1038
1039 /*
1040 * Otherwise, wait for clone children *only* if __WCLONE is set;
1041 * otherwise, wait for non-clone children *only*.
1042 *
1043 * Note: a "clone" child here is one that reports to its parent
1044 * using a signal other than SIGCHLD, or a non-leader thread which
1045 * we can only see if it is traced by us.
1046 */
1047 if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1048 return 0;
1049
1050 return 1;
1051 }
1052
1053 static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p,
1054 pid_t pid, uid_t uid, int why, int status)
1055 {
1056 struct siginfo __user *infop;
1057 int retval = wo->wo_rusage
1058 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1059
1060 put_task_struct(p);
1061 infop = wo->wo_info;
1062 if (infop) {
1063 if (!retval)
1064 retval = put_user(SIGCHLD, &infop->si_signo);
1065 if (!retval)
1066 retval = put_user(0, &infop->si_errno);
1067 if (!retval)
1068 retval = put_user((short)why, &infop->si_code);
1069 if (!retval)
1070 retval = put_user(pid, &infop->si_pid);
1071 if (!retval)
1072 retval = put_user(uid, &infop->si_uid);
1073 if (!retval)
1074 retval = put_user(status, &infop->si_status);
1075 }
1076 if (!retval)
1077 retval = pid;
1078 return retval;
1079 }
1080
1081 /*
1082 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1083 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1084 * the lock and this task is uninteresting. If we return nonzero, we have
1085 * released the lock and the system call should return.
1086 */
1087 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1088 {
1089 int state, retval, status;
1090 pid_t pid = task_pid_vnr(p);
1091 uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1092 struct siginfo __user *infop;
1093
1094 if (!likely(wo->wo_flags & WEXITED))
1095 return 0;
1096
1097 if (unlikely(wo->wo_flags & WNOWAIT)) {
1098 int exit_code = p->exit_code;
1099 int why;
1100
1101 get_task_struct(p);
1102 read_unlock(&tasklist_lock);
1103 sched_annotate_sleep();
1104
1105 if ((exit_code & 0x7f) == 0) {
1106 why = CLD_EXITED;
1107 status = exit_code >> 8;
1108 } else {
1109 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1110 status = exit_code & 0x7f;
1111 }
1112 return wait_noreap_copyout(wo, p, pid, uid, why, status);
1113 }
1114 /*
1115 * Move the task's state to DEAD/TRACE, only one thread can do this.
1116 */
1117 state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1118 EXIT_TRACE : EXIT_DEAD;
1119 if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1120 return 0;
1121 /*
1122 * We own this thread, nobody else can reap it.
1123 */
1124 read_unlock(&tasklist_lock);
1125 sched_annotate_sleep();
1126
1127 /*
1128 * Check thread_group_leader() to exclude the traced sub-threads.
1129 */
1130 if (state == EXIT_DEAD && thread_group_leader(p)) {
1131 struct signal_struct *sig = p->signal;
1132 struct signal_struct *psig = current->signal;
1133 unsigned long maxrss;
1134 u64 tgutime, tgstime;
1135
1136 /*
1137 * The resource counters for the group leader are in its
1138 * own task_struct. Those for dead threads in the group
1139 * are in its signal_struct, as are those for the child
1140 * processes it has previously reaped. All these
1141 * accumulate in the parent's signal_struct c* fields.
1142 *
1143 * We don't bother to take a lock here to protect these
1144 * p->signal fields because the whole thread group is dead
1145 * and nobody can change them.
1146 *
1147 * psig->stats_lock also protects us from our sub-theads
1148 * which can reap other children at the same time. Until
1149 * we change k_getrusage()-like users to rely on this lock
1150 * we have to take ->siglock as well.
1151 *
1152 * We use thread_group_cputime_adjusted() to get times for
1153 * the thread group, which consolidates times for all threads
1154 * in the group including the group leader.
1155 */
1156 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1157 spin_lock_irq(&current->sighand->siglock);
1158 write_seqlock(&psig->stats_lock);
1159 psig->cutime += tgutime + sig->cutime;
1160 psig->cstime += tgstime + sig->cstime;
1161 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1162 psig->cmin_flt +=
1163 p->min_flt + sig->min_flt + sig->cmin_flt;
1164 psig->cmaj_flt +=
1165 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1166 psig->cnvcsw +=
1167 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1168 psig->cnivcsw +=
1169 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1170 psig->cinblock +=
1171 task_io_get_inblock(p) +
1172 sig->inblock + sig->cinblock;
1173 psig->coublock +=
1174 task_io_get_oublock(p) +
1175 sig->oublock + sig->coublock;
1176 maxrss = max(sig->maxrss, sig->cmaxrss);
1177 if (psig->cmaxrss < maxrss)
1178 psig->cmaxrss = maxrss;
1179 task_io_accounting_add(&psig->ioac, &p->ioac);
1180 task_io_accounting_add(&psig->ioac, &sig->ioac);
1181 write_sequnlock(&psig->stats_lock);
1182 spin_unlock_irq(&current->sighand->siglock);
1183 }
1184
1185 retval = wo->wo_rusage
1186 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1187 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1188 ? p->signal->group_exit_code : p->exit_code;
1189 if (!retval && wo->wo_stat)
1190 retval = put_user(status, wo->wo_stat);
1191
1192 infop = wo->wo_info;
1193 if (!retval && infop)
1194 retval = put_user(SIGCHLD, &infop->si_signo);
1195 if (!retval && infop)
1196 retval = put_user(0, &infop->si_errno);
1197 if (!retval && infop) {
1198 int why;
1199
1200 if ((status & 0x7f) == 0) {
1201 why = CLD_EXITED;
1202 status >>= 8;
1203 } else {
1204 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1205 status &= 0x7f;
1206 }
1207 retval = put_user((short)why, &infop->si_code);
1208 if (!retval)
1209 retval = put_user(status, &infop->si_status);
1210 }
1211 if (!retval && infop)
1212 retval = put_user(pid, &infop->si_pid);
1213 if (!retval && infop)
1214 retval = put_user(uid, &infop->si_uid);
1215 if (!retval)
1216 retval = pid;
1217
1218 if (state == EXIT_TRACE) {
1219 write_lock_irq(&tasklist_lock);
1220 /* We dropped tasklist, ptracer could die and untrace */
1221 ptrace_unlink(p);
1222
1223 /* If parent wants a zombie, don't release it now */
1224 state = EXIT_ZOMBIE;
1225 if (do_notify_parent(p, p->exit_signal))
1226 state = EXIT_DEAD;
1227 p->exit_state = state;
1228 write_unlock_irq(&tasklist_lock);
1229 }
1230 if (state == EXIT_DEAD)
1231 release_task(p);
1232
1233 return retval;
1234 }
1235
1236 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1237 {
1238 if (ptrace) {
1239 if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1240 return &p->exit_code;
1241 } else {
1242 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1243 return &p->signal->group_exit_code;
1244 }
1245 return NULL;
1246 }
1247
1248 /**
1249 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1250 * @wo: wait options
1251 * @ptrace: is the wait for ptrace
1252 * @p: task to wait for
1253 *
1254 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1255 *
1256 * CONTEXT:
1257 * read_lock(&tasklist_lock), which is released if return value is
1258 * non-zero. Also, grabs and releases @p->sighand->siglock.
1259 *
1260 * RETURNS:
1261 * 0 if wait condition didn't exist and search for other wait conditions
1262 * should continue. Non-zero return, -errno on failure and @p's pid on
1263 * success, implies that tasklist_lock is released and wait condition
1264 * search should terminate.
1265 */
1266 static int wait_task_stopped(struct wait_opts *wo,
1267 int ptrace, struct task_struct *p)
1268 {
1269 struct siginfo __user *infop;
1270 int retval, exit_code, *p_code, why;
1271 uid_t uid = 0; /* unneeded, required by compiler */
1272 pid_t pid;
1273
1274 /*
1275 * Traditionally we see ptrace'd stopped tasks regardless of options.
1276 */
1277 if (!ptrace && !(wo->wo_flags & WUNTRACED))
1278 return 0;
1279
1280 if (!task_stopped_code(p, ptrace))
1281 return 0;
1282
1283 exit_code = 0;
1284 spin_lock_irq(&p->sighand->siglock);
1285
1286 p_code = task_stopped_code(p, ptrace);
1287 if (unlikely(!p_code))
1288 goto unlock_sig;
1289
1290 exit_code = *p_code;
1291 if (!exit_code)
1292 goto unlock_sig;
1293
1294 if (!unlikely(wo->wo_flags & WNOWAIT))
1295 *p_code = 0;
1296
1297 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1298 unlock_sig:
1299 spin_unlock_irq(&p->sighand->siglock);
1300 if (!exit_code)
1301 return 0;
1302
1303 /*
1304 * Now we are pretty sure this task is interesting.
1305 * Make sure it doesn't get reaped out from under us while we
1306 * give up the lock and then examine it below. We don't want to
1307 * keep holding onto the tasklist_lock while we call getrusage and
1308 * possibly take page faults for user memory.
1309 */
1310 get_task_struct(p);
1311 pid = task_pid_vnr(p);
1312 why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1313 read_unlock(&tasklist_lock);
1314 sched_annotate_sleep();
1315
1316 if (unlikely(wo->wo_flags & WNOWAIT))
1317 return wait_noreap_copyout(wo, p, pid, uid, why, exit_code);
1318
1319 retval = wo->wo_rusage
1320 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1321 if (!retval && wo->wo_stat)
1322 retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat);
1323
1324 infop = wo->wo_info;
1325 if (!retval && infop)
1326 retval = put_user(SIGCHLD, &infop->si_signo);
1327 if (!retval && infop)
1328 retval = put_user(0, &infop->si_errno);
1329 if (!retval && infop)
1330 retval = put_user((short)why, &infop->si_code);
1331 if (!retval && infop)
1332 retval = put_user(exit_code, &infop->si_status);
1333 if (!retval && infop)
1334 retval = put_user(pid, &infop->si_pid);
1335 if (!retval && infop)
1336 retval = put_user(uid, &infop->si_uid);
1337 if (!retval)
1338 retval = pid;
1339 put_task_struct(p);
1340
1341 BUG_ON(!retval);
1342 return retval;
1343 }
1344
1345 /*
1346 * Handle do_wait work for one task in a live, non-stopped state.
1347 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1348 * the lock and this task is uninteresting. If we return nonzero, we have
1349 * released the lock and the system call should return.
1350 */
1351 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1352 {
1353 int retval;
1354 pid_t pid;
1355 uid_t uid;
1356
1357 if (!unlikely(wo->wo_flags & WCONTINUED))
1358 return 0;
1359
1360 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1361 return 0;
1362
1363 spin_lock_irq(&p->sighand->siglock);
1364 /* Re-check with the lock held. */
1365 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1366 spin_unlock_irq(&p->sighand->siglock);
1367 return 0;
1368 }
1369 if (!unlikely(wo->wo_flags & WNOWAIT))
1370 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1371 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1372 spin_unlock_irq(&p->sighand->siglock);
1373
1374 pid = task_pid_vnr(p);
1375 get_task_struct(p);
1376 read_unlock(&tasklist_lock);
1377 sched_annotate_sleep();
1378
1379 if (!wo->wo_info) {
1380 retval = wo->wo_rusage
1381 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1382 put_task_struct(p);
1383 if (!retval && wo->wo_stat)
1384 retval = put_user(0xffff, wo->wo_stat);
1385 if (!retval)
1386 retval = pid;
1387 } else {
1388 retval = wait_noreap_copyout(wo, p, pid, uid,
1389 CLD_CONTINUED, SIGCONT);
1390 BUG_ON(retval == 0);
1391 }
1392
1393 return retval;
1394 }
1395
1396 /*
1397 * Consider @p for a wait by @parent.
1398 *
1399 * -ECHILD should be in ->notask_error before the first call.
1400 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1401 * Returns zero if the search for a child should continue;
1402 * then ->notask_error is 0 if @p is an eligible child,
1403 * or still -ECHILD.
1404 */
1405 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1406 struct task_struct *p)
1407 {
1408 /*
1409 * We can race with wait_task_zombie() from another thread.
1410 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1411 * can't confuse the checks below.
1412 */
1413 int exit_state = ACCESS_ONCE(p->exit_state);
1414 int ret;
1415
1416 if (unlikely(exit_state == EXIT_DEAD))
1417 return 0;
1418
1419 ret = eligible_child(wo, ptrace, p);
1420 if (!ret)
1421 return ret;
1422
1423 if (unlikely(exit_state == EXIT_TRACE)) {
1424 /*
1425 * ptrace == 0 means we are the natural parent. In this case
1426 * we should clear notask_error, debugger will notify us.
1427 */
1428 if (likely(!ptrace))
1429 wo->notask_error = 0;
1430 return 0;
1431 }
1432
1433 if (likely(!ptrace) && unlikely(p->ptrace)) {
1434 /*
1435 * If it is traced by its real parent's group, just pretend
1436 * the caller is ptrace_do_wait() and reap this child if it
1437 * is zombie.
1438 *
1439 * This also hides group stop state from real parent; otherwise
1440 * a single stop can be reported twice as group and ptrace stop.
1441 * If a ptracer wants to distinguish these two events for its
1442 * own children it should create a separate process which takes
1443 * the role of real parent.
1444 */
1445 if (!ptrace_reparented(p))
1446 ptrace = 1;
1447 }
1448
1449 /* slay zombie? */
1450 if (exit_state == EXIT_ZOMBIE) {
1451 /* we don't reap group leaders with subthreads */
1452 if (!delay_group_leader(p)) {
1453 /*
1454 * A zombie ptracee is only visible to its ptracer.
1455 * Notification and reaping will be cascaded to the
1456 * real parent when the ptracer detaches.
1457 */
1458 if (unlikely(ptrace) || likely(!p->ptrace))
1459 return wait_task_zombie(wo, p);
1460 }
1461
1462 /*
1463 * Allow access to stopped/continued state via zombie by
1464 * falling through. Clearing of notask_error is complex.
1465 *
1466 * When !@ptrace:
1467 *
1468 * If WEXITED is set, notask_error should naturally be
1469 * cleared. If not, subset of WSTOPPED|WCONTINUED is set,
1470 * so, if there are live subthreads, there are events to
1471 * wait for. If all subthreads are dead, it's still safe
1472 * to clear - this function will be called again in finite
1473 * amount time once all the subthreads are released and
1474 * will then return without clearing.
1475 *
1476 * When @ptrace:
1477 *
1478 * Stopped state is per-task and thus can't change once the
1479 * target task dies. Only continued and exited can happen.
1480 * Clear notask_error if WCONTINUED | WEXITED.
1481 */
1482 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1483 wo->notask_error = 0;
1484 } else {
1485 /*
1486 * @p is alive and it's gonna stop, continue or exit, so
1487 * there always is something to wait for.
1488 */
1489 wo->notask_error = 0;
1490 }
1491
1492 /*
1493 * Wait for stopped. Depending on @ptrace, different stopped state
1494 * is used and the two don't interact with each other.
1495 */
1496 ret = wait_task_stopped(wo, ptrace, p);
1497 if (ret)
1498 return ret;
1499
1500 /*
1501 * Wait for continued. There's only one continued state and the
1502 * ptracer can consume it which can confuse the real parent. Don't
1503 * use WCONTINUED from ptracer. You don't need or want it.
1504 */
1505 return wait_task_continued(wo, p);
1506 }
1507
1508 /*
1509 * Do the work of do_wait() for one thread in the group, @tsk.
1510 *
1511 * -ECHILD should be in ->notask_error before the first call.
1512 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1513 * Returns zero if the search for a child should continue; then
1514 * ->notask_error is 0 if there were any eligible children,
1515 * or still -ECHILD.
1516 */
1517 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1518 {
1519 struct task_struct *p;
1520
1521 list_for_each_entry(p, &tsk->children, sibling) {
1522 int ret = wait_consider_task(wo, 0, p);
1523
1524 if (ret)
1525 return ret;
1526 }
1527
1528 return 0;
1529 }
1530
1531 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1532 {
1533 struct task_struct *p;
1534
1535 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1536 int ret = wait_consider_task(wo, 1, p);
1537
1538 if (ret)
1539 return ret;
1540 }
1541
1542 return 0;
1543 }
1544
1545 static int child_wait_callback(wait_queue_t *wait, unsigned mode,
1546 int sync, void *key)
1547 {
1548 struct wait_opts *wo = container_of(wait, struct wait_opts,
1549 child_wait);
1550 struct task_struct *p = key;
1551
1552 if (!eligible_pid(wo, p))
1553 return 0;
1554
1555 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1556 return 0;
1557
1558 return default_wake_function(wait, mode, sync, key);
1559 }
1560
1561 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1562 {
1563 __wake_up_sync_key(&parent->signal->wait_chldexit,
1564 TASK_INTERRUPTIBLE, 1, p);
1565 }
1566
1567 static long do_wait(struct wait_opts *wo)
1568 {
1569 struct task_struct *tsk;
1570 int retval;
1571
1572 trace_sched_process_wait(wo->wo_pid);
1573
1574 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1575 wo->child_wait.private = current;
1576 add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1577 repeat:
1578 /*
1579 * If there is nothing that can match our criteria, just get out.
1580 * We will clear ->notask_error to zero if we see any child that
1581 * might later match our criteria, even if we are not able to reap
1582 * it yet.
1583 */
1584 wo->notask_error = -ECHILD;
1585 if ((wo->wo_type < PIDTYPE_MAX) &&
1586 (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
1587 goto notask;
1588
1589 set_current_state(TASK_INTERRUPTIBLE);
1590 read_lock(&tasklist_lock);
1591 tsk = current;
1592 do {
1593 retval = do_wait_thread(wo, tsk);
1594 if (retval)
1595 goto end;
1596
1597 retval = ptrace_do_wait(wo, tsk);
1598 if (retval)
1599 goto end;
1600
1601 if (wo->wo_flags & __WNOTHREAD)
1602 break;
1603 } while_each_thread(current, tsk);
1604 read_unlock(&tasklist_lock);
1605
1606 notask:
1607 retval = wo->notask_error;
1608 if (!retval && !(wo->wo_flags & WNOHANG)) {
1609 retval = -ERESTARTSYS;
1610 if (!signal_pending(current)) {
1611 schedule();
1612 goto repeat;
1613 }
1614 }
1615 end:
1616 __set_current_state(TASK_RUNNING);
1617 remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1618 return retval;
1619 }
1620
1621 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1622 infop, int, options, struct rusage __user *, ru)
1623 {
1624 struct wait_opts wo;
1625 struct pid *pid = NULL;
1626 enum pid_type type;
1627 long ret;
1628
1629 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1630 __WNOTHREAD|__WCLONE|__WALL))
1631 return -EINVAL;
1632 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1633 return -EINVAL;
1634
1635 switch (which) {
1636 case P_ALL:
1637 type = PIDTYPE_MAX;
1638 break;
1639 case P_PID:
1640 type = PIDTYPE_PID;
1641 if (upid <= 0)
1642 return -EINVAL;
1643 break;
1644 case P_PGID:
1645 type = PIDTYPE_PGID;
1646 if (upid <= 0)
1647 return -EINVAL;
1648 break;
1649 default:
1650 return -EINVAL;
1651 }
1652
1653 if (type < PIDTYPE_MAX)
1654 pid = find_get_pid(upid);
1655
1656 wo.wo_type = type;
1657 wo.wo_pid = pid;
1658 wo.wo_flags = options;
1659 wo.wo_info = infop;
1660 wo.wo_stat = NULL;
1661 wo.wo_rusage = ru;
1662 ret = do_wait(&wo);
1663
1664 if (ret > 0) {
1665 ret = 0;
1666 } else if (infop) {
1667 /*
1668 * For a WNOHANG return, clear out all the fields
1669 * we would set so the user can easily tell the
1670 * difference.
1671 */
1672 if (!ret)
1673 ret = put_user(0, &infop->si_signo);
1674 if (!ret)
1675 ret = put_user(0, &infop->si_errno);
1676 if (!ret)
1677 ret = put_user(0, &infop->si_code);
1678 if (!ret)
1679 ret = put_user(0, &infop->si_pid);
1680 if (!ret)
1681 ret = put_user(0, &infop->si_uid);
1682 if (!ret)
1683 ret = put_user(0, &infop->si_status);
1684 }
1685
1686 put_pid(pid);
1687 return ret;
1688 }
1689
1690 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1691 int, options, struct rusage __user *, ru)
1692 {
1693 struct wait_opts wo;
1694 struct pid *pid = NULL;
1695 enum pid_type type;
1696 long ret;
1697
1698 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1699 __WNOTHREAD|__WCLONE|__WALL))
1700 return -EINVAL;
1701
1702 if (upid == -1)
1703 type = PIDTYPE_MAX;
1704 else if (upid < 0) {
1705 type = PIDTYPE_PGID;
1706 pid = find_get_pid(-upid);
1707 } else if (upid == 0) {
1708 type = PIDTYPE_PGID;
1709 pid = get_task_pid(current, PIDTYPE_PGID);
1710 } else /* upid > 0 */ {
1711 type = PIDTYPE_PID;
1712 pid = find_get_pid(upid);
1713 }
1714
1715 wo.wo_type = type;
1716 wo.wo_pid = pid;
1717 wo.wo_flags = options | WEXITED;
1718 wo.wo_info = NULL;
1719 wo.wo_stat = stat_addr;
1720 wo.wo_rusage = ru;
1721 ret = do_wait(&wo);
1722 put_pid(pid);
1723
1724 return ret;
1725 }
1726
1727 #ifdef __ARCH_WANT_SYS_WAITPID
1728
1729 /*
1730 * sys_waitpid() remains for compatibility. waitpid() should be
1731 * implemented by calling sys_wait4() from libc.a.
1732 */
1733 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1734 {
1735 return sys_wait4(pid, stat_addr, options, NULL);
1736 }
1737
1738 #endif